Sample records for ndvi normalized difference

  1. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States

    USGS Publications Warehouse

    Gu, Yingxin; Brown, Jesslyn F.; Verdin, J.P.; Wardlow, B.

    2007-01-01

    A five-year (2001–2005) history of moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) data was analyzed for grassland drought assessment within the central United States, specifically for the Flint Hills of Kansas and Oklahoma. Initial results show strong relationships among NDVI, NDWI, and drought conditions. During the summer over the Tallgrass Prairie National Preserve, the average NDVI and NDWI were consistently lower (NDVI < 0.5 and NDWI < 0.3) under drought conditions than under non-drought conditions (NDVI>0.6 and NDWI>0.4). NDWI values exhibited a quicker response to drought conditions than NDVI. Analysis revealed that combining information from visible, near infrared, and short wave infrared channels improved sensitivity to drought severity. The proposed normalized difference drought index (NDDI) had a stronger response to summer drought conditions than a simple difference between NDVI and NDWI, and is therefore a more sensitive indicator of drought in grasslands than NDVI alone.

  2. Improved Multispectral Skin Detection and its Application to Search Space Reduction for Dismount Detection Based on Histograms of Oriented Gradients

    DTIC Science & Technology

    2010-03-01

    2-29 2.7.4 Normalized Difference Skin Index (NDSI) . . . . 2-30 2.7.5 Normalized Difference Vegetation Index ( NDVI ) 2-31 2.7.6...C-1 C.2 NDVI Method . . . . . . . . . . . . . . . . . . . . . . . C-4 Bibliography... NDVI ,NDSI) and (NDGRI,NDSI) values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 4.3. Joint distributions of ( NDVI ,NDSI) and

  3. Towards the Mitigation of Correlation Effects in the Analysis of Hyperspectral Imagery with Extensions to Robust Parameter Design

    DTIC Science & Technology

    2012-08-01

    Difference Vegetation Index ( NDVI ) ..................................... 15  2.3  Methodology...Atmospheric Compensation ........................................................................ 31  3.2.3.1  Normalized Difference Vegetation Index ( NDVI ...anomaly detection algorithms are contrasted and implemented, and explains the use of the Normalized Difference Vegetation Index ( NDVI ) in post

  4. Mapping Collective Identity: Territories and Boundaries of Human Terrain

    DTIC Science & Technology

    2011-06-10

    Line MAP-HT Mapping the Human Terrain NDVI Normalized Difference Vegetation Index NGA National Geospatial-Intelligence Agency xi OBIA Object-Based...The Normalized Difference Vegetation Index ( NDVI ) uses the red band to represent the low reflectance from vegetation and the expanded near infrared...spectrum to provide greater delineation of agricultural areas. This layer highlights different fields, crops, and their boundaries. NDVI layers are

  5. Use of Normalized Difference Water Index for monitoring live fuel moisture

    Treesearch

    D.A. Roberts; P.E. Dennison; S.H. Peterson; J. Rechel

    2006-01-01

    Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were compared for monitoring live fuel moisture in a shrubland ecosystem. Both indices were calculated from 500m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance data covering a 33-month period from 2000 to 2002. Both NDVI and NDWI were...

  6. ESTCP Pilot Project Wide Area Assessment for Munitions Response

    DTIC Science & Technology

    2008-07-01

    Data A broadband normalized difference vegetation index ( NDVI ) was computed from the high- resolution spectral data to provide a detection of canopy...chlorophyll content. The NDVI strongly correlates with the green yucca, cactus, juniper, and other SAR-responsive vegetation species on the site...Vegetation Index. NDVI is broadband normalized difference vegetation index computed from high resolution spectral data using (RED-NIR) / (RED +NIR) to

  7. Monitoring the recovery of Juncus roemerianus marsh burns with the normalized difference vegetation index and Landsat Thematic Mapper data

    USGS Publications Warehouse

    Ramsey, Elijah W.; Sapkota, S.K.; Barnes, F.G.; Nelson, G.A.

    2002-01-01

    Nine atmospherically corrected Landsat Thematic Mapper images were used to generate mean normalized difference vegetation indices (NDVI) at 11 burn sites throughout a coastal Juncus roemerianus marsh in St. Marks National Wildlife Refuge, Florida. Time-since-burn, the time lapse from the date of burn to the date of image collection, was related to variation in mean NDVI over time. Regression analysis showed that NDVI increased for about 300 to 400 days immediately after the burn, overshooting the typical mean NDVI of a nonburned marsh. For about another 500 to 600 days NDVI decreased until reaching a nearly constant NDVI of about 0.40. During the phase of increasing NDVI the ability to predict time-since-burn was within about ??60 days. Within the decreasing phase this dropped to about ??88 days. Examination of each burn site revealed some nonburn related influences on NDVI (e.g., seasonality). Normalization of burn NDVI by site-specific nonburn control NDVI eliminated most influences. However, differential responses at the site-specific level remained related to either storm impacts or secondary burning. At these sites, collateral data helped clarify the abnormal changes in NDVI. Accounting for these abnormalities, site-specific burn recovery trends could be broadly standardized into four general phases: Phase 1-preburn, Phase 2-initial recovery (increasing NDVI), Phase 3-late recovery (decreasing NDVI), and Phase 4-final coalescence (unchanging NDVI). Phase 2 tended to last about 300 to 500 days, Phase 3 an additional 500 to 600 days, and finally reaching Phase 4, 900 to 1,000 days after burn.

  8. Development and Testing of a Laboratory Spray Table Methodology to Bioassay Simulated Levels of Aerial Spray Drift

    DTIC Science & Technology

    2009-05-01

    was measured on Mylar cards through fluorometric analysis. Plant health measures height and normalized difference vegetation index NDVI were...plant health data were used to generate dose-response relationships. Dose-response curves relating change in plant height and change in measured NDVI ...Held Sensor Model 505, NTech Industries, Inc., Ukiah, California to measure the normalized difference vegetation index NDVI which is directly

  9. Application of Hyperspectral Vegetation Indices to Detect Variations in High Leaf Area Index Temperate Shrub Thicket Canopies

    DTIC Science & Technology

    2011-01-01

    sensing an attractive technique for estimating LAI. Many vegetation indices, such as Normalized Difference Vegetation Index ( NDVI ), tend to saturate at...little or no improvement over NDVI . Furthermore, indirect ground-sampling techniques often used to evaluate the potential of vegetation indices also...landscapes makes remote sensing an attractive technique for estimating LAI. Many vegetation indices, such as Normalized Difference Vegetation Index ( NDVI

  10. Analysis of regional-scale vegetation dynamics of Mexico using stratified AVHRR NDVI data. [Normalized Difference Vegetaion Index

    NASA Technical Reports Server (NTRS)

    Turcotte, Kevin M.; Kramber, William J.; Venugopal, Gopalan; Lulla, Kamlesh

    1989-01-01

    Previous studies have shown that a good relationship exists between AVHRR Normalized Difference Vegetation Index (NDVI) measurements, and both regional-scale patterns of vegetation seasonality and productivity. Most of these studies used known samples of vegetation types. An alternative approach, and the objective was to examine the above relationships by analyzing one year of AVHRR NDVI data that was stratified using a small-scale vegetation map of Mexico. The results show that there is a good relationship between AVHRR NDVI measurements and regional-scale vegetation dynamics of Mexico.

  11. Comparison of MODIS and AVHRR 16-day normalized difference vegetation index composite data

    USGS Publications Warehouse

    Gallo, Kevin P.; Ji, Lei; Reed, Bradley C.; Dwyer, John L.; Eidenshink, Jeffery C.

    2004-01-01

    Normalized difference vegetation index (NDVI) data derived from visible and near-infrared data acquired by the MODIS and AVHRR sensors were compared over the same time periods and a variety of land cover classes within the conterminous USA. The relationship between the AVHRR derived NDVI values and those of future sensors is critical to continued long term monitoring of land surface properties. The results indicate that the 16-day composite values are quite similar over the 23 intervals of 2001 that were analyzed, and a linear relationship exists between the NDVI values from the two sensors. The composite AVHRR NDVI data were associated with over 90% of the variation in the MODIS NDVI values. Copyright 2004 by the American Geophysical Union.

  12. Monitoring Coastal Marshes for Persistent Saltwater Intrusion

    DTIC Science & Technology

    2010-06-01

    for the normalized difference indices (vegetation, soil, and water– NDVI , NDSI, and NDWI) for both MODIS and Landsat 5 and 7, referred to as the...Normalized Difference Index transformation [4]. The MODIS indices are 250 m ( NDVI ) and 500 m (NDWI and NDSI), and the Landsat indices are 30 m...indices are shown for two locations in Fig. 1 and Fig 2. Each figure shows the NDSI (soil), NDVI (vegetation), and NDWI (water) index as a function of

  13. Integrated NDVI images for Niger 1986-1987. [Normalized Difference Vegetation Index

    NASA Technical Reports Server (NTRS)

    Harrington, John A., Jr.; Wylie, Bruce K.; Tucker, Compton J.

    1988-01-01

    Two NOAA AVHRR images are presented which provide a comparison of the geographic distribution of an integration of the normalized difference vegetation index (NDVI) for the Sahel zone in Niger for the growing seasons of 1986 and 1987. The production of the images and the application of the images for resource management are discussed. Daily large area coverage with a spatial resolution of 1.1 km at nadir were transformed to the NDVI and geographically registered to produce the images.

  14. Automatic Target Recognition for Hyperspectral Imagery

    DTIC Science & Technology

    2012-03-01

    representation, b) NDVI representation .... 13 Figure 6. Vegetation Reflectance Spectra, taken directly from (Eismann, 2011) ........... 15 Figure 7...46 Figure 22. Example NDVI Mean and Shade Spectrum Signatures ................................. 47 Figure 23. Example Average...locate vegetation within an image normalized-difference vegetation index ( NDVI ) is applied. NDVI was first introduced by Rouse et al. while monitoring

  15. White Light Sagnac Interferometer for Snapshot Multispectral Imaging (Preprint)

    DTIC Science & Technology

    2009-01-01

    normalized difference vegetation index ( NDVI ) provided in Fig. 12 (b). The NDVI is calculated by ( ) ( ) ( )( ) ( ) , ,2 , ,3 , , ,2 , ,3 I l n I l n NDVI ... NDVI . Conversely, if the leaf has little to no chlorophyll, order 3 will have nearly equal reflected energy compared to order 2, yielding a low NDVI ...This is observed in the NDVI image, where the upper left portion of the scene (quadrant 2) contains the unhealthy leaf, while the lower right region

  16. A Five-Year Analysis of MODIS NDVI and NDWI for Rangeland Drought Assessment: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Brown, J. F.; Verdin, J. P.; Wardlow, B.

    2006-12-01

    Drought is one of the most costly natural disasters in the United States. Traditionally, drought monitoring has been based on weather station observations, which lack the continuous spatial coverage needed to adequately characterize and monitor detailed spatial patterns of drought conditions. Satellite remote sensing observations can provide a synoptic view of the land and provide a spatial context for measuring drought. A common satellite-based index, the normalized difference vegetation index (NDVI) has a 30-year history of use for vegetation condition monitoring. NDVI is calculated from the visible red and near infrared channels and measures the changes in chlorophyll absorption and reflection in the spongy mesophyll of the vegetation canopy that are reflected in these respective bands. The normalized difference water index (NDWI) is another index, derived from the near-infrared and short wave infrared channels, and reflects changes in both the water content and spongy mesophyll in the vegetation canopy. As a result, the NDWI is influenced by both desiccation and wilting in the vegetation canopy and may be a more sensitive indicator than the NDVI for large- area drought monitoring. The objective of this study was to process and evaluate a 5-year history of 500-meter NDVI and NDWI data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument and to investigate methods for measuring and monitoring drought in rangeland over the southern plains of the United States. This initial study included: (1) the development of a climatological database for MODIS NDVI and NDWI, (2) a study of the relationship between the NDVI, NDWI, and drought condition over rangeland, (3) the development of a method to provide threshold NDVI/NDWI values under drought conditions based on the 5-year NDVI/NDWI/drought condition analysis, and (4) the investigation of additional vegetation drought information provided by the NDWI versus the NDVI in a 5-year comparison of the two indices. The MODIS data were obtained from the Land Processes Distributed Active Archive System. Results show strong relationships among NDVI, NDWI, and drought analyzed over grasslands in the Flint Hills region of Kansas and Oklahoma. During the summer months, the average NDVI and NDWI values were consistently lower (NDVI<0.5 and NDWI<0.3) for the tallgrass prairie under drought conditions than under normal climate conditions (NDVI>0.6 and NDWI>0.4). The distinctions between drought conditions and normal climate conditions are based on the historic U.S. Drought Monitor maps and the historic Palmer index data. To take advantage of information contained in both indices, we calculated the difference between NDVI and NDWI (NDVI-NDWI). The difference between NDVI and NDWI slightly increases during the summer drought condition. Based on these analyses, the NDWI appears to be more sensitive than NDVI to drought conditions. The results of statistical analysis of the relationships among these indices will be presented in the poster.

  17. Relative sensitivity of Normalized Difference Vegetation Index (NDVI) and Microwave Polarization Difference Index (MPDI) for vegetation and desertification monitoring

    NASA Technical Reports Server (NTRS)

    Becker, Francois; Choudhury, Bhaskar J.

    1988-01-01

    A simple equation relating the Microwave Polarization Difference Index (MPDI) and the Normalized Difference Vegetation Index (NDVI) is proposed which represents well data obtained from Nimbus 7/SMMR at 37 GHz and NOAA/AVHRR Channels 1 and 2. It is found that there is a limit which is characteristic of a particular type of cover for which both indices are equally sensitive to the variation of vegetation, and below which MPDI is more efficient than NDVI. The results provide insight into the relationship between water content and chlorophyll absorption at pixel size scales.

  18. Using ESAP Software for Predicting the Spatial Distributions of NDVI and Transpiration of Cotton

    USDA-ARS?s Scientific Manuscript database

    The normalized difference vegetation index (NDVI) has many applications in agricultural management, including monitoring real-time crop coefficients for estimating crop evapotranspiration (ET). However, frequent monitoring of NDVI as needed in such applications is generally not feasible from aerial ...

  19. Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data

    USGS Publications Warehouse

    Gallo, Kevin P.; Ji, Lei; Reed, Bradley C.; Eidenshink, Jeffery C.; Dwyer, John L.

    2005-01-01

    The relationship between AVHRR-derived normalized difference vegetation index (NDVI) values and those of future sensors is critical to continued long-term monitoring of land surface properties. The follow-on operational sensor to the AVHRR, the Visible/Infrared Imager/Radiometer Suite (VIIRS), will be very similar to the NASA Earth Observing System's Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. NDVI data derived from visible and near-infrared data acquired by the MODIS (Terra and Aqua platforms) and AVHRR (NOAA-16 and NOAA-17) sensors were compared over the same time periods and a variety of land cover classes within the conterminous United States. The results indicate that the 16-day composite NDVI values are quite similar over the composite intervals of 2002 and 2003, and linear relationships exist between the NDVI values from the various sensors. The composite AVHRR NDVI data included water and cloud masks and adjustments for water vapor as did the MODIS NDVI data. When analyzed over a variety of land cover types and composite intervals, the AVHRR derived NDVI data were associated with 89% or more of the variation in the MODIS NDVI values. The results suggest that it may be possible to successfully reprocess historical AVHRR data sets to provide continuity of NDVI products through future sensor systems.

  20. Abstracting GIS Layers from Hyperspectral Imagery

    DTIC Science & Technology

    2009-03-01

    Difference Vegetative Index ( NDVI ) 2-20 2.2.10 Separating Trees from Grass . . . . . . . . . . . 2-22 2.3 Spatial Analysis...2-18 2.10. Example of the Normalized Difference Vegetation Index ( NDVI ) applied to a hyperspectral image. . . . . . . . . . . . . . . . . . 2-20...3.5. Example of applying NDVI to a SOM. . . . . . . . . . . . . . . 3-8 3.6. Visualization of the NIR scatter tree ID algorithm. . . . . . . . 3-9 ix

  1. Spatial Variations in Salinity Stress Across a Coastal Landscape Using Vegetation Indices Derived from Hyperspectral Imagery

    DTIC Science & Technology

    2009-01-01

    NDVI , WBI970, Chlorophyll fluorescence, Salinity, Hyperspectral reflectance JC_Naumann, DR_Young, JE_Anderson Virginia Commonwealth University 800...DF=F0m for M. cerifera (r2 = 0.79) and I. frutescens (r2 = 0.72). The normalized difference vegetation index ( NDVI ), the chlorophyll index (CI), and...frutescens, while there were no differences in NDVI during the 2 years. PRI was not significantly related to NDVI , suggesting that the indices are spatially

  2. Boosted Regression Trees Outperforms Support Vector Machines in Predicting (Regional) Yields of Winter Wheat from Single and Cumulated Dekadal Spot-VGT Derived Normalized Difference Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Stas, Michiel; Dong, Qinghan; Heremans, Stien; Zhang, Beier; Van Orshoven, Jos

    2016-08-01

    This paper compares two machine learning techniques to predict regional winter wheat yields. The models, based on Boosted Regression Trees (BRT) and Support Vector Machines (SVM), are constructed of Normalized Difference Vegetation Indices (NDVI) derived from low resolution SPOT VEGETATION satellite imagery. Three types of NDVI-related predictors were used: Single NDVI, Incremental NDVI and Targeted NDVI. BRT and SVM were first used to select features with high relevance for predicting the yield. Although the exact selections differed between the prefectures, certain periods with high influence scores for multiple prefectures could be identified. The same period of high influence stretching from March to June was detected by both machine learning methods. After feature selection, BRT and SVM models were applied to the subset of selected features for actual yield forecasting. Whereas both machine learning methods returned very low prediction errors, BRT seems to slightly but consistently outperform SVM.

  3. Daytime Mud Detection for Unmanned Ground Vehicle Autonomous Navigation

    DTIC Science & Technology

    2008-12-01

    disambiguate shadows from wet soil than shadows from dry soil. (a) Red band (b) NIR band (c) NDVI image (d) Brightness image wet soil Red...spectral bands to segment wet soil. Red and NIR bands (Figures 5a and 5b) can be used to generate a Normalized Difference Vegetation Index ( NDVI ...along the soil line image (Figure 5f) can be generated. The NDVI and normal distance to the soil line images can be used to segment soil from

  4. Preliminary comparison of landscape pattern-normalized difference vegetation index (NDVI) relationships to central plains stream conditions

    USGS Publications Warehouse

    Griffith, J.A.; Martinko, E.A.; Whistler, J.L.; Price, K.P.

    2002-01-01

    We explored relationships of water quality parameters with landscape pattern metrics (LPMs), land use-land cover (LULC) proportions, and the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) or NDVI-derived metrics. Stream sites (271) in Nebraska, Kansas, and Missouri were sampled for water quality parameters, the index of biotic integrity, and a habitat index in either 1994 or 1995. Although a combination of LPMs (interspersion and juxtaposition index, patch density, and percent forest) within Ozark Highlands watersheds explained >60% of the variation in levels of nitrite-nitrate nitrogen and conductivity, in most cases the LPMs were not significantly correlated with the stream data. Several problems using landscape pattern metrics were noted: small watersheds having only one or two patches, collinearity with LULC data, and counterintuitive or inconsistent results that resulted from basic differences in land use-land cover patterns among ecoregions or from other factors determining water quality. The amount of variation explained in water quality parameters using multiple regression models that combined LULC and LPMs was generally lower than that from NDVI or vegetation phenology metrics derived from time-series NDVI data. A comparison of LPMs and NDVI indicated that NDVI had greater promise for monitoring landscapes for stream conditions within the study area.

  5. Preliminary comparison of landscape pattern-normalized difference vegetation index (NDVI) relationships to Central Plains stream conditions.

    PubMed

    Griffith, Jerry A; Martinko, Edward A; Whistler, Jerry L; Price, Kevin P

    2002-01-01

    We explored relationships of water quality parameters with landscape pattern metrics (LPMs), land use-land cover (LULC) proportions, and the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) or NDVI-derived metrics. Stream sites (271) in Nebraska, Kansas, and Missouri were sampled for water quality parameters, the index of biotic integrity, and a habitat index in either 1994 or 1995. Although a combination of LPMs (interspersion and juxtaposition index, patch density, and percent forest) within Ozark Highlands watersheds explained >60% of the variation in levels of nitrite-nitrate nitrogen and conductivity, in most cases the LPMs were not significantly correlated with the stream data. Several problems using landscape pattern metrics were noted: small watersheds having only one or two patches, collinearity with LULC data, and counterintuitive or inconsistent results that resulted from basic differences in land use-land cover patterns among ecoregions or from other factors determining water quality. The amount of variation explained in water quality parameters using multiple regression models that combined LULC and LPMs was generally lower than that from NDVI or vegetation phenology metrics derived from time-series NDVI data. A comparison of LPMs and NDVI indicated that NDVI had greater promise for monitoring landscapes for stream conditions within the study area.

  6. Analysis of the Relationship Between Climate and NDVI Variability at Global Scales

    NASA Technical Reports Server (NTRS)

    Zeng, Fan-Wei; Collatz, G. James; Pinzon, Jorge; Ivanoff, Alvaro

    2011-01-01

    interannual variability in modeled (CASA) C flux is in part caused by interannual variability in Normalized Difference Vegetation Index (NDVI) Fraction of Photosynthetically Active Radiation (FPAR). This study confirms a mechanism producing variability in modeled NPP: -- NDVI (FPAR) interannual variability is strongly driven by climate; -- The climate driven variability in NDVI (FPAR) can lead to much larger fluctuation in NPP vs. the NPP computed from FPAR climatology

  7. Using MODIS NDVI phenoclasses and phenoclusters to characterize wildlife habitat: Mexican spotted owl as a case study

    Treesearch

    Serra J. Hoagland; Paul Beier; Danny Lee

    2018-01-01

    Most uses of remotely sensed satellite data to characterize wildlife habitat have used metrics such as mean NDVI (Normalized Difference Vegetation Index) in a year or season. These simple metrics do not take advantage of the temporal patterns in NDVI within and across years and the spatial arrangement of cells with various temporal NDVI signatures. Here we use 13 years...

  8. Monitoring Phenology as Indicator for Timing of Nutrient Inputs in Northern Gulf Watersheds

    DTIC Science & Technology

    2010-06-01

    region and compared to nutrient monitoring data. A. Image Data This project uses MODIS normalized difference vegetation index ( NDVI ) to create a time...series of land vegetation canopies. MODIS provides a near-daily repeat time for the elimination of cloud contamination, and NDVI has been widely adopted...steps and NDVI was calculated by the defined formula NDVI = (near-infrared reflectance - red reflectance) / (near-infrared reflectance + red

  9. Investigations of possible contributions NDVI's have to misclassification in AVHRR data analysis

    Treesearch

    David L. Evans; Raymond L. Czaplewski

    1996-01-01

    Numerous subcontinental-scale projects have placed significant emphasis on the use of Normalized Difference Vegetation Indices (NDVI's) derived from Advanced Very High Resolution Radiometer (AVHRR) satellite data for vegetation type recognition. In multi-season AVHRR data, overlap of NDVI ranges for vegetation classes may degrade overall classification performance...

  10. Multifractal Downscaling of Rainfall Using Normalized Difference Vegetation Index (NDVI) in the Andes Plateau.

    PubMed

    Duffaut Espinosa, L A; Posadas, A N; Carbajal, M; Quiroz, R

    2017-01-01

    In this paper, a multifractal downscaling technique is applied to adequately transformed and lag corrected normalized difference vegetation index (NDVI) in order to obtain daily estimates of rainfall in an area of the Peruvian Andean high plateau. This downscaling procedure is temporal in nature since the original NDVI information is provided at an irregular temporal sampling period between 8 and 11 days, and the desired final scale is 1 day. The spatial resolution of approximately 1 km remains the same throughout the downscaling process. The results were validated against on-site measurements of meteorological stations distributed in the area under study.

  11. Multifractal Downscaling of Rainfall Using Normalized Difference Vegetation Index (NDVI) in the Andes Plateau

    PubMed Central

    Posadas, A. N.; Carbajal, M.; Quiroz, R.

    2017-01-01

    In this paper, a multifractal downscaling technique is applied to adequately transformed and lag corrected normalized difference vegetation index (NDVI) in order to obtain daily estimates of rainfall in an area of the Peruvian Andean high plateau. This downscaling procedure is temporal in nature since the original NDVI information is provided at an irregular temporal sampling period between 8 and 11 days, and the desired final scale is 1 day. The spatial resolution of approximately 1 km remains the same throughout the downscaling process. The results were validated against on-site measurements of meteorological stations distributed in the area under study. PMID:28125607

  12. Monitoring Thermal Status of Ecosystems with MODIS Land-Surface Temperature and Vegetation Index Products

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    2002-01-01

    The global land-surface temperature (LST) and normalized difference vegetation index (NDVI) products retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) data in 2001 were used in this study. The yearly peak values of NDVI data at 5km grids were used to define six NDVI peak zones from -0.2 to 1 in steps of 0.2, and the monthly NDVI values at each grid were sorted in decreasing order, resulting in 12 layers of NDVI images for each of the NDVI peak zones. The mean and standard deviation of daytime LSTs and day-night LST differences at the grids corresponding to the first layer of NDVI images characterize the thermal status of terrestrial ecosystems in the NDVI peak zones. For the ecosystems in the 0.8-1 NDVI peak zone, daytime LSTs distribute from 0-35 C and day-night LST differences distribute from -2 to 22 C. The daytime LSTs and day-night LST differences corresponding to the remaining layers of NDVI images show that the growth of vegetation is limited at low and high LSTs. LSTs and NDVI may be used to monitor photosynthetic activity and drought, as shown in their applications to a flood-irrigated grassland in California and an unirrigated grassland in Nevada.

  13. Agreement evaluation of AVHRR and MODIS 16-day composite NDVI data sets

    USGS Publications Warehouse

    Ji, Lei; Gallo, Kevin P.; Eidenshink, Jeffery C.; Dwyer, John L.

    2008-01-01

    Satellite-derived normalized difference vegetation index (NDVI) data have been used extensively to detect and monitor vegetation conditions at regional and global levels. A combination of NDVI data sets derived from AVHRR and MODIS can be used to construct a long NDVI time series that may also be extended to VIIRS. Comparative analysis of NDVI data derived from AVHRR and MODIS is critical to understanding the data continuity through the time series. In this study, the AVHRR and MODIS 16-day composite NDVI products were compared using regression and agreement analysis methods. The analysis shows a high agreement between the AVHRR-NDVI and MODIS-NDVI observed from 2002 and 2003 for the conterminous United States, but the difference between the two data sets is appreciable. Twenty per cent of the total difference between the two data sets is due to systematic difference, with the remainder due to unsystematic difference. The systematic difference can be eliminated with a linear regression-based transformation between two data sets, and the unsystematic difference can be reduced partially by applying spatial filters to the data. We conclude that the continuity of NDVI time series from AVHRR to MODIS is satisfactory, but a linear transformation between the two sets is recommended.

  14. Terrain Classification Using Multi-Wavelength Lidar Data

    DTIC Science & Technology

    2015-09-01

    Figure 9. Pseudo- NDVI of three layers within the vertical structure of the forest. (Top) First return from the LiDAR instrument, including the ground...in NDVI throughout the vertical canopy. ........................................................17 Figure 10. Optech Titan operating wavelengths...and Ranging LMS LiDAR Mapping Suite ML Maximum Likelihood NIR Near Infrared N-D VIS n-Dimensional Visualizer NDVI Normalized Difference

  15. Spatiotemporal variability and predictability of Normalized Difference Vegetation Index (NDVI) in Alberta, Canada.

    PubMed

    Jiang, Rengui; Xie, Jiancang; He, Hailong; Kuo, Chun-Chao; Zhu, Jiwei; Yang, Mingxiang

    2016-09-01

    As one of the most popular vegetation indices to monitor terrestrial vegetation productivity, Normalized Difference Vegetation Index (NDVI) has been widely used to study the plant growth and vegetation productivity around the world, especially the dynamic response of vegetation to climate change in terms of precipitation and temperature. Alberta is the most important agricultural and forestry province and with the best climatic observation systems in Canada. However, few studies pertaining to climate change and vegetation productivity are found. The objectives of this paper therefore were to better understand impacts of climate change on vegetation productivity in Alberta using the NDVI and provide reference for policy makers and stakeholders. We investigated the following: (1) the variations of Alberta's smoothed NDVI (sNDVI, eliminated noise compared to NDVI) and two climatic variables (precipitation and temperature) using non-parametric Mann-Kendall monotonic test and Thiel-Sen's slope; (2) the relationships between sNDVI and climatic variables, and the potential predictability of sNDVI using climatic variables as predictors based on two predicted models; and (3) the use of a linear regression model and an artificial neural network calibrated by the genetic algorithm (ANN-GA) to estimate Alberta's sNDVI using precipitation and temperature as predictors. The results showed that (1) the monthly sNDVI has increased during the past 30 years and a lengthened growing season was detected; (2) vegetation productivity in northern Alberta was mainly temperature driven and the vegetation in southern Alberta was predominantly precipitation driven for the period of 1982-2011; and (3) better performances of the sNDVI-climate relationships were obtained by nonlinear model (ANN-GA) than using linear (regression) model. Similar results detected in both monthly and summer sNDVI prediction using climatic variables as predictors revealed the applicability of two models for different period of year ecologists might focus on.

  16. Unmanned aircraft system-derived crop height and normalized difference vegetation index metrics for sorghum yield and aphid stress assessment

    NASA Astrophysics Data System (ADS)

    Stanton, Carly; Starek, Michael J.; Elliott, Norman; Brewer, Michael; Maeda, Murilo M.; Chu, Tianxing

    2017-04-01

    A small, fixed-wing unmanned aircraft system (UAS) was used to survey a replicated small plot field experiment designed to estimate sorghum damage caused by an invasive aphid. Plant stress varied among 40 plots through manipulation of aphid densities. Equipped with a consumer-grade near-infrared camera, the UAS was flown on a recurring basis over the growing season. The raw imagery was processed using structure-from-motion to generate normalized difference vegetation index (NDVI) maps of the fields and three-dimensional point clouds. NDVI and plant height metrics were averaged on a per plot basis and evaluated for their ability to identify aphid-induced plant stress. Experimental soil signal filtering was performed on both metrics, and a method filtering low near-infrared values before NDVI calculation was found to be the most effective. UAS NDVI was compared with NDVI from sensors onboard a manned aircraft and a tractor. The correlation results showed dependence on the growth stage. Plot averages of NDVI and canopy height values were compared with per-plot yield at 14% moisture and aphid density. The UAS measures of plant height and NDVI were correlated to plot averages of yield and insect density. Negative correlations between aphid density and NDVI were seen near the end of the season in the most damaged crops.

  17. Spectral modelling of multicomponent landscapes in the Sahel

    NASA Technical Reports Server (NTRS)

    Hanan, N. P.; Prince, S. D.; Hiernaux, P. H. Y.

    1991-01-01

    Simple additive models are used to examine the infuence of differing soil types on the spatial average spectral reflectance and normalized difference vegetation index (NDVI). The spatial average NDVI is shown to be a function of the brightness (red plus near-infrared reflectances), the NDVI, and the fractional cover of the components. In landscapes where soil and vegetation can be considered the only components, the NDVI-brightness model can be inverted to obtain the NDVI of vegetation. The red and near-infrared component reflectances of soil and vegetation are determined on the basis of aerial photoradiometer data from Mali. The relationship between the vegetation component NDVI and plant cover is found to be better than between the NDVI of the entire landscape and plant cover. It is concluded that the usefulness of this modeling approach depends on the existence of clearly distinguishable landscape components.

  18. [Differences of vegetation phenology monitoring by remote sensing based on different spectral vegetation indices.

    PubMed

    Zuo, Lu; Wang, Huan Jiong; Liu, Rong Gao; Liu, Yang; Shang, Rong

    2018-02-01

    Vegetation phenology is a comprehensive indictor for the responses of terrestrial ecosystem to climatic and environmental changes. Remote sensing spectrum has been widely used in the extraction of vegetation phenology information. However, there are many differences between phenology extracted by remote sensing and site observations, with their physical meaning remaining unclear. We selected one tile of MODIS data in northeastern China (2000-2014) to examine the SOS and EOS differences derived from the normalized difference vegetation index (NDVI) and the simple ratio vegetation index (SR) based on both the red and near-infrared bands. The results showed that there were significant differences between NDVI-phenology and SR-phenology. SOS derived from NDVI averaged 18.9 days earlier than that from SR. EOS derived from NDVI averaged 19.0 days later than from SR. NDVI-phenology had a longer growing season. There were significant differences in the inter-annual variation of phenology from NDVI and SR. More than 20% of the pixel SOS and EOS derived from NDVI and SR showed the opposite temporal trend. These results caused by the seasonal curve characteristics and noise resistance differences of NDVI and SR. The observed data source of NDVI and SR were completely consistent, only the mathematical expressions were different, but phenology results were significantly different. Our results indicated that vegetation phenology monitoring by remote sensing is highly dependent on the mathematical expression of vegetation index. How to establish a reliable method for extracting vegetation phenology by remote sensing needs further research.

  19. NDVI indicated characteristics of vegetation cover change in China's metropolises over the last three decades.

    PubMed

    Sun, Jinyu; Wang, Xuhui; Chen, Anping; Ma, Yuecun; Cui, Mengdi; Piao, Shilong

    2011-08-01

    How urban vegetation was influenced by three decades of intensive urbanization in China is of great interest but rarely studied. In this paper, we used satellite derived Normalized Difference Vegetation Index (NDVI) and socioeconomic data to evaluate effects of urbanization on vegetation cover in China's 117 metropolises over the last three decades. Our results suggest that current urbanization has caused deterioration of urban vegetation across most cities in China, particularly in East China. At the national scale, average urban area NDVI (NDVI(u)) significantly decreased during the last three decades (P < 0.01), and two distinct periods with different trends can be identified, 1982-1990 and 1990-2006. NDVI(u) did not show statistically significant trend before 1990 but decrease remarkably after 1990 (P < 0.01). Different regions also showed difference in the timing of NDVI(u) turning point. The year when NDVI(u) started to decline significantly for Central China and East China was 1987 and 1990, respectively, while NDVI(u) in West China remained relatively constant until 1998. NDVI(u) changes in the Yangtze River Delta and the Pearl River Delta, two regions which has been undergoing the most rapid urbanization in China, also show different characteristics. The Pearl River Delta experienced a rapid decline in NDVI(u) from the early 1980s to the mid-1990s; while in the Yangtze River Delta, NDVI(u) did not decline significantly until the early 1990s. Such different patterns of NDVI(u) changes are closely linked with policy-oriented difference in urbanization dynamics of these regions, which highlights the importance of implementing a sustainable urban development policy.

  20. Changing Seasonality of Panarctic Tundra Vegetation in Relationship to Climatic Variables

    NASA Technical Reports Server (NTRS)

    Bhatt, Uma S.; Walker, Donald A.; Raynolds, Martha K.; Bieniek, Peter A.; Epstein, Howard E.; Comiso, Josefino C.; Pinzon, Jorge E.; Tucker, Compton J.; Steele, Michael; Ermold, Wendy; hide

    2017-01-01

    Potential climate drivers of Arctic tundra vegetation productivity are investigated to understand recent greening and browning trends documented by maximum normalized difference vegetation index (NDVI) (MaxNDVI) and time-integrated NDVI (TI-NDVI) for 19822015. Over this period, summer sea ice has continued to decline while oceanic heat content has increased. The increases in summer warmth index (SWI) and NDVI have not been uniform over the satellite record. SWI increased from 1982 to the mid-1990s and remained relatively flat from 1998 onwards until a recent upturn. While MaxNDVI displays positive trends from 19822015, TI-NDVI increased from 1982 until 2001 and has declined since. The data for the first and second halves of the record were analyzed and compared spatially for changing trends with a focus on the growing season. Negative trends for MaxNDVI and TI-NDVI were more common during 19992015 compared to 19821998.

  1. Evapotranspiration, Water Table Fluctuations, and Riparian Restoration: Report Documentary 2007-2008 Work

    DTIC Science & Technology

    2010-09-01

    is delineated in upper third in 2006 image. .............................................................................. 23 Figure 19. NDVI ...values are compared for SPOT imagery from 29 May 2006 and 24 August 2006. Fire areas with reduced NDVI from Malpais fire are clearly seen on both sides...results comparing vegetation type and normalized difference vegetation index ( NDVI ), and (4) presents initial results from the groundwater flow field

  2. Evaluating and Quantifying the Climate-Driven Interannual Variability in Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) at Global Scales

    NASA Technical Reports Server (NTRS)

    Zeng, Fanwei; Collatz, George James; Pinzon, Jorge E.; Ivanoff, Alvaro

    2013-01-01

    Satellite observations of surface reflected solar radiation contain informationabout variability in the absorption of solar radiation by vegetation. Understanding thecauses of variability is important for models that use these data to drive land surface fluxesor for benchmarking prognostic vegetation models. Here we evaluated the interannualvariability in the new 30.5-year long global satellite-derived surface reflectance index data,Global Inventory Modeling and Mapping Studies normalized difference vegetation index(GIMMS NDVI3g). Pearsons correlation and multiple linear stepwise regression analyseswere applied to quantify the NDVI interannual variability driven by climate anomalies, andto evaluate the effects of potential interference (snow, aerosols and clouds) on the NDVIsignal. We found ecologically plausible strong controls on NDVI variability by antecedent precipitation and current monthly temperature with distinct spatial patterns. Precipitation correlations were strongest for temperate to tropical water limited herbaceous systemswhere in some regions and seasons 40 of the NDVI variance could be explained byprecipitation anomalies. Temperature correlations were strongest in northern mid- to-high-latitudes in the spring and early summer where up to 70 of the NDVI variance was explained by temperature anomalies. We find that, in western and central North America,winter-spring precipitation determines early summer growth while more recent precipitation controls NDVI variability in late summer. In contrast, current or prior wetseason precipitation anomalies were correlated with all months of NDVI in sub-tropical herbaceous vegetation. Snow, aerosols and clouds as well as unexplained phenomena still account for part of the NDVI variance despite corrections. Nevertheless, this study demonstrates that GIMMS NDVI3g represents real responses of vegetation to climate variability that are useful for global models.

  3. Analysis of smoke and cloud impact on seasonal and interannual variations in normalized difference vegetation index in Amazon

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Dye, D. G.

    2004-12-01

    Normalized difference vegetation index (NDVI) derived from National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer (AVHRR) is a unique measurement of long-term variations in global vegetation dynamics. The NDVI data have been used for the detection of the seasonal and interannual variations in vegetation. However, as reported in several studies, NDVI decreases with the increase in clouds and/or smoke aerosol contaminated in the pixels. This study assesses the smoke and clouds effect on long-term Global Inventory Modeling and Mapping Studies (GIMMS) and Pathfinder AVHRR Land (PAL) NDVI data in Amazon. This knowledge will help developing the correction method in the tropics in the future. To assess the smoke and cloud effects on GIMMS and PAL, we used another satellite-derived data sets; NDVI derived from SPOT/VEGETATION (VGT) data and Aerosol Index (AI) derived from Total Ozone Mapping Spectrometer (TOMS). Since April 1998, VGT has measured the earth surface globally including in Amazon. The advantage of the VGT is that it has blue channel where the smoke and cloud can be easily detected. By analyzing the VGT NDVI and comparing with the AVHRR-based NDVI, we inferred smoke and cloud effect on the AVHRR-based NDVI. From the results of the VGT analysis, we found the large NDVI seasonality in South and Southeastern Amazon. In these areas, the NDVI gradually increased from April to July and decreased from August to October. However the sufficient NDVI data were not existed from August to November when the smoke and cloud pixels were masked using blue reflectance. Thus it is said that the smoke and clouds mainly cause the large decreases in NDVI between August and November and NDVI has little vegetation signature in these months. Also we examined the interannual variations in NDVI and smoke aerosol. Then the decrease in NDVI is well consistent with the increase in the increase in AI. Our results suggest that the months between April and July are the most reliable season to monitor the vegetation.

  4. Corn response to climate stress detected with satellite-based NDVI time series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ruoyu; Cherkauer, Keith; Bowling, Laura

    Corn growth conditions and yield are closely dependent on climate variability. Leaf growth, measured as the leaf area index, can be used to identify changes in crop growth in response to climate stress. This research was conducted to capture patterns of spatial and temporal corn leaf growth under climate stress for the St. Joseph River watershed, in northeastern Indiana. Leaf growth is represented by the Normalized Difference Vegetative Index (NDVI) retrieved from multiple years (2000–2010) of Landsat 5 TM images. By comparing NDVI values for individual image dates with the derived normal curve, the response of crop growth to environmentalmore » factors is quantified as NDVI residuals. Regression analysis revealed a significant relationship between yield and NDVI residual during the pre-silking period, indicating that NDVI residuals reflect crop stress in the early growing period that impacts yield. Both the mean NDVI residuals and the percentage of image pixels where corn was under stress (risky pixel rate) are significantly correlated with water stress. Dry weather is prone to hamper potential crop growth, with stress affecting most of the observed corn pixels in the area. Oversupply of rainfall at the end of the growing season was not found to have a measurable effect on crop growth, while above normal precipitation earlier in the growing season reduces the risk of yield loss at the watershed scale. Furthermore, the spatial extent of stress is much lower when precipitation is above normal than under dry conditions, masking the impact of small areas of yield loss at the watershed scale.« less

  5. Corn response to climate stress detected with satellite-based NDVI time series

    DOE PAGES

    Wang, Ruoyu; Cherkauer, Keith; Bowling, Laura

    2016-03-23

    Corn growth conditions and yield are closely dependent on climate variability. Leaf growth, measured as the leaf area index, can be used to identify changes in crop growth in response to climate stress. This research was conducted to capture patterns of spatial and temporal corn leaf growth under climate stress for the St. Joseph River watershed, in northeastern Indiana. Leaf growth is represented by the Normalized Difference Vegetative Index (NDVI) retrieved from multiple years (2000–2010) of Landsat 5 TM images. By comparing NDVI values for individual image dates with the derived normal curve, the response of crop growth to environmentalmore » factors is quantified as NDVI residuals. Regression analysis revealed a significant relationship between yield and NDVI residual during the pre-silking period, indicating that NDVI residuals reflect crop stress in the early growing period that impacts yield. Both the mean NDVI residuals and the percentage of image pixels where corn was under stress (risky pixel rate) are significantly correlated with water stress. Dry weather is prone to hamper potential crop growth, with stress affecting most of the observed corn pixels in the area. Oversupply of rainfall at the end of the growing season was not found to have a measurable effect on crop growth, while above normal precipitation earlier in the growing season reduces the risk of yield loss at the watershed scale. Furthermore, the spatial extent of stress is much lower when precipitation is above normal than under dry conditions, masking the impact of small areas of yield loss at the watershed scale.« less

  6. Pathfinder, Volume 7, Number 6, November/December 2009

    DTIC Science & Technology

    2009-12-01

    identified forest vegetation between 2005 and 2008 using normalized difference vegetation index ( NDVI ) measurements derived from low-resolution, com...posite images. Vegetation indices, including NDVI , are helpful for monitoring the health and vigor of vegetation and are used in products displaying

  7. Normalization of multidirectional red and NIR reflectances with the SAVI

    NASA Technical Reports Server (NTRS)

    Huete, A. R.; Hua, G.; Qi, J.; Chehbouni, A.; Van Leeuwen, W. J. D.

    1992-01-01

    Directional reflectance measurements were made over a semi-desert gramma grassland at various times of the growing season. View angle measurements from +40 to -40 degrees were made at various solar zenith angles and soil moisture conditions. The sensitivity of the Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted Vegetation Index (SAVI) to bidirectional measurements was assessed for purposes of improving remote temporal monitoring of vegetation dynamics. The SAVI view angle response was found to be symmetric about nadir while the NDVI response was strongly anisotropic. This enabled the view angle behavior of the SAVI to be normalized with a cosine function. In contrast to the NDVI, the SAVI was able to minimize soil moisture and shadow influences for all measurement conditions.

  8. Cotton NDVI response to applied N at different soil EC levels

    USDA-ARS?s Scientific Manuscript database

    Many fields in the southeastern Coastal Plain are highly variable in soil physical properties and are irregular in shape. These two conditions may make it difficult to determine the ‘best’ area in the field to place nitrogen (N) -rich strips for normalized difference vegetative index (NDVI) -based s...

  9. A NDVI assisted remote sensing image adaptive scale segmentation method

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Shen, Jinxiang; Ma, Yanmei

    2018-03-01

    Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.

  10. Relations between productivity, climate, and normalized difference vegetation index in the central Great Plains

    NASA Astrophysics Data System (ADS)

    Wang, Jue

    Understanding the influences of climate on productivity remains a major challenge in landscape ecology. Satellite remote sensing of normalized difference vegetation index (NDVI) provides a useful tool to study landscape patterns, based on generalization of local measurements, and to examine relations between climate and variation in productivity. This dissertation examines temporal and spatial relations between NDVI, productivity, and climatic factors over the course of nine years in the central Great Plains. Two general findings emerge: (1) integrated NDVI is a reliable measure of production, as validated with ground-based productivity measurements; and (2) precipitation is the primary factor that determines spatial and temporal patterns of NDVI. NDVI, integrated over appropriate time intervals, is strongly correlated with ground productivity measurements in forests, grasslands, and croplands. Most tree productivity measurements (tree ring size, tree diameter growth, and seed production) are strongly correlated with NDVI integrated for a period during the early growing season; foliage production is most strongly correlated with NDVI integrated over the entire growing season; and tree height growth corresponds with NDVI integrate during the previous growing season. Similarly, productivity measurements for herbaceous plants (grassland biomass and crop yield) are strongly correlated with NDVI. Within the growing season, the temporal pattern of grassland biomass production covaries with NDVI, with a four-week lag time. Across years, grassland biomass production covaries with NDVI integrated from part to all of the current growing season. Corn and wheat yield are most strongly related to NDVI integrated from late June to early August and from late April to mid-May, respectively. Precipitation strongly influences both temporal and spatial patterns of NDVI, while temperature influences NDVI only during the early and late growing season. In terms of temporal patterns, NDVI integrated over the growing season is strongly correlated with precipitation received during the current growing season plus the seven preceding months (fifteen month period); NDVI within the growing season responds to changes in precipitation with a four to eight week lag time; and major precipitation events lead to changes in NDVI with a two to four week lag time. Temperature has a positive correlation with NDVI during the early and late growing season, and a weak negative correlation during the middle of the growing season. In terms of spatial patterns, average precipitation is a strong predictor of the major east-west gradient of NDVI. Deviation from average precipitation explains most of the year-to-year variation in spatial patterns. NDVI and precipitation deviations from average covary (both positive or both negative) for 60--95% of the total land area in Kansas. Minimum and average temperatures are positively correlated with NDVI, but temperature deviation from average is generally not correlated with NDVI deviation from average. The strong relationships between NDVI and productivity, and between precipitation and NDVI, along with detailed analysis of the temporal and spatial patterns for our study region, provides the basis for prediction of productivity at landscape scales under different climate regimes.

  11. A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States

    DOE PAGES

    Robinson, Nathaniel; Allred, Brady; Jones, Matthew; ...

    2017-08-21

    Satellite derived vegetation indices (VIs) are broadly used in ecological research, ecosystem modeling, and land surface monitoring. The Normalized Difference Vegetation Index (NDVI), perhaps the most utilized VI, has countless applications across ecology, forestry, agriculture, wildlife, biodiversity, and other disciplines. Calculating satellite derived NDVI is not always straight-forward, however, as satellite remote sensing datasets are inherently noisy due to cloud and atmospheric contamination, data processing failures, and instrument malfunction. Readily available NDVI products that account for these complexities are generally at coarse resolution; high resolution NDVI datasets are not conveniently accessible and developing them often presents numerous technical and methodologicalmore » challenges. Here, we address this deficiency by producing a Landsat derived, high resolution (30 m), long-term (30+ years) NDVI dataset for the conterminous United States. We use Google Earth Engine, a planetary-scale cloud-based geospatial analysis platform, for processing the Landsat data and distributing the final dataset. We use a climatology driven approach to fill missing data and validate the dataset with established remote sensing products at multiple scales. We provide access to the composites through a simple web application, allowing users to customize key parameters appropriate for their application, question, and region of interest.« less

  12. A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Nathaniel; Allred, Brady; Jones, Matthew

    Satellite derived vegetation indices (VIs) are broadly used in ecological research, ecosystem modeling, and land surface monitoring. The Normalized Difference Vegetation Index (NDVI), perhaps the most utilized VI, has countless applications across ecology, forestry, agriculture, wildlife, biodiversity, and other disciplines. Calculating satellite derived NDVI is not always straight-forward, however, as satellite remote sensing datasets are inherently noisy due to cloud and atmospheric contamination, data processing failures, and instrument malfunction. Readily available NDVI products that account for these complexities are generally at coarse resolution; high resolution NDVI datasets are not conveniently accessible and developing them often presents numerous technical and methodologicalmore » challenges. Here, we address this deficiency by producing a Landsat derived, high resolution (30 m), long-term (30+ years) NDVI dataset for the conterminous United States. We use Google Earth Engine, a planetary-scale cloud-based geospatial analysis platform, for processing the Landsat data and distributing the final dataset. We use a climatology driven approach to fill missing data and validate the dataset with established remote sensing products at multiple scales. We provide access to the composites through a simple web application, allowing users to customize key parameters appropriate for their application, question, and region of interest.« less

  13. USE OF REMOTELY SENSED DATA FOR PARAMETERIZING AND VALIDATING LAND-USE HYDROLOGIC MODELS

    EPA Science Inventory

    Variability in vegetation greenness was determined for the Galveston Bay watershed using biweekly Normalized Difference Vegetation Index (NDVI) data derived from the Advanced Very High Resolution Radiometer (AVHRR) flown on NOAA satellites. NDVI variability was compared with regi...

  14. Monitoring Agricultural Cropping Patterns in the Great Lakes Basin Using MODIS-NDVI Time Series Data

    EPA Science Inventory

    This research examined changes in agricultural cropping patterns across the Great Lakes Basin (GLB) using the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data. Specific research objectives were to characterize the distribut...

  15. Temporal Responses of NDVI to Climate Factors in Different Climatic Regions

    NASA Astrophysics Data System (ADS)

    Zare, H.

    2015-12-01

    The satellite-derived Normalized Difference Vegetation Index (NDVI) has been widely used to investigate the impact of climate factors on vegetation changes. However, a few studies have concentrated on comparing the relationship of climate factors and vegetation in different climatic regions. To enhance the understanding of these relationship, a temporal analysis was carried out on time series of 16-day NDVI from MODIS (2000-2014) during the growing season in ten protected areas of different regions of Iran. The correlation analyses between climate factors and NDVI was classified into two sub-periods. First from February to April and second from May to September. In the first sub-period, NDVI was more correlated to temperature than precipitation, all the areas had positive correlation with temperature. Slope of regression in arid region was less than others. In contrast, precipitation had different impact on NDVI among the locations from February to April. The negative correlation was found between precipitation and woody lands (humid regions), whereas precipitation in Bafgh and Turan in which annual plants are dominant (arid regions), had positive impact on NDVI. In the second sub-period, temperature showed negative significant influence on NDVI; however, the slope of regression was not identical across the locations. Woody lands had more strong correlation with temperature. NDVI sensitivity to temperature had a time lag of 30 days in most of areas, whereas arid regions did not show time lag. Positive correlation was found between precipitation and NDVI during warm period in all the locations. The areas covered by perennial plant had 1-2 months lag to respond to precipitation. Overall, no significant trend in NDVI changes was shown during the study period. We concluded that NDVI sensitivity to climate factors relies on vegetation type and time of year.

  16. Sensitivity of the normalized difference vegetation index to subpixel canopy cover, soil albedo, and pixel scale

    NASA Technical Reports Server (NTRS)

    Jasinski, Michael F.

    1990-01-01

    An analytical framework is provided for examining the physically based behavior of the normalized difference vegetation index (NDVI) in terms of the variability in bulk subpixel landscape components and with respect to variations in pixel scales, within the context of the stochastic-geometric canopy reflectance model. Analysis focuses on regional scale variability in horizontal plant density and soil background reflectance distribution. Modeling is generalized to different plant geometries and solar angles through the use of the nondimensional solar-geometric similarity parameter. Results demonstrate that, for Poisson-distributed plants and for one deterministic distribution, NDVI increases with increasing subpixel fractional canopy amount, decreasing soil background reflectance, and increasing shadows, at least within the limitations of the geometric reflectance model. The NDVI of a pecan orchard and a juniper landscape is presented and discussed.

  17. Using NDVI to estimate carbon fluxes from small rotationally grazed pastures

    USDA-ARS?s Scientific Manuscript database

    Satellite-based Normalized Difference Vegetation Index (NDVI) data have been extensively used for estimating gross primary productivity (GPP) and yield of grazing lands throughout the world. However, the usefulness of satellite-based images for monitoring rotationally-grazed pastures in the northea...

  18. Remote Sensing of Soil Moisture Using Airborne Hyperspectral Data

    DTIC Science & Technology

    2011-01-01

    the relationship between reflec- tance and soil moisture where there is ground cover and ascertain the Normalized Difference Vegetation Index ( NDVI ...in those areas. This could establish a minimum NDVI for ground cover that would allow for estimation of soil moisture. Alternatively, they could

  19. Use of Normalized Difference Vegetation Index (NDVI) habitat models to predict breeding birds on the San Pedro River, Arizona

    USGS Publications Warehouse

    McFarland, Tiffany Marie; van Riper, Charles

    2013-01-01

    Successful management practices of avian populations depend on understanding relationships between birds and their habitat, especially in rare habitats, such as riparian areas of the desert Southwest. Remote-sensing technology has become popular in habitat modeling, but most of these models focus on single species, leaving their applicability to understanding broader community structure and function largely untested. We investigated the usefulness of two Normalized Difference Vegetation Index (NDVI) habitat models to model avian abundance and species richness on the upper San Pedro River in southeastern Arizona. Although NDVI was positively correlated with our bird metrics, the amount of explained variation was low. We then investigated the addition of vegetation metrics and other remote-sensing metrics to improve our models. Although both vegetation metrics and remotely sensed metrics increased the power of our models, the overall explained variation was still low, suggesting that general avian community structure may be too complex for NDVI models.

  20. Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology

    NASA Technical Reports Server (NTRS)

    Forkel, Matthias; Carvalhais, Nuno; Verbesselt, Jan; Mahecha, Miguel D.; Neigh, Christopher S.R.; Reichstein, Markus

    2013-01-01

    Changing trends in ecosystem productivity can be quantified using satellite observations of Normalized Difference Vegetation Index (NDVI). However, the estimation of trends from NDVI time series differs substantially depending on analyzed satellite dataset, the corresponding spatiotemporal resolution, and the applied statistical method. Here we compare the performance of a wide range of trend estimation methods and demonstrate that performance decreases with increasing inter-annual variability in the NDVI time series. Trend slope estimates based on annual aggregated time series or based on a seasonal-trend model show better performances than methods that remove the seasonal cycle of the time series. A breakpoint detection analysis reveals that an overestimation of breakpoints in NDVI trends can result in wrong or even opposite trend estimates. Based on our results, we give practical recommendations for the application of trend methods on long-term NDVI time series. Particularly, we apply and compare different methods on NDVI time series in Alaska, where both greening and browning trends have been previously observed. Here, the multi-method uncertainty of NDVI trends is quantified through the application of the different trend estimation methods. Our results indicate that greening NDVI trends in Alaska are more spatially and temporally prevalent than browning trends. We also show that detected breakpoints in NDVI trends tend to coincide with large fires. Overall, our analyses demonstrate that seasonal trend methods need to be improved against inter-annual variability to quantify changing trends in ecosystem productivity with higher accuracy.

  1. Changes in Meadow Vegetation Cover in Kings Canyon National Park (California) Based on Three Decades of Landsat Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2015-01-01

    Landsat (30 meter resolution) image analysis over the past 25 years in Kings Canyon National Park was used to track changes in the normalized difference vegetation index (NDVI). Results showed that NDVI values from the wet year of 2010 were significantly lower than NDVI values from the comparatively dry year of 2013 in the majority of meadow areas in the National Park.

  2. Using Panchromatic Imagery in Place of Multispectral Imagery for Kelp Detection in Water

    DTIC Science & Technology

    2010-01-01

    Normalized Difference Vegetation Index ( NDVI ). In broadband panchromatic imagery, the kelp appears brighter than the water because of the strong...response of vegetation in the NIR, and can be reliably detected by means of a simple threshold; overall brightness is generally proportional to the NDVI ...Index ( NDVI ). In broadband panchromatic imagery, the kelp appears brighter than the water because of the strong response of vegetation in the NIR, and

  3. [Analysis on the relationship between malaria epidemics and NOAA-AVHRR NDVI in Hainan province].

    PubMed

    Wen, Liang; Xu, De-zhong; Wang, Shan-qing; Li, Cai-xu; Zhang, Zhi-ying; Su, Yong-qiang

    2005-04-01

    To explore the relationship between malaria epidemics and NOAA-AVHRR NDVI. Data on malaria were collected in all 19 counties in Hainan province from Feb, 1995 to Jan, 1996. Values regarding normalized difference vegetation index (NDVI)-related indicators including mean and maximum values of NDVI, the area proportion of NDVI values of 145- and 145+, months with NDVI values of 135+, 140+, 145+, 150+ of these counties in this period were all extracted from NOAA-AVHRR images, using ERDAS8.5 software. The coefficients of correlation of malaria incidences and these NDVI-related indicator values were then calculated with SPSS 11.0. The incidence of malaria showed positive correlations to mean and maximum values of NDVI, the area proportion of NDVI values of 145+ and months with NDVI values of 135+, 140+, 145+, 150+ respectively, but having negative correlation to the area of NDVI values of 145-. The malaria epidemic regions were in accordance with those regions that the NDVI values of 145+ were continuing for 9 months or more. Malaria prevalence was associated with NOAA-AVHRR NDVI value which could be considered to be use for malaria surveillance in Hainan province.

  4. Detecting leaf pulvinar movements on NDVI time series of desert trees: a new approach for water stress detection.

    PubMed

    Chávez, Roberto O; Clevers, Jan G P W; Verbesselt, Jan; Naulin, Paulette I; Herold, Martin

    2014-01-01

    Heliotropic leaf movement or leaf 'solar tracking' occurs for a wide variety of plants, including many desert species and some crops. This has an important effect on the canopy spectral reflectance as measured from satellites. For this reason, monitoring systems based on spectral vegetation indices, such as the normalized difference vegetation index (NDVI), should account for heliotropic movements when evaluating the health condition of such species. In the hyper-arid Atacama Desert, Northern Chile, we studied seasonal and diurnal variations of MODIS and Landsat NDVI time series of plantation stands of the endemic species Prosopis tamarugo Phil., subject to different levels of groundwater depletion. As solar irradiation increased during the day and also during the summer, the paraheliotropic leaves of Tamarugo moved to an erectophile position (parallel to the sun rays) making the NDVI signal to drop. This way, Tamarugo stands with no water stress showed a positive NDVI difference between morning and midday (ΔNDVI mo-mi) and between winter and summer (ΔNDVI W-S). In this paper, we showed that the ΔNDVI mo-mi of Tamarugo stands can be detected using MODIS Terra and Aqua images, and the ΔNDVI W-S using Landsat or MODIS Terra images. Because pulvinar movement is triggered by changes in cell turgor, the effects of water stress caused by groundwater depletion can be assessed and monitored using ΔNDVI mo-mi and ΔNDVI W-S. For an 11-year time series without rainfall events, Landsat ΔNDVI W-S of Tamarugo stands showed a positive linear relationship with cumulative groundwater depletion. We conclude that both ΔNDVI mo-mi and ΔNDVI W-S have potential to detect early water stress of paraheliotropic vegetation.

  5. Browning of the landscape of interior Alaska based on 1986-2009 Landsat sensor NDVI

    Treesearch

    Rebecca A. Baird; David Verbyla; Teresa N. Hollingsworth

    2012-01-01

    We used a time series of 1986-2009 Landsat sensor data to compute the Normalized Difference Vegetation Index (NDVI) for 30 m pixels within the Bonanza Creek Experimental Forest of interior Alaska. Based on simple linear regression, we found significant (p

  6. Stability of spatial distributions of stink bugs, boll injury, and NDVI in cotton

    USDA-ARS?s Scientific Manuscript database

    A two-year study was conducted to determine the degree of aggregation of thrips, stink bugs, and aphids in cotton, Gossypium hirsutum L., and their spatial association with soil apparent electrical conductivity (ECa), a multispectral vegetation index (Normalized Difference Vegetation Index [NDVI]), ...

  7. RGB-NDVI colour composites for visualizing forest change dynamics

    NASA Technical Reports Server (NTRS)

    Sader, S. A.; Winne, J. C.

    1992-01-01

    The study presents a simple and logical technique to display and quantify forest change using three dates of satellite imagery. The normalized difference vegetation index (NDVI) was computed for each date of imagery to define high and low vegetation biomass. Color composites were generated by combining each date of NDVI with either the red, green, or blue (RGB) image planes in an image display monitor. Harvest and regeneration areas were quantified by applying a modified parallelepiped classification creating an RGB-NDVI image with 27 classes that were grouped into nine major forest change categories. Aerial photographs and stand history maps are compared with the forest changes indicated by the RGB-NDVI image. The utility of the RGB-NDVI technique for supporting forest inventories and updating forest resource information systems are presented and discussed.

  8. The effect of water vapour on the normalized difference vegetation index derived for the Sahelian region from NOAA AVHRR data

    NASA Technical Reports Server (NTRS)

    Justice, Christopher O.; Eck, T. F.; Tanre, Didier; Holben, B. N.

    1991-01-01

    The near-infrared channel of the NOAA advanced very high resolution radiometer (AVHRR) contains a water vapor absorption band that affects the determination of the normalized difference vegetation index (NDVI). Daily and seasonal variations in atmospheric water vapor within the Sahel are shown to affect the use of the NDVI for the estimation of primary production. This water vapor effect is quantified for the Sahel by radiative transfer modeling and empirically using observations made in Mali in 1986.

  9. Rural cases of equine West Nile virus encephalomyelitis and the normalized difference vegetation index

    USGS Publications Warehouse

    Ward, M.P.; Ramsay, B.H.; Gallo, K.

    2005-01-01

    Data from an outbreak (August to October, 2002) of West Nile virus (WNV) encephalomyelitis in a population of horses located in northern Indiana was scanned for clusters in time and space. One significant (p = 0.04) cluster of case premises was detected, occurring between September 4 and 10 in the south-west part of the study area (85.70??N, 45.50??W). It included 10 case premises (3.67 case premises expected) within a radius of 2264 m. Image data were acquired by the Advanced Very High Resolution Radiometer (AVHRR) sensor onboard a National Oceanic and Atmospheric Administration polar-orbiting satellite. The Normalized Difference Vegetation Index (NDVI) was calculated from visible and near-infrared data of daily observations, which were composited to produce a weekly-1km2 resolution raster image product. During the epidemic, a significant (p<0.01) decrease (0.025 per week) in estimated NDVI was observed at all case and control premise sites. The median estimated NDVI (0.659) for case premises within the cluster identified was significantly (p<0.01) greater than the median estimated NDVI for other case (0.571) and control (0.596) premises during the same period. The difference in median estimated NDVI for case premises within this cluster, compared to cases not included in this cluster, was greatest (5.3% and 5.1%, respectively) at 1 and 5 weeks preceding occurrence of the cluster. The NDVI may be useful for identifying foci of WNV transmission. ?? Mary Ann Liebert, Inc.

  10. Developing satellite-derived estimates of surface moisture status

    NASA Technical Reports Server (NTRS)

    Nemani, Ramakhrishna; Pierce, Lars; Running, Steve; Goward, Samuel

    1993-01-01

    An evaluation is made of the remotely sensed surface temperature (Ts)/normalized difference vegetation index (NDVI) relationship in studies of the influence of biome type on the slope of Ts/NDVI, and of the automation of the process of defining the relationship so that the surface moisture status can be compared with Ts/NDVI at continental scales. The analysis is conducted using the NOAA AVHRR over a 300 x 300 km area in western Montana, as well as biweekly composite AVHRR data. A strong negative relationship is established between NDVI and Ts over all biome types.

  11. Normalized Difference Vegetation Index as a Tool for Wheat Yield Estimation: A Case Study from Faisalabad, Pakistan

    PubMed Central

    Sultana, Syeda Refat; Ali, Amjed; Ahmad, Ashfaq; Mubeen, Muhammad; Zia-Ul-Haq, M.; Ahmad, Shakeel; Ercisli, Sezai; Jaafar, Hawa Z. E.

    2014-01-01

    For estimation of grain yield in wheat, Normalized Difference Vegetation Index (NDVI) is considered as a potential screening tool. Field experiments were conducted to scrutinize the response of NDVI to yield behavior of different wheat cultivars and nitrogen fertilization at agronomic research area, University of Agriculture Faisalabad (UAF) during the two years 2008-09 and 2009-10. For recording the value of NDVI, Green seeker (Handheld-505) was used. Split plot design was used as experimental model in, keeping four nitrogen rates (N1 = 0 kg ha−1, N2 = 55 kg ha−1, N3 = 110 kg ha−1, and N4 = 220 kg ha−1) in main plots and ten wheat cultivars (Bakkhar-2001, Chakwal-50, Chakwal-97, Faisalabad-2008, GA-2002, Inqlab-91, Lasani-2008, Miraj-2008, Sahar-2006, and Shafaq-2006) in subplots with four replications. Impact of nitrogen and difference between cultivars were forecasted through NDVI. The results suggested that nitrogen treatment N4 (220 kg ha−1) and cultivar Faisalabad-2008 gave maximum NDVI value (0.85) at grain filling stage among all treatments. The correlation among NDVI at booting, grain filling, and maturity stages with grain yield was positive (R 2 = 0.90; R 2 = 0.90; R 2 = 0.95), respectively. So, booting, grain filling, and maturity can be good depictive stages during mid and later growth stages of wheat crop under agroclimatic conditions of Faisalabad and under similar other wheat growing environments in the country. PMID:25045744

  12. Monitoring Agricultural Cropping Patterns across the Laurentian Great Lakes Basin Using MODIS-NDVI Data

    EPA Science Inventory

    The Moderate Resolution Imaging Spectrometer (MODIS) Normalized Difference Vegetation Index (NDVI) 16-day composite data product (MOD12Q) was used to develop annual cropland and crop-specific map products (corn, soybeans, and wheat) for the Laurentian Great Lakes Basin (GLB). Th...

  13. Changes in Landscape Greenness and Climatic Factors over 25 Years (1989–2013) in the USA

    EPA Science Inventory

    Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can be achieved using the Normalized Difference Vegetation Index (NDVI), an indicator of greenness. However, distinguishing gradual shifts in NDVI (e.g. climate change) versus direct and ...

  14. Assessing Nitrogen Status of Dryland Wheat Using the Canopy Chlorophyll Content Index

    USDA-ARS?s Scientific Manuscript database

    Ground-based, active light sensing relies upon the Normalized Difference Vegetation Index (NDVI) for assessing crop nitrogen (N) response and applying N fertilizer. However, NDVI may not work well in semiarid environments where biomass and yields depend upon plant water. This study evaluated the C...

  15. PRESENTED 11/01/05 LAND-COVER CHARACTERIZATION AND CHANGE DETECTION USING MULTI-TEMPORAL MODIS NDVI DATA

    EPA Science Inventory

    Land-Cover (LC) composition and conversions are important factors that affect ecosystem condition and function. The purpose of this research and development effort is to investigate the feasibility of using MODIS derived Normalized Difference Vegetation Index (NDVI) data to deli...

  16. LAND-COVER CHARACTERIZATION AND CHANGE DETECTION USING MULTI-TEMPORAL MODIS NDVI DATA

    EPA Science Inventory

    The purpose of this research and development effort is to investigate the feasibility of using MODIS derived Normalized Difference Vegetation Index (NDVI) data to delineate areas of LC change on an annual basis and identify the outcome of LC conversions (i.e., new steady state). ...

  17. Patterns of zone management uncertainty in cotton using tarnished plant bug distributions, NDVI, soil EC, yield and thermal imagery

    USDA-ARS?s Scientific Manuscript database

    Management zones for various crops have been delineated using NDVI (Normalized Difference Vegetation Index), apparent bulk soil electrical conductivity (ECa - Veris), and yield data; however, estimations of uncertainty for these data layers are equally important considerations. The objective of this...

  18. Neural Networks as a Tool for Constructing Continuous NDVI Time Series from AVHRR and MODIS

    NASA Technical Reports Server (NTRS)

    Brown, Molly E.; Lary, David J.; Vrieling, Anton; Stathakis, Demetris; Mussa, Hamse

    2008-01-01

    The long term Advanced Very High Resolution Radiometer-Normalized Difference Vegetation Index (AVHRR-NDVI) record provides a critical historical perspective on vegetation dynamics necessary for global change research. Despite the proliferation of new sources of global, moderate resolution vegetation datasets, the remote sensing community is still struggling to create datasets derived from multiple sensors that allow the simultaneous use of spectral vegetation for time series analysis. To overcome the non-stationary aspect of NDVI, we use an artificial neural network (ANN) to map the NDVI indices from AVHRR to those from MODIS using atmospheric, surface type and sensor-specific inputs to account for the differences between the sensors. The NDVI dynamics and range of MODIS NDVI data at one degree is matched and extended through the AVHRR record. Four years of overlap between the two sensors is used to train a neural network to remove atmospheric and sensor specific effects on the AVHRR NDVI. In this paper, we present the resulting continuous dataset, its relationship to MODIS data, and a validation of the product.

  19. Monitoring start of season in Alaska with GLOBE, AVHRR, and MODIS data

    NASA Astrophysics Data System (ADS)

    Robin, Jessica; Dubayah, Ralph; Sparrow, Elena; Levine, Elissa

    2008-03-01

    This work evaluates whether continuity between Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) is achievable for monitoring phenological changes in Alaska. This work also evaluates whether NDVI can detect changes in start of the growing season (SOS) in this region. Six quadratic regression models with NDVI as a function of accumulated growing degree days (AGDD) were developed from 2001 through 2004 AVHRR and MODIS NDVI data sets for urban, mixed, and forested land covers. Model parameters determined NDVI values for start of the observational period as well as peak and length of the growing season. NDVI values for start of the growing season were determined from the model equations and field observations of SOS made by GLOBE students and researchers at University of Alaska Fairbanks. AGDD was computed from daily air temperature. AVHRR and MODIS models were significantly different from one another with differences in the start of the observational season as well as start, peak, and length of the growing season. Furthermore, AGDD for SOS was significantly lower during the 1990s than the 1980s. NDVI values at SOS did not detect this change. There are limitations with using NDVI to monitor phenological changes in these regions because of snow, the large extent of conifers, and clouds, which restrict the composite period. In addition, differing processing and spectral characteristics restrict continuity between AVHRR and MODIS NDVI data sets.

  20. Trends in the normalized difference vegetation index (NDVI) associated with urban development in arctic and subarctic Western Siberia

    NASA Astrophysics Data System (ADS)

    Outten, S.; Miles, V.; Ezau, I.

    2015-12-01

    Changes in normalized difference vegetation index (NDVI) in the high Arctic have been reliably documented, with widespread "greening" (increase in NDVI), specifically along the northern rim of Eurasia and Alaska. Whereas in West Siberia south of 65N, widespread "browning" (decrease in NDVI) has been noted, although the causes remain largely unclear. In this study we report results of statistical analysis of the spatial and temporal changes in NDVI around 28 major urban areas in the arctic and subarctic Western Siberia. Exploration and exploitation of oil and gas reserves has led to rapid industrialization and urban development in the region. This development has significant impact on the environment and particularly in the vegetation cover in and around the urbanized areas. The analysis is based on 15 years (2000-2014) of high-resolution (250 m) Moderate Resolution Imaging Spectroradiometer (MODIS) data acquired for summer months (June through August) over the entire arctic and subarctic Western Siberian region. The analysis shows that the NDVI background trends are generally in agreement with the trends reported in previous coarse-resolution NDVI studies. Our study reveals greening over the arctic (tundra and tundra-forest) part of the region. Simultaneously, the southern (boreal taiga forest) part is browning, with the more densely vegetation areas or areas with highest NDVI, particularly along Ob River showing strong negative trend. The unexpected and interesting finding of the study is statistically robust indication of the accelerated increase of NDVI ("greening") in the older urban areas. Many Siberian cities become greener even against the decrease in the NDVI background. Moreover, interannual variations of urban NDVI are not coherent with the NDVI background variability. We also find that in tundra zones, NDVI values are higher in a 5-10 km buffer zone around the city edge than in rural areas (40 km distance from the city edge), and in taiga in a 5-10 km buffer zone NDVI value are lower compare with rural zone. We speculate that the observed "greening" or "browning" around urban areas could be caused by the vegetation cover response to the anthropogenic urban heat island (UHI) effect. The general regional trend is amplified in very close proximity to the urban areas, possibly due to UHI effect.

  1. Post-Katrina Land-Cover, Elevation, and Volume Change Assessment along the South Shore of Lake Pontchartrain, Louisiana, U.S.A.

    DTIC Science & Technology

    2011-01-01

    was greater than 1 or less than 0. The second was a Normalized Difference Vegetation Index ( NDVI ) band ratio between a near-infrared band (738 nm) and...separation methods worked well, neither produced perfect results. Ultimately, the NDVI method was chosen because it could also be used to further...In addition, it is a broadly tested method often used to identify and measure vegetation (Tucker, 1979). The NDVI result was also used to separate

  2. Satellite Vegetation Index Data as a Tool to Forecast Population Dynamics of Medically Important Mosquitoes at Military Installations in the Continental United States

    DTIC Science & Technology

    2008-07-01

    for the two installations. We obtained monthly North American normalized differ- ence vegetation index ( NDVI ) satellite climate data sets for 1981-2005...from the Goddard Space Flight Center."*-" The NDVI measures the greenness of the earth, capturing in one index the combined effects of temperature...humidity, insola- tion, elevation, soils, land use. and precipitation on vegeta- tion. There is an almost-linear relationship between NDVI values and

  3. Concepts for Sensor Data Fusion to Detect Vegetation Stress and Implications on Ecosystem Health Following Hurricane Katrina

    DTIC Science & Technology

    2008-09-01

    Description NDVI Narrow-band Normalized Difference Vegetation Index (can check all possible two-band combinations, and determine best band combinations...were calculated for each site. The band indices were: • NDVI (Hyperion bands 45 & 33) (Figure 2) • NDWI (Hyperion bands 51 & 109) • PRI (Hyperion...between categories for these groups. NDVI and NDWI were very close to achiev- ing a significant result, and were still particularly good at separating two

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Nan; Zhu, Wenquan; Zheng, Zhoutao

    The long-term Normalized Difference Vegetation Index (NDVI) time-series data set generated from the Advanced Very High Resolution Radiometers (AVHRR) has been widely used to monitor vegetation activity change. The third version of NDVI (NDVI3g) produced by the Global Inventory Modeling and Mapping Studies (GIMMS) group was released recently. The comparisons between the new and old versions should be conducted for linking existing studies with future applications of NDVI3g in monitoring vegetation activity change. Based on simple and piecewise linear regression methods, this research made a comparative analysis between NDVIg and NDVI3g for monitoring vegetation activity change and its responses tomore » climate change in the middle and high latitudes of the Northern Hemisphere during 1982–2008. Our results indicated that there were large differences between NDVIg and NDVI3g in the spatial patterns for both the overall changing trends and the timing of Turning Points (TP) in NDVI time series, which spread over almost the entire study region. The average NDVI trend from NDVI3g was almost twice as great as that from NDVIg and the detected average timing of TP from NDVI3g was about one year later. Although the general spatial patterns were consistent between two data sets for detecting the responses of growing-season NDVI to temperature and precipitation changes, there were large differences in the response magnitude, with a higher response magnitude to temperature in NDVI3g and an opposite response to precipitation change for the two data sets. Finally, these results demonstrated that the NDVIg data set may underestimate the vegetation activity change trend and its response to climate change in the middle and high latitudes of the Northern Hemisphere during the past three decades.« less

  5. MODIS and GIMMS Inferred Northern Hemisphere Spring Greenup in Responses to Preseason Climate

    NASA Astrophysics Data System (ADS)

    Xu, X.; Riley, W. J.; Koven, C.; Jia, G.

    2017-12-01

    We compare the discrepancies in Normalized Difference Vegetation Index (NDVI) inferred spring greenup (SG) between Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) instruments carried by the Global Inventory Monitoring and Modeling Studies (GIMMS) in North Hemisphere. The interannual variation of SG inferred by MODIS and GIMMS NDVI is well correlated in the mid to high latitudes. However, the presence of NDVI discrepancies leads to discrepancies in SG with remarkable latitudinal characteristics. MODIS NDVI inferred later SG in the high latitude while earlier SG in the mid to low latitudes, in comparison to GIMMS NDVI inferred SG. MODIS NDVI inferred SG is better correlated to preseason climate. Interannual variation of SG is only sensitive to preseason temperature. The GIMMS SG to temperature sensitivity over two periods implied that the inter-biome SG to temperature sensitivity is relatively stable, but SG to temperature sensitivity decreased over time. Over the same period, MODIS SG to temperature sensitivity is much higher than GIMMS. This decreased sensitivity demonstrated the findings from previous studies with continuous GIMMS NDVI analysis that vegetation growth (indicated by growing season NDVI) to temperature sensitivity is reduced over time and SG advance trend ceased after 2000s. Our results also explained the contradictive findings that SG advance accelerated after 2000s according to the merged GIMMS and MODIS NDVI time series. Despite the found discrepancies, without ground data support, the quality of NDVI and its inferred SG cannot be effectively evaluated. The discrepancies and uncertainties in different NDVI products and its inferred SG may bias the scientific significance of climate-vegetation relationship. The different NDVI products when used together should be first evaluated and harmonized.

  6. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-density Cypress Forest.

    PubMed

    Matsushita, Bunkei; Yang, Wei; Chen, Jin; Onda, Yuyichi; Qiu, Guoyu

    2007-11-05

    Vegetation indices play an important role in monitoring variations in vegetation.The Enhanced Vegetation Index (EVI) proposed by the MODIS Land Discipline Groupand the Normalized Difference Vegetation Index (NDVI) are both global-based vegetationindices aimed at providing consistent spatial and temporal information regarding globalvegetation. However, many environmental factors such as atmospheric conditions and soilbackground may produce errors in these indices. The topographic effect is another veryimportant factor, especially when the indices are used in areas of rough terrain. In thispaper, we theoretically analyzed differences in the topographic effect on the EVI and theNDVI based on a non-Lambertian model and two airborne-based images acquired from amountainous area covered by high-density Japanese cypress plantation were used as a casestudy. The results indicate that the soil adjustment factor "L" in the EVI makes it moresensitive to topographic conditions than is the NDVI. Based on these results, we stronglyrecommend that the topographic effect should be removed in the reflectance data beforethe EVI was calculated-as well as from other vegetation indices that similarly include a term without a band ratio format (e.g., the PVI and SAVI)-when these indices are used in the area of rough terrain, where the topographic effect on the vegetation indices having only a band ratio format (e.g., the NDVI) can usually be ignored.

  7. Monitoring start of season in Alaska with GLOBE, AVHRR, and MODIS data

    Treesearch

    Jessica Robin; Ralph Dubayah; Elena Sparrow; Elissa Levine

    2008-01-01

    This work evaluates whether continuity between Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) is achievable for monitoring phenological changes in Alaska. This work also evaluates whether NDVI can detect changes in start of the growing season (SOS) in this region....

  8. Mapping Cropland and Major Crop Types Across the Great Lakes Basin Using MODIS-NDVI Data

    EPA Science Inventory

    This research evaluated the potential for using the MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250-m time-series data to develop a cropland mapping capability throughout the 480 000 km2 Great Lakes Basin (GLB). Cropland mapping was conducted usi...

  9. Assessing the Accuracy of MODIS-NDVI Derived Land-Cover Across the Great Lakes Basin

    EPA Science Inventory

    This research describes the accuracy assessment process for a land-cover dataset developed for the Great Lakes Basin (GLB). This land-cover dataset was developed from the 2007 MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250 m time-series data. Tr...

  10. Categorical likelihood method for combining NDVI and elevation information for cotton precision agricultural applications

    USDA-ARS?s Scientific Manuscript database

    This presentation investigates an algorithm to fuse the Normalized Difference Vegetation Index (NDVI) with LiDAR elevation data to produce a map useful for the site-specific scouting and pest management (Willers et al. 1999; 2005; 2009) of the cotton insect pests, the tarnished plant bug (Lygus lin...

  11. Analysis of vegetation recovery surrounding a restored wetland using the normalized difference infrared index (NDII) and normalized difference vegetation index (NDVI)

    USGS Publications Warehouse

    Wilson, Natalie R.; Norman, Laura

    2018-01-01

    Watershed restoration efforts seek to rejuvenate vegetation, biological diversity, and land productivity at Cienega San Bernardino, an important wetland in southeastern Arizona and northern Sonora, Mexico. Rock detention and earthen berm structures were built on the Cienega San Bernardino over the course of four decades, beginning in 1984 and continuing to the present. Previous research findings show that restoration supports and even increases vegetation health despite ongoing drought conditions in this arid watershed. However, the extent of restoration impacts is still unknown despite qualitative observations of improvement in surrounding vegetation amount and vigor. We analyzed spatial and temporal trends in vegetation greenness and soil moisture by applying the normalized difference vegetation index (NDVI) and normalized difference infrared index (NDII) to one dry summer season Landsat path/row from 1984 to 2016. The study area was divided into zones and spectral data for each zone was analyzed and compared with precipitation record using statistical measures including linear regression, Mann– Kendall test, and linear correlation. NDVI and NDII performed differently due to the presence of continued grazing and the effects of grazing on canopy cover; NDVI was better able to track changes in vegetation in areas without grazing while NDII was better at tracking changes in areas with continued grazing. Restoration impacts display higher greenness and vegetation water content levels, greater increases in greenness and water content through time, and a decoupling of vegetation greenness and water content from spring precipitation when compared to control sites in nearby tributary and upland areas. Our results confirm the potential of erosion control structures to affect areas up to 5 km downstream of restoration sites over time and to affect 1 km upstream of the sites.

  12. The use of multi-temporal Landsat Normalized Difference Vegetation Index (NDVI) data for mapping fuels in Yosemite National Park, USA

    USGS Publications Warehouse

    Van Wagtendonk, Jan W.; Root, Ralph R.

    2003-01-01

    The objective of this study was to test the applicability of using Normalized Difference Vegetation Index (NDVI) values derived from a temporal sequence of six Landsat Thematic Mapper (TM) scenes to map fuel models for Yosemite National Park, USA. An unsupervised classification algorithm was used to define 30 unique spectral-temporal classes of NDVI values. A combination of graphical, statistical and visual techniques was used to characterize the 30 classes and identify those that responded similarly and could be combined into fuel models. The final classification of fuel models included six different types: short annual and perennial grasses, tall perennial grasses, medium brush and evergreen hardwoods, short-needled conifers with no heavy fuels, long-needled conifers and deciduous hardwoods, and short-needled conifers with a component of heavy fuels. The NDVI, when analysed over a season of phenologically distinct periods along with ancillary data, can elicit information necessary to distinguish fuel model types. Fuels information derived from remote sensors has proven to be useful for initial classification of fuels and has been applied to fire management situations on the ground.

  13. Studies on MODIS NDVI and its relation with the south west monsoon, western ghats, India

    NASA Astrophysics Data System (ADS)

    Lakshmi Kumar, Tv; Barbosa, Humberto; Uma, R.; Rao, Koteswara

    2012-07-01

    Eleven years (2000 to 2010) of Normalized Difference Vegetation Index (NDVI) data, derived from Moderate Imaging Spectroradiometer (MODIS) Terra with 250m resolution are used in the present study to discuss the changes in the trends of vegetal cover. The interannual variability of NDVI over western ghats (number of test sites are 17) showed increasing trend and the pronounced changes are resulted due to the monsoon variability in terms of its distribution (wide spread/fairly wide spread/scattered/isolated) and activity (vigorous/normal/weak) and are studied in detail. The NDVI progression is observed from June with a minimum value of 0.179 and yielded to maximum at 0.565 during September/October, on average. The study then relates the NDVI with the no of light, moderate and heavy rainfall events via statistical techniques such as correlation and regression to understand the connection in between the ground vegetation and the south west monsoon. The results of the study inferred i) NDVI, Antecedent Precipitation Index (API) are in good agreement throughout the monsoon which is evidenced by correlation as well as by Morlett Wavelet Analysis, ii) NDVI maintained good correlation with no of Light Rainy and Moderate Rainy alternatively but not with no of Heavy Rainy days, iii) Relation of NDVI with Isolated, Scattered distributions and active monsoons is substantial and iv) Phenological stages captured the Rate of Green Up during the crop season over western ghats.

  14. Normalized difference vegetation index as an estimator for abundance and quality of avian herbivore forage in arctic Alaska

    USGS Publications Warehouse

    Hogrefe, Kyle R.; Patil, Vijay; Ruthrauff, Daniel R.; Meixell, Brandt W.; Budde, Michael E.; Hupp, Jerry W.; Ward, David H.

    2017-01-01

    Tools that can monitor biomass and nutritional quality of forage plants are needed to understand how arctic herbivores may respond to the rapidly changing environment at high latitudes. The Normalized Difference Vegetation Index (NDVI) has been widely used to assess changes in abundance and distribution of terrestrial vegetative communities. However, the efficacy of NDVI to measure seasonal changes in biomass and nutritional quality of forage plants in the Arctic remains largely un-evaluated at landscape and fine-scale levels. We modeled the relationships between NDVI and seasonal changes in aboveground biomass and nitrogen concentration in halophytic graminoids, a key food source for arctic-nesting geese. The model was calibrated based on data collected at one site and validated using data from another site. Effects of spatial scale on model accuracy were determined by comparing model predictions between NDVI derived from moderate resolution (250 × 250 m pixels) satellite data and high resolution (20 cm diameter area) handheld spectrometer data. NDVI derived from the handheld spectrometer was a superior estimator (R2 ≥ 0.67) of seasonal changes in aboveground biomass compared to satellite-derived NDVI (R2 ≤ 0.40). The addition of temperature and precipitation variables to the model for biomass improved fit, but provided minor gains in predictive power beyond that of the NDVI-only model. This model, however, was only a moderately accurate estimator of biomass in an ecologically-similar halophytic graminoid wetland located 100 km away, indicating the necessity for site-specific validation. In contrast to assessments of biomass, satellite-derived NDVI was a better estimator for the timing of peak percent of nitrogen than NDVI derived from the handheld spectrometer. We confirmed that the date when NDVI reached 50% of its seasonal maximum was a reasonable approximation of the period of peak spring vegetative green-up and peak percent nitrogen. This study demonstrates the importance of matching the scale of NDVI measurements to the vegetation properties of biomass and nitrogen phenology.

  15. Monitoring phenology of photosynthesis in temperate evergreen and mixed deciduous forests using the normalized difference vegetation index (NDVI) and the photochemical reflectance index (PRI) at leaf and canopy scales

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2016-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which determines their phenology of high photosynthetic activity in the growing season and downregulation during the winter. Monitoring the timing of the transition between summer activity and winter downregulation in evergreens is difficult since this is a largely invisible process, unlike in deciduous trees that have a visible budding and a sequence of leaf unfolding in the spring and leaf abscission in the fall. The light-use efficiency (LUE) model estimates gross primary productivity (GPP) and may be parameterized using remotely sensed vegetation indices. Using spectral reflectance data, we derived the normalized difference vegetation index (NDVI), a measure of leaf "greenness", and the photochemical reflectance index (PRI), a proxy for chlorophyll:carotenoid ratios which is related to photosynthetic activity. To better understand the relationship between these vegetation indices and photosynthetic activity and to contrast this relationship between plant functional types, the phenology of NDVI, PRI and photosynthesis was monitored in an evergreen forest and a mixed deciduous forest at the leaf and canopy scale. Our data indicates that the LUE model can be parameterized by NDVI and PRI to track forest phenology. Differences in the sensitivity of PRI and NDVI will be discussed. These findings have implications to address the phenology of evergreen conifers by using PRI to complement NDVI in the LUE model, potentially improving model productivity estimates in northern hemisphere forests, that are dominated by conifers.

  16. Using normalized difference vegetation index to estimate carbon fluxes from small rotationally grazed pastures

    USGS Publications Warehouse

    Skinner, R.H.; Wylie, B.K.; Gilmanov, T.G.

    2011-01-01

    Satellite-based normalized difference vegetation index (NDVI) data have been extensively used for estimating gross primary productivity (GPP) and yield of grazing lands throughout the world. However, the usefulness of satellite-based images for monitoring rotationally-grazed pastures in the northeastern United States might be limited because paddock size is often smaller than the resolution limits of the satellite image. This research compared NDVI data from satellites with data obtained using a ground-based system capable of fine-scale (submeter) NDVI measurements. Gross primary productivity was measured by eddy covariance on two pastures in central Pennsylvania from 2003 to 2008. Weekly 250-m resolution satellite NDVI estimates were also obtained for each pasture from the moderate resolution imaging spectroradiometer (MODIS) sensor. Ground-based NDVI data were periodically collected in 2006, 2007, and 2008 from one of the two pastures. Multiple-regression and regression-tree estimates of GPP, based primarily on MODIS 7-d NDVI and on-site measurements of photosynthetically active radiation (PAR), were generally able to predict growing-season GPP to within an average of 3% of measured values. The exception was drought years when estimated and measured GPP differed from each other by 11 to 13%. Ground-based measurements improved the ability of vegetation indices to capture short-term grazing management effects on GPP. However, the eMODIS product appeared to be adequate for regional GPP estimates where total growing-season GPP across a wide area would be of greater interest than short-term management-induced changes in GPP at individual sites.

  17. Temporal Stability of the NDVI-LAI Relationship in a Napa Valley Vineyard

    NASA Technical Reports Server (NTRS)

    Johnson, L. F.

    2003-01-01

    Remotely sensed normalized difference vegetation index (NDVI) values, derived from high-resolution satellite images, were compared with ground measurements of vineyard leaf area index (LAI) periodically during the 2001 growing season. The two variables were strongly related at six ground calibration sites on each of four occasions (r squared = 0.91 to 0.98). Linear regression equations relating the two variables did not significantly differ by observation date, and a single equation accounted for 92 percent of the variance in the combined dataset. Temporal stability of the relationship opens the possibility of transforming NDVI maps to LAI in the absence of repeated ground calibration fieldwork. In order to take advantage of this circumstance, however, steps should be taken to assure temporal consistency in spectral data values comprising the NDVI.

  18. Response of spectral vegetation indices to soil moisture in grasslands and shrublands

    USGS Publications Warehouse

    Zhang, Li; Ji, Lei; Wylie, Bruce K.

    2011-01-01

    The relationships between satellite-derived vegetation indices (VIs) and soil moisture are complicated because of the time lag of the vegetation response to soil moisture. In this study, we used a distributed lag regression model to evaluate the lag responses of VIs to soil moisture for grasslands and shrublands at Soil Climate Analysis Network sites in the central and western United States. We examined the relationships between Moderate Resolution Imaging Spectroradiometer (MODIS)-derived VIs and soil moisture measurements. The Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) showed significant lag responses to soil moisture. The lag length varies from 8 to 56 days for NDVI and from 16 to 56 days for NDWI. However, the lag response of NDVI and NDWI to soil moisture varied among the sites. Our study suggests that the lag effect needs to be taken into consideration when the VIs are used to estimate soil moisture.

  19. Human Land-Use Practices Lead to Global Long-Term Increases in Photosynthetic Capacity

    NASA Technical Reports Server (NTRS)

    Mueller, Thomas; Tucker, Compton J.; Dressler, Gunnar; Pinzon, Jorge E.; Leimgruber, Peter; Dubayah, Ralph O.; Hurtt, George C.; Boehning-Gaese, Katrin; Fagan, William F.

    2014-01-01

    Long-term trends in photosynthetic capacity measured with the satellite-derived Normalized Difference Vegetation Index (NDVI) are usually associated with climate change. Human impacts on the global land surface are typically not accounted for. Here, we provide the first global analysis quantifying the effect of the earth's human footprint on NDVI trends. Globally, more than 20% of the variability in NDVI trends was explained by anthropogenic factors such as land use, nitrogen fertilization, and irrigation. Intensely used land classes, such as villages, showed the greatest rates of increase in NDVI, more than twice than those of forests. These findings reveal that factors beyond climate influence global long-term trends in NDVI and suggest that global climate change models and analyses of primary productivity should incorporate land use effects.

  20. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau.

    PubMed

    Sun, Jian; Qin, Xiaojing; Yang, Jun

    2016-01-01

    The spatiotemporal variability of the Normalized Difference Vegetation Index (NDVI) of three vegetation types (alpine steppe, alpine meadow, and alpine desert steppe) across the Tibetan Plateau was analyzed from 1982 to 2013. In addition, the annual mean temperature (MAT) and annual mean precipitation (MAP) trends were quantified to define the spatiotemporal climate patterns. Meanwhile, the relationships between climate factors and NDVI were analyzed in order to understand the impact of climate change on vegetation dynamics. The results indicate that the maximum of NDVI increased by 0.3 and 0.2 % per 10 years in the entire regions of alpine steppe and alpine meadow, respectively. However, no significant change in the NDVI of the alpine desert steppe has been observed since 1982. A negative relationship between NDVI and MAT was found in all these alpine grassland types, while MAP positively impacted the vegetation dynamics of all grasslands. Also, the effects of temperature and precipitation on different vegetation types differed, and the correlation coefficient for MAP and NDVI in alpine meadow is larger than that for other vegetation types. We also explored the percentages of precipitation and temperature influence on NDVI variation, using redundancy analysis at the observation point scale. The results show that precipitation is a primary limiting factor for alpine vegetation dynamic, rather than temperature. Most importantly, the results can serve as a tool for grassland ecosystem management.

  1. The browning of Alaska's boreal forest

    Treesearch

    Mary Beth Parent; David Verbyla

    2010-01-01

    We used twelve Landsat scenes from the 1980s-2009 and regional 2000-2009 MODIS data to examine the long-term trend in the normalized difference vegetation index (NDVI) within unburned areas of the Alaskan boreal forest. Our analysis shows that there has been a declining trend in NDVI in this region, with the strongest "browning trend" occurring in eastern...

  2. A COMPARISON OF THE SALINITY REGIME ALONG THE TEXAS COAST WITH TERRESTRIAL VEGETATION GREENNESS AND WATER USE IN THE GALVESTON BAY WATERSHED USING REMOTING SENSING

    EPA Science Inventory

    Variability in vegetation greenness was determined for the Galveston Bay watershed using biweekly Normalized Difference Vegetation Index (NDVI) data derived from the Advanced Very High Resolution Radiometer (A VHRR) flown on NOAA satellites. NDVI variability was compared with reg...

  3. A categorical, improper probability method for combining NDVI and LiDAR elevation information for potential cotton precision agricultural applications

    USDA-ARS?s Scientific Manuscript database

    An algorithm is presented to fuse the Normalized Difference Vegetation Index (NDVI) with Light Detection and Ranging (LiDAR) elevation data to produce a map potentially useful for the site-specific scouting and pest management of several insect pests. In cotton, these pests include the Tarnished Pl...

  4. [Comparison of GIMMS and MODIS normalized vegetation index composite data for Qing-Hai-Tibet Plateau].

    PubMed

    Du, Jia-Qiang; Shu, Jian-Min; Wang, Yue-Hui; Li, Ying-Chang; Zhang, Lin-Bo; Guo, Yang

    2014-02-01

    Consistent NDVI time series are basic and prerequisite in long-term monitoring of land surface properties. Advanced very high resolution radiometer (AVHRR) measurements provide the longest records of continuous global satellite measurements sensitive to live green vegetation, and moderate resolution imaging spectroradiometer (MODIS) is more recent typical with high spatial and temporal resolution. Understanding the relationship between the AVHRR-derived NDVI and MODIS NDVI is critical to continued long-term monitoring of ecological resources. NDVI time series acquired by the global inventory modeling and mapping studies (GIMMS) and Terra MODIS were compared over the same time periods from 2000 to 2006 at four scales of Qinghai-Tibet Plateau (whole region, sub-region, biome and pixel) to assess the level of agreement in terms of absolute values and dynamic change by independently assessing the performance of GIMMS and MODIS NDVI and using 495 Landsat samples of 20 km x20 km covering major land cover type. High correlations existed between the two datasets at the four scales, indicating their mostly equal capability of capturing seasonal and monthly phenological variations (mostly at 0. 001 significance level). Simi- larities of the two datasets differed significantly among different vegetation types. The relative low correlation coefficients and large difference of NDVI value between the two datasets were found among dense vegetation types including broadleaf forest and needleleaf forest, yet the correlations were strong and the deviations were small in more homogeneous vegetation types, such as meadow, steppe and crop. 82% of study area was characterized by strong consistency between GIMMS and MODIS NDVI at pixel scale. In the Landsat NDVI vs. GIMMS and MODIS NDVI comparison of absolute values, the MODIS NDVI performed slightly better than GIMMS NDVI, whereas in the comparison of temporal change values, the GIMMS data set performed best. Similar with comparison results of GIMMS and MODIS NDVI, the consistency across the three datasets was clearly different among various vegetation types. In dynamic changes, differences between Landsat and MODIS NDVI were smaller than Landsat NDVI vs. GIMMS NDVI for forest, but Landsat and GIMMS NDVI agreed better for grass and crop. The results suggested that spatial patterns and dynamic trends of GIMMS NDVI were found to be in overall acceptable agreement with MODIS NDVI. It might be feasible to successfully integrate historical GIMMS and more recent MODIS NDVI to provide continuity of NDVI products. The accuracy of merging AVHRR historical data recorded with more modern MODIS NDVI data strongly depends on vegetation type, season and phenological period, and spatial scale. The integration of the two datasets for needleleaf forest, broadleaf forest, and for all vegetation types in the phenological transition periods in spring and autumn should be treated with caution.

  5. A Comparative Analysis between GIMSS NDVIg and NDVI3g for Monitoring Vegetation Activity Change in the Northern Hemisphere during 1982-2008

    DOE PAGES

    Jiang, Nan; Zhu, Wenquan; Zheng, Zhoutao; ...

    2013-08-12

    The long-term Normalized Difference Vegetation Index (NDVI) time-series data set generated from the Advanced Very High Resolution Radiometers (AVHRR) has been widely used to monitor vegetation activity change. The third version of NDVI (NDVI3g) produced by the Global Inventory Modeling and Mapping Studies (GIMMS) group was released recently. The comparisons between the new and old versions should be conducted for linking existing studies with future applications of NDVI3g in monitoring vegetation activity change. Based on simple and piecewise linear regression methods, this research made a comparative analysis between NDVIg and NDVI3g for monitoring vegetation activity change and its responses tomore » climate change in the middle and high latitudes of the Northern Hemisphere during 1982–2008. Our results indicated that there were large differences between NDVIg and NDVI3g in the spatial patterns for both the overall changing trends and the timing of Turning Points (TP) in NDVI time series, which spread over almost the entire study region. The average NDVI trend from NDVI3g was almost twice as great as that from NDVIg and the detected average timing of TP from NDVI3g was about one year later. Although the general spatial patterns were consistent between two data sets for detecting the responses of growing-season NDVI to temperature and precipitation changes, there were large differences in the response magnitude, with a higher response magnitude to temperature in NDVI3g and an opposite response to precipitation change for the two data sets. Finally, these results demonstrated that the NDVIg data set may underestimate the vegetation activity change trend and its response to climate change in the middle and high latitudes of the Northern Hemisphere during the past three decades.« less

  6. Trends in normalized difference vegetation index (NDVI) associated with urban development in northern West Siberia

    NASA Astrophysics Data System (ADS)

    Esau, Igor; Miles, Victoria V.; Davy, Richard; Miles, Martin W.; Kurchatova, Anna

    2016-08-01

    Exploration and exploitation of oil and gas reserves of northern West Siberia has promoted rapid industrialization and urban development in the region. This development leaves significant footprints on the sensitive northern environment, which is already stressed by the global warming. This study reports the region-wide changes in the vegetation cover as well as the corresponding changes in and around 28 selected urbanized areas. The study utilizes the normalized difference vegetation index (NDVI) from high-resolution (250 m) MODIS data acquired for summer months (June through August) over 15 years (2000-2014). The results reveal the increase of NDVI (or "greening") over the northern (tundra and tundra-forest) part of the region. Simultaneously, the southern, forested part shows the widespread decrease of NDVI (or "browning"). These region-wide patterns are, however, highly fragmented. The statistically significant NDVI trends occupy only a small fraction of the region. Urbanization destroys the vegetation cover within the developed areas and at about 5-10 km distance around them. The studied urbanized areas have the NDVI values by 15 to 45 % lower than the corresponding areas at 20-40 km distance. The largest NDVI reduction is typical for the newly developed areas, whereas the older areas show recovery of the vegetation cover. The study reveals a robust indication of the accelerated greening near the older urban areas. Many Siberian cities become greener even against the wider browning trends at their background. Literature discussion suggests that the observed urban greening could be associated not only with special tending of the within-city green areas but also with the urban heat islands and succession of more productive shrub and tree species growing on warmer sandy soils.

  7. Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China)

    PubMed Central

    Liu, Xiaojun; Ferguson, Richard B.; Zheng, Hengbiao; Cao, Qiang; Tian, Yongchao; Cao, Weixing; Zhu, Yan

    2017-01-01

    The successful development of an optimal canopy vegetation index dynamic model for obtaining higher yield can offer a technical approach for real-time and nondestructive diagnosis of rice (Oryza sativa L) growth and nitrogen (N) nutrition status. In this study, multiple rice cultivars and N treatments of experimental plots were carried out to obtain: normalized difference vegetation index (NDVI), leaf area index (LAI), above-ground dry matter (DM), and grain yield (GY) data. The quantitative relationships between NDVI and these growth indices (e.g., LAI, DM and GY) were analyzed, showing positive correlations. Using the normalized modeling method, an appropriate NDVI simulation model of rice was established based on the normalized NDVI (RNDVI) and relative accumulative growing degree days (RAGDD). The NDVI dynamic model for high-yield production in rice can be expressed by a double logistic model: RNDVI=(1+e−15.2829×(RAGDDi−0.1944))−1−(1+e−11.6517×(RAGDDi−1.0267))−1 (R2 = 0.8577**), which can be used to accurately predict canopy NDVI dynamic changes during the entire growth period. Considering variation among rice cultivars, we constructed two relative NDVI (RNDVI) dynamic models for Japonica and Indica rice types, with R2 reaching 0.8764** and 0.8874**, respectively. Furthermore, independent experimental data were used to validate the RNDVI dynamic models. The results showed that during the entire growth period, the accuracy (k), precision (R2), and standard deviation of RNDVI dynamic models for the Japonica and Indica cultivars were 0.9991, 1.0170; 0.9084**, 0.8030**; and 0.0232, 0.0170, respectively. These results indicated that RNDVI dynamic models could accurately reflect crop growth and predict dynamic changes in high-yield crop populations, providing a rapid approach for monitoring rice growth status. PMID:28338637

  8. Using an Active-Optical Sensor to Develop an Optimal NDVI Dynamic Model for High-Yield Rice Production (Yangtze, China).

    PubMed

    Liu, Xiaojun; Ferguson, Richard B; Zheng, Hengbiao; Cao, Qiang; Tian, Yongchao; Cao, Weixing; Zhu, Yan

    2017-03-24

    The successful development of an optimal canopy vegetation index dynamic model for obtaining higher yield can offer a technical approach for real-time and nondestructive diagnosis of rice (Oryza sativa L) growth and nitrogen (N) nutrition status. In this study, multiple rice cultivars and N treatments of experimental plots were carried out to obtain: normalized difference vegetation index (NDVI), leaf area index (LAI), above-ground dry matter (DM), and grain yield (GY) data. The quantitative relationships between NDVI and these growth indices (e.g., LAI, DM and GY) were analyzed, showing positive correlations. Using the normalized modeling method, an appropriate NDVI simulation model of rice was established based on the normalized NDVI (RNDVI) and relative accumulative growing degree days (RAGDD). The NDVI dynamic model for high-yield production in rice can be expressed by a double logistic model: RNDVI = ( 1 + e - 15.2829 × ( R A G D D i - 0.1944 ) ) - 1 - ( 1 + e - 11.6517 × ( R A G D D i - 1.0267 ) ) - 1 (R2 = 0.8577**), which can be used to accurately predict canopy NDVI dynamic changes during the entire growth period. Considering variation among rice cultivars, we constructed two relative NDVI (RNDVI) dynamic models for Japonica and Indica rice types, with R2 reaching 0.8764** and 0.8874**, respectively. Furthermore, independent experimental data were used to validate the RNDVI dynamic models. The results showed that during the entire growth period, the accuracy (k), precision (R2), and standard deviation of RNDVI dynamic models for the Japonica and Indica cultivars were 0.9991, 1.0170; 0.9084**, 0.8030**; and 0.0232, 0.0170, respectively. These results indicated that RNDVI dynamic models could accurately reflect crop growth and predict dynamic changes in high-yield crop populations, providing a rapid approach for monitoring rice growth status.

  9. Estimating maize production in Kenya using NDVI: Some statistical considerations

    USGS Publications Warehouse

    Lewis, J.E.; Rowland, James; Nadeau , A.

    1998-01-01

    A regression model approach using a normalized difference vegetation index (NDVI) has the potential for estimating crop production in East Africa. However, before production estimation can become a reality, the underlying model assumptions and statistical nature of the sample data (NDVI and crop production) must be examined rigorously. Annual maize production statistics from 1982-90 for 36 agricultural districts within Kenya were used as the dependent variable; median area NDVI (independent variable) values from each agricultural district and year were extracted from the annual maximum NDVI data set. The input data and the statistical association of NDVI with maize production for Kenya were tested systematically for the following items: (1) homogeneity of the data when pooling the sample, (2) gross data errors and influence points, (3) serial (time) correlation, (4) spatial autocorrelation and (5) stability of the regression coefficients. The results of using a simple regression model with NDVI as the only independent variable are encouraging (r 0.75, p 0.05) and illustrate that NDVI can be a responsive indicator of maize production, especially in areas of high NDVI spatial variability, which coincide with areas of production variability in Kenya.

  10. Global discrimination of land cover types from metrics derived from AVHRR pathfinder data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeFries, R.; Hansen, M.; Townshend, J.

    1995-12-01

    Global data sets of land cover are a significant requirement for global biogeochemical and climate models. Remotely sensed satellite data is an increasingly attractive source for deriving these data sets due to the resulting internal consistency, reproducibility, and coverage in locations where ground knowledge is sparse. Seasonal changes in the greenness of vegetation, described in remotely sensed data as changes in the normalized difference vegetation index (NDVI) throughout the year, have been the basis for discriminating between cover types in previous attempts to derive land cover from AVHRR data at global and continental scales. This study examines the use ofmore » metrics derived from the NDVI temporal profile, as well as metrics derived from observations in red, infrared, and thermal bands, to improve discrimination between 12 cover types on a global scale. According to separability measures calculated from Bhattacharya distances, average separabilities improved by using 12 of the 16 metrics tested (1.97) compared to separabilities using 12 monthly NDVI values alone (1.88). Overall, the most robust metrics for discriminating between cover types were: mean NDVI, maximum NDVI, NDVI amplitude, AVHRR Band 2 (near-infrared reflectance) and Band 1 (red reflectance) corresponding to the time of maximum NDVI, and maximum land surface temperature. Deciduous and evergreen vegetation can be distinguished by mean NDVI, maximum NDVI, NDVI amplitude, and maximum land surface temperature. Needleleaf and broadleaf vegetation can be distinguished by either mean NDVI and NDVI amplitude or maximum NDVI and NDVI amplitude.« less

  11. Comparison of Topographic Effects between the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI)

    NASA Astrophysics Data System (ADS)

    Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.

    2007-12-01

    Vegetation indices play an important role in monitoring variations in vegetation. The Enhanced Vegetation Index (EVI) proposed by the MODIS Land Discipline Group and the Normalized Difference Vegetation Index (NDVI) are both global-based vegetation indices aimed at providing consistent spatial and temporal information regarding global vegetation. However, many environmental factors such as atmospheric conditions and soil background may produce errors in these indices. The topographic effect is another very important factor, especially when the indices are used in areas of rough terrain. In this paper, we analyzed differences in the topographic effect between the EVI and the NDVI based on a non-Lambertian model and using two airborne-based images with a spatial resolution of 1.5m acquired from a mountainous area covered by a homogeneous Japanese cypress plantation. The results indicate that the soil adjustment factor "L" in the EVI makes it more sensitive to topographic conditions than is the NDVI. Based on these results, we strongly recommend that the topographic effect be removed from the EVI--as well as from other vegetation indices that similarly include a term without a band ratio format (e.g., the PVI and SAVI)--when these indices are used in conjunction with a high spatial resolution image of an area of rough terrain, where the topographic effect on the vegetarian indices having only a band ratio format (e.g., the NDVI) can usually be ignored.

  12. Impact of Sensor Degradation on the MODIS NDVI Time Series

    NASA Technical Reports Server (NTRS)

    Wang, Dongdong; Morton, Douglas Christopher; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert

    2012-01-01

    Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, the impact of sensor degradation on trend detection was evaluated using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470 nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004 yr-1 decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends in MODIS NDVI over North America were consistentwith simulated results,with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in detection of NDVI trends.

  13. Impact of Sensor Degradation on the MODIS NDVI Time Series

    NASA Technical Reports Server (NTRS)

    Wang, Dongdong; Morton, Douglas; Masek, Jeffrey; Wu, Aisheng; Nagol, Jyoteshwar; Xiong, Xiaoxiong; Levy, Robert; Vermote, Eric; Wolfe, Robert

    2011-01-01

    Time series of satellite data provide unparalleled information on the response of vegetation to climate variability. Detecting subtle changes in vegetation over time requires consistent satellite-based measurements. Here, we evaluated the impact of sensor degradation on trend detection using Collection 5 data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on the Terra and Aqua platforms. For Terra MODIS, the impact of blue band (Band 3, 470nm) degradation on simulated surface reflectance was most pronounced at near-nadir view angles, leading to a 0.001-0.004/yr decline in Normalized Difference Vegetation Index (NDVI) under a range of simulated aerosol conditions and surface types. Observed trends MODIS NDVI over North America were consistent with simulated results, with nearly a threefold difference in negative NDVI trends derived from Terra (17.4%) and Aqua (6.7%) MODIS sensors during 2002-2010. Planned adjustments to Terra MODIS calibration for Collection 6 data reprocessing will largely eliminate this negative bias in NDVI trends over vegetation.

  14. Measurement of physiological traits of paddy rice in temperature gradient chamber using Normalized Difference Vegetation Index and Photochemical Reflectance Index

    NASA Astrophysics Data System (ADS)

    Ryu, J. H.; Oh, D.; Cho, J.

    2017-12-01

    Global warming has been affecting the phenological and physiological conditions of crop plants due to heat stress. Thus, the scientific understanding of not only crop-yield change, but also growth progress during high temperature condition is necessary. In this study, growth response and yield of paddy rice depending on air temperature (Ta) has been studied in a Temperature Gradient Chamber (TGC) that is composed of higher Ta than actual Ta (ambient temperature). The results on imitating experiment of global warming provided the reduced production of crop by heat stress. Therefore, it is important to quickly detect the condition of a plant in order to minimize damage to heat stress on global warming. Phenological and physiological changes depending on Ta was detected using optical spectroscopy sensors because remote sensing is useful and efficient technology to monitor quickly and continually. Two vegetation indices, Normalized Difference Vegetation Index (NDVI) and Photochemical Reflectance Index (PRI), were applied to monitor paddy rice growth using hyperspectral and multispectral radiometer. Ta in TGC was gradually set from actual Ta + 0 ° to actual Ta + 3 °. The variations of NDVI and PRI were different during rice growth period, and also these patterns were changed depending on Ta condition. NDVI and PRI under +3 ° condition increase faster than ambient temperature. After heading stage, the values of NDVI and PRI were dropped. However, the NDVI and PRI of rice under heat stress were relatively slowly decreased. In addition, we found that the yield of rice decreased in the case of delayed drop patterns of NDVI and PRI after heading stage. Our results will be useful to understand crop plant conditions using vegetation index under global warming situations.

  15. Midwest Agriculture: A comparison of AVHRR NDVI3g data and crop yields in Corn Belt region of the United States from 1982 to 2014

    NASA Astrophysics Data System (ADS)

    Glennie, E.; Anyamba, A.; Eastman, R.

    2016-12-01

    A time series of Advanced Very High Resolution Radiometer (AVHRR) derived normalized difference vegetation index (NDVI) images was compared to National Agricultural Statistics Service (NASS) corn yield data in the Corn Belt of the United States from 1982 to 2014. The relationship between NDVI and crop yields under El Nino, neutral, and La Nina conditions was used to assess 1) the reliability of using NDVI as an indicator of crop productivity, and 2) the response of the Corn Belt to El Nino/ Southern Oscillation (ENSO) teleconnection effects. First, bi-monthly NDVI data were combined into monthly data using the maximum value compositing technique to reduce cloud contamination and other effects. The most representative seasonal curve of NDVI values over the course of the study period was extracted to define the growing season in the region - May to October. Standardized NDVI anomalies were calculated and averaged to produce a growing season NDVI metrics to represent each Agricultural Statistics Division (ASD) for each year in the study period. The corn yields were detrended in order to remove effects of technological advancements on crop productivity (use of genetically modified seeds, fertilizer, herbicides). Correlation (R) values between the NDVI anomalies and detrended corn yields varied across the Corn Belt, with a maximum of 0.81 and mean of 0.49. While corn is the dominant crop in the region, some inconsistencies between corn yield and NDVI may be accounted for by an increase in soy yield for a given year due to crop rotation practices. The 10 El Nino events and 9 La Nina events that occurred between 1982 and 2014 are not reflected in a consistent manner in NDVI or corn yield data. However, composites of NDVI and crop yields for all El Nino events indicate there is a tendency for higher than normal NDVI and increased corn yields. Conversely, the composite crop yield image for La Nina events shows a slight decrease in productivity.

  16. Global-scale analysis of vegetation indices for moderate resolution monitoring of terrestrial vegetation

    NASA Astrophysics Data System (ADS)

    Huete, Alfredo R.; Didan, Kamel; van Leeuwen, Willem J. D.; Vermote, Eric F.

    1999-12-01

    Vegetation indices have emerged as important tools in the seasonal and inter-annual monitoring of the Earth's vegetation. They are radiometric measures of the amount and condition of vegetation. In this study, the Sea-viewing Wide Field-of-View sensor (SeaWiFS) is used to investigate coarse resolution monitoring of vegetation with multiple indices. A 30-day series of SeaWiFS data, corrected for molecular scattering and absorption, was composited to cloud-free, single channel reflectance images. The normalized difference vegetation index (NDVI) and an optimized index, the enhanced vegetation index (EVI), were computed over various 'continental' regions. The EVI had a normal distribution of values over the continental set of biomes while the NDVI was skewed toward higher values and saturated over forested regions. The NDVI resembled the skewed distributions found in the red band while the EVI resembled the normal distributions found in the NIR band. The EVI minimized smoke contamination over extensive portions of the tropics. As a result, major biome types with continental regions were discriminable in both the EVI imagery and histograms, whereas smoke and saturation considerably degraded the NDVI histogram structure preventing reliable discrimination of biome types.

  17. Integrating proximal and satellite optical data for the analysis of ecosystem carbon uptake and plant phenology at the European larch Specnet site

    NASA Astrophysics Data System (ADS)

    Galvagno, Marta; Gamon, John; Cremonese, Edoardo; Garrity, Steven; Huemmrich, K. Fred; Filippa, Gianluca; Morra di Cella, Umberto; Rossini, Micol

    2017-04-01

    Automated canopy-level optical sampling in tandem with ecosystem-atmosphere flux observations is continuously carried on at a variety of ecosystems through the Specnet network (http://specnet.info/). Specifically, 9 sites within US and Europe were selected since 2015, to investigate the use of novel NDVI and PRI low-cost sensors for the analysis of ecosystem functioning and phenology. Different plant functional types, such as grasslands, deciduous, and evergreen forests belong to the network, here we present specific data from the larch (Larix decidua Mill.) forest Italian site. Three automated NDVI and three automated PRI spectral reflectance sensors (Decagon Devices Inc.) were installed in 2015 on the top of the 20-meters eddy covariance tower, pointing toward the west, north, and east orientations. An additional system, composed by one NDVI and PRI system was installed to monitor the understory component. The objective of this analysis is the comparison between these in-situ inexpensive sensors, independent NDVI and PRI sensors (Skye Instruments) previously installed on the 20-meters tower and satellite-derived NDVI. Both MODIS and Sentinel NDVI data were used for the comparison. Moreover, the newly derived chlorophyll/carotenoid index (CCI, Gamon et al. 2016), computed as the normalized difference between the NDVI red band and PRI 532 nm band, was tested to estimate the seasonal pattern of daily Gross Primary Productivity (GPP) of the larch forest. Results showed that the seasonality of NDVI was comparable among in-situ sensors and satellite data, though orientation-specific differences were observed. Both NDVI and CCI tracked daily GPP, but with different sensitivity to its seasonality. Future analysis will be directed toward a comparison between this site-based results with the other sites within the Specnet network.

  18. Fusing MODIS with Landsat 8 data to downscale weekly normalized difference vegetation index estimates for central Great Basin rangelands, USA

    USGS Publications Warehouse

    Boyte, Stephen; Wylie, Bruce K.; Rigge, Matthew B.; Dahal, Devendra

    2018-01-01

    Data fused from distinct but complementary satellite sensors mitigate tradeoffs that researchers make when selecting between spatial and temporal resolutions of remotely sensed data. We integrated data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor aboard the Terra satellite and the Operational Land Imager sensor aboard the Landsat 8 satellite into four regression-tree models and applied those data to a mapping application. This application produced downscaled maps that utilize the 30-m spatial resolution of Landsat in conjunction with daily acquisitions of MODIS normalized difference vegetation index (NDVI) that are composited and temporally smoothed. We produced four weekly, atmospherically corrected, and nearly cloud-free, downscaled 30-m synthetic MODIS NDVI predictions (maps) built from these models. Model results were strong with R2 values ranging from 0.74 to 0.85. The correlation coefficients (r ≥ 0.89) were strong for all predictions when compared to corresponding original MODIS NDVI data. Downscaled products incorporated into independently developed sagebrush ecosystem models yielded mixed results. The visual quality of the downscaled 30-m synthetic MODIS NDVI predictions were remarkable when compared to the original 250-m MODIS NDVI. These 30-m maps improve knowledge of dynamic rangeland seasonal processes in the central Great Basin, United States, and provide land managers improved resource maps.

  19. Long-term vegetation activity trends in the Iberian Peninsula and The Balearic Islands using high spatial resolution NOAA-AVHRR data (1981 - 2015).

    NASA Astrophysics Data System (ADS)

    Martin-Hernandez, Natalia; Vicente-Serrano, Sergio; Azorin-Molina, Cesar; Begueria-Portugues, Santiago; Reig-Gracia, Fergus; Zabalza-Martínez, Javier

    2017-04-01

    We have analysed trends in the Normalized Difference Vegetation Index (NDVI) in the Iberian Peninsula and The Balearic Islands over the period 1981 - 2015 using a new high resolution data set from the entire available NOAA - AVHRR images (IBERIAN NDVI dataset). After a complete processing including geocoding, calibration, cloud removal, topographic correction and temporal filtering, we obtained bi-weekly time series. To assess the accuracy of the new IBERIAN NDVI time-series, we have compared temporal variability and trends of NDVI series with those results reported by GIMMS 3g and MODIS (MOD13A3) NDVI datasets. In general, the IBERIAN NDVI showed high reliability with these two products but showing higher spatial resolution than the GIMMS dataset and covering two more decades than the MODIS dataset. Using the IBERIAN NDVI dataset, we analysed NDVI trends by means of the non-parametric Mann-Kendall test and Theil-Sen slope estimator. In average, vegetation trends in the study area show an increase over the last decades. However, there are local spatial differences: the main increase has been recorded in humid regions of the north of the Iberian Peninsula. The statistical techniques allow finding abrupt and gradual changes in different land cover types during the analysed period. These changes are related with human activity due to land transformations (from dry to irrigated land), land abandonment and forest recovery.

  20. On the use of a snow aridity index to predict remotely sensed forest productivity in the presence of bark beetle disturbance

    NASA Astrophysics Data System (ADS)

    Knowles, John F.; Lestak, Leanne R.; Molotch, Noah P.

    2017-06-01

    We used multiple sources of remotely sensed and ground based information to evaluate the spatiotemporal variability of snowpack accumulation, potential evapotranspiration (PET), and Normalized Difference Vegetation Index (NDVI) throughout the Southern Rocky Mountain ecoregion, USA. Relationships between these variables were used to establish baseline values of expected forest productivity given water and energy inputs. Although both the snow water equivalent (SWE) and a snow aridity index (SAI), which used SWE to normalize PET, were significant predictors of the long-term (1989-2012) NDVI, SAI explained 11% more NDVI variability than SWE. Deviations from these relationships were subsequently explored in the context of widespread forest mortality due to bark beetles. Over the entire study area, NDVI was lower per unit SAI in beetle-disturbed compared to undisturbed areas during snow-related drought; however, both SAI and NDVI were spatially heterogeneous within this domain. As a result, we selected three focus areas inside the larger study area within which to isolate the relative impacts of SAI and disturbance on NDVI using multivariate linear regression. These models explained 66%-85% of the NDVI and further suggested that both SAI and disturbance effects were significant, although the disturbance effect was generally greater. These results establish the utility of SAI as a measure of moisture limitation in snow-dominated systems and demonstrate a reduction in forest productivity due to bark beetle disturbance that is particularly evident during drought conditions resultant from low snow accumulation during the winter.

  1. Rapid classification of landsat TM imagery for phase 1 stratification using the automated NDVI threshold supervised classification (ANTSC) methodology

    Treesearch

    William H. Cooke; Dennis M. Jacobs

    2002-01-01

    FIA annual inventories require rapid updating of pixel-based Phase 1 estimates. Scientists at the Southern Research Station are developing an automated methodology that uses a Normalized Difference Vegetation Index (NDVI) for identifying and eliminating problem FIA plots from the analysis. Problem plots are those that have questionable land useiland cover information....

  2. Evaluating the species energy relationship with the newest measures of ecosystem energy: NDVI versus MODIS primary production

    Treesearch

    Linda B. Phillips; Andrew J. Hansen; Curtis H. Flather

    2008-01-01

    Ecosystem energy has been shown to be a strong correlate with biological diversity at continental scales. Early efforts to characterize this association used the normalized difference vegetation index (NDVI) to represent ecosystem energy. While this spectral vegetation index covaries with measures of ecosystem energy such as net primary production, the covariation is...

  3. Active sensing: An innovative tool for evaluating grain yield and nitrogen use efficiency of multiple wheat genotypes

    NASA Astrophysics Data System (ADS)

    Naser, Mohammed Abdulridha

    Precision agricultural practices have significantly contributed to the improvement of crop productivity and profitability. Remote sensing based indices, such as Normalized Difference Vegetative Index (NDVI) have been used to obtain crop information. It is used to monitor crop development and to provide rapid and nondestructive estimates of plant biomass, nitrogen (N) content and grain yield. Remote sensing tools are helping improve nitrogen use efficiency (NUE) through nitrogen management and could also be useful for high NUE genotype selection. The objectives of this study were: (i) to determine if active sensor based NDVI readings can differentiate wheat genotypes, (ii) to determine if NDVI readings can be used to classify wheat genotypes into grain yield productivity classes, (iii) to identify and quantify the main sources of variation in NUE across wheat genotypes, and (iv) to determine if normalized difference vegetation index (NDVI) could characterize variability in NUE across wheat genotypes. This study was conducted in north eastern Colorado for two years, 2010 and 2011. The NDVI readings were taken weekly during the winter wheat growing season from March to late June, in 2010 and 2011 and NUE were calculated as partial factor productivity and as partial nitrogen balance at the end of the season. For objectives i and ii, the correlation between NDVI and grain yield was determined using Pearson's product-moment correlation coefficient (r) and linear regression analysis was used to explain the relationship between NDVI and grain yield. The K-means clustering algorithm was used to classify mean NDVI and mean grain yield into three classes. For objectives iii and iv, the parameters related to NUE were also calculated to measure their relative importance in genotypic variation of NUE and power regression analysis between NDVI and NUE was used to characterize the relationship between NDVI and NUE. The results indicate more consistent association between grain yield and NDVI and between NDVI and NUE later in the season, after anthesis and during mid-grain filling stage under dryland and a poor association in wheat grown in irrigated conditions. The results suggest that below saturation of NDVI values (about 0.9), (i.e. prior to full canopy closure and after the beginning of senescence or most of the season under dryland conditions) NDVI could assess grain yield and NUE. The results also indicate that nitrogen uptake efficiency was the main source of variation of NUE among genotypes grown in site-years with lower yield. Overall, results from this study demonstrate that NDVI readings successfully classified wheat genotypes into grain yield classes across dryland and irrigated conditions and characterized variability in NUE across wheat genotypes.

  4. An Assessment of Normalized Difference Skin Index Robustness in Aquatic Environments

    DTIC Science & Technology

    2014-03-27

    Index NDSI Normalized Difference Skin Index NDVI Normalized Difference Vegetation Index NIR Near-Infrared SAR Search and Rescue SERG Sensors... Vegetation and water-bearing objects with high scatter tend to have NDSI values similar to human skin , potentially causing false positives in certain...AN ASSESSMENT OF NORMALIZED DIFFERENCE SKIN INDEX ROBUSTNESS IN AQUATIC ENVIRONMENTS THESIS Alice W. Chan, First Lieutenant, USAF AFIT-ENG-14-M-17

  5. Efficient Maize and Sunflower Multi-year Mapping with NDVI Time Series of HJ-1A/1B in Hetao Irrigation District of Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Yu, B.; Shang, S.

    2016-12-01

    Food shortage is one of the major challenges that human beings are facing. It is urgent to improve the monitoring of the plantation and distribution of the main crops to solve the following economic and social issues. Recently, with the extensive use of remote sensing satellite data, it has provided favorable conditions for crop identification in large irrigation district with complex planting structure. Difference of different crop phenology is the main basis for crop identification, and the normalized difference vegetation index (NDVI) time-series could better delineate crop phenology cycle. Therefore, the key of crop identification is to obtain high quality NDVI time-series. MODIS and Landsat TM satellite images are the most frequently used, however, neither of them could guarantee high temporal and spatial resolutions at once. Accordingly, this paper makes use of NDVI time-series extracted from China Environment Satellites data, which has two-day-repeat temporal and 30m spatial resolutions. The NDVI time-series are fitted with an asymmetric logistic curve, the fitting effect is good and the correlation coefficient is greater than 0.9. The phonological parameters are derived from NDVI fitting curves, and crop identification is carried out by different relation ellipses between NDVI and its phonological parameters of different crops. This paper takes Hetao Irrigation District of Inner Mongolia as an example, to identify multi-year maize and sunflower in the district, and the identification result is good. Compared with the official statistics, the relative errors are both lower than 5%. The results show that the NDVI time-series dataset derived from HJ-1A/1B CCD could delineate the crop phenology cycle accurately and demonstrate its application in crop identification in irrigated district.

  6. Performance of vegetation indices from Landsat time series in deforestation monitoring

    NASA Astrophysics Data System (ADS)

    Schultz, Michael; Clevers, Jan G. P. W.; Carter, Sarah; Verbesselt, Jan; Avitabile, Valerio; Quang, Hien Vu; Herold, Martin

    2016-10-01

    The performance of Landsat time series (LTS) of eight vegetation indices (VIs) was assessed for monitoring deforestation across the tropics. Three sites were selected based on differing remote sensing observation frequencies, deforestation drivers and environmental factors. The LTS of each VI was analysed using the Breaks For Additive Season and Trend (BFAST) Monitor method to identify deforestation. A robust reference database was used to evaluate the performance regarding spatial accuracy, sensitivity to observation frequency and combined use of multiple VIs. The canopy cover sensitive Normalized Difference Fraction Index (NDFI) was the most accurate. Among those tested, wetness related VIs (Normalized Difference Moisture Index (NDMI) and the Tasselled Cap wetness (TCw)) were spatially more accurate than greenness related VIs (Normalized Difference Vegetation Index (NDVI) and Tasselled Cap greenness (TCg)). When VIs were fused on feature level, spatial accuracy was improved and overestimation of change reduced. NDVI and NDFI produced the most robust results when observation frequency varies.

  7. Monitoring rangeland dynamics in Senegal with advanced very high resolution radiometer data

    USGS Publications Warehouse

    Tappan, G. Gray; Tyler, Dean J.; Wehde, M. E.; Moore, Donald G.

    1992-01-01

    Time‐series Normalized Difference Vegetation Index (NDVI) data, computed from Advanced Very High Resolution Radiometer data, are being used by regional and national programs in the African Sahel to monitor seasonal rangeland conditions. The data are often used as indicators of grazing conditions and drought. However, distinguishing rangelands from other vegetation cover types on NDVI images is difficult. A second complication is that rangeland types and their associated productivity vary geographically by soil type. To effectively assess rangeland conditions, seasonal fluctuations (due to climatic cycles) must be isolated from long‐term production characteristics associated with vegetation type and soil differences. Rangeland NDVI dynamics, including qualitative assessments of rangeland production, and the timing and length of the growing season in Senegal were examined by using 7.4‐km global area coverage satellite data. Analyses were based on 10‐day NDVI composite image data from 1982 through 1989. The NDVI image data were stratified by rangeland and soil polygons derived from locally available resource maps. Time‐series NDVI statistics were calculated from the resource polygons that had been interpreted into high, medium, and low production rangelands. Analysts monitoring rangeland conditions can better identify seasonal anomalies such as drought by comparing production potential within homogeneous; resource polygons with the current NDVI data.

  8. Monitoring cotton root rot by synthetic Sentinel-2 NDVI time series using improved spatial and temporal data fusion.

    PubMed

    Wu, Mingquan; Yang, Chenghai; Song, Xiaoyu; Hoffmann, Wesley Clint; Huang, Wenjiang; Niu, Zheng; Wang, Changyao; Li, Wang; Yu, Bo

    2018-01-31

    To better understand the progression of cotton root rot within the season, time series monitoring is required. In this study, an improved spatial and temporal data fusion approach (ISTDFA) was employed to combine 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Different Vegetation Index (NDVI) and 10-m Sentinetl-2 NDVI data to generate a synthetic Sentinel-2 NDVI time series for monitoring this disease. Then, the phenology of healthy cotton and infected cotton was modeled using a logistic model. Finally, several phenology parameters, including the onset day of greenness minimum (OGM), growing season length (GLS), onset of greenness increase (OGI), max NDVI value, and integral area of the phenology curve, were calculated. The results showed that ISTDFA could be used to combine time series MODIS and Sentinel-2 NDVI data with a correlation coefficient of 0.893. The logistic model could describe the phenology curves with R-squared values from 0.791 to 0.969. Moreover, the phenology curve of infected cotton showed a significant difference from that of healthy cotton. The max NDVI value, OGM, GSL and the integral area of the phenology curve for infected cotton were reduced by 0.045, 30 days, 22 days, and 18.54%, respectively, compared with those for healthy cotton.

  9. A Non-Stationary 1981-2012 AVHRR NDVI(sub 3g) Time Series

    NASA Technical Reports Server (NTRS)

    Pinzon, Jorge E.; Tucker, Compton J.

    2014-01-01

    The NDVI(sub 3g) time series is an improved 8-km normalized difference vegetation index (NDVI) data set produced from Advanced Very High Resolution Radiometer (AVHRR) instruments that extends from 1981 to the present. The AVHRR instruments have flown or are flying on fourteen polar-orbiting meteorological satellites operated by the National Oceanic and Atmospheric Administration (NOAA) and are currently flying on two European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) polar-orbiting meteorological satellites, MetOp-A and MetOp-B. This long AVHRR record is comprised of data from two different sensors: the AVHRR/2 instrument that spans July 1981 to November 2000 and the AVHRR/3 instrument that continues these measurements from November 2000 to the present. The main difficulty in processing AVHRR NDVI data is to properly deal with limitations of the AVHRR instruments. Complicating among-instrument AVHRR inter-calibration of channels one and two is the dual gain introduced in late 2000 on the AVHRR/3 instruments for both these channels. We have processed NDVI data derived from the Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) from 1997 to 2010 to overcome among-instrument AVHRR calibration difficulties. We use Bayesian methods with high quality well-calibrated SeaWiFS NDVI data for deriving AVHRR NDVI calibration parameters. Evaluation of the uncertainties of our resulting NDVI values gives an error of plus or minus 0.005 NDVI units for our 1981 to present data set that is independent of time within our AVHRR NDVI continuum and has resulted in a non-stationary climate data set.

  10. Normalized difference vegetation index (NDVI) variation among cultivars and environments

    USDA-ARS?s Scientific Manuscript database

    Although Nitrogen (N) is an essential nutrient for crop production, large preplant applications of fertilizer N can result in off-field loss that causes environmental concerns. Canopy reflectance is being investigated for use in variable rate (VR) N management. Normalized difference vegetation index...

  11. A tool for NDVI time series extraction from wide-swath remotely sensed images

    NASA Astrophysics Data System (ADS)

    Li, Zhishan; Shi, Runhe; Zhou, Cong

    2015-09-01

    Normalized Difference Vegetation Index (NDVI) is one of the most widely used indicators for monitoring the vegetation coverage in land surface. The time series features of NDVI are capable of reflecting dynamic changes of various ecosystems. Calculating NDVI via Moderate Resolution Imaging Spectrometer (MODIS) and other wide-swath remotely sensed images provides an important way to monitor the spatial and temporal characteristics of large-scale NDVI. However, difficulties are still existed for ecologists to extract such information correctly and efficiently because of the problems in several professional processes on the original remote sensing images including radiometric calibration, geometric correction, multiple data composition and curve smoothing. In this study, we developed an efficient and convenient online toolbox for non-remote sensing professionals who want to extract NDVI time series with a friendly graphic user interface. It is based on Java Web and Web GIS technically. Moreover, Struts, Spring and Hibernate frameworks (SSH) are integrated in the system for the purpose of easy maintenance and expansion. Latitude, longitude and time period are the key inputs that users need to provide, and the NDVI time series are calculated automatically.

  12. Evaluation of land performance in Senegal using multi-temporal NDVI and rainfall series

    USGS Publications Warehouse

    Li, Ji; Lewis, J.; Rowland, James; Tappan, G.; Tieszen, L.L.

    2004-01-01

    Time series of rainfall data and normalized difference vegetation index (NDVI) were used to evaluate land cover performance in Senegal, Africa, for the period 1982–1997, including analysis of woodland/forest, agriculture, savanna, and steppe land cover types. A strong relationship exists between annual rainfall and season-integrated NDVI for all of Senegal (r=0.74 to 0.90). For agriculture, savanna, and steppe areas, high positive correlations portray ‘normal’ land cover performance in relation to the rainfall/NDVI association. Regions of low correlation might indicate areas impacted by human influence. However, in the woodland/forest area, a negative or low correlation (with high NDVI) may reflect ‘normal’ land cover performance, due in part to the saturation effect of the rainfall/NDVI association. The analysis identified three areas of poor performance, where degradation has occurred over many years. Use of the ‘Standard Error of the Estimate’ provided essential information for detecting spatial anomalies associated with land degradation.

  13. Response of NDVI, biomass, and ecosystem gas exchange to long-term warming and fertilization in wet sedge tundra.

    PubMed

    Boelman, Natalie T; Stieglitz, Marc; Rueth, Heather M; Sommerkorn, Martin; Griffin, Kevin L; Shaver, Gaius R; Gamon, John A

    2003-05-01

    This study explores the relationship between the normalized difference vegetation index (NDVI), aboveground plant biomass, and ecosystem C fluxes including gross ecosystem production (GEP), ecosystem respiration (ER) and net ecosystem production. We measured NDVI across long-term experimental treatments in wet sedge tundra at the Toolik Lake LTER site, in northern Alaska. Over 13 years, N and P were applied in factorial experiments (N, P and N + P), air temperature was increased using greenhouses with and without N + P fertilizer, and light intensity (photosynthetically active photon flux density) was reduced by 50% using shade cloth. Within each treatment plot, NDVI, aboveground biomass and whole-system CO(2) flux measurements were made at the same sampling points during the peak-growing season of 2001. We found that across all treatments, NDVI is correlated with aboveground biomass ( r(2)=0.84), GEP ( r(2)=0.75) and ER ( r(2)=0.71), providing a basis for linking remotely sensed NDVI to aboveground biomass and ecosystem carbon flux.

  14. NDVI (Normalized Difference Vegetation Index) signatures of transient ecohydrological systems: The case of post-mining landscapes

    NASA Astrophysics Data System (ADS)

    Brück, Yasemine; Schulte Overberg, Philipp; Pohle, Ina; Hinz, Christoph

    2017-04-01

    Assessing ecohydrological systems that undergo state transitions due to environmental change is becoming increasingly important. One system that can be used to study severe disturbances are post-mining landscapes as they usually are associated with complete removal of vegetation and afterwards subsequent ecosystem restoration or spontaneous rehabilitation in line with natural succession. Within this context it is of interest, whether and how (fast) the land cover in these areas returns to conditions comparable to those in the undisturbed surrounding or those prior mining. Many aspects of mine site rehabilitation depend on climatic, geomorphic and ecological settings, which determine at which rate vegetation may be re-established. In order to identify general patterns of vegetation establishment, we propose to use NDVI (Normalized Difference Vegetation Index) time series for mine affected land to estimate rate of recovery across climate regions and ecoregions. In this study we analysed the MODIS Terra Satellite 8 day-composite NDVI for areas influenced by surface mining in different climates from 2001 to 2015. The locations have been chosen based on their extent and the data availability of mining and rehabilitation activities. We selected coal extraction as a case study as strip mining generates well-defined chronosequences of disturbance. The selected mining areas are located in equatorial, arid, warm temperate or snow climates with different precipitation and temperature conditions according to the Köppen-Geiger classification. We analysed the NDVI time series regarding significant characteristics of the re-vegetation phase. We applied hierarchical cluster analysis to capture the spatial heterogeneity between different pixels (ca. 250 * 250 m2 each) in and around each open cast mine. We disentangled seasonality, trend and residual components in the NDVI time series by Seasonal and Trend decomposition using LOESS. As expected the time of the removal of vegetation can be clearly identified from the NDVI time series and provides the starting point of disturbance. The cluster analysis allowed us to distinguish between the non-mining land, the mine and the restored land of different ages. Based on these clusters, the time series decomposition revealed the dominance of the trend of increasing NDVI in areas undergoing the restoration process as well as the prevailing seasonality of the oldest restored sites. The determined phase of a dominant trend component, lasting until the NDVI is in the range of the surrounding landscape or the pre-mining conditions, is in the scale of a decade. The impacts of different hydroclimatic regimes and different rehabilitation strategies on long term NDVI development are currently being investigated. Furthermore, coherence analysis will be applied to quantify short term influences of hydrometeorological variables on vegetation development.

  15. The utility of estimating net primary productivity over Alaska using baseline AVHRR data

    USGS Publications Warehouse

    Markon, C.J.; Peterson, Kim M.

    2002-01-01

    Net primary productivity (NPP) is a fundamental ecological variable that provides information about the health and status of vegetation communities. The Normalized Difference Vegetation Index, or NDVI, derived from the Advanced Very High Resolution Radiometer (AVHRR) is increasingly being used to model or predict NPP, especially over large remote areas. In this article, seven seasonally based metrics calculated from a seven-year baseline NDVI dataset were used to model NPP over Alaska, USA. For each growing season, they included maximum, mean and summed NDVI, total days, product of total days and maximum NDVI, an integral estimate of NDVI and a summed product of NDVI and solar radiation. Field (plot) derived NPP estimates were assigned to 18 land cover classes from an Alaskan statewide land cover database. Linear relationships between NPP and each NDVI metric were analysed at four scales: plot, 1-km, 10-km and 20-km pixels. Results show moderate to poor relationship between any of the metrics and NPP estimates for all data sets and scales. Use of NDVI for estimating NPP may be possible, but caution is required due to data seasonality, the scaling process used and land surface heterogeneity.

  16. Seasonal decoupling between vegetation greenness and function over northern high latitude forests

    NASA Astrophysics Data System (ADS)

    Jeong, S. J.; Schimel, D.; Frankenberg, C.; Drewry, D.; Fisher, J. B.; Verma, M.; Berry, J. A.; Lee, J. E.; Joiner, J.; Guanter, L.

    2014-12-01

    It is still unclear how seasonal variations in vegetation greenness relate to vegetation function (i.e., photosynthesis). Currently, normalized difference vegetation index (NDVI) is a widely used proxy for the period of terrestrial carbon uptake. However, new complementary measures are now available. In this study, we compare the seasonal cycle of NDVI with remote sensing of solar-induced chlorophyll fluorescence (SIF) and data-driven gross primary productivity (GPP) over the Northern Hemisphere high latitude forests (40°-55°N). Comparison of the seasonal cycle between these three datasets shows that the NDVI-based phenology has a longer estimated growing season than the growing season estimated using SIF/GPP. The differences are largely explained by a slower decrease in NDVI in the fall relative to SIF/GPP. In the transition seasons, NDVI is linearly related to temperature, while SIF/GPP show nonlinear relationships with respect to temperature. These results imply that autumn greening related to warming found in recent studies may not result in enhanced photosynthesis. Our method of combining remote sensing of NDVI and SIF can help improve our understanding of the large-scale vegetation structural and functional changes.

  17. Analysis of vegetation dynamics and climatic variability impacts on greenness across Canada using remotely sensed data from 2000 to 2009

    NASA Astrophysics Data System (ADS)

    Fang, Xiuqin; Zhu, Qiuan; Chen, Huai; Ma, Zhihai; Wang, Weifeng; Song, Xinzhang; Zhao, Pengxiang; Peng, Changhui

    2014-01-01

    Using time series of moderate-resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) data from 2000 to 2009, we assessed decadal vegetation dynamics across Canada and examined the relationship between NDVI and climatic variables (precipitation and temperature). The Palmer drought severity index and vapor pressure difference (VPD) were used to relate the vegetation changes to the climate, especially in cases of drought. Results indicated that MODIS NDVI measurements provided a dynamic picture of interannual variation in Canadian vegetation patterns. Greenness declined in 2000, 2002, and 2009 and increased in 2005, 2006, and 2008. Vegetation dynamics varied across regions during the period. Most forest land shows little change, while vegetation in the ecozone of Pacific Maritime, Prairies, and Taiga Shield shows more dynamics than in the others. Significant correlations were found between NDVI and the climatic variables. The variation of NDVI resulting from climatic variability was more highly correlated to temperature than to precipitation in most ecozones. Vegetation grows better with higher precipitation and temperature in almost all ecozones. However, vegetation grows worse under higher temperature in the Prairies ecozone. The annual changes in NDVI corresponded well with the change in VPD in most ecozones.

  18. Rapid Classification of Landsat TM Imagery for Phase 1 Stratification Using the Automated NDVI Threshold Supervised Classification (ANTSC) Methodology

    Treesearch

    William H. Cooke; Dennis M. Jacobs

    2005-01-01

    FIA annual inventories require rapid updating of pixel-based Phase 1 estimates. Scientists at the Southern Research Station are developing an automated methodology that uses a Normalized Difference Vegetation Index (NDVI) for identifying and eliminating problem FIA plots from the analysis. Problem plots are those that have questionable land use/land cover information....

  19. Response of vegetation NDVI to climatic extremes in the arid region of Central Asia: a case study in Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Yao, Junqiang; Chen, Yaning; Zhao, Yong; Mao, Weiyi; Xu, Xinbing; Liu, Yang; Yang, Qing

    2018-02-01

    Observed data showed the climatic transition from warm-dry to warm-wet in Xinjiang during the past 30 years and will probably affect vegetation dynamics. Here, we analyze the interannual change of vegetation index based on the satellite-derived normalized difference vegetation index (NDVI) with temperature and precipitation extreme over the Xinjiang, using the 8-km NDVI third-generation (NDVI3g) from the Global Inventory Modelling and Mapping Studies (GIMMS) from 1982 to 2010. Few previous studies analyzed the link between climate extremes and vegetation response. From the satellite-based results, annual NDVI significantly increased in the first two decades (1981-1998) and then decreased after 1998. We show that the NDVI decrease over the past decade may conjointly be triggered by the increases of temperature and precipitation extremes. The correlation analyses demonstrated that the trends of NDVI was close to the trend of extreme precipitation; that is, consecutive dry days (CDD) and torrential rainfall days (R24) positively correlated with NDVI during 1998-2010. For the temperature extreme, while the decreases of NDVI correlate positively with warmer mean minimum temperature ( Tnav), it correlates negatively with the number of warmest night days ( Rwn). The results suggest that the climatic extremes have possible negative effects on the ecosystem.

  20. High spatial resolution WorldView-2 imagery for mapping NDVI and its relationship to temporal urban landscape evapotranspiration factors

    USGS Publications Warehouse

    Nouri, Hamideh; Beecham, Simon; Anderson, Sharolyn; Nagler, Pamela

    2014-01-01

    Evapotranspiration estimation has benefitted from recent advances in remote sensing and GIS techniques particularly in agricultural applications rather than urban environments. This paper explores the relationship between urban vegetation evapotranspiration (ET) and vegetation indices derived from newly-developed high spatial resolution WorldView-2 imagery. The study site was Veale Gardens in Adelaide, Australia. Image processing was applied on five images captured from February 2012 to February 2013 using ERDAS Imagine. From 64 possible two band combinations of WorldView-2, the most reliable one (with the maximum median differences) was selected. Normalized Difference Vegetation Index (NDVI) values were derived for each category of landscape cover, namely trees, shrubs, turf grasses, impervious pavements, and water bodies. Urban landscape evapotranspiration rates for Veale Gardens were estimated through field monitoring using observational-based landscape coefficients. The relationships between remotely sensed NDVIs for the entire Veale Gardens and for individual NDVIs of different vegetation covers were compared with field measured urban landscape evapotranspiration rates. The water stress conditions experienced in January 2013 decreased the correlation between ET and NDVI with the highest relationship of ET-Landscape NDVI (Landscape Normalized Difference Vegetation Index) for shrubs (r2 = 0.66) and trees (r2 = 0.63). However, when the January data was excluded, there was a significant correlation between ET and NDVI. The highest correlation for ET-Landscape NDVI was found for the entire Veale Gardens regardless of vegetation type (r2 = 0.95, p > 0.05) and the lowest one was for turf (r2 = 0.88, p > 0.05). In support of the feasibility of ET estimation by WV2 over a longer period, an algorithm recently developed that estimates evapotranspiration rates based on the Enhanced Vegetation Index (EVI) from MODIS was employed. The results revealed a significant positive relationship between ETMODIS and ETWV2 (r2 = 0.9857, p > 0.05). This indicates that the relationship between NDVI using high resolution WorldView-2 imagery and ground-based validation approaches could provide an effective predictive tool for determining ET rates from unstressed mixed urban landscape plantings.

  1. [Responses of normalized difference vegetation index (NDVI) to precipitation changes on the grassland of Tibetan Plateau from 2000 to 2015.

    PubMed

    Wang, Zhi Peng; Zhang, Xian Zhou; He, Yong Tao; Li, Meng; Shi, Pei Li; Zu, Jia Xing; Niu, Ben

    2018-01-01

    Precipitation change is an important factor in the inter-annual variation of grassland growth on the Tibetan Plateau. The total amount, distribution pattern and concentration time are three basic characteristics of precipitation change. The temporal and spatial characteristics of precipitation change were analyzed based on climate data of 145 meteorological stations on the Tibetan Plateau and nearby areas from 2000 to 2015. The total precipitation amount was characterized by annual precipitation, distribution pattern of precipitation during the year was characterized by improved precipitation concentration index (PCI), and precipitation centroid (PC) was defined to indicate the change in precipitation concentrated time. To better illustrate the response of grassland to precipitation change, vegetation growth status was characterized by the maximum value of normalized difference vegetation index (NDVI max ). Results indicated that the annual precipitation and PCI had an apparent gradient across the whole plateau and the latest PC occurred in the southern plateau. NDVI max of alpine shrub grassland was significantly correlated with the change of PCI,increased with even distribution of precipitation during growth period, and limited by the total annual precipitation. Alpine meadow did not show significantly correlations with these three indices. The inter-annual variability of NDVI max of steppe was controlled by both PCI and PC. NDVI max of alpine desert grassland was mainly controlled by annual precipitation. In addition to annual total amount of precipitation, the distribution characteristics of precipitation should be further considered when the influence of precipitation change on different types of vegetation on the Qinghai Tibet Plateau was studied.

  2. Evaluating the Consistency of the 1982–1999 NDVI Trends in the Iberian Peninsula across Four Time-series Derived from the AVHRR Sensor: LTDR, GIMMS, FASIR, and PAL-II

    PubMed Central

    Alcaraz-Segura, Domingo; Liras, Elisa; Tabik, Siham; Paruelo, José; Cabello, Javier

    2010-01-01

    Successive efforts have processed the Advanced Very High Resolution Radiometer (AVHRR) sensor archive to produce Normalized Difference Vegetation Index (NDVI) datasets (i.e., PAL, FASIR, GIMMS, and LTDR) under different corrections and processing schemes. Since NDVI datasets are used to evaluate carbon gains, differences among them may affect nations’ carbon budgets in meeting international targets (such as the Kyoto Protocol). This study addresses the consistency across AVHRR NDVI datasets in the Iberian Peninsula (Spain and Portugal) by evaluating whether their 1982–1999 NDVI trends show similar spatial patterns. Significant trends were calculated with the seasonal Mann-Kendall trend test and their spatial consistency with partial Mantel tests. Over 23% of the Peninsula (N, E, and central mountain ranges) showed positive and significant NDVI trends across the four datasets and an additional 18% across three datasets. In 20% of Iberia (SW quadrant), the four datasets exhibited an absence of significant trends and an additional 22% across three datasets. Significant NDVI decreases were scarce (croplands in the Guadalquivir and Segura basins, La Mancha plains, and Valencia). Spatial consistency of significant trends across at least three datasets was observed in 83% of the Peninsula, but it decreased to 47% when comparing across the four datasets. FASIR, PAL, and LTDR were the most spatially similar datasets, while GIMMS was the most different. The different performance of each AVHRR dataset to detect significant NDVI trends (e.g., LTDR detected greater significant trends (both positive and negative) and in 32% more pixels than GIMMS) has great implications to evaluate carbon budgets. The lack of spatial consistency across NDVI datasets derived from the same AVHRR sensor archive, makes it advisable to evaluate carbon gains trends using several satellite datasets and, whether possible, independent/additional data sources to contrast. PMID:22205868

  3. Evaluating the consistency of the 1982-1999 NDVI trends in the Iberian Peninsula across four time-series derived from the AVHRR sensor: LTDR, GIMMS, FASIR, and PAL-II.

    PubMed

    Alcaraz-Segura, Domingo; Liras, Elisa; Tabik, Siham; Paruelo, José; Cabello, Javier

    2010-01-01

    Successive efforts have processed the Advanced Very High Resolution Radiometer (AVHRR) sensor archive to produce Normalized Difference Vegetation Index (NDVI) datasets (i.e., PAL, FASIR, GIMMS, and LTDR) under different corrections and processing schemes. Since NDVI datasets are used to evaluate carbon gains, differences among them may affect nations' carbon budgets in meeting international targets (such as the Kyoto Protocol). This study addresses the consistency across AVHRR NDVI datasets in the Iberian Peninsula (Spain and Portugal) by evaluating whether their 1982-1999 NDVI trends show similar spatial patterns. Significant trends were calculated with the seasonal Mann-Kendall trend test and their spatial consistency with partial Mantel tests. Over 23% of the Peninsula (N, E, and central mountain ranges) showed positive and significant NDVI trends across the four datasets and an additional 18% across three datasets. In 20% of Iberia (SW quadrant), the four datasets exhibited an absence of significant trends and an additional 22% across three datasets. Significant NDVI decreases were scarce (croplands in the Guadalquivir and Segura basins, La Mancha plains, and Valencia). Spatial consistency of significant trends across at least three datasets was observed in 83% of the Peninsula, but it decreased to 47% when comparing across the four datasets. FASIR, PAL, and LTDR were the most spatially similar datasets, while GIMMS was the most different. The different performance of each AVHRR dataset to detect significant NDVI trends (e.g., LTDR detected greater significant trends (both positive and negative) and in 32% more pixels than GIMMS) has great implications to evaluate carbon budgets. The lack of spatial consistency across NDVI datasets derived from the same AVHRR sensor archive, makes it advisable to evaluate carbon gains trends using several satellite datasets and, whether possible, independent/additional data sources to contrast.

  4. Monitoring green leaf tea quality parameters of different TV clones grown in northeast India using satellite data.

    PubMed

    Dutta, Rishiraj

    2013-08-15

    This study tries to quantify the effects of green leaf tea parameters that influence tea quality in Northeast India. The study is to identify the different parameters that have a significant influence on tea quality through the use of remote sensing. It investigates the methods for estimating tea quality based on remotely sensed Normalized Difference Vegetation Index (NDVI) data. Attention focused on high yielding TV clones (TV1, TV18, TV22, TV23, TV25 and TV26). NDVI was obtained from ASTER images. Statistical analysis shows that NDVI has a strong significant effect on the caffeine content followed by epicatechin (EC), epigallocatechin (EGC) and to some extent in other chemical parameters. Relationships therefore exist between quality parameters and remote sensing in particular for the TV clones. This leads to the conclusion that NDVI has a large potential to be used for monitoring tea quality of individual cultivars in the future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Grassland Npp Monitoring Based on Multi-Source Remote Sensing Data Fusion

    NASA Astrophysics Data System (ADS)

    Cai, Y. R.; Zheng, J. H.; Du, M. J.; Mu, C.; Peng, J.

    2018-04-01

    Vegetation is an important part of the terrestrial ecosystem. It plays an important role in the energy and material exchange of the ground-atmosphere system and is a key part of the global carbon cycle process.Climate change has an important influence on the carbon cycle of terrestrial ecosystems. Net Primary Productivity (Net Primary Productivity)is an important parameter for evaluating global terrestrial ecosystems. For the Xinjiang region, the study of grassland NPP has gradually become a hot issue in the ecological environment.Increasing the estimation accuracy of NPP is of great significance to the development of the ecosystem in Xinjiang. Based on the third-generation GIMMS AVHRR NDVI global vegetation dataset and the MODIS NDVI (MOD13A3) collected each month by the United States Atmospheric and Oceanic Administration (NOAA),combining the advantages of different remotely sensed datasets, this paper obtained the maximum synthesis fusion for New normalized vegetation index (NDVI) time series in 2006-2015.Analysis of Net Primary Productivity of Grassland Vegetation in Xinjiang Using Improved CASA Model The method described in this article proves the feasibility of applying data processing, and the accuracy of the NPP calculation using the fusion processed NDVI has been greatly improved. The results show that: (1) The NPP calculated from the new normalized vegetation index (NDVI) obtained from the fusion of GIMMS AVHRR NDVI and MODIS NDVI is significantly higher than the NPP calculated from these two raw data; (2) The grassland NPP in Xinjiang Interannual changes show an overall increase trend; interannual changes in NPP have a certain relationship with precipitation.

  6. Changes in Landscape Greenness and Climatic Factors over ...

    EPA Pesticide Factsheets

    Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can be achieved using the Normalized Difference Vegetation Index (NDVI), an indicator of greenness. However, distinguishing gradual shifts in NDVI (e.g. climate change) versus direct and rapid changes (e.g., fire, land development) is challenging as changes can be confounded by time-dependent patterns, and variation associated with climatic factors. In the present study we leveraged a method, that we previously developed for a pilot study, to address these confounding factors by evaluating NDVI change using autoregression techniques that compare results from univariate (NDVI vs. time) and multivariate analyses (NDVI vs. time and climatic factors) for ~7,660,636 1-km2 pixels comprising the 48 contiguous states of the USA, over a 25-year period (1989−2013). NDVI changed significantly for 48% of the nation over the 25-year in the univariate analyses where most significant trends (85%) indicated an increase in greenness over time. By including climatic factors in the multivariate analyses of NDVI over time, the detection of significant NDVI trends increased to 53% (an increase of 5%). Comparisons of univariate and multivariate analyses for each pixel showed that less than 4% of the pixels had a significant NDVI trend attributable to gradual climatic changes while the remainder of pixels with a significant NDVI trend indicated that changes were due to direct factors. Whi

  7. Analysis of vegetation condition and its relationship with meteorological variables in the Yarlung Zangbo River Basin of China

    NASA Astrophysics Data System (ADS)

    Han, Xianming; Zuo, Depeng; Xu, Zongxue; Cai, Siyang; Gao, Xiaoxi

    2018-06-01

    The Yarlung Zangbo River Basin is located in the southwest border of China, which is of great significance to the socioeconomic development and ecological environment of Southwest China. Normalized Difference Vegetation Index (NDVI) is an important index for investigating the change of vegetation cover, which is widely used as the representation value of vegetation cover. In this study, the NDVI is adopted to explore the vegetation condition in the Yarlung Zangbo River Basin during the recent 17 years, and the relationship between NDVI and meteorological variables has also been discussed. The results show that the annual maximum value of NDVI usually appears from July to September, in which August occupies a large proportion. The minimum value of NDVI appears from January to March, in which February takes up most of the percentage. The higher values of NDVI are generally located in the lower elevation area. When the altitude is higher than 3250 m, NDVI began to decline gradually, and the NDVI became gradual stabilization as the elevation is up to 6000 m. The correlation coefficient between NDVI and precipitation in the Yarlung Zangbo River Basin is greater than that with temperature. The Hurst index of the whole basin is 0.51, indicating that the NDVI of the Yarlung Zangbo River Basin shows a weak sustainability.

  8. Retrieval of seasonal dynamics of forest understory reflectance from semiarid to boreal forests using MODIS BRDF data

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; Chen, Jing M.; Kobayashi, Hideki; Rautiainen, Miina; Schaepman, Michael E.; Karnieli, Arnon; Sprinstin, Michael; Ryu, Youngryel; Nikopensius, Maris; Raabe, Kairi

    2016-03-01

    Spatial and temporal patterns of forest background (understory) reflectance are crucial for retrieving biophysical parameters of forest canopies (overstory) and subsequently for ecosystem modeling. In this communication, we retrieved seasonal courses of understory normalized difference vegetation index (NDVI) from multiangular Moderate Resolution Imaging Spectroradiometer bidirectional reflectance distribution function (MODIS BRDF)/albedo data. We compared satellite-based seasonal courses of understory NDVI to understory NDVI values measured in different types of forests distributed along a wide latitudinal gradient (65.12°N-31.35°N). Our results indicated that the retrieval method performs well particularly over open forests of different types. We also demonstrated the limitations of the method for closed canopies, where the understory signal retrieval is much attenuated.

  9. Environmental variability and child growth in Nepal.

    PubMed

    Shively, Gerald; Sununtnasuk, Celeste; Brown, Molly

    2015-09-01

    Data from the 2011 Nepal Demographic Health Survey are combined with satellite remotely sensed Normalized Difference Vegetation Index (NDVI) data to evaluate whether interannual variability in weather is associated with child health. For stunting, we focus on children older than 24 months of age. NDVI anomaly averages during cropping months are evaluated during the year before birth, the year of birth, and the second year after birth. For wasting, we assess children under 59 months of age and relate growth to NDVI averages for the current and most recent growing periods. Correlations between short-run indicators of child growth and intensity of green vegetation are generally positive. Regressions that control for a range of child-, mother- and household-specific characteristics produce mixed evidence regarding the role of NDVI anomalies during critical periods in a child's early life and the subsequent probability of stunting and wasting. Overall findings suggest that the relationship between environmental conditions and child growth are heterogeneous across the landscape in Nepal and, in many cases, highly non-linear and sensitive to departures from normality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The role of C3 and C4 grasses to interannual variability in remotely sensed ecosystem performance over the US Great Plains

    USGS Publications Warehouse

    Ricotta, C.; Reed, B.C.; Tieszen, L.T.

    2003-01-01

    Time integrated normalized difference vegetation index (??NDVI) derived from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) multi-temporal imagery over a 10-year period (1989-1998) was used as a surrogate for primary production to investigate the impact of interannual climate variability on grassland performance for central and northern US Great Plains. First, the contribution of C3 and C4 species abundance to the major grassland ecosystems of the US Great Plains is described. Next, the relation between mean ??NDVI and the ??NDVI coefficient of variation (CV ??NDVI) used as a proxy for interranual climate variability is analysed. Results suggest that the differences in the long-term climate control over ecosystem performance approximately coincide with changes between C3- and C4-dominant grassland classes. Variation in remotely sensed net primary production over time is higher for the southern and western plains grasslands (primary C4 grasslands), whereas the C3-dominated classes in the northern and eastern portion of the US Great Plains, generally show lower CV ??NDVI values.

  11. Validating MODIS and Sentinel-2 NDVI Products at a Temperate Deciduous Forest Site Using Two Independent Ground-Based Sensors.

    PubMed

    Lange, Maximilian; Dechant, Benjamin; Rebmann, Corinna; Vohland, Michael; Cuntz, Matthias; Doktor, Daniel

    2017-08-11

    Quantifying the accuracy of remote sensing products is a timely endeavor given the rapid increase in Earth observation missions. A validation site for Sentinel-2 products was hence established in central Germany. Automatic multispectral and hyperspectral sensor systems were installed in parallel with an existing eddy covariance flux tower, providing spectral information of the vegetation present at high temporal resolution. Normalized Difference Vegetation Index (NDVI) values from ground-based hyperspectral and multispectral sensors were compared with NDVI products derived from Sentinel-2A and Moderate-resolution Imaging Spectroradiometer (MODIS). The influence of different spatial and temporal resolutions was assessed. High correlations and similar phenological patterns between in situ and satellite-based NDVI time series demonstrated the reliability of satellite-based phenological metrics. Sentinel-2-derived metrics showed better agreement with in situ measurements than MODIS-derived metrics. Dynamic filtering with the best index slope extraction algorithm was nevertheless beneficial for Sentinel-2 NDVI time series despite the availability of quality information from the atmospheric correction procedure.

  12. Validating MODIS and Sentinel-2 NDVI Products at a Temperate Deciduous Forest Site Using Two Independent Ground-Based Sensors

    PubMed Central

    Lange, Maximilian; Rebmann, Corinna; Cuntz, Matthias; Doktor, Daniel

    2017-01-01

    Quantifying the accuracy of remote sensing products is a timely endeavor given the rapid increase in Earth observation missions. A validation site for Sentinel-2 products was hence established in central Germany. Automatic multispectral and hyperspectral sensor systems were installed in parallel with an existing eddy covariance flux tower, providing spectral information of the vegetation present at high temporal resolution. Normalized Difference Vegetation Index (NDVI) values from ground-based hyperspectral and multispectral sensors were compared with NDVI products derived from Sentinel-2A and Moderate-resolution Imaging Spectroradiometer (MODIS). The influence of different spatial and temporal resolutions was assessed. High correlations and similar phenological patterns between in situ and satellite-based NDVI time series demonstrated the reliability of satellite-based phenological metrics. Sentinel-2-derived metrics showed better agreement with in situ measurements than MODIS-derived metrics. Dynamic filtering with the best index slope extraction algorithm was nevertheless beneficial for Sentinel-2 NDVI time series despite the availability of quality information from the atmospheric correction procedure. PMID:28800065

  13. Detection of anomalous crop condition and soil variability mapping using a 26 year Landsat record and the Palmer crop moisture index

    NASA Astrophysics Data System (ADS)

    Venteris, E. R.; Tagestad, J. D.; Downs, J. L.; Murray, C. J.

    2015-07-01

    Cost-effective and reliable vegetation monitoring methods are needed for applications ranging from traditional agronomic mapping, to verifying the safety of geologic injection activities. A particular challenge is defining baseline crop conditions and subsequent anomalies from long term imagery records (Landsat) in the face of large spatiotemporal variability. We develop a new method for defining baseline crop response (near peak growth) using the normalized difference vegetation index (NDVI) from 26 years (1986-2011) of Landsat data for 400 km2 surrounding a planned geologic carbon sequestration site near Jacksonville, Illinois. The normal score transform (yNDVI) was applied on a field by field basis to accentuate spatial patterns and level differences due to planting times. We tested crop type and soil moisture (Palmer crop moisture index (CMI)) as predictors of expected crop condition. Spatial patterns in yNDVI were similar between corn and soybeans - the two major crops. Linear regressions between yNDVI and the cumulative CMI (CCMI) exposed complex interactions between crop condition, field location (topography and soils), and annual moisture. Wet toposequence positions (depressions) were negatively correlated to CCMI and dry positions (crests) positively correlated. However, only 21% of the landscape showed a statistically significant (p < 0.05) linear relationship. To map anomalous crop conditions, we defined a tolerance interval based on yNDVI statistics. Tested on an independent image (2013), 63 of 1483 possible fields showed unusual crop condition. While the method is not directly suitable for crop health assessment, the spatial patterns in correlation between yNDVI and CCMI have potential applications for pest damage detection and edaphological soil mapping, especially in the developing world.

  14. Comparison of AVHRR and SMMR data for monitoring vegetation phenology on a continental scale

    NASA Technical Reports Server (NTRS)

    Justice, C. O.; Townshend, J. R. G.; Choudhury, B. J.

    1989-01-01

    AVHRR normalized difference vegetation index (NDVI) data for a one-year period were compared with Scanning Multichannel Microwave Radiometer microwave polarization difference temperature (MPDT) data for the study of vegetation phenology. It is shown that the MPDT response differs considerably from the seasonal NDVI pattern. The results do not support the hypothetical relationship between MPDT and leaf water content. It is found that only vegetation types with a substantial seasonal variation in the areal extent of vegetated cover show strong seasonality in MPDT data.

  15. The Effect of Spatial and Spectral Resolution in Determining NDVI

    NASA Astrophysics Data System (ADS)

    Boelman, N. T.

    2003-12-01

    We explore the impact that varying spatial and spectral resolutions of several sensors (a field portable spectroradiometer, Landsat, MODIS and AVHRR) has in determining the average Normalized Difference Vegetation Index (NDVI) at Imnavait Creek, a small arctic tundra watershed located on the north slope of Alaska. We found that at the field-of-views (FOVs) of less than 20 m2 that were sampled, the average NDVI value for this watershed is 0.65, compared to 0.77 at FOVs equal to and greater than 20 m2. In addition, we found that at FOVs less than 20 m2, the average NDVI value calculated according to each of Landsat, MODIS and AVHRR band definitions (controlled by spectral resolution) was similar. However, at FOVs equal to and greater than 20 m2, the average NDVI value calculated according to AVHRR's broad-band definitions was significantly and consistently higher than that from both Landsat and MODIS's narrow-band NDVI values. We speculate that these differences in NDVI exist because high leaf-area-index vegetation communities associated with watertracks are commonly spaced between 10 and 20 m apart in arctic tundra landscapes and are often only included when spectral sampling is conducted at FOVs greater than tens of square meters. These results suggest that both spatial resolution alone and its interaction with spectral resolution have to be considered when interpreting commonly used global-scale NDVI datasets. This is because traditionally, the fundamental relationships established between NDVI and ecosystem parameters, such as CO2 fluxes, aboveground biomass and net primary productivity, have been established at scales less than 20 m2. Other ecosystems, such as landscapes with isolated tree islands in boreal forest-tundra ecotones, may exhibit similar scaling patterns that need to be considered when interpreting global-scale NDVI datasets.

  16. Alpine Grassland Phenology as Seen in AVHRR, VEGETATION, and MODIS NDVI Time Series - a Comparison with In Situ Measurements

    PubMed Central

    Fontana, Fabio; Rixen, Christian; Jonas, Tobias; Aberegg, Gabriel; Wunderle, Stefan

    2008-01-01

    This study evaluates the ability to track grassland growth phenology in the Swiss Alps with NOAA-16 Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) time series. Three growth parameters from 15 alpine and subalpine grassland sites were investigated between 2001 and 2005: Melt-Out (MO), Start Of Growth (SOG), and End Of Growth (EOG). We tried to estimate these phenological dates from yearly NDVI time series by identifying dates, where certain fractions (thresholds) of the maximum annual NDVI amplitude were crossed for the first time. For this purpose, the NDVI time series were smoothed using two commonly used approaches (Fourier adjustment or alternatively Savitzky-Golay filtering). Moreover, AVHRR NDVI time series were compared against data from the newer generation sensors SPOT VEGETATION and TERRA MODIS. All remote sensing NDVI time series were highly correlated with single point ground measurements and therefore accurately represented growth dynamics of alpine grassland. The newer generation sensors VGT and MODIS performed better than AVHRR, however, differences were minor. Thresholds for the determination of MO, SOG, and EOG were similar across sensors and smoothing methods, which demonstrated the robustness of the results. For our purpose, the Fourier adjustment algorithm created better NDVI time series than the Savitzky-Golay filter, since latter appeared to be more sensitive to noisy NDVI time series. Findings show that the application of various thresholds to NDVI time series allows the observation of the temporal progression of vegetation growth at the selected sites with high consistency. Hence, we believe that our study helps to better understand large-scale vegetation growth dynamics above the tree line in the European Alps. PMID:27879852

  17. Alpine Grassland Phenology as Seen in AVHRR, VEGETATION, and MODIS NDVI Time Series - a Comparison with In Situ Measurements.

    PubMed

    Fontana, Fabio; Rixen, Christian; Jonas, Tobias; Aberegg, Gabriel; Wunderle, Stefan

    2008-04-23

    This study evaluates the ability to track grassland growth phenology in the Swiss Alps with NOAA-16 Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) time series. Three growth parameters from 15 alpine and subalpine grassland sites were investigated between 2001 and 2005: Melt-Out (MO), Start Of Growth (SOG), and End Of Growth (EOG).We tried to estimate these phenological dates from yearly NDVI time series by identifying dates, where certain fractions (thresholds) of the maximum annual NDVI amplitude were crossed for the first time. For this purpose, the NDVI time series were smoothed using two commonly used approaches (Fourier adjustment or alternatively Savitzky-Golay filtering). Moreover, AVHRR NDVI time series were compared against data from the newer generation sensors SPOT VEGETATION and TERRA MODIS. All remote sensing NDVI time series were highly correlated with single point ground measurements and therefore accurately represented growth dynamics of alpine grassland. The newer generation sensors VGT and MODIS performed better than AVHRR, however, differences were minor. Thresholds for the determination of MO, SOG, and EOG were similar across sensors and smoothing methods, which demonstrated the robustness of the results. For our purpose, the Fourier adjustment algorithm created better NDVI time series than the Savitzky-Golay filter, since latter appeared to be more sensitive to noisy NDVI time series. Findings show that the application of various thresholds to NDVI time series allows the observation of the temporal progression of vegetation growth at the selected sites with high consistency. Hence, we believe that our study helps to better understand largescale vegetation growth dynamics above the tree line in the European Alps.

  18. Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates

    NASA Technical Reports Server (NTRS)

    Running, Steven W.; Nemani, Ramakrishna R.

    1988-01-01

    Weekly AVHRR Normalized Difference Vegetation Index (NDVI) values for 1983-1984 for seven sites of diverse climate in North America were correlated with results of an ecosystem simulation model of a hypothetical forest stand for the corresponding period at each site. The tendency of raw NDVI data to overpredict photosynthesis and transpiration on water limited sites was shown to be partially corrected by using an aridity index of annual radiation/annual precipitation. The results suggest that estimates of vegetation productivity using the global vegetation index are only accurate as annual integrations, unless unsubsampled local area coverage NDVI data can be tested against forest photosynthesis, transpiration and aboveground net primary production data measured at shorter time intervals.

  19. The 2010 Russian Drought Impact on Satellite Measurements of Solar-Induced Chlorophyll Fluorescence: Insights from Modeling and Comparisons with the Normalized Differential Vegetation Index (NDVI)

    NASA Technical Reports Server (NTRS)

    Yoshida, Y.; Joiner, J.; Tucker, C.; Berry, J.; Lee, J. -E.; Walker, G.; Reichle, R.; Koster, R.; Lyapustin, A.; Wang, Y.

    2015-01-01

    We examine satellite-based measurements of chlorophyll solar-induced fluorescence (SIF) over the region impacted by the Russian drought and heat wave of 2010. Like the popular Normalized Difference Vegetation Index (NDVI) that has been used for decades to measure photosynthetic capacity, SIF measurements are sensitive to the fraction of absorbed photosynthetically-active radiation (fPAR). However, in addition, SIF is sensitive to the fluorescence yield that is related to the photosynthetic yield. Both SIF and NDVI from satellite data show drought-related declines early in the growing season in 2010 as compared to other years between 2007 and 2013 for areas dominated by crops and grasslands. This suggests an early manifestation of the dry conditions on fPAR. We also simulated SIF using a global land surface model driven by observation-based meteorological fields. The model provides a reasonable simulation of the drought and heat impacts on SIF in terms of the timing and spatial extents of anomalies, but there are some differences between modeled and observed SIF. The model may potentially be improved through data assimilation or parameter estimation using satellite observations of SIF (as well as NDVI). The model simulations also offer the opportunity to examine separately the different components of the SIF signal and relationships with Gross Primary Productivity (GPP).

  20. On the characterization of vegetation recovery after fire disturbance using Fisher-Shannon analysis and SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series

    NASA Astrophysics Data System (ADS)

    Lasaponara, Rosa; Lanorte, Antonio; Lovallo, Michele; Telesca, Luciano

    2015-04-01

    Time series can fruitfully support fire monitoring and management from statistical analysis of fire occurrence (Tuia et al. 2008) to danger estimation (lasaponara 2005), damage evaluation (Lanorte et al 2014) and post fire recovery (Lanorte et al. 2014). In this paper, the time dynamics of SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) time series are analyzed by using the statistical approach of the Fisher-Shannon (FS) information plane to assess and monitor vegetation recovery after fire disturbance. Fisher-Shannon information plane analysis allows us to gain insight into the complex structure of a time series to quantify its degree of organization and order. The analysis was carried out using 10-day Maximum Value Composites of NDVI (MVC-NDVI) with a 1 km × 1 km spatial resolution. The investigation was performed on two test sites located in Galizia (North Spain) and Peloponnese (South Greece), selected for the vast fires which occurred during the summer of 2006 and 2007 and for their different vegetation covers made up mainly of low shrubland in Galizia test site and evergreen forest in Peloponnese. Time series of MVC-NDVI have been analyzed before and after the occurrence of the fire events. Results obtained for both the investigated areas clearly pointed out that the dynamics of the pixel time series before the occurrence of the fire is characterized by a larger degree of disorder and uncertainty; while the pixel time series after the occurrence of the fire are featured by a higher degree of organization and order. In particular, regarding the Peloponneso fire, such discrimination is more evident than in the Galizia fire. This suggests a clear possibility to discriminate the different post-fire behaviors and dynamics exhibited by the different vegetation covers. Reference Lanorte A, R Lasaponara, M Lovallo, L Telesca 2014 Fisher-Shannon information plane analysis of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to characterize vegetation recovery after fire disturbanceInternational Journal of Applied Earth Observation and Geoinformation 26 441-446 Lanorte A, M Danese, R Lasaponara, B Murgante 2014 Multiscale mapping of burn area and severity using multisensor satellite data and spatial autocorrelation analysis International Journal of Applied Earth Observation and Geoinformation 20, 42-51 Tuia D, F Ratle, R Lasaponara, L Telesca, M Kanevski 2008 Scan statistics analysis of forest fire clusters Communications in Nonlinear Science and Numerical Simulation 13 (8), 1689-1694 Telesca L, R Lasaponara 2006 Pre and post fire behavioral trends revealed in satellite NDVI time series Geophysical Research Letters 33 (14) Lasaponara R 2005 Intercomparison of AVHRR based fire susceptibility indicators for the Mediterranean ecosystems of southern Italy International Journal of Remote Sensing 26 (5), 853-870

  1. Bark Beetles Modify the Impact of Snow Drought on Remotely Sensed Forest Productivity in the Southern Rocky Mountains, USA

    NASA Astrophysics Data System (ADS)

    Knowles, J. F.; Lestak, L.; Molotch, N. P.

    2016-12-01

    We evaluated the long term (1989-2012) relationship between the satellite-observed Normalized Difference Vegetation Index (NDVI), snowpack accumulation, and atmospheric demand throughout the Southern Rocky Mountain Ecoregion, USA. Deviations from this relationship were further explored during pre- and post-disturbance conditions associated with bark beetles and drought. Over the entire study area, both the snow water equivalent (SWE) and a snow aridity index (SAI), which used the SWE to normalize potential evapotranspiration (PET), were significant predictors of the long-term AVHRR NDVI, but the SAI was a better predictor of NDVI relative to SWE regardless of disturbance. Since these relationships were weaker in disturbed areas, we also introduced a metric of tree mortality, and subsequent multiple linear regression of SAI and cumulative mortality best predicted the NDVI from a pair of heavily impacted focus areas within the larger study area. The post-disturbance NDVI was systematically reduced per unit SAI in these areas, and the difference between the observed and predicted (from pre-disturbance regressions) post-disturbance NDVI was significantly correlated with the cumulative forest mortality. At the Ecoregion scale, these disturbance effects were not clearly evident, and we attribute this to spatial variability of both SAI and NDVI throughout the large study area as evidenced by spatial analysis of Moderate Resolution Imaging Spectroradiometer (MODIS)-derived data. These results constrain the expected reduction in forest productivity due to disturbance and demonstrate that this reduction can be particularly evident during drought conditions resultant from low snow accumulation during the winter. Hence, terrestrial carbon uptake may decrease non-linearly post disturbance. This work has implications for predicting the ecohydrological response to climate change in the southern Rocky Mountains, as reductions in SWE and increases in PET are predicted for this area in the future, and therefore changes in the terrestrial carbon, water, and energy cycles should be expected.

  2. Using NDVI to assess vegetative land cover change in central Puget Sound.

    PubMed

    Morawitz, Dana F; Blewett, Tina M; Cohen, Alex; Alberti, Marina

    2006-03-01

    We used the Normalized Difference Vegetation Index (NDVI) in the rapidly growing Puget Sound region over three 5-year time blocks between 1986-1999 at three spatial scales in 42 Watershed Administrative Units (WAUs) to assess changes in the amounts and patterns of green vegetation. On average, approximately 20% of the area in each WAU experienced significant NDVI change over each 5-year time block. Cumulative NDVI change over 15 years (summing change over each 5-year time block) was an average of approximately 60% of each WAU, but was as high as 100% in some. At the regional scale, seasonal weather patterns and green-up from logging were the primary drivers of observed increases in NDVI values. At the WAU scale, anthropogenic factors were important drivers of both positive and negative NDVI change. For example, population density was highly correlated with negative NDVI change over 15 years (r = 0.66, P < 0.01), as was road density (r = 0.71, P < 0.01). At the smallest scale (within 3 case study WAUs) land use differences such as preserving versus harvesting forest lands drove vegetation change. We conclude that large areas within most watersheds are continually and heavily impacted by the high levels of human use and development over short time periods. Our results indicate that varying patterns and processes can be detected at multiple scales using changes in NDVIa values.

  3. Vegetation monitoring for Guatemala: a comparison between simulated VIIRS and MODIS satellite data

    USGS Publications Warehouse

    Boken, Vijendra K.; Easson, Gregory L.; Rowland, James

    2010-01-01

    The advanced very high resolution radiometer (AVHRR) and moderate resolution imaging spectroradiometer (MODIS) data are being widely used for vegetation monitoring across the globe. However, sensors will discontinue collecting these data in the near future. National Aeronautics and Space Administration is planning to launch a new sensor, visible infrared imaging radiometer suite (VIIRS), to continue to provide satellite data for vegetation monitoring. This article presents a case study of Guatemala and compares the simulated VIIRS-Normalized Difference Vegetation Index (NDVI) with MODIS-NDVI for four different dates each in 2003 and 2005. The dissimilarity between VIIRS-NDVI and MODIS-NDVI was examined on the basis of the percent difference, the two-tailed student's t-test, and the coefficient of determination, R 2. The per cent difference was found to be within 3%, the p-value ranged between 0.52 and 0.99, and R 2 exceeded 0.88 for all major types of vegetation (basic grains, rubber, sugarcane, coffee and forests) found in Guatemala. It was therefore concluded that VIIRS will be almost equally capable of vegetation monitoring as MODIS.

  4. Relationships of Leaf Area Index and NDVI for 12 Brassica Cultivars in Northeastern Montana

    NASA Astrophysics Data System (ADS)

    Jabro, Jay; Allen, Brett; Long, Dan; Isbell, Terry; Gesch, Russ; Brown, Jack; Hatfield, Jerry; Archer, David; Oblath, Emily; Vigil, Merle; Kiniry, Jim; Hunter, Kimberly; Shonnard, David

    2017-04-01

    To our knowledge, there is limited information on the relationship of the normalized difference vegetation index (NDVI) and leaf area index (LAI) in spring Brassica oilseed crops. The 2014 results of NDVI and LAI of 12 spring varieties of oilseed crops were measured in a field study conducted in Sidney, Montana, USA under dryland conditions. These 12 varieties were grouped under six species (B. napus, B. rapa, B. juncea, B. carinata, Sinapis alba, and Camelina sativa). The NDVI and LAI were measured weekly throughout the growing season. The NDVI was continually measured at one sample per second across the whole plot using a Crop Circle ACS-470 active crop canopy sensor. The LAI was measured at two locations at 12 samples per plot using an AccuPar model LP-80 Ceptometer. Treatments were replicated four times in a randomized complete block design in plots of 3 m×9 m. Temporal dynamics of NDVI and LAI in various growth stages of 12 varieties were evaluated throughout the growing season. Significant relationships and models between NDVI and LAI were obtained when 12 varieties were grouped under six species.

  5. Spatiotemporal variations in vegetation cover on the Loess Plateau, China, between 1982 and 2013: possible causes and potential impacts.

    PubMed

    Kong, Dongxian; Miao, Chiyuan; Borthwick, Alistair G L; Lei, Xiaohui; Li, Hu

    2018-05-01

    Vegetation is a key component of the ecosystem and plays an important role in water retention and resistance to soil erosion. In this study, we used a multiyear normalized difference vegetation index (NDVI) dataset (1982-2013) and corresponding datasets for observed climatic variables to analyze changes in the NDVI at both temporal and spatial scales. The relationships between NDVI, climate change, and human activities were also investigated. The annual average NDVI showed an upward trend over the 32-year study period, especially in the center of the Loess Plateau. NDVI variations lagged behind monthly temperature changes by approximately 1 month. The contribution of human activities to variations in NDVI has become increasingly significant in recent years, with human activities responsible for 30.4% of the change in NDVI during the period 2001-2013. The increased vegetation coverage has reduced soil erosion on the Loess Plateau in recent years. It is suggested that natural restoration of vegetation is the most effective measure for control of erosion; engineering measures that promote this should feature in the future governance of the Loess Plateau.

  6. Interannual covariability between actual evapotranspiration and PAL and GIMMS NDVIs of northern Asia

    USGS Publications Warehouse

    Suzuki, Rikie; Masuda, Kooiti; Dye, Dennis G.

    2007-01-01

    This study examined the covariability between interannual changes in the normalized difference vegetation index (NDVI) and actual evapotranspiration (ET). To reduce possible uncertainty in the NDVI time series, two NDVI datasets derived from Pathfinder AVHRR Land (PAL) data and the Global Inventory Monitoring and Modeling Studies (GIMMS) group were used. Analyses were conducted using data over northern Asia from 1982 to 2000. Interannual changes over 19 years in the PAL-NDVI and GIMMS-NDVI were compared with interannual changes in ET estimated from model-assimilated atmospheric data and gridded precipitation data. For both NDVI datasets, the annual maximum correlation with ET occurred in June, which is the beginning of the vegetation growing season. The PAL and GIMMS datasets showed a significant, positive correlation between interannual changes in the NDVI and ET over most of the vegetated land area in June. These results suggest that interannual changes in vegetation activity predominantly control interannual changes in ET in June. Based on analyses of interannual changes in temperature, precipitation, and the NDVI in June, the study area can be roughly divided into two regions, the warmth-dominated northernmost region and the wetness-dominated southern region, indicating that interannual changes in vegetation and the resultant interannual changes in ET are controlled by warmth and wetness in these two regions, respectively.

  7. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest.

    PubMed

    Yang, Hualei; Yang, Xi; Heskel, Mary; Sun, Shucun; Tang, Jianwu

    2017-04-28

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporal resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). We found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.

  8. Spatiotemporal changes of normalized difference vegetation index (NDVI) and response to climate extremes and ecological restoration in the Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Zhao, Anzhou; Zhang, Anbing; Liu, Xianfeng; Cao, Sen

    2018-04-01

    Extreme drought, precipitation, and other extreme climatic events often have impacts on vegetation. Based on meteorological data from 52 stations in the Loess Plateau (LP) and a satellite-derived normalized difference vegetation index (NDVI) from the third-generation Global Inventory Modeling and Mapping Studies (GIMMS3g) dataset, this study investigated the relationship between vegetation change and climatic extremes from 1982 to 2013. Our results showed that the vegetation coverage increased significantly, with a linear rate of 0.025/10a ( P < 0.001) from 1982 to 2013. As for the spatial distribution, NDVI revealed an increasing trend from the northwest to the southeast, with about 61.79% of the LP exhibiting a significant increasing trend ( P < 0.05). Some temperature extreme indices, including TMAXmean, TMINmean, TN90p, TNx, TX90p, and TXx, increased significantly at rates of 0.77 mm/10a, 0.52 °C/10a, 0.62 °C/10a, 0.80 °C/10a, 5.16 days/10a, and 0.65 °C/10a, respectively. On the other hand, other extreme temperature indices including TX10p and TN10p decreased significantly at rates of -2.77 days/10a and 4.57 days/10a ( P < 0.01), respectively. Correlation analysis showed that only TMINmean had a significant relationship with NDVI at the yearly time scale ( P < 0.05). At the monthly time scale, vegetation coverage and different vegetation types responded significantly positively to precipitation and temperature extremes (TMAXmean, TMINmean, TNx, TNn, TXn, and TXx) ( P < 0.01). All of the precipitation extremes and temperature extremes exhibited significant positive relationships with NDVI during the spring and autumn ( P < 0.01). However, the relationship between NDVI and RX1day, TMAXmean, TXn, and TXx was insignificant in summer. Vegetation exhibited a significant negative relationship with precipitation extremes in winter ( P < 0.05). In terms of human activity, our results indicate a strong correlation between the cumulative afforestation area and NDVI in Yan'an and Yulin during 1998-2013, r = 0.859 and 0.85, n = 16, P < 0.001.

  9. Association analysis between spatiotemporal variation of vegetation greenness and precipitation/temperature in the Yangtze River Basin (China).

    PubMed

    Cui, Lifang; Wang, Lunche; Singh, Ramesh P; Lai, Zhongping; Jiang, Liangliang; Yao, Rui

    2018-05-23

    The variation in vegetation greenness provides good understanding of the sustainable management and monitoring of land surface ecosystems. The present paper discusses the spatial-temporal changes in vegetation and controlling factors in the Yangtze River Basin (YRB) using Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) for the period 2001-2013. Theil-Sen Median trend analysis, Pearson correlation coefficients, and residual analysis have been used, which shows decreasing trend of the annual mean NDVI over the whole YRB. Spatially, the regions with significant decreasing trends were mainly located in parts of central YRB, and pronounced increasing trends were observed in parts of the eastern and western YRB. The mean NDVI during spring and summer seasons increased, while it decreased during autumn and winter seasons. The seasonal mean NDVI shows spatial heterogeneity due to the vegetation types. The correlation analysis shows a positive relation between NDVI and temperature over most of the YRB, whereas NDVI and precipitation show a negative correlation. The residual analysis shows an increase in NDVI in parts of eastern and western YRB and the decrease in NDVI in the small part of Yangtze River Delta (YRD) and the mid-western YRB due to human activities. In general, climate factors were the principal drivers of NDVI variation in YRB in recent years.

  10. [Kriging analysis of vegetation index depression in peak cluster karst area].

    PubMed

    Yang, Qi-Yong; Jiang, Zhong-Cheng; Ma, Zu-Lu; Cao, Jian-Hua; Luo, Wei-Qun; Li, Wen-Jun; Duan, Xiao-Fang

    2012-04-01

    In order to master the spatial variability of the normal different vegetation index (NDVI) of the peak cluster karst area, taking into account the problem of the mountain shadow "missing" information of remote sensing images existing in the karst area, NDVI of the non-shaded area were extracted in Guohua Ecological Experimental Area, in Pingguo County, Guangxi applying image processing software, ENVI. The spatial variability of NDVI was analyzed applying geostatistical method, and the NDVI of the mountain shadow areas was predicted and validated. The results indicated that the NDVI of the study area showed strong spatial variability and spatial autocorrelation resulting from the impact of intrinsic factors, and the range was 300 m. The spatial distribution maps of the NDVI interpolated by Kriging interpolation method showed that the mean of NDVI was 0.196, apparently strip and block. The higher NDVI values distributed in the area where the slope was greater than 25 degrees of the peak cluster area, while the lower values distributed in the area such as foot of the peak cluster and depression, where slope was less than 25 degrees. Kriging method validation results show that interpolation has a very high prediction accuracy and could predict the NDVI of the shadow area, which provides a new idea and method for monitoring and evaluation of the karst rocky desertification.

  11. Satellite remote sensing assessment of climate impact on forest vegetation dynamics

    NASA Astrophysics Data System (ADS)

    Zoran, M.

    2009-04-01

    Forest vegetation phenology constitutes an efficient bio-indicator of impacts of climate and anthropogenic changes and a key parameter for understanding and modelling vegetation-climate interactions. Climate variability represents the ensemble of net radiation, precipitation, wind and temperature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vegetation Index (NDVIs), which requires NDVI time-series with good time resolution, over homogeneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2007 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and topography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.

  12. Lag and seasonality considerations in evaluating AVHRR NDVI response to precipitation

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2005-01-01

    Assessment of the relationship between the normalized difference vegetation index (NDVI) and precipitation is important in understanding vegetation and climate interaction at a large scale. NDVI response to precipitation, however, is difficult to quantify due to the lag and seasonality effects, which will vary due to vegetation cover type, soils and climate. A time series analysis was performed on biweekly NDVI and precipitation around weather stations in the northern and central U.S. Great Plains. Regression models that incorporate lag and seasonality effects were used to quantify the relationship between NDVI and lagged precipitation in grasslands and croplands. It was found that the time lag was shorter in the early growing season, but longer in the mid- to late-growing season for most locations. The regression models with seasonal adjustment indicate that the relationship between NDVI and precipitation over the entire growing season was strong, with R2 values of 0.69 and 0.72 for grasslands and croplands, respectively. We conclude that vegetation greenness can be predicted using current and antecedent precipitation, if seasonal effects are taken into account.

  13. On the relationship between thermal emissivity and the Normalized Difference Vegetation Index for natural surfaces

    NASA Technical Reports Server (NTRS)

    Van De Griend, A. A.; Owe, M.

    1993-01-01

    The spatial variation of both the thermal emissivity (8-14 microns) and Normalized Difference Vegetation Index (NDVI) was measured for a series of natural surfaces within a savanna environment in Botswana. The measurements were performed with an emissivity-box and with a combined red and near-IR radiometer, with spectral bands corresponding to NOAA/AVHRR. It was found that thermal emissivity was highly correlated with NDVI after logarithmic transformation, with a correlation coefficient of R = 0.94. This empirical relationship is of potential use for energy balance studies using thermal IR remote sensing. The relationship was used in combination with AVHRR (GAC), AVHRR (LAC), and Landsat (TM) data to demonstrate and compare the spatial variability of various spatial scales.

  14. Research for annual travel-route changes of reindeer living around the Arctic Circle using satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Suzuki, G.; Sakka, T.; Tashiro, T.; Kawamata, H.; Tatsuzawa, S.; Naruse, N.; Takahashi, Y.

    2017-12-01

    For a long time, nomads living in the Arctic Circle around Siberia have been making a living by hunting reindeer traditionally. Wild reindeer have a recurrent migration every year, however, the travel-route of reindeer has been changing recently, so the nomads cannot expect the route in their traditional experience. To support them, one of authors (Tatsuzawa) investigated the route by installing GPS transmitter to some reindeer. The reason of the changing route, however, remain unclear. Previous works indicated that the reason of changing the route must be a global warming, forest fires, thunders, and floods, but they only discuss only on the basis of measurements in specific area. The purpose of this study is to research why the arctic reindeer alter the travel route annually through 1) the annual change of vegetation (NDVI: normalized difference vegetation index) in reindeer ground, and through 2) the annual change of soil water content (mNDWI: modified normalized difference water index) which can be reflected precipitation near Lena river. First, we analyzed NDVI using MODIS images that can be observed over a wide area, filmed in July and August; the reindeer started to travel. We have compared the seasonal changes of the NDVI images with the trace obtained by GPS data from 2010 to 2012. Although NDVI images in July showed similar numerical values in every year, the satellite images taken at August 29 is annually different; NDVI values become lower (0.5 or less) when the reindeer travel to the north area in winter. This suggests that reindeer move to secure enough food in the end of summer. In contrast, mNDWI becomes high when the reindeer travel to the north area. The annual changes of the route may be related to the amount of rainfall.

  15. NDVI saturation adjustment: a new approach for improving cropland performance estimates in the Greater Platte River Basin, USA

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.; Phuyal, Khem P.; Ji, Lei

    2013-01-01

    In this study, we developed a new approach that adjusted normalized difference vegetation index (NDVI) pixel values that were near saturation to better characterize the cropland performance (CP) in the Greater Platte River Basin (GPRB), USA. The relationship between NDVI and the ratio vegetation index (RVI) at high NDVI values was investigated, and an empirical equation for estimating saturation-adjusted NDVI (NDVIsat_adjust) based on RVI was developed. A 10-year (2000–2009) NDVIsat_adjust data set was developed using 250-m 7-day composite historical eMODIS (expedited Moderate Resolution Imaging Spectroradiometer) NDVI data. The growing season averaged NDVI (GSN), which is a proxy for ecosystem performance, was estimated and long-term NDVI non-saturation- and saturation-adjusted cropland performance (CPnon_sat_adjust, CPsat_adjust) maps were produced over the GPRB. The final CP maps were validated using National Agricultural Statistics Service (NASS) crop yield data. The relationship between CPsat_adjust and the NASS average corn yield data (r = 0.78, 113 samples) is stronger than the relationship between CPnon_sat_adjust and the NASS average corn yield data (r = 0.67, 113 samples), indicating that the new CPsat_adjust map reduces the NDVI saturation effects and is in good agreement with the corn yield ground observations. Results demonstrate that the NDVI saturation adjustment approach improves the quality of the original GSN map and better depicts the actual vegetation conditions of the GPRB cropland systems.

  16. Large and Small-Scale Cropland Classification on the Foothills of Mount Kenya Based on SPOT-5 Take-5 Data Time Series

    NASA Astrophysics Data System (ADS)

    Eckert, Sandra

    2016-08-01

    The SPOT-5 Take 5 campaign provided SPOT time series data of an unprecedented spatial and temporal resolution. We analysed 29 scenes acquired between May and September 2015 of a semi-arid region in the foothills of Mount Kenya, with two aims: first, to distinguish rainfed from irrigated cropland and cropland from natural vegetation covers, which show similar reflectance patterns; and second, to identify individual crop types. We tested several input data sets in different combinations: the spectral bands and the normalized difference vegetation index (NDVI) time series, principal components of NDVI time series, and selected NDVI time series statistics. For the classification we used random forests (RF). In the test differentiating rainfed cropland, irrigated cropland, and natural vegetation covers, the best classification accuracies were achieved using spectral bands. For the differentiation of crop types, we analysed the phenology of selected crop types based on NDVI time series. First results are promising.

  17. Possible causes of Arctic Tundra Vegetation Productivity Declines

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2017-12-01

    Three decades of remotely sensed Normalized Difference Vegetation Index (NDVI) data document an overall increase in Arctic tundra vegetation greenness but the trends display considerable spatial variability. Pan-Arctic tundra vegetation greening is associated with increases in summer warmth that are, in large-part, driven by summer sea-ice retreat along Arctic coasts. Trends covering the period 1982-2016 are overall positive for summer open water, Summer Warmth Index (SWI, the sum of the degree months above zero from May-August), MaxNDVI (peak NDVI) and time integrated NDVI (TI-NDVI, sum of biweekly NDVI above 0.05 from May-September). Upon closer examination, it is clear that not all regions have positive trends, for example, there is an area of cooling in western Eurasia, which is broadly co-located with maxNDVI and TI-NDVI declines. While sea ice decline has continued over the satellite record, summer landsurface temperatures and vegetation productivity measures have not simply increased. Regional differences between warming and greening trends suggest that it is likely that multiple processes influence vegetation productivity beyond secular greening with increased summer warmth. This paper will present Pan-Arctic and regional analyses of the NDVI data in the context of climate drivers. Other possible drivers of vegetation productivity decline will be discussed such as increased standing water, delayed spring snow-melt, and winter thaw events. The status and limitations of data sets and modeling needed to advance our understanding of tundra vegetation productivity will be summarized and will serve as a starting point for planning the next steps in this topic. Methodical multi-disciplinary synthesis research that jointly considers vegetation type, permafrost conditions, altitude, as well as climate factors such as temperature, heat and moisture transport, and timing of snowfall and spring snowmelt is needed to better understand recent tundra vegetation productivity declines.

  18. Recent Change of Vegetation Growth Trend in China

    NASA Technical Reports Server (NTRS)

    Peng, Shushi; Chen, Anping; Xu, Liang; Cao, Chunxiang; Fang, Jingyun; Myneni, Ranga B.; Pinzon, Jorge E.; Tucker, COmpton J.; Piao, Shilong

    2011-01-01

    Using satellite-derived normalized difference vegetation index (NDVI) data, several previous studies have indicated that vegetation growth significantly increased in most areas of China during the period 1982-99. In this letter, we extended the study period to 2010. We found that at the national scale the growing season (April-October) NDVI significantly increased by 0.0007/yr from 1982 to 2010, but the increasing trend in NDVI over the last decade decreased in comparison to that of the 1982-99 period. The trends in NDVI show significant seasonal and spatial variances. The increasing trend in April and May (AM) NDVI (0.0013/yr is larger than those in June, July and August (JJA) (0.0003/yr) and September and October (SO) (0.0008/yr). This relatively small increasing trend of JJA NDVI during 1982-2010 compared with that during 1982-99 (0.0012/yr) (Piao et al 2003 J. Geophys. Res.-Atmos. 108 4401) implies a change in the JJA vegetation growth trend, which significantly turned from increasing (0.0039/yr) to slightly decreasing (0:0002/yr) in 1988. Regarding the spatial pattern of changes in NDVI, the growing season NDVI increased (over 0.0020/yr) from 1982 to 2010 in southern China, while its change was close to zero in northern China, as a result of a significant changing trend reversal that occurred in the 1990s and early 2000s. In northern China, the growing season NDVI significantly increased before the 1990s as a result of warming and enhanced precipitation, but decreased after the 1990s due to drought stress strengthened by warming and reduced precipitation. Our results also show that the responses of vegetation growth to climate change vary across different seasons and ecosystems.

  19. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Brooks, V.

    1997-01-01

    This paper describes the use of satellite data to calibrate a new climate-vegetation greenness relationship for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes If the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980's in order to refine our understanding of intra-annual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global 1o gridded data sets suggest that three climate indexes: degree days (growing/chilling), annual precipitation total, and an annual moisture index together can account to 70-80 percent of the geographic variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same annual climate index values from the previous year explains no substantial additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes is closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from lo grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI for several different years at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes are not accurately predicted are mainly high latitude zones, mixed and disturbed vegetation types, and other remote locations where climate station data are sparse.

  20. Inter-annual variability of NDVI in response to long-term warming and fertilization in wet sedge and tussock tundra.

    PubMed

    Boelman, Natalie T; Stieglitz, Marc; Griffin, Kevin L; Shaver, Gaius R

    2005-05-01

    This study explores the relationship between the normalized difference vegetation index (NDVI) and aboveground plant biomass for tussock tundra vegetation and compares it to a previously established NDVI-biomass relationship for wet sedge tundra vegetation. In addition, we explore inter-annual variation in NDVI in both these contrasting vegetation communities. All measurements were taken across long-term experimental treatments in wet sedge and tussock tundra communities at the Toolik Lake Long Term Ecological Research (LTER) site, in northern Alaska. Over 15 years (for wet sedge tundra) and 14 years (for tussock tundra), N and P were applied in factorial experiments (N, P and N+P), air temperature was increased using greenhouses with and without N+P fertilizer, and light intensity was reduced by 50% using shade cloth. during the peak growing seasons of 2001, 2002, and 2003, NDVI measurements were made in both the wet sedge and tussock tundra experimental treatment plots, creating a 3-year time series of inter-annual variation in NDVI. We found that: (1) across all tussock experimental tundra treatments, NDVI is correlated with aboveground plant biomass (r2 = 0.59); (2) NDVI-biomass relationships for tussock and wet sedge tundra communities are community specific, and; (3) NDVI values for tussock tundra communities are typically, but not always, greater than for wet sedge tundra communities across all experimental treatments. We suggest that differences between the response of wet sedge and tussock tundra communities in the same experimental treatments result from the contrasting degree of heterogeneity in species and functional types that characterize each of these Arctic tundra vegetation communities.

  1. Remote Sensing of Vineyard FPAR, with Implications for Irrigation Scheduling

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Scholasch, Thibaut

    2004-01-01

    Normalized difference vegetation index (NDVI) data, acquired at two-meter resolution by an airborne ADAR System 5500, were compared with fraction of photosynthetically active radiation (FPAR) absorbed by commercial vineyards in Napa Valley, California. An empirical line correction was used to transform image digital counts to surface reflectance. "Apparent" NDVI (generated from digital counts) and "corrected" NDVI (from reflectance) were both strongly related to FPAR of range 0.14-0.50 (both r(sup 2) = 0.97, P < 0.01). By suppressing noise, corrected NDVI should form a more spatially and temporally stable relationship with FPAR, reducing the need for repeated field support. Study results suggest the possibility of using optical remote sensing to monitor the transpiration crop coefficient, thus providing an enhanced spatial resolution component to crop water budget calculations and irrigation management.

  2. The relationship between satellite-derived indices and species diversity across African savanna ecosystems

    NASA Astrophysics Data System (ADS)

    Mapfumo, Ratidzo B.; Murwira, Amon; Masocha, Mhosisi; Andriani, R.

    2016-10-01

    The ability to use remotely sensed diversity is important for the management of ecosystems at large spatial extents. However, to achieve this, there is still need to develop robust methods and approaches that enable large-scale mapping of species diversity. In this study, we tested the relationship between species diversity measured in situ with the Normalized Difference Vegetation Index (NDVI) and the Coefficient of Variation in the NDVI (CVNDVI) derived from high and medium spatial resolution satellite data at dry, wet and coastal savanna woodlands. We further tested the effect of logging on NDVI along the transects and between transects as disturbance may be a mechanism driving the patterns observed. Overall, the results of this study suggest that high tree species diversity is associated with low and high NDVI and at intermediate levels is associated with low tree species diversity and NDVI. High tree species diversity is associated with high CVNDVI and vice versa and at intermediate levels is associated with high tree species diversity and CVNDVI.

  3. An approach for using AVHRR data to monitor U.S. great plains grasslands

    USGS Publications Warehouse

    Reed, B.C.; Loveland, Thomas R.; Tieszen, L.L.

    1996-01-01

    Environmental monitoring requires regular observations regarding the status of the landscape- The concept behind most monitoring efforts using satellite data involve deriving normalized difference vegetation index (NDVI) values or accumulating the NDVI over a specified time period. These efforts attempt to estimate the continuous growth of green biomass by using continuous additions of NDVI as a surrogate measure. To build upon this concept, this study proposes three refinements; 1) use an objective definition of the current growing season to adjust the time window during which the NDVI is accumulated, 2) accumulate only the NDVI values which are affected by green vegetation, and 3) base monitoring units upon land cover type. These refinements improve the sensitivity of detecting interannual vegetation variability, reduce the need for extensive and detailed knowledge of ground conditions and crop calendars, provide a framework in which several types of monitoring can take place over diverse land cover types, and provide an objective time frame during which monitoring takes place.

  4. [Effects of climate and grazing on the vegetation cover change in Xilinguole League of Inner Mongolia, North China].

    PubMed

    Wang, Hai-Mei; Li, Zheng-Hai; Wang, Zhen

    2013-01-01

    Based on the monthly temperature and precipitation data of 15 meteorological stations and the statistical data of livestock density in Xilinguole League in 1981-2007, and by using ArcGIS, this paper analyzed the spatial distribution of the climate aridity and livestock density in the League, and in combining with the ten-day data of the normalized difference vegetation index (NDVI) in 1981-2007, the driving factors of the vegetation cover change in the League were discussed. In the study period, there was a satisfactory linear regression relationship between the climate aridity and the vegetation coverage. The NDVI and the livestock density had a favorable binomial regression relationship. With the increase of NDVI, the livestock density increased first and decreased then. The vegetation coverage had a complex linear relationship with livestock density and climate aridity. The NDVI had a positive correlation with climate aridity, but a negative correlation with livestock density. Compared with livestock density, climate aridity had far greater effects on the NDVI.

  5. Spatial-temporal dynamics of NDVI and Chl-a concentration from 1998 to 2009 in the East coastal zone of China: integrating terrestrial and oceanic components.

    PubMed

    Hou, Xiyong; Li, Mingjie; Gao, Meng; Yu, Liangju; Bi, Xiaoli

    2013-01-01

    Annual normalized difference vegetation index (NDVI) and chlorophyll-a (Chl-a) concentration are the most important large-scale indicators of terrestrial and oceanic ecosystem net primary productivity. In this paper, the Sea-viewing Wide Field-of-view Sensor level 3 standard mapped image annual products from 1998 to 2009 are used to study the spatial-temporal characters of terrestrial NDVI and oceanic Chl-a concentration on two sides of the coastline of China by using the methods of mean value (M), coefficient of variation (CV), the slope of unary linear regression model (Slope), and the Hurst index (H). In detail, we researched and analyzed the spatial-temporal dynamics, the longitudinal zonality and latitudinal zonality, the direction, intensity, and persistency of historical changes. The results showed that: (1) spatial patterns of M and CV between NDVI and Chl-a concentration from 1998 to 2009 were very different. The dynamic variation of terrestrial NDVI was much mild, while the variation of oceanic Chl-a concentration was relatively much larger; (2) distinct longitudinal zonality was found for Chl-a concentration and NDVI due to their hypersensitivity to the distance to shoreline, and strong latitudinal zonality existed for Chl-a concentration while terrestrial NDVI had a very weak latitudinal zonality; (3) overall, the NDVI showed a slight decreasing trend while the Chl-a concentration showed a significant increasing trend in the past 12 years, and both of them exhibit strong self-similarity and long-range dependence which indicates opposite future trends between land and ocean.

  6. Identification of "ever-cropped" land (1984-2010) using Landsat annual maximum NDVI image composites: Southwestern Kansas case study.

    PubMed

    Maxwell, Susan K; Sylvester, Kenneth M

    2012-06-01

    A time series of 230 intra- and inter-annual Landsat Thematic Mapper images was used to identify land that was ever cropped during the years 1984 through 2010 for a five county region in southwestern Kansas. Annual maximum Normalized Difference Vegetation Index (NDVI) image composites (NDVI(ann-max)) were used to evaluate the inter-annual dynamics of cropped and non-cropped land. Three feature images were derived from the 27-year NDVI(ann-max) image time series and used in the classification: 1) maximum NDVI value that occurred over the entire 27 year time span (NDVI(max)), 2) standard deviation of the annual maximum NDVI values for all years (NDVI(sd)), and 3) standard deviation of the annual maximum NDVI values for years 1984-1986 (NDVI(sd84-86)) to improve Conservation Reserve Program land discrimination.Results of the classification were compared to three reference data sets: County-level USDA Census records (1982-2007) and two digital land cover maps (Kansas 2005 and USGS Trends Program maps (1986-2000)). Area of ever-cropped land for the five counties was on average 11.8 % higher than the area estimated from Census records. Overall agreement between the ever-cropped land map and the 2005 Kansas map was 91.9% and 97.2% for the Trends maps. Converting the intra-annual Landsat data set to a single annual maximum NDVI image composite considerably reduced the data set size, eliminated clouds and cloud-shadow affects, yet maintained information important for discriminating cropped land. Our results suggest that Landsat annual maximum NDVI image composites will be useful for characterizing land use and land cover change for many applications.

  7. A comparison of radiometric correction techniques in the evaluation of the relationship between LST and NDVI in Landsat imagery.

    PubMed

    Tan, Kok Chooi; Lim, Hwee San; Matjafri, Mohd Zubir; Abdullah, Khiruddin

    2012-06-01

    Atmospheric corrections for multi-temporal optical satellite images are necessary, especially in change detection analyses, such as normalized difference vegetation index (NDVI) rationing. Abrupt change detection analysis using remote-sensing techniques requires radiometric congruity and atmospheric correction to monitor terrestrial surfaces over time. Two atmospheric correction methods were used for this study: relative radiometric normalization and the simplified method for atmospheric correction (SMAC) in the solar spectrum. A multi-temporal data set consisting of two sets of Landsat images from the period between 1991 and 2002 of Penang Island, Malaysia, was used to compare NDVI maps, which were generated using the proposed atmospheric correction methods. Land surface temperature (LST) was retrieved using ATCOR3_T in PCI Geomatica 10.1 image processing software. Linear regression analysis was utilized to analyze the relationship between NDVI and LST. This study reveals that both of the proposed atmospheric correction methods yielded high accuracy through examination of the linear correlation coefficients. To check for the accuracy of the equation obtained through linear regression analysis for every single satellite image, 20 points were randomly chosen. The results showed that the SMAC method yielded a constant value (in terms of error) to predict the NDVI value from linear regression analysis-derived equation. The errors (average) from both proposed atmospheric correction methods were less than 10%.

  8. The role of C3 and C4 grasses to interannual variability in remotely sensed ecosystem performance over the US Great Plains

    USGS Publications Warehouse

    Ricotta, C.; Reed, Bradley C.; Tieszen, Larry L.

    2003-01-01

    Time integrated normalized difference vegetation index (ΣNDVI) derived from National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) multi-temporal imagery over a 10-year period (1989–1998) was used as a surrogate for primary production to investigate the impact of interannual climate variability on grassland performance for central and northern US Great Plains. First, the contribution of C3 and C4 species abundance to the major grassland ecosystems of the US Great Plains is described. Next, the relation between mean ΣNDVI and the ΣNDVI coefficient of variation (CV ΣNDVI) used as a proxy for interannual climate variability is analysed. Results suggest that the differences in the long-term climatic control over ecosystem performance approximately coincide with changes between C3- and C4-dominant grassland classes. Variation in remotely sensed net primary production over time is higher for the southern and western plains grasslands (primarily C4 grasslands), whereas the C3-dominated classes in the northern and eastern portion of the US Great Plains, generally show lower CV ΣNDVI values.

  9. Pattern of NDVI-based vegetation greening along an altitudinal gradient in the eastern Himalayas and its response to global warming.

    PubMed

    Li, Haidong; Jiang, Jiang; Chen, Bin; Li, Yingkui; Xu, Yuyue; Shen, Weishou

    2016-03-01

    The eastern Himalayas, especially the Yarlung Zangbo Grand Canyon Nature Reserve (YNR), is a global hotspot of biodiversity because of a wide variety of climatic conditions and elevations ranging from 500 to > 7000 m above sea level (a.s.l.). The mountain ecosystems at different elevations are vulnerable to climate change; however, there has been little research into the patterns of vegetation greening and their response to global warming. The objective of this paper is to examine the pattern of vegetation greening in different altitudinal zones in the YNR and its relationship with vegetation types and climatic factors. Specifically, the inter-annual change of the normalized difference vegetation index (NDVI) and its variation along altitudinal gradient between 1999 and 2013 was investigated using SPOT-VGT NDVI data and ASTER global digital elevation model (GDEM) data. We found that annual NDVI increased by 17.58% in the YNR from 1999 to 2013, especially in regions dominated by broad-leaved and coniferous forests at lower elevations. The vegetation greening rate decreased significantly as elevation increased, with a threshold elevation of approximately 3000 m. Rising temperature played a dominant role in driving the increase in NDVI, while precipitation has no statistical relationship with changes in NDVI in this region. This study provides useful information to develop an integrated management and conservation plan for climate change adaptation and promote biodiversity conservation in the YNR.

  10. Analysis Of The Land Surface Temperature And NDVI Using MODIS Data On The Arctic Tundra During The Last Decade

    NASA Astrophysics Data System (ADS)

    Mattar, C.; Duran-Alarcon, C.; Jimenez-Munoz, J. C.; Sobrino, J. A.

    2013-12-01

    The arctic tundra is one of the most sensible biome to climate conditions which has experienced important changes in the spatial distribution of temperature and vegetation in the last decades. In this paper we analyzed the spatio-temporal trend of the Land Surface Temperature (LST) and the Normalized Difference Vegetation Index (NDVI) over the arctic tundra biome during the last decade (2001-2012) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) land products MOD11C3 (LST) and MOD13C2 (NDVI) were used. Anomalies for each variable were analyzed at monthly level, and the magnitude and statistical significance of the trends were computed using the non-parametric tests of Sen's Slope and Mann-Kendal respectively. The results obtained from MODIS LST data showed a significant increase (p-value < 0.05) on surface temperature over the arctic tundra in the last decade. In the case of the NDVI, the trend was positive (increase on NDVI) but statistically not significant (p-value < 0.05). All tundra regions defined in the Circumpolar Arctic Vegetation Map have presented positive and statistically significant trends in NDVI and LST. Values of trends obtained from MODIS data over all the tundra regions were +1.10 [°C/dec] in the case of LST and +0.005 [NDVI value/dec] in the case of NDVI.

  11. Causes of spring vegetation greenness trends in the northern mid-high latitudes from 1982 to 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E

    2012-01-01

    The Community Land Model version 4 (CLM4) is applied to explore the spatial temporal patterns of spring (April May) vegetation growth trends over the northern mid high latitudes (NMH) (>25 N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experiencemore » temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO2. Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity.« less

  12. The effect of topography on arctic-alpine aboveground biomass and NDVI patterns

    NASA Astrophysics Data System (ADS)

    Riihimäki, Henri; Heiskanen, Janne; Luoto, Miska

    2017-04-01

    Topography is a key factor affecting numerous environmental phenomena, including Arctic and alpine aboveground biomass (AGB) distribution. Digital Elevation Model (DEM) is a source of topographic information which can be linked to local growing conditions. Here, we investigated the effect of DEM derived variables, namely elevation, topographic position, radiation and wetness on AGB and Normalized Difference Vegetation Index (NDVI) in a Fennoscandian forest-alpine tundra ecotone. Boosted regression trees were used to derive non-parametric response curves and relative influences of the explanatory variables. Elevation and potential incoming solar radiation were the most important explanatory variables for both AGB and NDVI. In the NDVI models, the response curves were smooth compared with AGB models. This might be caused by large contribution of field and shrub layer to NDVI, especially at the treeline. Furthermore, radiation and elevation had a significant interaction, showing that the highest NDVI and biomass values are found from low-elevation, high-radiation sites, typically on the south-southwest facing valley slopes. Topographic wetness had minor influence on AGB and NDVI. Topographic position had generally weak effects on AGB and NDVI, although protected topographic position seemed to be more favorable below the treeline. The explanatory power of the topographic variables, particularly elevation and radiation demonstrates that DEM-derived land surface parameters can be used for exploring biomass distribution resulting from landform control on local growing conditions.

  13. Spatio-temporal Patterns of Vegetation and Its Relationship with Precipitation and Temperature in the Yarlung Zangbo River Basin, China

    NASA Astrophysics Data System (ADS)

    LIU, X.; Xu, Z.; Peng, D.

    2017-12-01

    Vegetation growth plays a significant role on runoff variation at high altitude, and precipitation and temperature are both key factors affecting vegetation conditions. As one of the greatest international rivers in China, the Yarlung Zangbo River in the southern Qinghai-Tibetan Plateau was selected, and the spatio-temporal patterns of vegetation were analyzed by using NDVI (Normalized Difference Vegetation Index) during 1998 2014. The relationship between NDVI and precipitation as well as temperature was also investigated in this study. Results showed that the value of NDVI increases with the decrease of elevation and the largest value appears in the broadleaf forest cover. Almost all annual NDVI variations exhibit an increasing tendency, particularly for the broadleaf forest cover. On the viewpoint of statistics, only 29% pixels of NDVI with increasing tendency are of significance for the other cover, while for cultivated vegetation cover, around 82% pixels of NDVI were detected with significant increasing tendency. In addition, vegetation growth showed lagging response to precipitation, and the lag time is around one month. Moreover, in the region with elevation over 5000 m, negative relationship between NDVI and precipitation for alpine vegetation was found. Approximately 75% of NDVI variations are dominated by precipitation and temperature. These findings may provide a reference to investigate runoff variations and strengthen ecological protection for similar high-altitude areas in the future.

  14. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest

    DOE PAGES

    Yang, Hualei; Yang, Xi; Heskel, Mary; ...

    2017-04-28

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporalmore » resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). Here we found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.« less

  15. Seasonal variations of leaf and canopy properties tracked by ground-based NDVI imagery in a temperate forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hualei; Yang, Xi; Heskel, Mary

    Changes in plant phenology affect the carbon flux of terrestrial forest ecosystems due to the link between the growing season length and vegetation productivity. Digital camera imagery, which can be acquired frequently, has been used to monitor seasonal and annual changes in forest canopy phenology and track critical phenological events. However, quantitative assessment of the structural and biochemical controls of the phenological patterns in camera images has rarely been done. In this study, we used an NDVI (Normalized Difference Vegetation Index) camera to monitor daily variations of vegetation reflectance at visible and near-infrared (NIR) bands with high spatial and temporalmore » resolutions, and found that the infrared camera based NDVI (camera-NDVI) agreed well with the leaf expansion process that was measured by independent manual observations at Harvard Forest, Massachusetts, USA. We also measured the seasonality of canopy structural (leaf area index, LAI) and biochemical properties (leaf chlorophyll and nitrogen content). Here we found significant linear relationships between camera-NDVI and leaf chlorophyll concentration, and between camera-NDVI and leaf nitrogen content, though weaker relationships between camera-NDVI and LAI. Therefore, we recommend ground-based camera-NDVI as a powerful tool for long-term, near surface observations to monitor canopy development and to estimate leaf chlorophyll, nitrogen status, and LAI.« less

  16. Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat TM data

    NASA Technical Reports Server (NTRS)

    Sader, Steven A.; Waide, Robert B.; Lawrence, William T.; Joyce, Armond T.

    1989-01-01

    Forest stand structure and biomass data were collected using conventional forest inventory techniques in tropical, subtropical, and warm temperate forest biomes. The feasibility of detecting tropical forest successional age class and total biomass differences using Landsat-Thematic mapper (TM) data, was evaluated. The Normalized Difference Vegetation Index (NDVI) calculated from Landsat-TM data were not significantly correlated with forest regeneration age classes in the mountain terrain of the Luquillo Experimental Forest, Puerto Rico. The low sun angle and shadows cast on steep north and west facing slopes reduced spectral reflectance values recorded by TM orbital altitude. The NDVI, calculated from low altitude aircraft scanner data, was significatly correlated with forest age classes. However, analysis of variance suggested that NDVI differences were not detectable for successional forests older than approximately 15-20 years. Also, biomass differences in young successional tropical forest were not detectable using the NDVI. The vegetation index does not appear to be a good predictor of stand structure variables (e.g., height, diameter of main stem) or total biomass in uneven age, mixed broadleaf forest. Good correlation between the vegetation index and low biomass in even age pine plantations were achieved for a warm temperate study site. The implications of the study for the use of NDVI for forest structure and biomass estimation are discussed.

  17. Temporal variations of NDVI and correlations between NDVI and hydro-climatological variables at Lake Baiyangdian, China.

    PubMed

    Wang, Fei; Wang, Xuan; Zhao, Ying; Yang, Zhifeng

    2014-09-01

    In this paper, correlations between vegetation dynamics (represented by the normalized difference vegetation index (NDVI)) and hydro-climatological factors were systematically studied in Lake Baiyangdian during the period from April 1998 to July 2008. Six hydro-climatological variables including lake volume, water level, air temperature, precipitation, evaporation, and sunshine duration were used, as well as extracted NDVI series data representing vegetation dynamics. Mann-Kendall tests were used to detect trends in NDVI and hydro-climatological variation, and a Bayesian information criterion method was used to detect their abrupt changes. A redundancy analysis (RDA) was used to determine the major hydro-climatological factors contributing to NDVI variation at monthly, seasonal, and yearly scales. The results were as follows: (1) the trend analysis revealed that only sunshine duration significantly increased over the study period, with an inter-annual increase of 3.6 h/year (p < 0.01), whereas inter-annual NDVI trends were negligible; (2) the abrupt change detection showed that a major hydro-climatological change occurred in 2004, when abrupt changes occurred in lake volume, water level, and sunlight duration; and (3) the RDA showed that evaporation and temperature were highly correlated with monthly changes in NDVI. At larger time scales, however, water level and lake volume gradually became more important than evaporation and precipitation in terms of their influence on NDVI. These results suggest that water availability is the most important factor in vegetation restoration. In this paper, we recommend a practical strategy for lake ecosystem restoration that takes into account changes in NDVI.

  18. Remote sensing study of the impact of vegetation on thermal environment in different contexts

    NASA Astrophysics Data System (ADS)

    Xie, Qijiao; Wu, Yingjiao; Zhou, Zhixiang; Wang, Zhengxiang

    2018-02-01

    Satellite remote sensing technology provides informative data for detecting the land surface temperature (LST) distribution and urban heat island (UHI) effect remotely and regionally. In this study, two Landsat Thematic Mapper (TM) images acquired on September 26, 1987 and September 17, 2013 were used to derive LST and the normalized difference vegetation index (NDVI) values in Wuhan, China. The relationships between NDVI and LST were examined in different contexts, namely built-up area, farmland, grassland and forest. Results showed that negative correlations between the mean NDVI and LST were detected in all observed land covers, which meant that vegetation was efficient in decreasing surface temperatures and mitigating UHI effect. The cooling efficiency of vegetation on thermal environment varied with different contexts. As mean NDVI increased at each 0.1, the decreased LST values in built-up area, farmland, grassland and forest were 1.4 °C, 1.4 °C, 1.1 °C, 1.9 °C in 1987 and 1.4 °C, 1.7 °C, 1.3 °C, 1.8 °C in 2013, respectively. This finding encourages urban planners and greening designers to devote more efforts in protecting urban forests.

  19. Detecting channel riparian vegetation response to best-management-practices implementation in ephemeral streams with the use of spot high-resolution visible imagery

    USGS Publications Warehouse

    Kamp, Kendall Vande; Rigge, Matthew B.; Troelstrup, Nels H.; Smart, Alexander J.; Wylie, Bruce

    2013-01-01

    Heavily grazed riparian areas are commonly subject to channel incision, a lower water table, and reduced vegetation, resulting in sediment delivery above normal regimes. Riparian and in-channel vegetation functions as a roughness element and dissipates flow energy, maintaining stable channel geometry. Ash Creek, a tributary of the Bad River in western South Dakota contains a high proportion of incised channels, remnants of historically high grazing pressure. Best management practices (BMP), including off-stream watering sources and cross fencing, were implemented throughout the Bad River watershed during an Environmental Protection Agency (EPA) 319 effort to address high sediment loads. We monitored prairie cordgrass (Spartina pectinata Link) establishment within stream channels for 16 yr following BMP implementation. Photos were used to group stream reaches (n = 103) subjectively into three classes; absent (estimated  40% cover; n = 16) based on the relative amount of prairie cordgrass during 2010 assessments of ephemeral channels. Reaches containing drainage areas of 0.54 to 692 ha were delineated with the use of 2010 National Agriculture Imagery Program (NAIP) imagery. Normalized difference vegetation index (NDVI) values were extracted from 5 to 39 sample points proportional to reach length using a series of Satellite Pour l'Observation de la Terre (SPOT) satellite imagery. Normalized NDVI (nNDVI) of 2 152 sample points were determined from pre- and post-BMP images. Mean nNDVI values for each reach ranged from 0.33 to 1.77. ANOVA revealed significant increase in nNDVI in locations classified as present prairie cordgrass cover following BMP implementation. Establishment of prairie cordgrass following BMP implementation was successfully detected remotely. Riparian vegetation such as prairie cordgrass adds channel roughness that reduces the flow energy responsible for channel degradation.

  20. Comparability of Red/Near-Infrared Reflectance and NDVI Based on the Spectral Response Function between MODIS and 30 Other Satellite Sensors Using Rice Canopy Spectra

    PubMed Central

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-01-01

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from −12.67% to 36.30% for the red reflectance, −8.52% to −0.23% for the NIR reflectance, and −9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed higher differences than did the other sensors with respect to MODIS. A series of optimum models were presented for remote sensing data assimilation between MODIS and other sensors. PMID:24287529

  1. Comparability of red/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra.

    PubMed

    Huang, Weijiao; Huang, Jingfeng; Wang, Xiuzhen; Wang, Fumin; Shi, Jingjing

    2013-11-26

    Long-term monitoring of regional and global environment changes often depends on the combined use of multi-source sensor data. The most widely used vegetation index is the normalized difference vegetation index (NDVI), which is a function of the red and near-infrared (NIR) spectral bands. The reflectance and NDVI data sets derived from different satellite sensor systems will not be directly comparable due to different spectral response functions (SRF), which has been recognized as one of the most important sources of uncertainty in the multi-sensor data analysis. This study quantified the influence of SRFs on the red and NIR reflectances and NDVI derived from 31 Earth observation satellite sensors. For this purpose, spectroradiometric measurements were performed for paddy rice grown under varied nitrogen levels and at different growth stages. The rice canopy reflectances were convoluted with the spectral response functions of various satellite instruments to simulate sensor-specific reflectances in the red and NIR channels. NDVI values were then calculated using the simulated red and NIR reflectances. The results showed that as compared to the Terra MODIS, the mean relative percentage difference (RPD) ranged from -12.67% to 36.30% for the red reflectance, -8.52% to -0.23% for the NIR reflectance, and -9.32% to 3.10% for the NDVI. The mean absolute percentage difference (APD) compared to the Terra MODIS ranged from 1.28% to 36.30% for the red reflectance, 0.84% to 8.71% for the NIR reflectance, and 0.59% to 9.32% for the NDVI. The lowest APD between MODIS and the other 30 satellite sensors was observed for Landsat5 TM for the red reflectance, CBERS02B CCD for the NIR reflectance and Landsat4 TM for the NDVI. In addition, the largest APD between MODIS and the other 30 satellite sensors was observed for IKONOS for the red reflectance, AVHRR1 onboard NOAA8 for the NIR reflectance and IKONOS for the NDVI. The results also indicated that AVHRRs onboard NOAA7-17 showed higher differences than did the other sensors with respect to MODIS. A series of optimum models were presented for remote sensing data assimilation between MODIS and other sensors.

  2. Spatial distribution of threshold wind speeds for dust outbreaks in northeast Asia

    NASA Astrophysics Data System (ADS)

    Kimura, Reiji; Shinoda, Masato

    2010-01-01

    Asian windblown dust events cause human and animal health effects and agricultural damage in dust source areas such as China and Mongolia and cause "yellow sand" events in Japan and Korea. It is desirable to develop an early warning system to help prevent such damage. We used our observations at a Mongolian station together with data from previous studies to model the spatial distribution of threshold wind speeds for dust events in northeast Asia (35°-45°N and 100°-115°E). Using a map of Normalized Difference Vegetation Index (NDVI), we estimated spatial distributions of vegetation cover, roughness length, threshold friction velocity, and threshold wind speed. We also recognized a relationship between NDVI in the dust season and maximum NDVI in the previous year. Thus, it may be possible to predict the threshold wind speed in the next dust season using the maximum NDVI in the previous year.

  3. Mapping the change of Phragmites australis live biomass in the lower Mississippi River Delta marshes

    USGS Publications Warehouse

    Ramsey, Elijah W.; Rangoonwala, Amina

    2017-07-28

    Multiyear remote sensing mapping of the normalized difference vegetation index (NDVI) was carried out as an indicator of live biomass composition of the Phragmites australis (hereafter Phragmites) marsh in the lower Mississippi River Delta (hereafter delta) from 2014 to 2017. Maps of NDVI change showed that the Phragmites condition was fairly stable between May 2014 and July 2015. From July 2015 to April 2016 NDVI change indicated Phragmites suffered a widespread decline in the live biomass proportion.  Between April and September 2016, most marsh remained unchanged from the earlier period or showed improvement; although there were pockets of continued decline scattered throughout the lower delta. From September 2016 to May 2017 a pronounced and widely exhibited decline in the condition of Phragmites marsh again occurred throughout the lower delta. This final NDVI change mapping supported field observations of Phragmites decline during the same period.

  4. Characterization of Landsat-7 to Landsat-8 Reflective Wavelength and Normalized Difference Vegetation Index Continuity

    NASA Technical Reports Server (NTRS)

    Roy, D. P.; Kovalskyy, V.; Zhang, H. K.; Vermote, E. F.; Yan, L.; Kumar, S. S.; Egorov, A.

    2016-01-01

    At over 40 years, the Landsat satellites provide the longest temporal record of space-based land surface observations, and the successful 2013 launch of the Landsat-8 is continuing this legacy. Ideally, the Landsat data record should be consistent over the Landsat sensor series. The Landsat-8 Operational Land Imager (OLI) has improved calibration, signal to noise characteristics, higher 12-bit radiometric resolution, and spectrally narrower wavebands than the previous Landsat-7 Enhanced Thematic Mapper (ETM+). Reflective wavelength differences between the two Landsat sensors depend also on the surface reflectance and atmospheric state which are difficult to model comprehensively. The orbit and sensing geometries of the Landsat- 8 OLI and Landsat-7 ETM+ provide swath edge overlapping paths sensed only one day apart. The overlap regions are sensed in alternating backscatter and forward scattering orientations so Landsat bi-directional reflectance effects are evident but approximately balanced between the two sensors when large amounts of time series data are considered. Taking advantage of this configuration a total of 59 million 30m corresponding sensor observations extracted from 6,317 Landsat-7 ETM+ and Landsat-8 OLI images acquired over three winter and three summer months for all the conterminous United States (CONUS) are compared. Results considering different stages of cloud and saturation filtering, and filtering to reduce one day surface state differences, demonstrate the importance of appropriate per-pixel data screening. Top of atmosphere (TOA) and atmospherically corrected surface reflectance for the spectrally corresponding visible, near infrared and shortwave infrared bands, and derived normalized difference vegetation index (NDVI), are compared and their differences quantified. On average the OLI TOA reflectance is greater than the ETM+ TOA reflectance for all bands, with greatest differences in the near-infrared (NIR) and the shortwave infrared bands due to the quite different spectral response functions between the sensors. The atmospheric correction reduces the mean difference in the NIR and shortwave infrared but increases the mean difference in the visible bands. Regardless of whether TOA or surface reflectance are used to generate NDVI, on average, for vegetated soil and vegetation surfaces (0 = NDVI = 1), the OLI NDVI is greater than the ETM+ NDVI. Statistical functions to transform between the comparable sensor bands and sensor NDVI values are presented so that the user community may apply them in their own research to improve temporal continuity between the Landsat-7 ETM+ and Landsat-8 OLI sensor data. The transformation functions were developed using ordinary least squares (OLS) regression and were fit quite reliably (r2 values is greater than 0.7 for the reflectance data and greater than 0.9 for the NDVI data, p-values less than 0.0001).

  5. NDVI indicated long-term interannual changes in vegetation activities and their responses to climatic and anthropogenic factors in the Three Gorges Reservoir Region, China.

    PubMed

    Wen, Zhaofei; Wu, Shengjun; Chen, Jilong; Lü, Mingquan

    2017-01-01

    Natural and social environmental changes in the China's Three Gorges Reservoir Region (TGRR) have received worldwide attention. Identifying interannual changes in vegetation activities in the TGRR is an important task for assessing the impact these changes have on the local ecosystem. We used long-term (1982-2011) satellite-derived Normalized Difference Vegetation Index (NDVI) datasets and climatic and anthropogenic factors to analyze the spatiotemporal patterns of vegetation activities in the TGRR, as well as their links to changes in temperature (TEM), precipitation (PRE), downward radiation (RAD), and anthropogenic activities. At the whole TGRR regional scale, a statistically significant overall uptrend in NDVI variations was observed in 1982-2011. More specifically, there were two distinct periods with different trends split by a breakpoint in 1991: NDVI first sharply increased prior to 1991, and then showed a relatively weak rate of increase after 1991. At the pixel scale, most parts of the TGRR experienced increasing NDVI before the 1990s but different trend change types after the 1990s: trends were positive in forests in the northeastern parts, but negative in farmland in southwest parts of the TGRR. The TEM warming trend was the main climate-related driver of uptrending NDVI variations pre-1990s, and decreasing PRE was the main climate factor (42%) influencing the mid-western farmland areas' NDVI variations post-1990s. We also found that anthropogenic factors such as population density, man-made ecological restoration, and urbanization have notable impacts on the TGRR's NDVI variations. For example, large overall trend slopes in NDVI were more likely to appear in TGRR regions with large fractions of ecological restoration within the last two decades. The findings of this study may help to build a better understanding of the mechanics of NDVI variations in the periods before and during TGDP construction for ongoing ecosystem monitoring and assessment in the post-TGDP period. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. [Correlation analysis on normalized difference vegetation index (NDVI) of different vegetations and climatic factors in Southwest China].

    PubMed

    Zhang, Yuan-Dong; Zhang, Xiao-He; Liu, Shi-Rong

    2011-02-01

    Based on the 1982-2006 NDVI remote sensing data and meteorological data of Southwest China, and by using GIS technology, this paper interpolated and extracted the mean annual temperature, annual precipitation, and drought index in the region, and analyzed the correlations of the annual variation of NDVI in different vegetation types (marsh, shrub, bush, grassland, meadow, coniferous forest, broad-leaved forest, alpine vegetation, and cultural vegetation) with corresponding climatic factors. In 1982-2006, the NDVI, mean annual temperature, and annual precipitation had an overall increasing trend, and the drought index decreased. Particularly, the upward trend of mean annual temperature was statistically significant. Among the nine vegetation types, the NDVI of bush and mash decreased, and the downward trend was significant for bush. The NDVI of the other seven vegetation types increased, and the upward trend was significant for coniferous forest, meadow, and alpine vegetation, and extremely significant for shrub. The mean annual temperature in the areas with all the nine vegetation types increased significantly, while the annual precipitation had no significant change. The drought index in the areas with marsh, bush, and cultural vegetation presented an increasing trend, that in the areas with meadow and alpine vegetation decreased significantly, and this index in the areas with other four vegetation types had an unobvious decreasing trend. The NDVI of shrub and coniferous forest had a significantly positive correlation with mean annual temperature, and that of shrub and meadow had significantly negative correlation with drought index. Under the conditions of the other two climatic factors unchanged, the NDVI of coniferous forest, broad-leaved forest, and alpine vegetation showed the strongest correlation with mean annual temperature, that of grass showed the strongest correlation with annual precipitation, and the NDVI of mash, shrub, grass, meadow, and cultural vegetation showed the strongest correlation with drought index. There existed definite correlations among the climatic factors. If the correlations among the climatic factors were ignored, the significant level of the correlations between NDVI and climatic factors would be somewhat reduced.

  7. Herbivore Impact on Tundra Plant Community Dynamics Using Long-term Remote Sensing Observation

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Engstrom, R.; Shiklomanov, N. I.

    2014-12-01

    Arctic tundra biome is now experiencing dramatic environmental changes accentuated by summer sea-ice decline, permafrost thaw, and shrub expansion. Multi-decadal time-series of the Normalized Difference Vegetation Index (NDVI, a spectral metric of vegetation productivity) shows an overall "greening" trend across the Arctic tundra biome. Regional trends in climate plausibly explain large-scale patterns of increasing plant productivity, as diminished summer sea-ice extent warms the adjacent land causing tundra vegetation to respond positively (increased photosynthetic aboveground biomass). However, at more local scales, there is a great deal of spatial variability in NDVI trends that likely reflects differences in hydrology and soil conditions, disturbance history, and use by wildlife and humans. Particularly, habitat use by large herbivores, such as reindeer and caribou, has large impacts on vegetation dynamics at local and regional scales, but the role of herbivores in modulating the response of vegetation to warming climate has received little attention. This study investigates regional tundra plant community dynamics within inhabits of different sizes of wild caribou/reindeer herds across the Arctic using GIMMS NDVI (Normalized Difference Vegetation Index) 3g data product. The Taimyr herd in Russia is one of the largest herds in the world with a population increase from 450,000 in 1975 to about 1 million animals in 2000. The population of the porcupine caribou herd has fluctuated in the past three decades between 100,000 and 180,000. Time-series of the maximum NDVI within the inhabit area of the Taimyr herd has increased about 2% per decade over the past three decades, while within the inhabit area of the Porcupine herd the maximum NDVI has increased about 5% per decade. Our results indicate that the impact of large herbivores can be detected from space and further analyses on seasonal dynamics of vegetation indices and herbivore behavior may provide more understanding of the plant-herbivore interactions within the context of a 'greening' Arctic.

  8. Application of Satellite Solar-Induced Chlorophyll Fluorescence to Understanding Large-Scale Variations in Vegetation Phenology and Function Over Northern High Latitude Forests

    NASA Technical Reports Server (NTRS)

    Jeong, Su-Jong; Schimel, David; Frankenberg, Christian; Drewry, Darren T.; Fisher, Joshua B.; Verma, Manish; Berry, Joseph A.; Lee, Jung-Eun; Joiner, Joanna

    2016-01-01

    This study evaluates the large-scale seasonal phenology and physiology of vegetation over northern high latitude forests (40 deg - 55 deg N) during spring and fall by using remote sensing of solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI) and observation-based estimate of gross primary productivity (GPP) from 2009 to 2011. Based on GPP phenology estimation in GPP, the growing season determined by SIF time-series is shorter in length than the growing season length determined solely using NDVI. This is mainly due to the extended period of high NDVI values, as compared to SIF, by about 46 days (+/-11 days), indicating a large-scale seasonal decoupling of physiological activity and changes in greenness in the fall. In addition to phenological timing, mean seasonal NDVI and SIF have different responses to temperature changes throughout the growing season. We observed that both NDVI and SIF linearly increased with temperature increases throughout the spring. However, in the fall, although NDVI linearly responded to temperature increases, SIF and GPP did not linearly increase with temperature increases, implying a seasonal hysteresis of SIF and GPP in response to temperature changes across boreal ecosystems throughout their growing season. Seasonal hysteresis of vegetation at large-scales is consistent with the known phenomena that light limits boreal forest ecosystem productivity in the fall. Our results suggest that continuing measurements from satellite remote sensing of both SIF and NDVI can help to understand the differences between, and information carried by, seasonal variations vegetation structure and greenness and physiology at large-scales across the critical boreal regions.

  9. Using the satellite-derived normalized difference vegetation index (NDVI) to explain ranging patterns in a lek-breeding antelope: the importance of scale.

    PubMed

    Bro-Jørgensen, Jakob; Brown, Molly E; Pettorelli, Nathalie

    2008-11-01

    Lek-breeding species are characterized by a negative association between territorial resource availability and male mating success; however, the impact of resources on the overall distribution patterns of the two sexes in lek systems is not clear. The normalized difference vegetation index (NDVI) has recently emerged as a powerful proxy measure for primary productivity, allowing the links between the distributions of animals and resources to be explored. Using NDVI at four spatial resolutions, we here investigate how the distribution of the two sexes in a lek-breeding population of topi antelopes relates to resource abundance before and during the rut. We found that in the dry season preceding the rut, topi density correlated positively with NDVI at the large, but not the fine, scale. This suggests that before the rut, when resources were relatively scant, topi preferred pastures where green grass was widely abundant. The pattern was less pronounced in males, suggesting that the need for territorial attendance prevents males from tracking resources as freely as females do. During the rut, which occurs in the wet season, both male and female densities correlated negatively with NDVI at the fine scale. At this time, resources were generally plentiful and the results suggest that, rather than by resource maximization, distribution during the rut was determined by benefits of aggregating on relatively resource-poor leks for mating, and possibly antipredator, purposes. At the large scale, no correlation between density and NDVI was found during the rut in either sex, which can be explained by leks covering areas too small to be reflected at this resolution. The study illustrates that when investigating spatial organization, it is important: (1) to choose the appropriate analytic scale, and (2) to consider behavioural as well as strictly ecological factors.

  10. Evaluating the Usefulness of High-Temporal Resolution Vegetation Indices to Identify Crop Types

    NASA Astrophysics Data System (ADS)

    Hilbert, K.; Lewis, D.; O'Hara, C. G.

    2006-12-01

    The National Aeronautical and Space Agency (NASA) and the United States Department of Agriculture (USDA) jointly sponsored research covering the 2004 to 2006 South American crop seasons that focused on developing methods for the USDA's Foreign Agricultural Service's (FAS) Production Estimates and Crop Assessment Division (PECAD) to identify crop types using MODIS-derived, hyper-temporal Normalized Difference Vegetation Index (NDVI) images. NDVI images were composited in 8 day intervals from daily NDVI images and aggregated to create a hyper-termporal NDVI layerstack. This NDVI layerstack was used as input to image classification algorithms. Research results indicated that creating high-temporal resolution Normalized Difference Vegetation Index (NDVI) composites from NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) data products provides useful input to crop type classifications as well as potential useful input for regional crop productivity modeling efforts. A current NASA-sponsored Rapid Prototyping Capability (RPC) experiment will assess the utility of simulated future Visible Infrared Imager / Radiometer Suite (VIIRS) imagery for conducting NDVI-derived land cover and specific crop type classifications. In the experiment, methods will be considered to refine current MODIS data streams, reduce the noise content of the MODIS, and utilize the MODIS data as an input to the VIIRS simulation process. The effort also is being conducted in concert with an ISS project that will further evaluate, verify and validate the usefulness of specific data products to provide remote sensing-derived input for the Sinclair Model a semi-mechanistic model for estimating crop yield. The study area encompasses a large portion of the Pampas region of Argentina--a major world producer of crops such as corn, soybeans, and wheat which makes it a competitor to the US. ITD partnered with researchers at the Center for Surveying Agricultural and Natural Resources (CREAN) of the National University of Cordoba, Argentina, and CREAN personnel collected and continue to collect field-level, GIS-based in situ information. Current efforts involve both developing and optimizing software tools for the necessary data processing. The software includes the Time Series Product Tool (TSPT), Leica's ERDAS Imagine, and Mississippi State University's Temporal Map Algebra computational tools.

  11. Assessment of Climate Impact Changes on Forest Vegetation Dynamics by Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    Climate variability represents the ensemble of net radiation, precipitation, wind and temper-ature characteristic for a region in a certain time scale (e.g.monthly, seasonal annual). The temporal and/or spatial sensitivity of forest vegetation dynamics to climate variability is used to characterize the quantitative relationship between these two quantities in temporal and/or spatial scales. So, climate variability has a great impact on the forest vegetation dynamics. Forest vegetation phenology constitutes an efficient bio-indicator of climate and anthropogenic changes impacts and a key parameter for understanding and modelling vegetation-climate in-teractions. Satellite remote sensing is a very useful tool to assess the main phenological events based on tracking significant changes on temporal trajectories of Normalized Difference Vege-tation Index (NDVIs), which requires NDVI time-series with good time resolution, over homo-geneous area, cloud-free and not affected by atmospheric and geometric effects and variations in sensor characteristics (calibration, spectral responses). Spatio-temporal vegetation dynamics have been quantified as the total amount of vegetation (mean NDVI) and the seasonal difference (annual NDVI amplitude) by a time series analysis of NDVI satellite images with the Harmonic ANalysis of Time Series algorithm. A climate indicator (CI) was created from meteorological data (precipitation over net radiation). The relationships between the vegetation dynamics and the CI have been determined spatially and temporally. The driest test regions prove to be the most sensitive to climate impact. The spatial and temporal patterns of the mean NDVI are the same, while they are partially different for the seasonal difference. The aim of this paper was to quantify this impact over a forest ecosystem placed in the North-Eastern part of Bucharest town, Romania, with Normalized Difference Vegetation Index (NDVI) parameter extracted from IKONOS and LANDSAT TM and ETM satellite images and meteorological data over l995-2007 period. For investigated test area, considerable NDVI decline was observed between 1995 and 2008 due to the drought events during 2003 and 2007 years. Under stress conditions, it is evident that environmental factors such as soil type, parent material, and to-pography are not correlated with NDVI dynamics. Specific aim of this paper was to assess, forecast, and mitigate the risks of climatic changes on forest systems and its biodiversity as well as on adjacent environment areas and to provide early warning strategies on the basis of spectral information derived from satellite data regarding atmospheric effects of forest biome degradation . The paper aims to describe observed trends and potential impacts based on scenarios from simulations with regional climate models and other downscaling procedures.

  12. Development of a spatio-temporal disaggregation method (DisNDVI) for generating a time series of fine resolution NDVI images

    NASA Astrophysics Data System (ADS)

    Bindhu, V. M.; Narasimhan, B.

    2015-03-01

    Normalized Difference Vegetation Index (NDVI), a key parameter in understanding the vegetation dynamics, has high spatial and temporal variability. However, continuous monitoring of NDVI is not feasible at fine spatial resolution (<60 m) owing to the long revisit time needed by the satellites to acquire the fine spatial resolution data. Further, the study attains significance in the case of humid tropical regions of the earth, where the prevailing atmospheric conditions restrict availability of fine resolution cloud free images at a high temporal frequency. As an alternative to the lack of high resolution images, the current study demonstrates a novel disaggregation method (DisNDVI) which integrates the spatial information from a single fine resolution image and temporal information in terms of crop phenology from time series of coarse resolution images to generate estimates of NDVI at fine spatial and temporal resolution. The phenological variation of the pixels captured at the coarser scale provides the basis for relating the temporal variability of the pixel with the NDVI available at fine resolution. The proposed methodology was tested over a 30 km × 25 km spatially heterogeneous study area located in the south of Tamil Nadu, India. The robustness of the algorithm was assessed by an independent comparison of the disaggregated NDVI and observed NDVI obtained from concurrent Landsat ETM+ imagery. The results showed good spatial agreement across the study area dominated with agriculture and forest pixels, with a root mean square error of 0.05. The validation done at the coarser scale showed that disaggregated NDVI spatially averaged to 240 m compared well with concurrent MODIS NDVI at 240 m (R2 > 0.8). The validation results demonstrate the effectiveness of DisNDVI in improving the spatial and temporal resolution of NDVI images for utility in fine scale hydrological applications such as crop growth monitoring and estimation of evapotranspiration.

  13. Stability of Spatial Distributions of Stink Bugs, Boll Injury, and NDVI in Cotton.

    PubMed

    Reay-Jones, Francis P F; Greene, Jeremy K; Bauer, Philip J

    2016-10-01

    A 3-yr study was conducted to determine the degree of aggregation of stink bugs and boll injury in cotton, Gossypium hirsutum L., and their spatial association with a multispectral vegetation index (normalized difference vegetation index [NDVI]). Using the spatial analysis by distance indices analyses, stink bugs were less frequently aggregated (17% for adults and 4% for nymphs) than boll injury (36%). NDVI values were also significantly aggregated within fields in 19 of 48 analyses (40%), with the majority of significant indices occurring in July and August. Paired NDVI datasets from different sampling dates were frequently associated (86.5% for weekly intervals among datasets). Spatial distributions of both stink bugs and boll injury were less stable than for NDVI, with positive associations varying from 12.5 to 25% for adult stink bugs for weekly intervals, depending on species. Spatial distributions of boll injury from stink bug feeding were more stable than stink bugs, with 46% positive associations among paired datasets with weekly intervals. NDVI values were positively associated with boll injury from stink bug feeding in 11 out of 22 analyses, with no significant negative associations. This indicates that NDVI has potential as a component of site-specific management. Future work should continue to examine the value of remote sensing for insect management in cotton, with an aim to develop tools such as risk assessment maps that will help growers to reduce insecticide inputs. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Vegetation spatial variability and its effect on vegetation indices

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.; Choudhury, B. J.; Owe, M.

    1987-01-01

    Landsat MSS data were used to simulate low resolution satellite data, such as NOAA AVHRR, to quantify the fractional vegetation cover within a pixel and relate the fractional cover to the normalized difference vegetation index (NDVI) and the simple ratio (SR). The MSS data were converted to radiances from which the NDVI and SR values for the simulated pixels were determined. Each simulated pixel was divided into clusters using an unsupervised classification program. Spatial and spectral analysis provided a means of combining clusters representing similar surface characteristics into vegetated and non-vegetated areas. Analysis showed an average error of 12.7 per cent in determining these areas. NDVI values less than 0.3 represented fractional vegetated areas of 5 per cent or less, while a value of 0.7 or higher represented fractional vegetated areas greater than 80 per cent. Regression analysis showed a strong linear relation between fractional vegetation area and the NDVI and SR values; correlation values were 0.89 and 0.95 respectively. The range of NDVI values calculated from the MSS data agrees well with field studies.

  15. Characterizing Climate Controls on Vegetation Seasonality in the North American Southwest

    NASA Astrophysics Data System (ADS)

    Fish, M. A.; Cook, B.; Smerdon, J. E.; Seager, R.; Williams, P.

    2014-12-01

    The North American Southwest, which extends from Colorado to southern Mexico and California to eastern Texas, encompasses a diversity of climates, elevations, and ecosystems. This region is expected to experience significant climatic change, and associated impacts, in the coming decades. To better understand the spatiotemporal variability of vegetation in the Southwest and the expected climatic controls on timing and spatial extend of vegetation growth, we compared GIMMS normalized difference vegetation index (NDVI, 1981-2011) against temperature and precipitation data. Spatial variations in vegetation seasonality and the timing of peak NDVI are linked to spatial variability in the precipitation regimes across the Southwest. Regions with spring NDVI peaks are dominated by winter precipitation, while late summer and fall peaks are in regions with significant summer precipitation driven by the North American Monsoon. Inter-annual variability in peak NDVI is positively correlated with precipitation and negatively correlated with temperature, with the largest correlation coefficients at one-month lags. The only significant long-term trends in NDVI are for northern Mexico, where agricultural productivity has been increasing over the last 30 years.

  16. Using NDVI to measure precipitation in semi-arid landscapes

    USGS Publications Warehouse

    Birtwhistle, Amy N.; Laituri, Melinda; Bledsoe, Brian; Friedman, Jonathan M.

    2016-01-01

    Measuring precipitation in semi-arid landscapes is important for understanding the processes related to rainfall and run-off; however, measuring precipitation accurately can often be challenging especially within remote regions where precipitation instruments are scarce. Typically, rain-gauges are sparsely distributed and research comparing rain-gauge and RADAR precipitation estimates reveal that RADAR data are often misleading, especially for monsoon season convective storms. This study investigates an alternative way to map the spatial and temporal variation of precipitation inputs along ephemeral stream channels using Normalized Difference Vegetation Index (NDVI) derived from Landsat Thematic Mapper imagery. NDVI values from 26 years of pre- and post-monsoon season Landsat imagery were derived across Yuma Proving Ground (YPG), a region covering 3,367 km2 of semiarid landscapes in southwestern Arizona, USA. The change in NDVI from a pre-to post-monsoon season image along ephemeral stream channels explained 73% of the variance in annual monsoonal precipitation totals from a nearby rain-gauge. In addition, large seasonal changes in NDVI along channels were useful in determining when and where flow events have occurred.

  17. Impact of changes in GRACE derived terrestrial water storage on vegetation growth in Eurasia

    NASA Astrophysics Data System (ADS)

    A, G.; Velicogna, I.; Kimball, J. S.; Kim, Y.

    2015-12-01

    We use GRACE-derived terrestrial water storage (TWS) and ERA-interim air temperature, as proxy for available water and temperature constraints on vegetation productivity, inferred from MODIS satellite normalized difference vegetation index (NDVI), in Northern Eurasia during 2002-2011. We investigate how changes in TWS affect the correlation between NDVI and temperature during the non-frozen season. We find that vegetation growth exhibits significant spatial and temporal variability associated with varying trend in TWS and temperature. The largest NDVI gains occur over boreal forests associated with warming and wetting. The largest NDVI losses occur over grasslands in the Southwestern Ob associated with regional drying and cooling, with dominant constraint from TWS. Over grasslands and temperate forests in the Southeast Ob and South Yenisei, wetting and cooling lead to a dominant temperature constraint due to the relaxation of TWS constraints. Overall, we find significant monthly correlation of NDVI with TWS and temperature over 35% and 50% of the domain, respectively. These results indicate that water availability (TWS) plays a major role in modulating Eurasia vegetation response to temperature changes.

  18. Phenological Impacts of Hurricane Katrina (2005) and Gustav (2008) on Louisiana Coastal Marshes

    NASA Astrophysics Data System (ADS)

    Mo, Y.; Kearney, M.; Riter, A.

    2015-12-01

    Coastal marshes provide indispensable ecological functions, such as offering habitat for economic fish and wildlife, improving water quality, protecting inland areas from floods, and stabilizing the shoreline. Hurricanes—though helping to maintain the elevation of coastal wetlands by depositing large amounts of sediments—pose one of the largest threats for coastal marshes in terms of eroding shorelines, scouring marsh surfaces, and resuspending sediments. Coastal marshes phenologies can be important for understanding broad response of marshes to stressors, like hurricanes. We investigated the phenological impacts of Katrina and Gustav (Category 3 and 2 hurricanes at landfall in southeast Louisiana on 29 August, 2005, and 1 September, 2008, respectively) on freshwater, intermediate, brackish, and saline marshes in southeastern Louisiana. Landsat-derived Normalized Difference Vegetation Index data were processed using ENVI 4.8. Phenological patterns of the marshes were modeled using a nonlinear mixed model using SAS 9.4. We created and compared marsh phenologies of 1994 and 2014, the reference years, to those of 2005 and 2008, the hurricane years. Preliminary results show that in normal years: (1) the NDVI of four marsh types peaked in July; (2) freshwater marshes had the highest peak NDVI, followed by intermediate, brackish, and saline marshes; and (3) the growth durations of the marshes are around three to six months. In 2005, the major phenological change was shortening of growth duration, which was most obvious for intermediate and brackish marshes. The peak NDVI values of the four marsh types were not affected because the hurricane occurred at the end of August, one month after the peak NDVI time. By comparison, there was no obvious phenological impact on the marshes by Gustav (2008) with respect to peak NDVI, peak NDVI day, and growth duration.

  19. Optimal placement of off-stream water sources for ephemeral stream recovery

    USGS Publications Warehouse

    Rigge, Matthew B.; Smart, Alexander; Wylie, Bruce

    2013-01-01

    Uneven and/or inefficient livestock distribution is often a product of an inadequate number and distribution of watering points. Placement of off-stream water practices (OSWP) in pastures is a key consideration in rangeland management plans and is critical to achieving riparian recovery by improving grazing evenness, while improving livestock performance. Effective OSWP placement also minimizes the impacts of livestock use radiating from OSWP, known as the “piosphere.” The objective of this study was to provide land managers with recommendations for the optimum placement of OSWP. Specifically, we aimed to provide minimum offset distances of OSWP to streams and assess the effective range of OSWP using Normalized Difference Vegetation Index (NDVI) values, an indicator of live standing crop. NDVI values were determined from a time-series of Satellite Pour l'Observation de la Terre (SPOT) 20-m images of western South Dakota mixed-grass prairie. The NDVI values in ephemeral stream channels (in-channel) and uplands were extracted from pre- and post-OSWP images taken in 1989 and 2010, respectively. NDVI values were normalized to a reference imagine and subsequently by ecological site to produce nNDVI. Our results demonstrate a significant (P 2 = 0.49, P = 0.05) and increased with average distance to OSWP in a pasture (R2 = 0.43, P = 0.07). Piospheric reduction in nNDVI was observed within 200 m of OSWP, occasionally overlapping in-channel areas. The findings of this study suggest placement of OSWP 200 to 1 250 m from streams to achieve optimal results. These results can be used to increase grazing efficiency by effectively placing OSWP and insure that piospheres do not overlap ecologically important in-channel areas.

  20. Spatio-Temporal Dynamics of Vegetation and Their Relationships with Climate in Southeast Asia Based on Three Satellite NDVI Products

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zeng, Z.; Piao, S.

    2014-12-01

    Tropical vegetation plays an essential role for global biogeochemical cycles. An abundant literature focused on the vegetation dynamics in Amazon. It is shown that the Amazonian rainforest is strongly controlled by radiation, even during dry season. However, only few researches deal with tropical rainforest in Southeast Asia; the vegetation dynamics in Southeast Asia remain poorly understood. In this study, we investigated the spatio-temporal dynamics of vegetation in Southeast Asia with three independent satellite derived Normalized Difference Vegetation Index (NDVI) products (GIMMS AVHRR NDVI3g, SPOT, and MODIS) as well as the recently developed Sun Induced chlorophyll Fluorescence (SIF). We furthermore examined how climate drivers (precipitation, temperature and radiation) exert influences on the vegetation dynamics. We find that the three NDVI datasets are generally consistent with each other. At seasonal scale, NDVI decreases from the beginning to the end of the dry season; at interannual scale, dry season NDVI is positively correlated to precipitation but negatively correlated to radiation, while wet season NDVI is positively correlated to radiation. Compared to evergreen forests, deciduous forests have a larger NDVI decrease rate and more extended area with positive relationships between NDVI and precipitation during the dry season. SIF is lower during dry season than during wet season. Our results indicate that most forests in Southeast Asia, unlike in the Amazonian basin, are water-limited in the dry season but radiation-limited in the wet season. These results imply that droughts may have a stronger impact on forests in Southeast Asia than in Amazon.

  1. Phenologically-tuned MODIS NDVI-based production anomaly estimates for Zimbabwe

    USGS Publications Warehouse

    Funk, Chris; Budde, Michael E.

    2009-01-01

    For thirty years, simple crop water balance models have been used by the early warning community to monitor agricultural drought. These models estimate and accumulate actual crop evapotranspiration, evaluating environmental conditions based on crop water requirements. Unlike seasonal rainfall totals, these models take into account the phenology of the crop, emphasizing conditions during the peak grain filling phase of crop growth. In this paper we describe an analogous metric of crop performance based on time series of Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) imagery. A special temporal filter is used to screen for cloud contamination. Regional NDVI time series are then composited for cultivated areas, and adjusted temporally according to the timing of the rainy season. This adjustment standardizes the NDVI response vis-??-vis the expected phenological response of maize. A national time series index is then created by taking the cropped-area weighted average of the regional series. This national time series provides an effective summary of vegetation response in agricultural areas, and allows for the identification of NDVI green-up during grain filling. Onset-adjusted NDVI values following the grain filling period are well correlated with U.S. Department of Agriculture production figures, possess desirable linear characteristics, and perform better than more common indices such as maximum seasonal NDVI or seasonally averaged NDVI. Thus, just as appropriately calibrated crop water balance models can provide more information than seasonal rainfall totals, the appropriate agro-phenological filtering of NDVI can improve the utility and accuracy of space-based agricultural monitoring.

  2. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    NASA Technical Reports Server (NTRS)

    Potter, C. S.

    1997-01-01

    This study describes the use of satellite data to calibrate a new climate-vegetation greenness function for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes of the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980s in order to refine our empirical understanding of intraannual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global l(sup o) gridded data sets suggest that three climate indexes: growing degree days, annual precipitation total, and an annual moisture index together can account to 70-80 percent of the variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same climate index values from the previous year explained no significant additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes was closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from l(sup o) grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes were not accurately predicted are mainly high latitude ecosystems and other remote locations where climate station data are sparse.

  3. Vegetation Response to Climate Change in the Southern Part of Qinghai-Tibet Plateau at Basinal Scale

    NASA Astrophysics Data System (ADS)

    Liu, X.; Liu, C.; Kang, Q.; Yin, B.

    2018-04-01

    Global climate change has significantly affected vegetation variation in the third-polar region of the world - the Qinghai-Tibet Plateau. As one of the most important indicators of vegetation variation (growth, coverage and tempo-spatial change), the Normalized Difference Vegetation Index (NDVI) is widely employed to study the response of vegetation to climate change. However, a long-term series analysis cannot be achieved because a single data source is constrained by time sequence. Therefore, a new framework was presented in this paper to extend the product series of monthly NDVI, taking as an example the Yarlung Zangbo River Basin, one of the most important river basins in the Qinghai-Tibet Plateau. NDVI products were acquired from two public sources: Global Inventory Modeling and Mapping Studies (GIMMS) Advanced Very High Resolution Radiometer (AVHRR) and Moderate-Resolution Imaging spectroradiometer (MODIS). After having been extended using the new framework, the new time series of NDVI covers a 384 months period (1982-2013), 84 months longer than previous time series of NDVI product, greatly facilitating NDVI related scientific research. In the new framework, the Gauss Filtering Method was employed to filter out noise in the NDVI product. Next, the standard method was introduced to enhance the comparability of the two data sources, and a pixel-based regression method was used to construct NDVI-extending models with one pixel after another. The extended series of NDVI fit well with original AVHRR-NDVI. With the extended time-series, temporal trends and spatial heterogeneity of NDVI in the study area were studied. Principal influencing factors on NDVI were further determined. The monthly NDVI is highly correlated with air temperature and precipitation in terms of climatic change wherein the spatially averaged NDVI slightly increases in the summer and has increased in temperature and decreased in precipitation in the 32 years period. The spatial heterogeneity of NDVI is in accordance with the seasonal variation of the two climate-change factors. All of these findings can provide valuable scientific support for water-land resources exploration in the third-polar region of the world.

  4. Aggregation and Association of NDVI, Boll Injury, and Stink Bugs in North Carolina Cotton.

    PubMed

    Reisig, Dominic D; Reay-Jones, F P F; Meijer, A D

    2015-01-01

    Sampling of herbivorous stink bugs in southeastern U.S. cotton remains problematic. Remote sensing was explored to improve sampling of these pests and associated boll injury. Two adjacent 14.5-ha cotton fields were grid sampled in 2011 and 2012 by collecting stink bug adults and bolls every week during the third, fourth, and fifth weeks of bloom. Satellite remote sensing data were collected during the third week of bloom during both years, and normalized difference vegetation index (NDVI) values were calculated. Stink bugs were spatially aggregated on the third week of bloom in 2011. Boll injury from stink bugs was spatially aggregated during the fourth week of bloom in 2012. The NDVI values were aggregated during both years. There was a positive association and correlation between stink bug numbers and NDVI values, as well as injured bolls and NDVI values, during the third week of bloom in 2011. During the third week of bloom in 2012, NDVI values were negatively correlated with stink bug numbers. During the fourth week of bloom in 2011, stink bug numbers and boll injury were both positively associated and correlated with NDVI values. During the fourth week of bloom in 2012, stink bugs were negatively correlated with NDVI values, and boll injury was negatively associated and correlated with NDVI values. This study suggests the potential of remote sensing as a tool to assist with sampling stink bugs in cotton, although more research is needed using NDVI and other plant measurements to predict stink bug injury. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  5. Environmental services generated by organic agriculture: A view from the air

    NASA Astrophysics Data System (ADS)

    Bigeriego, Elena; Cabezas, José; Labrador, Juana; María Moreno, Marta

    2017-04-01

    This work aims to develop an alternative methodology that enables monitoring the environmental differential that agroecological management involves in order to consolidate feasible payments for environmental services generated by organic agriculture. For this purpose, LANDSAT images have been used, and the Normalized Difference Vegetation Index (NDVI) of organic fruit farms, all of them with the same species and the similar edaphic and climatic characteristics, has been compared with the NDVI obtained at other nearby fruit farms under conventional management, all of them in Extremadura (Spain). As a result, we obtained a series of statistical data that allows us to clearly differentiate between these two types of management. Among these data, remarkable differences have been detected regarding the minimum values of NDVI in the non-productive periods of the fruit, which is higher in the organic farms due to the permanent vegetation soil cover, with the subsequent effects on soil protection and carbon sequestration. The conclusions of the paper show that it is possible to distinguish different models of crop management by using satellite images obtained in a quick and inexpensive way. Keywords: LANDSAT images; NDVI; environmental services; agroecology; organic agriculture.

  6. Vegetation classification and soil moisture calculation using land surface temperature (LST) and vegetation index (VI)

    NASA Astrophysics Data System (ADS)

    Liu, Liangyun; Zhang, Bing; Xu, Genxing; Zheng, Lanfen; Tong, Qingxi

    2002-03-01

    In this paper, the temperature-missivity separating (TES) method and normalized difference vegetation index (NDVI) are introduced, and the hyperspectral image data are analyzed using land surface temperature (LST) and NDVI channels which are acquired by Operative Module Imaging Spectral (OMIS) in Beijing Precision Agriculture Demonstration Base in Xiaotangshan town, Beijing in 26 Apr, 2001. Firstly, the 6 kinds of ground targets, which are winter wheat in booting stage and jointing stage, bare soil, water in ponds, sullage in dry ponds, aquatic grass, are well classified using LST and NDVI channels. Secondly, the triangle-like scatter-plot is built and analyzed using LST and NDVI channels, which is convenient to extract the information of vegetation growth and soil's moisture. Compared with the scatter-plot built by red and near-infrared bands, the spectral distance between different classes are larger, and the samples in the same class are more convergent. Finally, we design a logarithm VIT model to extract the surface soil water content (SWC) using LST and NDVI channel, which works well, and the coefficient of determination, R2, between the measured surface SWC and the estimated is 0.634. The mapping of surface SWC in the wheat area are calculated and illustrated, which is important for scientific irrigation and precise agriculture.

  7. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2003-01-01

    The Normalized Difference Vegetation Index (NDVI) derived from the Advanced Very High Resolution Radiometer (AVHRR) has been widely used to monitor moisture-related vegetation condition. The relationship between vegetation vigor and moisture availability, however, is complex and has not been adequately studied with satellite sensor data. To better understand this relationship, an analysis was conducted on time series of monthly NDVI (1989–2000) during the growing season in the north and central U.S. Great Plains. The NDVI was correlated to the Standardized Precipitation Index (SPI), a multiple-time scale meteorological-drought index based on precipitation. The 3-month SPI was found to have the best correlation with the NDVI, indicating lag and cumulative effects of precipitation on vegetation, but the correlation between NDVI and SPI varies significantly between months. The highest correlations occurred during the middle of the growing season, and lower correlations were noted at the beginning and end of the growing season in most of the area. A regression model with seasonal dummy variables reveals that the relationship between the NDVI and SPI is significant in both grasslands and croplands, if this seasonal effect is taken into account. Spatially, the best NDVI–SPI relationship occurred in areas with low soil water-holding capacity. Our most important finding is that NDVI is an effective indicator of vegetation-moisture condition, but seasonal timing should be taken into consideration when monitoring drought with the NDVI.

  8. MODIS normalized difference vegetation index (NDVI) and vegetation phenology dynamics in the Inner Mongolia grassland

    NASA Astrophysics Data System (ADS)

    Gong, Z.; Kawamura, K.; Ishikawa, N.; Goto, M.; Wulan, T.; Alateng, D.; Yin, T.; Ito, Y.

    2015-11-01

    The Inner Mongolia grassland, one of the most important grazing regions in China, has long been threatened by land degradation and desertification, mainly due to overgrazing. To understand vegetation responses over the last decade, this study evaluated trends in vegetation cover and phenology dynamics in the Inner Mongolia grassland by applying a normalized difference vegetation index (NDVI) time series obtained by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002-2014. The results showed that the cumulative annual NDVI increased to over 77.10 % in the permanent grassland region (2002-2014). The mean value of the total change showed that the start of season (SOS) date and the peak vegetation productivity date of the season (POS) had advanced by 5.79 and 2.43 days, respectively. The end of season (EOS) was delayed by 5.07 days. These changes lengthened the season by 10.86 days. Our results also confirmed that grassland changes are closely related to spring precipitation and increasing temperature at the early growing period because of global warming. Overall, productivity in the Inner Mongolia Autonomous Region tends to increase, but in some grassland areas with grazing, land degradation is ongoing.

  9. Evaluation of the relation between evapotranspiration and normalized difference vegetation index for downscaling the simplified surface energy balance model

    USGS Publications Warehouse

    Haynes, Jonathan V.; Senay, Gabriel B.

    2012-01-01

    The Simplified Surface Energy Balance (SSEB) model uses satellite imagery to estimate actual evapotranspiration (ETa) at 1-kilometer resolution. SSEB ETa is useful for estimating irrigation water use; however, resolution limitations restrict its use to regional scale applications. The U.S. Geological Survey investigated the downscaling potential of SSEB ETa from 1 kilometer to 250 meters by correlating ETa with the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer instrument (MODIS). Correlations were studied in three arid to semiarid irrigated landscapes of the Western United States (Escalante Valley near Enterprise, Utah; Palo Verde Valley near Blythe, California; and part of the Columbia Plateau near Quincy, Washington) during several periods from 2002 to 2008. Irrigation season ETa-NDVI correlations were lower than expected, ranging from R2 of 0.20 to 0.61 because of an eastward 2–3 kilometer shift in ETadata. The shift is due to a similar shift identified in the land-surface temperature (LST) data from the MODIS Terra satellite, which is used in the SSEB model. Further study is needed to delineate the Terra LST shift, its effect on SSEB ETa, and the relation between ETa and NDVI.

  10. Assessment of the capability of remote sensing and GIS techniques for monitoring reclamation success in coal mine degraded lands.

    PubMed

    Karan, Shivesh Kishore; Samadder, Sukha Ranjan; Maiti, Subodh Kumar

    2016-11-01

    The objective of the present study is to monitor reclamation activity in mining areas. Monitoring of these reclaimed sites in the vicinity of mining areas and on closed Over Burden (OB) dumps is critical for improving the overall environmental condition, especially in developing countries where area around the mines are densely populated. The present study evaluated the reclamation success in the Block II area of Jharia coal field, India, using Landsat satellite images for the years 2000 and 2015. Four image processing methods (support vector machine, ratio vegetation index, enhanced vegetation index, and normalized difference vegetation index) were used to quantify the change in vegetation cover between the years 2000 and 2015. The study also evaluated the relationship between vegetation health and moisture content of the study area using remote sensing techniques. Statistical linear regression analysis revealed that Normalized Difference Vegetation Index (NDVI) coupled with Normalized Difference Moisture Index (NDMI) is the best method for vegetation monitoring in the study area when compared to other indices. A strong linear relationship (r(2) > 0.86) was found between NDVI and NDMI. An increase of 21% from 213.88 ha in 2000 to 258.9 ha in 2015 was observed in the vegetation cover of the reclaimed sites for an open cast mine, indicating satisfactory reclamation activity. NDVI results indicated that vegetation health also improved over the years. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Monitoring and identification of spatiotemporal landscape changes in multiple remote sensing images by using a stratified conditional Latin hypercube sampling approach and geostatistical simulation.

    PubMed

    Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh

    2011-06-01

    This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.

  12. Predicting evapotranspiration from sparse and dense vegetation communities in a semiarid environment using NDVI from satellite and ground measurements

    NASA Astrophysics Data System (ADS)

    Baghzouz, Malika

    One of the most critical issues associated with using satellite data-based products to study and estimate surface energy fluxes and other ecosystem processes, has been the lack of frequent acquisition at a spatial scale equivalent to or finer than the footprint of field measurements. In this study, we incorporated continuous field measurements based on using Normalized difference vegetation index (NDVI) time series analysis of individual shrub species and transect measurements within 625 m2 size plots equivalent to the Landsat-5 Thematic Mapper spatial resolution. The NDVI system was a dual channel SKR-1800 radiometer that simultaneously measured incident solar radiation and upward reflectance in two broadband red and near-infrared channels comparable to Landsat-5 TM band 3 and band 4, respectively. The two study sites identified as Spring Valley 1 site (SV1) and Snake Valley 1 site (SNK1) were chosen for having different species composition, soil texture and percent canopy cover. NDVI time-series of greasewood (Sarcobatus vermiculatus) from the SV1 site allowed for clear distinction between the main phenological stages of the entire growing season during the period from January to November, 2007. Comparison of greasewood NDVI values between the two sites revealed a significant temporal difference associated with early canopy development and early dry down of greasewood at the SNK1 site. NDVI time series values were also significantly different between sagebrush (Artemisia tridentata ) and rabbitbrush (Chrysothamnus viscidiflorus) at SV1 as well as between the two bare soil types at the two sites, indicating the ability of the ground-based NDVI to distinguish between different plant species as well as between different desert soils based on their moisture level and color. The difference in phenological characteristics of greasewood between the two sites and between sagebrush, rabbitbrush and greasewood within the same site were not captured by the spatially integrated Landsat NDVI acquired during repeated overpasses. Greasewood NDVI from the SNK1 site produced significant correlations with many of the measured plant parameters, most closely with chlorophyll index (r = 0.97), leaf area index (r = 0.98) and leaf xylem water potential (r = 0.93). Whereas greasewood NDVI from the SV1 site produced lower correlations ( r = 0.89, r = 0.73), or non significant correlations (r = 0.32) with the same parameters, respectively. Total percent cover was estimated at 17.5% for SV1 and at 63% for SNK1. Transect measurements provided detailed information with regard to the spectral properties of shrub species and soil types, differentiating the two sites, which was not possible to discern with the spatial resolution of Landsat. Correlation between transect NDVI data and Landsat NDVI produced an r of 0.79. While correlation between transect NDVI data and ground-based NDVI sensors produced an r of 0.73. The linear regression equation between daily ET measured by the eddy covariance method and Landsat NDVI yielded a strong relationship (r = 0.88) for data combined across the experimental period (May to September) and across the two sites. The ET prediction equation was improved (r2 = 0.86) by introducing net solar radiation (Rn) which was the meteorological variable that had the highest prediction of ET (r2 = 0.82). A high correlation was found between weighted ground-based sensor NDVI estimates and Landsat derived NDVI at the pixel scale (r = 0.97) for the two study sites combined over time. While results from this study in scaling ground-based NDVI measurements and estimating ET were very promising, further verification and improvement is needed to determine the performance level of this approach over larger heterogeneous areas and over extended time periods.

  13. No Consistent Evidence for Advancing or Delaying Trends in Spring Phenology on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Xufeng; Xiao, Jingfeng; Li, Xin; Cheng, Guodong; Ma, Mingguo; Che, Tao; Dai, Liyun; Wang, Shaoying; Wu, Jinkui

    2017-12-01

    Vegetation phenology is a sensitive indicator of climate change and has significant effects on the exchange of carbon, water, and energy between the terrestrial biosphere and the atmosphere. The Tibetan Plateau, the Earth's "third pole," is a unique region for studying the long-term trends in vegetation phenology in response to climate change because of the sensitivity of its alpine ecosystems to climate and its low-level human disturbance. There has been a debate whether the trends in spring phenology over the Tibetan Plateau have been continuously advancing over the last two to three decades. In this study, we examine the trends in the start of growing season (SOS) for alpine meadow and steppe using the Global Inventory Modeling and Mapping Studies (GIMMS)3g normalized difference vegetation index (NDVI) data set (1982-2014), the GIMMS NDVI data set (1982-2006), the Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data set (2001-2014), the Satellite Pour l'Observation de la Terre Vegetation (SPOT-VEG) NDVI data set (1999-2013), and the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) NDVI data set (1998-2007). Both logistic and polynomial fitting methods are used to retrieve the SOS dates from the NDVI data sets. Our results show that the trends in spring phenology over the Tibetan Plateau depend on both the NDVI data set used and the method for retrieving the SOS date. There are large discrepancies in the SOS trends among the different NDVI data sets and between the two different retrieval methods. There is no consistent evidence that spring phenology ("green-up" dates) has been advancing or delaying over the Tibetan Plateau during the last two to three decades. Ground-based budburst data also indicate no consistent trends in spring phenology. The responses of SOS to environmental factors (air temperature, precipitation, soil temperature, and snow depth) also vary among NDVI data sets and phenology retrieval methods. The increases in winter and spring temperature had offsetting effects on spring phenology.

  14. Climatic controls of vegetation vigor in four contrasting forest types of India--evaluation from National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer datasets (1990-2000).

    PubMed

    Prasad, V Krishna; Anuradha, E; Badarinath, K V S

    2005-09-01

    Ten-day advanced very high resolution radiometer images from 1990 to 2000 were used to examine spatial patterns in the normalized difference vegetation index (NDVI) and their relationships with climatic variables for four contrasting forest types in India. The NDVI signal has been extracted from homogeneous vegetation patches and has been found to be distinct for deciduous and evergreen forest types, although the mixed-deciduous signal was close to the deciduous ones. To examine the decadal response of the satellite-measured vegetation phenology to climate variability, seven different NDVI metrics were calculated using the 11-year NDVI data. Results suggested strong spatial variability in forest NDVI metrics. Among the forest types studied, wet evergreen forests of north-east India had highest mean NDVI (0.692) followed by evergreen forests of the Western Ghats (0.529), mixed deciduous forests (0.519) and finally dry deciduous forests (0.421). The sum of NDVI (SNDVI) and the time-integrated NDVI followed a similar pattern, although the values for mixed deciduous forests were closer to those for evergreen forests of the Western Ghats. Dry deciduous forests had higher values of inter-annual range (RNDVI) and low mean NDVI, also coinciding with a high SD and thus a high coefficient of variation (CV) in NDVI (CVNDVI). SNDVI has been found to be high for wet evergreen forests of north-east India, followed by evergreen forests of the Western Ghats, mixed deciduous forests and dry deciduous forests. Further, the maximum NDVI values of wet evergreen forests of north-east India (0.624) coincided with relatively high annual total precipitation (2,238.9 mm). The time lags had a strong influence in the correlation coefficients between annual total rainfall and NDVI. The correlation coefficients were found to be comparatively high (R2=0.635) for dry deciduous forests than for evergreen forests and mixed deciduous forests, when the precipitation data with a lag of 30 days was correlated against NDVI. Using multiple regression approach models were developed for individual forest types using 16 different climatic indices. A high proportion of the temporal variance (>90%) has been accounted for by three of the precipitation parameters (maximum precipitation, precipitation of the wettest quarter and driest quarter) and two of the temperature parameters (annual mean temperature and temperature of the coldest quarter) for mixed deciduous forests. Similarly, in the case of deciduous forests, four precipitation parameters and three temperature parameters explained nearly 83.6% of the variance. These results suggest differences in the relationship between NDVI and climatic variables based upon the time of growing season, time interval and climatic indices over which they were summed. These results have implications for forest cover mapping and monitoring in tropical regions of India.

  15. Evaluation of NDVI to assess avian abundance and richness along the upper San Pedro River

    USGS Publications Warehouse

    McFarland, T.M.; van Riper, Charles; Johnson, G.E.

    2012-01-01

    Remote-sensing models have become increasingly popular for identifying, characterizing, monitoring, and predicting avian habitat but have largely focused on single bird species. The Normalized Difference Vegetation Index (NDVI) has been shown to positively correlate with avian abundance and richness and has been successfully applied to southwestern riparian systems which are uniquely composed of narrow bands of vegetation in an otherwise dry landscape. Desert riparian ecosystems are important breeding and stopover sites for many bird species but have been degraded due to altered hydrology and land management practices. Here we investigated the use of NDVI, coupled with vegetation, to model the avian community structure along the San Pedro River, Arizona. We also investigated how vegetation and physical features measured locally compared to those data that can be gathered through remote-sensing. We found that NDVI has statistically significant relationships with both avian abundance and species richness, although is better applied at the individual species level. However, the amount of variation explained by even our best models was quite low, suggesting that NDVI habitat models may not presently be an accurate tool for extensive modeling of avian communities. We suggest additional studies in other watersheds to increase our understanding of these bird/NDVI relationships.

  16. Using NOAA AVHRR data to assess flood damage in China.

    PubMed

    Wang, Quan; Watanabe, Masataka; Hayashi, Seiji; Murakami, Shogo

    2003-03-01

    The article used two NOAA-14 Advanced Very High Resolution Radiometer (AVHRR) datasets to assess flood damage in the middle and lower reaches of China's Changjiang River (Yangtze River) in 1998. As the AVHRR is an optical sensor, it cannot penetrate the clouds that frequently cover the land during the flood season, and this technology is greatly limited in flood monitoring. However the widely used normalized difference vegetation index (NDVI) can be used to monitor flooding, since water has a much lower NDVI value than other surface features. Though many factors other than flooding (e.g. atmospheric conditions, different sun-target-satellite angles, and cloud) can change NDVI values, inundated areas can be distinguished from other types of ground cover by changes in the NDVI value before and after the flood after eliminating the effects of other factors on NDVI. AVHRR data from 26 May and 22 August, 1998 were selected to represent the ground conditions before and after flooding. After accurate geometric correction by collecting GCPs, and atmospheric and angular corrections by using the 6S code, NDVI values for both days and their differences were calculated for cloud-free pixels. The difference in the NDVI values between these two times, together with the NDVI values and a land-use map, were used to identify inundated areas and to assess the area lost to the flood. The results show a total of 358,867 ha, with 207,556 ha of cultivated fields (paddy and non-irrigated field) inundated during the flood of 1998 in the middle and lower reaches of the Changjiang River Catchment; comparing with the reported total of 321,000 and 197,000 ha, respectively. The discrimination accuracy of this method was tested by comparing the results from two nearly simultaneous sets of remote-sensing data (NOAA's AVHRR data from 10 September, 1998, and JERS-1 synthetic aperture radar (SAR) data from 11 September, 1998, with a lag of about 18.5 hr) over a representative flooded region in the study area. The results showed that 67.26% of the total area identified as inundated using the NOAA data was also identified as inundated using the SAR data.

  17. Study on generation and sharing of on-demand global seamless data—Taking MODIS NDVI as an example

    NASA Astrophysics Data System (ADS)

    Shen, Dayong; Deng, Meixia; Di, Liping; Han, Weiguo; Peng, Chunming; Yagci, Ali Levent; Yu, Genong; Chen, Zeqiang

    2013-04-01

    By applying advanced Geospatial Data Abstraction Library (GDAL) and BigTIFF technology in a Geographical Information System (GIS) with Service Oriented Architecture (SOA), this study has derived global datasets using tile-based input data and implemented Virtual Web Map Service (VWMS) and Virtual Web Coverage Service (VWCS) to provide software tools for visualization and acquisition of global data. Taking MODIS Normalized Difference Vegetation Index (NDVI) as an example, this study proves the feasibility, efficiency and features of the proposed approach.

  18. Using the satellite-derived NDVI to assess ecological responses to environmental change.

    PubMed

    Pettorelli, Nathalie; Vik, Jon Olav; Mysterud, Atle; Gaillard, Jean-Michel; Tucker, Compton J; Stenseth, Nils Chr

    2005-09-01

    Assessing how environmental changes affect the distribution and dynamics of vegetation and animal populations is becoming increasingly important for terrestrial ecologists to enable better predictions of the effects of global warming, biodiversity reduction or habitat degradation. The ability to predict ecological responses has often been hampered by our rather limited understanding of trophic interactions. Indeed, it has proven difficult to discern direct and indirect effects of environmental change on animal populations owing to limited information about vegetation at large temporal and spatial scales. The rapidly increasing use of the Normalized Difference Vegetation Index (NDVI) in ecological studies has recently changed this situation. Here, we review the use of the NDVI in recent ecological studies and outline its possible key role in future research of environmental change in an ecosystem context.

  19. Midwest agriculture and ENSO: A comparison of AVHRR NDVI3g data and crop yields in the United States Corn Belt from 1982 to 2014

    NASA Astrophysics Data System (ADS)

    Glennie, Erin; Anyamba, Assaf

    2018-06-01

    A time series of Advanced Very High Resolution Radiometer (AVHRR) derived normalized difference vegetation index (NDVI) data were compared to National Agricultural Statistics Service (NASS) corn yield data in the United States Corn Belt from 1982 to 2014. The main objectives of the comparison were to assess 1) the consistency of regional Corn Belt responses to El Niño/Southern Oscillation (ENSO) teleconnection signals, and 2) the reliability of using NDVI as an indicator of crop yield. Regional NDVI values were used to model a seasonal curve and to define the growing season - May to October. Seasonal conditions in each county were represented by NDVI and land surface temperature (LST) composites, and corn yield was represented by average annual bushels produced per acre. Correlation analysis between the NDVI, LST, corn yield, and equatorial Pacific sea surface temperature anomalies revealed patterns in land surface dynamics and corn yield, as well as typical impacts of ENSO episodes. It was observed from the study that growing seasons coincident with La Niña events were consistently warmer, but El Niño events did not consistently impact NDVI, temperature, or corn yield data. Moreover, the El Niño and La Niña composite images suggest that impacts vary spatially across the Corn Belt. While corn is the dominant crop in the region, some inconsistencies between corn yield and NDVI may be attributed to soy crops and other background interference. The overall correlation between the total growing season NDVI anomaly and detrended corn yield was 0.61(p = 0.00013), though the strength of the relationship varies across the Corn Belt.

  20. Comparison of fractal dimensions based on segmented NDVI fields obtained from different remote sensors.

    NASA Astrophysics Data System (ADS)

    Alonso, C.; Benito, R. M.; Tarquis, A. M.

    2012-04-01

    Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI. The aim of this study is to establish a comparison between two different sensors in their NDVI values at different spatial resolutions. Scaling analysis and modeling techniques are increasingly understood to be the result of nonlinear dynamic mechanisms repeating scale after scale from large to small scales leading to non-classical resolution dependencies. In the remote sensing framework the main characteristic of sensors images is the high local variability in their values. This variability is a consequence of the increase in spatial and radiometric resolution that implies an increase in complexity that it is necessary to characterize. Fractal and multifractal techniques has been proven to be useful to extract such complexities from remote sensing images and will applied in this study to see the scaling behavior for each sensor in generalized fractal dimensions. The studied area is located in the provinces of Caceres and Salamanca (east of Iberia Peninsula) with an extension of 32 x 32 km2. The altitude in the area varies from 1,560 to 320 m, comprising natural vegetation in the mountain area (forest and bushes) and agricultural crops in the valleys. Scaling analysis were applied to Landsat-5 and MODIS TERRA to the normalized derived vegetation index (NDVI) on the same region with one day of difference, 13 and 12 of July 2003 respectively. From these images the area of interest was selected obtaining 1024 x 1024 pixels for Landsat image and 128 x 128 pixels for MODIS image. This implies that the resolution for MODIS is 250x250 m. and for Landsat is 30x30 m. From the reflectance data obtained from NIR and RED bands, NDVI was calculated for each image focusing this study on 0.2 to 0.5 ranges of values. Once that both NDVI fields were obtained several fractal dimensions were estimated in each one segmenting the values in 0.20-0.25, 0.25-0.30 and so on to rich 0.45-0.50. In all the scaling analysis the scale size length was expressed in meters, and not in pixels, to make the comparison between both sensors possible. Results are discussed. Acknowledgements This work has been supported by the Spanish MEC under Projects No. AGL2010-21501/AGR, MTM2009-14621 and i-MATH No. CSD2006-00032

  1. Earth Observation and Science: Monitoring Vegetation Dynamics from Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Knyazikhin, Y.; Park, T.; Hu, B.

    2018-02-01

    Retrieving diurnal courses of sunlit (SLAI) and shaded (ShLAI) leaf area indices, fraction of photosynthetically active radiation (PAR) absorbed by vegetation (FPAR), and Normalized Difference Vegetation Index (NDVI) from Deep Space Gateway data.

  2. Detection of contaminated pixels based on the short-term continuity of NDVI and correction using spatio-temporal continuity

    NASA Astrophysics Data System (ADS)

    Cho, A.-Ra; Suh, Myoung-Seok

    2013-08-01

    The present study developed and assessed a correction technique (CSaTC: Correction based on Spatial and Temporal Continuity) for the detection and correction of contaminated Normalized Difference Vegetation Index (NDVI) time series data. Global Inventory Modeling and Mapping Studies (GIMMS) NDVI data from 1982 to 2006 with a 15-day period and an 8-km spatial resolution was used. CSaTC utilizes short-term continuity of vegetation to detect contaminated pixels, and then, corrects the detected pixels using the spatio-temporal continuity of vegetation. CSaTC was applied to the NDVI data over the East Asian region, which exhibits diverse seasonal and interannual variations in vegetation activities. The correction skill of CSaTC was compared to two previously applied methods, IDR (iterative Interpolation for Data Reconstruction) and Park et al. (2011) using GIMMS NDVI data. CSaTC reasonably resolved the overcorrection and spreading phenomenon caused by excessive correction of Park et al. (2011). The validation using the simulated NDVI time series data showed that CSaTC shows a systematically better correction skill in bias and RMSE irrespective of phenology types of vegetation and noise levels. In general, CSaTC showed a good recovery of the contaminated data appearing over the short-term period on a level similar to that obtained using the IDR technique. In addition, it captured the multi-peak of NDVI, and the germination and defoliating patterns more accurately than that by IDR, which overly compensates for seasons with a high temporal variation and where NDVI data exhibit multi-peaks.

  3. High-latitude tree growth and satellite vegetation indices: Correlations and trends in Russia and Canada (1982-2008)

    NASA Astrophysics Data System (ADS)

    Berner, Logan T.; Beck, Pieter S. A.; Bunn, Andrew G.; Lloyd, Andrea H.; Goetz, Scott J.

    2011-03-01

    Vegetation in northern high latitudes affects regional and global climate through energy partitioning and carbon storage. Spaceborne observations of vegetation, largely based on the normalized difference vegetation index (NDVI), suggest decreased productivity during recent decades in many regions of the Eurasian and North American boreal forests. To improve interpretation of NDVI trends over forest regions, we examined the relationship between NDVI from the advanced very high resolution radiometers and tree ring width measurements, a proxy of tree productivity. We collected tree core samples from spruce, pine, and larch at 22 sites in northeast Russia and northwest Canada. Annual growth rings were measured and used to generate site-level ring width index (RWI) chronologies. Correlation analysis was used to assess the association between RWI and summer NDVI from 1982 to 2008, while linear regression was used to examine trends in both measurements. The correlation between NDVI and RWI was highly variable across sites, though consistently positive (r = 0.43, SD = 0.19, n = 27). We observed significant temporal autocorrelation in both NDVI and RWI measurements at sites with evergreen conifers (spruce and pine), though weak autocorrelation at sites with deciduous conifers (larch). No sites exhibited a positive trend in both NDVI and RWI, although five sites showed negative trends in both measurements. While there are technological and physiological limitations to this approach, these findings demonstrate a positive association between NDVI and tree ring measurements, as well as the importance of considering lagged effects when modeling vegetation productivity using satellite data.

  4. MODIS-informed greenness responsesto daytime land surface temperaturefluctuations and wildfire disturbancesin the Alaskan Yukon River Basin

    USGS Publications Warehouse

    Tan, Zhengxi; Liu, Shu-Guang; Jenkerson, Calli B.; Oeding, Jennifer; Wylie, Bruce K.; Rover, Jennifer R.; Young, Claudia J.

    2012-01-01

    Pronounced climate warming and increased wildfire disturbances are known to modify forest composition and control the evolution of the boreal ecosystem over the Yukon River Basin (YRB) in interior Alaska. In this study, we evaluate the post-fire green-up rate using the normalized difference vegetation index (NDVI) derived from 250 m 7 day eMODIS (an alternative and application-ready type of Moderate Resolution Imaging Spectroradiometer (MODIS) data) acquired between 2000 and 2009. Our analyses indicate measureable effects on NDVI values from vegetation type, burn severity, post-fire time, and climatic variables. The NDVI observations from both fire scars and unburned areas across the Alaskan YRB showed a tendency of an earlier start to the growing season (GS); the annual variations in NDVI were significantly correlated to daytime land surface temperature (LST) fluctuations; and the rate of post-fire green-up depended mainly on burn severity and the time of post-fire succession. The higher average NDVI values for the study period in the fire scars than in the unburned areas between 1950 and 2000 suggest that wildfires enhance post-fire greenness due to an increase in post-fire evergreen and deciduous species components

  5. On the use of satellite VEGETATION time series for monitoring post fire vegetation recovery

    NASA Astrophysics Data System (ADS)

    de Santis, F.; Didonna, I.

    2009-04-01

    Fire is one of the most critical factors of disturbance in worldwide ecosystems. The effects of fires on soil, plants, landscape and ecosystems depend on many factors, among them fire frequency, fire severity and plant resistance. The characterization of vegetation post-fire behaviour is a fundamental issue to model and evaluate the fire resilience, which the ability of vegetation to recover after fire. Recent changes in fire regime, due to abandonment of local land use practice and climate change, can induce significant variations in vegetation fire resilience. In the Mediterranean-type communities, post fire vegetation trends have been analysed in a wide range of habitats, although pre- and post-fire investigation has been widely performed at stand level. But, factors controlling regeneration at the landscape scale are less well known. In this study, a time series of normalized difference vegetation index (NDVI) data derived from SPOT-VEGETATION was used to examine the recovery characteristics of fire affected vegetation in some test areas of the Mediterranean ecosystems of Southern Italy. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. SPOT-VEGETATION Normalized Difference Vegetation Index (NDVI) data from 1998 to 2005 were analyzed in order to evaluate the resilient effects in a some significant test sites of southern Italy. In particular, we considered: (i) one stable area site, one site affected by one fire during the investigated time window, (iii) one site affected by two consecutive fires during the investigated time window. In order to eliminate the phenological fluctuations, for each decadal composition of each pixel, we focused on the departure NDVId = [NDVI - ]/, where is the decadal mean and  is the decadal standard deviation. The decadal mean and the standard deviation were calculated for each decade, e.g. 1st decade of January, by averaging over all years in the record. We analyzed both: 1) Time variation of NDVI from 1998 to 2005 of pixels for the fire affected and fire unaffected areas. 2) Post-fire NDVI spatial patterns on each image date were compared to the pre-fire pattern to determine the extent to which the pre-fire pattern was re-established, and the rate of this recovery. Results show the ability of vegetation to recovery after a single fire. Nevertheless, such ability can be strongly reduced by successive fires. The recursive fire occurrence can significantly diminish the green biomass especially when disturbances occur at short intervals of time.

  6. PDO and ENSO Sea Surface Temperature Anomalies Control Grassland Plant Production across the United States Great Plains

    NASA Astrophysics Data System (ADS)

    Parton, W. J.; Del Grosso, S. J.; Smith, W. K.; Chen, M.

    2017-12-01

    The El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) are multi-annual to multi-decadal climate patterns defined by ocean temperature anomalies that can strongly modulate climate variability. Here we evaluated the impacts of PDO and ENSO sea surface temperature (SST) anomalies on observed grassland above ground plant production (ANPP; 1940 to 2015), spring (April to July) cumulative actual evapotranspiration (iAET; 1900 to 2015) , and satellite-derived growing season (April to October) cumulative normalized difference vegetation index (iNDVI 1982 to 2015) across the United States Great Plains. The results showed that grassland ANPP is well correlated to iAET (r2=0.69) and iNDVI (r2=0.50 to 0.70) for the Cheyenne Wyoming and Northeastern Colorado long-term ANPP sites. At the site scale, during the negative phase of the PDO, we find ANPP is much lower (25%) and that variability of iAET, iNDVI, and ANPP are much higher (2 to 3 times) compared to the warm phase PDO. Further, we find there is a high frequency of below normal iAET when PDO and ENSO SST's are both negative, while there is a high frequency of above normal iAET when PDO and ENSO values are positive. At the regional scale, iAET, iNDVI, and modeled ANPP data sets show that plant production and iAET values are high in the southern Great Plains and low in the northern Great Plains when spring PDO and ENSO are both in the positive phase, while the opposite pattern is observed when both PDO and ENSO are both in the negative phase. Variability of iAET, iNDVI, and modeled ANPP are much higher in the central Great Plains during the negative phase PDO. We demonstrate clearly that the PDO and ENSO SST anomalies have large impacts on mean and variability of grassland plant production across the Great Plains.

  7. Analysis of malaria endemic areas on the Indochina Peninsula using remote sensing.

    PubMed

    Nihei, Naoko; Hashida, Yoshihiko; Kobayashi, Mutsuo; Ishii, Akira

    2002-10-01

    We applied remote sensing using satellite images capable of obtaining data over a broad range, transcending national borders, as a method of rapidly, precisely, and safely increasing our understanding of the potential distribution of malaria. Our target region was the so-called Mekong malaria region on the Indochina Peninsula. As a malaria index, we used existing distribution maps of total reported malaria cases, malaria mortality, vivax malaria and falciparum malaria incidences, and so forth for 1997 and 1998. We produced monthly distribution maps of a normalized difference vegetation index (NDVI) with values of 0.2+, 0.3+, 0.35+, and 0.4+ using the geographical information system/remote sensing software based on the East Asia monthly NDVI maps of 1997. These maps were overlaid with various malaria index distribution maps, and cross-tabulations were carried out. The resulting maps with NDVI values of 0.3+ and 0.4+ matched the falciparum malaria distribution well, and we realized, in particular, that falciparum malaria is prevalent in regions in which NDVI values of 0.4+ continue for 6 months or more, while cases are fewer in regions with NDVI values of 0.4+ that continue for 5 months or less. It will be necessary in the future to examine the relationship between NDVI values and the habitats of the various vector mosquitoes using high-resolution satellite images and to implement detailed forecasts for malaria endemic areas by means of NDVI.

  8. Continuous 1985-2012 Landsat monitoring to assess fire effects on meadows in Yosemite National Park, California

    USGS Publications Warehouse

    Soulard, Christopher E.; Albano, Christine M.; Villarreal, Miguel; Walker, Jessica

    2016-01-01

    To assess how montane meadow vegetation recovered after a wildfire that occurred in Yosemite National Park, CA in 1996, Google Earth Engine image processing was applied to leverage the entire Landsat Thematic Mapper archive from 1985 to 2012. Vegetation greenness (normalized difference vegetation index [NDVI]) was summarized every 16 days across the 28-year Landsat time series for 26 meadows. Disturbance event detection was hindered by the subtle influence of low-severity fire on meadow vegetation. A hard break (August 1996) was identified corresponding to the Ackerson Fire, and monthly composites were used to compare NDVI values and NDVI trends within burned and unburned meadows before, immediately after, and continuously for more than a decade following the fire date. Results indicate that NDVI values were significantly lower at 95% confidence level for burned meadows following the fire date, yet not significantly lower at 95% confidence level in the unburned meadows. Burned meadows continued to exhibit lower monthly NDVI in the dormant season through 2012. Over the entire monitoring period, the negative-trending, dormant season NDVI slopes in the burned meadows were also significantly lower than unburned meadows at 90% confidence level. Lower than average NDVI values and slopes in the dormant season compared to unburned meadows, coupled with photographic evidence, strongly suggest that evergreen vegetation was removed from the periphery of some meadows after the fire. These analyses provide insight into how satellite imagery can be used to monitor low-severity fire effects on meadow vegetation.

  9. Remote sensing data with the conditional latin hypercube sampling and geostatistical approach to delineate landscape changes induced by large chronological physical disturbances.

    PubMed

    Lin, Yu-Pin; Chu, Hone-Jay; Wang, Cheng-Long; Yu, Hsiao-Hsuan; Wang, Yung-Chieh

    2009-01-01

    This study applies variogram analyses of normalized difference vegetation index (NDVI) images derived from SPOT HRV images obtained before and after the ChiChi earthquake in the Chenyulan watershed, Taiwan, as well as images after four large typhoons, to delineate the spatial patterns, spatial structures and spatial variability of landscapes caused by these large disturbances. The conditional Latin hypercube sampling approach was applied to select samples from multiple NDVI images. Kriging and sequential Gaussian simulation with sufficient samples were then used to generate maps of NDVI images. The variography of NDVI image results demonstrate that spatial patterns of disturbed landscapes were successfully delineated by variogram analysis in study areas. The high-magnitude Chi-Chi earthquake created spatial landscape variations in the study area. After the earthquake, the cumulative impacts of typhoons on landscape patterns depended on the magnitudes and paths of typhoons, but were not always evident in the spatiotemporal variability of landscapes in the study area. The statistics and spatial structures of multiple NDVI images were captured by 3,000 samples from 62,500 grids in the NDVI images. Kriging and sequential Gaussian simulation with the 3,000 samples effectively reproduced spatial patterns of NDVI images. However, the proposed approach, which integrates the conditional Latin hypercube sampling approach, variogram, kriging and sequential Gaussian simulation in remotely sensed images, efficiently monitors, samples and maps the effects of large chronological disturbances on spatial characteristics of landscape changes including spatial variability and heterogeneity.

  10. Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia

    NASA Astrophysics Data System (ADS)

    Zaitunah, A.; Samsuri; Ahmad, A. G.; Safitri, R. A.

    2018-03-01

    Watershed is an ecosystem area confined by topography and has function as a catcher, storage, and supplier of water, sediments, pollutants and nutrients in the river system and exit through a single outlet. Various activities around watershed areas of Besitang have changed the land cover and vegetation index (NDVI) that exist in the region. In order to detect changes in land cover and NDVI quickly and accurately, we used remote sensing technology and geographic information systems (GIS). The study aimed to assess changes in land cover and vegetation density (NDVI) between 2005 and 2015, as well as obtaining the density of vegetation (NDVI) on each of the land cover of 2005 and 2015. The research showed the extensive of forest area of 949.65 Ha and a decline of mangrove forest area covering an area of 2,884.06 Ha. The highest vegetation density reduced 39,714.58 Ha, and rather dense increased 24,410.72 Ha between 2005 and 2015. The land cover that have the highest NDVI value range with very dense vegetation density class is the primary dry forest (0.804 to 0.876), followed by secondary dry forest (0.737 to 0.804) for 2015. In 2015 the land cover has NDVI value range the primary dry forest (0.513 to 0.57), then secondary dry forest (0.456 to 0.513) with dense vegetation density class

  11. Analyzing urban ecosystem variation in the City of Dongguan: A stepwise cluster modeling approach.

    PubMed

    Sun, J; Li, Y P; Gao, P P; Suo, C; Xia, B C

    2018-06-13

    In this study, a stepwise cluster modeling approach (SCMA) is developed for analyzing urban ecosystem variation via Normalized Difference Vegetation Index (NDVI). NDVI is an indicator of vegetation growth and coverage and useful in reflecting urban ecosystem. SCMA is established on a cluster tree that can characterize the complex relationship between independent and dependent variables. SCMA is applied to the City of Dongguan for simulating the urban NDVI and identifying associated drivers of human activity, topography and meteorology without specific functions. Results show that SCMA performances better than conventional statistical methods, illustrating the ability of SCMA in capturing the complex and nonlinear features of urban ecosystem. Results disclose that human activities play negative effects on NDVI due to the destruction of green space for pursuing more space for buildings. NDVI reduces gradually from the south part to the north part of Dongguan due to increased gross domestic product and population density, indicating that the ecosystem in Dongguan is better in the south part. NDVI in the northeast part (dominated by agriculture) is sensitive to the growth of economy and population. More attention should be paid to this part for sustainable development, such as increasing afforestation, planting grass and constructing parks. Precipitation has a positive effect on NDVI due to the promotion of soil moisture that is beneficial to plants' growth. Awareness of these complexities is helpful for sustainable development of urban ecosystem. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Phenological indicators derived with CO2 flux, MODIS image and ground monitor at a temperate mixed forest and an alpine shrub

    NASA Astrophysics Data System (ADS)

    Zhang, Leiming; Cao, Peiyu; Li, Shenggong; Yu, Guirui; Zhang, Junhui; Li, Yingnian

    2016-04-01

    To accurately assess the change of phenology and its relationship with ecosystem gross primary productivity (GPP) is one of the key issues in context of global change study. In this study, an alpine shrubland meadow in Haibei (HBS) of Qinghai-Tibetan plateau and a broad-leaved Korean pine forest in Changbai Mountain (CBM) of Northeastern China were selected. Based on the long-term GPP from eddy flux measurements and the Normalized Difference Vegetation Index (NDVI) from remote sensed vegetation index, phenological indicators including the start of growing season (SOS), the end of growing season (EOS), and the growing season length (GSL) since 2003 were derived via multiple methods, and then the influences of phenology variation on GPP were explored. Compared with ground phenology observations of dominant plant species, both GPP- and NDVI-derived SOS and EOS exhibited a similar interannual trend. GPP-derived SOS was quite close to NDVI-derived SOS, but GPP-derived EOS differed significantly from NDVI-derived EOS, and thus leading to a significant difference between GPP- and NDVI-derived GSL. Relative to SOS, EOS presented larger differences between the extraction methods, indicating large uncertainties to accurately define EOS. In general, among the methods used, the threshold methods produced more satisfactory assessment on phenology change. This study highlights that how to harmonize with the flux measurements, remote sensing and ground monitoring are a big challenge that needs further consideration in phenology study, especially the accurate extraction of EOS. Key words: phenological variation, carbon flux, vegetation index, vegetation grwoth, interannual varibility

  13. Comparison of Bioclimatic, NDVI and Elevation variables in assessing extent of Commiphora wightii (Arnt.) Bhand.

    NASA Astrophysics Data System (ADS)

    Kulloli, R. N.; Kumar, S.

    2014-11-01

    Commiphora wightii (Arnt.) Bhand., is an important medicinal plant of Indian Medicine System (IMS) since ancient time. It is used in different ailments of obesity, arthritis, rheumatism and high cholesterol. Due to overexploitation its natural populations declined to large extent. IUCN has put it under Data Deficient (DD) category due to lack of data on its extent of occurrence in nature. Hence, the study was carried out using MaxEnt distribution modelling algorithm to estimate its geographic distribution and to identify potential habitats for its reintroduction. For modelling employed 68 presence locality data, 19 bioclimatic variables, Normalize Difference Vegetation Index (NDVI) and elevation data. These were tested for multicollinearity and those variables having r-value less than 0.8 were selected for further analysis, which was carried out in two ways i) Bioclimatic variables and elevation; ii) NDVI and elevation. Area Under the Curve (AUC) in both analysis was above 0.9 for all variables, indicating very high accuracy of prediction. Variables governing distribution of C. wightii in the analysis using bioclimatic and elevation data set are precipitation seasonality (56.6 %), annual precipitation (16.4 %) and elevation (14.7 %). Extent of occurrence of C.wightii predicted by model closely matched in the districts of Jaisalmer and Barmer. In the second analysis elevation (48.3 %), NDVI of June (11.1 %) and August (11.2 %) contributed for NDVI and Elevation data set. NDVI of June corresponds to its leafing phase while NDVI of August to flowering phase. Area of its occurrence predicted for NDVI and elevation data set are Bikaner, Churu, Jhunjhunun some part of Jodhpur which are completely sandy, where C. wightii is totally absent. Extent of occurrence was also validated in ground survey. Potential areas for its reintroduction were identified as Jaisalmer and Barmer districts in Indian arid zone.

  14. [Defining of wheat growth management zones based on remote sensing and geostatistics].

    PubMed

    Huang, Yan; Zhu, Yan; Ma, Meng-Li; Wang, Hang; Cao, Wei-Xing; Tian, Yong-Chao

    2011-02-01

    Taking the winter wheat planting areas in Rugao City and Haian County of Jiangsu Province as test objects, the clustering defining of wheat growth management zones was made, based on the spatial variability analysis and principal component extraction of the normalized difference vegetation index (NDVI) data calculated from the HJ-1A/B CCD images (30 m resolution) at different growth stages of winter wheat, and of the soil nutrient indices (total nitrogen, organic matter, available phosphorus, and available potassium). The results showed that the integration of the NDVI at heading stage with above-mentioned soil nutrient indices produced the best results of wheat growth management zone defining, with the variation coefficients of NDVI and soil nutrient indices in each defined zone ranged in 4.5% -6.1% and 3.3% -87.9%, respectively. However, the variation coefficients were much larger when the wheat growth management zones were defined individually by NDVI or by soil nutrient indices, suggesting that the newly developed defining method could reduce the variability within the defined management zones and improve the crop management precision, and thereby, contribute to the winter wheat growth management and process simulation at regional scale.

  15. Estimation of the rice-planting field in Bangladesh by satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Furuta, E.; Suzuki, G.; Yamassaki, M.; Teraoka, T.; Fujiwara, H.; Ogino, Y.; Akashi, M.; Lahrita, L.; Naruse, N.; Takahashi, Y.

    2016-12-01

    In Bangladesh, price of rice has been unstable due to a large increase in production. To control the price can become a political issue, because rice agriculture is one of the most important industries in Bangladesh, whereas the total area of the paddy field is accurately unknown, owing to unsustainable and on-site surveys for the area (1). Satellite remote sensing is an effective solution to research the all area of domestic paddy field. Microwave satellite imaging has a large merit to be observable regardless of the weather conditions, however, research institutions have been limited to observing continuously since the cost is high for developing countries, such as Bangladesh. This study aims to establish the way to grasp the paddy field using optical satellite images for free of charge (Landsat-8). We have focused on seasonal changes in the water and the vegetation indices obtained from paddy fields. We have performed image calculations of Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) of the well-known paddy field in Bangladesh Rice Research Institute. We found that there are seasonal changes of NDVI and NDWI calculated from paddy field. The characteristics are as follows; the NDVI and the NDWI values varies by 0.17-0.25 up and 0.11-0.19 down, respectively, at the transition from the dry to the rainy season, on the other hand, the NDVI and the NDWI changes by 0.21-0.29 down and 0.09-0.17 up from the rainy to the dry season. These features make us to distinguish the paddy field from the other cultivated area. The decrease of NDVI means that rice bares, The increase of NDWI can be interpreted that the paddy field is covered with water for the preparation for planting it. Our estimated area of paddy field in Bangladesh (85,900km ) corresponds well with the previous reported value of 117,700km (1). We have established the way to grasp the paddy field using optical satellite images for free of charge, on the bases of the seasonal changes of NDVI and NDWI. Ref: 1.FAOSTAT 2013

  16. Spring green-up date derived from GIMMS3g and SPOT-VGT NDVI of winter wheat cropland in the North China Plain

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjia; Wu, Chaoyang; Liu, Yansui; Wang, Xiaoyue; Fang, Bin; Yuan, Wenping; Ge, Quansheng

    2017-08-01

    Satellite temporal resolution affects the fitting accuracy of vegetation growth curves. However, there are few studies that evaluate the impact of different satellite data (including temporal resolution and time series change) on spring green-up date (GUD) extraction. In this study, four GUD algorithms and two different temporal resolution satellite data (GIMMS3g during 1982-2013 and SPOT-VGT during 1999-2013) were used to investigate winter wheat GUD in the North China Plain. Four GUD algorithms included logistic-NDVI (normalized difference vegetation index), logistic-cumNDVI (cumulative NDVI), polynomial-NDVI and polynomial-cumNDVI algorithms. All algorithms and data were first regrouped into eight controlled cases. At site scale, we evaluated the performance of each case using correlation coefficient (r), bias and root mean square error (RMSE). We further compared spatial patterns and inter-annual trends of GUD inferred from different algorithms, and then analyzed the difference between GIMMS3g-based GUD and SPOT-VGT-based GUD. Our results showed that all satellite-based GUD were correlated with observations with r ranging from 0.32 to 0.57 (p < 0.01). SPOT-VGT-based GUD generally had better correlations with observed GUD than those of GIMMS3g. Spatially, SPOT-VGT-based GUD performed more reasonable spatial distributions. Inter-annual regional averaged satellite-based GUD presented overall advanced trends during 1982-2013 (0.3-2.0 days/decade) while delayed trends were observed during 1999-2013 (1.7-7.4 days/decade for GIMMS3g and 3.8-7.4 days/decade for SPOT-VGT). However, their significance levels were highly dependent on the data and algorithms used. Our findings suggest cautions on previous results of inter-annual variability of phenology from a single data/method.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jianguang; Piao, Shilong; Chen, Anping

    Over the last century the Northern Hemisphere has experienced rapid climate warming, but this warming has not been evenly distributed seasonally, as well as diurnally. The implications of such seasonal and diurnal heterogeneous warming on regional and global vegetation photosynthetic activity, however, are still poorly understood. Here, we investigated for different seasons how photosynthetic activity of vegetation correlates with changes in seasonal daytime and night-time temperature across the Northern Hemisphere (>30°N), using Normalized Difference Vegetation Index (NDVI) data from 1982 to 2011 obtained from the Advanced Very High Resolution Radiometer (AVHRR). Our analysis revealed some striking seasonal differences in themore » response of NDVI to changes in day- versus night-time temperatures. For instance, while higher daytime temperature (T max) is generally associated with higher NDVI values across the boreal zone, the area exhibiting a statistically significant positive correlation between T max and NDVI is much larger in spring (41% of area in boreal zone – total area 12.6 × 10 6 km 2) than in summer and autumn (14% and 9%, respectively). In contrast to the predominantly positive response of boreal ecosystems to changes in T max, increases in T max tended to negatively influence vegetation growth in temperate dry regions, particularly during summer. Changes in night-time temperature (T min) correlated negatively with autumnal NDVI in most of the Northern Hemisphere, but had a positive effect on spring and summer NDVI in most temperate regions (e.g., Central North America and Central Asia). Such divergent covariance between the photosynthetic activity of Northern Hemispheric vegetation and day- and night-time temperature changes among different seasons and climate zones suggests a changing dominance of ecophysiological processes across time and space. Lastly, understanding the seasonally different responses of vegetation photosynthetic activity to diurnal temperature changes, which have not been captured by current land surface models, is important for improving the performance of next generation regional and global coupled vegetation-climate models« less

  18. Comparison of Sub-pixel Classification Approaches for Crop-specific Mapping

    EPA Science Inventory

    The Moderate Resolution Imaging Spectroradiometer (MODIS) data has been increasingly used for crop mapping and other agricultural applications. Phenology-based classification approaches using the NDVI (Normalized Difference Vegetation Index) 16-day composite (250 m) data product...

  19. Estimating sugarcane yield potential using an in-season determination of normalized difference vegetative index.

    PubMed

    Lofton, Josh; Tubana, Brenda S; Kanke, Yumiko; Teboh, Jasper; Viator, Howard; Dalen, Marilyn

    2012-01-01

    Estimating crop yield using remote sensing techniques has proven to be successful. However, sugarcane possesses unique characteristics; such as, a multi-year cropping cycle and plant height-limiting for midseason fertilizer application timing. Our study objective was to determine if sugarcane yield potential could be estimated using an in-season estimation of normalized difference vegetative index (NDVI). Sensor readings were taken using the GreenSeeker® handheld sensor from 2008 to 2011 in St. Gabriel and Jeanerette, LA, USA. In-season estimates of yield (INSEY) values were calculated by dividing NDVI by thermal variables. Optimum timing for estimating sugarcane yield was between 601-750 GDD. In-season estimated yield values improved the yield potential (YP) model compared to using NDVI. Generally, INSEY value showed a positive exponential relationship with yield (r(2) values 0.48 and 0.42 for cane tonnage and sugar yield, respectively). When models were separated based on canopy structure there was an increase the strength of the relationship for the erectophile varieties (r(2) 0.53 and 0.47 for cane tonnage and sugar yield, respectively); however, the model for planophile varieties weakened slightly. Results of this study indicate using an INSEY value for predicting sugarcane yield shows potential of being a valuable management tool for sugarcane producers in Louisiana.

  20. Estimation of different data compositions for early-season crop type classification.

    PubMed

    Hao, Pengyu; Wu, Mingquan; Niu, Zheng; Wang, Li; Zhan, Yulin

    2018-01-01

    Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels. In this study, we initially acquired daily 30 m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40∼60 days and 35∼45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer's accuracies (PAs) and user's accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study.

  1. Estimation of different data compositions for early-season crop type classification

    PubMed Central

    Wu, Mingquan; Wang, Li; Zhan, Yulin

    2018-01-01

    Timely and accurate crop type distribution maps are an important inputs for crop yield estimation and production forecasting as multi-temporal images can observe phenological differences among crops. Therefore, time series remote sensing data are essential for crop type mapping, and image composition has commonly been used to improve the quality of the image time series. However, the optimal composition period is unclear as long composition periods (such as compositions lasting half a year) are less informative and short composition periods lead to information redundancy and missing pixels. In this study, we initially acquired daily 30 m Normalized Difference Vegetation Index (NDVI) time series by fusing MODIS, Landsat, Gaofen and Huanjing (HJ) NDVI, and then composited the NDVI time series using four strategies (daily, 8-day, 16-day, and 32-day). We used Random Forest to identify crop types and evaluated the classification performances of the NDVI time series generated from four composition strategies in two studies regions from Xinjiang, China. Results indicated that crop classification performance improved as crop separabilities and classification accuracies increased, and classification uncertainties dropped in the green-up stage of the crops. When using daily NDVI time series, overall accuracies saturated at 113-day and 116-day in Bole and Luntai, and the saturated overall accuracies (OAs) were 86.13% and 91.89%, respectively. Cotton could be identified 40∼60 days and 35∼45 days earlier than the harvest in Bole and Luntai when using daily, 8-day and 16-day composition NDVI time series since both producer’s accuracies (PAs) and user’s accuracies (UAs) were higher than 85%. Among the four compositions, the daily NDVI time series generated the highest classification accuracies. Although the 8-day, 16-day and 32-day compositions had similar saturated overall accuracies (around 85% in Bole and 83% in Luntai), the 8-day and 16-day compositions achieved these accuracies around 155-day in Bole and 133-day in Luntai, which were earlier than the 32-day composition (170-day in both Bole and Luntai). Therefore, when the daily NDVI time series cannot be acquired, the 16-day composition is recommended in this study. PMID:29868265

  2. Identifying high production, low production and degraded rangelands in Senegal with normalized difference vegetation index data

    USGS Publications Warehouse

    Tappan, G. Gray; Wood, Lynette; Moore, Donald G.

    1993-01-01

    Seasonal herbaceous vegetation production on Senegal's native rangelands exhibits high spatial and temporal variability. This variability can be monitored using normalized difference vegetation index (NDVI) data computed from 1-km resolution Advanced Very High Resolution Radiometer (AVHRR) image data. Although annual fluctuations in rainfall account for some of the variability, numerous long-term production patterns are evident in the AVHRR time-series data. Different n productivity reflect variations in the region's climate, topography, soils, and land use. Areas of overgrazing and intensive cultivation have caused long-term soil and vegetation degradation. Rangelands of high and low productivity, and degraded rangelands were identified using NDVI. Time-series image data from 1987 though 1992 were used to map relative rangeland productivity. The results were compared to detailed resource maps on soils, vegetation and land use. Much of the variation in rangeland productivity correlated well to the known distribution of resources. The study developed an approach that identified a number of areas of degraded soils and low vegetation production.

  3. Crop sensors for automation of in-season nitrogen application

    USDA-ARS?s Scientific Manuscript database

    Crop canopy reflectance sensing can be used to assess in-season crop nitrogen (N) health for automatic control of N fertilization. Typically, sensor data are processed to an established index, such as the Normalized Difference Vegetative Index (NDVI) and differences in that index from a well-fertili...

  4. Improving predictive capabilities of environmental change with GLOBE data

    NASA Astrophysics Data System (ADS)

    Robin, Jessica Hill

    This dissertation addresses two applications of Normalized Difference Vegetation Index (NDVI) essential for predicting environmental changes. The first study focuses on whether NDVI can improve model simulations of evapotranspiration for temperate Northern (>35°) regions. The second study focuses on whether NDVI can detect phenological changes in start of season (SOS) for high Northern (>60°) environments. The overall objectives of this research were to (1) develop a methodology for utilizing GLOBE data in NDVI research; and (2) provide a critical analysis of NDVI as a long-term monitoring tool for environmental change. GLOBE is an international partnership network of K-12 students, teachers, and scientists working together to study and understand the global environment. The first study utilized data collected by one GLOBE school in Greenville, Pennsylvania and the second utilized phenology observations made by GLOBE students in Alaska. Results from the first study showed NDVI could predict transpiration periods for environments like Greenville, Pennsylvania. In phenological terms, these environments have three distinct periods (QI, QII, and QIII). QI reflects onset of the growing season (mid March--mid May) when vegetation is greening up (NDVI < 0.60) and transpiration is less than 2mm/day. QII reflects end of the growing season (mid September--October) when vegetation is greening down and transpiration is decreasing. QIII reflects height of the growing season (mid May--mid September) when transpiration rates average between 2 and 5 mm per day and NDVI is at its maximum (>0.60). Results from the second study showed that a climate threshold of 153 +/- 22 growing degree days was a better predictor of SOS for Fairbanks than a NDVI threshold applied to temporal AVHRR and MODIS datasets. Accumulated growing degree days captured the interannual variability of SOS better than the NDVI threshold and most closely resembled actual SOS observations made by GLOBE students. Overall, biweekly composites and effects of clouds, snow, and conifers limit the ability of NDVI to monitor phenological changes in Alaska. Both studies did show that GLOBE data provides an important source of input and validation information for NDVI research.

  5. Changing Seasonality of Tundra Vegetation and Associated Climatic Variables

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Raynolds, M. K.; Bieniek, P.; Epstein, H. E.; Comiso, J. C.; Pinzon, J.; Tucker, C. J.; Steele, M.; Ermold, W. S.; Zhang, J.

    2014-12-01

    This study documents changes in the seasonality of tundra vegetation productivity and its associated climate variables using long-term data sets. An overall increase of Pan-Arctic tundra greenness potential corresponds to increased land surface temperatures and declining sea ice concentrations. While sea ice has continued to decline, summer land surface temperature and vegetation productivity increases have stalled during the last decade in parts of the Arctic. To understand the processes behind these features we investigate additional climate parameters. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2013. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), ocean heat content (PIOMAS, model incorporating ocean data assimilation), and snow water equivalent (GlobSnow, assimilated snow data set) are explored. We analyzed the data for the full period (1982-2013) and for two sub-periods (1982-1998 and 1999-2013), which were chosen based on the declining Pan-Arctic SWI since 1998. MaxNDVI has increased from 1982-2013 over most of the Arctic but has declined from 1999 to 2013 over western Eurasia, northern Canada, and southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but displays widespread declines over the 1999-2013 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999. SWI has large relative increases over the 1982-2013 period in eastern Canada and Greenland and strong declines in western Eurasia and southern Canadian tundra. Weekly Pan-Arctic tundra land surface temperatures warmed throughout the summer during the 1982-1998 period but display midsummer declines from 1999-2013. Weekly snow water equivalent over Arctic tundra has declined over most seasons but shows slight increases in spring in North America and during fall over Eurasia. Later spring or earlier fall snow cover can both lead to reductions in TI-NDVI. The time-varying spatial patterns of NDVI trends can be largely explained using either snow cover or land surface temperature trends.

  6. Poverty, health and satellite-derived vegetation indices: their inter-spatial relationship in West Africa

    PubMed Central

    Sedda, Luigi; Tatem, Andrew J.; Morley, David W.; Atkinson, Peter M.; Wardrop, Nicola A.; Pezzulo, Carla; Sorichetta, Alessandro; Kuleszo, Joanna; Rogers, David J.

    2015-01-01

    Background Previous analyses have shown the individual correlations between poverty, health and satellite-derived vegetation indices such as the normalized difference vegetation index (NDVI). However, generally these analyses did not explore the statistical interconnections between poverty, health outcomes and NDVI. Methods In this research aspatial methods (principal component analysis) and spatial models (variography, factorial kriging and cokriging) were applied to investigate the correlations and spatial relationships between intensity of poverty, health (expressed as child mortality and undernutrition), and NDVI for a large area of West Africa. Results This research showed that the intensity of poverty (and hence child mortality and nutrition) varies inversely with NDVI. From the spatial point-of-view, similarities in the spatial variation of intensity of poverty and NDVI were found. Conclusions These results highlight the utility of satellite-based metrics for poverty models including health and ecological components and, in general for large scale analysis, estimation and optimisation of multidimensional poverty metrics. However, it also stresses the need for further studies on the causes of the association between NDVI, health and poverty. Once these relationships are confirmed and better understood, the presence of this ecological component in poverty metrics has the potential to facilitate the analysis of the impacts of climate change on the rural populations afflicted by poverty and child mortality. PMID:25733559

  7. [Study on the relationship between Terra-MODIS image and the snail distribution in marshland of Jiangning county, Jiangsu province].

    PubMed

    Zhang, Bo; Zhang, Zhi-ying; Xu, De-zhong; Sun, Zhi-dong; Zhou, Xiao-nong; Gong, Zi-li; Liu, Shi-jun; Liu, Cheng; Xu, Bin; Zhou, Yun

    2003-04-01

    To analyze the relationship between the normalized difference vegetation index (NDVI) and the snail distribution in marshland of Jiangning county in Jiangsu province, and to explore the utility of Terra-MODIS image map in the small scale snail habitats surveillance. NDVI were extracted from MODIS image by vector chart of the snail distribution using ArcView 8.1 and ERDAS 8.5 software. The relationship between NDVI and the snail distribution were Investigated using Bivariate correlations and stepwise linear regression. The snail density on marshland was positively correlated with the mean NDVI in the first ten-day of May and the maximum NDVI (N(20max)) in the last ten-day of May. Incidence of pixel with the live snail on marshland was positively correlated with the mean NDVI (N(2mean)) in the first ten-day of May. An equation Y(1) = 0.009 47 x N(20max) (R(2) = 0.73), Y(2) = 0.018 6 x N(2mean) (R(2) = 0.906) was established. This study showed that the Terra-MODIS satellite images reflecting the status of the vegetation on marshland in Jiangning county could be applied to the study to supervise the snail habitat. The results suggested that MODIS images could be used to survey the small scale snail habitats on marshland.

  8. Modeling the effect of photosynthetic vegetation properties on the NDVI--LAI relationship.

    PubMed

    Steltzer, Heidi; Welker, Jeffrey M

    2006-11-01

    Developing a relationship between the normalized difference vegetation index (NDVI) and the leaf area index (LAI) is essential to describe the pattern of spatial or temporal variation in LAI that controls carbon, water, and energy exchange in many ecosystem process models. Photosynthetic vegetation (PV) properties can affect the estimation of LAI, but no models integrate the effects of multiple species. We developed four alternative NDVI-LAI models, three of which integrate PV effects: no PV effects, leaf-level effects, canopy-level effects, and effects at both levels. The models were fit to data across the natural range of variation in NDVI for a widespread High Arctic ecosystem. The weight of evidence supported the canopy-level model (Akaike weight, wr = 0.98), which includes species-specific canopy coefficients that primarily scale fractional PV cover to LAI by accounting for the area of unexposed PV. Modeling the canopy-level effects improved prediction of LAI (R2 = 0.82) over the model with no PV effect (R2 = 0.71) across the natural range of variation in NDVI but did not affect the site-level estimate of LAI. Satellite-based methods to estimate species composition, a variable in the model, will need to be developed. We expect that including the effects of PV properties in NDVI-LAI models will improve prediction of LAI where species composition varies across space or changes over time.

  9. Comparison and Evaluation of Annual NDVI Time Series in China Derived from the NOAA AVHRR LTDR and Terra MODIS MOD13C1 Products

    PubMed Central

    Guo, Xiaoyi; Zhang, Hongyan; Wu, Zhengfang; Zhao, Jianjun; Zhang, Zhengxiang

    2017-01-01

    Time series of Normalized Difference Vegetation Index (NDVI) derived from multiple satellite sensors are crucial data to study vegetation dynamics. The Land Long Term Data Record Version 4 (LTDR V4) NDVI dataset was recently released at a 0.05 × 0.05° spatial resolution and daily temporal resolution. In this study, annual NDVI time series that are composited by the LTDR V4 and Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI datasets (MOD13C1) are compared and evaluated for the period from 2001 to 2014 in China. The spatial patterns of the NDVI generally match between the LTDR V4 and MOD13C1 datasets. The transitional zone between high and low NDVI values generally matches the boundary of semi-arid and sub-humid regions. A significant and high coefficient of determination is found between the two datasets according to a pixel-based correlation analysis. The spatially averaged NDVI of LTDR V4 is characterized by a much weaker positive regression slope relative to that of the spatially averaged NDVI of the MOD13C1 dataset because of changes in NOAA AVHRR sensors between 2005 and 2006. The measured NDVI values of LTDR V4 were always higher than that of MOD13C1 in western China due to the relatively lower atmospheric water vapor content in western China, and opposite observation appeared in eastern China. In total, 18.54% of the LTDR V4 NDVI pixels exhibit significant trends, whereas 35.79% of the MOD13C1 NDVI pixels show significant trends. Good agreement is observed between the significant trends of the two datasets in the Northeast Plain, Bohai Economic Rim, Loess Plateau, and Yangtze River Delta. By contrast, the datasets contrasted in northwestern desert regions and southern China. A trend analysis of the regression slope values according to the vegetation type shows good agreement between the LTDR V4 and MOD13C1 datasets. This study demonstrates the spatial and temporal consistencies and discrepancies between the AVHRR LTDR and MODIS MOD13C1 NDVI products in China, which could provide useful information for the choice of NDVI products in subsequent studies of vegetation dynamics. PMID:28587266

  10. Comparison and Evaluation of Annual NDVI Time Series in China Derived from the NOAA AVHRR LTDR and Terra MODIS MOD13C1 Products.

    PubMed

    Guo, Xiaoyi; Zhang, Hongyan; Wu, Zhengfang; Zhao, Jianjun; Zhang, Zhengxiang

    2017-06-06

    Time series of Normalized Difference Vegetation Index (NDVI) derived from multiple satellite sensors are crucial data to study vegetation dynamics. The Land Long Term Data Record Version 4 (LTDR V4) NDVI dataset was recently released at a 0.05 × 0.05° spatial resolution and daily temporal resolution. In this study, annual NDVI time series that are composited by the LTDR V4 and Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI datasets (MOD13C1) are compared and evaluated for the period from 2001 to 2014 in China. The spatial patterns of the NDVI generally match between the LTDR V4 and MOD13C1 datasets. The transitional zone between high and low NDVI values generally matches the boundary of semi-arid and sub-humid regions. A significant and high coefficient of determination is found between the two datasets according to a pixel-based correlation analysis. The spatially averaged NDVI of LTDR V4 is characterized by a much weaker positive regression slope relative to that of the spatially averaged NDVI of the MOD13C1 dataset because of changes in NOAA AVHRR sensors between 2005 and 2006. The measured NDVI values of LTDR V4 were always higher than that of MOD13C1 in western China due to the relatively lower atmospheric water vapor content in western China, and opposite observation appeared in eastern China. In total, 18.54% of the LTDR V4 NDVI pixels exhibit significant trends, whereas 35.79% of the MOD13C1 NDVI pixels show significant trends. Good agreement is observed between the significant trends of the two datasets in the Northeast Plain, Bohai Economic Rim, Loess Plateau, and Yangtze River Delta. By contrast, the datasets contrasted in northwestern desert regions and southern China. A trend analysis of the regression slope values according to the vegetation type shows good agreement between the LTDR V4 and MOD13C1 datasets. This study demonstrates the spatial and temporal consistencies and discrepancies between the AVHRR LTDR and MODIS MOD13C1 NDVI products in China, which could provide useful information for the choice of NDVI products in subsequent studies of vegetation dynamics.

  11. Soil moisture retrival from Sentinel-1 and Modis synergy

    NASA Astrophysics Data System (ADS)

    Gao, Qi; Zribi, Mehrez; Escorihuela, Maria Jose; Baghdadi, Nicolas

    2017-04-01

    This study presents two methodologies retrieving soil moisture from SAR remote sensing data. The study is based on Sentinel-1 data in the VV polarization, over a site in Urgell, Catalunya (Spain). In the two methodologies using change detection techniques, preprocessed radar data are combined with normalized difference vegetation index (NDVI) auxiliary data to estimate the mean soil moisture with a resolution of 1km. By modeling the relationship between the backscatter difference and NDVI, the soil moisture at a specific NDVI value is retrieved. The first algorithm is already developed on West Africa(Zribi et al., 2014) from ERS scatterometer data to estimate soil water status. In this study, it is adapted to Sentinel-1 data and take into account the high repetitiveness of data in optimizing the inversion approach. Another new method is developed based on the backscatter difference between two adjacent days of Sentinel-1 data w.r.t. NDVI, with smaller vegetation change, the backscatter difference is more sensitive to soil moisture. The proposed methodologies have been validated with the ground measurement in two demonstrative fields with RMS error about 0.05 (in volumetric moisture), and the coherence between soil moisture variations and rainfall events is observed. Soil moisture maps at 1km resolution are generated for the study area. The results demonstrate the potential of Sentinel-1 data for the retrieval of soil moisture at 1km or even better resolution.

  12. NDVI statistical distribution of pasture areas at different times in the Community of Madrid (Spain)

    NASA Astrophysics Data System (ADS)

    Martín-Sotoca, Juan J.; Saa-Requejo, Antonio; Díaz-Ambrona, Carlos G. H.; Tarquis, Ana M.

    2015-04-01

    The severity of drought has many implications for society, including its impacts on the water supply, water pollution, reservoir management and ecosystem. However, its impacts on rain-fed agriculture are especially direct. Because of the importance of drought, there have been many attempts to characterize its severity, resulting in the numerous drought indices that have been developed (Niemeyer 2008). 'Biomass index' based on satellite image derived Normalized Difference Vegetation Index (NDVI) has been used in countries like United States of America, Canada and Spain for pasture and forage crops for some years (Rao, 2010). This type of agricultural insurance is named as 'index-based insurance' (IBI). IBI is perceived to be substantially less costly to operate and manage than multiple peril insurance. IBI contracts pay indemnities based not on the actual yield (or revenue) losses experienced by the insurance purchaser but rather based on realized NDVI values (historical data) that is correlated with farm-level losses (Xiaohui Deng et al., 2008). Definition of when drought event occurs is defined on NDVI threshold values mainly based in statistical parameters, average and standard deviation that characterize a normal distribution. In this work a pasture area at the north of Community of Madrid (Spain) has been delimited. Then, NDVI historical data was reconstructed based on remote sensing imaging MODIS, with 500x500m2 resolution. A statistical analysis of the NDVI histograms at consecutives 46 intervals of that area was applied to search for the best statistical distribution based on the maximum likelihood criteria. The results show that the normal distribution is not the optimal representation when IBI is available; the implications in the context of crop insurance are discussed (Martín-Sotoca, 2014). References Kolli N Rao. 2010. Index based Crop Insurance. Agriculture and Agricultural Science Procedia 1, 193-203. Martín-Sotoca, J.J. (2014) Estructura Espacial de la Sequía en Pastos y sus Aplicaciones en el Seguro Agrario. Master Thesis, UPM (In Spanish). Niemeyer, S., 2008: New drought indices. First Int. Conf. on Drought Management: Scientific and Technological Innovations, Zaragoza, Spain, Joint Research Centre of the European Commission. [Available online at http://www.iamz.ciheam.org/medroplan/zaragoza2008/Sequia2008/Session3/S.Niemeyer.pdf.] Xiaohui Deng, Barry J. Barnett, Gerrit Hoogenboom, Yingzhuo Yu and Axel Garcia y Garcia 2008. Alternative Crop Insurance Indexes. Journal of Agricultural and Applied Economics, 40(1), 223-237. Acknowledgements First author acknowledges the Research Grant obtained from CEIGRAM in 2014

  13. Atmospheric effects on the NDVI - Strategies for its removal. [Normalized Difference Vegetation Index

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Holben, B. N.; Markham, B.; Gitelson, A.

    1992-01-01

    The compositing technique used to derive global vegetation index (NDVI) from the NOAA AVHRR radiances reduces the residual effect of water vapor and aerosol on the NDVI. The reduction in the atmospheric effect is shown using a comprehensive measured data set for desert conditions, and a simulation for grass with continental aerosol. A statistical analaysis of the probability of occurrence of aerosol optical thickness and precipitable water vapor measured in different climatic regimes is used for this simulation. It is concluded that for a long compositing period (e.g., 27 days), the residual aerosol optical thickness and precipitable water vapor are usually too small to be corrected. For a 9-day compositing, the residual average aerosol effect may be about twice the correction uncertainty. For Landsat TM or Earth Observing System Moderate Resolution Imaging Spectrometer (EOS-MODIS) data, the newly defined atmospherically resistant vegetation index (ARVI) is more promising than possible direct atmospheric correction schemes, except for heavy desert dust conditions.

  14. Data pre-processing: Stratospheric aerosol perturbing effect on the remote sensing of vegetation: Correction method for the composite NDVI after the Pinatubo eruption

    NASA Technical Reports Server (NTRS)

    Vermote, E.; Elsaleous, N.; Kaufman, Y. J.; Dutton, E.

    1994-01-01

    An operational stratospheric correction scheme used after the Mount Pinatubo (Phillipines) eruption (Jun. 1991) is presented. The stratospheric aerosol distribution is assumed to be only variable with latitude. Each 9 days the latitudinal distribution of the optical thickness is computed by inverting radiances observed in the NOAA AVHRR channel 1 (0.63 micrometers) and channel 2 (0.83 micrometers) over the Pacific Ocean. This radiance data set is used to check the validity of model used for inversion by checking consistency of the optical thickness deduced from each channel as well as optical thickness deduced from different scattering angles. Using the optical thickness profile previously computed and radiative transfer code assuming Lambertian boundary condition, each pixel of channel 1 and 2 are corrected prior to computation of NDVI (Normalized Difference Vegetation Index). Comparison between corrected, non corrected, and years prior to Pinatubo eruption (1989 to 1990) NDVI composite, shows the necessity and the accuracy of the operational correction scheme.

  15. Response of Vegetation Dynamics to Projected Climate Change based on NDVI Simulations using Stepwise Cluster Analysis in the Three-River Headwaters Region of China

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Lv, E.; Huang, Y.

    2016-12-01

    Located in the hinterland of the Qinghai-Tibetan Plateau, the Three-River Headwaters region (THR) features unique eco-environmental conditions and fragile ecosystems, and is very vulnerable to climate change. To investigate the effects of climate change on the ecosystem, the Normalized Difference Vegetation Index (NDVI) was employed as an indicator to reflect the vegetation dynamics in response to climate change. This study proposed a model based on Stepwise-cluster analysis to predict the temporal and spatial distributions of NDVI values for five future years according to Global Circulation Models (GCMs) climate projections under the RCP4.5 scenario. The obtained spatial results showed very good agreements between simulations and remote sensing observations of the NDVI value for both training and validation, and the developed model demonstrated its capability of predicting the monthly changes of NDVI through representing the relationships between it and various climatic factors, including remote sensed precipitation and temperature with no, 1 and 2-month lag period. The monthly average precipitation with one-month lag period was further found to be the most important climatic factor that drives the changes of NDVI in the THR. Compared with the values of NDVI in 2000 - 2013, the predicting results indicate the values of NDVI for the THR in growing season (May to October) will decrease by 15.74% in the next 100 years, suggesting that the THR is going to experience an environmental degradation. The results also show that precipitation is the primary driving factor relative to temperature, especially the one-month-lag precipitation. Findings from this study would help policy makers draw up effective water resource and eco-environmental management strategies for adapting to climate change in the THR.

  16. An analysis of relationships among climate forcing and time-integrated NDVI of grasslands over the U.S. northern and central Great Plains

    USGS Publications Warehouse

    Yang, Limin; Wylie, Bruce K.; Tieszen, Larry L.; Reed, Bradley C.

    1998-01-01

    Time-integrated normalized difference vegetation index (TI NDVI) derived from the multitemporal satellite imagery (1989–1993) was used as a surrogate for primary production to investigate climate impacts on grassland performance for central and northern Great Plains grasslands. Results suggest that spatial and temporal variability in growing season precipitation, potential evapotranspiration, and growing degree days are the most important controls on grassland performance and productivity. When TI NDVI and climate data of all grassland land cover classes were examined as a whole, a statistical model showed significant positive correlation between the TI NDVI and accumulated spring and summer precipitation, and a negative correlation between TI NDVI and spring potential evapotranspiration. The coefficient of determination (R2) of the general model was 0.45. When the TI NDVI-climate relationship was examined by individual land cover type, the relationship was generally better defined in terms of the variance accounted for by class-specific models . The photosynthetic pathway is an important determinant of grassland performance with northern mixed prairie (mixture of C3 and C4 grassland) TI NDVI affected by both thermal and moisture conditions during the growing season while southern plains grasslands (primarily C4grassland) were predominantly influenced by spring and summer precipitation. Grassland land cover classes associated with sandy soils also demonstrated a strong relationship between TI NDVI and growing season rainfall. Significant impact of interannual climate variability on the TI NDVI–climate relationship was also observed. The study suggests an integrated approach involving numerical models, satellite remote sensing, and field observations to monitor grassland ecosystem dynamics on a regional scale.

  17. Automated Land Cover Change Detection and Mapping from Hidden Parameter Estimates of Normalized Difference Vegetation Index (NDVI) Time-Series

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Banerjee, A.; Gupta, S. K. S.; Christensen, P. R.; Papandreou-Suppappola, A.

    2017-12-01

    Multitemporal observations acquired frequently by satellites with short revisit periods such as the Moderate Resolution Imaging Spectroradiometer (MODIS), is an important source for modeling land cover. Due to the inherent seasonality of the land cover, harmonic modeling reveals hidden state parameters characteristic to it, which is used in classifying different land cover types and in detecting changes due to natural or anthropogenic factors. In this work, we use an eight day MODIS composite to create a Normalized Difference Vegetation Index (NDVI) time-series of ten years. Improved hidden parameter estimates of the nonlinear harmonic NDVI model are obtained using the Particle Filter (PF), a sequential Monte Carlo estimator. The nonlinear estimation based on PF is shown to improve parameter estimation for different land cover types compared to existing techniques that use the Extended Kalman Filter (EKF), due to linearization of the harmonic model. As these parameters are representative of a given land cover, its applicability in near real-time detection of land cover change is also studied by formulating a metric that captures parameter deviation due to change. The detection methodology is evaluated by considering change as a rare class problem. This approach is shown to detect change with minimum delay. Additionally, the degree of change within the change perimeter is non-uniform. By clustering the deviation in parameters due to change, this spatial variation in change severity is effectively mapped and validated with high spatial resolution change maps of the given regions.

  18. Variation of Vegetation Ecological Water Consumption and Its Response to Vegetation Coverage Changes in the Rocky Desertification Areas in South China

    PubMed Central

    Zhou, Jinxing; Guo, Hongyan; Cui, Ming; Liu, Yuguo; Ning, Like; Tang, Fukai

    2016-01-01

    Over the past several decades, rocky desertification has led to severe ecological problems in karst areas in South China. After a rocky desertification treatment project was completed, the vegetation coverage changed greatly and, consequently, increased the ecology water consumption (approximately equal to the actual evapotranspiration) of the regional vegetation. Thus, it intensified the regional water stresses. This study explored the changes in the actual evapotranspiration (ETa) response to the vegetation coverage changes in the rocky desertification areas in South China based on the precipitation (P), potential evapotranspiration (ETp) and NDVI (the normalized difference vegetation index) datasets. The revised Bagrov model was used to simulate the actual evapotranspiration changes with the supposed increasing NDVI. The results indicated that the average NDVI value was lower when the rocky desertification was more severe. The ETa, evapotranspiration efficiency (ETa/ETp) and potential humidity (P/ETp) generally increased with the increasing NDVI. The sensitivity of the ETa response to vegetation coverage changes varied due to different precipitation conditions and different rocky desertification severities. The ETa was more sensitive under drought conditions. When a drought occurred, the ETa exhibited an average increase of 40~60 mm with the NDVI increasing of 0.1 in the rocky desertification areas. Among the 5 different severity categories of rocky desertification, the ETa values’ responses to NDVI changes were less sensitive in the severe rocky desertification areas but more sensitive in the extremely and potential rocky desertification areas. For example, with the NDVI increasing of 0.025, 0.05, 0.075, and 0.1, the corresponding ETa changes increased by an average of 2.64 mm, 10.62 mm, 19.19 mm, and 27.58 mm, respectively, in severe rocky desertification areas but by 4.94 mm, 14.99 mm, 26.80, and 37.13 mm, respectively, in extremely severe rocky desertification areas. Understanding the vegetation ecological water consumption response to the vegetation coverage changes is essential for the vegetation restoration and water stresses mitigation in rocky desertification areas. PMID:27798642

  19. Variation of Vegetation Ecological Water Consumption and Its Response to Vegetation Coverage Changes in the Rocky Desertification Areas in South China.

    PubMed

    Wan, Long; Tong, Jing; Zhou, Jinxing; Guo, Hongyan; Cui, Ming; Liu, Yuguo; Ning, Like; Tang, Fukai

    2016-01-01

    Over the past several decades, rocky desertification has led to severe ecological problems in karst areas in South China. After a rocky desertification treatment project was completed, the vegetation coverage changed greatly and, consequently, increased the ecology water consumption (approximately equal to the actual evapotranspiration) of the regional vegetation. Thus, it intensified the regional water stresses. This study explored the changes in the actual evapotranspiration (ETa) response to the vegetation coverage changes in the rocky desertification areas in South China based on the precipitation (P), potential evapotranspiration (ETp) and NDVI (the normalized difference vegetation index) datasets. The revised Bagrov model was used to simulate the actual evapotranspiration changes with the supposed increasing NDVI. The results indicated that the average NDVI value was lower when the rocky desertification was more severe. The ETa, evapotranspiration efficiency (ETa/ETp) and potential humidity (P/ETp) generally increased with the increasing NDVI. The sensitivity of the ETa response to vegetation coverage changes varied due to different precipitation conditions and different rocky desertification severities. The ETa was more sensitive under drought conditions. When a drought occurred, the ETa exhibited an average increase of 40~60 mm with the NDVI increasing of 0.1 in the rocky desertification areas. Among the 5 different severity categories of rocky desertification, the ETa values' responses to NDVI changes were less sensitive in the severe rocky desertification areas but more sensitive in the extremely and potential rocky desertification areas. For example, with the NDVI increasing of 0.025, 0.05, 0.075, and 0.1, the corresponding ETa changes increased by an average of 2.64 mm, 10.62 mm, 19.19 mm, and 27.58 mm, respectively, in severe rocky desertification areas but by 4.94 mm, 14.99 mm, 26.80, and 37.13 mm, respectively, in extremely severe rocky desertification areas. Understanding the vegetation ecological water consumption response to the vegetation coverage changes is essential for the vegetation restoration and water stresses mitigation in rocky desertification areas.

  20. Study of Maowusu Sandy Land Vegetation Coverage Change Based on Modis Ndvi

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Liu, H.; Lin, Y.; Han, R.

    2018-04-01

    This paper selected 2006-2016 MODIS NDVI data with a spatial resolution of 500m and time resolution of 16d, got the 11 years' time series NDVI data of Maowusu sandy land through mosaicking, projection transformation, cutting process in batch. Analysed the spatial and temporal distribution and variation characteristics of vegetation cover in year, season and month time scales by maximum value composite, and unary linear regression analysis. Then, we combined the meteorological data of 33 sites around the sandy area, analysed the response characteristics of vegetation cover change to temperature and precipitation through Pearson correlation coefficient. Studies have shown that: (1) The NDVI value has a stable increase trend, which rate is 0.0075 / a. (2) The vegetation growth have significantly difference in four seasons, the NDVI value of summer > autumn > spring > winter. (3) The NDVI value change trend is conformed to the gauss normal distribution in a year, and it comes to be largest in August, its green season is in April, and yellow season is in the middle of November, the growth period is about 220 d. (4) The vegetation has a decreasing trend from the southeast to the northwest, most part is slightly improved, and Etuokeqianqi improved significantly. (5) The correlation indexes of annual NDVI with temperature and precipitation are -0.2178 and 0.6309, the vegetation growth is mainly affected by precipitation. In this study, a complete vegetation cover analysis and evaluation model for sandy land is established. It has important guiding significance for the sand ecological environment protection.

  1. Development of an Optical Device to Investigatechlorophyll Content of Tomato Leaves

    NASA Astrophysics Data System (ADS)

    Cui, Di; Li, Minzan; Li, Xiuhua

    Chlorophyll content is an important indication for evaluating crop growth status and predicting crop yield. The NDVI (Normalized Difference Vegetation Index) is commonly used as an indicator in practical crop healthy monitoring. Hence, a spectroscopy-based device for indirectly measuring crop growth conditions in terms of NDVI is developed. This device consists of four channels: two are designed to measure the intensity of the sunlight and the other two are used to measure the reflected light from the crop canopy at the same time. An electronic control unit was designed to control the sensing and data recording processes, as well as to calculate the NDVI based on the sensed data. The measurable two wavelengths are 610 nm and 1220 nm. A series validation tests, comparing the measurement result against spectroradiometer readings, are conducted to evaluate the performance of the device. Leaf samples are collected to measure chlorophyll contents in laboratory. The correlation coefficient between the NDVI readings from the developed device and the chlorophyll content data measured by the UV-VIS Spectrophotometer reaches 0.81, which shows that the device can be used in practical crop management.

  2. A MODIS-based begetation index climatology

    USDA-ARS?s Scientific Manuscript database

    Passive microwave soil moisture algorithms must account for vegetation attenuation of the signal in the retrieval process. One approach to accounting for vegetation is to use vegetation indices such as the Normalized Difference Vegetation Index (NDVI) to estimate the vegetation optical depth. The pa...

  3. Classification and Accuracy Assessment for Coarse Resolution Mapping within the Great Lakes Basin, USA

    EPA Science Inventory

    This study applied a phenology-based land-cover classification approach across the Laurentian Great Lakes Basin (GLB) using time-series data consisting of 23 Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) composite images (250 ...

  4. Sensitivity analysis of the Commonly Used Drought Indices on the different land use Types - Case Study over Turkey

    NASA Astrophysics Data System (ADS)

    Ersoy, E. N.; Hüsami Afşar, M.; Bulut, B.; Onen, A.; Yilmaz, M. T.

    2017-12-01

    Droughts are climatic phenomenon that may impact large and small regions alike for long or short time periods and influence society in terms of industrial, agricultural, domestic and many more aspects. The characteristics of the droughts are commonly investigated using indices like Standardized Precipitation Index (SPI), Palmer Drought Severity Index (PDSI), Standardized Precipitation Evapotranspiration Index (SPEI) and Normalized Difference Vegetation Index (NDVI). On the other hand, these indices may not necessarily yield similar performance over different vegetation types. The aim is to analyze the sensitivity of drought indices (SPI, SPEI, PDSI) to vegetation types over different climatic regions in Turkey. Here the magnitude of the drought severity is measured using MODIS NDVI data, while the vegetation type (e.g., non-irrigated arable lands, vineyards, fruit trees and berry plantations, olive groves, pastures, land principally occupied by agriculture) information is obtained using CORINE land cover classification. This study has compared the drought characteristics and vegetation conditions on different land use types using remotely sensed datasets (e.g., CORINE land use data, MODIS NDVI), and commonly used drought indices between 2000 and 2016 using gauge based precipitation and temperature measurements.

  5. NDVI dynamics of the taiga zone in connection with modern climate changes

    NASA Astrophysics Data System (ADS)

    Bobkov, A.; Panidi, E.; Torlopova, N.; Tsepelev, V.

    2015-04-01

    This research is dedicated to the investigation of the relations between the XXI century climate changes and Normalized Difference Vegetation Index (NDVI) variability of the taiga zone. For this purposes was used the observations of vegetation variability on the test area located nearby Syktyvkar city (Komi Republic, Russia), 16-day averages of NDVI data derived from TERRA/MODIS space imagery (spatial resolution is about 250 meters), and the air temperature and precipitation observations from Syktyvkar meteorological station. The research results confirmed the statistically significant positive correlation between NDVI and air temperature for all vegetation types of the test area, for both spring and autumn seasons. The weakest correlation was found for coniferous forest, namely, pine forest on poor soils, and the strongest correlation was found for meadows and bogs. Additionally the map of NDVI trends of the test area shows that the sectors of greatest positive trend located on the territories with non-forest cover, and as a result, the positive trend of air temperature is indicated most brightly on vegetation of non-forest lands. Thereby these lands can serve as climate changes indicator in the investigated region. The study was partially supported by Russian Foundation for Basic Research (RFBR), research project No. 14-05-00858 a.

  6. Drought assessment using multi-sattelite remote sensing in Brazil

    NASA Astrophysics Data System (ADS)

    Rebello, V.; Getirana, A.; Rotunno Filho, O. C.; Lakshmi, V.

    2016-12-01

    In this study, we investigated long-term Terra-MODIS Normalized Difference Vegetation Index (NDVI) response to a recent drought period in Brazil's Southeast (SE) and Northeast (NE) regions between 2012 and 2015. An analysis of precipitation anomaly from 1979 to 2015 suggests a dry period over NE in 2012-2013 and SE in 2014-2015. Through EOF analysis it was possible to note that the first two modes account for 76% of variability and depict the vegetation seasonal cycle. Moreover, the time series of the respective modes show a deviation of NDVI in 2012 when both regions had negative precipitation anomaly. The other EOF modes show a negative trend from 2012 until 2015 mainly in northeastern Brazil in the semiarid region named Caatinga. In order to examine the influence of hydro-meterological variables on vegetation changes, the SVD technique was used to identify coupled patterns between NDVI and precipitation, soil moisture and evapotranspiration. SVD results showed that the highest correlations are achieved between NDVI and precipitation, 0.81 and 0.83, respectively in the first two modes. Although less correlated than precipitation, significant coupling between NDVI and evapotranspiration was found for the second and third modes, the correlation between their expanded coefficients was respectively 0.82 and 0.90.

  7. A spatial regression procedure for evaluating the relationship between AVHRR-NDVI and climate in the northern Great Plains

    USGS Publications Warehouse

    Ji, Lei; Peters, Albert J.

    2004-01-01

    The relationship between vegetation and climate in the grassland and cropland of the northern US Great Plains was investigated with Normalized Difference Vegetation Index (NDVI) (1989–1993) images derived from the Advanced Very High Resolution Radiometer (AVHRR), and climate data from automated weather stations. The relationship was quantified using a spatial regression technique that adjusts for spatial autocorrelation inherent in these data. Conventional regression techniques used frequently in previous studies are not adequate, because they are based on the assumption of independent observations. Six climate variables during the growing season; precipitation, potential evapotranspiration, daily maximum and minimum air temperature, soil temperature, solar irradiation were regressed on NDVI derived from a 10-km weather station buffer. The regression model identified precipitation and potential evapotranspiration as the most significant climatic variables, indicating that the water balance is the most important factor controlling vegetation condition at an annual timescale. The model indicates that 46% and 24% of variation in NDVI is accounted for by climate in grassland and cropland, respectively, indicating that grassland vegetation has a more pronounced response to climate variation than cropland. Other factors contributing to NDVI variation include environmental factors (soil, groundwater and terrain), human manipulation of crops, and sensor variation.

  8. Vegetation greenness trend (2000 to 2009) and the climate controls in the Qinghai-Tibetan Plateau

    USGS Publications Warehouse

    Zhang, Li; Guo, Huadong; Ji, Lei; Lei, Liping; Wang, Cuizhen; Yan, Dongmei; Li, Bin; Li, Jing

    2013-01-01

    The Qinghai-Tibetan Plateau has been experiencing a distinct warming trend, and climate warming has a direct and quick impact on the alpine grassland ecosystem. We detected the greenness trend of the grasslands in the plateau using Moderate Resolution Imaging Spectroradiometer data from 2000 to 2009. Weather station data were used to explore the climatic drivers for vegetation greenness variations. The results demonstrated that the region-wide averaged normalized difference vegetation index (NDVI) increased at a rate of 0.036  yr−1. Approximately 20% of the vegetation areas, which were primarily located in the northeastern plateau, exhibited significant NDVI increase trend (p-value <0.05). Only 4% of the vegetated area showed significant decrease trends, which were mostly in the central and southwestern plateau. A strong positive relationship between NDVI and precipitation, especially in the northeastern plateau, suggested that precipitation was a favorable factor for the grassland NDVI. Negative correlations between NDVI and temperature, especially in the southern plateau, indicated that higher temperature adversely affected the grassland growth. Although a warming climate was expected to be beneficial to the vegetation growth in cold regions, the grasslands in the central and southwestern plateau showed a decrease in trends influenced by increased temperature coupled with decreased precipitation.

  9. Spatiotemporal dynamics of grassland aboveground biomass on the Qinghai-Tibet Plateau based on validated MODIS NDVI.

    PubMed

    Liu, Shiliang; Cheng, Fangyan; Dong, Shikui; Zhao, Haidi; Hou, Xiaoyun; Wu, Xue

    2017-06-23

    Spatiotemporal dynamics of aboveground biomass (AGB) is a fundamental problem for grassland environmental management on the Qinghai-Tibet Plateau (QTP). Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data can feasibly be used to estimate AGB at large scales, and their precise validation is necessary to utilize them effectively. In our study, the clip-harvest method was used at 64 plots in QTP grasslands to obtain actual AGB values, and a handheld hyperspectral spectrometer was used to calculate field-measured NDVI to validate MODIS NDVI. Based on the models between NDVI and AGB, AGB dynamics trends during 2000-2012 were analyzed. The results showed that the AGB in QTP grasslands increased during the study period, with 70% of the grasslands undergoing increases mainly in the Qinghai Province. Also, the meadow showed a larger increasing trend than steppe. Future AGB dynamic trends were also investigated using a combined analysis of the slope values and the Hurst exponent. The results showed high sustainability of AGB dynamics trends after the study period. Predictions indicate 60% of the steppe and meadow grasslands would continue to increase in AGB, while 25% of the grasslands would remain in degradation, with most of them distributing in Tibet.

  10. Greenup and evapotranspiration following the Minute 319 pulse flow to Mexico: An analysis using Landsat 8 Normalized Difference Vegetation Index (NDVI) data

    USGS Publications Warehouse

    Jarchow, Christopher J.; Nagler, Pamela L.; Glenn, Edward P.

    2017-01-01

    In the southwestern U.S., many riparian ecosystems have been altered by dams, water diversions, and other anthropogenic activities. This is particularly true of the Colorado River, where numerous dams and agricultural diversions have affected this water course, especially south of the U.S.–Mexico border. In the spring of 2014, 130 million cubic meters of water was released to the lower Colorado River Delta in Mexico. To understand the impact of this pulse flow release on vegetation in the delta’s riparian corridor, we analyzed a modified form of Landsat 8 Operational Land Imager (OLI) Normalized Difference Vegetation Index (NDVI*) data. We assessed greenup during the growing period and estimated actual evapotranspiration (ETa) for the period prior to (yr. 2013) and following (i.e., yr. 2014 and 2015) the pulse flow. We found a significant increase in NDVI* from 2013 to 2014 (P < 0.05) and a decrease from 2014 to 2015; however, 2015 levels were still significantly higher than in 2013. ETa was also higher in 2014 vs. 2013, with an estimated 74.5 million cubic meters in 2013 and 88.9 in 2014. The most intense greening occurred in the zone of inundation but also extended into the non-flooded part of the riparian zone, indicating replenishment of groundwater. These findings suggest the peak response by vegetation to the flow lasted about one year, followed by a decrease in NDVI*. As a long term solution to the declining condition of vegetation, additional pulse releases are likely needed for restoration and survival of riparian plant communities in the Colorado River Delta.

  11. Trend Patterns of Vegetative Coverage and Their Underlying Causes in the Deserts of Northwest China over 1982 – 2008

    PubMed Central

    Zhang, Tianyi; Wang, Hesong

    2015-01-01

    We identified the spatiotemporal patterns of the Normalized Difference Vegetation Index (NDVI) for the years 1982–2008 in the desert areas of Northwest China and quantified the impacts of climate and non-climate factors on NDVI changes. The results indicate that although the mean NDVI has improved in 24.7% of the study region; 16.3% among the region has been stagnating in recent years and only 8.4% had a significantly increasing trend. Additionally, 45.3% of the region has maintained a stable trend over the study period and 30.0% has declined. A multiple regression model suggests that a wetter climate (quantified by the Palmer Drought Severity Index, PDSI) is associated with higher NDVI in most areas (18.1% of significance) but these historical changes in PDSI only caused an average improvement of approximately 0.4% over the study region. Contrasting the regression results under different trend patterns, no significant differences in PDSI impacts were detected among the four trend patterns. Therefore, we conclude that climate is not the primary driver for vegetative coverage in Northwest China. Future studies will be required to identify the impacts of specific non-climatic factors on vegetative coverage based on high-resolution data, which will be beneficial in creating an effective strategy to combat the recent desertification trend in China. PMID:25961563

  12. Study of atmospheric and bidirectional effects on surface reflectance and vegetation index time series: Application to NOAA AVHRR and preparation for future space missions

    NASA Technical Reports Server (NTRS)

    Frouin, Robert

    1993-01-01

    The objectives of the investigation, namely 'to characterize the atmospheric and directional effects on surface reflectance and vegetation index using the First International Satellite Cloud Climatology Project (ISLCSP) Field Experiment (FIFE) data set, develop new algorithms to obtain better Advanced Very High Resolution Radiometer (AVHRR) indices, and define possible improvements for future satellite missions', were addressed in three separate, yet complementary studies. First, it was shown, from theoretical calculations, that visible and near infrared reflectances combined linearly at optimum (one or two) viewing angles relate linearly to the fraction of photosynthetically available radiation absorbed by plants, f(sub par), can be used independently of the type of foliage and substrate, eliminate the effects of sub-pixel spatial heterogeneity, and improve the accuracy of the f(sub par) estimates when compared to the Normalized Difference Vegetation Index, NDVI. Second, it was demonstrated that NDVI, even though it is not a linear combination of radiances or reflectances, can be spatially integrated without significant loss of information from scales of 300 to 1000 m. Third, AVHRR visible and near-infrared reflectances over the FIFE site, separating temporal and bidirectional components and determining the model parameters through an original iterative scheme was successfully modeled. It appears that NDVI generated from the top-of-atmosphere reflectances normalized by the bidirectional effects (as determined in the scheme) is a better vegetation index than maximum NDVI. Details about the three studies are presented.

  13. Global assessment of predictability of water availability: A bivariate probabilistic Budyko analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weiguang; Fu, Jianyu

    2018-02-01

    Estimating continental water availability is of great importance for water resources management, in terms of maintaining ecosystem integrity and sustaining society development. To more accurately quantify the predictability of water availability, on the basis of univariate probabilistic Budyko framework, a bivariate probabilistic Budyko approach was developed using copula-based joint distribution model for considering the dependence between parameter ω of Wang-Tang's equation and the Normalized Difference Vegetation Index (NDVI), and was applied globally. The results indicate the predictive performance in global water availability is conditional on the climatic condition. In comparison with simple univariate distribution, the bivariate one produces the lower interquartile range under the same global dataset, especially in the regions with higher NDVI values, highlighting the importance of developing the joint distribution by taking into account the dependence structure of parameter ω and NDVI, which can provide more accurate probabilistic evaluation of water availability.

  14. Dynamics of a fringe mangrove forest detected by Landsat images in the Mekong delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Fagherazzi, S.; Nardin, W.; Woodcock, C. E.; Locatelli, S.; Rulli, M. C.; Pasquarella, V. J.

    2016-02-01

    Mangrove forests dominate many tropical coastlines and are one of the most bio-diverse and productive environments on Earth. However, little is known of the large scale dynamics of mangrove canopies and how they colonize intertidal areas. Here we focus on a fringe mangrove forest located in the Mekong delta, Vietnam, a fast prograding shoreline where mangroves are encroaching tidal flats. The spatial and temporal evolution of the mangrove canopy is studied using a time series of Landsat images spanning two decades as well as Shuttle Radar Topography Mission (SRTM) elevation data. Our results show that fast mangrove expansion is followed by an increase in Normalized Difference Vegetation Index (NDVI) in the newly established canopy. We observe two different dynamics of the mangrove fringe: near the mouth of the rivers where the fringe boundary is linear the canopy expands uniformly on the tidal flats with a high colonization rate and high NDVI values. Far from the river mouths the fringe boundary is highly irregular and mangroves expansion in characterized by sparse vegetated patches displaying low NDVI values. We conclude that high NDVI values and a regular vegetation-water interface are indicative of stable mangrove canopies undergoing expansion, and therefore of resilient coastlines. In the Mekong delta these area are more likely located near a river mouth.

  15. Strategy for the development of a smart NDVI camera system for outdoor plant detection and agricultural embedded systems.

    PubMed

    Dworak, Volker; Selbeck, Joern; Dammer, Karl-Heinz; Hoffmann, Matthias; Zarezadeh, Ali Akbar; Bobda, Christophe

    2013-01-24

    The application of (smart) cameras for process control, mapping, and advanced imaging in agriculture has become an element of precision farming that facilitates the conservation of fertilizer, pesticides, and machine time. This technique additionally reduces the amount of energy required in terms of fuel. Although research activities have increased in this field, high camera prices reflect low adaptation to applications in all fields of agriculture. Smart, low-cost cameras adapted for agricultural applications can overcome this drawback. The normalized difference vegetation index (NDVI) for each image pixel is an applicable algorithm to discriminate plant information from the soil background enabled by a large difference in the reflectance between the near infrared (NIR) and the red channel optical frequency band. Two aligned charge coupled device (CCD) chips for the red and NIR channel are typically used, but they are expensive because of the precise optical alignment required. Therefore, much attention has been given to the development of alternative camera designs. In this study, the advantage of a smart one-chip camera design with NDVI image performance is demonstrated in terms of low cost and simplified design. The required assembly and pixel modifications are described, and new algorithms for establishing an enhanced NDVI image quality for data processing are discussed.

  16. A comparison of spectral mixture analysis an NDVI for ascertaining ecological variables

    NASA Technical Reports Server (NTRS)

    Wessman, Carol A.; Bateson, C. Ann; Curtiss, Brian; Benning, Tracy L.

    1993-01-01

    In this study, we compare the performance of spectral mixture analysis to the Normalized Difference Vegetation Index (NDVI) in detecting change in a grassland across topographically-induced nutrient gradients and different management schemes. The Konza Prairie Research Natural Area, Kansas, is a relatively homogeneous tallgrass prairie in which change in vegetation productivity occurs with respect to topographic positions in each watershed. The area is the site of long-term studies of the influence of fire and grazing on tallgrass production and was the site of the First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) from 1987 to 1989. Vegetation indices such as NDVI are commonly used with imagery collected in few (less than 10) spectral bands. However, the use of only two bands (e.g. NDVI) does not adequately account for the complex of signals making up most surface reflectance. Influences from background spectral variation and spatial heterogeneity may confound the direct relationship with biological or biophysical variables. High dimensional multispectral data allows for the application position of techniques such as derivative analysis and spectral curve fitting, thereby increasing the probability of successfully modeling the reflectance from mixed surfaces. The higher number of bands permits unmixing of a greater number of surface components, separating the vegetation signal for further analyses relevant to biological variables.

  17. Strategy for the Development of a Smart NDVI Camera System for Outdoor Plant Detection and Agricultural Embedded Systems

    PubMed Central

    Dworak, Volker; Selbeck, Joern; Dammer, Karl-Heinz; Hoffmann, Matthias; Zarezadeh, Ali Akbar; Bobda, Christophe

    2013-01-01

    The application of (smart) cameras for process control, mapping, and advanced imaging in agriculture has become an element of precision farming that facilitates the conservation of fertilizer, pesticides, and machine time. This technique additionally reduces the amount of energy required in terms of fuel. Although research activities have increased in this field, high camera prices reflect low adaptation to applications in all fields of agriculture. Smart, low-cost cameras adapted for agricultural applications can overcome this drawback. The normalized difference vegetation index (NDVI) for each image pixel is an applicable algorithm to discriminate plant information from the soil background enabled by a large difference in the reflectance between the near infrared (NIR) and the red channel optical frequency band. Two aligned charge coupled device (CCD) chips for the red and NIR channel are typically used, but they are expensive because of the precise optical alignment required. Therefore, much attention has been given to the development of alternative camera designs. In this study, the advantage of a smart one-chip camera design with NDVI image performance is demonstrated in terms of low cost and simplified design. The required assembly and pixel modifications are described, and new algorithms for establishing an enhanced NDVI image quality for data processing are discussed. PMID:23348037

  18. Monitoring pasture variability: optical OptRx(®) crop sensor versus Grassmaster II capacitance probe.

    PubMed

    Serrano, João M; Shahidian, Shakib; Marques da Silva, José Rafael

    2016-02-01

    Estimation of pasture productivity is an important step for the farmer in terms of planning animal stocking, organizing animal lots, and determining supplementary feeding needs throughout the year. The main objective of this work was to evaluate technologies which have potential for monitoring aspects related to spatial and temporal variability of pasture green and dry matter yield (respectively, GM and DM, in kg/ha) and support to decision making for the farmer. Two types of sensors were evaluated: an active optical sensor ("OptRx(®)," which measures the NDVI, "Normalized Difference Vegetation Index") and a capacitance probe ("GrassMaster II" which estimates plant mass). The results showed the potential of NDVI for monitoring the evolution of spatial and temporal patterns of vegetative growth of biodiverse pasture. Higher NDVI values were registered as pasture approached its greatest vegetative vigor, with a significant fall in the measured NDVI at the end of Spring, when the pasture began to dry due to the combination of higher temperatures and lower soil moisture content. This index was also effective for identifying different plant species (grasses/legumes) and variability in pasture yield. Furthermore, it was possible to develop calibration equations between the capacitance and the NDVI (R(2) = 0.757; p < 0.01), between capacitance and GM (R(2) = 0.799; p < 0.01), between capacitance and DM (R(2) =0.630; p < 0.01), between NDVI and GM (R(2) = 0.745; p < 0.01), and between capacitance and DM (R(2) = 0.524; p < 0.01). Finally, a direct relationship was obtained between NDVI and pasture moisture content (PMC, in %) and between capacitance and PMC (respectively, R(2) = 0.615; p < 0.01 and R(2) = 0.561; p < 0.01) in Alentejo dryland farming systems.

  19. Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere

    DOE PAGES

    Tan, Jianguang; Piao, Shilong; Chen, Anping; ...

    2014-08-27

    Over the last century the Northern Hemisphere has experienced rapid climate warming, but this warming has not been evenly distributed seasonally, as well as diurnally. The implications of such seasonal and diurnal heterogeneous warming on regional and global vegetation photosynthetic activity, however, are still poorly understood. Here, we investigated for different seasons how photosynthetic activity of vegetation correlates with changes in seasonal daytime and night-time temperature across the Northern Hemisphere (>30°N), using Normalized Difference Vegetation Index (NDVI) data from 1982 to 2011 obtained from the Advanced Very High Resolution Radiometer (AVHRR). Our analysis revealed some striking seasonal differences in themore » response of NDVI to changes in day- versus night-time temperatures. For instance, while higher daytime temperature (T max) is generally associated with higher NDVI values across the boreal zone, the area exhibiting a statistically significant positive correlation between T max and NDVI is much larger in spring (41% of area in boreal zone – total area 12.6 × 10 6 km 2) than in summer and autumn (14% and 9%, respectively). In contrast to the predominantly positive response of boreal ecosystems to changes in T max, increases in T max tended to negatively influence vegetation growth in temperate dry regions, particularly during summer. Changes in night-time temperature (T min) correlated negatively with autumnal NDVI in most of the Northern Hemisphere, but had a positive effect on spring and summer NDVI in most temperate regions (e.g., Central North America and Central Asia). Such divergent covariance between the photosynthetic activity of Northern Hemispheric vegetation and day- and night-time temperature changes among different seasons and climate zones suggests a changing dominance of ecophysiological processes across time and space. Lastly, understanding the seasonally different responses of vegetation photosynthetic activity to diurnal temperature changes, which have not been captured by current land surface models, is important for improving the performance of next generation regional and global coupled vegetation-climate models« less

  20. Estimating carbon fluxes on small rotationally grazed pastures

    USDA-ARS?s Scientific Manuscript database

    Satellite-based Normalized Difference Vegetation Index (NDVI) data have been extensively used for estimating gross primary productivity (GPP) and yield of grazing lands throughout the world. Large-scale estimates of GPP are a necessary component of efforts to monitor the soil carbon balance of grazi...

  1. A Physically-Based Drought Product Using Thermal Remote Sensing of Evapotranspiration

    USDA-ARS?s Scientific Manuscript database

    Thermal infrared (TIR) remote sensing of land-surface temperature (LST) provides valuable information about the sub-surface moisture status. While empirical indices measuring anomalies in LST and vegetation amount (e.g., as quantified by the Normalized Difference Vegetation Index; NDVI) have demonst...

  2. Geomorphology and reflectance patterns of vegetation-covered dunes at the Tsodilo Hills, north-west Botswana

    NASA Technical Reports Server (NTRS)

    Jacobberger, P. A.; Hooper, D. M.

    1991-01-01

    Seasonal reflectance variations in semigrid environments provide a means of assessing vegetation health and density as well as monitoring landform processes. Multitemporal Landsat Thematic Mapper scenes with field measurements are used to map geomorphology and vegetation density in a stabilized dune environment and to measure seasonal reflectance changes for a series of ten geomorphological and vegetation units on the Kalahari-age linear dunes. Units were chosen based on differences in landform and proportion of trees, forbs and bare soil. Reflectance curves and normalized-difference vegetation indices (NDVI) show that dune crests have the strongest seasonal variability in color and brightness. The geomorphological link with reflectance and NDVI values are linked to biomass production and zoning of vegetation with slope, drainage and subtle soil differences.

  3. Advances in Remote Sensing of Vegetation Merging NDVI, Soil Moisture, and Chlorophyll Fluorescence

    NASA Astrophysics Data System (ADS)

    Tucker, Compton

    2016-04-01

    I will describe an advance in remote sensing of vegetation in the time domain that combines simultaneous measurements of the normalized difference vegetation index, soil moisture, and chlorophyll fluorescence, all from different satellite sensors but acquired for the same areas at the same time step. The different sensor data are MODIS NDVI data from both Terra and Aqua platforms, soil moisture data from SMOS & SMP (aka SMAP but with only the passive radiometer), and chlorophyll fluorescence data from GOME-2. The complementary combination of these data provide important crop yield information for agricultural production estimates at critical phenological times in the growing season, provide a scientific basis to map land degradation, and enable quantitative determination of the end of the growing season in temperate zones.

  4. NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra.

    PubMed

    Sweet, Shannan K; Asmus, Ashley; Rich, Matthew E; Wingfield, John; Gough, Laura; Boelman, Natalie T

    2015-04-01

    The physical and biological responses to rapid arctic warming are proving acute, and as such, there is a need to monitor, understand, and predict ecological responses over large spatial and temporal scales. The use of the normalized difference vegetation index (NDVI) acquired from airborne and satellite sensors addresses this need, as it is widely used as a tool for detecting and quantifying spatial and temporal dynamics of tundra vegetation cover, productivity, and phenology. Such extensive use of the NDVI to quantify vegetation characteristics suggests that it may be similarly applied to characterizing primary and secondary consumer communities. Here, we develop empirical models to predict canopy arthropod biomass with canopy-level measurements of the NDVI both across and within distinct tundra vegetation communities over four growing seasons in the Arctic Foothills region of the Brooks Range, Alaska, USA. When canopy arthropod biomass is predicted with the NDVI across all four growing seasons, our overall model that includes all four vegetation communities explains 63% of the variance in canopy arthropod biomass, whereas our models specific to each of the four vegetation communities explain 74% (moist tussock tundra), 82% (erect shrub tundra), 84% (riparian shrub tundra), and 87% (dwarf shrub tundra) of the observed variation in canopy arthropod biomass. Our field-based study suggests that measurements of the NDVI made from air- and spaceborne sensors may be able to quantify spatial and temporal variation in canopy arthropod biomass at landscape to regional scales.

  5. Deriving crop calendar using NDVI time-series

    NASA Astrophysics Data System (ADS)

    Patel, J. H.; Oza, M. P.

    2014-11-01

    Agricultural intensification is defined in terms as cropping intensity, which is the numbers of crops (single, double and triple) per year in a unit cropland area. Information about crop calendar (i.e. number of crops in a parcel of land and their planting & harvesting dates and date of peak vegetative stage) is essential for proper management of agriculture. Remote sensing sensors provide a regular, consistent and reliable measurement of vegetation response at various growth stages of crop. Therefore it is ideally suited for monitoring purpose. The spectral response of vegetation, as measured by the Normalized Difference Vegetation Index (NDVI) and its profiles, can provide a new dimension for describing vegetation growth cycle. The analysis based on values of NDVI at regular time interval provides useful information about various crop growth stages and performance of crop in a season. However, the NDVI data series has considerable amount of local fluctuation in time domain and needs to be smoothed so that dominant seasonal behavior is enhanced. Based on temporal analysis of smoothed NDVI series, it is possible to extract number of crop cycles per year and their crop calendar. In the present study, a methodology is developed to extract key elements of crop growth cycle (i.e. number of crops per year and their planting - peak - harvesting dates). This is illustrated by analysing MODIS-NDVI data series of one agricultural year (from June 2012 to May 2013) over Gujarat. Such an analysis is very useful for analysing dynamics of kharif and rabi crops.

  6. Variation of MODIS reflectance and vegetation indices with viewing geometry and soybean development.

    PubMed

    Breunig, Fábio M; Galvão, Lênio S; Formaggio, Antônio R; Epiphanio, José C N

    2012-06-01

    Directional effects introduce a variability in reflectance and vegetation index determination, especially when large field-of-view sensors are used (e.g., Moderate Resolution Imaging Spectroradiometer - MODIS). In this study, we evaluated directional effects on MODIS reflectance and four vegetation indices (Normalized Difference Vegetation Index - NDVI; Enhanced Vegetation Index - EVI; Normalized Difference Water Index - NDWI(1640) and NDWI(2120)) with the soybean development in two growing seasons (2004-2005 and 2005-2006). To keep the reproductive stage for a given cultivar as a constant factor while varying viewing geometry, pairs of images obtained in close dates and opposite view angles were analyzed. By using a non-parametric statistics with bootstrapping and by normalizing these indices for angular differences among viewing directions, their sensitivities to directional effects were studied. Results showed that the variation in MODIS reflectance between consecutive phenological stages was generally smaller than that resultant from viewing geometry for closed canopies. The contrary was observed for incomplete canopies. The reflectance of the first seven MODIS bands was higher in the backscattering. Except for the EVI, the other vegetation indices had larger values in the forward scattering direction. Directional effects decreased with canopy closure. The NDVI was lesser affected by directional effects than the other indices, presenting the smallest differences between viewing directions for fixed phenological stages.

  7. Early Detection of Eruptive Dykes Revealed by Normalized Difference Vegetation Index (NDVI) on Nyiragongo and Etna Volcanoes: Implications for Dyke Wedge Emplacement, Monitoring, and Risk Assessment.

    NASA Astrophysics Data System (ADS)

    Komorowski, J.; Houlié, N.; Kasereka, C. M.; Ciraba, H.

    2006-12-01

    Flank-fissure eruptions involve lateral injection and propagation of magma in a volcanic edifice along pre- existing fractures in the direction of a volcanic rift zone (VRZ) where magma intrusion and lava flow production are concentrated over time. Gradual dyke wedge emplacement on volcano flanks and in VRZ's does not necessarily trigger large amplitude deformation signals susceptible to be recorded months or even years before the actual eruption. We show that active and potentially eruptive areas in a VRZ can be detected up to 2 years before the arrival to the surface of the final eruptive dyke and venting of lava flows by processing satellite images applying a Normalized Difference Vegetation Index (NDVI) algorithm. A positive NDVI anomaly is indicative of excessive photosynthetic plant activity. A posteriori analysis of satellite images reveal that a high- NDVI linear anomaly was apparent in vegetated areas of VRZ's on Etna from 2000 to 2002 and on Nyiragongo in June 2001, several months to years before eruptive fractures formed directly above the NDVI anomaly. We propose that the observed NDVI linear anomalies are the signature of the integrated physico-chemical effects (increased heat and CO2 flux, H2O condensation) caused by the structurally-controlled progressive injection and propagation, in a VRZ and a few months to years before the eruption, of a series of dykes (dyke wedge) that did not reach the surface. We focus of Nyiragongo volcano where historical flank-fissure eruptions from lava lake drainage in 1977 and 2002 show a link with tectonics of the Kivu rift (western branch of the East African Rift System). In 2002, dykes were injected in the southern VRZ bounded by Kivu rift normal faults and propagated over 14 km producing lava flows that caused widespread destruction in the city of Goma. Data from Nyiragongo suggest that as a dyke wedge is formed and repeatedly reactivated, final eruptive dykes can be injected easily and can propagate rapidly further along the VRZ impacting populated areas far from the magmatic conduit. This has important implications for understanding the current process of magma convection feeding the active Nyiragongo lava lake as well as potential small-volume lateral magma injections into the reactivated southern VRZ. The NDVI processing methodology has potentially important implications for monitoring networks on deeply vegetated restless volcanoes with limited or difficult access. More importantly, on volcanoes where eruptive style changes from crater-centered to eccentric flank activity or for which new inactive VRZ's could be reactivated towards populated areas, our methodology constitutes a new tool for early detection of potential flank eruptive vents. By improving the understanding of the link between edifice structure and eruptive activity of effusive volcanoes it can significantly improve integrated risk analysis and the effectiveness of early-detection warning systems for populations at risk.

  8. Health Risk Assessment of Inhalable Particulate Matter in Beijing Based on the Thermal Environment

    PubMed Central

    Xu, Lin-Yu; Yin, Hao; Xie, Xiao-Dong

    2014-01-01

    Inhalable particulate matter (PM10) is a primary air pollutant closely related to public health, and an especially serious problem in urban areas. The urban heat island (UHI) effect has made the urban PM10 pollution situation more complex and severe. In this study, we established a health risk assessment system utilizing an epidemiological method taking the thermal environment effects into consideration. We utilized a remote sensing method to retrieve the PM10 concentration, UHI, Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI). With the correlation between difference vegetation index (DVI) and PM10 concentration, we utilized the established model between PM10 and thermal environmental indicators to evaluate the PM10 health risks based on the epidemiological study. Additionally, with the regulation of UHI, NDVI and NDWI, we aimed at regulating the PM10 health risks and thermal environment simultaneously. This study attempted to accomplish concurrent thermal environment regulation and elimination of PM10 health risks through control of UHI intensity. The results indicate that urban Beijing has a higher PM10 health risk than rural areas; PM10 health risk based on the thermal environment is 1.145, which is similar to the health risk calculated (1.144) from the PM10 concentration inversion; according to the regulation results, regulation of UHI and NDVI is effective and helpful for mitigation of PM10 health risk in functional zones. PMID:25464132

  9. Comparison of data from the Scanning Multifrequency Microwave Radiometer (SMMR) with data from the Advanced Very High Resolution Radiometer (AVHRR) for terrestrial environmental monitoring - An overview

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.; Choudhury, B. J.; Tucker, C. J.; Giddings, L.; Justice, C. O.

    1989-01-01

    Comparison between the microwave polarized difference temperature (MPDT) derived from 37 GHz band data and the normalized difference vegetation index (NDVI) derived from near-infrared and red bands, from several empirical investigations are summarized. These indicate the complementary character of the two measures in environmental monitoring. Overall the NDVI is more sensitive to green leaf activity, whereas the MPDT appears also to be related to other elements of the above-ground biomass. Monitoring of hydrological phenomena is carried out much more effectively by the MPDT. Further work is needed to explain spectral and temporal variation in MPDT both through modelling and field experiments.

  10. Landscape variability of vegetation change across the forest to tundra transition of central Canada

    NASA Astrophysics Data System (ADS)

    Bonney, Mitchell Thurston

    Widespread vegetation productivity increases in tundra ecosystems and stagnation, or even productivity decreases, in boreal forest ecosystems have been detected from coarse-scale remote sensing observations over the last few decades. However, finer-scale Landsat studies have shown that these changes are heterogeneous and may be related to landscape and regional variability in climate, land cover, topography and moisture. In this study, a Landsat Normalized Difference Vegetation Index (NDVI) time-series (1984-2016) was examined for a study area spanning the entirety of the sub-Arctic boreal forest to Low Arctic tundra transition of central Canada (i.e., Yellowknife to the Arctic Ocean). NDVI trend analysis indicated that 27% of un-masked pixels in the study area exhibited a significant (p < 0.05) trend and virtually all (99.3%) of those pixels were greening. Greening pixels were most common in the northern tundra zone and the southern forest-tundra ecotone zone. NDVI trends were positive throughout the study area, but were smallest in the forest zone and largest in the northern tundra zone. These results were supported by ground validation, which found a strong relationship (R2 = 0.81) between bulk vegetation volume (BVV) and NDVI for non-tree functional groups in the North Slave region of Northwest Territories. Field observations indicate that alder (Alnus spp.) shrublands and open woodland sites with shrubby understories were most likely to exhibit greening in that area. Random Forest (RF) modelling of the relationship between NDVI trends and environmental variables found that the magnitude and direction of trends differed across the forest to tundra transition. Increased summer temperatures, shrubland and forest land cover, closer proximity to major drainage systems, longer distances from major lakes and lower elevations were generally more important and associated with larger positive NDVI trends. These findings indicate that the largest positive NDVI trends were primarily associated with the increased productivity of shrubby environments, especially at, and north of the forest-tundra ecotone in areas with more favorable growing conditions. Smaller and less significant NDVI trends in boreal forest environments south of the forest-tundra ecotone were likely associated with long-term recovery from fire disturbance rather than the variables analyzed here.

  11. Woody plant richness and NDVI response to drought events in Catalonian (northeastern Spain) forests.

    PubMed

    Lloret, F; Lobo, A; Estevan, H; Maisongrande, P; Vayreda, J; Terradas, J

    2007-09-01

    The role of species diversity on ecosystem resistance in the face of strong environmental fluctuations has been addressed from both theoretical and experimental viewpoints to reveal a variety of positive and negative relationships. Here we explore empirically the relationship between the richness of forest woody species and canopy resistance to extreme drought episodes. We compare richness data from an extensive forest inventory to a temporal series of satellite imagery that estimated drought impact on forest canopy as NDVI (normalized difference vegetation index) anomalies of the dry summer in 2003 in relation to records of previous years. We considered five different types of forests that are representative of the main climatic and altitudinal gradients of the region, ranging from lowland Mediterranean to mountain boreal-temperate climates. The observed relationship differed among forest types and interacted with the climate, summarised by the Thorntwaite index. In Mediterranean Pinus halepensis forests, NDVI decreased during the drought. This decrease was stronger in forests with lower richness. In Mediterranean evergreen forests of Quercus ilex, drought did not result in an overall NDVI loss, but lower NDVI values were observed in drier localities with lower richness, and in more moist localities with higher number of species. In mountain Pinus sylvestris forests NDVI decreased, mostly due to the drought impact on drier localities, while no relation to species richness was observed. In moist Fagus sylvatica forests, NDVI only decreased in plots with high richness. No effect of drought was observed in the high mountain Pinus uncinata forests. Our results show that a shift on the diversity-stability relationship appears across the regional, climatic gradient. A positive relationship appears in drier localities, supporting a null model where the probability of finding a species able to cope with drier conditions increases with the number of species. However, in more moist localities we hypothesize that the proportion of drought-sensitive species would increase in richer localities, due to a higher likelihood of co-occurrence of species that share moist climatic requirements. The study points to the convenience of considering the causes of disturbance in relation to current environmental gradients and historical environmental constraints on the community.

  12. Assessment of the spatial variability in tall wheatgrass forage using LANDSAT 8 satellite imagery to delineate potential management zones.

    PubMed

    Cicore, Pablo; Serrano, João; Shahidian, Shakib; Sousa, Adelia; Costa, José Luis; da Silva, José Rafael Marques

    2016-09-01

    Little information is available on the degree of within-field variability of potential production of Tall wheatgrass (Thinopyrum ponticum) forage under unirrigated conditions. The aim of this study was to characterize the spatial variability of the accumulated biomass (AB) without nutritional limitations through vegetation indexes, and then use this information to determine potential management zones. A 27-×-27-m grid cell size was chosen and 84 biomass sampling areas (BSA), each 2 m(2) in size, were georeferenced. Nitrogen and phosphorus fertilizers were applied after an initial cut at 3 cm height. At 500 °C day, the AB from each sampling area, was collected and evaluated. The spatial variability of AB was estimated more accurately using the Normalized Difference Vegetation Index (NDVI), calculated from LANDSAT 8 images obtained on 24 November 2014 (NDVInov) and 10 December 2014 (NDVIdec) because the potential AB was highly associated with NDVInov and NDVIdec (r (2)  = 0.85 and 0.83, respectively). These models between the potential AB data and NDVI were evaluated by root mean squared error (RMSE) and relative root mean squared error (RRMSE). This last coefficient was 12 and 15 % for NDVInov and NDVIdec, respectively. Potential AB and NDVI spatial correlation were quantified with semivariograms. The spatial dependence of AB was low. Six classes of NDVI were analyzed for comparison, and two management zones (MZ) were established with them. In order to evaluate if the NDVI method allows us to delimit MZ with different attainable yields, the AB estimated for these MZ were compared through an ANOVA test. The potential AB had significant differences among MZ. Based on these findings, it can be concluded that NDVI obtained from LANDSAT 8 images can be reliably used for creating MZ in soils under permanent pastures dominated by Tall wheatgrass.

  13. Inter-Comparison of MODIS and VIIRS Vegetation Indices Using One-Year Global Data

    NASA Astrophysics Data System (ADS)

    Miura, T.; Muratsuchi, J.; Obata, K.; Kato, A.; Vargas, M.; Huete, A. R.

    2016-12-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) sensor series of the Joint Polar Satellite System program is slated to continue the highly calibrated data stream initiated with the Earth Observing System Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. A number of geophysical products are being/to be produced from VIIRS data, including the "Top-of-the-Atmosphere (TOA)" Normalized Difference Vegetation Index (NDVI), "Top-of-Canopy (TOC)" Enhanced Vegetation Index (EVI), and TOC NDVI. In this study, we cross-compared vegetation indices (VIs) from the first VIIRS sensor aboard the Suomi National Polar-orbiting Partnership satellite with the Aqua MODIS counterparts using one-year global data. This study was aimed at developing a thorough understanding of radiometric compatibility between the two VI datasets across globe, seasons, a range of viewing angle, and land cover types. VIIRS and MODIS VI data of January-December 2015 were obtained at monthly intervals when their orbital tracks coincided. These data were projected and spatially-aggregated into a .0036-degree grid while screening for cloud and aerosol contaminations using their respective quality flags. VIIRS-MODIS observation pairs with near-identical sun-target-view angles were extracted from each of these monthly image pairs for cross-comparison. The four VIs of TOA NDVI, TOC NDVI, TOC EVI, and TOC EVI2 (a two-band version of the EVI) were analyzed. Between MODIS and VIIRS, TOA NDVI, TOC NDVI, and TOC EVI2 had very small overall mean differences (MD) of .014, .013, and .013 VI units, respectively, whereas TOC EVI had a slightly larger overall MD of 0.023 EVI units attributed to the disparate blue bands of the two sensors. These systematic differences were consistent across the one-year period. With respect to sun-target-viewing geometry, MDs were also consistent across the view zenith angle range, but always lower for forward- than backward-viewing geometry. MDs showed large land cover dependencies for TOA NDVI and TOC NDVI, varying 10 folds from .002 for forests to .02 for sparsely-vegetated areas. They were consistent across land cover types for TOC EVI and TOC EVI2. Future studies should address the impact of sun-target-view geometry on corss-sensor VI comparisons.

  14. Monitoring Springs in the Mojave Desert Using Landsat Time Series Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.

    2018-01-01

    The purpose of this study, based on Landsat satellite data was to characterize variations and trends over 30 consecutive years (1985-2016) in perennial vegetation green cover at over 400 confirmed Mojave Desert spring locations. These springs were surveyed between in 2015 and 2016 on lands managed in California by the U.S. Bureau of Land Management (BLM) and on several land trusts within the Barstow, Needles, and Ridgecrest BLM Field Offices. The normalized difference vegetation index (NDVI) from July Landsat images was computed at each spring location and a trend model was first fit to the multi-year NDVI time series using least squares linear regression.Â

  15. Landsat Based Woody Vegetation Loss Detection in Queensland, Australia Using the Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Johansen, K.; Phinn, S. R.; Taylor, M.

    2014-12-01

    Land clearing detection and woody Foliage Projective Cover (FPC) monitoring at the state and national level in Australia has mainly been undertaken by state governments and the Terrestrial Ecosystem Research Network (TERN) because of the considerable expense, expertise, sustained duration of activities and staffing levels needed. Only recently have services become available, providing low budget, generalized access to change detection tools suited to this task. The objective of this research was to examine if a globally available service, Google Earth Engine Beta, could be used to predict woody vegetation loss with accuracies approaching the methods used by TERN and the government of the state of Queensland, Australia. Two change detection approaches were investigated using Landsat Thematic Mapper time series and the Google Earth Engine Application Programming Interface: (1) CART and Random Forest classifiers; and (2) a normalized time series of Foliage Projective Cover (FPC) and NDVI combined with a spectral index. The CART and Random Forest classifiers produced high user's and producer's mapping accuracies of clearing (77-92% and 54-77%, respectively) when detecting change within epochs for which training data were available, but extrapolation to epochs without training data reduced the mapping accuracies. The use of FPC and NDVI time series provided a more robust approach for calculation of a clearing probability, as it did not rely on training data but instead on the difference of the normalized FPC / NDVI mean and standard deviation of a single year at the change point in relation to the remaining time series. However, the FPC and NDVI time series approach represented a trade-off between user's and producer's accuracies. Both change detection approaches explored in this research were sensitive to ephemeral greening and drying of the landscape. However, the developed normalized FPC and NDVI time series approach can be tuned to provide automated alerts for large woody vegetation clearing events by selecting suitable thresholds to identify very likely clearing. This research provides a comprehensive foundation to build further capacity to use globally accessible, free, online image datasets and processing tools to accurately detect woody vegetation clearing in an automated and rapid manner.

  16. Climate Variations and Alaska Tundra Vegetation Productivity Declines in Spring

    NASA Astrophysics Data System (ADS)

    Bhatt, U. S.; Walker, D. A.; Bieniek, P.; Raynolds, M. K.; Epstein, H. E.; Comiso, J. C.; Pinzon, J. E.; Tucker, C. J.

    2015-12-01

    While sea ice has continued to decline, vegetation productivity increases have declined particularly during spring in Alaska as well as many parts of the Arctic tundra. To understand the processes behind these features we investigate spring climate variations that includes temperature, circulation patterns, and snow cover to determine how these may be contributing to spring browning. This study employs remotely sensed weekly 25-km sea ice concentration, weekly surface temperature, and bi-weekly NDVI from 1982 to 2014. Maximum NDVI (MaxNDVI, Maximum Normalized Difference Vegetation Index), Time Integrated NDVI (TI-NDVI), Summer Warmth Index (SWI, sum of degree months above freezing during May-August), atmospheric reanalysis data, dynamically downscaled climate data, meteorological station data, and snow water equivalent (GlobSnow, assimilated snow data set). We analyzed the data for the full period (1982-2014) and for two sub-periods (1982-1998 and 1999-2014), which were chosen based on the declining Alaska SWI since 1998. MaxNDVI has increased from 1982-2014 over most of the Arctic but has declined from 1999 to 2014 southwest Alaska. TI-NDVI has trends that are similar to those for MaxNDVI for the full period but display widespread declines over the 1999-2014 period. Therefore, as the MaxNDVI has continued to increase overall for the Arctic, TI-NDVI has been declining since 1999 and these declines are particularly noteworthy during spring in Alaska. Spring declines in Alaska have been linked to increased spring snow cover that can delay greenup (Bieniek et al. 2015) but recent ground observations suggest that after an initial warming and greening, late season freezing temperature are damaging the plants. The late season freezing temperature hypothesis will be explored with meteorological climate/weather data sets for Alaska tundra regions. References P.A. Bieniek, US Bhatt, DA Walker, MK Raynolds, JC Comiso, HE Epstein, JE Pinzon, CJ Tucker, RL Thoman, H Tran, N Mölders, M Steele, J Zhang, and W Ermold, 2015: Climate drivers of changing seasonality of Alaska coastal tundra vegetation productivity, (conditionally accepted) Earth Interactions.

  17. Vegetation Cover Change in Yosemite National Park (California) Detected using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2015-01-01

    Landsat image analysis over the past 20+ years showed that consistent increases in the satellite normalized difference vegetation index (NDVI) during relatively dry years were confined to large wildfire areas that burned in the late 1980s and 1990s.

  18. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    USDA-ARS?s Scientific Manuscript database

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  19. Relationship between NDVI at early bloom and yield in germplasm evaluation trials

    USDA-ARS?s Scientific Manuscript database

    The use of high-throughput phenotyping (HTP) equipment is expanding as it offers the potential to increase the efficiency of making selections in cotton (Gossypium hirsutum L.) improvement programs. Measurements often being collected on HTP field equipment include normalized difference vegetative in...

  20. Monitoring Start of Season in Alaska

    NASA Astrophysics Data System (ADS)

    Robin, J.; Dubayah, R.; Sparrow, E.; Levine, E.

    2006-12-01

    In biomes that have distinct winter seasons, start of spring phenological events, specifically timing of budburst and green-up of leaves, coincides with transpiration. Seasons leave annual signatures that reflect the dynamic nature of the hydrologic cycle and link the different spheres of the Earth system. This paper evaluates whether continuity between AVHRR and MODIS normalized difference vegetation index (NDVI) is achievable for monitoring land surface phenology, specifically start of season (SOS), in Alaska. Additionally, two thresholds, one based on NDVI and the other on accumulated growing degree-days (GDD), are compared to determine which most accurately predicts SOS for Fairbanks. Ratio of maximum greenness at SOS was computed from biweekly AVHRR and MODIS composites for 2001 through 2004 for Anchorage and Fairbanks regions. SOS dates were determined from annual green-up observations made by GLOBE students. Results showed that different processing as well as spectral characteristics of each sensor restrict continuity between the two datasets. MODIS values were consistently higher and had less inter-annual variability during the height of the growing season than corresponding AVHRR values. Furthermore, a threshold of 131-175 accumulated GDD was a better predictor of SOS for Fairbanks than a NDVI threshold applied to AVHRR and MODIS datasets. The NDVI threshold was developed from biweekly AVHRR composites from 1982 through 2004 and corresponding annual green-up observations at University of Alaska-Fairbanks (UAF). The GDD threshold was developed from 20+ years of historic daily mean air temperature data and the same green-up observations. SOS dates computed with the GDD threshold most closely resembled actual green-up dates observed by GLOBE students and UAF researchers. Overall, biweekly composites and effects of clouds, snow, and conifers limit the ability of NDVI to monitor phenological changes in Alaska.

  1. Asynchronous response of tropical forest leaf phenology to seasonal and el Niño-driven drought.

    PubMed

    Pau, Stephanie; Okin, Gregory S; Gillespie, Thomas W

    2010-06-25

    The Hawaiian Islands are an ideal location to study the response of tropical forests to climate variability because of their extreme isolation in the middle of the Pacific, which makes them especially sensitive to El Niño-Southern Oscillation (ENSO). Most research examining the response of tropical forests to drought or El Niño have focused on rainforests, however, tropical dry forests cover a large area of the tropics and may respond very differently than rainforests. We use satellite-derived Normalized Difference Vegetation Index (NDVI) from February 2000-February 2009 to show that rainforests and dry forests in the Hawaiian Islands exhibit asynchronous responses in leaf phenology to seasonal and El Niño-driven drought. Dry forest NDVI was more tightly coupled with precipitation compared to rainforest NDVI. Rainforest cloud frequency was negatively correlated with the degree of asynchronicity (Delta(NDVI)) between forest types, most strongly at a 1-month lag. Rainforest green-up and dry forest brown-down was particularly apparent during the 2002-003 El Niño. The spatial pattern of NDVI response to the NINO 3.4 Sea Surface Temperature (SST) index during 2002-2003 showed that the leeward side exhibited significant negative correlations to increased SSTs, whereas the windward side exhibited significant positive correlations to increased SSTs, most evident at an 8 to 9-month lag. This study demonstrates that different tropical forest types exhibit asynchronous responses to seasonal and El Niño-driven drought, and suggests that mechanisms controlling dry forest leaf phenology are related to water-limitation, whereas rainforests are more light-limited.

  2. Asynchronous Response of Tropical Forest Leaf Phenology to Seasonal and El Niño-Driven Drought

    PubMed Central

    Pau, Stephanie; Okin, Gregory S.; Gillespie, Thomas W.

    2010-01-01

    The Hawaiian Islands are an ideal location to study the response of tropical forests to climate variability because of their extreme isolation in the middle of the Pacific, which makes them especially sensitive to El Niño-Southern Oscillation (ENSO). Most research examining the response of tropical forests to drought or El Niño have focused on rainforests, however, tropical dry forests cover a large area of the tropics and may respond very differently than rainforests. We use satellite-derived Normalized Difference Vegetation Index (NDVI) from February 2000-February 2009 to show that rainforests and dry forests in the Hawaiian Islands exhibit asynchronous responses in leaf phenology to seasonal and El Niño-driven drought. Dry forest NDVI was more tightly coupled with precipitation compared to rainforest NDVI. Rainforest cloud frequency was negatively correlated with the degree of asynchronicity (ΔNDVI) between forest types, most strongly at a 1-month lag. Rainforest green-up and dry forest brown-down was particularly apparent during the 2002–003 El Niño. The spatial pattern of NDVI response to the NINO 3.4 Sea Surface Temperature (SST) index during 2002–2003 showed that the leeward side exhibited significant negative correlations to increased SSTs, whereas the windward side exhibited significant positive correlations to increased SSTs, most evident at an 8 to 9-month lag. This study demonstrates that different tropical forest types exhibit asynchronous responses to seasonal and El Niño-driven drought, and suggests that mechanisms controlling dry forest leaf phenology are related to water-limitation, whereas rainforests are more light-limited. PMID:20593034

  3. Integrating remote sensing and GIS for prediction of winter wheat (Triticum aestivum) protein contents in Linfen (Shanxi), China.

    PubMed

    Feng, Mei-chen; Xiao, Lu-jie; Zhang, Mei-jun; Yang, Wu-de; Ding, Guang-wei

    2014-01-01

    In this study, relationships between normalized difference vegetation index (NDVI) and plant (winter wheat) nitrogen content (PNC) and between PNC and grain protein content (GPC) were investigated using multi-temporal moderate-resolution imaging spectroradiometer (MODIS) data at the different stages of winter wheat in Linfen (Shanxi, P. R. China). The anticipating model for GPC of winter wheat was also established by the approach of NDVI at the different stages of winter wheat. The results showed that the spectrum models of PNC passed F test. The NDVI4.14 regression effect of PNC model of irrigated winter wheat was the best, and that in dry land was NDVI4.30. The PNC of irrigated and dry land winter wheat were significantly (P<0.01) and positively correlated to GPC. Both of protein spectral anticipating model of irrigated and dry land winter wheat passed a significance test (P<0.01). Multiple anticipating models (MAM) were established by NDVI from two periods of irrigated and dry land winter wheat and PNC to link GPC anticipating model. The coefficient of determination R(2) (R) of MAM was greater than that of the other two single-factor models. The relative root mean square error (RRMSE) and relative error (RE) of MAM were lower than those of the other two single-factor models. Therefore, test effects of multiple proteins anticipating model were better than those of single-factor models. The application of multiple anticipating models for predication of protein content (PC) of irrigated and dry land winter wheat was more accurate and reliable. The regionalization analysis of GPC was performed using inverse distance weighted function of GIS, which is likely to provide the scientific basis for the reasonable winter wheat planting in Linfen city, China.

  4. Integrating Remote Sensing and GIS for Prediction of Winter Wheat (Triticum aestivum) Protein Contents in Linfen (Shanxi), China

    PubMed Central

    Feng, Mei-chen; Xiao, Lu-jie; Zhang, Mei-jun; Yang, Wu-de; Ding, Guang-wei

    2014-01-01

    In this study, relationships between normalized difference vegetation index (NDVI) and plant (winter wheat) nitrogen content (PNC) and between PNC and grain protein content (GPC) were investigated using multi-temporal moderate-resolution imaging spectroradiometer (MODIS) data at the different stages of winter wheat in Linfen (Shanxi, P. R. China). The anticipating model for GPC of winter wheat was also established by the approach of NDVI at the different stages of winter wheat. The results showed that the spectrum models of PNC passed F test. The NDVI4.14 regression effect of PNC model of irrigated winter wheat was the best, and that in dry land was NDVI4.30. The PNC of irrigated and dry land winter wheat were significantly (P<0.01) and positively correlated to GPC. Both of protein spectral anticipating model of irrigated and dry land winter wheat passed a significance test (P<0.01). Multiple anticipating models (MAM) were established by NDVI from two periods of irrigated and dry land winter wheat and PNC to link GPC anticipating model. The coefficient of determination R2 (R) of MAM was greater than that of the other two single-factor models. The relative root mean square error (RRMSE) and relative error (RE) of MAM were lower than those of the other two single-factor models. Therefore, test effects of multiple proteins anticipating model were better than those of single-factor models. The application of multiple anticipating models for predication of protein content (PC) of irrigated and dry land winter wheat was more accurate and reliable. The regionalization analysis of GPC was performed using inverse distance weighted function of GIS, which is likely to provide the scientific basis for the reasonable winter wheat planting in Linfen city, China. PMID:24404124

  5. Detecting Leaf Pulvinar Movements on NDVI Time Series of Desert Trees: A New Approach for Water Stress Detection

    PubMed Central

    Chávez, Roberto O.; Clevers, Jan G. P. W.; Verbesselt, Jan; Naulin, Paulette I.; Herold, Martin

    2014-01-01

    Heliotropic leaf movement or leaf ‘solar tracking’ occurs for a wide variety of plants, including many desert species and some crops. This has an important effect on the canopy spectral reflectance as measured from satellites. For this reason, monitoring systems based on spectral vegetation indices, such as the normalized difference vegetation index (NDVI), should account for heliotropic movements when evaluating the health condition of such species. In the hyper-arid Atacama Desert, Northern Chile, we studied seasonal and diurnal variations of MODIS and Landsat NDVI time series of plantation stands of the endemic species Prosopis tamarugo Phil., subject to different levels of groundwater depletion. As solar irradiation increased during the day and also during the summer, the paraheliotropic leaves of Tamarugo moved to an erectophile position (parallel to the sun rays) making the NDVI signal to drop. This way, Tamarugo stands with no water stress showed a positive NDVI difference between morning and midday (ΔNDVImo-mi) and between winter and summer (ΔNDVIW-S). In this paper, we showed that the ΔNDVImo-mi of Tamarugo stands can be detected using MODIS Terra and Aqua images, and the ΔNDVIW-S using Landsat or MODIS Terra images. Because pulvinar movement is triggered by changes in cell turgor, the effects of water stress caused by groundwater depletion can be assessed and monitored using ΔNDVImo-mi and ΔNDVIW-S. For an 11-year time series without rainfall events, Landsat ΔNDVIW-S of Tamarugo stands showed a positive linear relationship with cumulative groundwater depletion. We conclude that both ΔNDVImo-mi and ΔNDVIW-S have potential to detect early water stress of paraheliotropic vegetation. PMID:25188305

  6. Active-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota, U.S.A.

    PubMed Central

    Sharma, Lakesh K.; Bu, Honggang; Denton, Anne; Franzen, David W.

    2015-01-01

    Active-optical sensor readings from an N non-limiting area standard established within a farm field are used to predict yield in the standard. Lower yield predictions from sensor readings obtained from other parts of the field outside of the N non-limiting standard area indicate a need for supplemental N. Active-optical sensor algorithms for predicting corn (Zea mays, L.) yield to direct in-season nitrogen (N) fertilization in corn utilize red NDVI (normalized differential vegetative index). Use of red edge NDVI might improve corn yield prediction at later growth stages when corn leaves cover the inter-row space resulting in “saturation” of red NDVI readings. The purpose of this study was to determine whether the use of red edge NDVI in two active-optical sensors (GreenSeeker™ and Holland Scientific Crop Circle™) improved corn yield prediction. Nitrogen rate experiments were established at 15 sites in North Dakota (ND). Sensor readings were conducted at V6 and V12 corn. Red NDVI and red edge NDVI were similar in the relationship of readings with yield at V6. At V12, the red edge NDVI was superior to the red NDVI in most comparisons, indicating that it would be most useful in developing late-season N application algorithms. PMID:26540057

  7. Active-Optical Sensors Using Red NDVI Compared to Red Edge NDVI for Prediction of Corn Grain Yield in North Dakota, U.S.A.

    PubMed

    Sharma, Lakesh K; Bu, Honggang; Denton, Anne; Franzen, David W

    2015-11-02

    Active-optical sensor readings from an N non-limiting area standard established within a farm field are used to predict yield in the standard. Lower yield predictions from sensor readings obtained from other parts of the field outside of the N non-limiting standard area indicate a need for supplemental N. Active-optical sensor algorithms for predicting corn (Zea mays, L.) yield to direct in-season nitrogen (N) fertilization in corn utilize red NDVI (normalized differential vegetative index). Use of red edge NDVI might improve corn yield prediction at later growth stages when corn leaves cover the inter-row space resulting in "saturation" of red NDVI readings. The purpose of this study was to determine whether the use of red edge NDVI in two active-optical sensors (GreenSeeker™ and Holland Scientific Crop Circle™) improved corn yield prediction. Nitrogen rate experiments were established at 15 sites in North Dakota (ND). Sensor readings were conducted at V6 and V12 corn. Red NDVI and red edge NDVI were similar in the relationship of readings with yield at V6. At V12, the red edge NDVI was superior to the red NDVI in most comparisons, indicating that it would be most useful in developing late-season N application algorithms.

  8. Evidence of compounded disturbance effects on vegetation recovery following high-severity wildfire and spruce beetle outbreak

    USGS Publications Warehouse

    Carlson, Amanda R.; Sibold, Jason S.; Assal, Timothy J.; Negrón, José F.

    2017-01-01

    Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have addressed whether these combined disturbances produce compounded effects on short-term vegetation recovery. We tested for an effect of spruce beetle outbreak severity on vegetation recovery in the West Fork Complex fire in southwestern Colorado, USA, where much of the burn area had been affected by severe spruce beetle outbreaks in the decade prior to the fire. Vegetation recovery was assessed using the Landsat-derived Normalized Difference Vegetation Index (NDVI) two years after the fire, which occurred in 2013. Beetle outbreak severity, defined as the basal area of beetle-killed trees within Landsat pixels, was estimated using vegetation index differences (dVIs) derived from pre-outbreak and post-outbreak Landsat images. Of the seven dVIs tested, the change in Normalized Difference Moisture Index (dNDMI) was most strongly correlated with field measurements of beetle-killed basal area (R2 = 0.66). dNDMI was included as an explanatory variable in sequential autoregressive (SAR) models of NDVI2015. Models also included pre-disturbance NDVI, topography, and weather conditions at the time of burning as covariates. SAR results showed a significant correlation between NDVI2015 and dNDMI, with more severe spruce beetle outbreaks corresponding to reduced post-fire vegetation cover. The correlation was stronger for models which were limited to locations in the red stage of outbreak (outbreak ≤ 5 years old at the time of fire) than for models of gray-stage locations (outbreak > 5 years old at the time of fire). These results indicate that vegetation recovery processes may be negatively impacted by severe spruce beetle outbreaks occurring within a decade of stand-replacing wildfire.

  9. Evidence of compounded disturbance effects on vegetation recovery following high-severity wildfire and spruce beetle outbreak

    PubMed Central

    Carlson, Amanda R.; Sibold, Jason S.; Assal, Timothy J.; Negrón, Jose F.

    2017-01-01

    Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may increase the ecological severity of wildfires. Although many recent studies have found no conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies have addressed whether these combined disturbances produce compounded effects on short-term vegetation recovery. We tested for an effect of spruce beetle outbreak severity on vegetation recovery in the West Fork Complex fire in southwestern Colorado, USA, where much of the burn area had been affected by severe spruce beetle outbreaks in the decade prior to the fire. Vegetation recovery was assessed using the Landsat-derived Normalized Difference Vegetation Index (NDVI) two years after the fire, which occurred in 2013. Beetle outbreak severity, defined as the basal area of beetle-killed trees within Landsat pixels, was estimated using vegetation index differences (dVIs) derived from pre-outbreak and post-outbreak Landsat images. Of the seven dVIs tested, the change in Normalized Difference Moisture Index (dNDMI) was most strongly correlated with field measurements of beetle-killed basal area (R2 = 0.66). dNDMI was included as an explanatory variable in sequential autoregressive (SAR) models of NDVI2015. Models also included pre-disturbance NDVI, topography, and weather conditions at the time of burning as covariates. SAR results showed a significant correlation between NDVI2015 and dNDMI, with more severe spruce beetle outbreaks corresponding to reduced post-fire vegetation cover. The correlation was stronger for models which were limited to locations in the red stage of outbreak (outbreak ≤ 5 years old at the time of fire) than for models of gray-stage locations (outbreak > 5 years old at the time of fire). These results indicate that vegetation recovery processes may be negatively impacted by severe spruce beetle outbreaks occurring within a decade of stand-replacing wildfire. PMID:28777802

  10. Assessing land cover performance in Senegal, West Africa using 1-km integrated NDVI and local variance analysis

    USGS Publications Warehouse

    Budde, M.E.; Tappan, G.; Rowland, James; Lewis, J.; Tieszen, L.L.

    2004-01-01

    The researchers calculated seasonal integrated normalized difference vegetation index (NDVI) for each of 7 years using a time-series of 1-km data from the Advanced Very High Resolution Radiometer (AVHRR) (1992-93, 1995) and SPOT Vegetation (1998-2001) sensors. We used a local variance technique to identify each pixel as normal or either positively or negatively anomalous when compared to its surroundings. We then summarized the number of years that a given pixel was identified as an anomaly. The resulting anomaly maps were analysed using Landsat TM imagery and extensive ground knowledge to assess the results. This technique identified anomalies that can be linked to numerous anthropogenic impacts including agricultural and urban expansion, maintenance of protected areas and increased fallow. Local variance analysis is a reliable method for assessing vegetation degradation resulting from human pressures or increased land productivity from natural resource management practices. ?? 2004 Published by Elsevier Ltd.

  11. Interannual growth dynamics of vegetation in the Kuparuk River watershed, Alaska based on the Normalized Difference Vegetation Index

    USGS Publications Warehouse

    Hope, A.S.; Boynton, W.L.; Stow, D.A.; Douglas, David C.

    2003-01-01

    Interannual above-ground production patterns are characterized for three tundra ecosystems in the Kuparuk River watershed of Alaska using NOAA-AVHRR Normalized Difference Vegetation Index (NDVI) data. NDVI values integrated over each growing season (SINDVI) were used to represent seasonal production patterns between 1989 and 1996. Spatial differences in ecosystem production were expected to follow north-south climatic and soil gradients, while interannual differences in production were expected to vary with variations in seasonal precipitation and temperature. It was hypothesized that the increased vegetation growth in high latitudes between 1981 and 1991 previously reported would continue through the period of investigation for the study watershed. Zonal differences in vegetation production were confirmed but interannual variations did not covary with seasonal precipitation or temperature totals. A sharp reduction in the SINDVI in 1992 followed by a consistent increase up to 1996 led to a further hypothesis that the interannual variations in SINDVI were associated with variations in stratospheric optical depth. Using published stratospheric optical depth values derived from the SAGE and SAGE-II satellites, it is demonstrated that variations in these depths are likely the primary cause of SINDVI interannual variability.

  12. Probabilistic Downscaling of Remote Sensing Data with Applications for Multi-Scale Biogeochemical Flux Modeling.

    PubMed

    Stoy, Paul C; Quaife, Tristan

    2015-01-01

    Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes.

  13. Probabilistic Downscaling of Remote Sensing Data with Applications for Multi-Scale Biogeochemical Flux Modeling

    PubMed Central

    Stoy, Paul C.; Quaife, Tristan

    2015-01-01

    Upscaling ecological information to larger scales in space and downscaling remote sensing observations or model simulations to finer scales remain grand challenges in Earth system science. Downscaling often involves inferring subgrid information from coarse-scale data, and such ill-posed problems are classically addressed using regularization. Here, we apply two-dimensional Tikhonov Regularization (2DTR) to simulate subgrid surface patterns for ecological applications. Specifically, we test the ability of 2DTR to simulate the spatial statistics of high-resolution (4 m) remote sensing observations of the normalized difference vegetation index (NDVI) in a tundra landscape. We find that the 2DTR approach as applied here can capture the major mode of spatial variability of the high-resolution information, but not multiple modes of spatial variability, and that the Lagrange multiplier (γ) used to impose the condition of smoothness across space is related to the range of the experimental semivariogram. We used observed and 2DTR-simulated maps of NDVI to estimate landscape-level leaf area index (LAI) and gross primary productivity (GPP). NDVI maps simulated using a γ value that approximates the range of observed NDVI result in a landscape-level GPP estimate that differs by ca 2% from those created using observed NDVI. Following findings that GPP per unit LAI is lower near vegetation patch edges, we simulated vegetation patch edges using multiple approaches and found that simulated GPP declined by up to 12% as a result. 2DTR can generate random landscapes rapidly and can be applied to disaggregate ecological information and compare of spatial observations against simulated landscapes. PMID:26067835

  14. Hillslope terracing effects on the spatial variability of plant development as assessed by NDVI in vineyards of the Priorat region (NE Spain).

    PubMed

    Martínez-Casasnovas, José A; Ramos, María Concepción; Espinal-Utgés, Sílvia

    2010-04-01

    The availability of heavy machinery and the vineyard restructuring and conversion plans of the European Union Common Agricultural Policy (Commission Regulation EC no. 1227/2000 of 31 May 2000) have encouraged the restructuring of many vineyards on hillslopes of Mediterranean Europe, through the creation of terraces to favor the mechanization of agricultural work. Terrace construction requires cutting and filling operations that create soil spatial variability, which affects soil properties and plant development. In the present paper, we study the effects of hillslope terracing on the spatial variability of the normalized difference vegetation index (NDVI) in fields of the Priorat region (NE Spain) during 2004, 2005, and 2006. This index was computed from high-resolution remote sensing data (Quickbird-2). Detailed digital terrain models before and after terrace construction were used to assess the earth movements. The results indicate that terracing by heavy machinery induced high variability on the NDVI values over the years, showing significant differences as effect of the cut and fill operations.

  15. Using normalized difference vegetation index (NDVI) to estimate sugarcane yield and yield components

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum spp.) yield and yield components are important traits for growers and scientists to evaluate and select cultivars. Collection of these yield data would be labor intensive and time consuming in the early selection stages of sugarcane breeding cultivar development programs with a ...

  16. Vegetation Cover Change in Yellowstone National Park Detected Using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.

    2015-01-01

    Results from Landsat satellite image analysis since 1987 in all unburned areas (since the 1880s) of Yellowstone National Park (YNP) showed that consistent decreases in the normalized difference vegetation index (NDVI) have been strongly dependent on periodic variations in peak annual snow water equivalents (SWE).

  17. Sub-Pixel Mapping of Tree Canopy, Impervious Surfaces, and Cropland in the Laurentian Great Lakes Basin Using MODIS Time-Series Data

    EPA Science Inventory

    This research examined sub-pixel land-cover classification performance for tree canopy, impervious surface, and cropland in the Laurentian Great Lakes Basin (GLB) using both timeseries MODIS (MOderate Resolution Imaging Spectroradiometer) NDVI (Normalized Difference Vegetation In...

  18. Thirty Years of Vegetation Change in the Coastal Santa Cruz Mountains of Northern California Detected Using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher

    2015-01-01

    Results from Landsat satellite image times series analysis since 1983 of this study area showed gradual, statistically significant increases in the normalized difference vegetation index (NDVI) in more than 90% of the (predominantly second-growth) evergreen forest locations sampled.

  19. Structural Dynamics of Management Zones for the Site-Specific Control of Tarnished Plant Bugs in Cotton

    USDA-ARS?s Scientific Manuscript database

    Precision-based agricultural application of insecticide relies on a non-random distribution of pests; tarnished plant bugs (Lygus lineolaris) are known to prefer vigorously growing patches of cotton. Management zones for various crops have been readily defined using NDVI (Normalized Difference Vege...

  20. Water deficit and nitrogen fertility effects on NDVI of 'Tifton 85' bermudagrass during regrowth

    USDA-ARS?s Scientific Manuscript database

    A better understanding of how bermudagrass (Cynodon spp.) regrowth is influenced by production inputs will aid in advancing precision management in the southeast US. The objective of this two-yr study was to evaluate how irrigation and nitrogen influence bermudagrass regrowth. Normalized difference ...

  1. Using remote sensing and soil physical properties for predicting the spatial distribution of cotton lint yield

    USDA-ARS?s Scientific Manuscript database

    Timely reflectance data from cotton (Gossypium hirsutum L.) production fields provide a useful tool for crop health assessment and site-specific crop management decisions. This field study investigated the relationships among site-specific normalized difference vegetation index (NDVI), soil physical...

  2. IDENTIFYING RECENT SURFACE MINING ACTIVITIES USING A NORMALIZED DIFFERENCE VEGETATION INDEX (NDVI) CHANGE DETECTION METHOD

    EPA Science Inventory



    Coal mining is a major resource extraction activity on the Appalachian Mountains. The increased size and frequency of a specific type of surface mining, known as mountain top removal-valley fill, has in recent years raised various environmental concerns. During mountainto...

  3. Assessing phenological change in China from 1982 to 2006 using AVHRR imagery

    USDA-ARS?s Scientific Manuscript database

    Long term trends in vegetation phenology indicate ecosystem change due to the combined impacts of human activities and climate. In this study, we used 1982 to 2006 Advanced Very High Resolution Radiometer Normalized Difference Vegetation Index (AVHRR NDVI) imagery across China and the TIMESAT progra...

  4. A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products

    NASA Astrophysics Data System (ADS)

    Johnson, David M.

    2016-10-01

    An exploratory assessment was undertaken to determine the correlation strength and optimal timing of several commonly used Moderate Resolution Imaging Spectroradiometer (MODIS) composited imagery products against crop yields for 10 globally significant agricultural commodities. The crops analyzed included barley, canola, corn, cotton, potatoes, rice, sorghum, soybeans, sugarbeets, and wheat. The MODIS data investigated included the Normalized Difference Vegetation Index (NDVI), Fraction of Photosynthetically Active Radiation (FPAR), Leaf Area Index (LAI), and Gross Primary Production (GPP), in addition to daytime Land Surface Temperature (DLST) and nighttime LST (NLST). The imagery utilized all had 8-day time intervals, but NDVI had a 250 m spatial resolution while the other products were 1000 m. These MODIS datasets were also assessed from both the Terra and Aqua satellites, with their differing overpass times, to document any differences. A follow-on analysis, using the Terra 250 m NDVI data as a benchmark, looked at the yield prediction utility of NDVI at two spatial scales (250 m vs. 1000 m), two time precisions (8-day vs. 16-day), and also assessed the Enhanced Vegetation Index (EVI, at 250 m, 16-day). The analyses spanned the major farming areas of the United States (US) from the summers of 2008-2013 and used annual county-level average crop yield data from the US Department of Agriculture as a basis. All crops, except rice, showed at least some positive correlations to each of the vegetation related indices in the middle of the growing season, with NDVI performing slightly better than FPAR. LAI was somewhat less strongly correlated and GPP weak overall. Conversely, some of the crops, particularly canola, corn, and soybeans, also showed negative correlations to DLST mid-summer. NLST, however, was never correlated to crop yield, regardless of the crop or seasonal timing. Differences between the Terra and Aqua results were found to be minimal. The 1000 m resolution NDVI showed somewhat poorer performance than the 250 m and suggests spatial resolution is helpful but not a necessity. The 8-day versus 16-day NDVI relationships to yields were very similar other than for the temporal precision. Finally, the EVI often showed the very best performance of all the variables, all things considered.

  5. Satellite imagery in the fight against Malaria, the case for Genetic Programming

    NASA Astrophysics Data System (ADS)

    Ssentongo, J. S.; Hines, E. L.

    The analysis of multi-temporal data is a critical issue in the field of remote sensing and presents a constant challenge The approach used here relies primarily on utilising a method commonly used in statistics and signal processing Empirical Orthogonal Function EOF analysis Normalized Difference Vegetation Index NDVI and Rainfall Estimate RFE satellite images pertaining to the Sub-Saharan Africa region were obtained The images are derived from the Advanced Very High Resolution Radiometer AVHRR on the United States National Oceanic and Atmospheric Administration NOAA polar orbiting satellites spanning from January 2000 to December 2002 The region of interest was narrowed down to the Limpopo Province Northern Province of South Africa EOF analyses of the space-time-intensity series of dekadal mean NDVI values was been performed They reveal that NDVI can be accurately approximated by its principal component time series and contains a near sinusoidal oscillation pattern Peak greenness essentially what NDVI measures seasons last approximately 8 weeks This oscillation period is very similar to that of Malaria cases reported in the same period but lags behind by 4 dekads about 40 days Singular Value Decomposition SVD of Coupled Fields is performed on the spacetime-intensity series of dekadal mean NDVI and RFE values Correlation analyses indicate that both Malaria and greenness appear to be dependant on rainfall the onset of their seasonal highs always following an arrival of rain There is a greater

  6. NDVI-Based analysis on the influence of human activities on vegetation variation on Hainan Island

    NASA Astrophysics Data System (ADS)

    Luo, Hongxia; Dai, Shengpei; Xie, Zhenghui; Fang, Jihua

    2018-02-01

    Using the Moderate Resolution Imaging Spectroradiometer-normalized difference vegetation index (NDVI) dataset, we analyzed the predicted NDVI values variation and the influence of human activities on vegetation on Hainan Island during 2001-2015. We investigated the roles of human activities in vegetation variation, particularly from 2002 when implemented the Grain-for-Greenprogram on Hainan Island. The trend analysis, linear regression model and residual analysis were used to analyze the data. The results of the study showed that (1) The predicted vegetation on Hainan Island showed an general upward trend with a linear growth rate of 0.0025/10y (p<0.05) over the past 15 years. The areas where vegetation increasedaccounted for 52.28%, while the areas where vegetation decreased accounted for 47.72%. (2) The residual NDVI values across the region significantly increased, with a growth rate of 0.023/10y.The vegetation increased across 35.95% of Hainan Island, while it decreased in 20.2% of the area as a result of human activities. (3) In general, human activities had played a positive role in the vegetation increase on Hainan Island, and the residual NDVI trend of this region showed positive outcomes for vegetation variation after implementing ecological engineering projects. However, it indicated a growing risk of vegetation degradation in the coastal region of Hainan Island as a result of rapid urbanization, land reclamation.

  7. Increased wetness confounds Landsat-derived NDVI trends in the central Alaska North Slope region, 1985-2011

    NASA Astrophysics Data System (ADS)

    Raynolds, Martha K.; Walker, Donald A.

    2016-08-01

    Satellite data from the circumpolar Arctic have shown increases in vegetation indices correlated to warming air temperatures (e.g. Bhatt et al 2013 Remote Sensing 5 4229-54). However, more information is needed at finer scales to relate the satellite trends to vegetation changes on the ground. We examined changes using Landsat TM and ETM+ data between 1985 and 2011 in the central Alaska North Slope region, where the vegetation and landscapes are relatively well-known and mapped. We calculated trends in the normalized difference vegetation index (NDVI) and tasseled-cap transformation indices, and related them to high-resolution aerial photographs, ground studies, and vegetation maps. Significant, mostly negative, changes in NDVI occurred in 7.3% of the area, with greater change in aquatic and barren types. Large reflectance changes due to erosion, deposition and lake drainage were evident. Oil industry-related changes such as construction of artificial islands, roads, and gravel pads were also easily identified. Regional trends showed decreases in NDVI for most vegetation types, but increases in tasseled-cap greenness (56% of study area, greatest for vegetation types with high shrub cover) and tasseled-cap wetness (11% of area), consistent with documented degradation of polygon ice wedges, indicating that increasing cover of water may be masking increases in vegetation when summarized using the water-sensitive NDVI.

  8. Response of heterogeneous vegetation to aerosol radiative forcing over a northeast Indian station.

    PubMed

    Latha, R; Vinayak, B; Murthy, B S

    2018-01-15

    Importance of atmospheric aerosols through direct and indirect effects on hydrological cycle is highlighted through multiple studies. This study tries to find how much the aerosols can affect evapo-transpiration (ET), a key component of the hydrological cycle over high NDVI (normalized difference vegetation index)/dense canopy, over Dibrugarh, known for vast tea plantation. The radiative effects of aerosols are calculated using satellite (Terra-MODIS) and reanalysis data on daily and monthly scales. Aerosol optical depth (AOD) obtained from satellite and ground observations compares well. Aerosol radiative forcing (ARF), calculated using MERRA data sets of 'clean-clear radiation' and 'clear-radiation' at the surface, shows a lower forcing efficiency, 35 Wm -zs , that is about half of that of ground observations. As vegetation controls ET over high NDVI area to the maximum and that gets modified through ARF, a regression equation is fitted between ET, AOD and NDVI for this station as ET = 0.25 + (-84.27) × AOD + (131.51) × NDVI that explains 82% of 'daily' ET variation using easily available satellite data. ET is found to follow net radiation closely and the direct relation between soil moisture and ET is weak on daily scale over this station as it may be acting through NDVI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Assessment of MODIS-EVI, MODIS-NDVI and VEGETATION-NDVI composite data using agricultural measurements: an example at corn fields in western Mexico.

    PubMed

    Chen, Pei-Yu; Fedosejevs, Gunar; Tiscareño-López, Mario; Arnold, Jeffrey G

    2006-08-01

    Although several types of satellite data provide temporal information of the land use at no cost, digital satellite data applications for agricultural studies are limited compared to applications for forest management. This study assessed the suitability of vegetation indices derived from the TERRA-Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and SPOT-VEGETATION (VGT) sensor for identifying corn growth in western Mexico. Overall, the Normalized Difference Vegetation Index (NDVI) composites from the VGT sensor based on bi-directional compositing method produced vegetation information most closely resembling actual crop conditions. The NDVI composites from the MODIS sensor exhibited saturated signals starting 30 days after planting, but corresponded to green leaf senescence in April. The temporal NDVI composites from the VGT sensor based on the maximum value method had a maximum plateau for 80 days, which masked the important crop transformation from vegetative stage to reproductive stage. The Enhanced Vegetation Index (EVI) composites from the MODIS sensor reached a maximum plateau 40 days earlier than the occurrence of maximum leaf area index (LAI) and maximum intercepted fraction of photosynthetic active radiation (fPAR) derived from in-situ measurements. The results of this study showed that the 250-m resolution MODIS data did not provide more accurate vegetation information for corn growth description than the 500-m and 1000-m resolution MODIS data.

  10. Growing Degree Vegetation Production Index (GDVPI): A Novel and Data-Driven Approach to Delimit Season Cycles

    NASA Astrophysics Data System (ADS)

    Graham, W. D.; Spruce, J.; Ross, K. W.; Gasser, J.; Grulke, N.

    2014-12-01

    Growing Degree Vegetation Production Index (GDVPI) is a parametric approach to delimiting vegetation seasonal growth and decline cycles using incremental growing degree days (GDD), and NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference vegetation index (NDVI) 8-day composite cumulative integral data. We obtain a specific location's daily minimum and maximum temperatures from the nearest National Oceanic and Atmospheric Administration (NOAA) weather stations posted on the National Climate Data Center (NCDC) Climate Data Online (CDO) archive and compute GDD. The date range for this study is January 1, 2000 through December 31, 2012. We employ a novel process, a repeating logistic product (RLP), to compensate for short-term weather variability and data drops from the recording stations and fit a curve to the median daily GDD values, adjusting for asymmetry, amplitude, and phase shift that minimize the sum of squared errors when comparing the observed and predicted GDD. The resulting curve, here referred to as the surrogate GDD, is the time-temperature phasing parameter used to convert Cartesian NDVI values into polar coordinate pairs, multiplying the NDVI values as the radial by the cosine and sine of the surrogate GDD as the angular. Depending on the vegetation type and the original NDVI curve, the polar NDVI curve may be nearly circular, kidney-shaped, or pear-shaped in the case of conifers, deciduous, or agriculture, respectively. We examine the points of tangency about the polar coordinate NDVI curve, identifying values of 1, 0, -1, or infinity, as each of these represent natural inflection points. Lines connecting the origin to each tangent point illustrate and quantify the parametrically segmentation of the growing season based on the GDD and NDVI ostensible dependency. Furthermore, the area contained by each segment represents the apparent vegetation production. A particular benefit is that the inflection points are determined near real-time, as MODIS NDVI, 8-day composite data become available, affording an effective forecasting and hindcasting tool.

  11. Improving Post-Hurricane Katrina Forest Management with MODIS Time Series Products

    NASA Technical Reports Server (NTRS)

    Lewis, Mark David; Spruce, Joseph; Evans, David; Anderson, Daniel

    2012-01-01

    Hurricane damage to forests can be severe, causing millions of dollars of timber damage and loss. To help mitigate loss, state agencies require information on location, intensity, and extent of damaged forests. NASA's MODerate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time series data products offers a potential means for state agencies to monitor hurricane-induced forest damage and recovery across a broad region. In response, a project was conducted to produce and assess 250 meter forest disturbance and recovery maps for areas in southern Mississippi impacted by Hurricane Katrina. The products and capabilities from the project were compiled to aid work of the Mississippi Institute for Forest Inventory (MIFI). A series of NDVI change detection products were computed to assess hurricane induced damage and recovery. Hurricane-induced forest damage maps were derived by computing percent change between MODIS MOD13 16-day composited NDVI pre-hurricane "baseline" products (2003 and 2004) and post-hurricane NDVI products (2005). Recovery products were then computed in which post storm 2006, 2007, 2008 and 2009 NDVI data was each singularly compared to the historical baseline NDVI. All percent NDVI change considered the 16-day composite period of August 29 to September 13 for each year in the study. This provided percent change in the maximum NDVI for the 2 week period just after the hurricane event and for each subsequent anniversary through 2009, resulting in forest disturbance products for 2005 and recovery products for the following 4 years. These disturbance and recovery products were produced for the Mississippi Institute for Forest Inventory's (MIFI) Southeast Inventory District and also for the entire hurricane impact zone. MIFI forest inventory products were used as ground truth information for the project. Each NDVI percent change product was classified into 6 categories of forest disturbance intensity. Stand age and stand type raster data, also provided by MIFI, were used along with the forest disturbance/recovery products to create forest damage stratification products integrating 3 stand type classes, 6 stand age classes, and 6 forest disturbance intensity classes. This stratification product will be used to aid MIFI timber inventory planning and to prepare for damage assessments due to future hurricane events. Validation of MODIS percent NDVI change products was performed by comparing the MODIS percent NDVI change products to those from Landsat data for the same time and MIFI inventory district area.

  12. Crop Surveillance Demonstration Using a Near-Daily MODIS Derived Vegetation Index Time Series

    NASA Technical Reports Server (NTRS)

    McKellip, Rodney; Ryan, Robert E.; Blonski, Slawomir; Prados, Don

    2005-01-01

    Effective response to crop disease outbreaks requires rapid identification and diagnosis of an event. A near-daily vegetation index product, such as a Normalized Difference Vegetation Index (NDVI), at moderate spatial resolution may serve as a good method for monitoring quick-acting diseases. NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) instrument flown on the Terra and Aqua satellites has the temporal, spatial, and spectral properties to make it an excellent coarse-resolution data source for rapid, comprehensive surveillance of agricultural areas. A proof-of-concept wide area crop surveillance system using daily MODIS imagery was developed and tested on a set of San Joaquin cotton fields over a growing season. This area was chosen in part because excellent ground truth data were readily available. Preliminary results indicate that, at least in the southwestern part of the United States, near-daily NDVI products can be generated that show the natural variations in the crops as well as specific crop practices. Various filtering methods were evaluated and compared with standard MOD13 NDVI MODIS products. We observed that specific chemical applications that produce defoliation, which would have been missed using the standard 16-day product, were easily detectable with the filtered daily NDVI products.

  13. Analysis of the landscape complexity and heterogeneity of the Pantanal wetland.

    PubMed

    Miranda, C S; Gamarra, R M; Mioto, C L; Silva, N M; Conceição Filho, A P; Pott, A

    2018-05-01

    This is the first report on analysis of habitat complexity and heterogeneity of the Pantanal wetland. The Pantanal encompasses a peculiar mosaic of environments, being important to evaluate and monitor this area concerning conservation of biodiversity. Our objective was to indirectly measure the habitat complexity and heterogeneity of the mosaic forming the sub-regions of the Pantanal, by means of remote sensing. We obtained free images of Normalized Difference Vegetation Index (NDVI) from the sensor MODIS and calculated the mean value (complexity) and standard deviation (heterogeneity) for each sub-region in the years 2000, 2008 and 2015. The sub-regions of Poconé, Canoeira, Paraguai and Aquidauana presented the highest values of complexity (mean NDVI), between 0.69 and 0.64 in the evaluated years. The highest horizontal heterogeneity (NDVI standard deviation) was observed in the sub-region of Tuiuiú, with values of 0.19 in the years 2000 and 2015, and 0.21 in the year 2008. We concluded that the use of NDVI to estimate landscape parameters is an efficient tool for assessment and monitoring of the complexity and heterogeneity of the Pantanal habitats, applicable in other regions.

  14. Role of MODIS Vegetation Phenology Products in the ForWarn System for Monitoring of Forest Disturbances in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Spruce, J.; Hargrove, W. W.; Norman, S.; Gasser, J.; Smoot, J.; Kuper, P.

    2012-12-01

    This presentation discusses MODIS vegetation phenology products used in the ForWarn Early Warning System (EWS) tool for near real time regional forest disturbance detection and surveillance at regional to national scales. The ForWarn EWS is being developed by the USDA Forest Service NASA, ORNL, and USGS to aid federal and state forest health management activities. ForWarn employs multiple historical land surface phenology products that are derived from MODIS MOD13 Normalized Difference Vegetation Index (NDVI) data. The latter is temporally processed into phenology products with the Time Series Product Tool (TSPT) and the Phenological Parameter Estimation Tool (PPET) software produced at NASA Stennis Space Center. TSPT is used to effectively noise reduce, fuse, and void interpolate MODIS NDVI data. PPET employs TSPT-processed NDVI time series data as an input, outputting multiple vegetation phenology products at a 232 meter resolution for 2000 to 2011, including NDVI magnitude and day of year products for seven key points along the growing season (peak of growing season and the minima, 20%, and 80% of the peak NDVI for both the left and right side of growing season), cumulative NDVI integral products for the most active part of the growing season and sequentially across the growing season at 8 day intervals, and maximum value NDVI products composited at 24 day intervals in which each product date has 8 days of overlap between the previous and following product dates. MODIS NDVI phenology products are also used to compute nationwide near real time forest change products every 8 days. These include percent change in forest NDVI products that compare the current NDVI from USGS eMODIS products to historical MODIS MOD13 NDVI. For each date, three forest change products are produced using three different maximum value NDVI baselines (from the previous year, three previous years, and all previous years). All change products are output with a rainbow color table in which forests with the most severe NDVI decreases are assigned hot colors (yellow to red) and forests with prominent NDVI increases are assigned cold colors (blue tones). All mentioned products have been integrated as data layers into ForWarn's geospatial data viewer known as the U.S. Forest Change Assessment Viewer (FCAV). The latter is used to view and assess the context of the mentioned forest change products with respect to ancillary data layers, such as land cover, elevation, hydrologic features, climatic data, storm data, aerial disturbance surveys, fire data, and land ownership. The FCAV also includes a temporal NDVI profiler for viewing phenological change in multi-year NDVI associated with known or suspected regionally apparent forest disturbances (e.g., from fire and insects). ForWarn forest change products have been used to detect, track, and assess several biotic and abiotic regional forest disturbance events across the country, including ephemeral and longer lasting damage from storms, drought, and insects. Such change products are most effective for viewing severe disturbance patches of multiple pixels. MODIS vegetation phenology products contribute vital current information on forest conditions to the ForWarn system and this role is expected to grow as these products are refined and derivative products are added.

  15. Role of MODIS Vegetation Phenology Products in the ForWarn System for Monitoring of Forest Disturbances in the Conterminous United States

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William; Norman, Steve; Gasser, Jerry; Smoot, James; Kuper, Philip D,

    2012-01-01

    This presentation discusses MODIS vegetation phenology products used in the ForWarn Early Warning System (EWS) tool for near real time regional forest disturbance detection and surveillance at regional to national scales. The ForWarn EWS is being developed by the USDA Forest Service NASA, ORNL, and USGS to aid federal and state forest health management activities. ForWarn employs multiple historical land surface phenology products that are derived from MODIS MOD13 Normalized Difference Vegetation Index (NDVI) data. The latter is temporally processed into phenology products with the Time Series Product Tool (TSPT) and the Phenological Parameter Estimation Tool (PPET) software produced at NASA Stennis Space Center. TSPT is used to effectively noise reduce, fuse, and void interpolate MODIS NDVI data. PPET employs TSPT-processed NDVI time series data as an input, outputting multiple vegetation phenology products at a 232 meter resolution for 2000 to 2011, including NDVI magnitude and day of year products for seven key points along the growing season (peak of growing season and the minima, 20%, and 80% of the peak NDVI for both the left and right side of growing season), cumulative NDVI integral products for the most active part of the growing season and sequentially across the growing season at 8 day intervals, and maximum value NDVI products composited at 24 day intervals in which each product date has 8 days of overlap between the previous and following product dates. MODIS NDVI phenology products are also used to compute nationwide NRT forest change products refreshed every 8 days. These include percent change in forest NDVI products that compare the current NDVI from USGS eMODIS products to historical MODIS MOD13 NDVI. For each date, three forest change products are produced using three different maximum value NDVI baselines (from the previous year, three previous years, and all previous years). All change products are output with a rainbow color table in which forests with the most severe NDVI decreases are assigned hot colors (yellow to red) and forests with prominent NDVI increases are assigned cold colors (blue tones). All mentioned products have been integrated as data layers into ForWarn s geospatial data viewer known as the U.S. Forest Change Assessment Viewer (FCAV). The latter is used to view and assess the context of the mentioned forest change products with respect to ancillary data layers, such as land cover, elevation, hydrologic features, climatic data, storm data, aerial disturbance surveys, fire data, and land ownership. The FCAV also includes a temporal NDVI profiler for viewing phenological change in multi-year NDVI associated with known or suspected regionally apparent forest disturbances (e.g., from fire and insects). ForWarn forest change products have been used to detect, track, and assess several biotic and abiotic regional forest disturbance events across the country, including ephemeral and longer lasting damage from storms, drought, and insects. Such change products are most effective for viewing severe disturbances affecting multiple MODIS pixels. MODIS vegetation phenology products contribute vital current information on forest conditions to the ForWarn system and this role is expected to grow as these products are refined and derivative products are added.

  16. Monitoring vegetation response to episodic disturbance events by using multitemporal vegetation indices

    USGS Publications Warehouse

    Steyer, Gregory D.; Couvillion, Brady R.; Barras, John A.

    2013-01-01

    Normalized Difference Vegetation Index (NDVI) derived from MODerate-resolution Imaging Spectroradiometer (MODIS) satellite imagery and land/water assessments from Landsat Thematic Mapper (TM) imagery were used to quantify the extent and severity of damage and subsequent recovery after Hurricanes Katrina and Rita of 2005 within the vegetation communities of Louisiana's coastal wetlands. Field data on species composition and total live cover were collected from 232 unique plots during multiple time periods to corroborate changes in NDVI values over time. Aprehurricane 5-year baseline time series clearly identified NDVI values by habitat type, suggesting the sensitivity of NDVI to assess and monitor phenological changes in coastal wetland habitats. Monthly data from March 2005 to November 2006 were compared to the baseline average to create a departure from average statistic. Departures suggest that over 33% (4,714 km2) of the prestorm, coastal wetlands experienced a substantial decline in the density and vigor of vegetation by October 2005 (poststorm), mostly in the east and west regions, where landfalls of Hurricanes Katrina and Rita occurred. The percentage of area of persistent vegetation damage due to long-lasting formation of new open water was 91.8% in the east and 81.0% and 29.0% in the central and west regions, respectively. Although below average NDVI values were observed in most marsh communities through November 2006, recovery of vegetation was evident. Results indicated that impacts and recovery from large episodic disturbance events that influence multiple habitat types can be accurately determined using NDVI, especially when integrated with assessments of physical landscape changes and field verifications.

  17. Monitoring vegetation response to episodic disturbance events by using multi-temporal vegetation indices

    USGS Publications Warehouse

    Steyer, Gregory D.; Couvillion, Brady R.; Barras, John A.

    2013-01-01

    Normalized Difference Vegetation Index (NDVI) derived from MODerate-resolution Imaging Spectroradiometer (MODIS) satellite imagery and land/water assessments from Landsat Thematic Mapper (TM) imagery were used to quantify the extent and severity of damage and subsequent recovery after Hurricanes Katrina and Rita of 2005 within the vegetation communities of Louisiana's coastal wetlands. Field data on species composition and total live cover were collected from 232 unique plots during multiple time periods to corroborate changes in NDVI values over time. Aprehurricane 5-year baseline time series clearly identified NDVI values by habitat type, suggesting the sensitivity of NDVI to assess and monitor phenological changes in coastal wetland habitats. Monthly data from March 2005 to November 2006 were compared to the baseline average to create a departure from average statistic. Departures suggest that over 33% (4,714 km2) of the prestorm, coastal wetlands experienced a substantial decline in the density and vigor of vegetation by October 2005 (poststorm), mostly in the east and west regions, where landfalls of Hurricanes Katrina and Rita occurred. The percentage of area of persistent vegetation damage due to long-lasting formation of new open water was 91.8% in the east and 81.0% and 29.0% in the central and west regions, respectively. Although below average NDVI values were observed in most marsh communities through November 2006, recovery of vegetation was evident. Results indicated that impacts and recovery from large episodic disturbance events that influence multiple habitat types can be accurately determined using NDVI, especially when integrated with assessments of physical landscape changes and field verifications.

  18. Shifts in vegetation growth in response to multiple factors on the Mongolian Plateau from 1982 to 2011

    NASA Astrophysics Data System (ADS)

    Miao, Lijuan; Liu, Qiang; Fraser, Richard; He, Bin; Cui, Xuefeng

    The Mongolian Plateau (MP) steppe is one of the largest steppe environments in the world. To monitor the terrestrial vegetation dynamics on the MP and to ascertain what the driving forces, this study examined the vegetation dynamics in Republic of Mongolia (M) and the Inner Mongolia Autonomous Region (IM) of China from the period 1982 to 2011, based on the satellite-derived GIMMS NDVI3g (Normalized Difference Vegetation Index) data across three biomes (desert, grassland and forest). The results are as followed: (1) Vegetation coverage in IM was generally greater than that in M. Before 2002, time series of NDVI over the MP increased at an average rate of 0.05% yr-1. Additionally, after 2002, the NDVI increased at a rate of 0.21% yr-1. From 1982 to 2011, the area of IM and M with positive anomalies in the NDVI increased at a separate rate of 1.82% yr-1 and 1.76% yr-1, respectively. (2) At the biome scale, the inter-annual forest NDVI variation in IM and desert NDVI for the entire MP had a significant increasing trend (0.06% yr-1 and 0.04% yr-1, respectively). (3) Climate forcing was a dominant controlling factor affecting the vegetation, and the anthropogenic behavior exhibited no significant value in the whole region. However, overgrazing was the most important reason for the regional degradation, particularly in IM. (4) In the future, the forest biome will go to recovery, whereas both the grassland and desert biomes are predicted to degrade continuously.

  19. Validation of a mapping and prediction model for human fasciolosis transmission in Andean very high altitude endemic areas using remote sensing data.

    PubMed

    Fuentes, M V; Malone, J B; Mas-Coma, S

    2001-04-27

    The present paper aims to validate the usefulness of the Normalized Difference Vegetation Index (NDVI) obtained by satellite remote sensing for the development of local maps of risk and for prediction of human fasciolosis in the Northern Bolivian Altiplano. The endemic area, which is located at very high altitudes (3800-4100 m) between Lake Titicaca and the valley of the city of La Paz, presents the highest prevalences and intensities of fasciolosis known in humans. NDVI images of 1.1 km resolution from the Advanced Very High Resolution Radiometer (AVHRR) sensor on board the National Oceanic and Atmospheric Administration (NOAA) series of environmental satellites appear to provide adequate information for a study area such as that of the Northern Bolivian Altiplano. The predictive value of the remotely sensed map based on NDVI data appears to be better than that from forecast indices based only on climatic data. A close correspondence was observed between real ranges of human fasciolosis prevalence at 13 localities of known prevalence rates and the predicted ranges of fasciolosis prevalence using NDVI maps. However, results based on NDVI map data predicted zones as risk areas where, in fact, field studies have demonstrated the absence of lymnaeid populations during snail surveys, corroborated by the absence of the parasite in humans and livestock. NDVI data maps represent a useful data component in long-term efforts to develop a comprehensive geographical information system control program model that accurately fits real epidemiological and transmission situations of human fasciolosis in high altitude endemic areas in Andean countries.

  20. Predominant role of water in regulating the tree-growth response to diurnal asymmetric warmin

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Xia, J.; Cui, E.

    2017-12-01

    Growth of the Northern Hemisphere trees is affected by diurnal asymmetric warming, which is generally considered to touch off carbon assimilation and increment of carbon storage. Asymmetric effects of diurnal warming on vegetation greenness were validated in previous researches, however, the effect of diurnal warming on wood tissue which stores most carbon of a whole plant is still unknown. Here, we combined ring-width index (RWI), remote sensing-based normalized difference vegetation index (NDVI) and climate datasets to detect the effects of daytime and night-time warming on vegetation growth, respectively. Our results indicate that daytime warming enhances NDVI but has neutral effect on tree woody growth over the Northern Hemisphere. Response of wood growth to daytime warming is linearly regulated by soil water availability. The underlying mechanism of different response of canopy and wood growth to daytime warming may attribute to the biomass change, that is, allocation to foliage tissues increased at the expense of wood tissue under warming and water-limited conditions. Night-time warming show neutral effects on NDVI and RWI over the Northern Hemisphere, and the neutral Tmin-NDVI correlations result from the non-linear mediation of soil water availability. Our results highlight the current greening trend under daytime warming does not mean higher carbon sink capacity, the warming-drying climate may impair the large carbon sink of global forests.

  1. The Circumpolar Arctic Vegetation Map: A tool for analysis of change in permafrost regions

    NASA Astrophysics Data System (ADS)

    Walker, D. A.; Raynolds, M. K.; Maier, H. A.

    2003-12-01

    Arctic vegetation occurs beyond the northern limit of trees, in areas that have an Arctic climate and Arctic flora. Here we present an overview of the recently published Circumpolar Arctic Vegetation Map (CAVM), an area analysis of the vegetation map, and a discussion of its potential for analysis of change in the Arctic. Six countries have Arctic tundra vegetation, Canada, Greenland, Iceland, Russia, Norway (Svalbard), and the US (Total Arctic area = 7.1 million km2). Some treeless areas, such as most of Iceland and the Aluetian Islands are excluded from the map because they lack an Arctic climate. The CAVM divides the Arctic into five bioclimate subzones, A thru E (Subzone A is the coldest and Subzone E is the warmest), based on a combination of summer temperature and vegetation. Fifteen vegetation types are mapped based on the dominant plant growth forms. More detailed, plant-community-level, information is contained in the database used to construct the map. The reverse side of the vegetation map has a false-color infrared image constructed from Advanced Very-High Resolution (AVHRR) satellite-derived raster data, and maps of bioclimate subzones, elevation, landscape types, lake cover, substrate chemistry, floristic provinces, the maximum normalized difference vegetation index (NDVI), and aboveground phytomass. The vegetation map was analyzed by vegetation type and biomass for each county, bioclimate subzone, and floristic province. Biomass distribution was analyzed by means of a correlation between aboveground phytomass and the normalized difference vegetation index (NDVI), a remote-sensing index of surface greenness. Biomass on zonal surfaces roughly doubles within each successively warmer subzone, from about 50 g m-2 in Subzone A to 800 g m-2- in Subzone E. But the pattern of vegetation increase is highly variable, and depends on a number of other factors. The most important appears to be the glacial history of the landscape. Areas that were glaciated during the late-Pleistocene, such as Canada, Svalbard, and Greenland, do not show such strong increases in NDVI with temperature as do areas that were not glaciated. Abundant lakes and rocky surfaces limit the greenness of these recently glaciated surfaces. The highest NDVI and phytomass are found in non-glaciated regions of Alaska and Russia. Soil acidity also affects NDVI patterns. In Subzone D, where the NDVI/ soil acidity relationship has been studied most closely, NDVI is lower on nonacidic surfaces. This has been attributed to fewer shrubs and higher proportion of graminoids (more standing dead sedge leaves) in nonacidic areas. This trend is probably caused by generally drier soils, with less production, on limestone-derived soils. The trend is less clear in Subzone E because of fewer nonacidic surfaces, and the abundance of glacial lakes with low NDVI on the acidic shield areas of Canada. Time series analysis of trends in NDVI in Subzones C, D, and E in Alaska have shown a 17% increase in the NDVI over the 21-year record. The increases have been greatest in moist nonacidic tundra. Future analyses of the circumpolar database will be directed at examining which geographic regions and vegetation types have shown the strongest increases, and how these are correlated with temperature changes.

  2. Fire effects in the northern Chihuahuan Desert derived from Landsat-5 Thematic Mapper spectral indices

    NASA Astrophysics Data System (ADS)

    White, Joseph D.; Swint, Pamela

    2014-01-01

    Fire effects on desert ecosystems may be long-lasting based on ecological impact of fire in these environments which potentially is detected from multispectral sensors. To assess this, we analyzed changes in spectral characteristics from 1986 to 2010 of pixels associated with the location of fires that occurred between 1986 and 1999 in Big Bend National Park, USA, located in the northern Chihuahuan Desert. Using Landsat-5 Thematic Mapper (TM) data, we derived spectral indices including the simple ratio (SR), normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and normalized burn ratio (NBR) from 1989, 1999, and 2010 from the TM data and compared changes in spectral index values for sites with and without observed fire. We found that the NDVI and SAVI had significantly different values over the time for burned sites of different fire sizes. When differences of the spectral indices were calculated from each time period, time since fire was correlated with the SR and NBR indices. These results showed that large fires potentially had a persistent and long-term change in vegetation cover and soil characteristics which were detected by the extraordinary long-data collection period of the Landsat-5 TM sensor.

  3. Climate and land use change in an Andean watershed: An NDVI analysis for the years 1985 to 2010

    NASA Astrophysics Data System (ADS)

    Mazzarino, M.; Finn, J.

    2013-12-01

    We perform a Landsat 5-TM derived Normalized Difference Vegetation Index (NDVI) analysis in a watershed (approximately 2700 km2) in southern Peru for the years 1985 through 2010. There in the Andes the livelihoods of the predominately Quechua speaking agro-pastoralists depend on access to natural resources. Vegetation within high-elevation wetlands, locally known as bofedales, is a critical resource that sustains herds of alpaca, sheep, and cattle especially during dry season months (June through August) and in drought. The watershed experiences high inter-annual variability in precipitation (attributed to the El Niño Southern Oscillation) and there are documented increases in air temperature and glacier retreat throughout the Andes. Using one dry-season scene per year for 20 of the 26 years from 1985 to 2010, we calculated NDVI for each pixel in the watershed and used these calculations to perform three objectives. First, we calculated mean NDVI for the Nuñoa watershed for each dry season scene. Using this annual watershed averaged NDVI as the response variable we performed a multiple linear regression with the covariates year, precipitation, and temperature in order to determine the relationship between the response and explanatory variables and if there is a trend in mean watershed dry-season NDVI from 1985 to 2010. Second, we delineated the wetlands (bofedales) based on a threshold value applied to the 26 year dry-season mean NDVI for each pixel in the watershed. Third, we performed a multiple linear regression for each pixel in the watershed (3,070,160) using cell specific annual dry-season NDVI as the response variable (n=20) and year, regional precipitation, and regional temperature indices as the predictor variables in order to review the spatial nature of NDVI changes in vegetation in the watershed throughout time (1985-2010), particularly with respect to bofedales. The results of these analyses indicate that there is reduced variability in dry season NDVI and a general increase in NDVI values in the watershed with time. Variability in mean dry season NDVI is highly correlated with wet season (DJFM) precipitation (R2 = 0.77, p-value < 0.05) and this relationship may explain much of the shift in NDVI values however; the increasing trend in NDVI in the watershed is not explained by a trend in precipitation. We were not able to determine a relationship between NDVI and temperature with our methods. And while an increase in dry-season NDVI is seen in the majority of the vegetated pixels (81%) throughout the watershed, approximately 30% of the wetland areas display a decrease in NDVI over the time period. Contemporary socio-political factors and resulting changes in land management and production systems in the region may be resulting in more intensive use of wetland areas, thereby causing the decreasing vegetation trends seen there. These factors, together with potential reductions in glacier melt from several small ice-capped mountains in the north of the study area may all be contributing to the spatial and temporal changes in NDVI seen in the watershed.

  4. Monitoring of vegetation condition using the NDVI/ENSO anomalies in Central Asia and their relationships with ONI (very strong) phases

    NASA Astrophysics Data System (ADS)

    Aralova, Dildora; Toderich, Kristina; Jarihani, Ben; Gafurov, Dilshod; Gismatulina, Liliya

    2016-10-01

    An investigation of temporal dynamics of El Niño-Southern Oscillation (ENSO) and spatial patterns of dryness/wetness period over arid and semi-arid zones of Central Asia and their relationship with Normalized Difference Vegetation Index (NDVI) values (1982-2011) have explored in this article. For identifying periodical oscillations and their relationship with NDVI values have selected El Nino 3.4 index and thirty years of new generation bi-weekly NDVI 3g acquired by the Advanced Very High Resolution Radiometer (AVHRR) satellites time-series data. Based on identification ONI (Oceanic Nino Index) is a very strong El Nino (warm) anomalies observed during 1982-1983, 1997-1998 and very strong La Nino (cool) period events have observed 1988-1989 years. For correlation these two factors and seeking positive and negative trends it has extracted from NDVI time series data as "low productivity period" following years: 1982-1983, 1997 -1998; and as "high productivity period" following years: 1988 -1989. Linear regression observed warm events as moderate phase period selected between moderate El Nino (ME) and NDVI with following periods:1986-1987; 1987-1988; 1991-1992; 2002-2003; 2009-2010; and moderate La Niña (ML) periods and NDVI (1998-1999; 1999-2000; 2007-2008) which has investigated a spatial patterns of wetness conditions. The results indicated that an inverse relationship between very strong El Nino and NDVI, decreased vegetation response with larger positive ONI value; and direct relationship between very strong La Niña and NDVI, increased vegetation response with smaller negative ONI value. Results assumed that significant impact of these anomalies influenced on vegetation productivity. These results will be a beneficial for efficient rangeland/grassland management and to propose drought periods for assessment and reducing quantity of flocks' due to a lack of fodder biomass for surviving livestock flocks on upcoming years in rangelands. Also results demonstrate that a non-anthropogenic drivers of variability effected to land surface vegetation signals, understanding of which will be beneficial for efficient rangeland and agriculture management and establish ecosystem services in precipitation-driven drylands of Central Asia.

  5. Estimating tree species diversity in the savannah using NDVI and woody canopy cover

    NASA Astrophysics Data System (ADS)

    Madonsela, Sabelo; Cho, Moses Azong; Ramoelo, Abel; Mutanga, Onisimo; Naidoo, Laven

    2018-04-01

    Remote sensing applications in biodiversity research often rely on the establishment of relationships between spectral information from the image and tree species diversity measured in the field. Most studies have used normalized difference vegetation index (NDVI) to estimate tree species diversity on the basis that it is sensitive to primary productivity which defines spatial variation in plant diversity. The NDVI signal is influenced by photosynthetically active vegetation which, in the savannah, includes woody canopy foliage and grasses. The question is whether the relationship between NDVI and tree species diversity in the savanna depends on the woody cover percentage. This study explored the relationship between woody canopy cover (WCC) and tree species diversity in the savannah woodland of southern Africa and also investigated whether there is a significant interaction between seasonal NDVI and WCC in the factorial model when estimating tree species diversity. To fulfil our aim, we followed stratified random sampling approach and surveyed tree species in 68 plots of 90 m × 90 m across the study area. Within each plot, all trees with diameter at breast height of >10 cm were sampled and Shannon index - a common measure of species diversity which considers both species richness and abundance - was used to quantify tree species diversity. We then extracted WCC in each plot from existing fractional woody cover product produced from Synthetic Aperture Radar (SAR) data. Factorial regression model was used to determine the interaction effect between NDVI and WCC when estimating tree species diversity. Results from regression analysis showed that (i) WCC has a highly significant relationship with tree species diversity (r2 = 0.21; p < 0.01), (ii) the interaction between the NDVI and WCC is not significant, however, the factorial model significantly reduced the error of prediction (RMSE = 0.47, p < 0.05) compared to NDVI (RMSE = 0.49) or WCC (RMSE = 0.49) model during the senescence period. The result justifies our assertion that combining NDVI with WCC will be optimal for biodiversity estimation during the senescence period.

  6. Phenological classification of the United States: A geographic framework for extending multi-sensor time-series data

    USGS Publications Warehouse

    Gu, Yingxin; Brown, Jesslyn F.; Miura, Tomoaki; van Leeuwen, Willem J.D.; Reed, Bradley C.

    2010-01-01

    This study introduces a new geographic framework, phenological classification, for the conterminous United States based on Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) time-series data and a digital elevation model. The resulting pheno-class map is comprised of 40 pheno-classes, each having unique phenological and topographic characteristics. Cross-comparison of the pheno-classes with the 2001 National Land Cover Database indicates that the new map contains additional phenological and climate information. The pheno-class framework may be a suitable basis for the development of an Advanced Very High Resolution Radiometer (AVHRR)-MODIS NDVI translation algorithm and for various biogeographic studies.

  7. Deriving phenological metrics from NDVI through an open source tool developed in QGIS

    NASA Astrophysics Data System (ADS)

    Duarte, Lia; Teodoro, A. C.; Gonçalves, Hernãni

    2014-10-01

    Vegetation indices have been commonly used over the past 30 years for studying vegetation characteristics using images collected by remote sensing satellites. One of the most commonly used is the Normalized Difference Vegetation Index (NDVI). The various stages that green vegetation undergoes during a complete growing season can be summarized through time-series analysis of NDVI data. The analysis of such time-series allow for extracting key phenological variables or metrics of a particular season. These characteristics may not necessarily correspond directly to conventional, ground-based phenological events, but do provide indications of ecosystem dynamics. A complete list of the phenological metrics that can be extracted from smoothed, time-series NDVI data is available in the USGS online resources (http://phenology.cr.usgs.gov/methods_deriving.php).This work aims to develop an open source application to automatically extract these phenological metrics from a set of satellite input data. The main advantage of QGIS for this specific application relies on the easiness and quickness in developing new plug-ins, using Python language, based on the experience of the research group in other related works. QGIS has its own application programming interface (API) with functionalities and programs to develop new features. The toolbar developed for this application was implemented using the plug-in NDVIToolbar.py. The user introduces the raster files as input and obtains a plot and a report with the metrics. The report includes the following eight metrics: SOST (Start Of Season - Time) corresponding to the day of the year identified as having a consistent upward trend in the NDVI time series; SOSN (Start Of Season - NDVI) corresponding to the NDVI value associated with SOST; EOST (End of Season - Time) which corresponds to the day of year identified at the end of a consistent downward trend in the NDVI time series; EOSN (End of Season - NDVI) corresponding to the NDVI value associated with EOST; MAXN (Maximum NDVI) which corresponds to the maximum NDVI value; MAXT (Time of Maximum) which is the day associated with MAXN; DUR (Duration) defined as the number of days between SOST and EOST; and AMP (Amplitude) which is the difference between MAXN and SOSN. This application provides all these metrics in a single step. Initially, the data points are interpolated using a moving average graphic with five and three points. The eight metrics previously described are then obtained from the spline using numpy functions. In the present work, the developed toolbar was applied to MODerate resolution Imaging Spectroradiometer (MODIS) data covering a particular region of Portugal, which can be generally applied to other satellite data and study area. The code is open and can be modified according to the user requirements. Other advantage in publishing the plug-ins and the application code is the possibility of other users to improve this application.

  8. Comparison of NDVI fields obtained from different remote sensors

    NASA Astrophysics Data System (ADS)

    Escribano Rodriguez, Juan; Alonso, Carmelo; Tarquis, Ana Maria; Benito, Rosa Maria; Hernandez Díaz-Ambrona, Carlos

    2013-04-01

    Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI and their interpretation as a drought index. During 2012 three locations (at Salamanca, Granada and Córdoba) were selected and a periodic pasture monitoring and botanic composition were achieved. Daily precipitation, temperature and monthly soil water content were measurement as well as fresh and dry pasture weight. At the same time, remote sensing images were capture by DEIMOS-1 and MODIS of the chosen places. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is conceived for obtaining Earth images with a good enough resolution to study the terrestrial vegetation cover (20x20 m), although with a great range of visual field (600 km) in order to obtain those images with high temporal resolution and at a reduced cost. By contranst, MODIS images present a much lower spatial resolution (500x500 m). The aim of this study is to establish a comparison between two different sensors in their NDVI values at different spatial resolutions. Acknowledgements. This work was partially supported by ENESA under project P10 0220C-823. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. MTM2009-14621 and i-MATH No. CSD2006-00032 is greatly appreciated.

  9. Analyses of GIMMS NDVI Time Series in Kogi State, Nigeria

    NASA Astrophysics Data System (ADS)

    Palka, Jessica; Wessollek, Christine; Karrasch, Pierre

    2017-10-01

    The value of remote sensing data is particularly evident where an areal monitoring is needed to provide information on the earth's surface development. The use of temporal high resolution time series data allows for detecting short-term changes. In Kogi State in Nigeria different vegetation types can be found. As the major population in this region is living in rural communities with crop farming the existing vegetation is slowly being altered. The expansion of agricultural land causes loss of natural vegetation, especially in the regions close to the rivers which are suitable for crop production. With regard to these facts, two questions can be dealt with covering different aspects of the development of vegetation in the Kogi state, the determination and evaluation of the general development of the vegetation in the study area (trend estimation) and analyses on a short-term behavior of vegetation conditions, which can provide information about seasonal effects in vegetation development. For this purpose, the GIMMS-NDVI data set, provided by the NOAA, provides information on the normalized difference vegetation index (NDVI) in a geometric resolution of approx. 8 km. The temporal resolution of 15 days allows the already described analyses. For the presented analysis data for the period 1981-2012 (31 years) were used. The implemented workflow mainly applies methods of time series analysis. The results show that in addition to the classical seasonal development, artefacts of different vegetation periods (several NDVI maxima) can be found in the data. The trend component of the time series shows a consistently positive development in the entire study area considering the full investigation period of 31 years. However, the results also show that this development has not been continuous and a simple linear modeling of the NDVI increase is only possible to a limited extent. For this reason, the trend modeling was extended by procedures for detecting structural breaks in the time series.

  10. Modelling Rift Valley fever (RVF) disease vector habitats using active and passive remote sensing systems

    NASA Technical Reports Server (NTRS)

    Ambrosia, Vincent G.; Linthicum, K. G.; Bailey, C. L.; Sebesta, P.

    1989-01-01

    The NASA Ames Ecosystem Science and Technology Branch and the U.S. Army Medical Research Institute of Infectious Diseases are conducting research to detect Rift Valley fever (RVF) vector habitats in eastern Africa using active and passive remote-sensing. The normalized difference vegetation index (NDVI) calculated from Landsat TM and SPOT data is used to characterize the vegetation common to the Aedes mosquito. Relationships have been found between the highest NDVI and the 'dambo' habitat areas near Riuru, Kenya on both wet and dry data. High NDVI values, when combined with the vegetation classifications, are clearly related to the areas of vector habitats. SAR data have been proposed for use during the rainy season when optical systems are of minimal use and the short frequency and duration of the optimum RVF mosquito habitat conditions necessitate rapid evaluation of the vegetation/moisture conditions; only then can disease potential be stemmed and eradication efforts initiated.

  11. Satellite-based detection of global urban heat-island temperature influence

    USGS Publications Warehouse

    Gallo, K.P.; Adegoke, Jimmy O.; Owen, T.W.; Elvidge, C.D.

    2002-01-01

    This study utilizes a satellite-based methodology to assess the urban heat-island influence during warm season months for over 4400 stations included in the Global Historical Climatology Network of climate stations. The methodology includes local and regional satellite retrievals of an indicator of the presence green photosynthetically active vegetation at and around the stations. The difference in local and regional samples of the normalized difference vegetation index (NDVI) is used to estimate differences in mean air temperature. Stations classified as urban averaged 0.90??C (N. Hemisphere) and 0.92??C (S. Hemisphere) warmer than the surrounding environment on the basis of the NDVI-derived temperature estimates. Additionally, stations classified as rural averaged 0.19??C (N. Hemisphere) and 0.16??C (S. Hemisphere) warmer than the surrounding environment. The NDVI-derived temperature estimates were found to be in reasonable agreement with temperature differences observed between climate stations. The results suggest that satellite-derived data sets can be used to estimate the urban heat-island temperature influence on a global basis and that a more detailed analysis of rural stations and their surrounding environment may be necessary to assure that temperature trends derived from assumed rural environments are not influenced by changes in land use/land cover. Copyright 2002 by the American Geophysical Union.

  12. Evaluation of automatic cloud removal method for high elevation areas in Landsat 8 OLI images to improve environmental indexes computation

    NASA Astrophysics Data System (ADS)

    Alvarez, César I.; Teodoro, Ana; Tierra, Alfonso

    2017-10-01

    Thin clouds in the optical remote sensing data are frequent and in most of the cases don't allow to have a pure surface data in order to calculate some indexes as Normalized Difference Vegetation Index (NDVI). This paper aims to evaluate the Automatic Cloud Removal Method (ACRM) algorithm over a high elevation city like Quito (Ecuador), with an altitude of 2800 meters above sea level, where the clouds are presented all the year. The ACRM is an algorithm that considers a linear regression between each Landsat 8 OLI band and the Cirrus band using the slope obtained with the linear regression established. This algorithm was employed without any reference image or mask to try to remove the clouds. The results of the application of the ACRM algorithm over Quito didn't show a good performance. Therefore, was considered improving this algorithm using a different slope value data (ACMR Improved). After, the NDVI computation was compared with a reference NDVI MODIS data (MOD13Q1). The ACMR Improved algorithm had a successful result when compared with the original ACRM algorithm. In the future, this Improved ACRM algorithm needs to be tested in different regions of the world with different conditions to evaluate if the algorithm works successfully for all conditions.

  13. Estimating the urban bias of surface shelter temperatures using upper-air and satellite data. Part 2: Estimation of the urban bias

    NASA Technical Reports Server (NTRS)

    Epperson, David L.; Davis, Jerry M.; Bloomfield, Peter; Karl, Thomas R.; Mcnab, Alan L.; Gallo, Kevin P.

    1995-01-01

    A methodology is presented for estimating the urban bias of surface shelter temperatures due to the effect of the urban heat island. Multiple regression techniques were used to predict surface shelter temperatures based on the time period 1986-89 using upper-air data from the European Centre for Medium-Range Weather Forecasts (ECMWF) to represent the background climate, site-specific data to represent the local landscape, and satellite-derived data -- the normalized difference vegetation index (NDVI) and the Defense Meteorological Satellite Program (DMSP) nighttime brightness data -- to represent the urban and rural landscape. Local NDVI and DMSP values were calculated for each station using the mean NDVI and DMSP values from a 3 km x 3 km area centered over the given station. Regional NDVI and DMSP values were calculated to represent a typical rural value for each station using the mean NDVI and DMSP values from a 1 deg x 1 deg latitude-longitude area in which the given station was located. Models for the United States were then developed for monthly maximum, mean, and minimum temperatures using data from over 1000 stations in the U.S. Cooperative (COOP) Network and for monthly mean temperatures with data from over 1150 stations in the Global Historical Climate Network (GHCN). Local biases, or the differences between the model predictions using the observed NDVI and DMSP values, and the predictions using the background regional values were calculated and compared with the results of other research. The local or urban bias of U.S. temperatures, as derived from all U.S. stations (urban and rural) used in the models, averaged near 0.40 C for monthly minimum temperatures, near 0.25 C for monthly mean temperatures, and near 0.10 C for monthly maximum temperatures. The biases of monthly minimum temperatures for individual stations ranged from near -1.1 C for rural stations to 2.4 C for stations from the largest urban areas. The results of this study indicate minimal problems for global application once global NDVI and DMSP data become available.

  14. Transitioning from MODIS to VIIRS: an analysis of inter-consistency of NDVI data sets for agricultural monitoring.

    PubMed

    Skakun, Sergii; Justice, Christopher O; Vermote, Eric; Roger, Jean-Claude

    2018-01-01

    The Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite was launched in 2011, in part to provide continuity with the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard National Aeronautics and Space Administration's (NASA) Terra and Aqua remote sensing satellites. The VIIRS will eventually replace MODIS for both land science and applications and add to the coarse-resolution, long term data record. It is, therefore, important to provide the user community with an assessment of the consistency of equivalent products from the two sensors. For this study, we do this in the context of example agricultural monitoring applications. Surface reflectance that is routinely delivered within the M{O,Y}D09 and VNP09 series of products provide critical input for generating downstream products. Given the range of applications utilizing the normalized difference vegetation index (NDVI) generated from M{O,Y}D09 and VNP09 products and the inherent differences between MODIS and VIIRS sensors in calibration, spatial sampling, and spectral bands, the main objective of this study is to quantify uncertainties related the transitioning from using MODIS to VIIRS-based NDVI's. In particular, we compare NDVI's derived from two sets of Level 3 MYD09 and VNP09 products with various spatial-temporal characteristics, namely 8-day composites at 500 m spatial resolution and daily Climate Modelling Grid (CMG) images at 0.05° spatial resolution. Spectral adjustment of VIIRS I1 (red) and I2 (near infra-red - NIR) bands to match MODIS/Aqua b1 (red) and b2 (NIR) bands is performed to remove a bias between MODIS and VIIRS-based red, NIR, and NDVI estimates. Overall, red reflectance, NIR reflectance, NDVI uncertainties were 0.014, 0.029 and 0.056 respectively for the 500 m product and 0.013, 0.016 and 0.032 for the 0.05° product. The study shows that MODIS and VIIRS NDVI data can be used interchangeably for applications with an uncertainty of less than 0.02 to 0.05, depending on the scale of spatial aggregation, which is typically the uncertainty of the individual dataset.

  15. Estimation for sparse vegetation information in desertification region based on Tiangong-1 hyperspectral image.

    PubMed

    Wu, Jun-Jun; Gao, Zhi-Hai; Li, Zeng-Yuan; Wang, Hong-Yan; Pang, Yong; Sun, Bin; Li, Chang-Long; Li, Xu-Zhi; Zhang, Jiu-Xing

    2014-03-01

    In order to estimate the sparse vegetation information accurately in desertification region, taking southeast of Sunite Right Banner, Inner Mongolia, as the test site and Tiangong-1 hyperspectral image as the main data, sparse vegetation coverage and biomass were retrieved based on normalized difference vegetation index (NDVI) and soil adjusted vegetation index (SAVI), combined with the field investigation data. Then the advantages and disadvantages between them were compared. Firstly, the correlation between vegetation indexes and vegetation coverage under different bands combination was analyzed, as well as the biomass. Secondly, the best bands combination was determined when the maximum correlation coefficient turned up between vegetation indexes (VI) and vegetation parameters. It showed that the maximum correlation coefficient between vegetation parameters and NDVI could reach as high as 0.7, while that of SAVI could nearly reach 0.8. The center wavelength of red band in the best bands combination for NDVI was 630nm, and that of the near infrared (NIR) band was 910 nm. Whereas, when the center wavelength was 620 and 920 nm respectively, they were the best combination for SAVI. Finally, the linear regression models were established to retrieve vegetation coverage and biomass based on Tiangong-1 VIs. R2 of all models was more than 0.5, while that of the model based on SAVI was higher than that based on NDVI, especially, the R2 of vegetation coverage retrieve model based on SAVI was as high as 0.59. By intersection validation, the standard errors RMSE based on SAVI models were lower than that of the model based on NDVI. The results showed that the abundant spectral information of Tiangong-1 hyperspectral image can reflect the actual vegetaion condition effectively, and SAVI can estimate the sparse vegetation information more accurately than NDVI in desertification region.

  16. Directional effects on NDVI and LAI retrievals from MODIS: A case study in Brazil with soybean

    NASA Astrophysics Data System (ADS)

    Breunig, Fábio Marcelo; Galvão, Lênio Soares; Formaggio, Antônio Roberto; Epiphanio, José Carlos Neves

    2011-02-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is largely used to estimate Leaf Area Index (LAI) using radiative transfer modeling (the "main" algorithm). When this algorithm fails for a pixel, which frequently occurs over Brazilian soybean areas, an empirical model (the "backup" algorithm) based on the relationship between the Normalized Difference Vegetation Index (NDVI) and LAI is utilized. The objective of this study is to evaluate directional effects on NDVI and subsequent LAI estimates using global (biome 3) and local empirical models, as a function of the soybean development in two growing seasons (2004-2005 and 2005-2006). The local model was derived from the pixels that had LAI values retrieved from the main algorithm. In order to keep the reproductive stage for a given cultivar as a constant factor while varying the viewing geometry, pairs of MODIS images acquired in close dates from opposite directions (backscattering and forward scattering) were selected. Linear regression relationships between the NDVI values calculated from these two directions were evaluated for different view angles (0-25°; 25-45°; 45-60°) and development stages (<45; 45-90; >90 days after planting). Impacts on LAI retrievals were analyzed. Results showed higher reflectance values in backscattering direction due to the predominance of sunlit soybean canopy components towards the sensor and higher NDVI values in forward scattering direction due to stronger shadow effects in the red waveband. NDVI differences between the two directions were statistically significant for view angles larger than 25°. The main algorithm for LAI estimation failed in the two growing seasons with gradual crop development. As a result, up to 94% of the pixels had LAI values calculated from the backup algorithm at the peak of canopy closure. Most of the pixels selected to compose the 8-day MODIS LAI product came from the forward scattering view because it displayed larger LAI values than the backscattering. Directional effects on the subsequent LAI retrievals were stronger at the peak of the soybean development (NDVI values between 0.70 and 0.85). When the global empirical model was used, LAI differences up to 3.2 for consecutive days and opposite viewing directions were observed. Such differences were reduced to values up to 1.5 with the local model. Because of the predominance of LAI retrievals from the MODIS backup algorithm during the Brazilian soybean development, care is necessary if one considers using these data in agronomic growing/yield models.

  17. Mapping landscape phenology preference of yellow-billed cuckoo with AVHRR data

    Treesearch

    Cynthia S. A. Wallace; Miguel Villarreal; Charles van Riper

    2013-01-01

    We mapped habitat for threatened Yellow-billed Cuckoo (Coccycus americanus occidentalis) in the State of Arizona using the temporal greenness dynamics of the landscape, or the landscape phenology. Landscape phenometrics were derived from Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI) data for 1998 and 1999 by using...

  18. A remote sensing protocol for identifying rangelands with degraded productive capacity

    Treesearch

    Matthew C. Reeves; L. Scott Bagget

    2014-01-01

    Rangeland degradation is a growing problem throughout the world. An assessment process for com-paring the trend and state of vegetation productivity to objectively derived reference conditions wasdeveloped. Vegetation productivity was estimated from 2000 to 2012 using annual maximum Normalized Difference Vegetation Index (NDVI) from the MODIS satellite platform. Each...

  19. Hydrological model parameterization using NDVI values to account for the effects of land-cover change on the rainfall-runoff response

    USDA-ARS?s Scientific Manuscript database

    Classic rainfall-runoff models usually use historical data to estimate model parameters and mean values of parameters are considered for predictions. However, due to climate changes and human effects, the parameters of model change temporally. To overcome this problem, Normalized Difference Vegetati...

  20. Phosphorus dynamics and phosphatase acitivity of soils under corn production with supplemental irrigation in humid coastal plain region, USA

    USDA-ARS?s Scientific Manuscript database

    A three-year (2013-2015) field study was conducted to evaluate the effect of integrated nutrient management (NM) and three irrigation scheduling methods (IS): irrigator pro (IPro); normalized difference vegetative index (NDVI) and soil water potentials (SWP) on phosphorus (P) dynamics and phosphatas...

  1. The Spectral Invariant Approximation Within Canopy Radiative Transfer to Support the Use of the EPIC/DSCOVR Oxygen B-band for Monitoring Vegetation

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Knyazikhin, Yuri

    2017-01-01

    EPIC (Earth Polychromatic Imaging Camera) is a 10-channel spectroradiometer onboard DSCOVR (Deep Space Climate Observatory) spacecraft. In addition to the near-infrared (NIR, 780 nm) and the 'red' (680 nm) channels, EPIC also has the O2 A-band (764+/-0.2 nm) and B-band (687.75+/-0.2 nm). The EPIC Normalized Difference Vegetation Index (NDVI) is defined as the difference between NIR and 'red' channels normalized to their sum. However, the use of the O2 B-band instead of the 'red' channel mitigates the effect of atmosphere on remote sensing of surface reflectance because O2 reduces contribution from the radiation scattered by the atmosphere. Applying the radiative transfer theory and the spectral invariant approximation to EPIC observations, the paper provides supportive arguments for using the O2 band instead of the red channel for monitoring vegetation dynamics. Our results suggest that the use of the O2 B-band enhances the sensitivity of the top-of-atmosphere NDVI to the presence of vegetation.

  2. Springs as hydrologic refugia in a changing climate? A remote sensing approach

    USGS Publications Warehouse

    Cartwright, Jennifer M.; Johnson, Henry M.

    2018-01-01

    Spring‐fed wetlands are ecologically important habitats in arid and semi‐arid regions. Springs have been suggested as possible hydrologic refugia from droughts and climate change; however, springs that depend on recent precipitation or snowmelt for recharge may be vulnerable to warming and drought intensification. Springs that are expected to maintain their ecohydrologic function in a warmer, drier climate may be priorities for conservation and restoration. Identifying such springs is difficult because many springs lack hydrologic records of adequate temporal extent and resolution to assess their resilience to water cycle changes. This study demonstrates proof‐of‐concept for the assessment of certain spring types (i.e., helocrene, hypocrene, and hillslope springs) in terms of hydrologic and ecological resilience to climatic water stress using freely available remote‐sensing and climate data. We used the Normalized Difference Vegetation Index (NDVI) from 1985 through 2011 to delineate surface‐moisture zones (SMZs) associated with 39 clusters of 172 springs in a montane sage‐steppe landscape in southeastern Oregon, USA. We developed and synthesized seven NDVI‐based indicators of SMZ resilience to interannual changes in water availability: (1) mean and (2) standard deviation of July NDVI; (3) mean difference in July NDVI and (4) difference in coefficient of variation for July NDVI between each SMZ and its surrounding watershed; (5) response of SMZ July NDVI to 90‐day antecedent precipitation; (6) response of SMZ July NDVI to the previous winter's snowpack; and (7) range of NDVI values from an exceptionally wet year followed by three dry years. Because all resilience indicators were highly inter‐correlated, we derived an overall metric of SMZ resilience using principal components analysis that accounted for 66% of total variance. This overall resilience score was positively correlated with SMZ elevation, slope, mean annual precipitation, and with the number of associated springs. Resilience was greater for SMZs on topographically shaded, north‐facing slopes. Several high‐resilience SMZs were located immediately below persistent snowbanks, suggesting a possible source of steady recharge throughout the growing season. The approach presented here—if combined with field assessments of spring hydrogeology, discharge, and groundwater age—could help identify spring‐fed wetlands that are most likely to serve as hydrologic refugia from climate change.

  3. Analysis of land cover/use changes using Landsat 5 TM data and indices.

    PubMed

    Ettehadi Osgouei, Paria; Kaya, Sinasi

    2017-04-01

    Urban expansion and unprecedented rural to urban transition, along with a huge population growth, are major driving forces altering land cover/use in metropolitan areas. Many of the land cover classes such as farmlands, wetlands, forests, and bare soils have been transformed during the past years into human settlements. Identification of the city growth trends and the impact of it on the vegetation cover of an area is essential for a better understanding of the sustainability of urban development processes, both planned and unplanned. Analyzing the causes and consequences of land use dynamics helps local government, urban planners, and managers for the betterment of future plans and minimizing the negative effects.This study determined temporal changes in vegetation cover and built-up area in Istanbul (Turkey) using the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and built-up area index (BUAI). The temporal data were based on Landsat 5 Thematic Mapper (TM) images acquired in June of 1984, 2002, 2007, 2009, and 2011. The NDVI was applied to all the Landsat images, and the resulting NDVI images were overlaid to generate an NDVI layer stack image. The same procedure was repeated using the SAVI and BUAI images. The layer stack images revealed those areas that had changed in terms of the different indices over the years. To determine temporal change trends, the values of 150 randomly selected control points were extracted from the same locations in the NDVI, SAVI, and BUAI layer stack images. The results obtained from these control points showed that vegetation cover decreased considerably because of a remarkable increase in the built-up area.

  4. Comparative Performance Analysis of a Hyper-Temporal Ndvi Analysis Approach and a Landscape-Ecological Mapping Approach

    NASA Astrophysics Data System (ADS)

    Ali, A.; de Bie, C. A. J. M.; Scarrott, R. G.; Ha, N. T. T.; Skidmore, A. K.

    2012-07-01

    Both agricultural area expansion and intensification are necessary to cope with the growing demand for food, and the growing threat of food insecurity which is rapidly engulfing poor and under-privileged sections of the global population. Therefore, it is of paramount importance to have the ability to accurately estimate crop area and spatial distribution. Remote sensing has become a valuable tool for estimating and mapping cropland areas, useful in food security monitoring. This work contributes to addressing this broad issue, focusing on the comparative performance analysis of two mapping approaches (i) a hyper-temporal Normalized Difference Vegetation Index (NDVI) analysis approach and (ii) a Landscape-ecological approach. The hyper-temporal NDVI analysis approach utilized SPOT 10-day NDVI imagery from April 1998-December 2008, whilst the Landscape-ecological approach used multitemporal Landsat-7 ETM+ imagery acquired intermittently between 1992 and 2002. Pixels in the time-series NDVI dataset were clustered using an ISODATA clustering algorithm adapted to determine the optimal number of pixel clusters to successfully generalize hyper-temporal datasets. Clusters were then characterized with crop cycle information, and flooding information to produce an NDVI unit map of rice classes with flood regime and NDVI profile information. A Landscape-ecological map was generated using a combination of digitized homogenous map units in the Landsat-7 ETM+ imagery, a Land use map 2005 of the Mekong delta, and supplementary datasets on the regions terrain, geo-morphology and flooding depths. The output maps were validated using reported crop statistics, and regression analyses were used to ascertain the relationship between land use area estimated from maps, and those reported in district crop statistics. The regression analysis showed that the hyper-temporal NDVI analysis approach explained 74% and 76% of the variability in reported crop statistics in two rice crop and three rice crop land use systems respectively. In contrast, 64% and 63% of the variability was explained respectively by the Landscape-ecological map. Overall, the results indicate the hyper-temporal NDVI analysis approach is more accurate and more useful in exploring when, why and how agricultural land use manifests itself in space and time. Furthermore, the NDVI analysis approach was found to be easier to implement, was more cost effective, and involved less subjective user intervention than the landscape-ecological approach.

  5. Monitoring the Effects of Forest Restoration Treatments on Post-Fire Vegetation Recovery with MODIS Multitemporal Data

    PubMed Central

    van Leeuwen, Willem J. D.

    2008-01-01

    This study examines how satellite based time-series vegetation greenness data and phenological measurements can be used to monitor and quantify vegetation recovery after wildfire disturbances and examine how pre-fire fuel reduction restoration treatments impact fire severity and impact vegetation recovery trajectories. Pairs of wildfire affected sites and a nearby unburned reference site were chosen to measure the post-disturbance recovery in relation to climate variation. All site pairs were chosen in forested uplands in Arizona and were restricted to the area of the Rodeo-Chediski fire that occurred in 2002. Fuel reduction treatments were performed in 1999 and 2001. The inter-annual and seasonal vegetation dynamics before, during, and after wildfire events can be monitored using a time series of biweekly composited MODIS NDVI (Moderate Resolution Imaging Spectroradiometer - Normalized Difference Vegetation Index) data. Time series analysis methods included difference metrics, smoothing filters, and fitting functions that were applied to extract seasonal and inter-annual change and phenological metrics from the NDVI time series data from 2000 to 2007. Pre- and post-fire Landsat data were used to compute the Normalized Burn Ratio (NBR) and examine burn severity at the selected sites. The phenological metrics (pheno-metrics) included the timing and greenness (i.e. NDVI) for the start, peak and end of the growing season as well as proxy measures for the rate of green-up and senescence and the annual vegetation productivity. Pre-fire fuel reduction treatments resulted in lower fire severity, which reduced annual productivity much less than untreated areas within the Rodeo-Chediski fire perimeter. The seasonal metrics were shown to be useful for estimating the rate of post-fire disturbance recovery and the timing of phenological greenness phases. The use of satellite time series NDVI data and derived pheno-metrics show potential for tracking vegetation cover dynamics and successional changes in response to drought, wildfire disturbances, and forest restoration treatments in fire-suppressed forests. PMID:27879809

  6. Cereal Production Ratio and NDVI in Spain

    NASA Astrophysics Data System (ADS)

    Saa-Requejo, Antonio; Recuero, Laura; Palacios, Alicia; Díaz-Ambrona, Carlos G. H.; Tarquis, Ana M.

    2014-05-01

    Droughts are long-term phenomena affecting large regions causing significant damages both in human lives and economic losses. The use of remote sensing has proved to be very important in monitoring the growth of agricultural crops and trying to asses weather impact on crop loss. Several indices has been developed based in remote sensing data being one of them the normalized difference vegetation index (NDVI). In this study we have focus to know the correlation between NDVI data and the looses of rain fed cereal in the Spanish area where this crop is majority. For this propose data from drought damage in cereal come from the pool of agricultural insurance in Spain (AGROSEGURO) including 2007/2008 to 2011/2012 (five agricultural campaigns). This data is given as a ratio between drought party claims against the insured value of production aggregated at the agrarian region level. Medium resolution (500x500 m2) MODIS images were used during the same campaigns to estimate the eight-day composites NDVI at these locations. The NDVI values are accumulated following the normal cycle of the cereal taking in account the sowing date at different sites. At the same time, CORINE Land Cover (2006) was used to classify the pixels belonging to rain fed cereal use including a set of conditions such as pixels showing dry during summer, area in which there has been no change of use. Fallow presence is studied with particular attention as it imposes an inter annual variation between crop and bare soil and causes decreases in greenness in a pixel and mix both situations. This is more complex in the situation in which the avoid fallow and a continuous monoculture is performed. The results shown that around 40% of the area is subject to the regime of fallow while 60% have growing every year. In addition, another variation is detected if the year is humid (decrease of fallow) or dry (increase of fallow). The level of correlation between the drought damage ratios and cumulative NDVI for the cereal campaign obtained are classified according to their level of significance at 99, 95, 90 and 85%. Approximately half of the regions with high surface assurance have meaningful relationships. In the regions where no significant relationships are achieved several situations are discussed such as extreme situations in critical phenological periods that could have great influence on the final yields. Acknowledgements. This work was partially supported by ENESA under project P10 0220C-823.

  7. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia

    NASA Astrophysics Data System (ADS)

    Poveda, GermáN.; Jaramillo, Alvaro; Gil, Marta MaríA.; Quiceno, Natalia; Mantilla, Ricardo I.

    2001-08-01

    An analysis of hydrologic variability in Colombia shows different seasonal effects associated with El Niño/Southern Oscillation (ENSO) phenomenon. Spectral and cross-correlation analyses are developed between climatic indices of the tropical Pacific Ocean and the annual cycle of Colombia's hydrology: precipitation, river flows, soil moisture, and the Normalized Difference Vegetation Index (NDVI). Our findings indicate stronger anomalies during December-February and weaker during March-May. The effects of ENSO are stronger for streamflow than for precipitation, owing to concomitant effects on soil moisture and evapotranspiration. We studied time variability of 10-day average volumetric soil moisture, collected at the tropical Andes of central Colombia at depths of 20 and 40 cm, in coffee growing areas characterized by shading vegetation ("shaded coffee"), forest, and sunlit coffee. The annual and interannual variability of soil moisture are highly intertwined for the period 1997-1999, during strong El Niño and La Niña events. Soil moisture exhibited greater negative anomalies during 1997-1998 El Niño, being strongest during the two dry seasons that normally occur in central Colombia. Soil moisture deficits were more drastic at zones covered by sunlit coffee than at those covered by forest and shaded coffee. Soil moisture responds to wetter than normal precipitation conditions during La Niña 1998-1999, reaching maximum levels throughout that period. The probability density function of soil moisture records is highly skewed and exhibits different kinds of multimodality depending upon land cover type. NDVI exhibits strong negative anomalies throughout the year during El Niños, in particular during September-November (year 0) and June-August (year 0). The strong negative relation between NDVI and El Niño has enormous implications for carbon, water, and energy budgets over the region, including the tropical Andes and Amazon River basin.

  8. Monitoring post-fire recovery of shrublands in Mediterranean-type ecosystems using MODIS and TM/ETM+ data

    NASA Astrophysics Data System (ADS)

    Hope, Allen; Albers, Noah; Bart, Ryan

    2010-05-01

    Wildland fires in Mediterranean-Type Ecosystems (MTEs) are episodic events that dramatically alter land-cover conditions. Monitoring post-fire vegetation recovery is important for land management applications such as the scheduling of prescribed burns, post-fire resource management and soil erosion control. Full recovery of MTE shrublands may take many years and have a prolonged effect on water, energy and carbon fluxes in these ecosystems. Comparative studies of fynbos ecosystems in the Cape Floristic Region of South Africa (Western Cape Region) and chaparral ecosystems of California have demonstrated that there is a considerable degree of convergence in some aspects of post-fire vegetation regeneration and marked differences in other aspects. Since these MTEs have contrasting rainfall and soil nutrient conditions, an obvious question arises as to the similarity or dissimilarity in remotely sensed post-fire recovery pathways of vegetation stands in these two regions and the extent to which fire severity and drought impact the rate of vegetation recovery. Post-fire recovery pathways of chaparral and fynbos vegetation stands were characterized using the normalized difference vegetation index (NDVI) based on TM/ETM+ and MODIS (250 m) data. Procedures based on stands of unburned vegetation (control) were implemented to normalize the NDVI for variations associated with inter-annual differences in rainfall. Only vegetation stands that had not burned for 20 years were examined in this study to eliminate potential effects of variable fire histories on the recovery pathways. Post-fire recovery patterns of vegetation in both regions and across different vegetation types were found to be very similar. Post-fire stand age was the primary control over vegetation recovery and the NDVI returned to pre-fire values within seven to 10 years of the fires. Droughts were shown to cause slight interruptions in recovery rates while fire severity had no discernable effect. Intra-stand variability in the NDVI (pixel-scale) also returned to pre-fire values within the same time frame but increased with water stress associated with droughts. While these studies indicated that the NDVI of fynbos and chaparral stands recovered to pre-fire values within 10 years, it is recognized that other ecosystem characteristics may take considerably longer to recover. Despite the larger pixel size, MODIS data were found to be more suitable for monitoring vegetation post-fire recovery than TM/ETM+ data, requiring considerably less pre-processing and providing substantially more information regarding phenological characteristics of recovery pathways. Future studies will include consideration of fire history in the post-fire recovery characteristics of vegetation in these two MTEs.

  9. Insensitivity of Tree-Ring Growth to Temperature and Precipitation Sharpens the Puzzle of Enhanced Pre-Eruption NDVI on Mt. Etna (Italy)

    PubMed Central

    Krusic, Paul J.; Tognetti, Roberto; Houlié, Nicolas; Andronico, Daniele; Egli, Markus; D'Arrigo, Rosanne

    2017-01-01

    On Mt. Etna (Italy), an enhanced Normalized Difference in Vegetation Index (NDVI) signature was detected in the summers of 2001 and 2002 along a distinct line where, in November 2002, a flank eruption subsequently occurred. These observations suggest that pre-eruptive volcanic activity may have enhanced photosynthesis along the future eruptive fissure. If a direct relation between NDVI and future volcanic eruptions could be established, it would provide a straightforward and low-cost method for early detection of upcoming eruptions. However, it is unclear if, or to what extent, the observed enhancement of NDVI can be attributed to volcanic activity prior to the subsequent eruption. We consequently aimed at determining whether an increase in ambient temperature or additional water availability owing to the rise of magma and degassing of water vapour prior to the eruption could have increased photosynthesis of Mt. Etna's trees. Using dendro-climatic analyses we quantified the sensitivity of tree ring widths to temperature and precipitation at high elevation stands on Mt. Etna. Our findings suggest that tree growth at high elevation on Mt. Etna is weakly influenced by climate, and that neither an increase in water availability nor an increase in temperature induced by pre-eruptive activity is a plausible mechanism for enhanced photosynthesis before the 2002/2003 flank eruption. Our findings thus imply that other, yet unknown, factors must be sought as causes of the pre-eruption enhancement of NDVI on Mt. Etna. PMID:28099435

  10. Annual Corn Yield Estimation through Multi-temporal MODIS Data

    NASA Astrophysics Data System (ADS)

    Shao, Y.; Zheng, B.; Campbell, J. B.

    2013-12-01

    This research employed 13 years of the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate annual corn yield for the Midwest of the United States. The overall objective of this study was to examine if annual corn yield could be accurately predicted using MODIS time-series NDVI (Normalized Difference Vegetation Index) and ancillary data such monthly precipitation and temperature. MODIS-NDVI 16-Day composite images were acquired from the USGS EROS Data Center for calendar years 2000 to 2012. For the same time-period, county level corn yield statistics were obtained from the National Agricultural Statistics Service (NASS). The monthly precipitation and temperature measures were derived from Precipitation-Elevation Regressions on Independent Slopes Model (PRISM) climate data. A cropland mask was derived using 2006 National Land Cover Database. For each county and within the cropland mask, the MODIS-NDVI time-series data and PRISM climate data were spatially averaged, at their respective time steps. We developed a random forest predictive model with the MODIS-NDVI and climate data as predictors and corn yield as response. To assess the model accuracy, we used twelve years of data as training and the remaining year as hold-out testing set. The training and testing procedures were repeated 13 times. The R2 ranged from 0.72 to 0.83 for testing years. It was also found that the inclusion of climate data did not improve the model predictive performance. MODIS-NDVI time-series data alone might provide sufficient information for county level corn yield prediction.

  11. Insensitivity of Tree-Ring Growth to Temperature and Precipitation Sharpens the Puzzle of Enhanced Pre-Eruption NDVI on Mt. Etna (Italy).

    PubMed

    Seiler, Ruedi; Kirchner, James W; Krusic, Paul J; Tognetti, Roberto; Houlié, Nicolas; Andronico, Daniele; Cullotta, Sebastiano; Egli, Markus; D'Arrigo, Rosanne; Cherubini, Paolo

    2017-01-01

    On Mt. Etna (Italy), an enhanced Normalized Difference in Vegetation Index (NDVI) signature was detected in the summers of 2001 and 2002 along a distinct line where, in November 2002, a flank eruption subsequently occurred. These observations suggest that pre-eruptive volcanic activity may have enhanced photosynthesis along the future eruptive fissure. If a direct relation between NDVI and future volcanic eruptions could be established, it would provide a straightforward and low-cost method for early detection of upcoming eruptions. However, it is unclear if, or to what extent, the observed enhancement of NDVI can be attributed to volcanic activity prior to the subsequent eruption. We consequently aimed at determining whether an increase in ambient temperature or additional water availability owing to the rise of magma and degassing of water vapour prior to the eruption could have increased photosynthesis of Mt. Etna's trees. Using dendro-climatic analyses we quantified the sensitivity of tree ring widths to temperature and precipitation at high elevation stands on Mt. Etna. Our findings suggest that tree growth at high elevation on Mt. Etna is weakly influenced by climate, and that neither an increase in water availability nor an increase in temperature induced by pre-eruptive activity is a plausible mechanism for enhanced photosynthesis before the 2002/2003 flank eruption. Our findings thus imply that other, yet unknown, factors must be sought as causes of the pre-eruption enhancement of NDVI on Mt. Etna.

  12. Representation of vegetation by continental data sets derived from NOAA-AVHRR data

    NASA Technical Reports Server (NTRS)

    Justice, C. O.; Townshend, J. R. G.; Kalb, V. L.

    1991-01-01

    Images of the normalized difference vegetation index (NDVI) are examined with specific attention given to the effect of spatial scales on the understanding of surface phenomena. A scale variance analysis is conducted on NDVI annual and seasonal images of Africa taken from 1987 NOAA-AVHRR data at spatial scales ranging from 8-512 km. The scales at which spatial variation takes place are determined and the relative magnitude of the variations are considered. Substantial differences are demonstrated, notably an increase in spatial variation with coarsening spatial resolution. Different responses in scale variance as a function of spatial resolution are noted in an analysis of maximum value composites for February and September; the difference is most marked in areas with very seasonal vegetation. The spatial variation at different scales is attributed to different factors, and methods involving the averaging of areas of transition and surface heterogeneity can oversimplify surface conditions. The spatial characteristics and the temporal variability of areas should be considered to accurately apply satellite data to global models.

  13. Trend analysis of GIMMS and MODIS NDVI time series for establishing a land degradation neutrality national baseline

    NASA Astrophysics Data System (ADS)

    Gichenje, Helene; Godinho, Sergio

    2017-04-01

    Land degradation is a key global environment and development problem that is recognized as a priority by the international development community. The Sustainable Development Goals (SDGs) were adopted by the global community in 2015, and include a goal related to land degradation and the accompanying target to achieve a land degradation-neutral (LDN) world by 2030. The LDN concept encompasses two joint actions of reducing the rate of degradation and increasing the rate of restoration. Using Kenya as the study area, this study aims to develop and test a spatially explicit methodology for assessing and monitoring the operationalization of a land degradation neutrality scheme at the national level. Time series analysis is applied to Normalized Difference Vegetation Index (NDVI) satellite data records, based on the hypothesis that the resulting NDVI residual trend would enable successful detection of changes in vegetation photosynthetic capacity and thus serve as a proxy for land degradation and regeneration processes. Two NDVI data sets are used to identify the spatial and temporal distribution of degraded and regenerated areas: the long term coarse resolution (8km, 1982-2015) third generation Global Inventory Modeling and Mapping Studies (GIMMS) NDVI3g data record; and the shorter-term finer resolution (250m, 2001-2015) Moderate Resolution Imaging Spectroradiometer (MODIS) derived NDVI data record. Climate data (rainfall, temperature and soil moisture) are used to separate areas of human-induced vegetation productivity decline from those driven by climate dynamics. Further, weekly vegetation health (VH) indexes (4km, 1982-2015) developed by National Oceanic and Atmospheric Administration (NOAA), are assessed as indicators for early detection and monitoring of land degradation by estimating vegetation stress (moisture, thermal and combined conditions).

  14. Utilizing NASA Earth Observations to Enhance Flood Impact Products and Mitigation in the Lower Mekong Water Basin

    NASA Astrophysics Data System (ADS)

    Doyle, C.; Gao, M.; Spruce, J.; Bolten, J. D.; Weber, S.

    2014-12-01

    This presentation discusses results of a project to develop a near real time flood monitoring capability for the Lower Mekong Water Basin (LMB), the largest river basin in Southeast Asia and home to more than sixty million people. The region has seen rapid population growth and socio-economic development, fueling unsustainable deforestation, agricultural expansion, and stream-flow regulation. The basin supports substantial rice farming and other agrarian activities, which heavily depend upon seasonal flooding. But, floods due to typhoons and other severe weather events can result in disasters that cost millions of dollars and cause hardships to millions of people. This study uses near real time and historical Aqua and Terra MODIS 250-m resolution Normalized Difference Vegetation Index (NDVI) products to map flood and drought impact within the LMB. In doing so, NDVI change products are derived by comparing from NDVI during the wet season to a baseline NDVI from the dry season. The method records flood events, which cause drastic decreases in NDVI compared to non-flooded conditions. NDVI change product computation was automated for updating a near real-time system, as part of the Committee on Earth Observing Satellites Disaster Risk Management Observation Strategy. The system is a web-based 'Flood Dashboard that will showcase MODIS flood monitoring products, along with other flood mapping and weather data products. This flood dashboard enables end-users to view and assess a variety of geospatial data to monitor floods and flood impacts in near real-time, as well provides a platform for further data aggregation for flood prediction modeling and post-event assessment.

  15. Unmanned aerial systems-based remote sensing for monitoring sorghum growth and development

    PubMed Central

    Shafian, Sanaz; Schnell, Ronnie; Bagavathiannan, Muthukumar; Valasek, John; Shi, Yeyin; Olsenholler, Jeff

    2018-01-01

    Unmanned Aerial Vehicles and Systems (UAV or UAS) have become increasingly popular in recent years for agricultural research applications. UAS are capable of acquiring images with high spatial and temporal resolutions that are ideal for applications in agriculture. The objective of this study was to evaluate the performance of a UAS-based remote sensing system for quantification of crop growth parameters of sorghum (Sorghum bicolor L.) including leaf area index (LAI), fractional vegetation cover (fc) and yield. The study was conducted at the Texas A&M Research Farm near College Station, Texas, United States. A fixed-wing UAS equipped with a multispectral sensor was used to collect image data during the 2016 growing season (April–October). Flight missions were successfully carried out at 50 days after planting (DAP; 25 May), 66 DAP (10 June) and 74 DAP (18 June). These flight missions provided image data covering the middle growth period of sorghum with a spatial resolution of approximately 6.5 cm. Field measurements of LAI and fc were also collected. Four vegetation indices were calculated using the UAS images. Among those indices, the normalized difference vegetation index (NDVI) showed the highest correlation with LAI, fc and yield with R2 values of 0.91, 0.89 and 0.58 respectively. Empirical relationships between NDVI and LAI and between NDVI and fc were validated and proved to be accurate for estimating LAI and fc from UAS-derived NDVI values. NDVI determined from UAS imagery acquired during the flowering stage (74 DAP) was found to be the most highly correlated with final grain yield. The observed high correlations between UAS-derived NDVI and the crop growth parameters (fc, LAI and grain yield) suggests the applicability of UAS for within-season data collection of agricultural crops such as sorghum. PMID:29715311

  16. Analysis of postfire vegetation dynamics of Mediterranean shrub species based on terrestrial and NDVI data.

    PubMed

    Hernández-Clemente, Rocío; Cerrillo, R M Navarro; Hernández-Bermejo, J E; Royo, S Escuin; Kasimis, N A

    2009-05-01

    The present study offers an analysis of regeneration patterns and diversity dynamics after a wildfire, which occurred in 1993 and affected about 7000 ha in southern Spain. The aim of the work was to analyze the rule in the succession of shrub species after fire, relating it to the changes registered in the Normalized Difference Vegetation Index (NDVI). Fractional vegetation cover was recorded from permanent plots in 2000 and 2005. NDVI data related to each time were obtained from Landsat images. Both data sets, from fieldwork and remote sensing, were analyzed through statistical and quantitative analyses and then correlated. Results have permitted the description of the change in plant cover and species composition on a global and plot scale. It can be affirmed that, from the seventh to the twelfth year after the fire, the floristic composition within the burned area remained unchanged at a global level. However, on a smaller scale (plot level), the major shrub species, Ulex parviflorus, Rosmarinus officinalis, and Cistus clusii, underwent significant changes. The regeneration dynamics established by these species conditioned plant species composition and, consequently, diversity indexes such as Shannon (H) and Simpson (D). The changes recorded in the NDVI values corresponding to the surveyed plots were highly correlated with those found in the regrowth of the main species. Areas dominated by U. parviflorus in a senile phase were related to a decrease in NDVI values and an increase in the number of species. This result describes the successional dynamics; the dryness of the main colonizer shrub species is allowing the regrowth and re-establishment of other species. Within the study area, NDVI shows sensitivity to postfire plant cover changes and indirectly expresses the diversity dynamics.

  17. Effect of Climate and Land Use on the Spatio-Temporal Variability of Tick-Borne Bacteria in Europe

    PubMed Central

    Tagliapietra, Valentina; Baráková, Ivana; Hauffe, Heidi Christine; Rosso, Fausta; Blaňarová, Lucia; Bona, Martin; Derdáková, Marketa; Hamšíková, Zuzana; Kazimírová, Maria; Kraljik, Jasna; Kocianová, Elena; Mahríková, Lenka; Minichová, Lenka; Mošanský, Ladislav; Slovák, Mirko; Stanko, Michal; Špitalská, Eva; Ducheyne, Els; Hubálek, Zdenek; Rudolf, Ivo; Venclikova, Kristyna; Silaghi, Cornelia; Overzier, Evelyn; Farkas, Robert; Hornok, Sándor; Takács, Nóra

    2018-01-01

    The incidence of tick-borne diseases caused by Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Rickettsia spp. has been rising in Europe in recent decades. Early pre-assessment of acarological hazard still represents a complex challenge. The aim of this study was to model Ixodes ricinus questing nymph density and its infection rate with B. burgdorferi s.l., A. phagocytophilum and Rickettsia spp. in five European countries (Italy, Germany, Czech Republic, Slovakia, Hungary) in various land cover types differing in use and anthropisation (agricultural, urban and natural) with climatic and environmental factors (Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Land Surface Temperature (LST) and precipitation). We show that the relative abundance of questing nymphs was significantly associated with climatic conditions, such as higher values of NDVI recorded in the sampling period, while no differences were observed among land use categories. However, the density of infected nymphs (DIN) also depended on the pathogen considered and land use. These results contribute to a better understanding of the variation in acarological hazard for Ixodes ricinus transmitted pathogens in Central Europe and provide the basis for more focused ecological studies aimed at assessing the effect of land use in different sites on tick–host pathogens interaction. PMID:29649132

  18. Analysis of urban regions using AVHRR thermal infrared data

    USGS Publications Warehouse

    Wright, Bruce

    1993-01-01

    Using 1-km AVHRR satellite data, relative temperature difference caused by conductivity and inertia were used to distinguish urban and non urban land covers. AVHRR data that were composited on a biweekly basis and distributed by the EROS Data Center in Sioux Falls, South Dakota, were used for the classification process. These composited images are based on the maximum normalized different vegetation index (NDVI) of each pixel during the 2-week period using channels 1 and 2. The resultant images are nearly cloud-free and reduce the need for extensive reclassification processing. Because of the physiographic differences between the Eastern and Western United States, the initial study was limited to the eastern half of the United States. In the East, the time of maximum difference between the urban surfaces and the vegetated non urban areas is the peak greenness period in late summer. A composite image of the Eastern United States for the 2-weel time period from August 30-Septmeber 16, 1991, was used for the extraction of the urban areas. Two channels of thermal data (channels 3 and 4) normalized for regional temperature differences and a composited NDVI image were classified using conventional image processing techniques. The results compare favorably with other large-scale urban area delineations.

  19. Cross-sensor comparisons between Landsat 5 TM and IRS-P6 AWiFS and disturbance detection using integrated Landsat and AWiFS time-series images

    USGS Publications Warehouse

    Chen, Xuexia; Vogelmann, James E.; Chander, Gyanesh; Ji, Lei; Tolk, Brian; Huang, Chengquan; Rollins, Matthew

    2013-01-01

    Routine acquisition of Landsat 5 Thematic Mapper (TM) data was discontinued recently and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) has an ongoing problem with the scan line corrector (SLC), thereby creating spatial gaps when covering images obtained during the process. Since temporal and spatial discontinuities of Landsat data are now imminent, it is therefore important to investigate other potential satellite data that can be used to replace Landsat data. We thus cross-compared two near-simultaneous images obtained from Landsat 5 TM and the Indian Remote Sensing (IRS)-P6 Advanced Wide Field Sensor (AWiFS), both captured on 29 May 2007 over Los Angeles, CA. TM and AWiFS reflectances were compared for the green, red, near-infrared (NIR), and shortwave infrared (SWIR) bands, as well as the normalized difference vegetation index (NDVI) based on manually selected polygons in homogeneous areas. All R2 values of linear regressions were found to be higher than 0.99. The temporally invariant cluster (TIC) method was used to calculate the NDVI correlation between the TM and AWiFS images. The NDVI regression line derived from selected polygons passed through several invariant cluster centres of the TIC density maps and demonstrated that both the scene-dependent polygon regression method and TIC method can generate accurate radiometric normalization. A scene-independent normalization method was also used to normalize the AWiFS data. Image agreement assessment demonstrated that the scene-dependent normalization using homogeneous polygons provided slightly higher accuracy values than those obtained by the scene-independent method. Finally, the non-normalized and relatively normalized ‘Landsat-like’ AWiFS 2007 images were integrated into 1984 to 2010 Landsat time-series stacks (LTSS) for disturbance detection using the Vegetation Change Tracker (VCT) model. Both scene-dependent and scene-independent normalized AWiFS data sets could generate disturbance maps similar to what were generated using the LTSS data set, and their kappa coefficients were higher than 0.97. These results indicate that AWiFS can be used instead of Landsat data to detect multitemporal disturbance in the event of Landsat data discontinuity.

  20. Development of monitoring method of coffee leaf rust fungus (Hemileia vastatrix) infected area using satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Katsuhama, N.; Ikeda, K.; Imai, M.; Watanabe, K.; Marpaung, F.; Yoshii, T.; Naruse, N.; Takahashi, Y.

    2016-12-01

    Since 2008, coffee leaf rust fungus (Hemileia vastatrix) has expanded its infection in Latin America, and early trimming and burning infected trees have been only effective countermeasures to prevent spreading infection. Although some researchers reported a case about the monitoring of coffee leaf rust using satellite remote sensing in 1970s, the spatial resolution was unsatisfied, and therefore, further technological development has been required. The purpose of this research is to develop effective method of discovering coffee leaf rust infected areas using satellite remote sensing. Annual changes of vegetation indices, i.e. Normalized Difference Vegetation Index (NDVI) and Modified Structure Insensitive Pigment Index (MSIPI), around Cuchumatanes Mountains, Republic of Guatemala, were analyzed by Landsat 7 images. Study fields in the research were limited by the coffee farm areas based on a previous paper about on site surveys in different damage areas. As the result of the analysis, the annual change of NDVI at the coffee farm areas with damages tended to be lower than those without damages. Moreover, the decline of NDVI appear from 2008 before the damage was reported. On the other hand, the change of MSIPI had no significant difference. NDVI and MSIPI are mainly related to the amount of chlorophyll and carotenoid in the leaves respectively. This means that the infected coffee leaves turned yellow without defoliation. This situation well matches the symptom of coffee leaf rust. The research concluded that the property of infected leaves turning yellow is effective to monitoring of infection areas by satellite remote sensing.

  1. Modeling and Performance Estimation for Airborne Minefield Detection System

    DTIC Science & Technology

    2008-05-01

    Difference Vegetation Index ( NDVI ) NDVI is defined as: NDVI = (NIR – RED)/ (NIR + RED...to minimize the effect of variable irradiance levels. NDVI is always bounded between -1 and 1. A higher positive value of NDVI indicates the...lakes, and rivers) which has low reflectance in both NIR as well as visible bands, results in very low positive or slightly negative NDVI values

  2. What Has Caused Desertification in China?

    PubMed

    Feng, Qi; Ma, Hua; Jiang, Xuemei; Wang, Xin; Cao, Shixiong

    2015-11-03

    Desertification is the result of complex interactions among various factors, including climate change and human activities. However, previous research generally focused on either meteorological factors associated with climate change or human factors associated with human activities, and lacked quantitative assessments of their interaction combined with long-term monitoring. Thus, the roles of climate change and human factors in desertification remain uncertain. To understand the factors that determine whether mitigation programs can contribute to desertification control and vegetation cover improvements in desertified areas of China, and the complex interactions that affect their success, we used a pooled regression model based on panel data to calculate the relative roles of climate change and human activities on the desertified area and on vegetation cover (using the normalized-difference vegetation index, NDVI, which decreases with increasing desertification) from 1983 to 2012. We found similar effect magnitudes for socioeconomic and environmental factors for NDVI but different results for desertification: socioeconomic factors were the dominant factor that affected desertification, accounting for 79.3% of the effects. Climate change accounted for 46.6 and 20.6% of the effects on NDVI and desertification, respectively. Therefore, desertification control programs must account for the integrated effects of both socioeconomic and natural factors.

  3. What Has Caused Desertification in China?

    PubMed Central

    Feng, Qi; Ma, Hua; Jiang, Xuemei; Wang, Xin; Cao, Shixiong

    2015-01-01

    Desertification is the result of complex interactions among various factors, including climate change and human activities. However, previous research generally focused on either meteorological factors associated with climate change or human factors associated with human activities, and lacked quantitative assessments of their interaction combined with long-term monitoring. Thus, the roles of climate change and human factors in desertification remain uncertain. To understand the factors that determine whether mitigation programs can contribute to desertification control and vegetation cover improvements in desertified areas of China, and the complex interactions that affect their success, we used a pooled regression model based on panel data to calculate the relative roles of climate change and human activities on the desertified area and on vegetation cover (using the normalized-difference vegetation index, NDVI, which decreases with increasing desertification) from 1983 to 2012. We found similar effect magnitudes for socioeconomic and environmental factors for NDVI but different results for desertification: socioeconomic factors were the dominant factor that affected desertification, accounting for 79.3% of the effects. Climate change accounted for 46.6 and 20.6% of the effects on NDVI and desertification, respectively. Therefore, desertification control programs must account for the integrated effects of both socioeconomic and natural factors. PMID:26525278

  4. Contrasting shrub species respond to early summer temperatures leading to correspondence of shrub growth patterns

    NASA Astrophysics Data System (ADS)

    Weijers, Stef; Pape, Roland; Löffler, Jörg; Myers-Smith, Isla H.

    2018-03-01

    The Arctic-alpine biome is warming rapidly, resulting in a gradual replacement of low statured species by taller woody species in many tundra ecosystems. In northwest North America, the remotely sensed normalized difference vegetation index (NDVI), suggests an increase in productivity of the Arctic and alpine tundra and a decrease in productivity of boreal forests. However, the responses of contrasting shrub species growing at the same sites to climate drivers remain largely unexplored. Here, we test growth, climate, and NDVI relationships of two contrasting species: the expanding tall deciduous shrub Salix pulchra and the circumarctic evergreen dwarf shrub Cassiope tetragona from an alpine tundra site in the Pika valley in the Kluane Region, southwest Yukon Territories, Canada. We found that annual growth variability of both species at this site is strongly driven by early summer temperatures, despite their contrasting traits and habitats. Shrub growth chronologies for both species were correlated with the regional climate signal and showed spatial correspondence with interannual variation in NDVI in surrounding alpine and Arctic regions. Our results suggest that early summer warming represents a common driver of vegetation change for contrasting shrub species growing in different habitats in the same alpine environments.

  5. A VARI-Based Relative Greenness from MODIS Data for Computing the Fire Potential Index

    NASA Technical Reports Server (NTRS)

    Schneider, P.; Roberts, D. A.; Kyriakidis, P. C.

    2008-01-01

    The Fire Potential Index (FPI) relies on relative greenness (RG) estimates from remote sensing data. The Normalized Difference Vegetation index (NDVI), derived from NOAA Advanced Very High Resolution Radiometer (AVHRR) imagery is currently used to calculate RG operationally. Here we evaluated an alternate measure of RG using the Visible Atmospheric Resistant Index (VARI) derived from Moderate Resolution Imaging Spectrometer (MODIS) data. VARI was chosen because it has previously been shown to have the strongest relationship with Live Fuel Moisture (LFM) out of a wide selection of MODIS-derived indices in southern California shrublands. To compare MODIS-based NDVI-FPI and VARI-FPI, RG was calculated from a 6-year time series of MODIS composites and validated against in-situ observations of LFM as a surrogate for vegetation greenness. RG from both indices was then compared in terms of its performance for computing the FPI using historical wildfire data. Computed RG values were regressed against ground-sampled LFM at 14 sites within Los Angeles County. The results indicate the VARI-based RG consistently shows a stronger relationship with observed LFM than NDVI-based RG. With an average R2 of 0.727 compared to a value of only 0.622 for NDVI-RG, VARI-RG showed stronger relationships at 13 out of 14 sites. Based on these results, daily FPI maps were computed for the years 2001 through 2005 using both NDVI-RG and VARI-RG. These were then validated against 12,490 fire detections from the MODIS active fire product using logistic regression. Deviance of the logistic regression model was 408.8 for NDVI-FPI and 176.2 for VARI-FPI. The c-index was found to be 0.69 and 0.78, respectively. The results show that VARI-FP outperforms NDVI-FPI in distinguishing between fire and no-fire events for historical wildfire data in southern California for the given time period.

  6. Identification of rice field using Multi-Temporal NDVI and PCA method on Landsat 8 (Case Study: Demak, Central Java)

    NASA Astrophysics Data System (ADS)

    Sukmono, Abdi; Ardiansyah

    2017-01-01

    Paddy is one of the most important agricultural crop in Indonesia. Indonesia’s consumption of rice per capita in 2013 amounted to 78,82 kg/capita/year. In 2017, the Indonesian government has the mission of realizing Indonesia became self-sufficient in food. Therefore, the Indonesian government should be able to seek the stability of the fulfillment of basic needs for food, such as rice field mapping. The accurate mapping for rice field can use a quick and easy method such as Remote Sensing. In this study, multi-temporal Landsat 8 are used for identification of rice field based on Rice Planting Time. It was combined with other method for extract information from the imagery. The methods which was used Normalized Difference Vegetation Index (NDVI), Principal Component Analysis (PCA) and band combination. Image classification is processed by using nine classes, those are water, settlements, mangrove, gardens, fields, rice fields 1st, rice fields 2nd, rice fields 3rd and rice fields 4th. The results showed the rice fields area obtained from the PCA method was 50,009 ha, combination bands was 51,016 ha and NDVI method was 45,893 ha. The accuracy level was obtained PCA method (84.848%), band combination (81.818%), and NDVI method (75.758%).

  7. Tree growth and vegetation activity at the ecosystem-scale in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Coulthard, Bethany L.; Touchan, Ramzi; Anchukaitis, Kevin J.; Meko, David M.; Sivrikaya, Fatih

    2017-08-01

    Linking annual tree growth with remotely-sensed terrestrial vegetation indices provides a basis for using tree rings as proxies for ecosystem primary productivity over large spatial and long temporal scales. In contrast with most previous tree ring/remote sensing studies that have focused on temperature-limited boreal and taiga environments, here we compare the normalized difference vegetation index (NDVI) with a network of Pinus brutia tree ring width chronologies collected along ecological gradients in semiarid Cyprus, where both radial tree growth and broader vegetation activity are controlled by drought. We find that the interaction between precipitation, elevation, and land-cover type generate a relationship between radial tree growth and NDVI. While tree ring chronologies at higher-elevation forested sites do not exhibit climate-driven linkages with NDVI, chronologies at lower-elevation dry sites are strongly correlated with NDVI during the winter precipitation season. At lower-elevation sites, land cover is dominated by grasslands and shrublands and tree ring widths operate as a proxy for ecosystem-scale vegetation activity. Tree rings can therefore be used to reconstruct productivity in water-limited grasslands and shrublands, where future drought stress is expected to alter the global carbon cycle, biodiversity, and ecosystem functioning in the 21st century.

  8. [Correlative analysis of the diversity patterns of regional surface water, NDVI and thermal environment].

    PubMed

    Duan, Jin-Long; Zhang, Xue-Lei

    2012-10-01

    Taking Zhengzhou City, the capital of Henan Province in Central China, as the study area, and by using the theories and methodologies of diversity, a discreteness evaluation on the regional surface water, normalized difference vegetation index (NDVI), and land surface temperature (LST) distribution was conducted in a 2 km x 2 km grid scale. Both the NDVI and the LST were divided into 4 levels, their spatial distribution diversity indices were calculated, and their connections were explored. The results showed that it was of operability and practical significance to use the theories and methodologies of diversity in the discreteness evaluation of the spatial distribution of regional thermal environment. There was a higher overlap of location between the distributions of surface water and the lowest temperature region, and the high vegetation coverage was often accompanied by low land surface temperature. In 1988-2009, the discreteness of the surface water distribution in the City had an obvious decreasing trend. The discreteness of the surface water distribution had a close correlation with the discreteness of the temperature region distribution, while the discreteness of the NDVI classification distribution had a more complicated correlation with the discreteness of the temperature region distribution. Therefore, more environmental factors were needed to be included for a better evaluation.

  9. Evaluation of a linear spectral mixture model and vegetation indices (NDVI and EVI) in a study of schistosomiasis mansoni and Biomphalaria glabrata distribution in the state of Minas Gerais, Brazil.

    PubMed

    Guimarães, Ricardo J P S; Freitas, Corina C; Dutra, Luciano V; Scholte, Ronaldo G C; Amaral, Ronaldo S; Drummond, Sandra C; Shimabukuro, Yosio E; Oliveira, Guilherme C; Carvalho, Omar S

    2010-07-01

    This paper analyses the associations between Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) on the prevalence of schistosomiasis and the presence of Biomphalaria glabrata in the state of Minas Gerais (MG), Brazil. Additionally, vegetation, soil and shade fraction images were created using a Linear Spectral Mixture Model (LSMM) from the blue, red and infrared channels of the Moderate Resolution Imaging Spectroradiometer spaceborne sensor and the relationship between these images and the prevalence of schistosomiasis and the presence of B. glabrata was analysed. First, we found a high correlation between the vegetation fraction image and EVI and second, a high correlation between soil fraction image and NDVI. The results also indicate that there was a positive correlation between prevalence and the vegetation fraction image (July 2002), a negative correlation between prevalence and the soil fraction image (July 2002) and a positive correlation between B. glabrata and the shade fraction image (July 2002). This paper demonstrates that the LSMM variables can be used as a substitute for the standard vegetation indices (EVI and NDVI) to determine and delimit risk areas for B. glabrata and schistosomiasis in MG, which can be used to improve the allocation of resources for disease control.

  10. Calibration of UAS imagery inside and outside of shadows for improved vegetation index computation

    NASA Astrophysics Data System (ADS)

    Bondi, Elizabeth; Salvaggio, Carl; Montanaro, Matthew; Gerace, Aaron D.

    2016-05-01

    Vegetation health and vigor can be assessed with data from multi- and hyperspectral airborne and satellite- borne sensors using index products such as the normalized difference vegetation index (NDVI). Recent advances in unmanned aerial systems (UAS) technology have created the opportunity to access these same image data sets in a more cost effective manner with higher temporal and spatial resolution. Another advantage of these systems includes the ability to gather data in almost any weather condition, including complete cloud cover, when data has not been available before from traditional platforms. The ability to collect in these varied conditions, meteorological and temporal, will present researchers and producers with many new challenges. Particularly, cloud shadows and self-shadowing by vegetation must be taken into consideration in imagery collected from UAS platforms to avoid variation in NDVI due to changes in illumination within a single scene, and between collection flights. A workflow is presented to compensate for variations in vegetation indices due to shadows and variation in illumination levels in high resolution imagery collected from UAS platforms. Other calibration methods that producers may currently be utilizing produce NDVI products that still contain shadow boundaries and variations due to illumination, whereas the final NDVI mosaic from this workflow does not.

  11. Using remotely sensed indices of primary productivity to evaluate large mammal abundance and movement in the arid Southwestern United States

    NASA Astrophysics Data System (ADS)

    Stoner, D.; Edwards, T.; Sexton, J. O.; Nagol, J.; Sims, A.; Ironside, K.; Choate, D.; Longshore, K.; Anand, A.; Mattson, D.

    2013-12-01

    Southwestern ecoregions are marked by topographic and climatic variability, which facilitates the coexistence of large herbivores exploiting different dietary niches. Mountain ungulates buffer this variability through physiological and behavioral adaptations such as fat accumulation and seasonal migrations. However, projected climatic shifts imply changes in vegetation biomass and phenology, and therefore mammalian distributions. Here we evaluate how the distribution of primary productivity and phenological rhythms influence abundance and seasonal movements of three widely distributed ungulate species and their principal predator. We used spatio-temporal patterns in the Normalized Difference Vegetation Index (NDVI) derived from MODerate-resolution Imaging Spectrometer (MODIS) measurements at 250-m, daily resolution to explain spatial variability in the abundance of mule deer, elk, and bighorn sheep. Ungulate population response to NDVI was assessed using annual survey data collected by state wildlife agencies with jurisdiction on and around the Colorado Plateau ecoregion. We used NDVI-ungulate relationships to evaluate the spatial requirements and potential densities of cougars; a predator whose diet, density, and distribution is closely tied to these species. Cougar location data were combined from nine radio-telemetry studies conducted over a range of climatic conditions. Focal ungulates demonstrated differing responses to patterns in NDVI. Mule deer abundance corresponded to the timing of green-up (late spring), elk abundance correlated best with peak green biomass (July-Aug), and bighorn showed no relationship to NDVI. Seasonal movements also differed, with deer migrating between distinct summer and winter ranges; bighorn residing on annual ranges, and elk demonstrating a mixed pattern of residency and migration. Cougar movements did not correspond to phenology per se, but home range size and diet diversity varied inversely with NDVI. Projected shifts in the timing and amount of precipitation suggest three considerations for large mammal conservation in the Southwest. First, being tied to June NDVI, mule deer distribution is likely to track areas defined by relatively early growing seasons, whereas elk abundance is likely to increase in response to enhanced summer precipitation. Second, in mesic environments bighorn sheep are both poor competitors and susceptible to predation. To the extent that bighorn sheep are forced to share ranges with deer or elk, they may be adversely affected by changing climate. Lastly, shifts in ungulate abundance may lead cougars to switch prey in some localities, or contract from the drier portions of their current range as energetic costs rise beyond threshold values.

  12. Application of Vegetation Indices to Estimate Acorn Production at Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Escribano, Juan A.; Díaz-Ambrona, Carlos G. H.; Recuero, Laura; Huesca, Margarita; Cicuendez, Victor; Palacios, Alicia; Tarquis, Ana M.

    2014-05-01

    The Iberian pig valued natural resources of the pasture when fattened in mountain. The variability of acorn production is not contained in any line of Spanish agricultural insurance. However, the production of arable pasture is covered by line insurance number 133 for loss of pasture compensation. This scenario is only contemplated for breeding cows and brave bulls, sheep, goats and horses, although pigs are not included. This insurance is established by monitoring ten-day composites Normalized Difference Vegetation Index (NDVI) measured by satellite over treeless pastures, using MODIS TERRA satellite. The aim of this work is to check if we can use a satellite vegetation index to estimate the production of acorns. In order to do so, two Spanish grassland locations have been analyzed: regions of Olivenza (Jerez-Oliva) and Merida (Badajoz). The acorns production was evaluated through 2002-2005 gauging conducted by the Grupo Habitat de la Orden (Badajoz). Medium resolution (500x500 m2) MODIS images were used during the same time period to estimate the ten-day composites NDVI at these locations. Finally, meteorological data was obtained from SIAR and MAGRAMA network stations, calculating the ten-day averaged temperature and ten day accumulated precipitation. Considering two accumulated factors, NDVI and temperature, three phenological stages were well defined being the second one which pointed differences among campaigns. Then, accumulated precipitation versus accumulated NDVI was plot for this second phenological stage obtaining maximum differences at 300 mm of cumulative rainfall. Analyzing acorn production with accumulated NDVI in that moment a production function was obtained with a correlation coefficient of 0.71. These results will be discussed in detail. References J.A. Escribano, C.G.H. Diaz-Ambrona, L. Recuero, M. Huesca, V. Cicuendez, A. Palacios-Orueta y A.M. Tarquis. Aplicacion de Indices de Vegetacion para evaluar la falta de produccion de pastos y montaneras en dehesas. I Congreso Iberico de la Dehesa y el Montado. 6-7 Noviembre, 2013, Badajoz. J.A. Escribano Rodriguez, A.M. Tarquis, C.G. Hernandez Diaz-Ambrona. Pasture Drought Insurance Based on NDVI and SAVI. Geophysical Research Abstracts, 14, EGU2012-13945, 2012. EGU General Assembly 2012. Juan Escribano Rodriguez, Carmelo Alonso, Ana Maria Tarquis, Rosa Maria Benito, Carlos Hernandez Diaz-Ambrona. Comparison of NDVI ?elds obtained from different remote sensors. Geophysical Research Abstracts, 15, EGU2013-14153, 2013. EGU General Assembly 2013 Acknowledgements. This work was partially supported by ENESA under project P10 0220C-823.

  13. Seasonal variability of aerosol optical depth over Indian subcontinent

    USGS Publications Warehouse

    Prasad, A.K.; Singh, R.P.; Singh, A.; Kafatos, M.

    2005-01-01

    Ganga basin extends 2000 km E-W and about 400 km N-S and is bounded by Himalayas in the north. This basin is unequivocally found to be affected by high aerosols optical depth (AOD) (>0.6) throughout the year. Himalayas restricts movement of aerosols toward north and as a result dynamic nature of aerosol is seen over the Ganga basin. High AOD in this region has detrimental effects on health of more than 460 million people living in this part of India besides adversely affecting clouds formation, monsoonal rainfall pattern and Normalized Difference Vegetation Index (NDVI). Severe drought events (year 2002) in Ganga basin and unexpected failure of monsoon several times, occurred in different parts of Indian subcontinent. Significant rise in AOD (18.7%) over the central part of basin (Kanpur region) have been found to cause substantial decrease in NDVI (8.1%) since 2000. A negative relationship is observed between AOD and NDVI, magnitude of which differs from region to region. Efforts have been made to determine general distribution of AOD and its dominant departure in recent years spatially using Moderate Resolution Imaging Spectroradiometer (MODIS) data. The seasonal changes in aerosol optical depth over the Indo-Gangetic basin is found to very significant as a result of the increasing dust storm events in recent years. ?? 2005 IEEE.

  14. Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data

    PubMed Central

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-01-01

    Owing to low temporal resolution and cloud interference, there is a shortage of high spatial resolution remote sensing data. To address this problem, this study introduces a modified spatial and temporal data fusion approach (MSTDFA) to generate daily synthetic Landsat imagery. This algorithm was designed to avoid the limitations of the conditional spatial temporal data fusion approach (STDFA) including the constant window for disaggregation and the sensor difference. An adaptive window size selection method is proposed in this study to select the best window size and moving steps for the disaggregation of coarse pixels. The linear regression method is used to remove the influence of differences in sensor systems using disaggregated mean coarse reflectance by testing and validation in two study areas located in Xinjiang Province, China. The results show that the MSTDFA algorithm can generate daily synthetic Landsat imagery with a high correlation coefficient (R) ranged from 0.646 to 0.986 between synthetic images and the actual observations. We further show that MSTDFA can be applied to 250 m 16-day MODIS MOD13Q1 products and the Landsat Normalized Different Vegetation Index (NDVI) data by generating a synthetic NDVI image highly similar to actual Landsat NDVI observation with a high R of 0.97. PMID:26393607

  15. Generating Daily Synthetic Landsat Imagery by Combining Landsat and MODIS Data.

    PubMed

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-09-18

    Owing to low temporal resolution and cloud interference, there is a shortage of high spatial resolution remote sensing data. To address this problem, this study introduces a modified spatial and temporal data fusion approach (MSTDFA) to generate daily synthetic Landsat imagery. This algorithm was designed to avoid the limitations of the conditional spatial temporal data fusion approach (STDFA) including the constant window for disaggregation and the sensor difference. An adaptive window size selection method is proposed in this study to select the best window size and moving steps for the disaggregation of coarse pixels. The linear regression method is used to remove the influence of differences in sensor systems using disaggregated mean coarse reflectance by testing and validation in two study areas located in Xinjiang Province, China. The results show that the MSTDFA algorithm can generate daily synthetic Landsat imagery with a high correlation coefficient (R) ranged from 0.646 to 0.986 between synthetic images and the actual observations. We further show that MSTDFA can be applied to 250 m 16-day MODIS MOD13Q1 products and the Landsat Normalized Different Vegetation Index (NDVI) data by generating a synthetic NDVI image highly similar to actual Landsat NDVI observation with a high R of 0.97.

  16. Mapping Cropland and Crop-type Distribution Using Time Series MODIS Data

    NASA Astrophysics Data System (ADS)

    Lu, D.; Chen, Y.; Moran, E. F.; Batistella, M.; Luo, L.; Pokhrel, Y.; Deb, K.

    2016-12-01

    Mapping regional and global cropland distribution has attracted great attention in the past decade, but the separation of crop types is challenging due to the spectral confusion and cloud cover problems during the growing season in Brazil. The objective of this study is to develop a new approach to identify crop types (including soybean, cotton, maize) and planting patterns (soybean-maize, soybean-cotton, and single crop) in Mato Grosso, Goias and Tocantins States, Brazil. The time series moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) (MOD13Q1) in 2015/2016 were used in this research and field survey data were collected in May 2016. The major steps include: (1) reconstruct time series NDVI data contaminated by noise and clouds using the temporal interpolation algorithm; (2) identify the best periods and develop temporal indices and phenology parameters to distinguish cropland from other land cover types based on time series NDVI data; (3) develop a crop temporal difference index (CTDI) to extract crop types and patterns using time series NDVI data. This research shows that (1) the cropland occupied approximately 16.85% of total land in these three states; (2) soybean-maize and soybean-cotton were two major crop patterns which occupied 54.80% and 19.30% of total cropland area. This research indicates that the proposed approach is promising for accurately and rapidly mapping cropland and crop-type distribution in these three states of Brazil.

  17. Effects of distribution density and cell dimension of 3D vegetation model on canopy NDVI simulation base on DART

    NASA Astrophysics Data System (ADS)

    Tao, Zhu; Shi, Runhe; Zeng, Yuyan; Gao, Wei

    2017-09-01

    The 3D model is an important part of simulated remote sensing for earth observation. Regarding the small-scale spatial extent of DART software, both the details of the model itself and the number of models of the distribution have an important impact on the scene canopy Normalized Difference Vegetation Index (NDVI).Taking the phragmitesaustralis in the Yangtze Estuary as an example, this paper studied the effect of the P.australias model on the canopy NDVI, based on the previous studies of the model precision, mainly from the cell dimension of the DART software and the density distribution of the P.australias model in the scene, As well as the choice of the density of the P.australiass model under the cost of computer running time in the actual simulation. The DART Cell dimensions and the density of the scene model were set by using the optimal precision model from the existing research results. The simulation results of NDVI with different model densities under different cell dimensions were analyzed by error analysis. By studying the relationship between relative error, absolute error and time costs, we have mastered the density selection method of P.australias model in the simulation of small-scale spatial scale scene. Experiments showed that the number of P.australias in the simulated scene need not be the same as those in the real environment due to the difference between the 3D model and the real scenarios. The best simulation results could be obtained by keeping the density ratio of about 40 trees per square meter, simultaneously, of the visual effects.

  18. Determining the K coefficient to leaf area index estimations in a tropical dry forest

    NASA Astrophysics Data System (ADS)

    Magalhães, Sarah Freitas; Calvo-Rodriguez, Sofia; do Espírito Santo, Mário Marcos; Sánchez Azofeifa, Gerardo Arturo

    2018-03-01

    Vegetation indices are useful tools to remotely estimate several important parameters related to ecosystem functioning. However, improving and validating estimations for a wide range of vegetation types are necessary. In this study, we provide a methodology for the estimation of the leaf area index (LAI) in a tropical dry forest (TDF) using the light diffusion through the canopy as a function of the successional stage. For this purpose, we estimated the K coefficient, a parameter that relates the normalized difference vegetation index (NDVI) to LAI, based on photosynthetically active radiation (PAR) and solar radiation. The study was conducted in the Mata Seca State Park, in southeastern Brazil, from 2012 to 2013. We defined four successional stages (very early, early, intermediate, and late) and established one optical phenology tower at one plot of 20 × 20 m per stage. Towers measured the incoming and reflected solar radiation and PAR for NDVI calculation. For each plot, we established 24 points for LAI sampling through hemispherical photographs. Because leaf cover is highly seasonal in TDFs, we determined ΔK (leaf growth phase) and K max (leaf maturity phase). We detected a strong correlation between NDVI and LAI, which is necessary for a reliable determination of the K coefficient. Both NDVI and LAI varied significantly between successional stages, indicating sensitivity to structural changes in forest regeneration. Furthermore, the K values differed between successional stages and correlated significantly with other environmental variables such as air temperature and humidity, fraction of absorbed PAR, and soil moisture. Thus, we established a model based on spectral properties of the vegetation coupled with biophysical characteristics in a TDF that makes possible to estimate LAI from NDVI values. The application of the K coefficient can improve remote estimations of forest primary productivity and gases and energy exchanges between vegetation and atmosphere. This model can be applied to distinguish different successional stages of TDFs, supporting environmental monitoring and conservation policies towards this biome.

  19. Mapping agroecological zones and time lag in vegetation growth by means of Fourier analysis of time series of NDVI images

    NASA Technical Reports Server (NTRS)

    Menenti, M.; Azzali, S.; Verhoef, W.; Van Swol, R.

    1993-01-01

    Examples are presented of applications of a fast Fourier transform algorithm to analyze time series of images of Normalized Difference Vegetation Index values. The results obtained for a case study on Zambia indicated that differences in vegetation development among map units of an existing agroclimatic map were not significant, while reliable differences were observed among the map units obtained using the Fourier analysis.

  20. Biomass and health based forest cover delineation using spectral un-mixing

    Treesearch

    Mohan Tiruveedhula; Joseph Fan; Ravi R. Sadasivuni; Surya S. Durbha; David L. Evans

    2009-01-01

    Remote sensing is a well-suited source of information on various forest characteristics such as forest cover type, leaf area, biomass, and health. The use of appropriate layers helps to quantify the variables of interest. For example, normalized difference vegetation index (NDVI) and greenness help explain variability in biomass as well as health of forests....

  1. IMPACTS OF VEGETATION DYNAMICS ON THE IDENTIFICATION OF LAND COVER CHANGE IN A BIOLOGICALLY COMPLEX COMMUNITY IN NORTH CAROLINA, USA

    EPA Science Inventory

    A land-cover (LC) change detection experiment was performed in the biologically complex landscape of the Neuse Rive Basin (NRB), NC using Landsat 5 and 7 imagery collected in May of 1993 and 2000. Methods included pixel-wise Normalized Difference Vegetation Index (NDVI) and Mult...

  2. Stomatal conductance, canopy temperature, and leaf area index estimation using remote sensing and OBIA techniques

    Treesearch

    S. Panda; D.M. Amatya; G. Hoogenboom

    2014-01-01

    Remotely sensed images including LANDSAT, SPOT, NAIP orthoimagery, and LiDAR and relevant processing tools can be used to predict plant stomatal conductance (gs), leaf area index (LAI), and canopy temperature, vegetation density, albedo, and soil moisture using vegetation indices like normalized difference vegetation index (NDVI) or soil adjusted...

  3. Deforestation in Mwanza District, Malawi, from 1981 to 1992 as determined from Landsat MSS imagery

    Treesearch

    Andrew T. Hudak; Carol A. Wessman

    2000-01-01

    Malawi is critically short of fuelwood, the primary energy source for its poverty-stricken populace. Deforestation from 1981 to 1992 in Mwanza District in southern Malawi was assessed using Normalized Difference Vegetation Index (NDVI) values calculated from multitemporal Landsat Multispectral Scanner (MSS) images. A control site, where vegetation change was assumed to...

  4. Implication of remotely sensed data to incorporate land cover effect into a linear reservoir-based rainfall-runoff model

    USDA-ARS?s Scientific Manuscript database

    This study investigates the effect of land use on the Geomorphological Cascade of unequal Linear Reservoirs (GCUR) model. We use the Normalized Difference Vegetation Index (NDVI) derived from remotely sensed data as a measure of land use. Our approach has two important aspects: (i) it considers the ...

  5. TERRESTRIAL VEGETATION GREENNESS OF THE LOWER GALVESTON BAY WATERSHED FROM SATELLITE REMOTE SENSING AND ITS RELATION TO WATER AND THE SALINITY REGIME OF THE GALVESTON BAY ESTUARY

    EPA Science Inventory

    Spatial and temporal variability of vegetation greenness have been determined for coastal Texas using biweekly Normalized Difference Vegetation Index (NDVI) data derived from the Advanced Very High Resolution Radiometer (AVHRR). Results are presented on relationships between grou...

  6. Detection of long duration cloud contamination in hyper-temporal NDVI imagery

    NASA Astrophysics Data System (ADS)

    Ali, A.; de Bie, C. A. J. M.; Skidmore, A. K.; Scarrott, R. G.

    2012-04-01

    NDVI time series imagery are commonly used as a reliable source for land use and land cover mapping and monitoring. However long duration cloud can significantly influence its precision in areas where persistent clouds prevails. Therefore quantifying errors related to cloud contamination are essential for accurate land cover mapping and monitoring. This study aims to detect long duration cloud contamination in hyper-temporal NDVI imagery based land cover mapping and monitoring. MODIS-Terra NDVI imagery (250 m; 16-day; Feb'03-Dec'09) were used after necessary pre-processing using quality flags and upper envelope filter (ASAVOGOL). Subsequently stacked MODIS-Terra NDVI image (161 layers) was classified for 10 to 100 clusters using ISODATA. After classifications, 97 clusters image was selected as best classified with the help of divergence statistics. To detect long duration cloud contamination, mean NDVI class profiles of 97 clusters image was analyzed for temporal artifacts. Results showed that long duration clouds affect the normal temporal progression of NDVI and caused anomalies. Out of total 97 clusters, 32 clusters were found with cloud contamination. Cloud contamination was found more prominent in areas where high rainfall occurs. This study can help to stop error propagation in regional land cover mapping and monitoring, caused by long duration cloud contamination.

  7. Assessment of Vegetation Indices Derived by UAV Imagery for Durum Wheat Phenotyping under a Water Limited and Heat Stressed Mediterranean Environment.

    PubMed

    Kyratzis, Angelos C; Skarlatos, Dimitrios P; Menexes, George C; Vamvakousis, Vasileios F; Katsiotis, Andreas

    2017-01-01

    There is growing interest for using Spectral Vegetation Indices (SVI) derived by Unmanned Aerial Vehicle (UAV) imagery as a fast and cost-efficient tool for plant phenotyping. The development of such tools is of paramount importance to continue progress through plant breeding, especially in the Mediterranean basin, where climate change is expected to further increase yield uncertainty. In the present study, Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR) and Green Normalized Difference Vegetation Index (GNDVI) derived from UAV imagery were calculated for two consecutive years in a set of twenty durum wheat varieties grown under a water limited and heat stressed environment. Statistically significant differences between genotypes were observed for SVIs. GNDVI explained more variability than NDVI and SR, when recorded at booting. GNDVI was significantly correlated with grain yield when recorded at booting and anthesis during the 1st and 2nd year, respectively, while NDVI was correlated to grain yield when recorded at booting, but only for the 1st year. These results suggest that GNDVI has a better discriminating efficiency and can be a better predictor of yield when recorded at early reproductive stages. The predictive ability of SVIs was affected by plant phenology. Correlations of grain yield with SVIs were stronger as the correlations of SVIs with heading were weaker or not significant. NDVIs recorded at the experimental site were significantly correlated with grain yield of the same set of genotypes grown in other environments. Both positive and negative correlations were observed indicating that the environmental conditions during grain filling can affect the sign of the correlations. These findings highlight the potential use of SVIs derived by UAV imagery for durum wheat phenotyping under low yielding Mediterranean conditions.

  8. Geospatiotemporal Data Mining of Remotely Sensed Phenology for Unsupervised Forest Threat Detection

    NASA Astrophysics Data System (ADS)

    Mills, R. T.; Hoffman, F. M.; Kumar, J.; Vulli, S. S.; Hargrove, W. W.; Spruce, J.

    2010-12-01

    Hargrove and Hoffman have previously developed and applied a scalable geospatiotemporal data mining approach to define a set of categorical, multivariate classes or states for describing and tracking the behavior of ecosystem properties through time within a multi-dimensional phase or state space. The method employs a standard k-means cluster analysis with enhancements that reduce the number of required comparisons, dramatically accelerating iterative convergence. In support of efforts by the USDA Forest Service to develop a National Early Warning System for Forest Disturbances, we have applied this geospatiotemporal cluster analysis procedure to annual phenology patterns derived from Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) for unsupervised change detection. We will present initial results from the analysis of seven years of 250-m MODIS NDVI data for the conterminous United States. While determining what constitutes a "normal" phenological pattern for any given location is challenging due to interannual climate variability, a spatially varying climate change trend, and the relatively short record of MODIS NDVI observations, these results demonstrate the utility of the method for detecting significant mortality events, like the progressive damage from mountain pine beetle, and suggest that the technique may be successfully implemented as a key component in an early warning system for identifying forest threats from natural and anthropogenic disturbances at a continental scale.

  9. Characterizing post-drainage succession in Thermokarst Lake Basins on the Seward Peninsula, Alaska with TerraSAR-X Backscatter and Landsat-based NDVI data

    USGS Publications Warehouse

    Regmi, Prajna; Grosse, Guido; Jones, Miriam C.; Jones, Benjamin M.; Walter Anthony, Katey

    2012-01-01

    Drained thermokarst lake basins accumulate significant amounts of soil organic carbon in the form of peat, which is of interest to understanding carbon cycling and climate change feedbacks associated with thermokarst in the Arctic. Remote sensing is a tool useful for understanding temporal and spatial dynamics of drained basins. In this study, we tested the application of high-resolution X-band Synthetic Aperture Radar (SAR) data of the German TerraSAR-X satellite from the 2009 growing season (July–September) for characterizing drained thermokarst lake basins of various age in the ice-rich permafrost region of the northern Seward Peninsula, Alaska. To enhance interpretation of patterns identified in X-band SAR for these basins, we also analyzed the Normalized Difference Vegetation Index (NDVI) calculated from a Landsat-5 Thematic Mapper image acquired on July 2009 and compared both X-band SAR and NDVI data with observations of basin age. We found significant logarithmic relationships between (a) TerraSAR-X backscatter and basin age from 0 to 10,000 years, (b) Landat-5 TM NDVI and basin age from 0 to 10,000 years, and (c) TerraSAR-X backscatter and basin age from 50 to 10,000 years. NDVI was a better indicator of basin age over a period of 0–10,000 years. However, TerraSAR-X data performed much better for discriminating radiocarbon-dated basins (50–10,000 years old). No clear relationships were found for either backscatter or NDVI and basin age from 0 to 50 years. We attribute the decreasing trend of backscatter and NDVI with increasing basin age to post-drainage changes in the basin surface. Such changes include succession in vegetation, soils, hydrology, and renewed permafrost aggradation, ground ice accumulation and localized frost heave. Results of this study show the potential application of X-band SAR data in combination with NDVI data to map long-term succession dynamics of drained thermokarst lake basins.

  10. Retrieving pace in vegetation growth using precipitation and soil moisture

    NASA Astrophysics Data System (ADS)

    Sohoulande Djebou, D. C.; Singh, V. P.

    2013-12-01

    The complexity of interactions between the biophysical components of the watershed increases the challenge of understanding water budget. Hence, the perspicacity of the continuum soil-vegetation-atmosphere's functionality still remains crucial for science. This study targeted the Texas Gulf watershed and evaluated the behavior of vegetation covers by coupling precipitation and soil moisture patterns. Growing season's Normalized Differential Vegetation Index NDVI for deciduous forest and grassland were used over a 23 year period as well as precipitation and soil moisture data. The role of time scales on vegetation dynamics analysis was appraised using both entropy rescaling and correlation analysis. This resulted in that soil moisture at 5 cm and 25cm are potentially more efficient to use for vegetation dynamics monitoring at finer time scale compared to precipitation. Albeit soil moisture at 5 cm and 25 cm series are highly correlated (R2>0.64), it appeared that 5 cm soil moisture series can better explain the variability of vegetation growth. A logarithmic transformation of soil moisture and precipitation data increased correlation with NDVI for the different time scales considered. Based on a monthly time scale we came out with a relationship between vegetation index and the couple soil moisture and precipitation [NDVI=a*Log(% soil moisture)+b*Log(Precipitation)+c] with R2>0.25 for each vegetation type. Further, we proposed to assess vegetation green-up using logistic regression model and transinformation entropy using the couple soil moisture and precipitation as independent variables and vegetation growth metrics (NDVI, NDVI ratio, NDVI slope) as the dependent variable. The study is still ongoing and the results will surely contribute to the knowledge in large scale vegetation monitoring. Keywords: Precipitation, soil moisture, vegetation growth, entropy Time scale, Logarithmic transformation and correlation between soil moisture and NDVI, precipitation and NDVI. The analysis is performed by combining both scenes 7 and 8 data. Schematic illustration of the two dimension transinformation entropy approach. T(P,SM;VI) stand for the transinformation contained in the couple soil moisture (SM)/precipitation (P) and explaining vegetation growth (VI).

  11. [Spatial and Temporal Variations in Spectrum-Derived Vegetation Growth Trend in Qinghai-Tibetan Plateau from 1982 to 2014].

    PubMed

    Wang, Zhi-wei; Wu, Xiao-dong; Yue, Guang-yang; Zhao, Lin; Wang, Qian; Nan, Zhuo-tong; Qin, Yu; Wu, Tong-hua; Shi, Jian-zong; Zou, De-fu

    2016-02-01

    Recently considerable researches have focused on monitoring vegetation changes because of its important role in regula- ting the terrestrial carbon cycle and the climate system. There were the largest areas with high-altitudes in the Qinghai-Tibet Plateau (QTP), which is often referred to as the third pole of the world. And vegetation in this region is significantly sensitive to the global warming. Meanwhile NDVI dataset was one of the most useful tools to monitor the vegetation activity with high spatial and temporal resolution, which is a normalized transform of the near-infrared radiation (NIR) to red reflectance ratio. Therefore, an extended GIMMS NDVI dataset from 1982-2006 to 1982-2014 was presented using a unary linear regression by MODIS dataset from 2000 to 2014 in QTP. Compared with previous researches, the accuracy of the extended NDVI dataset was improved again with consideration the residuals derived from scale transformation. So the model of extend NDVI dataset could be a new method to integrate different NDVI products. With the extended NDVI dataset, we found that in growing season there was a statistically significant increase (0.000 4 yr⁻¹, r² = 0.585 9, p < 0.001) in QTP from 1982 to 2014. During the study pe- riod, the trends of NDVI were significantly increased in spring (0.000 5 yr⁻¹, r² = 0.295 4, p = 0.001), summer (0.000 3 yr⁻¹, r² = 0.105 3, p = 0.065) and autumn respectively (0.000 6 yr⁻¹, r² = 0.436 7, p < 0.001). Due to the increased vegeta- tion activity in Qinghai-Tibet Plateau from 1982 to 2014, the magnitude of carbon sink was accumulated in this region also at this same period. Then the data of temperature and precipitation was used to explore the reason of vegetation changed. Although the trends of them are both increased, the correlation between NDVI and temperature is higher than precipitation in vegetation grow- ing season, spring, summer and autumn. Furthermore, there is significant spatial heterogeneity of the changing trends for ND- VI, temperature and precipitation at Qinghai-Tibet Plateau scale.

  12. Grazed grass was estimated via satellite images better then mowed grass

    NASA Astrophysics Data System (ADS)

    Koncz, Péter; Gubányi, András; Gecse, Bernadett; Tolnai, Márton; Pintér, Krisztina; Kertész, Péter; Fóti, Szilvia; Balogh, János; Nagy, Zoltán

    2017-04-01

    Precise livestock management requires objective alert system about the potential threats of overgrazing and intensive mowing. This kind of system could be based on the estimation of the amount of grazed and mowed biomass by remote sensing of vegetation indices. In our study we used the Normalized Difference Vegetation Index (NDVI) derived from Landsat 7 and 8 satellites to establish a regression between the vegetation index and the biomass (cut from ten, 40× 40 cm plots, during 52 measurement campaigns, 2011-2013) in a semi-arid grassland of Hungary, Bugac. Based on the regression time series of NDVI data were converted into biomass data in case of grazed and mowed areas (2011?2016). Biomass changes, inferred from NDVI data, were compared to the estimated grazed (based on daily dry matter uptake of cattle) and measured mowed (weighted) biomass. We found significant correlation between the NDVI and the total biomass (r2=0.6, p<0.05, n=52, RMSE=52.8 g m-2) and a stronger one between the NDVI and the green biomass (r2=0.75, p<0.05, n=52, RMSE=36.8 g m-2). We found that the amount of grazed biomass based on dry matter uptake was in close agreement with the biomass changes inferred from NDVI data (r2=0.42, p=0.11, n=7, RMSE=25.2 g m-2). However, there was no correlation between the biomass of the measured hay and the biomass inferred from NDVI data (r2=0.16, p=0.49, n=5, RMSE=67.4 g m-2). This was most probably due to the fact that mowing is a sudden, while grazing is a prolonged event, hence satellite data are less likely to be available before and after the mowing events (i.e. within days) compared to the grazing periods which usually lasts for months (only 12±2 satellite images were suitable per year). Therefore, NDVI changes are more accurately captured when grazing is observed than when mowing. We concluded that NDVI data from satellite images could be used to estimate the amount of grazed biomass, however to estimate the amount of mowed hay more frequent data coverage would be needed.

  13. Analysis of Terrestrial Conditions and Dynamics

    NASA Technical Reports Server (NTRS)

    Goward, S. N.

    1985-01-01

    An ecological model is developed to estimate annual net primary productivity of vegetation in twelve major North American biomes. Three models are adapted and combined, each addressing a different factor known to govern primary productivity, i.e., photosynthesis, respiration, and moisture availability. Measures of intercepted photosynthetically active radiation (1PAR) for input to the photosynthesis model are derived from spectral vegetation index data. Normalized Difference Vegetation Index (NDVI) data are produced from NOAA-7 Advanced Very High Resolution Radiometer (AVHRR) observations for April 1982 through March 1983. NDVI values are sampled from within the biomes at locations for which climatological data are available. Monthly estimates of Net Primary Productivity (NPP) for each sample location are generated and summed over the twelve month period. These monthly estimates are averaged to produce a single annual estimated NPP value for each biomes. Comparison of estimated NPP values with figures reported in the literature produces a correlation coefficient of 85.

  14. Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome.

    PubMed

    Yuan, Wenping; Liu, Shuguang; Dong, Wenjie; Liang, Shunlin; Zhao, Shuqing; Chen, Jingming; Xu, Wenfang; Li, Xianglan; Barr, Alan; Andrew Black, T; Yan, Wende; Goulden, Mike L; Kulmala, Liisa; Lindroth, Anders; Margolis, Hank A; Matsuura, Yojiro; Moors, Eddy; van der Molen, Michiel; Ohta, Takeshi; Pilegaard, Kim; Varlagin, Andrej; Vesala, Timo

    2014-06-26

    The satellite-derived normalized difference vegetation index (NDVI), which is used for estimating gross primary production (GPP), often includes contributions from both mosses and vascular plants in boreal ecosystems. For the same NDVI, moss can generate only about one-third of the GPP that vascular plants can because of its much lower photosynthetic capacity. Here, based on eddy covariance measurements, we show that the difference in photosynthetic capacity between these two plant functional types has never been explicitly included when estimating regional GPP in the boreal region, resulting in a substantial overestimation. The magnitude of this overestimation could have important implications regarding a change from a current carbon sink to a carbon source in the boreal region. Moss abundance, associated with ecosystem disturbances, needs to be mapped and incorporated into GPP estimates in order to adequately assess the role of the boreal region in the global carbon cycle.

  15. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Lam, Nina Siu-Ngan; Quattrochi, Dale A.

    1999-01-01

    Analyses of the fractal dimension of Normalized Difference Vegetation Index (NDVI) images of homogeneous land covers near Huntsville, Alabama revealed that the fractal dimension of an image of an agricultural land cover indicates greater complexity as pixel size increases, a forested land cover gradually grows smoother, and an urban image remains roughly self-similar over the range of pixel sizes analyzed (10 to 80 meters). A similar analysis of Landsat Thematic Mapper images of the East Humboldt Range in Nevada taken four months apart show a more complex relation between pixel size and fractal dimension. The major visible difference between the spring and late summer NDVI images is the absence of high elevation snow cover in the summer image. This change significantly alters the relation between fractal dimension and pixel size. The slope of the fractal dimension-resolution relation provides indications of how image classification or feature identification will be affected by changes in sensor spatial resolution.

  16. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Lam, Nina Siu-Ngan; Quattrochi, Dale A.

    1999-01-01

    Analyses of the fractal dimension of Normalized Difference Vegetation Index (NDVI) images of homogeneous land covers near Huntsville, Alabama revealed that the fractal dimension of an image of an agricultural land cover indicates greater complexity as pixel size increases, a forested land cover gradually grows smoother, and an urban image remains roughly self-similar over the range of pixel sizes analyzed (10 to 80 meters). A similar analysis of Landsat Thematic Mapper images of the East Humboldt Range in Nevada taken four months apart show a more complex relation between pixel size and fractal dimension. The major visible difference between the spring and late summer NDVI images of the absence of high elevation snow cover in the summer image. This change significantly alters the relation between fractal dimension and pixel size. The slope of the fractal dimensional-resolution relation provides indications of how image classification or feature identification will be affected by changes in sensor spatial resolution.

  17. Differentiating moss from higher plants is critical in studying the carbon cycle of the boreal biome

    USGS Publications Warehouse

    Yuan, Wenping; Liu, Shuguang; Dong, Wenjie; Liang, Shunlin; Zhao, Shuqing; Chen, Jingming; Xu, Wenfang; Li, Xianglan; Barr, Alan; Black, T. Andrew; Yan, Wende; Goulden, Michael; Kulmala, Liisa; Lindroth, Anders; Margolis, Hank A.; Matsuura, Yojiro; Moors, Eddy; van der Molen, Michiel; Ohta, Takeshi; Pilegaard, Kim; Varlagin, Andrej; Vesala, Timo

    2014-01-01

    The satellite-derived normalized difference vegetation index (NDVI), which is used for estimating gross primary production (GPP), often includes contributions from both mosses and vascular plants in boreal ecosystems. For the same NDVI, moss can generate only about one-third of the GPP that vascular plants can because of its much lower photosynthetic capacity. Here, based on eddy covariance measurements, we show that the difference in photosynthetic capacity between these two plant functional types has never been explicitly included when estimating regional GPP in the boreal region, resulting in a substantial overestimation. The magnitude of this overestimation could have important implications regarding a change from a current carbon sink to a carbon source in the boreal region. Moss abundance, associated with ecosystem disturbances, needs to be mapped and incorporated into GPP estimates in order to adequately assess the role of the boreal region in the global carbon cycle.

  18. Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery

    NASA Astrophysics Data System (ADS)

    Navarro, Gabriel; Caballero, Isabel; Silva, Gustavo; Parra, Pedro-Cecilio; Vázquez, Águeda; Caldeira, Rui

    2017-06-01

    A forest fire started on August 8th, 2016 in several places on Madeira Island causing damage and casualties. As of August 10th the local media had reported the death of three people, over 200 people injured, over 950 habitants evacuated, and 50 houses damaged. This study presents the preliminary results of the assessment of several spectral indices to evaluate the burn severity of Madeira fires during August 2016. These spectral indices were calculated using the new European satellite Sentinel-2A launched in June 2015. The study confirmed the advantages of several spectral indices such as Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Normalized Burn Ratio (NBR) and Normalized Difference Vegetation Index (NDVIreXn) using red-edge spectral bands to assess the post-fire conditions. Results showed high correlation between NDVI, GNDVI, NBR and NDVIre1n spectral indices and the analysis performed by Copernicus Emergency Management Service (EMSR175), considered as the reference truth. Regarding the red-edge spectral indices, the NDVIre1n (using band B5, 705 nm) presented better results compared with B6 (740 nm) and B7 (783 nm) bands. These preliminary results allow us to assume that Sentinel-2 will be a valuable tool for post-fire monitoring. In the future, the two twin Sentinel-2 satellites will offer global coverage of the Madeira Archipelago every five days, therefore allowing the simultaneous study of the evolution of the burnt area and reforestation information with high spatial (up to 10 m) and temporal resolution (5 days).

  19. Assessment of seasonal features based on Landsat time series for tree crown cover mapping in Burkina Faso

    NASA Astrophysics Data System (ADS)

    Liu, Jinxiu; Heiskanen, Janne; Aynekuly, Ermias; Pellikka, Petri

    2016-04-01

    Tree crown cover (CC) is an important vegetation attribute for land cover characterization, and for mapping and monitoring forest cover. Free data from Landsat and Sentinel-2 allow construction of fine resolution satellite image time series and extraction of seasonal features for predicting vegetation attributes. In the savannas, surface reflectance vary distinctively according to the rainy and dry seasons, and seasonal features are useful information for CC mapping. However, it is unclear if it is better to use spectral bands or vegetation indices (VI) for computation of seasonal features, and how feasible different VI are for CC prediction in the savanna woodlands and agroforestry parklands of West Africa. In this study, the objective was to compare seasonal features based on spectral bands and VI for CC mapping in southern Burkina Faso. A total of 35 Landsat images from November 2013 to October 2014 were processed. Seasonal features were computed using a harmonic model with three parameters (mean, amplitude and phase), and spectral bands, normalized difference vegetation index (NDVI), green normalized difference vegetation index (GNDVI), normalized difference water index (NDWI), tasseled cap (TC) indices (brightness, greenness, wetness) as input data. The seasonal features were employed to predict field estimated CC (n = 160) using Random Forest algorithm. The most accurate results were achieved when using seasonal features based on TC indices (R2: 0.65; RMSE: 10.7%) and spectral bands (R2: 0.64; RMSE: 10.8%). GNDVI performed better than NDVI or NDWI, and NDWI resulted in the poorest results (R2: 0.56; RMSE: 11.9%). The results indicate that spectral features should be carefully selected for CC prediction as shown by relatively poor performance of commonly used NDVI. The seasonal features based on three TC indices and all the spectral bands provided superior accuracy in comparison to single VI. The method presented in this study provides a feasible method to map CC based on seasonal features with possibility to integrate medium resolution satellite observation from several sensors (e.g. Landsat and Sentinel-2) in the future.

  20. Tree Canopy Light Interception Estimates in Almond and a Walnut Orchards Using Ground, Low Flying Aircraft, and Satellite Based Methods to Improve Irrigation Scheduling Programs

    NASA Technical Reports Server (NTRS)

    Rosecrance, Richard C.; Johnson, Lee; Soderstrom, Dominic

    2016-01-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  1. Tree canopy light interception estimates in almond and a walnut orchards using ground, low flying aircraft, and satellite based methods to improve irrigation scheduling programs.

    NASA Astrophysics Data System (ADS)

    Rosecrance, R. C.; Johnson, L.; Soderstrom, D.

    2016-12-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  2. Seasonal LAI in slash pine estimated with LANDSAT TM

    NASA Technical Reports Server (NTRS)

    Curran, Paul J.; Dungan, Jennifer L.; Gholz, Henry L.

    1990-01-01

    The leaf area index (LAI, total area of leaves per unit area of ground) of most forest canopies varies throughout the year, yet for logistical reasons it is difficult to estimate anything more detailed than a seasonal maximum LAI. To determine if remotely sensed data can be used to estimate LAI seasonally, field measurements of LAI were compared to normalized difference vegetation index (NDVI) values derived using LANDSAT Thematic Mapper (TM) data, for 16 fertilized and control slash pine plots on 3 dates. Linear relationships existed between NDVI and LAI with R(sup 2) values of 0.35, 0.75, and 0.86 for February 1988, September 1988, and March, 1989, respectively. This is the first reported study in which NDVI is related to forest LAI recorded during the month of sensor overpass. Predictive relationships based on data from eight of the plots were used to estimate the LAI of the other eight plots with a root-mean-square error of 0.74 LAI, which is 15.6 percent of the mean LAI. This demonstrates the potential use of LANDSAT TM data for studying seasonal dynamics in forest canopies.

  3. Vegetation Cover Change in the Upper Kings River Basin of the Sierra Nevada Detected Using Landsat Satellite Image Analysis

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.

    2015-01-01

    The Sierra Nevada of California is a region where large wildfires have been suppressed for over a century. A detailed geographic record of recent changes in vegetation cover across the Sierra Nevada remains a gap that can be filled with satellite remote sensing data. Results from Landsat image analysis over the past 25 years in the Upper Kings River basin showed that consistent, significant increases in the normalized difference vegetation index (NDVI) have not extended above 2000 m elevation, where cold temperatures presumably limit the growing season. Moreover, mean increases in NDVI since 1986 at elevations below 2000 m (which cover about half of the total basin area) have not exceeded 9%, even in the most extreme precipitation yearly comparisons. NDVI has decreased significantly at elevations above 2000 m throughout the basin in relatively wet year comparisons since the mid-1980s. These findings conflict with any assumptions that ET fluxes and river flows downstream could have been markedly altered by vegetation change over most of the Upper Kings River basin in recent decades.

  4. Potential and limitations of using digital repeat photography to track structural and physiological phenology in Mediterranean tree-grass ecosystems

    NASA Astrophysics Data System (ADS)

    Luo, Yunpeng; EI-Madany, Tarek; Filippa, Gianluca; Carrara, Arnaud; Cremonese, Edoardo; Galvagno, Marta; Hammer, Tiana; Pérez-Priego, Oscar; Reichstein, Markus; Martín Isabel, Pilar; González Cascón, Rosario; Migliavacca, Mirco

    2017-04-01

    Tree-Grass ecosystems are global widely distributed (16-35% of the land surface). However, its phenology (especially in water-limited areas) has not yet been well characterized and modeled. By using commercial digital cameras, continuous and relatively vast phenology data becomes available, which provides a good opportunity to monitor and develop a robust method used to extract the important phenological events (phenophases). Here we aimed to assess the usability of digital repeat photography for three Tree-Grass Mediterranean ecosystems over two different growing seasons (Majadas del Tietar, Spain) to extract critical phenophases for grass and evergreen broadleaved trees (autumn regreening of grass- Start of growing season; resprouting of tree leaves; senescence of grass - End of growing season), assess their uncertainty, and to correlate them with physiological phenology (i.e. phenology of ecosystem scale fluxes such as Gross Primary Productivity, GPP). We extracted green chromatic coordinates (GCC) and camera based normalized difference vegetation index (Camera-NDVI) from an infrared enabled digital camera using the "Phenopix" R package. Then we developed a novel method to retrieve important phenophases from GCC and Camera-NDVI from various region of interests (ROIs) of the imagery (tree areas, grass, and both - ecosystem) as well as from GPP, which was derived from Eddy Covariance tower in the same experimental site. The results show that, at ecosystem level, phenophases derived from GCC and Camera-NDVI are strongly correlated (R2 = 0.979). Remarkably, we observed that at the end of growing season phenophases derived from GCC were systematically advanced (ca. 8 days) than phenophase from Camera-NDVI. By using the radiative transfer model Soil Canopy Observation Photochemistry and Energy (SCOPE) we demonstrated that this delay is related to the different sensitivity of GCC and NDVI to the fraction of green/dry grass in the canopy, resulting in a systematic higher NDVI during the dry-down of the canopy. Phenophases derived from GCC and Camera-NDVI are correlated with phenophase extracted from GPP across sites and years (R2 =0.966 and 0.976 respectively). For the start of growing season the determination coefficient was higher (R2 =0.89 and 0.98 for GCC vs GPP and Camera-NDVI vs GPP, respectively) than for the end of growing season (R2 =0.75 and 0.70, for GCC and Camera-NDVI, respectively). The statistics obtained using phenophases derived from grass or ecosystem ROI are similar. In contrast, GCC and Camera-NDVI derived from trees ROI are relatively constant and not related to the seasonality of GPP. However, the GCC of tree shows a characteristic peak that is synchronous to leaf flushing in spring assessed using regular Chlorophyll content measurements and automatic dendrometers. Concluding, we first developed a method to derive phenological events of Tree-Grass ecosystems using digital repeat photography, second we demonstrated that the phenology of GPP is strongly dominated by the phenology of grassland layer, third we discussed the uncertainty related to the use of GCC and Camera-NDVI in senescence, and finally we demonstrate the capability of GCC to track in evergreen broadleaved forest crucial phenological events. Our findings confirm digital repeat photography is a vital data source for characterizing phenology in Mediterranean Tree-Grass Ecosystem.

  5. Simulations of Seasonal and Latitudinal Variations in Leaf Inclination Angle Distribution: Implications for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Huemmrich, Karl F.

    2013-01-01

    The leaf inclination angle distribution (LAD) is an important characteristic of vegetation canopy structure affecting light interception within the canopy. However, LADs are difficult and time consuming to measure. To examine possible global patterns of LAD and their implications in remote sensing, a model was developed to predict leaf angles within canopies. Canopies were simulated using the SAIL radiative transfer model combined with a simple photosynthesis model. This model calculated leaf inclination angles for horizontal layers of leaves within the canopy by choosing the leaf inclination angle that maximized production over a day in each layer. LADs were calculated for five latitude bands for spring and summer solar declinations. Three distinct LAD types emerged: tropical, boreal, and an intermediate temperate distribution. In tropical LAD, the upper layers have a leaf angle around 35 with the lower layers having horizontal inclination angles. While the boreal LAD has vertical leaf inclination angles throughout the canopy. The latitude bands where each LAD type occurred changed with the seasons. The different LADs affected the fraction of absorbed photosynthetically active radiation (fAPAR) and Normalized Difference Vegetation Index (NDVI) with similar relationships between fAPAR and leaf area index (LAI), but different relationships between NDVI and LAI for the different LAD types. These differences resulted in significantly different relationships between NDVI and fAPAR for each LAD type. Since leaf inclination angles affect light interception, variations in LAD also affect the estimation of leaf area based on transmittance of light or lidar returns.

  6. Arctic tundra greening and browning (2007-2013) based on satellite-observed solar-induced fluorescence data

    NASA Astrophysics Data System (ADS)

    Fu, D.; Su, F.; Wang, J.

    2017-12-01

    More accurate evaluation of the state of Arctic tundra vegetation is important for our understanding of Arctic and global systems. Arctic tundra greening has been reported, increasing vegetation cover and productivity in many regions, but browning has been also reported, based on satellite-observed Normalized Difference Vegetation Index (NDVI) from 2011 until recently. Here we demonstrate a satellite-based method of estimating tundra greenness trend. A more direct indicator of greenness (spatially downscaling solar-induced fluorescence, SIF) was used to analyze the spatial and temporal patterns of Arctic tundra greenness trends based on ordinary least square regression (2007-2013). Meanwhile, two other greenness indices were used for the comparison, which were two NDVI products: GIMMS NDVI3g, and MOD13Q1 Collection 6. Generally, the Arctic tundra was not consistently greening, browning also existed. For the spatial trends, the results showed that most parts of the Arctic tundra below 75ºN was browning (-0.0098 mW/m2/sr/nm/year) using SIF, whereas spatially heterogeneous trends (greening or browning) were obtained based on the two NDVI products. For the temporal trends, the greenness value of Eurasia Arctic tundra is higher than Northern America and the whole Arctic tundra for the three greenness indices. From 2010, the Arctic tundra was greening based on MOD13Q1, whereas is browning using GIMMS NDVI3g. However, the Arctic tundra was obviously browning using SIF data. This study demonstrates a way of investigating the variation of Arctic tundra vegetation via new satellite-observed data.

  7. Near Real-time Operational Use of eMODIS Expedited NDVI for Monitoring Applications and Famine Early Warning

    NASA Astrophysics Data System (ADS)

    Rowland, J.; Budde, M. E.

    2010-12-01

    The Famine Early Warning Systems Network (FEWS NET) has requirements for near real-time monitoring of vegetation conditions for food security applications. Accurate and timely assessments of crop conditions are an important element of food security decision making. FEWS NET scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center are utilizing a new Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) dataset for operational monitoring of crop and pasture conditions in parts of the world where food availability is highly dependent on subsistence agriculture and animal husbandry. The expedited MODIS, or eMODIS, production system processes NDVI data using MODIS surface reflectance provided by the Land Atmosphere Near-real-time Capability for EOS (LANCE). Benefits of this production system include customized compositing schedules, near real-time data availability, and minimized re-sampling. FEWS NET has implemented a 10-day compositing scheme every five days to accommodate the need for timely information on vegetation conditions. The data are currently being processed at 250-meter spatial resolution for Central America, Hispaniola, and Africa. Data are further enhanced by the application of a temporal smoothing filter which helps remove contamination due to clouds and other atmospheric effects. The results of this near real-time monitoring capability have been the timely provision of NDVI and NDVI anomaly maps for each of the FEWS NET monitoring regions and the availability of a consistently processed dataset to aid crop assessment missions and to facilitate customized analyses of crop production, drought, and agro-pastoral conditions.

  8. Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000-2011 Using Minimum Composite MODIS NDVI

    PubMed Central

    Kang, Sinkyu; Hong, Suk Young

    2016-01-01

    A minimum composite method was applied to produce a 15-day interval normalized difference vegetation index (NDVI) dataset from Moderate Resolution Imaging Spectroradiometer (MODIS) daily 250 m reflectance in the red and near-infrared bands. This dataset was applied to determine lake surface areas in Mongolia. A total of 73 lakes greater than 6.25 km2in area were selected, and 28 of these lakes were used to evaluate detection errors. The minimum composite NDVI showed a better detection performance on lake water pixels than did the official MODIS 16-day 250 m NDVI based on a maximum composite method. The overall lake area detection performance based on the 15-day minimum composite NDVI showed -2.5% error relative to the Landsat-derived lake area for the 28 evaluated lakes. The errors increased with increases in the perimeter-to-area ratio but decreased with lake size over 10 km2. The lake area decreased by -9.3% at an annual rate of -53.7 km2 yr-1 during 2000 to 2011 for the 73 lakes. However, considerable spatial variations, such as slight-to-moderate lake area reductions in semi-arid regions and rapid lake area reductions in arid regions, were also detected. This study demonstrated applicability of MODIS 250 m reflectance data for biweekly monitoring of lake area change and diagnosed considerable lake area reduction and its spatial variability in arid and semi-arid regions of Mongolia. Future studies are required for explaining reasons of lake area changes and their spatial variability. PMID:27007233

  9. Measuring phenological variability from satellite imagery

    USGS Publications Warehouse

    Reed, Bradley C.; Brown, Jesslyn F.; Vanderzee, D.; Loveland, Thomas R.; Merchant, James W.; Ohlen, Donald O.

    1994-01-01

    Vegetation phenological phenomena are closely related to seasonal dynamics of the lower atmosphere and are therefore important elements in global models and vegetation monitoring. Normalized difference vegetation index (NDVI) data derived from the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (AVHRR) satellite sensor offer a means of efficiently and objectively evaluating phenological characteristics over large areas. Twelve metrics linked to key phenological events were computed based on time-series NDVI data collected from 1989 to 1992 over the conterminous United States. These measures include the onset of greenness, time of peak NDVI, maximum NDVI, rate of greenup, rate of senescence, and integrated NDVI. Measures of central tendency and variability of the measures were computed and analyzed for various land cover types. Results from the analysis showed strong coincidence between the satellite-derived metrics and predicted phenological characteristics. In particular, the metrics identified interannual variability of spring wheat in North Dakota, characterized the phenology of four types of grasslands, and established the phenological consistency of deciduous and coniferous forests. These results have implications for large- area land cover mapping and monitoring. The utility of re- motely sensed data as input to vegetation mapping is demonstrated by showing the distinct phenology of several land cover types. More stable information contained in ancillary data should be incorporated into the mapping process, particularly in areas with high phenological variability. In a regional or global monitoring system, an increase in variability in a region may serve as a signal to perform more detailed land cover analysis with higher resolution imagery.

  10. Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000-2011 Using Minimum Composite MODIS NDVI.

    PubMed

    Kang, Sinkyu; Hong, Suk Young

    2016-01-01

    A minimum composite method was applied to produce a 15-day interval normalized difference vegetation index (NDVI) dataset from Moderate Resolution Imaging Spectroradiometer (MODIS) daily 250 m reflectance in the red and near-infrared bands. This dataset was applied to determine lake surface areas in Mongolia. A total of 73 lakes greater than 6.25 km2in area were selected, and 28 of these lakes were used to evaluate detection errors. The minimum composite NDVI showed a better detection performance on lake water pixels than did the official MODIS 16-day 250 m NDVI based on a maximum composite method. The overall lake area detection performance based on the 15-day minimum composite NDVI showed -2.5% error relative to the Landsat-derived lake area for the 28 evaluated lakes. The errors increased with increases in the perimeter-to-area ratio but decreased with lake size over 10 km(2). The lake area decreased by -9.3% at an annual rate of -53.7 km(2) yr(-1) during 2000 to 2011 for the 73 lakes. However, considerable spatial variations, such as slight-to-moderate lake area reductions in semi-arid regions and rapid lake area reductions in arid regions, were also detected. This study demonstrated applicability of MODIS 250 m reflectance data for biweekly monitoring of lake area change and diagnosed considerable lake area reduction and its spatial variability in arid and semi-arid regions of Mongolia. Future studies are required for explaining reasons of lake area changes and their spatial variability.

  11. The Backscattering Enigma in Natural Waters

    DTIC Science & Technology

    2006-09-30

    down because the effects of changing particle composition are not adequately understood. Our long term goal is to better understand the source of...natural waters. APPROACH A key focus over the last year has been determining the scattering properties of phytoplankton populations and...spaces, etc.), and forms the basis of the terrestrial biomass parameter NDVI (normalized difference vegetation index). However, plant cell structures

  12. Climate warming shifts carbon allocation from stemwood to roots in calcium-depleted spruce forests

    Treesearch

    Andrei G. ​Lapenis; Gregory B. Lawrence; Alexander Heim; Chengyang Zheng; Walter Shortle

    2013-01-01

    Increased greening of northern forests, measured by the Normalized Difference Vegetation Index (NDVI), has been presented as evidence that a warmer climate has increased both net primary productivity (NPP) and the carbon sink in boreal forests. However, higher production and greener canopies may accompany changes in carbon allocation that favor foliage or fine roots...

  13. Spring and autumn phenological variability across environmental gradients of Great Smoky Mountains National Park, USA

    Treesearch

    Steven P. Norman; William W. Hargrove; William M. Christie

    2017-01-01

    Mountainous regions experience complex phenological behavior along climatic, vegetational and topographic gradients. In this paper, we use a MODIS time series of the Normalized Difference Vegetation Index (NDVI) to understand the causes of variations in spring and autumn timing from 2000 to 2015, for a landscape renowned for its biological diversity. By filtering for...

  14. Quantifying Forest Ground Flora Biomass Using Close-range Remote Sensing

    Treesearch

    Paul F. Doruska; Robert C. Weih; Matthew D. Lane; Don C. Bragg

    2005-01-01

    Close-range remote sensing was used to estimate biomass of forest ground flora in Arkansas. Digital images of a series of 1-m² plots were taken using Kodak DCS760 and Kodak DCS420CIR digital cameras. ESRI ArcGIS™ and ERDAS Imagine® software was used to calculate the Normalized Difference Vegetation Index (NDVI) and the Average Visible...

  15. Geospatiotemporal data mining in an early warning system for forest threats in the United States

    Treesearch

    F.M. Hoffman; R.T. Mills; J. Kumar; S.S. Vulli; W.W. Hargrove

    2010-01-01

    We investigate the potential of geospatiotemporal data mining of multi-year land surface phenology data (250 m Normalized Difference Vegetation Index (NDVI) values derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) in this study) for the conterminous United States as part of an early warning system to identify threats to forest ecosystems. Cluster...

  16. Cluster Analysis-Based Approaches for Geospatiotemporal Data Mining of Massive Data Sets for Identification of Forest Threats

    Treesearch

    Richard Trans Mills; Forrest M Hoffman; Jitendra Kumar; William W. Hargrove

    2011-01-01

    We investigate methods for geospatiotemporal data mining of multi-year land surface phenology data (250 m2 Normalized Difference Vegetation Index (NDVI) values derived from the Moderate Resolution Imaging Spectrometer (MODIS) in this study) for the conterminous United States (CONUS) as part of an early warning system for detecting threats to forest ecosystems. The...

  17. Spatial regression models of park and land-use impacts on the urban heat island in central Beijing.

    PubMed

    Dai, Zhaoxin; Guldmann, Jean-Michel; Hu, Yunfeng

    2018-06-01

    Understanding the relationship between urban land structure and land surface temperatures (LST) is important for mitigating the urban heat island (UHI). This paper explores this relationship within central Beijing, an area located within the 2nd Ring Road. The urban variables include the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Build-up Index (NDBI), the area of building footprints, the area of main roads, the area of water bodies and a gravity index for parks that account for both park size and distance. The data are captured over 8 grids of square cells (30 m, 60 m, 90 m, 120 m, 150 m, 180 m, 210 m, 240 m). The research involves: (1) estimating land surface temperatures using Landsat 8 satellite imagery, (2) building the database of urban variables, and (3) conducting regression analyses. The results show that (1) all the variables impact surface temperatures, (2) spatial regressions are necessary to capture neighboring effects, and (3) higher-order polynomial functions are more suitable for capturing the effects of NDVI and NDBI. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Performance of Vegetation Indices for Wheat Yield Forecasting for Punjab, Pakistan

    NASA Astrophysics Data System (ADS)

    Dempewolf, J.; Becker-Reshef, I.; Adusei, B.; Barker, B.

    2013-12-01

    Forecasting wheat yield in major producer countries early in the growing season allows better planning for harvest deficits and surplus with implications for food security, world market transactions, sustaining adequate grain stocks, policy making and other matters. Remote sensing imagery is well suited for yield forecasting over large areas. The Normalized Difference Vegetation Index (NDVI) has been the most-used spectral index derived from remote sensing imagery for assessing crop condition of major crops and forecasting crop yield. Many authors have found that the highest correlation between NDVI and yield of wheat crops occurs at the height of the growing season when NDVI values and photosynthetic activity of the wheat plants are at their relative maximum. At the same time NDVI saturates in very dense and vigorous (healthy, green) canopies such as wheat fields during the seasonal peak and shows significantly reduced sensitivity to further increases in photosynthetic activity. In this study we compare the performance of different vegetation indices derived from space-borne red and near-infrared spectral reflectance measurements for wheat yield forecasting in the Punjab Province, Pakistan. Areas covered by wheat crop each year were determined using a time series of MODIS 8-day composites at 250 m resolution converted to temporal metrics and classified using a bagged decision tree approach, driven by classified multi-temporal Landsat scenes. Within the wheat areas we analyze and compare wheat yield forecasts derived from three different satellite-based vegetation indices at the peak of the growing season. We regressed in turn NDVI, Wide Dynamic Range Vegetation Index (WDRVI) and the Vegetation Condition Index (VCI) from the four years preceding the wheat growing season 2011/12 against reported yield values and applied the regression equations to forecast wheat yield for the 2011/12 season per district for each of 36 Punjab districts. Yield forecasts overall corresponded well with reported values. NDVI-based forecasts showed high correlations of r squared = 0.881 and RMSE 11%. The VCI performed similarly well with r squared = 0.886 and RMSE 11%. WDRVI performed better than either of the other indices with r squared = 0.909 and RMSE 10%, probably due to the increased sensitivity of the index at high values. Wheat yields in Pakistan show on average a slow but steady annual increase but overall are comparatively stable due to the fact that the majority of fields are irrigated. The next steps in this study will be to compare NDVI- with WDRVI-based yield forecasts in other environments dominated by rain-fed agriculture, such as Ukraine, Australia and the United States.

  19. Effects of post-fire wood management strategies on vegetation recovery and land surface temperature (LST) estimated from Landsat images

    NASA Astrophysics Data System (ADS)

    Vlassova, Lidia; Pérez-Cabello, Fernando

    2016-02-01

    The study contributes remote sensing data to the discussion about effects of post-fire wood management strategies on forest regeneration. Land surface temperature (LST) and Normalized Differenced Vegetation Index (NDVI), estimated from Landsat-8 images are used as indicators of Pinus halepensis ecosystem recovery after 2008 fire in areas of three post-fire treatments: (1) salvage logging with wood extraction from the site on skidders in suspended position (SL); (2) snag shredding in situ leaving wood debris in place (SS) performed two years after the event; and (3) non-intervention control areas (CL) where all snags were left standing. Six years after the fire NDVI values ∼0.5 estimated from satellite images and field radiometry indicate considerable vegetation recovery due to efficient regeneration traits developed by the dominant plant species. However, two years after management activities in part of the burnt area, the effect of SL and SS on ecosystem recovery is observed in terms of both LST and NDVI. Statistically significant differences are detected between the intervened areas (SL and SS) and control areas of non-intervention (CL); no difference is registered between zones of different intervention types (SL and SS). CL areas are on average 1 °C cooler and 10% greener than those corresponding to either SL or SS, because of the beneficial effects of burnt wood residuals, which favor forest recovery through (i) enhanced nutrient cycling in soils, (ii) avoidance of soil surface disturbance and mechanical damage of seedlings typical to the managed areas, and (iii) ameliorated microclimate. The results of the study show that in fire-resilient ecosystems, such as P. halepensis forests, NDVI is higher and LST is lower in areas with no management intervention, being an indication of more favorable conditions for vegetation regeneration.

  20. Characteristics of vegetation activity and its responses to climate change in desert/grassland biome transition zones in the last 30 years based on GIMMS3g

    NASA Astrophysics Data System (ADS)

    Hou, Jing; Du, Lingtong; Liu, Ke; Hu, Yue; Zhu, Yuguo

    2018-06-01

    The vegetation in desert/grassland biome transition zones is part of a fragile ecosystem that is sensitive to climate change. Thus, in recent decades, studying vegetation activity in desert/grassland biome transition zones has become important. Here, vegetation activity and the evolutionary tendencies of the temporal and spatial differentiation of the phenology of the desert/grassland biome transition zones were analyzed based on the Normalized Difference Vegetation Index (NDVI) of the third-generation Global Inventory Modeling and Mapping Studies (GIMMS3g) dataset. Additionally, the relationship between vegetation activity and climatic factors was analyzed based on NDVI and global meteorological reanalysis data. The results showed that the vegetation phenology of desert/grassland biome transition zones exhibits sharply contrasting characteristics between the Northern and Southern hemispheres, particularly when comparing differences before and after the breakpoint in global climate change (1998). The length of the growing season (LOS) of the Northern Hemisphere was shorter after 1998 than before it, and the integral of the growing season (IOS) of the NDVI decreased correspondingly. By contrast, the LOS in the Southern Hemisphere was longer, and after 1998, the IOS of the NDVI increased compared to its previous value. The vegetation activity trend and the fluctuation of the desert/grassland biome transition zones in the last 30 years can be divided into nine combined modes. However, these features also have an obvious turning point in 1998. The effects of evapotranspiration and precipitation on vegetation activity were most obvious, and these climatic factors drove the phenology changes in the different regions. Global warming limited the vegetation activity in low-latitude areas, but promoted it in middle-latitude areas.

  1. NDVI, scale invariance and the modifiable areal unit problem: An assessment of vegetation in the Adelaide Parklands

    USGS Publications Warehouse

    Nouri, Hamideh; Anderson, Sharolyn; Sutton, Paul; Beecham, Simon; Nagler, Pamela L.; Jarchow, Christopher J.; Roberts, Dar A.

    2017-01-01

    This research addresses the question as to whether or not the Normalised Difference Vegetation Index (NDVI) is scale invariant (i.e. constant over spatial aggregation) for pure pixels of urban vegetation. It has been long recognized that there are issues related to the modifiable areal unit problem (MAUP) pertaining to indices such as NDVI and images at varying spatial resolutions. These issues are relevant to using NDVI values in spatial analyses. We compare two different methods of calculation of a mean NDVI: 1) using pixel values of NDVI within feature/object boundaries and 2) first calculating the mean red and mean near-infrared across all feature pixels and then calculating NDVI. We explore the nature and magnitude of these differences for images taken from two sensors, a 1.24 m resolution WorldView-3 and a 0.1 m resolution digital aerial image. We apply these methods over an urban park located in the Adelaide Parklands of South Australia. We demonstrate that the MAUP is not an issue for calculation of NDVI within a sensor for pure urban vegetation pixels. This may prove useful for future rule-based monitoring of the ecosystem functioning of green infrastructure.

  2. A Simple and Effective Image Normalization Method to Monitor Boreal Forest Change in a Siberian Burn Chronosequence across Sensors and across Time

    NASA Astrophysics Data System (ADS)

    Chen, X.; Vierling, L. A.; Deering, D. W.

    2004-12-01

    Satellite data offer unique perspectives for monitoring and quantifying land cover change, however, the radiometric consistency among co-located multi-temporal images is difficult to maintain due to variations in sensors and atmosphere. To detect accurate landscape change using multi-temporal images, we developed a new relative radiometric normalization scheme: the temporally invariant cluster (TIC) method. Image data were acquired on 9 June 1990 (Landsat 4), 20 June 2000, and 26 August 2001 (Landsat 7) for analyses over boreal forests near the Siberian city of Krasnoyarsk. Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Reduced Simple Ratio (RSR) were investigated in the normalization study. The temporally invariant cluster (TIC) centers were identified through a point density map of the base image and the target image and a normalization regression line was created through all TIC centers. The target image digital data were then converted using the regression function so that the two images could be compared using the resulting common radiometric scale. We found that EVI was very sensitive to vegetation structure and could thus be used to separate conifer forests from deciduous forests and grass/crop lands. NDVI was a very effective vegetation index to reduce the influence of shadow, while EVI was very sensitive to shadowing. After normalization, correlations of NDVI and EVI with field collected total Leaf Area Index (LAI) data in 2000 and 2001 were significantly improved; the r-square values in these regressions increased from 0.49 to 0.69 and from 0.46 to 0.61, respectively. An EVI ¡°cancellation effect¡± where EVI was positively related to understory greenness but negatively related to forest canopy coverage was evident across a post fire chronosequence. These findings indicate that the TIC method provides a simple, effective and repeatable method to create radiometrically comparable data sets for remote detection of landscape change. Compared with some previous relative normalization methods, this new method can avoid subjective selection of a normalization regression line. It does not require high level programming and statistical analyses, yet remains sensitive to landscape changes occurring over seasonal and inter-annual time scales. In addition, the TIC method maintains sensitivity to subtle changes in vegetation phenology and enables normalization even when invariant features are rare.

  3. Characterization and classification of South American land cover types using satellite data

    NASA Technical Reports Server (NTRS)

    Townshend, J. R. G.; Justice, C. O.; Kalb, V.

    1987-01-01

    Various methods are compared for carrying out land cover classifications of South America using multitemporal Advanced Very High Resolution Radiometer data. Fifty-two images of the normalized difference vegetation index (NDVI) from a 1-year period are used to generate multitemporal data sets. Three main approaches to land cover classification are considered, namely the use of the principal components transformed images, the use of a characteristic curves procedure based on NDVI values plotted against time, and finally application of the maximum likelihood rule to multitemporal data sets. Comparison of results from training sites indicates that the last approach yields the most accurate results. Despite the reliance on training site figures for performance assessment, the results are nevertheless extremely encouraging, with accuracies for several cover types exceeding 90 per cent.

  4. The seasonality of AVHRR data of temperate coniferous forests - Relationship with leaf area index

    NASA Technical Reports Server (NTRS)

    Spanner, Michael A.; Pierce, Lars L.; Running, Steven W.; Peterson, David L.

    1990-01-01

    The relationship between the advanced very high resolution radiometer (AVHRR) normalized difference vegetation index (NDVI) and coniferous forest leaf area index (LAI) over the western United States is examined. AVHRR data from the NOAA-9 satellite were acquired of the western U.S. from March 1986 to November 1987 and monthly maximum value composites of AVHRR NDVI were calculated for 19 coniferous forest stands in Oregon, Washington, Montana, and California. It is concluded that the relationships under investigation vary according to seasonal changes in surface reflectance based on key biotic and abiotic controls including phenological changes in LAI caused by seasonal temperature and precipitation variations, the proportions of surface cover types contributing to the overall reflectance, and effects resulting from large variations in the solar zenith angle.

  5. Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies

    NASA Technical Reports Server (NTRS)

    Myneni, R. B.; Ganapol, B. D.; Asrar, G.

    1992-01-01

    The problem of remote sensing the canopy photosynthetic and stomatal conductance efficiencies is investigated with the aid of one- and three-dimensional radiative transfer methods coupled to a semi-empirical mechanistic model of leaf photosynthesis and stomatal conductance. Desertlike vegetation is modeled as clumps of leaves randomly distributed on a bright dry soil with partial ground cover. Normalized difference vegetation index (NDVI), canopy photosynthetic (Ep), and stomatal efficiencies (Es) are calculated for various geometrical, optical, and illumination conditions. The contribution of various radiative fluxes to estimates of Ep is evaluated and the magnitude of errors in bulk canopy formulation of problem parameters are quantified. The nature and sensitivity of the relationship between Ep and Es to NDVI is investigated, and an algorithm is proposed for use in operational remote sensing.

  6. Evaluation of Different Phenological Information to Map Crop Rotation in Complex Irrigated Indus Basin

    NASA Astrophysics Data System (ADS)

    Ismaeel, A.; Zhou, Q.

    2018-04-01

    Accurate information of crop rotation in large basin is essential for policy decisions on land, water and nutrient resources around the world. Crop area estimation using low spatial resolution remote sensing data is challenging in a large heterogeneous basin having more than one cropping seasons. This study aims to evaluate the accuracy of two phenological datasets individually and in combined form to map crop rotations in complex irrigated Indus basin without image segmentation. Phenology information derived from Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) of Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, having 8-day temporal and 1000 m spatial resolution, was used in the analysis. An unsupervised (temporal space clustering) to supervised (area knowledge and phenology behavior) classification approach was adopted to identify 13 crop rotations. Estimated crop area was compared with reported area collected by field census. Results reveal that combined dataset (NDVI*LAI) performs better in mapping wheat-rice, wheat-cotton and wheat-fodder rotation by attaining root mean square error (RMSE) of 34.55, 16.84, 20.58 and mean absolute percentage error (MAPE) of 24.56 %, 36.82 %, 30.21 % for wheat, rice and cotton crop respectively. For sugarcane crop mapping, LAI produce good results by achieving RMSE of 8.60 and MAPE of 34.58 %, as compared to NDVI (10.08, 40.53 %) and NDVI*LAI (10.83, 39.45 %). The availability of major crop rotation statistics provides insight to develop better strategies for land, water and nutrient accounting frameworks to improve agriculture productivity.

  7. Livelihoods Poised Between Cold and Dry: Modeling Land Surface Phenologies and Phenometric Lapse Rates in Central Asian Highland Pastures

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.; Tomaszewska, M. A.; Krehbiel, C. P.; Kelgenbaeva, K.

    2016-12-01

    To explore the vulnerability of high-elevation communities in the Kyrgyz Republic and in Uzbekistan to changing climatic, sociodemographic, and socioeconomic conditions, we assembled image time series to characterize the condition of pastures near villages at high elevation (>2000 masl) and in remote pastures at higher elevations. Here we describe the application of the convex quadratic (CxQ) model of land surface phenology to highland pasturelands for selected oblasts in the Kyrgyz Republic and in eastern Uzbekistan. We used 16 years (2000-2015) of Landsat normalized difference vegetation index (NDVI) data with MODIS land surface temperature data processed into accumulated growing degree-days. The peak height of the NDVI and the thermal time to peak are two key phenological metrics derived analytically from the fitted parameter coefficients of the CxQ model for each pixel time series. Both exhibited sensitivity to elevation, which we describe in terms of phenometric lapse rates (PLRs). Interannual variation in PLRs was expressed differently for the peak NDVI and the thermal time to peak. Peak NDVI increased with elevation up to a point but also exhibited more spatial variation in dry years than in wetter years. Thermal time to peak exhibited strong, highly significant negative linear relationships to elevation with steeper slopes in drier years. Both types of PLRs were modulated by aspect. These relationships and the associated CxQ models by elevation and aspect can provide expectations against which to detect changes in pasture status as a result of management or weather.

  8. Investigation of the scaling characteristics of LANDSAT temperature and vegetation data: a wavelet-based approach

    NASA Astrophysics Data System (ADS)

    Rathinasamy, Maheswaran; Bindhu, V. M.; Adamowski, Jan; Narasimhan, Balaji; Khosa, Rakesh

    2017-10-01

    An investigation of the scaling characteristics of vegetation and temperature data derived from LANDSAT data was undertaken for a heterogeneous area in Tamil Nadu, India. A wavelet-based multiresolution technique decomposed the data into large-scale mean vegetation and temperature fields and fluctuations in horizontal, diagonal, and vertical directions at hierarchical spatial resolutions. In this approach, the wavelet coefficients were used to investigate whether the normalized difference vegetation index (NDVI) and land surface temperature (LST) fields exhibited self-similar scaling behaviour. In this study, l-moments were used instead of conventional simple moments to understand scaling behaviour. Using the first six moments of the wavelet coefficients through five levels of dyadic decomposition, the NDVI data were shown to be statistically self-similar, with a slope of approximately -0.45 in each of the horizontal, vertical, and diagonal directions of the image, over scales ranging from 30 to 960 m. The temperature data were also shown to exhibit self-similarity with slopes ranging from -0.25 in the diagonal direction to -0.20 in the vertical direction over the same scales. These findings can help develop appropriate up- and down-scaling schemes of remotely sensed NDVI and LST data for various hydrologic and environmental modelling applications. A sensitivity analysis was also undertaken to understand the effect of mother wavelets on the scaling characteristics of LST and NDVI images.

  9. Evapotranspiration variability and its association with vegetation dynamics in the Nile Basin, 2002–2011

    USGS Publications Warehouse

    Alemu, Henok; Senay, Gabriel B.; Kaptue, Armel T.; Kovalskyy, Valeriy

    2014-01-01

    Evapotranspiration (ET) is a vital component in land-atmosphere interactions. In drylands, over 90% of annual rainfall evaporates. The Nile Basin in Africa is about 42% dryland in a region experiencing rapid population growth and development. The relationship of ET with climate, vegetation and land cover in the basin during 2002–2011 is analyzed using thermal-based Simplified Surface Energy Balance Operational (SSEBop) ET, Normalized Difference Vegetation Index (NDVI)-based MODIS Terrestrial (MOD16) ET, MODIS-derived NDVI as a proxy for vegetation productivity and rainfall from Tropical Rainfall Measuring Mission (TRMM). Interannual variability and trends are analyzed using established statistical methods. Analysis based on thermal-based ET revealed that >50% of the study area exhibited negative ET anomalies for 7 years (2009, driest), while >60% exhibited positive ET anomalies for 3 years (2007, wettest). NDVI-based monthly ET correlated strongly (r > 0.77) with vegetation than thermal-based ET (0.52 < r < 0.73) at p < 0.001. Climate-zone averaged thermal-based ET anomalies positively correlated (r = 0.6, p < 0.05) with rainfall in 4 of the 9 investigated climate zones. Thermal-based and NDVI-based ET estimates revealed minor discrepancies over rainfed croplands (60 mm/yr higher for thermal-based ET), but a significant divergence over wetlands (440 mm/yr higher for thermal-based ET). Only 5% of the study area exhibited statistically significant trends in ET.

  10. Mapping grassland productivity with 250-m eMODIS NDVI and SSURGO database over the Greater Platte River Basin, USA

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Bliss, Norman B.

    2013-01-01

    This study assessed and described a relationship between satellite-derived growing season averaged Normalized Difference Vegetation Index (NDVI) and annual productivity for grasslands within the Greater Platte River Basin (GPRB) of the United States. We compared growing season averaged NDVI (GSN) with Soil Survey Geographic (SSURGO) database rangeland productivity and flux tower Gross Primary Productivity (GPP) for grassland areas. The GSN was calculated for each of nine years (2000–2008) using the 7-day composite 250-m eMODIS (expedited Moderate Resolution Imaging Spectroradiometer) NDVI data. Strong correlations exist between the nine-year mean GSN (MGSN) and SSURGO annual productivity for grasslands (R2 = 0.74 for approximately 8000 pixels randomly selected from eight homogeneous regions within the GPRB; R2 = 0.96 for the 14 cluster-averaged points). Results also reveal a strong correlation between GSN and flux tower growing season averaged GPP (R2 = 0.71). Finally, we developed an empirical equation to estimate grassland productivity based on the MGSN. Spatially explicit estimates of grassland productivity over the GPRB were generated, which improved the regional consistency of SSURGO grassland productivity data and can help scientists and land managers to better understand the actual biophysical and ecological characteristics of grassland systems in the GPRB. This final estimated grassland production map can also be used as an input for biogeochemical, ecological, and climate change models.

  11. Developing a Method to Mask Trees in Commercial Multispectral Imagery

    NASA Astrophysics Data System (ADS)

    Becker, S. J.; Daughtry, C. S. T.; Jain, D.; Karlekar, S. S.

    2015-12-01

    The US Army has an increasing focus on using automated remote sensing techniques with commercial multispectral imagery (MSI) to map urban and peri-urban agricultural and vegetative features; however, similar spectral profiles between trees (i.e., forest canopy) and other vegetation result in confusion between these cover classes. Established vegetation indices, like the Normalized Difference Vegetation Index (NDVI), are typically not effective in reliably differentiating between trees and other vegetation. Previous research in tree mapping has included integration of hyperspectral imagery (HSI) and LiDAR for tree detection and species identification, as well as the use of MSI to distinguish tree crowns from non-vegetated features. This project developed a straightforward method to model and also mask out trees from eight-band WorldView-2 (1.85 meter x 1.85 meter resolution at nadir) satellite imagery at the Beltsville Agricultural Research Center in Beltsville, MD spanning 2012 - 2015. The study site included tree cover, a range of agricultural and vegetative cover types, and urban features. The modeling method exploits the product of the red and red edge bands and defines accurate thresholds between trees and other land covers. Results show this method outperforms established vegetation indices including the NDVI, Soil Adjusted Vegetation Index, Normalized Difference Water Index, Simple Ratio, and Normalized Difference Red Edge Index in correctly masking trees while preserving the other information in the imagery. This method is useful when HSI and LiDAR collection are not possible or when using archived MSI.

  12. Vegetation changes associated with a population irruption by Roosevelt elk

    USGS Publications Warehouse

    Starns, H D; Weckerly, Floyd W.; Ricca, Mark; Duarte, Adam

    2015-01-01

    Interactions between large herbivores and their food supply are central to the study of population dynamics. We assessed temporal and spatial patterns in meadow plant biomass over a 23-year period for meadow complexes that were spatially linked to three distinct populations of Roosevelt elk (Cervus elaphus roosevelti) in northwestern California. Our objectives were to determine whether the plant community exhibited a tolerant or resistant response when elk population growth became irruptive. Plant biomass for the three meadow complexes inhabited by the elk populations was measured using Normalized Difference Vegetation Index (NDVI), which was derived from Landsat 5 Thematic Mapper imagery. Elk populations exhibited different patterns of growth through the time series, whereby one population underwent a complete four-stage irruptive growth pattern while the other two did not. Temporal changes in NDVI for the meadow complex used by the irruptive population suggested a decline in forage biomass during the end of the dry season and a temporal decline in spatial variation of NDVI at the peak of plant biomass in May. Conversely, no such patterns were detected in the meadow complexes inhabited by the nonirruptive populations. Our findings suggest that the meadow complex used by the irruptive elk population may have undergone changes in plant community composition favoring plants that were resistant to elk grazing.

  13. An optimal sample data usage strategy to minimize overfitting and underfitting effects in regression tree models based on remotely-sensed data

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Boyte, Stephen; Picotte, Joshua J.; Howard, Danny; Smith, Kelcy; Nelson, Kurtis

    2016-01-01

    Regression tree models have been widely used for remote sensing-based ecosystem mapping. Improper use of the sample data (model training and testing data) may cause overfitting and underfitting effects in the model. The goal of this study is to develop an optimal sampling data usage strategy for any dataset and identify an appropriate number of rules in the regression tree model that will improve its accuracy and robustness. Landsat 8 data and Moderate-Resolution Imaging Spectroradiometer-scaled Normalized Difference Vegetation Index (NDVI) were used to develop regression tree models. A Python procedure was designed to generate random replications of model parameter options across a range of model development data sizes and rule number constraints. The mean absolute difference (MAD) between the predicted and actual NDVI (scaled NDVI, value from 0–200) and its variability across the different randomized replications were calculated to assess the accuracy and stability of the models. In our case study, a six-rule regression tree model developed from 80% of the sample data had the lowest MAD (MADtraining = 2.5 and MADtesting = 2.4), which was suggested as the optimal model. This study demonstrates how the training data and rule number selections impact model accuracy and provides important guidance for future remote-sensing-based ecosystem modeling.

  14. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River.

    PubMed

    Ouyang, Wei; Hao, Fanghua; Skidmore, Andrew K; Toxopeus, A G

    2010-12-15

    Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and Water Assessment Tool (SWAT) model. SWAT is a physical hydrological model which uses the RUSLE equation as a sediment algorithm. Considering the spatial and temporal scale of the relationship between soil erosion and sediment yield, simulations were undertaken at monthly and annual temporal scales and basin and sub-basin spatial scales. The corresponding temporal and spatial Normalized Difference Vegetation Index (NDVI) information was summarized from MODIS data, which can integrate regional land cover and climatic features. The SWAT simulation revealed that the annual soil erosion and sediment yield showed similar spatial distribution patterns, but the monthly variation fluctuated significantly. The monthly basin soil erosion varied from almost no erosion load to 3.92 t/ha and the maximum monthly sediment yield was 47,540 tones. The inter-annual simulation focused on the spatial difference and relationship with the corresponding vegetation NDVI value for every sub-basin. It is concluded that, for this continental monsoon climate basin, the higher NDVI vegetation zones prevented sediment transport, but at the same time they also contributed considerable soil erosion. The monthly basin soil erosion and sediment yield both correlated with NDVI, and the determination coefficients of their exponential correlation model were 0.446 and 0.426, respectively. The relationships between soil erosion and sediment yield with vegetation NDVI indicated that the vegetation status has a significant impact on sediment formation and transport. The findings can be used to develop soil erosion conservation programs for the study area. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. QTL mapping of root traits in phosphorus-deficient soils reveals important genomic regions for improving NDVI and grain yield in barley.

    PubMed

    Gong, Xue; McDonald, Glenn

    2017-09-01

    Major QTLs for root rhizosheath size are not correlated with grain yield or yield response to phosphorus. Important QTLs were found to improve phosphorus efficiency. Root traits are important for phosphorus (P) acquisition, but they are often difficult to characterize and their breeding values are seldom assessed under field conditions. This has shed doubts on using seedling-based criteria of root traits to select and breed for P efficiency. Eight root traits were assessed under controlled conditions in a barley doubled-haploid population in soils differing in P levels. The population was also phenotyped for grain yield, normalized difference vegetation index (NDVI), grain P uptake and P utilization efficiency at maturity (PutE GY ) under field conditions. Several quantitative traits loci (QTLs) from the root screening and the field trials were co-incident. QTLs for root rhizosheath size and root diameter explained the highest phenotypic variation in comparison to QTLs for other root traits. Shared QTLs were found between root diameter and grain yield, and total root length and PutE GY . A common major QTL for rhizosheath size and NDVI was mapped to the HvMATE gene marker on chromosome 4H. Collocations between major QTLs for NDVI and grain yield were detected on chromosomes 6H and 7H. When results from BIP and MET were combined, QTLs detected for grain yield were also those QTLs found for NDVI. QTLs qGY5H, qGY6H and qGY7Hb on 7H were robust QTLs in improving P efficiency. A selection of multiple loci may be needed to optimize the breeding outcomes due to the QTL x Environment interaction. We suggest that rhizosheath size alone is not a reliable trait to predict P efficiency or grain yield.

  16. Marsh collapse thresholds for coastal Louisiana estimated using elevation and vegetation index data

    USGS Publications Warehouse

    Couvillion, Brady R.; Beck, Holly

    2013-01-01

    Forecasting marsh collapse in coastal Louisiana as a result of changes in sea-level rise, subsidence, and accretion deficits necessitates an understanding of thresholds beyond which inundation stress impedes marsh survival. The variability in thresholds at which different marsh types cease to occur (i.e., marsh collapse) is not well understood. We utilized remotely sensed imagery, field data, and elevation data to help gain insight into the relationships between vegetation health and inundation. A Normalized Difference Vegetation Index (NDVI) dataset was calculated using remotely sensed data at peak biomass (August) and used as a proxy for vegetation health and productivity. Statistics were calculated for NDVI values by marsh type for intermediate, brackish, and saline marsh in coastal Louisiana. Marsh-type specific NDVI values of 1.5 and 2 standard deviations below the mean were used as upper and lower limits to identify conditions indicative of collapse. As marshes seldom occur beyond these values, they are believed to represent a range within which marsh collapse is likely to occur. Inundation depth was selected as the primary candidate for evaluation of marsh collapse thresholds. Elevation relative to mean water level (MWL) was calculated by subtracting MWL from an elevation dataset compiled from multiple data types including light detection and ranging (lidar) and bathymetry. A polynomial cubic regression was used to examine a random subset of pixels to determine the relationship between elevation (relative to MWL) and NDVI. The marsh collapse uncertainty range values were found by locating the intercept of the regression line with the 1.5 and 2 standard deviations below the mean NDVI value for each marsh type. Results indicate marsh collapse uncertainty ranges of 30.7–35.8 cm below MWL for intermediate marsh, 20–25.6 cm below MWL for brackish marsh, and 16.9–23.5 cm below MWL for saline marsh. These values are thought to represent the ranges of inundation depths within which marsh collapse is probable.

  17. Evaluating Hyperspectral Vegetation Indices for Leaf Area Index Estimation of Oryza sativa L. at Diverse Phenological Stages

    PubMed Central

    Din, Mairaj; Zheng, Wen; Rashid, Muhammad; Wang, Shanqin; Shi, Zhihua

    2017-01-01

    Hyperspectral reflectance derived vegetation indices (VIs) are used for non-destructive leaf area index (LAI) monitoring for precise and efficient N nutrition management. This study tested the hypothesis that there is potential for using various hyperspectral VIs for estimating LAI at different growth stages of rice under varying N rates. Hyperspectral reflectance and crop canopy LAI measurements were carried out over 2 years (2015 and 2016) in Meichuan, Hubei, China. Different N fertilization, 0, 45, 82, 127, 165, 210, 247, and 292 kg ha-1, were applied to generate various scales of VIs and LAI values. Regression models were used to perform quantitative analyses between spectral VIs and LAI measured under different phenological stages. In addition, the coefficient of determination and RMSE were employed to evaluate these models. Among the nine VIs, the ratio vegetation index, normalized difference vegetation index (NDVI), modified soil-adjusted vegetation index (MSAVI), modified triangular vegetation index (MTVI2) and exhibited strong and significant relationships with the LAI estimation at different phenological stages. The enhanced vegetation index performed moderately. However, the green normalized vegetation index and blue normalized vegetation index confirmed that there is potential for crop LAI estimation at early phenological stages; the soil-adjusted vegetation index and optimized soil-adjusted vegetation index were more related to the soil optical properties, which were predicted to be the least accurate for LAI estimation. The noise equivalent accounted for the sensitivity of the VIs and MSAVI, MTVI2, and NDVI for the LAI estimation at phenological stages. The results note that LAI at different crop phenological stages has a significant influence on the potential of hyperspectral derived VIs under different N management practices. PMID:28588596

  18. A Wetness Index Using Terrain-Corrected Surface Temperature and Normalized Difference Vegetation Index Derived from Standard MODIS Products: An Evaluation of Its Use in a Humid Forest-Dominated Region of Eastern Canada

    PubMed Central

    Hassan, Quazi K.; Bourque, Charles P.-A.; Meng, Fan-Rui; Cox, Roger M.

    2007-01-01

    In this paper we develop a method to estimate land-surface water content in a mostly forest-dominated (humid) and topographically-varied region of eastern Canada. The approach is centered on a temperature-vegetation wetness index (TVWI) that uses standard 8-day MODIS-based image composites of land surface temperature (TS) and surface reflectance as primary input. In an attempt to improve estimates of TVWI in high elevation areas, terrain-induced variations in TS are removed by applying grid, digital elevation model-based calculations of vertical atmospheric pressure to calculations of surface potential temperature (θS). Here, θS corrects TS to the temperature value to what it would be at mean sea level (i.e., ∼101.3 kPa) in a neutral atmosphere. The vegetation component of the TVWI uses 8-day composites of surface reflectance in the calculation of normalized difference vegetation index (NDVI) values. TVWI and corresponding wet and dry edges are based on an interpretation of scatterplots generated by plotting θS as a function of NDVI. A comparison of spatially-averaged field measurements of volumetric soil water content (VSWC) and TVWI for the 2003-2005 period revealed that variation with time to both was similar in magnitudes. Growing season, point mean measurements of VSWC and TVWI were 31.0% and 28.8% for 2003, 28.6% and 29.4% for 2004, and 40.0% and 38.4% for 2005, respectively. An evaluation of the long-term spatial distribution of land-surface wetness generated with the new θS-NDVI function and a process-based model of soil water content showed a strong relationship (i.e., r2 = 95.7%). PMID:28903212

  19. MODIS NDVI Change Detection Techniques and Products Used in the Near Real Time ForWarn System for Detecting, Monitoring, and Analyzing Regional Forest Disturbances

    NASA Technical Reports Server (NTRS)

    Spruce, Joseph P.; Hargrove, William; Gasser, Jerry; Smoot, James; Kuper, Philip D.

    2014-01-01

    This presentation discusses MODIS NDVI change detection methods and products used in the ForWarn Early Warning System (EWS) for near real time (NRT) recognition and tracking of regionally evident forest disturbances throughout the conterminous US (CONUS). The latter has provided NRT forest change products to the forest health protection community since 2010, using temporally processed MODIS Aqua and Terra NDVI time series data to currently compute and post 6 different forest change products for CONUS every 8 days. Multiple change products are required to improve detectability and to more fully assess the nature of apparent disturbances. Each type of forest change product reports per pixel percent change in NDVI for a given 24 day interval, comparing current versus a given historical baseline NDVI. EMODIS 7 day expedited MODIS MOD13 data are used to obtain current and historical NDVIs, respectively. Historical NDVI data is processed with Time Series Product Tool (TSPT); and 2) the Phenological Parameters Estimation Tool (PPET) software. While each change products employ maximum value compositing (MVC) of NDVI, the design of specific products primarily differs in terms of the historical baseline. The three main change products use either 1, 3, or all previous years of MVC NDVI as a baseline. Another product uses an Adaptive Length Compositing (ALC) version of MVC to derive an alternative current NDVI that is the freshest quality NDVI as opposed to merely the MVC NDVI across a 24 day time frame. The ALC approach can improve detection speed by 8 to 16 days. ForWarn also includes 2 change products that improve detectability of forest disturbances in lieu of climatic fluctuations, especially in the spring and fall. One compares current MVC NDVI to the zonal maximum under the curve NDVI per pheno-region cluster class, considering all previous years in the MODIS record. The other compares current maximum NDVI to the mean of maximum NDVI for all previous MODIS years.

  20. The Landsat Phenology Study (LaPS): Preliminary CONUS Results for 2008

    NASA Astrophysics Data System (ADS)

    Henebry, Geoffrey M.; Roy, David P.; Ju, Junchang; Kovalskyy, Valeriy

    2010-05-01

    Most studies of land surface phenology (LSP) have used time series derived from moderate spatial resolution satellite sensor data (e.g., AVHRR, MODIS, VEGETATION) because these data are freely available and because they provide an acceptable trade-off between higher, near daily, temporal frequency of observation needed to reduce cloud contamination against lower (500m-5km) spatial resolution. The recent opening of the USGS Landsat archive to web-enabled access presents the opportunity to explore how well Landsat time series can portray LSPs at high spatial resolution. The NASA Web-enabled Landsat data (WELD) project (http://landsat.usgs.gov/WELD.php) has produced 30m composited mosaics for all the conterminous US (CONUS) from Landsat 7 ETM+ data. The composited mosaics are generated on monthly, seasonal, and annual basis and include spectral reflectance, normalized difference vegetation index (NDVI), and the acquisition date of each composited pixel. The WELD compositing approach is designed to select valid land surface observations with minimal cloud, snow, and atmospheric contamination. We extracted 30m pixel time series from the twelve monthly WELD composited mosaics for 2008 at 320 locations across the CONUS where we have ground phenological observations that are heterogeneous with respect to the types of plants observed, the phenophases recorded (predominantly spring green-up) and the ground sampling protocols used. The ground data came from several sources, including the cloned lilac/honeysuckle network, the Phenocam network, five LTER sites (H.J. Andrews, Harvard Forest, Jornada, Konza Prairie, and Sevilleta), and a private woodlot in Maine. Temporal profiles of the 30m WELD Landsat NDVI, the green NDVI (GNDVI), the normalized difference infrared index (NDII) derived from the composited reflectances, are compared to the ground observations. Results show that (i) inclusion of the Landsat acquisition date for each pixel improves the characterization of the LSP, (ii) the use of the NDII and GNDVI in conjunction with the NDVI improves identification of the onset both of canopy development and senescence, and (iii) the WELD compositing approach and the resulting mosaics provide a rich new data source for phenological investigations.

  1. Geo-spatial analysis of the temporal trends of kharif crop phenology metrics over India and its relationships with rainfall parameters.

    PubMed

    Chakraborty, Abhishek; Seshasai, M V R; Dadhwal, V K

    2014-07-01

    The Global Inventory Modeling and Mapping Studies bimonthly Normalized Difference Vegetation Index (NDVI) data of 8 × 8 km spatial resolution for the period of 1982-2006 were analyzed to detect the trends of crop phenology metrics (start of the growing season (SGS), seasonal NDVI amplitude (AMP), seasonally integrated NDVI (SiNDVI)) during kharif season (June to October) and their relationships with the amount of rainfall and the number of rainy days over Indian subcontinent. Direction and magnitude of trends were analyzed at pixel level using the Mann-Kendall test and further assessed at meteorological subdivision level using field significance test (α = 0.1). Significant pre-occurrence of the SGS was observed over northern (Punjab, Haryana) and central (Marathwada, Vidarbha and Madhya Maharashtra) parts, whereas delay was found over southern (Rayalaseema, Coastal Andhra Pradesh) and eastern (Bihar, Gangetic West Bengal and Sub-Himalayan West Bengal) parts of India. North, west, and central India showed significant increasing trends of SiNDVI, corroborating the kharif food grain production performance during the time frame. Significant temporal correlation (α = 0.1) between the rainfall/number of rainy days and crop phenology metrics was observed over the rainfed region of India. About 35-40 % of the study area showed significant correlation between the SGS and the rainfall/number of rainy days during June to August. June month rainfall/number of rainy days was found to be the most sensitive to the SGS. The amount of rainfall and the number of rainy days during monsoon were found to have significant influence over the SiNDVI in 24-30 % of the study area. The crop phenology metrics had significant correlation with the number of rainy days over the larger areas than that of the rainfall amount.

  2. Upscaling from leaf to canopy chlorophyll/carotenoid pigment based vegetation indices reveal phenology of photosynthesis in temperate evergreen and deciduous trees

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Bhathena, Y.; Arain, M. A.; Ensminger, I.

    2017-12-01

    Optically derived vegetation indices have been developed to provide information about plant status including photosynthetic activity. They reflect changes in leaf pigments, which vary seasonally in pigment composition, enabling them to be used as a proxy of photosynthetic phenology. Important pigments in photosynthetic activity are carotenoids and chlorophylls, which are associated with light harvesting and energy dissipation. In temperate forests, which consist of deciduous and evergreen trees, there are difficulties resolving evergreen phenology using the most widely used index, the normalized difference vegetation index (NDVI). NDVI works well in deciduous trees, which exhibit a "visible" phenological process of leaf growth in the spring, and leaf senescence and abscission in the autumn. Evergreen conifers stay green year-round and utilize "invisible" changes of overwintering pigment composition that NDVI cannot resolve, so carotenoid pigment sensitive vegetation indices have been suggested for evergreens. The aim of this study was to evaluate carotenoid based vegetation indices over the chlorophyll sensitive NDVI. For this purpose, we evaluated the greenness index, NDVI, and carotenoid pigment sensitive indices: photochemical reflectance index (PRI) and chlorophyll/carotenoid index (CCI) in red maple, white oak and eastern white pine for two years. We also measured leaf gas exchange and pigment concentrations. We observed that NDVI correlated with photosynthetic activity in deciduous trees, whereas PRI and CCI correlated with photosynthesis across both evergreen and deciduous trees. This pattern was consistent, upscaling from leaf- to canopy-scales indicating that the mechanisms involved in winter acclimation can be resolved at larger spatial scales. PRI and CCI detected seasonal changes in carotenoids and chlorophylls linked to photoprotection and are suitable as a proxy of photosynthetic activity. These findings have implications to improve our use and understanding of remotely sensed vegetation indices as proxies of photosynthetic activity in northern forests for long-term monitoring.

  3. Linking field-based ecological data with remotely sensed data using a geographic information system in two malaria endemic urban areas of Kenya.

    PubMed

    Eisele, Thomas P; Keating, Joseph; Swalm, Chris; Mbogo, Charles M; Githeko, Andrew K; Regens, James L; Githure, John I; Andrews, Linda; Beier, John C

    2003-12-10

    BACKGROUND: Remote sensing technology provides detailed spectral and thermal images of the earth's surface from which surrogate ecological indicators of complex processes can be measured. METHODS: Remote sensing data were overlaid onto georeferenced entomological and human ecological data randomly sampled during April and May 2001 in the cities of Kisumu (population asymptotically equal to 320,000) and Malindi (population asymptotically equal to 81,000), Kenya. Grid cells of 270 meters x 270 meters were used to generate spatial sampling units for each city for the collection of entomological and human ecological field-based data. Multispectral Thermal Imager (MTI) satellite data in the visible spectrum at five meter resolution were acquired for Kisumu and Malindi during February and March 2001, respectively. The MTI data were fit and aggregated to the 270 meter x 270 meter grid cells used in field-based sampling using a geographic information system. The normalized difference vegetation index (NDVI) was calculated and scaled from MTI data for selected grid cells. Regression analysis was used to assess associations between NDVI values and entomological and human ecological variables at the grid cell level. RESULTS: Multivariate linear regression showed that as household density increased, mean grid cell NDVI decreased (global F-test = 9.81, df 3,72, P-value = <0.01; adjusted R2 = 0.26). Given household density, the number of potential anopheline larval habitats per grid cell also increased with increasing values of mean grid cell NDVI (global F-test = 14.29, df 3,36, P-value = <0.01; adjusted R2 = 0.51). CONCLUSIONS: NDVI values obtained from MTI data were successfully overlaid onto georeferenced entomological and human ecological data spatially sampled at a scale of 270 meters x 270 meters. Results demonstrate that NDVI at such a scale was sufficient to describe variations in entomological and human ecological parameters across both cities.

  4. Detecting the influence of best management practices on vegetation near ephemeral streams with Landsat data

    USGS Publications Warehouse

    Rigge, Matthew B.; Smart, Alexander; Wylie, Bruce K.; de Van Kamp, Kendall

    2014-01-01

    Various best management practices (BMPs) have been implemented on rangelands with the goals of controlling nonpoint source pollution, reducing the impact of livestock in ecologically important riparian areas, and improving grazing distribution. Providing off-stream water sources to livestock in pastures, cross-fencing, and rotational grazing are common rangeland BMPs that have demonstrated success in drawing livestock grazing pressure away from streams. We evaluated the effects of rangeland BMP implementation with six commercial-scale pastures in the northern mixed-grass prairie. Four pastures received a BMP suite consisting of off-stream water, cross-fencing, and deferred-rotation grazing, and two pastures did not receive BMPs. We hypothesized that the BMPs increased the quantity of riparian vegetation cover relative to the conditions in these pastures during the pre-BMP period and to the two pastures that did not receive BMPs. We used a series of 30-m Landsat normalized difference vegetation index (NDVI) images to track the spatial and temporal changes (1984–2010, n = 24) in vegetation cover, to which NDVI has been well correlated. Validation indicated that the remotely sensed signal from in-channel vegetation was representative of ground conditions. The BMP suite was associated with a 15% increase in the in-channel NDVI (0–30 m from stream centerline) and 18% increase in the riparian NDVI (30–180 m from stream center line). Conversely, the in-channel and riparian NDVI of non-BMP pastures declined 30% and 18% over the study period. The majority of change occurred within 2 yr of BMP implementation. The patterns of in-channel NDVI among pastures suggested that BMP implementation likely altered grazing distribution by decreasing the preferential use of riparian and in-channel areas. We demonstrated that satellite imagery time series are useful in retrospectively evaluating the efficacy of conservation practices, providing critical information to guide adaptive management and decision makers.

  5. NDVI, scale invariance and the modifiable areal unit problem: An assessment of vegetation in the Adelaide Parklands.

    PubMed

    Nouri, Hamideh; Anderson, Sharolyn; Sutton, Paul; Beecham, Simon; Nagler, Pamela; Jarchow, Christopher J; Roberts, Dar A

    2017-04-15

    This research addresses the question as to whether or not the Normalised Difference Vegetation Index (NDVI) is scale invariant (i.e. constant over spatial aggregation) for pure pixels of urban vegetation. It has been long recognized that there are issues related to the modifiable areal unit problem (MAUP) pertaining to indices such as NDVI and images at varying spatial resolutions. These issues are relevant to using NDVI values in spatial analyses. We compare two different methods of calculation of a mean NDVI: 1) using pixel values of NDVI within feature/object boundaries and 2) first calculating the mean red and mean near-infrared across all feature pixels and then calculating NDVI. We explore the nature and magnitude of these differences for images taken from two sensors, a 1.24m resolution WorldView-3 and a 0.1m resolution digital aerial image. We apply these methods over an urban park located in the Adelaide Parklands of South Australia. We demonstrate that the MAUP is not an issue for calculation of NDVI within a sensor for pure urban vegetation pixels. This may prove useful for future rule-based monitoring of the ecosystem functioning of green infrastructure. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of land cover and green space on land surface temperature of a fast growing economic region in Malaysia

    NASA Astrophysics Data System (ADS)

    Sheikhi, A.; Kanniah, K. D.; Ho, C. H.

    2015-10-01

    Green space must be increased in the development of new cities as green space can moderate temperature in the cities. In this study we estimated the land surface temperature (LST) and established relationships between LST and land cover and various vegetation and urban surface indices in the Iskandar Malaysia (IM) region. IM is one of the emerging economic gateways of Malaysia, and is envisaged to transform into a metropolis by 2025. This change may cause increased temperature in IM and therefore we conducted a study by using Landsat 5 image covering the study region (2,217 km2) to estimate LST, classify different land covers and calculate spectral indices. Results show that urban surface had highest LST (24.49 °C) and the lowest temperature was recorded in, forest, rubber and water bodies ( 20.69 to 21.02°C). Oil palm plantations showed intermediate mean LST values with 21.65 °C. We further investigated the relationship between vegetation and build up densities with temperature. We extracted 1000 collocated pure pixels of Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), Normalized Difference Built-up Index (NDBI), Urban Index (UI) and LST in the study area. Results show a strong and significant negative correlation with (R2= -0.74 and -0.79) respectively between NDVI, NDWI and LST . Meanwhile a strong positive correlation (R2=0.8 and 0.86) exists between NDBI, UI and LST. These results show the importance of increasing green cover in urban environment to combat any adverse effects of climate change.

  7. Comparing vegetation cover in the Santee Experimental Forest, South Carolina (USA), before and after hurricane Hugo: 1989-2011

    Treesearch

    Giovanni R. Cosentino

    2013-01-01

    Hurricane Hugo struck the coast of South Carolina on September 21, 1989 as a category 4 hurricane on the Saffir-Simpson Scale. Landsat Thematic mapper was utilized to determine the extent of damage experienced at the Santee Experimental Forest (SEF) (a part of Francis Marion National Forest) in South Carolina. Normalized Difference Vegetation Index (NDVI) and the...

  8. SeaWiFS Third Anniversary Global Biosphere

    NASA Technical Reports Server (NTRS)

    2002-01-01

    September 18,2000 is the third anniversary of the start of regular SeaWiFS operations of this remarkable planet called Earth. This SeaWiFS image is of the Global Biosphere depicting the ocean's long-term average phytoplankton chlorophyll concentration acquired between September 1997 and August 2000 combined with the SeaWiFS-derived Normalized Difference Vegetation Index (NDVI) over land during July 2000.

  9. Semisupervised GDTW kernel-based fuzzy c-means algorithm for mapping vegetation dynamics in mining region using normalized difference vegetation index time series

    NASA Astrophysics Data System (ADS)

    Jia, Duo; Wang, Cangjiao; Lei, Shaogang

    2018-01-01

    Mapping vegetation dynamic types in mining areas is significant for revealing the mechanisms of environmental damage and for guiding ecological construction. Dynamic types of vegetation can be identified by applying interannual normalized difference vegetation index (NDVI) time series. However, phase differences and time shifts in interannual time series decrease mapping accuracy in mining regions. To overcome these problems and to increase the accuracy of mapping vegetation dynamics, an interannual Landsat time series for optimum vegetation growing status was constructed first by using the enhanced spatial and temporal adaptive reflectance fusion model algorithm. We then proposed a Markov random field optimized semisupervised Gaussian dynamic time warping kernel-based fuzzy c-means (FCM) cluster algorithm for interannual NDVI time series to map dynamic vegetation types in mining regions. The proposed algorithm has been tested in the Shengli mining region and Shendong mining region, which are typical representatives of China's open-pit and underground mining regions, respectively. Experiments show that the proposed algorithm can solve the problems of phase differences and time shifts to achieve better performance when mapping vegetation dynamic types. The overall accuracies for the Shengli and Shendong mining regions were 93.32% and 89.60%, respectively, with improvements of 7.32% and 25.84% when compared with the original semisupervised FCM algorithm.

  10. Estimation of Actual Crop ET of Paddy Using the Energy Balance Model SMARET and Validation with Field Water Balance Measurements and a Crop Growth Model (ORYZA)

    NASA Astrophysics Data System (ADS)

    Nallasamy, N. D.; Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.

    2014-12-01

    Sustainable management of water resources requires reliable estimates of actual evapotranspiration (ET) at fine spatial and temporal resolution. This is significant in the case of rice based irrigation systems, one of the major consumers of surface water resources and where ET forms a major component of water consumption. However huge tradeoff in the spatial and temporal resolution of satellite images coupled with lack of adequate number of cloud free images within a growing season act as major constraints in deriving ET at fine spatial and temporal resolution using remote sensing based energy balance models. The scale at which ET is determined is decided by the spatial and temporal scale of Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), which form inputs to energy balance models. In this context, the current study employed disaggregation algorithms (NL-DisTrad and DisNDVI) to generate time series of LST and NDVI images at fine resolution. The disaggregation algorithms aimed at generating LST and NDVI at finer scale by integrating temporal information from concurrent coarse resolution data and spatial information from a single fine resolution image. The temporal frequency of the disaggregated images is further improved by employing composite images of NDVI and LST in the spatio-temporal disaggregation method. The study further employed half-hourly incoming surface insolation and outgoing long wave radiation obtained from the Indian geostationary satellite (Kalpana-1) to convert the instantaneous ET into daily ET and subsequently to the seasonal ET, thereby improving the accuracy of ET estimates. The estimates of ET were validated with field based water balance measurements carried out in Gadana, a subbasin predominated by rice paddy fields, located in Tamil Nadu, India.

  11. Canadian boreal forest greening and browning trends: an analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers

    NASA Astrophysics Data System (ADS)

    Sulla-Menashe, Damien; Woodcock, Curtis E.; Friedl, Mark A.

    2018-01-01

    Recent studies have used satellite-derived normalized difference vegetation index (NDVI) time series to explore geographic patterns in boreal forest greening and browning. A number of these studies indicate that boreal forests are experiencing widespread browning, and have suggested that these patterns reflect decreases in forest productivity induced by climate change. Here we use NDVI time series from Landsat, which has much higher quality and spatial resolution than imagery used in most previous studies, to characterize biogeographic patterns in greening and browning across Canada’s boreal forest and to explore the drivers behind observed trends. Our results show that the majority of NDVI changes in Canada’s boreal forest reflect disturbance-recovery dynamics not climate change impacts, that greening and browning trends outside of disturbed forests are consistent with expected ecological responses to regional changes in climate, and that observed NDVI changes are geographically limited and relatively small in magnitude. By examining covariance between changes in NDVI and temperature and precipitation in locations not affected by disturbance, our results isolate and characterize the nature and magnitude of greening and browning directly associated with climate change. Consistent with biogeographic theory, greening and browning unrelated to disturbance tended to be located in ecotones near boundaries of the boreal forest bioclimatic envelope. We observed greening to be most prevalent in Eastern Canada, which is more humid, and browning to be most prevalent in Western Canada, where forests are more prone to moisture stress. We conclude that continued long-term climate change has the potential to significantly alter the character and function of Canada’s boreal forest, but recent changes have been modest and near-term impacts are likely to be focused in or near ecotones.

  12. Integrating Statistical and Expert Knowledge to Develop Phenoregions for the Continental United States

    NASA Astrophysics Data System (ADS)

    Betancourt, J. L.; Biondi, F.; Bradford, J. B.; Foster, J. R.; Betancourt, J. L.; Foster, J. R.; Biondi, F.; Bradford, J. B.; Henebry, G. M.; Post, E.; Koenig, W.; Hoffman, F. M.; de Beurs, K.; Hoffman, F. M.; Kumar, J.; Hargrove, W. W.; Norman, S. P.; Brooks, B. G.

    2016-12-01

    Vegetated ecosystems exhibit unique phenological behavior over the course of a year, suggesting that remotely sensed land surface phenology may be useful for characterizing land cover and ecoregions. However, phenology is also strongly influenced by temperature and water stress; insect, fire, and weather disturbances; and climate change over seasonal, interannual, decadal and longer time scales. Normalized difference vegetation index (NDVI), a remotely sensed measure of greenness, provides a useful proxy for land surface phenology. We used NDVI for the conterminous United States (CONUS) derived from the Moderate Resolution Spectroradiometer (MODIS) every eight days at 250 m resolution for the period 2000-2015 to develop phenological signatures of emergent ecological regimes called phenoregions. We employed a "Big Data" classification approach on a supercomputer, specifically applying an unsupervised data mining technique, to this large collection of NDVI measurements to develop annual maps of phenoregions. This technique produces a prescribed number of prototypical phenological states to which every location belongs in any year. To reduce the impact of short-term disturbances, we derived a single map of the mode of annual phenological states for the CONUS, assigning each map cell to the state with the largest integrated NDVI in cases where multiple states tie for the highest frequency of occurrence. Since the data mining technique is unsupervised, individual phenoregions are not associated with an ecologically understandable label. To add automated supervision to the process, we applied the method of Mapcurves, developed by Hargrove and Hoffman, to associate individual phenoregions with labeled polygons in expert-derived maps of biomes, land cover, and ecoregions. We will present the phenoregions methodology and resulting maps for the CONUS, describe the "label-stealing" technique for ascribing biome characteristics to phenoregions, and introduce a new polar plotting scheme for processing NDVI data by localized seasonality.

  13. Detecting early warning signals of tree mortality in boreal North America using multiscale satellite data.

    PubMed

    Rogers, Brendan M; Solvik, Kylen; Hogg, Edward H; Ju, Junchang; Masek, Jeffrey G; Michaelian, Michael; Berner, Logan T; Goetz, Scott J

    2018-06-01

    Increasing tree mortality from global change drivers such as drought and biotic infestations is a widespread phenomenon, including in the boreal zone where climate changes and feedbacks to the Earth system are relatively large. Despite the importance for science and management communities, our ability to forecast tree mortality at landscape to continental scales is limited. However, two independent information streams have the potential to inform and improve mortality forecasts: repeat forest inventories and satellite remote sensing. Time series of tree-level growth patterns indicate that productivity declines and related temporal dynamics often precede mortality years to decades before death. Plot-level productivity, in turn, has been related to satellite-based indices such as the Normalized difference vegetation index (NDVI). Here we link these two data sources to show that early warning signals of mortality are evident in several NDVI-based metrics up to 24 years before death. We focus on two repeat forest inventories and three NDVI products across western boreal North America where productivity and mortality dynamics are influenced by periodic drought. These data sources capture a range of forest conditions and spatial resolution to highlight the sensitivity and limitations of our approach. Overall, results indicate potential to use satellite NDVI for early warning signals of mortality. Relationships are broadly consistent across inventories, species, and spatial resolutions, although the utility of coarse-scale imagery in the heterogeneous aspen parkland was limited. Longer-term NDVI data and annually remeasured sites with high mortality levels generate the strongest signals, although we still found robust relationships at sites remeasured at a typical 5 year frequency. The approach and relationships developed here can be used as a basis for improving forest mortality models and monitoring systems. © 2018 John Wiley & Sons Ltd.

  14. Environmental Humidity Regulates Effects of Experimental Warming on Vegetation Index and Biomass Production in an Alpine Meadow of the Northern Tibet

    PubMed Central

    Fu, Gang; Shen, Zhen Xi

    2016-01-01

    Uncertainty about responses of vegetation index, aboveground biomass (AGB) and gross primary production (GPP) limits our ability to predict how climatic warming will influence plant growth in alpine regions. A field warming experiment was conducted in an alpine meadow at a low (4313 m), mid- (4513 m) and high elevation (4693 m) in the Northern Tibet since May 2010. Growing season vapor pressure deficit (VPD), soil temperature (Ts) and air temperature (Ta) decreased with increasing elevation, while growing season precipitation, soil moisture (SM), normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), AGB and GPP increased with increasing elevation. The growing season Ta, Ts and VPD in 2015 was greater than that in 2014, while the growing season precipitation, SM, NDVI, SAVI, AGB and GPP in 2015 was lower than that in 2014, respectively. Compared to the mean air temperature and precipitation during the growing season in 1963–2015, it was a warmer and wetter year in 2014 and a warmer and drier year in 2015. Experimental warming increased growing season Ts, Ta,VPD, but decreased growing season SM in 2014–2015 at all the three elevations. Experimental warming only reduced growing season NDVI, SAVI, AGB and GPP at the low elevation in 2015. Growing season NDVI, SAVI, AGB and GPP increased with increasing SM and precipitation, but decreased with increasing VPD, indicating vegetation index and biomass production increased with environmental humidity. The VPD explained more variation of growing season NDVI, SAVI, AGB and GPP compared to Ts, Ta and SM at all the three elevations. Therefore, environmental humidity regulated the effect of experimental warming on vegetation index and biomass production in alpine meadows on the Tibetan Plateau. PMID:27798690

  15. Detecting Inter-Annual Variations in the Phenology of Evergreen Conifers Using Long-Term MODIS Vegetation Index Time Series

    NASA Technical Reports Server (NTRS)

    Ulsig, Laura; Nichol, Caroline J.; Huemmrich, Karl F.; Landis, David R.; Middleton, Elizabeth M.; Lyapustin, Alexei I.; Mammarella, Ivan; Levula, Janne; Porcar-Castell, Albert

    2017-01-01

    Long-term observations of vegetation phenology can be used to monitor the response of terrestrial ecosystems to climate change. Satellite remote sensing provides the most efficient means to observe phenological events through time series analysis of vegetation indices such as the Normalized Difference Vegetation Index (NDVI). This study investigates the potential of a Photochemical Reflectance Index (PRI), which has been linked to vegetation light use efficiency, to improve the accuracy of MODIS-based estimates of phenology in an evergreen conifer forest. Timings of the start and end of the growing season (SGS and EGS) were derived from a 13-year-long time series of PRI and NDVI based on a MAIAC (multi-angle implementation of atmospheric correction) processed MODIS dataset and standard MODIS NDVI product data. The derived dates were validated with phenology estimates from ground-based flux tower measurements of ecosystem productivity. Significant correlations were found between the MAIAC time series and ground-estimated SGS (R (sup 2) equals 0.36-0.8), which is remarkable since previous studies have found it difficult to observe inter-annual phenological variations in evergreen vegetation from satellite data. The considerably noisier NDVI product could not accurately predict SGS, and EGS could not be derived successfully from any of the time series. While the strongest relationship overall was found between SGS derived from the ground data and PRI, MAIAC NDVI exhibited high correlations with SGS more consistently (R (sup 2) is greater than 0.6 in all cases). The results suggest that PRI can serve as an effective indicator of spring seasonal transitions, however, additional work is necessary to confirm the relationships observed and to further explore the usefulness of MODIS PRI for detecting phenology.

  16. An investigation of spectral change as influenced by irrigation and evapotranspiration volume estimation in western Nebraska

    USGS Publications Warehouse

    Seevers, P.M.; Sadowski, F.C.; Lauer, D.T.

    1990-01-01

    Retrospective satellite image data were evaluated for their ability to demonstrate the influence of center-pivot irrigation development in western Nebraska on spectral change and climate-related factors for the region. Periodic images of an albedo index and a normalized difference vegetation index (NDVI) were generated from calibrated Landsat multispectral scanner (MSS) data and used to monitor spectral changes associated with irrigation development from 1972 through 1986. The albedo index was not useful for monitoring irrigation development. For the NDVI, it was found that proportions of counties in irrigated agriculture, as discriminated by a threshold, were more highly correlated with reported ground estimates of irrigated agriculture than were county mean greenness values. A similar result was achieved when using coarse resolution Advanced Very High Resolution Radiometer (AVHRR) image data for estimating irrigated agriculture. The NDVI images were used to evaluate a procedure for making areal estimates of actual evapotranspiration (ET) volumes. Estimates of ET volumes for test counties, using reported ground acreages and corresponding standard crop coefficients, were correlated with the estimates of ET volume using crop coefficients scaled to NDVI values and pixel counts of crop areas. These county estimates were made under the assumption that soil water availability was unlimited. For nonirrigated vegetation, this may result in over-estimation of ET volumes. Ground information regarding crop types and acreages are required to derive the NDVI scaling factor. Potential ET, estimated with the Jensen-Haise model, is common to both methods. These results, achieved with both MSS and AVHRR data, show promise for providing climatologically important land surface information for regional and global climate models. ?? 1990 Kluwer Academic Publishers.

  17. A new multiscale approach for monitoring vegetation using remote sensing-based indicators in laboratory, field, and landscape.

    PubMed

    Lausch, Angela; Pause, Marion; Merbach, Ines; Zacharias, Steffen; Doktor, Daniel; Volk, Martin; Seppelt, Ralf

    2013-02-01

    Remote sensing is an important tool for studying patterns in surface processes on different spatiotemporal scales. However, differences in the spatiospectral and temporal resolution of remote sensing data as well as sensor-specific surveying characteristics very often hinder comparative analyses and effective up- and downscaling analyses. This paper presents a new methodical framework for combining hyperspectral remote sensing data on different spatial and temporal scales. We demonstrate the potential of using the "One Sensor at Different Scales" (OSADIS) approach for the laboratory (plot), field (local), and landscape (regional) scales. By implementing the OSADIS approach, we are able (1) to develop suitable stress-controlled vegetation indices for selected variables such as the Leaf Area Index (LAI), chlorophyll, photosynthesis, water content, nutrient content, etc. over a whole vegetation period. Focused laboratory monitoring can help to document additive and counteractive factors and processes of the vegetation and to correctly interpret their spectral response; (2) to transfer the models obtained to the landscape level; (3) to record imaging hyperspectral information on different spatial scales, achieving a true comparison of the structure and process results; (4) to minimize existing errors from geometrical, spectral, and temporal effects due to sensor- and time-specific differences; and (5) to carry out a realistic top- and downscaling by determining scale-dependent correction factors and transfer functions. The first results of OSADIS experiments are provided by controlled whole vegetation experiments on barley under water stress on the plot scale to model LAI using the vegetation indices Normalized Difference Vegetation Index (NDVI) and green NDVI (GNDVI). The regression model ascertained from imaging hyperspectral AISA-EAGLE/HAWK (DUAL) data was used to model LAI. This was done by using the vegetation index GNDVI with an R (2) of 0.83, which was transferred to airborne hyperspectral data on the local and regional scales. For this purpose, hyperspectral imagery was collected at three altitudes over a land cover gradient of 25 km within a timeframe of a few minutes, yielding a spatial resolution from 1 to 3 m. For all recorded spatial scales, both the LAI and the NDVI were determined. The spatial properties of LAI and NDVI of all recorded hyperspectral images were compared using semivariance metrics derived from the variogram. The first results show spatial differences in the heterogeneity of LAI and NDVI from 1 to 3 m with the recorded hyperspectral data. That means that differently recorded data on different scales might not sufficiently maintain the spatial properties of high spatial resolution hyperspectral images.

  18. Differentiating aquatic plant communities in a eutrophic river using hyperspectral and multispectral remote sensing

    USGS Publications Warehouse

    Tian, Y.Q.; Yu, Q.; Zimmerman, M.J.; Flint, S.; Waldron, M.C.

    2010-01-01

    This study evaluates the efficacy of remote sensing technology to monitor species composition, areal extent and density of aquatic plants (macrophytes and filamentous algae) in impoundments where their presence may violate water-quality standards. Multispectral satellite (IKONOS) images and more than 500 in situ hyperspectral samples were acquired to map aquatic plant distributions. By analyzing field measurements, we created a library of hyperspectral signatures for a variety of aquatic plant species, associations and densities. We also used three vegetation indices. Normalized Difference Vegetation Index (NDVI), near-infrared (NIR)-Green Angle Index (NGAI) and normalized water absorption depth (DH), at wavelengths 554, 680, 820 and 977 nm to differentiate among aquatic plant species composition, areal density and thickness in cases where hyperspectral analysis yielded potentially ambiguous interpretations. We compared the NDVI derived from IKONOS imagery with the in situ, hyperspectral-derived NDVI. The IKONOS-based images were also compared to data obtained through routine visual observations. Our results confirmed that aquatic species composition alters spectral signatures and affects the accuracy of remote sensing of aquatic plant density. The results also demonstrated that the NGAI has apparent advantages in estimating density over the NDVI and the DH. In the feature space of the three indices, 3D scatter plot analysis revealed that hyperspectral data can differentiate several aquatic plant associations. High-resolution multispectral imagery provided useful information to distinguish among biophysical aquatic plant characteristics. Classification analysis indicated that using satellite imagery to assess Lemna coverage yielded an overall agreement of 79% with visual observations and >90% agreement for the densest aquatic plant coverages. Interpretation of biophysical parameters derived from high-resolution satellite or airborne imagery should prove to be a valuable approach for assessing the effectiveness of management practices for controlling aquatic plant growth in inland waters, as well as for routine monitoring of aquatic plants in lakes and suitable lentic environments. ?? 2010 Blackwell Publishing Ltd.

  19. Sensitivity of vegetation indices and gross primary production of tallgrass prairie to severe drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagle, Pradeep; Xiao, Xiangming; Torn, Margaret S.

    2014-09-01

    Drought affects vegetation photosynthesis and growth.Many studies have used the normalized difference vegetation index (NDVI), which is calculated as the normalized ratio between near infrared and red spectral bands in satellite images, to evaluate the response of vegetation to drought. In this study, we examined the impacts of drought on three vegetation indices (NDVI, enhanced vegetation index, EVI, and land surface water index, LSWI) and CO2 flux from three tallgrass prairie eddy flux tower sites in the U.S. Gross primary production (GPP) was also modeled using a satellite-based Vegetation Photosynthesis Model (VPM), and the modeled GPP (GPPVPM) was compared withmore » the GPP (GPPEC) derived from eddy covariance measurements. Precipitation at two sites in Oklahoma was 30% below the historical mean in both years of the study period (2005–2006), while the site in Illinois did not experience drought in the 2005–2007 study period. The EVI explained the seasonal dynamics of GPP better than did NDVI. The LSWI dropped below zero during severe droughts in the growing season, showing its potential to track drought. The result shows that GPP was more sensitive to drought than were vegetation indices, and EVI and LSWI were more sensitive than NDVI. We developed a modified function (Wscalar), calculated as a function of LSWI, to account for the effect of severe droughts on GPP in VPM. The GPPVPM from the modified VPM accounted for the rapid reduction in GPP during severe droughts and the seasonal dynamics of GPPVPM agreed reasonably well with GPPEC. Our analysis shows that 8-day averaged values (temperature, vapor-pressure deficit) do not reflect the short-term extreme climate events well, suggesting that satellite based models may need to be run at daily or hourly scales, especially under unfavorable climatic conditions.« less

  20. NDVI to Detect Sugarcane Aphid Injury to Grain Sorghum.

    PubMed

    Elliott, N C; Backoulou, G F; Brewer, M J; Giles, K L

    2015-06-01

    Multispectral remote sensing has potential to provide quick and inexpensive information on sugarcane aphid, Melanaphis sacchari (Zehntner), pest status in sorghum fields. We describe a study conducted to determine if injury caused by sugarcane aphid to sorghum plants in fields of grain sorghum could be detected using multispectral remote sensing from a fixed wing aircraft. A study was conducted in commercial grain sorghum fields in the Texas Gulf Coast region in June 2014. Twenty-six commercial grain sorghum fields were selected and rated for the level of injury to sorghum plants in the field caused by sugarcane aphid. Plant growth stage ranged from 5.0 (watery ripe) to 7.0 (hard dough) among fields; and plant injury rating from sugarcane aphid ranged from 1.0 (little or no injury) to 4.0 (>40% of plants displaying injury) among fields. The normalized differenced vegetation index (NDVI) is calculated from light reflectance in the red and near-infrared wavelength bands in multispectral imagery and is a common index of plant stress. High NDVI indicates low levels of stress and low NDVI indicates high stress. NDVI ranged from -0.07 to 0.26 among fields. The correlation between NDVI and plant injury rating was negative and significant, as was the correlation between NDVI and plant growth stage. The negative correlation of NDVI with injury rating indicated that plant stress increased with increasing plant injury. Reduced NDVI with increasing plant growth probably resulted from reduced photosynthetic activity in more mature plants. The correlation between plant injury rating and plant growth stage was positive and significant indicating that plant injury from sugarcane aphid increased as plants matured. The partial correlation of NDVI with plant injury rating was negative and significant indicating that NDVI decreased with increasing plant injury after adjusting for its association with plant growth stage. We demonstrated that remotely sensed imagery acquired from grain sorghum fields using an airborne multi-spectral imaging system was sensitive to injury to sorghum plants caused by sugarcane aphid. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

Top