Science.gov

Sample records for nd-fe-b magnet scrap

  1. Liquid metal extraction of Nd from NdFeB magnet scrap

    SciTech Connect

    Xu, Yanchen

    1999-12-10

    This research involves using molten magnesium (Mg) to remove neodymium (Nd) from NdFeB magnet scrap by diffusion. The results show that liquid metal extraction of Nd may be a viable and inexpensive method for recovering the expensive rare earth element Nd for use in Mg castings.

  2. Selective Leaching Process for Neodymium Recovery from Scrap Nd-Fe-B Magnet

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Hwa; Chen, Yu-Jung; Liao, Ching-Hua; Popuri, Srinivasa R.; Tsai, Shang-Lin; Hung, Chi-En

    2013-12-01

    Neodymium-iron-boron (Nd-Fe-B) magnets were most widely applied to permanent magnetic products in the world due to their high magnetic force. The increasing growth of scrap Nd-Fe-B magnets resulted in disposal problems and the reduction of neodymium (Nd) valuable resources. In this study, we developed a simple hydrometallurgical precipitation process with pH adjustment to separate and recover Nd 100 pct recovery from scrap Nd-Fe-B magnets. Several physical and chemical methods such as demagnetization, grinding, screening, and leaching processes were also adopted to investigate the recovery of Nd and other metals from scrap Nd-Fe-B magnets. The leaching process was carried out with four leaching reagents such as NaOH, HCl, HNO3, and H2SO4. Batch studies were also conducted to optimize the leaching operating conditions with respect to leaching time, concentration of leaching reagent, temperature, and solid/liquid ratio for both HCl and H2SO4 leaching reagents. Nd was successfully separated and recovered with 75.41 wt pct from optimized H2SO4 leaching solution through precipitation. Further, the purity and weight percentage of the obtained Nd product was analyzed using scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) analysis. An X-ray diffraction (XRD) study confirmed the obtained product of Nd was in the form of NdOOH and Nd(OH)3.

  3. Corroded microstructure of HDDR-NdFeB magnetic powders

    NASA Astrophysics Data System (ADS)

    Zhu, L. Y.; Itakura, M.; Tomokiyo, Y.; Kuwano, N.; Machida, K.

    2004-08-01

    The microstructure of corroded HDDR-NdFeB magnetic powders in bonded magnet has been investigated by transmission electron microscopy. Following an exposure time of 300 h at 398 K in air, the HDDR-NdFeB magnetic powders are found covered with an altered layer about 300 nm thick on the surface. The layer is composed of α-Fe grains 5-10 nm in diameter and h-Nd 2O 3 grains smaller than 5 nm. Under the altered layer, corrosion has proceeded along the Nd 2(Fe,Co) 14B grain boundaries to leave a wetting layer composed of a dense mixture of α-Fe and h-Nd 2O 3 phase. The appearance of α-Fe grains in both of the altered layer wetting layer leads to the high magnetic flux loss of the corroded HDDR-NdFeB bonded magnet.

  4. Experimental Investigation and Thermodynamic Modeling of the B2O3-FeO-Fe2O3-Nd2O3 System for Recycling of NdFeB Magnet Scrap

    NASA Astrophysics Data System (ADS)

    Jakobsson, Lars Klemet; Tranell, Gabriella; Jung, In-Ho

    2017-02-01

    NdFeB magnet scrap is an alternative source of neodymium that could have a significantly lower impact on the environment than current mining and extraction processes. Neodymium can be readily oxidized in the presence of oxygen, which makes it easy to recover neodymium in oxide form. Thermochemical data and phase diagrams for neodymium oxide containing systems is, however, very limited. Thermodynamic modeling of the B2O3-FeO-Fe2O3-Nd2O3 system was hence performed to obtain accurate phase diagrams and thermochemical properties of the system. Key phase diagram experiments were also carried out for the FeO-Nd2O3 system in saturation with iron to improve the accuracy of the present modeling. The modified quasichemical model was used to describe the Gibbs energy of the liquid oxide phase. The Gibbs energy functions of the liquid phase and the solids were optimized to reproduce all available and reliable phase diagram data, and thermochemical properties of the system. Finally the optimized database was applied to calculate conditions for selective oxidation of neodymium from NdFeB magnet waste.

  5. Metal Injection Molding (MIM) of NdFeB Magnets

    NASA Astrophysics Data System (ADS)

    Hartwig, T.; Lopes, L.; Wendhausen, P.; Ünal, N.

    2014-07-01

    Due to the increased and unstable prices for Rare Earth elements there are activities to develop alternative hard magnetic materials. Reducing the amount of material necessary to produce complex sintered NdFeB magnets can also help to reduce some of the supply problem. Metal Injection Molding (MIM) is able to produce near net shape parts and can reduce the amount of finishing to achieve final geometry. Although MIM of NdFeB has been patented and published fairly soon after the development of the NdFeB magnets there has never been an industrial production. This could be due to the fact that MIM was very young at that time and hardly developed. Thus, the feasibility of the process needs to be revaluated. This paper presents results of our work on determining the process parameters influencing the magnetic properties of the sintered magnets as well as the shrinkage during processing. The role of binder and powder loading on the alignment of the particles as well as on the carbon and oxygen contamination was examined.

  6. Anisotropic powder from sintered NdFeB magnets by the HDDR processing route

    NASA Astrophysics Data System (ADS)

    Sheridan, R. S.; Sillitoe, R.; Zakotnik, M.; Harris, I. R.; Williams, A. J.

    2012-01-01

    Sintered NdFeB-based scrap magnets were recovered and processed using the HD and HDDR routes. The effects of varying the HDDR processing temperature were investigated (over the range 835-930 °C). The disproportion was carried out with a pressure ramp to a maximum of 1000 mbar hydrogen pressure with a 1 h hold time at each step and the optimum recombination conditions were set at 100 mbar with a 20 min hold time. Anisotropic NdFeB powder was produced in all cases with the best magnetic properties achieved at a processing temperature of 880 °C, producing powder with a remanence of 1.10(±0.02) T and an intrinsic coercivity of 800 (±16) kA m-1 and giving a (BH)max of 129(±2.5) kJ m-3.

  7. Magnetization reversal in melt-quenched NdFeB

    SciTech Connect

    Crew, D.C.; Lewis, L.H.; McCormick, P.G.; Street, R.; Panchanathan, V.

    1999-06-01

    Melt-quenched NdFeB is an important modern permanent magnet material. However there still remains doubt as to the magnetization reversal mechanism which controls coercivity in material prepared by this processing route. To investigate this problem a new technique based on measurements of reversible magnetization along recoil curves has been used. The technique identifies the presence of free domain walls during magnetic reversal. For this study samples of isotropic (MQI), hot pressed (MQII) and die upset (MQIII) melt-quenched NdFeB were examined. The results indicate that in MQI free domain walls are not present during reversal and the reversal mechanism is most likely incoherent rotation of some form. Free domain walls are also not present during reversal in the majority of grains of MQII, even though initial magnetization measurements indicate that the grain size is large enough to support them. In MQIII free domain walls are present during reversal. These results are attributed to the reduced domain wall nucleation field in MQIII compared with MQII and the increased dipolar interactions in MQIII.

  8. Development of extrusion molded Nd-Fe-B magnets

    SciTech Connect

    Sakata, M.; Ikuma, K. ); Watanabe, R.; Iwasa, T.; Miyadera, H.; McAloon, K.

    1993-01-01

    A new manufacturing process for extrusion molded magnets, composed of isotropic Nd-Fe-B powder and Nylon-12, has been developed. This newly developed extrusion molding process has several interesting features. First, the extruded product contains 72% by volume magnetic powder and yields a (BH)[sub max] of 8.0 MGO[sub e]. Second, through the addition of an anti-oxidant, the viscosity of the magnetic powder-nylon compound remains almost constant during molding. Third, by means of a specially cooled outlet, which is separated from the heated die by a thermal insulator, an optimized temperature profile is obtained which yields uniformly smooth extrusion molded magnets. Both long thin-walled magnets and small arc-shaped (kawala) magnets are easily molded by this new process.

  9. Effects of surface modification of Nd-Fe-B powders using parylene C by CVDP method on the properties of anisotropic bonded Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Ma, Bin; Sun, Aizhi; Lu, Zhenwen; Cheng, Chuan; Xu, Chen

    2016-10-01

    This paper presents effects of surface modification of Nd-Fe-B powders using parylene C by means of chemical vapor deposition polymerization (CVDP) on the properties of anisotropic bonded Nd-Fe-B magnets. It can be well verified from SEM images and EDS analysis that the surface of Nd-Fe-B powder is coated with thin parylene C films. The maximum energy product ((BH)max), degree of alignment (DOA), actual density and corrosion resistance of parylene Nd-Fe-B magnets prepared at room temperature are much higher than that of non-parylene Nd-Fe-B magnets. (BH)max, DOA and actual density of parylene Nd-Fe-B magnets (70 kJ/m3, 0.342, 5.82 g/cm3) prepared at room temperature under 578 MPa are improved by 18.6%, 4.6%, 2.1% and 27.3%, 29.1%, 7.8% compared with non-parylene Nd-Fe-B magnets prepared at 140 °C (59 kJ/m3, 0327, 5.70 g/cm3) and room temperature (55 kJ/m3, 0.265, 5.40 g/cm3), respectively. Additional, the improvement of actual density and the room temperature process also solve problems such as powders' sticking wall, non-uniform powder filling, non-uniform magnetic properties, seriously mould damage, short life cycle of mould and so on, which exists during warm compaction process. Parylene Nd-Fe-B magnets have better corrosion resistance and worse mechanical properties than that of non-parylene Nd-Fe-B magnets. The reason for the improvement of magnetic properties and actual density is the low friction cofficient of parylene C films, which results in lower frictional resistance and better lubricating property of parylene Nd-Fe-B powders.

  10. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    NASA Astrophysics Data System (ADS)

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-04-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH)max of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  11. Micrometer-size Nd-Fe-B dots as model systems for the study of intergranular phase engineering in Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Le Roy, Damien; Akdogan, Ozan; Ciuta, Georgeta; Dempsey, Nora; Givord, Dominique

    2014-05-01

    Nd-Fe-B micrometer-size dots were prepared by optical lithography and sputtering. It is proposed to use such structures as model systems to study intergranular phase engineering in Nd-Fe-B permanent magnets. The influence of Ta, Nd, Dy, and Gd coatings on the magnetization reversal of such Nd-Fe-B dot arrays are compared, after different heat treatments. A very thin layer of Dy (tNdFeB/tDy = 120) was found to lead to a significant increase of the coercive field, up to 80% for a total equivalent Dy content of less than 5 at. % of all the Nd. A coercivity increase of up to 20% was found with Gd coating which is attributed to the so-called superferrimagnetic coupling phenomenon. Nd and Ta coating are neutral or detrimental to the magnetic hardness.

  12. Dy-Free Nd-Fe-B Based Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Pathak, Arjun; Khan, Mahmud; Gschneidner, Karl, Jr.; McCallum, Ralph; Pecharsky, Vitalij

    2015-03-01

    Nd2Fe14B based permanent magnets are the current state of the art for high performance magnets. The prototype crystallize in the P42 / mnm tetragonal crystal structure, where the Nd atoms occupy the 4f and 4gsites, Fe atoms occupy six different atomic sites (16k1, 16k2, 8j1, 8j2, 4e, 4c), and B occupies only the 4g site. The leading contribution to the magnetocrystalline anisotropy in Nd2Fe14B energy comes from the Nd ions, which strongly prefer a c-axis alignment at ambient temperature. Nd2Fe14B permanent magnet has excellent magnetic properties at room temperature but has poor high temperature properties (T>400 K). A small amount of Dy (up to 10%) is substituted for Nd in Nd2Fe14B to increase the high temperature performance. Although Dy containing Nd2Fe14B magnets are desired for high temperature applications, the high price and limited supply of Dy urges the development of Dy-free permanent magnets. Here, we discuss the magnetic properties of several Dy-free Nd-Fe-B based nanostructured magnets and propose alternatives for Dy-based Nd2Fe14B permanent magnets for high temperature applications such as electric drive motors and wind turbines. This work was supported by the U.S.DOE, ARPA-E, Rare Earth Alternatives in Critical Technologies for Energy (REACT). The research was performed at the Ames Laboratory which is operated for the U.S. DOE by Iowa State University under contract #DE-AC02-07CH11358.

  13. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.

    2016-08-01

    Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.

  14. Thermal aging of melt-spun NdFeB magnetic powder in hydrogen

    NASA Astrophysics Data System (ADS)

    Pinkerton, Frederick E.; Balogh, Michael P.; Ellison, Nicole; Foto, Aldo; Sechan, Martin; Tessema, Misle M.; Thompson, Margarita P.

    2016-11-01

    High energy product neodymium-iron-boron (NdFeB) magnets are the premier candidate for demanding electrified vehicle traction motor applications. Injection molded (IM) or compression molded (CM) magnets made using NdFeB powders are promising routes to improve motor efficiency, cost, and manufacturability. However, IM and CM NdFeB magnets are susceptible to substantial thermal aging losses at motor operating temperatures when exposed to the automatic transmission fluid (ATF) used as a lubricant and cooling medium. The intrinsic coercivity Hci of NdFeB IM and CM magnets degrades by as much as 18% when aged for 1000 h in ATF at 150 °C, compared to a 3% loss when aged in air. Here we report aging studies of rapidly quenched NdFeB powder in air, ATF, and H2 gas. Expansion of the NdFeB crystal lattice in both ATF and H2 identified hydrogen dissociated from the ATF during aging and diffused into the primary NdFeB phase as the probable cause of the coercivity loss of IM and CM magnets.

  15. Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors

    PubMed Central

    Przybylski, Marek; Kapelski, Dariusz; Ślusarek, Barbara; Wiak, Sławomir

    2016-01-01

    Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated. PMID:27110783

  16. Impulse Magnetization of Nd-Fe-B Sintered Magnets for Sensors.

    PubMed

    Przybylski, Marek; Kapelski, Dariusz; Ślusarek, Barbara; Wiak, Sławomir

    2016-04-21

    Magnetization of large Nd-Fe-B sintered permanent magnets is still challenging. This type of permanent magnet is electrically conductive, so impulse magnetization causes a flow of eddy currents which prevent magnetization of the whole volume of the magnet. The paper deals with the impulse magnetization of sintered Nd-Fe-B permanent magnets and shows a method for the determination of suitable parameters for the supply system. The necessary magnetic field strength for magnetization of the magnet to saturation was determined. The optimal magnetizing fixture supply voltage for magnetization to saturation was determined from simulations in PSpice software, finite element analyses in Maxwell 15 and measurements. Measurements of magnetic induction on the surface of the Nd-Fe-B magnet are also presented to ensure that a magnet with 70 mm diameter and 20 mm in height is fully saturated.

  17. Protection of NdFeB magnets by corrosion resistance phytic acid conversion film

    NASA Astrophysics Data System (ADS)

    Nan, Haiyang; Zhu, Liqun; Liu, Huicong; Li, Weiping

    2015-11-01

    Phytic acid conversion film was prepared on NdFeB magnets by dipping the NdFeB into phytic acid solution. The morphology, composition, structure and corrosion resistance of the film were systematically investigated. The results showed that the phytic acid film was effective in improving the corrosion resistance of NdFeB magnets. XRD, TEM and FT-IR analyses revealed that the film was amorphous and had a strong peak of phosphate radical (PO43-). The formation mechanism of the film was also explored by XPS and the potential of zero charge (Epzc) measurement at the solution-metal interface.

  18. Direct-write 3D printing of NdFeB bonded magnets

    DOE PAGES

    Compton, Brett Gibson; Kemp, James William; Novikov, Timofei V.; ...

    2016-08-17

    We report a method to fabricate Nd-Fe-B bonded magnets of complex shape via extrusion-based additive manufacturing (AM), also known as 3D-printing. We have successfully formulated a 3D-printable epoxy-based ink for direct-write AM with anisotropic MQA NdFeB magnet particles that can be deposited at room temperature. The new feedstocks contain up to 40 vol.% MQA anisotropic Nd-Fe-B magnet particles, and they are shown to remain uniformly dispersed in the thermoset matrix throughout the deposition process. Ring, bar, and horseshoe-type 3D magnet structures were printed and cured in air at 100°C without degrading the magnetic properties. Lastly, this study provides a newmore » pathway for fabricating Nd-Fe-B bonded magnets with complex geometry at low temperature, and presents new opportunities for fabricating multifunctional hybrid structures and devices.« less

  19. Direct-write 3D printing of NdFeB bonded magnets

    SciTech Connect

    Compton, Brett Gibson; Kemp, James William; Novikov, Timofei V.; Pack, Robert Cody; Nlebedim, Cajetan I.; Duty, Chad Edward; Rios, Orlando; Paranthaman, M. Parans

    2016-08-17

    We report a method to fabricate Nd-Fe-B bonded magnets of complex shape via extrusion-based additive manufacturing (AM), also known as 3D-printing. We have successfully formulated a 3D-printable epoxy-based ink for direct-write AM with anisotropic MQA NdFeB magnet particles that can be deposited at room temperature. The new feedstocks contain up to 40 vol.% MQA anisotropic Nd-Fe-B magnet particles, and they are shown to remain uniformly dispersed in the thermoset matrix throughout the deposition process. Ring, bar, and horseshoe-type 3D magnet structures were printed and cured in air at 100°C without degrading the magnetic properties. Lastly, this study provides a new pathway for fabricating Nd-Fe-B bonded magnets with complex geometry at low temperature, and presents new opportunities for fabricating multifunctional hybrid structures and devices.

  20. Multiple magnetic scattering in small-angle neutron scattering of Nd-Fe-B nanocrystalline magnet.

    PubMed

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P; Keiderling, Uwe; Ono, Kanta

    2016-06-20

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.

  1. Multiple magnetic scattering in small-angle neutron scattering of Nd-Fe-B nanocrystalline magnet

    NASA Astrophysics Data System (ADS)

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P.; Keiderling, Uwe; Ono, Kanta

    2016-06-01

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.

  2. Modeling of magnetic properties of polymer bonded Nd-Fe-B magnets with surface modifications

    NASA Astrophysics Data System (ADS)

    Xiao, Jun; Otaigbe, Joshua U.; Jiles, David C.

    2000-07-01

    The effects of surface modification on the magnetic properties of polymer-bonded Nd-Fe-B magnets have been studied. Two sets of Nd-Fe-B powders, coated and uncoated, were blended and compression molded with polyphenylene sulfide in isotropic form. Their magnetic properties were measured using a Helmholtz coil and a SQUID. The results showed that the effect of the coating significantly improved the irreversible loss in flux and energy product of the polymer-bonded magnets. The results have been interpreted using an isotropic model of hysteresis that takes into account energy losses. The modeling showed that the presence of soft magnetic materials in the Nd-Fe-B powders caused by oxidation reduces the interaction among magnetic particles, however, the coating treatment alters the magnetic properties by increasing the remanence of polymer-bonded magnets via increasing the interparticle coupling coefficient.

  3. Development of High Performance Permanent Magnets Based on Nd-Fe-B System

    NASA Astrophysics Data System (ADS)

    Pourarian, F.

    2000-09-01

    Rare earth iron boron magnets based on Nd2Fe14B type is the most powerful permanent magnets, which have outstanding magnetic properties in the vicinity of room temperature. Production of NdFeB is carried out by two distinctly different processes. These include the conventional powder - sintering process and consolidation of rapidly solidified powders. The latter is used to produce both bonded and anisotropic bulk magnets. NdFeB sintered magnets essentially consist of three basic phases; Nd2Fe14B(Φ) Nd1Fe4B4 phase (η) and Nd-rich phase (n). Therefore, the magnetic properties of the magnets strongly depend on their microstructure. The current focus of NdFeB magnet research and development is on improvement of the magnetic properties such as the magnetic remanence (Br) and intrinsic coercivity (Hci), corrosion resistance and temperature characteristics of sintered magnets and rapidly solidified (melt spinning) magnets. Since the discovery of NdFeB magnets, their performance has been continuously enhanced and the current maximum energy product is achieved to be 444 kJ/m3 (55.8 MGOe). Other processes also have been used for improving microstructure for developing high energy product NdFeB magnets. These processes include: i) mechanical alloying process of metals which uses an inter-diffusional reaction magnet, ii) HDDR process (hydrogenation, disprorportionation, desorption, recombination) of magnet powder, and iii) nanocrystalline composite magnet (exchange-coupled) which are composed of magnetically hard and soft grains. The negative side of the NdFeB magnet is their low corrosion resistance. They are sensitive to attack by both climatic and corrosive environments, resulting in deterioration of the hard magnetic properties of the magnet. In this paper the development of the high-energy product NdFeB based magnets in terms of improved microstructure and magnet processing methods is reviewed.

  4. [The cytotoxicity of N48 NdFeB magnets coated with titanium-nitride].

    PubMed

    Cao, Xiao-Ming; Hou, Zhi-Ming; Chu, Ming

    2008-04-01

    To evaluate the effect of N48 NdFeB magnets coated with titanium-nitride on the growth and apoptosis of L929 mouse fibroblast cells, and to determine the material biocompatibility. The NdFeB magnets coated with titanium-nitride, bare NdFeB magnets and ordinary brackets were put into RPMI-1640 to prepare fusions. L929 mouse fibroblast cells were cultivated in the negative control liquid, positive control liquid, 100%, 50% and 25% sample fusions, respectively. The cell proliferation vitality was detected by MTT assay and the relative growth rate was calculated.Cell scatter diagrams of the negative control liquid, 100% titanium-nitride coated magnets fusion and bare magnets fusion were detected by flow cytometry Annexin V/PI double staining method. The ratios of normal cells, early apoptosis, advanced apoptosis and necrosis cells were calculated. The results were analyzed for paired t test using SPSS11.5 software package. The toxic levels of N48 NdFeB coated with titanium-nitride were ranked as 0-1. The toxic levels of bare magnets were ranked as 2. The cell scatter diagrams showed that there was no significant difference in living cell, early apoptosis and necrosis between magnets coated with titanium-nitride and control group. But there was significant difference between the bare magnets group and control group. The N48 NdFeB magnets coated with titanium-nitride have good biocompatibility.

  5. Assessment of corrosion resistance of Nd-Fe-B magnets by silanization for orthodontic applications

    NASA Astrophysics Data System (ADS)

    Fabiano, F.; Celegato, F.; Giordano, A.; Borsellino, C.; Bonaccorsi, L.; Calabrese, L.; Tiberto, P.; Cordasco, G.; Matarese, G.; Fabiano, V.; Azzerboni, B.

    2014-02-01

    Nd-Fe-B permanent magnets are characterised by excellent magnetic properties. However, being extremely vulnerable to the attack of both climate and corrosive environments, their applications are limited. This paper describes how, at different thicknesses of N-propyl-trimetoxy-silane, the coating affects the magnetic force of nickel plated magnets. We also investigate if the corrosion resistance of silanized Nd-Fe-B magnets increases in mildly corrosive environments by immersing them in a synthetic saliva solution. It was found that the silanization treatment does not affect the strength of the magnetic force and provide an enhancement of the corrosion resistance of the substrate.

  6. A study on the magnetic behavior of Nd-Fe-B/α-Fe nanocomposite films

    NASA Astrophysics Data System (ADS)

    Madeswaran, S.; Tamano, S.; Goto, S.; Tokiwa, K.

    2010-06-01

    Nanocomposite Nd-Fe-B / α-Fe thin films were prepared by sputtering successively a Nd-rich Nd21Fe64B15 and a Fe targets in a multilayer structure using radio frequency (RF) magnetron gun. We have studied the influence of thickness of α-Fe layer on the magnetic properties of Nd-Fe-B / α-Fe thin films. A nanocomposite thin film with 15nm thick α-Fe layer prepared on 550°C heated substrate gives the highest energy product, 190 kJ/m3 along with a coercivity of 950 kA/m. Magnetic hysteresis loop measurement shows that the hard (Nd-Fe-B) and soft (α-Fe) layers are exchange coupled firmly for the films deposited on heated substrate whereas the two layers are decoupled for room temperature deposited and post annealed films.

  7. Prediction of particle orientation in simple upsetting process of NdFeB magnets

    SciTech Connect

    Chang, Chao-Cheng; Hsiao, Po-Jen; You, Jr-Shiang; Chen, Yen-Ju; Chang, Can-Xun

    2013-12-16

    The magnetic properties of NdFeB magnets are strongly affected by crystallographic texture which is highly associated with particle orientation. This study proposed a method for predicting the particle orientation in the simple upsetting process of NdFeB magnets. The method is based on finite element simulation with flow net analysis. The magnets in a cylindrical form were compressed by two flat dies in a chamber filled with argon at 750°C. Three forming speeds were taken into account in order to obtain flow stress curves used in simulations. The micrographs of the cross sections of the deformed magnets show that the particle deformation significantly increases with the compression. The phenomenon was also predicted by the proposed method. Both simulated and experimental results show that the inhomogeneity of the texture of the NdFeB magnets can be increased by the simple upsetting process. The predicted particle orientations were in a good agreement with those examined in the deformed magnets. The proposed method for predicting particle orientations can also be used in other forming processes of NdFeB magnets.

  8. Radiation effects of 200 MeV proton beams on Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Yasuda, K.; Sasase, M.; Ishigami, R.; Hatori, S.; Ohashi, K.; Tanaka, S.

    2003-08-01

    Effects of 200 MeV proton irradiation on the re-magnetized Nd-Fe-B magnet (Shin-Etsu Chemical N48) were investigated. The dose dependence of the magnetic flux loss for the re-magnetized sample agreed well with that for the unirradiated one within the experimental accuracy. The N48 magnet, demagnetized by the radiation, had perfectly its magnetic properties of its unirradiated level by means of the re-magnetization.

  9. Modification of the Interface Nanostructure and Magnetic Properties in Nd-Fe-B Thin Films.

    PubMed

    Koike, Kunihiro; Kusano, Takanao; Ogawa, Daisuke; Kobayashi, Keisuke; Kato, Hiroaki; Oogane, Mikihiko; Miyazaki, Takamichi; Ando, Yasuo; Itakura, Masaru

    2016-12-01

    The effects of Nd2Fe14B grain size and Nd coating on the coercivity in sputter-deposited Nd-Fe-B/Nd thin films have been investigated in order to gain an insight into the coercivity mechanism of Nd-Fe-B magnets. Highly textured Nd2Fe14B particles were grown successfully on the MgO(100) single-crystal substrate with the Mo underlayer. As the Nd-Fe-B layer thickness t NFB was decreased from 70 to 5 nm, the coercivity H c increased gradually from 6.5 to 16 kOe. By depositing the Nd overlayer onto these films and post-annealing at 500 °C, the H c value further increased from 17.5 kOe (t NFB=70 nm) to 26.2 kOe (t NFB=5 nm). The amount of H c increase by the combination of the Nd coating and post-annealing was about 10 kOe irrespective of the t NFB value. These results therefore suggest an independence of size and interface effects on the coercivity of Nd-Fe-B magnets.

  10. A characterisation of the magnetically induced movement of NdFeB-particles in magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Schümann, M.; Borin, D. Y.; Huang, S.; Auernhammer, G. K.; Müller, R.; Odenbach, S.

    2017-09-01

    Magnetorheological elastomers are a type of smart hybrid material where elastic properties of a soft elastomer matrix are combined with magnetic properties of magnetic micro particles. This combination leads to a complex interplay of magnetic and elastic phenomena, of which the magnetorheological effect is the best described. In this paper, magnetically hard NdFeB-particles were used to obtain remanent magnetic properties. X-ray microtomography has been utilised to analyse the particle movement induced by magnetic fields. A particle tracking was performed; thus, it was possible to characterise the movement of individual particles. Beyond that, a comprehensive analysis of the orientation of all particles was performed at different states of magnetisation and global particle arrangements. For the first time, this method was successfully applied to a magnetorheological material with a technically relevant amount of magnetic NdFeB-particles. A significant impact of the magnetic field on the rotation and translation of the particles was shown.

  11. Application of bonded NdFeB magnet for C-Band circulator component

    NASA Astrophysics Data System (ADS)

    Kristiantoro, T.; Idayanti, N.; Sudrajat, N.; Septiani, A.; Dedi

    2016-11-01

    In this paper bonded NdFeB permanent magnets of the crashed-ribbon type were made as an alternative for circulator magnet to improve their magnetic performance. The fabrication process is also easier than the sintered NdFeB because there had no shrinkage of product (such as sintered barium ferrite magnet), with the others advantages as follows; large freeness of product shapes, high precision of dimension and good corrosion resistance. The dimension of the samples was measured to calculate its bulk densities and the magnetic properties were characterized by Permagraph to obtain values such as; Remanence induction (Br) in kG, Coercivity value (Hcj) in kOe, the Maximum energy product (BH max) in MGOe. Whereas the surface magnetic field strength (B) was observed by the Gauss-meter. The bonded NdFeB permanent magnets revealed 6.39 kG of Br, 6.974 kOe of Hcj and 7.13 MGOe of BHmax. The circulator performance was measured using Vector Network Analyzer (VNA). The optimum values of the circulator measurement at a frequency of 5 GHz show a VSWR value of 1.062 and insertion loss of -0.463 dB. The bonded magnet could be used as component of permanent magnets on the circulator that working on C-Band at a frequency range of 4 GHz - 8 GHz.

  12. Electron microscopy of Nd-Fe-B based magnets

    NASA Astrophysics Data System (ADS)

    Fidler, J.; Knoch, K. G.

    1989-08-01

    Transmission electron microscopy has been used widely to characterize the complex multiphase microstructure of Nd 2Fe 14B based permanent magnets. The grain size of the magnets strongly depends on the processing technique. Our study of sintered magnets revealed two types of grain boundaries: one containing no intergranular phase between hard magnetic grains and one composed of nonmagnetic Nd-rich phases. In doped sintered magnets the dopant is dissolved in the hard magnetic φ-phase. In the case where the solubility of the dopant is low at the sintering temperature (Nb, Mo, Zr), precipitates are formed within the φ-phase. Dopants also form new intergranular phases and influence the wetting of the liquid phase and the smoothness of the surface of the φ-grains during sintering and therefore affect the coercivity.

  13. Binder Jetting: A Novel NdFeB Bonded Magnet Fabrication Process

    NASA Astrophysics Data System (ADS)

    Paranthaman, M. Parans; Shafer, Christopher S.; Elliott, Amy M.; Siddel, Derek H.; McGuire, Michael A.; Springfield, Robert M.; Martin, Josh; Fredette, Robert; Ormerod, John

    2016-07-01

    The goal of this research is to fabricate near-net-shape isotropic (Nd)2Fe14B-based (NdFeB) bonded magnets using a three dimensional printing process to compete with conventional injection molding techniques used for bonded magnets. Additive manufacturing minimizes the waste of critical materials and allows for the creation of complex shapes and sizes. The binder jetting process works similarly to an inkjet printer. A print-head passes over a bed of NdFeB powder and deposits a polymer binding agent to bind the layer of particles together. The bound powder is then coated with another layer of powder, building the desired shape in successive layers of bonded powder. Upon completion, the green part and surrounding powders are placed in an oven at temperatures between 100°C and 150°C for 4-6 h to cure the binder. After curing, the excess powder can be brushed away to reveal the completed "green" part. Green magnet parts were then infiltrated with a clear urethane resin to achieve the measured density of the magnet of 3.47 g/cm3 close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3. Magnetic measurements indicate that there is no degradation in the magnetic properties. This study provides a new pathway for preparing near-net-shape bonded magnets for various magnetic applications.

  14. Backward extruded NdFeB HDDR ring magnets

    NASA Astrophysics Data System (ADS)

    Gutfleisch, O.; Kirchner, A.; Grünberger, W.; Hinz, D.; Schäfer, R.; Schultz, L.; Harris, I. R.; Müller, K. H.

    1998-03-01

    Isotropic, submicron grained Nd 15Fe 77B 8 powder has been prepared by applying the HDDR process. Fully dense isotropic magnets have been produced by hot pressing, textured compacts have been obtained by subsequent die upsetting. Radially oriented ring magnets have been prepared by backward extrusion of the hot pressed compacts. Very encouraging magnetic properties have been achieved, the remanence measured in the radial direction is Br=1.07 T with a coercivity of iHc=575 kA/m. However, a decrease in alignment has been observed in the axial direction of the ring magnet. The effects of deformation temperature and speed have been investigated. Magnetic properties and the physical and magnetic microstructure have been characterised by VSM, SEM and high-resolution Kerr-effect microscopy, the latter showing the formation of interaction domains, which indicate a high degree of texture in a fine grained material, in both the die upset and the backward extruded ring magnet produced from Nd 15Fe 77B 8 HDDR material.

  15. Cerium: an unlikely replacement of dysprosium in high performance Nd-Fe-B permanent magnets.

    PubMed

    Pathak, Arjun K; Khan, Mahmud; Gschneidner, Karl A; McCallum, Ralph W; Zhou, Lin; Sun, Kewei; Dennis, Kevin W; Zhou, Chen; Pinkerton, Frederick E; Kramer, Matthew J; Pecharsky, Vitalij K

    2015-04-24

    Replacement of Dy and substitution of Nd in NdFeB-based permanent magnets by Ce, the most abundant and lowest cost rare earth element, is important because Dy and Nd are costly and critical rare earth elements. The Ce, Co co-doped alloys have excellent high-temperature magnetic properties with an intrinsic coercivity being the highest known for T ≥ 453 K.

  16. Nd-Fe-B permanent magnet circuit for a 28 GHz CW gyrotron

    SciTech Connect

    Takada, Takeo; Ohashi, Ken; Honshima, Masakatsu; Kikunaga, Toshiyuki

    1995-12-31

    The magnetic circuit using Nd-Fe-B permanent magnets (PMs, in short) was designed and constructed for a 28 GHz CW gyrotron. The PM dimensions were calculated by an optimization algorithm in order to produce a desired axial field of 5150 G and uniformity less than 0.5 %. It was found that the measured axial field on-axis after fabricating is in a good agreement with the calculated field.

  17. Coercivity and Grain Boundary Morphology in Nd-Fe-B Sintered Magnets

    NASA Astrophysics Data System (ADS)

    Tsubokawa, Yoshiyuki; Hirosawa, Satoshi; Shimizu, Ryuichi

    1990-12-01

    The microstructure of Nd15Fe77B8 sintered permanent magnets has been investigated under a 400 kV high-resolution transmission electron microscope. With particular concern about the microstructural changes in the Nd-Nd2Fe14B interfaces, the effects of isothermal heat treatment at 870 K have been studied for a more comprehensive understanding of the coercivity-microstructure relationship in the Nd-Fe-B sintered magnets. The atomic-scale steps along the grain boundary can be observed in as-sintered samples. The steps disappear after heat treatment, and very flat interfaces are formed. This atomic-scale alignment at the grain boundary, therefore, is one of the factors affecting the coercivity of Nd-Fe-B sintered magnets.

  18. Magnetization reversal mechanism of a sintered Nd-Fe-B magnet with Dy segregation

    SciTech Connect

    Suzuki, Hiroyuki; Satsu, Yuichi; Komuro, Matahiro; Kohashi, Teruo; Motai, Kumi

    2011-04-01

    The magnetization reversal mechanism of a sintered Nd-Fe-B magnet with Dy segregation near grain boundaries (GB) was studied using spin polarized scanning electron spectroscopy and magnetization measurements. More fine magnetic domains near GB were found in the magnet with Dy segregation than in the magnet without treatment. Magnetic modifications near the GB had no effect on the magnetization development. The domain wall motion of a quasihard magnetic component in the magnet with Dy segregation was suppressed in comparison with those in the magnet without treatment; this could also be confirmed in the different behaviors of asymmetry components toward a magnetic field direction between both magnets. From analyzing the probability of rotating magnetization near the GB, the magnetization reversal of the magnet with Dy segregation was more difficult to produce than those of the magnet without treatment.

  19. Magnetizability of Nd-Fe-B-type magnets with Dy additions

    NASA Astrophysics Data System (ADS)

    Tokunaga, M.; Endoh, M.; Harada, H.; Trout, S. R.

    1988-04-01

    Many alloying additions have been made into Nd-Fe-B-type magnets to alter their permanent magnet properties, in particular for applications above 100 °C. To this end, a common practice has been to add Dy, increasing Hci [M. Sagawa, S. Fujimura, H. Yamamoto, H. Matsuura, and K. Hiraga, IEEE Trans. Magn. 20, 1584 (1984); M. Tokunaga, M. Meguro, M. Endoh, S. Tanigawa, and H. Harada, ibid. 20, 1964 (1985)]. It is not unusual to find Hci >20 kOe in these substituted alloys. This approach has caused a dilemma. In some cases, increasing Hci above 20 kOe makes the alloy more difficult to magnetize and therefore less useful when the field available for magnetizing is 25 kOe or less. We have examined the effect of various alloying additions and heat treatment on the magnetizability of substituted Nd-Fe-B alloys. We show that high Hci at room temperature is not a necessary requirement to have Hci >6 kOe at 150 °C. We discuss the factors affecting the magnetizability of Nd-Fe-B-type magnets.

  20. Fractal study for the fractured surface of Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Zhu, Minggang; Li, Wei; Fang, Yikun; Zhang, Wenchen; Zhao, Rui; Wang, Jingdai; Li, Anhua; Feng, Haibo; Guo, Zhaohui; Zhou, Mingge; Li, Yanfeng

    2011-04-01

    Fractal study was used to the analysis of the fractured surface of commercial N50-type Nd-Fe-B sintered magnets. The strain-stress properties of the specimens indicate that the elastic and plastic deformations occur simultaneously during intergranual cracking. The microfractography of the specimens exhibits typical brittle fracture pattern with some toughness dimples, indicating that plastic deformation has happened in some local areas. A "line-measuring dimension" Dline was selected to discuss the fracture behavior. The calculated Dline is about 1.28 and 1.29 for the specimens with c-axis parallel and perpendicular to the applied force direction, respectively. The line-measuring dimension analysis indicates that the fracture feature may be isotropic for our studied specimens, which is a bit inconsistent with previous report on the fracture characterization of Nd-Fe-B sintered magnets. More comprehensive fractal study is further needed to confirm the fracture behavior in detail in the future.

  1. Multiscale Examination of Strain Effects in Nd-Fe-B Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Yi, Min; Zhang, Hongbin; Gutfleisch, Oliver; Xu, Bai-Xiang

    2017-07-01

    We perform a combined first-principles and micromagnetic study on the strain effects in Nd-Fe-B permanent magnets. First-principles calculations on Nd2 Fe14B reveal that magnetocrystalline anisotropy (K ) is insensitive to deformation along the c axis, and that a -b in-plane shrinkage is responsible for K reduction. The predicted K is more sensitive to lattice deformation than the previous phenomenological model suggests. The biaxial and triaxial stress states have a greater impact on K . Negative K occurs in a much wider strain range in the a -b biaxial stress state. Micromagnetic simulations of Nd-Fe-B magnets using first-principles results show that a 3% to 4% local strain in a 2-nm-wide region near the interface around the grain boundaries and triple junctions leads to a negative local K and thus, remarkably, decreases the coercivity by about 60%, or 3 to 4 T. The local a -b biaxial stress state is more likely to induce a large loss of coercivity. In addition to the local stress states and the strain levels themselves, the shape of the interfaces and the intergranular phases also makes a difference. Smoothing the edge and reducing the sharp angle of the triple regions in Nd-Fe-B magnets would be favorable for a coercivity enhancement.

  2. Investigation on microstructure, texture, and magnetic properties of hot deformed Nd-Fe-B ring magnets

    NASA Astrophysics Data System (ADS)

    Li, A. H.; Li, W.; Lai, B.; Wang, H. J.; Zhu, M. G.; Pan, W.

    2010-05-01

    Radially oriented Nd-Fe-B ring magnets have been prepared by backward extrusion of melt-spun powder. The position dependent of the microstructure, the magnetic properties, and the crystal alignment of the extruded rings have been investigated. The magnetic properties in radial direction increase slightly along the axis from the bottom to the middle then steeply decrease at the upper end of the ring. The magnetic properties and x-ray diffraction patterns of the upper end are very close to that of the isotropic pressed precursor. It suggests that the extruded ring approximately retains the initial structure at its upper end which is because the formation of texture is difficult at the initial stage of hot extrusion. Characteristic microstructure morphologies were found at different spatial positions: flake-shaped grains for the inner, elongated grains for the middle, and particle-shaped grains for the outer region in the cross section. Only particle-shaped grains were observed at the upper end of the ring. But the circumferential homogeneity of the surface magnetic flux densities is better in an extruded ring magnet than in a radially oriented ring prepared by sintering method. The deformation and texture formation processes were discussed. The deformation and texture formation in backward extruded magnets from melt-spun Nd-Fe-B precursors may possibly involve grain boundary sliding and grain rotation, solution-precipitation process, and preferred growth of Nd2Fe14B nanograins along the easy growth a-axis.

  3. Magnetic microstructure and magnetic properties of spark plasma sintered NdFeB magnets

    NASA Astrophysics Data System (ADS)

    Huang, Y. L.; Wang, Y.; Hou, Y. H.; Wang, Y. L.; Wu, Y.; Ma, S. C.; Liu, Z. W.; Zeng, D. C.; Tian, Y.; Xia, W. X.; Zhong, Z. C.

    2016-02-01

    Nanocrystalline NdFeB magnets were prepared by spark plasma sintering (SPS) technique using melt-spun ribbons as starting materials. A distinct two-zone structure with coarse grain zone and fine grain zone was formed in the SPSed magnets. Multi-domain particle in coarse grain zone and exchange interaction domain for fine grain zone were observed. Intergranular non-magnetic phase was favorable to improve the coercivity due to the enhancement of domain wall pinning effects and increased exchange-decouple. The remanent polarization of 0.83 T, coercivity of 1516 kA/m, and maximum energy product of 118 kJ/m3 are obtained for an isotropic magnet.

  4. Anisotropy of grain boundary diffusion in sintered Nd-Fe-B magnet

    NASA Astrophysics Data System (ADS)

    Niu, E.; Chen, Zhi-An; Ye, Xuan-Zhang; Zhu, Wei; Chen, Guo-An; Zhao, Yu-Gang; Zhang, Jin; Rao, Xiao-Lei; Hu, Bo-Ping; Wang, Zhen-Xi

    2014-06-01

    The grain boundary diffusion (GBD) was applied to magnetically aligned Nd-Fe-B sintered magnets on their different surfaces. The demagnetization curves show better squareness for Dy diffusing from the pole surfaces than that from the side surfaces. Kerr magnetic domain patterns on magnet surfaces in aligned and unaligned magnets were observed together with in situ optical microscope images. It indicates that the anisotropy of the GBD effect is attributed to the anisotropic texture of the grain boundary Nd-rich phase in the magnet.

  5. Modelling of the material flow of Nd-Fe-B magnets under high temperature deformation via finite element simulation method.

    PubMed

    Chen, Yen-Ju; Lee, Yen-I; Chang, Wen-Cheng; Hsiao, Po-Jen; You, Jr-Shian; Wang, Chun-Chieh; Wei, Chia-Min

    2017-01-01

    Hot deformation of Nd-Fe-B magnets has been studied for more than three decades. With a good combination of forming processing parameters, the remanence and (BH)max values of Nd-Fe-B magnets could be greatly increased due to the formation of anisotropic microstructures during hot deformation. In this work, a methodology is proposed for visualizing the material flow in hot-deformed Nd-Fe-B magnets via finite element simulation. Material flow in hot-deformed Nd-Fe-B magnets could be predicted by simulation, which fitted with experimental results. By utilizing this methodology, the correlation between strain distribution and magnetic properties enhancement could be better understood.

  6. Modelling of the material flow of Nd-Fe-B magnets under high temperature deformation via finite element simulation method

    PubMed Central

    Chen, Yen-Ju; Lee, Yen-I; Chang, Wen-Cheng; Hsiao, Po-Jen; You, Jr-Shian; Wang, Chun-Chieh; Wei, Chia-Min

    2017-01-01

    Abstract Hot deformation of Nd-Fe-B magnets has been studied for more than three decades. With a good combination of forming processing parameters, the remanence and (BH)max values of Nd-Fe-B magnets could be greatly increased due to the formation of anisotropic microstructures during hot deformation. In this work, a methodology is proposed for visualizing the material flow in hot-deformed Nd-Fe-B magnets via finite element simulation. Material flow in hot-deformed Nd-Fe-B magnets could be predicted by simulation, which fitted with experimental results. By utilizing this methodology, the correlation between strain distribution and magnetic properties enhancement could be better understood. PMID:28970869

  7. Effect of sintering process on the magnetic and mechanical properties of sintered Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Hu, Z. H.; Qu, H. J.; Zhao, J. Q.; Yan, C. J.; Liu, X. M.

    2014-11-01

    The magnetic and mechanical properties of sintered Nd-Fe-B magnets prepared by different sintering processes were investigated. The results showed that the intrinsic coercivity and fracture toughness of sintered Nd-Fe-B magnets first increased, and then declined with increasing annealing temperature. The optimum magnetic properties and fracture toughness of sintered Nd-Fe-B magnets were obtained at the annealing temperature of 540 °C. Sintering temperature increasing from 1047 °C to 1071 °C had hardly effect on the magnetic properties of sintered Nd-Fe-B magnets. The variation of Vickers hardness and fracture toughness was not the same with increasing sintering temperature, and the effect of sintering temperature on the mechanical properties was complex and irregular. The reasons for the variation on magnetic and mechanical properties were analyzed, and we presumed that the effect of microstructure on the mechanical properties was more sensitive than the magnetic properties through analyzing the microstructure of sintered Nd-Fe-B magnets.

  8. Prediction method of flux loss in anisotropic NdFeB/SmFeN hybrid magnets

    NASA Astrophysics Data System (ADS)

    Fukunaga, Hirotoshi; Murata, Hiroki; Yanai, Takeshi; Nakano, Masaki; Yamashita, Fumitoshi

    2010-05-01

    We systematically evaluated the initial flux loss of anisotropic HDDR-NdFeB/RD-SmFeN hybrid bonded magnets. The measured flux loss values were compared with those obtained by two prediction methods based on our previous proposal. Consequently, it was clarified that the initial flux loss of anisotropic bonded magnets can be predicted from demagnetization curves at room and exposure temperatures of the corresponding hybrid magnets, which suggests that the method proposed previously for isotropic magnets can be also applicable to anisotropic ones.

  9. Strategic coating of NdFeB magnets with Dy to improve the coercivity of permanent magnets

    DOE PAGES

    Ucar, Huseyin; Parker, David S.; Nlebedim, I. C.; ...

    2015-12-25

    Here, we present a method, supported by theoretical analysis, for optimizing the usage of the critical rare earth element dysprosium in Nd2Fe14B (NdFeB)-based permanent magnets. In this method, we use Dy selectively in locations such as magnet edges and faces, where demagnetization factors are most significant, rather than uniformly throughout the bulk sample. A 200 nm thick Dy film was sputtered onto commercial N-38, NdFeB magnets with a thickness of 3 mm and post-annealed at temperatures from 600 - 700 C. Magnets displayed enhanced coercivities after post-annealing. Furthermore, our experimental results indicate as large as a 5 percent increase inmore » the energy product of NdFeB magnets, achieved for a total Dy weight percentage of 0.06 percent, much less than that used in commercial grade Dy-NdFeB magnets. Finally, by assuming all Dy diffused into NdFeB magnets, the improvement in energy product corresponds to a saving of over 1% Dy (critical element). Magnets manufactured using this technique will therefore be higher performing and significantly less expensive than those made presently.« less

  10. Strategic coating of NdFeB magnets with Dy to improve the coercivity of permanent magnets

    SciTech Connect

    Ucar, Huseyin; Parker, David S.; Nlebedim, I. C.; McCallum, R. W.; McCall, S. K.; Parans Paranthaman, M.

    2015-12-25

    Here, we present a method, supported by theoretical analysis, for optimizing the usage of the critical rare earth element dysprosium in Nd2Fe14B (NdFeB)-based permanent magnets. In this method, we use Dy selectively in locations such as magnet edges and faces, where demagnetization factors are most significant, rather than uniformly throughout the bulk sample. A 200 nm thick Dy film was sputtered onto commercial N-38, NdFeB magnets with a thickness of 3 mm and post-annealed at temperatures from 600 - 700 C. Magnets displayed enhanced coercivities after post-annealing. Furthermore, our experimental results indicate as large as a 5 percent increase in the energy product of NdFeB magnets, achieved for a total Dy weight percentage of 0.06 percent, much less than that used in commercial grade Dy-NdFeB magnets. Finally, by assuming all Dy diffused into NdFeB magnets, the improvement in energy product corresponds to a saving of over 1% Dy (critical element). Magnets manufactured using this technique will therefore be higher performing and significantly less expensive than those made presently.

  11. Binder Jetting: A Novel NdFeB Bonded Magnet Fabrication Process

    DOE PAGES

    Paranthaman, M. Parans; Shafer, Christopher S.; Elliott, Amy M.; ...

    2016-04-05

    Our goal of this research is to fabricate near-net-shape isotropic (Nd)2Fe14B-based (NdFeB) bonded magnets using a three dimensional printing process to compete with conventional injection molding techniques used for bonded magnets. Additive manufacturing minimizes the waste of critical materials and allows for the creation of complex shapes and sizes. The binder jetting process works similarly to an inkjet printer. A print-head passes over a bed of NdFeB powder and deposits a polymer binding agent to bind the layer of particles together. The bound powder is then coated with another layer of powder, building the desired shape in successive layers ofmore » bonded powder. Upon completion, the green part and surrounding powders are placed in an oven at temperatures between 100°C and 150°C for 4–6 h to cure the binder. After curing, the excess powder can be brushed away to reveal the completed “green” part. Green magnet parts were then infiltrated with a clear urethane resin to achieve the measured density of the magnet of 3.47 g/cm3 close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3. Magnetic measurements indicate that there is no degradation in the magnetic properties. In conclusion, this study provides a new pathway for preparing near-net-shape bonded magnets for various magnetic applications.« less

  12. Binder Jetting: A Novel NdFeB Bonded Magnet Fabrication Process

    SciTech Connect

    Paranthaman, M. Parans; Shafer, Christopher S.; Elliott, Amy M.; Siddel, Derek H.; McGuire, Michael A.; Springfield, Robert M.; Martin, Josh; Fredette, Robert; Ormerod, John

    2016-04-05

    Our goal of this research is to fabricate near-net-shape isotropic (Nd)2Fe14B-based (NdFeB) bonded magnets using a three dimensional printing process to compete with conventional injection molding techniques used for bonded magnets. Additive manufacturing minimizes the waste of critical materials and allows for the creation of complex shapes and sizes. The binder jetting process works similarly to an inkjet printer. A print-head passes over a bed of NdFeB powder and deposits a polymer binding agent to bind the layer of particles together. The bound powder is then coated with another layer of powder, building the desired shape in successive layers of bonded powder. Upon completion, the green part and surrounding powders are placed in an oven at temperatures between 100°C and 150°C for 4–6 h to cure the binder. After curing, the excess powder can be brushed away to reveal the completed “green” part. Green magnet parts were then infiltrated with a clear urethane resin to achieve the measured density of the magnet of 3.47 g/cm3 close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3. Magnetic measurements indicate that there is no degradation in the magnetic properties. In conclusion, this study provides a new pathway for preparing near-net-shape bonded magnets for various magnetic applications.

  13. Physical and magnetic properties, microstructure of bonded magnet NdFeB prepared by using synthesis rubber

    NASA Astrophysics Data System (ADS)

    Suprapedi; Sardjono, P.; Muljadi

    2016-11-01

    The magnet permanent has been made by using NdFeB (NQP-B) powder with purity 99.90% and polymer rubber with purity 90%. This research was done to determine the effect of the polymer (rubber) composition as binder in the manufacture of bonded magnet NdFeB on physical properties, microstructure and magnetic properties. Bonded magnets are magnet material made from a mixture of magnetic powder as a filler and the polymer as a matrix material or as binder to bind the magnetic particles. The NdFeB (NQP-B) powder fractions of bonded magnets NdFeB investigated were as follows: a) 97 wt.% of NdFeB (NQP-B) and 3 wt.% of rubber,b) 95wt.% of NdFeB (NQP-B) and 5 wt.% of rubber, c) 93 wt.% of NdFeB (NQP-B) and 7 wt.% of rubber, d) 91 wt.% of NdFeB (NQP-B) and 9 wt.% of rubber. Both raw materials were mixed by using mixer until homogen with total weight about 16 g for each sample, then added 0.3 ml of catalyst and mixed again and put in dies mould and compacted at pressure 30 MPa, then dried for 2 hours at room temperature. The dried samples was characterized such as: bulk density measurement and magnetic properties by using BH-curve permeagraph. The bulk density values of the sample bonded NdFeB magnets using the binder 3% wt. and 5% wt. rubber are respectively 4,70 g/cm3 and 4.88 g/cm3. The result from BH- curve shows that the highest value of remanence (Br = 5.12 kGauss) is at sample with 3% wt. of rubber, but sample with 5% wt. of rubber has lowest value of remanance (Br = 4.40 kGauss). Based on the observation of the SEM photograph shown that the rubber material has been successfully covered the whole surface of the grain and fill some of the voids that are in the grain boundary.

  14. Magnetic properties and microstructure of bulk Nd-Fe-B magnets solidified in magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, C.; Lai, Y. S.; Hsieh, C. C.; Chang, W. C.; Chang, H. W.; Sun, A. C.

    2011-04-01

    The Nd-Fe-B bulk magnets with a slab shape of 0.9 × 4 × 15 mm3 were prepared by injection casting into a copper mold. The effects of applying a magnetic field during the casting process on the magnetic properties and microstructure of Nd9.5Fe71.5Ti2.5Zr0.5Cr1B14.5C0.5 alloy have been studied. The results show that the sample cast with magnetic field has a stronger (00L) texture of Nd2Fe14B phase with the c-axis perpendicular to the slab plane than the sample cast without magnetic field. The intensity of the texture weakens from surface to inner region of the bulk magnets. Applying a magnetic field during the casting process is helpful to refine the grain size effectively. As a result, the magnetic properties are improved from Br = 5.8 kG, iHc = 6.5 kOe, and (BH)max = 5.9 MGOe for thesample cast without magnetic field to Br = 6.1 kG, iHc = 10.3 kOe, and (BH)max = 7.3 MGOe for the sample cast with a 3.7 kOe magnetic field.

  15. Big area additive manufacturing of high performance bonded NdFeB magnets

    DOE PAGES

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.; ...

    2016-10-31

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic propertiesmore » are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. As a result, the present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.« less

  16. Big area additive manufacturing of high performance bonded NdFeB magnets

    SciTech Connect

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans

    2016-10-31

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. As a result, the present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.

  17. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets

    NASA Astrophysics Data System (ADS)

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans

    2016-10-01

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.

  18. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets.

    PubMed

    Li, Ling; Tirado, Angelica; Nlebedim, I C; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R R; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A; Paranthaman, M Parans

    2016-10-31

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm(3), and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m(3) (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials.

  19. Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets

    PubMed Central

    Li, Ling; Tirado, Angelica; Nlebedim, I. C.; Rios, Orlando; Post, Brian; Kunc, Vlastimil; Lowden, R. R.; Lara-Curzio, Edgar; Fredette, Robert; Ormerod, John; Lograsso, Thomas A.; Paranthaman, M. Parans

    2016-01-01

    Additive manufacturing allows for the production of complex parts with minimum material waste, offering an effective technique for fabricating permanent magnets which frequently involve critical rare earth elements. In this report, we demonstrate a novel method - Big Area Additive Manufacturing (BAAM) - to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: intrinsic coercivity Hci = 688.4 kA/m, remanence Br = 0.51 T, and energy product (BH)max = 43.49 kJ/m3 (5.47 MGOe). In addition, tensile tests performed on four dog-bone shaped specimens yielded an average ultimate tensile strength of 6.60 MPa and an average failure strain of 4.18%. Scanning electron microscopy images of the fracture surfaces indicate that the failure is primarily related to the debonding of the magnetic particles from the polymer binder. The present method significantly simplifies manufacturing of near-net-shape bonded magnets, enables efficient use of rare earth elements thus contributing towards enriching the supply of critical materials. PMID:27796339

  20. Electron holography on remanent magnetization distribution of melt-spun Nd-Fe-B magnets.

    PubMed

    Park, Young-Gil; Shindo, Daisuke

    2004-01-01

    Microstructures and magnetic domain structures of melt-spun Nd-Fe-B permanent magnets were investigated in detail by analytical electron microscopy and electron holography. While the crystal orientation of matrix Nd2Fe14B grains was analyzed by nanobeam electron diffraction, precipitates of a few tens of nanometers at grain boundaries were identified to be alpha-Fe by energy-dispersive X-ray spectroscopy. The detailed magnetization distribution in Nd2Fe14B grains and at their boundaries was visualized by electron holography. Ex situ experimentation with an electromagnet revealed that the domain walls in the demagnetized state and remanent states were pinned at grain boundaries, and Fe precipitates at the grain boundary were situated at the center of the closure domain.

  1. The effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Mural, Zorjana; Kollo, Lauri; Xia, Manlong; Bahl, Christian R. H.; Abrahamsen, Asger Bech; Bez, Henrique Neves; Link, Joosep; Veinthal, Renno

    2017-05-01

    This paper addresses the effect of nano-TiC addition on sintered Nd-Fe-B permanent magnets. TiC nanoparticles were added to sintered Nd-Fe-B magnets with a specific aim to improve the Curie temperature and thermal stability. A standard powder metallurgy route was adopted to prepare the magnets. It was found that introducing nano-TiC prior to jet milling was effective as the nanoparticles dispersed in the final alloy, concentcalcrating in the neodymium-rich phase of the magnets. Magnets with optimal properties were obtained with the addition of 1 wt% TiC nanoparticles. The hysteresis loop for such magnets showed an improved shape and VSM analysis a coercivity value of 1188 kA/m, a remanence value of 0.96 T and a maximum energy product of 132 kJ/m3. The maximum working point and the Curie temperature of the developed magnets were 373 K and 623 K respectively.

  2. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    DOE PAGES

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; ...

    2016-08-30

    We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees withmore » an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.« less

  3. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    NASA Astrophysics Data System (ADS)

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R. W.; McCall, Scott K.; Kramer, M. J.; Paranthaman, M. Parans

    2017-01-01

    Considerations for achieving high degree of alignment in polymer bonded permanent magnets are presented via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. The thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.

  4. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    SciTech Connect

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R. W.; McCall, Scott K.; Kramer, M. J.; Paranthaman, M. Parans

    2016-08-30

    We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.

  5. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    SciTech Connect

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; McCallum, R. W.; McCall, Scott K.; Kramer, M. J.; Paranthaman, M. Parans

    2016-08-30

    We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees with an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.

  6. Studies on in situ magnetic alignment of bonded anisotropic Nd-Fe-B alloy powders

    DOE PAGES

    Nlebedim, I. C.; Ucar, Huseyin; Hatter, Christine B.; ...

    2016-08-30

    We presented some considerations for achieving high degree of alignment in polymer bonded permanent magnets via the results of a study on in situ magnetic alignment of anisotropic Nd-Fe-B magnet powders. Contributions from effect of the alignment temperature, alignment magnetic field and the properties of the polymer on the hard magnetic properties of the bonded magnet were considered. Moreover, the thermo-rheological properties of the polymer and the response of the magnet powders to the applied magnetic field indicate that hard magnetic properties were optimized at an alignment temperature just above the melting temperature of the EVA co-polymer. This agrees withmore » an observed correlation between the change in magnetization due to improved magnetic alignment of the anisotropic powders and the change in viscosity of the binder. Finally, manufacturing cost can be minimized by identifying optimum alignment temperatures and magnetic field strengths.« less

  7. Observation of spin-wave dispersion in Nd-Fe-B magnets using neutron Brillouin scattering

    SciTech Connect

    Ono, K. Inami, N.; Saito, K.; Takeichi, Y.; Kawana, D.; Yokoo, T.; Itoh, S.; Yano, M.; Shoji, T.; Manabe, A.; Kato, A.; Kaneko, Y.

    2014-05-07

    The low-energy spin-wave dispersion in polycrystalline Nd-Fe-B magnets was observed using neutron Brillouin scattering (NBS). Low-energy spin-wave excitations for the lowest acoustic spin-wave mode were clearly observed. From the spin-wave dispersion, we were able to determine the spin-wave stiffness constant D{sub sw} (100.0 ± 4.9 meV.Å{sup 2}) and the exchange stiffness constant A (6.6 ± 0.3 pJ/m)

  8. Microstructure evolution of hot-deformed Nd-Fe-B anisotropic magnets

    SciTech Connect

    Liu, J. Hono, K.; Sepehri-Amin, H.; Ohkubo, T.; Hioki, K.; Hattori, A.

    2014-05-07

    The microstructural evolution of hot-deformed Nd-Fe-B magnets in each stage of hot-deformation process was studied using transmission electron microscopy and three dimensional atom probe (3DAP). The anisotropic growth of initially isotropic grains in rapidly solidified alloy occurs by annealing without pressing. 3DAP analyses showed a higher concentration of rare-earth elements in the intergranular phase parallel to the flat surface of platelet shaped Nd{sub 2}Fe{sub 14}B grains compared to that in the intergranular phase at the side of platelets.

  9. Corrosion protection of Nd-Fe-B magnets by bismaleimide coating

    NASA Astrophysics Data System (ADS)

    Cheng, F. T.; Man, H. C.; Chan, W. M.; Cheng, C. W.; Chan, W. O.

    1999-04-01

    Samples of Nd-Fe-B were coated with bismaleimide (BMI), a resin which is well known for its desirable barrier, mechanical, and thermal properties but has not been used as a coating material. The performance of BMI-coated samples (average coating thickness ˜15 μm) was compared with commercial epoxy-coated samples (average coating thickness ˜20 μm) in a series of tests. In the copper-accelerated acetic acid-salt spray test, the epoxy-coated samples failed badly (damaged area >50%) within 20 h while the BMI-coated samples showed no sign of failure up to 200 h. Using the cross-cut tape test for adhesion strength (ASTM D 3359), the commercial epoxy coatings suffered 25% area detachment while for the BMI coatings, no detachment was observed. The scratch resistance of the BMI coatings, measured in terms of scratch depth in the pin scratch test, was about 1.5 that of the commercial epoxy coatings, and the Vickers hardness was higher by a factor of about 2.5. When magnetized under the same magnetizing field, there was no significant difference in the magnetization obtained among bare, epoxy-coated, and BMI-coated samples. These results suggest that BMI coatings are excellent for protection of the Nd-Fe-B magnets against corrosion and function better than the commonly used epoxy resin.

  10. Influence of annealing temperature on the Dy diffusion process in NdFeB magnets

    NASA Astrophysics Data System (ADS)

    Hu, Sheng-qing; Peng, Kun; Chen, Hong

    2017-03-01

    Sintered NdFeB magnets were coated with a layer of Dy metal using electron beam evaporation method and then annealed at various temperatures to investigate the temperature dependence of Dy diffusion process in NdFeB magnets. A Dy-rich phase was observed along the grain boundaries after the grain boundary diffusion process, the diffusion coefficients of various temperatures were obtained, the diffusion coefficients of Dy along the grain boundaries at 800 °C and 900 °C were determined to be 9.8×10-8 cm2 s-1 and 2.4×10-7 cm2 s-1, respectively. The diffusion length depended on the annealing temperature and the maximum diffusion length of approximately 1.8 mm and 3.0 mm can be obtained after annealing at 800 °C and 900 °C for 8 h. Higher diffusion temperature results in the diffusion not only along the grain boundaries but also into grains and then decrease in magnetic properties. The optimum annealing conditions can be determined as 900 °C for 8 h. The coercivity was improved from 1040 kA/m to 1450 kA/m and its magnetization has no significant reduction after the grain boundary diffusion process at the optimum annealing conditions.

  11. Corrosion Resistance Analysis of Sintered NdFeB Magnets Using Ultrasonic-Aided EDM Method

    NASA Astrophysics Data System (ADS)

    Li, L.; Wei, X. T.; Li, Z. Y.; Cheng, X.

    2015-01-01

    Sintered neodymium-iron-boron (NdFeB) permanent magnets are widely used in many fields because of their excellent magnetic property. However, their poor corrosion resistance has been cited as a potential problem that limits their extensive application. This paper presents an experimental investigation into the improvement of surface corrosion resistance with the ultrasonic-aided electrical discharge machining (U-EDM) method. A scanning electron microscope was used to analyze the surface morphology of recast layers formed through the EDM and U-EDM processes. The chemical structure and elements of these recast layers were characterized using x-ray diffraction and energy dispersive spectroscopy. Corrosion resistance was also studied by means of potentiodynamic polarization, electrochemical impedance spectroscopy, and immersion tests in 0.5 mol/L H2SO4 solution. Experimental results show that an amorphous structure was formed in the recast layer during the EDM and U-EDM processes and that this structure could improve the corrosion resistance of sintered NdFeB magnets. Moreover, the corrosion resistance of U-EDM-treated surface was better than that of the EDM-treated surface.

  12. Coercivity enhancement of Nd-Fe-B thin film magnets by Dy buffer and capping layers

    NASA Astrophysics Data System (ADS)

    You, C. Y.; Wang, J. W.; Lu, Z. X.

    2012-04-01

    The Dy layer was inserted into the structure of SiO2/Ti/Nd-Fe-B/Ti as the buffer or capping layer of the Nd-Fe-B layer. The insertions of Dy layers had no significant influence on the film texture with the easy axis mainly perpendicular to the film plane. The film without Dy layer gave the out-of-plane coercivity of 533 kA/m, maximum magnetic energy product (BH)max of 245 kJ/m3. With a Dy buffer layer, the out-of-plane coercivity and (BH)max were increased to 1074 kA/m, 291 kJ/m3 respectively. The film with Dy capping layer had a coercivity of 1035 kA/m and (BH)max of 286 kJ/m3. Microstructure observations showed that the Nd-rich phases were evolved into grain boundaries from triple junctions by a Dy buffer layer deposition, resulting in a well magnetic decoupling of Nd2Fe14B neighboring grains. Through capping a Dy layer, the environment of grain boundaries had been improved and some Dy diffused into Nd2Fe14B phases, which contributed to the enhancement of magnetic performance.

  13. Preparation and properties of isotropic Nd-Fe-B bonded magnets with sodium silicate binder

    NASA Astrophysics Data System (ADS)

    Liu, W. Q.; Hu, R. J.; Yue, M.; Yin, Y. X.; Zhang, D. T.

    2017-08-01

    In present study, sodium silicate, a kind of heat-resistant binder, was used to prepare bonded Nd-Fe-B magnets with improved thermal stability and mechanical strength. Effect of curing temperature and curing time of the new binder to the magnetic properties, microstructure, and mechanical strength of the magnets was systematically investigated. Fracture surface morphology observation show that sodium silicate in bonded magnets could completely be cured at 175 °C for 40 min, and the magnets prepared under this condition exhibit optimal properties. They exhibit usable magnetic properties of Br of 4.66 kGs, Hcj of 4.84 kOe, and (BH)max of 4.06 MGOe at 200 °C. Moreover, the magnets possess high compressive strength of 63 MPa.

  14. NdFeB thin anisotropic magnets obtained by hot working process

    NASA Astrophysics Data System (ADS)

    Kim, H. T.; Cho, S. H.; Kim, Y. B.; Ryu, K. S.; Kapustin, G. A.; Kim, H. S.

    2004-05-01

    The current-applied pressure-assisted process has been applied to obtain anisotropic thin NdFeB magnets. The magnetic properties and microstructure of Nd14Fe80B6 and Nd12Dy2Fe73.2Co6.6Ga0.6B5.6 magnets with thickness of millimeter and sub-millimeter scale were investigated. For the thin magnets, the remanence and coercivity are lower than those of the thick magnet in spite of higher thickness reduction ratio due to the poor c-axis texture and abnormal grain growth. The optimized magnetic properties of the thin Nd12Dy2Fe73.2Co6.6Ga0.6B5.6 magnet with thickness of 780μm are Br=12.4kG, iHc=164kOe, and (BH)max=37.1MGOe.

  15. Material flow analysis of NdFeB magnets for Denmark: a comprehensive waste flow sampling and analysis approach.

    PubMed

    Habib, Komal; Schibye, Peter Klausen; Vestbø, Andreas Peter; Dall, Ole; Wenzel, Henrik

    2014-10-21

    Neodymium-iron-boron (NdFeB) magnets have become highly desirable for modern hi-tech applications. These magnets, in general, contain two key rare earth elements (REEs), i.e., neodymium (Nd) and dysprosium (Dy), which are responsible for the very high strength of these magnets, allowing for considerable size and weight reduction in modern applications. This study aims to explore the current and future potential of a secondary supply of neodymium and dysprosium from recycling of NdFeB magnets. For this purpose, material flow analysis (MFA) has been carried out to perform the detailed mapping of stocks and flows of NdFeB magnets in Denmark. A novel element of this study is the value added to the traditionally practiced MFAs at national and/or global levels by complementing them with a comprehensive sampling and elemental analysis of NdFeB magnets, taken out from a sample of 157 different products representing 18 various product types. The results show that the current amount of neodymium and dysprosium in NdFeB magnets present in the Danish waste stream is only 3 and 0.2 Mg, respectively. However, this number is estimated to increase to 175 Mg of neodymium and 11.4 Mg of dysprosium by 2035. Nevertheless, efficient recovery of these elements from a very diverse electronic waste stream remains a logistic and economic challenge.

  16. Effect of buffer and interlayer on the adhesion and magnetic properties of anisotropic Nd-Fe-B single and multilayer films

    NASA Astrophysics Data System (ADS)

    Grigoras, M.; Urse, M.; Lupu, N.; Borza, F.; Chiriac, H.

    2015-10-01

    Nd-Fe-B films with good perpendicular magnetic anisotropy were obtained by using a Mo film with the thickness of about 40 nm as buffer layer. Large out-of-plane coercivity (Hc⊥ = 1182 kA/m) and remanent ratio (remanent magnetization/saturation magnetization)⊥ = 0.99 are obtained by the stratification of the Nd-Fe-B magnetic film in three NdFeB(180 nm)/Mo(5 nm) bilayer sequences using Mo as interlayer. Using a Ni film, with a thickness of about 8 nm, alongside with a Mo film of 40 nm as buffer layer improves the adhesion to substrate and keeps the anisotropic hard magnetic performances of the Nd-Fe-B films unchanged. By increasing the total thickness of the Nd-Fe-B magnetic layer from 540 nm to 1620 nm the coercivity measured at high fields increases from about 1350 kA/m for Nd-Fe-B film with 3 NdFeB(180 nm)/Mo(5 nm) sequences to about 1640 kA/m for Nd-Fe-B film with 9 NdFeB(180 nm)/Mo(5 nm) sequences which can be ascribed to a stronger pinning effect as a result of the increased number of NdFeB/Mo interfaces.

  17. High-energy extrusion-molded Nd-Fe-B magnets

    SciTech Connect

    Ikuma, K.; Akioka, K.; Shimoda, T.; Watanabe, R.; Miyadera, H.

    1994-09-01

    High-energy extrusion-molded magnets, composed of isotropic Nd-Fe-B powder and Nylon-12, were developed. The mechanical properties and packing factor of the extruded products were investigated. With proper adjustment of the magnetic powder distribution, the extruded products contained 78 vol% magnetic powder and had a (BH){sub max} of 9.9 MGOe. The shearing strength of the extruded products was 7.83 kgf/mm{sup 2}, which is about 1.6 times that of compression-molded magnets with the same formulation. The porosity fraction in the extruded products was 1.1%, which is significantly less than in compression-molded magnets.

  18. Magnetization reversal mechanism of Nd-Fe-B films with perpendicular magnetic anisotropy

    SciTech Connect

    Liu Xiaoxi; Ishida, Go; Morisako, Akimitsu

    2011-04-01

    The microstructure and magnetic properties of Nd-Fe-B films with thicknesses from 100 nm to 3 nm have been investigated. All the films show excellent perpendicular magnetic anisotropy with a squareness ratio of 1 in the perpendicular direction and almost zero coercivity in the in-plane direction. Of particular interest is that the initial magnetization curves sensitively depended on the film thickness. Films thicker than 15 nm show steep initial magnetization curve. Although the films have coercivities larger than 21 kOe, the films can be fully magnetized from the thermally demagnetized state with a field as small as 5 kOe. With the decrease of film thickness to 5 nm, the initial magnetization curve becomes flat. The evolution of initial magnetization curves with film thickness can be understood by the microstructure of the films. Films with thickness of 15 nm show close-packed grains without any intergranular phases. Such microstructures lead to steep initial magnetization curves. On the other hand, when the film thickness decreased to 3 nm, the film thickness became nonuniform. Such microstructure leads to flat initial magnetization curves.

  19. Al-Mn coating electrodeposited from ionic liquid on NdFeB magnet with high hardness and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Ding, Jingjing; Xu, Bajin; Ling, Guoping

    2014-06-01

    Al-Mn coatings were electrodeposited on sintered NdFeB permanent magnet in MnCl2-AlCl3-1-ethyl-3-methylim-idazolium chloride (MnCl2-AlCl3-EMIC) ionic liquid at room temperature. The coatings were characterized by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The adhesion strength of the coating on NdFeB substrate was evaluated by thermal shock and scratch test. The hardness and corrosion behavior of Al-Mn coating were measured by a Knoop microhardness tester, immersion test and neutral salt spray test respectively. The results showed that the amorphous structure of the deposits was obtained at the current density of 6 mA/cm2, while higher current densities resulted in a mixed structure of amorphous and crystalline. The Al-Mn coating showed excellent adhesion strength on NdFeB substrate with the thermal shock test over 30 cycles and Lc > 80 N. The hardness of Al-Mn coating was up to 5.4 GPa. The amorphous Al-Mn coating showed an anodic sacrificial protection with a low corrosion rate for NdFeB. Meanwhile, the magnetic properties measured by an AMT-4 magnetic measurement device showed that Al-Mn coating did not deteriorate the magnetic property of NdFeB.

  20. Coercivity enhancement in sintered Nd-Fe-B magnets by Dy diffusion using simple vapor deposition technique

    NASA Astrophysics Data System (ADS)

    Ramudu, M.; Rao, N. V. Rama; Pandian, S.

    2017-05-01

    We report here the coercivity (Hc) enhancement by way of surface diffusing Dy into the sintered Nd-Fe-B magnets, employing a novel and simple vapor deposition method. The beneficial effect on coercivity and the ominous effect on remanence were both studied and correlated with the time dependent Dy diffusion. The coercivity of Nd-Fe-B magnet is improved by partial substitution of Dy for Nd and described here is the surface diffusion method adopted to infiltrate Dy in to the sintered Nd-Fe-B magnet and the consequential effect on the microstructure and the magnetic properties. An 80% improvement in Hc occurred for four hours of Dy diffusion, while encountering a fall of about 11% in remanence. The SEM-EDS analysis brought out that Dy partition to a higher degree in to the Nd-rich grain boundary phase than the matrix Nd2Fe14B.

  1. Effect of washing process on the magnetic properties of Nd-Fe-B nanoparticles prepared by reduction-diffusion method

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Ahn, J.; Kim, D.; Ren, W. J.; Liu, W.; Zhang, Z. D.; Choi, C. J.

    2017-10-01

    Nd-Fe-B nanoparticles with a particle size below 50 nm and excellent magnetic properties were obtained via a novel route which makes use of both spray drying and reduction-diffusion processes. Uniform Nd-Fe-B particles were formed by the optimization of Ca amount as a reducing agent and additional washing by milling in ethanol media. Especially, we implemented a two-step washing process which contributed to the excellent magnetic properties with high remanence and coercivity. After the removal of CaO by novel washing process, the maximum energy product (BH)max of the particles showed 22.1 MGOe. This value is superior to those reported in reduction-diffusion process. We used Henkel plot to assume the mechanism of magnetic interactions of the Nd-Fe-B nanoparticles.

  2. Fabrication of ND-FE-B/ALPHA-FE nanocomposite magnets by shock compaction and heat treatment of mechanically milled powders

    NASA Astrophysics Data System (ADS)

    Wehrenberg, Christopher; Zande, Brian; Sankar, S. G.; Thadhani, Naresh

    2012-03-01

    Bulk nanocomposite magnets based on the Nd-Fe-B/α-Fe system were fabricated using mechanical alloying and shock compaction. A high energy ball mill was used to combine Magnaquench MQA-T type Nd-Fe-B powder with varying amounts of pure Fe powder. The mechanically milled powders were shock compacted to near full density at a primary shock pressure of approximately 6.3 GPa. A range of heat treatments were applied to the recovered samples, and the crystallization behavior and magnetic properties were measured. The presence of additional iron increases magnetization saturation, but decreases coercivity. Heat treatment at 550°C increases the coercivity only marginally, which can be attributed to the amorphous material crystallizing to the α-Fe phase instead of the Nd2Fe14B phase. A subsequent shock experiment at 8.3 GPa produced a tetragonal to BCC phase transition in the Nd-Fe-B powder.

  3. Effect of annealing on magnetic properties of Nd-Fe-B thin films prepared by ECR ion beam sputtering method

    NASA Astrophysics Data System (ADS)

    Tokumaru, R.; Tamano, S.; Goto, S.; Madeswaran, S.; Tokiwa, K.; Watanabe, T.

    2009-11-01

    Nd-Fe-B thin films were prepared by electron cyclotron resonance (ECR) ion beam sputtering and subsequent annealing. The influence of annealing on the magnetic properties and X-ray diffraction patterns of the product films was investigated. Amorphous films deposited at room temperature were annealed at temperatures between 600 and 800 °C. The c-axis oriented crystallization of the Nd2Fe14B phase did not appear by annealing of the buffer layer and magnetic Nd-Fe-B layer deposited at room temperature, and the hysteresis loops of the films indicated magnetic isotropy.

  4. Enhanced method of magnetic powder alignment for production of PLP Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Popov, A. G.; Golovnia, O. A.; Protasov, A. V.

    2017-04-01

    It is demonstrated how the high degree of powder alignment in PLP magnets can be achieved by loading the powder into a container placed in a magnetic field of moderate strength. The strip-cast alloy with a composition of 30.00 Nd, 1.95 Dy, 66.42 Fe, 0.99 B, 0.54 Co, 0.1 Ga (wt%) was subjected to hydrogen decrepitation and then milled in a vibratory mill in toluene to an average particle size of 2.9 μm determined by the FSSS method. The powder was compacted in the magnetic field of 0.2 - 1.2 T to the filling density 2.6 - 3.2×103 kg/m3. It is shown that loading the powder into a container placed in a magnetic field enhances the degree of powder alignment in sintered Nd-Fe-B magnets produced from non-pressed powder. At the filling density less than 3.2×103 kg/m3, the density of magnets is high but insufficient, because of the formation of magnetostatic chains of particles, which impedes the powder compaction. The simulation by the discrete-element method qualitatively proves that the magnetostatic interaction of the chains of particles that are formed in the course of loading in the magnetic field stimulates a decrease in the density of the sintered magnets and its non-uniform distribution over the sample. As a result of the optimization of the parameters of the alignment and compaction of the powder loaded in a magnetic field, PLP magnets with Br ≥1.34 T, Нc ≥950 kA/m, (BH)max ≥340 kJ/m3, and the degree of alignment exceeding 96% were produced.

  5. Use of paired, bonded NdFeB magnets in redox magnetohydrodynamics.

    PubMed

    Arumugam, Prabhu U; Clark, Emily A; Fritsch, Ingrid

    2005-02-15

    Bonded neodymium-iron-boron (NdFeB) permanent magnets in a paired configuration were successfully used to control mass transport in redox-based, magnetohydrodynamics (MHD). Control of fluid flow based on magnetic fields has potential for use in portable lab-on-a-chip (LOAC) and analytical devices. Bonded magnets, composed of magnetic powder and organic binder materials, are less expensive and easier to fabricate and pattern than electromagnets and sintered permanent magnets, which have been previously used in MHD studies on electrochemical systems. The ability to pattern bonded magnets near and around the electrodes is expected to allow for better control over the magnetic field distribution and solution flow. Current was generated at an 800-microm-radius platinum disk electrode in a solution of 0.06 M nitrobenzene and 0.5 M tetra-n-butylammonium hexafluorophosphate in acetonitrile. Increases in limiting current in the presence of the magnetic field, which indicate enhancement in mass transport, for sintered (210+/-14%, N = 4, where B(r) = 1.23 T and magnetic field strength is 0.55 T) and bonded (94+/-8%, N = 4, where B(r) = 0.41 T and magnetic field strength is 0.20 T) magnets, were similar to those obtained using an electromagnet with the same magnetic flux densities. The magnetic field strength and not the magnet type is important in controlling fluid flow, which is encouraging for integration of bonded permanent magnets into LOAC devices.

  6. Thermomagnetic treatment effects on microstructure in Nd-Fe-B type sintered magnets

    NASA Astrophysics Data System (ADS)

    PaigeSmith, Catherine

    Optimizing the microstructure of sintered Nd-Fe-B type magnets has become increasingly important. Sintered magnets are key components to the growing industry of alternative energy, particularly wind turbines and electric car generators. With rising costs and limited supply of rare earth elements, special attention has been dedicated to improving magnetic properties of these magnets through processing rather than compositional modifications. The magnetic property needing the most improvement in Nd-Fe-B type sintered magnets is coercivity. Coercivity dictates the performance of magnets at temperatures still below the demagnetizing threshold temperature. It has been shown that annealing sintered magnets in a magnetic field can enhance coercivity when compared to conventional post-sinter annealing in the absence of a magnetic field. However, little is known about the microstructural changes that occur in sintered magnets as a result of these thermo-magnetic treatments. This work presents themicrostructural characterization of Dy-free and Dy-containing sintered magnets that have undergone annealing in a magnetic field of 9T. Microstructural characterization techniques were used to identify phases, analyze the texture of phases identified, and to study intergranular phases. Microstructural findings were then used to propose a solidification scheme during annealing and connect such findings to magnetic property results, as well as to make suggestions for optimizing the manufacturing process. In addition to the magnetic phase, phases identified in the Dy-free and Dy-containing Nd-Fe-B sintered magnets consisted of Nb-rich precipitates, Nd-rich phases, and phases from the Nd-Fe-Cu ternary system. Nd-Fe-Cu phases included alpha-Nd, NdCu, and the tau (Nd6Fe13Cu). The Nd-rich phases were specifically identified to be NdOx precipitates in an alpha-Nd matrix, and contained an orientation relationship described by (0001)alpha-Nd||(111)NdOx and [112¯0]alpha-Nd||[1¯10]NdO x. This

  7. High-performance nanocrystalline NdFeB magnets by CAPA process

    NASA Astrophysics Data System (ADS)

    Kim, H. T.; Kim, Y. B.; Jeon, J. W.; Jang, I. H.; Kapustin, G. A.; Kim, H. S.

    2006-09-01

    The anisotropic NdFeB magnets were prepared from the melt-spun isotropic powders by CAPA process. The precursor isotropic magnet shows the uniform magnetic properties according to the overall position in the magnet. In the case of the anisotropic magnet, the outer position shows higher remanence and energy product compared to the center position. The magnetic properties of the anisotropic magnet obtained from Nd 14Fe 80B 6 powders are B=15 kG, iH=4.1 kOe and BH=36 MG Oe. In the case of addition of Zn to Nd 14Fe 80B 6 powders, the energy product increased because of the improved coercivity. The magnetic properties of the Zn-added magnet are B=14.5 kG, iH=9.7 kOe and BH=52 MG Oe. The Zn addition is effective to depress Nd 2Fe 14B grain growth of the interparticle regions during plastic deformation.

  8. Grain Texture, Nd Content and Processing Condition Effects on Magnetic Properties of NdFeB Composite Magnets

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoya; Hu, Lianxi; Li, Yuping; Deng, Taiqing

    2013-07-01

    The effects of grain texture, Nd content, processing conditions on magnetic properties and behavior of NdFeB nanocomposite magnet were investigated. The results demonstrate that mechanically activated disproportionation and desorption-recombination combined with plastic deformation process (M-HDDR & D) is an effective way to produce anisotropic NdFeB-type magnet. Magnetic anisotropy significantly enhances the magnetic properties of Nd16Fe76B8 nanocomposite magnet, with the intrinsic coercivity (Hci), magnetic induction (Br), and the energy product (BH)max achieving 0.88 T, 676.8 kA/m, and 135.2 kJ/m3, respectively. Decrease in Nd content improves the remanence but deteriorates the coercivity of NdFeB ternary composites. A low annealing temperature or short annealing time leads to an incomplete recombination, while a high temperature or long annealing time may result in grain overgrowth, and the optimum processing condition is found to be 780°C × 30 min. Pinning mechanism dominates in the magnetic hardening mechanism of Nd16Fe76B8 composites prepared by both complete and incomplete recombination process, and particularly reversal nucleation process is also responsible for the latter case.

  9. Effect of composition polymeric PVB binder on physical, magnetic properties and microstructure of bonded magnet NdFeB

    NASA Astrophysics Data System (ADS)

    Sardjono, P.; Muljadi; Suprapedi; Sinuaji, P.; Ramlan; Gulo, F.

    2017-04-01

    The bonded magnet NdFeB has been made by using the hot press method and using Poly Vinyl Butiral (PVB) as a binder. The composition of polymeric binder was varied: 0, 2, 4, 6 and 7 % of weight. Both raw materials are weighed and mixed according to the composition of PVB, then formed by hot press with a pressure 30 MPa, a temperature of 160 ° C and holding time for 30 minutes. The bulk density was measured by using Archimedes method. SEM observation was done to determine the microstructure of bonded magnet NdFeB. The flux magnetic value was measured by using a Gauss meter and the measurement of hysteresis curves was done to know value of remanence Br, coercivity Hc and energy product BHmax by using VSM. According to the characterization results show that the best composition of PVB is 2 of weight. The properties of bonded magnet NdFeB of those compositions are the bulk density around 5.66 g/cm3. Flux Magnetic value: 1862 Gauss, Br value: 5000 kGauss, Hc value: 8.49 kOe and BHmax value : 5.10 MGOe. According of SEM observation results show that the polymer matrix of PVB appears to have covered on all surface grain and filled grain boundary.

  10. Modeling of magnetic hystereses in soft MREs filled with NdFeB particles

    NASA Astrophysics Data System (ADS)

    Kalina, K. A.; Brummund, J.; Metsch, P.; Kästner, M.; Borin, D. Yu; Linke, J. M.; Odenbach, S.

    2017-10-01

    Herein, we investigate the structure-property relationships of soft magnetorheological elastomers (MREs) filled with remanently magnetizable particles. The study is motivated from experimental results which indicate a large difference between the magnetization loops of soft MREs filled with NdFeB particles and the loops of such particles embedded in a comparatively stiff matrix, e.g. an epoxy resin. We present a microscale model for MREs based on a general continuum formulation of the magnetomechanical boundary value problem which is valid for finite strains. In particular, we develop an energetically consistent constitutive model for the hysteretic magnetization behavior of the magnetically hard particles. The microstructure is discretized and the problem is solved numerically in terms of a coupled nonlinear finite element approach. Since the local magnetic and mechanical fields are resolved explicitly inside the heterogeneous microstructure of the MRE, our model also accounts for interactions of particles close to each other. In order to connect the microscopic fields to effective macroscopic quantities of the MRE, a suitable computational homogenization scheme is used. Based on this modeling approach, it is demonstrated that the observable macroscopic behavior of the considered MREs results from the rotation of the embedded particles. Furthermore, the performed numerical simulations indicate that the reversion of the sample’s magnetization occurs due to a combination of particle rotations and internal domain conversion processes. All of our simulation results obtained for such materials are in a good qualitative agreement with the experiments.

  11. Synthesis and magnetic properties of Ta/NdFeB-based composite microwires

    SciTech Connect

    Szary, P. Périgo, E. A.; Michels, A.; Luciu, I.; Duday, D.; Wirtz, T.; Choquet, P.

    2015-05-07

    Magnetic NdFeB-based microwire composites have been prepared by the direct current magnetron sputtering technique in a specifically designed sputtering chamber for thin-film deposition in wire geometry. As substrate wire material, we have employed steel and Ta. Annealing of the substrate wires during the deposition process was performed by ohmic heating through the application of a direct current. Samples were characterized by means of vibrating sample magnetometry (VSM) and scanning electron microscopy. Best properties have been encountered when using Ta wires as core (substrate) material. The VSM data show a dramatic impact of the current applied during the deposition process on the magnetic properties. For higher current values, i.e., higher annealing temperatures, the wires exhibit a reversal process that is typical for a two-phase system. Moreover, an increase of the coercive field (and remanent magnetization) is observed, which is ascribed to a modification of the magnetic phase present in the sample due to the annealing. We find an indication for the formation of a magnetic easy-axis direction which is azimuthally oriented around the wire axis.

  12. Influence of Nb addition on vacancy defects and magnetic properties of the nanocrystalline Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Szwaja, Małgorzata; Gębara, Piotr; Filipecki, Jacek; Pawlik, Katarzyna; Przybył, Anna; Pawlik, Piotr; Wysłocki, Jerzy J.; Filipecka, Katarzyna

    2015-05-01

    In present work, influence of Nb addition on vacancy defects and magnetic properties of nanocrystalline Nd-Fe-B permanent magnets, was investigated. Samples with composition (Nd,Fe,B)100-xNbx (where x=6,7,8) were studied in as-cast state and after annealing. Samples were prepared by arc-melting with high purity of constituent elements under Ar atmosphere. Ribbons were obtained by melt-spinning technique under low pressure of Ar. Ribbon samples in as-cast state had amorphous structure and soft magnetic properties. Positron annihilation lifetime spectroscopy PALS has been applied to detection of positron - trapping voids (vacancy defects). With increase of Nb in alloy increasing of vacancy defects concentration was observed. Heat treatment of the samples was carried out at various temperatures (from 923 K to 1023 K) for 5 min, in order to obtain nanocrystalline structure. The aim of present work was to determine the influence of Nb addition and annealing conditions on the vacancy defects and magnetic properties of the Nd-Fe-B- type alloys in as-cast state and after heat treatment.

  13. Magnetic and structural properties of spark plasma sintered nanocrystalline NdFeB-powders

    NASA Astrophysics Data System (ADS)

    Wuest, H.; Bommer, L.; Weissgaerber, T.; Kieback, B.

    2015-10-01

    Near-stoichiometric NdFeB melt-spun ribbons have been subjected to spark plasma sintering varying the process temperature TSPS and pressure pSPS between 600 and 800 °C and 50-300 MPa, respectively. Produced bulk magnets were analyzed regarding microstructure and magnetic properties. For all samples the intrinsic coercivity Hc,J gradually decreases with increasing sintering temperature and pressure, while residual induction Br increases simultaneously with sample density. Densities close to the theoretical limit were achieved for pSPS≥90 MPa and TSPS≥650 °C. With increasing TSPS precipitations of Nd-rich and Fe-rich phases have been observed as a result of a decomposition of the hard magnetic Nd2Fe14B phase. Under optimum sintering conditions of pSPS=300 MPa and TSPS=650 °C high-density bulk magnets with Hc,J=652 kA/m, Br=0.86 T and (BH)max=106 kJ/m3 have been produced.

  14. Cellular uptake of magnetite nanoparticles enhanced by NdFeB magnets in staggered arrangement

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Ching; Chang, Fan-Yu; Tu, Shu-Ju; Chen, Jyh-Ping; Ma, Yunn-Hwa

    2017-04-01

    Magnetic force may greatly enhance uptake of magnetic nanoparticles (MNPs) by cultured cells; however, the effects of non-uniformity of magnetic field/ magnetic gradient on MNP internalization in culture has not been elucidated. Cellular uptake of polyacrylic acid coated-MNP by LN229 cells was measured with cylindrical NdFeB magnets arranged in a staggered pattern. The magnetic field generated by placing a magnet underneath (H-field) elicited a homogenous distribution of MNPs on the cells in culture; whereas the field without magnet underneath (L-field) resulted in MNP distribution along the edge of the wells. Cell-associated MNP (MNPcell) appeared to be magnetic field- and concentration-dependent. In H-field, MNPcell reached plateau within one hour of exposure to MNP with only one-min application of the magnetic force in the beginning of incubation; continuous presence of the magnet for 2 h did not further increase MNPcell, suggesting that magnetic force-induced uptake may be primarily contributed to enhanced MNP sedimentation. Although MNP distribution was much inhomogeneous in L-field, averaged MNPcell in the L-field may reach as high as 80% of that in H-field during 1-6 h incubation, suggesting high capacity of MNP internalization. In addition, no significant difference was observed in MNPcell analyzed by flow cytometry with the application of H-field of staggered plate vs. filled magnet plate. Therefore, biological variation may dominate MNP internalization even under relatively uniformed magnetic field; whereas non-uniformed magnetic field may serve as a model for tumor targeting with MNPs in vivo.

  15. CRADA/NFE-15-05761 Report: Additive Manufacturing of Isotropic NdFeB Bonded Permanent Magnets

    SciTech Connect

    Paranthaman, M. Parans

    2016-07-18

    The technical objective of this technical collaboration phase I proposal is to fabricate net shape isotropic NdFeB bonded magnets utilizing additive manufacturing technologies at the ORNL MDF. The goal is to form complex shapes of thermoplastic and/or thermoset bonded magnets without expensive tooling and with minimal wasted material. Two additive manufacturing methods; the binder jet process; and big area additive manufacturing (BAAM) were used. Binder jetting produced magnets with the measured density of the magnet of 3.47 g/cm3, close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3 were demonstrated. Magnetic measurements indicate that there is no degradation in the magnetic properties. In addition, BAAM was used to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: Intrinsic coercivity Hci = 8.65 kOe, Remanence Br = 5.07 kG, and energy product (BH)max = 5.47 MGOe (43.50 kJ/m3). This study provides a new pathway for preparing near-net shape bonded magnets for various magnetic applications.

  16. Influence of AC external magnetic field on guidance force relaxation between HTS bulk and NdFeB guideway

    NASA Astrophysics Data System (ADS)

    Zhang, Longcai; Wang, Suyu; Wang, Jiasu; Zheng, Jun

    2007-12-01

    Superconducting maglev vehicle is one of the most promising applications of HTS bulks. In such a system, the HTS bulks are always exposed to time-varying external magnetic field, which is generated by the inhomogeneous surface magnetic field of the NdFeB guideway. So it is required to study whether the guidance force of the bulks is influenced by the inhomogeneity. In this paper, we studied the characteristics of the guidance force relaxation between the HTS bulk and the NdFeB guideway by an experiment in which AC external magnetic field generated by an electromagnet was used to simulate the time-varying external magnetic field caused by the inhomogeneity of the guideway. From the experiment results, it was found that the guidance force was decreased with the application of the AC external magnetic field, and the decay increased with the amplitude and was almost independent of the frequency.

  17. First-Principles Study of the Role of Cu in Improving the Coercivity of Nd-Fe-B Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Tatetsu, Y.; Tsuneyuki, S.; Gohda, Y.

    2016-12-01

    We study the magnetic and electronic properties of Cu-doped Nd2 Fe14 B /NdOx systems with first-principles calculations in order to understand the roles of Cu in improving the coercivity of Nd-Fe-B permanent magnets. By analyzing the formation energies of several model systems, we find that Cu prefers to be at the interface. We conclude that the Cu addition to Nd-Fe-B magnets is a practical way of not only increasing the anisotropy of Nd atoms at the interface but also of lessening the magnetic coupling between the Nd and Fe atoms. Particularly, substituting Fe at the interface of the main phase with Cu works effectively in terms of improving the magnetic anisotropy in Nd atoms. This may explain the coercivity improvements reported recently.

  18. Effect of hydriding degree on the microstructure and magnetic properties of sintered NdFeB magnets

    NASA Astrophysics Data System (ADS)

    Guo, Shuai; Liu, Youhao; Chen, Bicheng; Yan, Changjiang; Chen, Renjie; Lee, Don; Yan, Aru

    2012-04-01

    The effects of hydriding degree on the microstructure and magnetic properties of sintered NdFeB magnets have been studied. The degree of crushing depends on the absorption content of hydrogen and affects the magnetic properties of final magnet. Insertion of hydrogen atoms leads to a significant increase of the unit cell volume. And the crush mechanism depends on the internal stress resulting from differences in the expansion rates of the two phases. The remanence of final magnets increases monotonously while the coercivity decreases sharply with the increasing of hydriding degree, attributed to the strip fracture features and the morphology of particles.

  19. Fabrication of Nd-Fe-B/alpha-Fe nanocomposite magnets by shock compaction and heat treatment of amorphous alloys

    NASA Astrophysics Data System (ADS)

    Wehrenberg, Christopher; Zande, Brian; Sankar, S. G.; Thadhani, Naresh

    2011-06-01

    Bulk nanocomposite magnets based on the Nd-Fe-B system were fabricated using mechanical alloying and shock compaction. A high energy ball mill was used to combine Magnaquench MQA-T type Nd-Fe-B powder with varying amounts of pure Fe powder. The resulting mechanically amorphized powders were shock compacted to near full density. Bulk temperature increase during compaction was suppressed by chilling the target fixture with liquid nitrogen prior to compaction. A range of heat treatments were applied to the recovered samples, and the resulting magnetic properties and crystallization behavior were recorded. The presence of additional iron increases magnetization saturation linearly, but decreases coercivity. The coercivity of the shock consolidated compacts showed an increase to a maximum value upon heat treatment of 550 C.

  20. The epoxy resin variation effect on microstructure and physical properties to improve bonded NdFeB flux magnetic density

    NASA Astrophysics Data System (ADS)

    Rusnaeni, N.; Sarjono, Priyo; Muljadi; Noer, Nasrudin

    2016-11-01

    NdFeB magnets have been fabricated from a mixture of powder NdFeB (MPQ-B+) and epoxy resins (ER) with a variation of 0% wt, 2% wt, 4% wt and 6% wt. The pellets samples were made by pressing 4 tons of the mixture powder at room temperature before curing at 100°C for 1 hour. The SEM-EDX results showed the microstructure with ER were evenly smeared the NdFeB magnetic particles due to higher percent C and lower transition metals value. Sample with 2% wt epoxy resin was able to achieve the highest density of 5.35 g/cm3 and the highest magnetic flux of 2121 Gauss. The magnetic properties characterization using the permagraph indicates that the sample pellets with 2% wt epoxy resin has a value of remanence (Br) = 4.92 kG, coercivity (Hc) = 7.76 kOe, and energy product (Bhmax) = 4.58 MGOe. Despite low remanence value in the pellet samples, the resistance to demagnetization value was still acceptable.

  1. Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Xiang-Bin, Li; Shuo, Liu; Xue-Jing, Cao; Bei-Bei, Zhou; Ling, Chen; A-Ru, Yan; Gao-Lin, Yan

    2016-07-01

    To increase coercivity and thermal stability of sintered Nd-Fe-B magnets for high-temperature applications, a novel terbium sulfide powder is added into (Pr0.25Nd0.75)30.6Cu0.15FebalB1 (wt.%) basic magnets. The effects of the addition of terbium sulfide on magnetic properties, microstructure, and thermal stability of sintered Nd-Fe-B magnets are investigated. The experimental results show that by adding 3 wt.% Tb2S3, the coercivity of the magnet is remarkably increased by about 54% without a considerable reduction in remanence and maximum energy product. By means of the electron probe microanalyzer (EPMA) technology, it is observed that Tb is mainly present in the outer region of 2:14:1 matrix grains and forms a well-developed Tb-shell phase, resulting in enhancement of H A, which accounts for the coercivity enhancement. Moreover, compared with Tb2S3-free magnets, the reversible temperature coefficients of remanence (α) and coercivity (β) and the irreversible flux loss of magnetic flow (h irr) values of Tb2S3-added magnets are improved, indicating that the thermal stability of the magnets is also effectively improved. Project supported by the Science Funds from the Ministry of Science and Technology, China (Grant Nos. 2014DFB50130 and 2011CB612304) and the National Natural Science Foundation of China (Grant Nos. 51172168 and 51072139).

  2. Investigation of coercivity mechanism in hot deformed Nd-Fe-B permanent magnets by small-angle neutron scattering

    SciTech Connect

    Yano, M. Manabe, A.; Shoji, T.; Kato, A.; Ono, K.; Harada, M.; Kohlbrecher, J.

    2014-05-07

    The magnetic reversal behaviors of single domain sized Nd-Fe-B permanent magnets, with and without isolation between the Nd{sub 2}Fe{sub 14}B grains, was clarified using small-angle neutron scattering (SANS). The SANS patterns obtained arose from changes in the magnetic domains and were analyzed using the Teubner–Stray model, a phenomenological correlation length model, to quantify the periodicity and morphology of the magnetic domains. The results indicated that the magnetic reversal evolved with the magnetic domains that had similar sized grains. The grain isolation enabled us to realize the reversals of single domains.

  3. Magnetic properties and texture of NdFeB magnets fabricated by current-applied-pressure-assisted process

    NASA Astrophysics Data System (ADS)

    Kim, H. T.; Kim, Y. B.; Kim, H. S.

    2001-03-01

    The current-applied-pressure-assisted (CAPA) process has been applied to obtain full dense isotropic and anisotropic NdFeB magnets from melt spun NdFeB alloy (MQP-A). The energy product of isotropic magnets obtained by this process was 120-135 kJ/m 3(15-17 MGOe) and the remanence was 0.8-0.9 T(8-9 kG). These isotropic magnets were deformed with different thickness reduction ratio by CAPA process. The energy product obtained by this procedure was in excess of 320 kJ/m 3(40 MGOe), and the best magnetic properties obtained were B r=1.36 T(13.6 kG) , iH c=868 kA/m(10.9 kOe) and (BH) max=352 kJ/m 3(44.2 MGOe) . The effect of deformation by CAPA process on texture was examined using pole figures. The (1 0 5) texture was dominant up to the thickness reduction ratio of 74%, whereas the (0 0 6) texture was dominant at the thickness reduction ratio of 81%.

  4. The impact of processing parameters on the properties of Zn-bonded Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Kelhar, Luka; Zavašnik, Janez; McGuiness, Paul; Kobe, Spomenka

    2016-12-01

    We report on the effect of loading factor and pressure on the density and the magnetic properties of Zn-bonded Nd-Fe-B magnets produced by pulsed-electric-current sintering (PECS). The idea behind this study is to fabricate bonded magnets with a metallic binder in order for the bonded magnet to operate at temperatures higher than 180 °C: the current upper-limit for polymer-bonded magnets. These composites are made of hard-magnetic powder in the form of melt-spun ribbons bonded with the low-melting-point metal Zn. The binder additions were varied from 10 to 30 wt%, and pressures of 50 and 500 MPa were applied. The high-pressure mode with 20 wt% Zn resulted in a 24% increase of Jr, compared to the low-pressure mode. The magnetic measurements revealed a maximum remanence of 0.64 T for 10 wt% Zn, while the coercivity is largely unaffected by the processing conditions. The density of the composites was up to 7.0 g/cm3, corresponding to 94% of the theoretical density. Compared to commercial polymer-bonded magnets, the Zn-bonded counterparts exhibit a slightly lower Jr, but the coercivity is retained. We show that there is a minor diffusion of Zn into the Nd-Fe-B, forming a 1 μm thin transition layer, but it does not harm the magnetic properties. These metal-bonded Nd-Fe-B magnets are ideal for use in high-temperature automotive applications like under-the-hood sensors and other magnet-based devices that are close to the engine.

  5. Magnetization processes in two different types of anisotropic, fully dense NdFeB hydrogenation, disproportionation, desorption, and recombination magnets

    NASA Astrophysics Data System (ADS)

    Gutfleisch, O.; Eckert, D.; Schäfer, R.; Müller, K. H.; Panchanathan, V.

    2000-05-01

    Two types of textured, fully dense NdFeB hydrogenation, disproportionation, desorption, and recombination (HDDR) magnets were produced. The first type was produced by hot pressing isotropic HDDR powder followed by die upsetting; the second, by hot pressing prealigned, anisotropic HDDR powder (MQA-T). Studies of the magnetization processes revealed that for isotropic HDDR powder and its hot pressed and die-upset magnets a much larger initial susceptibility is found after thermal demagnetization than after reverse dc-field demagnetization. Prealigned, hot pressed magnets made from MQA-T material showed a different virgin magnetization curve, indicating a unique coercivity mechanism. Interaction domains larger than the average grain size can be observed in both cases by Kerr microscopy, with the MQA-T type showing significantly broader interaction domains.

  6. Commercial-scale recycling of NdFeB-type magnets with grain boundary modification yields products with 'designer properties' that exceed those of starting materials.

    PubMed

    Zakotnik, M; Tudor, C O

    2015-10-01

    NdFeB-type magnets dominate the market for high performance magnetic materials, yet production of 'virgin' magnets via mining is environmentally, financially and energetically costly. Hence, interest is growing in 'magnet to magnet' recycling schemes that offer the potential for cheaper, more environmentally-friendly solutions to the world's growing appetite for rare-earth based magnetic materials. Unfortunately, previously described recycling processes only partially capitalise on this potential, because the methods described to date are limited to 'laboratory scale' or operate only under ideal conditions and result in products that fail to recapture the coercivity of the starting, scrap materials. Herein, we report a commercial scale process (120 kg batches) that completely recovers the properties of the starting scrap magnets. Indeed, 'grain boundary modification', via careful addition of a proprietary mix of blended elements, produces magnets with 'designer properties' that can exceed those of the starting materials and can be closely tailored to meet a wide variety of end-user applications, including high-coercivity (>2000 kA/m), sintered magnets suitable for motor applications.

  7. The influence of carbon and oxygen on the magnetic characteristics of press-less sintered NdFeB magnets

    NASA Astrophysics Data System (ADS)

    Xia, M.; Abrahamsen, A. B.; Bahl, C. R. H.; Veluri, B.; Søegaard, A. I.; Bøjsøe, P.; Millot, S.

    2017-01-01

    The Pressless Process (PLP) was adopted to manufacture NdFeB sintered magnets, where the investigations on carbon and oxygen residues from heptane milling liquid media and graphite crucibles used for sintering were quantified to evaluate the influence on the magnetic characteristics. The carbon and oxygen content in the magnets produced from wet ball milling of strip cast flakes was found to be of the order 104 ppm and 4·104 ppm respectively, which resulted in soft magnetic behavior. However using jet milling the carbon and oxygen concentration were decreased by an order of magnitude resulting in coercivity of up to 829 kA/m. Thus the influence of the carbon from the graphite crucibles is small.

  8. The effect of surface grain reversal on the AC losses of sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Moore, Martina; Roth, Stefan; Gebert, Annett; Schultz, Ludwig; Gutfleisch, Oliver

    2015-02-01

    Sintered Nd-Fe-B magnets are exposed to AC magnetic fields in many applications, e.g. in permanent magnet electric motors. We have measured the AC losses of sintered Nd-Fe-B magnets in a closed circuit arrangement using AC fields with root mean square-values up to 80 mT (peak amplitude 113 mT) over the frequency range 50 to 1000 Hz. Two magnet grades with different dysprosium content were investigated. Around the remanence point the low grade material (1.7 wt% Dy) showed significant hysteresis losses; whereas the losses in the high grade material (8.9 wt% Dy) were dominated by classical eddy currents. Kerr microscopy images revealed that the hysteresis losses measured for the low grade magnet can be mainly ascribed to grains at the sample surface with multiple domains. This was further confirmed when the high grade material was subsequently exposed to DC and AC magnetic fields. Here a larger number of surface grains with multiple domains are also present once the step in the demagnetization curve attributed to the surface grain reversal is reached and a rise in the measured hysteresis losses is evident. If in the low grade material the operating point is slightly offset from the remanence point, such that zero field is not bypassed, its AC losses can also be fairly well described with classical eddy current theory.

  9. Self-vibration cancellation of a novel bi-directional magnetized NdFeB/magnetostrictive/piezoelectric laminate

    NASA Astrophysics Data System (ADS)

    Leung, Chung Ming; Wang, Feifei; Wang, Ya

    2016-06-01

    A novel magnetoelectric (ME) laminated composite structure is proposed in this work, aiming to provide a good self-vibration cancellation performance under the magnetic field detection environment. The proposed structure consists of two Terfenol-D magnetostrictive alloy plates which are revised and length-magnetized by two NdFeB magnets bonded on the top surface of a thickness-polarized Pb(Zr, Ti)O3 (PZT) ceramic plate with separate electrodes. Experiments have shown that great vibration suppression up to 44 dB under harmonic disturbance was observed. The ME coefficient of the proposed structure also reaches up to ˜29 mV/Oe at non-resonance frequency and 758 mV/Oe at resonance frequency of 79 kHz which is ˜2 times larger than the traditional L-T Terfenol-D/PZT bilayer configuration of the same scale. Such performance improvement is achieved based on the bi-directional magnetic field bias (HBias) of two NdFeB magnets in magnetostrictive layer, internal in-series electrical wire connection in piezoelectric layer. The proposed design has great potential to be used for industrial applications associated with heavy environmental vibration noise.

  10. Crystallographic orientation analysis in HDDR process of anisotropic Nd-Fe-B magnet powders

    NASA Astrophysics Data System (ADS)

    Takizawa, Rina; Itakura, Masaru; Katayama, Nobuhiro; Morimoto, Koichiro

    2017-07-01

    Microstructural changes and crystallographic orientation information in the hydrogenation-decomposition-desorption-recombination (HDDR) process of Nd-Fe-B alloy were investigated using electron backscatter diffraction (EBSD) and precession electron diffraction (PED) in order to understand the mechanism of anisotropy inducement in the HDDR process. Recombined Nd2Fe14B grains were found to nucleate at the interfaces between NdH2 and α-Fe grains and to have a [0 0 1]-oriented texture from the beginning of the recombination reaction. The Fe grains form with alignment of one of the <1 1 3> directions at decomposed stage. This suggests that α-Fe most likely induces texture development of recombined Nd2Fe14B.

  11. Solidification process in melt spun Nd-Fe-B type magnets

    SciTech Connect

    Li, Changping

    1998-02-23

    A generalized solidification model has been developed based on a systematic investigation on the microstructure of melt spun Nd-Fe-B alloys. Melt spinning was conducted on initial stoichiometric and TiC added Nd2Fe14B (2-14-1) compositions to produce under, optimally and over quenched microstructures. Microstructural characterization was carried out by TEM, SEM, Optical microscopy, XRD, DTA, VSM and DC SQUID techniques. By taking the dendritic breakup during recalescence into consideration, this generalized model has successfully explained the solidification process of the melt spun Nd-Fe-B alloys. Challenging the conventional homogeneous nucleation models, the new model explains the fine and uniform equiaxed 2-14-1 microstructure in optimally quenched ribbons as a result of the breakup of the 2-14-1 dendrites which nucleate heterogeneously from the wheel surface and grow dendritically across the ribbon thickness due to the recalescence. Besides this dendritic breakup feature, the under quenched microstructure is further featured with another growth front starting with the primary solidification of Fe phase near the free side, which results in a coarsely grained microstructure with Fe dendritic inclusions and overall variation in microstructure across the ribbon thickness. In addition, because a epitaxy exists between the Fe phase and the 2-14-1, the so-formed coarse 2-14-1 grains may be textured. C-axis texturing was observed in under quenched ribbons. As a constraint to solidification models in this system, the cause and characteristics of this phenomenon has been studied in detail to test the authors proposed model, and agreement has been found. An extension has also been made to understand the solidification process when TiC is added, which suggests that Ti and C slow down the growth front of both Fe and 2-14-1 phase.

  12. Influence of segmentation of ring-shaped NdFeB magnets with parallel magnetization on cylindrical actuators.

    PubMed

    Eckert, Paulo Roberto; Goltz, Evandro Claiton; Flores Filho, Aly Ferreira

    2014-07-21

    This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines.

  13. Influence of Segmentation of Ring-Shaped NdFeB Magnets with Parallel Magnetization on Cylindrical Actuators

    PubMed Central

    Eckert, Paulo Roberto; Goltz, Evandro Claiton; Filho, Aly Ferreira Flores

    2014-01-01

    This work analyses the effects of segmentation followed by parallel magnetization of ring-shaped NdFeB permanent magnets used in slotless cylindrical linear actuators. The main purpose of the work is to evaluate the effects of that segmentation on the performance of the actuator and to present a general overview of the influence of parallel magnetization by varying the number of segments and comparing the results with ideal radially magnetized rings. The analysis is first performed by modelling mathematically the radial and circumferential components of magnetization for both radial and parallel magnetizations, followed by an analysis carried out by means of the 3D finite element method. Results obtained from the models are validated by measuring radial and tangential components of magnetic flux distribution in the air gap on a prototype which employs magnet rings with eight segments each with parallel magnetization. The axial force produced by the actuator was also measured and compared with the results obtained from numerical models. Although this analysis focused on a specific topology of cylindrical actuator, the observed effects on the topology could be extended to others in which surface-mounted permanent magnets are employed, including rotating electrical machines. PMID:25051032

  14. Polydimethylsiloxane films doped with NdFeB powder: magnetic characterization and potential applications in biomedical engineering and microrobotics.

    PubMed

    Iacovacci, V; Lucarini, G; Innocenti, C; Comisso, N; Dario, P; Ricotti, L; Menciassi, A

    2015-12-01

    This work reports the fabrication, magnetic characterization and controlled navigation of film-shaped microrobots consisting of a polydimethylsiloxane-NdFeB powder composite material. The fabrication process relies on spin-coating deposition, powder orientation and permanent magnetization. Films with different powder concentrations (10 %, 30 %, 50 % and 70 % w/w) were fabricated and characterized in terms of magnetic properties and magnetic navigation performances (by exploiting an electromagnet-based platform). Standardized data are provided, thus enabling the exploitation of these composite materials in a wide range of applications, from MEMS/microrobot development to biomedical systems. Finally, the possibility to microfabricate free-standing polymeric structures and the biocompatibility of the proposed composite materials is demonstrated.

  15. A novel method combining additive manufacturing and alloy infiltration for NdFeB bonded magnet fabrication

    DOE PAGES

    Li, Ling; Tirado, Angelica; Conner, Benjamin S.; ...

    2017-04-27

    In this paper, binder jetting additive manufacturing technique is employed to fabricate NdFeB isotropic bonded magnets, followed by an infiltration process with low-melting point eutectic alloys [i.e., Nd3Cu0.25Co0.75 (NdCuCo) and Pr3Cu0.25Co0.75 (PrCuCo)]. Densification and mechanical strength improvement are achieved for the as-printed porous part. Meanwhile, the intrinsic coercivity Hci is enhanced from 732 to 1345 kA/m and 1233 kA/m after diffusion of NdCuCo and PrCuCo, respectively. This study presents a novel method for fabricating complex-shaped bonded magnets with promising mechanical and magnetic properties.

  16. Crystallization and atomic diffusion behavior of high coercive Ta/Nd-Fe-B/Ta-based permanent magnetic thin film

    NASA Astrophysics Data System (ADS)

    Tian, Na; Zhang, Xiao; You, Caiyin; Fu, Huarui; Shen, Qianlong

    2017-06-01

    A high coercivity of about 20.4 kOe was obtained through post-annealing the sputtered Ta/Nd-Fe-B/Ta-based permanent magnetic thin films. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses were performed to investigate the crystallization and atomic diffusion behaviors during post-annealing. The results show that the buffer and capping Ta layers prefered to intermix with Fe and B atoms, and Nd tends to be combined with O atoms. The preferred atomic combination caused the appearance of the soft magnetic phase of Fe-Ta-B, resulting in a kink of the second quadratic magnetic hysteresis loop. The preferred atomic diffusion and phase formation of the thin films were well explained in terms of the formation enthalpy of the various compounds.

  17. Properties of hydrogenation-disproportionation-desorption-recombination NdFeB powders prepared from recycled sintered magnets

    NASA Astrophysics Data System (ADS)

    Périgo, E. A.; da Silva, S. C.; Martin, R. V.; Takiishi, H.; Landgraf, F. J. G.

    2012-04-01

    The effects of the hydrogenation-disproportionation-desorption-recombination (HDDR) processing conditions on the microstructure and magnetic properties of NdFeB powders prepared from recycling sintered N42 grade magnets were evaluated. Temperatures below 840 oC and above 900 oC are deleterious to HDDR powders' properties. The hydrogen pressure, ranging from 60 to 135 kPa, has a major influence on the remanence compared to that on the intrinsic coercivity. The best magnetic properties (Jr = 0.58 T and μ0Hc = 1.15 T) were obtained with Trecomb = 860 °C, PH2 = 135 kPa, and trecomb = 330 s. Such coercivity value corresponds to 93% of the starting material, not achieved yet by optimizing the HDDR process and without using Dy.

  18. A novel method combining additive manufacturing and alloy infiltration for NdFeB bonded magnet fabrication

    NASA Astrophysics Data System (ADS)

    Li, Ling; Tirado, Angelica; Conner, B. S.; Chi, Miaofang; Elliott, Amy M.; Rios, Orlando; Zhou, Haidong; Paranthaman, M. Parans

    2017-09-01

    In this paper, binder jetting additive manufacturing technique is employed to fabricate NdFeB isotropic bonded magnets, followed by an infiltration process with low-melting point eutectic alloys [i.e., Nd3Cu0.25Co0.75 (NdCuCo) and Pr3Cu0.25Co0.75 (PrCuCo)]. Densification and mechanical strength improvement are achieved for the as-printed porous part. Meanwhile, the intrinsic coercivity Hci is enhanced from 732 to 1345 kA/m and 1233 kA/m after diffusion of NdCuCo and PrCuCo, respectively. This study presents a novel method for fabricating complex-shaped bonded magnets with promising mechanical and magnetic properties.

  19. Effects of thickness and annealing condition on magnetic properties and thermal stabilities of Ta/Nd/NdFeB/Nd/Ta sandwiched films

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Feng; Zhang, Min-Gang; Zhang, Ke-Wei; Zhang, Hai-Jie; Xu, Xiao-Hong; Chai, Yue-Sheng

    2016-11-01

    Ta/Nd/NdFeB/Nd/Ta sandwiched films are deposited by magnetron sputtering on Si (100) substrates, and subsequently annealed in vacuum at different temperatures for different time. It is found that both the thickness of NdFeB and Nd layer and the annealing condition can affect the magnetic properties of Ta/Nd/NdFeB/Nd/Ta films. Interestingly, the thickness and annealing temperature show the relevant behaviors that can affect the magnetic properties of the film. The high coercivity of 24.1 kOe (1 Oe = 79.5775 A/m) and remanence ratio (remanent magnetization/saturation magnetization) of 0.94 can be obtained in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed for 3 min at 1023 K. In addition, the thermal stability of the film is also linked to the thickness of NdFeB and Nd layer and the annealing temperature as well. The excellent thermal stability can be achieved in a Ta/Nd(250 nm)/NdFeB(600 nm)/Nd(250 nm)/Ta film annealed at 1023 K. Program supported by the National Natural Science Foundation of China (Grant No. 51305290), the Higher Education Technical Innovation Project of Shanxi Province, China (Grant No. 2013133), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals of Shanxi Province, China (Grant No. 2015003), and the Program for the Key Team of Scientific and Technological Innovation of Shanxi Province, China (Grant No. 2013131009).

  20. Improved room-temperature-selectivity between Nd and Fe in Nd recovery from Nd-Fe-B magnet

    SciTech Connect

    Kataoka, Y.; Kitagawa, J.; Ono, T.; Tsubota, M.

    2015-11-15

    The sustainable society requires the recycling of rare metals. Rare earth Nd is one of rare metals, accompanying huge consumption especially in Nd-Fe-B magnets. Although the wet process using acid is in practical use in the in-plant recycle of sludge, higher selectivity between Nd and Fe at room temperature is desired. We have proposed a pretreatment of corrosion before the dissolution into HCl and the oxalic acid precipitation. The corrosion produces γ-FeOOH and a Nd hydroxide, which have high selectivity for HCl solution at room temperature. Nd can be recovered as Mn{sub 2}O{sub 3}-type Nd{sub 2}O{sub 3}. The estimated recovery-ratio of Nd reaches to 97%.

  1. Improved room-temperature-selectivity between Nd and Fe in Nd recovery from Nd-Fe-B magnet

    NASA Astrophysics Data System (ADS)

    Kataoka, Y.; Ono, T.; Tsubota, M.; Kitagawa, J.

    2015-11-01

    The sustainable society requires the recycling of rare metals. Rare earth Nd is one of rare metals, accompanying huge consumption especially in Nd-Fe-B magnets. Although the wet process using acid is in practical use in the in-plant recycle of sludge, higher selectivity between Nd and Fe at room temperature is desired. We have proposed a pretreatment of corrosion before the dissolution into HCl and the oxalic acid precipitation. The corrosion produces γ-FeOOH and a Nd hydroxide, which have high selectivity for HCl solution at room temperature. Nd can be recovered as Mn2O3-type Nd2O3. The estimated recovery-ratio of Nd reaches to 97%.

  2. Computational micromagnetic investigation of magnetization reversal in Nd-Fe-B nanocomposite magnets

    NASA Astrophysics Data System (ADS)

    David, S.; Kevorkian, B.; Toussaint, J. C.; Givord, D.

    1998-06-01

    As a complement to the experimental analysis of magnetization reversal in a two-phase system, a numerical micromagnetic three-dimensional calculation is developed and tested. It is applied to a set of 64 nanometer-scale hard (Nd2Fe14B) and soft (Fe3B) cubic grains. Calculations reproduce qualitatively the experimentally observed processes and allow the relation between the structure and the coercivity mechanism in nanocomposite hard magnetic materials to be better understood.

  3. Improved HDDR processing route for production of anisotropic powder from sintered NdFeB type magnets

    NASA Astrophysics Data System (ADS)

    Sheridan, R. S.; Williams, A. J.; Harris, I. R.; Walton, A.

    2014-01-01

    The hydrogenation disproportionation desorption recombination (HDDR) process has been investigated as a possible means of producing bonded magnets from used NdFeB-type sintered magnets with compositions, Nd13.4Dy0.8Al0.7Nb0.3Fe78.5B6.3 and Nd12.5Dy1.8Al0.9Nb0.6Co5.0Fe72.8B6.4 (atomic%). It has been shown that by increasing the processing temperature, an increase in the equilibrium pressure for disproportionation and in the overall reaction time was observed. The magnetic properties of the lower Dy content magnet were affected significantly by the change in processing temperature with a peak in properties observed at 880 °C producing magnetic powder with a remanence of 1.08 (±0.02) T, a coercivity of 840 (±17) kA m-1, and a maximum energy product of 175 (±2.5) kJ m-3. Further work on magnets with a significantly higher Dy content has shown that simultaneous processing of sintered magnets with varying compositions can be achieved by increasing the hydrogen pressure, however a range of magnetic properties are produced depending on the initial compositions of the samples in the input feed.

  4. Micro-patterning of NdFeB and SmCo magnet films for integration into micro-electro-mechanical-systems

    NASA Astrophysics Data System (ADS)

    Walther, A.; Marcoux, C.; Desloges, B.; Grechishkin, R.; Givord, D.; Dempsey, N. M.

    2009-03-01

    The integration of high-performance RE-TM (NdFeB and SmCo) hard magnetic films into micro-electro-mechanical-systems (MEMS) requires their patterning at the micron scale. In this paper we report on the applicability of standard micro-fabrication steps (film deposition onto topographically patterned substrates, wet etching and planarization) to the patterning of 5-8 μm thick RE-TM films. While NdFeB comprehensively fills micron-scaled trenches in patterned substrates, SmCo deposits are characterized by poor filling of the trench corners, which poses a problem for further processing by planarization. The magnetic hysteresis loops of both the NdFeB and SmCo patterned films are comparable to those of non-patterned films prepared under the same deposition/annealing conditions. A micron-scaled multipole magnetic field pattern is directly produced by the unidirectional magnetization of the patterned films. NdFeB and SmCo show similar behavior when wet etched in an amorphous state: etch rates of approximately 1.25 μm/min and vertical side walls which may be attributed to a large lateral over-etch of typically 20 μm. Chemical-mechanical-planarization (CMP) produced material removal rates of 0.5-3 μm/min for amorphous NdFeB. Ar ion etching of such films followed by the deposition of a Ta layer prior to film crystallization prevented degradation in magnetic properties compared to non-patterned films.

  5. Coercivity enhancements of Nd-Fe-B sintered magnets by diffusing DyHx along different axes

    NASA Astrophysics Data System (ADS)

    Ma, Tianyu; Wang, Xuejiao; Liu, Xiaolian; Wu, Chen; Yan, Mi

    2015-06-01

    Diffusing heavy rare earth elements along the grain boundaries (GBs) for Nd2Fe14B-type sintered magnets serves as an effective method to enhance coercivity and to minimize remanence loss simultaneously. Considering the texture anisotropy of Nd-rich GB phases, the coercivity incremental difference by diffusing DyHx fine powders along or perpendicular to the  <0 0 1 >  easy axis (c-axis) has been investigated. The coercivity increases more rapidly to 20.61 kOe (5.76 kOe higher than that of the as-sintered state) when diffusing along the c-axis than that diffusing perpendicular to c-axis (18.85 kOe, 4.00 kOe higher than the as-sintered state). Microstructural investigation reveals that Dy diffuses more easily towards the magnet inner part when treating along the c-axis than that for the perpendicular case due to the anisotropic distribution of the Nd-rich phase. This is verified by a higher Dy content at equivalent diffusing depth and a much deeper final diffusion distance. The local Dy-containing fractions with a stronger anisotropy field are richer for the magnet treated along the c-axis, leading to the much rapider coercivity enhancement. This work reveals that diffusion heavy rare earth along the c-axis is more effective to enhance coercivity for aligned Nd-Fe-B sintered magnets.

  6. Improvement of microstructure and magnetic properties of Nd-Fe-B alloys by Nb and Co additions

    NASA Astrophysics Data System (ADS)

    Ahmed, F. M.; Harris, I. R.

    In order to establish the role of niobium on the hydrogenation, disproportionation, desorption and recombination (HDDR) behavior of near-stoichiometric alloys, two alloys: NdI3Fe8OB7 and Nd13Fe78Nb1Co1B7 (at%) were investigated before, during and after the HDDR process. The microstructure of the as-cast Nb-free alloy before employing the HDDR process was found to consist of three phases, the matrix Nd 2Fe 14B (φ) phase, Nd-rich phase and a significant amount of free iron; whereas, the microstructure of the Nb-containing alloy consisted of only the first two phases. The HDDR behavior of the above alloys was characterized using a high-resolution scanning electron microscope (HRSEM). The disproportionation of the Nd 2Fe 14B (φ) matrix phase starts at the Nd-rich/φ phase interface, resulting in the formation of a sub-micron structure consisting of Fe, Fe 2B and Nd-hydride. The disproportionated structures of the Nb-free alloy contained large arms of free iron dendrites, which were retained from the as-cast structures. In the niobium-containing alloy, the recombined grains appear finer and with more rounded shapes in comparison with those of the NdFeB alloy. Promising magnetic properties have been obtained for bonded magnets using the HDDR powder. The magnetic properties, especially the intrinsic coercivity, improved significantly by using ˜1% Nd in excess of the stoichiometric content.

  7. The use of polytetrafluoroethylene in the production of high-density bonded Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Tattam, C.; Williams, A. J.; Hay, J. N.; Harris, I. R.; Tedstone, S. F.; Ashraf, M. M.

    1994-11-01

    Rotary forging has been used to produce high-density bonded magnets from rapidly quenched Nd-Fe-B based ribbons (MQP-D, of nominal composition 28%Nd-56%Fe-15%Co-1%B (wt%)). Polytetrafluoroehtylene (PTFE), when used as an additive (5%-15% by volume) has been found to act as an effective binder and greatly enhances the forgeability of the MQI, allowing higher forging pressures to be used. Densities of up to 98% of the fully dense composite have been achieved. The forging process can be undertaken in air at room temperature. Magnetically, the compacts are comparable to conventional epoxy resin bonded MQI, with energy products of up to 84 kJ/cu m. Equivalent volume fractions of MQI (approximately 83.5 vol %) have been achieved in the compacts with increased PTFE content due to the displacement of pores by the PTFE. The effect of PTFE content on the mechanical strength of the compacts has been assessed and it has been found that strength increases with increasing PTFE content, consistent with the reduction in porosity.

  8. The attenuation of the levitation force of HTS bulk exposed to AC magnetic field on the above NdFeB guideway

    NASA Astrophysics Data System (ADS)

    Liu, Minxian; Wang, Yan

    2012-01-01

    In the present High Temperature Superconducting (HTS) maglev vehicle system, the air gaps between the adjacent permanent magnets make the magnetic fields above the NdFeB guideway non-uniform. So it is required to study the characteristics of levitation force of the HTS bulk affected by the non-uniform applied magnetic fields along the moving direction. In this paper, we have studied the characteristics of the levitation force relaxation by an experiment in which AC magnetic field generated by an electromagnet is used to simulate the time-varying magnetic field caused by the inhomogeneity of the NdFeB guideway. From the experiment results, it is found that the levitation force is attenuated with the application of the AC field, and the attenuation is increased with the amplitude of the AC field, but the attenuation is almost independent of the frequency the AC magnetic field.

  9. Inducing magnetic anisotropy and optimized microstructure in rapidly solidified Nd-Fe-B based magnets by thermal gradient, magnetic field and hot deformation

    NASA Astrophysics Data System (ADS)

    Zhao, L. Z.; Li, W.; Wu, X. H.; Hussain, M.; Liu, Z. W.; Zhang, G. Q.; Greneche, J. M.

    2016-10-01

    Direct preparation of Nd-Fe-B alloys by rapid solidification of copper mold casting is a very simple and low cost process for mini-magnets, but these magnets are generally magnetically isotropic. In this work, high coercivity Nd24Co20Fe41B11Al4 rods were produced by injection casting. To induce magnetic anisotropy, temperature gradient, assisted magnetic field, and hot deformation (HD) procedures were employed. As-cast samples showed non-uniform microstructure due to the melt convection. The thermal gradient during solidification led to the formation of radially distributed acicular hard magnetic grains, which gives the magnetic anisotropy. The growth of the oriented grains was confirmed by phase field simulation. A magnetic field up to 1 T applied along the casting direction could not induce significant magnetic anisotropy, but it improved the magnetic properties by reducing the non-uniformity and forming a uniform microstructure. The annealed alloys exhibited high intrinsic coercivity but disappeared anisotropy. HD was demonstrated to be a good approach for inducing magnetic anisotropy and enhanced coercivity by deforming and refining the grains. This work provides an alternative approach for preparing fully dense Nd-rich anisotropic bulk Nd-Fe-B magnets.

  10. Evaluation of the effects of aging in synthetic saliva solution of both commercial and silanized Nd-Fe-B magnets for dental application

    NASA Astrophysics Data System (ADS)

    Fabiano, F.; Puliafito, V.; Calabrese, L.; Borsellino, C.; Bonaccorsi, L. M.; Giordano, A.; Fabiano, V.; Cordasco, G.

    2016-04-01

    Neodymium-iron-boron magnets are able to ensure a magnetic flux with high maximum energy product also at miniaturized size. In the past, due to their marked corrosion in saliva they were unsuccessfully implemented in orthodontic systems. Thereby, we propose a multi-layered organic-inorganic coating able to supply anticorrosion resistance, wear resistance and durability to the whole assembly. We evaluated the influence on the magnetic force of commercial nickel plated and silanized Nd-Fe-B during aging time in synthetic Fusayama saliva. Two magnets based-micromagnetic simulations were performed in order to analyze the magnetic field generated which is linked to the magnetic force. Our key results underline that the proposed hybrid coating does not affect the magnetic force of Nd-Fe-B magnets, moreover, preventing corrosion degradation in aggressive solution. Thus the limiting aspects avoiding the use of Nd-Fe-B magnets for orthodontic and prosthodontic applications can be overcome by using silane agents as surface coating.

  11. Multifaceted Material Substitution: The Case of NdFeB Magnets, 2010-2015

    NASA Astrophysics Data System (ADS)

    Smith, Braeton J.; Eggert, Roderick G.

    2016-07-01

    Substitution is an important response for material users when faced with disruption to the availability or price of an essential material. In economic terms, substitution refers to the ability of firms to alter their patterns of material use in response to exogenous market shocks. Substitution comes in different forms which vary from situation to situation. This paper uses expert opinion to identify the specific forms of substitution that occurred in permanent magnets, specifically neodymium-iron-boron magnets, following the significant increase in rare earth prices in 2010-2011. The paper provides a framework for understanding the multifaceted nature of substitution and assesses the relative importance of five different types of substitution. Technology-for-element, grade-for-grade, and system-for-system substitution appear to have been more important than element-for-element and magnet-for-magnet substitution. Cost pass-through and absorption were also important responses.

  12. Exchange-coupled nanoscale SmCo/NdFeB hybrid magnets

    SciTech Connect

    Wang, Dapeng; Poudyal, Narayan; Rong, Chuanbing; Zhang, Ying; Kramer, Matthew J.; Liu, J. Ping

    2012-05-11

    Nanoscalehybridmagnets containing SmCo5 and Nd2Fe14B hard magnetic phases have been produced via a novel “in-one-pot” processing route. The grain size of the processed bulk composite materials is controlled below 20 nm. The refinement of the nanoscale morphology leads to effective inter-phase exchange coupling that results in single-phase like magnetic properties. Energy product of 14 MGOe was obtained in the isotropic nanocomposite magnets at room temperature. At elevated temperatures, the hybridmagnets have greatly improved thermal stability compared to the Nd2Fe14B single-phase counterpart and have substantially increased magnetization and energy products compared to the single-phase SmCo5 counterpart.

  13. NdFeB Magnets Aligned in a 9-T Superconducting Solenoid (asterisk)

    NASA Astrophysics Data System (ADS)

    Mulcahy, T. M.; Hull, J. R.

    2002-08-01

    Commercial-grade magnet powder (Magnequench UG) was uniaxial die-pressed into cylindrical compacts, while being aligned in the 1-T to 8-T DC field of a superconducting solenoid at Argonne National Laboratory. Then, the compacts were added to normal Magnequench UG production batches for sintering and annealing. The variations in magnet properties for different strengths of alignment fields are reported for 15.88-mm (5/8-in.) diameter compacts made with length-to-diameter (L/D) ratios in the range 3 0.25 and L 1. The best magnets were produced when the powder-filled die was inserted into the active field of the solenoid and then pressed. Improvements in the residual flux density of 8% and in the energy product of 16% were achieved by increasing the alignment field beyond the typical 2-T capabilities of electromagnets. The most improvement was achieved for the compacts with the smallest L/D ratio. The ability to make very strong magnets with small L/D, where self-demagnetization effects during alignment are greatest, would benefit most the production of near-final-shape magnets. Compaction of the magnet powder using a horizontal die and a continuously active superconducting solenoid was not a problem. Although the press was operated in the batch mode for this proof-of-concept study, its design is intended to enable automated production.

  14. Textured NdFeB HDDR magnets produced by die-upsetting and backward extrusion

    NASA Astrophysics Data System (ADS)

    Gutfleisch, O.; Kirchner, A.; Grünberger, W.; Hinz, D.; Nagel, H.; Thompson, P.; Chapman, J. N.; Müller, K. H.; Schultz, L.; Harris, I. R.

    1998-04-01

    The hydrogenation disproportionation desorption recombination (HDDR) process was applied to produce isotropic, submicron 0022-3727/31/7/009/img6 powder in 500 g batches in a specially designed HDDR reactor. The hot pressing characteristics of the material were determined and it was shown that the material has an excellent stability against grain growth. The coercivity of 1000-1080 0022-3727/31/7/009/img7 is almost constant over a hot pressing temperature range of 700-0022-3727/31/7/009/img8, making the material highly suitable for subsequent hot deformation. Die-upset HDDR magnets were prepared in order to study the basic deformation behaviour. A remanence of 1.13 T in the axial direction and a coercivity of 0022-3727/31/7/009/img9 were achieved. Similar properties were obtained for the backward extruded magnets produced at 0022-3727/31/7/009/img10 and only a small decrease in alignment along the axial direction of the ring was found. Grain sizes were very uniform and on the submicron scale. Platelet-shaped grains were observed in the die-upset magnets. The formation of interaction domains, along the axial and radial directions for the die-upset and backward extruded magnets respectively, were established by high-resolution Kerr microscopy. The high degree of texture in the hot deformed HDDR magnets was also confirmed by Lorentz microscopy revealing continuous equispaced domains extending over the entire thinned sample with only small directional variations.

  15. Barkhausen noise in the Random Field Ising Magnet NdFeB

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Silevitch, Daniel; Rosenbaum, Thomas

    2015-03-01

    With the application of a magnetic field transverse to the magnetic easy axis, sintered blocks of the rare-earth ferromagnet Nd2Fe14B form a realization of the Random-Field Ising Model at room temperature. We study domain reversal and avalanche dynamics through an analysis of the Barkhausen noise. Power-law behavior with a cutoff is observed in the avalanche energy spectrum, consistent with theoretical predictions for disordered materials. Two regimes of behavior are found, one at low temperature and high transverse field where the system shows behavior consistent with randomness-dominated dynamics, and a high-temperature, low-transverse-field regime in which thermal fluctuations dominate the dynamics. In the randomness-dominated regime, the critical exponents are consistent with mean-field predictions for heavily disordered system, whereas in the thermal-fluctuation regime, the critical exponents differ substantially from the mean-field predictions.

  16. Structural and magnetic studies of the nanocrystalline Nd-Fe-B-Nb alloy ribbons

    NASA Astrophysics Data System (ADS)

    Szwaja, M.; Pawlik, K.; Pawlik, P.; Kaszuwara, W.; Wysłocki, J. J.; Gębara, P.

    2013-01-01

    A detailed studies of the phase constitution, microstructure and magnetic properties of the nanocrystalline Nd9.2Fe61.64B21.16Nb8 alloy ribbons, are reported. It was shown that the rapidly solidified ribbons have partially amorphous structure and soft magnetic properties in the as-cast state. The heat treatment at temperatures higher than 923 K led to the growth of the hard magnetic Nd2Fe14B phase and the metastable Nd2Fe23B3 phase. The Mössbauer confirmed that during annealing of the samples at temperature higher than 923 K the paramagnetic Nd1+ɛFe4B4 phase was also formed. The microstructure consisting of mixture of constituent phases was observed with transmission electron microscopy (TEM). Furthermore, with increasing annealing temperature the decrease of the saturation polarization Js was observed. The maximum values of coercivity JHc = 1175 kA/m was obtained for a sample annealed at 1023K. However, annealing at 1003 K resulted in the improvement of remanence polarization Jr = 0.35 T and the maximum energy product (BH)max = 21 kJ/m3.

  17. High performance Nd-Fe-B permanent magnets without critical elements

    DOE PAGES

    Pathak, Arjun K.; Gschneidner, Jr., K. A.; Khan, M.; ...

    2016-01-28

    Scanning electron microscopy, and magnetization measurements reveal that as cast (Nd1–xCex)2Fe14B alloys contain significant amounts of α-Fe that can be dramatically reduced by annealing the alloys at 1000 °C for 3 days. The room temperature intrinsic coercivity, Hci, of (Nd0.8Ce0.2)2.2Fe14B melt spun ribbons was found to be 11 kOe, which is ~32 to ~10% higher in comparison to that of Nd2Fe14B (Hci = 8.3 kOe), and (Nd0.8Ce0.2)2.0Fe14B (Hci = 10 kOe), respectively. The substitution of Co for Fe in (Nd0.8Ce0.2)2Fe14–zCozB significantly increases both TC and the maximum energy product, (BH)max. Our study shows that both Co-containing and Co-free Ce-substituted Nd2Fe14Bmore » alloys have excellent magnetic properties at room temperature and above. As a result, the experimental results also demonstrate the potential of Nd-Ce-Fe-TM-B based alloys as alternative to expensive Dy-containing high performance rare earth magnets.« less

  18. High performance Nd-Fe-B permanent magnets without critical elements

    SciTech Connect

    Pathak, Arjun K.; Gschneidner, Jr., K. A.; Khan, M.; McCallum, R. W.; Pecharsky, V. K.

    2016-01-28

    Scanning electron microscopy, and magnetization measurements reveal that as cast (Nd1–xCex)2Fe14B alloys contain significant amounts of α-Fe that can be dramatically reduced by annealing the alloys at 1000 °C for 3 days. The room temperature intrinsic coercivity, Hci, of (Nd0.8Ce0.2)2.2Fe14B melt spun ribbons was found to be 11 kOe, which is ~32 to ~10% higher in comparison to that of Nd2Fe14B (Hci = 8.3 kOe), and (Nd0.8Ce0.2)2.0Fe14B (Hci = 10 kOe), respectively. The substitution of Co for Fe in (Nd0.8Ce0.2)2Fe14–zCozB significantly increases both TC and the maximum energy product, (BH)max. Our study shows that both Co-containing and Co-free Ce-substituted Nd2Fe14B alloys have excellent magnetic properties at room temperature and above. As a result, the experimental results also demonstrate the potential of Nd-Ce-Fe-TM-B based alloys as alternative to expensive Dy-containing high performance rare earth magnets.

  19. Hard Magnetic, Low Neodymium Nd-Fe-B Melt-Spun Alloys Containing Refractory Metals

    NASA Astrophysics Data System (ADS)

    Leonowicz, Marcin; Spyra, Marzena; Jezierska, ElŻbieta

    2011-06-01

    The effect of selected refractory metals addition on the structure and magnetic properties was studied for the nanocomposite Nd9Fe77-xB14Mx (M = Ti, Mo, Nb, Mn), Nd8Fe78-xB14Mx (M = Ti, Mo, Nb, Mn) and Nd7Fe79-xB14Tix systems. It was found that the addition of 2 and 4 at % of refractory metals leads to a substantial increase of the coercivity and maximum energy product for each of the nanocomposite systems while maintaining the remanence unchanged. The highest properties were obtained for the alloys containing 4-5 at% of the refractory metals. The maximum energy product of 143 kJ/m3 was achieved for the Nd8Fe74B14Ti4 alloy.

  20. Preparation and characterization of amorphous SiO2 coatings deposited by mirco-arc oxidation on sintered NdFeB permanent magnets

    NASA Astrophysics Data System (ADS)

    Xu, J. L.; Xiao, Q. F.; Mei, D. D.; Zhong, Z. C.; Tong, Y. X.; Zheng, Y. F.; Li, L.

    2017-03-01

    Amorphous SiO2 coatings were prepared on sintered NdFeB magnets by micro-arc oxidation (MAO) in silicate solution. The surface and cross-sectional morphologies, element and phase composition, corrosion resistance and magnetic properties of the coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), potentiodynamic polarization test and physical properties measurements system (PPMS). The results showed that the surface morphologies of the coatings exhibited the "coral reef" like structure, different from the typical MAO porous structure. With increasing the voltages, the thickness of the coatings increased from 12.72 to 19.90 μm, the content of Si element increased, while the contents of Fe, Nd and P elements decreased. The coatings were mainly composed of amorphous SiO2 and a few amorphous Fe2O3 and Nd2O3. The amorphous SiO2 coatings presented excellent thermal shock resistance, while the thermal shock resistance decreased with increasing the voltages. The corrosion resistance of the coatings increased with increasing the voltages, and it could be enhanced by one order of magnitude compared to the uncoated NdFeB magnets. The MAO coatings slightly decreased the magnetic properties of the NdFeB samples in different degrees.

  1. Magnetic and microstructural modification of the Nd-Fe-B sintered magnet by mixed DyF3/DyHx powder doping

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hoon; Lee, Seong-Rae; Kim, Hyo-Jun; Lee, Min-Woo; Jang, Tae-Suk

    2014-05-01

    We investigated the magnetic and microstructural properties of Nd-Fe-B sintered magnets doped with DyF3, DyHx, and a mixture of DyF3 and DyHx powders. In the DyHx-doped magnet, diffusion of Dy occurs predominantly via grain boundary diffusion. However, the proportion of Dy being diffused by lattice diffusion is increased in the DyF3-doped magnet due to the different influences of F- and H+ ions. The detailed mechanism of the microstructural changes in terms of the diffusional behavior of Dy induced by the DyF3 and DyHx powder doping is discussed. The formation of a Dy-segregated Nd-rich oxide phase (RE-rich, Dy-Nd-O) was suppressed only in the DyF3-doped magnet, and the (00L) alignment of Nd2Fe14B grains in the sintered magnet increased when it was doped with the DyHx powder. We obtained the optimum microstructural and magnetic properties of the Nd-Fe-B sintered magnet through doping with a mixture of DyF3 and DyHx powders, which compensated for the drawbacks of using each powder alone.

  2. Magnetism in grain-boundary phase of a NdFeB sintered magnet studied by spin-polarized scanning electron microscopy

    SciTech Connect

    Kohashi, Teruo Motai, Kumi; Nishiuchi, Takeshi; Hirosawa, Satoshi

    2014-06-09

    The magnetism in the grain-boundary phase of a NdFeB sintered magnet was measured by spin-polarized scanning electron microscopy (spin SEM). A sample magnet was fractured in the ultra-high-vacuum chamber to avoid oxidation, and its magnetizations in the exposed grain-boundary phase on the fracture surface were evaluated through the spin polarization of secondary electrons. Spin-SEM images were taken as the fracture surface was milled gradually by argon ions, and the magnetization in the grain-boundary phase was quantitatively obtained separately from that of the Nd{sub 2}Fe{sub 14}B phase. The obtained magnetization shows that the grain-boundary phase of this magnet has substantial magnetization, which was confirmed to be ferromagnetic.

  3. Magnetization reversal of a Nd-Cu-infiltrated Nd-Fe-B nanocrystalline magnet observed with small-angle neutron scattering

    SciTech Connect

    Saito, Kotaro Ono, Kanta; Ueno, Tetsuro; Yano, Masao; Shoji, Tetsuya; Sakuma, Noritsugu; Manabe, Akira; Kato, Akira; Harada, Masashi; Keiderling, Uwe

    2015-05-07

    The magnetization reversal process of Nd-Fe-B nanocrystalline magnets infiltrated with Nd-Cu alloy was examined using small-angle neutron scattering (SANS). The magnetic-field dependence of SANS intensity revealed a qualitative difference between Nd-Cu-infiltrated samples and as-deformed samples. Insufficient magnetic isolation along the direction perpendicular to the nominal c-axis is expected from comparable SANS intensities for different ranges of q values along this direction. For small q values near the coercivity field, Nd-Cu-infiltrated samples show a noticeable reduction in SANS intensity along the nominal c-axis, which is parallel to the external magnetic field. This indicates less spatial fluctuation of magnetic moments in Nd-Cu-infiltrated samples, owing to magnetically isolated Nd{sub 2}Fe{sub 14}B grains.

  4. A combined experimental and finite element analysis method for the estimation of eddy-current loss in NdFeB magnets.

    PubMed

    Fratila, Radu; Benabou, Abdelkader; Tounzi, Abdelmounaïm; Mipo, Jean-Claude

    2014-05-14

    NdFeB permanent magnets (PMs) are widely used in high performance electrical machines, but their relatively high conductivity subjects them to eddy current losses that can lead to magnetization loss. The Finite Element (FE) method is generally used to quantify the eddy current loss of PMs, but it remains quite difficult to validate the accuracy of the results with complex devices. In this paper, an experimental test device is used in order to extract the eddy current losses that are then compared with those of a 3D FE model.

  5. Improvement of the magnetic property, thermal stability and corrosion resistance of the sintered Nd-Fe-B magnets with Dy80Al20 addition

    NASA Astrophysics Data System (ADS)

    Zhou, Beibei; Li, Xiangbin; Liang, Xiaolin; Yan, Gaolin; Chen, Kan; Yan, Aru

    2017-05-01

    To improve the coercivity and thermal stability of the Nd-Fe-B sintered magnets simultaneously, the Dy80Al20 (at%) powders with low melting point were introduced into the Nd-Fe-B magnets. Additionally, the magnetic properties, microstructure and thermal stability of the sintered magnets with different amounts of Dy80Al20 were investigated. By adding a small amount of Dy80Al20, the coercivity was significantly increased from 12.72 to 21.75 kOe. As indicated by the microstructure analysis, a well-developed core-shell structure was formed in the magnets with the addition of Dy80Al20. The improvement of magnetic properties could be attributed to the refined and uniform matrix phase, continuous grain boundaries and a (Nd, Dy)2Fe14B hardening shell surrounding the matrix phase grains. With the addition of 0-4 wt% Dy80Al20 powder, the reversible temperature coefficients of remanence (α) and coercivity (β) of the magnets could be improved from -0.117 to -0.108%/°C and -0.74 to -0.66%/°C in the range of 20-100 °C, respectively. Additionally, the irreversible loss of magnetic flux (hirr) decreased sharply as Dy80Al20 powder was added. The results of temperature-dependent magnetic properties suggest that, the thermal stability of the magnets was effectively improved with the intergranular addition of Dy80Al20 alloy. Also, the corrosion resistance was found to be improved through small addition of Dy80Al20 powders This was partly due to the stability enhancement of the (Pr, Nd)-rich intergranular phase by Dy80Al20.

  6. First report on soapnut extract-mediated synthesis of sulphur-substituted nanoscale NdFeB permanent magnets and their characterization

    NASA Astrophysics Data System (ADS)

    Jayapala Rao, G. V. S.; Prasad, T. N. V. K. V.; Shameer, Syed; Arun, T.; Purnachandra Rao, M.

    2017-08-01

    Biosynthesis of nanoscale materials has its own advantages over other physical and chemical methods. Using soapnut extract as reducing and stabilizing agent for the synthesis of inorganic nanoscale materials is novel and has not been exploited to its potential so far. Herein, we report for the first time on the effects of sulphur substitution on soapnut extract-mediated synthesis of nanoscale NdFeB (S-NdFeB) permanent magnetic powders (Nd 15%, Fe 77.5%, B 7.5% and S with molar ratios: 0.1, 0.2, 0.3, 0.4, and 0.5). To synthesize, a 10 ml of 10% soapnut extract was added to 90 ml of respective chemical composition and heated to 60 °C for 30 min and aged for 24 h. The dried powder was sintered at 500 °C for 1 h. The characterization of the as-prepared nanoscale S-NdFeB magnetic materials was done using the techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersion spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS for size and zeta potential measurements) and vibrating sample magnetometer (VSM)-hysteresis loop studies. The results revealed that particles were highly stable (with a negative zeta potential of 25.7 mV) with irregular and spherical shape (with measured hydrodynamic diameter 6.7 and 63.5 nm). The tetragonal structures of the formed powders were revealed by XRD micrographs. Hysteresis loop studies clearly indicate the effect of S concentration on the enhanced magnetization of the materials.

  7. Effect of addition of esters of fatty acids on the microstructure and properties of sintered Nd-Fe-B magnets produced by PLP

    NASA Astrophysics Data System (ADS)

    Popov, A. G.; Gaviko, V. S.; Shchegoleva, N. N.; Golovnia, O. A.; Gorbunova, T. I.; Hadjipanayis, G. C.

    2015-07-01

    High filling density of powders for production of sintered Nd-Fe-B magnets by the pressless process (PLP) impedes magnetic alignment. The latter can be enhanced by reduction of friction forces between powder particles. Thus, increase in the remanence and maximum energy product of the magnets by lubrication of powder particles is studied. Esters of fatty acids have been added in toluene or acetone in the course of grinding of Nd-Fe-B alloy in a vibratory mill. Coated by a thin layer of a lubricant powders have been aligned in pulsed magnetic field. It is shown that the remanence of sintered magnets has been increased by 5-7%. Lubricant concentration should not exceed critical values, which for the lubricants used varied between 2.0 wt% (ethyl butyrate) and 0.3 wt% (ethyl laurate). Otherwise, the complicated removal of lubricant residue leads to reaction of the latter with Nd-rich grain-boundary phase in the course of sintering and results in a sharp decrease in magnetic hysteresis properties. Addition of lubricating additives allows one to produce PLP-magnets with density exceeding 7.5 g/cm3, Br≥14 kG, Hc≥9 kOe and (BH)max≥45 MG Oe.

  8. Effect of Partial Substitution of Neodymium with Praseodymium on the Magnetic and Process Properties of Sintered Magnets of Type NdFeB

    NASA Astrophysics Data System (ADS)

    Dormidontov, N. A.; Dormidontov, A. G.; Lileev, A. S.; Kamynin, A. V.; Lukin, A. A.

    2017-01-01

    The effect of substitution of neodymium with praseodymium in sintered magnets of type NdFeB on their magnetic and process properties in the concentration range of [Pr] = 0 - 13 wt.% is studied. The special features of milling of the alloys, sintering processes and heat treatments in the production of magnets containing praseodymium are discussed. Hysteresis characteristics of B r ≥ 1.2 T, H cJ ≥ 1200 kA/m, H cb ≥ 880 kA/m, H k ≥ 960 kA/m, and BH max ≥ 280 kJ/m3 are obtained for magnets with composition (in wt.%) 33 Nd, 10 Pr, 1.5 (Ti + Al + Cu), 1.3 B, the remainder Fe.

  9. Effect of titania particles on the microstructure and properties of the epoxy resin coatings on sintered NdFeB permanent magnets

    NASA Astrophysics Data System (ADS)

    Xu, J. L.; Huang, Z. X.; Luo, J. M.; Zhong, Z. C.

    2014-04-01

    The nanometer titania particles enhanced epoxy resin composite coatings were prepared on the sintered NdFeB permanent magnets by cathodic electrophoretic deposition. The effects of titania particle concentrations on the microstructure and properties of the epoxy coatings were investigated by surface and cross-sectional morphologies observation, surface roughness and microhardness measurement, H2SO4 solution immersion test, neutral salt spray test and magnetic properties measurement. The results showed that the thickness of epoxy coatings with and without the titania particles addition was about 40 μm. The titania particles could be uniformly dispersed and embedded in the epoxy matrix if the titania particles concentration was lower than 40 g/l. With increasing titania particle concentrations, the number of the particles embedded in the epoxy matrix increased and the surface roughness and microhardness of the composite coatings increased. At the same time, the weight loss of the coated samples immersed in H2SO4 solution decreased and the neutral salt spray time of the coated samples prolonged. It could be concluded that the titania particles did not change the thickness of the epoxy coatings and did not deteriorate the magnetic properties of NdFeB substrates, but could greatly improve the microhardness and corrosion resistance of the epoxy coatings.

  10. Improvement of the thermal stability of sintered Nd-Fe-B magnets by intergranular addition of Dy{sub 82.3}Co{sub 17.7}

    SciTech Connect

    Zhang, Xiaofeng; Guo, Shuai; Yan, Changjiang; Cai, Lingwen; Chen, Renjie; Yan, Aru; Lee, Don

    2014-05-07

    In this study, microstructure and magnetic properties of sintered Nd-Fe-B magnets with addition of Dy{sub 82.3}Co{sub 17.7} (wt. %) were investigated. By adding a small amount of Dy{sub 82.3}Co{sub 17.7}, the coercivity is improved greatly, and the irreversible loss is decreased sharply. The increase of Curie temperature suggests that Co atoms have entered into the 2:14:1 main phase. Microstructural analysis indicates that a well-developed core-shell structure was formed in the magnets with the addition of Dy{sub 82.3}Co{sub 17.7}. The improvement of magnetic properties can be attributed to the microstructural modification and the intrinsic properties' improvement.

  11. Laser surface heating of Nd-Fe-B, Nd-Fe-Co-B, and BaO-6Fe 2O 3 permanent magnets

    NASA Astrophysics Data System (ADS)

    Bradley, John R.; Perry, Thomas A.; Schroeder, Thaddeus

    1993-06-01

    Hot-pressed Nd-Fe-B, epoxy-bonded Nd-Fe-Co-B, and BaO-6Fe 2O 3 (ferrite) permanent magnets are heated by scanning their surfaces with an argon ion laser beam. The laser heating response of each magnet material is examined by measuring the depth of the heat-affected zone as a function of beam power and scan rate. An analytic heat transfer model is used to provide a convenient description of the laser surface heating process. The temperature distribution in the magnets is calculated to estimate the depth of the heat-affected zone as defined by the position of the Curie temperature isotherm. Agreement is good among the calculated and measured depths for all three permanent magnet materials.

  12. Magnetic Properties Improvement of Die-upset Nd-Fe-B Magnets by Dy-Cu Press Injection and Subsequent Heat Treatment.

    PubMed

    Wang, Zexuan; Ju, Jinyun; Wang, Jinzhi; Yin, Wenzong; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Tang, Xu; Lee, Don; Yan, Aru

    2016-12-06

    Ultrafine-grained die-upset Nd-Fe-B magnets are of importance because they provide a wide researching space to redesign the textured structures. Here is presented a route to obtain a new die-upset magnet with substantially improved magnetic properties. After experiencing the optimized heat treatment, both the coercivity and remanent magnetization of the Dy-Cu press injected magnets increased substantially in comparison with those of the annealed reference magnets, which is distinct from the reported experimental results on heavy rare-earth diffusion. To study the mechanism, we analyzed the texture evolution in high-temperature annealed die-upset magnets, which had significant impact on the improvement of remanent magnetization. On basis of the results, we find that the new structures are strongly interlinked with the initial structures. With injecting Dy-Cu eutectic alloy, an optimized initial microstructure was achieved in the near-surface diffused regions, which made preparations for the subsequent texture improvement. Besides, the Dy gradient distribution of near-surface regions of the Dy-Cu press injected magnets was also investigated. By controlling the initial microstructure and subsequent diffusion process, a higher performance magnet is expected to be obtained.

  13. Magnetic Properties Improvement of Die-upset Nd-Fe-B Magnets by Dy-Cu Press Injection and Subsequent Heat Treatment

    PubMed Central

    Wang, Zexuan; Ju, Jinyun; Wang, Jinzhi; Yin, Wenzong; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Tang, Xu; Lee, Don; Yan, Aru

    2016-01-01

    Ultrafine-grained die-upset Nd-Fe-B magnets are of importance because they provide a wide researching space to redesign the textured structures. Here is presented a route to obtain a new die-upset magnet with substantially improved magnetic properties. After experiencing the optimized heat treatment, both the coercivity and remanent magnetization of the Dy-Cu press injected magnets increased substantially in comparison with those of the annealed reference magnets, which is distinct from the reported experimental results on heavy rare-earth diffusion. To study the mechanism, we analyzed the texture evolution in high-temperature annealed die-upset magnets, which had significant impact on the improvement of remanent magnetization. On basis of the results, we find that the new structures are strongly interlinked with the initial structures. With injecting Dy-Cu eutectic alloy, an optimized initial microstructure was achieved in the near-surface diffused regions, which made preparations for the subsequent texture improvement. Besides, the Dy gradient distribution of near-surface regions of the Dy-Cu press injected magnets was also investigated. By controlling the initial microstructure and subsequent diffusion process, a higher performance magnet is expected to be obtained. PMID:27922060

  14. Magnetic Properties Improvement of Die-upset Nd-Fe-B Magnets by Dy-Cu Press Injection and Subsequent Heat Treatment

    NASA Astrophysics Data System (ADS)

    Wang, Zexuan; Ju, Jinyun; Wang, Jinzhi; Yin, Wenzong; Chen, Renjie; Li, Ming; Jin, Chaoxiang; Tang, Xu; Lee, Don; Yan, Aru

    2016-12-01

    Ultrafine-grained die-upset Nd-Fe-B magnets are of importance because they provide a wide researching space to redesign the textured structures. Here is presented a route to obtain a new die-upset magnet with substantially improved magnetic properties. After experiencing the optimized heat treatment, both the coercivity and remanent magnetization of the Dy-Cu press injected magnets increased substantially in comparison with those of the annealed reference magnets, which is distinct from the reported experimental results on heavy rare-earth diffusion. To study the mechanism, we analyzed the texture evolution in high-temperature annealed die-upset magnets, which had significant impact on the improvement of remanent magnetization. On basis of the results, we find that the new structures are strongly interlinked with the initial structures. With injecting Dy-Cu eutectic alloy, an optimized initial microstructure was achieved in the near-surface diffused regions, which made preparations for the subsequent texture improvement. Besides, the Dy gradient distribution of near-surface regions of the Dy-Cu press injected magnets was also investigated. By controlling the initial microstructure and subsequent diffusion process, a higher performance magnet is expected to be obtained.

  15. Low temperature diffusion process using rare earth-Cu eutectic alloys for hot-deformed Nd-Fe-B bulk magnets

    SciTech Connect

    Akiya, T. Sepehri-Amin, H.; Ohkubo, T.; Liu, J.; Hono, K.; Hioki, K.; Hattori, A.

    2014-05-07

    The low temperature grain boundary diffusion process using RE{sub 70}Cu{sub 30} (RE = Pr, Nd) eutectic alloy powders was applied to sintered and hot-deformed Nd-Fe-B bulk magnets. Although only marginal coercivity increase was observed in sintered magnets, a substantial enhancement in coercivity was observed when the process was applied to hot-deformed anisotropic bulk magnets. Using Pr{sub 70}Cu{sub 30} eutectic alloy as a diffusion source, the coercivity was enhanced from 1.65 T to 2.56 T. The hot-deformed sample expanded along c-axis direction only after the diffusion process as RE rich intergranular layers parallel to the broad surface of the Nd{sub 2}Fe{sub 14}B are thickened in the c-axis direction.

  16. The effect of Nd-Cu diffusion during hot pressing and hot deformation on the coercivity and the deformation ability of Nd-Fe-B HDDR magnets

    NASA Astrophysics Data System (ADS)

    Wang, Haihang; Chen, Renjie; Yin, Wenzong; Zhu, Mingyuan; Tang, Xu; Wang, Zexuan; Jin, Chaoxiang; Ju, Jinyun; Lee, Don; Yan, Aru

    2017-09-01

    HDDR processed Nd-Fe-B powders blended with Nd-Cu powders were hot-pressed and then hot-deformed to obtain fully dense, anisotropic magnets. The microstructure evolution in hot-pressed and hot-deformed HDDR magnets was studied to illustrate the impact of Nd-Cu diffusion on coercivity and deformation ability. It was found that the coercivity and the deformation ability were improved significantly by Nd-Cu addition. The coercivity of hot-deformed magnets was increased from 3.81 kOe to 13.01 kOe after 2 wt% Nd-Cu additions and the annealing at 900 °C for 2 h. Scanning electron microscopy and transmission electron microscopy observations revealed that the variation in coercivity was attributed to the diffusion of Nd-Cu along the grain boundaries during hot pressing and hot deformation.

  17. High electrical resistivity Nd-Fe-B die-upset magnet doped with eutectic DyF3-LiF salt mixture

    NASA Astrophysics Data System (ADS)

    Kim, K. M.; Kim, J. Y.; Kwon, H. W.; Kim, D. H.; Lee, J. G.; Yu, J. H.

    2017-05-01

    Nd-Fe-B-type die-upset magnet with high electrical resistivity was prepared by doping of eutectic DyF3-LiF salt mixture. Mixture of melt-spun Nd-Fe-B flakes (MQU-F: Nd13.6Fe73.6Co6.6Ga0.6B5.6) and eutectic binary (DyF3-LiF) salt (25 mol% DyF3 - 75 mol% LiF) was hot-pressed and then die-upset. By adding the eutectic salt mixture (> 4 wt%), electrical resistivity of the die-upset magnet was enhanced to over 400 μ Ω .cm compared to 190 μ Ω .cm of the un-doped magnet. Remarkable enhancement of the electrical resistivity was attributed to homogeneous and continuous coverage of the interface between flakes by the easily melted eutectic salt dielectric mixture. It was revealed that active substitution of the Nd atoms in neighboring flakes by the Dy atoms from the added (DyF3-LiF) salt mixture had occurred during such a quick thermal processing of hot-pressing and die-upsetting. This Dy substitution led to coercivity enhancement in the die-upset magnet doped with the eutectic (DyF3-LiF) salt mixture. Coercivity and remanence of the die-upset magnet doped with (DyF3-LiF) salt mixture was as good as those of the DyF3-doped magnet.

  18. TEM studies of the effects of Zr additions on some HDDR-processed, high boron, NdFeB-type powders and hot-pressed magnets

    NASA Astrophysics Data System (ADS)

    Yi, G.; Chapman, J. N.; Brown, D. N.; Harris, I. R.

    2000-10-01

    The transmission electron microscope has been used to study the physical and magnetic microstructures of two HDDR-processed NdFeB-type alloys, one without Zr and the other containing 1.1 at% Zr. Studies were made of the as-produced powders and the solids produced following hot-pressing at 900°C. In the HDDR powders, the principal effects of adding Zr were to reduce the average grain size by ≈ {1}/{3} and made the grain size distribution more uniform. In the hot-pressed samples, the effect of Zr was more dramatic in that grain growth was very significantly reduced. Zr-containing phases were identified and a simple model, due to Zener, used to provide a plausible explanation of how the small amount of Zr present could stabilise the grain size to ≈0.5 μm. The microstructural results correlated well with measured magnetic properties.

  19. Improvement in coercivity, thermal stability, and corrosion resistance of sintered Nd-Fe-B magnets with Dy80Ga20 intergranular addition

    NASA Astrophysics Data System (ADS)

    Zhou, Beibei; Li, Xiangbin; Cao, Xuejing; Yan, Gaolin; Yan, Aru

    2016-11-01

    To investigate the coercivity, corrosion resistance, and thermal stability of Nd-Fe-B magnets, their properties were investigated at room and high temperature before and after doping with Dy80Ga20 (at.%) powder. The coercivity of the magnets increased from the undoped value of 12.72 kOe to a doped value of 21.44 kOe. A micro-structural analysis indicates that a well-developed core-shell structure forms in the magnets doped with Dy80Ga20 powder. The improvement in magnetic properties is believed to be related to the refined and uniform matrix grains, continuous grain boundaries, and a hardened (Nd, Dy)2Fe14B shell surrounding the matrix grains. Additionally, the doped magnets exhibit an obvious improvement in thermal stability. For the magnets with added Dy80Ga20 powder, the temperature coefficients of remanence (α) and coercivity (β) increased to -0.106% °C-1 and -0.60% °C-1 over the range 20-100 °C, compared to temperature coefficients of -0.117% °C-1 (α) and -0.74% °C-1 (β) in the regular magnets without Dy80Ga20 powder. The irreversible loss of magnetic flux (Hirr) was investigated at different temperatures. After being exposed to 150 °C for 2 h, the Hirr of magnets with 4 wt.% Dy80Ga20 decreased by ˜95% compared to that of the undoped magnets. The enhanced temperature coefficients and Hirr indicate improved thermal stability in the doped Nd-Fe-B magnets. The intergranular addition of Dy80Ga20 also improved the corrosion resistance of the magnets because of the enhanced intergranular phase. In a corrosive atmosphere for 96 h, the mass loss of the sintered magnets with 4 wt.% Dy80Ga20 was 2.68 mg/cm2, less than 10% of that suffered by the undoped magnets (28.1 mg/cm2). Project supported by the Ministry of Science and Technology of China (Grant Nos. 2014DFB50130 and 2011CB612304) and the National Natural Science Foundation of China (Grant Nos. 51172168 and 51072139).

  20. Micromagnetic simulation for the magnetization reversal process of Nd-Fe-B hot-deformed nanocrystalline permanent magnets

    NASA Astrophysics Data System (ADS)

    Tsukahara, Hiroshi; Iwano, Kaoru; Mitsumata, Chiharu; Ishikawa, Tadashi; Ono, Kanta

    2017-05-01

    We numerically demonstrated the magnetization reversal process inside a hot-deformed nanocrystalline permanent magnet. We performed large-scale micromagnetics simulation based on the Landau-Lifshitz-Gilbert equation with 0.1 billion calculation cells. The simulation model for the hot-deformed nanocrystalline permanent magnet consists of 2622 tabular grains that interact with each other by inter-grain exchange and dipole interactions. When the strength of the external field approached a coercive force, nucleation cores were created at the grain surface. The magnetization reversal was propagated by the inter-grain and dipole interactions. When the grains had overlapping regions parallel to the external field, the magnetization reversal propagated quickly between the grains due to the dipole interaction. In contrast, the motion of the magnetic domain wall was inhibited at interfaces between the grains perpendicular to the external field. Reversal magnetic domains had a pillar-shaped structure that is parallel to the external field. In the perpendicular direction, the reversal magnetic domain expanded gradually because of the inhibition of the domain wall motion.

  1. Magnetic properties and coercivity mechanism of isotropic HDDR NdFeB bonded magnets with Co and Dy addition

    NASA Astrophysics Data System (ADS)

    Chen, W.; Gao, R. W.; Zhu, M. G.; Pan, W.; Li, W.; Li, X. M.; Han, G. B.; Feng, W. C.; Wang, B.

    2003-04-01

    Isotropic NdDyFeCoB bonded magnets with high coercivity of 1.59 MA/m and low temperature coefficient of remanence of -0.056%/ K (in the temperature range 298-428 K) were prepared successfully by controlling the HDDR process and adjusting the compositions. The influence of Co and Dy additions on the magnetic properties and the magnetization reversal process in magnet was investigated. The high coercivity in (Nd 0.8Dy 0.2) 13(Fe 0.875Co 0.125) 81B 6 HDDR magnet can be attributed to its unique microstructure and the enhancement of anisotropy field of 2:14:1 phase by substitution of Nd by Dy.

  2. Microstructure and magnetic properties of backward extruded NdFeB ring magnets by the CAPA process

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung-Tae; Kim, Yoon-Bae

    2004-06-01

    The inhomogeneity in microstructure and magnetic properties of a ring magnet prepared by backward extrusion with a current-applied pressure-assisted process has been investigated. The initial part (top part) of a ring magnet prepared by back extrusion shows a high coercivity which is comparable to the raw powder. It exhibits isotropic characteristics along the three orthogonal directions probably due to small deformation. The last part (bottom part) of the ring magnet has a a low coercivity with large grains because high current flows through the pressurized punches during the whole deformation process as to increase the temperature and grain growth. The middle part is under an appropriate deformation with short time exposure at high temperature, therefore it maintains a relatively high remanent polarization with high coercivity.

  3. A Simple, Nearly 2D Explosively Shocked NdFeB(52) Permanent Magnet and a Comparison to a Cale Calculation Suggesting the Mechanism for Magnetic Flux Release and Subsequent EMF Pulse

    DTIC Science & Technology

    2011-06-01

    these simulations the MHD was turned off. Only the effect of the HE generated shock wave heating was being examined. The following series of images are...A SIMPLE, NEARLY 2D EXPLOSIVELY SHOCKED NdFeB(52) PERMANENT MAGNET AND A COMPARISON TO A CALE CALCULATION SUGGESTING THE MECHANISM FOR MAGNETIC...phenomenon of the generation of pulsed electrical energy realized from the shocking of modern strong permanent Ferro magnets. The Care’n Co., together

  4. Effect of oxygen content of Nd-Fe-B sintered magnet on grain boundary diffusion process of DyH2 dip-coating

    NASA Astrophysics Data System (ADS)

    Bae, Kyoung-Hoon; Lee, Seong-Rae; Kim, Hyo-Jun; Lee, Min-Woo; Jang, Tae-Suk

    2015-11-01

    We investigated the effect of oxygen content on the microstructural and magnetic properties of a DyH2 dip-coated Nd-Fe-B sintered magnet. When the magnet had a low oxygen content (1500 ppm), the volume and size of the rare-earth-rich oxide (Nd-Dy-O) phase was reduced, and a uniform and continuous thin Nd-rich grain boundary phase (GBP) was well developed. The grain boundary diffusion depth of Dy increased from 200 to 350 μm with decreasing oxygen content from ˜3000 to 1500 ppm. The coercivity of the low-oxygen magnet increased from 19.98 to 23.59 kOe after grain boundary diffusion process (GBDP) while the remanence reduction was minimized. The formation of an fcc-NdOx Nd-rich phase in the high-oxygen magnet hindered the formation of a Nd-rich triple-junction phase and GBP. In contrast, a metallic dhcp-Nd phase, which was closely related to coercivity enhancement after GBDP, was formed in the low-oxygen magnet.

  5. International comparison of the properties of NdFeB permanent magnets measured using an electromagnet and a pulsed field magnetometer

    NASA Astrophysics Data System (ADS)

    Hall, Michael

    2013-08-01

    An IEC TC 68 comparison on the measurement of the magnetic properties of permanent magnets was completed in 2011. Measurements were performed on 6 NdFeB magnets with intrinsic coercivities ranging from 1000 to 2600 kA/m by 8 institutes based in China, Japan, Italy, Belgium, Germany and the UK. Many versions of a Pulsed Field Magnetometer (PFM) that can determine the full BH curve in as little as 100 ms have been developed during the last 2 decades. By comparing measurements made using an internationally accepted electromagnet method and pulsed methods, the influence of the dynamic effects of the latter could be investigated and established. For the quantities remanence, B r , magnetic flux density coercivity, H cB and energy product, BH max the measurements agree within the combined uncertainties. For the intrinsic coercivity, H cJ , the dependence of the measurement of this quantity on the speed at which the magnetic field is reversed was found to be significant with the largest changes in value occurring as a DC measurement condition is approached.

  6. Coercivity of the Nd-Fe-B hot-deformed magnets diffusion-processed with low melting temperature glass forming alloys

    NASA Astrophysics Data System (ADS)

    Seelam, U. M. R.; Liu, Lihua; Akiya, T.; Sepehri-Amin, H.; Ohkubo, T.; Sakuma, N.; Yano, M.; Kato, A.; Hono, K.

    2016-08-01

    Nd- and Pr-based alloys with bulk glass forming ability and low melting temperatures, Nd60Al10Ni10Cu20 and Pr60Al10Ni10Cu20, were used for grain boundary diffusion process to enhance the coercivity of hot-deformed magnets. The coercivity increment was proportional to the weight gain after the diffusion process. For the sample with 64% weight gain, the coercivity increased up to 2.8 T, which is the highest value for bulk Nd-Fe-B magnets that do not contain heavy rare-earth elements, Dy or Tb. Approximately half of the intergranular regions were amorphous and the remaining regions were crystalline. Magnetic isolation of the Nd2Fe14B grains by the Nd-rich amorphous/crystalline intergranular phases is attributed to the large coercivity enhancement. The coercivity does not change after the crystallization of the intergranular phase, indicating that the coercivity is not influenced by the strain at the interface with the crystalline intergranular phase.

  7. Crystal structure and magnetic properties of Nd2Fe14B powder prepared by using high energy milling from elements metal Nd,Fe,B powders

    NASA Astrophysics Data System (ADS)

    Ramlan; Muljadi; Sardjono, P.; Gulo, F.; Setiabudidaya, D.

    2016-11-01

    The Nd2Fe14B powder has been made by using High Energy Milling (HEM) from mixed metal powders Iron (Fe), Neodymium (Nd) and Boron (B). The Nd, Fe and B powders were mixed according stoichiometric composition (atomic ratio Nd:Fe:B = 2: 14: 1) and milled and milling time was varied in 10, 20, and 40 hours by using HEM. Toluene liquid was used as milling media to protect of metal powders from oxygen. The measurement result of x- ray diffraction show that the optimum Nd2Fe14B phase already formed about 69,46% after milling 40 hours with crystallite size about 25.64 nm. The magnetic properties of milled powders were measured by using VSM at room temperature. The highest value of magnetic properties are obtained at powder milled in 40 hours, at this condition, it is obtained Ms = 122 emu/g, Mr = 81 emu/g, Hc = 5.54 kOe and BHmax = 11.01 MGOe.

  8. Enhancement of coercivity in sintered Nd-Fe-B magnets by grain-boundary diffusion of electrodeposited Cu-Nd Alloys

    NASA Astrophysics Data System (ADS)

    Lee, Sangjun; Kwon, Jeehye; Cha, Hee-Ryoung; Kim, Kyung Min; Kwon, Hae-Woong; Lee, Junggoo; Lee, Dongyun

    2016-03-01

    We report an enhancement in the coercivity of sintered Dy free Nd-Fe-B magnets from 11.84 to 14.26 kOe by the grain-boundary diffusion of electrochemically deposited Cu-Nd. In the optimized electrochemical deposition and heat treatment conditions, a distinct Nd-rich grain-boundary phase was observed after the diffusion process; distributions of each element was carefully mapped by scanning electron microscopy equipped with backscattered electron detector. X-ray diffraction patterns indicated that Nd2Fe14B was oxidized by the inward diffusion of oxygen, which might be formed during the electrodeposition of Cu-Nd, forming antiferromagnetic Fe2O3 that might degrade the overall coercivity. A mechanism underlying the enhancement of coercivity is basically the same as the well-known proposed mechanism, distribution of a thin Nd-rich phase by grain-boundary diffusion process. In this study, electrochemical deposition process has been extensively investigated, and then the process was demonstrated to be successful and economically useful method to improve coercivity of the magnet.

  9. Improving sintered NdFeB permanent magnets by powder compaction in a 9 T superconducting solenoid

    NASA Astrophysics Data System (ADS)

    Mulcahy, T. M.; Hull, J. R.; Rozendaal, E.; Wise, J. H.; Turner, L. R.

    2003-05-01

    Commercial-grade magnet powder (Magnequench UG) was axial die pressed in the 76.2 mm warm bore of a 9 T superconducting solenoid. Otherwise, processing was performed as part of normal factory operations. This pressing was done to improve the alignment of the anisotropic single-crystal particles of the compact and, thus, the remanent magnetization of the sintered cylindrical permanent magnets (12.7 mm diameter). Although the press was operated in batch mode for this proof-of-concept study, its design enables automated production. Improvements of up to 8% in magnetization and 16% in energy products were obtained, as the alignment field H was increased above the 2 T maximum field of electromagnets used in industry. The greatest improvements were obtained for magnets with the smallest length-to-diameter ratios, L/D<0.5. The production of quality magnets in this near-final-shape size range is currently being pursued by industry to eliminate expensive machining steps. To understand the potential for 2-8 T alignment fields to overcome the distortions created in the otherwise uniform field by the self-field of short compacts, electromagnetic code (Opera) calculations were made. A simple material model was used to predict the distortions. The trends in the predicted field-line inclinations, with L/D and H, compare to trends in the improvement of the magnetic properties.

  10. Nd2Fe17 nanograins effect on the coercivity of HDDR NdFeB magnets with low boron content

    NASA Astrophysics Data System (ADS)

    Sun, Ai-Zhi; Wu, Shen; Xu, Wen-Huan; Wang, Jin; Zhang, Qian; Zhai, Fu-Qiang; Volinsky, Alex A.

    2012-03-01

    Relationships between the coercivity of hydrogenation disproportionation desorption recombination (HDDR) Nd12.5Fe81.5- x Co6B x bonded magnets and boron content were investigated. Nd2Fe17 phase with planar magnetic anisotropy is present in the microstructure when x= 4at%-5.88at%, which does not reduce the coercivity of the bonded magnets. High-resolution transmission electron microscopy (TEM) images show that Nd2Fe17 phase exists in the form of nanocrystals in the Nd2Fe14B matrix. There is an exchange-coupling interaction between the two phases so that the coercivity of HDDR Nd12.5Fe81.5- x Co6B x bonded magnets is hardly reduced with a decrease in boron content.

  11. Large-scale micromagnetic simulation of Nd-Fe-B sintered magnets with Dy-rich shell structures

    NASA Astrophysics Data System (ADS)

    Oikawa, T.; Yokota, H.; Ohkubo, T.; Hono, K.

    2016-05-01

    Large-scale micromagnetic simulations have been performed using the energy minimization method on a model with structural features similar to those of Dy grain boundary diffusion (GBD)-processed sintered magnets. Coercivity increases as a linear function of the anisotropy field of the Dy-rich shell, which is independent of Dy composition in the core as long as the shell thickness is greater than about 15 nm. This result shows that the Dy contained in the initial sintered magnets prior to the GBD process is not essential for enhancing coercivity. Magnetization reversal patterns indicate that coercivity is strongly influenced by domain wall pinning at the grain boundary. This observation is found to be consistent with the one-dimensional pinning theory.

  12. Normal and abnormal grain growth in fine-grained Nd-Fe-B sintered magnets prepared from He jet milled powders

    NASA Astrophysics Data System (ADS)

    Bittner, F.; Woodcock, T. G.; Schultz, L.; Schwöbel, C.; Gutfleisch, O.; Zickler, G. A.; Fidler, J.; Üstüner, K.; Katter, M.

    2017-03-01

    Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 μm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 μm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve.

  13. Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition of TbCl{sub 3}

    SciTech Connect

    Guo, Shuai Zhang, Xiaofeng; Ding, Guangfei; Chen, Renjie; Yan, Aru; Lee, Don

    2014-05-07

    The chemical bath deposition (CBD) and the grain boundary diffusion method were combined to diffuse the heavy rare earth for obtain the thick magnets with high coercivity and low heavy rare earth. The jet mill powders were soaked into the alcohol solution of 0.2 wt. % TbCl{sub 3}. A thin layer of TbCl{sub 3} was wrapped to the surface of (PrNd){sub 2}Fe{sub 14}B powder particles. The coercivity of magnet is increased from 11.89 kOe to 14.72 kOe without significant reduction of remanence after grain boundary diffusion in the sintering and the annealing processes. The temperature coefficients of the remanence and the coercivity are improved by the substitution of PrNd by Tb in the surface of grains. The highly accelerated temperature/humidity stress test (HAST) results indicate that the CBD magnet has poor corrosion resistance, attributing to the present of Cl atoms in the grain boundaries.

  14. Unsupervised Data Mining in nanoscale X-ray Spectro-Microscopic Study of NdFeB Magnet.

    PubMed

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin; Yang, Wenge; Pianetta, Piero; Ermon, Stefano; Mehta, Apurva; Liu, Yijin

    2016-09-29

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanent magnet material, Nd2Fe14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For example, it shows that the surface of common Nd2Fe14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material's overall properties.

  15. Unsupervised Data Mining in nanoscale X-ray Spectro-Microscopic Study of NdFeB Magnet

    NASA Astrophysics Data System (ADS)

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin; Yang, Wenge; Pianetta, Piero; Ermon, Stefano; Mehta, Apurva; Liu, Yijin

    2016-09-01

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanent magnet material, Nd2Fe14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For example, it shows that the surface of common Nd2Fe14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.

  16. Unsupervised data mining in nanoscale x-ray spectro-microscopic study of NdFeB magnet

    DOE PAGES

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin; ...

    2016-09-29

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanentmore » magnet material, Nd2Fe14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For instance, it shows that the surface of common Nd2Fe14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.« less

  17. Unsupervised data mining in nanoscale x-ray spectro-microscopic study of NdFeB magnet

    SciTech Connect

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin; Yang, Wenge; Pianetta, Piero; Ermon, Stefano; Mehta, Apurva; Liu, Yijin

    2016-09-29

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanent magnet material, Nd2Fe14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For instance, it shows that the surface of common Nd2Fe14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties.

  18. Unsupervised Data Mining in nanoscale X-ray Spectro-Microscopic Study of NdFeB Magnet

    PubMed Central

    Duan, Xiaoyue; Yang, Feifei; Antono, Erin; Yang, Wenge; Pianetta, Piero; Ermon, Stefano; Mehta, Apurva; Liu, Yijin

    2016-01-01

    Novel developments in X-ray based spectro-microscopic characterization techniques have increased the rate of acquisition of spatially resolved spectroscopic data by several orders of magnitude over what was possible a few years ago. This accelerated data acquisition, with high spatial resolution at nanoscale and sensitivity to subtle differences in chemistry and atomic structure, provides a unique opportunity to investigate hierarchically complex and structurally heterogeneous systems found in functional devices and materials systems. However, handling and analyzing the large volume data generated poses significant challenges. Here we apply an unsupervised data-mining algorithm known as DBSCAN to study a rare-earth element based permanent magnet material, Nd2Fe14B. We are able to reduce a large spectro-microscopic dataset of over 300,000 spectra to 3, preserving much of the underlying information. Scientists can easily and quickly analyze in detail three characteristic spectra. Our approach can rapidly provide a concise representation of a large and complex dataset to materials scientists and chemists. For example, it shows that the surface of common Nd2Fe14B magnet is chemically and structurally very different from the bulk, suggesting a possible surface alteration effect possibly due to the corrosion, which could affect the material’s overall properties. PMID:27680388

  19. The analysis of adhesion failure between Ni-coating and sintered NdFeB substrate

    NASA Astrophysics Data System (ADS)

    xiu Y, Heng; D, Yong; lun S, Zhen

    2011-01-01

    Ni-coating was widely used to protect the sintered NdFeB magnet from corrosion by Watt electro-deposition solution. However, the protection failure always occurs due to poor adhesion strength between Ni-coating and NdFeB substrate. In present work, the adhesion strength of the Ni-coating on NdFeB substrate was measured by vertical tensile method to strip Ni-coating from NdFeB substrate. The results revealed that the adhesion failure was occurred in the side of the NdFeB substrate due to a weak zone sometimes shown cracks located inside of NdFeB substrate, rather than in the interface between Ni-coating and NdFeB substrate. Comparing with cross section morphology of NdFeB magnet after pretreatment, it is concluded that the crack could be formed during the electro-deposition process. The effect of the pH value of bath on adhesion strength indicated that the crack could be induced due to electrochemical hydrogenation of NdFeB substrate during electro-deposition.

  20. Effect of surface etching on the magnetic properties and grain-boundary Dy-diffusion in DyH2-dip-coated sintered Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Kong, Ju-Young; Kim, Tae-Hoon; Lee, Seong-Rae; Kim, Hyo-Jun; Lee, Min-Woo; Jang, Tae-Suk

    2015-05-01

    We investigated the effects of surface etching on the magnetic and microstructural properties of DyH2-dip-coated, sintered Nd-Fe-B magnets. When the magnets were dip-coated with DyH2 solution after their surfaces had been optimally etched in 1 wt% HNO3 for 50 s, the Dy diffusion depth ( 450 μm) improved compared with the values for unetched and DyH2-dip-coated etched magnets ( 350 μm). In addition, the core-shell microstructure of the dip-coated magnet was well developed by the optimal etching process. As a result, the coercivity of the dip-coated magnet increased by 4.6%. The optimal surface state of the Nd-Fe-B sintered magnet showed minimal surface damage after it was homogeneously etched along the grain boundaries. In contrast, overetched magnets showed kinks on the demagnetization curves because of surface damage. The relationship between the change in the etched magnet surface and the magnetic properties of dip-coated magnets was examined.

  1. Dependence of the magnetic properties on the alignment magnetic field for NdFeB bonded magnets made from anisotropic HDDR powders

    NASA Astrophysics Data System (ADS)

    Gao, R. W.; Zhang, J. C.; Zhang, D. H.; Dai, Y. Y.; Meng, X. H.; Wang, Z. M.; Zhang, Y. J.; Liu, H. Q.

    1999-01-01

    The dependence of the hard magnetic properties on the alignment magnetic field for Nd(Fe,Co)B bonded magnets made from anisotropic HDDR powders is studied. The experimental results demonstrate that addition of a little Ga can induce a strong magnetic anisotropy in the HDDR magnetic powders. The application of an alignment magnetic field while the powders are bonded can increase the remanence, the coercivity and the maximum energy product in different degrees and the hard magnetic properties of the magnet are obviously improved with increasing alignment field.

  2. Magnetic and microstructural investigation of high-coercivity net-shape Nd-Fe-B-type magnets produced from spark-plasma-sintered melt-spun ribbons blended with DyF3

    NASA Astrophysics Data System (ADS)

    Žagar, Kristina; Kocjan, Andraž; Kobe, Spomenka

    2016-04-01

    Nanostructured Nd-Fe-B-type materials produced by melt-spinning (MS) are used in a variety of applications in the electronics, automotive, and sensor industries. The very rapid MS process leads to flake-like powders with metastable, nanoscale, Nd2Fe14B grains. These powders are then formed into net-shaped, isotropic, polymer-bonded magnets, or they are hot formed into fully dense, metallic magnets that are isotropic and anisotropic. These fully dense magnets are usually produced with a conventional hot press without the inclusion of additives prior to the hot pressing. As a result, their properties, particularly the coercivity (Hci), are insufficient at automotive-relevant temperatures of 100-150 °C since the material Hci has a large temperature coefficient. In this study, we instead add a thin layer of DyF3 to the melt-spun ribbons prior to their hot consolidation in order to enhance the coercivity through a diffusion-based, partial substitution of the Nd by Dy. This is accomplished by applying extremely rapid, spark-plasma sintering to minimize any growth of the nanoscale Nd2Fe14B grains during consolidation. The result is a very high-coercivity magnet with drastically reduced amounts of heavy rare earths that is suitable for high-temperature applications. This work clearly demonstrates how rapidly formed, metastable states can provide us with properties that are unobtainable with conventional techniques.

  3. On the energy losses of hot worked Nd-Fe-B magnets and ferrites in a small alternating magnetic field perpendicular to a bias field

    SciTech Connect

    Staa, F. von; Hempel, K.A.; Artz, H.

    1995-11-01

    Torsion pendulum magnetometer measurements on ferrites and on neodymium-iron-boron permanent magnets are presented. The damping of the oscillation of the pendulum leads to information on the magnetic energy losses of the magnets in a small alternating magnetic field applied perpendicular to a bias field. The origin of the energy absorption is explained by the magnetization reversal of single-domain particles. It is shown experimentally that the energy absorption mechanism requires the ferromagnetic order of the sample, and that the magnetic field strength of maximal energy absorption coincides with the effective anisotropy field strength.

  4. Effect of sintering conditions on the magnetic and microstructural properties of Nd-Fe-B sintered magnets doped with DyF(3) powders.

    PubMed

    Park, Song-E; Kim, Tae-Hoon; Lee, Seong-Rae; Namkung, Seok; Jang, Tae-Suk

    2012-04-01

    The microstructural and magnetic property changes of DyF(3)-doped (Nd(26.06), Dy(6.51))-Fe(bal) -B(0.97)-M(2.39) (wt. %) (M = Cu, Al, Co, and Nb) sintered magnets as functions of the sintering conditions were studied. The sintering conditions for the optimum core-shell microstructure were determined. When the magnets were sintered at 1050 °C for 4 h, a coercivity of 35.1 kOe was obtained without sacrificing the remanence. When the magnets were doped with DyF(3), the formation of the RE-rich phase (Nd-Dy-O) was effectively suppressed and, hence, saving the Dy. In addition, the formation of a cubic-NdOF triple-junction phase (TJP) improves the interface uniformity and enhances the coercivity.

  5. Direct observation of ferromagnetism in grain boundary phase of Nd-Fe-B sintered magnet using soft x-ray magnetic circular dichroism

    SciTech Connect

    Nakamura, T.; Yasui, A.; Kotani, Y.; Iwai, H.; Akiya, T.; Ohkubo, T.; Hono, K.; Hirosawa, S.; Gohda, Y.

    2014-11-17

    We have investigated the magnetism of the grain boundary (GB) phase in a Nd{sub 14.0}Fe{sub 79.7}Cu{sub 0.1}B{sub 6.2} sintered magnet using soft x-ray magnetic circular dichroism (XMCD) at the Fe L{sub 2,3}-edges. Soft XMCD spectra were measured from the fractured surface that was confirmed to be covered with a thin GB phase by Auger electron spectroscopy. The magnetic moment of Fe in the GB phase was estimated to be m{sub GB}=1.4 μ{sub B} at 30 °C using the sum rule analysis for XMCD spectra, which is 60% of that of Fe in the Nd{sub 2}Fe{sub 14}B compound. The temperature dependence of m{sub GB} evaluated with reference to Fe in the Nd{sub 2}Fe{sub 14}B phase indicated that the Curie temperature of the GB phase is more than 50 °C lower compared to that of Nd{sub 2}Fe{sub 14}B.

  6. Coercivity enhancement of recycled Nd-Fe-B sintered magnets by grain boundary diffusion with DyH3 nano-particles

    NASA Astrophysics Data System (ADS)

    Ji, Weixiao; Liu, Weiqiang; Yue, Ming; Zhang, Dongtao; Zhang, Jiuxing

    2015-11-01

    The waste VCM magnets were disassembled from hard disk. After removing the coating of nickel by electrochemical method, the waste VCM magnets were recycled by grain boundary diffusion with DyH3 nano-particles. Compared to that of the original magnet, the coercivity of recycled magnets increases by 11.81 kOe, while the remanence keeps almost invariant. Investigation shows that Dy is preferentially enriched as (Nd,Dy)2Fe14B phase in the surface region of the Nd2Fe14B matrix grains indicated by the remarkable enhancement of the magneto-crystalline anisotropy field of the magnet. As a result, the magnet diffused with a small amount of DyH3 nano-particles possesses enhanced coercivity without remarkably sacrificing its magnetization.

  7. Temperature properties of the alignment dependence of coercive force decrease ratio and the angular dependence of coercive force in Nd-Fe-B sintered magnets

    NASA Astrophysics Data System (ADS)

    Matsuura, Yutaka; Kitai, Nobuyuki; Ishii, Rintaro; Natsumeda, Mitsutoshi; Hoshijima, Jun; Kuniyoshi, Futoshi

    2016-01-01

    The temperature dependence of the coercive force decrease ratio for aligned magnets was investigated from room temperature (296 K) to 473 K. The temperature properties of the angular dependence of the coercive force were also measured from room temperature to 413 K, for comparison against the coercive force decrease ratio. From the temperature dependence of the coercive force decrease ratio of magnets with different alignment, it was found that the coercive force decrease ratio decreased as temperature increased until becoming close to the calculation results that were obtained from the Gaussian distribution for Nd2Fe14B grain alignment and from the postulation that every grain follows the Kondorskii law or the 1/cos θ law. When we compared the angle of the magnetization reverse area obtained from these calculation results and the angle of the reverse magnetization area calculated from the experimental data of the coercive force decrease ratio, it was found that this latter expanded to 30° for Nd13.48B5.76Co0.55Febal. having 0.95 alignment, at room temperature, from 14° that was the calculated angle obtained from the Gaussian distribution and the Kondorskii law. The angular dependence of coercive force of this magnet at room temperature agrees well with the calculation, when σ=31°, which is 30° for the reversed magnetization area, is applied as the standard deviation of Nd2Fe14B grain alignment distribution. For Nd12.75Dy0.84B5.81Co0.55Febal. with 0.96 for alignment, the reverse magnetization area also expanded to 36° and agreed well with the calculation result applied σ=44°, which has 36° for the reverse magnetization area. It was also found that, as temperature increased, the angle of the reverse magnetization area obtained from the experimental data shrunk towards the calculated angle. When we apply these results to the temperature properties of the angular dependence of the coercive force, it seems that the calculated angular dependence of the

  8. A high-resolution field-emission-gun, scanning electron microscope investigation of anisotropic hydrogen decrepitation in Nd-Fe-B-based sintered magnets

    NASA Astrophysics Data System (ADS)

    Soderznik, Marko; McGuiness, Paul; Zuzek-Rozman, Kristina; Škulj, Irena; Yan, Gaolin; Kobe, Spomenka

    2010-05-01

    In this investigation commercial magnets based on (Nd,Dy)14(Fe,Co)79B7 were prepared by a conventional powder-metallurgy route with a degree of alignment equal to ˜90% and then exposed to hydrogen at a pressure of 1 bar. The magnets, in the form of cylinders, were observed to decrepitate exclusively from the ends. High-resolution electron microscopy was able to identify the presence of crack formation within the Nd2Fe14B grains, with the cracks running parallel to the c axis of these grains. Based on the concentration profile for hydrogen in a rare-earth transition-metal material, it is clear that the presence of hydrogen-induced cracks running perpendicular to the ends of the magnet provides for a much more rapidly progressing hydrogen front in this direction than from the sides of the magnet. This results in the magnet exhibiting a macroscopic tendency to decrepitate from the poles of the magnet toward the center. This combination of microstructural modification via particle alignment as part of the sintering process and direct observation via high-resolution electron microscopy has led to a satisfying explanation for the anisotropic hydrogen-decrepitation effect.

  9. The effect of Cu-based core-sheath configurations on the processing of Nd-Fe-B-based permanent magnets via equal-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Besley, L.; Zhang, H.; Molotnikov, A.; Kishimoto, H.; Kato, A.; Davies, C.; Suzuki, K.

    2017-05-01

    Equal channel angular pressing (ECAP) has been used as an alternative manufacturing route for preparation of Nd2Fe14B-based anisotropic magnets, facilitating processing temperatures much lower than conventional die upsetting. While this method can produce a suitable texture and microstructure in permanent magnetic materials, it still remains novel; involving extremely high pressures which present a high risk of both process failure and die and tooling damage. Powder metallurgical processes frequently incorporate an external layer of secondary material (commonly an outer foil layer or can) for separation between the primary material and die as well as the control of surface effects such as friction through appropriate choice of secondary material. This work implements such modifications to this manufacturing route by incorporation of an outer layer of Cu foil, the addition of which negatively affected both the powder compaction and strength of texture produced via ECAP. Also investigated was the incorporation of solid Cu bar as part of the sample cross section. This modification facilitated processing without any compromise on observed magnetic properties, whilst also reducing damage to both the die and tooling. This type of methodology may aid in improving the reliability of producing bulk anisotropic permanent magnets via ECAP.

  10. Fast Neutron Damage Studies on NdFeB Materials

    SciTech Connect

    Anderson, S.; Spencer, J.; Wolf, Z.; Baldwin, A.; Pellett, D.; Boussoufi, M.; /UC, Davis

    2005-05-17

    Many materials and electronics need to be tested for the radiation environment expected at linear colliders (LC) since both accelerator and detectors will be subjected to large fluences of hadrons, leptons and {gamma}'s over the life of the facility [1]. While the linacs will be superconducting, there are still many uses for NdFeB in the damping rings, injection and extraction lines and final focus. Our understanding of the situation for rare earth, permanent magnet materials was presented at PAC03 [2]. Our first measurements of fast neutron, stepped doses at the UC Davis McClellan Nuclear Reactor Center (UCD MNRC) were presented at EPAC04 [3]. We have extended the doses, included other manufacturer's samples, and measured induced radioactivities which are discussed in detail.

  11. Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling.

    PubMed

    Rademaker, Jelle H; Kleijn, René; Yang, Yongxiang

    2013-09-17

    End-of-life recycling is promoted by OECD countries as a promising strategy in the current global supply crisis surrounding rare earth elements (REEs) so that dependence on China, the dominant supplier, can be decreased. So far the feasibility and potential yield of REE recycling has not been systematically evaluated. This paper estimates the annual waste flows of neodymium and dysprosium from permanent magnets, the main deployment of these critical REEs, during the 2011-2030 period. The estimates focus on three key permanent magnet waste flows: wind turbines, hybrid and electric vehicles, and hard disk drives (HDDs) in personal computers (PCs). This is a good indication of the end-of-life recycling of neodymium and dysprosium maximum potential yield. Results show that for some time to come, waste flows from permanent magnets will remain small relative to the rapidly growing global REE demand. Policymakers therefore need to be aware that during the next decade recycling is unlikely to substantially contribute to global REE supply security. In the long term, waste flows will increase sharply and will meet a substantial part of the total demand for these metals. Future REE recycling efforts should, therefore, focus on the development of recycling technology and infrastructure.

  12. Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets.

    PubMed

    Sprecher, Benjamin; Xiao, Yanping; Walton, Allan; Speight, John; Harris, Rex; Kleijn, Rene; Visser, Geert; Kramer, Gert Jan

    2014-04-01

    Neodymium is one of the more critical rare earth elements with respect to current availability and is most often used in high performance magnets. In this paper, we compare the virgin production route of these magnets with two hypothetical recycling processes in terms of environmental impact. The first recycling process looks at manual dismantling of computer hard disk drives (HDDs) combined with a novel hydrogen based recycling process. The second process assumes HDDs are shredded. Our life cycle assessment is based both on up to date literature and on our own experimental data. Because the production process of neodymium oxide is generic to all rare earths, we also report the life cycle inventory data for the production of rare earth oxides separately. We conclude that recycling of neodymium, especially via manual dismantling, is preferable to primary production, with some environmental indicators showing an order of magnitude improvement. The choice of recycling technology is also important with respect to resource recovery. While manual disassembly allows in principle for all magnetic material to be recovered, shredding leads to very low recovery rates (<10%).

  13. Influence of bath PH value on microstructure and corrosion resistance of phosphate chemical conversion coating on sintered Nd-Fe-B permanent magnets

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Xue, Long-fei; Wang, Xiu-chun; Ding, Kai-hong; Cui, Sheng-li; Sun, Yong-cong; Li, Mu-sen

    2016-10-01

    The effect of bath PH value on formation, microstructure and corrosion resistance of the phosphate chemical conversion (PCC) coatings as well as the effect on the magnetic property of the magnets is investigated in this paper. The results show that the coating mass and thickness increase with the decrease of the bath PH value. Scanning electron microscopy observation demonstrates that the PCC coatings are in a blocky structure with different grain size. Transmission electron microscope and X-ray diffractometer tests reveal the coatings are polycomponent and are mainly composed of neodymium phosphate hydrate and praseodymium phosphate hydrate. The electrochemical analysis and static immersion corrosion test show the corrosion resistance of the PCC coatings prepared at bath PH value of 0.52 is worst. Afterwards the corrosion resistance increases first and then decreases with the increasing of the bath PH values. The magnetic properties of all the samples with PCC treatment are decreased. The biggest loss is occurred when the bath PH value is 0.52. Taken together, the optimum PH range of 1.00-1.50 for the phosphate solution has been determined.

  14. Segregation phenomena in Nd-Fe-B nanoparticles

    NASA Astrophysics Data System (ADS)

    Schmidt, F.; Pohl, D.; Schultz, L.; Rellinghaus, B.

    2015-04-01

    We report on the phase stability and phase formation of Nd-Fe-B nanoparticles from the gas phase in the size range from 10 to 25 nm. Particular attention is paid to the question, if the intermetallic Nd2Fe_{14}B phase also forms in free particles with a few nanometers in size that grow without contact to any solid or liquid matrix in a low pressure Ar atmosphere. The paper also addresses the possible influence of segregation phenomena that go along with the phase formation and the effect of (rapid) thermal annealing on the structure and phase stability of the particles. Aberration-corrected transmission electron microscopy in combination with spectroscopic methods was used to determine the local atomic structure and the chemical composition of the particles. Unheated particles are found to be mainly amorphous, while the rapidly optically annealed particles are crystalline. In both cases, we observe an enrichment of Nd in the shell of the particles and a Fe enrichment in the core. This segregation of Nd toward the particles' surface is more pronounced in heated particles, which form a clear core-shell structure with a Fe core surrounded by a Nd2O3 shell. This finding is attributed to the comparably small surface energy and the higher affinity of Nd to oxygen as compared to Fe. A simple model is introduced and used in order to estimate these surface energies. These estimations support the experimentally observed segregation phenomena. It is further found that B prefers the vicinity of Fe over that of Nd atoms, which as a consequence leads to a B enrichment in the Fe-rich parts of the particles. Magnetic measurements show a soft magnetic behavior for both, unheated and heated Nd-Fe-B nanoparticles.

  15. Corrosion resistance of sintered NdFeB coated with SiC/Al bilayer thin films by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Huang, Yiqin; Li, Heqin; Zuo, Min; Tao, Lei; Wang, Wei; Zhang, Jing; Tang, Qiong; Bai, Peiwen

    2016-07-01

    The poor corrosion resistance of sintered NdFeB imposes a great challenge in industrial applications. In this work, the SiC/Al bilayer thin films with the thickness of 510 nm were deposited on sintered NdFeB by magnetron sputtering to improve the corrosion resistance. A 100 nm Al buffer film was used to reduce the internal stress between SiC and NdFeB and improve the surface roughness of the SiC thin film. The morphologies and structures of SiC/Al bilayer thin films and SiC monolayer film were investigated with FESEM, AFM and X-ray diffraction. The corrosion behaviors of sintered NdFeB coated with SiC monolayer film and SiC/Al bilayer thin films were analyzed by polarization curves. The magnetic properties were measured with an ultra-high coercivity permanent magnet pulse tester. The results show that the surface of SiC/Al bilayer thin films is more compact and uniform than that of SiC monolayer film. The corrosion current densities of SiC/Al bilayer films coated on NdFeB in acid, alkali and salt solutions are much lower than that of SiC monolayer film. The SiC/Al bilayer thin films have little influence to the magnetic properties of NdFeB.

  16. Dependence of deposition parameters and layer thickness on the characteristics of Nd-Fe-B thin films

    NASA Astrophysics Data System (ADS)

    Madeswaran, S.; Tokumaru, R.; Tamano, S.; Goto, S.; Tokiwa, K.; Watanabe, T.

    2009-11-01

    Textured Nd-Fe-B thin films with hard magnetic properties were prepared on a Ta (110) buffer layered glass substrates using radio frequency (RF) sputtering deposition. We investigated the influence of substrate temperature, sputtering gas pressure, RF power and film thickness on their microstructural and magnetic properties. Composition in the Nd-Fe-B thin films prepared using the same target with an Nd/Fe ratio of 0.32 was markedly changed (varied between 0.21 and 0.31) depending on the Ar pressure and the RF power. Well-textured Nd-Fe-B films grown at a deposition pressure of 7.0 Pa, a temperature of 550 °C, and a power of 100 W revealed better magnetic properties: Jr = 1.1 T, Hc = 1130 kA/m and BH(max) = 236 kJ/m3.

  17. Performance enhancement of NdFeB nanoflakes prepared by surfactant-assisted ball milling at low temperature by using different surfactants

    NASA Astrophysics Data System (ADS)

    An, Xiaoxin; Jin, Kunpeng; Wang, Fang; Fang, Qiuli; Du, Juan; Xia, Weixing; Yan, Aru; Liu, J. Ping; Zhang, Jian

    2017-02-01

    Hard magnetic NdFeB submicron and nanoflakes were successfully prepared by surfactant-assisted ball milling at room temperature (SABMRT) and low temperature (SABMLT) by using oleic acid (OA), oleylamine (OLA) and trioctylamine (TOA) as surfactant, respectively. Among the surfactants used, OA and OLA have similar effects on the morphology of the NdFeB nanoflakes milled at both room and low temperature. In the case of TOA, irregular micron-sized particles and submirco/nanoflakes were obtained for the NdFeB powders prepared by SABMRT and SABMLT, respectively. Samples prepared by SABMLT show better crystallinity and better degree of grain alignment than that prepared by SABMRT with the same surfactant. Comparing with the samples milled at RT, higher coercivity and larger remanence ratio were achieved in the NdFeB samples prepared at LT. The amounts of residual surfactants in final NdFeB powders were also calculated, which reveals that the final NdFeB powders milled at LT possess lower amount of residual surfactants than those milled at RT. It was found that lowering milling temperature of SABM would be a promising way for fabricating permanent magnetic materials with better hard magnetic properties.

  18. Superferrimagnetism in hard Nd-Fe-B thick films, an original concept for coercivity enhancement

    NASA Astrophysics Data System (ADS)

    Akdogan, O.; Dobrynin, A.; Le Roy, D.; Dempsey, N. M.; Givord, D.

    2014-05-01

    In a number of applications (automotive, wind generators), RFeB magnets are parts of systems which operate at temperatures in the range of 160 °C-180 °C. At these high temperatures, coercivity is preserved by substituting Dy atoms for a part of the Nd ones. The enhanced coercivity obtained may be associated to the high magnetocrystalline anisotropy of Dy atoms, which diffuse into the R2Fe14B phase. The introduction of Dy, however, induces a reduction in the remanent magnetization. Furthermore, Dy is an expensive and strategic material. In this study, we explore a radically different approach to coercivity. A magnetic layer is deposited at the surface of the hard grains, this layer being exchange coupled to the main hard phase in a way that its magnetization is antiparallel to it. Under an applied field that tends to reverse the main phase magnetization, the surface layer, the magnetization of which is along the field, works against reversal. This is the concept of superferrimagnetism. In order to test its impact on the coercivity of real systems, magnetically hard thick films of NdFeB have been sandwiched between thin layers of Gd/Fe, which were transformed to GdFe2 upon annealing. Coercivity enhancement was achieved compared to a reference NdFeB single layer.

  19. Corrosion properties of aluminium coatings deposited on sintered NdFeB by ion-beam-assisted deposition

    NASA Astrophysics Data System (ADS)

    Mao, Shoudong; Yang, Hengxiu; Li, Jinlong; Huang, Feng; Song, Zhenlun

    2011-04-01

    Pure Al coatings were deposited by direct current (DC) magnetron sputtering to protect sintered NdFeB magnets. The effects of Ar+ ion-beam-assisted deposition (IBAD) on the structure and the corrosion behaviour of Al coatings were investigated. The Al coating prepared by DC magnetron sputtering with IBAD (IBAD-Al-coating) had fewer voids than the coating without IBAD (Al-coating). The corrosion behaviour of the Al-coated NdFeB specimens was investigated by potentiodynamic polarisation, a neutral salt spray (NSS) test, and electrochemical impedance spectroscopy (EIS). The pitting corrosion of the Al coatings always began at the voids of the grain boundaries. Bombardment by the Ar+ ion-beams effectively improved the corrosion resistance of the IBAD-Al-coating.

  20. Observation of Pseudopartial Grain Boundary Wetting in the NdFeB-Based Alloy

    NASA Astrophysics Data System (ADS)

    Straumal, B. B.; Mazilkin, A. A.; Protasova, S. G.; Schütz, G.; Straumal, A. B.; Baretzky, B.

    2016-08-01

    The NdFeB-based alloys were invented in 1980s and remain the best-known hard magnetic alloys. In order to reach the optimum magnetic properties, the grains of hard magnetic Nd2Fe14B phase have to be isolated from one another by the (possibly thin) layers of a non-ferromagnetic Nd-rich phase. In this work, we observe that the few-nanometer-thin layers of the Nd-rich phase appear between Nd2Fe14B grains due to the pseudopartial grain boundary (GB) wetting. Namely, some Nd2Fe14B/Nd2Fe14B GBs are not completely wetted by the Nd-rich melt and have the high contact angle with the liquid phase and, nevertheless, contain the 2-4-nm-thin uniform Nd-rich layer.

  1. Effect of niobium on the HDDR behaviour of near-stoichiometric NdFeB alloys

    NASA Astrophysics Data System (ADS)

    Ahmed, F. M.; Ataie, A.; Williams, A. J.; Harris, I. R.

    1996-05-01

    The HDDR behaviours of Nd11.8Fe81.3Nb1B5.9, Nd11.8Fe80.3Nb2B5.9 (at%) alloys were studied using a high resolution scanning electron microscope (HRSEM) in order to relate the initial, intermediate and final microstructures, to that of NdFeB-type alloys without additions. The disproportionation of the Nd2Fe14B (φ) matrix phase starts at the grain boundary and at the interface of the Nb26Fe32B42/φ phases, resulting in the formation of a submicron structure consisting of Fe, Fe2B and Nd-hydride. The HDDR process proved to be a very rapid and efficient method of homogenising the as-cast alloys. Promising magnetic properties have been obtained for bonded magnets using the HDDR powder.

  2. EXAFS determination of Hf localization in HDDR Nd Fe B Hf alloys

    NASA Astrophysics Data System (ADS)

    Torres, C. E. Rodríguez; Fernández van Raap, M. B.; Sánchez, F. H.; Pasquevich, A. F.

    2005-05-01

    The local structure around Hf in Nd 15.78Fe 76.3-xHf xB 7.8 ( x=0.1 and 0.2) submitted to conventional and solid hydrogenation-disproportionation-desorption-recombination (HDDR) sequence was studied by extended X-ray absorption fine structure (EXAFS) in order to understand the relation between the presence of Hf and magnetic anisotropy found only in solid-HDDR samples. EXAFS results show that Hf is not in the Nd 2Fe 14B structure but incorporated into a local atomic arrangement (HfB ClNa-type) which is the same for as-cast, solid and conventional HDDR samples. It is concluded that the magnetic anisotropy induced by Hf addition to NdFeB alloys must be related to microstructural features.

  3. Influence of melt convection on the microstructure of levitated and undercooled Nd-Fe-B alloys

    NASA Astrophysics Data System (ADS)

    Filip, O.; Hermann, R.; Gerbeth, G.; Priede, J.; Shatrov, V.; Gueth, A.; Schultz, L.

    2004-05-01

    The influence of melt rotation on the microstructure formation of Nd-Fe-B alloys, mainly the volume fraction and grain size of the α-Fe phase, is investigated using the electromagnetic levitation technique. Molten droplets were subjected to a strong rotation during levitation and compared to fixed samples without rotation. Additionally, experiments have been carried out where sealed samples were subjected to a well-defined forced rotation. A distinct reduction of the α-Fe volume fraction in samples with strong rotation was observed by measuring the magnetic moment. The melt flow in a levitated droplet is studied numerically under the additional effect of a global sample rotation which may give a strong suppression of internal motions.

  4. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction

    SciTech Connect

    Kim, Daejin; Powell, Lawrence E.; Delmau, Lætitia H.; Peterson, Eric S.; Herchenroeder, Jim; Bhave, Ramesh R.

    2015-06-24

    In this paper, the rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. Finally, the resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.

  5. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction

    DOE PAGES

    Kim, Daejin; Powell, Lawrence E.; Delmau, Lætitia H.; ...

    2015-06-24

    In this paper, the rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acidmore » solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. Finally, the resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.« less

  6. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.

    PubMed

    Kim, Daejin; Powell, Lawrence E; Delmau, Lætitia H; Peterson, Eric S; Herchenroeder, Jim; Bhave, Ramesh R

    2015-08-18

    The rare earth elements (REEs) such as neodymium, praseodymium, and dysprosium were successfully recovered from commercial NdFeB magnets and industrial scrap magnets via membrane assisted solvent extraction (MSX). A hollow fiber membrane system was evaluated to extract REEs in a single step with the feed and strip solutions circulating continuously through the MSX system. The effects of several experimental variables on REE extraction such as flow rate, concentration of REEs in the feed solution, membrane configuration, and composition of acids were investigated with the MSX system. A multimembrane module configuration with REEs dissolved in aqueous nitric acid solutions showed high selectivity for REE extraction with no coextraction of non-REEs, whereas the use of aqueous hydrochloric acid solution resulted in coextraction of non-REEs due to the formation of chloroanions of non-REEs. The REE oxides were recovered from the strip solution through precipitation, drying, and annealing steps. The resulting REE oxides were characterized with XRD, SEM-EDX, and ICP-OES, demonstrating that the membrane assisted solvent extraction is capable of selectively recovering pure REEs from the industrial scrap magnets.

  7. Coercivity enhancement mechanism in Dy-substituted Nd-Fe-B nanoparticles synthesized by sol-gel base method followed by a reduction-diffusion process

    NASA Astrophysics Data System (ADS)

    Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid

    2017-05-01

    In current work, Nd15-xDyxFe77.5B7.5 (at%) nanoparticles with different Dy-content (x=0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) were synthesized by sol-gel method followed by a reduction-diffusion process. The effects of Dy on the magnetic properties and the relations between the microstructure and the coercivity of Dy-substituted Nd-Fe-B nanoparticles have been studied. The coercivity of Nd-Fe-B nanoparticles with the addition of Dy first increase, reaches a maximum, and then starts to decrease. The coercivity of Dy-substituted Nd-Fe-B nanoparticle synthesized by sol-gel method increased from 938.9 to 1663.9 kA/m while the remanence decreased slightly from 1.16 to 1.06 T. The results show that with an increase in Dy content the variation of maximum energy product ((BH)max), lowest-order uniaxial magnetocrystalline anisotropy constant (Ku1), and Curie temperature (Tc) had a trend as same as the coercivity. The Henkel plot showed that the existence of exchange coupling interaction between grains, and the exchange coupling interactions increased with increasing x from 0.0 to 2.0 and then decrease with further increasing x≥2.5. The optimum magnetic properties of Nd-Fe-B nanoparticles with (BH)max =40.38 MGOe, Hc=1663.9 kA/m, Br=1.08 T were obtained by substituted 2.0 at% Dy. The effects of increasing temperature on magnetic properties of Dy-substituted Nd-Fe-B nanoparticle magnets with 2.0 at% Dy was investigated. The reduced spin-reorientation temperature was obtained for Dy-substituted Nd-Fe-B nanoparticles with 2.0 at% Dy. Below 100 K a spin-reorientation transition was takes place. The temperature coefficient of coercivity (β) was -0.36, -0.46, -0.41, -0.34, -0.29, -0.24, -0.25%/°C at different temperature 50, 100, 150, 200, 250, 300, 350 °C, respectively. Mössbauer spectroscopy was applied to study the composition and properties of Dy-substituted Nd-Fe-B magnet. Microstructure analysis showed a homogeneous distribution of Dy in produced samples. The possible

  8. Two-phase high-performance Nd-Fe-B powders prepared by mechanical milling

    NASA Astrophysics Data System (ADS)

    Neu, V.; Schultz, L.

    2001-08-01

    Nanocrystalline two-phase NdFeB+α-Fe material was prepared by milling techniques and subsequent heat treatment. These isotropic exchange-coupled powders show excellent hard magnetic properties with enhanced remanences up to 1.20 T and energy densities (BH)max around 150 kJ/m3. The performance is based on (i) the use of grain refining additions, (ii) partial substitution of Fe by Co and (iii) the use of pre-melted master alloys. The distribution of Co among the hard and soft magnetic phases upon milling and annealing is studied via Curie temperature measurements up to 10 at. % Co substitution. The effect of Co on the intrinsic properties is estimated and clarifies the extrinsic magnetic behavior. An overview of samples prepared with different milling techniques and compositions is presented. It summarizes the above listed, three different approaches to improve the magnetic performance together with the influence of the phase ratio of hard and soft magnetic phases.

  9. High coercivity, anisotropic, heavy rare earth-free Nd-Fe-B by Flash Spark Plasma Sintering.

    PubMed

    Castle, Elinor; Sheridan, Richard; Zhou, Wei; Grasso, Salvatore; Walton, Allan; Reece, Michael J

    2017-09-11

    In the drive to reduce the critical Heavy Rare Earth (HRE) content of magnets for green technologies, HRE-free Nd-Fe-B has become an attractive option. HRE is added to Nd-Fe-B to enhance the high temperature performance of the magnets. To produce similar high temperature properties without HRE, a crystallographically textured nanoscale grain structure is ideal; and this conventionally requires expensive "die upset" processing routes. Here, a Flash Spark Plasma Sintering (FSPS) process has been applied to a Dy-free Nd30.0Fe61.8Co5.8Ga0.6Al0.1B0.9 melt spun powder (MQU-F, neo Magnequench). Rapid sinter-forging of a green compact to near theoretical density was achieved during the 10 s process, and therefore represents a quick and efficient means of producing die-upset Nd-Fe-B material. The microstructure of the FSPS samples was investigated by SEM and TEM imaging, and the observations were used to guide the optimisation of the process. The most optimal sample is compared directly to commercially die-upset forged (MQIII-F) material made from the same MQU-F powder. It is shown that the grain size of the FSPS material is halved in comparison to the MQIII-F material, leading to a 14% increase in coercivity (1438 kA m(-1)) and matched remanence (1.16 T) giving a BHmax of 230 kJ m(-3).

  10. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.; Lincoln, L.P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. 3 figs.

  11. Rare earth-transition metal scrap treatment method

    DOEpatents

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.; Lincoln, Lanny P.

    1992-02-11

    Rare earth-transition metal (e.g. iron) scrap (e.g. Nd-Fe-B scrap) is melted to reduce the levels of tramp oxygen and nitrogen impurities therein. The tramp impurities are reduced in the melt by virtue of the reaction of the tramp impurities and the rare earth to form dross on the melt. The purified melt is separated from the dross for reuse. The oxygen and nitrogen of the melt are reduced to levels acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets.

  12. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, F.A.; Peterson, D.T.; Wheelock, J.T.; Jones, L.L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a rare earth fluoride-bearing flux of CaF[sub 2], CaCl[sub 2] or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy. 3 figs.

  13. Method for treating rare earth-transition metal scrap

    DOEpatents

    Schmidt, Frederick A.; Peterson, David T.; Wheelock, John T.; Jones, Lawrence L.

    1992-12-29

    Rare earth-transition metal (e.g., iron) scrap (e.g., Nd-Fe-B scrap) is flux (slag) remelted to reduce tramp non-metallic impurities, such as oxygen and nitrogen, and metallic impurities, such as Li, Na, Al, etc., picked up by the scrap from previous fabrication operations. The tramp impurities are reduced to concentrations acceptable for reuse of the treated alloy in the manufacture of end-use articles, such as permanent magnets. The scrap is electroslag or inductoslag melted using a prefused, rare earth fluoride-bearing flux of CaF.sub.2, CaCl.sub.2 or mixtures thereof or the slag resulting from practice of the thermite reduction process to make a rare earth-iron alloy.

  14. Quantitative laser atom probe analyses of hydrogenation-disproportionated Nd-Fe-B powders.

    PubMed

    Sepehri-Amin, H; Ohkubo, T; Nishiuchi, T; Hirosawa, S; Hono, K

    2011-05-01

    We report a successful atom probe tomography of hydrides in hydrogenation-disproportionated Nd-Fe-B powder using a green femtosecond laser. The atom probe specimens were prepared from one particle of powder using the focused ion beam lift-out method. The atom probe tomography taken from an α-Fe/NdH(2) structure suggested that B and Ga (trace added element) were partitioned in the NdH(2) phase. The hydrogen concentration of 64 at% determined from the atom probe analysis was in excellent agreement with the stoichiometry of the NdH(2) phase.

  15. Nd-Fe-B alloy-densified agarose gel for expanded bed adsorption of proteins.

    PubMed

    Tong, Xiao-Dong; Sun, Yan

    2002-01-11

    Novel dense composite adsorbents for expanded bed adsorption of protein have been fabricated by coating 4% agarose gel onto Nd-Fe-B alloy powder by a water-in-oil emulsification method. Two composite matrices, namely Nd-Fe-B alloy-densified agarose (NFBA) gels with different size distributions and densities, NFBA-S (50-165 microm, 1.88 g/ml) and NFBA-L (140-300 microm, 2.04 g/ml), were produced. Lysozyme was used as a model protein to test the adsorption capacity and kinetics for the NFBA gels modified by Cibacron blue 3GA (CB-NFBA gels). Liquid-phase dispersion behavior in the expanded beds was examined by measurements of residence time distributions, and compared with that of Streamline SP (Amersham-Pharmacia Biotech, Sweden). The dependence of axial mixing in the expanded beds on flow velocity, bed expansion degree. settled bed height, and viscosity of liquid phase was investigated. Breakthrough curves of lysozyme in the expanded beds of the CB-NFBA gels were also examined. The dynamic binding capacity at 5% breakthrough was 23.3 mg/ml matrix for the CB-NFBA-S gels, and 16.7 mg/ml matrix for the CB-NFBA-L, at a flow velocity of 220 cm/h. The results indicate that the NFBA gels are promising for expanded bed adsorption of proteins.

  16. ECR plasma-assisted PVD deposition of α-Fe thin film on melt-spun Nd-Fe-B alloys

    NASA Astrophysics Data System (ADS)

    Fedorchenko, V. D.; Bovda, A. M.; Bovda, V. A.; Chen, C. H.; Chebotarev, V. V.; Garkusha, I. E.; Liu, S.; Medvedev, A. V.; Tereshin, V. I.

    2008-03-01

    The paper deals with plasma-assisted PVD of α-Fe thin film onto the melt-spun Nd-Fe-B-Co ribbons. The parameters of the plasma created by a planar rectangular ECR plasma source with a multipolar magnetic field and a double-slot antenna were as follows: electron density up to 1×1010 cm-3, electron temperature ˜22 eV, the current density of ion flow to grounded disk-substrate was equal to ˜0.5 mA/cm2 at the gas flow of 1 sccm, the microwave power was up to 300W. After degreasing and ultrasonic washing of Nd-Fe-B-Co ribbons, follow by ion etching, the deposition process was realized at a pulsed voltage bias of -1000 V with frequency 100 Hz, total current on the target 240 mA, current density 2.9 mA/cm2. The deposition rate of 0.0083 μm/min was achieved. The process continued for 2 hour. It was found that the magnetic melt-spun ribbons were homogeneously coated with the α-Fe film having a typical thickness of 1 μm.

  17. Study of desorbed hydrogen-decrepitated anisotropic Nd-Fe-B powder using x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Meisner, G. P.; Panchanathan, V.

    1994-11-01

    The instrinsic magnetic coercivity (H(sub ci)) of Nd-Fe-B-based permanent magnet material is profoundly affected by hydrogen absorbed during the hydrogen decrepitation (HD) process for producing anisotropic powders from bulk anisotropic hot-deformed MAGNEQUENCH (MQ) magnets. Hydrogen (H) content and x-ray diffraction measurements clarify the effects of H and desorption temperature (T(sub d)) on the intrinsic magnetic anisotropy (IMA) of the Nd2Fe14B-type phase and the nature of the intergranular phases, both of which are crucial for high H(sub ci). The Nd-rich intergranular phase disproportionates during HD, initially forming a microcrystalline Nd-hydride phase, possibly Nd2H5. For T(sub d) less than or equal to 220 C, H remains in the Nd2Fe14B-type phase, severely degrading the IMA, which causes a low H(sub ci). For 220 C less than or equal to T(sub d) less than or equal to 250 C, enough H desorbs from the Nd2Fe14B-type phase and the IMA recovers its large prehydrided value, and the microstructure supports a high H(sub ci) less than or equal to 10 kOe in spite of the H disproportionated interfgranular phase. Only for T(sub d) greater than 250 C is H(sub ci) degraded by the microstructure, corresponding to further H desorption and the microcrystalline Nd-hydride phase becoming well-crystallized NdH2. The NdH2 phase decomposes with continued H desorption and at T(sub d) greater than 580 C recombines to reform the Nd-rich intergranular phase of prehydrided MQ material. H is completely desorbed above 580 C and H(sub ci) greater than 11 kOe, nearly that of the prehydrided MQ magnets.

  18. Effect of Nb and Cu on the crystallization behavior of under-stoichiometric Nd-Fe-B alloys

    NASA Astrophysics Data System (ADS)

    Salazar, D.; Martín-Cid, A.; Madugundo, R.; Garitaonandia, J. S.; Barandiaran, J. M.; Hadjipanayis, G. C.

    2017-01-01

    In this work, we present a complete study of the influence of Nb and Cu addition on the crystallization behavior of Nd-lean Nd-Fe-B melt-spun alloys. Alloys with compositions Nd10-x-y Fe84B6Nb x Cu y (x  =  1, y  =  0 and x  =  0.5, y  =  0.5) were melt-spun at different wheel speeds (15-40 m s-1) to obtain samples in amorphous, highly disordered and nanocrystalline structures. The crystallization process, induced by different heat treatments, was studied by means of differential thermal analysis and x-ray powder thermodiffraction. Magnetic properties of as-made and heat-treated ribbons were measured by magnetometry. The as-made amorphous samples showed a crystallization to the 2:14:1 hard magnetic phase at T 1 ~ 350 °C. Doping with Nb results in an increase of T 1, and addition of Cu lowers T 1. This behavior is explained in terms of an inhibition of grain growth by Nb and a nucleation enhancement by Cu additions. During the crystallization process, a secondary phase (identified as a bcc-Fe-rich phase) is formed. The amount of such a phase increases with the annealing temperature. Coercivity increases upon annealing reaching maxima at 700-750 °C. This can be explained in terms of competition between the two phases formed: the 2:14:1 hard phase and the soft bcc-Fe-rich phase. The highest coercivity of the Nd-lean samples is observed when the microstructure is appropriate and both phases are exchange-coupled.

  19. Simultaneous determination of transition and rare earth metal ions in Nd-Fe-B material by high performance ion chromatography using post-column chelation technique

    SciTech Connect

    Saraswati, R. )

    1993-01-01

    The transition and lanthanide metal ions of Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in Neodymium-iron-boron (Nd-Fe-B) magnetic material are separated and determined by high performance ion chromatography (HPIC) with spectrophotometric detection using post-column reaction methods. 4-(2-pyridylazo) resorcinol (PAR) and 2-(1,8-dihydroxy-3,6-disulfo-2-naphthylazo) benzenearsonic acid (Arsenazo-III) are used as post-column chelating agents. The requirements for sample preparation, and characterization of the post-column reaction and the optimum conditions for the sensitive detection of these metal ions after ion chromatographic separation are discussed. The concentration of pH of the chelating medium and the composition of the eluent and the detection limits are investigated.

  20. Study of Sintered Magnets of the Nd-Fe-B Type

    DTIC Science & Technology

    1989-02-01

    availability is much greater if iron is used instead of cobalt, and neodymium instead of the samarium . (Later perhaps also Pr, Ce and/or La.) The first...alloying additions included cobalt as a partial substituent for iron to raise the Curie temperature, dysprosium and erbium substitutions for some of the... nitrogen (LN) temperature, -196’C, to see what effect the onset of the spin reorientation in the 2-14-1 main phase (at about -150 0C) has on the

  1. (SiC/AlN)2 multilayer film as an effective protective coating for sintered NdFeB by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    You, Yu; Li, Heqin; Huang, Yiqin; Tang, Qiong; Zhang, Jing; Xu, Jun

    2017-08-01

    SiC/AlN and (SiC/AlN)2 multilayer films with a well-arranged bilayer structure and a four-layer structure are prepared respectively on NdFeB substrates by a magnetron sputtering method. Crystal phase and microstructures of the SiC/AlN and (SiC/AlN)2 films are investigated using x-ray diffraction (XRD), field-emission scanning electron microscope (FESEM) and atomic force microscope (AFM). It is observed that the surface of the (SiC/AlN)2 four-layer film is much denser and smoother than that of the SiC/AlN bilayer film. Corrosion behaviors of the NdFeB substrates coated with SiC/AlN and (SiC/AlN)2 films as well as the bare NdFeB substrate are evaluated by potentiodynamic polarization curve tests. It is revealed that the lateral growth structures developed in interfaces are favorable for an enhanced corrosion resistance. Corrosion current densities of the (SiC/AlN)2 coated NdFeB measured in acid, alkali and salt solutions are 2.796  ×  10-9, 3.65  ×  10-6, and 2.912  ×  10-6 A cm-2, respectively, which are much lower than those of the bare NdFeB and the SiC/AlN coated NdFeB.

  2. Recovering heavy rare earth metals from magnet scrap

    DOEpatents

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  3. A comparison of the micromagnetic and microstructural properties of four NdFeB-type materials processed by the HDDR route

    NASA Astrophysics Data System (ADS)

    Thompson, P.; Gutfleisch, O.; Chapman, J. N.; Harris, I. R.

    1999-07-01

    Transmission electron microscopy has been used to study the physical and magnetic microstructures of thinned sections of four different NdFeB-type alloys. Three of the materials were prepared by the solid-HDDR process and differed in that one was a simple ternary alloy, another contained Co & Ga additions and a third was appreciably richer in Nd than stoichiometric Nd 2Fe 14B 1. For the fourth material HDDR powder had been hot-pressed into a fully dense compact prior to die-upsetting. Isotropic grains with a mean size ≈300 nm were found for the first three materials whilst the die-upset material had an average grain size of ≈300×700 nm 2. All materials other than the simple ternary alloy showed strong alignment of the c-axis, the clustering of grains with similar alignment being most pronounced in the sample with Co & Ga additions. The sample with the largest region of alignment was the die-upset material, the c-axis orientation being approximately parallel to the pressing direction throughout. It was in this sample that magnetic alignment was found to be most extensive, the domains lying parallel to the mean c-axis across the whole of the visible area. Significant magnetic alignment was also found in the sample with Co & Ga whilst the Nd-rich material had relatively small areas of magnetic alignment. In the three samples with good crystallographic alignment local variations in domain wall orientation between neighbouring grains within an aligned region showed maximum variations that corresponded with the angular spread of spots in the selected area diffraction patterns.

  4. Rapid sintering of anisotropic, nanograined Nd-Fe-B by flash-spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Castle, Elinor; Sheridan, Richard; Grasso, Salvatore; Walton, Allan; Reece, Mike

    2016-11-01

    A Spark Plasma Sintering (SPS) furnace was used to Flash-Sinter (FS) Nd-Fe-Dy-Co-B-Ga melt spun permanent magnetic material. During the 10 s "Flash" process (heating rate 2660 K min-1), sample sintering (to theoretical density) and deformation (54% height reduction) occurred. This produced texturing and significant magnetic anisotropy, comparable to conventional die-upset magnets; yet with much greater coercivities (>1600 kA m-1) due to the nanoscale characteristics of the plate-like sintered grains. These preliminary results suggest that Flash-SPS could provide a new processing route for the mass production of highly anisotropic, nanocrystalline magnetic materials with high coercivity.

  5. The development of microstructure during hydrogenation-disproportionation-desorption-recombination treatment of sintered neodymium-iron-boron-type magnets

    NASA Astrophysics Data System (ADS)

    Sheridan, R. S.; Harris, I. R.; Walton, A.

    2016-03-01

    The hydrogen absorption and desorption characteristics of the hydrogenation disproportionation desorption and recombination (HDDR) process on scrap sintered neodymium-iron-boron (NdFeB) type magnets have been investigated. At each stage of the process, the microstructural changes have been studied using high resolution scanning electron microscopy. It was found that the disproportionation reaction initiates at grain boundaries and triple points and then propagates towards the centre of the matrix grains. This process was accelerated at particle surfaces and at free surfaces produced by any cracks in the powder particles. However, the recombination reaction appeared to initiate randomly throughout the particles with no apparent preference for particle surfaces or internal cracks. During the hydrogenation of the grain boundaries and triple junctions, the disproportionation reaction was, however, affected by the much higher oxygen content of the sintered NdFeB compared with that of the as-cast NdFeB alloys. Throughout the entire HDDR reaction the oxidised triple junctions (from the sintered structure) remained unreacted and hence, remained in their original form in the fine recombined microstructure. This resulted in a very significant reduction in the proportion of cavitation in the final microstructure and this could lend to improved consolidation in the recycled magnets.

  6. Collision-Free Structure Using Thin-Film Magnet For Electrostatic Energy Harvester

    NASA Astrophysics Data System (ADS)

    Yoshii, S.; Yamaguchi, K.; Fujita, T.; Kanda, K.; Maenaka, K.

    2016-11-01

    This paper proposes collision-free structure using NdFeB thin-film magnet for vibration energy harvesters. By using stripe shaped NdFeB magnet array on the Si MEMS structure, we finally obtained 3 mN of magnetic repulsive force on 8 × 8 mm2 specimen with 40 μm air-gap.

  7. Ultrahigh coercivity and core-shell microstructure achieved in oriented Nd-Fe-B thin films diffusion-processed with Dy-based alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Tongbo; Zhou, Xiaoqian; Yu, Dedong; Fu, Yanqing; Li, Guojian; Cui, Weibin; Wang, Qiang

    2017-01-01

    Ultrahigh ambient coercivities of 4 T were achieved in Nd-Fe-B benchmark thin film with coercivity of 1.06 T by diffusion-processing with Dy, Dy70Cu30 and Dy80Ag20 alloy layer. High texture and good squareness were obtained. In triple-junction regions, Dy element was found to be immiscible with Nd element. Microstructure observation indicated the typical gradient elementary distribution. Unambiguous core/shell microstructure was characterized by transition electron microscopy. Due to the enhanced ambient coercivity, the coercivity temperature stability was also substantially increased.

  8. Utilizing the magnetic fraction of raw refuse with shredded automobile scrap in cupola gray iron

    SciTech Connect

    Spironello, V.R.; Mahan, W.M.

    1980-01-01

    The Bureau of Mines is involved in research directed toward the utilization of municipal solid waste. One of the primary objectives is the recycling of the magnetic fraction of municipal solid waste (raw refuse). This is consistent with one of the Bureau's goals, which is to minimize the requirements for mineral commodities by maximizing metals recovery from secondary domestic resources. In this investigation, cupola trials were made using combinations of refuse scrap with shredded automobile scrap under basic and acid slag practices. Furnace operating information and the behavior of alloying and tramp elements were obtained. The research showed that it is possible to utilize up to 60% refuse scrap in the cupola under basic practice and 30% under acid practice. Aluminum in refuse scrap, present in bimetallic cans, increased the recoveries of silicon and manganese charged to the cupola. Increased use of refuse scrap provided iron of lower sulfur. The alumina resulting from oxidation increased the slag volume. The aluminum and tin contents of the iron increased with increasing levels of refuse scrap in the charge. Lead was not a problem with respect to contamination of the iron. In basic practice, operation of the cupola was satisfactory since all slags were adequately fluid. In acid practice, operation became troublesome above the 45% level. Under both practices, the cupola iron melting rate decreased. Particulates in scrubber water and stack condensate samples contained lead, zinc, and tin, and the dust load increased. The tensile and transverse strengths of the iron produced under both practices are reported.

  9. Spin Structures of Textured and Isotropic Nd-Fe-B-Based Nanocomposites: Evidence for Correlated Crystallographic and Spin Textures

    NASA Astrophysics Data System (ADS)

    Michels, A.; Weber, R.; Titov, I.; Mettus, D.; Périgo, É. A.; Peral, I.; Vallcorba, O.; Kohlbrecher, J.; Suzuki, K.; Ito, M.; Kato, A.; Yano, M.

    2017-02-01

    We report the results of a comparative study of the magnetic microstructure of textured and isotropic Nd2Fe14B /α -Fe nanocomposites using magnetometry, transmission electron microscopy, synchrotron x-ray diffraction, and, in particular, magnetic small-angle neutron scattering (SANS). Analysis of the magnetic neutron data of the textured specimen and computation of the correlation function of the spin-misalignment SANS cross section suggests the existence of inhomogeneously magnetized regions on an intraparticle nanometer length scale, about 40-50 nm in the remanent state. Possible origins for this spin disorder are discussed: it may originate in thin-grain-boundary layers (where the material parameters are different than in the Nd2Fe14B grains), or it may reflect the presence of crystal defects (introduced via hot pressing), or the dispersion in the orientation distribution of the magnetocrystalline anisotropy axes of the Nd2Fe14B grains. X-ray powder diffraction data reveal a crystallographic texture in the direction perpendicular to the pressing direction—a finding which might be related to the presence of a texture in the magnetization distribution, as inferred from the magnetic SANS data.

  10. Preparation of Nd-Fe-B by nitrate-citrate auto-combustion followed by the reduction-diffusion process

    NASA Astrophysics Data System (ADS)

    Ma, Hao Xuan; Kim, Chang Woo; Kim, Dong Soo; Jeong, Ji Hun; Kim, In Ho; Kang, Young Soo

    2015-04-01

    The Nd2Fe14B alloy has been successfully synthesized by nitrate-citrate auto-combustion followed by the reduction and diffusion process with low energy consumption. H3BO3, Fe(NO3)3.9H2O, and Nd(NO3)3.6H2O were used as precursors and citric acid was used as the chelating ligand of metal ions. Ammonia water was used to adjust pH to 7. CaH2 was used as a reducing agent for the reduction and diffusion process. NdFeO3 and Fe2O3 were produced during auto-combustion of gel. The combustion process of the gel was investigated by TGA/DTA curve measurements. The phase compositions were studied by XRD measurements. The differences of the overall morphology and magnetic properties were measured by SEM, TEM and vibrating sample magnetometry (VSM) at 300 K. The comparison of the magnetic properties of the reduced samples between the pellet type and the random powder type was done with VSM and it showed better magnetic properties of the pellet type Nd2Fe14B. Making a compact pellet type sample for reduction is more efficient for solid reduction and phase transition for higher coercivity.The Nd2Fe14B alloy has been successfully synthesized by nitrate-citrate auto-combustion followed by the reduction and diffusion process with low energy consumption. H3BO3, Fe(NO3)3.9H2O, and Nd(NO3)3.6H2O were used as precursors and citric acid was used as the chelating ligand of metal ions. Ammonia water was used to adjust pH to 7. CaH2 was used as a reducing agent for the reduction and diffusion process. NdFeO3 and Fe2O3 were produced during auto-combustion of gel. The combustion process of the gel was investigated by TGA/DTA curve measurements. The phase compositions were studied by XRD measurements. The differences of the overall morphology and magnetic properties were measured by SEM, TEM and vibrating sample magnetometry (VSM) at 300 K. The comparison of the magnetic properties of the reduced samples between the pellet type and the random powder type was done with VSM and it showed better

  11. Preparation of Nd-Fe-B by nitrate-citrate auto-combustion followed by the reduction-diffusion process.

    PubMed

    Ma, Hao Xuan; Kim, Chang Woo; Kim, Dong Soo; Jeong, Ji Hun; Kim, In Ho; Kang, Young Soo

    2015-05-07

    The Nd2Fe14B alloy has been successfully synthesized by nitrate-citrate auto-combustion followed by the reduction and diffusion process with low energy consumption. H3BO3, Fe(NO3)3·9H2O, and Nd(NO3)3·6H2O were used as precursors and citric acid was used as the chelating ligand of metal ions. Ammonia water was used to adjust pH to 7. CaH2 was used as a reducing agent for the reduction and diffusion process. NdFeO3 and Fe2O3 were produced during auto-combustion of gel. The combustion process of the gel was investigated by TGA/DTA curve measurements. The phase compositions were studied by XRD measurements. The differences of the overall morphology and magnetic properties were measured by SEM, TEM and vibrating sample magnetometry (VSM) at 300 K. The comparison of the magnetic properties of the reduced samples between the pellet type and the random powder type was done with VSM and it showed better magnetic properties of the pellet type Nd2Fe14B. Making a compact pellet type sample for reduction is more efficient for solid reduction and phase transition for higher coercivity.

  12. Potential interference of small neodymium magnets with cardiac pacemakers and implantable cardioverter-defibrillators.

    PubMed

    Wolber, Thomas; Ryf, Salome; Binggeli, Christian; Holzmeister, Johannes; Brunckhorst, Corinna; Luechinger, Roger; Duru, Firat

    2007-01-01

    Magnetic fields may interfere with the function of cardiac pacemakers and implantable cardioverter-defibrillators (ICDs). Neodymium-iron-boron (NdFeB) magnets, which are small in size but produce strong magnetic fields, have become widely available in recent years. Therefore, NdFeB magnets may be associated with an emerging risk of device interference. We conducted a clinical study to evaluate the potential of small NdFeB magnets to interfere with cardiac pacemakers and ICDs. The effect of four NdFeB magnets (two spherical magnets 8 and 10 mm in diameter, a necklace made of 45 spherical magnets, and a magnetic name tag) was tested in forty-one ambulatory patients with a pacemaker and 29 patients with an ICD. The maximum distance at which the magnetic switch of a device was influenced was observed. Magnetic interference was observed in all patients. The maximum distance resulting in device interference was 3 cm. No significant differences were found with respect to device manufacturer and device types. Small NdFeB magnets may cause interference with cardiac pacemakers and ICDs. Patients should be cautioned about the interference risk associated with NdFeB magnets during daily life.

  13. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    PubMed

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  14. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, Timothy W.; Schmidt, Frederick A.

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  15. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  16. SCRAP STEEL AND FOUNDRY SCRAP IRON, USED AS THE PRIMARY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SCRAP STEEL AND FOUNDRY SCRAP IRON, USED AS THE PRIMARY METAL SOURCES, ARE STORED IN THESE BINS AND LIFTED TO SCALES BY AN ELECTRIC MAGNET. - Southern Ductile Casting Company, Melting, 2217 Carolina Avenue, Bessemer, Jefferson County, AL

  17. Magnetic Concentration of Platinum Group Metals from Catalyst Scraps Using Iron Deposition Pretreatment

    NASA Astrophysics Data System (ADS)

    Taninouchi, Yu-ki; Watanabe, Tetsuo; Okabe, Toru H.

    2017-08-01

    Spent automobile catalysts are the most important secondary source of platinum group metals (PGMs). However, effective recovery of PGMs from catalyst scraps is difficult because they are present in only small quantities as chemically stable substances. In this study, in order to improve the efficiency of the existing recycling processes, the authors experimentally investigated a novel physical concentration pretreatment process for PGMs using samples that simulate an automobile catalyst. In order to magnetically separate PGMs directly from the catalysts, ferromagnetic Fe was deposited on the PGM particles (or the porous catalyst layer) using an electroless plating technique. By using a plating bath containing sodium borohydride and potassium sodium tartrate as the reducing and complexing agents, respectively, Fe was successfully deposited on the sample without requiring complicated pretreatments such as sensitization and activation. After Fe deposition and subsequent pulverization, the PGMs could be extracted and concentrated in the form of magnetic powder using a magnet. The proposed magnetic concentration process was demonstrated to be feasible, and it has the potential to make the recycling of PGMs more efficient and environmentally friendly.

  18. Anisotropy and microstructure of rare earth permanent magnet materials

    NASA Astrophysics Data System (ADS)

    Fidler, J.; Groessinger, R.; Kirchmayr, H.; Skalicky, P.

    1984-06-01

    Recently a new family of hard magnetic materials based on Nd-Fe-B was developed. With these compounds permanent magnets with energy products up to 40 MGOe were produced. The greater abundance of Nd combined with the low price for Fe are a hope for producing high qualitative, low cost magnets in the future. Therefore large scale applications are proposed for Nd-Fe-B magnetic. The aim of the scientific part of the present report will be the investigation of the low temperature physical properties of this new family of compounds.

  19. Cryogenic Permanent Magnet Undulators

    SciTech Connect

    Chavanne, J.; Lebec, G.; Penel, C.; Revol, F.; Kitegi, C.

    2010-06-23

    For an in-vacuum undulator operated at small gaps the permanent magnet material needs to be highly resistant to possible electron beam exposure. At room temperature, one generally uses Sm{sub 2}Co{sub 17} or high coercivity NdFeB magnets at the expense of a limited field performance. In a cryogenic permanent magnet undulator (CPMU), at a temperature of around 150 K, any NdFeB grade reveals a coercivity large enough to be radiation resistant. In particular, very high remanence NdFeB material can be used to build undulators with enhanced field and X-ray brilliance at high photon energy provided that the pre-baking of the undulator above 100 deg. C can be eliminated. The ESRF has developed a full scale 2 m long CPMU with a period of 18 mm. This prototype has been in operation on the ID6 test beamline since January 2008. A significant effort was put into the characterization of NdFeB material at low temperature, the development of dedicated magnetic measurement systems and cooling methods. The measured heat budget with beam is found to be larger than expected without compromising the smooth operation of the device. Leading on from this first experience, new CPMUs are currently being considered for the upgrade of the ESRF.

  20. A new approach to fabricate Nd2Fe14B/α-Fe nanocomposite precursors by selective removal of Nd from Nd-Fe-B powders

    NASA Astrophysics Data System (ADS)

    Nie, Junwu; Du, Juan; Liu, Jingjing; Yin, Wenzong; Zhang, Jian; Yan, Aru

    2012-01-01

    A facile method based on α-Fe self-supply was developed to get exchange coupling Nd2Fe14B/α-Fe nanocomposites. A small amount of neodymium was removed from the Nd2Fe14B compound in Nd-rich melt-spun powders by chemical treatment with NH4Cl and CH3COOH acid solution and α-Fe remained. Full dense anisotropic Nd2Fe14B/α-Fe magnets were prepared via hot pressing and hot deformation techniques using the as-prepared powders. The evolution of composition and phase was investigated. The best energy product (BH)max of the Nd2Fe14B/α-Fe magnets was 47.5 MG Oe, 5% higher than that of a single-phase Nd2Fe14B magnet. The α-Fe phase, which was precipitated on the edge of the Nd2Fe14B particle, contributed to the exchange coupling effect and the enhancement of remanence (Br). This method can be applied as a new strategy to prepare next generation nanocomposite magnets with good magnetic properties.

  1. Enduring Attraction: America’s Dependence On and Need to Secure Its Supply of Permanent Magnets

    DTIC Science & Technology

    2011-02-16

    copper, zinc , and chrome) and even greater than several precious metals (gold, silver, and platinum).7 Nevertheless, these deposits are not...traditional ferrite magnet, a NdFeB magnet has over ten times the magnetic energy product.14 Accordingly, a much smaller amount of magnet is required for any

  2. Enduring Attraction: America’s Dependence on and Need to Secure Its Supply of Permanent Magnets

    DTIC Science & Technology

    2011-02-16

    earth‟s crust, about the same as some major industrial metals (copper, zinc , and chrome) and even greater than several precious metals (gold, silver...powerful commercial magnet available. Compared to an equal mass of traditional ferrite magnet, a NdFeB magnet has over ten times the magnetic energy

  3. Dysprosium-free melt-spun permanent magnets.

    PubMed

    Brown, D N; Wu, Z; He, F; Miller, D J; Herchenroeder, J W

    2014-02-12

    Melt-spun NdFeB powders can be formed into a number of different types of permanent magnet for a variety of applications in electronics, automotive and clean technology industries. The melt-spinning process produces flake powder with a fine uniform array of nanoscale Nd2Fe14B grains. These powders can be net-shape formed into isotropic polymer-bonded magnets or hot formed into fully dense magnets. This paper discusses the influence of heavy rare earth elements and microstructure on the magnetic performance, thermal stability and material cost of NdFeB magnets. Evidence indicates that melt-spun nanocrystalline NdFeB magnets are less dependent on heavy rare earth elements for high-temperature performance than the alternative coarser-grained sintered NdFeB magnets. In particular, hot-pressed melt-spun magnets are an attractive low-cost solution for applications that require thermal stability up to 175-200 °C.

  4. Barkhausen noise from sintered permanent magnets

    SciTech Connect

    Cuntze, G.; Brendel, H.; Hubert, A.

    1996-09-01

    The authors introduce the well known Barkhausen technique as a tool for investigation of reversal processes in hard magnetic nucleation-type material. First results of the experiments show the occurrence of correlated grain switching not to be neglectible in the samples of sintered Nd-Fe-B as the volume fraction of multiple Barkhausen jumps reaches 50% near coercivity.

  5. Enduring Attraction: America’s Dependence On and Need to Secure Its Supply of Permanent Magnets

    DTIC Science & Technology

    2012-10-01

    actually relatively abundant throughout the earth’s crust, about the same as some major industrial metals (copper, zinc , and chrome) and even greater than...an equal mass of traditional ferrite magnet, an NdFeB magnet has over 10 times the magnetic energy product.14 Accordingly, a much smaller amount of

  6. Interference of neodymium magnets with cardiac pacemakers and implantable cardioverter-defibrillators: an in vitro study.

    PubMed

    Ryf, Salome; Wolber, Thomas; Duru, Firat; Luechinger, Roger

    2008-01-01

    Permanent magnets may interfere with the function of cardiac pacemakers and implantable cardioverter-defibrillators (ICDs). Neodymium-iron-boron (NdFeB) magnets have become widely available in recent years and are incorporated in various articles of daily life. We conducted an in-vitro study to evaluate the ability of NdFeB magnets for home and office use to cause interference with cardiac pacemakers and ICDs. The magnetic fields of ten NdFeB magnets of different size and shape were measured at increasing distances beginning from the surface until a field-strength (B-field) value of 0.5 mT was reached. Furthermore, for each magnet the distance was determined at which a sample pacemaker switched from magnet mode to normal mode. Depending on the size and remanence of individual magnets, a B-field value of 0.5 mT was found at distances ranging from 1.5 cm to 30 cm and a value of 1 mT at distances from 1 cm to 22 cm. The pacemaker behavior was influenced at distances from 1 cm to 24 cm. NdFeB magnets for home and office use may cause interference with cardiac pacemakers and ICDs at distances up to 24 centimeters. Patient education and product declarations should include information about the risk associated with these magnets.

  7. Magnetic property and microstructure of single crystalline Nd2Fe14B ultrafine particles ball milled from HDDR powders

    SciTech Connect

    Li, WF; Hu, XC; Cui, BZ; Yang, JB; Han, JZ; Hadjipanayis, GC

    2013-08-01

    In this work we report the microstructure and magnetic property of single crystalline Nd2Fe14B ultrafine particles ball milled from HDDR Nd-Fe-B alloys. The average size of the particles is 283 nm, and TEM observation reveals that these particles are single crystalline. The coercivity of these particles is 6.0 kOe, which is much higher than that of the particles ball milled from sintered and hot pressed Nd-Fe-B magnets. Micromagnetic analysis shows that the coercivity degradation is caused by surface damage during ball milling. (C) 2013 Elsevier B.V. All rights reserved.

  8. Scrap tires

    SciTech Connect

    Not Available

    1988-12-01

    Scrap tires, one small part of the country's massive solid waste problem, are causing a disproportional headache. A city the size of Newark, N.J., for example, can pay up to $700,000 a year just to bury its waste tires, assuming it can find landfills to accept them. Many landfills no longer do, and in some areas, it is actually illegal. So stockpiles of scrap tires mount up and illegal dumping runs rampant. Scrap tires represent less than 1 percent of the nation's total solid waste. While we generate approximately a ton of solid waste per year per person, or 250,000,000 tons, we generate only one 20-pound tire per person, or 2,500,000 tons. Despite this small percentage, these tires present a special disposal/reuse challenge because of their size, shape, and physicochemical nature. Classified as a special waste, they are not generally collected with household waste by municipal authorities. Notwithstanding the unique disposal/reuse challenges of scrap tires, it must be stressed that a tire is essentially a petrochemical product than can be reused, can be a source of recoverable petrochemicals, or can be used as a fuel with a higher Btu value than coal. Thus what appears as a waste disposal challenge is also a resource recovery opportunity. Unfortunately, at present, only 30 percent of the country's scrap tires are being reclaimed or recycled. In terms of options, there are three viable areas in which to approach the waste tire problem: whole tire applications; physically processed tire applications; and physicochemical processes.

  9. Permanent magnet design methodology

    NASA Technical Reports Server (NTRS)

    Leupold, Herbert A.

    1991-01-01

    Design techniques developed for the exploitation of high energy magnetically rigid materials such as Sm-Co and Nd-Fe-B have resulted in a revolution in kind rather than in degree in the design of a variety of electron guidance structures for ballistic and aerospace applications. Salient examples are listed. Several prototype models were developed. These structures are discussed in some detail: permanent magnet solenoids, transverse field sources, periodic structures, and very high field structures.

  10. Modifying bone scaffold architecture in vivo with permanent magnets to facilitate fixation of magnetic scaffolds.

    PubMed

    Panseri, S; Russo, A; Sartori, M; Giavaresi, G; Sandri, M; Fini, M; Maltarello, M C; Shelyakova, T; Ortolani, A; Visani, A; Dediu, V; Tampieri, A; Marcacci, M

    2013-10-01

    The fundamental elements of tissue regeneration are cells, biochemical signals and the three-dimensional microenvironment. In the described approach, biomineralized-collagen biomaterial functions as a scaffold and provides biochemical stimuli for tissue regeneration. In addition superparamagnetic nanoparticles were used to magnetize the biomaterials with direct nucleation on collagen fibres or impregnation techniques. Minimally invasive surgery was performed on 12 rabbits to implant cylindrical NdFeB magnets in close proximity to magnetic scaffolds within the lateral condyles of the distal femoral epiphyses. Under this static magnetic field we demonstrated, for the first time in vivo, that the ability to modify the scaffold architecture could influence tissue regeneration obtaining a well-ordered tissue. Moreover, the association between NdFeB magnet and magnetic scaffolds represents a potential technique to ensure scaffold fixation avoiding micromotion at the tissue/biomaterial interface.

  11. Recovery of nonferrous metals from scrap automobiles by magnetic fluid levitation.

    NASA Technical Reports Server (NTRS)

    Mir, L.; Simard, C.; Grana, D.

    1973-01-01

    Ferrofluids are colloidal dispersions of subdomain magnetic solids in carrier liquids. In the presence of a non-homogeneous magnetic field, ferrofluids exert a pressure on immersed nonmagnetic objects in the opposite sense of the field gradient. This pressure force can, when opposite to gravity, levitate objects of higher density than the ferrofluid. This levitation technique can be used to separate solids according to density. Its application to the separation of nonferrous metals from shredded automobiles has been demonstrated on a prototype of a full-scale separator. Its use to recover nonferrous metals from municipal solid wastes also seems practical.

  12. Recovery of nonferrous metals from scrap automobiles by magnetic fluid levitation.

    NASA Technical Reports Server (NTRS)

    Mir, L.; Simard, C.; Grana, D.

    1973-01-01

    Ferrofluids are colloidal dispersions of subdomain magnetic solids in carrier liquids. In the presence of a non-homogeneous magnetic field, ferrofluids exert a pressure on immersed nonmagnetic objects in the opposite sense of the field gradient. This pressure force can, when opposite to gravity, levitate objects of higher density than the ferrofluid. This levitation technique can be used to separate solids according to density. Its application to the separation of nonferrous metals from shredded automobiles has been demonstrated on a prototype of a full-scale separator. Its use to recover nonferrous metals from municipal solid wastes also seems practical.

  13. Current status and recent topics of rare-earth permanent magnets

    NASA Astrophysics Data System (ADS)

    Sugimoto, S.

    2011-02-01

    After the development of Nd-Fe-B magnets, rare-earth magnets are now essential components in many fields of technology, because of their ability to provide a strong magnetic flux. There are two, well-established techniques for the manufacture of rare earth magnets: powder metallurgy is used to obtain high-performance, anisotropic, fully dense magnet bodies; and the melt-spinning or HDDR (hydrogenation, disproportionation, desorption and recombination) process is widely used to produce magnet powders for bonded magnets. In the industry of sintered Nd-Fe-B magnets, the total amount of production has increased and their dominant application has been changed to motors. In particular, their use for motors in hybrid cars is one of the most attractive applications. Bonded magnets have also been used for small motors, and the studies of nanocomposite and Sm-Fe-N magnets have become widespread. This paper reviews the current status and future trend in the research of permanent magnets.

  14. Measurement of the Magnet Blocks for SSRF Insertion Devices

    SciTech Connect

    He Yongzhou; Zhang Jidong; Zhou Qiaogen; Qian Zhenmei; Li Yang

    2010-06-23

    Two in-vacuum undulators IVU25s and one elliptically polarized undulator EPU100 have been developed for SSRF. Two IVU25s with the same hybrid design contain about 640 Sm{sub 2}Co{sub 17} magnet blocks and the dimension of blocks is 65 Wx25 Hx9 D. The EPU100 of the APPLE-II type contains about 690 NdFeB magnet blocks with the dimension of 35 Wx35 Hx25 D. This paper describes the magnetic measurements of these magnet blocks with the Helmholtz coil measurement system for IVU25 magnet blocks and the Hall probe measurement system for EPU100 magnet blocks. The measured maximum magnetic moment deviation and the maximum angle deviation are less than {+-}1.0% and 1.1 deg. respectively both for Sm{sub 2}Co{sub 17} blocks and NdFeB blocks and satisfy the specifications of undulators.

  15. Anisotropy and Microstructure of Rare Earth Permanent Magnet Materials.

    DTIC Science & Technology

    1986-01-01

    impurities, particularly calcium, magnesium aluminium, platinum and other refractory metals. Calcium-oxid precipitates are found in rare earth magnets...these compounds naturally not good. Therefore MM-Fe-B magnets might have magnet data at room temperature which are better then that of a ferrite ...different coercivity mechanisms, (e.g. rapidly quenched Nd-Fe-B magnets, Sm2 Co1, based materials but also ferrites ) are therefore in progress. 6

  16. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment.

    PubMed

    Lixandru, A; Venkatesan, P; Jönsson, C; Poenaru, I; Hall, B; Yang, Y; Walton, A; Güth, K; Gauß, R; Gutfleisch, O

    2017-10-01

    Nd-Fe-B permanent magnets are a strategic material for a number of emerging technologies. They are a key component in the most energy efficient electric motors and generators, thus, they are vital for energy technologies, industrial applications and automation, and future forms of mobility. Rare earth elements (REEs) such as neodymium, dysprosium and praseodymium are also found in waste electrical and electronic equipment (WEEE) in volumes that grow with the technological evolution, and are marked as critical elements by the European Commission due to their high economic importance combined with significant supply risks. Recycling could be a good approach to compensate for the lack of rare earths (REs) on the market. However, less than 1% of REs are currently being recycled, mainly because of non-existing collection logistics, lack of information about the quantity of RE materials available for recycling and recycling-unfriendly product designs. To improve these lack of information, different waste streams of electrical and electronic equipment from an industrial recycling plant were analyzed in order to localize, identify and collect RE permanent magnets of the Nd-Fe-B type. This particular type of magnets were mainly found in hard disk drives (HDDs) from laptops and desktop computers, as well as in loudspeakers from compact products such as flat screen TVs, PC screens, and laptops. Since HDDs have been investigated thoroughly by many authors, this study focusses on other potential Nd-Fe-B resources in electronic waste. The study includes a systematic survey of the chemical composition of the Nd-Fe-B magnets found in the selected waste streams, which illustrates the evolution of the Nd-Fe-B alloys over the years. The study also provides an overview over the types of magnets integrated in different waste electric and electronic equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Method for forming permanent magnets with different polarities for use in microelectromechanical devices

    DOEpatents

    Roesler, Alexander W.; Christenson, Todd R.

    2007-04-24

    Methods are provided for forming a plurality of permanent magnets with two different north-south magnetic pole alignments for use in microelectromechanical (MEM) devices. These methods are based on initially magnetizing the permanent magnets all in the same direction, and then utilizing a combination of heating and a magnetic field to switch the polarity of a portion of the permanent magnets while not switching the remaining permanent magnets. The permanent magnets, in some instances, can all have the same rare-earth composition (e.g. NdFeB) or can be formed of two different rare-earth materials (e.g. NdFeB and SmCo). The methods can be used to form a plurality of permanent magnets side-by-side on or within a substrate with an alternating polarity, or to form a two-dimensional array of permanent magnets in which the polarity of every other row of the array is alternated.

  18. Effect of cerium on the corrosion behaviour of sintered (Nd,Ce)FeB magnet

    NASA Astrophysics Data System (ADS)

    Yang, Lijing; Bi, Mengxue; Jiang, Jianjun; Ding, Xuefeng; Zhu, Minggang; Li, Wei; Lv, Zhongshan; Song, Zhenlun

    2017-06-01

    For the balanced consumption of rare-earth elements, cerium (Ce) was partially used for NdFeB magnets instead of Nd. The corrosion behaviour of the (Nd,Ce)FeB magnet with different Ce contents in 3.5% NaCl solution was investigated by SEM, XRD, EDS and electrochemical tests. After immersion, the weight loss was calculated and the magnetic properties of the samples were measured. Results showed that Ce affected the corrosion of the (Nd,Ce)FeB magnet. Compared with the NdFeB magnet without Ce but of the same grade as the magnetic energy product, (Nd,Ce)FeB magnet showed better corrosion resistance. With increased Ce content, the corrosion resistances and magnetic properties of (Nd,Ce)FeB magnets were investigated.

  19. Electromagnetic braking revisited with a magnetic point dipole model

    NASA Astrophysics Data System (ADS)

    Land, Sara; McGuire, Patrick; Bumb, Nikhil; Mann, Brian P.; Yellen, Benjamin B.

    2016-04-01

    A theoretical model is developed to predict the trajectory of magnetized spheres falling through a copper pipe. The derive magnetic point dipole model agrees well with the experimental trajectories for NdFeB spherical magnets of varying diameter, which are embedded inside 3D printed shells with fixed outer dimensions. This demonstration of electrodynamic phenomena and Lenz's law serves as a good laboratory exercise for physics, electromagnetics, and dynamics classes at the undergraduate level.

  20. Thermal stability of sintered and bonded rare-earth magnets

    NASA Astrophysics Data System (ADS)

    Kato, Yoshio

    1999-04-01

    One of most important issues of magnets for automobiles is thermal stability. The aim of the present work is to make clear the available temperature limit of sintered and bonded magnets for automobile applications. Thermal stability was determined by the critical temperature of 3% irreversible flux loss (T-3%φ) under thermal cycles. For instance, the T-3%φ of sintered NdFeB magnets (Pc=0.5) with the intrinsic coercivity of 1600, 1920, and 2240 kA/m, were 393, 423, and 453 K, respectively. On the other hand, the T-3%φ of HDDR-NdFeB (HcJ=960 kA/m) and SmFeN (HcJ=560 kA/m) bonded magnets (Pc=2) were about 353 K.

  1. Magnetizing of permanent magnets using HTS bulk magnets

    NASA Astrophysics Data System (ADS)

    Oka, Tetsuo; Muraya, Tomoki; Kawasaki, Nobutaka; Fukui, Satoshi; Ogawa, Jun; Sato, Takao; Terasawa, Toshihisa

    2012-01-01

    A demagnetized Nd-Fe-B permanent magnet was scanned just above the magnetic pole which contains the HTS bulk magnet generating a magnetic field of 3.27 T. The magnet sample was subsequently found to be fully magnetized in the open space of the static magnetic fields. We examined the magnetic field distributions when the magnetic poles were scanned twice to activate the magnet plate inversely with various overlap distances between the tracks of the bulk magnet. The magnetic field of the "rewritten" magnet reached the values of the magnetically saturated region of the material, showing steep gradients at the border of each magnetic pole. As a replacement for conventional pulse field magnetizing methods, this technique is proposed to expand the degree of freedom in the design of electromagnetic devices, and is proposed as a novel practical method for magnetizing rare-earth magnets, which have excellent magnetic performance and require intense fields of more than 3 T to be activated.

  2. Hot Isostatically Pressed Sm(2)(TM)17 Magnets.

    DTIC Science & Technology

    1985-04-01

    SUB. GR. HIP - hot isostatic pressing Stepped aging treatment Samarium - transition metal magnets f Samarium , Copper, Iron, Zirconium, Cobalt magnets 1...5 ptaI2 TABLE OF CONTENTS Section Page INTRODUCTION...............................................1 2 EXPERIMENTAL METHODS ...values of BR and Hci of the Nd-Fe-B type materials, however, have precluded their use in several critical applications such as in microwave devices and

  3. Chemical Synthesis of Next Generation High Energy Product Hybrid SmCo Permanent Magnets for High Temperature Applications

    DTIC Science & Technology

    2010-08-01

    cobalt , copper and sometimes titanium) and ceramic magnets (typically strontium- doped barium hexaferrites). The magnets containing rare earth...Nd- Fe-B in the early 1980s. Here, we report a ferromagnetic material based upon nanoscale cobalt carbide particles that provide a rare-earth free...alternative to high performance permanent magnets. The cobalt carbide-based magnets described herein are processed by chemical polyol reduction of

  4. Monitoring long-term evolution of engineered barrier systems using magnets: Magnetic response.

    PubMed

    Rigonat, N; Isnard, O; Harley, S L; Butler, I B

    2018-01-05

    Remote and non-destructive monitoring of the stability and performance of Engineered Barrier Systems for Geological Disposal Facility of is gaining considerable importance in establishing the safety cases for Higher Activity Wastes disposal. This study offers an innovative use of mineral magnetism for monitoring groundwater saturation of the barrier. Four mixtures of permanent magnets (Nd-Fe-B, coated and uncoated; SmCo and AlNiCo) and bentonite were reacted for 4, 8 and 12 months with mildly-saline, high-pH leachates, representing the fluids saturating a time-evolved engineered barrier. Coupled hysteresis and thermomagnetic analyses demonstrate how Nd-Fe-B feature a time-dependent transition from square-like ferromagnetic to superparamagnetic loop via pot-bellied and wasp-waist loops, whereas SmCo and AlNiCo do not show so extensive corrosion-related variations of the intrinsic and extrinsic magnetic properties. This study allowed to identify magnetic materials suitable for shorter- (Nd-Fe-B) and longer-term (SmCo and AlNiCo) monitoring purposes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Prediction of the new efficient permanent magnet SmCoNiFe3

    NASA Astrophysics Data System (ADS)

    Söderlind, P.; Landa, A.; Locht, I. L. M.; Åberg, D.; Kvashnin, Y.; Pereiro, M.; Däne, M.; Turchi, P. E. A.; Antropov, V. P.; Eriksson, O.

    2017-09-01

    We propose a new efficient permanent magnet, SmCoNiFe3, which is a development of the well-known SmCo5 prototype. More modern neodymium magnets of the Nd-Fe-B type have an advantage over SmCo5 because of their greater maximum energy products due to their iron-rich stoichiometry. Our new magnet, however, removes most of this disadvantage of SmCo5 while preserving its superior high-temperature efficiency over the neodymium magnets. We show by means of first-principles electronic-structure calculations that SmCoNiFe3 has very favorable magnetic properties and could therefore potentially replace SmCo5 or Nd-Fe-B types in various applications.

  6. Method of making permanent magnets

    DOEpatents

    McCallum, R.W.; Dennis, K.W.; Lograsso, B.K.; Anderson, I.E.

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles. Wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties. 13 figures.

  7. Method of making permanent magnets

    DOEpatents

    McCallum, R. William; Dennis, Kevin W.; Lograsso, Barbara K.; Anderson, Iver E.

    1993-09-07

    A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties.

  8. Dezincing galvanized scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Braun, C.

    1998-07-01

    A caustic leach dezincing process is being developed for upgrading galvanized stamping plant scrap into clean scrap with recovery of the zinc. With further development the technology could also process galvanized scrap from obsolete automobiles. This paper will review: (1) the status of recent pilot plant operations in East Chicago, Indiana and plans for a commercial demonstration facility with a dezincing capacity of up to 250,000 tonnes/year, (2) the economics of caustic dezincing, and (3) benefits of decreased cost of environmental compliance, raw material savings, and improved operations with use of dezinced scrap.

  9. Additive Manufacturing of Near-net Shaped Permanent Magnets

    SciTech Connect

    Paranthaman, M. Parans; Sridharan, Niyanth; List, Fred A.; Babu, S. S.; Dehoff, Ryan R.; Constantinides, Steve

    2016-07-26

    The technical objective of this technical collaboration phase I proposal is to fabricate near net-shaped permanent magnets using alloy powders utilizing direct metal deposition technologies at the ORNL MDF. Direct Manufacturing using the POM laser system was used to consolidate Nd2Fe14B (NdFeB) magnet powders into near net-shape parts efficiently and with virtually no wasted material as part of the feasibility study. We fabricated builds based on spherical NdFeB magnet particles. The results show that despite the ability to fabricate highly reactive materials in the laser deposition process, the magnetic coercivity and remanence of the NdFeB hard magnets is significantly reduced. X-ray powder diffraction in conjunction with electron microscopy showed that the material experienced a primary Nd2Fe17Bx solidification due to the undercooling effect (>60K). Consequently the presence of alpha iron phase resulted in deterioration of the build properties. Further optimization of the processing parameters is needed to maintain the Nd2Fe14B phase during fabrication.

  10. Nanocrystalline (Pr,Dy)-(Fe,Co)-Zr-Ti-B magnets produced directly by rapid solidification

    NASA Astrophysics Data System (ADS)

    Pawlik, P.; Pawlik, K.; Davies, H. A.; Wysłocki, J. J.; Kaszuwara, W.

    2009-01-01

    Hard magnetic thick ribbon samples of a series of Pr9-xDyxFe60Co13Zr1+yTi3-yB14 alloys (where x=0;1 and y=0;1) (having average thicknesses tr of~ 140 µm) were produced directly by the melt-spinning technique under an Ar atmosphere. The phase constitution of the samples in the as-cast state was determined by X-ray diffractomety and Mössbauer spectroscopy. Hysteresis loops measurements at room temperature indicated very good hard magnetic properties for the alloys, which the coercivity attaining a maximum values of 1.58 MA/m. This is comparable with the coercivities of commercial NdFeB magnets based on melt spun ribbon and with those for nanocrystalline Nd-Fe-B magnets produces by other processes such as mechanical alloying or HDDR.

  11. Nanocrystalline high performance permanent magnets

    NASA Astrophysics Data System (ADS)

    Gutfleisch, O.; Bollero, A.; Handstein, A.; Hinz, D.; Kirchner, A.; Yan, A.; Müller, K.-H.; Schultz, L.

    2002-04-01

    Recent developments in nanocrystalline rare earth-transition metal magnets are reviewed and emphasis is placed on research work at IFW Dresden. Principal synthesis methods include high energy ball milling, melt spinning and hydrogen assisted methods such as reactive milling and hydrogenation-disproportionation-desorption-recombination. These techniques are applied to NdFeB-, PrFeB- and SmCo-type systems with the aim to produce high remanence magnets with high coercivity. Concepts of maximizing the energy density in nanostructured magnets by either inducing a texture via anisotropic HDDR or hot deformation or enhancing the remanence via magnetic exchange coupling are evaluated.

  12. Precise measurement of magnetization characteristics in high pulsed field

    NASA Astrophysics Data System (ADS)

    Nakahata, Y.; Borkowski, B.; Shimoji, H.; Yamada, K.; Todaka, T.; Enokizono, M.

    2012-04-01

    Permanent magnets, especially Nd-Fe-B magnets, are very important engineering elements that are widely used in many applications. The detailed design of electrical and electronic equipment using permanent magnets requires the precise measurement of magnetization characteristics. High pulsed magnetic fields can be used to measure the magnetization characteristics of permanent magnets in the easy and hard magnetization directions. Errors influencing the measurements stem from the relationship between the tested material, pick-up sensor configuration, and excitation coil. We present an analysis of the effect of the sensor construction on the accuracy of the measurements of the material's magnetic properties. We investigated the coaxial and series types sensor configurations.

  13. Preparation and characterization of polymeric composite permanent magnet Nd2Fe14B

    NASA Astrophysics Data System (ADS)

    Muljadi, Sardjono, Priyo; Suprapedi

    2016-03-01

    Preparation of polymeric composite magnets using isotropic NdFeB powder and polymeric materials (epoxy resin and latex rubber) have been investigated in this work. Isotropic powder NdFeB was crushed mechanically by hand mortar and sieved until passing 400 mesh. Epoxy Resin / latex rubber with the isotropic powder NdFeB were manually mixed for 20 minutes to achieve a good (homogeneous) mixture. Amount of polymeric materials were 5, 10, 15, and 20 % wt. from the mass of magnetic powder NdFeB. The mixtures were moulded in cylindrical die with a diameter of 10 mm by cold pressing under a force of three tons, then all samples were cured at temperature 100oC for two hours by using drying oven. The cured samples were measured bulk density by archimedes method, and all samples were magnetized by impulse magnetizer. The surface magnetic field strength (FS) was measure by Gaussmeter, other magnetic properties (remanence Br, coercivity Hc and energy product BHmax) were measured by permeagraph. The measured properties for all samples are as follows : the optimum value of bulk density are 5.21 g/cm3 for samples with 5 % wt. epoxy resin and 5.03 g/cm3 for samples with 10 % wt. latex rubber. The sample with 5 % wt. epoxy resin has FS=2400 Gauss, Br=0.558 T, Hc=6.77 kOe, and BHmax=7.28 MGOe; also the sample with 10 % wt. latex rubber has FS=1750 Gauss, Br=0.402 T, Hc=5.14 kOe, and BHmax=4.38 MGOe.

  14. Coercivity enhancement in hot deformed Nd2Fe14B-type magnets by doping low-melting RCu alloys (R = Nd, Dy, Nd + Dy)

    NASA Astrophysics Data System (ADS)

    Lee, Y. I.; Huang, G. Y.; Shih, C. W.; Chang, W. C.; Chang, H. W.; You, J. S.

    2017-10-01

    Magnetic properties of the anisotropic NdFeB magnets prepared by hot pressing followed by die-upsetting NdFeB MQU-F powders doped with low-melting RCu alloy powders were explored, where RCu stands for Nd70Cu30, Dy70Cu30 and (Nd0.5Dy0.5)70Cu30, respectively. In addition, the post-annealing at 600 °C was employed to modify the microstructures and the magnetic properties of the hot deformed magnets. It is found that doping RCu alloy powders is effective in enhancing the coercivity of the hot deformed NdFeB magnets from 15.1 kOe to 16.3-19.5 kOe. For Nd70Cu30-doped magnets, the increment of coercivity is only 1.2 kOe. Meanwhile, Dy70Cu30-doped and (Nd0.5Dy0.5)70Cu30-doped magnets show an almost identical enhancement of coercivity of about 4.4 kOe. Importantly, the latter magnet shows a beneficial effect of reducing the usage of Dy from 1.6 wt% to 0.8 wt%. TEM analysis shows that nonmagnetic Nd, Dy and Cu appear at grain boundary and isolate the magnetic grains, leading to an enhancement of coercivity. Doping lower melting point Dy-lean (Nd0.5Dy0.5)70Cu30 powders into commercial MQU-F powders for making high coercivity hot deformed NdFeB magnets might be a potential and economic way for mass production.

  15. Corrosion Protection of Nd-Fe Magnets via Phophatization, Silanization and Electrostatic Spraying with Organic Resin Composite Coatings

    NASA Astrophysics Data System (ADS)

    Ding, Xia; Li, Jingjie; Li, Musen; Ge, Shengsong; Wang, Xiuchun; Ding, Kaihong; Cui, Shengli; Sun, Yongcong

    2014-09-01

    Nd-Fe-B permanent magnets possess excellent properties. However, they are highly sensitive to the attack of corrosive environment. The aim of this work is to improve the corrosion resistance of the magnets by phosphatization, silanization, and electrostatic spraying with organic resin composite coatings. Field emission scanning electron microscope (FE-SEM) and energy dispersive spectrometer (EDS) tests showed that uniform phosphate conversion coatings and spray layers were formed on the surface of the Nd-Fe-B magnets. Neutral salt spray tests exhibited that, after treated by either phosphating, silanization or electrostatic spraying, the protectiveness of Nd-Fe-B alloys was apparently increased. And corrosion performance of magnets treated with silane only was slightly inferior to those of phosphatized ones. However, significant improvement in corrosion protection was achieved after two-step treatments, i.e. by top-coating spray layer with phosphate or silane films underneath. Grid test indicated that the phosphate and silane coating were strongly attached to the substrate while silane film was slightly weaker than the phosphate-treated ones. Magnetic property analysis revealed phosphatization, silanization, and electrostatic spraying caused decrease in magnetism, but silanization had the relatively smaller effect.

  16. Accuracy of fit of 3-to-3 retainers after adhesive fixation using a neodymium-iron-boron magnet chain.

    PubMed

    Hahn, Wolfram; Wasser-Merkel, Wiebke; Lange, Katharina; Gruber, Rudolf M; Kubein-Meesenburg, Dietmar; Ihlow, Dankmar

    2011-10-01

    Six-base retainers are often used to prevent tertiary crowding. To minimize shear stress on the retainer, these should be fitted as precisely as possible. The aim of this study was to compare the accuracy of fit of 6-base retainers after adhesive fixation using a neodymium-iron-boron (NdFeB) magnet chain or a resin positioning aid. A 6-base retainer was prepared for 40 pseudo-anonymous lower jaw models (2 × 20). Temporary fixation was performed with a resin positioning aid or a NdFeB magnet chain. The adhesive fixation of the retainers was randomized. The area and vertical distance between wire and teeth were determined by histomorphometry. The results were evaluated by ANOVA. The probability of error was specified as 5%. With the magnetic chain method, the area was significantly smaller than with the positioning aid (p = 0.0125). The difference between the two methods was ca. 1.3 mm². Moreover, the measured distance was affected significantly by the method used (p < 0.0002). With the magnet chain, the distance between the tooth and retainer was reduced by a mean of 0.05 mm. Conclusion. The fit of the retainer wire improves somewhat when the NdFeB magnet chain is used even though the wire is not as precisely positioned as it would be with a custom-made positioning aid.

  17. INTERIOR VIEW WITH SCRAP HAULER DUMPING SCRAP INTO QBOP FURNACE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH SCRAP HAULER DUMPING SCRAP INTO Q-BOP FURNACE. SCRAP HAULER IS GREGORY JACKS. FURNACEMAN IS VINCENT MOREL. - U.S. Steel, Fairfield Works, Q-Bop Furnace, North of Valley Road & West of Ensley, Pleasant Grove Road, Fairfield, Jefferson County, AL

  18. POWER AND THERMAL TECHNOLOGIES FOR AIR AND SPACE - SCIENTIFIC RESEARCH PROGRAM Delivery Order 0015: High Performance Permanent Magnets

    DTIC Science & Technology

    2010-03-01

    deposition of -Fe thin film on melt-spun Nd-Fe-B alloys,” AIP Conf. Proc. 993, 2008, pp. 403-406. 38 4. Bovda, O.M., Bovda, V.A., Chebotarev, V.V...Intrinsic coercivity HD Hot deformation HP Hot pressing MDC Magnetic dynamic compaction PVD Plasma vapor deposition SAXS Small angle X-ray...used for green energy, hybrid/electrical vehicles, military airplanes, power electronics, electric drive and propulsion, traveling microwave tubes

  19. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications

    SciTech Connect

    Zacchia, Nicholas A.; Valentine, Megan T.

    2015-05-15

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  20. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications

    NASA Astrophysics Data System (ADS)

    Zacchia, Nicholas A.; Valentine, Megan T.

    2015-05-01

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  1. CRADA/NFE-15-05779 Report: Fabrication of Large Area Printable Composite Magnets

    SciTech Connect

    Paranthaman, M. Parans

    2016-09-29

    The technical objective of this technical collaboration phase I proposal was to fabricate large area NdFeB composite magnets at the Oak Ridge National Laboratory Manufacturing Demonstration Facility (ORNL MDF). The goal was to distribute domestically produced isotropic and highly anisotropic high energy density magnetic particles throughout the composite structure in order to enable site specific placement of magnetic phases and minimize the generated waste associated with permanent magnet manufacturing. Big area additive manufacturing (BAAM) and magnet composite fabrication methods were used in this study. BAAM was used to fabricate 65 vol % isotropic MQP NdFeB magnets in nylon polymer matrix. BAAM magnet cylinder was sliced to two magnetic arc-shaped braces. The density of the small BAAM magnet pieces reached 4.1 g/cm3, and the room temperature magnetic properties are: Intrinsic coercivity Hci = 8.8 kOe, Remanence Br = 4.2 kG, and energy product (BH)max = 3.7 MGOe. Also, 1.5” x 1.5” composite magnets with anisotropic MQA NdFeB magnet in a resin were also fabricated under magnetic field. The unaligned sample had a density of 3.75 g/cm3. However, aligned sample possessed a density of 4.27 g/cm3. The magnetic properties didn’t degrade during this process. This study provides a pathway for preparing composite magnets for various magnetic applications.

  2. 7 CFR 30.8 - Scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Scrap. 30.8 Section 30.8 Agriculture Regulations of... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.8 Scrap.... Scrap which accumulates from handling unstemmed leaf tobacco is known as leaf-scrap, and scrap which...

  3. 7 CFR 30.8 - Scrap.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Scrap. 30.8 Section 30.8 Agriculture Regulations of... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.8 Scrap.... Scrap which accumulates from handling unstemmed leaf tobacco is known as leaf-scrap, and scrap which...

  4. Towards high-performance permanent magnets without rare earths.

    PubMed

    Kuz'min, M D; Skokov, K P; Jian, H; Radulov, I; Gutfleisch, O

    2014-02-12

    Achieving a very strong magnetic anisotropy in a 3d material is a difficult, but not an impossible task. It is difficult because there is no general recipe (necessary condition) for a strong anisotropy in a band magnet. Several strategies can be pursued in this situation. One of them is to re-examine the less studied 3d compounds, somewhat neglected since the discovery of the Nd-Fe-B magnets 30 years ago. As an example, a single crystal of (Fe0.7Co0.3)2B has been investigated in this work.

  5. Scrap tire recycling

    SciTech Connect

    Lula, J.W.; Bohnert, G.W.

    1997-03-01

    As the automobile tire technology has grown and met the need for safer and more durable tires, stronger reinforcement and more chemically resistant rubber compounds have made recycling tires more difficult. In an effort to resolve this problem, techniques and equipment were developed to grind tires into small pieces, and new markets were sought to utilize the crumb rubber product streams from ground tires. Industrial combustion processes were modified to accept scrap tires as fuel. These efforts have been beneficial, steadily increasing the percentage of scrap tires recycled to about 10% in 1985, and reaching 72% in 1995. By the end of 1997, fully 100% of tires generated in the U.S. are expected to be recycled.

  6. Issues in recycling galvanized scrap

    SciTech Connect

    Koros, P.J.; Hellickson, D.A.; Dudek, F.J.

    1995-02-10

    The quality of the steel used for most galvanizing (and tinplate) applications makes scrap derived from their production and use a premier solid charge material for steelmaking. In 1989 the AISI created a Task Force to define the issues and to recommend technologically and economically sound approaches to assure continued, unhindered recyclability of the growing volume of galvanized scrap. The AISI program addressed the treatment of full-sized industrial bales of scrap. The current, on-going MRI (US)--Argonne National Laboratory program is focused on ``loose`` scrap from industrial and post-consumer sources. Results from these programs, issues of scrap management from source to steel melting, the choices for handling zinc in iron and steelmaking and the benefits/costs for removal of zinc (and lead) from scrap prior to melting in BOF and foundry operations are reviewed in this paper.

  7. Contaminated nickel scrap processing

    SciTech Connect

    Compere, A.L.; Griffith, W.L.; Hayden, H.W.; Johnson, J.S. Jr.; Wilson, D.F.

    1994-12-01

    The DOE will soon choose between treating contaminated nickel scrap as a legacy waste and developing high-volume nickel decontamination processes. In addition to reducing the volume of legacy wastes, a decontamination process could make 200,000 tons of this strategic metal available for domestic use. Contaminants in DOE nickel scrap include {sup 234}Th, {sup 234}Pa, {sup 137}Cs, {sup 239}Pu (trace), {sup 60}Co, U, {sup 99}Tc, and {sup 237}Np (trace). This report reviews several industrial-scale processes -- electrorefining, electrowinning, vapormetallurgy, and leaching -- used for the purification of nickel. Conventional nickel electrolysis processes are particularly attractive because they use side-stream purification of process solutions to improve the purity of nickel metal. Additionally, nickel purification by electrolysis is effective in a variety of electrolyte systems, including sulfate, chloride, and nitrate. Conventional electrorefining processes typically use a mixed electrolyte which includes sulfate, chloride, and borate. The use of an electrorefining or electrowinning system for scrap nickel recovery could be combined effectively with a variety of processes, including cementation, solvent extraction, ion exchange, complex-formation, and surface sorption, developed for uranium and transuranic purification. Selected processes were reviewed and evaluated for use in nickel side-stream purification. 80 refs.

  8. The steel scrap age.

    PubMed

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-02

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  9. Equipment for shredding rubber scrap

    SciTech Connect

    Rozhkov, V.F.; Golikov, V.N.; Kurglov, V.I.; Cherepkova, R.V.

    1987-07-01

    The authors describe a range of machines developed for shredding rubber scrap and discarded rubber articles into crumbs. Technical characteristics of the machine for shredding vulcanized pressed-rubber parts, used rubber articles and scrap from the shoe industry are presented. A machine for shredding rubber scrap from plants making rubber products and from the shoe industry is shown, as is one for producing rubber crumbs from the scrap during the roughing of tires. Another machine is examined which cuts tires with metallic cords.

  10. De Magnete et Meteorite: Cosmically Motivated Materials

    SciTech Connect

    Lewis, LH; Pinkerton, FE; Bordeaux, N; Mubarok, A; Poirier, E; Goldstein, JI; Skomski, R; Barmak, K

    2014-01-01

    Meteorites, likely the oldest source of magnetic material known to mankind, are attracting renewed interest in the science and engineering community. Worldwide focus is on tetrataenite, a uniaxial ferromagnetic compound with the tetragonal L1(0) crystal structure comprised of nominally equiatomic Fe-Ni that is found naturally in meteorites subjected to extraordinarily slow cooling rates, as low as 0.3 K per million years. Here, the favorable permanent magnetic properties of bulk tetrataenite derived from the meteorite NWA 6259 are quantified. The measured magnetization approaches that of Nd-Fe-B (1.42 T) and is coupled with substantial anisotropy (1.0-1.3 MJ/m(3)) that implies the prospect for realization of technologically useful coercivity. A highly robust temperature dependence of the technical magnetic properties at an elevated temperature (20-200 degrees C) is confirmed, with a measured temperature coefficient of coercivity of -0.005%/ K, over one hundred times smaller than that of Nd-Fe-B in the same temperature range. These results quantify the extrinsic magnetic behavior of chemically ordered tetrataenite and are technologically and industrially significant in the current context of global supply chain limitations of rare-earth metals required for present-day high-performance permanent magnets that enable operation of a myriad of advanced devices and machines.

  11. Improved Nonambipolar Electron Source Operation with Permanent Magnets

    NASA Astrophysics Data System (ADS)

    Gudmundson, Jesse; Hershkowitz, Noah

    2008-11-01

    The Nonambipolar Electron Source (NES) is a Radio Frequency (rf) plasma-based electron source that does not rely on electron emission at a cathode surface. All electrons are extracted at an electron sheath through a biased ring and all ions are lost radially to a biased Faraday shield. An electromagnet in the original NES has been replaced by a NdFeB permanent magnet array. A portion of the magnet array consists of a ring of radially aligned magnets followed by a ring of axially aligned magnets that produce a peak field of approximately 800 Gauss. Axial magnetic field strength at the extraction ring was increased using an additional ring of axially aligned magnets. Measurement of the magnetic field was in good agreement with field predicted by the FEMM (Finite Element Method Magnetics) code. Optimization of the single turn antenna and biased ring position in the magnetic field will be discussed. At least 15 A of electron current was extracted using a flow rate of 15 sccm Ar at 600 W of rf power at 13.56 MHz. For comparison, the original NES required 1200 W of power to achieve 15 A of extracted current. Compared to the previous coil design, the NdFeB magnets are lighter weight and require no power.

  12. Bonded permanent magnets: Current status and future opportunities (invited)

    NASA Astrophysics Data System (ADS)

    Ormerod, John; Constantinides, Steve

    1997-04-01

    Permanent magnets play a vital role in modern society as a component in a wide range of devices utilized by many industries and consumers. In 1995, the world production of permanent magnets was estimated to be valued at 3.6 billion and growing at an annual rate of 12%. Bonded permanent magnets are the fastest growing segment of this market. Bonded magnet technology enables a wide variety of magnetic powders to be combined with several polymer and binder systems to produce magnetic components utilizing several processing options. In this article, we review the development of bonded magnet technology. The major classes of magnetic powders, binder systems, and processing technologies are described. Recent developments in magnetic material grades, e.g., anisotropic NdFeB, rare earth lean NdFeB, SmFe(N,C) are outlined. The current status of processing and binder options aimed at increasing the upper application temperature limit of these materials is highlighted. Finally, the improvements and future opportunities for bonded magnets are discussed.

  13. Magnetically driven solid sample preparation for centrifugal microfluidic devices.

    PubMed

    Duford, David A; Peng, Dan D; Salin, Eric D

    2009-06-01

    A prototype for solid sample preparation on centrifugal microfluidic devices has been designed and characterized. The system uses NdFeB magnets in both the centrifugal device and a fixed base. As the centrifugal device rotates, the magnets move and spin in their chambers creating a pulverizing mechanical motion. This technique was successfully applied to the dissolution of potassium ferricyanide (K(3)[Fe(CN)(6)]), a hard colored crystal. A 0.10 g sample was completely dissolved in 3 s in 1.0 mL of water while rotating at 1000 rpm. This is a 300-fold improvement over static dissolution.

  14. Simulation of magnetic coupling in die-upset composite magnets

    NASA Astrophysics Data System (ADS)

    Hadjipanayis, George; Gabay, Alexander

    2007-03-01

    Die-upset composite magnets fabricated from blends of melt-spun Nd-Fe-B ribbons and coarse (micron-size) soft magnetic powders (Fe, Fe-Co) exhibit uniform magnetization behavior despite the fact that the soft magnetic inclusions are too large to be magnetically coupled through inter-phase exchange interactions. In this study, we present the results of numerical simulation showing that in the case of a layered microstructure (typical of the die-upset composites) the long-range magnetostatic interactions assure smooth demagnetization curves. Still, at least partial exchange coupling is required to have an increased remanence. It is argued that the effect of magnetostatic coupling in composite magnets with a layered morphology considerably relaxes the strict requirements for the size of the soft inclusions and it may facilitate the future development of high-performance composite anisotropic permanent magnets.

  15. Sink-float ferrofluid separator applicable to full scale nonferrous scrap separation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Design and performance of a ferrofluid levitation separator for recovering nonferrous metals from shredded automobiles are reported. The scrap separator uses an electromagnet to generate a region of constant density within a pool of ferrofluid held between the magnetic poles; a saturated kerosene base ferrofluid as able to float all common industrial metals of interest. Conveyors move the scrap into the ferrofluid for separation according to density. Results of scrap mixture separation studies establish the technical feasibility of relatively pure aluminum alloy and zinc alloy fractions from shredded automobile scrap by this ferrofluid levitation process. Economic projections indicate profitable operation for shredders handling more than 300 cars per day.

  16. Using Scrap Slides for Art.

    ERIC Educational Resources Information Center

    Hanlon, Heather

    1979-01-01

    Using scrap slides for an art lesson can be an exciting, creative experience for people of all ages, and many techniques are applicable in both primary and secondary grades. Scrap slides are an inexpensive means to unique, original, and stimulating discoveries about film as an art form. (Author)

  17. Study of the effect of a repeated HDDR treatment on the coercivity of two rare-earth-transition metal hard magnetic materials

    NASA Astrophysics Data System (ADS)

    Kwon, Hae-Woong

    2001-01-01

    In an attempt to achieve a more complete and more homogeneous recombination in the hydrogenation, disproportionation, desorption and recombination (HDDR) of Sm2Fe17-type and Nd-Fe-B-type permanent magnet alloys, thus achieving high coercivity, an HDDR treatment was applied repeatedly to those alloys (the HDDR-treated Sm2Fe17-type alloy was nitrogenated afterwards). The effect of this treatment on the coercivity was investigated. The hydrogenation and disproportionation characteristics of the previously HDDR-treated alloys were also examined. It was found that for the Sm2Fe17-type alloy the hydrogenation temperature was slightly raised as the number of HDDR cycles increased, while the disproportionation temperature was significantly decreased. For the Nd-Fe-B-type alloy both the hydrogenation and the disproportionation temperatures decreased with the number of HDDR cycles. Repeated HDDR increases the coercivity of both Sm2Fe17Nx-type and Nd-Fe-B-type materials. The increase is greater for the Sm2Fe17Nx-type material.

  18. Composite elastic magnet films with hard magnetic feature

    NASA Astrophysics Data System (ADS)

    Wang, Weisong; Yao, Zhongmei; Chen, Jackie C.; Fang, Ji

    2004-10-01

    Hard magnetic materials with high remnant magnetic moment, Mr, have unique advantages that can achieve bi-directional (push-pull) movement in an external magnetic field. This paper presents the results on the fabrication and testing of novel composite elastic permanent magnet films. The microsize hard barium ferrite powder, NdFeB powder, and different silicone elastomers have been used to fabricate various large elongation hard magnetic films. Three different fabrication methods, screen-coating processing, moulding processing and squeegee-coating processing, have been investigated, and the squeegee-coating process was proven to be the most successful method. The uniform composite elastic permanent magnet films range from 40 µm to 216 µm in thickness have been successfully fabricated. These films were then magnetized in the thickness direction after fabrication. They exhibited permanent magnet behaviour; for instance, the film (0.640 mm3 in volume) made of polydimethyl siloxane (PDMS) and hard barium ferrite powders is measured to give a coercive force, Hc, of 3.24 × 105 A m-1 and Mr of 1.023 × 10-5 A m2, and the film (0.504 mm3 in volume) made of PDMS and NdFeB powders gives 1.55 × 105 A m-1 Hc and 8.081 × 10-5 A m2 Mr. These composite elastic permanent magnet films' mechanical properties, like Young's modulus and deflection force, have been evaluated. To validate the films' Young's modulus, a finite-element computer simulation (ANSYS®) is used and one film is chosen whose Young's modulus (16.60 MPa) is confirmed by the simulation results with ANSYS®. The large elongation composite elastic permanent magnet film provides an excellent diaphragm material, which plays an important role in the micropump or valve. The movement of the 126 µm thick film with 4.5 mm diameter made of PDMS and NdFeB powders has been tested in a 0.21 Tesla external magnetic field. It was proven to have large deflection of 125 µm.

  19. Texture formation mechanism and constitutive equation for anisotropic thermorheological rare-earth permanent magnets

    NASA Astrophysics Data System (ADS)

    Zhu, Minggang; Li, Wei

    2017-05-01

    The study investigates the mechanism and constitutive equations describing oriented texture formation in anisotropic thermorheological rare-earth permanent magnets. The thermorheological process cannot be considered as creep, since the related phenomena are not suitably explained by the diffusion creep model. A mathematical model describing the relationship between the rheological deformation rate and texture orientation was established, and a theoretical expression was obtained for the orientation factor of thermorheological magnets. In addition, nanocrystalline Nd-Fe-B magnets were fabricated, with intrinsic coercivity Hcj=760.1 kA/m, remanence Br=1.469 T, and maximum energy product (BH)max=427.1 kJ/m3.

  20. High speed electric motors based on high performance novel soft magnets

    NASA Astrophysics Data System (ADS)

    Silveyra, J. M.; Leary, A. M.; DeGeorge, V.; Simizu, S.; McHenry, M. E.

    2014-05-01

    Novel Co-based soft magnetic materials are presented as a potential substitute for electrical steels in high speed motors for current industry applications. The low losses, high permeabilities, and good mechanical strength of these materials enable application in high rotational speed induction machines. Here, we present a finite element analysis of Parallel Path Magnetic Technology rotating motors constructed with both silicon steel and Co-based nanocomposite. The later achieved a 70% size reduction and an 83% reduction on NdFeB magnet volume with respect to a similar Si-steel design.

  1. A transportable magnetic resonance imaging system for in situ measurements of living trees: the Tree Hugger.

    PubMed

    Jones, M; Aptaker, P S; Cox, J; Gardiner, B A; McDonald, P J

    2012-05-01

    This paper presents the design of the 'Tree Hugger', an open access, transportable, 1.1 MHz (1)H nuclear magnetic resonance imaging system for the in situ analysis of living trees in the forest. A unique construction employing NdFeB blocks embedded in a reinforced carbon fibre frame is used to achieve access up to 210 mm and to allow the magnet to be transported. The magnet weighs 55 kg. The feasibility of imaging living trees in situ using the 'Tree Hugger' is demonstrated. Correlations are drawn between NMR/MRI measurements and other indicators such as relative humidity, soil moisture and net solar radiation.

  2. The performance of bonded magnets used in the treatment of anterior open bite.

    PubMed

    Noar, J H; Shell, N; Hunt, N P

    1996-05-01

    This investigation examined the magnetic flux and repulsive force of neodymium-iron-boron (Nd-Fe-B) magnets based on Nd2Fe14B with acrylic coatings in different orientations. The flux was measured with a Hall probe and the force measured by electronic scales with the magnets mounted on a laboratory jack. Results show that there were no magnetic losses after embedding the magnets in acrylic bite-blocks, although there were significant flux losses when the magnet blocks were directly heated. The alignment of the magnets over each other was of the utmost importance and significantly affected the repulsive force between the magnets. When the magnets were mounted in an articulator to simulate jaw movement, the force levels between the magnets was further reduced as a result of the effects of the rotation of the articulator. It is concluded that Nd-Fe-B type magnets embedded in acrylic can be used to give predictable repulsive forces in the mouth. The dramatic reduction in force levels when the magnets are not in optimal alignment, however, makes their effectiveness in aiding intrusion of teeth doubtful.

  3. Puncturing the scrap tire problem

    SciTech Connect

    Steuteville, R.

    1995-10-01

    The recovery of scrap tires is making major headway in the 1990s. In 1994, an estimated 55 percent of all scrap tires generated were diverted from landfills, compared to 11 percent five years ago. Within three to five years, the Scrap Tire Management Council (STMC), an industry group, predicts that there will be markets for 100 percent of the estimated 250 million plus scrap tires generated in the U.S. annually. At that point, it should be possible to start making a serious dent in the estimated 800 to 850 million scrap tires stockpiled around the country. About 4.5 million scrap tires get transformed into ground rubber products. Despite that relatively small number, this category holds significant promise. It also is the area with perhaps the most entrepreneurial activity. The reason is clear when the value added from increasingly intensive processing of tires is examined. When scrap rubber is ground for use in asphalt, new tires or a host of other products - the value goes up tremendously. A quarter inch minus grind generally sells for 14 to 22 cents/lb., or $280 to $440/ton. With smallerpieces, the value continues to climb. An `80 mesh,` or rubber that passes through a screen with 80 holes/linear inch, sells for30 to 45 cents/ lb. ($600 to $900/ton), which is higher than prices for aluminum cans two years ago.

  4. Improved Nonambipolar Electron Source operation with permanent magnets

    NASA Astrophysics Data System (ADS)

    Gudmundson, Jesse; Hershkowitz, Noah

    2008-10-01

    The Nonambipolar Electron Source (NES), is a Radio Frequency (rf) plasma-based electron source that does not rely on electron emission at a cathode surface. All electrons are extracted at an electron sheath through a biased ring and all ions are lost radially to a biased Faraday shield. The electromagnetic B field in the original NES has been replaced by a NdFeB permanent magnet array. The magnet array consists of a ring of radially aligned magnets followed by a ring of axially aligned magnets producing a peak field of approximately 850 Gauss. Measurement of the magnetic field was in good agreement with field predicted by the FEMM code. Optimization of the single turn antenna and biased ring will be discussed. Operating with argon, at least 15 A of electron current was extracted using a flow rate of 15 sccm Ar at approximately 10 mTorr and 600 W of RF power at 13.56 MHz. For comparison, the original NES required 1200 W of power to achieve 15 A of extracted current. Compared to the previous coil design, the NdFeB magnets are lighter weight, require no power, and provide a greater peak magnetic field.

  5. The ALPHA Magnetic Spectrometer

    NASA Astrophysics Data System (ADS)

    Viertel, G. M.; Capell, M.

    1998-12-01

    The ALPHA Magnetic Spectrometer (AMS) will be the first large magnetic spectrometer in space. It is scheduled to be installed on the future International Space Station ALPHA (ISSA) in the year 2002 to perform measurements of the charged particle composition to answer fundamental questions in particle physics and astrophysics. Before installation on ISSA, AMS will fly on the shuttle DISCOVERY for a period of 10 days starting in May 1998. This will enable AMS to perform a test of the apparatus and first measurements. The AMS detector has five major components: A permanent NdFeB magnet, six planes of Silicon double-sided microstrip detectors, a plastic scintillator time of flight hodoscope, a plastic scintillator anticoincidence counter and an Aerogel Cherenkov threshold counter. In addition, there are electronics, support infrastructure and interfaces.

  6. A magnetic filter with permanent magnets on the basis of rare earths

    NASA Astrophysics Data System (ADS)

    Žežulka, Václav; Straka, Pavel; Mucha, Pavel

    2004-01-01

    The article presents the development and construction of a magnetic filter based on the HGMS principle with permanent magnets. It is aimed especially at the assembly of the magnetic circuit using magnets from the material NdFeB. The way of the construction of large magnetic blocks, their magnetization and assembly are described. Further, it contains the measured values of magnetic induction in the middle of the air gap as a function of the width of this gap and of the height of the magnetic blocks in question, as well as the corresponding graphic representation. The high values of the magnetic induction obtained together with favourable price are sufficient reasons for the employment of this type of magnetic circuit in various applications.

  7. Scrap car recycling in Taiwan

    SciTech Connect

    Lee, C.H.; Tai, H.S.; Fan, R.K.S.

    1997-12-31

    The official figure of registered automobiles released by the Ministry of Transportation of Taiwan, R.O.C. as of the end of April 1996, is approximately 4.8 millions. Among them, 18% of the cars are between seven and ten years old and 15% of the cars are old than ten years. The result of this large number of old cars is the problem of abandoned cars on the street of Taiwan. This phenomena not only hinders traffic flow but also undermines the living quality in the cities. To minimize these negative effects, EPA has promulgated a Scrap Motor Vehicles Management Regulation to enforce the scrap car recycling in Taiwan. Under this regulation, a buyer of a new vehicle has to pay the Scrap Motor Vehicle Disposal fee (NT$ 3000, or US$ 110 for a car; and NT$ 700, or US$ 25 for a motorcycle). This paper presents the current status of scrap car recycling in Taiwan.

  8. Scrapping of student bursaries confirmed.

    PubMed

    Longhurst, Chris

    2016-07-27

    Student bursaries for nurses will be scrapped from next year, the government has confirmed. Undergraduate nursing and midwifery students in England will now face tuition fees and student loans from August 2017.

  9. Grain size quantification by optical microscopy, electron backscatter diffraction, and magnetic force microscopy.

    PubMed

    Chen, Hansheng; Yao, Yin; Warner, Jacob A; Qu, Jiangtao; Yun, Fan; Ye, Zhixiao; Ringer, Simon P; Zheng, Rongkun

    2017-06-13

    Quantification of microstructure, especially grain size, in polycrystalline materials is a vital aspect to understand the structure-property relationships in these materials. In this paper, representative characterization techniques for determining the grain size, including optical microscopy (OM), electron backscatter diffraction (EBSD) in the scanning electron microscopy (SEM), and atomic force microscopy/magnetic force microscopy (AFM/MFM), are thoroughly evaluated in comparison, illustrated by rare-earth sintered Nd-Fe-B permanent magnets. Potential applications and additional information achieved by using aforementioned characterization techniques have been discussed and summarized. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Small axial flux motor with permanent magnet excitation and etched airgap winding

    NASA Astrophysics Data System (ADS)

    Hamitsch, R.; Belmans, R.; Stephan, R.

    1994-03-01

    Disc-type motors with sintered Nd-Fe-B magnets benefit from the high remanence and near-ideal loop shape of the hard, magnetic material. Consequent advantages include a high torque for a given motor size and improved efficiency. Special airgap windings manufactured as multilayer etched windings contribute to flat package motors and to low torque harmonics. Different back iron designs were examined. For the operation of the brushless dc motor instead the classical hall sensors, small magnetoresistive sensors can be used effectively for rotor position sensing.

  11. Numerical simulation of a magnetostatically coupled composite magnet

    NASA Astrophysics Data System (ADS)

    Gabay, A. M.; Hadjipanayis, G. C.

    2007-05-01

    The demagnetization behavior of the hard-soft composite magnet has been simulated with a simple model in order to understand better the magnetization reversal of die-upset composite magnets fabricated from blends of Nd-Fe-B ribbons and coarse Fe powders. The calculations show that soft magnetic inclusions of any size can be fully magnetically coupled with the hard matrix by long-range magnetostatic interactions provided that the inclusions form layers perpendicular to the magnetization direction. Though the magnetostatic coupling along does not lead to enhanced hard magnetic properties of the composite magnets, it makes the full exchange coupling between the hard and soft phases unnecessary and, therefore, relaxes the strict requirements for the size of the soft inclusions. The combination of magnetostatic coupling and partial exchange coupling in a die-upset magnet with layered morphology may facilitate the development of anisotropic hard-soft composite magnets with properties superior to the single-phase permanent magnets.

  12. Degradation phenomena of magnetic attachments used clinically in the oral environment

    NASA Astrophysics Data System (ADS)

    Chung, Chae-Heon; Choe, Han-Cheol; Kwak, Jong-Ha

    2006-08-01

    The purpose of this study was to investigate the mechanisms involved in the failure of magnetic attachments used to retain dental prostheses. Dyna magnets were retrieved from dentures that had failed after 34 months of clinical use. These magnetic attachments were prepared and sectioned so as to observe the corrosion surface and layer in order to analyze the corrosion behaviors of the attachments. The corroded surface was observed under a field emission scanning electron microscope (FE-SEM) (JSM 840A, JEOL, Japan). An X-ray diffractometer (XRD) was used to analyze the corrosion product formed due to corrosion in the oral environment. Erosion-corrosion started in the uneven portion of the stainless steel cover in the magnetic attachments composed with Nd-Fe-B alloy. Corrosion was initiated on the worn stainless steel surface, followed by spalling of magnetic material due to corrosive solution. The corrosion rate increased drastically after the corrosion product caused spalling in Nd-Fe-B alloy. Corrosion initiated in the uneven stainless steel surface as well as in the welded zone. In conclusion, the failure of magnetic attachments may occur by either welding failure or breakdown of the encapsulating material. Thus, we believe that treating the surface of magnetic attachments would resolve the corrosion problem seen in magnetic attachments to some extent.

  13. Die-upset Pr-Fe-B-type magnets from melt-spun ribbons

    SciTech Connect

    Fuerst, C.D.; Brewer, E.G.; Mishra, R.K. ); Zhu, Y.; Welch, D.O. )

    1994-04-15

    In order to optimize the magnetic properties of die-upset Pr-Fe-B magnets, we have systematically altered alloy compositions, including partial substitution of cobalt and neodymium, and low-level additions of gallium. In general, the remanences of Pr-Fe-B die-upset magnets were lower by [similar to]1 kG, and coercivities were higher by [similar to]4 kOe, than analogous Nd-Fe-B magnets. The microstructure of the Pr-Fe-B die-upset magnets was similar to Nd-Fe-B magnets. Both systems are two phase, consisting of oriented flat platelet-shaped grains of 2-14-1 separated by a rare earth-rich intergranular phase. The intergranular phase is thicker for the Pr-Fe-B magnets, resulting in enhanced magnetic domain wall pinning and increased coercivity. Even higher coercivities were obtained with small amounts of cobalt substitution ([le]5 at. % of the transition metal) and by very low-level additions of gallium ([le]0.5 at. %). The largest remanence ([ital B][sub [ital r

  14. Characterization of rare earth permanent magnets

    SciTech Connect

    Huetten, A.; Thomas, G.

    1991-06-01

    Recently developed alloys based either on ternary phases such as Nd{sub 2}Fe{sub 14}B (2--14) or on iron-rich pseudobinaries with the ThMn{sub 12}-structure combine excellent intrinsic magnetic properties with the appropriate microstructure for applications as hard magnetic materials. In order to understand the magnetic behavior of these materials, systematic microstructural characterization has been performed using microdiffraction, x-ray microanalyses and high resolution electron microscopy. The magnetic behavior of three types of NdFeB specimens, namely sintered, mechanically alloyed and melt-spun, is correlated to their microstructure. The effect of minority phases on the magnetization and the coercivity in these materials is investigated. The ease with which the nonmagnetic Nd-rich grain boundary phase decouples hard magnetic 2--14'' matrix grains depends on their average grain size which is related to the different preparation processes. 20 refs., 5 figs., 1 tab.

  15. A basic study of a triangular magnet chain for locomotion control

    NASA Astrophysics Data System (ADS)

    Kim, Sung Hoon; Hashi, Shuichiro; Ishiyama, Kazushi

    2011-04-01

    This paper introduces a theoretical (magnetic and robotic) and experimental study of a robotic locomotion principle utilizing a triangular artificial magnetic chain with a rotating magnetic field for biomedical applications. A three-axis Helmholtz coil system with external controller (joystick) controls the moving direction of the proposed magnet chain according to changes of the plane of the rotating magnetic field. The proposed magnet chain consists of three NdFeB magnets, and its magnetic property depends on dipoles interaction. Also, motion dynamics bring about a magnetic torque analyzed by robotics. A total magnetic moment on the triangular magnet chain provides magnetic torque in the rotating magnetic field, and a geometric property produces a stable movement for robotic locomotion.

  16. 48 CFR 245.607 - Scrap.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Scrap. 245.607 Section 245.607 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF... Inventory 245.607 Scrap. ...

  17. Neodymium as the main feature of permanent magnets from hard disk drives (HDDs).

    PubMed

    München, Daniel Dotto; Veit, Hugo Marcelo

    2017-03-01

    As a way to manage neodymium-iron-boron (NdFeB) magnets wasted in end-of-life hard disk drives (HDDs), a waste characterization is needed prior to a recycling process. Due to their magnetic properties, NdFeB magnets are essential in technological applications nowadays, thus causing an increase in the industrial demand for rare earth metals. However, these metals have a short supply, since they are difficult to obtain from ores, creating a critical market. In this work, a study of the characterization of sintered neodymium-iron-boron magnets was undertaken by qualitatively and quantitatively uncovering the neodymium recovery potential from this type of electronic waste. From the collection and disassembly of hard disk drives, in which the magnet represents less than 3% of the total weight, an efficient demagnetization process was proceeded at 320°C. Then, the magnet was ground and screened for an X-ray diffraction (XRD) analysis, which showed the Nd2Fe14B tetragonal phase as the dominant constituent of the sample. An analysis was also carried out in a scanning electron microscope (SEM) and an inductively coupled plasma optical emission spectrometer (ICP-OES), where the magnet composition showed 21.5wt% of neodymium and 65.1wt% of iron, among other chemicals. This Nd content is higher than the one found in Nd ores, enhancing the recyclability and the importance of waste management.

  18. 7 CFR 29.2529 - Leaf scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf scrap. 29.2529 Section 29.2529 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2529 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or...

  19. 7 CFR 29.6022 - Leaf scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture... INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or broken leaves. ...

  20. 7 CFR 29.2529 - Leaf scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf scrap. 29.2529 Section 29.2529 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2529 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or...

  1. 7 CFR 29.3034 - Leaf scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture... Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or broken leaves. ...

  2. 7 CFR 29.3526 - Leaf scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture... Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or broken leaves. [30 FR 9207, July 23, 1965...

  3. 7 CFR 29.6022 - Leaf scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture... INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or broken leaves. ...

  4. 7 CFR 29.3034 - Leaf scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture... Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or broken leaves. [24 FR 8771, Oct. 29, 1959. Redesignated at 49 FR...

  5. 7 CFR 29.2277 - Leaf scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf scrap. 29.2277 Section 29.2277 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2277 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists...

  6. 7 CFR 29.2529 - Leaf scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf scrap. 29.2529 Section 29.2529 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2529 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or...

  7. 7 CFR 29.2277 - Leaf scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf scrap. 29.2277 Section 29.2277 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2277 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists...

  8. 7 CFR 29.2277 - Leaf scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf scrap. 29.2277 Section 29.2277 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2277 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists...

  9. 7 CFR 29.3526 - Leaf scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture... Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or broken leaves. ...

  10. 7 CFR 29.3034 - Leaf scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture... Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or broken leaves. ...

  11. 7 CFR 29.6022 - Leaf scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture... INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or broken leaves. ...

  12. 7 CFR 29.3526 - Leaf scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture... Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or broken leaves. ...

  13. 7 CFR 29.3034 - Leaf scrap.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and...

  14. 7 CFR 29.2277 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.2277 Section 29.2277 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists...

  15. 7 CFR 29.3526 - Leaf scrap.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling...

  16. 7 CFR 29.6022 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results...

  17. 7 CFR 29.2529 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.2529 Section 29.2529 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2529 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or...

  18. 7 CFR 29.3034 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and...

  19. 7 CFR 29.2529 - Leaf scrap.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf scrap. 29.2529 Section 29.2529 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2529 Leaf scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or...

  20. 7 CFR 29.2277 - Leaf scrap.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf scrap. 29.2277 Section 29.2277 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists...

  1. 7 CFR 29.3526 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling...

  2. 7 CFR 29.6022 - Leaf scrap.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results...

  3. Micromagnet structures for magnetic positioning and alignment

    NASA Astrophysics Data System (ADS)

    Zanini, L. F.; Osman, O.; Frenea-Robin, M.; Haddour, N.; Dempsey, N. M.; Reyne, G.; Dumas-Bouchiat, F.

    2012-04-01

    High performance hard magnetic films (NdFeB, SmCo) have been patterned at the micron scale using thermo-magnetic patterning. Both out-of-plane and in-plane magnetized structures have been prepared. These micromagnet arrays have been used for the precise positioning and alignment of superparamagnetic nano- and microparticles. The specific spatial arrangement achieved is shown to depend on both the particle size and the size and orientation of the micromagnets. These micromagnet arrays were used to trap cells magnetically functionalized by endocytosis of 100 nm superparamagnetic particles. These simple, compact, and autonomous structures, which need neither an external magnetic field source nor a power supply, have much potential for use in a wide range of biological applications.

  4. Magnetic repulsion of linear accelerator contaminates.

    PubMed

    Butson, M J; Wong, T P; Law, A; Law, M; Mathur, J N; Metcalfe, P E

    1996-06-01

    Neodymium Iron Boron (NdFeB) rare earth permanent magnets have unique properties that enable them to fit easily onto the accessory mount of a clinical linear accelerator to partially sweep away electron contamination produced by the treatment head and block trays and thus increase skin sparing. Using such magnets the central axis entrance surface dose has been reduced by 11% for a 20 x 30 cm field size from 32% to 21% of maximum dose by the magnetic device. A reduction of 14% from 32% to 18% was seen for a 20 x 20 cm field size with a 6 mm perspex block tray positioned above the magnet. The magnetic device is light weight and thus clinically usable.

  5. Managing potentially radioactive scrap metal

    SciTech Connect

    2002-11-19

    The National Council on Radiation Protection and Measurements published NCRP Report No. 141 on November 19, 2002. Contract DE-FG02-98CH10945 provided the sole support for this report titled ''Managing Potentially Radioactive Scrap Metal.'' Some preliminary work supported by the U.S. Environmental Protection Agency that led to an NCRP Letter Report provided some background information for this work. NCRP Report No. 141 provides recommendations on the methodologies and techniques available to the United States for disposing of radioactive, contaminated scrap metals.

  6. Anisotropy and Microstructure of High Coercivity Rare Earth Iron Permanent Magnets, List of Papers Published

    DTIC Science & Technology

    1989-01-01

    For a di- dopant-enriched (precipitate) nbl NbFe2 hedral angle over 60 the liquid becomes isolated nb2 NbFeB zr-3 at the triple points between...Typen relnigenI An don Zellenenden und am Ful der Salto n|dit Ober die Pragelinle sdtreibenl Slehe audi 81. Ordner Nr. 8.10 Anlage 1 und slehe TOL 24470...microstructure of the intersection of three hardmagnetic 0-grains found in Nd-Fe-B:Al sintered magnet by TEM. The triple grain boundary junction is

  7. Magnetic performance of DEVU25.20h undulator at IDDL, DAVV,India

    NASA Astrophysics Data System (ADS)

    Mishra, G.; Gehlot, Mona; Sharma, Geetanjali; Khullar, Roma

    2016-10-01

    In this paper, we describe the design development and magnetic performance of a prototype DEVU25.20h, variable gap hybrid undulator at IDD laboratory, DAVV, Indore, India. The undulator is NdFeB based hybrid undulator with twenty five period and 20 mm each period length. Low cost M35 grade cobalt steel is used as the pole material of the undulator. The abc coefficients of the new pole material is prescribed and the measured performance and characteristics of the undulator is evaluated using RADIA. The detailed design parameters and performance indicators are summarized in Table 1 and Table 2 respectively.

  8. Additive manufacturing of near-net-shape bonded magnets: Prospects and challenges

    DOE PAGES

    Li, Ling; Post, Brian; Kunc, Vlastimil; ...

    2017-01-03

    Additive manufacturing (AM) or 3D printing is well known for producing arbitrary shaped parts without any tooling required, offering a promising alternative to the conventional injection molding method to fabricate near-net-shaped magnets. In order to determine their applicability in the fabrication of Nd-Fe-B bondedmagnets, we compare two 3D printing technologies, namely binder jetting and material extrusion. Some prospects and challenges of these state-of-the-art technologies for large-scale industrial applications will be discussed.

  9. Zero Rare-Earth Magnet Integrated Starter-Generator Development for Military Vehicle Applications

    DTIC Science & Technology

    2013-08-14

    generation is expected to reach and exceed 100kW. • Many electric machines capable of (≥ 100kW) output power rely on rare-earth elements such Nd, Sm , Dy...Steel • 1940’s – Alnico • 1950’s – Ferrite • 1960’s – Alnico 9 • 1960’s – SmCo − First RE PM’s • 1980’s – NdFeB • 2007 – LaCo Ferrite ...LaCo Ferrite Developmental Materials Zero Rare-Earth Ferrite Alnico Developmental Materials UNCLASSIFIED UNCLASSIFIED Permanent Magnet

  10. High Value Scrap Tire Recycle

    SciTech Connect

    Bauman, B. D.

    2003-02-01

    The objectives of this project were to further develop and scale-up a novel technology for reuse of scrap tire rubber, to identify and develop end uses for the technology (products), and to characterize the technology's energy savings and environmental impact.

  11. Scrap tires: STATEing the facts

    SciTech Connect

    Dabaie, M.

    1994-10-01

    Starting with a piece of Minnesota legislation passed in 1984, state governments have spent the last 10 years attempting to clean up and find markets for decades worth of stockpiled tires, as well as the millions more generated each year. The US EPA estimates that 242 million scrap tires were generated in the US in 1990 alone. Of these, an alarming 188 million were disposed of illegally. At least 34 states have bans on the landfilling of whole, and in some cases even shredded, tires. Last year, 37 states considered scrap-tire-related bills, most of which were amendments to earlier legislation. Among the scrap tire legislation passed in the past year are comprehensive laws in Ohio and Colorado, including fees for the disposal of tires, most of which are paid by the consumer. Fees were increased in North Carolina and Texas, and a $2-per-tire fee was begun in Connecticut, while hauler registration requirements were enacted in California. This article discusses what five states are doing with the management of scrap tires. They are: Minnesota; Wisconsin; Texas; Oklahoma; and Illinois.

  12. New permanent magnets; manganese compounds.

    PubMed

    Coey, J M D

    2014-02-12

    The exponential growth of maximum energy product that prevailed in the 20th century has stalled, leaving a market dominated by two permanent magnet materials, Nd2Fe14B and Ba(Sr)Fe12O19, for which the maximum theoretical energy products differ by an order of magnitude (515 kJ m(-3) and 45 kJ m(-3), respectively). Rather than seeking to improve on optimized Nd-Fe-B, it is suggested that some research efforts should be devoted to developing appropriately priced alternatives with energy products in the range 100-300 kJ m(-3). The prospects for Mn-based hard magnetic materials are discussed, based on known Mn-based compounds with the tetragonal L10 or D022 structure or the hexagonal B81 structure.

  13. Creation of transcatheter aortopulmonary and cavopulmonary shunts using magnetic catheters: feasibility study in swine.

    PubMed

    Levi, Daniel S; Danon, Saar; Gordon, Brent; Virdone, Nicky; Vinuela, Fernando; Shah, Sanjay; Carman, Greg; Moore, John W

    2009-05-01

    Surgical shunts are the basic form of palliation for many types of congenital heart disease. The Glenn shunt (superior cavopulmonary connection) and central shunt (aortopulmonary connection) represent surgical interventions that could potentially be accomplished by transcatheter techniques. We sought to investigate the efficacy of using neodymium iron boron (NdFeB) magnetic catheters to create transcatheter cavopulmonary and aortopulmonary shunts. NdFeB magnets were machined and integrated into catheters. "Target" catheters were placed in the pulmonary arteries (PAs), and radiofrequency "perforation" catheters were placed in either the descending aorta (DAo) for central shunts or the superior vena cava (SVC) for Glenn shunts. The magnet technique or "balloon target" method was used to pass wires from the DAo or the SVC into the PA. Aortopulmonary and cavopulmonary connections were then created using Atrium iCAST covered stents. Magnet catheters were used to perforate the left pulmonary artery from the DAo, thereby establishing a transcatheter central shunt. Given the orientation of the vasculature, magnetic catheters could not be used for SVC-to-PA connections; however, perforation from the SVC to the right pulmonary artery was accomplished with a trans-septal needle and balloon target. Transcatheter Glenn or central shunts were successfully created in four swine.

  14. Reduction in Current Consumption of Small DC Motor with Rare-Earth Flexible Bonded Magnets Prepared by Powder Compacting Press and Hot Rolling

    NASA Astrophysics Data System (ADS)

    Yamashita, Fumitoshi; Watanabe, Akihiko; Fukunaga, Hirotoshi

    The usage of high-performance rare-earth magnets is one of the key technologies in the development of efficient small motors. Ring-shaped melt-spun Nd-Fe-B bonded magnets, prepared using a powder compacting press and/or injection molding, are generally used in typical applications to small efficient motors. For exploiting the maximum characteristics according to the variety of magnetic powder, however, the preparation method of the magnet, the magnet form, and the motor design needs to be changed for high-productivity as well as for improving total performance, including the magnetic properties of bonded magnets. This paper reports recent achievements in new preparation processes for rare-earth bonded magnets and small motors using new materials other than Nd-Fe-B melt-spun powder. This paper especially focuses on the method for maximally exploiting certain rare-earth magnetic powders . Furthermore, reduction in the current consumption of the small DC motor using the developed technique is reported.

  15. A magnetically driven PDMS peristaltic micropump.

    PubMed

    Pan, Tingrui; Kai, Eleanor; Stay, Matthew; Barocas, Victor; Ziaie, Babak

    2004-01-01

    We present a robust low-cost PDMS peristaltic micropump with magnetic drive. The fabrication process is based on the soft molding and bonding of three PDMS layers. A base layer incorporates the microchannel while a middle layer contains the actuation membrane. The top layer encapsulates three small permanent magnetic rods (Ni-plated-NdFeB) in three small chambers. A small DC motor (6 mm in diameter and 15 mm in length) with three permanent magnets stagger-mounted on its shaft is used to pull down and actuate the membrane-mounted magnets to generate a peristaltic waveform. A maximum pumping rate of about 24 muL/min at the speed of 1700 rpm with power consumption of 11 mW was demonstrated. A preliminary numerical analysis of the peristaltic pump was performed, which showed the characteristic membrane deflection and fluid flow of pumping.

  16. Magnetic and viscoelastic response of elastomers with hard magnetic filler

    NASA Astrophysics Data System (ADS)

    Kramarenko, E. Yu; Chertovich, A. V.; Stepanov, G. V.; Semisalova, A. S.; Makarova, L. A.; Perov, N. S.; Khokhlov, A. R.

    2015-03-01

    Magnetic elastomers (MEs) based on a silicone matrix and magnetically hard NdFeB particles have been synthesized and their magnetic and viscoelastic properties have been studied depending on the size and concentration of magnetic particles and the magnetizing field. It has been shown that magnetic particles can rotate in soft polymer matrix under applied magnetic field, this fact leading to some features in both magnetic and viscoelastic properties. In the maximum magnetic field used magnetization of MEs with smaller particles is larger while the coercivity is smaller due to higher mobility of the particles within the polymer matrix. Viscoelastic behavior is characterized by long relaxation times due to restructuring of the magnetic filler under the influence of an applied mechanical force and magnetic interactions. The storage and loss moduli of magnetically hard elastomers grow significantly with magnetizing field. The magnetic response of the magnetized samples depends on the mutual orientation of the external magnetic field and the internal sample magnetization. Due to the particle rotation within the polymer matrix, the loss factor increases abruptly when the magnetic field is turned on in the opposite direction to the sample magnetization, further decreasing with time. Moduli versus field dependences have minimum at non-zero field and are characterized by a high asymmetry with respect to the field direction.

  17. The use of a neodymium-iron-boron magnet device for positioning a multi-stranded wire retainer in lingual retention--a pilot study in humans.

    PubMed

    Hahn, Wolfram; Fricke, Julia; Fricke-Zech, Susanne; Zapf, Antonia; Gruber, Rudolf; Sadat-Khonsari, Reza

    2008-10-01

    The aim of this study was to evaluate the time requirement of a newly developed device made of neodymium-iron-boron (NdFeB) magnets for positioning a multi-stranded, canine-to-canine retainer during bonding compared with dental floss and a transfer tray. Forty-five patients aged between 12 and 33 years (26 male, 19 female) previously treated with fixed appliances were enrolled in the study. The patients were randomly allocated to three groups (15 per group). For each group a mandibular canine-to-canine retainer of 0.018 inch Dentaflex multi-stranded wire (Dentaurum) was prefabricated for each patient on a cast. The bonding procedure was identical, except for the method of positioning the wire during adhesive fixation: group A dental floss, group B a small prefabricated transfer tray of dental resin and group C the NdFeB magnet device. For each group, the time required for the complete bonding process was measured. Kruskal-Wallis and Wilcoxon-Mann-Whitney tests were used for group and pairwise comparisons, respectively. The three methods required statistically significant different times (P < 0.001). The Wilcoxon-Mann-Whitney test revealed that wire positioning with the magnet device was significantly faster [4.98 minutes; standard deviation (SD) 0.68 minutes] than with dental floss (7.65 minutes, SD 1.14 minutes; P = 0.0001) or with transfer tray (5.75 minutes, SD 0.57 minutes; P = 0.001). The NdFeB magnet device is a timesaving appliance for positioning a multi-stranded, canine-to-canine retainer during bonding when compared with dental floss and an individually prefabricated transfer tray.

  18. An Experimental Study of Radiation-Induced Demagnetization of Insertion Device Permanent Magnets

    SciTech Connect

    Simos,N.; Job, P.K.; Mokhov, N.

    2008-06-23

    High brilliance in the 3GeV new light source NSLS II is obtained from the high magnetic fields in insertion devices (ID). The beam lifetime is limited to 3h by single Coulomb scattering in the Bunch (Touschek effect). This effect occurs everywhere around the circumference and there is unavoidable beam loss in the adjacent low aperture insertion devices. This raises the issue of degradation and damage of the permanent magnetic material by irradiation with high energy electrons and corresponding shower particles. It is expected that IDs, especially those in-vacuum, would experience changes resulting from exposure to gamma rays, x-rays, electrons and neutrons. By expanding an on-going material radiation damage study at BNL the demagnetization effect of irradiation consisting primarily of neutrons, gamma rays and electrons on a set of NdFeB magnets is studied. Integrated doses ranging from several Mrad to a few Grad were achieved at the BNL Isotope Facility with a 112 MeV, 90 {micro}A proton beam. Detailed information on dose distributions as well as on particle energy spectra on the NdFeB magnets was obtained in realistic simulations with the MARS15 Monte-Carlo code. This paper summarizes the results of this study.

  19. Inverted Linear Halbach Array for Separation of Magnetic Nanoparticles.

    PubMed

    Ijiri, Y; Poudel, C; Williams, P S; Moore, L R; Orita, T; Zborowski, M

    2013-07-01

    A linear array of Nd-Fe-B magnets has been designed and constructed in an inverted Halbach configuration for use in separating magnetic nanoparticles. The array provides a large region of relatively low magnetic field, yet high magnetic field gradient in agreement with finite element modeling calculations. The magnet assembly has been combined with a flow channel for magnetic nanoparticle suspensions, such that for an appropriate distance away from the assembly, nanoparticles of higher moment aggregate and accumulate against the channel wall, with lower moment nanoparticles flowing unaffected. The device is demonstrated for iron oxide nanoparticles with diameters of ~ 5 and 20 nm. In comparison to other approaches, the inverted Halbach array is more amenable to modeling and to scaling up to preparative quantities of particles.

  20. Inverted Linear Halbach Array for Separation of Magnetic Nanoparticles

    PubMed Central

    Ijiri, Y.; Poudel, C.; Williams, P.S.; Moore, L.R.; Orita, T.; Zborowski, M.

    2014-01-01

    A linear array of Nd-Fe-B magnets has been designed and constructed in an inverted Halbach configuration for use in separating magnetic nanoparticles. The array provides a large region of relatively low magnetic field, yet high magnetic field gradient in agreement with finite element modeling calculations. The magnet assembly has been combined with a flow channel for magnetic nanoparticle suspensions, such that for an appropriate distance away from the assembly, nanoparticles of higher moment aggregate and accumulate against the channel wall, with lower moment nanoparticles flowing unaffected. The device is demonstrated for iron oxide nanoparticles with diameters of ~ 5 and 20 nm. In comparison to other approaches, the inverted Halbach array is more amenable to modeling and to scaling up to preparative quantities of particles. PMID:25382864

  1. 48 CFR 245.7310-7 - Scrap warranty.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Scrap warranty. 245.7310-7... Scrap warranty. The following condition shall be used whenever property, other than production scrap, is offered for sale as scrap: Scrap Warranty The Purchaser represents and warrants that the property will be...

  2. 32 CFR 644.522 - Clearance of military scrap.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Clearance of military scrap. 644.522 Section 644... Excess Land and Improvements § 644.522 Clearance of military scrap. Military scrap can contain or be... destruction, by using command, of all military scrap and scrap metal from lands suitable for cultivation...

  3. 32 CFR 644.522 - Clearance of military scrap.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Clearance of military scrap. 644.522 Section 644... Excess Land and Improvements § 644.522 Clearance of military scrap. Military scrap can contain or be... destruction, by using command, of all military scrap and scrap metal from lands suitable for cultivation...

  4. 32 CFR 644.522 - Clearance of military scrap.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Clearance of military scrap. 644.522 Section 644... Excess Land and Improvements § 644.522 Clearance of military scrap. Military scrap can contain or be... destruction, by using command, of all military scrap and scrap metal from lands suitable for cultivation...

  5. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology.

    PubMed

    Yang, Yali; Valentine, Megan T

    2013-01-01

    The microtubule (MT) cytoskeleton is essential in maintaining the shape, strength, and organization of cells. Its spatiotemporal organization is fundamental for numerous dynamic biological processes, and mechanical stress within the MT cytoskeleton provides an important signaling mechanism in mitosis and neural development. This raises important questions about the relationships between structure and mechanics in complex MT structures. In vitro, reconstituted cytoskeletal networks provide a minimal model of cell mechanics while also providing a testing ground for the fundamental polymer physics of stiff polymer gels. Here, we describe our development and implementation of a broad tool kit to study structure-mechanics relationships in reconstituted MT networks, including protocols for the assembly of entangled and cross-linked MT networks, fluorescence imaging, microstructure characterization, construction and calibration of magnetic tweezers devices, and mechanical data collection and analysis. In particular, we present the design and assembly of three neodymium iron boron (NdFeB)-based magnetic tweezers devices optimized for use with MT networks: (1) high-force magnetic tweezers devices that enable the application of nano-Newton forces and possible meso- to macroscale materials characterization; (2) ring-shaped NdFeB-based magnetic tweezers devices that enable oscillatory microrheology measurements; and (3) portable magnetic tweezers devices that enable direct visualization of microscale deformation in soft materials under applied force.

  6. Determination of magnetic anisotropy of magnetically hard materials

    NASA Astrophysics Data System (ADS)

    Richter, H. J.

    1990-03-01

    The determination of the first-order anisotropy field strength using the torsion pendulum method is described. Since the applied field need not necessarily be in the range of the anisotropy field, this method is particularly useful for characterizing modern permanent magnet materials which have a very high uniaxial anisotropy. The method requires oriented samples. Measurements were made on polycrystalline samples of NdFeB, SmCo, and barium ferrite. The method is described and error sources are discussed. It is pointed out that the torsion pendulum method is closely related to reversible transverse susceptibility measurements. It is shown both experimentally and theoretically, that using susceptibility measurements similar results can be obtained. The susceptibility method is, however, not applicable to conducting materials at present.

  7. Determination of magnetic anisotropy of magnetically hard materials

    SciTech Connect

    Richter, H.J. )

    1990-03-15

    The determination of the first-order anisotropy field strength using the torsion pendulum method is described. Since the applied field need not necessarily be in the range of the anisotropy field, this method is particularly useful for characterizing modern permanent magnet materials which have a very high uniaxial anisotropy. The method requires oriented samples. Measurements were made on polycrystalline samples of NdFeB, SmCo, and barium ferrite. The method is described and error sources are discussed. It is pointed out that the torsion pendulum method is closely related to reversible transverse susceptibility measurements. It is shown both experimentally and theoretically, that using susceptibility measurements similar results can be obtained. The susceptibility method is, however, not applicable to conducting materials at present.

  8. Scrap tire recycling in Minnesota

    SciTech Connect

    Not Available

    1989-10-01

    The author discusses the problems associated with scrap tires. For example, surface storing of scrap tires poses a fire hazard and the rainwater trapped in the tire casings is an ideal breeding ground for mosquitoes. Use as a fuel for energy production is unattractive as long as oil retails at its present low price. Past reclamation processes have not met expectations. Legislation alone is not the answer, because scrap tires cannot be regulated out of existence. However, the Minnesota state legislature has come up with an approach that seems to be successful. It has passed the Waste Tire Act, which not only formulates regulations but also provides funding for research and development. Thus, it has established a tire disposal fund for financing construction costs of tire recycling facilities. One of the outcomes was the construction of the St. Louis county Waste Tire Recycling Facility. Through a leasing arrangement with Minneapolis-based Rubber Elastomerics, Inc. (RRE), construction costs financed by the tire disposal fund eventually will be repaid by RRE to the fund. The arrangement is described in detail. By a process also described, RRE produces a product that can be used in thermoset and in thermoplastic compounds. The user can incorporate between 50 percent and 85 percent of the recycled product into a rubber or plastic compound without significantly affecting the physical properties of the compound.

  9. Developments in radioactive scrap monitoring

    SciTech Connect

    Bellian, J.G.

    1997-12-31

    Over the past ten years there have been major developments in radiation monitoring systems used for detecting shielded radioactive sources in scrap metal. The extent of the problem and industry`s awareness of the problem have both grown significantly during that time. The multimillion dollar expenses associated with decontamination after a source passes into the melt and the potential health hazard to employees and the public have added further impetus to the development of monitoring systems. Early attempts at scrap monitoring could detect some radiation, but testing with real life situations showed them to be virtually incapable of detecting shielded sources of radioactivity in incoming vehicles. More sophisticated detector technology and the development of advanced software made useful by more powerful microprocessors led to successive generations of monitoring systems with order-of-magnitude improvement in detection capability. The next generation includes larger detectors and more complex algorithms offering further improvement in truck and rail car monitoring. Complete solutions require monitoring at additional locations within the site, such as the charge bucket and conveyor lines, and at the scrap processor`s site.

  10. The Rare Earth Magnet Industry and Rare Earth Price in China

    NASA Astrophysics Data System (ADS)

    Ding, Kaihong

    2014-07-01

    In the past four years, the price of rare earth metal fluctuates sharply for many reasons. Currently, it has become more stable and more reasonable. This presentation is focused on the effect about the rare earth metal price. Some motor manufacturers have shifted from rare earth permanent magnet to ferrite magnet. Many motor manufacturers changed the design for the motor cooling system to make the motor function at a lower temperature. Thus the consumption of Dy can be markedly reduced. As for manufacturer of NdFeB magnet, we are also trying to optimize our process to reduce to dependence of HREE such as Dy and Tb. HS process have been introduced to solve the problem. With more and more people focusing and engaging on the REE industry, the price of REE will be more transparent without too many fluctuations. China is considering the problems of balancing the environment, energy sources, and labor sources. The application field about NdFeB such as wind turbine generator, HEV/EV, FA /OA is flourishing.

  11. Quantum Hall effect in epitaxial graphene with permanent magnets

    NASA Astrophysics Data System (ADS)

    Parmentier, F. D.; Cazimajou, T.; Sekine, Y.; Hibino, H.; Irie, H.; Glattli, D. C.; Kumada, N.; Roulleau, P.

    2016-12-01

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  12. A magnetically driven PDMS micropump with microball valves.

    PubMed

    McDonald, Scott; Pan, Tingrui; Ziaie, Babak

    2004-01-01

    We present a novel robust PDMS membrane micropump with two one-way microball valves for biomedical applications. The actuating membrane is driven by magnetic force of two miniature permanent magnets. The micropump consists of two PDMS layers, one holding the microball valves and actuating chamber and the second holding the top magnet and covering the chamber and microvalves. A simple approach is used to fabricate a high performance microball valve using an embedded Teflon/sup trade mark/ microtube. A small DC motor (6mm in diameter and 15mm in length) with two permanent magnetic discs (NdFeB) mounted on its shaft is used to actuate the membrane-mounted magnet. This configuration yields a large pumping rate with very low power consumption. Maximum pumping rate of 260muL/min was achieved at the input power of 21mW, the highest pumping rate reported in the literature for micropumps at such power consumption.

  13. Quantum Hall effect in epitaxial graphene with permanent magnets

    PubMed Central

    Parmentier, F. D.; Cazimajou, T.; Sekine, Y.; Hibino, H.; Irie, H.; Glattli, D. C.; Kumada, N.; Roulleau, P.

    2016-01-01

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications. PMID:27922114

  14. Quantum Hall effect in epitaxial graphene with permanent magnets.

    PubMed

    Parmentier, F D; Cazimajou, T; Sekine, Y; Hibino, H; Irie, H; Glattli, D C; Kumada, N; Roulleau, P

    2016-12-06

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  15. Variable-field permanent magnet quadrupole for the SSC

    SciTech Connect

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1993-10-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90{degrees} rotation of the outer ring of iron and magnet material.

  16. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1987-07-30

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  17. Removal of copper from ferrous scrap

    DOEpatents

    Blander, Milton; Sinha, Shome N.

    1990-01-01

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  18. Environmental hazard evaluation of amalgam scrap.

    PubMed

    Fan, P L; Chang, S B; Siew, C

    1992-11-01

    Amalgam scrap was subjected to two different Environmental Protection Agency (EPA) extraction procedures to determine if it presents an environmental hazard. The results indicate that concentrations of mercury and silver in the extracts do not exceed the EPA's maximum allowable concentrations. It was concluded that amalgam scrap is not a hazardous solid waste. Proper handling of amalgam scrap disposal by recycling is, however, highly recommended.

  19. Removal of copper from ferrous scrap

    DOEpatents

    Blander, M.; Sinha, S.N.

    1990-05-15

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  20. INTERIOR VIEW WITH SCRAP HAULER DUMPING SCRAP (C. 100,000 TONS) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW WITH SCRAP HAULER DUMPING SCRAP (C. 100,000 TONS) INTO Q-BOP FURNACE. SCRAP HAULER IS GREGORY JACKS AND FURNACEMAN, VINCENT MOREL. - U.S. Steel, Fairfield Works, Q-Bop Furnace, North of Valley Road & West of Ensley, Pleasant Grove Road, Fairfield, Jefferson County, AL

  1. Management of MSW in Spain and recovery of packaging steel scrap.

    PubMed

    Tayibi, Hanan; Peña, Carmen; López, Félix A; López-Delgado, Aurora

    2007-01-01

    Packaging steel is more advantageously recovered and recycled than other packaging material due to its magnetic properties. The steel used for packaging is of high quality, and post-consumer waste therefore produces high-grade ferrous scrap. Recycling is thus an important issue for reducing raw material consumption, including iron ore, coal and energy. Household refuse management consists of collection/disposal, transport, and processing and treatment - incineration and composting being the most widely used methods in Spain. Total Spanish MSW production exceeds 21 million tons per year, of which 28.1% and 6.2% are treated in compost and incineration plants, respectively. This paper presents a comprehensive study of incineration and compost plants in Spain, including a review of the different processes and technologies employed and the characteristics and quality of the recovered ferrous scrap. Of the total amount of packaging steel scrap recovered from MSW, 38% comes from compost plants and 14% from incineration plants. Ferrous scrap from incineration plants presents a high degree of chemical alteration as a consequence of the thermal process to which the MSW is subjected, particularly the conditions in which the slag is cooled, and accordingly its quality diminishes. Fragmentation and magnetic separation processes produce an enhancement of the scrap quality. Ferrous scrap from compost plants has a high tin content, which negatively affects its recycling. Cleaning and detinning processes are required prior to recycling.

  2. A recycling process for dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J. ); Morgan, W.A.; Kellner, A.W.; Harrison, J. )

    1992-01-01

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  3. A recycling process for dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Morgan, W.A.; Kellner, A.W.; Harrison, J.

    1992-08-01

    In response to the several-fold increase in consumption of galvanized steel in the last decade and the problems associated with refurnacing larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is electrowon as dendritic powder. The process is effective for zinc, lead, aluminum, and cadmium removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested for batch treatment of 1,000 tons of mostly baled scrap. A pilot plant to continuously treat loose scrap is under construction. Use of degalvanized steel scrap decreases raw materials and environmental compliance costs to steel- and iron-makers, may enable integrated steel producers to recycle furnace dusts to the sinter plant, and may enable EAF production of flat products without use of DRI or pig iron. Recycling the components of galvanized steel scrap saves primary energy, decreases zinc imports, and adds value to the scrap.

  4. Recycling scheme for scrapped automobiles in Japan

    SciTech Connect

    Suzuki, Masao; Nakajima, Akira; Taya, Sadao

    1995-12-31

    Over 5 million cars are scrapped yearly in Japan. After dismantling scrapped automobiles, they are put into a shredder for differential recovery of ferrous and nonferrous metals. The residue, which is called shredder dust, runs over 1.2 million tons per year. This paper reports a entire sequence of scrapping cars in Japan with the following sections: (1) production and scrapped car management, (2) material composition, (3) dismantling, (4) shredder plant, (5) differential recovery of metals including specific gravity and newly developed color separation.

  5. Fernald scrap metal recycling and beneficial reuse

    SciTech Connect

    Motl, G.P.; Burns, D.D.

    1993-10-01

    The Fernald site, formerly the Feed Materials Production Facility, produced uranium metal products to meet defense production requirements for the Department of Energy from 1953 to 1989. In this report is is described how the Fernald scrap metal project has demonstrated that contractor capabilities can be used successfully to recycle large quantities of Department of Energy scrap metal. The project has proven that the {open_quotes}beneficial reuse{close_quotes} concept makes excellent economic sense when a market for recycled products can be identified. Topics covered in this report include the scrap metal pile history, the procurement strategy, scrap metal processing, and a discussion of lessons learned.

  6. Magnetic viscosity studies in hard magnetic materials

    SciTech Connect

    Singleton, E.W.; Hadjipanayis, G.C. )

    1990-05-01

    The magnetic viscosity behavior has been studied in several hard magnets with different magnetization reversal mechanisms including barium ferrite powders, Cu-Mn-Al, ferrite magnets, Nd-Fe-B, and SmCo{sub 5}, Sm{sub 2}(Co,Fe,Cu,Zr){sub 17}. The measurements were made with a vibrating sample magnetometer for times up to 60 s and a SQUID magnetometer for longer times in the range of 60--2300 s. For most of the samples the magnetization was found to vary logarithmically with time. The field and temperature dependence of the magnetic viscosity coefficient {ital S} was studied. Here, {ital S} was found to vary with the applied field and it usually peaked around the coercive field {ital H}{sub {ital c}}. The measured values of {ital S}{sub max} at 10 K range from 0.004 to 1.853 emu/g for Cu-Mn-Al and Sm{sub 2}(Co,Fe,Cu,Zr){sub 17}, respectively. The magnetic viscosity coefficient was used together with the magnetic susceptibility to determine the activation volume.

  7. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  8. Effects of magnets with non-unit magnetic permeability on an elliptically polarizing undulator.

    PubMed

    Wang, C; Chang, L H; Chang, C H; Lin, M C; Hwang, C S; Chen, J R

    1998-05-01

    This study employs the three-dimensional magnetostatic code TOSCA to assess numerically the effects of NdFeB magnets with non-unit magnetic permeability on an elliptically polarizing undulator. A reduction of a few percent of the on-axis magnetic field strength is predicted. In addition, a deviation of +/-100 G cm uncompensated dipole steering is predicted in a phase shift of 180 degrees for the elliptically polarizing undulator EPU5.6 (having a period length of 56 mm) at the minimum gap of 18 mm, which is related primarily to the configuration of the device end scheme. Results presented herein demonstrate that implementing an active compensation mechanism is a prerequisite for minimizing the orbit distortion during phase-shift adjustment, particularly for operating such a polarizing undulator in a third-generation machine having a median energy similar to that of the 1.5 GeV storage ring at SRRC.

  9. Using injection molding and reversible bonding for easy fabrication of magnetic cell trapping and sorting devices

    NASA Astrophysics Data System (ADS)

    Royet, David; Hériveaux, Yoann; Marchalot, Julien; Scorretti, Riccardo; Dias, André; Dempsey, Nora M.; Bonfim, Marlio; Simonet, Pascal; Frénéa-Robin, Marie

    2017-04-01

    Magnetism and microfluidics are two key elements for the development of inexpensive and reliable tools dedicated to high-throughput biological analysis and providing a large panel of applications in domains ranging from fundamental biology to medical diagnostics. In this work, we introduce a simple protocol, relying on injection molding and reversible bonding for fabrication of magnetic cell trapping and sorting devices using only standard soft-lithography equipment. Magnetic strips or grids made of Polydimethylsiloxane (PDMS) doped with hard (NdFeB) or soft (carbonyl iron) magnetic powders were integrated at the bottom of whole PDMS chips. Preliminary results show the effective deviation/trapping of magnetic beads or magnetically-labeled bacteria as the sample flows through the microchannel, proving the potential of this rapid prototyping approach for easy fabrication of magnetic cell sorters.

  10. Effect of partial saturation of bonded neo magnet on the automotive accessory motor

    NASA Astrophysics Data System (ADS)

    Sheth, Nimitkumar K.; Angara, Raghu C. S. Babu

    2017-05-01

    In this paper the effects of using a partially magnetized bonded neo (NdFeB) magnet in an automotive accessory motor are presented. The potential reason for partial saturation of the bonded neo magnet is explained and a simple method to ensure saturation of the magnet is discussed. A magnetizing fixture design using the 2-D Finite element analysis (FEA) is presented. The motor performance at various magnet saturation levels has been estimated using the 2-D FEA. Details of the thermal demagnetization test adopted by the automotive industry is also discussed and results of the motor performance for four saturation levels are detailed. These results indicate that the effect of demagnetization is more adverse in a motor with partially saturated magnets.

  11. Non-invasive modulation of somatosensory evoked potentials by the application of static magnetic fields over the primary and supplementary motor cortices.

    PubMed

    Kirimoto, Hikari; Asao, Akihiko; Tamaki, Hiroyuki; Onishi, Hideaki

    2016-10-04

    This study was performed to investigate the possibility of non-invasive modulation of SEPs by the application of transcranial static magnetic field stimulation (tSMS) over the primary motor cortex (M1) and supplementary motor cortex (SMA), and to measure the strength of the NdFeB magnetic field by using a gaussmeter. An NdFeB magnet or a non-magnetic stainless steel cylinder (for sham stimulation) was settled on the scalp over M1 and SMA of 14 subjects for periods of 15 min. SEPs following right median nerve stimulation were recorded before and immediately after, 5 min after, and 10 min after tSMS from sites C3' and F3. Amplitudes of the N33 component of SEPs at C3' significantly decreased immediately after tSMS over M1 by up to 20%. However, tSMS over the SMA did not affect the amplitude of any of the SEP components. At a distance of 2-3 cm (rough depth of the cortex), magnetic field strength was in the range of 110-190 mT. Our results that tSMS over M1 can reduce the amplitude of SEPs are consistent with those of low-frequency repeated TMS and cathodal tDCS studies. Therefore, tSMS could be a useful tool for modulating cortical somatosensory processing.

  12. Non-invasive modulation of somatosensory evoked potentials by the application of static magnetic fields over the primary and supplementary motor cortices

    PubMed Central

    Kirimoto, Hikari; Asao, Akihiko; Tamaki, Hiroyuki; Onishi, Hideaki

    2016-01-01

    This study was performed to investigate the possibility of non-invasive modulation of SEPs by the application of transcranial static magnetic field stimulation (tSMS) over the primary motor cortex (M1) and supplementary motor cortex (SMA), and to measure the strength of the NdFeB magnetic field by using a gaussmeter. An NdFeB magnet or a non-magnetic stainless steel cylinder (for sham stimulation) was settled on the scalp over M1 and SMA of 14 subjects for periods of 15 min. SEPs following right median nerve stimulation were recorded before and immediately after, 5 min after, and 10 min after tSMS from sites C3′ and F3. Amplitudes of the N33 component of SEPs at C3′ significantly decreased immediately after tSMS over M1 by up to 20%. However, tSMS over the SMA did not affect the amplitude of any of the SEP components. At a distance of 2–3 cm (rough depth of the cortex), magnetic field strength was in the range of 110–190 mT. Our results that tSMS over M1 can reduce the amplitude of SEPs are consistent with those of low-frequency repeated TMS and cathodal tDCS studies. Therefore, tSMS could be a useful tool for modulating cortical somatosensory processing. PMID:27698365

  13. Micromagnetic Modeling of Hard Magnets

    NASA Astrophysics Data System (ADS)

    Fidler, J.

    1997-03-01

    The increasing impact of magnetic materials on many modern industries will continue well into the next century. Besides recording materials and soft magnetic devices , also hard magnetic materials are key components in transportation and information technologies, machines and many other systems. For the better understanding and the development of high performance permanent magnets a detailed understanding of the magnetization mechanisms leading to an improvement of the coercive field is necessary. Various approaches have been proposed to describe the coercivity of permanent magnets. Besides the micromagnetic approach of the nucleation of reversed domains, the expansion mechanism or the domain wall propagation, also other phenomenological approaches taking into account the magnetocrystalline anisotropy energy and the magnetic viscosity have been used. The hysteresis properties are governed by a combination of the intrinsic properties of the material, such as saturation polarization, magnetic exchange and magnetocrystalline anisotropy. The other important factors are the microstructural parameters, such as grain size, the orientation of the easy axes of the grains and the distribution of phases. The role of intergranular structure between the grains plays a significant role determining the magnetic properties, if the grain diameter is in the nanometer scale. It is intended to show the relationship between the magnetization reversal behavior and the real microstructure of various types of hard magnets, especially of rare earth permanent magnets. The theoretical treatment of the magnetization reversal processes is performed in the framework of the continuum theory of micromagnetism. Starting from a real microstructure, characterized by optical and electron microscopic techniques, the influence of the dipolar and the exchange interaction between hard magnetic grains has been demonstrated mainly on Nd-Fe-B magnets. We developed a numerical algorithm on the basis of

  14. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. ...

  15. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. [42 FR 21092, Apr. 25...

  16. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. ...

  17. 48 CFR 1845.607 - Scrap.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 6 2013-10-01 2013-10-01 false Scrap. 1845.607 Section 1845.607 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT MANAGEMENT GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 1845.607 Scrap. ...

  18. 48 CFR 1845.607 - Scrap.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 6 2014-10-01 2014-10-01 false Scrap. 1845.607 Section 1845.607 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT MANAGEMENT GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 1845.607 Scrap. ...

  19. 48 CFR 1845.607 - Scrap.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 6 2012-10-01 2012-10-01 false Scrap. 1845.607 Section 1845.607 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT MANAGEMENT GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 1845.607 Scrap. ...

  20. Scrap tire utilization via surface modification

    SciTech Connect

    Bauman, B.D. )

    1990-01-01

    Air Products and Chemicals, Inc. is developing a novel approach to reusing scrap tire rubber, which will be described in this presentation. In addition to consuming scrap tires, this technology represents a new approach to material engineering. Furthermore, this method of rubber recycle is most efficient in terms of energy recovery. 4 figs.

  1. 48 CFR 1845.607 - Scrap.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Scrap. 1845.607 Section 1845.607 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT MANAGEMENT GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 1845.607 Scrap. ...

  2. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. [42 FR 21092, Apr. 25...

  3. 48 CFR 1845.607 - Scrap.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Scrap. 1845.607 Section 1845.607 Federal Acquisition Regulations System NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CONTRACT MANAGEMENT GOVERNMENT PROPERTY Reporting, Redistribution, and Disposal of Contractor Inventory 1845.607 Scrap. ...

  4. 7 CFR 29.1029 - Leaf scrap.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.1029 Section 29.1029 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1029 Leaf scrap. A byproduct of stemmed and unstemmed tobacco. [42 FR 21092, Apr. 25...

  5. Management of scrap computer recycling in Taiwan.

    PubMed

    Lee, C H; Chang, S L; Wang, K M; Wen, L C

    2000-04-28

    It is estimated that approximately 300,000 scrap personal computers are generated each year in Taiwan [S.-L. Chang, A Study on the Scrap Computer Treatment Cost, Environment Protection Administration of Taiwan, December 1998 (in Chinese)]. The disposal of such a huge number of scrap computers presents a difficult task for the island due to the scarcity of landfills and incineration facilities available locally. Also, the hazardous materials contained (i.e., phosphor coatings of cathode ray tubes (CRTs), batteries, polychlorinated biphenyl capacitors, mercury-containing parts, liquid crystal display, high-lead content CRT funnel glass, and plastic containing flame-retardant bromine, etc.) in the scrap computers may seriously pollute the environment if they are not properly disposed of. Therefore, the EPA of Taiwan declared scrap personal computers the producer's recycling responsibility as of July 1997. Under this decree, the manufacturers, importers and sellers of personal computers have to properly recover and recycle the scrapped computers which they originally sell. On June 1, 1998, a producer responsibility recycling program for scrap computers was officially implemented in Taiwan. Under this program, consumers can bring their unwanted personal computers to the designated collection points and receive reward money. Currently, only six computer items are mandated to be recycled in this recycling program. They are notebooks, monitors, hard disks, power supplies, printed circuit boards and main frame shells. This article outlines the current scrap computer recycling system in Taiwan.

  6. Recycling zinc by dezincing steel scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Morgan, W.A.

    1995-06-01

    In response to the worldwide increase in consumption of galvanized steel for automobiles in the last fifteen years, and the increased cost of environmental compliance associated with remelting larger quantities of galvanized steel scrap, a process is being developed to separate and recover the steel and zinc from galvanized ferrous scrap. The zinc is dissolved from the scrap in hot caustic using anodic assistance and is recovered electrolytically as dendritic powder. The designed ferrous scrap is rinsed and used directly. The process is effective for zinc, lead, and aluminum removal on loose and baled scrap and on all types of galvanized steel. The process has been pilot tested in Hamilton, Ontario for batch treatment of 900 tonnes of mostly baled scrap. A pilot plant in East Chicago, Indiana has designed in a continuous process mode 900 tonnes of loose stamping plant scrap; this scrap typically has residual zinc below 0.1% and sodium dragout below 0.001%. This paper reviews pilot plant performance and the economics of recycling galvanized steel and recovering zinc using a caustic process.

  7. Progress in caustic dezincing of galvanized scrap

    SciTech Connect

    Dudek, F.J.; Daniels, E.J.; Morgan, W.A.

    1997-08-01

    In response to the worldwide increase in consumption of galvanized steel for automobiles in the last fifteen years, and the cost of environmental compliance associated with remelting larger quantities of galvanized steel scrap, processes are being developed to separate and recover the steel and zinc from galvanized ferrous scrap. In the process discussed here, zinc is dissolved from the scrap in hot caustic and is recovered electrolytically as dendritic powder. The dezinced ferrous scrap is rinsed and used directly. The process is effective for zinc, lead, and aluminum removal on loose and baled scrap and on all types of galvanized steel. Pilot testing has been conducted in Hamilton, Ontario for batch treatment of 900 tonnes of mostly baled scrap. A pilot plant in East Chicago, Indiana, now in its second generation, has dezinced in a continuous process mode about 1,800 tonnes of loose clips and shredded stamping plant scrap; this scrap typically has residual zinc below 0.05% and sodium dragout below 0.001%. This paper reviews caustic dezincing pilot plant performance and economics.

  8. Synthesis of magnetic nanofibers using femtosecond laser material processing in air

    PubMed Central

    2011-01-01

    In this study, we report formation of weblike fibrous nanostructure and nanoparticles of magnetic neodymium-iron-boron (NdFeB) via femtosecond laser radiation at MHz pulse repetition frequency in air at atmospheric pressure. Scanning electron microscopy (SEM) analysis revealed that the nanostructure is formed due to aggregation of polycrystalline nanoparticles of the respective constituent materials. The nanofibers diameter varies between 30 and 70 nm and they are mixed with nanoparticles. The effect of pulse to pulse separation rate on the size of the magnetic fibrous structure and the magnetic strength was reported. X-ray diffraction (XRD) analysis revealed metallic and oxide phases in the nanostructure. The growth of magnetic nanostructure is highly recommended for the applications of magnetic devices like biosensors and the results suggest that the pulsed-laser method is a promising technique for growing nanocrystalline magnetic nanofibers and nanoparticles for biomedical applications. PMID:21711890

  9. Magnetic levitation and its application for education devices based on YBCO bulk superconductors

    NASA Astrophysics Data System (ADS)

    Yang, W. M.; Chao, X. X.; Guo, F. X.; Li, J. W.; Chen, S. L.

    2013-10-01

    A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN2 temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.

  10. Magnetic levitation in the analysis of foods and water.

    PubMed

    Mirica, Katherine A; Phillips, Scott T; Mace, Charles R; Whitesides, George M

    2010-06-09

    This paper describes a method and a sensor that use magnetic levitation (MagLev) to characterize samples of food and water on the basis of measurements of density. The sensor comprises two permanent NdFeB magnets positioned on top of each other in a configuration with like poles facing and a container filled with a solution of paramagnetic ions. Measurements of density are obtained by suspending a diamagnetic object in the container filled with the paramagnetic fluid, placing the container between the magnets, and measuring the vertical position of the suspended object. MagLev was used to estimate the salinity of water, to compare a variety of vegetable oils on the basis of the ratio of polyunsaturated fat to monounsaturated fat, to compare the contents of fat in milk, cheese, and peanut butter, and to determine the density of grains.

  11. 7 CFR 29.2666 - Scrap (S Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Scrap (S Group). 29.2666 Section 29.2666 Agriculture... INSPECTION Standards Grades § 29.2666 Scrap (S Group). A byproduct of unstemmed and stemmed tobacco. Scrap... stemmeries. Grades Grade names and specifications S Scrap. Tangled, whole, or broken unstemmed leaves, or the...

  12. 7 CFR 29.3652 - Scrap (S Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Scrap (S Group). 29.3652 Section 29.3652 Agriculture... INSPECTION Standards Grades § 29.3652 Scrap (S Group). A byproduct of stemmed and unstemmed tobacco. Scrap... stemmeries. Grades Grade name and specifications S Scrap. Loose, tangled, whole, or broken unstemmed leaves...

  13. 7 CFR 29.3157 - Scrap (S Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Scrap (S Group). 29.3157 Section 29.3157 Agriculture... INSPECTION Standards Grades § 29.3157 Scrap (S Group). A by-product of unstemmed and stemmed tobacco. Scrap... stemmeries. Grades Grade names and specifications S Scrap. Loose, tangled, whole, or broken unstemmed leaves...

  14. 7 CFR 29.2441 - Scrap (S Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Scrap (S Group). 29.2441 Section 29.2441 Agriculture... INSPECTION Standards Grades § 29.2441 Scrap (S Group). A byproduct of unstemmed and stemmed tobacco. Scrap... stemmeries. U.S. grade Grade name and specifications S Scrap. Tangled, whole, or broken unstemmed leaves, or...

  15. 7 CFR 29.1169 - Scrap (S Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Scrap (S Group). 29.1169 Section 29.1169 Agriculture... INSPECTION Standards Grades § 29.1169 Scrap (S Group). A byproduct of stemmed and unstemmed tobacco. Scrap... stemmeries. Grade, Grade Name and Specifications S—Scrap. Loose, whole, or broken unstemmed leaves; or the...

  16. 7 CFR 29.2666 - Scrap (S Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Scrap (S Group). 29.2666 Section 29.2666 Agriculture... INSPECTION Standards Grades § 29.2666 Scrap (S Group). A byproduct of unstemmed and stemmed tobacco. Scrap... stemmeries. Grades Grade names and specifications S Scrap. Tangled, whole, or broken unstemmed leaves, or the...

  17. 7 CFR 29.3157 - Scrap (S Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Scrap (S Group). 29.3157 Section 29.3157 Agriculture... INSPECTION Standards Grades § 29.3157 Scrap (S Group). A by-product of unstemmed and stemmed tobacco. Scrap... stemmeries. Grades Grade names and specifications S Scrap. Loose, tangled, whole, or broken unstemmed leaves...

  18. 7 CFR 29.2441 - Scrap (S Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Scrap (S Group). 29.2441 Section 29.2441 Agriculture... INSPECTION Standards Grades § 29.2441 Scrap (S Group). A byproduct of unstemmed and stemmed tobacco. Scrap... stemmeries. U.S. grade Grade name and specifications S Scrap. Tangled, whole, or broken unstemmed leaves, or...

  19. 7 CFR 29.6131 - Scrap (S Group).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Scrap (S Group). 29.6131 Section 29.6131 Agriculture... INSPECTION Standards Grades § 29.6131 Scrap (S Group). A byproduct of unstemmed and stemmed tobacco. Scrap..., or the web portion of tobacco leaves reduced to scrap by any process. Summary of Standard Grades ...

  20. 7 CFR 29.6131 - Scrap (S Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Scrap (S Group). 29.6131 Section 29.6131 Agriculture... INSPECTION Standards Grades § 29.6131 Scrap (S Group). A byproduct of unstemmed and stemmed tobacco. Scrap..., or the web portion of tobacco leaves reduced to scrap by any process. Summary of Standard Grades ...

  1. 7 CFR 29.3652 - Scrap (S Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Scrap (S Group). 29.3652 Section 29.3652 Agriculture... INSPECTION Standards Grades § 29.3652 Scrap (S Group). A byproduct of stemmed and unstemmed tobacco. Scrap... stemmeries. Grades Grade name and specifications S Scrap. Loose, tangled, whole, or broken unstemmed leaves...

  2. 7 CFR 29.1169 - Scrap (S Group).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Scrap (S Group). 29.1169 Section 29.1169 Agriculture... INSPECTION Standards Grades § 29.1169 Scrap (S Group). A byproduct of stemmed and unstemmed tobacco. Scrap... stemmeries. Grade, Grade Name and Specifications S—Scrap. Loose, whole, or broken unstemmed leaves; or the...

  3. 7 CFR 29.1169 - Scrap (S Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Scrap (S Group). 29.1169 Section 29.1169 Agriculture... INSPECTION Standards Grades § 29.1169 Scrap (S Group). A byproduct of stemmed and unstemmed tobacco. Scrap... stemmeries. Grade, Grade Name and Specifications S—Scrap. Loose, whole, or broken unstemmed leaves; or the...

  4. 7 CFR 29.3652 - Scrap (S Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Scrap (S Group). 29.3652 Section 29.3652 Agriculture... INSPECTION Standards Grades § 29.3652 Scrap (S Group). A byproduct of stemmed and unstemmed tobacco. Scrap... stemmeries. Grades Grade name and specifications S Scrap. Loose, tangled, whole, or broken unstemmed leaves...

  5. 48 CFR 245.607-70 - Scrap warranty.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Scrap warranty. 245.607-70... Contractor Inventory 245.607-70 Scrap warranty. (a) If the contractor sells its inventory as scrap to anyone... 1639, Scrap Warranty. (b) The contracting officer may release the contractor from the terms of the...

  6. 32 CFR 644.522 - Clearance of military scrap.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Clearance of military scrap. 644.522 Section 644... Excess Land and Improvements § 644.522 Clearance of military scrap. Military scrap can contain or be... determining whether scrap metal will be removed should be the safety of persons coming on the land in question...

  7. 7 CFR 29.6131 - Scrap (S Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Scrap (S Group). 29.6131 Section 29.6131 Agriculture... INSPECTION Standards Grades § 29.6131 Scrap (S Group). A byproduct of unstemmed and stemmed tobacco. Scrap..., or the web portion of tobacco leaves reduced to scrap by any process. Summary of Standard Grades ...

  8. 32 CFR 644.522 - Clearance of military scrap.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Clearance of military scrap. 644.522 Section 644... Excess Land and Improvements § 644.522 Clearance of military scrap. Military scrap can contain or be... determining whether scrap metal will be removed should be the safety of persons coming on the land in question...

  9. 7 CFR 29.3157 - Scrap (S Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Scrap (S Group). 29.3157 Section 29.3157 Agriculture... INSPECTION Standards Grades § 29.3157 Scrap (S Group). A by-product of unstemmed and stemmed tobacco. Scrap... stemmeries. Grades Grade names and specifications S Scrap. Loose, tangled, whole, or broken unstemmed leaves...

  10. 7 CFR 29.2666 - Scrap (S Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Scrap (S Group). 29.2666 Section 29.2666 Agriculture... INSPECTION Standards Grades § 29.2666 Scrap (S Group). A byproduct of unstemmed and stemmed tobacco. Scrap... stemmeries. Grades Grade names and specifications S Scrap. Tangled, whole, or broken unstemmed leaves, or the...

  11. 7 CFR 29.2441 - Scrap (S Group).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Scrap (S Group). 29.2441 Section 29.2441 Agriculture... INSPECTION Standards Grades § 29.2441 Scrap (S Group). A byproduct of unstemmed and stemmed tobacco. Scrap... stemmeries. U.S. grade Grade name and specifications S Scrap. Tangled, whole, or broken unstemmed leaves, or...

  12. 7 CFR 29.2441 - Scrap (S Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Scrap (S Group). 29.2441 Section 29.2441 Agriculture... INSPECTION Standards Grades § 29.2441 Scrap (S Group). A byproduct of unstemmed and stemmed tobacco. Scrap... stemmeries. U.S. grade Grade name and specifications S Scrap. Tangled, whole, or broken unstemmed leaves, or...

  13. 7 CFR 29.3157 - Scrap (S Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Scrap (S Group). 29.3157 Section 29.3157 Agriculture... INSPECTION Standards Grades § 29.3157 Scrap (S Group). A by-product of unstemmed and stemmed tobacco. Scrap... stemmeries. Grades Grade names and specifications S Scrap. Loose, tangled, whole, or broken unstemmed leaves...

  14. 7 CFR 29.2666 - Scrap (S Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Scrap (S Group). 29.2666 Section 29.2666 Agriculture... INSPECTION Standards Grades § 29.2666 Scrap (S Group). A byproduct of unstemmed and stemmed tobacco. Scrap... stemmeries. Grades Grade names and specifications S Scrap. Tangled, whole, or broken unstemmed leaves, or the...

  15. 7 CFR 29.3652 - Scrap (S Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Scrap (S Group). 29.3652 Section 29.3652 Agriculture... INSPECTION Standards Grades § 29.3652 Scrap (S Group). A byproduct of stemmed and unstemmed tobacco. Scrap... stemmeries. Grades Grade name and specifications S Scrap. Loose, tangled, whole, or broken unstemmed leaves...

  16. 7 CFR 29.1169 - Scrap (S Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Scrap (S Group). 29.1169 Section 29.1169 Agriculture... INSPECTION Standards Grades § 29.1169 Scrap (S Group). A byproduct of stemmed and unstemmed tobacco. Scrap... stemmeries. Grade, Grade Name and Specifications S—Scrap. Loose, whole, or broken unstemmed leaves; or the...

  17. One-Step Synthesis and Magnetic Phase Transformation of Ln-TM-B Alloy by Chemical Reduction.

    PubMed

    Kim, Chang Woo; Kim, Young Hwan; Cha, Hyun Gil; Lee, Don Keun; Kang, Young Soo

    2007-04-11

    Binary and ternary intermetallic alloy systems are of interest for a variety of academic and technological applications. Despite recent advances in synthesizing binary alloy, there are very few reports of ternary alloy related to lanthanide series. The purpose of this work is to contribute to ternary alloy systems such as lanthanide-transition metal-boron with a simple chemical method and analysis of its magnetic behavior. Ternary Nd-Fe-B amorphous alloy was successfully synthesized with borohydride. The magnetic behavior in the process of formation of ternary Nd-Fe-B alloy and Nd2Fe14B from amorphous phase alloy is reported. Compared with the synthesis of a transition metal, the existence of a lanthanide ion makes aggregates-like particles with a diameter of 2 nm possible in the formation of a nanosphere, which is a significantly important result in terms of acceleration of the reduction-diffusion reaction for the formation of ternary alloy. In the process of reduction and diffusion, the Nd phase is diffused into the Fe-based phase, and then the ternary Nd2Fe14B intermetallic compound is fabricated.

  18. Intra-arterial application of magnetic nanoparticles for targeted thrombolytic therapy: A rat embolic model

    NASA Astrophysics Data System (ADS)

    Ma, Yunn-Hwa; Hsu, Ya-Wun; Chang, Yeu-Jhy; Hua, Mu-Yi; Chen, Jyh-Ping; Wu, Tony

    2007-04-01

    Targeted delivery of thrombolytic drug to the site of emboli exhibits potential to greatly reduce hemorrhagic side effect. A rat embolic model with an easy access of a magnet was established for study of the efficacy of magnetic drug targeting. In anesthetized rats, a whole blood clot produced in vitro was injected from the right iliac artery and lodged in the left iliac artery. Intra-arterial infusion of recombinant tissue plasminogen activator (rt-PA) thereafter significantly reversed the iliac flow within 15 min. Placement of an NdFeB magnet above the left iliac artery caused magnetic nanoparticle retention against hemodynamic dragging force in the presence and absence of the clot. Our results suggest the feasibility of this rat embolic model for the study of magnetic targeted delivery of thrombolytic drugs.

  19. Magnetically actuated microvalve for active flow control

    NASA Astrophysics Data System (ADS)

    Olivier, Ducloux; Abdelkrim, Talbi; Yves, Deblock; Leticia, Gimeno; Nicolas, Tiercelin; Philippe, Pernod; Vladimir, Preobrazhensky; Alain, Merlen

    2006-04-01

    The reattachment of separated air flows can be actively controlled by blowing oscillatory air jets in the boundary layer, through submillimetric holes situated near the separation edge. To achieve such pulsed jets, a high flow rate, high actuation frequency microvalve was designed, fabricated and characterized. The microvalve is fed by a pressurized source of air, and its inner channel is alternatively pinched by a PDMS polymer membrane, modulating the air flow which is addressed towards the separated surface. Magnetostatic actuation was chosen for its high stress, high displacement, and remote actuation capabilities. The actuation consists in coupling an inductive driving coil and a NdFeB permanent magnet situated on the PDMS flexible membrane. Characterization of the resonance frequency, and vibration amplitude are achieved by interferometric means. The output flow is characterized using strioscopy visualization and hot wire anemometry methods. The design and fabrication process of the microsystem, and the results of these characterizations are presented in this paper.

  20. A study on the recycling of scrap integrated circuits by leaching.

    PubMed

    Lee, Ching-Hwa; Tang, Li-Wen; Popuri, Srinivasa R

    2011-07-01

    In order to minimize the problem of pollution and to conserve limited natural resources, a method to recover the valuable metals such as gold, silver and copper) present in the scrap integrated circuits (ICs) was developed in the present study. Roasting, grinding, screening, magnetic separation, melting and leaching were adopted to investigate the efficiency of recovery of gold, silver and copper from scrap ICs. The collected scrap IC samples were roasted at 850 °C to destroy their plastic resin sealing material, followed by screening and magnetic separation to separate the metals from the resin residue. The non-ferrous materials (0.840 mm) were mainly composed of copper and could be melted into a copper alloy. Non-ferrous materials containing gold (860.05 ppm), silver (1323.12 ppm) and copper (37259.7 ppm) (size less than 50 mesh) were recovered 100% by a leaching process and thiourea was used as a leaching reagent.

  1. Magnetic properties, microstructure and corrosion behavior of (Pr,nd)12.6Fe81.3B6.1-type sintered magnets doped with (Pr,nd)30Fe62Ga8

    NASA Astrophysics Data System (ADS)

    Ni, Junjie; Zhang, Zhenyu; Liu, Ying; Jia, Zhengfeng; Huang, Baoxu; Yin, Yibin

    2016-10-01

    NdFeB sintered magnets with (Pr,Nd)30Fe62Ga8 were prepared by a binary powder blending method and their magnetic properties, microstructure and corrosion behavior were investigated. Addition of 3 wt% (Pr,Nd)30Fe62Ga8 was found to be the most effective for improving (BH)max and iHc of the magnets. The increase in both magnetic parameters was related to the alteration in microstructure. However, in other samples the occurrence of micropore and the aggregation of intergranular phases harmed the magnetic properties. Such disadvantageous microstructure features also caused higher corrosion current density, thus decreasing the corrosion resistance of the sample with higher additive content. In addition, the Ga-containing intergranular phases that are more stable than the (Pr,Nd)-rich phase formed in the additive doped magnets, leading to better corrosion resistance of the 3 wt% additives doped sample in comparison with the contrastive sample.

  2. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    EPA Science Inventory

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  3. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    EPA Science Inventory

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  4. Study on laser drilling in rare-earth magnets

    SciTech Connect

    Zhang Guozhong; Liu Limin; Li Changjiang

    1996-12-31

    A Nd/YAG pulse laser is used to drill in Sm-Co and Nd-Fe-B permanent magnetic rotor. The experimental studies and analysis on the morphology and the phase composition of the drilled rotor are described. In the center of the drilled rotor, there is a hole which diameter is equal roughly to the girdle size of the Gauss laser beam. The hole wall is rapid fused amorphous matter, which morphology and composition are obviously different from that before hole drilling. The grain in heat-affected zone dined, but the composition has not changed. The experimental results show that the reasonable selection of laser parameters according to physical properties of materials is necessary in order to improve product quality and production efficiency and that the lower laser power, the narrower pulse and the multiple-drilling and advantageous to the processing for hard-brittle materials as rare-earth magnets.

  5. Die-upset Nd-Fe-Co-B magnets from blends of dissimilar ribbons

    NASA Astrophysics Data System (ADS)

    Fuerst, C. D.; Brewer, E. G.

    1994-11-01

    We prepared die-upset Nd-Fe-Co-B magnets from melt-spun ribbon powders which were a series of blends of two ribbon alloys. One alloy was always ternary Nd-Fe-B (no cobalt), and in the other cobalt replaced up to half of the iron. Differential scanning calorimeter measurements revealed that during hot working, the cobalt diffused across ribbon boundaries, effectively redistributing the transition metal concentration throughout the magnet. Instead of anomalies indicating the Curie temperatures of the two original ribbon compositions, we found a single transition consistent with the average cobalt concentration in the magnet. However, the transition was broader than expected, suggesting that the homogenization was incomplete. These results are new evidence of massive diffusion occurring between ribbons, changing the microstructure and facilitating the deformation of the otherwise rigid 2-14-1 magnet.

  6. Magnetic field simulation of wiggler on LUCX accelerator facility using Radia

    NASA Astrophysics Data System (ADS)

    Sutygina, Y. N.; Harisova, A. E.; Shkitov, D. A.

    2016-11-01

    A flat wiggler consisting of NdFeB permanent magnets was installed on a compact linear electron accelerator LUCX (KEK) in Japan. After installing the wiggler on LUCX, the experiments on the generation of undulator radiation (UR) in the terahertz wavelength range is planned. To perform the detailed calculations and optimization of UR characteristics, it is necessary to know the parameters of the magnetic field generated in the wiggler. In this paper extended simulation results of wiggler magnetic field over the entire volume between the poles are presented. The obtained in the Radia simulation magnetic field is compared with the field calculated by another code, which is based on the finite element method.

  7. The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles

    NASA Astrophysics Data System (ADS)

    Wen, Qianqian; Wang, Yu; Gong, Xinglong

    2017-07-01

    In this study, novel magnetorheological elastomers based on hard magnetic particles (H-MREs) were developed and the magnetic field dependent dynamic properties of the H-MREs were further investigated. The storage modulus of H-MREs could not only be increased by increasing magnetic field but also be decreased by the increasing magnetic field of opposite orientation. For the anisotropic H-MREs with 80 wt% NdFeB particles, the field-induced increasing and decreasing modulus was 426 kPa and 118 kPa respectively. Moreover, the dynamic performances of H-MREs significantly depended on the pre-structure magnetic field, magnetizing field and test magnetic field. The H-MREs were initially magnetized and formed the chain-like microstructure by the pre-structure magnetic field. The field-induced increasing and decreasing modulus of H-MREs both raised with increasing of the magnetizing field. When the magnetizing field increased from 400 to 1200 kA m-1, the field induced decreasing modulus of the 80 wt% isotropic H-MREs raised from 3 to 47 kPa. The magnetic field dependent curves of H-MREs’ storage modulus were asymmetric if the magnetizing field was higher than the test magnetic field. Based on the dipolar model of MREs and magnetic properties of hard magnetic material, a reasonable explanation was proposed to understand the H-MREs’ field dependent mechanical behaviors.

  8. Management options for recycling radioactive scrap metals

    SciTech Connect

    Dehmel, J.C.; MacKinney, J.; Bartlett, J.

    1997-02-01

    The feasibility and advantages of recycling radioactive scrap metals (RSM) have yet to be assessed, given the unique technical, regulatory, safety, and cost-benefit issues that have already been raised by a concerned recycling industry. As is known, this industry has been repeatedly involved with the accidental recycling of radioactive sources and, in some cases, with costly consequences. If recycling were deemed to be a viable option, it might have to be implemented with regulatory monitoring and controls. Its implementation may have to consider various and complex issues and address the requirements and concerns of distinctly different industries. There are three basic options for the recycling of such scraps. They are: (1) recycling through the existing network of metal-scrap dealers and brokers, (2) recycling directly and only with specific steelmills, or (3) recycling through regional processing centers. Under the first option, scrap dealers and brokers would receive material from RSM generators and determine at which steelmills such scraps would be recycled. For the second option, RSM generators would deal directly with selected steelmills under specific agreements. For the third option, generators would ship scraps only to regional centers for processing and shipment to participating steelmills. This paper addresses the potential advantages of each option, identifies the types of arrangements that would need to be secured among all parties, and attempts to assess the receptivity of the recycling industry to each option.

  9. Magnetic forces and magnetized biomaterials provide dynamic flux information during bone regeneration.

    PubMed

    Russo, Alessandro; Bianchi, Michele; Sartori, Maria; Parrilli, Annapaola; Panseri, Silvia; Ortolani, Alessandro; Sandri, Monica; Boi, Marco; Salter, Donald M; Maltarello, Maria Cristina; Giavaresi, Gianluca; Fini, Milena; Dediu, Valentin; Tampieri, Anna; Marcacci, Maurilio

    2016-03-01

    The fascinating prospect to direct tissue regeneration by magnetic activation has been recently explored. In this study we investigate the possibility to boost bone regeneration in an experimental defect in rabbit femoral condyle by combining static magnetic fields and magnetic biomaterials. NdFeB permanent magnets are implanted close to biomimetic collagen/hydroxyapatite resorbable scaffolds magnetized according to two different protocols . Permanent magnet only or non-magnetic scaffolds are used as controls. Bone tissue regeneration is evaluated at 12 weeks from surgery from a histological, histomorphometric and biomechanical point of view. The reorganization of the magnetized collagen fibers under the effect of the static magnetic field generated by the permanent magnet produces a highly-peculiar bone pattern, with highly-interconnected trabeculae orthogonally oriented with respect to the magnetic field lines. In contrast, only partial defect healing is achieved within the control groups. We ascribe the peculiar bone regeneration to the transfer of micro-environmental information, mediated by collagen fibrils magnetized by magnetic nanoparticles, under the effect of the static magnetic field. These results open new perspectives on the possibility to improve implant fixation and control the morphology and maturity of regenerated bone providing "in site" forces by synergically combining static magnetic fields and biomaterials.

  10. Scrap tire management in the mid south region

    SciTech Connect

    Blumenthal, M.

    1996-08-01

    The Scrap Tire Management Council (STMC) is a North American tire manufacturer-sponsored advocacy organization, created to identify and promote environmentally and economically sound markets for scrap tires. This presentation gives a national overview of the scrap tire situation, and focuses on the Tennessee and Mid-south region. National generation rates and markets for scrap tires are discussed, and markets for scrap tires are described. The major markets identified are fuel, rubber products, and civil engineering applications. Three technologies that may have an impact on scrap tire recycling are discussed: pyrolysis, gasification, and devulcanization.

  11. The Production and Characterization of Near Stoichiometric NdFeB-Type HDDR Powder

    SciTech Connect

    Shaaban, A.

    2010-03-11

    A study of the processing of HDDR powder with the composition Nd{sub 12.7}Fe{sub 81.3}B{sub 6.0} and Nd{sub 12.2}Fe{sub 81.2}B{sub 5.9}Zr{sub 0.1} have been undertaken. The homogenized alloys were disproportionated at 850 deg. C for 30 minutes and employing a range of recombination temperatures from 790 deg. C to 920 deg. C. The optimum recombination temperature in the HDDR treatment was found to be 880 deg. C. Zr-addition appears to inhibit grain growth during the treatment process.

  12. The Production and Characterization of Near Stoichiometric NdFeB-Type HDDR Powder

    NASA Astrophysics Data System (ADS)

    Shaaban, A.

    2010-03-01

    A study of the processing of HDDR powder with the composition Nd12.7Fe81.3B6.0 and Nd12.2Fe81.2B5.9Zr0.1 have been undertaken. The homogenized alloys were disproportionated at 850° C for 30 minutes and employing a range of recombination temperatures from 790° C to 920° C. The optimum recombination temperature in the HDDR treatment was found to be 880° C. Zr-addition appears to inhibit grain growth during the treatment process.

  13. Effects of external magnetic field on biodistribution of nanoparticles: A histological study

    NASA Astrophysics Data System (ADS)

    Wu, Tony; Hua, Mu-Yi; Chen, Jyh-ping; Wei, Kuo-Chen; Jung, Shih-Ming; Chang, Yeu-Jhy; Jou, Mei-Jie; Ma, Yunn-Hwa

    2007-04-01

    This study investigates the effect of external magnetic fields on the biodistribution of nanoparticles (NP). A NdFeB magnet of 2.4 kG was externally applied over the left femoral artery or right kidney. The 250 nm dextran-coated Fe 3O 4 NP was injected via tail vein in healthy rats, and organs were taken 1 or 24 h later. Prussian blue stain revealed that NP were more rapidly retained in the liver and spleen than in the lungs. NP aggregation observed in the kidney and femoral artery after application of external magnets was time dependent. Hollow organs such as the intestine, colon, and urinary bladder retained little NP.

  14. New avenues to efficient chemical synthesis of exchange coupled hard/soft nanocomposite magnet.

    PubMed

    Lee, Don Keun; Cha, Hyun Gil; Kim, Young Hwan; Kim, Chang Woo; Ji, Eun Sun; Kang, Young Soo

    2009-07-01

    Nd-Fe-B ultrafine amorphous alloy particles were prepared by reaction of metal ions with borohydride in aqueous solution. Monodispersed Fe nanoparticles were synthesized under an argon atmosphere via thermal decomposition of Fe(2+)-oleate2. Exchange coupled Nd2Fe14B/Fe nanocomposite magnets have been prepared by self-assembly using surfactant. The crystal structure of the synthesized nanoparticles was identified by using X-ray powder diffraction (XRD). The size and shape of nanoparticles were obtained by transmission electron microscope (TEM). Thermogravimetry using a microbalance with magnetic field gradient positioned below the sample was used for the measurement of a thermomagnetic analysis (TMA) curve showing the downward magnetic force versus temperature.

  15. Spherical, rolling magnet generators for passive energy harvesting from human motion

    NASA Astrophysics Data System (ADS)

    Bowers, Benjamin J.; Arnold, David P.

    2009-09-01

    In this work, non-resonant, vibrational energy harvester architectures intended for human-motion energy scavenging are researched. The basic design employs a spherical, unidirectionally magnetized permanent magnet (NdFeB) ball that is allowed to move arbitrarily in a spherical cavity wrapped with copper coil windings. As the ball rotates and translates within the cage, the time-varying magnetic flux induces a voltage in the coil according to Faraday's Law. Devices ranging from 1.5 cm3 to 4 cm3 in size were tested under human activity scenarios—held in the user's hand or placed in the user's pocket while walking (4 km h-1) and running (14.5 km h-1). These harvesters have demonstrated rms voltages ranging from ~80 mV to 700 mV and time-averaged power densities up to 0.5 mW cm-3.

  16. A Super Strong Permanent Magnet Quadrupole for the Final Focus in a Linear Collider

    SciTech Connect

    Mihara, T.

    2004-12-06

    A super strong permanent magnet quadrupole (PMQ) was fabricated and tested. It has an integrated strength of 28.5T with overall length of 10 cm and a 7mm bore radius. Two drawbacks should be considered to this NdFeB based PMQ: the negative temperature coefficient of its field strength and its fixed strength. A thermal compensation material was added and tested to cure the first problem. The correct amount was determined to compensate the PMQ's temperature coefficient. The required field variability can be obtained by slicing magnet into pieces along the beamline direction and rotating these slices. But this technique may lead to movement of the magnetic center and introduction of a skew quadrupole component when the strength is varied.

  17. Note: Enhanced energy harvesting from low-frequency magnetic fields utilizing magneto-mechano-electric composite tuning-fork.

    PubMed

    Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia

    2015-06-01

    A magnetic-field energy harvester using a low-frequency magneto-mechano-electric (MME) composite tuning-fork is proposed. This MME composite tuning-fork consists of a copper tuning fork with piezoelectric Pb(Zr(1-x)Ti(x))O3 (PZT) plates bonded near its fixed end and with NdFeB magnets attached at its free ends. Due to the resonance coupling between fork prongs, the MME composite tuning-fork owns strong vibration and high Q value. Experimental results show that the proposed magnetic-field energy harvester using the MME composite tuning-fork exhibits approximately 4 times larger maximum output voltage and 7.2 times higher maximum power than the conventional magnetic-field energy harvester using the MME composite cantilever.

  18. Tessellated permanent magnet circuits for flow-through, open gradient separations of weakly magnetic materials

    NASA Astrophysics Data System (ADS)

    Moore, Lee R.; Williams, P. Stephen; Chalmers, Jeffrey J.; Zborowski, Maciej

    2017-04-01

    Emerging microfluidic-based cell assays favor label-free red blood cell (RBC) depletion. Magnetic separation of RBC is possible because of the paramagnetism of deoxygenated hemoglobin but the process is slow for open-gradient field configurations. In order to increase the throughput, periodic arrangements of the unit magnets were considered, consisting of commercially available Nd-Fe-B permanent magnets and soft steel flux return pieces. The magnet design is uniquely suitable for multiplexing by magnet tessellation, here meaning the tiling of the magnet assembly cross-sectional plane by periodic repetition of the magnet and the flow channel shapes. The periodic pattern of magnet magnetizations allows a reduction of the magnetic material per channel with minimal distortion of the field cylindrical symmetry inside the magnet apertures. A number of such magnet patterns are investigated for separator performance, size and economy with the goal of designing an open-gradient magnetic separator capable of reducing the RBC number concentration a hundred-fold in 1 mL whole blood per hour.

  19. Rare-earth free permanent magnets and permanent magnet synchronous motors

    NASA Astrophysics Data System (ADS)

    Park, Jihoon

    In this dissertation, basic and applied research programs are engaged that range from the fundamental magnetism and magnetic properties of ferro- and ferrimagnetic materials to the design and fabrication of rare earth (RE) free permanent and soft magnetic materials for an interior permanent magnet synchronous motor (IPMSM) (i.e., motor for electric vehicles and plug-in electric vehicles) and heat assisted magnetic recording media (HAMR) with 4 Tb/in 2 information storage applications. The applied research program emphasizes the design and synthesis of new RE-free permanent magnetic materials and magnetic exchange coupled core(hard)-shell(soft) particles to achieve a high maximum energy product [(BH) max], and the design of an advanced IPMSM based on RE free permanent magnets. The electronic structures of hard magnetic materials such as Mn-Al, Mn-Bi, Mn-Bi-X, Fe-Pt, Fe-Pt-X, SrFe12O19, and SrFe12 O19-X (X = transition elements) and soft magnetic materials such as nanocrystalline and Mn-B were calculated based on the density functional theory (DFT), and their exchange coupled magnetic properties with soft magnets were designed according to the size and shape of the particles. The calculated magnetic and electronic properties were used to obtain the temperature dependence of saturation magnetization Ms(T) and anisotropy constant K(T) within the mean field theory. Thereby, the temperature dependence of the maximum energy product [(BH)max(T)] is calculated using the calculated Ms(T) and K(T). The experimental approaches were based on chemical and ceramic processes to synthesize hard and soft magnetic materials. Prior to synthesis, material design parameters were optimized by first-principles calculations and micromagnetic simulations. Lastly, performance of RE-free MnAl, MnBi, SrFe12O19 , and Alnico IPMSMs, designed with the finite element method (FEM), at 23 and 200 °C were evaluated and compared to a RE Nd Fe B IPMSM. The performance parameters include torque

  20. 1. Elevated view of Scrap Platform, looking southwest. Delaware, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Elevated view of Scrap Platform, looking southwest. - Delaware, Lackawanna & Western Railroad, Scranton Yards, Scrap Platform, 350 feet South of South Washington Avenue & River Street, Scranton, Lackawanna County, PA

  1. 3. Northeast wall of Scrap Bins with freight car. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Northeast wall of Scrap Bins with freight car. - Delaware, Lackawanna & Western Railroad, Scranton Yards, Scrap Platform, 350 feet South of South Washington Avenue & River Street, Scranton, Lackawanna County, PA

  2. 2. Elevated perspective of Scrap Platform, looking south. Delaware, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Elevated perspective of Scrap Platform, looking south. - Delaware, Lackawanna & Western Railroad, Scranton Yards, Scrap Platform, 350 feet South of South Washington Avenue & River Street, Scranton, Lackawanna County, PA

  3. Monitoring fluid evolution in an Engineered Barrier System using NEO-magnets

    NASA Astrophysics Data System (ADS)

    Rigonat, N.; Butler, I. B.

    2015-12-01

    Long-term monitoring of the evolution of the engineered barrier system (EBS) of a Geological Disposal Facility (GDF) is important for establishing the safety case for deep disposal of the UK inventory of high level radioactive waste. With a view to developing techniques for remote fluid monitoring using magnetic properties, we have examined the correlation between the corrosion properties of NEO-magnets and related changes in the magnetic properties of the alloy with fluid chemistry and crystal-chemical changes of the Na-bentonite matrix. Batch experiments comprised fragments of NEO-magnets with deionised water, saline and alkaline solution both in the presence and absence of MX-80 bentonite, and were performed in sealed vessels for durations of up to 5 months at 70°C. This study combined PXRD, thermomagnetic and hysteresis analysis to demonstrate how progressive hydrogenation of the main magnetic phase led to a maximum loss of remanence and coercitivity and increasing Curie temperature in the samples reacted with deionised water with the samples reacted in saline and alkaline solutions showing smaller changes. Semi-quantitative analysis allowed comparison of the Curie temperatures with crystal-chemical parameters. This reveals a clear positive correlation of increasing lattice parameters a and c (and cell volume) with mean hydrogens per unit formula and the Curie temperature of the product NdFeB hydrides. Precipitation of Nd and Fe hydrides/oxyhydroxides is also demonstated by the PXRD data. A crucial role is played by the transformations occurring to the smectite matrix, in particular by the cation exchange in the interlayer, which causes precipitation of highly charged K- and Ca-smectites. This study demonstrates how NEO-magnets are capable of detecting water saturation in the EBS, and that the NdFeB corrosion properties are strongly controlled by the initial fluid composition and presence / absence of the bentonite matrix.

  4. Electroextraction of boron from boron carbide scrap

    SciTech Connect

    Jain, Ashish; Anthonysamy, S.; Ghosh, C.; Ravindran, T.R.; Divakar, R.; Mohandas, E.

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  5. Scrap tire derived fuel: Markets and issues

    SciTech Connect

    Serumgard, J.

    1997-12-01

    More than 250 million scrap tires are generated annually in the United States and their proper management continues to be a solid waste management concern. Sound markets for scrap tires are growing and are consuming an ever increasing percentage of annual generation, with market capacity reaching more than 75% of annual generation in 1996. Of the three major markets - fuel, civil engineering applications, and ground rubber markets - the use of tires as a fuel is by far the largest market. The major fuel users include cement kilns, pulp and paper mills, electrical generation facilities, and some industrial facilities. Current issues that may impact the tire fuel market include continued public concern over the use of tires as fuels, the new EPA PM 2.5 standard, possible additional Clean Air emissions standards, access to adequate supplies of scrap tires, quality of processed tire derived fuel, and the possibility of creating a commodity market through the development of ASTM TDF standards.

  6. Characterization of shredded television scrap and implications for materials recovery.

    PubMed

    Cui, Jirang; Forssberg, Eric

    2007-01-01

    Characterization of TV scrap was carried out by using a variety of methods, such as chemical analysis, particle size and shape analysis, liberation degree analysis, thermogravimetric analysis, sink-float test, and IR spectrometry. A comparison of TV scrap, personal computer scrap, and printed circuit board scrap shows that the content of non-ferrous metals and precious metals in TV scrap is much lower than that in personal computer scrap or printed circuit board scrap. It is expected that recycling of TV scrap will not be cost-effective by utilizing conventional manual disassembly. The result of particle shape analysis indicates that the non-ferrous metal particles in TV scrap formed as a variety of shapes; it is much more heterogeneous than that of plastics and printed circuit boards. Furthermore, the separability of TV scrap using density-based techniques was evaluated by the sink-float test. The result demonstrates that a high recovery of copper could be obtained by using an effective gravity separation process. Identification of plastics shows that the major plastic in TV scrap is high impact polystyrene. Gravity separation of plastics may encounter some challenges in separation of plastics from TV scrap because of specific density variations.

  7. The Scrap Map: An Environmental Publication for Grades K-6.

    ERIC Educational Resources Information Center

    Institute of Scrap Recycling Industries, Inc., Washington, DC.

    This document contains materials for a 10-day teaching unit on solid waste recycling for grades K-6. Included are: (1) "The Scrap Map," which shows recycling cycles for metals and paper, and a cryptic word puzzle; (2) three pamphlets on recycling paper, nonferrous scrap metals, and scrap iron and steel; (3) a list of the chapters of the Institute…

  8. 48 CFR 45.606 - Contractor scrap procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Contractor scrap... CONTRACT MANAGEMENT GOVERNMENT PROPERTY Reporting, Reutilization, and Disposal 45.606 Contractor scrap... that contractor scrap disposal processes, methods, and practices allow for effective, efficient, and...

  9. 46 CFR Sec. 12 - Disposition of removed equipment and scrap.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 8 2014-10-01 2014-10-01 false Disposition of removed equipment and scrap. Sec. 12... CONTRACT-NSA-LUMPSUMREP Sec. 12 Disposition of removed equipment and scrap. (a) Article 8 of the NSA... cause the Contractor to segregate all equipment, salvageable material and scrap, removed from a vessel...

  10. 46 CFR Sec. 12 - Disposition of removed equipment and scrap.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 8 2012-10-01 2012-10-01 false Disposition of removed equipment and scrap. Sec. 12... CONTRACT-NSA-LUMPSUMREP Sec. 12 Disposition of removed equipment and scrap. (a) Article 8 of the NSA... cause the Contractor to segregate all equipment, salvageable material and scrap, removed from a vessel...

  11. 46 CFR Sec. 12 - Disposition of removed equipment and scrap.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 8 2013-10-01 2013-10-01 false Disposition of removed equipment and scrap. Sec. 12... CONTRACT-NSA-LUMPSUMREP Sec. 12 Disposition of removed equipment and scrap. (a) Article 8 of the NSA... cause the Contractor to segregate all equipment, salvageable material and scrap, removed from a vessel...

  12. 48 CFR 1845.607-170 - Contractor's approved scrap procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... scrap procedure. 1845.607-170 Section 1845.607-170 Federal Acquisition Regulations System NATIONAL... Disposal of Contractor Inventory 1845.607-170 Contractor's approved scrap procedure. (a) When a contractor has an approved scrap procedure, certain property may be routinely disposed of in accordance with that...

  13. 48 CFR 1845.606-70 - Contractor's approved scrap procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... scrap procedure. 1845.606-70 Section 1845.606-70 Federal Acquisition Regulations System NATIONAL... Disposal of Contractor Inventory 1845.606-70 Contractor's approved scrap procedure. (a) When a contractor has an approved scrap procedure, certain property may be routinely disposed of in accordance with that...

  14. 48 CFR 1845.607-170 - Contractor's approved scrap procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... scrap procedure. 1845.607-170 Section 1845.607-170 Federal Acquisition Regulations System NATIONAL... Disposal of Contractor Inventory 1845.607-170 Contractor's approved scrap procedure. (a) When a contractor has an approved scrap procedure, certain property may be routinely disposed of in accordance with that...

  15. 48 CFR 1845.606-70 - Contractor's approved scrap procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... scrap procedure. 1845.606-70 Section 1845.606-70 Federal Acquisition Regulations System NATIONAL... Disposal of Contractor Inventory 1845.606-70 Contractor's approved scrap procedure. (a) When a contractor has an approved scrap procedure, certain property may be routinely disposed of in accordance with that...

  16. 48 CFR 1845.606-70 - Contractor's approved scrap procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... scrap procedure. 1845.606-70 Section 1845.606-70 Federal Acquisition Regulations System NATIONAL... Disposal of Contractor Inventory 1845.606-70 Contractor's approved scrap procedure. (a) When a contractor has an approved scrap procedure, certain property may be routinely disposed of in accordance with that...

  17. 48 CFR 1845.607-170 - Contractor's approved scrap procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... scrap procedure. 1845.607-170 Section 1845.607-170 Federal Acquisition Regulations System NATIONAL... Disposal of Contractor Inventory 1845.607-170 Contractor's approved scrap procedure. (a) When a contractor has an approved scrap procedure, certain property may be routinely disposed of in accordance with that...

  18. 49 CFR 173.218 - Fish meal or fish scrap.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Fish meal or fish scrap. 173.218 Section 173.218... Fish meal or fish scrap. (a) Except as provided in Column (7) of the HMT in § 172.101 of this subchapter, fish meal or fish scrap, containing at least 6%, but not more than 12% water, is authorized...

  19. 48 CFR 1845.606-70 - Contractor's approved scrap procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... scrap procedure. 1845.606-70 Section 1845.606-70 Federal Acquisition Regulations System NATIONAL... Disposal of Contractor Inventory 1845.606-70 Contractor's approved scrap procedure. (a) When a contractor has an approved scrap procedure, certain property may be routinely disposed of in accordance with that...

  20. 46 CFR Sec. 12 - Disposition of removed equipment and scrap.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Disposition of removed equipment and scrap. Sec. 12... CONTRACT-NSA-LUMPSUMREP Sec. 12 Disposition of removed equipment and scrap. (a) Article 8 of the NSA... cause the Contractor to segregate all equipment, salvageable material and scrap, removed from a vessel...

  1. 48 CFR 1845.607-170 - Contractor's approved scrap procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 6 2010-10-01 2010-10-01 true Contractor's approved scrap... Contractor Inventory 1845.607-170 Contractor's approved scrap procedure. (a) When a contractor has an approved scrap procedure, certain property may be routinely disposed of in accordance with that procedure...

  2. 48 CFR 1845.607-170 - Contractor's approved scrap procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... scrap procedure. 1845.607-170 Section 1845.607-170 Federal Acquisition Regulations System NATIONAL... Disposal of Contractor Inventory 1845.607-170 Contractor's approved scrap procedure. (a) When a contractor has an approved scrap procedure, certain property may be routinely disposed of in accordance with that...

  3. 7 CFR 29.6131 - Scrap (S Group).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Scrap (S Group). 29.6131 Section 29.6131 Agriculture... INSPECTION Standards Grades § 29.6131 Scrap (S Group). A byproduct of unstemmed and stemmed tobacco. Scrap... stemmeries. U.S. grades Grade names and specifications S Loose, tangled, whole, or broken unstemmed leaves...

  4. Broadening the markets for scrap tire rubber

    SciTech Connect

    Hilts, M.E.

    1996-01-01

    Only a couple years ago was the first time that the U.S. first recycled more scrap tires than it discarded. More experienced processors using improved technology and resourceful manufacturers continue to discover more uses of old tires. Soon, they`ll chip away at the 800 million tires stockpiled around the country, not just work to keep up with the waste tires generated each year. After years ago, asphalt roads and highways looked like the answer. This report profiles the utilization of scrap tires.

  5. Life on magnets: stem cell networking on micro-magnet arrays.

    PubMed

    Zablotskii, Vitalii; Dejneka, Alexandr; Kubinová, Šárka; Le-Roy, Damien; Dumas-Bouchiat, Frédéric; Givord, Dominique; Dempsey, Nora M; Syková, Eva

    2013-01-01

    Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field's value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine.

  6. Life on Magnets: Stem Cell Networking on Micro-Magnet Arrays

    PubMed Central

    Zablotskii, Vitalii; Dejneka, Alexandr; Kubinová, Šárka; Le-Roy, Damien; Dumas-Bouchiat, Frédéric; Givord, Dominique; Dempsey, Nora M.; Syková, Eva

    2013-01-01

    Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field’s value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine. PMID:23936425

  7. Development of hybrid bearing system with thrust superconducting magnetic bearing and radial active electromagnetic bearing

    NASA Astrophysics Data System (ADS)

    Nicolsky, R.; Pereira, A. S.; de Andrade, R.; David, D. F. B.; Santisteban, J. A.; Stephan, R. M.; Ripper, A.; Gawalek, W.; Habisreuther, T.; Strasser, T.

    A superconducting/electromagnetic hybrid bearing system is currently under development and test. This system consists of a thrust superconducting magnetic bearing and a double radial active electromagnetic bearing/motor devices. The thrust bearing has been designed using NdFeB permanent magnets levitating on a set of superconducting monoliths of YBCO, prepared by top seeded melt texturing technique, which supports the weight of the rotor. The bearing/motor devices were conceived as 4-pole 2-phase induction machine using stator windings for delivering torque and radial positioning simultaneously. Using this superconducting axial bearing and the active bearings for the rotor radial positioning, a fully levitating vertical-shaft inductive machine has been tested. The tests were successful in reaching a controlled levitation up to 6,300 rpm.

  8. Vitrification for stability of scrap and residue

    SciTech Connect

    Forsberg, C.W.

    1996-05-01

    A conference breakout discussion was held on the subject of vitrification for stabilization of plutonium scrap and residue. This was one of four such sessions held within the vitrification workshop for participants to discuss specific subjects in further detail. The questions and issues were defined by the participants.

  9. EMISSIONS FROM BURNING CABINET MAKING SCRAPS

    EPA Science Inventory

    The report gives results of an initial determination of differences in missions when burning ordinary cordwood compared to kitchen cabinet making scraps. he tests were performed in an instrumented woodstove testing laboratory on a stove that simulated units observed in use at a k...

  10. 7 CFR 30.8 - Scrap.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.8 Scrap. A byproduct from handling leaf tobacco in both the unstemmed and stemmed forms, consisting of loose and tangled portions of tobacco leaves, floor sweepings, and all other tobacco materials (except stems...

  11. 7 CFR 30.8 - Scrap.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.8 Scrap. A byproduct from handling leaf tobacco in both the unstemmed and stemmed forms, consisting of loose and tangled portions of tobacco leaves, floor sweepings, and all other tobacco materials (except stems...

  12. 7 CFR 30.8 - Scrap.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.8 Scrap. A byproduct from handling leaf tobacco in both the unstemmed and stemmed forms, consisting of loose and tangled portions of tobacco leaves, floor sweepings, and all other tobacco materials (except stems...

  13. The continuing problem of radioactive metal scrap

    SciTech Connect

    Yusko, J.G.; Lubenau, J.O.

    1995-12-31

    Metal scrap found to contain radioactive materials continues to challenge regulatory agencies as discoveries of this unwanted constituent increase. And while efforts are made to prevent the exposure of personnel at metal manufacturing mills and scrap yards when radioactivity is discovered in a shipment of metal scrap, this has not stemmed the number of discoveries. Sources and devices continue to be found, leading to difficulties in the disposal of the radioactive materials, especially with the closure of licensed LLRW facilities to non-compact state members. Naturally-occurring radioactive materials continue to be found, principally as surface contaminants of metals for recycling. And although NORM contamination does not generally pose a threat to the health and safety of personnel at metal mills and scrap yards, there is no consensus about the disposition of NORM-contaminated metal. The changing of trade barriers (such as the North American Free Trade Agreement) also factors into the problem, as materials cross international boundaries and enter the recycling stream. The efforts of entities such as Conference committees, federal regulatory agencies (e.g., NRC, EPA, DOT), state radiation control agencies and the affected industries will be presented and discussed.

  14. Catalytic extraction processing of contaminated scrap metal

    SciTech Connect

    Griffin, T.P.; Johnston, J.E.

    1994-12-31

    The contract was conceived to establish the commercial capability of Catalytic Extraction Processing (CEP) to treat contaminated scrap metal in the DOE inventory. In so doing, Molten Metal Technology, Inc. (MMT), pursued the following objectives: demonstration of the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal can be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP will concentrate the radionuclides in a dense vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP will convert hazardous organics to valuable industrial gases, which can be used as feed gases for chemical synthesis or as an energy source; recovery volatile heavy metals--that CEP`s off-gas treatment system will capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory--that CEP is a more cost-effective and, complete treatment and recycling technology than competing technologies for processing contaminated scrap. The process and its performance are described.

  15. EMISSIONS FROM BURNING CABINET MAKING SCRAPS

    EPA Science Inventory

    The report gives results of an initial determination of differences in missions when burning ordinary cordwood compared to kitchen cabinet making scraps. he tests were performed in an instrumented woodstove testing laboratory on a stove that simulated units observed in use at a k...

  16. 24 segment high field permanent sextupole magnets

    NASA Astrophysics Data System (ADS)

    Vassiliev, A.; Nelyubin, V.; Koptev, V.; Kravtsov, P.; Lorentz, B.; Marik, H. J.; Mikirtytchiants, M.; Nekipelov, M.; Rathmann, F.; Paetz gen. Schieck, H.; Seyfarth, H.; Steffens, E.

    2000-09-01

    We report on the design, construction, and magnetic field measurements of a system of high field sextupole magnets made from NdFeB compounds. The magnets are utilized as a focusing system for neutral hydrogen (or deuterium) atoms in a polarized atomic beam source based on Stern-Gerlach spin separation. Each magnet consists of 24 segments of permanently magnetized material differing in remanence and coercivity to reduce demagnetization. According to quadratic extrapolation to the pole tip the magnetic flux density reaches values of up to B0=1.69 T. Three-dimensional field calculations using the MAFIA code were carried out to optimize the magnet performance and to avoid demagnetization by selecting appropriate materials for the individual segments. Measurements of the radial, azimuthal, and longitudinal magnetic flux density distributions were carried out by means of a small Hall probe (100×200×15 μm3). The measurements with the small probe permitted to extract experimentally higher order multipole components very close (˜100 μm) to the inner surface. Experimental values obtained are compared to predictions based on MAFIA calculations and on the Halbach formalism.

  17. The Gauss Rifle and Magnetic Energy

    NASA Astrophysics Data System (ADS)

    Rabchuk, James A.

    2003-03-01

    With the advent of cheap and easy-to-come-by NdFeB magnets, it has become possible to design a number of simple but effective demonstrations of magnetic force. One such demonstration, dubbed the "gauss rifle," is a type of linear magnetic accelerator. It is relatively easy to assemble and involves a rapid and dramatic increase in kinetic energy of the steel ball bearings used in the demonstration. This makes the demonstration a good attention getter, setting the stage for a discussion of a number of physics topics, including conservation of energy, magnetic energy, and magnetic force. It also has the potential for becoming a laboratory experiment since the materials are relatively cheap, there is some challenge in the arrangement of the magnets, and the performance of the accelerator can be characterized by measuring the initial and final velocities of the bearings. Finally, by using freely available finite element magnetics software, it is even possible to make predictions of the final velocity for different configurations of the magnets.

  18. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions.

    PubMed

    Schmidt, M; Zschornack, G; Kentsch, U; Ritter, E

    2014-02-01

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  19. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions

    SciTech Connect

    Schmidt, M.; Zschornack, G.; Kentsch, U.; Ritter, E.

    2014-02-15

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  20. Changes in the topography of cellular components in pea root statocytes exposed to high gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Belyavskaya, Ninel A.; Polishchuk, Olexandr V.; Kondrachuk, Alexander V.

    2005-08-01

    High-gradient magnetic field (HGMF) is one of methods, by which gravitropism in plants is studied. The aim of our study was elucidation of HGMF effects on topography of cellular components in root statocytes of 4- day Pisum sativum L. seedlings in comparison to gravistimulation. Under gravistimulation during 5, 30 and 60 min seedlings were rotated 45o; magnetostimulation was carried out along gap between two NdFeB magnets (0.7 T). Morphometric measurements were made from images of whole statocytes, for upper, middle and lower thirds of cells, and proximal and distal halves of cells. Morphometric analysis revealed that HGMF resulted in the redistribution of all cellular components in statocytes. The correlation in the amyloplast distribution between gravistimulation and magnetostimulation was established.