Science.gov

Sample records for near-shore anoxic basin

  1. Material transport from the near shore to the basinal environment in the southern Baltic Sea. II: Synthesis of data on origin and properties of material

    NASA Astrophysics Data System (ADS)

    Emeis, K.; Christiansen, C.; Edelvang, K.; Jähmlich, S.; Kozuch, J.; Laima, M.; Leipe, T.; Löffler, A.; Lund-Hansen, L. C.; Miltner, A.; Pazdro, K.; Pempkowiak, J.; Pollehne, F.; Shimmield, T.; Voss, M.; Witt, G.

    2002-07-01

    The Pomeranian Bight (southern Baltic Sea) is a mixing zone between waters of the Baltic Proper and the river Oder, which drains a densely populated and highly industrialised catchment of central Europe. The bight is a nondepositional area, and all material produced in its water column, from erosion of strata at the seafloor and cliffs, and delivered by rivers, is transported near the seafloor to the depositional areas of the Arkona, Bornholm and Gdansk basins. In this contribution, we assess the origin, transformation and mass fluxes of material through the bight based on an integrated field study conducted in the period 1996-1998. The transport mechanism is by wave- and current-induced resuspension and settling cycles, which effectively enrich organic-rich material and associated substances (organic pollutants, heavy metals) in deeper water; the estimated transport time is less than 6 months. The phases in which the material is transported are suspended matter in the water column, a particle- and aggregate-rich benthic boundary layer of <1 m above the seafloor and a layer of fluffy material fed from the two other sources that covers the sandy near-shore sediments as a discrete phase; it collects up to 130 g m -2 of particulate material after quiescent periods lasting several days. It is easily resuspended at shear velocities around 5 cm s -1 and is recycled into the suspended matter and benthic boundary layer pools of material. In deeper waters (>20 m water depth), the fluffy layer is not readily distinguished from the underlying soft, organic-rich sediment and the change in physical and chemical properties is gradual. The organic matter passing through the coastal zone in the southern Baltic is unaffected by biological or chemical modifications in composition. We find no evidence for a preferential removal of nitrogen or phosphorus, even if the speciation of phosphorus changes from biological compounds to minerals. The compositional changes which we see, i

  2. Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea).

    PubMed

    Stoeck, Thorsten; Taylor, Gordon T; Epstein, Slava S

    2003-09-01

    Present knowledge of microbial diversity is decidedly incomplete (S. J. Giovannoni and M. S. Rappé, p. 47-84, in D. Kirchman, ed., Microbial Ecology of the Oceans, 2000; E. Stackebrandt and T. M. Embley, p. 57-75, in R. R. Colwell and D. J. Grimes, ed., Nonculturable Microorganisms in the Environment, 2000). Protistan phylogenies are particularly deficient and undoubtedly exclude clades of principal ecological and evolutionary importance (S. L. Baldauf, Science 300:1703-1706, 2003). The rRNA approach has been extraordinarily successful in expanding the global prokaryotic record (S. J. Giovannoni and M. S. Rappé, p. 47-84, in D. Kirchman, ed., Microbial Ecology of the Oceans, 2000; E. Stackebrandt and T. M. Embley, p. 57-75, in R. R. Colwell and D. J. Grimes, ed., Nonculturable Microorganisms in the Environment, 2000) but has rarely been used in protistan discovery. Here we report the first application of the 18S rRNA approach to a permanently anoxic environment, the Cariaco Basin off the Venezuelan coast. On the basis of rRNA sequences, we uncovered a substantial number of novel protistan lineages. These included new clades of the highest taxonomic level unrelated to any known eukaryote as well as deep branches within established protistan groups. Three novel lineages branch at the base of the eukaryotic evolutionary tree preceding, contemporary with, or immediately following the earliest eukaryotic branches. These newly discovered protists may retain traits reminiscent of an early eukaryotic ancestor(s).

  3. Near shore-wetland fish movements in the Great Lakes

    EPA Science Inventory

    Linkages of Great Lakes coastal wetlands and near shore habitats are under-explored, yet 90 species of fish are known to utilize wetlands for spawning and/or nursery habitat. The duration and frequency of wetland use for pelagic species with mobile adult stages is also poorly un...

  4. Use of remote sensing in shoreline and near shore management

    NASA Technical Reports Server (NTRS)

    Capper, J. R.

    1972-01-01

    The legal aspects of resources management to regulate near-shore and shoreline area activities in the Chesapeake Bay are discussed. The need for information and acquisition in order to define the resources prior to developing legislation on resources management is explained. The steps which are followed in devising the regulatory legislation and enforcing its provisions are outlined.

  5. Near-shore krill distribution around Livingston Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Warren, Joseph D.; Demer, David A.

    2001-05-01

    The near-shore regions of Livingston Island, Antarctica were studied during the austral summers of 2002 and 2004 to measure the Antarctic krill population and factors which control their distribution. These waters serve as the main feeding grounds for the seasonally resident fur seal and penguin populations of Cape Shirreff. Shallow and highly variable bathymetry in this area precludes surveying from large ships, therefore a specially modified, 19-ft inflatable vessel was used to conduct meteorological and acoustic backscatter surveys of the near-shore region. Concurrently, a 300-ft vessel conducted an overlapping, off-shore survey and collected acoustic backscatter, hydrographic, and net tow data. Results from this study indicate that the near-shore waters contained higher concentrations of acoustic scatterers (believed to be krill) and that the distribution of these animals was related to the presence of two deep submarine canyons that flank Cape Shirreff. Hydrographic data indicate that the near-surface waters near these canyons contained elevated levels of temperature and oxygen. During the 2004 study, several buoys equipped with echosounders were deployed at these canyons to better study their effect on the krill population.

  6. Predictive isotopic biogeochemistry: hydrocarbons from anoxic marine basins

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Wakeham, S. G.; Hayes, J. M.

    1994-01-01

    Carbon isotopic compositions were determined for individual hydrocarbons in water column and sediment samples from the Cariaco Trench and Black Sea. In order to identify hydrocarbons derived from phytoplankton, the isotopic compositions expected for biomass of autotrophic organisms living in surface waters of both localities were calculated based on the concentrations of CO2(aq) and the isotopic compositions of dissolved inorganic carbon. These calculated values are compared to measured delta values for particulate organic carbon and for individual hydrocarbon compounds. Specifically, we find that lycopane is probably derived from phytoplankton and that diploptene is derived from the lipids of chemoautotrophs living above the oxic/anoxic boundary. Three acyclic isoprenoids that have been considered markers for methanogens, pentamethyleicosane and two hydrogenated squalenes, have different delta values and apparently do not derive from a common source. Based on the concentration profiles and isotopic compositions, the C31 and C33 n-alkanes and n-alkenes have a similar source, and both may have a planktonic origin. If so, previously assigned terrestrial origins of organic matter in some Black Sea sediments may be erroneous.

  7. Monitoring of beach enteromorpha variation with near shore video

    NASA Astrophysics Data System (ADS)

    Hu, Yali; Yu, Xinsheng; Yan, Zhijin; Yi, Weidong

    2014-07-01

    Beach is an important coastal protective barrier and tourism resources. Beach environment monitoring can help beach managers to make feasible decisions. Digital image of video monitoring technology can provide high resolution information of temporal and spatial variation of near shore in real time. The application of Video monitoring technology has been implemented in Qingdao's Shilaoren beach. The clustering method based on Gaussian mixture model is applied to extract beach enteromorpha changs for the digital images. Analysis results show that, the period of enteromorpha in Qingdao's Shilaoren beach was mainly from the early July to the mid-August in 2011, and the decline of enteromorpha is mainly associated with the rising temperature in the mid-August. Storm has significant impact on the beach enteromorpha. Tourists' activity space on the beach will decrease due to the enteromorpha covering on the beach, which affects beach tourism activities. Therefore, it's necessary to make preventive measures to avoid enteromorpha piling up on the beach, which is of great importance to the bathing beach environment and tourism development.

  8. Iron isotope fractionation in marine invertebrates in near shore environments

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Schuessler, J. A.; Vinther, J.; Matthews, A.; von Blanckenburg, F.

    2014-04-01

    Chitons (Mollusca) are marine invertebrates that produce radula (teeth or rasping tongue) containing high concentrations of biomineralized magnetite and other iron bearing minerals. As Fe isotope signatures are influenced by redox processes and biological fractionation, Fe isotopes in chiton radula might be expected to provide an effective tracer of ambient oceanic conditions and biogeochemical cycling. Here, in a pilot study to measure Fe isotopes in marine invertebrates, we examine Fe isotopes in modern marine chiton radula collected from different locations in the Atlantic and Pacific oceans to assess the range of isotopic values, and to test whether or not the isotopic signatures reflect seawater values. Furthermore, by comparing two species that have very different feeding habits but collected from the same location, we infer a possible link between diet and Fe isotopic signatures. Values of δ56Fe (relative to IRMM-014) in chiton teeth range from -1.90 to 0.00‰ (±0.05‰ (2σ) uncertainty in δ56Fe), probably reflecting a combination of geographical control and biological fractionation processes. Comparison with published local surface seawater Fe isotope data shows a consistent negative offset of chiton teeth Fe isotope compositions relative to seawater. Strikingly, two different species from the same locality in the North Pacific (Puget Sound, Washington, USA) have distinct isotopic signatures. Tonicella lineata, which feeds on red algae, has a mean δ56Fe of -0.65 ± 0.26‰ (2σ, 3 specimens), while Mopalia muscosa, which feeds primarily on green algae, shows lighter isotopic values with a mean δ56Fe of -1.47 ± 0.98‰ (2σ, 5 specimens). Although chitons are not simple recorders of the ambient seawater Fe isotopic signature, these preliminary results suggest that Fe isotopes provide information concerning Fe biogeochemical cycling in near shore environments, and might be used to probe sources of Fe in the diets of different organisms.

  9. Hydrolytic ectoenzyme activity associated with suspended and sinking organic particles within the anoxic Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Taylor, Gordon T.; Thunell, Robert; Varela, Ramon; Benitez-Nelson, Claudia; Scranton, Mary I.

    2009-08-01

    Ectohydrolase activities of suspended microbiota were compared to those associated with sinking particles (sed-POM) retrieved from sediment traps deployed in the permanently anoxic Cariaco Basin. In shore-based assays, activities of aminopeptidase, β-glucosidase, chitinase and alkaline phosphatase were measured in samples obtained from oxic and anoxic depths using MUF- and MCA-labeled fluorogenic substrate analogs. Hydrolysis potentials for these enzymes in the seston varied widely over the nine cruises sampled (8 Nov 1996-3 May 2000) and among depths (15-1265 m); from <10 to over 1600 nM d -1 hydrolysate released, generally co-varying with one another and with suspended particulate organic carbon (POC) and particulate nitrogen (PN). Hydrolytic potentials, prokaryotic abundances and POC/PN concentrations in sinking debris were 400-1.3×10 7 times higher than in comparable volumes of seawater. However when normalized to PN, hydrolytic potentials in sediment trap samples were not demonstrably higher than in Niskin bottle samples. We estimate that PN pools in sediment trap samples were turned over 2-1400 times (medians=7-26 x) slower by hydrolysis than were suspended PN pools. Median prokaryotic growth rates (divisions d -1) in sinking debris were also ˜150 times slower than for bacterioplankton. Hydrolytic potentials in surface oxic waters were generally faster than in underlying anoxic waters on a volumetric basis (nM hydrolysate d -1), but were not significantly ( p>0.05) different when normalized to PN or prokaryote abundances. Alkaline phosphatase was consistently the most active ectohydrolase in both sample types, suggesting that Cariaco Basin assemblages were adapted to decomposing phosphate esters in organic polymers. However, phosphorus limitation was not evident from nutrient inventories in the water column. Results support the hypothesis that efficiencies of polymer hydrolysis in anoxic waters are not inherently lower than in oxic waters.

  10. Temporal stability and origin of chemoclines in the deep hypersaline anoxic Urania basin

    NASA Astrophysics Data System (ADS)

    Goldhammer, Tobias; Schwärzle, Andreas; Aiello, Ivano W.; Zabel, Matthias

    2015-06-01

    Submarine brine lakes feature sharp and persistent concentration gradients between seawater and brine, though these should be smoothed out by free diffusion in open ocean settings. The anoxic Urania basin of the eastern Mediterranean contains an ultrasulfidic, hypersaline brine of Messinian origin above a thick layer of suspended sediments. With a dual modeling approach we reconstruct its contemporary stratification by geochemical solute transport fundamentals and show that thermal convection is required to maintain mixing in the brine and mud layer. The origin of the Urania basin stratification was dated to 1650 years B.P., which may be linked to a major earthquake in the region. The persistence of the chemoclines may be key to the development of diverse and specialized microbial communities. Ongoing thermal convection in the fluid mud layer may have important yet unresolved consequences for sedimentological and geochemical processes, also in similar environments.

  11. Microbial eukaryotes in the hypersaline anoxic L'Atalante deep-sea basin.

    PubMed

    Alexander, Eva; Stock, Alexandra; Breiner, Hans-Werner; Behnke, Anke; Bunge, John; Yakimov, Michail M; Stoeck, Thorsten

    2009-02-01

    The frontiers of eukaryote life in nature are still unidentified. In this study, we analysed protistan communities in the hypersaline (up to 365 g l(-1) NaCl) anoxic L'Atalante deep-sea basin located in the eastern Mediterranean Sea. Targeting 18S ribosomal RNA retrieved from the basin's lower halocline (3501 m depth) we detected 279 protistan sequences that grouped into 42 unique phylotypes (99% sequence similarity). Statistical analyses revealed that these phylotypes account only for a proportion of the protists inhabiting this harsh environment with as much as 50% missed by this survey. Most phylotypes were affiliated with ciliates (45%), dinoflagellates (21%), choanoflagelates (10%) and uncultured marine alveolates (6%). Sequences from other taxonomic groups like stramenopiles, Polycystinea, Acantharea and Euglenozoa, all of which are typically found in non-hypersaline deep-sea systems, are either missing or very rare in our cDNA clone library. Although many DHAB sequences fell within previously identified environmental clades, a large number branched relatively deeply. Phylotype richness, community membership and community structure differ significantly from a deep seawater reference community (3499 m depth). Also, the protistan community in the L'Atalante basin is distinctively different from any previously described hypersaline community. In conclusion, we hypothesize that extreme environments may exert a high selection pressure possibly resulting in the evolution of an exceptional and distinctive assemblage of protists. The deep hypersaline anoxic basins in the Mediterranean Sea provide an ideal platform to test for this hypothesis and are promising targets for the discovery of undescribed protists with unknown physiological capabilities.

  12. Microbial eukaryotes in the hypersaline anoxic L'Atalante deep-sea basin.

    PubMed

    Alexander, Eva; Stock, Alexandra; Breiner, Hans-Werner; Behnke, Anke; Bunge, John; Yakimov, Michail M; Stoeck, Thorsten

    2009-02-01

    The frontiers of eukaryote life in nature are still unidentified. In this study, we analysed protistan communities in the hypersaline (up to 365 g l(-1) NaCl) anoxic L'Atalante deep-sea basin located in the eastern Mediterranean Sea. Targeting 18S ribosomal RNA retrieved from the basin's lower halocline (3501 m depth) we detected 279 protistan sequences that grouped into 42 unique phylotypes (99% sequence similarity). Statistical analyses revealed that these phylotypes account only for a proportion of the protists inhabiting this harsh environment with as much as 50% missed by this survey. Most phylotypes were affiliated with ciliates (45%), dinoflagellates (21%), choanoflagelates (10%) and uncultured marine alveolates (6%). Sequences from other taxonomic groups like stramenopiles, Polycystinea, Acantharea and Euglenozoa, all of which are typically found in non-hypersaline deep-sea systems, are either missing or very rare in our cDNA clone library. Although many DHAB sequences fell within previously identified environmental clades, a large number branched relatively deeply. Phylotype richness, community membership and community structure differ significantly from a deep seawater reference community (3499 m depth). Also, the protistan community in the L'Atalante basin is distinctively different from any previously described hypersaline community. In conclusion, we hypothesize that extreme environments may exert a high selection pressure possibly resulting in the evolution of an exceptional and distinctive assemblage of protists. The deep hypersaline anoxic basins in the Mediterranean Sea provide an ideal platform to test for this hypothesis and are promising targets for the discovery of undescribed protists with unknown physiological capabilities. PMID:18826436

  13. The isotopic composition of authigenic chromium in anoxic marine sediments: A case study from the Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Reinhard, Christopher T.; Planavsky, Noah J.; Wang, Xiangli; Fischer, Woodward W.; Johnson, Thomas M.; Lyons, Timothy W.

    2014-12-01

    Chromium (Cr) isotopes are an emerging proxy for tracking redox processes at the Earth's surface. However, there has been limited exploration of the Cr isotope record of modern and recent marine sediments. The basic inorganic chemistry of Cr suggests that anoxic marine basins should factor prominently in the global Cr cycle and that sediments deposited within anoxic basins may offer a valuable Cr isotope archive throughout Earth's history. Here, we present δ53Cr data from sediments of the Cariaco Basin, Venezuela-a 'type' environment for large, perennially anoxic basins with a relatively strong hydrological connection to the global oceans. We document a marked positive shift in bulk δ53Cr values following the termination of the Last Glacial Maximum, followed by relative stasis. Based on a suite of independent redox proxies, this transition marks a switch from oxic to persistently anoxic and sulfidic (euxinic) depositional conditions within the basin. We find good agreement between two independent approaches toward estimating the δ53Cr composition of authigenic Cr in euxinic Cariaco Basin sediments and that these estimates are very similar to the δ53Cr composition of modern open Atlantic Ocean seawater. These data, together with considerations of reaction kinetics and mass balance within the Cariaco Basin, are consistent with the hypothesis that anoxic marine settings can serve as a chemical archive of first-order trends in seawater δ53Cr composition. Additionally, the Cariaco Basin data suggest that there has been secular stability in the average δ53Cr value of Atlantic seawater over the last ∼15 kyr.

  14. Analysis of fish movements between Great Lakes coastal wetlands and near shore habitat via otolith microchemistry

    EPA Science Inventory

    Great Lakes coastal wetlands are unique habitats with physical connections with near shore environments. This facilitates the exchange of energy between habitats in a principle known as habitat coupling. Coupling can be facilitated by movements of consumers; however, wetland us...

  15. Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin.

    PubMed

    Pachiadaki, Maria G; Yakimov, Michail M; LaCono, Violetta; Leadbetter, Edward; Edgcomb, Virginia

    2014-12-01

    Deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea are considered some of the most hostile environments on Earth. Little is known about the biochemical adaptations of microorganisms living in these habitats. This first metatranscriptome analysis of DHAB samples provides significant insights into shifts in metabolic activities of microorganisms as physicochemical conditions change from deep Mediterranean sea water to brine. The analysis of Thetis DHAB interface indicates that sulfate reduction occurs in both the upper (7.0-16.3% salinity) and lower (21.4-27.6%) halocline, but that expression of dissimilatory sulfate reductase is reduced in the more hypersaline lower halocline. High dark-carbon assimilation rates in the upper interface coincided with high abundance of transcripts for ribulose 1,5-bisphosphate carboxylase affiliated to sulfur-oxidizing bacteria. In the lower interface, increased expression of genes associated with methane metabolism and osmoregulation is noted. In addition, in this layer, nitrogenase transcripts affiliated to uncultivated putative methanotrophic archaea were detected, implying nitrogen fixation in this anoxic habitat, and providing evidence of linked carbon, nitrogen and sulfur cycles. PMID:24950109

  16. Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin

    PubMed Central

    Pachiadaki, Maria G; Yakimov, Michail M; LaCono, Violetta; Leadbetter, Edward; Edgcomb, Virginia

    2014-01-01

    Deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea are considered some of the most hostile environments on Earth. Little is known about the biochemical adaptations of microorganisms living in these habitats. This first metatranscriptome analysis of DHAB samples provides significant insights into shifts in metabolic activities of microorganisms as physicochemical conditions change from deep Mediterranean sea water to brine. The analysis of Thetis DHAB interface indicates that sulfate reduction occurs in both the upper (7.0–16.3% salinity) and lower (21.4–27.6%) halocline, but that expression of dissimilatory sulfate reductase is reduced in the more hypersaline lower halocline. High dark-carbon assimilation rates in the upper interface coincided with high abundance of transcripts for ribulose 1,5-bisphosphate carboxylase affiliated to sulfur-oxidizing bacteria. In the lower interface, increased expression of genes associated with methane metabolism and osmoregulation is noted. In addition, in this layer, nitrogenase transcripts affiliated to uncultivated putative methanotrophic archaea were detected, implying nitrogen fixation in this anoxic habitat, and providing evidence of linked carbon, nitrogen and sulfur cycles. PMID:24950109

  17. Environmental selection of protistan plankton communities in hypersaline anoxic deep-sea basins, Eastern Mediterranean Sea.

    PubMed

    Filker, Sabine; Stock, Alexandra; Breiner, Hans-Werner; Edgcomb, Virginia; Orsi, William; Yakimov, Michail M; Stoeck, Thorsten

    2013-02-01

    High salt concentrations, absence of light, anoxia, and high hydrostatic pressure make deep hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea one of the most polyextreme habitats on Earth. Taking advantage of the unique chemical characteristics of these basins, we tested the effect of environmental selection and geographic distance on the structure of protistan communities. Terminal restriction fragment length polymorphism (T-RFLP) analyses were performed on water samples from the brines and seawater/brine interfaces of five basins: Discovery, Urania, Thetis, Tyro, and Medee. Using statistical analyses, we calculated the partitioning of diversity among the ten individual terminal restriction fragment (T-RF) profiles, based on peak abundance and peak incidence. While a significant distance effect on spatial protistan patterns was not detected, hydrochemical gradients emerged as strong dispersal barriers that likely lead to environmental selection in the DHAB protistan plankton communities. We identified sodium, magnesium, sulfate, and oxygen playing in concerto as dominant environmental drivers for the structuring of protistan plankton communities in the Eastern Mediterranean DHABs.

  18. Environmental selection of protistan plankton communities in hypersaline anoxic deep-sea basins, Eastern Mediterranean Sea

    PubMed Central

    Filker, Sabine; Stock, Alexandra; Breiner, Hans-Werner; Edgcomb, Virginia; Orsi, William; Yakimov, Michail M; Stoeck, Thorsten

    2013-01-01

    High salt concentrations, absence of light, anoxia, and high hydrostatic pressure make deep hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea one of the most polyextreme habitats on Earth. Taking advantage of the unique chemical characteristics of these basins, we tested the effect of environmental selection and geographic distance on the structure of protistan communities. Terminal restriction fragment length polymorphism (T-RFLP) analyses were performed on water samples from the brines and seawater/brine interfaces of five basins: Discovery, Urania, Thetis, Tyro, and Medee. Using statistical analyses, we calculated the partitioning of diversity among the ten individual terminal restriction fragment (T-RF) profiles, based on peak abundance and peak incidence. While a significant distance effect on spatial protistan patterns was not detected, hydrochemical gradients emerged as strong dispersal barriers that likely lead to environmental selection in the DHAB protistan plankton communities. We identified sodium, magnesium, sulfate, and oxygen playing in concerto as dominant environmental drivers for the structuring of protistan plankton communities in the Eastern Mediterranean DHABs. PMID:23239531

  19. Chromium isotope composition of reducing and anoxic sediments from the Peru Margin and Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Gueguen, B.; Planavsky, N.; Wang, X.; Algeo, T. J.; Peterson, L. C.; Reinhard, C. T.

    2014-12-01

    Chromium isotope systematics in marine sediments are now being used as a new redox proxy of the modern and ancient Earth's surface. Chromium is primarily delivered to the oceans by riverine inputs through weathering of Cr(III)-rich minerals present in the continental crust and oxidation of insoluble Cr(III) to soluble Cr(VI) species. Since oxidation-reduction reactions fractionate Cr isotopes whereby oxidized Cr(VI) species are preferentially enriched in heavy Cr isotopes, the Cr isotope composition of marine sediments may be useful tracers of redox conditions at the Earth's surface through geological time. Chromium is quantitatively removed in organic-rich sediments where reducing conditions prevail and promote reduction of Cr(VI) to Cr(III), and thus, these sediments should capture the ambient seawater Cr isotope composition. However, the isotopic composition of modern organic-rich sediments is poorly documented so far, and this step is essential for further modeling the global oceanic Cr isotope mass balance and assessing the effects of sedimentation and post-depositional processes on the marine Cr isotopes archive. In this study, we have characterized modern marine organic-rich sediments for their Cr isotope composition (δ53/52Cr) from two different settings, the Peru margin upwelling zone and the anoxic Cariaco Basin (Venezuela). Chromium isotopes were measured on a MC-ICP-MS (Nu Plasma) using a double-spike correction method. The authigenic fraction of shallow samples from the Peru margin sedimentary sequence with a high Total Organic Carbon (TOC) content (>10 wt%) yield an average δ53/52Crauthigenic value of +0.67 ±0.05 ‰ (2sd). However, although this value is close to the seawater value (Atlantic Ocean) and to Cariaco basin sediments (~ +0.6 ‰), reducing sediments from the Peru margin are on average isotopically slightly heavier, especially in samples having a low authigenic fraction and a low TOC content (δ53/52Crauthigenic values up to +1.30

  20. Near shore groundwater acidification during and after a hydrological drought in the Lower Lakes, South Australia

    NASA Astrophysics Data System (ADS)

    Leyden, Emily; Cook, Freeman; Hamilton, Benjamin; Zammit, Benjamin; Barnett, Liz; Lush, Ann Marie; Stone, Dylan; Mosley, Luke

    2016-06-01

    An extreme hydrological drought in the Lower Lakes of the Murray-Darling Basin (Ramsar listed site) resulted in exposure of large areas of lake bed (25% of pre-drought lake area), containing the reduced iron (Fe) sulfide mineral pyrite. The pyrite oxidised and the resulting acidification (pH < 4) posed risks of acid and metals entering shallow groundwater and potentially discharging to the remaining lake water body. Piezometer transects were installed at four locations and monitoring of the groundwater levels and quality was undertaken for six years from 2009 (drought) to 2014 (4 years post-reinundation). Acidic (pH 3-5) groundwater was recorded at three of the four piezometer locations and included sites close to the lake water. The acidic groundwater (0.5-2 m below lake bed) at these sites is likely to have originated from the transport of acid from the upper oxidised sediment layer formed during the drought. High soluble metal (Fe, Al, Mn) levels were also recorded at acidic locations. Acidic shallow groundwater has persisted at many sites for over 4 years following reinundation post-drought, and is likely due to slow diffusion and limited sulfate reduction. Increases in dissolved Fe and Mn with decreases in redox potential suggest that reductive dissolution of Fe and Mn hydrous oxides and Fe oxy-hydroxysulfate minerals (e.g. jarosite) occurred post-drought. Groundwater hydraulic head gradients were low, indicating there was limited potential for groundwater to discharge to the lake. The hydraulic gradients at all locations were dynamic with complex relationships along the near-shore environment. The results highlight the long lasting and severe effects on groundwater that can occur following hydrological drought in aquatic environments with sulfidic sediments.

  1. Near shore groundwater acidification during and after a hydrological drought in the Lower Lakes, South Australia.

    PubMed

    Leyden, Emily; Cook, Freeman; Hamilton, Benjamin; Zammit, Benjamin; Barnett, Liz; Lush, Ann Marie; Stone, Dylan; Mosley, Luke

    2016-06-01

    An extreme hydrological drought in the Lower Lakes of the Murray-Darling Basin (Ramsar listed site) resulted in exposure of large areas of lake bed (25% of pre-drought lake area), containing the reduced iron (Fe) sulfide mineral pyrite. The pyrite oxidised and the resulting acidification (pH<4) posed risks of acid and metals entering shallow groundwater and potentially discharging to the remaining lake water body. Piezometer transects were installed at four locations and monitoring of the groundwater levels and quality was undertaken for six years from 2009 (drought) to 2014 (4years post-reinundation). Acidic (pH3-5) groundwater was recorded at three of the four piezometer locations and included sites close to the lake water. The acidic groundwater (0.5-2m below lake bed) at these sites is likely to have originated from the transport of acid from the upper oxidised sediment layer formed during the drought. High soluble metal (Fe, Al, Mn) levels were also recorded at acidic locations. Acidic shallow groundwater has persisted at many sites for over 4years following reinundation post-drought, and is likely due to slow diffusion and limited sulfate reduction. Increases in dissolved Fe and Mn with decreases in redox potential suggest that reductive dissolution of Fe and Mn hydrous oxides and Fe oxy-hydroxysulfate minerals (e.g. jarosite) occurred post-drought. Groundwater hydraulic head gradients were low, indicating there was limited potential for groundwater to discharge to the lake. The hydraulic gradients at all locations were dynamic with complex relationships along the near-shore environment. The results highlight the long lasting and severe effects on groundwater that can occur following hydrological drought in aquatic environments with sulfidic sediments. PMID:27107321

  2. What happens to near-shore habitat when lake and reservoir water levels decline?

    EPA Science Inventory

    Water management and drought can lead to increased fluctuation and declines in lake and reservoir water levels. These changes can affect near-shore physical habitat and the biotic assemblages that depend upon it. Structural complexity at the land-water interface of lakes promote...

  3. Do we have the tools and the smarts to quantify near shore conditions in Lake Michigan?

    EPA Science Inventory

    The off-shore waters in Lake Michigan have been approaching the oligotrophic state, and the lake wide total phosphorus concentration has met the Great Lakes Water Quality Agreement (GLWQA) target since the early 1980s. However, environmental concerns in the near shore, such as ex...

  4. Analysis of near-shore sea surface temperatures in the Northern Pacific

    EPA Science Inventory

    Recent studies report a warming trend in Pacific Ocean temperatures over the last 50 years. However, much less is known about temperature change in the near-coastal environment, which is particularly sensitive to climatic change. In near-shore regions in situ sea surface temper...

  5. Marine silicate weathering in the anoxic sediment of the Ulleung Basin: Evidence and consequences

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Hoon; Torres, Marta E.; Haley, Brian A.; Ryu, Jong-Sik; Park, Myong-Ho; Hong, Wei-Li; Choi, Jiyoung

    2016-08-01

    Marine silicate weathering (MSiW) in anoxic sediments has been recently shown to be a significant sink for CO2 generated by methanogenesis. Independently, the roles of clay dehydration (illitization) in producing water and driving upward fluid advection have been well established in deep marine sediments, but to date the K+ source required for the reaction has not been established. Here we present chemical and strontium isotope properties of pore fluids from seven cores in the Ulleung Basin, which show radiogenic 87Sr/86Sr values (up to ˜0.71045), very high alkalinity values (maximum ˜130 mM), and enrichment in H4SiO4, Na+, K+, and Mg2+, consistent with MSiW. This reaction consumes CO2, generates alkalinity, and acts as a K+ source for illitization; water released from MSiW-supported illitization drives upward fluid flow. Our results highlight the importance of MSiW along continental margins and its underappreciated role in carbon cycling, silicate diagenesis, and hydrogeology of marine systems.

  6. Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments

    PubMed Central

    Bernhard, Joan M.; Kormas, Konstantinos; Pachiadaki, Maria G.; Rocke, Emma; Beaudoin, David J.; Morrison, Colin; Visscher, Pieter T.; Cobban, Alec; Starczak, Victoria R.; Edgcomb, Virginia P.

    2014-01-01

    Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L’ Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers. PMID:25452749

  7. Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments.

    PubMed

    Bernhard, Joan M; Kormas, Konstantinos; Pachiadaki, Maria G; Rocke, Emma; Beaudoin, David J; Morrison, Colin; Visscher, Pieter T; Cobban, Alec; Starczak, Victoria R; Edgcomb, Virginia P

    2014-01-01

    Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L' Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers.

  8. Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments.

    PubMed

    Bernhard, Joan M; Kormas, Konstantinos; Pachiadaki, Maria G; Rocke, Emma; Beaudoin, David J; Morrison, Colin; Visscher, Pieter T; Cobban, Alec; Starczak, Victoria R; Edgcomb, Virginia P

    2014-01-01

    Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L' Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers. PMID:25452749

  9. Predictive Modelling to Identify Near-Shore, Fine-Scale Seabird Distributions during the Breeding Season.

    PubMed

    Warwick-Evans, Victoria C; Atkinson, Philip W; Robinson, Leonie A; Green, Jonathan A

    2016-01-01

    During the breeding season seabirds are constrained to coastal areas and are restricted in their movements, spending much of their time in near-shore waters either loafing or foraging. However, in using these areas they may be threatened by anthropogenic activities such as fishing, watersports and coastal developments including marine renewable energy installations. Although many studies describe large scale interactions between seabirds and the environment, the drivers behind near-shore, fine-scale distributions are not well understood. For example, Alderney is an important breeding ground for many species of seabird and has a diversity of human uses of the marine environment, thus providing an ideal location to investigate the near-shore fine-scale interactions between seabirds and the environment. We used vantage point observations of seabird distribution, collected during the 2013 breeding season in order to identify and quantify some of the environmental variables affecting the near-shore, fine-scale distribution of seabirds in Alderney's coastal waters. We validate the models with observation data collected in 2014 and show that water depth, distance to the intertidal zone, and distance to the nearest seabird nest are key predictors in the distribution of Alderney's seabirds. AUC values for each species suggest that these models perform well, although the model for shags performed better than those for auks and gulls. While further unexplained underlying localised variation in the environmental conditions will undoubtedly effect the fine-scale distribution of seabirds in near-shore waters we demonstrate the potential of this approach in marine planning and decision making.

  10. Predictive Modelling to Identify Near-Shore, Fine-Scale Seabird Distributions during the Breeding Season.

    PubMed

    Warwick-Evans, Victoria C; Atkinson, Philip W; Robinson, Leonie A; Green, Jonathan A

    2016-01-01

    During the breeding season seabirds are constrained to coastal areas and are restricted in their movements, spending much of their time in near-shore waters either loafing or foraging. However, in using these areas they may be threatened by anthropogenic activities such as fishing, watersports and coastal developments including marine renewable energy installations. Although many studies describe large scale interactions between seabirds and the environment, the drivers behind near-shore, fine-scale distributions are not well understood. For example, Alderney is an important breeding ground for many species of seabird and has a diversity of human uses of the marine environment, thus providing an ideal location to investigate the near-shore fine-scale interactions between seabirds and the environment. We used vantage point observations of seabird distribution, collected during the 2013 breeding season in order to identify and quantify some of the environmental variables affecting the near-shore, fine-scale distribution of seabirds in Alderney's coastal waters. We validate the models with observation data collected in 2014 and show that water depth, distance to the intertidal zone, and distance to the nearest seabird nest are key predictors in the distribution of Alderney's seabirds. AUC values for each species suggest that these models perform well, although the model for shags performed better than those for auks and gulls. While further unexplained underlying localised variation in the environmental conditions will undoubtedly effect the fine-scale distribution of seabirds in near-shore waters we demonstrate the potential of this approach in marine planning and decision making. PMID:27031616

  11. Predictive Modelling to Identify Near-Shore, Fine-Scale Seabird Distributions during the Breeding Season

    PubMed Central

    Warwick-Evans, Victoria C.; Atkinson, Philip W.; Robinson, Leonie A.; Green, Jonathan A.

    2016-01-01

    During the breeding season seabirds are constrained to coastal areas and are restricted in their movements, spending much of their time in near-shore waters either loafing or foraging. However, in using these areas they may be threatened by anthropogenic activities such as fishing, watersports and coastal developments including marine renewable energy installations. Although many studies describe large scale interactions between seabirds and the environment, the drivers behind near-shore, fine-scale distributions are not well understood. For example, Alderney is an important breeding ground for many species of seabird and has a diversity of human uses of the marine environment, thus providing an ideal location to investigate the near-shore fine-scale interactions between seabirds and the environment. We used vantage point observations of seabird distribution, collected during the 2013 breeding season in order to identify and quantify some of the environmental variables affecting the near-shore, fine-scale distribution of seabirds in Alderney’s coastal waters. We validate the models with observation data collected in 2014 and show that water depth, distance to the intertidal zone, and distance to the nearest seabird nest are key predictors in the distribution of Alderney’s seabirds. AUC values for each species suggest that these models perform well, although the model for shags performed better than those for auks and gulls. While further unexplained underlying localised variation in the environmental conditions will undoubtedly effect the fine-scale distribution of seabirds in near-shore waters we demonstrate the potential of this approach in marine planning and decision making. PMID:27031616

  12. 6 ka anoxic condition in the Sibuyan Sea Basin, Philippines - possible link with an explosive eruption event?

    NASA Astrophysics Data System (ADS)

    Catane, S. G.; Fernando, A.; Peleo-Alampay, A.; Tejada, M. G.

    2010-12-01

    Marine tephra layers in Philippine inland seas were studied to evaluate the history of explosive volcanism in the region and their impact on the marine environment. Two discrete andesitic (SiO*blc*2*elc* = 55-63 wt%) tephra layers were found at depths 446.5-448.4 cm and 454.9-455.8 cm in the gravity core MD 3057 recovered during the Marion Dufresne Marco Polo 2 cruise in 2006. The 7m-long core was retrieved from the northern portion of the Sibuyan Sea Basin at 1660 m below sea level. A C-14 age of 6 ka was obtained for the lower tephra using benthic foraminifera collected immediately below the tephra layer. The tephra layers have similar major element compositions and follow the same fractionation trend on the basis of glass geochemistry. Compositions are distinct from the nearby active andesitic volcanoes, Taal and Mayon. Microprobe imaging showed the occurrence of authigenic pyrite within the lower andesitic tephra layer. Pyrite occurs as euhedral crystals or granular masses (framboids), which are isolated particles or foraminiferal infillings. Framboidal pyrite is associated with anoxic environments where anaerobic bacteria reduces SO*blc*4*elc* dissolved in sea water, initiating the formation of H*blc*2*elc*S. H2S reacts with iron in sediments to form pyrite. Anoxic conditions occur in ocean basins with restricted water exchange due to a physical barrier (sill), density stratification or where input of organic material is high. Alternatively, anoxic conditions may have been caused by the death of benthic organisms due to tephra deposition by depriving the organisms of their food supply. The effect of this apparent anoxic event on benthic foraminifera will be analyzed in detail. It is postulated that these anoxic conditions may cause a decline in the benthic foraminifera occurrence. The extent and duration of anoxic condition of the northern part of the Sibuyan Sea Basin 6 ka needs to be clarified because present-day water condition in the basin is normal. If

  13. Phosphorus regeneration and burial in near-shore marine sediments (the Gulf of Trieste, northern Adriatic Sea)

    NASA Astrophysics Data System (ADS)

    Ogrinc, N.; Faganeli, J.

    2006-05-01

    According to bioassay studies and high dissolved nutrient N/P ratios in the seawater column, phosphorus (P) is thought to control marine productivity in the northern Adriatic Sea. P in near-shore marine sediments of the Gulf of Trieste, the northernmost part of the Adriatic Sea, was investigated using pore water P distributions, and benthic P flux studies under oxic and anoxic conditions. The data show that P regeneration is up to three-fold more extensive in sediments overlain by oxygen-depleted waters and proceeds in parallel with Fe and Mn enhanced benthic fluxes. It appears from the incubation experiments that degradation of sedimentary organic matter is the main contribution to the flux of P at the sediment-water interface, while the release of phosphate adsorbed on the iron oxide surface is of minor importance. It appears that about 50% of P in the Gulf of Trieste is retained within in the sediments, probably bonded to clay minerals and carbonate grains or precipitated as fluoroapatite. In these sediments total P (P tot) is preserved preferentially over organic C (C org). P regenerated from surficial sediments contributes about 1/3 of the P that is assimilated by benthic microalgae. The phytoplankton P requirement should be entirely supplied from fresh-water sources. These results suggest that oxygen depletion in coastal areas caused by eutrophication enhances P regeneration from sediments, providing the additional P necessary for increased biological productivity. The development of anoxic bottom waters in coastal areas enhances the recycling of P, exacerbating the nutrient requirement in the area. A geochemical record of P burial in a longer sedimentary sequence revealed an increasing trend of P tot and organic P (P org) contents occurring approximately 50 years BP (after 1950), probably due to increasing use of inorganic fertilizers and detergents in the area.

  14. Survival of hatchery-reared lake trout stocked near shore and off shore in Lake Ontario

    USGS Publications Warehouse

    Elrod, Joseph H.

    1997-01-01

    Establishing a stock of mature, hatchery-reared fish is necessary to restore a self-sustaining population of lake trout Salvelinus namaycush in Lake Ontario. Stocking fish off shore rather than near shore to reduce predation on these fish by large lake trout or piscivorous birds may enhance survival of hatchery-reared fish and accelerate establishment of a population of adults. Results of an earlier study did not support routinely stocking fish off shore by helicopter in Lake Ontario, but stresses associated with helicopter stocking suggested another method of transporting fish off shore might enhance survival. I conducted this study to determine whether stocking lake trout off shore by barge would enhance first-year survival. Two lots of yearling lake trout were stocked at each of four locations in Lake Ontario in May 1992. One lot was stocked from shore, and an identical lot was transported by barge 3.4–10.4 km off shore of nearshore locations and stocked in water 46–52 m deep. Fish were recovered during trawl, gillnet, and creel surveys in 1992–1996. First-year survival of lake trout stocked off shore tended to be better than that of fish stocked near shore. Predation by double-crested cormorantsPhalacrocorax auritus likely affected survival of fish stocked near shore at two locations, 7 and 37 km, respectively, from a nesting colony of 5,443 pairs of double-crested cormorants. Predation by large lake trout remains a viable hypothesis, which explains, at least partially, lower survival of lake trout stocked near shore at two other locations. Stocking lake trout off shore of traditional nearshore stocking sites likely will enhance first-year survival of hatchery-reared fish and promote accumulation of an adult population, especially for those occassions where nearshore stocking locations are near nesting colonies of double-crested cormorants.

  15. Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2 (Late Cretaceous)

    NASA Astrophysics Data System (ADS)

    Dickson, Alexander J.; Jenkyns, Hugh C.; Porcelli, Donald; van den Boorn, Sander; Idiz, Erdem

    2016-04-01

    It is well established that the burial of organic carbon in marine sediments increased dramatically at a global scale at the Cenomanian-Turonian boundary (Oceanic Anoxic Event 2: OAE-2, ∼94 Myr ago, Late Cretaceous). Many localities containing chemostratigraphic expressions of this event are not, however, enriched in organic carbon, and point to a heterogeneous set of oceanographic and environmental processes operating in different ocean basins. These processes are difficult to reconstruct because of the uneven geographical distribution of sites recording OAE-2, thus limiting our understanding of the causes and palaeoceanographic consequences of the environmental changes that occurred at this time. A new, highly resolved molybdenum-isotope dataset is presented from the Cape Verde Basin (southern proto-North Atlantic Ocean) and a lower resolution record from the Tarfaya Basin, Morocco. The new data reveal periodic oscillations in the Mo-isotope composition of proto-North Atlantic Ocean sediments, from which coupled changes in the dissolved sulphide concentration and Mo inventories of the basin seawater can be inferred. The cyclic variations in sedimentary Mo-isotope compositions can be hypothetically linked to regional changes in the depth of the chemocline, and in the rate of seawater exchange between basinal waters and global seawater. The new data suggest that a global seawater Mo-isotope composition of ∼1.2‰ was reached very soon after the onset of OAE-2, implying a rapid expansion of marine deoxygenation coeval with, or slightly preceding, enhanced global rates of organic-carbon burial. During OAE-2, the modelled flux of Mo into anoxic sediments is likely to have been ∼60-125 times greater than at the present day, although the spatial extent of anoxia is unlikely to have been greater than 10% of the total seafloor.

  16. Diel variation in near-shore great lakes fish assemblages and implications for assessment sampling and coastal management

    USGS Publications Warehouse

    McKenna, J.E.

    2008-01-01

    I compared fish assemblages captured in three different microhabitats (shoreline, pelagic near-shore, and benthic near-shore) during day and night fishing in different protection (inside bay or tributary vs. outside in Lake Ontario proper) and turbidity regimes of four near-shore areas of Lake Ontario. The effects of diel movement and availability to gear were clearly evident. Fish assemblages were consistently and significantly more diverse at night than during the day, with nighttime assemblages often being supersets of daytime assemblages. Evidence for a turbidity effect was much weaker than the effects of nocturnal movements and changes in availability to the gear associated with darkness. Nighttime sampling is more likely to capture the full array of species in near-shore areas of the Great Lakes than daytime sampling.

  17. Monitoring Watershed Water Quality Impacts on Near-Shore Coral Reef Ecosystems in American Samoa using NASA Earth Observations

    NASA Astrophysics Data System (ADS)

    Teaby, A.; Price, J.; Minovitz, D.; Makely, L.; Torres-Perez, J. L.; Schmidt, C.; Guild, L. S.; Palacios, S. L.

    2014-12-01

    Land use changes can greatly increase erosion and sediment loads reaching watersheds and downstream coastal waters. In coastal environments with steep terrain and small drainage basins, sedimentation directly influences water quality in near-shore marine environments. Poor water quality indicators (i.e., dissolved nutrients and high particulates) affect coral calcification, photosynthesis, and coral cover. The abundance, recruitment, and biodiversity of American Samoa's coral reefs have been heavily affected by population growth, land cover change, pollution, and sediment influx. Monitoring, managing, and protecting these fragile ecosystems remains difficult due to limited resource availability, steep terrain, and local land ownership. Despite extensive field hours, traditional field and lab-based water quality research produces temporally and spatially limited datasets. Using a 'ridge to reef' effort, this project built a management tool to assess coral reef vulnerability using land use, hydrology, water quality, and coral reef cover in American Samoa to provide local agencies and partners with spatial representation of water quality parameters and site-specific implications for coral reef vulnerability. This project used land cover classified from Landsat 7 and 8 images, precipitation data from NOAA, and physical ocean factors from Terra MODIS. Changes in land cover from 2000 to 2014 were also estimated using Landsat imagery. Final products were distributed to partners to enhance water quality management, community outreach, and coral reef conservation.

  18. Uranium in the Near-shore Aquatic Food Chain: Studies on Periphyton and Asian Clams

    SciTech Connect

    Bunn, Amoret L.; Miley, Terri B.; Eslinger, Paul W.; Brandt, Charles A.; Napier, Bruce A.

    2007-12-31

    The benthic aquatic organisms in the near-shore environment of the Columbia River are the first biological receptors that can be exposed to groundwater contaminants coming from the U.S. Department of Energy's Hanford Site. The primary contaminant of concern in the former nuclear fuels processing area at the Site, known as the 300 Area, is uranium. Currently, there are no national clean up criteria for uranium and ecological receptors. This report summarizes efforts to characterize biological uptake of uranium in the food chain of the benthic aquatic organisms and provide information to be used in future assessments of uranium and the ecosystem.

  19. Massive marine methane emissions from near-shore shallow coastal areas.

    PubMed

    Borges, Alberto V; Champenois, Willy; Gypens, Nathalie; Delille, Bruno; Harlay, Jérôme

    2016-01-01

    Methane is the second most important greenhouse gas contributing to climate warming. The open ocean is a minor source of methane to the atmosphere. We report intense methane emissions from the near-shore southern region of the North Sea characterized by the presence of extensive areas with gassy sediments. The average flux intensities (~130 μmol m(-2) d(-1)) are one order of magnitude higher than values characteristic of continental shelves (~30 μmol m(-2) d(-1)) and three orders of magnitude higher than values characteristic of the open ocean (~0.4 μmol m(-2) d(-1)). The high methane concentrations (up to 1,128 nmol L(-1)) that sustain these fluxes are related to the shallow and well-mixed water column that allows an efficient transfer of methane from the seafloor to surface waters. This differs from deeper and stratified seep areas where there is a large decrease of methane between bottom and surface by microbial oxidation or physical transport. Shallow well-mixed continental shelves represent about 33% of the total continental shelf area, so that marine coastal methane emissions are probably under-estimated. Near-shore and shallow seep areas are hot spots of methane emission, and our data also suggest that emissions could increase in response to warming of surface waters. PMID:27283125

  20. Massive marine methane emissions from near-shore shallow coastal areas

    PubMed Central

    Borges, Alberto V.; Champenois, Willy; Gypens, Nathalie; Delille, Bruno; Harlay, Jérôme

    2016-01-01

    Methane is the second most important greenhouse gas contributing to climate warming. The open ocean is a minor source of methane to the atmosphere. We report intense methane emissions from the near-shore southern region of the North Sea characterized by the presence of extensive areas with gassy sediments. The average flux intensities (~130 μmol m−2 d−1) are one order of magnitude higher than values characteristic of continental shelves (~30 μmol m−2 d−1) and three orders of magnitude higher than values characteristic of the open ocean (~0.4 μmol m−2 d−1). The high methane concentrations (up to 1,128 nmol L−1) that sustain these fluxes are related to the shallow and well-mixed water column that allows an efficient transfer of methane from the seafloor to surface waters. This differs from deeper and stratified seep areas where there is a large decrease of methane between bottom and surface by microbial oxidation or physical transport. Shallow well-mixed continental shelves represent about 33% of the total continental shelf area, so that marine coastal methane emissions are probably under-estimated. Near-shore and shallow seep areas are hot spots of methane emission, and our data also suggest that emissions could increase in response to warming of surface waters. PMID:27283125

  1. Massive marine methane emissions from near-shore shallow coastal areas

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Champenois, Willy; Gypens, Nathalie; Delille, Bruno; Harlay, Jérôme

    2016-06-01

    Methane is the second most important greenhouse gas contributing to climate warming. The open ocean is a minor source of methane to the atmosphere. We report intense methane emissions from the near-shore southern region of the North Sea characterized by the presence of extensive areas with gassy sediments. The average flux intensities (~130 μmol m‑2 d‑1) are one order of magnitude higher than values characteristic of continental shelves (~30 μmol m‑2 d‑1) and three orders of magnitude higher than values characteristic of the open ocean (~0.4 μmol m‑2 d‑1). The high methane concentrations (up to 1,128 nmol L‑1) that sustain these fluxes are related to the shallow and well-mixed water column that allows an efficient transfer of methane from the seafloor to surface waters. This differs from deeper and stratified seep areas where there is a large decrease of methane between bottom and surface by microbial oxidation or physical transport. Shallow well-mixed continental shelves represent about 33% of the total continental shelf area, so that marine coastal methane emissions are probably under-estimated. Near-shore and shallow seep areas are hot spots of methane emission, and our data also suggest that emissions could increase in response to warming of surface waters.

  2. Massive marine methane emissions from near-shore shallow coastal areas.

    PubMed

    Borges, Alberto V; Champenois, Willy; Gypens, Nathalie; Delille, Bruno; Harlay, Jérôme

    2016-01-01

    Methane is the second most important greenhouse gas contributing to climate warming. The open ocean is a minor source of methane to the atmosphere. We report intense methane emissions from the near-shore southern region of the North Sea characterized by the presence of extensive areas with gassy sediments. The average flux intensities (~130 μmol m(-2) d(-1)) are one order of magnitude higher than values characteristic of continental shelves (~30 μmol m(-2) d(-1)) and three orders of magnitude higher than values characteristic of the open ocean (~0.4 μmol m(-2) d(-1)). The high methane concentrations (up to 1,128 nmol L(-1)) that sustain these fluxes are related to the shallow and well-mixed water column that allows an efficient transfer of methane from the seafloor to surface waters. This differs from deeper and stratified seep areas where there is a large decrease of methane between bottom and surface by microbial oxidation or physical transport. Shallow well-mixed continental shelves represent about 33% of the total continental shelf area, so that marine coastal methane emissions are probably under-estimated. Near-shore and shallow seep areas are hot spots of methane emission, and our data also suggest that emissions could increase in response to warming of surface waters.

  3. Comparison of Vertical Distributions of Prokaryotic Assemblages in the Anoxic Cariaco Basin and Black Sea by Use of Fluorescence In Situ Hybridization†

    PubMed Central

    Lin, Xueju; Wakeham, Stuart G.; Putnam, Isabell F.; Astor, Yrene M.; Scranton, Mary I.; Chistoserdov, Andrei Y.; Taylor, Gordon T.

    2006-01-01

    Individual prokaryotic cells from two major anoxic basins, the Cariaco Basin and the Black Sea, were enumerated throughout their water columns using fluorescence in situ hybridization (FISH) with the fluorochrome Cy3 or horseradish peroxidase-modified oligonucleotide probes. For both basins, significant differences in total prokaryotic abundance and phylogenetic composition were observed among oxic, anoxic, and transitional (redoxcline) waters. Epsilon-proteobacteria, Crenarchaeota, and Euryarchaeota were more prevalent in the redoxclines, where previous studies reported high rates of chemoautotrophic production relative to those in waters above and below the redoxclines. Relative abundances of Archaea in both systems varied between 1% and 28% of total prokaryotes, depending on depth. The prokaryotic community composition varied between the two anoxic basins, consistent with distinct geochemical and physical conditions. In the Black Sea, the relative contributions of group I Crenarchaeota (median, 5.5%) to prokaryotic communities were significantly higher (P < 0.001; n = 20) than those of group II Euryarchaeota (median, 2.9%). In contrast, their proportions were nearly equivalent in the Cariaco Basin. Beta-proteobacteria were unexpectedly common throughout the Cariaco Basin's water column, accounting for an average of 47% of 4′,6′-diamidino-2-phenylindole (DAPI)-stained cells. This group was below the detection limit (<1%) in the Black Sea samples. Compositional differences between basins may reflect temporal variability in microbial populations and/or systematic differences in environmental conditions and the populations for which they select. PMID:16597973

  4. Observations of the Effect of Non-steady State Injections of Oxygen Into Anoxic Waters of the Cariaco Basin, Venezuela

    NASA Astrophysics Data System (ADS)

    Scranton, M. I.; Li, X.; Lopez-Gasca, M.; Podlaska, A.; Astor, Y.; Fanning, K.; Lorenzoni, L.; Taylor, G. T.

    2008-12-01

    Traditionally, the Cariaco Basin has been considered to be a classic example of an anoxic basin where transport of organic rich material from the surface layers to depth, restricted vertical mixing, and anaerobic diagenesis dominate. Many studies explicitly or implicitly assume that distributions of chemical species and microbial activity change relatively gradually and that sediment properties solely reflect processes in the overlying water. However the CARIACO time series has repeatedly obtained evidence that intruding oxygenated water must be extremely important in controlling both water chemistry and microbial activity. In May 2008 repeated cruises took place over a period of weeks which clearly demonstrated that relatively large volumes of oxygenated water had recently intruded to depths of at least 300 m over a period of days to weeks. We saw clear evidence of deep oxygen maxima, minima in methane and sulfide concentrations below the oxygen/sulfide interface and apparent perturbations in other measured parameters including nutrients, sulfur species and microbial activity. Data suggest, among other things, that microbial activity lags production of sulfur intermediates like elemental sulfur, implying that chemoautotrophic bacteria in the system may use elemental S. We will present data on changes in hydrography, nutrient distributions, microbial rates and other variables resulting from the intrusions and which allow us to estimate the zone of influence of this intrusion. Ultimately, properties (such as N and S chemistry) of sediments in such systems could be affected by changes in chemistry of the system caused by lateral injections of oxidants and other material from outside the basin.

  5. Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea.

    PubMed

    Edgcomb, Virginia; Orsi, William; Leslin, Chesley; Epstein, Slava S; Bunge, John; Jeon, Sunok; Yakimov, Michail M; Behnke, Anke; Stoeck, Thorsten

    2009-01-01

    Environmental factors restrict the distribution of microbial eukaryotes but the exact boundaries for eukaryotic life are not known. Here, we examine protistan communities at the extremes of salinity and osmotic pressure, and report rich assemblages inhabiting Bannock and Discovery, two deep-sea superhaline anoxic basins in the Mediterranean. Using a rRNA-based approach, we detected 1,538 protistan rRNA gene sequences from water samples with total salinity ranging from 39 to 280 g/Kg, and obtained evidence that this DNA was endogenous to the extreme habitat sampled. Statistical analyses indicate that the discovered phylotypes represent only a fraction of species actually inhabiting both the brine and the brine-seawater interface, with as much as 82% of the actual richness missed by our survey. Jaccard indices (e.g., for a comparison of community membership) suggest that the brine/interface protistan communities are unique to Bannock and Discovery basins, and share little (0.8-2.8%) in species composition with overlying waters with typical marine salinity and oxygen tension. The protistan communities from the basins' brine and brine/seawater interface appear to be particularly enriched with dinoflagellates, ciliates and other alveolates, as well as fungi, and are conspicuously poor in stramenopiles. The uniqueness and diversity of brine and brine-interface protistan communities make them promising targets for protistan discovery. PMID:19057844

  6. Design of the near shore seawater systems for an OTEC expanded test facility

    NASA Astrophysics Data System (ADS)

    Genens, L.; Stevens, H.

    1984-03-01

    The preparation of a design for expanded test facilities at the seacoast test facility site, Keahole Point, Hawaii is outlined, the design of the near shore/on shore seawater system is emphasized. The seawater systems consist of a warm water supply, a cold water supply, a mixed discharge, and a land based pumping station. Test facilities are planned that will utilize this thermal energy resource. This resource consists nominally of 1600 kg/s of cold water and 4200 kg/s of warm surface water, which will be used to support heat exchanger and system tests and, with a turbine added, could produce a net power for the validation of closed and open cycle models.

  7. LANDSAT survey of near-shore ice conditions along the Arctic coast of Alaska

    NASA Technical Reports Server (NTRS)

    Stringer, W. J. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. On the basis of analysis of late winter 1973, 1974, and 1975 LANDSAT imagery of the Beaufort Sea coast of Alaska, the following conclusions regarding near-shore ice conditions were made: (1) by March, the seaward limit of contiguous ice is often beyond the 10 fathom contour. (2) During March, shearing can and does take place along a line roughly coincident with the 10 fathom contour. (3) Ice motions during these shearing events are not extremely great, generally on the order of 10 km. (4) Many large ice features have already been formed by late February. (5) Based on look-ahead at later LANDSAT imagery, it seems apparent that Beaufort Seas shore-fast ice was already formed by late February and may well be safe for exploratory activities from this data forward until the melt season.

  8. LANDSAT survey of near-shore ice conditions along the Arctic coast of Alaska

    NASA Technical Reports Server (NTRS)

    Stringer, W. J. (Principal Investigator); Barrett, S. A.

    1978-01-01

    The author has identified the following significant results. Winter and spring near-shore ice conditions were analyzed for the Beaufort Sea 1973-77, and the Chukchi Sea 1973-76. LANDSAT imagery was utilized to map major ice features related to regional ice morphology. Significant features from individual LANDSAT image maps were combined to yield regional maps of major ice ridge systems for each year of study and maps of flaw lead systems for representative seasons during each year. These regional maps were, in turn, used to prepare seasonal ice morphology maps. These maps showed, in terms of a zonal analysis, regions of statistically uniform ice behavior. The behavioral characteristics of each zone were described in terms of coastal processes and bathymetric configuration.

  9. Benthic status of near-shore fishing grounds in the central Philippines and associated seahorse densities.

    PubMed

    Marcus, J E; Samoilys, M A; Meeuwig, J J; Villongco, Z A D; Vincent, A C J

    2007-09-01

    Benthic status of 28 near-shore, artisanal, coral reef fishing grounds in the central Philippines was assessed (2000-2002) together with surveys of the seahorse, Hippocampus comes. Our measures of benthic quality and seahorse densities reveal some of the most degraded coral reefs in the world. Abiotic structure dominated the fishing grounds: 69% of the benthos comprised rubble (32%), sand/silt (28%) and dead coral (9%). Predominant biotic structure included live coral (12%) and Sargassum (11%). Rubble cover increased with increasing distance from municipal enforcement centers and coincided with substantial blast fishing in this region of the Philippines. Over 2 years, we measured a significant decrease in benthic 'heterogeneity' and a 16% increase in rubble cover. Poor benthic quality was concomitant with extremely low seahorse densities (524 fish per km(2)). Spatial management, such as marine reserves, may help to minimize habitat damage and to rebuild depleted populations of seahorses and other reef fauna.

  10. Radar signal return from near-shore surface and shallow subsurface features, Darien Province, Panama

    NASA Technical Reports Server (NTRS)

    Hanson, B. C.; Dellwig, L. F.

    1973-01-01

    The AN/APQ-97 radar imagery over eastern Panama is analyzed. The imagery was directed toward extraction of geologic and engineering data and the establishment of operational parameters. Subsequent investigations emphasized landform identification and vegetation distribution. The parameters affecting the observed return signal strength from such features are considered. Near-shore ocean phenomena were analyzed. Tidal zone features such as mud flats and reefs were identified in the near range, but were not detectable in the far range. Surface roughness dictated the nature of reflected energy (specular or diffuse). In surf zones, changes in wave train orientation relative to look direction, the slope of the surface, and the physical character of the wave must be considered. It is concluded that the establishment of the areal extent of the tidal flats, distributary channels, and reefs is practical only in the near to intermediate range under minimal low tide conditions.

  11. Coral bleaching: one disturbance too many for near-shore reefs of the Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Thompson, A. A.; Dolman, A. M.

    2010-09-01

    The dynamic nature of coral communities can make it difficult to judge whether a reef system is resilient to the current disturbance regime. To address this question of resilience for near-shore coral communities of the Great Barrier Reef (Australia) a data set consisting of 350 annual observations of benthic community change was compiled from existing monitoring data. These data spanned the period 1985-2007 and were derived from coral reefs within 20 km of the coast. During years without major disturbance events, cover increase of the Acroporidae was much faster than it was for other coral families; a median of 11% per annum compared to medians of less than 4% for other coral families. Conversely, Acroporidae were more severely affected by cyclones and bleaching events than most other families. A simulation model parameterised with these observations indicated that while recovery rates of hard corals were sufficient to compensate for impacts associated with cyclones and crown-of-thorns starfish, the advent of mass bleaching has lead to a significant change in the composition of the community and a rapid decline in hard coral cover. Furthermore, if bleaching events continue to occur with the same frequency and severity as in the recent past, the model predicts that the cover of Acroporidae will continue to decline. Although significant cover of live coral remains on near-shore reefs, and recovery is observed during inter-disturbance periods, it appears that this system will not be resilient to the recent disturbance regime over the long term. Conservation strategies for coral reefs should focus on both mitigating local factors that act synergistically to increase the susceptibility of Acroporidae to climate change while promoting initiatives that maximise the recovery potential from inevitable disturbances.

  12. Artificial light on water attracts turtle hatchlings during their near shore transit.

    PubMed

    Thums, Michele; Whiting, Scott D; Reisser, Julia; Pendoley, Kellie L; Pattiaratchi, Charitha B; Proietti, Maira; Hetzel, Yasha; Fisher, Rebecca; Meekan, Mark G

    2016-05-01

    We examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array. At the same time, we measured current speed and direction, which were highly variable within and between experimental nights and treatments. Artificial lighting affected hatchling behaviour, with 88% of individual trajectories oriented towards the light and spending, on average, 23% more time in the 2.25 ha tracking array (19.5 ± 5 min) than under ambient light conditions (15.8 ± 5 min). Current speed had little to no effect on the bearing (angular direction) of the hatchling tracks when artificial light was present, but under ambient conditions it influenced the bearing of the tracks when current direction was offshore and above speeds of approximately 32.5 cm s(-1). This is the first experimental evidence that wild turtle hatchlings are attracted to artificial light after entering the ocean, a behaviour that is likely to subject them to greater risk of predation. The experimental protocol described in this study can be used to assess the effect of anthropogenic (light pollution, noise, etc.) and natural (wave action, current, wind, moonlight) influences on the in-water movements of sea turtle hatchlings during the early phase of dispersal.

  13. Artificial light on water attracts turtle hatchlings during their near shore transit.

    PubMed

    Thums, Michele; Whiting, Scott D; Reisser, Julia; Pendoley, Kellie L; Pattiaratchi, Charitha B; Proietti, Maira; Hetzel, Yasha; Fisher, Rebecca; Meekan, Mark G

    2016-05-01

    We examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array. At the same time, we measured current speed and direction, which were highly variable within and between experimental nights and treatments. Artificial lighting affected hatchling behaviour, with 88% of individual trajectories oriented towards the light and spending, on average, 23% more time in the 2.25 ha tracking array (19.5 ± 5 min) than under ambient light conditions (15.8 ± 5 min). Current speed had little to no effect on the bearing (angular direction) of the hatchling tracks when artificial light was present, but under ambient conditions it influenced the bearing of the tracks when current direction was offshore and above speeds of approximately 32.5 cm s(-1). This is the first experimental evidence that wild turtle hatchlings are attracted to artificial light after entering the ocean, a behaviour that is likely to subject them to greater risk of predation. The experimental protocol described in this study can be used to assess the effect of anthropogenic (light pollution, noise, etc.) and natural (wave action, current, wind, moonlight) influences on the in-water movements of sea turtle hatchlings during the early phase of dispersal. PMID:27293795

  14. Artificial light on water attracts turtle hatchlings during their near shore transit

    PubMed Central

    Thums, Michele; Whiting, Scott D.; Reisser, Julia; Pendoley, Kellie L.; Proietti, Maira; Hetzel, Yasha; Fisher, Rebecca; Meekan, Mark G.

    2016-01-01

    We examined the effect of artificial light on the near shore trajectories of turtle hatchlings dispersing from natal beaches. Green turtle (Chelonia mydas) hatchlings were tagged with miniature acoustic transmitters and their movements tracked within an underwater array of 36 acoustic receivers placed in the near shore zone. A total of 40 hatchlings were tracked, 20 of which were subjected to artificial light during their transit of the array. At the same time, we measured current speed and direction, which were highly variable within and between experimental nights and treatments. Artificial lighting affected hatchling behaviour, with 88% of individual trajectories oriented towards the light and spending, on average, 23% more time in the 2.25 ha tracking array (19.5 ± 5 min) than under ambient light conditions (15.8 ± 5 min). Current speed had little to no effect on the bearing (angular direction) of the hatchling tracks when artificial light was present, but under ambient conditions it influenced the bearing of the tracks when current direction was offshore and above speeds of approximately 32.5 cm s−1. This is the first experimental evidence that wild turtle hatchlings are attracted to artificial light after entering the ocean, a behaviour that is likely to subject them to greater risk of predation. The experimental protocol described in this study can be used to assess the effect of anthropogenic (light pollution, noise, etc.) and natural (wave action, current, wind, moonlight) influences on the in-water movements of sea turtle hatchlings during the early phase of dispersal. PMID:27293795

  15. Data summary for the near-shore sediment characterization task of the Clinch River Environmental Restoration Program

    SciTech Connect

    Levine, D.A.; Hargrove, W.W.; Campbell, K.R.; Wood, M.A.; Rash, C.D.

    1994-10-01

    This report presents the results of the Near-Shore Sediment Characterization Task of the Clinch River Environmental Restoration Program (CR-ERP). The goals of the task were to (1) determine the extent to which near-shore surface sediments are contaminated by releases from the Oak Ridge Reservation (ORR) and (2) provide data for the Watts Bar Reservoir Interagency Permitting Group (WBRIPG) to evaluate the human health risks from exposure to sediments during and following dredging operations. The data collected for this task are also to be used in the Remedial Investigation/Feasibility Study (RLTS) for the CR-ERP operable units (Lower Watts Bar and Clinch River) to characterize the human health risk associated with exposure to near-shore sediments throughout the Watts Bar Reservoir.

  16. Survey of radiological contaminants in the near-shore environment at the Hanford Site 100-N Area reactor

    SciTech Connect

    Van Verst, S.P.; Albin, C.L.; Patton, G.W.; Blanton, M.L.; Poston, T.M.; Cooper, A.T.; Antonio, E.J.

    1998-09-01

    Past operations at the Hanford Site 100-N Area reactor resulted in the release of radiological contaminants to the soil column, local groundwater, and ultimately to the near-shore environment of the Columbia River. In September 1997, the Washington State Department of Health (WDOH) and the Hanford Site Surface Environmental Surveillance Project (SESP) initiated a special study of the near-shore vicinity at the Hanford Site`s retired 100-N Area reactor. Environmental samples were collected and analyzed for radiological contaminants ({sup 3}H, {sup 90}Sr, and gamma/ emitters), with both the WDOH and SESP analyzing a portion of the samples. Samples of river water, sediment, riverbank springs, periphyton, milfoil, flying insects, clam shells, and reed canary grass were collected. External exposure rates were also measured for the near-shore environment in the vicinity of the 100-N Area. In addition, samples were collected at background locations above Vernita Bridge.

  17. Data Summary for the Near-Shore Sediment Characterization Task of the Clinch River Environmental Restoration Program

    SciTech Connect

    Levine, D.A.

    1994-01-01

    The purpose of the Near-Shore Sediment Characterization Task of the Clinch River Environmental Restoration Program (CR-ERP) was to quantify potential human health risks associated with Department of Energy (DOE)-related contamination of surface sediments in Watts Bar Reservoir (WBR). An estimated 700 Ci of {sup 137}Cs and 325 Ci of {sup 60}Co were released from White Oak Lake into the Clinch River between 1949 and 1992 (DOE, 1988). A number of previous studies have documented sediment contamination in the deep-water sediments but no study specifically targeted the near-shore environment, which has the most potential for exposure to humans.

  18. Oceanic Anoxic Event 1b: insights and new data from the Poggio le Guaine section (Umbria-Marche Basin)

    NASA Astrophysics Data System (ADS)

    Sabatino, Nadia; Sprovieri, Mario; Coccioni, Rodolfo; Salvagio Manta, Daniela; Gardin, Silvia; Baudin, François

    2015-04-01

    The upper Aptian to lower Albian interval (~114-109 Ma) represents a crucial period during Earth's history, with a major evolution in the nature of mid-Cretaceous tectonics, sea level, climate, and marine plankton communities. Interestingly, it also includes multiple prominent black shale horizons that are the sedimentary expression of oceanic anoxic event (OAE) 1b. An high-resolution planktonic foraminiferal and calcareous nannofossil biostratigraphy in combination with an integrated study of multiple geochemical proxies (δ13Ccarb, δ13Corg, TOC, HI, CaCO3, trace elements/Al ratios) of the late Aptian-early Albian OAE 1b has been performed on the pelagic sedimentary sequence of Poggio le Guaine (Umbria-Marche Basin, central Italy). A comparison of the newly collected stable isotope carbon curve with the records from the Vocontian Basin (SE France), DSDP Site 545 and Hole 1049C provided a reliable and precise identification of the four main prominent black shale levels (113/Jacob, Kilian, Urbino/Paquier and Leenhardt) that definitively punctuate the OAE 1b. The studied record shows an increase in the marine organic carbon accumulation rate, in particular in the 113/Jacob and Urbino/Paquier levels. In the other black shales, TOC values are < 1%, with evidence of degraded marine organic matter. Completely anoxic conditions were never established during the sediment deposition, although evidence of oxygen depletion at the bottom of the basin is clearly documented by the distribution pattern of redox-sensitive trace metals. The results suggest an increase in organic carbon burial rates during the OAE 1b due to the effect of enhanced surface productivity, as supported by a major increase in Ba/Al, and reduced bottom water ventilation. Noteworthy, the Kilian and Urbino/Paquier levels from the PLG section are characterized by the absence of correlative shifts in δ13Ccarb and δ13Corg. The increase in the δ13Corg, values in these levels is explained by an increase in

  19. Low bacterial diversity and high labile organic matter concentrations in the sediments of the Medee deep-sea hypersaline anoxic basin.

    PubMed

    Akoumianaki, Ioanna; Nomaki, Hidetaka; Pachiadaki, Maria; Kormas, Konstantinos Ar; Kitazato, Hiroshi; Tokuyama, Hidekazu

    2012-01-01

    Studies in the center and margin of the Medee Basin, a Mediterranean deep-sea hypersaline anoxic basin, and at a reference site during Penelope cruise (2007), revealed the existence of a 7 m-thick halocline, with high salinity (328 psu), and high sedimentary organic carbon and biopolymer concentrations. The 194 16S rRNA sequences retrieved were grouped into 118 unique phylotypes. Pseudomonas gessardii, dominated in the center, while 33 phylotypes were detected at the margin and 73 at the reference site. The study suggested conditions hostile to bacteria in the sediments of the Medee Basin and preservation of sedimentary labile organic matter. PMID:22504432

  20. Carbon dioxide production in surface sediments of temporarily anoxic basins (Baltic Sea) and resulting sediment-water interface fluxes

    NASA Astrophysics Data System (ADS)

    Böttcher, M. E.; Al-Raei, A. M.; Winde, V.; Lenz, C.; Dellwig, O.; Leipe, T.; Segl, M.; Struck, U.

    2009-04-01

    Organic matter is mineralized in marine sediments by microbial activity using predominantly oxygen, sulfate, and metal oxides as electron acceptors. Modern euxinic basins as found in the Baltic Sea or the Black Sea are of particular importance because they may serve as type systems for anoxia in Earth's history. We present here results from biogeochemical investigations carried out in the Baltic deeps (Gotland Basin, Landsort Deep) during the first scientific cruise of RV M.S. MERIAN in 2006, additionally during RV Prof. Penck cruises in 2006 and 2007. Short sediment cores were obtained with a multi-corer and analyzed for particulate and dissolved main, minor and trace elements, pH, DIC, methane alkalinity, besides the stable carbon isotopes of dissolved inorganic carbon (DIC). Microsensors were applied to analyze steep gradients of oxygen, sulphide and sulphate. Pore water profiles are evaluated in terms of process rates and associated element fluxes using the PROFILE software (Berg et al., 1998, L&O). Gross and net anaerobic mineralization rates were additionally obtained from core incubations with 35S. Steep gradients in DIC are associated with a strong enrichment of the light stable isotope resulting in the Gotland basin from oxidized OM. Element fluxes across the sediment-water interface are compared with literature data and show for the Baltic Sea a dependence from bottom water redox conditions, and sediment compositions and formation conditions (e.g., accumulation rates). DIC in the anoxic part of the water column in the Landsort Deep and the Gotland Deep show relatively similar isotope values, close to the bottom water value, but steep gradients towards heavier values above the pelagic redoxcline. Acknowledgements: The research was supported by Leibniz IO Warnemünde, DFG (Cruise RV MSM MERIAN 01), and MPG. Thanks to B. Schneider and F. Pollehne stimulating discussions, and S. Lage and A. Schipper for technical support.

  1. The dynamics of the bacterial diversity in the redox transition and anoxic zones of the Cariaco Basin assessed by parallel tag sequencing.

    PubMed

    Rodriguez-Mora, Maria J; Scranton, Mary I; Taylor, Gordon T; Chistoserdov, Andrei Y

    2015-09-01

    Massively parallel tag sequencing was applied to describe the bacterial diversity in the redox transition and anoxic zones of the Cariaco Basin. In total, 14 samples from the Cariaco Basin were collected over a period of eight years from two stations. A total of 244 357 unique bacterial V6 amplicons were sequenced. The total number of operational taxonomic units (OTUs) found in this study was 4692, with a range of 511-1491 OTUs per sample. Approximately 95% of the OTUs found in the redox transition zone and anoxic layers of Cariaco are represented by less than 50 amplicons suggesting that only about 5% of the bacterial OTUs are responsible for the bulk of the microbial processes in the basin redox transition and anoxic zones. The same dominant OTUs were observed across all eight years of sampling although periodic fluctuations in their proportion were apparent. No distinctive differences were observed between the bacterial communities from the redox transition and anoxic layers of the Cariaco Basin water column. The largest proportion of amplicons belongs to Gammaproteobacteria represented mostly by sulfide oxidizers, followed by Marine Group A (originally described as SAR406; Gordon and Giovannoni 1996), a group of uncultured bacteria hypothesized to be involved in metal reduction, and sulfate-reducing Deltaproteobacteria. Gammaproteobacteria, Deltaproteobacteria and Marine Group A make up 67-90% of all V6 amplicons sequenced in this study. This strongly suggests that the basin's microbial communities are actively involved in the sulfur-related metabolism and coupling of the sulfur and carbon cycles. According to detrended canonical correspondence analysis, ecological factors such as chemoautotrophy, nitrate and oxidized and reduced sulfur compounds influence the structuring and distribution of the Cariaco microbial communities. PMID:26209697

  2. The dynamics of the bacterial diversity in the redox transition and anoxic zones of the Cariaco Basin assessed by parallel tag sequencing.

    PubMed

    Rodriguez-Mora, Maria J; Scranton, Mary I; Taylor, Gordon T; Chistoserdov, Andrei Y

    2015-09-01

    Massively parallel tag sequencing was applied to describe the bacterial diversity in the redox transition and anoxic zones of the Cariaco Basin. In total, 14 samples from the Cariaco Basin were collected over a period of eight years from two stations. A total of 244 357 unique bacterial V6 amplicons were sequenced. The total number of operational taxonomic units (OTUs) found in this study was 4692, with a range of 511-1491 OTUs per sample. Approximately 95% of the OTUs found in the redox transition zone and anoxic layers of Cariaco are represented by less than 50 amplicons suggesting that only about 5% of the bacterial OTUs are responsible for the bulk of the microbial processes in the basin redox transition and anoxic zones. The same dominant OTUs were observed across all eight years of sampling although periodic fluctuations in their proportion were apparent. No distinctive differences were observed between the bacterial communities from the redox transition and anoxic layers of the Cariaco Basin water column. The largest proportion of amplicons belongs to Gammaproteobacteria represented mostly by sulfide oxidizers, followed by Marine Group A (originally described as SAR406; Gordon and Giovannoni 1996), a group of uncultured bacteria hypothesized to be involved in metal reduction, and sulfate-reducing Deltaproteobacteria. Gammaproteobacteria, Deltaproteobacteria and Marine Group A make up 67-90% of all V6 amplicons sequenced in this study. This strongly suggests that the basin's microbial communities are actively involved in the sulfur-related metabolism and coupling of the sulfur and carbon cycles. According to detrended canonical correspondence analysis, ecological factors such as chemoautotrophy, nitrate and oxidized and reduced sulfur compounds influence the structuring and distribution of the Cariaco microbial communities.

  3. The presence and near-shore transport of human fecal pollution in Lake Michigan beaches

    USGS Publications Warehouse

    Molloy, S.L.; Liu, L.B.; Phanikumar, M.S.; Jenkins, T.M.; Wong, M.V.; Rose, J.B.; Whitman, R.L.; Shively, D.A.; Nevers, M.B.

    2005-01-01

    The Great Lakes are a source of water for municipal, agricultural and industrial use, and support significant recreation, commercial and sport fishing industries. Every year millions of people visit the 500 plus recreational beaches in the Great Lakes. An increasing public health risk has been suggested with increased evidence of fecal contamination at the shoreline. To investigate the transport and fate of fecal pollution at Great Lakes beaches and the health risk associated with swimming at these beaches, the near-shore waters of Mt Baldy Beach, Lake Michigan and Trail Creek, a tributary discharging into the lake were examined for fecal pollution indicators. A model of surf zone hydrodynamics coupled with a transport model with first-order inactivation of pollutant was used to understand the relative importance of different processes operating in the surf zone (e.g. physical versus biological processes). The Enterococcus human fecal pollution marker, which targets a putative virulence factor, the enterococcal surface protein (esp) in Enterococcus faecium, was detected in 2/28 samples (7%) from the tributaries draining into Lake Michigan and in 6/30 samples (20%) from Lake Michigan beaches. Preliminary analysis suggests that the majority of fecal indicator bactateria variation and water quality changes at the beaches can be explained by inputs from the influential stream and hydrometeorological conditions. Using modeling methods to predict impaired water quality may help reduce potential health threats to recreational visitors.

  4. Extracellular DNA can preserve the genetic signatures of present and past viral infection events in deep hypersaline anoxic basins

    PubMed Central

    Corinaldesi, C.; Tangherlini, M.; Luna, G. M.; Dell'Anno, A.

    2014-01-01

    Deep hypersaline anoxic basins (DHABs) of the Mediterranean Sea are among the most extreme ecosystems on Earth and host abundant, active and diversified prokaryotic assemblages. However, factors influencing biodiversity and ecosystem functioning are still largely unknown. We investigated, for the first time, the impact of viruses on the prokaryotic assemblages and dynamics of extracellular DNA pool in the sediments of La Medee, the largest DHAB found on Earth. We also compared, in La Medee and L'Atalante sediments, the diversity of prokaryotic 16S rDNA sequences contained in the extracellular DNA released by virus-induced prokaryotic mortality. We found that DHAB sediments are hot-spots of viral infections, which largely contribute to the release of high amounts of extracellular DNA. DNase activities in DHAB sediments were much higher than other extracellular enzymatic activities, suggesting that extracellular DNA released from killed prokaryotes can be the most suitable trophic resource for benthic prokaryotes. Preserved extracellular DNA pools, which contained novel and diversified gene sequences, were very similar between the DHABs but dissimilar from the respective microbial DNA pools. We conclude that the strong viral impact in DHAB sediments influences the genetic composition of extracellular DNA, which can preserve the signatures of present and past infections. PMID:24523277

  5. Survey of the state of the art in near-shore pipeline location and burial assessment

    SciTech Connect

    Wilkey, P.L. )

    1991-11-01

    Project's objective is to evaluate state-of-the-art methods for locating pipelines in shallow (less than 15 ft) water and for determining and monitoring their burial depths. The following recommendations are made on the research needed in three areas for locating near-shore, shallowly buried pipelines: (1) Sensors: The pipeline industry has selected the magnetic gradiometer array (GA) as a preferred sensor method. Other potential methods exist as backups. No additional research is recommended. (2) Remotely Operated Vehicles (ROVs): The Pipeline Research Committee is pursuing development of a prototype ROV is deliver the GA or other similar equipment to pipeline locations. (3) Phenomena: The data being collected from research on the phenomena affecting seabed conditions and the bathymetric data being collected along the Gulf Coast should be synthesized. This new effort should focus on identifying erosion-prone areas with respect to present and potential future pipeline locations. Technical approach is to get the broadest perspective on the concerns related to the determination of burial conditions for offshore pipelines, Argonne National Laboratory (ANL) contacted individuals and organizations from the gas and petroleum industries, hardware and software vendors, academicians, and representatives from the government. A literature survey yielded the names of persons within academia who are presently working on similar applications with sensors. In the oil and gas industry, individuals and organizations involved in the Pipeline Research Committee made extensive contributions to the review and also provided the names of meaningful contacts from among their vendors. Discussions were held with the various persons both on the telephone and face to face. Vendors provided background materials and overview presentations on their capabilities for ANL to review.

  6. Composition and Dynamics of the Black Sea Benthopelagic Plankton and Its Contribution to the Near-Shore Plankton Communities

    PubMed Central

    Vereshchaka, Alexander L.; Anokhina, Ludmila L.

    2014-01-01

    At a shallow (7 m) near-shore sampling site in the Black Sea we analyzed composition, abundance, and biomass of benthopelagic organisms and the contribution these animals make to the total plankton. The site was monitored across several years (1996–2001; 2006–2007) whilst for 1999–2000 the seasonal variations were analysed. A total of 321 samples from Golubaja Bay near Novorossiysk (44°34′31.04″ N, 37°58′45.11″ E) in 1996–2007 were taken with a Judey net. The benthopelagic fauna was represented by 69 taxa, a diversity comparable to similar shelf areas. The benthopelagic component played an important role in near-shore plankton communities in the Black Sea accounting for 50% of the total zooplankton biomass at night during all seasons. Abundance and biomass of the benthopelagic animals showed seasonal fluctuations, the highest biomass being recorded during winter (>75% of the total zooplankton biomass) and early spring due to large amphipods, whilst the highest abundances occur during late summer because of numerous young stages of various taxa. Amphipods, mysids, and decapods are the main contributors to the plankton biomass and abundances. Both night and daytime samples are strongly recommended for the adequate description of the near-shore plankton communities. PMID:24945680

  7. Integrating Antarctic Near Shore and Deep Sea Records of Warm Interglacials

    NASA Astrophysics Data System (ADS)

    Scherer, R. P.

    2005-12-01

    The best way to accurately interpret polar ice sheet history is to make every effort to recover and date continental margin deposits proximal to the ice sheets, and confidently correlate these records with deep-sea cores. Deep-sea oxygen isotope records provide the best available archive of global ice volume, but they say nothing directly about specific changes in ice sheet configuration. Although geologic records along the margins of polar landmasses are rare, and those that exist are highly incomplete, they record climatic events in the global end-member environment, demonstrating the sensitivity of the system to climate change. Pelagic waters impinge far south along the Victoria Land coastline of Antarctica in McMurdo Sound. Increasing the southward encroachment of warm waters during interglacials affects moisture flux, sub-ice shelf circulation, and sea ice conditions, as well as surface water temperatures. These factors affect, in complex ways, ice shelf stability and, ultimately, marine (West Antarctic) and continental (East Antarctic) ice sheet configurations. The CIROS-2 drill core includes precisely dated and unequivocal evidence of pelagic waters in the near shore zone during the mid Pliocene. Likewise, the Cape Roberts Project (CRP-1) recovered a 2m thick carbonate-rich unit, unequivocally dated as MIS-31 (1.07 Ma) that indicates significantly elevated surface water temperatures and minimal sea ice. The warmest part of MIS-31 coincides with a paleomagnetic reversal (the base of the Jaramillo at 1.072 Ma), which offers an unprecedented opportunity for precise correlation with deep-sea cores, and offers the possibility of precise interhemispheric comparison of high latitude surface ocean conditions. Other marine interglacial deposits, notably MIS-11 and MIS-5e, have been recognized on the Antarctic margin, but dating is often not as precise as we strive for. High quality Pliocene through Holocene core is anticipated from the McMurdo Ice Shelf site of the

  8. Sources of fecal indicator bacteria to groundwater, Malibu Lagoon and the near-shore ocean, Malibu, California, USA

    USGS Publications Warehouse

    Izbicki, John A.; Swarzenski, Peter W.; Burton, Carmen A.; Van De Werfhorst, Laurie; Holden, Patricia A.; Dubinsky, Eric A.

    2012-01-01

    Onsite wastewater treatment systems (OWTS) used to treat residential and commercial sewage near Malibu, California have been implicated as a possible source of fecal indicator bacteria (FIB) to Malibu Lagoon and the near-shore ocean. For this to occur, treated wastewater must first move through groundwater before discharging to the Lagoon or ocean. In July 2009 and April 2010, δ18O and δD data showed that some samples from water-table wells contained as much as 70% wastewater; at that time FIB concentrations in those samples were generally less than the detection limit of 1 Most Probable Number (MPN) per 100 milliliters (mL). In contrast, Malibu Lagoon had total coliform, Escherichia coli, and enterococci concentrations as high as 650,000, 130,000, and 5,500 MPN per 100 mL, respectively, and as many as 12% of samples from nearby ocean beaches exceeded the U.S. Environmental Protection Agency single sample enterococci standard for marine recreational water of 104 MPN per 100 mL. Human-associated Bacteroidales, an indicator of human-fecal contamination, were not detected in water from wells, Malibu Lagoon, or the near-shore ocean. Similarly, microarray (PhyloChip) data show Bacteroidales and Fimicutes Operational Taxanomic Units (OTUs) present in OWTS were largely absent in groundwater; in contrast, 50% of Bacteroidales and Fimicutes OTUs present in the near-shore ocean were also present in gull feces. Terminal-Restriction Length Fragment Polymorphism (T-RFLP) and phospholipid fatty acid (PLFA) data showed that microbial communities in groundwater were different and less abundant than communities in OWTS, Malibu Lagoon, or the near-shore ocean. However, organic compounds indicative of wastewater (such as fecal sterols, bisphenol-A and cosmetics) were present in groundwater having a high percentage of wastewater and were present in groundwater discharging to the ocean. FIB in the near-shore ocean varied with tides, ocean swells, and waves. Movement of water from

  9. Terrestrial and oceanic influence on spatial hydrochemistry and trophic status in subtropical marine near-shore waters.

    PubMed

    Morales-Ojeda, Sara M; Herrera-Silveira, Jorge A; Montero, Jorge

    2010-12-01

    Terrestrial and oceanic influences like groundwater discharges and/or oceanic upwelling define the hydrochemical and biological characteristics of near-shore regions. In karst environments, such as the Yucatan Peninsula (SE Mexico), the balance between these two influences on spatial and temporal scales is poorly understood. This study focused on near-shore waters within 200 m offshore along the Yucatan coast. The trophic status and hydrochemical zones of the study area were determined as a function of physical and nutrient data collected from 2005 to 2006. The main terrestrial influence was groundwater discharge, while the most important marine influence was related to seasonal changes in water turbulence. Spatial differences (p < 0.05) were observed among salinity, light extinction coefficient (k), NO(3)(-), NH(4)(+), and Chl-a. Seasonal differences were observed for all variables except for k. During the dry season, terrestrial influences are the dominant factor on near-shore hydrochemistry. The region around Dzilam exhibited the maximum influence of groundwater discharge estimated by salinity dissolution (δ). During the rainy and "nortes" seasons, there is a balance between oceanic and terrestrial influences. The trophic status measured using the TRIX index, indicated that near-shore waters were mainly oligo-mesotrophic; with a meso-eutrophic status in areas with documented anthropogenic impacts. Four hydrological zones were identified by a Canonical Variate Analysis (CVA) using salinity, NO(2)(-), k and NH(4)(+) as the main discriminating variables. Zones I and II showed almost pristine conditions, with well-balanced terrestrial-oceanic influences. In Zone III, terrestrial influences such as groundwater discharges and inland pollution suggesting human impacts were dominant respect to the effects of oceanic influences like upwelling and sediment resuspension caused by winds and oceanic currents. Zone IV received enhanced groundwater and associated nutrients

  10. Identifying Rhodamine Dye Plume Sources in Near-Shore Oceanic Environments by Integration of Chemical and Visual Sensors

    PubMed Central

    Tian, Yu; Kang, Xiaodong; Li, Yunyi; Li, Wei; Zhang, Aiqun; Yu, Jiangchen; Li, Yiping

    2013-01-01

    This article presents a strategy for identifying the source location of a chemical plume in near-shore oceanic environments where the plume is developed under the influence of turbulence, tides and waves. This strategy includes two modules: source declaration (or identification) and source verification embedded in a subsumption architecture. Algorithms for source identification are derived from the moth-inspired plume tracing strategies based on a chemical sensor. The in-water test missions, conducted in November 2002 at San Clemente Island (California, USA) in June 2003 in Duck (North Carolina, USA) and in October 2010 at Dalian Bay (China), successfully identified the source locations after autonomous underwater vehicles tracked the rhodamine dye plumes with a significant meander over 100 meters. The objective of the verification module is to verify the declared plume source using a visual sensor. Because images taken in near shore oceanic environments are very vague and colors in the images are not well-defined, we adopt a fuzzy color extractor to segment the color components and recognize the chemical plume and its source by measuring color similarity. The source verification module is tested by images taken during the CPT missions. PMID:23507823

  11. Molecular typing of Escherichia coli strains associated with threatened sea ducks and near-shore marine habitats of southwest Alaska

    USGS Publications Warehouse

    Schamber, Jason L.

    2011-01-01

    In Alaska, sea ducks winter in coastal habitats at remote, non-industrialized areas, as well as in proximity to human communities and industrial activity. We evaluated prevalence and characteristics of Escherichia coli strains in faecal samples of Steller's eiders (Polysticta stelleri; n = 122) and harlequin ducks (Histrionicus histrionicus; n = 21) at an industrialized site and Steller's eiders (n = 48) at a reference site, and compared these strains with those isolated from water samples from near-shore habitats of ducks. The overall prevalence of E. coli was 16% and 67% in Steller's eiders and harlequin ducks, respectively, at the industrialized study site, and 2% in Steller's eiders at the reference site. Based on O and H antigen subtyping and genetic characterization by enterobacterial repetitive intergenic consensus polymerase chain reaction and pulsed-field gel electrophoresis, we found evidence of avian pathogenic E. coli (APEC) strains associated with both species and detected E. coli strains carrying virulence genes associated with mammals in harlequin ducks. Steller's eiders that carried APEC had lower serum total protein and albumin concentrations, providing further evidence of pathogenicity. The genetic profile of two E. coli strains from water matched an isolate from a Steller's eider providing evidence of transmission between near-shore habitats and birds.

  12. Early Jurassic shale chemostratigraphy and U-Pb ages from the Neuquén Basin (Argentina): Implications for the Toarcian Oceanic Anoxic Event

    NASA Astrophysics Data System (ADS)

    Mazzini, Adriano; Svensen, Henrik; Leanza, Héctor A.; Corfu, Fernando; Planke, Sverre

    2010-09-01

    New data from a Lower Jurassic shale section in the Neuquén Basin, Argentina, are presented in order to better constrain the triggering mechanism for the Toarcian Oceanic Anoxic Event (TOAE) and the associated negative carbon isotope excursion. Chemostratigraphy from a 65 m thick shale-dominated marine section of Late Pliensbachian to Early Toarcian age shows the presence of a 19.5 m thick interval of organic-rich black shale where the bulk rock organic carbon content reaches almost 4 wt.%. The δ 13C of the bulk organic matter changes from - 22.3‰ in the lower parts of the profile to - 29.8‰ VPDB in the black shale interval, documenting a - 8‰ excursion over five stratigraphic meters. Twelve interbedded tuff layers, representing fallouts from paleo-Andean arc magmatism, were discovered in the section. Dating by ID-TIMS of zircons from two tuff beds located within the carbon isotope excursion interval gave ages of 181.42 ± 0.24 Ma and 180.59 ± 0.43 Ma. Assuming linear sedimentation rates within the black shale interval, the initiation of the anoxic event occurred at 182.16 ± 0.6 Ma, lasting until 180.16 ± 0.66 Ma. Thus the total duration is between 0.74 and 3.26 Ma, taking into account the propagation of dating uncertainties. This also allowed to obtain a new and improved estimate of the Pliensbachian-Toarcian boundary. The U/Pb age of the initiation of the observed carbon isotope excursion overlaps the U/Pb emplacement ages of mafic sill intrusions in the Karoo Basin in South Africa, and supports the hypothesis that thermogenic methane released during contact metamorphism within the Karoo Basin was the main trigger of the anoxic event. Our findings show that the Toarcian carbon isotope excursion is present also in the southern hemisphere and that the TOAE was a global phenomenon likely triggered by a massive greenhouse gas release.

  13. A Conceptual Site Model for Nature and Extent of Contamination in a Riparian-Near Shore Area - 12410

    SciTech Connect

    Morgans, Donna; Lowe, John; McCarthy, Chris; Aly, Alaa

    2012-07-01

    The 100-K decision area is located along the Columbia River and includes source Operable Units (OUs), a groundwater OU, and the adjacent surface water, saturated sediment and aquatic biota. A conceptual site model (CSM) has been developed to evaluate concentrations of non-radiological substances and radionuclides detected in soil, water and sediments in a riparian near-shore area along the Columbia River. The CSM is used to determine if potential transport pathways exist to these media from Hanford Site sources by incorporating information from the physical system, surface hydrology, subsurface hydrogeology, analytical results, and ecological evaluation into the model. Six contaminants of ecological concern, mostly metals and non-radiological inorganics, have been identified in riparian and near-shore media. With few exceptions (notably chromium and hexavalent chromium), there are ambient sources for these constituents in soil, sediment and water that are unrelated to the Hanford Site. While the CSM documented analytical and biological conditions, this paper presents results focused on analytical measurements to document the potential for these contaminants to be related to a release from the Hanford Site. The purpose for preparing this CSM was to address, on a reactor decision area basis, the potential for Hanford Site contaminants in soil or groundwater to migrate to riparian or near-shore areas at concentrations that could be of concern for ecological receptors. This CSM supplements the analysis of River Corridor-wide ecological risks presented in the ecological risk assessment of the RCBRA. The RCBRA identified on a site-wide basis some contaminants of ecological concern that warranted further evaluation. Based on the results of the further evaluation contained in this CSM, with the exception of hexavalent chromium, detected concentrations of contaminants in riparian or near-shore media are not reliably detectable at levels of ecological concern, or are not

  14. A new species of Near-shore Marine Goby (Pisces: Gobiidae: Nesogobius) from Kangaroo Island, Australia.

    PubMed

    Hammer, Michael P; Hoese, Douglass F; Bertozzi, Terry

    2015-12-11

    Nesogobius is one of two goby genera with all species wholly restricted to temperate Australian waters. Described here is a new member of the genus discovered during near-shore marine and estuarine fish sampling along the central southern Australian coastline. The tiger sandgoby Nesogobius tigrinus sp. nov. is distinguished from other congeners by a combination of colouration including four prominent vertical black bars on males; morphological characters involving body scales (large), head scales (naked), body depth (slender) and gill opening (wide); meristic counts including a lack of second dorsal and anal fin spines; and mitochondrial DNA sequence divergence. The species appears to be a narrow range endemic, restricted to specific sub-tidal habitat in the unique sheltered embayments of northeast Kangaroo Island. This study forms part of ongoing investigations to more fully describe the biodiversity and conservation requirements of the regional ichthyofauna.

  15. A new species of Near-shore Marine Goby (Pisces: Gobiidae: Nesogobius) from Kangaroo Island, Australia.

    PubMed

    Hammer, Michael P; Hoese, Douglass F; Bertozzi, Terry

    2015-01-01

    Nesogobius is one of two goby genera with all species wholly restricted to temperate Australian waters. Described here is a new member of the genus discovered during near-shore marine and estuarine fish sampling along the central southern Australian coastline. The tiger sandgoby Nesogobius tigrinus sp. nov. is distinguished from other congeners by a combination of colouration including four prominent vertical black bars on males; morphological characters involving body scales (large), head scales (naked), body depth (slender) and gill opening (wide); meristic counts including a lack of second dorsal and anal fin spines; and mitochondrial DNA sequence divergence. The species appears to be a narrow range endemic, restricted to specific sub-tidal habitat in the unique sheltered embayments of northeast Kangaroo Island. This study forms part of ongoing investigations to more fully describe the biodiversity and conservation requirements of the regional ichthyofauna. PMID:26701487

  16. Environmental Conditions in a Carpathian Deep Sea Basin During the Period Preceding Oceanic Anoxic Event 2 - A Case Study from the Skole Nappe

    NASA Astrophysics Data System (ADS)

    Bąk, Krzysztof; Bąk, Marta; Górny, Zbigniew; Wolska, Anna

    2015-01-01

    Hemipelagic green clayey shales and thin muddy turbidites accumulated in a deep sea environment below the CCD in the Skole Basin, a part of the Outer Carpathian realm, during the Middle Cenomanian. The hemipelagites contain numerous radiolarians, associated with deep-water agglutinated foraminifera. These sediments accumulated under mesotrophic conditions with limited oxygen concentration. Short-term periodic anoxia also occurred during that time. Muddy turbidity currents caused deposition of siliciclastic and biogenic material, including calcareous foramini-fers and numerous sponge spicules. The preservation and diversity of the spicules suggests that they originate from disarticulation of moderately diversified sponge assemblages, which lived predominantly in the neritic-bathyal zone. Analyses of radiolarian ecological groups and pellets reflect the water column properties during the sedimentation of green shales. At that time, surface and also intermediate waters were oxygenated enough and sufficiently rich in nutri-ents to enable plankton production. Numerous, uncompacted pellets with nearly pristine radiolarian skeletons inside show that pelletization was the main factor of radiolarian flux into the deep basin floor. Partly dissolved skeletons indicate that waters in the Skole Basin were undersaturated in relation to silica content. Oxygen content might have been depleted in the deeper part of the water column causing periodic anoxic conditions which prevent rapid bacterial degra-dation of the pellets during their fall to the sea floor.

  17. Generation of multivariate near shore extreme wave conditions based on an extreme value copula for offshore boundary conditions.

    NASA Astrophysics Data System (ADS)

    Leyssen, Gert; Mercelis, Peter; De Schoesitter, Philippe; Blanckaert, Joris

    2013-04-01

    Near shore extreme wave conditions, used as input for numerical wave agitation simulations and for the dimensioning of coastal defense structures, need to be determined at a harbour entrance situated at the French North Sea coast. To obtain significant wave heights, the numerical wave model SWAN has been used. A multivariate approach was used to account for the joint probabilities. Considered variables are: wind velocity and direction, water level and significant offshore wave height and wave period. In a first step a univariate extreme value distribution has been determined for the main variables. By means of a technique based on the mean excess function, an appropriate member of the GPD is selected. An optimal threshold for peak over threshold selection is determined by maximum likelihood optimization. Next, the joint dependency structure for the primary random variables is modeled by an extreme value copula. Eventually the multivariate domain of variables was stratified in different classes, each of which representing a combination of variable quantiles with a joint probability, which are used for model simulation. The main variable is the wind velocity, as in the area of concern extreme wave conditions are wind driven. The analysis is repeated for 9 different wind directions. The secondary variable is water level. In shallow waters extreme waves will be directly affected by water depth. Hence the joint probability of occurrence for water level and wave height is of major importance for design of coastal defense structures. Wind velocity and water levels are only dependent for some wind directions (wind induced setup). Dependent directions are detected using a Kendall and Spearman test and appeared to be those with the longest fetch. For these directions, wind velocity and water level extreme value distributions are multivariately linked through a Gumbel Copula. These distributions are stratified into classes of which the frequency of occurrence can be

  18. Does a strong pycnocline impact organic-matter preservation and accumulation in an anoxic setting? The case of the Orca Basin, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Tribovillard, Nicolas; Bout-Roumazeilles, Viviane; Sionneau, Thomas; Serrano, Jean Carlos Montero; Riboulleau, Armelle; Baudin, François

    2009-01-01

    The Orca Basin (an intraslope depression located in the Gulf of Mexico) collects sedimentary particles of terrestrial origin (clastic and organic particles mainly supplied by the Mississippi River) and of marine origin (biogenic productivity). The basin is partly filled with dense brines leached from salt diapirs cropping out on the sea floor, and is permanently stratified. A strong pycnocline induces anoxic bottom conditions, expectedly favorable to organic matter (OM) preservation. Here, we report on OM in the upper 750 cm below sea floor of Core MD02-2552 (Holocene). The organic content is dominated by marine-derived amorphous OM. The organic assemblage is unexpectedly degraded to some extent, which may be accounted for by a relatively long residence time of organic particles at the halocline-pycnocline at ˜2240 m. Thus the organic particles are temporarily trapped and kept in contact with the dissolved oxygen-rich overlying water mass. Lastly, the land-derived organic fraction shows co-variations with the land-derived clay mineral supply.

  19. Landsat-8 imagery to estimate clarity in near-shore coastal waters: Feasibility study - Chabahar Bay, Iran

    NASA Astrophysics Data System (ADS)

    Kabiri, Keivan; Moradi, Masoud

    2016-08-01

    This study examined the advantages of incorporating the new band of Landsat-8 OLI imagery (band 1: Coastal/Aerosol, 435-451 nm) to a model for estimation of Secchi disk depth (SDD) values (as an indicator for transparency) in near-shore coastal waters using multispectral bands. In doing so, Chabahar Bay in the southern part of Iran (north of Gulf of Oman) was selected as the study area. Two approximately four-hour in-situ observations (including 48 and 56 field measured SDD values for each date respectively) were performed in the study area using Secchi disk; this was designed to start about two hours before and end about two hours after the time of satellite overpasses. Thereafter, a model was formed for estimation of SDD values based on the terms including all possible linear and mutual ratio values of Coastal/Aerosol (B1), Blue (B2), Green (B3), and Red bands (B4). In the first step, the correlation between reflectance/ratio reflectance values of these bands and Ln(SDD) values were calculated to indicate higher correlated bands/band ratios with the first field measured SDD values. Consequently, 17 combinations of highest correlated bands/band ratios were selected to estimate SDD values. In this regard, 32 points among the 48 field observations were selected to determine unknown coefficients of models using a multiple linear regression, and the rest 16 points were designated for accuracy assessment the results. Eventually, the measured SDD values in second field observations were utilized for validating the results. Final results demonstrated that combination of linear terms including B1, B2 and B3 bands and band ratio terms including ratio reflectance values of B4/B3, B3/B1, and B2/B1 has led to obtain the highest accuracy (R2=0.866 and RMSE=0.919, SVM feature weight=4.294). This was in agreement with the results obtained from the second observations. Finally, by applying the entire 104 field observed SDD values, the model in form of SDD=0.077exp(1.209RB1

  20. Environmental controls on coastal coarse aerosols: implications for microbial content and deposition in the near-shore environment.

    PubMed

    Dueker, M Elias; Weathers, Kathleen C; O'Mullan, Gregory D; Juhl, Andrew R; Uriarte, Maria

    2011-04-15

    Coarse aerosols (particle diameter (D(p)) > 2 μm) produced in coastal surf zones carry chemical and microbial content to shore, forming a connection between oceanic, atmospheric, and terrestrial systems that is potentially relevant to coastal ecology and human health. In this context, the effects of tidal height, wind speed, and fog on coastal coarse aerosols and microbial content were quantified on the southern coast of Maine, USA. Aerosols at this site displayed clear marine influence and had high concentrations of ecologically relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height (i.e., decreasing distance from waterline), onshore wind speed, and fog presence. As onshore wind speeds rose above 3 m s(-1), the mean half-deposition distance of coarse aerosols increased to an observed maximum of 47.6 ± 10.9 m from the water's edge at wind speeds from 5.5-8 m s(-1). Tidal height and fog presence did not significantly influence total microbial aerosol concentrations but did have a significant effect on culturable microbial aerosol fallout. At low wind speeds, culturable microbial aerosols falling out near-shore decreased by half at a distance of only 1.7 ± 0.4 m from the water's edge, indicating that these microbes may be associated with large coarse aerosols with rapid settling rates.

  1. Genetic signature of recent glaciation on populations of a near-shore marine fish species (Syngnathus leptorhynchus).

    PubMed

    Wilson, A B

    2006-06-01

    Continental glaciation has played a major role in shaping the present-day phylogeography of freshwater and terrestrial species in the Northern Hemisphere. Recent work suggests that coastal glaciation during ice ages may have also had a significant impact on marine species. The bay pipefish, Syngnathus leptorhynchus, is a near-shore Pacific coast fish species with an exceptionally wide latitudinal distribution, ranging from Bahia Santa Maria, Baja California to Prince William Sound, Alaska. Survey data indicate that S. leptorhynchus is experiencing a range expansion at the northern limit of its range, consistent with colonization from southern populations. The present study uses six novel microsatellite markers and mitochondrial DNA (mtDNA) sequence data to study the present-day population genetic structure of four coastal populations of S. leptorhynchus. Deficits in mtDNA and nuclear DNA diversity in northern populations from regions glaciated during the last glacial maximum (LGM) [c. 18 000 years before present (bp)] suggest that these populations were effected by glacial events. Direct estimates of population divergence times derived from both isolation and isolation-with-migration models of evolution are also consistent with a postglacial phylogenetic history of populations north of the LGM. Sequence data further indicate that a population at the southern end of the species range has been separated from the three northern populations since long before the last interglacial event (c. 130 000 years bp), suggesting that topographical features along the Pacific coast may maintain population separation in regions unimpacted by coastal glaciation.

  2. Near-shore Antarctic pH variability has implications for the design of ocean acidification experiments

    PubMed Central

    Kapsenberg, Lydia; Kelley, Amanda L.; Shaw, Emily C.; Martz, Todd R.; Hofmann, Gretchen E.

    2015-01-01

    Understanding how declining seawater pH caused by anthropogenic carbon emissions, or ocean acidification, impacts Southern Ocean biota is limited by a paucity of pH time-series. Here, we present the first high-frequency in-situ pH time-series in near-shore Antarctica from spring to winter under annual sea ice. Observations from autonomous pH sensors revealed a seasonal increase of 0.3 pH units. The summer season was marked by an increase in temporal pH variability relative to spring and early winter, matching coastal pH variability observed at lower latitudes. Using our data, simulations of ocean acidification show a future period of deleterious wintertime pH levels potentially expanding to 7–11 months annually by 2100. Given the presence of (sub)seasonal pH variability, Antarctica marine species have an existing physiological tolerance of temporal pH change that may influence adaptation to future acidification. Yet, pH-induced ecosystem changes remain difficult to characterize in the absence of sufficient physiological data on present-day tolerances. It is therefore essential to incorporate natural and projected temporal pH variability in the design of experiments intended to study ocean acidification biology.

  3. Modeling the transport and inactivation of E. coli and enterococci in the near-shore region of Lake Michigan

    USGS Publications Warehouse

    Liu, L.; Phanikumar, M.S.; Molloy, S.L.; Whitman, R.L.; Shively, D.A.; Nevers, M.B.; Schwab, D.J.; Rose, J.B.

    2006-01-01

    To investigate the transport and fate of fecal pollution at Great Lakes beaches and the health risks associated with swimming, the near-shore waters of Lake Michigan and two tributaries discharging into it were examined for bacterial indicators of human fecal pollution. The enterococcus human fecal pollution marker, which targets a putative virulence factorthe enterococcal surface protein (esp) in Enterococcus faecium, was detected in 2/28 samples (7%) in the tributaries draining into Lake Michigan and in 6/30 samples (20%) in Lake Michigan beaches. This was indicative of human fecal pollution being transported in the tributaries and occurrence at Lake Michigan beaches. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, E. coli and enterococci) was used. Enterococci appear to survive longer than E. coli, which was described using an overall first-order inactivation coefficient in the range 0.5−2.0 per day. Our analysis suggests that the majority of fecal indicator bacteria variation can be explained based on loadings from the tributaries. Sunlight is a major contributor to inactivation in the surf-zone and the formulation based on sunlight, temperature and sedimentation is preferred over the first-order inactivation formulation.

  4. Distributions of C22 C30 even-carbon-number n-alkanes in Ocean Anoxic Event 1 samples from the Basque-Cantabrian Basin

    NASA Astrophysics Data System (ADS)

    Chaler, R.; Dorronsoro, C.; Grimalt, J. O.; Agirrezabala, L. M.; Fernández-Mendiola, P. A.; García-Mondejar, J.; Gómez-Pérez, I.; López-Horgue, M.

    2005-05-01

    The Ocean Anoxic Event 1 (OAE-1) in central sites of the Basque-Cantabrian Basin exhibits very reducing depositional conditions of sedimentation. These sedimentation events have left a distinct mixture of hydrocarbons that are represented by C22 C30 n-alkanes with a predominance of the even-carbon-number homologues, high relative proportions of squalane and C16 C24 n-alkylcyclopentanes predominated by n-undecyl-, n-tridecyl- and n-pentadecylcyclopentane. Other minor compounds encompass a series of C18 C21 n-alkylcyclohexanes and C18 C24 dimethyl n-alkylcyclohexanes maximized by the even-carbon-number homologues as well as iso- and anteiso-alkanes. This unusual distribution of n-alkanes in this environment provides a new case for comparison with previously reported hypersaline and phosphorite sedimentary deposits where the occurrence of similar n-alkane distributions was reported. In the present case, these major n-alkanes and squalane are indicative of transformation under strong reducing conditions. In contrast, the occurrence of the alkylcyclopentanes, irrespective of the presence of even-carbon-number n-alkanes or squalane, suggests that reductive cyclization of fatty acids is less dependent on strong reducing conditions.

  5. Use of radon-222 to evaluate the influence of groundwater discharge on fecal indicator bacteria concentrations in the near-shore ocean, Malibu, California

    NASA Astrophysics Data System (ADS)

    Izbicki, J. A.; Burton, C.; Swarzenski, P. W.

    2011-12-01

    To protect beach-goers from waterborne disease, California requires water-quality monitoring for fecal indicator bacteria (FIB) at beaches having more than 50,000 visits annually. The source(s) of FIB in ocean beaches in excess of marine recreational water standards is often not known, or may be incorrectly identified. Onsite wastewater treatment systems (OWTS) used to treat residential and commercial sewage have been implicated by regulatory agencies as a possible source of FIB to recreational ocean beaches, near Malibu, California. For this to occur, treated wastewater must first move through groundwater prior to discharge at the ocean. Groundwater discharge to the ocean near Malibu Lagoon (the estuary of Malibu Creek) is complicated by seasonally changing water levels in the lagoon. The lagoon is isolated from the ocean by a sand berm that develops across the mouth of the lagoon during the dry season. Higher water levels in the lagoon during the dry season, and lower water-levels during the wet season, cause seasonal changes in the direction of groundwater flow and the magnitude of discharge from the adjacent small (3,400 hectare), alluvial aquifer. Radon-222, an indicator of groundwater discharge, was measured in Malibu Lagoon, in the near-shore ocean adjacent to the lagoon, and in the near-shore ocean adjacent to unsewered residential development to determine the timing and magnitude of groundwater discharge. During the dry season, when the berm of the lagoon was closed and the lagoon was isolated from the ocean, radon-222 concentrations in the near-shore ocean during low tide increased as water discharged from the lagoon through the berm. Enterococcus concentrations in the near-shore ocean increased to almost 600 Most Probable Number (MPN) per 100 milliliter at this time. Radon-222 concentrations also increased at low tide as groundwater discharged to the ocean from the adjacent alluvial aquifer underlying the unsewered residential development, but there was

  6. A preliminary study of iron isotope fractionation in marine invertebrates (chitons, Mollusca) in near-shore environments

    NASA Astrophysics Data System (ADS)

    Emmanuel, S.; Schuessler, J. A.; Vinther, J.; Matthews, A.; von Blanckenburg, F.

    2014-10-01

    tidal regions. Our preliminary results suggest that while chitons are not simple recorders of the ambient seawater Fe isotopic signature, Fe isotopes provide valuable information concerning Fe biogeochemical cycling in near-shore environments, and may potentially be used to probe sources of Fe recorded in different organisms.

  7. Lacustrine anoxic event 1 (LAE1) recorded by rock magnetism of Unit 1 of Qingshankou Formation, Late Cretaceous Songliao Basin in Northeast China

    NASA Astrophysics Data System (ADS)

    Li, H.; Zhang, S.; Zhao, K.; Wu, H.; Yang, T.

    2011-12-01

    Songliao Basin, located in northeastern China, is one of the biggest cretaceous lakes in Asia, with most completely developed cretaceous stratigraphy. Therefore, it is a key area to study cretaceous palaeontology evolution and paleoenvironmental changes. Especially, anoxic events and marine transgressional events have been the research focuses for a long time. The lacustrine anoxic event 1 (LAE1) has been reported to happen in Songliao Basin during the deposition of unit 1 of Qingshankou Formation (K2qn1). In this study, K2qn1 was sampled from China Cretaceous Continental Scientific Drilling-Songke Ι (CCSD-SK-Ι) south borehole. The K2qn1, from 1700 m to 1782.8 m in the well log, mainly consists black shale and mudstone. LAE1 is the section from 1750 m to 1775 m. Detailed rock magnetic measurements were conducted, including magnetic susceptibility (χ) and susceptibility of anhysteretic remanence (χARM), saturation isothermal remanence (SIRM), S-ratio (IRM-100mT/SIRM), medial destroyed field of ARM (MDFARM), and temperature-dependence of magnetic susceptibilities (χ/T curves), acquiring curves and reverse demagnetic curves of IRM and thermal demagnetization of ARM and SIRM and Lowrie experiment for selected samples. X-ray diffraction (XRD) was also carried out for selected samples. The acquiring curves and reverse demagnetic curves of typical specimens and the thermal demagnetization of ARM and SIRM and the Lowrie experiment confirm that the major remanence-carrier is soft magnetite. Results of χ/T curves indicate that: for some specimens, pyrite exists (Li and Zhang, 2005); for most specimens, their χ decreases slowly during heating, suggesting a dominant contribution from paramagnetic minerals. Results of XRD suggest that these paramagnetic minerals may be feldspar, kaolinite and pyrite. So paramagnetic clay minerals control χ of K2qn1; and more clay minerals may induce higher natural gamma ray (GR). Therefore, χ and GR should be positive. On the contrary

  8. Onset and demise of Cretaceous oceanic anoxic events: The coupling of surface and bottom oceanic processes in two pelagic basins of the western Tethys

    NASA Astrophysics Data System (ADS)

    Gambacorta, G.; Bersezio, R.; Weissert, H.; Erba, E.

    2016-06-01

    The upper Albian-lower Turonian pelagic successions of the Tethys record processes acting during the onset, core, and recovery from perturbed conditions across oceanic anoxic event (OAE) 1d, OAE 2, and the mid-Cenomanian event I (MCE I) relative to intervening intervals. Five sections from Umbria-Marche and Belluno Basins (Italy) were analyzed at high resolution to assess processes in surface and deep waters. Recurrent facies stacking patterns (SP) and their associations record periods of bottom current activity coupled with surface changes in trophic level. Climate changes appear to have been influential on deep circulation dynamics. Under greenhouse conditions, vigorous bottom currents were arguably induced by warm and dense saline deep waters originated on tropical shelves in the Tethys and/or proto-Atlantic Ocean. Tractive facies postdating intermittent anoxia during OAE 1d and in the interval bracketed by MCE I and OAE 2 are indicative of feeble bottom currents, though capable of disrupting stratification and replenish deep water with oxygen. The major warming at the onset of OAE 2 might have enhanced the formation of warm salty waters, possibly producing local hiatuses at the base of the Bonarelli Level and winnowing at the seafloor. Hiatuses detected at the top of the Bonarelli Level possibly resulted from most effective bottom currents during the early Turonian thermal maximum. Times of minimal sediment displacement correlate with cooler climatic conditions and testify a different mechanism of deep water formation, as further suggested by a color change to reddish lithologies of the post-OAE 1d and post-OAE 2 intervals.

  9. Identification of temporal and small-scale spatial variations of phosphate concentration in the near-shore groundwater of an oligotrophic lake

    NASA Astrophysics Data System (ADS)

    Pöschke, Franziska; Schlichting, Hendrik; Lewandowski, Jörg

    2016-04-01

    Lake Stechlin is one of the last oligotrophic lakes in the German North-Eastern Lake District. In recent years there was some worry over a small but continuous increase of phosphate concentrations in the open water body. The reasons remain unclear. Since the lake obtains its water only from groundwater and precipitation there is the assumption that the former can be a significant source of phosphate inputs into the lake. In the present study, three different groundwater sampling settings on different scales in time and space were used to investigate the phosphate concentration in the near-shore groundwater. A multi-level sampling grid of twelve samplers and 60 sampling ports was installed to study the temporal small-scale fluctuations of P concentration in the groundwater and the interstitial water. Furthermore, a one-time sampling campaign of shallow near-shore groundwater was conducted every 500 m along the lake shore. Additionally, nests of permanent groundwater wells were sampled monthly for one year to identify concentration patterns in the deeper aquifer. The results indicate a large spatial and small temporal heterogeneity of P concentrations. The range of P concentration is < 0.01 mg/l up to 0.2 mg/l. There was no significant increase of P concentrations downstream of the small near-shore village Neuglobsow. Since the groundwater catchment belongs since 1938 to a natural protected area other anthropogenic impacts are quite unlikely. Hence, the main source for phosphate is probably the decomposition of naturally present organic material under anaerobic and warm conditions.

  10. Glacier runoff as a source of labile dissolved organic matter for near-shore marine ecosystems in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Hood, E.; Fellman, J.; Spencer, R.; Edwards, R.; D'Amore, D.

    2008-12-01

    Northern rivers transport large quantities of dissolved organic matter (DOM), however this organic material is typically thought to be refractory and therefore of little significance for the biogeochemistry of downstream marine ecosystems. Recent research in both the arctic and sub-arctic has shown that terrigenous DOM may be more bioavailable than was previously thought. These findings suggest that riverine DOM has the potential to support both heterotrophic metabolism and primary productivity in near-shore marine ecosystems. Along the Gulf of Alaska (GOA), the ongoing loss of glacier ice in coastal watersheds is altering the land-to-ocean transfer of freshwater and DOM. In particular, DOM derived from glacial runoff appears to be derived largely from microbial precursor material while DOM in watersheds with little or no glacier coverage is predominantly derived from terrestrial plants. The purpose of this study was to test the hypothesis that the character and bioavailability of riverine DOM being exported to the GOA will be altered as glaciers recede and contribute less to streamflow. We sampled rivers draining 12 coastal watersheds along a 500 mile stretch of the GOA during the peak glacier runoff season in the summer of 2008. The study watersheds were typical of the thousands of moderately sized (50-450 km2) watersheds draining the coast mountains along the GOA and ranged in watershed glacier coverage from 0 to >60%. Concentrations of DOC were relatively low in all 12 watersheds ranging from 0.6-2.2 mg C L-1. However, the chemical character of DOM varied widely across the watersheds. As watershed glacial coverage increased and glacier runoff comprised a large proportion of streamflow, riverine DOM became enriched in 13C-DOC and protein content as measured by fluorescence spectroscopy. These findings are consistent with the idea that DOM in pro-glacial streams is largely derived from sub-glacial microbial populations. Moreover, incubations of riverine DOM from

  11. Molecular typing of Escherichia coli strains associated with threatened sea ducks and near-shore marine habitats of south-west Alaska.

    PubMed

    Hollmén, Tuula E; Debroy, Chitrita; Flint, Paul L; Safine, David E; Schamber, Jason L; Riddle, Ann E; Trust, Kimberly A

    2011-04-01

    In Alaska, sea ducks winter in coastal habitats at remote, non-industrialized areas, as well as in proximity to human communities and industrial activity. We evaluated prevalence and characteristics of Escherichia coli strains in faecal samples of Steller's eiders (Polysticta stelleri; n = 122) and harlequin ducks (Histrionicus histrionicus; n = 21) at an industrialized site and Steller's eiders (n = 48) at a reference site, and compared these strains with those isolated from water samples from near-shore habitats of ducks. The overall prevalence of E. coli was 16% and 67% in Steller's eiders and harlequin ducks, respectively, at the industrialized study site, and 2% in Steller's eiders at the reference site. Based on O and H antigen subtyping and genetic characterization by enterobacterial repetitive intergenic consensus polymerase chain reaction and pulsed-field gel electrophoresis, we found evidence of avian pathogenic E. coli (APEC) strains associated with both species and detected E. coli strains carrying virulence genes associated with mammals in harlequin ducks. Steller's eiders that carried APEC had lower serum total protein and albumin concentrations, providing further evidence of pathogenicity. The genetic profile of two E. coli strains from water matched an isolate from a Steller's eider providing evidence of transmission between near-shore habitats and birds. PMID:23761259

  12. Dioctyl sulfosuccinate analysis in near-shore Gulf of Mexico water by direct-injection liquid chromatography-tandem mass spectrometry.

    PubMed

    Mathew, Johnson; Schroeder, David L; Zintek, Lawrence B; Schupp, Caitlin R; Kosempa, Michael G; Zachary, Adam M; Schupp, George C; Wesolowski, Dennis J

    2012-03-30

    Dioctyl sulfosuccinate (DOSS) was a major component of the dispersants most used in the 2010 Deepwater Horizon Oil Spill incident response. This analytical method quantifies salt water DOSS concentrations to a reporting limit of 20 μg/L, which was below the United States Environmental Protection Agency's (U.S. EPA) 40 μg/L DOSS Aquatic Life Benchmark. DOSS in Gulf of Mexico water samples were analyzed by direct-injection reversed-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sample preparation with 50% acetonitrile (ACN) enabled quantitative transfer of DOSS and increased DOSS response 20-fold by reducing aggregation. This increased sensitivity enabled the detection of a confirmatory transition over the calibration range of 10-200 μg/L. U.S. EPA Region 5 and Region 6 laboratories analyzed hundreds of near-shore surface Gulf of Mexico water samples, none contained more than the 20 ppb reporting limit. The matrix spike DOSS/deuterated surrogate (DOSS-D34) correlation of determination varied with mobile phase modifier (ammonium formate R(2)=0.95 and formic acid R(2)=0.27). Using ammonium formate, DOSS-D34 accurately measured DOSS matrix effect. The near-shore sodium concentrations varied more than 10,000-fold, but were not strongly correlated with DOSS recovery. DOSS detection by LC-MS/MS enabled rapid analysis which was valuable in guiding incident response. PMID:22365569

  13. Molecular typing of Escherichia coli strains associated with threatened sea ducks and near-shore marine habitats of south-west Alaska

    USGS Publications Warehouse

    Hollmén, Tuula E.; Debroy, C.; Flint, P.L.; Safine, D.E.; Schamber, J.L.; Riddle, A.E.; Trust, K.A.

    2011-01-01

    In Alaska, sea ducks winter in coastal habitats at remote, non-industrialized areas, as well as in proximity to human communities and industrial activity. We evaluated prevalence and characteristics of Escherichia coli strains in faecal samples of Steller's eiders (Polysticta stelleri; n=122) and harlequin ducks (Histrionicus histrionicus; n=21) at an industrialized site and Steller's eiders (n=48) at a reference site, and compared these strains with those isolated from water samples from near-shore habitats of ducks. The overall prevalence of E. coli was 16% and 67% in Steller's eiders and harlequin ducks, respectively, at the industrialized study site, and 2% in Steller's eiders at the reference site. Based on O and H antigen subtyping and genetic characterization by enterobacterial repetitive intergenic consensus polymerase chain reaction and pulsed-field gel electrophoresis, we found evidence of avian pathogenic E. coli (APEC) strains associated with both species and detected E. coli strains carrying virulence genes associated with mammals in harlequin ducks. Steller's eiders that carried APEC had lower serum total protein and albumin concentrations, providing further evidence of pathogenicity. The genetic profile of two E. coli strains from water matched an isolate from a Steller's eider providing evidence of transmission between near-shore habitats and birds. ?? 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Molecular typing of Escherichia coli strains associated with threatened sea ducks and near-shore marine habitats of south-west Alaska.

    PubMed

    Hollmén, Tuula E; Debroy, Chitrita; Flint, Paul L; Safine, David E; Schamber, Jason L; Riddle, Ann E; Trust, Kimberly A

    2011-04-01

    In Alaska, sea ducks winter in coastal habitats at remote, non-industrialized areas, as well as in proximity to human communities and industrial activity. We evaluated prevalence and characteristics of Escherichia coli strains in faecal samples of Steller's eiders (Polysticta stelleri; n = 122) and harlequin ducks (Histrionicus histrionicus; n = 21) at an industrialized site and Steller's eiders (n = 48) at a reference site, and compared these strains with those isolated from water samples from near-shore habitats of ducks. The overall prevalence of E. coli was 16% and 67% in Steller's eiders and harlequin ducks, respectively, at the industrialized study site, and 2% in Steller's eiders at the reference site. Based on O and H antigen subtyping and genetic characterization by enterobacterial repetitive intergenic consensus polymerase chain reaction and pulsed-field gel electrophoresis, we found evidence of avian pathogenic E. coli (APEC) strains associated with both species and detected E. coli strains carrying virulence genes associated with mammals in harlequin ducks. Steller's eiders that carried APEC had lower serum total protein and albumin concentrations, providing further evidence of pathogenicity. The genetic profile of two E. coli strains from water matched an isolate from a Steller's eider providing evidence of transmission between near-shore habitats and birds.

  15. Evaluation of Using Caged Clams to Monitor Contaminated Groundwater Exposure in the Near-Shore Environment of the Hanford Site 300 Area

    SciTech Connect

    Larson, Kyle B.; Poston, Ted M.; Tiller, Brett L.

    2008-01-31

    The Asiatic clam (Corbicula fluminea) has been identified as an indicator species for locating and monitoring contaminated groundwater in the Columbia River. Pacific Northwest National Laboratory conducted a field study to explore the use of caged Asiatic clams to monitor contaminated groundwater upwelling in the 300 Area near-shore environment and assess seasonal differences in uranium uptake in relation to seasonal flow regimes of the Columbia River. Additional objectives included examining the potential effects of uranium accumulation on growth, survival, and tissue condition of the clams. This report documents the field conditions and procedures, laboratory procedures, and statistical analyses used in collecting samples and processing the data. Detailed results are presented and illustrated, followed by a discussion comparing uranium concentrations in Asiatic clams collected at the 300 Area and describing the relationship between river discharge, groundwater indicators, and uranium in clams. Growth and survival, histology, and other sources of environmental variation also are discussed.

  16. Mercury Sources and Cycling in the Great Lakes: Dramatic Changes Resulting from Altered Atmospheric Loads and the Near-Shore Shunt

    NASA Astrophysics Data System (ADS)

    Krabbenhoft, D. P.; DeWild, J. F.; Maglio, M. M.; Tate, M. T.; Ogorek, J. M.; Hurley, J. P.; Lepak, R.

    2013-12-01

    there have been large declines in surface water total Hg concentrations (50-75%) across the Great Lakes since about 2000, an observation in agreement with concurrent declines in atmospheric deposition. In addition to a decline in inputs, we hypothesize that appreciable increases in volatilization of gaseous Hg have occurred. Mercury volatilization is directly related to water clarity (via the photo-reduction process), which has increased substantially in the Great Lakes since the invasion of zebra mussels and quagga mussels. Finally, although substantial declines in total aqueous Hg levels are apparent, fish mercury levels over the same time period appear to be relatively steady, and in some locations increasing. We submit this apparent discordance is also the outcome of the invasive mussels, which have caused near-shore eutrophication and off-shore oligotrophication commonly referred to as the near-shore shunt. Initial sampling by this project has revealed that these eutrophied zones are markedly enriched in MeHg. Therefore, it appears that while the open water regions of the Great Lakes appear to have experienced significant aqueous Hg declines, fish Hg levels may be responding to a new site of methylation in the near-shore zone.

  17. Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO 2

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Tung Arthur; Borges, Alberto V.

    2009-04-01

    Despite their moderately sized surface area, continental marginal seas play a significant role in the biogeochemical cycles of carbon, as they receive huge amounts of upwelled and riverine inputs of carbon and nutrients, sustaining a disproportionate large biological activity compared to their relative surface area. A synthesis of worldwide measurements of the partial pressure of CO 2 (pCO 2) indicates that most open shelves in the temperate and high-latitude regions are under-saturated with respect to atmospheric CO 2 during all seasons, although the low-latitude shelves seem to be over-saturated. Most inner estuaries and near-shore coastal areas on the other hand are over-saturated with respect to atmospheric CO 2. The scaling of air-sea CO 2 fluxes based on pCO 2 measurements and carbon mass-balance calculations indicate that the continental shelves absorb atmospheric CO 2 ranging between 0.33 and 0.36 Pg C yr -1 that corresponds to an additional sink of 27% to ˜30% of the CO 2 uptake by the open oceans based on the most recent pCO 2 climatology [Takahashi, T., Sutherland, S.C., Wanninkhof, R., Sweeney, C., Feely, R.A., Chipman, D., Hales, B., Friederich, G., Chavez, F., Watson, A., Bakker, D., Schuster, U., Metzl, N., Inoue, H.Y., Ishii, M., Midorikawa, T., Sabine, C., Hoppema, M., Olafsson, J., Amarson, T., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., De Baar, H., Nojiri, Y., Wong, C.S., Delille, B., Bates, N., 2009. Climatological mean and decadal change in surface ocean pCO 2, and net sea-air CO 2 flux over the global oceans. Deep-Sea Research II, this issue [doi: 10.1016/j.dsr2.2008.12.009].]. Inner estuaries, salt marshes and mangroves emit up to 0.50 Pg C yr -1, although these estimates are prone to large uncertainty due to poorly constrained ecosystem surface area estimates. Nevertheless, the view of continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO 2 allows reconciling long-lived opposing views on carbon

  18. Sea-bottom classification across a shallow-water bar channel and near-shore shelf, using single-beam acoustics

    NASA Astrophysics Data System (ADS)

    Freitas, Rosa; Sampaio, Leandro; Rodrigues, Ana Maria; Quintino, Victor

    2005-12-01

    An acoustic ground discrimination system (QTC VIEW, Series IV) was used to identify and map the bottom acoustic diversity in the bar channel of Ria de Aveiro, Western Portugal. The majority of the survey area presented shallow depth for this type of equipment, ranging mainly from 5 to 15 m. Depth occasionally reached 25 m in specific areas located across the entrance channel, dug by the strong tidal currents, reaching 3 m/s. The acoustic data were submitted to manual and auto-cluster and the results obtained from both procedures were coherent. Using aids to the acoustic classification and ground-truth sediment data, a final solution consisting of four acoustic classes was reached. Their geographical distribution was coincident with the spatial distribution of the major bottom types and sediment groups (hard bottom, coarse sand, medium sand and fine sand), identified through multivariate analysis of the grain-size data, and reflected the complex hydrodynamics of the entrance channel. The acoustic pattern was coincident at the intersections of the acoustic survey lines, assuring the repeatability of the acoustic procedure. Overall, the acoustic approach showed consistent results for the assessment and mapping of the benthic habitats in this shallow-water coastal area, providing a very valuable tool in an area where conventional sediment sampling is less favourable, namely due to strong tidal currents and frequent ship traffic, such as the entrance channel of Ria de Aveiro and the near-shore adjacent shelf.

  19. The use of high-resolution seismic reflection profiles for fault analysis in the near-shore environment, Weymouth Bay, Dorset, England, United Kingdom

    NASA Astrophysics Data System (ADS)

    Hunsdale, Robert; Bull, Jon M.; Dix, Justin K.; Sanderson, David J.

    1998-07-01

    High-resolution seismic reflection profiles using a Chirp source image a north-south extensional fault set, which cuts rocks of Upper Jurassic age, cropping out on the seafloor of Weymouth Bay, Dorset, England, United Kingdom. The same fault set cuts rocks of similar age along the adjacent coast, and field mapping can be compared directly with the Chirp profiles. Survey lines were shot perpendicular to the fault strike to produce dip sections from which displacements could be measured. One hundred and fifty-three faults were picked on a 15 km line, yielding a fault density of ˜10 km-1, similar to that measured in the coastal section. Chirp-resolved fault displacements as small as 0.5 m and a maximum fault displacement of 221 m could be inferred from the data. Distribution analysis of offshore fault data indicated that fault displacement is power law with a well constrained exponent of -0.9. This value is consistent with the power law exponent estimate for fault displacement, over the scale range 2-8 m, onshore. Thus Chirp near-shore seismic reflection profiles can infill a data gap for fault size-frequency relationships that commonly occurs when combining data from outcrops/cores and conventional seismic reflection profiles.

  20. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters

    PubMed Central

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel MM; Schubert, Carsten J

    2015-01-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes. PMID:25679533

  1. Methane oxidation coupled to oxygenic photosynthesis in anoxic waters.

    PubMed

    Milucka, Jana; Kirf, Mathias; Lu, Lu; Krupke, Andreas; Lam, Phyllis; Littmann, Sten; Kuypers, Marcel M M; Schubert, Carsten J

    2015-09-01

    Freshwater lakes represent large methane sources that, in contrast to the Ocean, significantly contribute to non-anthropogenic methane emissions to the atmosphere. Particularly mixed lakes are major methane emitters, while permanently and seasonally stratified lakes with anoxic bottom waters are often characterized by strongly reduced methane emissions. The causes for this reduced methane flux from anoxic lake waters are not fully understood. Here we identified the microorganisms and processes responsible for the near complete consumption of methane in the anoxic waters of a permanently stratified lake, Lago di Cadagno. Interestingly, known anaerobic methanotrophs could not be detected in these waters. Instead, we found abundant gamma-proteobacterial aerobic methane-oxidizing bacteria active in the anoxic waters. In vitro incubations revealed that, among all the tested potential electron acceptors, only the addition of oxygen enhanced the rates of methane oxidation. An equally pronounced stimulation was also observed when the anoxic water samples were incubated in the light. Our combined results from molecular, biogeochemical and single-cell analyses indicate that methane removal at the anoxic chemocline of Lago di Cadagno is due to true aerobic oxidation of methane fuelled by in situ oxygen production by photosynthetic algae. A similar mechanism could be active in seasonally stratified lakes and marine basins such as the Black Sea, where light penetrates to the anoxic chemocline. Given the widespread occurrence of seasonally stratified anoxic lakes, aerobic methane oxidation coupled to oxygenic photosynthesis might have an important but so far neglected role in methane emissions from lakes.

  2. Survey of the state of the art in near-shore pipeline location and burial assessment. Topical report, August 1990--November 1991

    SciTech Connect

    Wilkey, P.L.

    1991-11-01

    Project`s objective is to evaluate state-of-the-art methods for locating pipelines in shallow (less than 15 ft) water and for determining and monitoring their burial depths. The following recommendations are made on the research needed in three areas for locating near-shore, shallowly buried pipelines: (1) Sensors: The pipeline industry has selected the magnetic gradiometer array (GA) as a preferred sensor method. Other potential methods exist as backups. No additional research is recommended. (2) Remotely Operated Vehicles (ROVs): The Pipeline Research Committee is pursuing development of a prototype ROV is deliver the GA or other similar equipment to pipeline locations. (3) Phenomena: The data being collected from research on the phenomena affecting seabed conditions and the bathymetric data being collected along the Gulf Coast should be synthesized. This new effort should focus on identifying erosion-prone areas with respect to present and potential future pipeline locations. Technical approach is to get the broadest perspective on the concerns related to the determination of burial conditions for offshore pipelines, Argonne National Laboratory (ANL) contacted individuals and organizations from the gas and petroleum industries, hardware and software vendors, academicians, and representatives from the government. A literature survey yielded the names of persons within academia who are presently working on similar applications with sensors. In the oil and gas industry, individuals and organizations involved in the Pipeline Research Committee made extensive contributions to the review and also provided the names of meaningful contacts from among their vendors. Discussions were held with the various persons both on the telephone and face to face. Vendors provided background materials and overview presentations on their capabilities for ANL to review.

  3. Combining local lithofacies and global geochemical signals to test the acidification hypothesis for the onset of Oceanic Anoxic Event 2 in the U.S. Western Interior Basin

    NASA Astrophysics Data System (ADS)

    Jones, M. M.; Sageman, B. B.; Selby, D. S.; Oakes, R. L.; Bralower, T. J.; Parker, A. L.; Leckie, R. M.; Sepulveda, J.

    2015-12-01

    Strata preserving Oceanic Anoxic Event 2 (OAE2), which span the Cenomanian-Turonian (C/T; Late Cretaceous), exhibit evidence of widespread anoxia, a major perturbation to the global carbon cycle, and increased biotic turnover rates. It has been hypothesized that a major volcanic (LIP) eruption, increased CO2 levels, and significant climate warming triggered the event. Recently, OAE2 has also been cited as a potential example of ocean acidification in Earth history and therefore has potential to offer predictive insights on impacts of increasing modern pCO2 levels. As part of an effort to test this hypothesis, the 131-m Smoky Hollow #1 (SH-1) core was drilled near Big Water, Utah during the summer of 2014. The core recovered an expanded stratigraphic record of OAE2 from the mud-rich western margin of the Western Interior Seaway. A high-resolution stable carbon isotope record from bulk organic carbon (δ13Corg) indicates near-continuous preservation of OAE2 with a sustained +2.5‰ excursion that is over 5 times the thickness of the same excursion at the C/T GSSP in Pueblo, Colorado. Notably, this record is characterized by a 1-m thick carbonate-barren interval at the δ13C excursion's onset. This may indicate an episode of ocean acidification driving suppressed carbonate sedimentation or carbonate dissolution. An alternative interpretation is that variations in carbonate concentrations are unrelated to changes in ocean chemistry and are instead driven by changes in local sedimentation patterns (e.g. transgressive-regressive parasequences). To test these hypotheses, a regional lithostratigraphic correlation to the nearshore Cottonwood Canyon section is constructed to assess whether prograding sandy parasequences may have altered carbonate sedimentation rates at the SH-1 locality. Initial osmium and δ13C chemostratigraphies are also developed to constrain the timing of perturbations in global geochemical cycles at the initiation of OAE2, including the onset of large

  4. Climatic patterns in equatorial and southern Africa from 30,000 to 10,000 years ago reconstructed from terrestrial and near-shore proxy data

    NASA Astrophysics Data System (ADS)

    Gasse, Françoise; Chalié, Françoise; Vincens, Annie; Williams, Martin A. J.; Williamson, David

    2008-12-01

    As part of a wider study of last glacial and deglacial climates in the Southern Hemisphere continents, we here review terrestrial and near-shore marine records from equatorial and southern Africa between 30,000 and 10,000 years ago (30-10 ka). This time interval covers the lead-up to the Last Glacial Maximum (LGM; 21 ± 2 ka), the LGM proper, and the ensuing deglacial. Records selected for review needed to meet three requirements: continuity or near continuity over the period; a well-established chronology; and at least one but preferably several unambiguous proxy(ies). We aim to show how regional climates of the sub-continent have responded to orbital forcing as opposed to other global glacial-interglacial boundary conditions, and how they are related to high latitude climates, sea and land surface conditions, positions of the Intertropical Convergence Zone (ITCZ) and of the westerly belt. Evidence of past climates derived from many independent proxies is given from west to southwest Africa (moisture from the Atlantic Ocean), then from equatorial East Africa to the southern subtropical summer rainfall domain (moisture mainly from the Indian Ocean). The LGM was cooler than today, and generally drier in the tropics. North of 8-9°S, glacial to Holocene increase in monsoonal precipitation, primarily related to orbitally-induced summer insolation in the northern hemisphere, occurred by steps of increasing amplitude (˜17-16, 14.5, 11.5 ka). Major wet-dry spells coincide with abrupt warm-cold events in high northern latitudes and related ITCZ migrations. In the southern tropics, the main post-glacial increase in tropical rainfall generally appears more gradual and in phase with Antarctic warming. Data suggest a restricted northward migration of the ITCZ and concentration of tropical rainfall well south of the Equator during the LGM and the Younger Dryas. Drier glacial conditions prevailed in southeastern Africa, while parts of southwestern Africa point to enhanced

  5. Characterization of the Lower Aptian Oceanic Anoxic Event (OAE) 1a in the Eastern Iberian Chain (Maestrat Basin, E Spain) by Means of Ammonite Biostratigraphy

    NASA Astrophysics Data System (ADS)

    Moreno-Bedmar, J. A.; Company, M.; Bover-Arnal, T.; Delanoy, G.; Martinez, R.; Grauges, A.; Salas, R.

    2008-05-01

    Oceanic Anoxic Event 1a (OAE1a) is now generally recognized to correlate with the lower part of the Leupoldina cabri planktonic foraminifer Zone. Unfortunately, the calibration of this zone against the standard ammonite scale has remained uncertain. Our recent high-resolution geochemical study (Carbon-isotope) of Lower Aptian sequences in the Iberian Chain of eastern Spain (Moreno-Bedmar et al., in prep) was used as proxy to further characterize OAE 1a. The sequence provides additional ammonite biostratigraphic data that permit correlation of the ammonite zonation with the isotopic signature of OAE1a. That interval includes specimens we identified with affinity for species of Roloboceras and Megatyloceras in the same beds that contain species of Deshayesites forbesi Casey, and Deshayesites gr. euglyphus/spathi, which are characteristic of the Deshayesites weissi Zone. Our results also indicate that D. deshayesi (d'Orbigny), the nominate taxon which marks the base of the superjacent Zone, first occurs a few meters above the geochemical signature corresponding to OAE 1a. Our isotopic data correlated with the ammonite occurrences are in further agreement with Roloboceras beds in England (Casey, 1961a, b; Casey et al., 1998) that are correlational with the Boreal Deshayesites forbesi Zone, which is coeval with the Mediterranean Deshayesites weissi Zone. Similarly, in the Cassis-La Bédoule area (SE France) the OAE 1a interval also corresponds to the Roloboceras beds, but they have been assigned to the Deshayesites deshayesi biozone (Ropolo et al., 2000; 2006). Here we argue that specimens attributed to D. deshayesi (d'Orbigny) and D. dechyi (Papp) from the Roloboceras levels (Ropolo et al., 2006) can be reinterpreted as belonging to D. forbesi, characteristic species of Deshayesites weissi Zone. Stratigraphic data from Roloboceras beds in le Teil region (Ardech patform, SE France) also reveal the presence of Deshayesites consobrinus (d'Orbigny) and Deshayesites gr

  6. Isorenieratane record in black shales from the Paris Basin, France: Constraints on recycling of respired CO2 as a mechanism for negative carbon isotope shifts during the Toarcian oceanic anoxic event

    NASA Astrophysics Data System (ADS)

    van Breugel, Yvonne; Baas, Marianne; Schouten, Stefan; Mattioli, Emanuela; Sinninghe Damsté, Jaap S.

    2006-12-01

    The prominent negative stable carbon isotope excursion in both carbonate and organic carbon recorded in organic-rich sediments deposited during the Toarcian oceanic anoxic event (OAE) has commonly been explained by recycling of 13C-depleted CO2 (the so-called Küspert model). More recently, the massive release of 13C-depleted methane or other forms of 13C-depleted carbon was also proposed to account for the observed negative δ13C excursions in organic carbon of terrigenous as well as of marine origin. The occurrence of diagenetic products of the carotenoid isorenieratene (isorenieratane and other aryl isoprenoids) in Toarcian black shales has been regarded as supporting evidence for the Küspert hypothesis as they point to strong stratification of the epicontinental seas. A section of a drill core straddling the Toarcian of the Paris Basin (Cirfontaine-en-Ornois) contained intact isorenieratane, providing evidence that photosynthetic green sulphur bacteria were present at the time of deposition, even prior to the OAE. However, the isorenieratane abundances are very low in the section where the negative δ13C excursion in organic carbon and phytane, a chemical fossil derived from chlorophyll, occurs. The abundance of the isorenieratene derivatives increases, once the δ13C records have shifted to more positive values. The δ13C of isorenieratane (generally circa -13.1 ± 0.5 ‰) indicates that the respired CO2 contribution at the chemocline was low and is thus not likely to be the main cause of the prominent up to 7‰ negative δ13C shift recorded in Toarcian organic carbon records.

  7. The first metazoa living in permanently anoxic conditions

    PubMed Central

    2010-01-01

    Background Several unicellular organisms (prokaryotes and protozoa) can live under permanently anoxic conditions. Although a few metazoans can survive temporarily in the absence of oxygen, it is believed that multi-cellular organisms cannot spend their entire life cycle without free oxygen. Deep seas include some of the most extreme ecosystems on Earth, such as the deep hypersaline anoxic basins of the Mediterranean Sea. These are permanently anoxic systems inhabited by a huge and partly unexplored microbial biodiversity. Results During the last ten years three oceanographic expeditions were conducted to search for the presence of living fauna in the sediments of the deep anoxic hypersaline L'Atalante basin (Mediterranean Sea). We report here that the sediments of the L'Atalante basin are inhabited by three species of the animal phylum Loricifera (Spinoloricus nov. sp., Rugiloricus nov. sp. and Pliciloricus nov. sp.) new to science. Using radioactive tracers, biochemical analyses, quantitative X-ray microanalysis and infrared spectroscopy, scanning and transmission electron microscopy observations on ultra-sections, we provide evidence that these organisms are metabolically active and show specific adaptations to the extreme conditions of the deep basin, such as the lack of mitochondria, and a large number of hydrogenosome-like organelles, associated with endosymbiotic prokaryotes. Conclusions This is the first evidence of a metazoan life cycle that is spent entirely in permanently anoxic sediments. Our findings allow us also to conclude that these metazoans live under anoxic conditions through an obligate anaerobic metabolism that is similar to that demonstrated so far only for unicellular eukaryotes. The discovery of these life forms opens new perspectives for the study of metazoan life in habitats lacking molecular oxygen. PMID:20370908

  8. Corrigendum to "Basin-scale controls on the molybdenum-isotope composition of seawater during Oceanic Anoxic Event 2 (Late Cretaceous)" [Geochim. Cosmochim. Acta 178 (2016) 291-306

    NASA Astrophysics Data System (ADS)

    Dickson, Alexander J.; Jenkyns, Hugh C.; Porcelli, Donald; van den Boorn, Sander; Idiz, Erdem; Owens, Jeremy D.

    2016-09-01

    A recent molybdenum-isotope estimate of the extent of anoxic and euxinic conditions in the world ocean during Oceanic Anoxic Event 2 (∼94 Ma) concluded by discussing a contrast between the new results with existing estimates of marine euxinia based on sulphur isotopes. This suggested contrast was erroneous; when areal extents of marine anoxia and euxinia are calculated for both isotopic proxies, the agreement is actually striking, and highlights the fact that large areas of the global ocean probably remained well ventilated during this event.

  9. Microbial oceanography of anoxic oxygen minimum zones.

    PubMed

    Ulloa, Osvaldo; Canfield, Donald E; DeLong, Edward F; Letelier, Ricardo M; Stewart, Frank J

    2012-10-01

    Vast expanses of oxygen-deficient and nitrite-rich water define the major oxygen minimum zones (OMZs) of the global ocean. They support diverse microbial communities that influence the nitrogen economy of the oceans, contributing to major losses of fixed nitrogen as dinitrogen (N(2)) and nitrous oxide (N(2)O) gases. Anaerobic microbial processes, including the two pathways of N(2) production, denitrification and anaerobic ammonium oxidation, are oxygen-sensitive, with some occurring only under strictly anoxic conditions. The detection limit of the usual method (Winkler titrations) for measuring dissolved oxygen in seawater, however, is much too high to distinguish low oxygen conditions from true anoxia. However, new analytical technologies are revealing vanishingly low oxygen concentrations in nitrite-rich OMZs, indicating that these OMZs are essentially anoxic marine zones (AMZs). Autonomous monitoring platforms also reveal previously unrecognized episodic intrusions of oxygen into the AMZ core, which could periodically support aerobic metabolisms in a typically anoxic environment. Although nitrogen cycling is considered to dominate the microbial ecology and biogeochemistry of AMZs, recent environmental genomics and geochemical studies show the presence of other relevant processes, particularly those associated with the sulfur and carbon cycles. AMZs correspond to an intermediate state between two "end points" represented by fully oxic systems and fully sulfidic systems. Modern and ancient AMZs and sulfidic basins are chemically and functionally related. Global change is affecting the magnitude of biogeochemical fluxes and ocean chemical inventories, leading to shifts in AMZ chemistry and biology that are likely to continue well into the future.

  10. Plutonium and americium in anoxic marine sediments: Evidence against remobitization

    NASA Astrophysics Data System (ADS)

    Carpenter, R.; Beasley, T. M.

    1981-10-01

    239 + 240Pu activities of 100-450dpm/kg are found down to 15-18 cm in anoxic Saanich Inlet sediments, with a subsurface maximum in undisturbed deposits. Integrated 239 + 240Pu inventories which overlap delivery estimates are present both in two cores of anoxic sediments from Saanich Inlet and in one core of oxic sediments 65 km away in Dabob Bay, Washington. 241Am /239 + 240Pu ratios in Saanich Inlet sediments overlap ratios in unfractionated midnorthern latitude fallout, in oxic sediments from the Washington continental shelf, and in anoxic sediments from two basins off southern California and Mexico. The 239 + 240Pu /137Cs ratios in three intervals of Saanich Inlet sediments are also in agreement with ratios previously reported for oxic coastal marine sediments. The Pu inventories, the Am/Pu and Pu/Cs ratios, and the Saanich Inlet Dabob Bay comparison all argue that Pu is not rapidly remobilized in anoxic sediments. The subsurface 239 + 240Pu activity maximum is not in agreement with the historical record of peak Pu fallout in 1963-1964 unless our 210Pb-derived sedimentation rates are incorrectly high. However, they are in good agreement with previous 210Pb and varve chronologies in Saanich Inlet, and also give reasonable dates for times when 239 + 240Pu and SNAP-9A supplied 238Pu first appear in the sediments. We conclude they properly date the maximum in sedimentary 239 + 240Pu activity at 1970-1973, and seek explanations for the 7-10yr time lag after peak fallout. 239 + 240Pu inventories in one core from the eastern basin of the Cariaco Trench and in two cores from Golfo Dulce. an anoxic basin off the Pacific coast of Costa Rica, are also in reasonable agreement with fallout delivery to these latitudes when excess 210Pb inventories and fluxes are used to verify recovery of at least a major fraction of the most recently deposited sediments.

  11. The challenge of proving the existence of metazoan life in permanently anoxic deep-sea sediments.

    PubMed

    Danovaro, Roberto; Gambi, Cristina; Dell'Anno, Antonio; Corinaldesi, Cinzia; Pusceddu, Antonio; Neves, Ricardo Cardoso; Kristensen, Reinhardt Møbjerg

    2016-01-01

    The demonstration of the existence of metazoan life in absence of free oxygen is one of the most fascinating and difficult challenges in biology. Danovaro et al. (2010) discovered three new species of the Phylum Loricifera, living in the anoxic sediments of the L'Atalante, a deep-hypersaline anoxic basin of the Mediterranean Sea. Multiple and independent analyses based on staining, incorporation of radiolabeled substrates, CellTracker Green incorporation experiments and ultra-structure analyses, allowed Danovaro et al. (2010) to conclude that these animals were able to spend their entire life cycle under anoxic conditions. Bernhard et al. (2015) investigated the same basin. Due to technical difficulties in sampling operations, they could not collect samples from the permanently anoxic sediment, and sampled only the redoxcline portion of the L'Atalante basin. They found ten individuals of Loricifera and provided alternative interpretations of the results of Danovaro et al. (2010). Here we analyze these interpretations, and present additional evidence indicating that the Loricifera encountered in the anoxic basin L'Atalante were actually alive at the time of sampling. We also discuss the reliability of different methodologies and approaches in providing evidence of metazoans living in anoxic conditions, paving the way for future investigations.This paper is a response to Bernhard JM, Morrison CR, Pape E, Beaudoin DJ, Todaro MA, Pachiadaki MG, Kormas KAr, Edgcomb VG. 2015. Metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins. BMC Biology 2015 13:105.See research article at http://bmcbiol.biomedcentral.com/articles/10.1186/s12915-015-0213-6. PMID:27267928

  12. Anoxic monimolimnia: Nutrients devious feeders or bombs ready to explode?

    NASA Astrophysics Data System (ADS)

    Gianni, Areti; Zacharias, Ierotheos

    2015-04-01

    Coastal regions are under strong human influence and its environmental impact is reflected into their water quality. Oligotrophic estuaries and coastal systems have changed in mesotrophic and/or eutrophic, shown an increase in toxic algal blooms, hypoxic/anoxic events, and massive mortalities of many aquatic and benthic organisms. In strongly stratified and productive water basins, bottom water dissolved oxygen is depleted due to the excessive organic matter decomposition in these depths. Distribution and recycling of nutrients in their water column is inextricably dependent on oxygenation and redox conditions. Bottom water anoxia accelerates PO43-, NH4+ and H2S recycling and accumulation from organic matter decomposition. The anoxic, H2S, PO43- and NH4+ rich bottom water constitutes a toxic layer, threatening the balance of the entire ecosystem. In permanently stratified water basins, storm events could result in stratification destruction and water column total mixing. The turnover brings large amounts of H2S to the surface resulting in low levels of oxygen and massive fish kills. PO43- and NH4+ are released to the interface and surface waters promoting algal blooms. Μore organic matter is produced fueling anoxia. The arising question is, whether the balance of an anoxic water ecosystem is under the threat of its hypolimnetic nutrient and sulfide load, only in the case of storm events and water column total mixing. In polymictic water basins it is clear that the accumulated, in the bottom layer, nutrients will supply surface waters, after the pycnocline overturn. Besides this mechanism of basins' water quality degradation is nowadays recognized as one of the biggest obstacles in eutrophic environments management and restoration efforts. The role of internal load, in permanently stratified water basins, is not so clear. In the present study the impact of storm events on water column stability and bottom water anoxia of meromictic coastal basins, is investigated

  13. Biogeochemical consequences of an oxygenated intrusion into an anoxic fjord

    PubMed Central

    2014-01-01

    Background This paper is based on the studies of the biogeochemical structure of the water column in the anoxic Fjord Hunnbunn (south-eastern Norway) performed in 2009, 2011 and 2012. This Fjord is an enclosed basin of brackish water separated by a narrow and shallow outlet to the sea with a permanently anoxic layer. We show how an oxygenated intrusion could lead to both positive and negative effects on the ecosystem state in Hunnbunn due to a change in the biogeochemical structure. Results During the stratified periods in 2009 and 2012 the anoxic layer amounted to approximately 10% of the total water volume in the Fjord, while dissolved oxygen (DO) was present in 80-90% of the water. In the autumn of 2011 the water chemistry structure observed in Fjord Hunnbunn was clearly affected by a recent oxygenated intrusion defined by abnormal salinity patterns. This led to a shift of the DO boundary position to shallower depths, resulting in a thicker anoxic layer comprising approximately 40% of the total water volume, with DO present only in approximately 60% of the water. The oxygenated water intrusions led to a twofold decrease of the concentrations of hydrogen sulphide, ammonia, phosphate and silicate in the deep layers with a simultaneous increase of these nutrients and a decrease of the pH level in the surface layers. The concentrations of manganese, iron, and mercury species changed dramatically and in particular revealed a significant supply of iron and methylmercury to the water column. Conclusions Oxic water intrusions into anoxic fjords could lead not only to the flushing of the bottom anoxia, but to a dispersal of sulphidic and low oxygen conditions to the larger bottom area. The elevation of the hydrogen sulphide to the shallower layers (that can be rapidly oxidized) is accompanied by the appearance in the subsurface water of methylmercury, which is easily accumulated by organisms and can be transported to the surrounding waters, affecting the ecosystem over a

  14. Dense bottom gravity currents and their impact on pelagic methanotrophy at oxic/anoxic transition zones

    NASA Astrophysics Data System (ADS)

    Schmale, Oliver; Krause, Srefan; Holtermann, Peter; Power Guerra, Nicole C.; Umlauf, Lars

    2016-04-01

    Interfaces between oxic and anoxic water bodies represent distinct zones in which the activity of specially adapted microbes often controls biogeochemical transformations. Anoxic basins as the Black Sea, the Cariaco Basin, and the Baltic Sea represent ideal locations to examine these processes, the involved microorganisms, and the influence of their metabolism on the turnover of different substances. Taking the Baltic Sea as an example, it is shown here that turbulent mixing of sulfidic and oxic waters may have a strong impact on microbially-mediated transformations. Direct evidence for these processes was derived from observations of methane oxidizing bacteria (MOB), their activity, and turbulence inside a sharp redox interface, freshly generated by a large-scale intrusion of oxic waters into the sulfidic deep layers of the central Baltic Sea (Gotland Basin). Based on detailed turbulence measurements, different mixing regimes along the basin slope were defined in our study to characterize the effect of turbulent mixing on MOB abundances and methanotrophic activities. We found that methane oxidation rates inside the oxic/anoxic transition zone at the shallow entrance of the basin were five times higher compared to the weakly turbulent redoxcline region in the deep interior of the basin. We propose that high mixing rates in the entrance and the close vicinity of two oxic/anoxic transition zones increased the flux of oxygen and methane into the transition zone, and consequently stimulated the growth of the MOB population and their activity. In contrast, low mixing rates in the stagnant interior of the basin reduced the flux of these gases into the transition zone, explaining the relatively small MOB population size and low methane turnover rates observed in the center of the basin.

  15. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period.

    PubMed

    Erbacher, J; Huber, B T; Norris, R D; Markey, M

    2001-01-18

    Ocean anoxic events were periods of high carbon burial that led to drawdown of atmospheric carbon dioxide, lowering of bottom-water oxygen concentrations and, in many cases, significant biological extinction. Most ocean anoxic events are thought to be caused by high productivity and export of carbon from surface waters which is then preserved in organic-rich sediments, known as black shales. But the factors that triggered some of these events remain uncertain. Here we present stable isotope data from a mid-Cretaceous ocean anoxic event that occurred 112 Myr ago, and that point to increased thermohaline stratification as the probable cause. Ocean anoxic event 1b is associated with an increase in surface-water temperatures and runoff that led to decreased bottom-water formation and elevated carbon burial in the restricted basins of the western Tethys and North Atlantic. This event is in many ways similar to that which led to the more recent Plio-Pleistocene Mediterranean sapropels, but the greater geographical extent and longer duration (approximately 46 kyr) of ocean anoxic event 1b suggest that processes leading to such ocean anoxic events in the North Atlantic and western Tethys were able to act over a much larger region, and sequester far more carbon, than any of the Quaternary sapropels.

  16. Increased thermohaline stratification as a possible cause for an ocean anoxic event in the Cretaceous period.

    PubMed

    Erbacher, J; Huber, B T; Norris, R D; Markey, M

    2001-01-18

    Ocean anoxic events were periods of high carbon burial that led to drawdown of atmospheric carbon dioxide, lowering of bottom-water oxygen concentrations and, in many cases, significant biological extinction. Most ocean anoxic events are thought to be caused by high productivity and export of carbon from surface waters which is then preserved in organic-rich sediments, known as black shales. But the factors that triggered some of these events remain uncertain. Here we present stable isotope data from a mid-Cretaceous ocean anoxic event that occurred 112 Myr ago, and that point to increased thermohaline stratification as the probable cause. Ocean anoxic event 1b is associated with an increase in surface-water temperatures and runoff that led to decreased bottom-water formation and elevated carbon burial in the restricted basins of the western Tethys and North Atlantic. This event is in many ways similar to that which led to the more recent Plio-Pleistocene Mediterranean sapropels, but the greater geographical extent and longer duration (approximately 46 kyr) of ocean anoxic event 1b suggest that processes leading to such ocean anoxic events in the North Atlantic and western Tethys were able to act over a much larger region, and sequester far more carbon, than any of the Quaternary sapropels. PMID:11201737

  17. Geochemistry of oceanic anoxic events

    NASA Astrophysics Data System (ADS)

    Jenkyns, Hugh C.

    2010-03-01

    Oceanic anoxic events (OAEs) record profound changes in the climatic and paleoceanographic state of the planet and represent major disturbances in the global carbon cycle. OAEs that manifestly caused major chemical change in the Mesozoic Ocean include those of the early Toarcian (Posidonienschiefer event, T-OAE, ˜183 Ma), early Aptian (Selli event, OAE 1a, ˜120 Ma), early Albian (Paquier event, OAE 1b, ˜111 Ma), and Cenomanian-Turonian (Bonarelli event, C/T OAE, OAE 2, ˜93 Ma). Currently available data suggest that the major forcing function behind OAEs was an abrupt rise in temperature, induced by rapid influx of CO2 into the atmosphere from volcanogenic and/or methanogenic sources. Global warming was accompanied by an accelerated hydrological cycle, increased continental weathering, enhanced nutrient discharge to oceans and lakes, intensified upwelling, and an increase in organic productivity. An increase in continental weathering is typically recorded by transient increases in the seawater values of 87Sr/86Sr and 187Os/188Os ratios acting against, in the case of the Cenomanian-Turonian and early Aptian OAEs, a longer-term trend to less radiogenic values. This latter trend indicates that hydrothermally and volcanically sourced nutrients may also have stimulated local increases in organic productivity. Increased flux of organic matter favored intense oxygen demand in the water column, as well as increased rates of marine and lacustrine carbon burial. Particularly in those restricted oceans and seaways where density stratification was favored by paleogeography and significant fluvial input, conditions could readily evolve from poorly oxygenated to anoxic and ultimately euxinic (i.e., sulfidic), this latter state being geochemically the most significant. The progressive evolution in redox conditions through phases of denitrification/anammox, through to sulfate reduction accompanied by water column precipitation of pyrite framboids, resulted in fractionation of

  18. Apparent removal of the transient tracer carbon tetrachloride from anoxic seawater

    SciTech Connect

    Krysell, M.; Fogelqvist, E.; Tanhua, T. |

    1994-11-01

    Two chlorofluorocarbons (CFC-11 and carbon tetrachloride, CCl4) widely used as tracers for dating water masses, were measured in the Gotland Basin of the Baltic Sea. At the time of the survey, the bottom water of the basin had remained stagnant for 15 years and anoxic for about the same period of time, and the concentrations of both CFC-11 and CCl4 decrease dramatically with depth below the mixed layer. Furthermore, the ratio of CFC-11 to CCl4 increases with depth under the mixed layer along with a steep decrease in oxygen concentration. This is contrary to what would be expected from the atmospheric histories. The most plausible explanation for this is that there is a mechanism whereby the CCl4 is removed from the water mass under anoxic and suboxide conditions.

  19. Cretaceous anoxic-oxic changes in the Moldavids (Carpathians, Romania)

    NASA Astrophysics Data System (ADS)

    Melinte-Dobrinescu, Mihaela C.; Roban, Relu-Dumitru

    2011-03-01

    black shales in the Eastern Carpathians during the Late Valanginian-Late Albian interval is linked to the existence of a small, silled basin of the Moldavian Trough, in which restricted circulation led to the density stratification of the water column, resulting in the deposition of anoxic Lower Cretaceous sediments (i.e., the black shales). Because of the tectonic deformation that took place within the Lower-Upper Cretaceous boundary interval, the restricted circulation had changed to an open circulation regime in the Moldavian Trough. Hence, the anoxic regime was progressively replaced by an oxic one, across the Albian-Cenomanian boundary interval. The beginning and the end of the CORBs in the Moldavid units depend thus on various palaeogeographic and palaeoenvironmental settings, and it was controlled by the regional tectonic activity.

  20. Gradual and sustained carbon dioxide release during Aptian Oceanic Anoxic Event 1a

    NASA Astrophysics Data System (ADS)

    Naafs, B. D. A.; Castro, J. M.; de Gea, G. A.; Quijano, M. L.; Schmidt, D. N.; Pancost, R. D.

    2016-02-01

    During the Aptian Oceanic Anoxic Event 1a, about 120 million years ago, black shales were deposited in all the main ocean basins. The event was also associated with elevated sea surface temperatures and a calcification crisis in calcareous nannoplankton. These environmental changes have been attributed to variations in atmospheric CO2 concentrations, but the evolution of the carbon cycle during this event is poorly constrained. Here we present records of atmospheric CO2 concentrations across Oceanic Anoxic Event 1a derived from bulk and compound-specific δ13C from marine rock outcrops in southern Spain and Tunisia. We find that CO2 concentrations doubled in two steps during the oceanic anoxic event and remained above background values for approximately 1.5-2 million years before declining. The rise of CO2 concentrations occurred over several tens to hundreds of thousand years, and thus was unlikely to have resulted in any prolonged surface ocean acidification, suggesting that CO2 emissions were not the primary cause of the nannoplankton calcification crisis. We find that the period of elevated CO2 concentrations coincides with a shift in the oceanic osmium-isotope inventory associated with emplacement of the Ontong Java Plateau flood basalts, and conclude that sustained volcanic outgassing was the primary source of carbon dioxide during Oceanic Anoxic Event 1a.

  1. Evidence For Volcanic Initiation Of Cretaceous Ocean Anoxic Events (Invited)

    NASA Astrophysics Data System (ADS)

    Sageman, B. B.; Hurtgen, M. T.; McElwain, J.; Adams, D.; Barclay, R. S.; Joo, Y.

    2010-12-01

    Increasing evidence from studies of Cretaceous ocean anoxic events (OAE’s) has suggested that major changes in volcanic activity may have played a significant role in their genesis. Numerous specific mechanisms of have been proposed, including increases in atmospheric CO2 and surface temperature, leading to enhanced chemical weathering and terrestrial nutrient release, or increases in reduced trace metal fluxes, leading to oxygen depletion and possibly providing micronutrients for enhanced primary production. An additional pathway by which the byproducts of enhanced volcanic activity may have contributed to OAE genesis involves relationships between the biogeochemical cycles sulfur, iron, and phosphorus. Recent analysis of S-isotope data from carbonate-associated sulfate and pyrite collected across the Cenomanian-Turonian OAE2 in the Western Interior basin suggest that increases in sulfate to an initially sulfate-depleted ocean preceded onset of the event. Modern lake data support the idea that increases in sulfate concentration drive microbial sulfate reduction, leading to more efficient regeneration of P from sedimentary organic matter. If the early Cretaceous opening of the South Atlantic was accompanied by evaporite deposition sufficient to draw down global marine sulfate levels, and widespread anoxia leading to elevated pyrite burial helped maintain these low levels for the succeeding 30 myr, during which most Cretaceous OAE’s are found, perhaps pulses of volcanism that rapidly introduced large volumes of sulfate may have played a key role in OAE initiation. The eventually burial of S in the form of pyrite may have returned sulfate levels to a low background, thus providing a mechanism to terminate the anoxic events. This talk will review the evidence for volcanic initiation of OAE’s in the context of the sulfate-phosphorus regeneration model.

  2. Molybdenum drawdown during Cretaceous Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Goldberg, Tatiana; Poulton, Simon W.; Wagner, Thomas; Kolonic, Sadat F.; Rehkämper, Mark

    2016-04-01

    During the Cretaceous greenhouse, episodes of widespread ocean deoxygenation were associated with globally occurring events of black shale deposition. Possibly the most pronounced of these oceanic anoxic events (OAE's) was the Cenomanian-Turonian OAE2 (∼94 Ma). However, although certain redox sensitive trace metals tend to be preferentially sequestered in sediments deposited under anoxic conditions, with Mo drawdown being specifically prone to euxinic settings, these elements are generally somewhat depleted in sediments deposited during OAE2. To understand the driving factors responsible for this depleted trace metal drawdown, we have studied a low latitude section from the proto-North Atlantic Ocean (Tarfaya S57), where existing biomarker and iron-sulphur data point to a dominantly euxinic water column, with periodic transitions to ferruginous (Fe-rich) water column conditions. We utilise a variety of redox proxies (Fe-speciation, redox sensitive trace metals and Mo isotopes), which, in combination, allows us to evaluate the detailed nature of ocean redox conditions and hence controls on trace metal drawdown. The results suggest that seawater δ98Mo values may have ranged between ∼0.6 and 1.1‰ during OAE2, likely connected to changes in the local Mo reservoir as a consequence of low and probably heterogeneous concentrations of Mo in the ocean. The very low Mo/TOC ratios at Tarfaya and elsewhere in the proto-North Atlantic may support a model in which deep-water circulation was partially restricted within and between the North Atlantic and other ocean basins. We propose that the combination of a low and possibly heterogeneous δ98Mo of seawater Mo, together with low Mo/TOC ratios, points to a large decrease in the global oceanic Mo reservoir during OAE2, reflecting a major global scale increase in Mo drawdown under persistent euxinic conditions.

  3. Oxic and Anoxic Regions of Subseafloor Sediment

    NASA Astrophysics Data System (ADS)

    D'Hondt, S.; Pockalny, R. A.; Spivack, A. J.; Inagaki, F.; Murray, R. W.; Adhikari, R. R.; Gribsholt, B.; Kallmeyer, J.; McKinley, C. C.; Morono, Y.; Røy, H.; Sauvage, J.; Ziebis, W.

    2015-12-01

    Dissolved oxygen content defines two broad categories of subseafloor sediment. In areas with high rates of microbial respiration, most of the sediment column is anoxic and active anaerobic microbial communities are present for hundreds of meters or more below the seafloor. In these regions, O2 and aerobic communities penetrate only millimeters to centimeters into the sediment from the sediment-water interface. In some areas of active fluid flow through the underlying basalt, O2 may also penetrate meters upward into the sediment from the basalt. In areas with low sedimentary respiration, O2 and aerobic communities penetrate tens of meters downward from the seafloor and may persist throughout the entire sediment column. IODP Expedition 329 showed that microbial cells and aerobic respiration persist through the entire sediment sequence (to depths of at least 75 meters below seafloor) in the South Pacific Gyre. Extrapolating from these results and a global relationship of O2 penetration depth to sedimentation rate and sediment thickness, we suggest that oxygen and aerobic communities occur throughout the entire sediment sequence in 15-44% of the Pacific and 9-37% of the global seafloor. Subduction of sediment from largely anoxic regions and subduction of sediment and basalt from fully oxic regions are respectively sources of reduced and oxidized material to the mantle. The balance between oxic and anoxic regions has presumably changed considerably throughout Earth history. Regions with largely anoxic sediment and regions with fully oxic sediment present fundamentally different opportunities for understanding of (i) paleoceanographic history and (ii) the nature of microbial life under extreme energy limitations.

  4. Impact of Cretaceous sea level rise and anoxic events on the Mesozoic carbonate platform of Yugoslavia

    SciTech Connect

    Jenkyns, H.C. )

    1991-06-01

    The Adriatic/Dinaric carbonate platform of Yugoslavia was influenced by rapid sea level rise and an oceanic anoxic event during the Cenomanian-Turonian. Open-marine biota such as planktonic foraminifera, radiolarians, and locally even ammonites, associated with and bracketed by successions of typical shallow-water carbonates, indicate partial drowning of substantial areas of the platform during this time, suggestive furthermore that the rate of increase of water depth was locally great enough to outpace carbonate production. The presence of carbon-rich and fish-bearing platy limestones, commonly cherty, as an associated coeval facies indicates the development of anoxic or euxinic environments, and the stromatolitic laminations in such rocks are attributed to the action of bacterial mats. It is suggested that an extensive column of deoxygenated water developed in the neighboring Marche-Umbrian-Adriatic deep-water basin and was carried on to the carbonate platform during the Cenomanian-Turonian transgression.

  5. Dense bottom gravity currents and their impact on pelagic methanotrophy at oxic/anoxic transition zones

    NASA Astrophysics Data System (ADS)

    Schmale, Oliver; Krause, Stefan; Holtermann, Peter; Power Guerra, Nicole C.; Umlauf, Lars

    2016-05-01

    We show that inflows of oxygenated waters into sulfidic layers have a strong impact on biogeochemical transformation at oxic/anoxic transition zones. Taking the pelagic methane dynamics in the Gotland Basin as an example, we performed our studies when one of the largest inflows ever recorded entered the Baltic Sea in March 2015. An inflowing gravity current transported oxic waters into the sulfidic deep layers and freshly generated a near-bottom secondary redox interface. At the upper slope, where the inflowing water masses were vigorously turbulent and the main and secondary redox interfaces in close contact to each other, methane oxidation rates inside the transition zone were found to be higher compared to the weakly turbulent basin interior. At the main redox interface in the basin center, lateral intrusions of oxygenated waters into intermediate water depth may have stimulated the growth of the methanotrophic community and their activity.

  6. Enhancement of dimethylsulfide production by anoxic stress in natural seawater

    NASA Astrophysics Data System (ADS)

    Omori, Yuko; Tanimoto, Hiroshi; Inomata, Satoshi; Wada, Shigeki; Thume, Kathleen; Pohnert, Georg

    2015-05-01

    Dimethylsulfide (DMS) is produced by phytoplankton in the ocean and plays an important role in biogeochemical cycles and climate system of the Earth. Previous field studies reported a possible relationship between DMS enhancement and anoxic condition, although the governing processes are still to be identified. Here we show the first direct evidence for the enhancement of DMS production by natural planktonic assemblages caused by anoxic stress. Under the anoxic condition, DMS production was considerably enhanced and DMS bacterial consumption was inhibited, resulting in an eightfold higher rate of gross DMS production than that under the oxic condition. Our results demonstrated that anoxic stress is one of important "environmental factors" in the marine DMS dynamics, suggesting the possible global importance due to ubiquity of anoxic conditions in the coastal oceans. This process would become more important in the future due to expansion of coastal hypoxic and anoxic zones by global warming.

  7. Cellular Basis of Anoxic-Ischemic Brain Injury

    PubMed Central

    Bronshvag, Michael M.

    1978-01-01

    Anoxic-ischemic cerebral disease is an important primary cause of morbidity and mortality, and also complicates a number of systemic diseases. Its clinical manifestations, such as hemiparesis and coma, represent cellular injury sustained by the complex, inhomogeneous brain. An understanding of the nature and pattern of anoxic-ischemic cerebral injury, and of the logical basis for avenues of therapy, is necessary to the management of patients with the various anoxic-ischemic disorders. PMID:685270

  8. Are Iron-Phosphate Minerals a Sink for Phosphorus in Anoxic Black Sea Sediments?

    PubMed Central

    Dijkstra, Nikki; Kraal, Peter; Kuypers, Marcel M. M.; Schnetger, Bernhard; Slomp, Caroline P.

    2014-01-01

    Phosphorus (P) is a key nutrient for marine organisms. The only long-term removal pathway for P in the marine realm is burial in sediments. Iron (Fe) bound P accounts for a significant proportion of this burial at the global scale. In sediments underlying anoxic bottom waters, burial of Fe-bound P is generally assumed to be negligible because of reductive dissolution of Fe(III) (oxyhydr)oxides and release of the associated P. However, recent work suggests that Fe-bound P is an important burial phase in euxinic (i.e. anoxic and sulfidic) basin sediments in the Baltic Sea. In this study, we investigate the role of Fe-bound P as a potential sink for P in Black Sea sediments overlain by oxic and euxinic bottom waters. Sequential P extractions performed on sediments from six multicores along two shelf-to-basin transects provide evidence for the burial of Fe-bound P at all sites, including those in the euxinic deep basin. In the latter sediments, Fe-bound P accounts for more than 20% of the total sedimentary P pool. We suggest that this P is present in the form of reduced Fe-P minerals. We hypothesize that these minerals may be formed as inclusions in sulfur-disproportionating Deltaproteobacteria. Further research is required to elucidate the exact mineral form and formation mechanism of this P burial phase, as well as its role as a sink for P in sulfide-rich marine sediments. PMID:24988389

  9. Are iron-phosphate minerals a sink for phosphorus in anoxic Black Sea sediments?

    PubMed

    Dijkstra, Nikki; Kraal, Peter; Kuypers, Marcel M M; Schnetger, Bernhard; Slomp, Caroline P

    2014-01-01

    Phosphorus (P) is a key nutrient for marine organisms. The only long-term removal pathway for P in the marine realm is burial in sediments. Iron (Fe) bound P accounts for a significant proportion of this burial at the global scale. In sediments underlying anoxic bottom waters, burial of Fe-bound P is generally assumed to be negligible because of reductive dissolution of Fe(III) (oxyhydr)oxides and release of the associated P. However, recent work suggests that Fe-bound P is an important burial phase in euxinic (i.e. anoxic and sulfidic) basin sediments in the Baltic Sea. In this study, we investigate the role of Fe-bound P as a potential sink for P in Black Sea sediments overlain by oxic and euxinic bottom waters. Sequential P extractions performed on sediments from six multicores along two shelf-to-basin transects provide evidence for the burial of Fe-bound P at all sites, including those in the euxinic deep basin. In the latter sediments, Fe-bound P accounts for more than 20% of the total sedimentary P pool. We suggest that this P is present in the form of reduced Fe-P minerals. We hypothesize that these minerals may be formed as inclusions in sulfur-disproportionating Deltaproteobacteria. Further research is required to elucidate the exact mineral form and formation mechanism of this P burial phase, as well as its role as a sink for P in sulfide-rich marine sediments.

  10. Tidally-forced flow in a rotating, stratified, shoaling basin

    NASA Astrophysics Data System (ADS)

    Winters, Kraig B.

    2015-06-01

    Baroclinic flow of a rotating, stratified fluid in a parabolic basin is computed in response to barotropic tidal forcing using the nonlinear, non-hydrostatic, Boussinesq equations of motion. The tidal forcing is derived from an imposed, boundary-enhanced free-surface deflection that advances cyclonically around a central amphidrome. The tidal forcing perturbs a shallow pycnocline, sloshing it up and down over the shoaling bottom. Nonlinearities in the near-shore internal tide produce an azimuthally independent 'set-up' of the isopycnals that in turn drives an approximately geostrophically balanced, cyclonic, near-shore, sub-surface jet. The sub-surface cyclonic jet is an example of a slowly evolving, nearly balanced flow that is excited and maintained solely by forcing in the fast, super-inertial frequency band. Baroclinic instability of the nearly balanced jet and subsequent interactions between eddies produce a weak transfer of energy back into the inertia-gravity band as swirling motions with super-inertial vorticity stir the stratified fluid and spontaneously emit waves. The sub-surface cyclonic jet is similar in many ways to the poleward flows observed along eastern ocean boundaries, particularly the California Undercurrent. It is conjectured that such currents may be driven by the surface tide rather than by winds and/or along-shore pressure gradients.

  11. Effects of intracellular structural associations on degradation of algal chloropigments in natural oxic and anoxic seawaters

    NASA Astrophysics Data System (ADS)

    Ding, Haibing; Sun, Ming-Yi

    2005-09-01

    To understand the effects of intracellular structural associations on degradation of algal chloropigments, we conducted a series of microcosm experiments by incubating Emiliania huxleyi cells (a marine haptophyte) in natural oxic and anoxic seawaters collected from a stratified water column in the Cariaco Basin. The incubated cell detritus were sequentially treated with two buffer solutions to separate pigment components into soluble and insoluble fractions. By using non-denaturing gel electrophoresis, several chlorophyll-complexes, free chlorophyll, and another unknown chlorophyll-containing component were further separated from the soluble fraction. The chlorophyll-complexes included those bound with high molecular weight core-proteins (CP-I and CP43+CP47) and low molecular weight polypeptides (LHC-I and LHC-II) in the cellular photosystems PS-I and PS-II. Overall pigment recovery from these fractions and gel bands was well equivalent to the total amount from direct acetone extraction of the cells. We followed the time-dependent concentration changes of chlorophyll-a (Chl-a), phaeophorbide-a (Ppb-a), and phaeophytin-a (Ppt-a) in all fractions and complexes to estimate the degradation rate constants of chloropigments in natural oxic and anoxic seawaters. Our experimental results demonstrated that the intracellular structural associations had important influences on degradation of chloropigments under different redox conditions. In general, total Chl-a degraded faster (˜4X) in oxic seawater than in anoxic seawater. However, the rate differences between oxic and anoxic conditions varied among the fractions and complexes. Degradation rate constants of Chl-a in soluble fraction were much higher (>10X) than those in insoluble fraction under both oxic and anoxic conditions. Chl-a bound with the complexes in PS-II appeared to be more reactive (˜2X) than that in PS-I under oxic conditions but the difference in degradation rate constants between two photosystems became

  12. MERCURY RELEASE FROM DISTURBED ANOXIC SOILS

    SciTech Connect

    Jaroslav Solc; Bethany A. Bolles

    2001-07-16

    The primary objectives of experiments conducted at the Energy & Environmental Research Center (EERC) were to provide information on the secondary release of mercury from contaminated anoxic sediments to an aqueous environment after disturbance/change of in situ physical conditions and to evaluate its migration and partitioning under controlled conditions, including implications of these processes for treatment of contaminated soils. Experimental work included (1) characterization of the mercury-contaminated sediment; (2) field bench-scale dredging simulation; (3) laboratory column study to evaluate a longer-term response to sediment disturbance; (4) mercury volatilization from sediment during controlled drying; (5) resaturation experiments to evaluate the potential for secondary release of residual mercury after disturbance, transport, drying, and resaturation, which simulate a typical scenario during soil excavation and transport to waste disposal facilities; and (6) mercury speciation and potential for methylation during column incubation experiments.

  13. Chlorofluorocarbon-11 removal in anoxic marine waters

    NASA Astrophysics Data System (ADS)

    Bullister, John L.; Lee, Bing-Sun

    Measurements of the chlorofluorocarbons CCl3F (F-11) and CCl2F2 (F-12) made in the subsurface anoxic zones of the Black Sea and Saanich Inlet, B.C., Canada show a pronounced depletion of dissolved F-11. These zones are strongly reducing and are characterized by the absence of dissolved nitrate (NO3-) and the presence of hydrogen sulfide (H2S). Models incorporating the atmospheric input histories of these CFCs and the observed distributions are used to estimate residence times for water in these zones and first order in-situ removal rates for F-11. In contrast, measurements in the mid-depth low-oxygen zone of the eastern Pacific (where NO3- is present and H2S is below detection limits) do not show evidence of similar rapid F-11 removal.

  14. Geochemistry of laboratory anoxic limestone drains

    SciTech Connect

    Sterner, P.; Skousen, J.; Donovan, J.

    1998-12-31

    An anoxic limestone drain (ALD) is a passive treatment system for treating acid mine drainage (AMD). Historically it has been thought that AMD containing Fe{sup 3+} and Al{sup 3+} severely inhibits or stops limestone dissolution due to coating of limestone surfaces by precipitates generated during the neutralization process. Limestone dissolution in field ALDs is difficult to quantify because sampling of the water in ALDs at various locations is not possible, and fluctuations in flow and water chemistry affect limestone dissolution rates. Laboratory experiments were developed to determine the effects of Fe{sup 3+} and Al{sup 3+} precipitation on limestone dissolution and the controlling precipitation reactions. Synthetic AMD containing Fe{sup 3+} or Al{sup 3+} with and without sulfate was pumped through limestone-packed columns constructed with three sampling ports at equidistant intervals along the column. Water and sediments were periodically extracted for analysis at all sampling ports over a 12-hr period. Results show the majority of limestone dissolution occurred within the first 1.2 hrs of water-limestone contact. Limestone dissolution rate decreased with time and distance along the flow path. Higher concentrations of Fe{sup 3+} and Al{sup 3+} (increased in mineral acidity and ionic strength) enhanced limestone dissolution. Geochemical modeling predicted that solutions were nearest equilibrium with respect to the amorphic metal hydroxide phases. Although solutions were periodically oversaturated with respect to sulfate containing minerals, but no x-ray identifiable sulfate minerals were found in the solid phase. The data suggest that smaller anoxic limestone drains may be used when the goal is to neutralize mineral acidity, thus reducing spatial requirements. However, if the goal is to treat AMD to NPDES limits, ALDs may not be a viable long term treatment alternative.

  15. The Global Record of the Toarcian Ocean Anoxic Event: Perspectives from the Eastern Panthalassic Ocean

    NASA Astrophysics Data System (ADS)

    Gill, B. C.; Them, T. R., II; Caruthers, A. H.; Tulsky, E. T. T.; Martindale, R. C.; Marroquín, S. M.; Gröcke, D. R.

    2015-12-01

    Much of the debate surrounding Oceanic Anoxic Events (OAEs) concerns the regional versus global aspects of biogeochemical and environmental changes associated with it. Untangling local versus global aspects of OAEs remains a major challenge. This is particularly true for the Toarcian Oceanic Anoxic Event or T-OAE of the Early Jurassic (~182 million years ago) since few open ocean, deep-sea sedimentary records remain for this time interval. Much of the uncertainly surrounding the geochemical record of this event derives from the fact that the majority of the studied stratigraphic successions occur in Western Europe. These localities record the paleoceanographic conditions within the western Tethys Ocean and adjacent epeiric seas. To develop a greater understanding of the T-OAE we will present geochemical and biostratigraphic data from western North America (Alberta) that will enable us to access paleoceanographic changes associated with the T-OAE in the eastern Panthalassic Ocean. The Early Jurassic stratigraphic succession in Alberta consist of carbonate ramp facies that transition into basinal fine-grained siliciclastic facies. Ammonite biostratigraphy from this succession identifies the time interval spanning the Pliensbachian and Toarcian Stages (Carlottense, Kanense and Planulata zones of western North America). Organic carbon isotope data from the studied sections show the negative excursion that is now recognized globally to occur during the T-OAE. Locally, geochemical data indicate that the distal portions of a carbonate ramp and basinal facies were anoxic during the T-OAE and the carbonate factory appears to have been drowned at the onset of the T-OAE. In addition, sulfur isotope and iron speciation data will be presented from these successions to examine further the paleoceanographic changes of the Panthalassic Ocean in response to the T-OAE. Importantly, this Panthalassic succession provides an additional perspective for understanding global

  16. Investigating phosphorus uptake in anoxic and sulfidic surface sediments with 33P radiotracer experiments

    NASA Astrophysics Data System (ADS)

    Dijkstra, Nikki; Kraal, Peter; Gonzalez, Santiago; Slomp, Caroline

    2016-04-01

    Phosphorus (P) is a key nutrient for marine organisms. Enhanced P availability in the water column can fuel algal blooms and the development of bottom water anoxia. Recently, it was suggested that micro-organisms in sediments overlain by anoxic and sulfidic bottom waters might take up dissolved P and form Fe(II)-P minerals, thereby enhancing P removal. In this study, we investigated the uptake of P in surface sediments with 33P radiotracer experiments. The sediments were recovered from the anoxic and sulfidic deep basin of the Black Sea and, for comparison, from the adjacent oxic shelf. Results suggest a very fast sedimentary uptake of 33P at all sites but in particular for sediments from the oxic shelf. At all sites, most 33P was sequestered in the citrate-dithionite-bicarbonate-(CDB)-extractable sediment P fraction. No significant differences with abiotic controls were observed, implying that micro-organisms were not directly involved in the P uptake. Whereas 33P uptake by the oxic shelf sediment was likely controlled by sorption of 33P to iron(Fe)-(oxyhydr)oxides, the nature of the CDB-extractable P fraction in the deep basin sediments remains unclear. We discuss whether authigenic formation of Fe(II)-P minerals or fast adsorption of P to calcites may explain our findings.

  17. Sludge minimization using aerobic/anoxic treatment technology

    SciTech Connect

    Mines, R.O. Jr.; Kalch, R.S.

    1999-07-01

    The objective of this investigation was to demonstrate through a bench-scale study that using an aerobic/anoxic sequence to treat wastewater and biosolids could significantly reduce the production of biosolids (sludge). A bench-scale activated sludge reactor and anoxic digester were operated for approximately three months. The process train consisted of a completely-mixed aerobic reactor with wasting of biosolids to an anoxic digester for stabilization. The system was operated such that biomass produced in the aerobic activated sludge process was wasted to the anoxic digester; and biomass produced in the anoxic digester was wasted back to the activated sludge process. A synthetic wastewater consisting of bacto-peptone nutrient broth was fed to the liquid process train. Influent and effluent to the aerobic biological process train were analytically tested, as were the contents of mixed liquor in the aerobic reactor and anoxic digester. Overall removal efficiencies for the activated sludge process with regard to COD, TKN, NH{sub 3}-N, and alkalinity averaged 91, 89, 98, and 38%, respectively. The overall average sludge production for the aerobic/anoxic process was 24% less than the overall average sludge production from a conventional activated sludge bench-scale system fed the same substrate and operated under similar mean cell residence times.

  18. Pasquill-taylor dispersion parameters over water near shore

    NASA Astrophysics Data System (ADS)

    Sheih, Ching-Ming

    The nondimensional dispersion functions (representing dispersion coefficients normalized by the product of rms velocity fluctuations and travel time) proposed by Pasquill have been computed for lateral and vertical dispersion over water by use of data derived from the Lagrangian coordinates of neutrally-buoyant balloons released from a boat several kilometres offshore during onshore wind conditions. For the stability range investigated ( -2.8 < z/L< 4.0 , where z and L are height and Obukhov length), the data are classified into unstable, near neutral and stable conditions. Regression curves are derived to represent the nondimensional lateral and vertical dispersion functions. The apparent integral time scales necessary to define the dispersion functions are found to be smaller over coastal region than over land.

  19. Origin of first cells at terrestrial, anoxic geothermal fields.

    PubMed

    Mulkidjanian, Armen Y; Bychkov, Andrew Yu; Dibrova, Daria V; Galperin, Michael Y; Koonin, Eugene V

    2012-04-01

    All cells contain much more potassium, phosphate, and transition metals than modern (or reconstructed primeval) oceans, lakes, or rivers. Cells maintain ion gradients by using sophisticated, energy-dependent membrane enzymes (membrane pumps) that are embedded in elaborate ion-tight membranes. The first cells could possess neither ion-tight membranes nor membrane pumps, so the concentrations of small inorganic molecules and ions within protocells and in their environment would equilibrate. Hence, the ion composition of modern cells might reflect the inorganic ion composition of the habitats of protocells. We attempted to reconstruct the "hatcheries" of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells. These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K(+), Zn(2+), Mn(2+), and phosphate. Thus, protocells must have evolved in habitats with a high K(+)/Na(+) ratio and relatively high concentrations of Zn, Mn, and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under the anoxic, CO(2)-dominated primordial atmosphere, the chemistry of basins at geothermal fields would resemble the internal milieu of modern cells. The precellular stages of evolution might have transpired in shallow ponds of condensed and cooled geothermal vapor that were lined with porous silicate minerals mixed with metal sulfides and enriched in K(+), Zn(2+), and phosphorous compounds.

  20. Origin of first cells at terrestrial, anoxic geothermal fields.

    PubMed

    Mulkidjanian, Armen Y; Bychkov, Andrew Yu; Dibrova, Daria V; Galperin, Michael Y; Koonin, Eugene V

    2012-04-01

    All cells contain much more potassium, phosphate, and transition metals than modern (or reconstructed primeval) oceans, lakes, or rivers. Cells maintain ion gradients by using sophisticated, energy-dependent membrane enzymes (membrane pumps) that are embedded in elaborate ion-tight membranes. The first cells could possess neither ion-tight membranes nor membrane pumps, so the concentrations of small inorganic molecules and ions within protocells and in their environment would equilibrate. Hence, the ion composition of modern cells might reflect the inorganic ion composition of the habitats of protocells. We attempted to reconstruct the "hatcheries" of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells. These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K(+), Zn(2+), Mn(2+), and phosphate. Thus, protocells must have evolved in habitats with a high K(+)/Na(+) ratio and relatively high concentrations of Zn, Mn, and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under the anoxic, CO(2)-dominated primordial atmosphere, the chemistry of basins at geothermal fields would resemble the internal milieu of modern cells. The precellular stages of evolution might have transpired in shallow ponds of condensed and cooled geothermal vapor that were lined with porous silicate minerals mixed with metal sulfides and enriched in K(+), Zn(2+), and phosphorous compounds. PMID:22331915

  1. The geochemistry of Oceanic Anoxic Events:

    NASA Astrophysics Data System (ADS)

    Jenkyns, Hugh

    2010-05-01

    Oceanic Anoxic Events (OAEs) record profound changes in the climatic and palaeoceanographic state of the planet and represent major disturbances in the global carbon cycle. OAEs that manifestly caused major chemical change in the Mesozoic Ocean include those of the early Toarcian (Posidonienschiefer Event, T-OAE, ~183Ma), early Aptian (Selli Event, OAE 1a, ~120Ma), early Albian (Paquier Event, OAE 1b, ~111Ma) and Cenomanian-Turonian (Bonarelli Event, C/T OAE, OAE 2, ~93Ma). Currently available data suggest that the major forcing function behind OAEs was an abrupt rise in temperature, induced by rapid influx of CO2 into the atmosphere from volcanogenic and/or methanogenic sources. Global warming was accompanied by an accelerated hydrological cycle, increased continental weathering, enhanced nutrient discharge to oceans and lakes, intensified upwelling, and an increase in organic productivity transmitted to the sedimentary record as black shales. An increase in continental weathering is typically recorded by transient increases in the seawater values of 87Sr/86Sr and 187Os/188Os ratios acting against, in the case of the Cenomanian-Turonian and early Aptian OAEs, a longer term trend to less radiogenic values. This latter trend indicates that hydrothermally and volcanically sourced nutrients may also have stimulated local increases in organic productivity. Increased flux of organic matter favoured intense oxygen demand in the water column, as well as increased rates of marine and lacustrine carbon burial. Particularly in those restricted oceans and seaways where density stratification was favoured by palaeogeography and significant fluvial input, conditions could readily evolve from poorly oxygenated to anoxic and ultimately euxinic (i.e sulphidic), this latter state being geochemically the most significant. The progressive evolution in redox conditions through phases of denitrification/anammox, through to sulphate reduction accompanied by water-column precipitation of

  2. The Toarcian Oceanic Anoxic Event: a shallow-water perspective

    NASA Astrophysics Data System (ADS)

    Bodin, Stephane; Krencker, Francois-Nicolas; Kabiri, Lahcen; Immenhauser, Adrian

    2015-04-01

    The Toarcian ocean anoxic event (T-OAE, ca. 183 Ma) corresponds to a major perturbation of the carbon cycle as reflected by a marked decrease (2 to 7 per mil) in carbon-isotope ratios of various carbonate and organic matter phases. Severe environmental perturbations and biotic turnovers are accompanying the unfolding of the T-OAE, which is thought to be initiated by the activity of the Karoo-Ferrar large igneous province. Most of the studies dedicated to the T-OAE were however undertaken in mud-rich, deep-water setting, leaving vast uncertainties about its shallow-water expression and accompanying sea-level fluctuations. Here we present an extensive sedimentological dataset of the shallow-water record of the T-OAE within the Central High Atlas Basin of Morocco. The combination of ammonite and brachiopod biostratigraphy, together with carbon-isotope chemostratigraphy (on both carbonate and organic matter) allows a precise location of the T-OAE in the studied shallow-water sections. Thanks to well-exposed and thick successions, relative sea-level variations were reconstructed on a high-resolution scale, highlighting several important facts. Firstly, the T-OAE interval is preceded by a 50 meters-deep incised valley, observed within the uppermost Polymorphum ammonite zone. Similar observations have been reported from Euro-boreal basins and, together with published evidences of coeval occurrence of relatively cool seawater temperature and low atmospheric pCO2, we postulate that this forced regression is driven by glacio-eustasy. This points at the occurrence of a "cold snap" event just prior to the onset of the T-OAE. Secondly, the inception of the T-OAE is marked by the demise of the Lithiotid-dominated neritic carbonate factory, replaced by siliciclastic-dominated sedimentation during the T-OAE negative carbon isotope shift. Thirdly, an important progradation of oo-biodetritic shoal occurs during the negative carbon isotope plateau, underlying that the renewal of

  3. Chlorofluorocarbon-11 removal in anoxic marine waters

    SciTech Connect

    Bullister, J.L.; Lee, B.S.

    1995-07-15

    Measurements of the chlorofluorocarbons CCl{sub 3}F (F-11) and CCl{sub 2}F{sub 2}(F-12) made in the subsurface anoxic zones of the Black Sea and Saanich Inlet, B.C., Canada show a pronounced depletion of dissolved F-11. These zones are strongly reducing and are characterized by the absence of dissolved nitrate (NO{sub 3}{sup {minus}}) and the presence of hydrogen sulfide (H{sub 2}S). Models incorporating the atmospheric input histories of these CFCs and the observed distributions are used to estimate residence times for water in these zones and first order in-situ removal rates for F-11. In contrast, measurements in the mid-depth low-oxygen zone of the eastern Pacific (where NO{sub 3}{sup {minus}} is present and H{sub 2}S is below detection limits) do not show evidence of similar rapid F-11 removal. 22 refs., 3 figs., 1 tab.

  4. Arrest of transcription following anoxic exposure in a marine mollusc.

    PubMed

    Larade, Kevin; Storey, Kenneth B

    2007-09-01

    The intertidal marine snail, Littorina littorea, is an anoxia tolerant species that endures long-term oxygen deprivation using a suite of compensatory metabolic adaptations that includes overall metabolic rate depression. Nuclear run-off assays were used to quantify the relative rates of mRNA transcription in nuclear extracts from hepatopancreas of aerobic and anoxic snails. Total [(32)P]-UTP incorporation into RNA by nuclei from 48 h anoxic snails ranged from 42 to 50% of that observed for nuclei from normoxic snails. When this data is transformed with respect to incubation time, the rate of [(32)P]-UTP incorporation by nuclei from 48 h anoxic snails showed a decrease of 68% as compared with the normoxic level. Examination of selected expressed sequence tags also showed an overall decrease in mRNA transcription levels in samples derived from anoxic nuclei as compared with normoxic nuclei. Control of ribosomal translation was also examined by assessing the levels of the eukaryotic initiation factors eIF-2alpha and eIF-4E and the eukaryotic elongation factor-1gamma (eEF-1gamma). Levels of eIF-4E and eEF-1gamma did not change between aerobic and anoxic states, but the amount of phosphorylated inactive eIF-2alpha rose strongly under anoxic conditions indicating that control of this factor is key to suppressing protein translation in anoxic snails. Since gene transcription is an ATP expensive process in cells, suppression of transcription to minimum levels provides substantial energy savings for the hepatopancreas, and the organism as a whole, under anoxic conditions. PMID:17503005

  5. Oxygenation of anoxic sediments triggers hatching of zooplankton eggs.

    PubMed

    Broman, Elias; Brüsin, Martin; Dopson, Mark; Hylander, Samuel

    2015-10-22

    Many coastal marine systems have extensive areas with anoxic sediments and it is not well known how these conditions affect the benthic-pelagic coupling. Zooplankton lay their eggs in the pelagic zone, and some sink and lie dormant in the sediment, before hatched zooplankton return to the water column. In this study, we investigated how oxygenation of long-term anoxic sediments affects the hatching frequency of dormant zooplankton eggs. Anoxic sediments from the brackish Baltic Sea were sampled and incubated for 26 days with constant aeration whereby, the sediment surface and the overlying water were turned oxic. Newly hatched rotifers and copepod nauplii (juveniles) were observed after 5 and 8 days, respectively. Approximately 1.5 × 10(5) nauplii m(-2) emerged from sediment turned oxic compared with 0.02 × 10(5) m(-2) from controls maintained anoxic. This study demonstrated that re-oxygenation of anoxic sediments activated a large pool of buried zooplankton eggs, strengthening the benthic-pelagic coupling of the system. Modelling of the studied anoxic zone suggested that a substantial part of the pelagic copepod population can derive from hatching of dormant eggs. We suggest that this process should be included in future studies to understand population dynamics and carbon flows in marine pelagic systems.

  6. Internal load management in eutrophic, anoxic environments. The role of natural zeolite.

    NASA Astrophysics Data System (ADS)

    Gianni, Areti; Zacharias, Ierotheos

    2015-04-01

    During the last decades, the increase of the nutrient and organic load inflows in the coastal zone increased the number of the anoxic environments. Inputs' control constitutes one of the basic practices for the eutrophic/anoxic aquatic ecosystems management. However, the induced changes at the ecosystem characteristics resulting from the trophic state alteration, and anoxic conditions prevalence, render the ecosystem's restoration difficult if not impossible. Bottom water anoxia accelerates PO43-, NH4+ and S2- recycling and accumulation from organic matter decomposition. This, toxic layer is a permanent menace for the balance of the entire ecosystem, as it can supply PO43-, NH4+ and S2- to the surface layers altering their qualitative character and threatening the welfare of fishes and other aquatic organisms. Having as objective the water basins' internal load control and based on practices are used in eutrophic environments' restoration, this study is referred to the role of the natural zeolite in eutrophic/anoxic ecosystems management. For the first time are presented, results from S2- removal experiments using the zeolitic mineral mordenite, [(Na2, Ca, K2)4 (H2O)28] [Al8Si40O96]. Four different sets of experiments were conducted, in order to examine zeolite's removal capacity of S2- in aquatic solutions, under a wide range of physicochemical parameters. More specific: a) the effect of initial pH on the removal process, b) the removal process kinetics, c) the removal process isotherms and d) the effect of salinity on the removal process were studied. Natural zeolite has the ability to neutralize the pH of aqueous solutions, thus all the experiments were practically performed at pH 7. Initially sulfides concentration range from 1 to 10mg/l. Zeolite's removal capability appeared to be directly depended on the S2- initial concentration. For initial concentration of 1mg/l, the removal rate reached up to 90% after 24h. The maximum zeolite removal capacity was

  7. The Cenomanian-Turonian oceanic anoxic event in Tibet, a real anoxic condition? Clues from Phosphorus, Carbon and Traces Elements accumulations.

    NASA Astrophysics Data System (ADS)

    Bomou, B.; Adatte, T.; Föllmi, K. B.; Caron, M.; Tantawy, A. A.; Fleitmann, D.; Matera, V.; Huang, Y.

    2009-04-01

    The Cenomanian-Turonian boundary is marked by an Oceanic Anoxic Event (OAE 2) characterized by finely laminated organic carbon rich sediments deposited under oxygen depleted conditions, coinciding with a positive shift in δ13C isotope excursion. The main goal of the present research is to get a better understanding of mechanisms which triggered these OAEs, and particularly the paleoenvironmental conditions which characterized the onset of that major anoxic event and their evolution. Mort (2007) demonstrated that the onset of the Cenomanian-Turonian OAE was triggered by a short-lived but significant increase in phosphorus burial. Then bottom waters became anoxic and switched from being a P sink to a P source, sustaining the productivity in a positive feedback loop. Increased aridity, removal of atmospheric CO2 by burial as organic carbon in black shales and reduction in nutrient availability may have been factors bringing about the return to more oxic oceans. However, Total Phosphorus (Ptot) and trace metals behaviour is not well known at larger scale, away from main black shales source (Western Tethys and Central Atlantic). It is especially interesting to see if P distribution will show a similar maximum predating the positive carbon excursion. We investigate therefore the section of Gongzha (Tibet, China) located at the north margin of the Indian plate in the Tethys Himalayas zone (SE Tethys). These sediments are deposited in open marine basin and slope settings under hemipelagic environment (Li et al., 2006). Clay analyses show that the sediments have been overprinted by burial diagenesis and tectonic processes, but the biostratigraphy by foraminifera and nannofossils, microfacies and carbon stable isotopes data indicate a quite good preservation and absence of significant hiatus. Carbon isotope analyses exhibit the classical C-T positive shift with a first peak near the end of R. cushmani zone, a second in the lower part of W. archaeocretacea zone, followed by

  8. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery

    PubMed Central

    Clarkson, M. O.; Wood, R. A.; Poulton, S. W.; Richoz, S.; Newton, R. J.; Kasemann, S. A.; Bowyer, F.; Krystyn, L.

    2016-01-01

    The end-Permian mass extinction, ∼252 million years ago, is notable for a complex recovery period of ∼5 Myr. Widespread euxinic (anoxic and sulfidic) oceanic conditions have been proposed as both extinction mechanism and explanation for the protracted recovery period, yet the vertical distribution of anoxia in the water column and its temporal dynamics through this time period are poorly constrained. Here we utilize Fe–S–C systematics integrated with palaeontological observations to reconstruct a complete ocean redox history for the Late Permian to Early Triassic, using multiple sections across a shelf-to-basin transect on the Arabian Margin (Neo-Tethyan Ocean). In contrast to elsewhere, we show that anoxic non-sulfidic (ferruginous), rather than euxinic, conditions were prevalent in the Neo-Tethys. The Arabian Margin record demonstrates the repeated expansion of ferruginous conditions with the distal slope being the focus of anoxia at these times, as well as short-lived episodes of oxia that supported diverse biota. PMID:27433855

  9. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery

    NASA Astrophysics Data System (ADS)

    Clarkson, M. O.; Wood, R. A.; Poulton, S. W.; Richoz, S.; Newton, R. J.; Kasemann, S. A.; Bowyer, F.; Krystyn, L.

    2016-07-01

    The end-Permian mass extinction, ~252 million years ago, is notable for a complex recovery period of ~5 Myr. Widespread euxinic (anoxic and sulfidic) oceanic conditions have been proposed as both extinction mechanism and explanation for the protracted recovery period, yet the vertical distribution of anoxia in the water column and its temporal dynamics through this time period are poorly constrained. Here we utilize Fe-S-C systematics integrated with palaeontological observations to reconstruct a complete ocean redox history for the Late Permian to Early Triassic, using multiple sections across a shelf-to-basin transect on the Arabian Margin (Neo-Tethyan Ocean). In contrast to elsewhere, we show that anoxic non-sulfidic (ferruginous), rather than euxinic, conditions were prevalent in the Neo-Tethys. The Arabian Margin record demonstrates the repeated expansion of ferruginous conditions with the distal slope being the focus of anoxia at these times, as well as short-lived episodes of oxia that supported diverse biota.

  10. Nitrogen losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia.

    PubMed

    Prokopenko, M G; Hirst, M B; De Brabandere, L; Lawrence, D J P; Berelson, W M; Granger, J; Chang, B X; Dawson, S; Crane, E J; Chong, L; Thamdrup, B; Townsend-Small, A; Sigman, D M

    2013-08-01

    Ninety per cent of marine organic matter burial occurs in continental margin sediments, where a substantial fraction of organic carbon escapes oxidation and enters long-term geologic storage within sedimentary rocks. In such environments, microbial metabolism is limited by the diffusive supply of electron acceptors. One strategy to optimize energy yields in a resource-limited habitat is symbiotic metabolite exchange among microbial associations. Thermodynamic and geochemical considerations indicate that microbial co-metabolisms are likely to play a critical part in sedimentary organic carbon cycling. Yet only one association, between methanotrophic archaea and sulphate-reducing bacteria, has been demonstrated in marine sediments in situ, and little is known of the role of microbial symbiotic interactions in other sedimentary biogeochemical cycles. Here we report in situ molecular and incubation-based evidence for a novel symbiotic consortium between two chemolithotrophic bacteria--anaerobic ammonium-oxidizing (anammox) bacteria and the nitrate-sequestering sulphur-oxidizing Thioploca species--in anoxic sediments of the Soledad basin at the Mexican Pacific margin. A mass balance of benthic solute fluxes and the corresponding nitrogen isotope composition of nitrate and ammonium fluxes indicate that anammox bacteria rely on Thioploca species for the supply of metabolic substrates and account for about 57 ± 21 per cent of the total benthic N2 production. We show that Thioploca-anammox symbiosis intensifies benthic fixed nitrogen losses in anoxic sediments, bypassing diffusion-imposed limitations by efficiently coupling the carbon, nitrogen and sulphur cycles. PMID:23925243

  11. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery.

    PubMed

    Clarkson, M O; Wood, R A; Poulton, S W; Richoz, S; Newton, R J; Kasemann, S A; Bowyer, F; Krystyn, L

    2016-07-19

    The end-Permian mass extinction, ∼252 million years ago, is notable for a complex recovery period of ∼5 Myr. Widespread euxinic (anoxic and sulfidic) oceanic conditions have been proposed as both extinction mechanism and explanation for the protracted recovery period, yet the vertical distribution of anoxia in the water column and its temporal dynamics through this time period are poorly constrained. Here we utilize Fe-S-C systematics integrated with palaeontological observations to reconstruct a complete ocean redox history for the Late Permian to Early Triassic, using multiple sections across a shelf-to-basin transect on the Arabian Margin (Neo-Tethyan Ocean). In contrast to elsewhere, we show that anoxic non-sulfidic (ferruginous), rather than euxinic, conditions were prevalent in the Neo-Tethys. The Arabian Margin record demonstrates the repeated expansion of ferruginous conditions with the distal slope being the focus of anoxia at these times, as well as short-lived episodes of oxia that supported diverse biota.

  12. Dynamic anoxic ferruginous conditions during the end-Permian mass extinction and recovery.

    PubMed

    Clarkson, M O; Wood, R A; Poulton, S W; Richoz, S; Newton, R J; Kasemann, S A; Bowyer, F; Krystyn, L

    2016-01-01

    The end-Permian mass extinction, ∼252 million years ago, is notable for a complex recovery period of ∼5 Myr. Widespread euxinic (anoxic and sulfidic) oceanic conditions have been proposed as both extinction mechanism and explanation for the protracted recovery period, yet the vertical distribution of anoxia in the water column and its temporal dynamics through this time period are poorly constrained. Here we utilize Fe-S-C systematics integrated with palaeontological observations to reconstruct a complete ocean redox history for the Late Permian to Early Triassic, using multiple sections across a shelf-to-basin transect on the Arabian Margin (Neo-Tethyan Ocean). In contrast to elsewhere, we show that anoxic non-sulfidic (ferruginous), rather than euxinic, conditions were prevalent in the Neo-Tethys. The Arabian Margin record demonstrates the repeated expansion of ferruginous conditions with the distal slope being the focus of anoxia at these times, as well as short-lived episodes of oxia that supported diverse biota. PMID:27433855

  13. Nitrogen losses in anoxic marine sediments driven by Thioploca-anammox bacterial consortia.

    PubMed

    Prokopenko, M G; Hirst, M B; De Brabandere, L; Lawrence, D J P; Berelson, W M; Granger, J; Chang, B X; Dawson, S; Crane, E J; Chong, L; Thamdrup, B; Townsend-Small, A; Sigman, D M

    2013-08-01

    Ninety per cent of marine organic matter burial occurs in continental margin sediments, where a substantial fraction of organic carbon escapes oxidation and enters long-term geologic storage within sedimentary rocks. In such environments, microbial metabolism is limited by the diffusive supply of electron acceptors. One strategy to optimize energy yields in a resource-limited habitat is symbiotic metabolite exchange among microbial associations. Thermodynamic and geochemical considerations indicate that microbial co-metabolisms are likely to play a critical part in sedimentary organic carbon cycling. Yet only one association, between methanotrophic archaea and sulphate-reducing bacteria, has been demonstrated in marine sediments in situ, and little is known of the role of microbial symbiotic interactions in other sedimentary biogeochemical cycles. Here we report in situ molecular and incubation-based evidence for a novel symbiotic consortium between two chemolithotrophic bacteria--anaerobic ammonium-oxidizing (anammox) bacteria and the nitrate-sequestering sulphur-oxidizing Thioploca species--in anoxic sediments of the Soledad basin at the Mexican Pacific margin. A mass balance of benthic solute fluxes and the corresponding nitrogen isotope composition of nitrate and ammonium fluxes indicate that anammox bacteria rely on Thioploca species for the supply of metabolic substrates and account for about 57 ± 21 per cent of the total benthic N2 production. We show that Thioploca-anammox symbiosis intensifies benthic fixed nitrogen losses in anoxic sediments, bypassing diffusion-imposed limitations by efficiently coupling the carbon, nitrogen and sulphur cycles.

  14. Cretaceous and Tertiary palynology used in the geological understanding of the Maturin sub-basin, Venezuela

    SciTech Connect

    Paredes, I.; Fasola, A. )

    1991-03-01

    The use of palynology and micropaleontology, two biostratigraphic tools used at Intevep, S.A., have been of great help in the geological understanding during studies done on cores of the Maturin subbasin, a foreland type basin in Eastern Venezuela. Basically, the palynological work consisted of palynological and palynofacies analysis used to determine ages and to interpret the paleoenvironments of deposition in comparison with the interpretations obtained through sedimentological and micropaleontological studies. Palynomorph assemblages and palynofacies are shown for the quiescent Late Cretaceous, for the Tertiary in sequences that are not exactly dated and probably represent the first compressive movements in the basin, and for the Oligocene. In general, in these sequences it was possible to determine marine environments varying from near-shore to inner neritic, and also subaereal paleosols in the Cretaceous. The work highlights the importance of multidisciplinary studies in order to obtain interpretations more in accordance with reality.

  15. Microbial Community of a Hydrothermal Mud Vent Underneath the Deep-Sea Anoxic Brine Lake Urania (Eastern Mediterranean)

    NASA Astrophysics Data System (ADS)

    Yakimov, Michail M.; Giuliano, Laura; Cappello, Simone; Denaro, Renata; Golyshin, Peter N.

    2007-04-01

    The composition of a metabolically active prokaryotic community thriving in hydrothermal mud fluids of the deep-sea hypersaline anoxic Western Urania Basin was characterized using rRNA-based phylogenetic analysis of a clone library. The physiologically active prokaryotic assemblage in this extreme environment showed a great genetic diversity. Most members of the microbial community appeared to be affiliated to yet uncultured organisms from similar ecosystems, i.e., deep-sea hypersaline basins and hydrothermal vents. The bacterial clone library was dominated by phylotypes affiliated with the epsilon- Proteobacteria subdivision recognized as an ecologically significant group of bacteria inhabiting deep-sea hydrothermal environments. Almost 18% of all bacterial clones were related to delta- Proteobacteria, suggesting that sulfate reduction is one of the dominant metabolic processes occurring in warm mud fluids. The remaining bacterial phylotypes were related to alpha- and beta- Proteobacteria, Actinobacteria, Bacteroides, Deinococcus-Thermus, KB1 and OP-11 candidate divisions. Moreover, a novel monophyletic clade, deeply branched with unaffiliated 16S rDNA clones was also retrieved from deep-sea sediments and halocline of Urania Basin. Archaeal diversity was much lower and detected phylotypes included organisms affiliated exclusively with the Euryarchaeota. More than 96% of the archaeal clones belonged to the MSBL-1 candidate order recently found in hypersaline anoxic environments, such as endoevaporitic microbial mats, Mediterranean deep-sea mud volcanoes and anoxic basins. Two phylotypes, represented by single clones were related to uncultured groups DHVE-1 and ANME-1. Thus, the hydrothermal mud of hypersaline Urania Basin seems to contain new microbial diversity. The prokaryotic community was significantly different from that occurring in the upper layers of the Urania Basin since 60% of all bacterial and 40% of all archaeal phylotypes were obtained only from mud

  16. Microbial community of a hydrothermal mud vent underneath the deep-sea anoxic brine lake Urania (eastern Mediterranean).

    PubMed

    Yakimov, Michail M; Giuliano, Laura; Cappello, Simone; Denaro, Renata; Golyshin, Peter N

    2007-04-01

    The composition of a metabolically active prokaryotic community thriving in hydrothermal mud fluids of the deep-sea hypersaline anoxic Western Urania Basin was characterized using rRNA-based phylogenetic analysis of a clone library. The physiologically active prokaryotic assemblage in this extreme environment showed a great genetic diversity. Most members of the microbial community appeared to be affiliated to yet uncultured organisms from similar ecosystems, i.e., deep-sea hypersaline basins and hydrothermal vents. The bacterial clone library was dominated by phylotypes affiliated with the epsilon-Proteobacteria subdivision recognized as an ecologically significant group of bacteria inhabiting deep-sea hydrothermal environments. Almost 18% of all bacterial clones were related to delta-Proteobacteria, suggesting that sulfate reduction is one of the dominant metabolic processes occurring in warm mud fluids. The remaining bacterial phylotypes were related to alpha- and beta-Proteobacteria, Actinobacteria, Bacteroides, Deinococcus-Thermus, KB1 and OP-11 candidate divisions. Moreover, a novel monophyletic clade, deeply branched with unaffiliated 16S rDNA clones was also retrieved from deep-sea sediments and halocline of Urania Basin. Archaeal diversity was much lower and detected phylotypes included organisms affiliated exclusively with the Euryarchaeota. More than 96% of the archaeal clones belonged to the MSBL-1 candidate order recently found in hypersaline anoxic environments, such as endoevaporitic microbial mats, Mediterranean deep-sea mud volcanoes and anoxic basins. Two phylotypes, represented by single clones were related to uncultured groups DHVE-1 and ANME-1. Thus, the hydrothermal mud of hypersaline Urania Basin seems to contain new microbial diversity. The prokaryotic community was significantly different from that occurring in the upper layers of the Urania Basin since 60% of all bacterial and 40% of all archaeal phylotypes were obtained only from mud

  17. Fallout plutonium in two oxic-anoxic environments

    SciTech Connect

    Sanchez, A.L.; Murray, J.W.; Schell, W.R.; Miller, L.G.

    1986-09-01

    The profiles of soluble fallout plutonium in two partially anoxic waters revealed minimum concentrations at the O/sub 2/-H/sub 2/S interface, indicating Pu removal onto particulate phases of Fe and other oxidized species that form during the redox cycle. In Saanich Inlet, an intermittently anoxic fjord in Vancouver Island, Canada, the concentration of soluble Pu in the anoxic zone was slightly less than in the oxygenated surface layer. In Soap Lake, a saline meromictic lake in eastern Washington State, Pu concentrations i the permanently anoxic zone were at least an order of magnitude higher than at the surface. Differences in the chemical characteristics of these two waters suggest important chemical species that influenced the observed Pu distribution. In the permanently anoxic zone of Soap Lake, high values of total alkalinity ranging from 940 to 1500 meq liter/sup -1/, sulfide species from 38 to 128 ..mu..M, dissolved organic carbon from 163 to 237 mg liter/sup -1/, and total dissolved solids from 80 to 140 ppt, all correlated with the observed high concentration of Pu. In Saanich Inlet, where total alkalinity ranged from 2.1 to 2.4 meq liter/sup -1/ and salinity from 25 to 32 per thousand and H/sub 2/S concentration in May 1981 showed a maximum of 8..mu..M, the observed Pu concentrations were significantly lower than for the Soap Lake monimolimnion.

  18. Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process.

    PubMed

    Saby, Sébastien; Djafer, Malik; Chen, Guang-Hao

    2003-01-01

    This paper studied the effect of oxidation-reduction potential (ORP) in the anoxic sludge zone on the excess sludge production in the oxic-settling-anoxic process (OSA process), a modified activated sludge process. Two pilot-scale activated sludge systems were employed in this study: (1) an OSA process that was modified from a conventional activated sludge process by inserting a sludge holding tank or namely the "anoxic" tank in the sludge return line; and (2) a conventional process used as the reference system. Each was composed of a membrane bioreactor to serve the aeration tank and solid/liquid separator. Both systems were operated with synthetic wastewater for 9 months. During the operation, the OSA system was operated with different ORP levels (+100 to -250 mV) in its anoxic tank. It has been confirmed that the OSA system produced much less excess sludge than the reference system. A lower ORP level than +100 mV in the anoxic tank is in favor of the excess sludge reduction. When the ORP level decreased from +100 to -250 mV the sludge reduction efficiency was increased from 23% to 58%. It has also been found that the OSA system performed better than the reference system with respect to the chemical oxygen demand removal efficiency and sludge settleability. The OSA process may present a potential low-cost solution to the excess sludge problem in an activated sludge process because addition of a sludge holding tank is only needed.

  19. The early Toarcian anoxic event: what the beginning and the end of the story are?

    NASA Astrophysics Data System (ADS)

    Mattioli, Emanuela; Plancq, Julien; Raucsik, Béla

    2010-05-01

    The early Toarcian anoxic event: what the beginning and the end of the story are? E. Mattioli (1), J. Plancq (1), and B. Rauksik (2) (1) UMR 5125 PEPS, CNRS, France; Université Lyon 1, Campus de la DOUA, Bâtiment Géode, 69622 Villeurbanne Cedex, France (emanuela.mattioli@univ-lyon1.fr) (2) Department of Earth and Environmental Sciences, University of Pannonia, Veszprém, Hungary The early Toarcian anoxic event (T-OAE) and the associated biotic crisis have received much attention in the last decade. However, the events forewarning the crisis as well as its aftermath are still poorly known. The T-OAE coincides with a prominent carbon isotope negative excursion (T-CIE) that is preceded by an excursion of similar intensity at the Pliensbachian-Toarcian boundary (Hesselbo et al., 2007). The onset of T-CIE occurred some 700 kyr later than the end of the Boundary-CIE (Suan et al., 2008a). This succession of events demonstrates that the T-OAE was a complex suite of environmental perturbations. In this work, we focused on calcareous nannofossil assemblages occurring in the Peniche section (Portugal) during the Boundary-CIE with the aim to understand if calcifying plankton reacted in a similar/different way to the two CIEs. Also, two sections and one borehole located along a W-E transect, along the NW-Tethyan shelf (in the Yorkshire coast, in the E Paris Basin, and in Mecsek Basin, respectively), were investigated to assess which way calcareous nannoplankton recovered after the crisis, and if the recovery was a synchronous event. The production by nannoplankton collapsed during the T-CIE, as demonstrated by the lowest absolute abundance of nannofossils measured in Peniche and other studied sites (Mattioli et al., 2008). Besides this nannofossil abundance decrease, also the size of the incertae sedis Schizosphaerella test was drastically reduced (Suan et al., 2008b). If a similar size decrease is also recorded during the Boundary-CIE, calcareous nannofossil abundances are

  20. Microbial sequestration of phosphorus in anoxic upwelling sediments

    NASA Astrophysics Data System (ADS)

    Goldhammer, Tobias; Brüchert, Volker; Ferdelman, Timothy G.; Zabel, Matthias

    2010-08-01

    Phosphorus is an essential nutrient for life. In the ocean, phosphorus burial regulates marine primary production. Phosphorus is removed from the ocean by sedimentation of organic matter, and the subsequent conversion of organic phosphorus to phosphate minerals such as apatite, and ultimately phosphorite deposits. Bacteria are thought to mediate these processes, but the mechanism of sequestration has remained unclear. Here, we present results from laboratory incubations in which we labelled organic-rich sediments from the Benguela upwelling system, Namibia, with a 33P-radiotracer, and tracked the fate of the phosphorus. We show that under both anoxic and oxic conditions, large sulphide-oxidizing bacteria accumulate 33P in their cells, and catalyse the nearly instantaneous conversion of phosphate to apatite. Apatite formation was greatest under anoxic conditions. Nutrient analyses of Namibian upwelling waters and sediments suggest that the rate of phosphate-to-apatite conversion beneath anoxic bottom waters exceeds the rate of phosphorus release during organic matter mineralization in the upper sediment layers. We suggest that bacterial apatite formation is a significant phosphorus sink under anoxic bottom-water conditions. Expanding oxygen minimum zones are projected in simulations of future climate change, potentially increasing sequestration of marine phosphate, and restricting marine productivity.

  1. Sulfur during the Transition from Anoxic to Oxic Atmospheres

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Catling, David; Claire, Mark

    2006-01-01

    The invention of oxygenic photosynthesis was likely accompanied by the introduction of large amounts of O2 and complementary reduced gases (chiefly CH4) into the atmosphere. To first approximation the venting of O2 and CH4 are stochiometrically linked. We therefore present a suite of numerical photochemical models that address the anoxic-oxic transition in an atmosphere driven by large linked inputs of biogenic 02 and CH4. We find in general that, in steady state, there are two solutions, one oxic and the other anoxic. The anoxic solution appears to be linearly stable. If volcanic SO2 fluxes are large, S disproportionates into oxidized (H2S04) and reduced (S8) exit channels. As elemental sulfur is insoluble it provides a means of preserving photochemical mass-independent fractionation (MIF). On the other hand, if the source of volcanic SO2 is smaller than today, all S can leave the atmosphere as S8. Under these conditions there would be no MIF signal. The oxic solution appears to be linearly unstable. In the oxic solutions S is invariably oxidized to sulfate, and the MIF signal would be absent. The transitional atmosphere is relatively unstable and is also the most photochemically active. Consequently it is the transitional atmosphere, not the oxic or anoxic atmospheres, that has the lowest CH4 levels and weakest greenhouse warming. As a practical matter we expect the transitional atmospheres to vary strongly in response to diurnal and seasonal biological forcing.

  2. Oceanic oxygenation events in the anoxic Ediacaran ocean.

    PubMed

    Sahoo, S K; Planavsky, N J; Jiang, G; Kendall, B; Owens, J D; Wang, X; Shi, X; Anbar, A D; Lyons, T W

    2016-09-01

    The ocean-atmosphere system is typically envisioned to have gone through a unidirectional oxygenation with significant oxygen increases in the earliest (ca. 635 Ma), middle (ca. 580 Ma), or late (ca. 560 Ma) Ediacaran Period. However, temporally discontinuous geochemical data and the patchy metazoan fossil record have been inadequate to chart the details of Ediacaran ocean oxygenation, raising fundamental debates about the timing of ocean oxygenation, its purported unidirectional rise, and its causal relationship, if any, with the evolution of early animal life. To better understand the Ediacaran ocean redox evolution, we have conducted a multi-proxy paleoredox study of a relatively continuous, deep-water section in South China that was paleogeographically connected with the open ocean. Iron speciation and pyrite morphology indicate locally euxinic (anoxic and sulfidic) environments throughout the Ediacaran in this section. In the same rocks, redox sensitive element enrichments and sulfur isotope data provide evidence for multiple oceanic oxygenation events (OOEs) in a predominantly anoxic global Ediacaran-early Cambrian ocean. This dynamic redox landscape contrasts with a recent view of a redox-static Ediacaran ocean without significant change in oxygen content. The duration of the Ediacaran OOEs may be comparable to those of the oceanic anoxic events (OAEs) in otherwise well-oxygenated Phanerozoic oceans. Anoxic events caused mass extinctions followed by fast recovery in biologically diversified Phanerozoic oceans. In contrast, oxygenation events in otherwise ecologically monotonous anoxic Ediacaran-early Cambrian oceans may have stimulated biotic innovations followed by prolonged evolutionary stasis.

  3. Oceanic oxygenation events in the anoxic Ediacaran ocean.

    PubMed

    Sahoo, S K; Planavsky, N J; Jiang, G; Kendall, B; Owens, J D; Wang, X; Shi, X; Anbar, A D; Lyons, T W

    2016-09-01

    The ocean-atmosphere system is typically envisioned to have gone through a unidirectional oxygenation with significant oxygen increases in the earliest (ca. 635 Ma), middle (ca. 580 Ma), or late (ca. 560 Ma) Ediacaran Period. However, temporally discontinuous geochemical data and the patchy metazoan fossil record have been inadequate to chart the details of Ediacaran ocean oxygenation, raising fundamental debates about the timing of ocean oxygenation, its purported unidirectional rise, and its causal relationship, if any, with the evolution of early animal life. To better understand the Ediacaran ocean redox evolution, we have conducted a multi-proxy paleoredox study of a relatively continuous, deep-water section in South China that was paleogeographically connected with the open ocean. Iron speciation and pyrite morphology indicate locally euxinic (anoxic and sulfidic) environments throughout the Ediacaran in this section. In the same rocks, redox sensitive element enrichments and sulfur isotope data provide evidence for multiple oceanic oxygenation events (OOEs) in a predominantly anoxic global Ediacaran-early Cambrian ocean. This dynamic redox landscape contrasts with a recent view of a redox-static Ediacaran ocean without significant change in oxygen content. The duration of the Ediacaran OOEs may be comparable to those of the oceanic anoxic events (OAEs) in otherwise well-oxygenated Phanerozoic oceans. Anoxic events caused mass extinctions followed by fast recovery in biologically diversified Phanerozoic oceans. In contrast, oxygenation events in otherwise ecologically monotonous anoxic Ediacaran-early Cambrian oceans may have stimulated biotic innovations followed by prolonged evolutionary stasis. PMID:27027776

  4. AMPA receptors undergo channel arrest in the anoxic turtle cortex.

    PubMed

    Pamenter, Matthew Edward; Shin, Damian Seung-Ho; Buck, Leslie Thomas

    2008-02-01

    Without oxygen, all mammals suffer neuronal injury and excitotoxic cell death mediated by overactivation of the glutamatergic N-methyl-D-aspartate receptor (NMDAR). The western painted turtle can survive anoxia for months, and downregulation of NMDAR activity is thought to be neuroprotective during anoxia. NMDAR activity is related to the activity of another glutamate receptor, the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR). AMPAR blockade is neuroprotective against anoxic insult in mammals, but the role of AMPARs in the turtle's anoxia tolerance has not been investigated. To determine whether AMPAR activity changes during hypoxia or anoxia in the turtle cortex, whole cell AMPAR currents, AMPAR-mediated excitatory postsynaptic potentials (EPSPs), and excitatory postsynaptic currents (EPSCs) were measured. The effect of AMPAR blockade on normoxic and anoxic NMDAR currents was also examined. During 60 min of normoxia, evoked peak AMPAR currents and the frequencies and amplitudes of EPSPs and EPSCs did not change. During anoxic perfusion, evoked AMPAR peak currents decreased 59.2 +/- 5.5 and 60.2 +/- 3.5% at 20 and 40 min, respectively. EPSP frequency (EPSP(f)) and amplitude decreased 28.7 +/- 6.4% and 13.2 +/- 1.7%, respectively, and EPSC(f) and amplitude decreased 50.7 +/- 5.1% and 51.3 +/- 4.7%, respectively. In contrast, hypoxic (Po(2) = 5%) AMPAR peak currents were potentiated 56.6 +/- 20.5 and 54.6 +/- 15.8% at 20 and 40 min, respectively. All changes were reversed by reoxygenation. AMPAR currents and EPSPs were abolished by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In neurons pretreated with CNQX, anoxic NMDAR currents were reversibly depressed by 49.8 +/- 7.9%. These data suggest that AMPARs may undergo channel arrest in the anoxic turtle cortex. PMID:18056983

  5. Water quality in the Withers Swash basin, with emphasis on enteric bacteria, Myrtle Beach, South Carolina, 1991-93. Water resources investigation

    SciTech Connect

    Guimaraes, W.B.

    1995-12-31

    The purpose of this report is to present data collected between 1991 and 1993 that characterizes the water quality of the Withers Swash Basin in Myrtle Beach, S.C. Data collected for this investigation reflect base- and high-flow water-quality sampling and intensive bacteria sampling. Specifically, the report includes discussions of the following data: (1) streamflow, (2) rainfall amounts, (3) values of physical properties, (4) inorganic constituent concentrations, and (5) organic compound concentrations. The report also extensively discusses results of a large-scale sampling effort for documentation of enteric bacteria counts in the Withers Swash Basin and the near-shore Atlantic Ocean. A discussion of the best management practices that reduce nonpoint-source pollution in the basin also is included.

  6. Early Cretaceous High Arctic Magmatism and the Oceanic Anoxic Event 1a

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Polteau, Stephane; Faleide, Jan Inge; Svensen, Henrik; Myklebust, Reidun; Midtkandal, Ivar; Corfu, Fernando

    2014-05-01

    The High Arctic Large Igneous Province (HALIP) comprises Early and Late Cretaceous igneous deposits extending from the Canadian Arctic Archipelago in the west to the east Siberian Island in the east. It also includes anomalously thick igneous crust in the Canada Basin. We have mapped out the distribution of HALIP volcanic extrusive and intrusive rocks in the Barents Sea based on field work and borehole data in Svalbard and extensive geophysical data in the offshore areas. The volcanic extrusive and intrusive rocks in the Barents Sea Large Igneous Province (BLIP) are present in a 700 000 km2 large region extending across the northern and eastern Barents Sea. The igneous complex is dominated by a large sill complex intruded into organic-rich Jurassic to Permian age sequences in the East Barents Basin, on Svalbard and on Franz Josef Land. Geochemical data suggest that the tholeiitic igneous rocks were likely formed during a short-lived melting event. New geochronology data (U/Pb on zircons) suggest that the igneous event occurred in the Early Aptian or Barremian. Marine and terrestrial Cretaceous shales and sandstones of the Carolinefjellet, Helvetiafjellet, and Rurikfjellet formations have recently been cored in four boreholes on Svalbard (the Longyearbyen CO2 Laboratory). We have completed a comprehensive analytical program of samples from the boreholes, including geochronology (Ar/Ar and zircon U/Pb), biostratigraphy (palynology), and geochemistry (ICP-MS, RockEval, TOC). In the boreholes, the Barremian-early Aptian Helvetiafjellet Formation is overlaid by early Aptian sapropel-rich shales of the Carolinefjellet Formation. Carbon isotope data reveal a negative excursion in this anoxic interval, most likely representing the Oceanic Anoxic Event 1a (OAE1a). The geochronology data suggest that the intrusive BLIP volcanism occurred at the tim e of the early Aptian OAE1a. We propose that the link between the BLIP and the OAE1a is a massive release of thermogenic methane

  7. Witwatersrand gold deposits formed by volcanic rain, anoxic rivers and Archaean life

    NASA Astrophysics Data System (ADS)

    Heinrich, Christoph A.

    2015-03-01

    The Witwatersrand Basin in South Africa is one of the best-preserved records of fluvial sedimentation on an Archaean continent. The basin hosts the worlds biggest gold resource in thin pebble beds, but the process for gold enrichment is debated. Mechanical accumulation of gold particles from flowing river water is the prevailing hypothesis, yet there is evidence for hydrothermal mobilization of gold by fluids invading the metasedimentary rocks after their burial. Earth's atmosphere three billion years ago was oxygen free, but already sustained some of the oldest microbial life on land. Here I use thermodynamic modelling and mass-balance calculations to show that these conditions could have led to the chemical transport and precipitation of gold in anoxic surface waters, reconciling the evidence for fluvial deposition with evidence for hydrothermal-like chemical reactions. I suggest that the release of sulphurous gases from large volcanic eruptions created acid rain that enabled the dissolution and transport of gold in surface waters as sulphur complexes. Precipitation of the richest gold deposits could have been triggered by chemical reduction of the dissolved gold onto organic material in shallow lakes and pools. I conclude that the Witwatersrand gold could have formed only during the Archaean, after the emergence of continental life but before the rise of oxygen in the Earth's atmosphere.

  8. Heterogeneous oxygenation states in the Atlantic and Tethys oceans during Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Westermann, Stéphane; Vance, Derek; Cameron, Vyllinniskii; Archer, Corey; Robinson, Stuart A.

    2014-10-01

    The Cenomanian-Turonian boundary (ca. 93.5 Ma) is marked by an episode of profound environmental change, including a major perturbation of the carbon cycle and an Oceanic Anoxic Event (OAE-2). Here, we present molybdenum (Mo) isotope variations within the OAE-2 interval for four sections from the western Tethys (Furlo and La Contessa) and the North-Atlantic (ODP site 1276 and DSDP site 367). The main target of this study is to investigate the extent of reducing conditions (truly global in extent or restricted to poorly-ventilated restricted deep basins), with particular reference to the relationship between the change in the oxygenation state of the ocean and the link to global perturbations of the carbon cycle recorded in carbon isotopes. All four sections show fluctuations in the redox sensitive trace metal (RSTE) distribution, suggesting rapid variations in local redox conditions, ranging from anoxic to euxinic. The RSTE enrichment factors (EFs) also suggest different depositional conditions and paleoceanographic processes in the western Tethys versus the North Atlantic. Whereas the North Atlantic sites show evidence of weak watermass restriction associated with the action of a particulate shuttle within the water column, the EFs of the Tethyan sections are characteristic of unrestricted marine systems. Mo isotopes show surprisingly negative values through the Tethyan sections. At the onset of OAE-2, an increasing trend in δMo98 is observed, with values ranging from -0.6 to 0.6‰. During the second half of OAE-2, the δMo98 curve shows a progressive shift towards more negative values. In the North Atlantic, δMo98 signatures from ODP site 1276 show a similar behaviour as observed in the western Tethys. At DSDP site 367, Mo isotopes are generally heavier during OAE-2, fluctuating around an average value of 1.1‰. This is consistent with fully euxinic conditions and the black shales deposited may have recorded the seawater signature during OAE-2. The Mo isotope

  9. Uranium behavior in a permanently anoxic Fjord: Microbial control

    SciTech Connect

    McKee, B.A. ); Todd, J.F. )

    1993-03-01

    Uranium contamination of groundwaters resulting from U mining activities and the leakage of nuclear waste from storage facilities is a growing concern. In Framvern Fjord (southern Norway), dissolved [sup 238]U concentrations at the bacterial maximum layer (24 m), which is situated a few meters below the oxic-anoxic (i.e. oxygen-hydrogen sulfide) interface (18 m), are observed to be [approximately]60% lower than concentrations above and below this depth. Removal of U occurs well below the depth at which Fe and Mn oxyhydroxides are precipitated and under conditions inconsistent with abiological reduction of soluble U(VI) to particle-reactive U(IV). Our observations suggest that the microbial population in the anoxic waters near the O[sub 2]-H[sub 2]S interface in the fjord exerts an effective control on the aquatic biogeochemistry of U in this environment. 27 refs., 3 figs., 1 tab.

  10. Post-anoxic vegetative state: imaging and prognostic perspectives

    PubMed Central

    Stanziano, Mario; Foglia, Carolina; Soddu, Andrea; Gargano, Francesca; Papa, Michele

    Summary Prognostic determination of patients in coma after resuscitation from cardiac arrest is a common and difficult requirement with significant ethical, social and legal implications. We set out to seek markers that can be used for the early detection of patients with a poor prognosis, so as to reduce uncertainty over treatment and non-treatment decisions, and to improve relationships with families. We reviewed the medical literature from 1991 to 2010, using key words such as post-anoxic coma, post-anoxic vegetative state, vegetative state prognosis, recovery after cardiac arrest. Neurological examination, electrophysiology, imaging, and biochemical markers are all useful tools for estimating patients’ chances of recovery from cardiac arrest. It seems unlikely that any single test will prove to have 100% predictive value for outcome; but the combination of various prognostic markers, as shown in some articles, could increase the reliability of outcome prediction. However, further research is needed. PMID:21693088

  11. Geochemical and anthropogenic enrichments of Mo in sediments from perennially oxic and seasonally anoxic lakes in Eastern Canada

    NASA Astrophysics Data System (ADS)

    Chappaz, Anthony; Gobeil, Charles; Tessier, André

    2008-01-01

    We measured the vertical distributions of Mo, Fe, Mn, sulfide, sulfate, organic carbon, major ions, and pH in sediment porewater from one perennially oxic and three seasonally anoxic lacustrine basins in Eastern Canada, as well as those of Mo, acid volatile sulfide, Fe, Mn, Al, organic C, 210Pb and 137Cs in sediment cores from the same sites. The only input of anthropogenic Mo to these lakes comes from atmospheric deposition. The relatively monotonous distribution of Mo in the porewater of three seasonally anoxic basins suggests that Mo is not redistributed in the sedimentary column during periods of anoxia. In contrast, porewater Mo profiles obtained at three sampling dates in a perennially oxic basin display sharp Mo peaks below the sediment-water interface, indicating redistribution subsequent to deposition. Modeling of these latter porewater Mo profiles with a diagenetic reaction-transport equation coupled to comparisons among the various porewater and solid phase profiles reveal that Mo is released at 1-2 cm depth as a consequence of the reductive dissolution of Fe oxyhydroxides and scavenged both at the vicinity of the sediment-water interface, by re-adsorption onto authigenic Fe oxyhydroxides, and deeper in the sediments where dissolved sulfide concentrations are higher. The estimated rate constant for the adsorption of Mo onto Fe oxyhydroxides is 36 ± 45 cm 3 mol -1 s -1. Diagenetic modeling indicates that authigenic Mo in sediments of the perennially oxic basin represents about one-third of the total solid phase Mo in the first cm below the sediment-water interface and only one tenth below this horizon. If we assume that no authigenic Mo is accumulated in the seasonally anoxic lake sediments we conclude that the sediment Mo concentrations, which are up to 3-16 times higher than the average lithogenic composition, depending on the lake, are mainly due to atmospheric deposition of anthropogenic Mo and not to the formation of authigenic Mo phases

  12. Rapid changes in the redox conditions of the western Tethys Ocean during the early Aptian oceanic anoxic event

    NASA Astrophysics Data System (ADS)

    Westermann, Stéphane; Stein, Melody; Matera, Virginie; Fiet, Nicolas; Fleitmann, Dominik; Adatte, Thierry; Föllmi, Karl B.

    2013-11-01

    The early Aptian (125 to 121 Ma) records an episode of severe environmental change including a major perturbation of the carbon cycle, an oceanic anoxic event (OAE 1a, 122.5 Ma), a platform drowning episode and a biocalcification crisis. We propose to trace changes in the oxygenation state of the ocean during the early Aptian anoxic event using the redox-sensitive trace-element (RSTE) distribution, phosphorus accumulation rates (PARs) and organic-matter characterization in three different basins of the western Tethys. The following sections have been investigated: Gorgo a Cerbara (central Italy) in the Umbria Marche basin, Glaise (SE France) in the Vocontian basin and Cassis/La Bédoule (SE France) located in the Provencal basin. In the Gorgo a Cerbara section, RSTE distributions show a low background level along the main part of the section, contrasted by different maxima in concentrations within the Selli level. In the Glaise section, the Goguel level displays a weak increase in RSTE contents coeval with moderate TOC values. At Cassis/La Bédoule, no significant RSTE enrichments have been observed in sediments equivalent to the Selli level. These differences in the records of the geochemical proxies of the Selli level or its equivalent indicate the deposition under different redox conditions, probably related to the paleogeography. Our data indicate the development of anoxic-euxinic conditions in the deeper part of the Tethys during OAE 1a, whereas in the shallower environments, conditions were less reducing. Moreover, at Gorgo a Cerbara, the Selli level is characterized by rapid changes in the intensity of reducing conditions in the water column. Ocean eutrophication seems to be a major factor in the development and the persistence of anoxia as suggested by the PAR evolution. Higher PAR values at the onset of OAE 1a suggest an increase in nutrient input, whereas the return to lower values through the first part of the OAE 1a interval may be related to the

  13. Denitrification in anoxic sediments supported by biological nitrate transport

    NASA Astrophysics Data System (ADS)

    Prokopenko, M. G.; Sigman, D. M.; Berelson, W. M.; Hammond, D. E.; Barnett, B.; Chong, L.; Townsend-Small, A.

    2011-11-01

    Biologically available nitrogen (fixed N) is removed from the oceans by metabolic conversion of inorganic N forms (nitrate and ammonium) to N 2 gas. Much of this removal occurs in marine sediments, where reaction rates are thought to be limited by diffusion. We measured the concentration and isotopic composition of major dissolved nitrogen species in anoxic sediments off the coast of California. At depths below the diffusive penetration of nitrate, we found evidence of a large nitrate pool transported into the sediments by motile microorganisms. A ˜20‰ enrichment in 15N and 18O of this biologically transported nitrate over bottom water values and elevated [N 2] and δ 15N-N 2 at depth indicate that this nitrate is consumed by enzymatic redox reactions with the production of N 2 as the end product. Elevated N 2O concentrations in pore waters below the nitrate diffusion depth confirm that these reactions include the denitrification pathway. A data-constrained model shows that at least 31% of the total N 2 production in anoxic sediments is linked to nitrate bio-transport. Under suboxic/anoxic regimes, this nitrate bio-transport augments diffusive transport, thus increasing benthic fixed nitrogen losses and the reducing burial efficiency of sedimentary organic matter.

  14. Authigenic phases and biomass contents drive Zr, Hf and REE distributions in anoxic lake sediments

    NASA Astrophysics Data System (ADS)

    Censi, P.; Saiano, F.; Zuddas, P.; Nicosia, A.; Mazzola, S.; Raso, M.

    2013-05-01

    REE, Zr and Hf distributions in seafloor sediments collected from the hypersaline, anoxic Thetis, Kryos, Medee and Tyro deep-sea basins from the Eastern Mediterranean were determined in light of their mineralogical composition, and biomass contents. Mineralogical investigations demonstrate that all the studied sediments show a similar mineralogy. Detritic assemblages mainly consist of quartz, gypsum and calcite with Mg contents ranging from 0 to about 7%, often of a bioclastic nature. On the contrary, authigenic parageneses are formed by halite, bischofite, dolomite and calcite, with Mg contents up to 22%. Textural evidences of biological activity were also identified. In sediments from the Medee and Tyro basins, REE, Zr and Hf distributions were analysed in the fraction soluble in nitric acid, whereas in materials coming from the Thetis and Kryos basins, the water-soluble sediment fraction had been previously removed and REE, Zr and Hf distributions were investigated in the residue. This approach evidenced that shale-normalised REE patterns of the whole fraction soluble in nitric acid show strong intermediate REE (MREE) enrichments that give way to positive Gd anomalies once water-soluble minerals are removed. Y/Ho ratios are clustered around chondritic values justified by the occurrence of detritic minerals whereas Zr/Hf values span a~wider range from slightly subchondritic to superchondritic terms. Negative Gd anomalies, subchondritic Y/Ho and Zr/Hf values are found in Mg-carbonate rich samples suggesting that authigenic Mg-carbonates partition Ho and Hf with respect to Y and Zr during their crystallization from brines. Textural observations and biomass analyses highlighted effects of biological activities in sediments involving Zr and Hf enrichments and the highest Zr/Hf values according to the preferential Zr removal onto biological surfaces, without partitioning Y with respect to Ho. These first data suggest that Zr/Hf ratio and REE distributions can

  15. Sedimentological, Magnetic and Geochemical Proxies for Holocene Climate Change and Paleoseismology from Marine Anoxic Inlet Sediments

    NASA Astrophysics Data System (ADS)

    Enkin, R. J.; Dallimore, A.; Baker, J.; Ivanochko, T.; Chang, A. S.

    2009-05-01

    Sediments deposited in anoxic basins are not bioturbated and thus hold high temporal resolution proxy recordings of climate and other physical controls. This paper focuses on the inner basin of Effingham Inlet on the west coast of Vancouver Island, Canada, a 120m deep fiord basin restricted from the open ocean by a 46m deep sill. Fifteen years of oceanographic monitoring have helped establish the physical and sedimentary processes at play. Freeze cores, piston cores, and especially the 40 m long MD02-2494 core hold a15 ka record of Late Pleistocene deglaciation, relative sea level change, Holocene climate and paleoseismology, revealed by sedimentological, magnetic and geochemical analysis. The age model is established using terrestrial 14C dates complemented by varve counting and paleomagnetic secular variation correlations. Annual laminations are formed of spring/summer diatom deposits following algal blooms and dominantly- winter deposits of clastics. These sediments provide proxies of Holocene weather with annual resolution. There are several episodes of rapid regime change from high seasonality warm climate to low seasonality wet-cold climate. Interspersed with the the annual laminations, there are two types of massive deposits: "homogenites" formed by remixing of suspended sediments by bottom-hugging currents, and "seismites" formed by mass wasting events associated with ground shaking. Magnetically, both the laminations and homogenites feature similar single-domain magnetic grains, while the seismites feature larger magnetic grains with multi-domain signatures, thus providing a simple tool for distinguishing the two visually similar deposit types. Homogenites, which result from La Nina-like oceanic conditions, first appear in core MD02- 2494 approximately 8 ka and have been increasing in frequency ever since.

  16. Anoxic survival potential of bivalves: (arte)facts.

    PubMed

    de Zwaan, Albertus; Babarro, Jose M F; Monari, Marta; Cattani, Otello

    2002-03-01

    The anoxic survival time of the bivalves Chamelea gallina, Cerastoderma edule and Scapharca inaequivalvis from two different ecosystems and differing anoxia tolerances was studied in static (closed) and flow-through systems. The antibiotics chloramphenicol, penicillin and polymyxin were added, and molybdate (specific inhibitor of the process of sulfate reduction). Survival in (near) anoxic seawater of Chamelea was studied in a static system by comparing untreated seawater with autoclaved seawater and untreated clams with clams incubated in well-aerated seawater, containing the broad-spectrum antibiotic chloramphenicol, prior to the anoxic survival test. With untreated clams and natural seawater (median mortality time 2.4 days) a decrease in pH and exponential accumulation of sulfide and ammonium was observed in the anoxic medium, indicating excessive growth of (sulfate reducing) bacteria. In sterilized seawater LT50 (2.1 days) was not significantly different and again considerable amounts of ammonium and sulfide accumulated. However, pre-treatment of clams with chloramphenicol resulted in an increase of LT50 (11.0 days) by approximately fivefold. Accumulation of ammonium and sulfide was retarded, but was finally even stronger than in the medium containing untreated clams. Median mortality times were 2.5 and 2.4 days for Chamelea and 2.7 and 2.9 days for Cerastoderma for static and flow-through incubations, respectively. Addition of chloramphenicol increased strongly survival time in both systems with corresponding values of 11.0 and 16.3 days for Chamelea, and 6.4 and 6.5 days for Cerastoderma. LT50 of Scapharca in anoxic seawater was 14.4 days. Chloramphenicol and penicillin increased median survival time to 28.5 and 28.7 days, respectively, whereas polymyxin displayed no effect (LT50=13.6 days). Molybdate added to artificial sulfate free seawater blocked biotic sulfide formation, but did not improve survival time (LT50=13.7 days). Overall the results indicate

  17. Anoxic survival potential of bivalves: (arte)facts.

    PubMed

    de Zwaan, Albertus; Babarro, Jose M F; Monari, Marta; Cattani, Otello

    2002-03-01

    The anoxic survival time of the bivalves Chamelea gallina, Cerastoderma edule and Scapharca inaequivalvis from two different ecosystems and differing anoxia tolerances was studied in static (closed) and flow-through systems. The antibiotics chloramphenicol, penicillin and polymyxin were added, and molybdate (specific inhibitor of the process of sulfate reduction). Survival in (near) anoxic seawater of Chamelea was studied in a static system by comparing untreated seawater with autoclaved seawater and untreated clams with clams incubated in well-aerated seawater, containing the broad-spectrum antibiotic chloramphenicol, prior to the anoxic survival test. With untreated clams and natural seawater (median mortality time 2.4 days) a decrease in pH and exponential accumulation of sulfide and ammonium was observed in the anoxic medium, indicating excessive growth of (sulfate reducing) bacteria. In sterilized seawater LT50 (2.1 days) was not significantly different and again considerable amounts of ammonium and sulfide accumulated. However, pre-treatment of clams with chloramphenicol resulted in an increase of LT50 (11.0 days) by approximately fivefold. Accumulation of ammonium and sulfide was retarded, but was finally even stronger than in the medium containing untreated clams. Median mortality times were 2.5 and 2.4 days for Chamelea and 2.7 and 2.9 days for Cerastoderma for static and flow-through incubations, respectively. Addition of chloramphenicol increased strongly survival time in both systems with corresponding values of 11.0 and 16.3 days for Chamelea, and 6.4 and 6.5 days for Cerastoderma. LT50 of Scapharca in anoxic seawater was 14.4 days. Chloramphenicol and penicillin increased median survival time to 28.5 and 28.7 days, respectively, whereas polymyxin displayed no effect (LT50=13.6 days). Molybdate added to artificial sulfate free seawater blocked biotic sulfide formation, but did not improve survival time (LT50=13.7 days). Overall the results indicate

  18. Natural attenuation potential of phenylarsenicals in anoxic groundwaters.

    PubMed

    Hempel, Michael; Daus, Birgit; Vogt, Carsten; Weiss, Holger

    2009-09-15

    The extensive production of chemical warfare agents in the 20th century has led to serious contamination of soil and groundwater with phenyl arsenicals at former ammunition depots or warfare agent production sites worldwide. Most phenyl arsenicals are highly toxic for humans. The microbial degradation of phenylarsonic acid (PAA) and diphenylarsinic acid (DPAA) was investigated in microcosms made of anoxic groundwater/sediment mixtures taken from different depths of an anoxic, phenyl arsenical contaminated aquifer in Central Germany. DPAA was not transformed within 91 days incubation time in any of the microcosms. The removal of PAA can be described by a first order kinetics without a lag-phase (rate: 0.037 d(-1)). In sterilized microcosms, PAA concentrations always remained stable, demonstrating that PAA transformation was a biologically mediated process. PAA transformation occurred under sulfate-reducing conditions due to sulfate consumption and production of sulfide. The addition of lactate (1 mM), a typical substrate of sulfate-reducing bacteria, increased the transformation rate of PAA significantly up to 0.134 d(-1). The content of total arsenic was considerably reduced (> 75%). Intermediates of PAA transformation were detected by high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Experiments with a pure strain and sterile controls of Desulfovibrio gigas spiked with PAA showed that the elimination process is linked to the presence of sulfide formed through bacterial activity. Phenyl arsenicals were likely immobilized in the sedimentthrough sulfur substitution and a subsequent sulfur bond under the prevailing sulfate reducing condition. The results of this study indicate that PAA can undergo microbiologically mediated transformation in anoxic aquifers, leading to reduced concentrations in groundwater, which indicate a (enhancend) natural attenuation potential. PMID:19806732

  19. Natural attenuation potential of phenylarsenicals in anoxic groundwaters.

    PubMed

    Hempel, Michael; Daus, Birgit; Vogt, Carsten; Weiss, Holger

    2009-09-15

    The extensive production of chemical warfare agents in the 20th century has led to serious contamination of soil and groundwater with phenyl arsenicals at former ammunition depots or warfare agent production sites worldwide. Most phenyl arsenicals are highly toxic for humans. The microbial degradation of phenylarsonic acid (PAA) and diphenylarsinic acid (DPAA) was investigated in microcosms made of anoxic groundwater/sediment mixtures taken from different depths of an anoxic, phenyl arsenical contaminated aquifer in Central Germany. DPAA was not transformed within 91 days incubation time in any of the microcosms. The removal of PAA can be described by a first order kinetics without a lag-phase (rate: 0.037 d(-1)). In sterilized microcosms, PAA concentrations always remained stable, demonstrating that PAA transformation was a biologically mediated process. PAA transformation occurred under sulfate-reducing conditions due to sulfate consumption and production of sulfide. The addition of lactate (1 mM), a typical substrate of sulfate-reducing bacteria, increased the transformation rate of PAA significantly up to 0.134 d(-1). The content of total arsenic was considerably reduced (> 75%). Intermediates of PAA transformation were detected by high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Experiments with a pure strain and sterile controls of Desulfovibrio gigas spiked with PAA showed that the elimination process is linked to the presence of sulfide formed through bacterial activity. Phenyl arsenicals were likely immobilized in the sedimentthrough sulfur substitution and a subsequent sulfur bond under the prevailing sulfate reducing condition. The results of this study indicate that PAA can undergo microbiologically mediated transformation in anoxic aquifers, leading to reduced concentrations in groundwater, which indicate a (enhancend) natural attenuation potential.

  20. Decoupling of the Carbon Cycle during Ocean Anoxic Event-2

    NASA Astrophysics Data System (ADS)

    Eldrett, J.; Bergman, S. C.; Minisini, D.

    2013-12-01

    The Cenomanian to Turonian Boundary transition (95-93 Ma) represents one of the most profound global perturbations in the carbon cycle of the last 140 million years. This interval is characterized by widespread deposition of organic-rich fine-grained sediment marked by a globally recognised positive carbon isotope excursion (CIE) reflecting the widespread removal of 12C-enriched organic matter in marine sediments under global anoxic conditions. However, the exact timing and trigger of this inferred global phenomenon, termed Oceanic Anoxic Event-2 is still debated, with recent studies showing diachroneity between the deposition of the organic-rich sediment and the CIE, and conflicting interpretations on detailed redox analyses in several of these inferred anoxic settings. Here we present the first evidence for widespread and persistent oxygenation during OAE-2 based primarily on the distribution of redox-sensitive trace metals preserved in sediments from the Eagle Ford Formation, Western Interior Seaway of North America. We generated a δ13C curve which indicates an earlier initiation of the CIE in Texas compared to the Global Stratotype and Point Section at Pueblo, Colorado. Our data also indicate anoxic-euxinic conditions in the mid-late Cenomanian, but improved bottom-water oxygenation prior to and during the CIE, corroborated by increased bioturbation, abundance of benthic foraminifera and reduced total organic carbon values. Trace metal enrichments support large volumes of mafic volcanism possibly from the High Arctic Large Igneous Province (LIP), which occur during peak bottom-water oxygenation and a plateau in δ13Corg values and does not immediately precede the Cenomanian-Turonian CIE, as previously stated. This suggests that the emplacement of a LIP was not the primary trigger of the OAE-2 event. It is also unlikely that bottom-water oxygenation was promoted by the introduction of volcanogenic Fe inhibiting sulfate reduction, as the depletion in redox

  1. Anaerobes into heavy metal: Dissimilatory metal reduction in anoxic environments

    USGS Publications Warehouse

    Lovley, D.R.

    1993-01-01

    Within the last decade, a novel form of microbial metabolism of major environmental significance has been elucidated. In this process, known as dissimilatory metal reduction, specialized microorganisms, living in anoxic aquatic sediments and ground water, oxidize organic compounds to carbon dioxide with metals serving as the oxidant. Recent studies have demonstrated that this metabolism explains a number of important geochemical phenomena in ancient and modern sedimentary environments, affecting not only the cycling of metals but also the fate of organic matter. Furthermore, this metabolism may have practical application in remediation of environments contaminated with toxic metals and/or organics.

  2. Biogeochemical Cycle of Methanol in Anoxic Deep-Sea Sediments

    PubMed Central

    Yanagawa, Katsunori; Tani, Atsushi; Yamamoto, Naoya; Hachikubo, Akihiro; Kano, Akihiro; Matsumoto, Ryo; Suzuki, Yohey

    2016-01-01

    The biological flux and lifetime of methanol in anoxic marine sediments are largely unknown. We herein reported, for the first time, quantitative methanol removal rates in subsurface sediments. Anaerobic incubation experiments with radiotracers showed high rates of microbial methanol consumption. Notably, methanol oxidation to CO2 surpassed methanol assimilation and methanogenesis from CO2/H2 and methanol. Nevertheless, a significant decrease in methanol was not observed after the incubation, and this was attributed to the microbial production of methanol in parallel with its consumption. These results suggest that microbial reactions play an important role in the sources and sinks of methanol in subseafloor sediments. PMID:27301420

  3. Mixing between oxic and anoxic waters of the Black Sea as traced by Chernobyl cesium isotopes. (Reannouncement with new availability information). Technical report

    SciTech Connect

    Buesseler, K.O.; Livingston, H.D.; Casso, S.A.

    1991-12-31

    The Chernobyl nuclear power station accident in 1986 released readily measureable quantities of fallout 134 Cs and 137 Cs to Black Sea surface waters. This pulse-like input of tracers can be used to follow the physical mixing of the surface oxic waters, now labeled with the Chernobyl tracers, and the deeper anoxic waters, which were initially Chernobyl free. By 1988, there is clear evidence of Chernobyl Cs penetration below the oxic/anoxic interface at deep water stations in the western and eastern basins of the Black Sea. This rapid penetration of surface waters across the pycnocline cannot be explained by vertical mixing processes alone. Data from profiles at the mouth of the Bosporus suggest that significant ventilation of intermediate depths can occur as the outflowing Black Sea waters are entrained with the inflowing Mediterranean waters. forming a sub-surface water mass which is recognized by its surface water characteristics, i.e. initially a relatively high oxygen content and Chernobyl Cs signal. The lateral propagation of this signal along isopycnals into the basin interior would provide a rapid and effective mechanism for ventilating intermediate depths of the Black Sea. This process could also account for the lateral injection of resuspended margin sediments into the basin interior. The temperature and salinity data suggest that the entrainment process occurs at depths of 50-80 m, mixing waters from the Cold Intermediate Layer with the incoming, denser Mediterranean waters.

  4. Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline.

    PubMed

    Daffonchio, Daniele; Borin, Sara; Brusa, Tullio; Brusetti, Lorenzo; van der Wielen, Paul W J J; Bolhuis, Henk; Yakimov, Michail M; D'Auria, Giuseppe; Giuliano, Laura; Marty, Danielle; Tamburini, Christian; McGenity, Terry J; Hallsworth, John E; Sass, Andrea M; Timmis, Kenneth N; Tselepides, Anastasios; de Lange, Gert J; Hübner, Andreas; Thomson, John; Varnavas, Soterios P; Gasparoni, Francesco; Gerber, Hans W; Malinverno, Elisa; Corselli, Cesare; Garcin, Jean; McKew, Boyd; Golyshin, Peter N; Lampadariou, Nikolaos; Polymenakou, Paraskevi; Calore, Daniele; Cenedese, Stefano; Zanon, Fabio; Hoog, Sven

    2006-03-01

    The chemical composition of the Bannock basin has been studied in some detail. We recently showed that unusual microbial populations, including a new division of Archaea (MSBL1), inhabit the NaCl-rich hypersaline brine. High salinities tend to reduce biodiversity, but when brines come into contact with fresher water the natural haloclines formed frequently contain gradients of other chemicals, including permutations of electron donors and acceptors, that may enhance microbial diversity, activity and biogeochemical cycling. Here we report a 2.5-m-thick chemocline with a steep NaCl gradient at 3.3 km within the water column betweeen Bannock anoxic hypersaline brine and overlying sea water. The chemocline supports some of the most biomass-rich and active microbial communities in the deep sea, dominated by Bacteria rather than Archaea, and including four major new divisions of Bacteria. Significantly higher metabolic activities were measured in the chemocline than in the overlying sea water and underlying brine; functional analyses indicate that a range of biological processes is likely to occur in the chemocline. Many prokaryotic taxa, including the phylogenetically new groups, were confined to defined salinities, and collectively formed a diverse, sharply stratified, deep-sea ecosystem with sufficient biomass to potentially contribute to organic geological deposits. PMID:16525471

  5. Microbiological reduction of Sb(V) in anoxic freshwater sediments

    USGS Publications Warehouse

    Oremland, Ronald S.; Kulp, Thomas R.; Miller, Laurence G.; Braiotta, Franco; Webb, Samuel M.; Kocar, Benjamin D; Blum, Jodi S.

    2013-01-01

    Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were enhanced by amendment with lactate or acetate as electron donors but not by H2, and no reduction occurred in sterilized controls. Addition of 2-14C-acetate to Stibnite Mine microcosms resulted in the production of 14CO2 coupled to Sb(V) reduction, suggesting that this process proceeds by a dissimilatory respiratory pathway in those sediments. Antimony(V) reduction in Searsville Lake sediments was not coupled to acetate mineralization and may be associated with Sb-resistance. The microcosms and enrichment cultures also reduced sulfate, and the precipitation of insoluble Sb(III)-sulfide complexes was a major sink for reduced Sb. The reduction of Sb(V) by Stibnite Mine sediments was inhibited by As(V), suggesting that As(V) is a preferred electron acceptor for the indigenous community. These findings indicate a novel pathway for anaerobic microbiological respiration and suggest that communities capable of reducing high concentrations of Sb(V) commonly occur naturally in the environment.

  6. Microbiological reduction of Sb(V) in anoxic freshwater sediments.

    PubMed

    Kulp, Thomas R; Miller, Laurence G; Braiotta, Franco; Webb, Samuel M; Kocar, Benjamin D; Blum, Jodi S; Oremland, Ronald S

    2014-01-01

    Microbiological reduction of millimolar concentrations of Sb(V) to Sb(III) was observed in anoxic sediments from two freshwater settings: (1) a Sb- and As-contaminated mine site (Stibnite Mine) in central Idaho and 2) an uncontaminated suburban lake (Searsville Lake) in the San Francisco Bay Area. Rates of Sb(V) reduction in anoxic sediment microcosms and enrichment cultures were enhanced by amendment with lactate or acetate as electron donors but not by H2, and no reduction occurred in sterilized controls. Addition of 2-(14)C-acetate to Stibnite Mine microcosms resulted in the production of (14)CO2 coupled to Sb(V) reduction, suggesting that this process proceeds by a dissimilatory respiratory pathway in those sediments. Antimony(V) reduction in Searsville Lake sediments was not coupled to acetate mineralization and may be associated with Sb-resistance. The microcosms and enrichment cultures also reduced sulfate, and the precipitation of insoluble Sb(III)-sulfide complexes was a major sink for reduced Sb. The reduction of Sb(V) by Stibnite Mine sediments was inhibited by As(V), suggesting that As(V) is a preferred electron acceptor for the indigenous community. These findings indicate a novel pathway for anaerobic microbiological respiration and suggest that communities capable of reducing high concentrations of Sb(V) commonly occur naturally in the environment.

  7. H2 cycling and microbial bioenergetics in anoxic sediments

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    The simple biochemistry of H2 is central to a large number of microbial processes, affecting the interaction of organisms with each other and with the environment. In anoxic sediments, the great majority of microbial redox processes involve H2 as a reactant, product, or potential by-product, and the thermodynamics of these processes are thus highly sensitive to fluctuations in environmental H2 concentrations. In turn, H2 concentrations are controlled by the activity of H2-consuming microorganisms, which efficiently utilize this substrate down to levels which correspond to their bioenergetic limitations. Consequently, any environmental change which impacts the thermodynamics of H2-consuming organisms is mirrored by a corresponding change in H2 concentrations. This phenomenon is illustrated in anoxic sediments from Cape Lookout Bight, NC, USA: H2 concentrations are controlled by a suite of environmental parameters (e.g., temperature, sulfate concentrations) in a fashion which can be quantitatively described by a simple thermodynamic model. These findings allow us to calculate the apparent minimum quantity of biologically useful energy in situ. We find that sulfate reducing bacteria are not active at energy yields below -18 kJ per mole sulfate, while methanogenic archaea exhibit a minimum close to -10 kJ per mole methane.

  8. Diatoms respire nitrate to survive dark and anoxic conditions

    PubMed Central

    Kamp, Anja; de Beer, Dirk; Nitsch, Jana L.; Lavik, Gaute; Stief, Peter

    2011-01-01

    Diatoms survive in dark, anoxic sediment layers for months to decades. Our investigation reveals a correlation between the dark survival potential of marine diatoms and their ability to accumulate NO3− intracellularly. Axenic strains of benthic and pelagic diatoms that stored 11–274 mM NO3− in their cells survived for 6–28 wk. After sudden shifts to dark, anoxic conditions, the benthic diatom Amphora coffeaeformis consumed 84–87% of its intracellular NO3− pool within 1 d. A stable-isotope labeling experiment proved that 15NO3− consumption was accompanied by the production and release of 15NH4+, indicating dissimilatory nitrate reduction to ammonium (DNRA). DNRA is an anaerobic respiration process that is known mainly from prokaryotic organisms, and here shown as dissimilatory nitrate reduction pathway used by a eukaryotic phototroph. Similar to large sulfur bacteria and benthic foraminifera, diatoms may respire intracellular NO3− in sediment layers without O2 and NO3−. The rapid depletion of the intracellular NO3− storage, however, implies that diatoms use DNRA to enter a resting stage for long-term survival. Assuming that pelagic diatoms are also capable of DNRA, senescing diatoms that sink through oxygen-deficient water layers may be a significant NH4+ source for anammox, the prevalent nitrogen loss pathway of oceanic oxygen minimum zones. PMID:21402908

  9. Anaerobic animals from an ancient, anoxic ecological niche

    PubMed Central

    2010-01-01

    Tiny marine animals that complete their life cycle in the total absence of light and oxygen are reported by Roberto Danovaro and colleagues in this issue of BMC Biology. These fascinating animals are new members of the phylum Loricifera and possess mitochondria that in electron micrographs look very much like hydrogenosomes, the H2-producing mitochondria found among several unicellular eukaryotic lineages. The discovery of metazoan life in a permanently anoxic and sulphidic environment provides a glimpse of what a good part of Earth's past ecology might have been like in 'Canfield oceans', before the rise of deep marine oxygen levels and the appearance of the first large animals in the fossil record roughly 550-600 million years ago. The findings underscore the evolutionary significance of anaerobic deep sea environments and the anaerobic lifestyle among mitochondrion-bearing cells. They also testify that a fuller understanding of eukaryotic and metazoan evolution will come from the study of modern anoxic and hypoxic habitats. PMID:20370917

  10. Degradation of triclosan under aerobic, anoxic, and anaerobic conditions.

    PubMed

    Gangadharan Puthiya Veetil, Prajeesh; Vijaya Nadaraja, Anupama; Bhasi, Arya; Khan, Sudheer; Bhaskaran, Krishnakumar

    2012-07-01

    Triclosan (2, 4, 4'-trichloro-2'-hydroxyl diphenyl ether) is a broad-spectrum antimicrobial agent present in a number of house hold consumables. Aerobic and anaerobic enrichment cultures tolerating triclosan were developed and 77 bacterial strains tolerating triclosan at different levels were isolated from different inoculum sources. Biodegradation of triclosan under aerobic, anoxic (denitrifying and sulphate reducing conditions), and anaerobic conditions was studied in batch cultures with isolated pure strains and enrichment consortium developed. Under aerobic conditions, the isolated strains tolerated triclosan up to 1 g/L and degraded the compound in inorganic-mineral-broth and agar media. At 10 mg/L level triclosan, 95 ± 1.2% was degraded in 5 days, producing phenol, catechol and 2, 4-dichlorophenol as the degradation products. The strains were able to metabolize triclosan and its degradation products in the presence of monooxygenase inhibitor 1-pentyne. Under anoxic/anaerobic conditions highest degradation (87%) was observed in methanogenic system with acetate as co-substrate and phenol, catechol, and 2, 4-dichlorophenol were among the products. Three of the isolated strains tolerating 1 g/L triclosan were identified as Pseudomonas sp. (BDC 1, 2, and 3).

  11. Influence of different anoxic time exposures on active biomass, protozoa and filamentous bacteria in activated sludge.

    PubMed

    Rodriguez-Perez, S; Fermoso, F G; Arnaiz, C

    2016-01-01

    Medium-sized wastewater treatment plants are considered too small to implement anaerobic digestion technologies and too large for extensive treatments. A promising option as a sewage sludge reduction method is the inclusion of anoxic time exposures. In the present study, three different anoxic time exposures of 12, 6 and 4 hours have been studied to reduce sewage sludge production. The best anoxic time exposure was observed under anoxic/oxic cycles of 6 hours, which reduced 29.63% of the biomass production compared with the oxic control conditions. The sludge under different anoxic time exposures, even with a lower active biomass concentration than the oxic control conditions, showed a much higher metabolic activity than the oxic control conditions. Microbiological results suggested that both protozoa density and abundance of filamentous bacteria decrease under anoxic time exposures compared to oxic control conditions. The anoxic time exposures 6/6 showed the highest reduction in both protozoa density, 37.5%, and abundance of filamentous bacteria, 41.1%, in comparison to the oxic control conditions. The groups of crawling ciliates, carnivorous ciliates and filamentous bacteria were highly influenced by the anoxic time exposures. Protozoa density and abundance of filamentous bacteria have been shown as promising bioindicators of biomass production reduction.

  12. Influence of different anoxic time exposures on active biomass, protozoa and filamentous bacteria in activated sludge.

    PubMed

    Rodriguez-Perez, S; Fermoso, F G; Arnaiz, C

    2016-01-01

    Medium-sized wastewater treatment plants are considered too small to implement anaerobic digestion technologies and too large for extensive treatments. A promising option as a sewage sludge reduction method is the inclusion of anoxic time exposures. In the present study, three different anoxic time exposures of 12, 6 and 4 hours have been studied to reduce sewage sludge production. The best anoxic time exposure was observed under anoxic/oxic cycles of 6 hours, which reduced 29.63% of the biomass production compared with the oxic control conditions. The sludge under different anoxic time exposures, even with a lower active biomass concentration than the oxic control conditions, showed a much higher metabolic activity than the oxic control conditions. Microbiological results suggested that both protozoa density and abundance of filamentous bacteria decrease under anoxic time exposures compared to oxic control conditions. The anoxic time exposures 6/6 showed the highest reduction in both protozoa density, 37.5%, and abundance of filamentous bacteria, 41.1%, in comparison to the oxic control conditions. The groups of crawling ciliates, carnivorous ciliates and filamentous bacteria were highly influenced by the anoxic time exposures. Protozoa density and abundance of filamentous bacteria have been shown as promising bioindicators of biomass production reduction. PMID:27508364

  13. Records of past mid-depth ventilation: Cretaceous ocean anoxic event 2 vs. Recent oxygen minimum zones

    NASA Astrophysics Data System (ADS)

    Schönfeld, J.; Kuhnt, W.; Erdem, Z.; Flögel, S.; Glock, N.; Aquit, M.; Frank, M.; Holbourn, A.

    2015-02-01

    Present day oceans are well ventilated, with the exception of mid-depth oxygen minimum zones (OMZs) under high surface water productivity, regions of sluggish circulation, and restricted marginal basins. In the Mesozoic, however, entire oceanic basins transiently became dysoxic or anoxic. The Cretaceous ocean anoxic events (OAEs) were characterised by laminated organic-carbon rich shales and low-oxygen indicating trace fossils preserved in the sedimentary record. Yet assessments of the intensity and extent of Cretaceous near-bottom water oxygenation have been hampered by deep or long-term diagenesis and the evolution of marine biota serving as oxygen indicators in today's ocean. Sedimentary features similar to those found in Cretaceous strata were observed in deposits underlying Recent OMZs, where bottom-water oxygen levels, the flux of organic matter, and benthic life have been studied thoroughly. Their implications for constraining past bottom-water oxygenation are addressed in this review. We compared OMZ sediments from the Peruvian upwelling with deposits of the late Cenomanian OAE 2 from the north-west African shelf. Holocene laminated sediments are encountered at bottom-water oxygen levels of < 7 μmol kg-1 under the Peruvian upwelling and < 5 μmol kg-1 in California Borderland basins and the Pakistan Margin. Seasonal to decadal changes of sediment input are necessary to create laminae of different composition. However, bottom currents may shape similar textures that are difficult to discern from primary seasonal laminae. The millimetre-sized trace fossil Chondrites was commonly found in Cretaceous strata and Recent oxygen-depleted environments where its diameter increased with oxygen levels from 5 to 45 μmol kg-1. Chondrites has not been reported in Peruvian sediments but centimetre-sized crab burrows appeared around 10 μmol kg-1, which may indicate a minimum oxygen value for bioturbated Cretaceous strata. Organic carbon accumulation

  14. Superoxide metabolism is correlated to the post-anoxic injury of soybean (Glycine max) roots

    SciTech Connect

    Bolles, C.S.; Van Toai, T.T. )

    1990-05-01

    Post-anoxic injury of root tips of soybean seedlings is more severe following a very short (1 hour) period of anoxia than a longer (3-5 hour) period. Anaerobic incubation of root tips in the presence of 100 mM ascorbate, an antioxidant and free-radical-scavenging compound, alleviates the detrimental post-anoxia effects of a very short anoxic treatment. Extracts of root tips which have been treated anoxically for 1 hour have an elevated capacity to produce superoxide anions when subsequently exposed to air, than extracts from seedlings treated anoxically for longer time. Changes in superoxide dismutase (SOD) enzyme activity and SOD-specific RNA sequences will be presented. The results support that post-anoxic injury occurs in soybean roots and that SOD plays a role in the detoxification of superoxide anions.

  15. Transformation of Monoaromatic hydrocarbons to organic acids in anoxic groundwater environment

    USGS Publications Warehouse

    Cozzarelli, I.M.; Eganhouse, R.P.; Baedecker, M.J.

    1990-01-01

    The transformation of benzene and a series of alkylbenzenes was studied in anoxic groundwater of a shallow glacial-outwash aquifer near Bemidji, Minnesota, U.S.A. Monoaromatic hydrocarbons, the most water-soluble components of crude oil, were transported downgradient of an oil spill, forming a plume of contaminated groundwater. Organic acids that were not original components of the oil were identified in the anoxic groundwater. The highest concentrations of these oxidized organic compounds were found in the anoxic plume where a decrease in concentrations of structurally related alkylbenzenes was observed. These results suggest that biological transformation of benzene and alkylbenzenes to organic acid intermediates may be an important attenuation process in anoxic environments. The transformation of a complex mixture of hydrocarbons to a series of corresponding oxidation products in an anoxic subsurface environment provides new insight into in situ anaerobic degradation processes. ?? 1990 Springer-Verlag New York Inc.

  16. Oxygen intrusion into anoxic fjords leads to increased methylmercury availability

    NASA Astrophysics Data System (ADS)

    Veiteberg Braaten, Hans Fredrik; Pakhomova, Svetlana; Yakushev, Evgeniy

    2013-04-01

    Mercury (Hg) appears in the oxic surface waters of the oceans at low levels (sub ng/L). Because inorganic Hg can be methylated into the toxic and bioaccumulative specie methylmercury (MeHg) levels can be high at the top of the marine food chain. Even though marine sea food is considered the main risk driver for MeHg exposure to people most research up to date has focused on Hg methylation processes in freshwater systems. This study identifies the mechanisms driving formation of MeHg during oxygen depletion in fjords, and shows how MeHg is made available in the surface water during oxygen intrusion. Studies of the biogeochemical structure in the water column of the Norwegian fjord Hunnbunn were performed in 2009, 2011 and 2012. In autumn of 2011 mixing flushing events were observed and lead to both positive and negative effects on the ecosystem state in the fjord. The oxygenated water intrusions lead to a decrease of the deep layer concentrations of hydrogen sulfide (H2S), ammonia and phosphate. On the other hand the intrusion also raised the H2S boundary from 8 m to a shallower depth of just 4 m. Following the intrusion was also observed an increase at shallower depths of nutrients combined with a decrease of pH. Before flushing events were observed concentrations of total Hg (TotHg) increased from 1.3 - 1.7 ng/L in the surface layer of the fjord to concentrations ranging from 5.2 ng/L to 6.4 ng/L in the anoxic zone. MeHg increased regularly from 0.04 ng/L in the surface water to a maximum concentration of 5.2 ng/L in the deeper layers. This corresponds to an amount of TotHg present as MeHg ranging from 2.1 % to 99 %. The higher concentrations of MeHg in the deeper layer corresponds to an area where no oxygen is present and concentrations of H2S exceeds 500 µM, suggesting a production of MeHg in the anoxic area as a result of sulphate reducing bacteria activity. After flushing the concentrations of TotHg showed a similar pattern ranging from 0.6 ng/L in the

  17. Denitrification kinetics in anoxic/aerobic activated sludge systems

    SciTech Connect

    Horne, G.M.

    1998-12-11

    Nitrogen removal needs at municipal wastewater treatment plants (WWTPs) have increased due to greater concerns about eutrophication and increased interest in reuse of treated municipal effluents. Biological processes are the most cost-effective method for nitrogen removal. Biological nitrogen removal is accomplished in two distinctly different processes by the conversion of nitrogen in the wastewater from organic nitrogen and ammonia to nitrate, followed by reduction of the nitrate to nitrogen gas. Nitrate production occurs in an aerobic activated sludge treatment zone during a process called nitrification. The nitrate is then converted through a series of intermediate steps to nitrogen gas in an anoxic zone (an anaerobic condition with nitrate present) during a process called denitrification, effectively removing the nitrogen from the wastewater. Many different WWTP designs have been developed to incorporate these two conditions for nitrogen removal.

  18. Integrated stratigraphy of the Cenomanian-Turonian boundary interval: improving understanding of Oceanic Anoxic Events

    NASA Astrophysics Data System (ADS)

    Jarvis, Ian

    2014-05-01

    The Cenomanian-Turonian boundary (CTB) interval ~ 94 Ma represented a period of major global palaeoenvironmental change. Increasingly detailed multidisciplinary studies integrating sedimentological, palaeontological and geochemical data from multiple basins, are enabling the development of refined but complex models that aid understanding of the mechanisms driving changes in ocean productivity and climate. This paper reviews some of the exciting new developments in this field. Facies change characterizes the CTB interval in most areas. In the Chalk seas of northern Europe, a widespead hiatus was followed by the deposition of clay-rich organic-lean beds of the Plenus Marl and its equivalents, and then nodular chalks. In the North Sea basin and its onshore extension in eastern England and northern Germany, black shales of the Black Band (Blodøks Formation, Hasseltal Formation) occur. Similarly, in northern Tethys, a brief interval of black shale accumulation within a predominantly carbonate succession, is exemplified by the Niveau Thomel in the Vocontian Basin (SE France), and the Livello Bonarelli in Italy. Widespread deposition of organic-rich marine sediments during CTB times led to 12C depletion in surface carbon reservoirs (oceans, atmosphere, biosphere), and a large positive global δ13C excursion preserved in marine carbonates and both marine and terrestrial organic matter (Oceanic Anoxic Event 2). Significant biotic turnover characterises the boundary interval, and inter-regional correlation may be achieved at high resolution using integrated biostratigraphy employing macrofossils (ammonites, inoceramid bivalves), microfossils (planktonic foraminifera, dinoflagellate cysts) and calcareous nannofossils. Correlations can be tested against those based on comparison of δ13C profiles - carbon isotope chemostratigraphy, supplemented by oxygen isotope and elemental data. Interpretation of paired carbonate - organic matter δ13C data from multiple CTB sections

  19. Organomineral nanocomposite carbon burial during Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Löhr, S. C.; Kennedy, M. J.

    2014-09-01

    Organic carbon (OC) enrichment in sediments deposited during Oceanic Anoxic Events (OAEs) is commonly attributed to elevated productivity and marine anoxia. We find that OC enrichment in the late Cenomanian aged OAE 2 at the Demerara Rise was controlled by the co-occurrence of anoxic bottom water, sufficient productivity to saturate available mineral surfaces, and variable deposition of high surface area detrital smectite clay. Redox indicators show consistently oxygen-depleted conditions, while a strong correlation between OC concentration and sediment mineral surface area (R2 = 0.92) occurs across a range of total organic carbon (TOC) values from 9 to 33%. X-ray diffraction data indicate the intercalation of OC in smectite interlayers, while electron, synchrotron infrared and X-ray microscopy show an intimate association between clay minerals and OC, consistent with preservation of OC as organomineral nanocomposites and aggregates rather than discrete, μm-scale pelagic detritus. Since the consistent ratio between TOC and mineral surface area suggests that excess OC relative to surface area is lost, we propose that it is the varying supply of smectite that best explains variable organic enrichment against a backdrop of continuous anoxia, which is conducive to generally high TOC during OAE 2 at the Demerara Rise. Smectitic clays are unique in their ability to form stable organomineral nanocomposites and aggregates that preserve organic matter, and are common weathering products of continental volcanic deposits. An increased flux of smectite coinciding with high carbon burial is consistent with evidence for widespread volcanism during OAE 2, so that organomineral carbon burial may represent a potential feedback to volcanic degassing of CO2.

  20. Organomineral nanocomposite carbon burial during Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Löhr, S. C.; Kennedy, M. J.

    2014-05-01

    Organic carbon (OC) enrichment in sediments deposited during Oceanic Anoxic Events (OAEs) is commonly attributed to elevated productivity and marine anoxia. We find that OC enrichment in the late Cenomanian aged OAE2 at Demerara Rise was controlled by co-occurrence of anoxic bottom-water, sufficient productivity to saturate available mineral surfaces and variable deposition of high surface area detrital smectite clay. Redox indicators show consistently oxygen-depleted conditions, while a strong correlation between OC concentration and sediment mineral surface area (R2=0.92) occurs across a range of TOC values from 9-33%. X-ray diffraction data indicates intercalation of OC in smectite interlayers while electron, synchrotron infrared and X-ray microscopy show an intimate association between clay minerals and OC, consistent with preservation of OC as organomineral nanocomposites and aggregates rather than discrete, μm-scale pelagic detritus. Since the consistent ratio between TOC and mineral surface area suggests that excess OC relative to surface area is lost, we propose that it is the varying supply of smectite that best explains variable organic enrichment against a backdrop of continuous anoxia, which is conducive to generally high TOC during OAE2 at Demerara Rise. Smectitic clays are unique in their ability to form stable organomineral nanocomposites and aggregates that preserve organic matter, and are common weathering products of continental volcanic deposits. An increased flux of smectite coinciding with high carbon burial is consistent with evidence for widespread volcanism during OAE2, so that organomineral carbon burial may represent a potential feedback to volcanic degassing of CO2.

  1. Cr Isotope Response to Ocean Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Holmden, C. E.; Jacobson, A. D.; Sageman, B. B.; Hurtgen, M.

    2015-12-01

    The element Cr offers a redox sensitive isotopic proxy with potential for tracing past oxygen levels in the oceans. We examine this potential in a marine carbonate section deposited during Cretaceous Ocean Anoxic Event 2 (OAE 2) in the Western Interior Seaway, Colorado. Redox changes are the main source of Cr isotope fractionation in Earth surface environments. Cr(VI), in the form of the chromate oxyanion, is the thermodynamically favoured species in oxygenated seawater. Reduction of Cr(VI) causes light isotopes to partition into Cr(III), which is reactive and susceptible to removal into marine sediment. Therefore, widespread ocean anoxia should correlate with positive shifts in seawater chromate Cr isotope values (δ53Cr), assuming that all Cr input fluxes remained constant during the event. We find instead that inferred seawater δ53Cr values decreased during OAE 2. The minima of the sedimentary δ53Cr excursion coincides with the peak interval of anomalously enriched concentrations of Cr and other trace metals of basaltic affinity attributed to eruption of the Caribbean Large Igneous Province (CLIP). We propose that an anoxic, hydrothermal plume enriched in Cr(III) with low δ53Cr values characteristic of igneous rocks moved from deep waters of the CLIP eruption site in the eastern Pacific into deep waters of the proto-North Atlantic through an oceanic gateway in the Central Americas. Once inside, metal-rich waters upwelled against the surrounding continental margins. CLIP volcanism delivered a submarine weathering flux of Cr to the oceans during OAE 2 that was large enough to mask the expected isotopic response of the ocean Cr cycle to increasing anoxia, particularly in the proto-North Atlantic Ocean.

  2. Feasibility of hydraulic separation in a novel anaerobic-anoxic upflow reactor for biological nutrient removal.

    PubMed

    Díez-Montero, Rubén; De Florio, Loredana; González-Viar, Marta; Volcke, Eveline I P; Tejero, Iñaki

    2015-01-01

    This contribution deals with a novel anaerobic-anoxic reactor for biological nutrient removal (BNR) from wastewater, termed AnoxAn. In the AnoxAn reactor, the anaerobic and anoxic zones for phosphate removal and denitrification are integrated in a single continuous upflow sludge blanket reactor, aiming at high compactness and efficiency. Its application is envisaged in those cases where retrofitting of existing wastewater treatment plants for BNR, or the construction of new ones, is limited by the available surface area. The environmental conditions are vertically divided up inside the reactor with the anaerobic zone at the bottom and the anoxic zone above. The capability of the AnoxAn configuration to establish two hydraulically separated zones inside the single reactor was assessed by means of hydraulic characterization experiments and model simulations. Residence time distribution (RTD) experiments in clean water were performed in a bench-scale (48.4 L) AnoxAn prototype. The required hydraulic separation between the anaerobic and anoxic zones, as well as adequate mixing in the individual zones, were obtained through selected mixing devices. The observed behaviour was described by a hydraulic model consisting of continuous stirred tank reactors and plug-flow reactors. The impact of the denitrification process in the anoxic zone on the hydraulic separation was subsequently evaluated through model simulations. The desired hydraulic behaviour proved feasible, involving little mixing between the anaerobic and anoxic zones (mixing flowrate 40.2 % of influent flowrate) and negligible nitrate concentration in the anaerobic zone (less than 0.1 mgN L(-1)) when denitrification was considered. PMID:25001422

  3. Feasibility of hydraulic separation in a novel anaerobic-anoxic upflow reactor for biological nutrient removal.

    PubMed

    Díez-Montero, Rubén; De Florio, Loredana; González-Viar, Marta; Volcke, Eveline I P; Tejero, Iñaki

    2015-01-01

    This contribution deals with a novel anaerobic-anoxic reactor for biological nutrient removal (BNR) from wastewater, termed AnoxAn. In the AnoxAn reactor, the anaerobic and anoxic zones for phosphate removal and denitrification are integrated in a single continuous upflow sludge blanket reactor, aiming at high compactness and efficiency. Its application is envisaged in those cases where retrofitting of existing wastewater treatment plants for BNR, or the construction of new ones, is limited by the available surface area. The environmental conditions are vertically divided up inside the reactor with the anaerobic zone at the bottom and the anoxic zone above. The capability of the AnoxAn configuration to establish two hydraulically separated zones inside the single reactor was assessed by means of hydraulic characterization experiments and model simulations. Residence time distribution (RTD) experiments in clean water were performed in a bench-scale (48.4 L) AnoxAn prototype. The required hydraulic separation between the anaerobic and anoxic zones, as well as adequate mixing in the individual zones, were obtained through selected mixing devices. The observed behaviour was described by a hydraulic model consisting of continuous stirred tank reactors and plug-flow reactors. The impact of the denitrification process in the anoxic zone on the hydraulic separation was subsequently evaluated through model simulations. The desired hydraulic behaviour proved feasible, involving little mixing between the anaerobic and anoxic zones (mixing flowrate 40.2 % of influent flowrate) and negligible nitrate concentration in the anaerobic zone (less than 0.1 mgN L(-1)) when denitrification was considered.

  4. Iron isotope and trace metal records of iron cycling in the proto-North Atlantic during the Cenomanian-Turonian oceanic anoxic event (OAE-2)

    NASA Astrophysics Data System (ADS)

    Owens, Jeremy D.; Lyons, Timothy W.; Li, Xiaona; MacLeod, Kenneth G.; Gordon, Gwenyth; Kuypers, Marcel M. M.; Anbar, Ariel; Kuhnt, Wolfgang; Severmann, Silke

    2012-09-01

    The global carbon cycle during the mid-Cretaceous (˜125-88 million years ago, Ma) experienced numerous major perturbations linked to increased organic carbon burial under widespread, possibly basin-scale oxygen deficiency and episodes of euxinia (anoxic and H2S-containing). The largest of these episodes, the Cenomanian-Turonian boundary event (ca. 93.5 Ma), or oceanic anoxic event (OAE) 2, was marked by pervasive deposition of organic-rich, laminated black shales in deep waters and in some cases across continental shelves. This deposition is recorded in a pronounced positive carbon isotope excursion seen ubiquitously in carbonates and organic matter. Enrichments of redox-sensitive, often bioessential trace metals, including Fe and Mo, indicate major shifts in their biogeochemical cycles under reducing conditions that may be linked to changes in primary production. Iron enrichments and bulk Fe isotope compositions track the sources and sinks of Fe in the proto-North Atlantic at seven localities marked by diverse depositional conditions. Included are an ancestral mid-ocean ridge and euxinic, intermittently euxinic, and oxic settings across varying paleodepths throughout the basin. These data yield evidence for a reactive Fe shuttle that likely delivered Fe from the shallow shelf to the deep ocean basin, as well as (1) hydrothermal sources enhanced by accelerated seafloor spreading or emplacement of large igneous province(s) and (2) local-scale Fe remobilization within the sediment column. This study, the first to explore Fe cycling and enrichment patterns on an ocean scale using iron isotope data, demonstrates the complex processes operating on this scale that can mask simple source-sink relationships. The data imply that the proto-North Atlantic received elevated Fe inputs from several sources (e.g., hydrothermal, shuttle and detrital inputs) and that the redox state of the basin was not exclusively euxinic, suggesting previously unknown heterogeneity in

  5. Great Basin paleontological database

    USGS Publications Warehouse

    Zhang, N.; Blodgett, R.B.; Hofstra, A.H.

    2008-01-01

    The U.S. Geological Survey has constructed a paleontological database for the Great Basin physiographic province that can be served over the World Wide Web for data entry, queries, displays, and retrievals. It is similar to the web-database solution that we constructed for Alaskan paleontological data (www.alaskafossil.org). The first phase of this effort was to compile a paleontological bibliography for Nevada and portions of adjacent states in the Great Basin that has recently been completed. In addition, we are also compiling paleontological reports (Known as E&R reports) of the U.S. Geological Survey, which are another extensive source of l,egacy data for this region. Initial population of the database benefited from a recently published conodont data set and is otherwise focused on Devonian and Mississippian localities because strata of this age host important sedimentary exhalative (sedex) Au, Zn, and barite resources and enormons Carlin-type An deposits. In addition, these strata are the most important petroleum source rocks in the region, and record the transition from extension to contraction associated with the Antler orogeny, the Alamo meteorite impact, and biotic crises associated with global oceanic anoxic events. The finished product will provide an invaluable tool for future geologic mapping, paleontological research, and mineral resource investigations in the Great Basin, making paleontological data acquired over nearly the past 150 yr readily available over the World Wide Web. A description of the structure of the database and the web interface developed for this effort are provided herein. This database is being used ws a model for a National Paleontological Database (which we am currently developing for the U.S. Geological Survey) as well as for other paleontological databases now being developed in other parts of the globe. ?? 2008 Geological Society of America.

  6. A Multi-proxy Examination of the Toarcian Oceanic Anoxic Event in Argentina

    NASA Astrophysics Data System (ADS)

    Al-Suwaidi, A. H.; Baudin, F.; Damborenea, S. E.; Hesselbo, S. P.; Jenkyns, H. C.; Manceñido, M. O.; Pancost, R. D.; Riccardi, A. C.; Siebert, C.

    2010-12-01

    The Toarcian, Early Jurassic, Oceanic Anoxic Event (T-OAE: ~183 Ma) was characterized by relatively high mid-latitude sea-surface temperatures (~6°C warmer than present), mass extinction, and the deposition of sediments rich in organic carbon (black shales). The T-OAE correlates with emplacement of a large igneous province (Karroo-Ferrar) and is associated with a positive carbon-isotope excursion punctuated by a negative carbon-isotope excursion, in bulk sedimentary organic matter and fossil wood, the later recording atmospheric isotopic composition. The T-OAE has been extensively studied in northern and southern Europe and new studies from the Southern Hemisphere have provided chemostratigraphic evidence for the global expression of the event. Here we present new geochemical data from the Neuquén Basin, Argentina: bulk-sediment δ13C values fall to -31.3 ‰ and δ13C values from fossil wood fall to -30.7 ‰, isotopic ratios that are comparable to those identified in Europe for the T-OAE. Hydrogen Index (HI) data for the T-OAE in Argentina give values ranging from 12 to 425 mg HC/ g TOC, indicating a mixture of terrestrial and marine organic components. Biomarkers indicative of photic-zone euxinia (diagenetic products of the green sulphur bacterial pigment isorenieratene) occur at some levels, and new δ98Mo data, with values ranging from ~ -0.2 to 0.78 ‰, contrast with previously published molybdenum-isotope values from T-OAE black shales of northern Europe. The new molybdenum-isotope data call into question the inference that the northern European seaways record global molybdenum-isotope fluctuations.

  7. Calcareous nannoplankton changes across the early Toarcian oceanic anoxic event in the western Tethys

    NASA Astrophysics Data System (ADS)

    Mattioli, Emanuela; Pittet, Bernard; Suan, Guillaume; Mailliot, Samuel

    2008-09-01

    Calcareous nannoplankton were profoundly affected by environmental perturbations coincident with the early Toarcian oceanic anoxic event (T-OAE). We quantify the abundance of nannofossils across the T-OAE at three locations in Western Europe, where the event is marked by a prominent negative carbon isotope excursion (CIE). Data were treated by statistical analysis, and the Shannon diversity index was applied in order to describe nannofossil assemblage changes related to paleoenvironmental evolution. In the basal Toarcian, before the T-OAE, high proportions of taxa with an affinity for low temperature (e.g., P. liasicus, T. patulus, Bussonius) occurred. This observation is consistent with interpretations of published oxygen isotope records. During the T-OAE, the lowest abundance of nannofossils is observed, but there is a peak of a coccolith (Calyculus) from an organism that probably thrived in low-saline surface waters depleted of nitrate. At the end of the perturbation, the lowest diversities of nannofossils occurred, and assemblages are dominated by Crepidolithus crassus, a deep dweller. This interval corresponded to progressive reoxygenation of deep water and the reoccupation of the deep photic zone by nannoplankton. The highest abundance of nannofossils is recorded above the CIE and testifies to the recovery of the entire nannoplankton community. The T-OAE was widespread (perhaps global) and probably linked to major changes in the atmosphere and hydrosphere. However, the record of this event varies in the basins surrounding the western Tethys, suggesting regional imprints on the global signal. The regional variability may attest to establishment of effective connections between the Arctic and Tethys oceans, which allowed cool, low-saline water formed at high latitudes to stream toward the western Tethys.

  8. Degradation of trifluoroacetate in oxic and anoxic sediments

    USGS Publications Warehouse

    Visscher, P.T.; Culbertson, C.W.; Oremland, R.S.

    1994-01-01

    THE deleterious effect of chlorofluorocarbons on stratospheric ozone has led to international cooperation to end their use. The search for acceptable alternatives has focused on hydrofluorocarbons (HFCs) or hydrochlorofluorocarbons (HCFCs) which are attractive because they have relatively short atmospheric residence times. HFCs and HCFCs are attacked by tropospheric hydroxyl radicals, leading to the formation of trifluoroacetate (TFA). Most of the atmospheric TFA is deposited at the Earth's surface, where it is thought to be highly resistant to bacterial attack. Therefore, use of HCFCs and HFCs may lead to accumulation of TFA in soils, where it could prove toxic or inhibitory to plants and soil microbial communities. Although little is known about the toxicity of TFA, monofluoroacetate, which occurs at low levels in some plants and which is susceptible to slow attack by aerobic soil microbes, is known to be acutely toxic. Here we report that TFA can be rapidly degraded microbially under anoxic and oxic conditions. These results imply that significant microbial sinks exist in nature for the elimination of TFA from the environment. We also show that oxic degradation of TFA leads to the formation of fluoroform, a potential ozone-depleting compound with a much longer atmospheric lifetime than the parent compounds.The deleterious effect of chlorofluorcarbons on stratospheric ozone has led to international cooperation to end their use. The search for acceptable alternatives has focused on hydroflnorocarbons (HFCs) or hydrochloroflnorcarbons (HCFs) which are attractive because they have relatively short atmospheric residence times. HFCs and HCFs are attacked by tropospheric hydroxyl radicals, leading to the formation of trifluoroacetate (TFA). Most of the atmospheric TFA is deposited at the Earth's surface, where it is thought to be highly resistant to bacterial attack. Therefore, use of HCFs and HCFs may lead to accummulation of TFA in soils, where it could prove toxic

  9. Involvement of plasma membrane H+-ATPase in anoxic elongation of stems in pondweed (Potamogeton distinctus) turions.

    PubMed

    Koizumi, Yayoi; Hara, Yoshinao; Yazaki, Yoshiaki; Sakano, Katsuhiro; Ishizawa, Kimiharu

    2011-04-01

    • Pondweed (Potamogeton distinctus) turions can elongate in the absence of O(2). Alcoholic fermentation serves to produce energy for anoxic elongation via the breakdown of starch stored in cells. However, the mechanism of cell growth during anoxic elongation is not fully understood. • Changes in pH, H(+) equivalent and lactate content of the incubation medium were measured during anoxic elongation. The effects of fusicoccin (FC), indole-3-acetic acid (IAA), vanadate, erythrosine B and K(+) channel blockers on anoxic elongation were examined. Cytoplasmic pH and vacuolar pH were measured by (31)P nuclear magnetic resonance (NMR) spectroscopy. • Acidification of the incubation medium occurred during anoxic elongation. The contribution of CO(2) and lactic acid was not sufficient to explain the acidification. FC and IAA enhanced the elongation of stem segments. Vanadate and erythrosine B inhibited anoxic elongation. Acid growth of notched segments was observed. The activity of plasma membrane H(+)-ATPase extracted from pondweed turions was increased slightly in anoxic conditions, but that from pea epicotyls sensitive to anoxic conditions was decreased by incubation in anoxic conditions. Both the cytoplasmic pH and vacuolar pH of pondweed turion cells chased by (32)P NMR spectroscopy were stabilized during a short period < 3 h after anoxic conditions. • We propose that the enhancement of H(+) extrusion by anoxic conditions induces acidification in the apoplast and may contribute to the stabilization of pH in the cytoplasm. PMID:21232059

  10. Anoxic marine lakes - an analogue environment for insular phosphorite formation

    SciTech Connect

    Burnett, W.C. )

    1990-06-01

    Hundreds of islands in the tropical Pacific Ocean contain phosphate deposits ranging from inconsequential to economically significant in size. Although many of these deposits clearly have formed by the interaction of avian guano with underlying limestone, some display evidence of having developed within an aqueous environment. Several of the emergent carbonate islands in the southern part of Palau contain phosphate deposits that the authors speculate formed in anoxic marine lakes, similar to those which still occur on a few of these islands. Lake water, sediments, and sediment pore waters from Jellyfish Lake, on the island of Eil Malk in Palau, were analyzed during an expedition in 1987. The results of this investigation supported, but did not provide, conclusive evidence of our hypothesis. Pore water profiles of phosphate and fluoride confirmed precipitation of carbonate fluorapatite. However, the extremely high bulk sediment accumulation rate, driven by the high biological productivity of the surface waters of the lake, dilutes authigenic phosphate to low levels. They have refined their original proposal to suggest that phosphate deposits may form either by: (1) subaerial weathering and concentration of phosphatic sediments after these lakes disappear; or (2) interaction of phosphate-enriched sediment pore solutions with limestone at the underlying contact. Another expedition to test these concepts is being planned.

  11. Minimum Energy Requirements for Sustained Microbial Activity in Anoxic Sediments

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christoper S.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Currently understood mechanisms of biochemical energy conservation dictate that, in order to be biologically useful, energy must be available to organisms in "quanta" equal to, at minimum one-third to one-fifth of the energy required to synthesize ATP in vivo. The existence of this biological energy quantum means that a significant fraction of the chemical amp on Earth cannot be used to drive biological productivity, and places a fundamental thermodynamic constraint on the origins, evolution, and distribution of life. We examined the energy requirements of intact microbial assemblages in anoxic sediments from Cape Lookout Bight, NC, USA, using dissolved hydrogen concentrations as a non-invasive probe. In this system, the thermodynamics of metabolic processes occurring inside microbial cells is reflected quantitatively by H2 concentrations measured outside those cells. We find that methanogenic archaea are supported by energy yields as small as 10 kJ per mol, about half the quantity calculated from studies of microorganisms in culture. This finding implies that a significantly broader range of geologic and chemical niches might be exploited by microorganisms than would otherwise be expected.

  12. Acute anoxic changes in peripheral nerve: anatomic and physiologic correlations

    PubMed Central

    Punsoni, Michael; Drexler, Steven; Palaia, Thomas; Stevenson, Matthew; Stecker, Mark M

    2015-01-01

    Introduction The response of the peripheral nerve to anoxia is modulated by many factors including glucose and temperature. The purposes of this article are to demonstrate the effects of these factors on the pathological changes induced by anoxia and to compare the electrophysiologic changes and pathological changes in the same nerves. Methods Sciatic nerves were harvested from rats and placed in a perfusion apparatus where neurophysiologic responses could be recorded continuously during a 16 h experiment. After the experiment, light microscopy and electron microscopy were performed. Results Light microscopic images showed mild changes from anoxia at normoglycemia. Hypoglycemic anoxia produced massive axonal swelling while hyperglycemic anoxia produced apparent changes in the myelin. Anoxic changes were not uniform in all axons. Electron microscopy showed only minor disruptions of the cytoskeleton with anoxia during normoglycemia. At the extremes of glucose concentration especially with hyperglycemia, there was a more severe disruption of intermediate filaments and loss of axonal structure with anoxia. Hypothermia protected axons from the effect of anoxia and produced peak axonal swelling in the 17–30°C range. Conclusions The combination of hyperglycemia or hypoglycemia and anoxia produces extremely severe axonal disruption. Changes in axonal diameter are complex and are influenced by many factors. PMID:26221572

  13. Microbial community- and metabolite dynamics of an anoxic dechlorinating bioreactor.

    PubMed

    Maphosa, Farai; Smidt, Hauke; de Vos, Willem M; Röling, Wilfred F M

    2010-07-01

    Monitoring and quantification of organohalide respiring bacteria is essential for optimization of on-site bioremediation of anoxic subsurface sites contaminated with chloroethenes. Molecular monitoring and model simulations were applied to determine degradation performance of an in situ dechlorinating bioreactor and its influence on the contamination plume. Dehalococcoides was the dominant dechlorinating microorganism as revealed by qPCR targeting 16S rRNA- and chloroethene reductive dehalogenase-encoding genes (tceA, vcrA, bvcA). The presence of all three reductive dehalogenases genes indicated coexistence of several distinct organohalide respiring bacterial populations in the bioreactor and groundwater. Mass balancing revealed that main dechlorinating activities were reduction of cis-dichloroethene and vinyl chloride. Analysis of growth kinetics showed that when performance of the bioreactor improved due to especially the addition of molasses, dechlorinating microorganisms were growing close to their maximum growth rate. Once near-complete dehalogenation was achieved, Dehalococcoides only grew slowly and population density did not further increase. The bioreactor influenced dechlorinating populations in the plume with subsequent decrease in chlorinated compound concentrations over time. In the present study, a combination of molecular diagnostics with mass-balancing and kinetic modeling improved insight into organohalide respiring bacteria and metabolite dynamics in an in situ dechlorinating bioreactor and showed its utility in monitoring bioremediation.

  14. ENANTIOSELECTIVE MICROBIAL TRANSFORMATION OF THE PHENYLPYRAZOLE INSECTICIDE FIPRONIL IN ANOXIC SEDIMENTS

    EPA Science Inventory

    Fipronil, a chiral insecticide, was biotransformed initially to fipronil sulfide in anoxic sediment slurries following a short lag period. Sediment slurries characterized as either sulfidogenic or methanogenic transformed fipronil with half-lives of approximately 35 and 40 days, ...

  15. ENVIRONMENTAL CHARACTERISTICS AFFECTING REDUCTIVE TRANSFORMATION OF ORGANIC POLLUTANTS IN ANOXIC SEDIMENTS

    EPA Science Inventory

    Reductive transformations are important processes for determining the fate of organic pollutants in anoxic environments. These processes are most often microbially mediated by both direct and indirect means. For example, specific bacteria transform organic pollutants directly as ...

  16. Long-term subculture of human keratinocytes under an anoxic condition.

    PubMed

    Kino-oka, Masahiro; Agatahama, Yuka; Haga, Yuki; Inoie, Masukazu; Taya, Masahito

    2005-07-01

    The serial subculturing of human keratinocyte cells under the anoxic and normoxic conditions was examined. The cumulative number of population doublings in the subcultures under the former condition increased 2.1-fold while maintaining an appreciable growth rate of cells, as compared with that under the latter condition. Moreover, the migration ability, which was estimated by the rotation rate of paired cells, was maintained accompanied by fully developed filopodia of F-actin filaments under the anoxic condition, despite of the poor development of stress fibers at the center of the cellular body. The cells passaged under the anoxic condition possessed the sufficient clonogenic potential to form epithelial sheets, supporting the view that the long-term subculture of keratinocytes under the anoxic condition can be applied for cell expansion in the practical production of epithelial sheets.

  17. Enhanced carbon loss from anoxic lake sediment through diffusion of dissolved organic carbon

    NASA Astrophysics Data System (ADS)

    Peter, Simone; Isidorova, Anastasija; Sobek, Sebastian

    2016-07-01

    Lakes are highly relevant players in the global carbon cycle as they can store large amounts of organic carbon (OC) in sediments, thereby removing OC from the actively cycling pool. However, sediment OC can be released to pore water under anoxic conditions and diffuse into the water column. In carbon budgets of lake ecosystems, this potential OC loss pathway from sediments is generally disregarded. Combining field observations and incubation experiments, we quantitatively investigated dissolved OC (DOC) diffusion from sediments into anoxic water of a boreal lake. We observed substantial increases of bottom water DOC (26% in situ, 16% incubation), translating into a DOC flux from the sediment that was comparable to anoxic sediment respiration (3.3 versus 5.1 mmol m-2 d-1). Optical characterization indicated that colored and aromatic DOC was preferentially released. Reactivity assays showed that DOC released from anoxic sediment enhanced water column respiration and flocculation in reoxygenated water. Upon water oxygenation, flocculation was the most important loss pathway removing ~77% of released DOC, but the remaining ~23% was mineralized, constituting a pathway of permanent loss of sediment OC. DOC diffusion from lake sediment during anoxia and subsequent mineralization in oxic water during mixing increases overall OC loss from anoxic sediments by ~15%. This study enlarges our understanding of lake ecosystems by showing that under anoxic conditions significant amounts of DOC can be released from OC stored in sediments and enter the active aquatic carbon cycle again.

  18. Evidence for local ciliate endemism in an alpine anoxic lake.

    PubMed

    Stoeck, Thorsten; Bruemmer, Franz; Foissner, Wilhelm

    2007-10-01

    Despite its long history, biogeography has received relatively little attention within the field of microbial ecology. Consequently, a fierce debate rages whether protists inhabit restricted geographic areas (endemism hypothesis) or are globally dispersed (ubiquitous dispersal hypothesis). The data presented in this article support the endemism hypothesis. We succeeded in isolating an oligohymenophorean ciliate from a microbial mat in a meromictic anoxic alpine lake (Alatsee) in Germany. The ciliary pattern and the morphometry of this isolate are remarkably similar to Urocentrum turbo (Mueller, 1786) Nitzsch, 1827. However, the organism does not possess trichocysts, a conspicuous and characteristic feature of U. turbo. Instead, the U. turbo-like isolate from lake Alatsee displays merely trichocyst anlagen ("ghosts") in the cytoplasm that are only visible after protargol impregnation and which become never attached to the cell's cortex. Despite the distinctness of this difference, such a morphospecies has not been described from any other environment. Thus, we suggest that the U. turbo-like isolate from lake Alatsee is a local endemic ecotype, although the sequences of the 18S rRNA, ITS1, 5.8S rRNA, and ITS2 genes are nearly identical to those of U. turbo (Mueller, 1786) Nitzsch, 1827. This indicates that neither 18S rDNA nor ITS1, ITS2, and 5.8S rDNA sequences are reliable means to conclusively resolve different morphospecies or ecotypes of ciliates. As a consequence, we argue that protist species richness can only be reliably accounted for by considering both molecular and morphological data.

  19. Anoxic deep-sea microbial dolomite as a paleoceanographic archive - new insights from old "bugs"

    NASA Astrophysics Data System (ADS)

    Miller, N. R.; Leybourne, M. I.

    2010-12-01

    Earth’s history of biogenic carbonate production is dominated by pre-skeletal (late Ediacaran) microbe-catalyzed carbonate, including low T/P microbial (aka organogenic) dolomite, but paleoceanographic contexts are unclear due to the lack of proxy control provided by skeletal analogs and/or diagenesis. Microbial communities affiliated with dolomite generation (chiefly sulfate reducers and methanogens) are now known to persist in a diversity of Recent anoxic environments, but only deep-sea settings are sufficiently insulated from eustatic-meteoric diagenesis to preserve long-term records of possible paleoceanographic significance. The Miocene Monterey Formation contains episodic-to-cyclic microbial dolomite intervals interstratified with microfossil calcite, and thereby offers an excellent test the paleoceoanographic archive potential of microbial dolomite. Accordingly, we established a detailed dolomite chemostratigraphic profile (δ18O, δ13C, TOC, trace elements/REEs) from a continuous, thermally immature, Monterey core (offshore Santa Barbara-Ventura Basin), preserving >100 distinct early diagenetic (pre significant compaction, pre-diatom dissolution, post-pyrite) microbial dolomite intervals. Despite dolomite horizons being physically separate from one stratum to the next, they exhibit regular core-wide variations in δ13C and δ18O. Dolomite within the main Monterey depositional interval has entirely negative δ13C values (-2 to -16‰) consistent with generation in the zone of microbial sulfate reduction, whereas positive δ13C values (+2 to +9‰) consistent with generation from methanogenic pore-waters occur in lithologic transitions with bounding formations. Dolomites within the main Monterey depositional interval mirror microfossil calcite δ18O variations, notably pronounced global mid-Miocene enrichment after ~14 Ma linked to cooling and significant expansion of Antarctic ice. Dolomite δ13C mirrors sediment accumulation rate, with lightest values

  20. Upper Cisuralian palynology and palaeoclimate of Manuguru area Godavari basin, India and their global correlation

    NASA Astrophysics Data System (ADS)

    K, Pauline Sabina; Jha, Neerja

    2014-10-01

    Collie Basin of west Australia point out to their Early Permian (Late Sakmarian-Early Artinskian) age. Palynomorphs such as Botryococcus sp., Tetraporinia sp., Balmeela sp. and Leiosphaeridia sp. are also recorded which suggest that these sediments were deposited during post-glacial near shore, cool and humid environment.

  1. Anoxic stress and rapid cold hardening enhance cold tolerance of the migratory locust.

    PubMed

    Cui, Feng; Wang, Hongsheng; Zhang, Hanying; Kang, Le

    2014-10-01

    Anoxia and rapid cold hardening (RCH) can increase the cold tolerance of many animals. However, mechanisms underlying these two kinds of stresses remain unclear. In this study, we aimed to explore the relationship of acclimation to cold stress with acclimation to anoxic stress in the migratory locust, Locusta migratoria. RCH at 0°C for 3h promoted the survival of cold stress-exposed locusts. Anoxic hypercapnia (CO2 anoxic treatment) for 40 min exerted an effect similar to that of RCH. Anoxic hypercapnia within 1h can all promote the cold hardiness of locusts. We investigated the transcript levels of six heat shock protein (Hsp) genes, namely, Hsp20.5, Hsp20.6, Hsp20.7, Hsp40, Hsp70, and Hsp90. Four genes, namely, Hsp90, Hsp40, Hsp20.5, and Hsp20.7, showed differential responses to RCH and anoxic hypercapnia treatments. Under cold stress, locusts exposed to the two regimens showed different responses for Hsp90, Hsp20.5, and Hsp20.7. However, the varied responses disappeared after recovery from cold stress. Compared with the control group, the transcript levels of six Hsp genes were generally downregulated in locusts subjected to anoxic hypercapnia or/and RCH. These results indicate that anoxic stress and RCH have different mechanisms of regulating the transcription of Hsp family members even if the two treatments exerted similar effects on cold tolerance of the migratory locust. However, Hsps may not play a major role in the promotion of cold hardiness by the two treatments.

  2. Respiratory Succession and Community Succession of Bacterioplankton in Seasonally Anoxic Estuarine Waters▿

    PubMed Central

    Crump, Byron C.; Peranteau, Cherie; Beckingham, Barbara; Cornwell, Jeffrey C.

    2007-01-01

    Anoxia occurs in bottom waters of stratified estuaries when respiratory consumption of oxygen, primarily by bacteria, outpaces atmospheric and photosynthetic reoxygenation. Once water becomes anoxic, bacterioplankton must change their metabolism to some form of anaerobic respiration. Analysis of redox chemistry in water samples spanning the oxycline of Chesapeake Bay during the summer of 2004 suggested that there was a succession of respiratory metabolism following the loss of oxygen. Bacterial community doubling time, calculated from bacterial abundance (direct counts) and production (anaerobic leucine incorporation), ranged from 0.36 to 0.75 day and was always much shorter than estimates of the time that the bottom water was anoxic (18 to 44 days), indicating that there was adequate time for bacterial community composition to shift in response to changing redox conditions. However, community composition (as determined by PCR-denaturing gradient gel electrophoresis analysis of 16S rRNA genes) in anoxic waters was very similar to that in surface waters in June when nitrate respiration was apparent in the water column and only partially shifted away from the composition of the surface community after nitrate was depleted. Anoxic water communities did not change dramatically until August, when sulfate respiration appeared to dominate. Surface water populations that remained dominant in anoxic waters were Synechococcus sp., Gammaproteobacteria in the SAR86 clade, and Alphaproteobacteria relatives of Pelagibacter ubique, including a putative estuarine-specific Pelagibacter cluster. Populations that developed in anoxic water were most similar (<92% similarity) to uncultivated Firmicutes, uncultivated Bacteroidetes, Gammaproteobacteria in the genus Thioalcalovibrio, and the uncultivated SAR406 cluster. These results indicate that typical estuarine bacterioplankton switch to anaerobic metabolism under anoxic conditions but are ultimately replaced by different organisms

  3. Attenuation and colloidal mobilization of bacteriophages in natural sediments under anoxic as compared to oxic conditions.

    PubMed

    Klitzke, Sondra; Schroeder, Jendrik; Selinka, Hans-Christoph; Szewzyk, Regine; Chorus, Ingrid

    2015-06-15

    Redox conditions are known to affect the fate of viruses in porous media. Several studies report the relevance of colloid-facilitated virus transport in the subsurface, but detailed studies on the effect of anoxic conditions on virus retention in natural sediments are still missing. Therefore, we investigated the fate of viruses in natural flood plain sediments with different sesquioxide contents under anoxic conditions by considering sorption to the solid phase, sorption to mobilized colloids, and inactivation in the aqueous phase. Batch experiments were conducted under oxic and anoxic conditions at pH values between 5.1 and 7.6, using bacteriophages MS2 and PhiX174 as model viruses. In addition to free and colloid-associated bacteriophages, dissolved and colloidal concentrations of Fe, Al and organic C as well as dissolved Ca were determined. Results showed that regardless of redox conditions, bacteriophages did not adsorb to mobilized colloids, even under favourable charge conditions. Under anoxic conditions, attenuation of bacteriophages was dominated by sorption over inactivation, with MS2 showing a higher degree of sorption than PhiX174. Inactivation in water was low under anoxic conditions for both bacteriophages with about one log10 decrease in concentration during 16 h. Increased Fe/Al concentrations and a low organic carbon content of the sediment led to enhanced bacteriophage removal under anoxic conditions. However, even in the presence of sufficient Fe/A-(hydr)oxides on the solid phase, bacteriophage sorption was low. We presume that organic matter may limit the potential retention of sesquioxides in anoxic sediments and should thus be considered for the risk assessment of virus breakthrough in the subsurface.

  4. Phylogenetic Diversity of Bacterial and Archaeal Communities in the Anoxic Zone of the Cariaco Basin†

    PubMed Central

    Madrid, Vanessa M.; Taylor, Gordon T.; Scranton, Mary I.; Chistoserdov, Andrei Y.

    2001-01-01

    Microbial community samples were collected from the anoxic zone of the Cariaco Basin at depths of 320, 500, and 1,310 m on a November 1996 cruise and were used to construct 16S ribosomal DNA libraries. Of 60 nonchimeric sequences in the 320-m library, 56 belonged to the ɛ subdivision of the Proteobacteria (ɛ-Proteobacteria) and 53 were closely related to ectosymbionts of Rimicaris exoculata and Alvinella pompejana, which are referred to here as epsilon symbiont relatives (ESR). The 500-m library contained sequences affiliated with the fibrobacteria, the Flexibacter-Cytophaga-Bacteroides division, the division Verrucomicrobia, the division Proteobacteria, and the OP3 candidate division. The Proteobacteria included members of the γ, δ, ɛ and new candidate subdivisions, and γ-proteobacterial sequences were dominant (25.6%) among the proteobacterial sequences. As in the 320-m library, the majority of the ɛ-proteobacteria belonged to the ESR group. The genus Fibrobacter and its relatives were the second largest group in the library (23.6%), followed by the δ-proteobacteria and the ɛ-proteobacteria. The 1,310-m library had the greatest diversity; 59 nonchimeric clones in the library contained 30 unique sequences belonging to the planctomycetes, the fibrobacteria, the Flexibacter-Cytophaga-Bacteroides division, the Proteobacteria, and the OP3 and OP8 candidate divisions. The proteobacteria included members of new candidate subdivisions and the β, γ, δ, and ɛ-subdivisions. ESR sequences were still present in the 1,310-m library but in a much lower proportion (8.5%). One archaeal sequence was present in the 500-m library (2% of all microorganisms in the library), and eight archaeal sequences were present in the 1,310-m library (13.6%). All archaeal sequences fell into two groups; two clones in the 1,310-m library belonged to the kingdom Crenarchaeota and the remaining sequences in both libraries belonged to the kingdom Euryarchaeota. The latter group appears to

  5. Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment.

    PubMed

    Edgcomb, Virginia P; Kysela, David T; Teske, Andreas; de Vera Gomez, Alvin; Sogin, Mitchell L

    2002-05-28

    Molecular microbial ecology studies have revealed remarkable prokaryotic diversity in extreme hydrothermal marine environments. There are no comparable reports of culture-independent surveys of eukaryotic life in warm, anoxic marine sediments. By using sequence comparisons of PCR-amplified small subunit ribosomal RNAs, we characterized eukaryotic diversity in hydrothermal vent environments of Guaymas Basin in the Gulf of California. Many sequences from these anoxic sediments and the overlaying seawater represent previously uncharacterized protists, including early branching eukaryotic lineages or extended diversity within described taxa. At least two mechanisms, with overlapping consequences, account for the eukaryotic community structure of this environment. The adaptation to anoxic environments is evidenced by specific affinity of environmental sequences to aerotolerant anaerobic species in molecular trees. This pattern is superimposed against a background of widely distributed aerophilic and aerotolerant protists, some of which may migrate into and survive in the sediment whereas others (e.g., phototrophs) are simply deposited by sedimentary processes. In contrast, bacterial populations in these sediments are primarily characteristic of anoxic, reduced, hydrocarbon-rich sedimentary habitats.

  6. Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment

    PubMed Central

    Edgcomb, Virginia P.; Kysela, David T.; Teske, Andreas; de Vera Gomez, Alvin; Sogin, Mitchell L.

    2002-01-01

    Molecular microbial ecology studies have revealed remarkable prokaryotic diversity in extreme hydrothermal marine environments. There are no comparable reports of culture-independent surveys of eukaryotic life in warm, anoxic marine sediments. By using sequence comparisons of PCR-amplified small subunit ribosomal RNAs, we characterized eukaryotic diversity in hydrothermal vent environments of Guaymas Basin in the Gulf of California. Many sequences from these anoxic sediments and the overlaying seawater represent previously uncharacterized protists, including early branching eukaryotic lineages or extended diversity within described taxa. At least two mechanisms, with overlapping consequences, account for the eukaryotic community structure of this environment. The adaptation to anoxic environments is evidenced by specific affinity of environmental sequences to aerotolerant anaerobic species in molecular trees. This pattern is superimposed against a background of widely distributed aerophilic and aerotolerant protists, some of which may migrate into and survive in the sediment whereas others (e.g., phototrophs) are simply deposited by sedimentary processes. In contrast, bacterial populations in these sediments are primarily characteristic of anoxic, reduced, hydrocarbon-rich sedimentary habitats. PMID:12032339

  7. Performance evaluation of a novel anaerobic-anoxic sludge blanket reactor for biological nutrient removal treating municipal wastewater.

    PubMed

    Díez-Montero, Rubén; De Florio, Loredana; González-Viar, Marta; Herrero, María; Tejero, Iñaki

    2016-06-01

    A novel anaerobic-anoxic sludge blanket reactor, AnoxAn, unifies the non-aerated zones of the biological nutrient removal treatment train in a single upflow reactor, aimed at achieving high compactness and efficiency. The environmental conditions are vertically divided up inside the reactor with the anaerobic zone at the bottom and the anoxic zone above. This contribution presents the performance evaluation of the novel reactor in the removal of organic matter and nutrients from municipal wastewater, coupled with an aerobic hybrid MBR. The overall system achieved total nitrogen and phosphorus removal with average efficiencies of 75% and 89%, respectively. Separate anoxic and anaerobic conditions were maintained in AnoxAn, allowing anaerobic phosphate release and nearly complete anoxic denitrification in the single reactor operating with an HRT of 4.2h. Biomass was retained in the reactor achieving TSS concentration up to 10gL(-1) and partial hydrolysis of influent particulate organic matter. PMID:26970922

  8. Performance evaluation of a novel anaerobic-anoxic sludge blanket reactor for biological nutrient removal treating municipal wastewater.

    PubMed

    Díez-Montero, Rubén; De Florio, Loredana; González-Viar, Marta; Herrero, María; Tejero, Iñaki

    2016-06-01

    A novel anaerobic-anoxic sludge blanket reactor, AnoxAn, unifies the non-aerated zones of the biological nutrient removal treatment train in a single upflow reactor, aimed at achieving high compactness and efficiency. The environmental conditions are vertically divided up inside the reactor with the anaerobic zone at the bottom and the anoxic zone above. This contribution presents the performance evaluation of the novel reactor in the removal of organic matter and nutrients from municipal wastewater, coupled with an aerobic hybrid MBR. The overall system achieved total nitrogen and phosphorus removal with average efficiencies of 75% and 89%, respectively. Separate anoxic and anaerobic conditions were maintained in AnoxAn, allowing anaerobic phosphate release and nearly complete anoxic denitrification in the single reactor operating with an HRT of 4.2h. Biomass was retained in the reactor achieving TSS concentration up to 10gL(-1) and partial hydrolysis of influent particulate organic matter.

  9. Microbial Formation of Dimethyl Sulfide in Anoxic Sphagnum Peat

    PubMed Central

    Kiene, R. P.; Hines, M. E.

    1995-01-01

    Peat bogs dominated by Sphagnum spp. have relatively high areal rates of dimethyl sulfide (DMS) emission to the atmosphere. DMS was produced in anoxic slurries of Sphagnum peat with a linear time course and with an average rate of 40.4 (range, 22.0 to 68.6) nmol per liter of slurry (middot) day(sup-1) observed in nine batches of slurry. Methanethiol (MeSH) was produced at roughly similar rates over the typical 4- to 8-day incubations. DMS and MeSH production in these acidic (pH 4.2 to 4.6) peats were biological, as they were stopped completely by autoclaving and inhibited strongly by addition of antibiotics and 500 (mu)M chloroform. Endogenous DMS production may be due to the degradation of S-methyl-methionine, dimethyl sulfoxide, or methoxyaromatic compounds (e.g., syringic acid), each of which stimulated DMS formation when added at 5 to 10 (mu)M concentrations. However, on the basis of the high rates of thiol (MeSH and ethanethiol) methylation activity that we observed and the availability of endogenous MeSH, we suggest that methylation of MeSH is the major pathway leading to DMS formation in anaerobic peat. Solid-phase adsorption of MeSH plays a key role in its availability for biomethylation reactions. Additions of acetate (1.5 mM) or compounds which could cause acetate to accumulate (e.g., glucose, alanine, and 2-bromoethanesulfonate) suppressed DMS formation. It is likely that acetogenic bacteria are involved in DMS formation, but our data are insufficient to allow firm conclusions about the metabolic pathways or organisms involved. Our observations are the first which point to the methylation of MeSH as the major mechanism for endogenous DMS production in any environment. The rates of net DMS production observed are sufficient to explain the relatively high fluxes of DMS emitted to the atmosphere from Sphagnum sp.-dominated wetlands. PMID:16535080

  10. Anoxic disturbance of the isolated respiratory network of neonatal rats.

    PubMed

    Völker, A; Ballanyi, K; Richter, D W

    1995-01-01

    Tissue oxygen (PO2), K+ (aKe), pH (pHe) and Ca2+ ([Ca2+]e) were measured in the region of the ventral respiratory group (VRG) in the in vitro brainstem-spinal cord preparation of neonatal rats. During tissue anoxia, elicited by superfusion of N2-gassed solutions, an initial increase in the frequency of respiratory activity, lasting between 2 and 12 min, turned into a frequency depression. During anoxia periods of up to 60 min, respiratory activity persisted in solutions containing CO2/bicarbonate, whereas a complete blockade was observed after 15-25 min in N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid- (Hepes)-buffered salines. After such anoxic apnea, respiratory rhythmicity could be reactivated by superfusion of hypoxic, CO2/bicarbonate-buffered solutions. In both types of hypoxic solutions, aKe increased by maximally 1.5 mM, whereas an initial increase of pHe by up to 0.05 pH units turned, after 2-4 min, into an acidification which could exceed 0.5 pH units. In contrast, [Ca2+]e remained unaffected by anoxia. Addition of 2-5 mM cyanide (CN-) to oxygenated Hepes-buffered saline evoked an increase in PO2 in the VRG from 100 to more than 300 mmHg. The effects of CN- on respiratory activity, aKe and pHe were almost identical to those during anoxia. In oxygenated, CO2/bicarbonate-free solutions of different pH, however, an increase in pHe in the VRG led to a decrease in respiratory frequency, whereas a fall of pHe produced a frequency acceleration. A rise of aKe in the VRG by more than 2 mM as induced by superfusion of a 7 mM K+ solution led to a sustained increase of respiratory frequency. The results indicate that blockade of aerobic metabolism does not severely perturb K+ and Ca2+ homeostasis and that the biphasic response to anoxia is not directly related to the observed changes in PO2, aKe, pHe, or [Ca2+]e. In the respiratory network of neonatal mammals, CO2 might provide a stimulus for long-term maintenance of respiratory activity under oxygen depletion.

  11. Biosolids reduction by the oxic-settling-anoxic process: Impact of sludge interchange rate.

    PubMed

    Semblante, Galilee U; Hai, Faisal I; Bustamante, Heriberto; Guevara, Nelly; Price, William E; Nghiem, Long D

    2016-06-01

    The impact of sludge interchange rate (SIR) on sludge reduction by oxic-settling-anoxic (OSA) process was investigated. The sludge yield of an OSA system (a sequencing batch reactor, SBR, integrated with external anoxic reactors) was compared to that of a control (an SBR attached to a single-pass aerobic digester). SIR (%) is the percentage by volume of sludge returned from the external reactor into the main bioreactor of the OSA, and was varied from 0% to 22%. OSA achieved greater sludge reduction when fed with unsettled sewage (sCOD=113mg/L) rather than settled sewage (sCOD=60mg/L). The SIR of 11% resulted in the highest OSA performance. At the optimum SIR, higher volatile solids destruction and nitrification/denitrification (i.e., conversion of destroyed volatile solids into inert forms) were observed in the external anoxic and intermittently aerated (i.e., aerobic/anoxic) reactors, respectively. Denitrification in the aerobic/anoxic reactor was inefficient without SIR. Effluent quality and sludge settleability of the main SBR were unaffected by SIR. PMID:26810193

  12. Thallium Isotopes Tracking Mn-Oxide Burial - A Proxy for Deoxygenation During Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Ostrander, C.; Owens, J. D.; Nielsen, S.

    2015-12-01

    Thallium (Tl) is proving to be a useful paleoredox proxy given that the Tl isotope composition of seawater is highly dependent on the magnitude of manganese (Mn) oxide burial in the ocean. In turn, Mn oxides require oxygen at the sediment-water interface to precipitate, linking the Tl isotope cycle to ocean oxygenation. Currently, the marine residence time of Tl is ~20kyrs and the Tl isotope composition of seawater is invariant, which suggests Tl isotopes could be a global tracer of marine Mn-oxide burial. Importantly, recent research suggests sediments deposited under a euxinic water column faithfully record the Tl isotope value of the overlying oxic water column (e.g. Black Sea and Cariaco Basin). Therefore, analysis of organic-rich black shales may prove useful in evaluating the seawater Tl isotope composition of past oceans and, hence, large-scale burial of Mn-oxides and the extent of bottom water ocean oxygenation. A logical test for this proxy is during the well-studied Cenomanian-Turonian boundary event termed Oceanic Anoxic Event 2 (OAE-2) at ~94 Ma. It is known that the global extent of anoxia and euxinia increased during this event, however, to what extent global bottom water deoxygenation occured is unconstrained. If deep water deoxygenation occurred, it would be hypothesized that Mn-oxide precipitation would decrease, resulting in a positive Tl isotope excursion during OAE-2. We have analyzed the Tl isotope composition of organic-rich black shales from Site 1258 of the Ocean Drilling Program (ODP) spanning the period before, during, and after OAE-2. Based on Fe redox proxies, the entire section is euxinic and thus no Mn-oxides are present (i.e. no local redox changes). Before the event, Tl isotope compositions are similar or slightly heavier than modern seawater values. Just prior to the onset of OAE-2, a positive shift occurs and is maintained until recovery, slightly before the termination of the event. The shift to heavier values and subsequent

  13. New stratigraphic and isotopic record of the Toarcian Oceanic Anoxic Event from Hungary

    NASA Astrophysics Data System (ADS)

    Müller, Tamás; Price, Gregory; Bajnai, Dávid; Nyerges, Anita; Pálfy, József; May, Zoltán

    2016-04-01

    In the Early Toarcian (˜183 Ma) major global environmental changes took place in the ocean-atmosphere system, including the widely discussed Toarcian Oceanic Anoxic Event (T-OAE). This phenomenon is characterized by strong perturbation of the carbon-cycle and other geochemical systems. A peculiar negative carbon-isotope excursion (CIE) is a hallmark of the event, reflecting the injection of large amount of isotopically light carbon into the ocean-atmosphere system, possible due to dissociation of gas-hydrate from shelf areas. This observed negative CIE and a subsequent broad positive anomaly could be also key signals for chemostratigraphical correlation. In our study we obtained new, high-resolution organic carbon isotope data from the Réka Valley section of the Mecsek Mts. in southern Hungary. The Mecsek Basin was located at the European margin where a thick Lower Jurassic succession of siliciclastic hemipelagic sediments is interrupted by 13 m of organic-rich black shales in the Lower Toarcian. The δ13Corg data from the Réka Valley section is characterized by very negative values (averaging -32), with apparently cyclic fluctuation. The shape of the δ13Corg shows that a continuous and complete record can be found in the Réka Valley and also suggests mixed features between the carbon isotope record of the NW European and Tethyan regions. We have also carried out high resolution handheld XRF analyzes to study cyclostratigraphic signals in the section. The distribution of four elements Ti, Ca, Si and Al were used in our studies beside the δ13Corg data. The duration for the negative shift at Réka Valley, calculated from XRF signals, is either 550-750 kyr, 200-275 kyr or 116-158 kyr, based on 100 kyr short eccentricity, 36.6 kyr obliquity or 21.1 kyr precession signals, respectively. Several previous studies concluded that the most probable astronomical forcing factor during the CIE of the Toarcian OAE is obliquity. Therefore, we assume a duration around 200

  14. Forced regressions in a large wave- and storm-dominated anoxic lake, Rhaetian-Sinemurian Kap Stewart Formation, East Greenland

    SciTech Connect

    Dam, G. ); Surlyk, F. )

    1992-08-01

    During Rhaetian-Sinemurian time a large wave- and storm-dominated lake was situated in the Jameson Land basin, East Greenland. Lake deposits consist of alternating black unfossiliferous mudstones and sheet sandstones. Anoxic conditions dominated at the lake bottom during deposition of the muds, and the water column was probably stratified. The sandstones were deposited by progradation of wave- and storm-dominated deltas in a water depth of less than 15 m. Sequence-stratigraphic interpretation suggests that the mudstones were deposited in periods of rising and very high stands of lake level, whereas progradation of the deltaic sheet sandstones took place during forced regressions caused by significant falls. The lake thus underwent a large number of fairly high amplitude changes in level, probably caused by climatic fluctuations. The high-order cycles can be grouped into several long-period cycles that show the same number of major fluctuations as published eustatic sea-level curves. This similarity suggests a causal link between eustasy and long-period variations in the lake. The Kap Stewart Formation represents one of the few ancient examples of a large wave- and storm-dominated lake, and it is probably the first documented case of abundant well-developed lacustrine forced regressions.

  15. Modeling evidences for global warming, Arctic seawater freshening, and sluggish oceanic circulation during the Early Toarcian anoxic event

    NASA Astrophysics Data System (ADS)

    Dera, Guillaume; Donnadieu, Yannick

    2012-06-01

    The paleoecological disturbances recorded during the Early Toarcian warming event (183 Myr ago), including marine anoxia, sea level rise, seawater acidification, carbonate production crisis, and species extinctions, are often regarded as past examples of Earth's possible responses to the rapid emergence of super greenhouse conditions. However, physical mechanisms explaining both the global and local expressions of paleoenvironmental events are still highly debated. Here we analyze the paleoclimatic and paleoceanographic consequences of increases in atmospheric pCO2 levels at a multiscale resolution using a fully coupled ocean-atmosphere model (FOAM). We show that, in association with stronger high-latitude precipitation rates and enhanced continental runoff, the demise of polar sea ice due to the global warming event involved a regional freshening of Arctic surface seawaters. These disturbances lead to progressive slowdowns of the global oceanic circulation accountable for widespread ocean stratification and bottom anoxia processes in deep oceanic settings and epicontinental basins. In agreement with very negative oxygen isotope values measured on fossil shells from the NW Tethys, our simulations also show that recurrent discharges of brackish and nutrient-rich Arctic surface waters through the Viking Corridor could have led to both vertical and geographical gradients in salinity and seawater δ18O in the NW Tethyan seas. Locally contrasted conditions in water mass density and rises in productivity rates due to strong nutrient supplies could partly explain the regional severity of the anoxic event in the restricted Euro-boreal domains, as it has been previously suggested and modeled regionally.

  16. Carbon and sulfur relationships in Devonian shales from the Appalachian Basin as an indicator of environment of deposition.

    USGS Publications Warehouse

    Leventhal, J.S.

    1987-01-01

    Interprets the covariance of organic carbon and sulfide sulfur in core samples. This covariance results from the catabolism of organic carbon and concomitant reduction of sulfate by sulfate reducing bacteria to form aqueous sulfide which reacts with iron. Defines a central basin area that was the most anoxic-sulfidic (euxinic). This part of the basin is similar to the area of thickest, most organic carbon-rich sediments and has the greatest source-rock potential for petroleum. -from Author

  17. Authigenic carbonate precipitation at the end-Guadalupian (Middle Permian) in China: Implications for the carbon cycle in ancient anoxic oceans

    NASA Astrophysics Data System (ADS)

    Saitoh, Masafumi; Ueno, Yuichiro; Isozaki, Yukio; Shibuya, Takazo; Yao, Jianxin; Ji, Zhansheng; Shozugawa, Katsumi; Matsuo, Motoyuki; Yoshida, Naohiro

    2015-12-01

    Carbonate precipitation is a major process in the global carbon cycle. It was recently proposed that authigenic carbonate (carbonate precipitated in situ at the sediment-water interface and/or within the sediment) played a major role in the carbon cycle throughout Earth's history. The carbon isotopic composition of authigenic carbonates in ancient oceans have been assumed to be significantly lower than that of dissolved inorganic carbon (DIC) in seawater, as is observed in the modern oceans. However, the δ13Ccarb values of authigenic carbonates in the past has not been analyzed in detail. Here, we report authigenic carbonates in the uppermost Guadalupian (Middle Permian) rocks at Chaotian, Sichuan, South China. Monocrystalline calcite crystals <20 mm long are common in the black mudstone/chert sequence that was deposited on a relatively deep anoxic slope/basin along the continental margin. Textures of the crystals indicate in situ precipitation on the seafloor and/or within the sediments. The calcite precipitation corresponds stratigraphically with denitrification and sulfate reduction in the anoxic deep-water mass, as indicated by previously reported nitrogen and sulfur isotope records, respectively. Relatively high δ13Ccarb values of the authigenic carbonates (largely -1 ‰) compared with those of organic matter in the rocks (ca. -26 ‰) suggest that the main carbon source of the carbonates was DIC in the water column. The calcite crystals precipitated in an open system with respect to carbonate, possibly near the sediment-water interface rather than deep within the sediments. The δ13Ccarb values of the carbonates were close to the δ13CDIC value of seawater due to mixing of 13C-depleted remineralized organic carbon (that was released into the water column by the water-mass anaerobic respiration) with the large DIC pool in the oceans. Our results imply that δ13Ccarb values of authigenic carbonates in the anoxic oceans might have been systematically

  18. Live (Rose-bengal stained) foraminifera from deep-sea anoxic salt brine in the Eastern Mediterranean: toward understanding limit of life for single-celled eukaryotes (foraminifera)

    NASA Astrophysics Data System (ADS)

    Kitazato, H.; Ohkawara, N.; Iwasaki, A.; Nomaki, H.; Akoumianaki, I.; Tokuyama, H.

    2012-04-01

    What is a limit of life for the eukaryotes? Eukaryotes are thought to adapt and evolve under oxic environmental conditions. Recently, there are many exceptions for this hypothesis, as many eukaryotes including metazoan groups are found in anoxic environmental conditions. We found many rose-bengal stained foraminifera from a deep-hypersaline anoxic basin (DHAB) in the eastern Mediterranean. During KH06-04 cruise, we conducted oceanographic research at Medée Lake, the largest DHAB, that is located 100km southwest of Crete Island in the eastern Mediterranean. The lake situates at 2920m in water depth. Depth of saline water is 120m in maximum. Both water and sediment samplings were carried out both with Niskin bottles and multiple corer attached to camera watching sampling system at three sites, inside of the lake (CS), the edge of the lake (OMS) and the normal deep-sea floor (RS). Temperature, salinity, and dissolved oxygen concentrations at central saline lake are 15.27 oC, 328PSU, and 0.0 ml/L, respectively. Strong smell of hydrogen sulfide was detected from the lake sediment. Subsamples were conducted for multiple core samples using 3 subcores(φ 2.9cm) from each core tube (φ 8.2cm). Sediment samples were fixed with 4% formalin Rose Bengal solution on board. In laboratory, samples were washed with 32μm sieve. Rose Bengal stained specimens were picked under binocular stereomicroscope (Zeiss Stemi SV11) for surface 0.5cm layer, and identified with inverted microscope (Nikon ECLIPSE TE300). In total, 26 species belonging to 9 genera were identified from three sites. Six species belonging to two genera were identified in the center of the salt brine. Only a few species are common among three sites, even though the numbers of common species were 10 between OMS and RS sites. In DHAB, spherical organic-walled species, such as allogromiid and psammosphaerid, are dominant. In contrast, tube-like chitinous foraminifera, such as Resigella, Conicotheca and Nodellum, are

  19. Was the North Atlantic Ocean well-ventilated during Oceanic Anoxic Event 2 in the mid-Cretaceous?

    NASA Astrophysics Data System (ADS)

    Ruvalcaba Baroni, Itzel; Van Helmond, Niels N. A. G. M.; Topper, Robin P. M.; Brinkhuis, Henk; Slomp, Caroline P.

    2013-04-01

    The geological record provides evidence for the periodic occurrence of water column anoxia and the formation of organic-rich deposits in the North Atlantic Ocean during the mid-Cretaceous. Both changes in primary productivity and oceanic circulation likely played a role in the development of the low oxygen conditions. Several studies suggest that an increased input of phosphorus from land initiated such events. Other proposed mechanisms invoke a vigorous upwelling system and a circulation pattern that acts as an effective trap for nutrients from the Pacific. Here, we use a detailed biogeochemical box model for the North Atlantic Ocean to analyse under what conditions anoxia could have developed during Oceanic Anoxic Event 2 (94 Ma). The model explicitly describes the coupled water, carbon, oxygen and phosphorus cycles for the deep basin and continental shelves. In our simulations, we assume the vigorous water circulation from a recent regional ocean model study. Our model results for pre-OAE and OAE2 conditions are compared to sediment records of organic carbon and proxies for photic zone euxinia and bottom water redox conditions (e.g. isorenieratane, carbon/phosphorus ratios). Our results show that a strongly elevated input of phosphorus - either from terrestrial sources or from the Pacific - is a requirement for the widespread development of low oxygen zones in the North Atlantic during OAE-2. Model results suggest that rates of primary productivity increased by at least an order of magnitude upon the transition from pre-OAE to OAE2 conditions. Our model captures the regional trends in anoxia as deduced from observations, with euxinia spreading to the northern and eastern shelves but with the most intense euxinia occurring along the southern coast. However, anoxia in the northern deep basin is difficult to achieve in the model. This suggests that the proposed ocean circulation may be too vigorous and/or that anoxia in the North Atlantic may have been less

  20. Pennsylvanian-Permian tectonism in the Great Basin: The Dry Mountain trough and related basins

    SciTech Connect

    Snyder, W.S.; Spinosa, C.; Gallegos, D.M. )

    1991-02-01

    Pennsylvanian-Permian tectonism affected the continental margin of western North America from the Yukon to the Mojave Desert. Specific signatures of this tectonism include local angular unconformities, regional disconformities, renewed outpouring of clastic debris from a reactivated Antler and related highlands, and development of deeper water basins with anoxic sediments deposited below wave base. The basins formed include Ishbel trough (Canada), the Wood River basin (Idaho), Cassia basin, Ferguson trough, Dry Mountain trough (all Nevada), and unnamed basins in Death Valley-Mojave Desert region. The Dry Mountain trough (DMT) was initiated during early Wolfcampian and received up to 1,200 m of sediment by the late Leonardian. The lower contact is a regional unconformity with the Ely Limestone, or locally with the Diamond Peak or Vinini formations. Thus, following a period of localized regional uplift that destroyed the Ely basin, portions of the uplifted and exposed shelf subsided creating the Dry Mountain trough. Evidence suggesting a tectonic origin for the DMT includes (1) high subsidence rates (60-140 m/m.y.); (2) renewed influx of coarse clastic debris from the Antler highlands: (3) possible pre-Early Permian folding, thrusting, and tilting within the highlands; and (4) differential subsidence within the Dry Mountain trough, suggesting the existence of independent fault blocks.

  1. Aquatic plant debris improve phosphorus sorption into sediment under anoxic condition.

    PubMed

    Jin, Chong-Wei; Du, Shao-Ting; Dong, Wu-Yuan; Wang, Jue-Hua; Shen, Cheng; Zhang, Yong-Song

    2013-11-01

    The effects of plant debris on phosphorus sorption by anoxic sediment were investigated. Addition of plant debris significantly enhanced the decrease of soluble relative phosphorus (SRP) in overlying water at both 10 and 30 °C during the 30-day investigation. Both cellulose and glucose, two typical plant components, also clearly enhanced the SRP decrease in anoxic overlying water. The measurement of phosphorus (P) fractions in sediment revealed that the levels of unstable P forms were decreased by plant debris addition, whereas the opposites were true for stable P forms. However, under sterilized condition, plant debris/glucose addition has no effect on the SRP decrease in overlying water. Overall, our results suggested that plant debris improve P sorption into sediment under anoxic condition through a microorganism-mediated mechanism. PMID:23686758

  2. Influence of an oxic settling anoxic system on biomass yield, protozoa and filamentous bacteria.

    PubMed

    Rodriguez-Perez, Santiago; Fermoso, Fernando G

    2016-01-01

    An oxic settling anoxic system coupled with an activated sludge process has been studied to reduce sewage sludge production. The reduction of sludge yield, excess sludge production and active biomass yield were 51.7%, 52.9% and 67.1%, respectively, compared with the control system. The oxic reactor of the oxic settling anoxic system, even with a lower active biomass concentration than the oxic reactor of control system, showed a higher metabolic activity in their active biomass. Diversity and crawling ciliates group have been shown as promising bioindicators of active biomass yield reduction. The identification of floc-forming bacteria in the control system suggested that oxic settling anoxic system will improve settling properties compared to a Conventional Activated Sludge process.

  3. Chemical and physical speciation of mercury in Offatts Bayou: A seasonally anoxic bayou in Galveston Bay

    SciTech Connect

    Han, Seunghee; Lehman, Ronald D.; Choe, Key-Young; Gill, Gary A.

    2007-07-01

    A chemical equilibrium model was used to predict the solution speciation of dissolved mercury (Hg) in the stratified water column of Offatts Bayou, a subestuary in Galveston Bay, Texas, which undergoes seasonal anoxia in bottom waters. Chemical equilibrium modeling was conducted using conditional stability constants and concentrations of Hg-complexing organic ligands experimentally determined by competitive ligand equilibration methods. Dissolved Hg complexation was dominated by interactions with sulfide and dissolved organic matter (DOM) (HOHgHS0, HOHgHS(DOM), HgSHS2, and HgS 2{ 2 ) at all depths. Sulfide and glutathione competed for methylmercury (MeHg) complexation in oxic layers; in anoxic waters, sulfide complexation dominated MeHg speciation. The particle–water distribution coefficient (Kd) of Hg decreased in the anoxic layer of the water column, where the dissolved sulfide concentration increased, providing evidence that sulfide complexation influences the solubility of Hg. The solubility of MeHg was elevated in the anoxic as compared to the oxic layers, and this distributional feature was coincident with a change in the solution speciation of dissolved MeHg from glutathione/sulfide complexation in the oxic layers to a predominantly sulfide complexation in the anoxic layers. Maximum enrichment of Hg, MeHg, and iron (Fe) in suspended particulate matter was observed in the lower layer of the pycnocline, most likely resulting from formation of insoluble Fe oxide, which scavenged dissolved Hg sulfide and MeHg-sulfide species. The concomitant decrease in dissolved inorganic Hg, Fe, and sulfide in the anoxic layers is suggested to result from scavenging of inorganic Hg by FeS, which is in accordance with the Hg speciation model. Overall, Hg cycling in the water column of Offatts Bayou was associated with sulfide and DOM complexation, Fe dissolution/precipitation, water column production of MeHg, and/or efflux of MeHg from anoxic sediment.

  4. Survival and Recovery of Methanotrophic Bacteria Starved Under Oxic and Anoxic Conditions

    NASA Technical Reports Server (NTRS)

    Roslev, Peter; King, Gary M.

    1994-01-01

    The effects of carbon deprivation on survival of methanotrophic bacteria were compared in cultures incubated in the presence and absence of oxygen in the starvation medium. Survival and recovery of the examined methanotrophs were generally highest for cultures starved under anoxic conditions as indicated by poststarvation measurements of methane oxidation, tetrazolium salt reduction, plate counts, and protein synthesis. Methylosinus trichosporium OB3b survived up to 6 weeks of carbon deprivation under anoxic conditions while maintaining a physiological state that allowed relatively rapid (hours) methane oxidation after substrate addition. A small fraction of cells starved under oxic and anoxic conditions (4 and 10%, respectively) survived more than 10 weeks but required several days for recovery on plates and in liquid medium. A non-spore-forming methanotroph, strain WP 12, displayed 36 to 118% of its initial methane oxidation capacity after 5 days of carbon deprivation. Oxidation rates varied with growth history prior to the experiments as well as with starvation conditions. Strain WP 12 starved under anoxic conditions showed up to 90% higher methane oxidation activity and 46% higher protein production after starvation than did cultures starved under oxic conditions. Only minor changes in biomass and niorpholow were seen for methanotrophic bacteria starved tinder anoxic conditions. In contrast, starvation under oxic conditions resulted in morphology changes and an initial 28 to 35% loss of cell protein. These data suggest that methanotrophic bacteria can survin,e carbon deprivation under anoxic conditions by using maintenance energy derived Solelyr from an anaerobic endogenous metabolism. This capability could partly explain a significant potential for methane oxidation in environments not continuously, supporting aerobic methanotrophic growth.

  5. Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii.

    PubMed

    Grossman, Arthur R; Catalanotti, Claudia; Yang, Wenqiang; Dubini, Alexandra; Magneschi, Leonardo; Subramanian, Venkataramanan; Posewitz, Matthew C; Seibert, Michael

    2011-04-01

    Many microbes in the soil environment experience micro-oxic or anoxic conditions for much of the late afternoon and night, which inhibit or prevent respiratory metabolism. To sustain the production of energy and maintain vital cellular processes during the night, organisms have developed numerous pathways for fermentative metabolism. This review discusses fermentation pathways identified for the soil-dwelling model alga Chlamydomonas reinhardtii, its ability to produce molecular hydrogen under anoxic conditions through the activity of hydrogenases, and the molecular flexibility associated with fermentative metabolism that has only recently been revealed through the analysis of specific mutant strains. PMID:21563367

  6. The Early Toarcian Oceanic Anoxic Event and its sedimentary record in Switzerland

    NASA Astrophysics Data System (ADS)

    Fantasia, Alicia; Föllmi, Karl B.; Adatte, Thierry; Spangenberg, Jorge E.; Montero-Serrano, Jean-Carlos

    2015-04-01

    In the Jurassic period, the Early Toarcian Oceanic Anoxic Event (T-OAE), about 183 Ma ago, was a global perturbation of paleoclimatic and paleoenvironmental conditions. This episode was associated with a crisis in marine carbonate accumulation, climate warming, an increase in sea level, ocean acidification, enhanced continental weathering, whereas organic-rich sediments are noticeable for example in the Atlantic and in the Tethys. This episode is associated with a negative carbon excursion, which is recorded both in marine and terrestrial environments. The cause(s) of this environmental crisis remain(s) still controversial. Nevertheless, the development of negative δ13C excursions is commonly interpreted as due to the injection of isotopically-light carbon associated with gas hydrate dissociation, the thermal metamorphism of carbon-rich sediments and input of thermogenic and volcanogenic carbon related to the formation of the Karoo-Ferrar basaltic province in southern Gondwana (Hesselbo et al., 2000, 2007; Beerling et al., 2002; Cohen et al., 2004, 2007; McElwain et al., 2005, Beerling and Brentnall, 2007; Svensen et al., 2007; Hermoso et al., 2009, 2012; Mazzini et al., 2010). Several studies of the T-OAE have been conducted on sediments in central and northwest Europe, but only few data are available concerning the Swiss sedimentary records. Therefore, we focused on two sections in the Jura Plateau (canton Aargau): the Rietheim section (Montero-Serrano et al., submitted) and the Gipf section (current study). A multidisciplinary approach has been chosen and the tools to be used are based on sedimentological observations (sedimentary condensation, etc.), biostratigraphy, mineralogy (bulk-rock composition), facies and microfacies analysis (presence or absence of benthos), clay-mineralogy composition (climatic conditions), major and trace-element analyses (productivity, redox conditions, etc.), phosphorus (trophic levels, anoxia), carbon isotopes and organic

  7. A Quick Response Forecasting Model of Pathogen Transport and Inactivation in Near-shore Regions

    NASA Astrophysics Data System (ADS)

    Liu, L.; Fu, X.

    2011-12-01

    Modeling methods supporting water quality assessments play a critical role by facilitating people to understand and promptly predict the potential threat of waterborne bacterial pathogens pose to human health. A mathematical model to describe and predict bacterial levels can provide foundation for water managers in making decisions on whether a water system is safe to open to the public. The inactivation (decay or die-off) rate of bacteria is critical in a bacterial model by controlling bacterial concentration in waters and depends on numerous factors of hydrodynamics, meteorology, geology, chemistry and biology. Transport and fate of waterborne pathogens in fresh water systems is an essentially three-dimensional problem, which requires a coupling of hydrodynamic equations and transport equations that describe the pathogen and suspended sediment dynamics. However, such an approach could be very demanding and time consuming from a practical point of view due to excess computational efforts. Long computation time may lead people unintentionally drinking or swimming in the contaminated water during the period before the predictive results of water quality come out. Therefore, it is very necessary to find a quick-response model to forecast bacterial concentration instantly to protect human health without any delay. Nearshore regions are the most commonly and directly used area for people in a huge water system. The prior multi-dimensional investigations of E. Coli and Enterococci inactivation in literature indicate that along-shore current predominated the nearshore region. Consequently, the complex dynamic conditions may be potentially simplified to one-dimensional scenario. In this research, a one-dimensional model system coupling both hydrodynamic and bacterial transport modules is constructed considering different complex processes to simulate the transport and fate of pathogens in nearshore regions. The quick-response model mainly focuses on promptly forecasting purpose and will be verified and calibrated with the available data collected from southern Lake Michigan. The modeling results will be compared with those from prior multi-dimensional models. This model is specifically effective for the outfall-controlled waters, where pathogens are primarily predominated by loadings from nearby tributaries and tend to show wide variations in concentrations.

  8. ACOUSTIC IDENTIFICATION OF NEAR-SHORE SUBSTRATES IN THE GREAT LAKES

    EPA Science Inventory

    Geo-referenced acoustic information is being used more often in research as a viable tool for everything from simple bathymetry to fisheries research and paleo-sediment studies. In the summer of 2002 geo-referenced acoustic soundings (QTC 4?) were recorded for ~20 km of lake bot...

  9. Assessment of the hydrogeology and water quality in a near-shore well field, Sarasota, Florida

    USGS Publications Warehouse

    Broska, J.C.; Knochenmus, L.A.

    1996-01-01

    The city of Sarasota, Florida, operates a downtown well field that pumps mineralized water from ground water sources to supply a reverse osmosis plant. Because of the close proximity of the well field to Sarasota Bay and the high sulfate and chloride concentrations of ground-water supplies, a growing concern exists about the possibility of lateral movement of saltwater in a landward direction (intrusion) and vertical movement of relict sea water (upconing). In 1992, the U.S. Geological Survey began a 3-year study to evaluate the hydraulic characteristics and water quality of ground-water resources within the downtown well field and the surrounding 235-square-mile study area. Delineation of the hydrogeology of the study area was based on water- quality data, aquifer test data, and extensive borehole geophysical surveys (including gamma, caliper, temperature, electrical resistivity, and flow meter logs) from the six existing production wells and from a corehole drilled as part of the study, as well as from published and unpublished reports on file at the U.S. Geological Survey, the Southwest Florida Water Management District, and consultant's reports. Water-quality data were examined for spatial and temporal trends that might relate to the mechanism for observed water-quality changes. Water quality in the study area appears to be dependent upon several mechanisms, including upconing of higher salinity water from deeper zones within the aquifer system, interbore-hole flow between zones of varying water quality through improperly cased and corroded wells, migration of highly mineralized waters through structural deformities, and the presence of unflushed relict seawater. A numerical ground-water flow model was developed as an interpretative tool where field-derived hydrologic characteristics could be tested. The conceptual model consisted of seven layers to represent the multilayered aquifer systems underlying the study area. Particle tracking was utilized to delineate the travel path of water as it enters the model area under a set of given conditions. Within the model area, simulated flow in the intermediate aquifer system originates primarily from the northwestern boundary. Simulated flow in the Upper Floridan aquifer originates in lower model layers (deeper flow zones) and ultimately can be traced to the southeastern and northwestern boundaries. Volumetric budgets calculated from numerical simulation of a hypothetical well field indicate that the area of contribution to the well field changes seasonally. Although ground-water flow patterns change with wet and dry seasons, most water enters the well-field flow system through lower parts of the Upper Floridan aquifer from a southeastern direction. Moreover, particle tracking indicated that ground-water flow paths with strictly lateral pathlines in model layers correspond to the intermediate aquifer system, whereas particles traced through model layers corresponding to the Upper Floridan aquifer had components of vertical and lateral flow.

  10. Near-shore submarine permafrost of the central Laptev Sea, East Siberia

    NASA Astrophysics Data System (ADS)

    Wetterich, S.; Overduin, P. P.; Günther, F.; Liebner, S.; Knoblauch, C.; Grigoriev, M.; Schirrmeister, L.; Hubberten, H. W.

    2015-12-01

    Coastal erosion and relative sea-level rise inundate terrestrial permafrost with seawater and create submarine permafrost. Once flooded, permafrost begins to warm under marine conditions, which can destabilize the sea floor. The timing of inundation can be inferred from the rate of coastline retreat and the distance from the shoreline. Coastline retreat rates are inversely related to the inclination of the upper surface of submarine ice-bonded permafrost. Submarine permafrost thaw is considered to be a cause for recent observations of methane emissions from the seabed to the water column and atmosphere of the East Siberian shelf. A 52 m long core drilled from the sea ice in Buor Khaya Bay, central Laptev Sea revealed unfrozen sediment overlying ice-bonded permafrost. Dissolved methane and sulfate concentrations are inversely related along the core with higher methane and lower sulfate contents in the ice-bonded submarine permafrost relative to the overlying unfrozen sediment. The observed profiles of sediment pore water sulfate concentrations, as well as methane concentrations and methane stable carbon isotope ratios, indicate that methane from ice-bonded permafrost is oxidized at or immediately following thaw. Anaerobic oxidation of methane in the unfrozen sediment column between ice-bonded permafrost and the seabed makes it unlikely that methane from thawing submarine permafrost could reach the seabed.

  11. DEVELOPMENT OF NEAR-SHORE HYDRODYNAMIC MODELS FOR BEACH CLOSURE FORECASTING IN THE GREAT LAKES

    EPA Science Inventory

    Water quality managers and other planning and decision entities are increasingly calling for up-to-the-minute data on present water quality conditions or forecasts of these data that can be used to adjust or respond to quickly developing activities with environmental implications...

  12. Occurrence and orientation of anorbital ripples in near-shore sands

    NASA Astrophysics Data System (ADS)

    Maier, Irene; Hay, Alex E.

    2009-12-01

    The orientation of linear transition ripples (LTRs) relative to incident wave direction is studied using rotary fan beam sonar images and wave and current data from electromagnetic flowmeters in ˜3 m water during SandyDuck97. LTR occurrence is determined objectively with an automatic recognition algorithm. LTRs occurred for RMS wave orbital velocities between 0.15 and 0.35 m s-1. The ripples were highly two dimensional, and of the anorbital type (λ0/D50 = 524 to 535, d0/D50 = 4300 to 25,000) with 7.6 cm mean wavelength in 150 μm median diameter sand. The ripple crests were typically aligned perpendicular to the incident sea-and-swell direction: specifically, about 60% of the normals to the crests differ from wave direction by less than 5° and more than 90% by less than 10°. During rapid changes in wave direction, however, ripple orientation adjustment lagged the wave direction by O(1 h). Ripple reorientation occurred piecewise along the crests, with new crest segments sometimes bridging two or more old segments. The 1 h reorientation time scale is longer by several orders of magnitude than the adjustment time based on theoretical bed load transport rate and the ripple volume. As a possible explanation, we suggest that a significant fraction of the transport, more than 90%, bypasses the ripples during orientation adjustment through large angles.

  13. Occurrence of zebra mussels in near-shore areas of western Lake Erie

    USGS Publications Warehouse

    Custer, Christine M.; Custer, T.W.

    1997-01-01

    Zebra mussels (Dreissena polymorpha) invaded the Great Lakes in the mid-1980s and quickly reached high densities. The objective of this study was to determine current consumption of zebra mussels by waterfowl in the Great Lakes region. Feeding Lesser Scaups (Aythya affinis), Greater Scaups (A. marila), Canvasbacks (A. valisineria), Redheads (A. americana), Buffleheads (Bucephala albeola) and Common Goldeneyes (B. clangula) were collected in western Lake Erie and in Lake St. Clair between fall and spring, 1992-1993 to determine food habits. All 10 Redheads, 97% of Lesser Scaups, 83% of Goldeneyes, 60% of Buffleheads and 9% of Canvasbacks contained one or more zebra mussels in their upper gastrointestinal tracts. The aggregate percent of zebra mussels in the diet of Lesser Scaups was higher in Lake Erie (98.6%) than in Lake St. Clair (54.4%). Zebra mussels, (aggregate percent) dominated the diet of Common Goldeneyes (79.2%) but not in Buffleheads (23.5%), Redheads (21%) or Canvasbacks (9%). Lesser Scaups from Lake Erie fed on larger zebra mussels ( = 10.7 i?? 0.66 mm SE) than did Lesser Scaups from Lake St. Clair ( = 4.4 i?? 0.22 mm). Lesser Scaups, Buffleheads and Common Goldeneyes from Lake Erie consumed zebra mussels of similar size.

  14. South Atlantic sag basins: new petroleum system components

    SciTech Connect

    Henry, S.G. Mohriak, W.U.; Mello, M.R.

    1996-08-01

    Newly discovered pre-salt source rocks, reservoirs and seals need to be included as components to the petroleum systems of both sides of the South Atlantic. These new components lie between the pre-salt rift strata and the Aptian salt layers, forming large, post-rift, thermal subsidence sag basins. These are differentiated from the older rift basins by the lack of syn-rift faulting and a reflector geometry that is parallel to the base salt regional unconformity rather than to the Precambrian basement. These basins are observed in deep water regions overlying areas where both the mantle and the crust have been involved in the extension. This mantle involvement creates post-rift subsiding depocenters in which deposition is continuous while proximal rift-phase troughs with little or no mantle involvement are bypassed and failed to accumulate potential source rocks during anoxic times. These features have been recognized in both West African Kwanza Basin and in the East Brasil Rift systems. The pre-salt source rocks that are in the West African sag basins were deposited in lacustrine brackish to saline water environment and are geochemically distinct from the older, syn-rift fresh to brackish water lakes, as well as from younger, post-salt marine anoxic environments of the drift phase. Geochemical analyses of the source rocks and their oils have shown a developing source rock system evolving from isolated deep rift lakes to shallow saline lakes, and culminating with the infill of the sag basin by large saline lakes to a marginally marine restricted gulf. Sag basin source rocks may be important in the South Atlantic petroleum system by charging deep-water prospects where syn-rift source rocks are overmature and the post-salt sequences are immature.

  15. Bridging the Faraoni and Selli oceanic anoxic events: short and repetitive dys- and anaerobic episodes during the late Hauterivian to early Aptian in the central Tethys

    NASA Astrophysics Data System (ADS)

    Föllmi, K. B.; Bôle, M.; Jammet, N.; Froidevaux, P.; Godet, A.; Bodin, S.; Adatte, T.; Matera, V.; Fleitmann, D.; Spangenberg, J. E.

    2011-06-01

    A detailed stratigraphical and geochemical analysis was performed on the upper part of the Maiolica Formation outcropping in the Breggia (southern Switzerland) and Capriolo sections (northern Italy). In these localities, the Maiolica Formation consists of well-bedded, partly siliceous, pelagic, micritic carbonate, which lodges numerous thin, dark and organic-rich layers. Stable-isotope, phosphorus, organic-carbon and a suite of redox-sensitive trace-metal contents (RSTE: Mo, U, Co, V and As) were measured. Higher densities of organic-rich layers were identified in the uppermost Hauterivian, lower Barremian and the Barremian-Aptian boundary intervals, whereas the upper Barremian interval and the interval immediately following the Barremian-Aptian boundary interval are characterized by lower densities of organic-rich layers. TOC contents, RSTE pattern and Corg:Ptot ratios indicate that most layers were deposited under dysaerobic rather than anaerobic conditions and that latter conditions were likely restricted to short intervals in the latest Hauterivian, the early Barremian and the pre-Selli early Aptian. Correlations are possible with organic-rich intervals in central Italy (the Gorgo a Cerbara section) and the Boreal northwest German Basin, and with the facies and drowning pattern in the evolution of the Helvetic segment of the northern Tethyan carbonate platform. Our data and correlations suggest that the latest Hauterivian witnessed the progressive installation of dysaerobic conditions in the Tethys, which went along with the onset in sediment condensation, phosphogenesis and platform drowning on the northern Tethyan margin, and which culminated in the Faraoni anoxic episode. This brief episode is followed by further episodes of dysaerobic conditions in the Tethys and the northwest German Basin, which became more frequent and progressively stronger in the late early Barremian. Platform drowning persisted and did not halt before the latest early Barremian. The

  16. Development of the Côte Ivoire Basin: reading provenance, sediment dispersal, and geodynamic implications from heavy minerals

    NASA Astrophysics Data System (ADS)

    Wozazek, Stefan; Krawinkel, Hannelore

    2002-05-01

    The combined approach of conventional and varietal heavy mineral analysis was applied to constrain changes in source rock area, dispersal routes of detritus, and geodynamic setting of the Upper Cretaceous to Neogene Côte d'Ivoire basin. The heavy mineral assemblage of Albian to Turonian sediments reflect a narrow source rock area and short transport distances. A prominent change in the heavy mineral association of Late Cenomanian to Neogene sediments indicates enlargement of source area and longer fluvial transport distances, or longer storage of sediment within the littoral energy fence. The sudden change within the heavy mineral associations marks the transition from the late syn-rift stage to the early passive margin stage of the Southern Atlantic. During Albian to Late Cenomanian time, the basin geometry was mainly controlled by steep slopes and sediments were transported directly to the depocenter. The situation changed in Late Cenomanian time. A small shelf area developed where sediments from different sources were mixed and reworked before deposition. We believe that the W-E direction of the long-shore drift, which transports today huge quantities of near-shore sand, was established at the end of the Paleogene. This resulted from the drifting of southern West Africa across the paleoequator and subsequent change in surface wind directions.

  17. Community shift from phototrophic to chemotrophic sulfide oxidation following anoxic holomixis in a stratified seawater lake.

    PubMed

    Pjevac, Petra; Korlević, Marino; Berg, Jasmine S; Bura-Nakić, Elvira; Ciglenečki, Irena; Amann, Rudolf; Orlić, Sandi

    2015-01-01

    Most stratified sulfidic holomictic lakes become oxygenated after annual turnover. In contrast, Lake Rogoznica, on the eastern Adriatic coast, has been observed to undergo a period of water column anoxia after water layer mixing and establishment of holomictic conditions. Although Lake Rogoznica's chemistry and hydrography have been studied extensively, it is unclear how the microbial communities typically inhabiting the oxic epilimnion and a sulfidic hypolimnion respond to such a drastic shift in redox conditions. We investigated the impact of anoxic holomixis on microbial diversity and microbially mediated sulfur cycling in Lake Rogoznica with an array of culture-independent microbiological methods. Our data suggest a tight coupling between the lake's chemistry and occurring microorganisms. During stratification, anoxygenic phototrophic sulfur bacteria were dominant at the chemocline and in the hypolimnion. After an anoxic mixing event, the anoxygenic phototrophic sulfur bacteria entirely disappeared, and the homogeneous, anoxic water column was dominated by a bloom of gammaproteobacterial sulfur oxidizers related to the GSO/SUP05 clade. This study is the first report of a community shift from phototrophic to chemotrophic sulfide oxidizers as a response to anoxic holomictic conditions in a seasonally stratified seawater lake. PMID:25344237

  18. Effect of oxic and anoxic conditions on nitrous oxide emissions from nitrification and denitrification processes.

    PubMed

    Rassamee, Varit; Sattayatewa, Chakkrid; Pagilla, Krishna; Chandran, Kartik

    2011-09-01

    A lab-scale sequencing batch reactor fed with real municipal wastewater was used to study nitrous oxide (N(2)O) emissions from simulated wastewater treatment processes. The experiments were performed under four different controlled conditions as follows: (1) fully aerobic, (2) anoxic-aerobic with high dissolved oxygen (DO) concentration, (3) anoxic-aerobic with low DO concentration, and 4) intermittent aeration. The results indicated that N(2)O production can occur from both incomplete nitrification and incomplete denitrification. N(2)O production from denitrification was observed in both aerobic and anoxic phases. However, N(2)O production from aerobic conditions occurred only when both low DO concentrations and high nitrite concentration existed simultaneously. The magnitude of N(2) O produced via anoxic denitrification was lower than via oxic denitrification and required the presence of nitrite. Changes in DO, ammonium, and nitrite concentrations influenced the magnitude of N(2)O production through denitrification. The results also suggested that N(2)O can be produced from incomplete denitrification and then released to the atmosphere during aeration phase due to air stripping. Therefore, biological nitrogen removal systems should be optimized to promote complete nitrification and denitrification to minimize N(2)O emissions.

  19. The effect of an anoxic zone on biological phosphorus removal by a sequential batch reactor.

    PubMed

    Akin, Beril S; Ugurlu, Aysenur

    2004-08-01

    Nitrate can affect phosphate release and lead to reduced efficiency of biological phosphorus removal process. The inhibition effect of remaining nitrate at the anaerobic/anoxic phases was investigated in a lab scale sequencing batch reactor. In this study the influence of denitrification process on reactor performance and phosphorus removal was examined. The experiments were carried out through simultaneous filling and decanting, mixing, mixing-aeration and settling modes. Glucose and acetate were used as carbon sources. The proposed treatment system was capable of removing approximately 80% of the influent PO4-P, 98% NH4-N and 97% COD at a SRT of 25 days. In the fill/decant phase, anoxic and anaerobic conditions prevailed and a large quantity of nitrate was removed in this stage. In the anoxic phase the remaining nitrate concentration was quickly reduced and a considerable amount of phosphate was released. This was attributed to the availability of acetate in this stage. For effective nitrogen and phosphate removal, a short anoxic phase was beneficial before an aerobic phase.

  20. Electrophysiological Correlates of Deficient Encoding in a Case of Post-Anoxic Amnesia

    ERIC Educational Resources Information Center

    Lehmann, Sandra; Morand, Stephanie; James, Clara; Schnider, Armin

    2007-01-01

    Little is known about the initial stages of information processing in amnesia as compared to normal memory. In this study, we used electrical spatiotemporal mapping to compare cortical activation during encoding and recognition in a 56-year-old patient with severe, chronic post-anoxic amnesia and an age-matched control group. Event-related…

  1. On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge

    SciTech Connect

    Schramm, A.; Santegoeds, C.M.; Nielsen, H.K.; Ploug, H.; Wagner, M.; Pribyl, M.; Wanner, J.; Amann, R.; De Beer, D.

    1999-09-01

    A combination of different methods was applied to investigate the occurrence of anaerobic processes in aerated activated sludge. Microsensor measurements (O{sub 2}, NO{sub 2}{sup {minus}}, NO{sub 3}{sup {minus}}, and H{sub 2}S) were performed on single sludge flocs to detect anoxic niches, nitrate reduction, or sulfate reduction on a microscale. Incubations of activated sludge with {sup 15}NO{sub 3}{sup {minus}} and {sup 35}SO{sub 4}{sup 2{minus}} were used to determine denitrification and sulfate reduction rates on a batch scale. In four of six investigated sludges, no anoxic zones developed during aeration, and consequently denitrification rates were very low. However, in two sludges anoxia in flocs coincided with significant denitrification rates. Sulfate reduction could not be detected in any sludge in either the microsensor or the batch investigation, not even under short-term anoxic conditions. In contrast, the presence of sulfate-reducing bacteria was shown by fluorescence in situ hybridization with 16S rRNA-targeted oligonucleotide probes and by PCR-based detection of genes coding for the dissimilatory sulfite reductase. A possible explanation for the absence of advection, i.e., facilitated by flow through pores and channels. This possibility is suggested by the irregularity of some oxygen profiles and by confocal laser scanning microscopy of the three-dimensional floc structures, which showed that flocs from the two sludges in which anoxic zones were found were apparently denser than flocs from the other sludges.

  2. Enhancement of post-anoxic denitrification for biological nutrient removal: effect of different carbon sources.

    PubMed

    Chen, Hong-bo; Wang, Dong-bo; Li, Xiao-ming; Yang, Qi; Zeng, Guang-ming

    2015-04-01

    Previous research has demonstrated that post-anoxic denitrification and biological nutrient removal could be achieved in the oxic/anoxic/extended-idle wastewater treatment regime. This study further investigated the effect of different carbon sources on post-anoxic denitrification and biological nutrient removal. Acetate, propionate (volatile fatty acids (VFAs)), glucose (carbohydrate), methanol, and ethanol (alcohol) were used as the sole carbon source, respectively. The experimental results showed that VFA substrates led to an improvement in nitrogen and phosphorus removal. The total nitrogen and phosphorus removal efficiency values driven by acetate achieved 93 and 99%, respectively. In contrast, glucose present in mixed liquor deteriorated total nitrogen and phosphorus removal efficiency values to 72 and 54%. In the reactors cultured with methanol and ethanol, 66 and 63% of the total nitrogen were removed, and phosphorus removal efficiency values were 78 and 71%, respectively. The mechanism studies revealed that different carbon sources affected the transformations of intracellular polyhydroxyalkanoates (PHAs) and glycogen. PHAs are the dominant storages for microorganisms cultured with VFA substrates. Though glycogen is not the favorable energy and carbon source for polyphosphate-accumulating organisms, it can be consumed by microorganisms related to biological nitrogen removal and is able to serve as the electron donor for post-anoxic denitrification.

  3. Stabilization of waste-activated sludge through the anoxic-aerobic digestion process

    SciTech Connect

    Hashimoto, S.; Fujita, M.; Terai, K.

    1982-08-01

    During the aerobic digestion process, the nitrogen which had been embedded in the activated sludge is solubilized to form ammoniacal and nitric nitrogen which are in turn transferred to the liquor and cause the increase of nitrogen loading in the sewage treatment plant. In this study, the anoxic-aerobic sludge digestion system which is a modified form of the conventional aerobic sludge digestion is made up of aerobic and anoxic tanks and are designed to remove both the volatile suspended solids and the total nitrogen (TN) simultaneously. The removal efficiencies of both VSS and TN were investigated by feeding waste-activated sludge continuously and semicontinuously. The maximum percent reduction of both VSS and TN was achieved at a Q /SUB r/ /Q /SUB s/ ratio of 2 in the continuous process. The semicontinuous process was used to improve the nitrogen removal efficiency further. In the semicontinuous process, the VSS reduction efficiency as well as the nitrogen removal efficiency increased remarkably under a constant Q /SUB r/ /Q /SUB s/ ratio of 2. This process also achieved a VSS reduction efficiency higher than the aerobic digestion process (control). It was suggested that the additional anoxic tank enhanced the sludge digestion. Furthermore, the anoxic-aerobic digestion system can be applied to other treatment media like the primary sludge, industrial sludge, animal manure, etc.

  4. Biodegradable fraction of organic carbon estimated under oxic and anoxic conditions.

    PubMed

    Tusseau-Vuillemin, Marie-Hélène; Dispan, Jérome; Mouchel, Jean-Marie; Servais, Pierre

    2003-05-01

    The biodegradability of water samples is usually estimated with bioassays under oxic conditions. In order to overcome some of the drawbacks linked to the incubation of the samples in aerobic batches, a new protocol is proposed and tested, which is based on an organic carbon (OC) balance after a 45 days incubation under anoxic conditions with excess nitrate. The biodegradable fractions of organic matter obtained with the anoxic protocol are slightly lower than those obtained under oxic conditions. Several possible reasons for a systematic underestimation of the biodegradable organic matter under anoxic conditions are evaluated and discussed: a reduced microbial metabolic potential, significantly reduced degradation rates for the slowly biodegradable organic matter, an additional production of refractory organic compounds during the incubation, or the inhibition of the recycling of the organic matter stored in bacterial biomass. Nevertheless, the 7% difference observed on the biodegradable total OC estimations keeps low enough so that the anoxic protocol can be proposed as a convenient alternative to the oxic one.

  5. ENVIRONMENTAL FACTORS INFLUENCING METHANOGENESIS IN A SHALLOW ANOXIC AQUIFER: A FIELD AND LABORATORY STUDY

    EPA Science Inventory

    The environmental factors influencing methanogenesis in a shallow anoxic aquifer were probed in a combined field and laboratory study. Field data collected over a year revealed that in situ rates of methane production were depressed in winter and elevated in summer. Over the same...

  6. Mechanical and metabolic viability of a placental perfusion system in vitro under oxygenated and anoxic conditions.

    PubMed

    Illsley, N P; Aarnoudse, J G; Penfold, P; Bardsley, S E; Coade, S B; Stacey, T E; Hytten, F E

    1984-01-01

    In vitro dual circuit perfusion of the placenta with well-oxygenated medium results in the continuous and stable consumption of oxygen and glucose over a 2-h perfusion period. This is reflected in a stable production of lactate and an energy charge which is higher at the end of the perfusion period than that seen in fresh placental tissue immediately after vaginal delivery. Anoxic perfusion causes an increase in glucose consumption which is more than twofold higher than that seen in the oxygenated perfusion, resulting finally in placental uptake of glucose not only from the maternal but also from the fetal circulation. Lactate production is increased during the anoxic perfusion, while the final tissue energy charge value lies between the values observed for fresh tissue and for the oxygenated perfusion. The shift to anaerobic metabolism shown by placental tissue in anoxic conditions enables continued functioning of the tissue over the 2-h perfusion period but it appears that under anoxic conditions the tissue may incur an energy debt not observed in oxygenated perfusions.

  7. Incorporation of glucose under anoxic conditions by bacterioplankton from coastal North Sea surface waters.

    PubMed

    Alonso, Cecilia; Pernthaler, Jakob

    2005-04-01

    It has been hypothesized that the potential for anaerobic metabolism might be a common feature of bacteria in coastal marine waters (L. Riemann and F. Azam, Appl. Environ. Microbiol. 68: 5554-5562, 2002). Therefore, we investigated whether different phylogenetic groups of heterotrophic picoplankton from the coastal North Sea were able to take up a simple carbon source under anoxic conditions. Oxic and anoxic incubations (4 h) or enrichments (24 h) of seawater with radiolabeled glucose were performed in July and August 2003. Bacteria with incorporated substrate were identified by using a novel protocol in which we combined fluorescence in situ hybridization and microautoradiography of cells on membrane filters. Incorporation of glucose under oxic and anoxic conditions was found in alpha-Proteobacteria, gamma-Proteobacteria, and the Cytophaga-Flavobacterium cluster of the Bacteroidetes at both times, but not in marine Euryarchaeota. In July, the majority of cells belonging to the alpha-proteobacterial Roseobacter clade showed tracer incorporation both in oxic incubations and in oxic and anoxic enrichments. In August, only a minority of the Roseobacter cells, but most bacteria affiliated with Vibrio spp., were able to incorporate the tracer under either condition. A preference for glucose uptake under anoxic conditions was observed for bacteria related to Alteromonas and the Pseudoalteromonas-Colwellia group. These genera are commonly considered to be strictly aerobic, but facultatively fermentative strains have been described. Our findings suggest that the ability to incorporate substrates anaerobically is widespread in pelagic marine bacteria belonging to different phylogenetic groups. Such bacteria may be abundant in fully aerated coastal marine surface waters.

  8. Open Questions on the Origin of Life at Anoxic Geothermal Fields

    PubMed Central

    Mulkidjanian, Armen Y.; Bychkov, Andrew Yu.; Dibrova, Daria V.; Galperin, Michael Y.; Koonin, Eugene V.

    2014-01-01

    We have recently reconstructed the ‘hatcheries’ of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells (Mulkidjanian et al.: Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci USA 2012, 109:E821–830). These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K+, Zn2+, Mn2+, and phosphate. Thus, protocells must have evolved in habitats with a high K+/Na+ ratio and relatively high concentrations of Zn, Mn and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under anoxic, CO2-dominated atmosphere, the ionic composition of pools of cool, condensed vapor at anoxic geothermal fields would resemble the internal milieu of modern cells. Such pools would be lined with porous silicate minerals mixed with metal sulfides and enriched in K+ ions and phosphorous compounds. Here we address some questions that have appeared in print after the publication of our anoxic geothermal field scenario. We argue that anoxic geothermal fields, which were identified as likely cradles of life by using a top-down approach and phylogenomics analysis as a tool, could provide geochemical conditions similar to those which were suggested as most conducive for the emergence of life by the chemists who pursuit the complementary bottom-up strategy. PMID:23132762

  9. Parana basin

    SciTech Connect

    Zalan, P.V.; Wolff, S.; Conceicao, J.C.J.; Vieira, I.S.; Astolfi, M.A.; Appi, V.T.; Zanotto, O.; Neto, E.V.S.; Cerqueira, J.R.

    1987-05-01

    The Parana basin is a large intracratonic basin in South America, developed entirely on continental crust and filled with sedimentary and volcanic rocks ranging in age from Silurian to Cretaceous. It occupies the southern portion of Brazil (1,100,000 km/sup 2/ or 425,000 mi/sup 2/) and the eastern half of Paraguay (100,000 km/sup 2/ or 39,000 mi/sup 2/); its extension into Argentina and Uruguay is known as the Chaco-Parana basin. Five major depositional sequences (Silurian, Devonian, Permo-Carboniferous, Triassic, Juro-Cretaceous) constitute the stratigraphic framework of the basin. The first four are predominantly siliciclastic in nature, and the fifth contains the most voluminous basaltic lava flows of the planet. Maximum thicknesses are in the order of 6000 m (19,646 ft). The sequences are separated by basin wide unconformities related in the Paleozoic to Andean orogenic events and in the Mesozoic to the continental breakup and sea floor spreading between South America and Africa. The structural framework of the Parana basin consists of a remarkable pattern of criss-crossing linear features (faults, fault zones, arches) clustered into three major groups (N45/sup 0/-65/sup 0/W, N50/sup 0/-70/sup 0/E, E-W). The northwest- and northeast-trending faults are long-lived tectonic elements inherited from the Precambrian basement whose recurrent activity throughout the Phanerozoic strongly influenced sedimentation, facies distribution, and development of structures in the basin. Thermomechanical analyses indicate three main phases of subsidence (Silurian-Devonian, late Carboniferous-Permian, Late Jurassic-Early Cretaceous) and low geothermal gradients until the beginning of the Late Jurassic Permian oil-prone source rocks attained maturation due to extra heat originated from Juro-Cretaceous igneous intrusions. The third phase of subsidence also coincided with strong tectonic reactivation and creation of a third structural trend (east-west).

  10. Genesis of selected Triassic basins on the Italian peninsula: Their origin and hydrocarbon potential

    SciTech Connect

    Rigo de Righi, L.L.

    1990-01-01

    The paleogeographic evolution of the southern Alpine Lombardy Basin, the Central Adriatic Pescara Basin, and the Sicilian Ragusa Basin in Italy document the depositional and structural evolution of the Mesozoic Apulian Plate. These Mesozoic basins formed as a response to the Jurassic opening of the Tethyan Ocean. Due to their respective position in relation to the Mesozoic Tethyan spreading center, each of the three basins formed with unique structural entities. The Mesozoic paleogeographic history of the Lombardy Basin suggests that it initially formed a continental arc basin on the northern margin of the Apulian Plate. As Tethyan rifting progressed, the basin subsequently evolved into an Early Jurassic passive continental rift margin. The Pescara Basin, with its central Apulian paleogeographic location, developed as a Tethyan rift basin in the Jurassic. The Ragusa Basin represents Mesozoic developments along the southern portion of the Apulian Plate. Depositionally, paleohighs and periods of tectonic stability are typically represented by extensive carbonate platform deposits. Within these carbonate platforms incipient stages of faulting are characterized by shallow anoxic lagoonal deposits. These structurally weak ones were subsequently incorporated within the Tethyan Jurassic rift. Synrift deposits are predominantly characterized by thick sequences of Jurassic and Cretaceous pelagic carbonates.

  11. Depositional model for carbonate-evaporite cyclicity: Middle Pennsylvanian of Paradox basin

    SciTech Connect

    Kendall, A.C.

    1987-05-01

    The Paradox basin is a classic area for the study of relations between carbonates and evaporites. Previous depositional models assume carbonates and evaporites are coeval, implying that the evaporites were deep water deposits. Stratigraphic relationships are, however, complicated by previously unrecognized salt dissolution. Restoration of the missing salts indicates that evaporites entirely postdate marine carbonates in each cycle. Anhydrites and silty dolomites that succeed halites are reinterpreted as shallow hypersaline to subaerial deposits. These playa-like sediments are abruptly overlain by organic-rich shales that represent anoxic and the deepest-water deposits in the sequence. Paradox basin salts and succeeding playa deposits formed in a deep but desiccated basin. Sea level rises drowned the formerly exposed basin rims, causing sudden complete floodings of the basin and the abrupt contacts between playa deposits and deep-water shales. The shale-carbonate-evaporite sequences that form lower parts of cycles resulted from sea level falls. These ultimately exposed basin rims, isolating the basin, and allowed evaporative draw down and the deposition of basin-central evaporites. In contrast, the halite-anhydrite-silty dolomite sequences of the upper parts of cycles arose when sediment aggradation caused expansion of the evaporite depositional area onto basin flanks. There brine reflux became more significant. This reduced residence times of brines in the basin so that, progressively, salinities decreased and only less-saline sediments were able to persist in the playa environment. Cycles end (or begin) when renewed sea level rises drowned the basin-central playas.

  12. Aerobic methanotrophs drive the formation of a seasonal anoxic benthic nepheloid layer in monomictic Lake Lugano

    NASA Astrophysics Data System (ADS)

    Blees, Jan; Niemann, Helge; Wenk, Christine B.; Zopfi, Jacob; Schubert, Carsten J.; Jenzer, Joël S.; Veronesi, Mauro L.; Lehmann, Moritz F.

    2014-05-01

    In the southern basin of Lake Lugano, thermal stratification of the water column during summer and autumn leads to a lack of exchange between surface and deep water masses, and consequently to seasonal bottom water anoxia, associated with high methane concentrations. With the onset of bottom water anoxia, a dense layer of high particulate matter concentration - a so-called benthic nepheloid layer (BNL) - develops in the bottom waters. A sharp redox gradient marks the upper boundary of the BNL. At its maximum, the BNL extends 15 - 30 m from the sediment into the water column. We investigated the identity of the BNL and key environmental factors controlling its formation in the framework of a seasonal study. Compound specific C-isotope measurements and Fluorescence In Situ Hybridisation (FISH) of suspended particulate organic matter, radioactive tracer based measurements of methane oxidation, as well as investigation of geochemical water column parameters were performed in spring and autumn. Our analyses revealed that the microbial biomass within the BNL is dominated by methanotrophic bacteria. Aerobic methane oxidation (MOx) was restricted to a narrow zone at the top of the BNL, reaching maximum rates of up to 1.8 μM/day. The rates of MOx activity effectively consumed most (>99%) of the uprising methane, leading to the formation of a sharp CH4 concentration gradient and a strongly suppressed kinetic isotope effect (ɛ = -2.8o). CH4 oxidation was limited by the diffusive supply of O2 from the upper hypolimnion, implying that methanotrophy is the primary driver of the seasonal expansion of the anoxic bottom water volume, and explaining the vertical migration of the BNL in response to its own O2 consumption. The bulk organic matter extracted from the BNL was strongly depleted in 13C (δ13C < -60o), providing evidence for the incorporation of CH4-derived carbon into the biomass, suggesting that the BNL was composed of MOx-communities. This was further evidenced by four

  13. Occurrence, distribution, and transport of pesticides, trace elements, and selected inorganic constituents into the Salton Sea Basin, California, 2001-2002

    USGS Publications Warehouse

    LeBlanc, Lawrence A.; Schroeder, Roy A.; Orlando, James L.; Kuivila, Kathyrn M.

    2004-01-01

    A study of pesticide distribution and transport within the Salton Sea Basin, California, was conducted from September 2001 to October 2002. Sampling for the study was done along transects for the three major rivers that flow into the Salton Sea Basin: the New and Alamo Rivers at the southern end of the basin and the Whitewater River at the northern end. Three stations were established on each river: an outlet station approximately 1 mile upstream of the river discharge, a near-shore station in the river delta, and off-shore station in the Salton Sea. Water and suspended and bed sediments were collected at each station in October 2001, March-April 2002, and September 2002, coinciding with peak pesticide applications in the fall and spring. Fourteen current-use pesticides were detected in the water column. Concentrations of dissolved pesticides typically decreased from the outlets to the sea in all three rivers, consistent with the off-shore transport of pesticides from the rivers to the sea. Dissolved concentrations ranged from the limits of detection to 151 nanograms per liter (ng/L); however, diazinon, eptam (EPTC), and malathion were detected at much higher concentrations (940?3,830 ng/L) at the New and Alamo River outlet and near-shore stations. Concentrations of carbaryl, dacthal, diazinon, and eptam were higher during the two fall sampling periods, whereas concentrations of atrazine, carbofuran, and trifluralin were higher during the spring. Current-use pesticides also were detected on suspended and bed sediments in concentrations ranging from method detection limits to 106 ng/g (nanograms per gram). Chlorpyrifos, dacthal, eptam, trifluralin, and DDE were the most frequently detected pesticides on sediments from all three rivers. The number and concentrations of pesticides associated with suspended sediments frequently were similar for the river outlet and near-shore sites, consistent with the downstream transport of sediment-associated pesticides out of the

  14. Century-long record of Mo isotopic composition in sediments of a seasonally anoxic estuary (Chesapeake Bay)

    NASA Astrophysics Data System (ADS)

    Scheiderich, K.; Helz, G. R.; Walker, R. J.

    2010-01-01

    A double-spike method was used to obtain Mo isotope data for sediments and waters of the seasonally anoxic Chesapeake Bay, and its primary tributary, the Susquehanna River. The dissolved Mo distribution in the estuary is non-conservative, reflecting minor Mo loss to the sediments, although removal of Mo to the sediments does not have a large influence on the isotopic composition of the water column. The δ98Mo of dissolved Mo in most of the estuary is dominated by seawater. Six samples with salinity > 15 have an average δ98Mo = + 2.17‰ (± 0.12), which agrees well with a δ98Mo value for the CASS-4 seawater standard of + 2.23‰. A single sample of Susquehanna River water has a δ98Mo of + 1.02‰, consistent with recent findings of positive δ98Mo in rivers worldwide. Susquehanna river sediments, in contrast, have δ98Mo ˜ - 0.1‰. The difference between the river water and sediment values implies that isotopic fractionation occurs within the river basin. The δ98Mo values for estuarine sediments are offset from values in the overlying water. Most samples deposited before 1925 have δ98Mo less than 0‰, similar to the Susquehanna sediments. Subsequently, there is an increase in the variability of δ98Mo, with values ranging up to + 0.8‰. The transition to increased variability coincides with the onset of authigenic Mo deposition, which was previously attributed to escalating summertime anoxia. Authigenic Mo concentrations correlate poorly with δ98Mo in core samples, suggesting that independent mechanisms influence the two parameters. Authigenic Mo concentrations may be controlled by shifting pore water H 2S levels, while δ98Mo may be primarily affected by annual variations in Mn refluxing.

  15. Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event

    NASA Astrophysics Data System (ADS)

    Jarvis, Ian; Lignum, John S.; GröCke, Darren R.; Jenkyns, Hugh C.; Pearce, Martin A.

    2011-09-01

    Oceanic Anoxic Event 2 (OAE2), spanning the Cenomanian-Turonian boundary (CTB), represents one of the largest perturbations in the global carbon cycle in the last 100 Myr. The δ13Ccarb, δ13Corg, and δ18O chemostratigraphy of a black shale-bearing CTB succession in the Vocontian Basin of France is described and correlated at high resolution to the European CTB reference section at Eastbourne, England, and to successions in Germany, the equatorial and midlatitude proto-North Atlantic, and the U.S. Western Interior Seaway (WIS). Δ13C (offset between δ13Ccarb and δ13Corg) is shown to be a good pCO2 proxy that is consistent with pCO2 records obtained using biomarker δ13C data from Atlantic black shales and leaf stomata data from WIS sections. Boreal chalk δ18O records show sea surface temperature (SST) changes that closely follow the Δ13C pCO2 proxy and confirm TEX86 results from deep ocean sites. Rising pCO2 and SST during the Late Cenomanian is attributed to volcanic degassing; pCO2 and SST maxima occurred at the onset of black shale deposition, followed by falling pCO2 and cooling due to carbon sequestration by marine organic productivity and preservation, and increased silicate weathering. A marked pCO2 minimum (˜25% fall) occurred with a SST minimum (Plenus Cold Event) showing >4°C of cooling in ˜40 kyr. Renewed increases in pCO2, SST, and δ13C during latest Cenomanian black shale deposition suggest that a continuing volcanogenic CO2 flux overrode further drawdown effects. Maximum pCO2 and SST followed the end of OAE2, associated with a falling nutrient supply during the Early Turonian eustatic highstand.

  16. Synthetic statistical approach reveals a high degree of richness of microbial eukaryotes in an anoxic water column.

    PubMed

    Jeon, S-O; Bunge, J; Stoeck, T; Barger, K J-A; Hong, S-H; Epstein, S S

    2006-10-01

    Molecular surveys suggest that communities of microbial eukaryotes are remarkably rich, because even large clone libraries seem to capture only a minority of species. This provides a qualitative picture of protistan richness but does not measure its real extent either locally or globally. Statistical analysis can estimate a community's richness, but the specific methods used to date are not always well grounded in statistical theory. Here we study a large protistan molecular survey from an anoxic water column in the Cariaco Basin (Caribbean Sea). We group individual 18S rRNA gene sequences into operational taxonomic units (OTUs) using different cutoff values for sequence similarity (99 to 50%) and systematically apply parametric models and nonparametric estimators to the OTU frequency data to estimate the total protistan diversity. The parametric models provided statistically sound estimates of protistan richness, with biologically meaningful standard errors, maximal data usage, and extensive model diagnostics and were preferable to the available nonparametric tools. Our clone library exceeded 700 clones but still covered only a minority of species and less than half of the larger protistan clades. Our estimates of total protistan richness portray the target community as very rich at all OTU levels, with hundreds of different populations apparently co-occurring in the small (3-liter) volume of our sample, as well as dozens of clades of the highest taxonomic order. These estimates are among the first for microbial eukaryotes that are obtained using state-of-the-art statistical methods and can serve as benchmark numbers for the local diversity of protists.

  17. Effects of Human Alterations on Global River Basins and their Associated Coastal Zones: focus on River-dominated Ocean Margins (RiOMars)

    NASA Astrophysics Data System (ADS)

    Dürr, H. H.; Van Cappellen, P.; Meybeck, M.; Laruelle, G. G.; Mayorga, E.; Hartmann, J.; Maavara, T.; Bouwman, L.; Seitzinger, S.

    2013-12-01

    Coastal systems connected to large rivers, mostly major delta systems or river-dominated ocean margins (RiOMars), make up <1% of the worldwide shoreline. Yet, they comprise 28% of the exorheic terrestrial river basins area, and host 26.4% of the population connected via rivers to coastal systems (Dürr et al. 2011). These systems receive 41.6% of the discharge delivered to oceans. 25.7% of the suspended sediment load is processed, with comparable amounts for the total nitrogen (N) and phosphorus (P) loads. The filter function for incoming riverine nutrients (N, P, C, Si) in these coastal environments is very different from other near-shore environments such as macro-tidal estuaries, lagoons or fjords. In this type, the major biogeochemical transformation of incoming river fluxes takes place in a plume on the continental margins (RiOMars). This effect is even more pronounced at high flow stages when the highest volumes of water and material are delivered. The filtering efficiency of delta systems is highest during low flows, and some of the systems may be influenced by tides when ebb and flood might flow through different channels, creating a braided network of streams and many islands (Dürr et al. 2011). Here, we discuss controls on the different nutrient forms delivered to different coastal environments, and how they are assessed (Global-NEWS and other approaches), with a special focus on large deltas and RiOMars. Drivers and impacts of global change will be explored through the Millenium Assessment Scenarios and how the fluxes to these different coastal systems might change. An increasing role is also played by aquaculture in different coastal types as a non-insignificant source of nutrients. World-wide distribution of coastal types and their related river basins (Dürr et al. 2011). Characteristics of types of near-shore coastal areas and their associated river basins Greenland and Antarctica excepted. Data from Dürr et al. (2011) and the Global-NEWS program

  18. Nutrients as the dominant control on the spread of anoxia and euxinia across the Cenomanian-Turonian oceanic anoxic event (OAE2): Model-data comparison

    NASA Astrophysics Data System (ADS)

    Monteiro, F. M.; Pancost, R. D.; Ridgwell, A.; Donnadieu, Y.

    2012-12-01

    The Cenomanian-Turonian oceanic anoxic event (OAE2) is characterized by large perturbations in the oxygen and sulfur cycles of the ocean, potentially resulting from changes in oxygen supply (via oxygen solubility and ocean circulation) and in marine productivity. We assess the relative impact of these mechanisms, comparing model experiments with a new compilation of observations for seafloor dysoxia/anoxia and photic zone euxinia. The model employed is an intermediate-complexity Earth system model which accounts for the main ocean dynamics and biogeochemistry of the Cretaceous climate. The impact of higher temperature and marine productivity is evaluated in the model as a result of higher atmospheric carbon dioxide and oceanic nutrient concentrations. The model shows that temperature is not alone able to reproduce the observed patterns of oceanic redox changes associated with OAE2. Observations are reproduced in the model mainly via enhanced marine productivity due to higher nutrient content (responsible for 85% of the change). Higher phosphate content could have been sustained by increased chemical weathering and phosphorus regeneration from anoxic sediments, which in turn induced an enhanced nitrogen nutrient content of the ocean via nitrogen fixation. The model also shows that the presence of seafloor anoxia, as suggested by black-shale deposition in the proto-North Atlantic Ocean before the event, might be the result of the silled shape and lack of deep-water formation of this basin at the Late Cretaceous. Overall our model-data comparison shows that OAE2 anoxia was quasi-global spreading from 5% of the ocean volume before the event to at least 50% during OAE2.

  19. Absence of major vegetation and palaeoatmospheric pCO 2 changes associated with oceanic anoxic event 1a (Early Aptian, SE France)

    NASA Astrophysics Data System (ADS)

    Heimhofer, Ulrich; Hochuli, Peter A.; Herrle, Jens O.; Andersen, Nils; Weissert, Helmut

    2004-07-01

    The deposition of organic-rich sediments during the late Early Aptian Oceanic Anoxic Event (OAE) 1a has been interpreted to result in a major decrease of palaeoatmospheric CO 2 concentrations, accompanied by significant changes in the terrestrial flora. In order to test this hypothesis, the OAE 1a interval in the Vocontian Basin (SE France) has been studied with a combined approach including stable carbon isotopes, organic geochemistry and palynology. To estimate changes in palaeoatmospheric CO 2 levels across the OAE 1a, the δ13C composition of presumed algal biomarkers (low molecular weight n-alkanes, steranes) and of bulk carbonate carbon are used. Our results yield estimated Early Aptian carbon dioxide partial pressure ( pCO 2) values three to four times the preindustrial level and only a moderate drop across the black shale event. This moderate drop in pCO 2 is supported by palynological results. The frequency patterns of climate-sensitive sporomorphs (incl. pteridophyte spores, bisaccate pollen and Classopollis spp.) display only minor fluctuations throughout the studied section and indicate relatively stable patterns of terrestrial vegetation during and after formation of the OAE 1a black shale. The occurrence of a characteristic Early Aptian carbon isotope pattern across the OAE 1a interval permits accurate chemostratigraphic correlation with the well-studied Livello Selli interval of the Cismon record (N Italy). The contemporaneous formation of individual black shale layers at both sites indicates that transient episodes of dysoxic-anoxic bottom waters prevailed over large areas in the W Tethys Ocean independent of depositional setting. Comparison of the palynological data from the two locations displays significant differences in the frequency patterns of bisaccate pollen. The contrasting pollen spectra are interpreted to reflect prominent changes in the palaeoceanographic current patterns and/or selective sorting due to sea-level rise rather than

  20. Preparation and Characterization of Uranium Oxides in Support of the K Basin Sludge Treatment Project

    SciTech Connect

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2008-07-08

    Uraninite (UO2) and metaschoepite (UO3·2H2O) are the uranium phases most frequently observed in K Basin sludge. Uraninite arises from the oxidation of uranium metal by anoxic water and metaschoepite arises from oxidation of uraninite by atmospheric or radiolytic oxygen. Studies of the oxidation of uraninite by oxygen to form metaschoepite were performed at 21°C and 50°C. A uranium oxide oxidation state characterization method based on spectrophotometry of the solution formed by dissolving aqueous slurries in phosphoric acid was developed to follow the extent of reaction. This method may be applied to determine uranium oxide oxidation state distribution in K Basin sludge. The uraninite produced by anoxic corrosion of uranium metal has exceedingly fine particle size (6 nm diameter), forms agglomerates, and has the formula UO2.004±0.007; i.e., is practically stoichiometric UO2. The metaschoepite particles are flatter and wider when prepared at 21°C than the particles prepared at 50°C. These particles are much smaller than the metaschoepite observed in prolonged exposure of actual K Basin sludge to warm moist oxidizing conditions. The uraninite produced by anoxic uranium metal corrosion and the metaschoepite produced by reaction of uraninite aqueous slurries with oxygen may be used in engineering and process development testing. A rapid alternative method to determine uranium metal concentrations in sludge also was identified.

  1. Biogeochemistry of the North Atlantic during oceanic anoxic event 2: role of changes in ocean circulation and phosphorus input

    NASA Astrophysics Data System (ADS)

    Ruvalcaba Baroni, I.; Topper, R. P. M.; van Helmond, N. A. G. M.; Brinkhuis, H.; Slomp, C. P.

    2014-02-01

    The geological record provides evidence for the periodic occurrence of water column anoxia and formation of organic-rich deposits in the North Atlantic Ocean during the mid-Cretaceous (hereafter called the proto-North Atlantic). Both changes in primary productivity and oceanic circulation likely played a role in the development of the low-oxygen conditions. Several studies suggest that an increased input of phosphorus from land initiated oceanic anoxic events (OAEs). Other proposed mechanisms invoke a vigorous upwelling system and an ocean circulation pattern that acted as a trap for nutrients from the Pacific Ocean. Here, we use a detailed biogeochemical box model for the proto-North Atlantic to analyse under what conditions anoxia could have developed during OAE2 (94 Ma). The model explicitly describes the coupled water, carbon, oxygen and phosphorus cycles for the deep basin and continental shelves. In our simulations, we assume the vigorous water circulation from a recent regional ocean model study. Our model results for pre-OAE2 and OAE2 conditions are compared to sediment records of organic carbon and proxies for photic zone euxinia and bottom water redox conditions (e.g. isorenieratane, carbon/phosphorus ratios). Our results show that a strongly elevated input of phosphorus from rivers and the Pacific Ocean relative to pre-OAE2 conditions is a requirement for the widespread development of low oxygen in the proto-North Atlantic during OAE2. Moreover, anoxia in the proto-North Atlantic is shown to be greatly influenced by the oxygen concentration of Pacific bottom waters. In our model, primary productivity increased significantly upon the transition from pre-OAE2 to OAE2 conditions. Our model captures the regional trends in anoxia as deduced from observations, with euxinia spreading to the northern and eastern shelves but with the most intense euxinia occurring along the southern coast. However, anoxia in the central deep basin is difficult to achieve in the

  2. Was the North Atlantic Ocean well-ventilated during Oceanic Anoxic Event 2 in the mid-Cretaceous?

    NASA Astrophysics Data System (ADS)

    Ruvalcaba-Baroni, I.; Topper, R. P. M.; van Helmond, N. A. G. M.; Brinkhuis, H.; Slomp, C. P.

    2013-08-01

    The geological record provides evidence for the periodic occurrence of water column anoxia and formation of organic-rich deposits in the North Atlantic Ocean during the mid-Cretaceous (hereafter called proto-North Atlantic). Both changes in primary productivity and oceanic circulation likely played a role in the development of the low oxygen conditions. Several studies suggest that an increased input of phosphorus from land initiated oceanic anoxic events (OAEs). Other proposed mechanisms invoke a vigorous upwelling system and an ocean circulation pattern that acted as a trap for nutrients from the Pacific Ocean. Here, we use a detailed biogeochemical box model for the proto-North Atlantic to analyse under what conditions anoxia could have developed during OAE2 (94 Ma). The model explicitly describes the coupled water, carbon, oxygen and phosphorus cycles for the deep basin and continental shelves. In our simulations, we assume the vigorous water circulation from a recent regional ocean model study. Our model results for pre-OAE2 and OAE2 conditions are compared to sediment records of organic carbon and proxies for photic zone euxinia and bottom water redox conditions (e.g. isorenieratane, carbon/phosphorus ratios). Our results show that a strongly elevated input of phosphorus from rivers and the Pacific Ocean relative to pre-OAE2 conditions is a requirement for the widespread development of low oxygen in the proto-North Atlantic during OAE2. Moreover, anoxia in the proto-North Atlantic is shown to be greatly influenced by the oxygen concentration of Pacific bottom waters. In our model, primary productivity increased significantly upon the transition from pre-OAE2 to OAE2 conditions. Our model captures the regional trends in anoxia as deduced from observations, with euxinia spreading to the northern and eastern shelves but with the most intense euxinia occurring along the southern coast. However, anoxia in the central deep basin is difficult to achieve in the model

  3. Calcium isotope evidence for dramatic increase of continental weathering during the Toarcian oceanic anoxic event (Early Jurassic)

    NASA Astrophysics Data System (ADS)

    Brazier, Jean-Michel; Suan, Guillaume; Tacail, Théo; Simon, Laurent; Martin, Jeremy E.; Mattioli, Emanuela; Balter, Vincent

    2015-02-01

    The early Toarcian was punctuated by pulses of massive carbon injection that are thought to have triggered, through increased greenhouse conditions, elevated continental discharge and nutrient input, marine anoxia, seawater acidification and species extinctions. Nevertheless, the mode and tempo of changes in continental weathering across this interval remains highly debated, leading to considerable uncertainty about the main causes of these perturbations. In this study we present calcium isotope measurements (δ44/40Ca) of well-preserved brachiopods and bulk rock samples from the hemipelagic strata of Pliensbachian-Toarcian age of Peniche in Portugal in order to constrain changes in the calcium cycle and hence changes in continental weathering during the early Toarcian. The data reveal a similar trend as carbon isotope data from the same section and show negative excursions of about 0.5‰ at the Pliensbachian-Toarcian transition (Pl-To) and at the base of the Toarcian Oceanic Anoxic Event (T-OAE) interval. The comparison of δ44/40Ca ratios recorded in brachiopods and bulk rock corrected for variable dolomite contribution indicates that these excursions reflect changes in the global isotopic composition of seawater rather than changes in the dominant mineralogy of calcifying organisms or in hydrological budget of the considered basin. Box modeling results suggest that the Pl-To and T-OAE δ44/40Ca excursions can be explained by a transient 90% decrease of carbonate accumulation due to seawater acidification followed by a 500% increase in continental weathering rates. The sharp increases in continental weathering inferred from the δ44/40Ca ratios seem overall consistent with lower Toarcian sedimentological and biotic records that document rapid crises in carbonate production followed by episodes of increased calcium carbonate burial. Nevertheless, the maximum of carbonate burial recorded by most NW European basinal successions occurs several hundreds of kyrs after

  4. The Anoxic Corrosion of Copper in Pure Water and Chloride Rich Brines

    NASA Astrophysics Data System (ADS)

    Ilic, Emilija

    The Nuclear Waste Management Organization (NWMO) is developing an approach for the permanent geological disposal of nuclear waste. The waste will be encased in copper coated used fuel containers (UFCs) and placed in a deep geological repository (DGR). To support the NWMO in their investigations on the long-term corrosion of copper a lab scale simulation of the DGR environment was created. Copper wires were placed in glass electrochemical cells and exposed to one of two environments; pure anoxic water or chloride-rich anoxic brine. The systems were allowed to freely corrode and accumulate hydrogen within their headspaces over extended durations at 30 to 75 °C. The hydrogen was periodically purged and subsequently analyzed using a highly sensitive amperometric sensor; these measurements were utilized to calculate the corresponding copper corrosion rates. Corrosion with hydrogen evolution was demonstrated in both pure water and brines at slow rates below 1 and 10 nm/year, respectively.

  5. Geochemical evidence for anoxic deep water in the Arabian Sea during the last glaciation

    SciTech Connect

    Sarkar, A.; Bhattacharya, S.K.; Sarin, M.M. )

    1993-03-01

    Various paleoceanographic studies have indicated that the deep ocean was probably depleted in dissolved oxygen during the last glacial period ([approximately]18 kyr B.P.; [delta][sup 18]O, stage 2) compared to present time. However, direct evidence of low oxygen content in the deep waters has been lacking. Here, the authors report geochemical evidence of near anoxic conditions in the deep Arabian Sea during the entire last glacial cycle ([delta][sup 18]O; stages 2, 3, and 4). Anoxia is inferred from the concomitant enrichment of organic carbon and authigenic uranium in the glacial sections of a core from the deep eastern Arabian Sea. The anoxic conditions during the last glacial period, probably caused by a change in deep water circulation, evidently enhanced preservation of organic matter and simultaneous removal of uranium from seawater. 57 refs., 3 figs., 2 tabs.

  6. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction.

    PubMed

    Shen, Yanan; Farquhar, James; Zhang, Hua; Masterson, Andrew; Zhang, Tonggang; Wing, Boswell A

    2011-02-22

    Global fossil data show that profound biodiversity loss preceded the final catastrophe that killed nearly 90% marine species on a global scale at the end of the Permian. Many hypotheses have been proposed to explain this extinction and yet still remain greatly debated. Here, we report analyses of all four sulphur isotopes ((32)S, (33)S, (34)S and (36)S) for pyrites in sedimentary rocks from the Meishan section in South China. We observe a sulphur isotope signal (negative δ(34)S with negative Δ(33)S) that may have resulted from limitation of sulphate supply, which may be linked to a near shutdown of bioturbation during shoaling of anoxic water. These results indicate that episodic shoaling of anoxic water may have contributed to the profound biodiversity crisis before the final catastrophe. Our data suggest a prolonged deterioration of oceanic environments during the Late Permian mass extinction.

  7. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction.

    PubMed

    Shen, Yanan; Farquhar, James; Zhang, Hua; Masterson, Andrew; Zhang, Tonggang; Wing, Boswell A

    2011-01-01

    Global fossil data show that profound biodiversity loss preceded the final catastrophe that killed nearly 90% marine species on a global scale at the end of the Permian. Many hypotheses have been proposed to explain this extinction and yet still remain greatly debated. Here, we report analyses of all four sulphur isotopes ((32)S, (33)S, (34)S and (36)S) for pyrites in sedimentary rocks from the Meishan section in South China. We observe a sulphur isotope signal (negative δ(34)S with negative Δ(33)S) that may have resulted from limitation of sulphate supply, which may be linked to a near shutdown of bioturbation during shoaling of anoxic water. These results indicate that episodic shoaling of anoxic water may have contributed to the profound biodiversity crisis before the final catastrophe. Our data suggest a prolonged deterioration of oceanic environments during the Late Permian mass extinction. PMID:21343928

  8. Internal recycle to improve denitrification in a step feed anoxic/aerobic activated sludge system.

    PubMed

    Boyle, C A; McKenzie, C J; Morgan, S

    2009-01-01

    During periods of low load (weekends and holidays) the Mangere wastewater treatment plant effluent has breached the summer consent conditions for total nitrogen. The purpose of this research was to determine if an internal recycle would improve nitrogen removal in the anoxic/aerobic activated sludge reactors sufficient to meet the summer resource consent standard. The recycle returned nitrate rich mixed liquor from the downstream aerobic zone back to the initial anoxic zone, thus potentially improving denitrification. A full scale trial showed that installation of the internal recycle on each RC would have satisfied the resource consent for total nitrogen in most cases over the three summer resource consent periods since the upgrade. However, further modifications of the internal recycle would be required to ensure that consent conditions were satisfied at all times and to improve the consistency of the results.

  9. Multiple S-isotopic evidence for episodic shoaling of anoxic water during Late Permian mass extinction

    PubMed Central

    Shen, Yanan; Farquhar, James; Zhang, Hua; Masterson, Andrew; Zhang, Tonggang; Wing, Boswell A.

    2011-01-01

    Global fossil data show that profound biodiversity loss preceded the final catastrophe that killed nearly 90% marine species on a global scale at the end of the Permian. Many hypotheses have been proposed to explain this extinction and yet still remain greatly debated. Here, we report analyses of all four sulphur isotopes (32S, 33S, 34S and 36S) for pyrites in sedimentary rocks from the Meishan section in South China. We observe a sulphur isotope signal (negative δ34S with negative Δ33S) that may have resulted from limitation of sulphate supply, which may be linked to a near shutdown of bioturbation during shoaling of anoxic water. These results indicate that episodic shoaling of anoxic water may have contributed to the profound biodiversity crisis before the final catastrophe. Our data suggest a prolonged deterioration of oceanic environments during the Late Permian mass extinction. PMID:21343928

  10. Prevailing oxic environments in the Pacific Ocean during the mid-Cretaceous Oceanic anoxic event 2.

    PubMed

    Takashima, Reishi; Nishi, Hiroshi; Yamanaka, Toshiro; Tomosugi, Takashige; Fernando, Allan G; Tanabe, Kazushige; Moriya, Kazuyoshi; Kawabe, Fumihisa; Hayashi, Keiichi

    2011-01-01

    The occurrence of Oceanic Anoxic Event 2 (OAE2) 94 million years ago is considered to be one of the largest carbon cycle perturbations in the Earth's history. The marked increase in the spatial extent of the anoxic conditions in the world's oceans associated with OAE2 resulted in the mass accumulation of organic-rich sediments. Although extensive oceanographic studies of OAE2 have been undertaken in the Atlantic Ocean, the Tethys Sea, and the epicontinental seas of Europe and America, little is known about OAE2 in the Pacific Ocean. Here, we present high-resolution carbon-isotope and degree of pyritization (DOP) data from marine sequences that formed along the continental margins of North America and Asia below the northeastern and northwestern Pacific Ocean. The predominance of low DOP values in these areas revealed that the continental margins of the Pacific Ocean were oxic for most of the OAE2 interval.

  11. Open questions on the origin of life at anoxic geothermal fields.

    PubMed

    Mulkidjanian, Armen Y; Bychkov, Andrew Yu; Dibrova, Daria V; Galperin, Michael Y; Koonin, Eugene V

    2012-10-01

    We have recently reconstructed the 'hatcheries' of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells (Mulkidjanian et al. Proc Natl Acad Sci U S A 109:E821-830, 2012). These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K⁺, Zn²⁺, Mn²⁺, and phosphate. Thus, protocells must have evolved in habitats with a high K⁺/Na⁺ ratio and relatively high concentrations of Zn, Mn and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under an anoxic, CO₂-dominated atmosphere, the ionic composition of pools of cool, condensed vapor at anoxic geothermal fields would resemble the internal milieu of modern cells. Such pools would be lined with porous silicate minerals mixed with metal sulfides and enriched in K⁺ ions and phosphorous compounds. Here we address some questions that have appeared in print after the publication of our anoxic geothermal field scenario. We argue that anoxic geothermal fields, which were identified as likely cradles of life by using a top-down approach and phylogenomics analysis, could provide geochemical conditions similar to those which were suggested as most conducive for the emergence of life by the chemists who pursuit the complementary bottom-up strategy.

  12. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands

    USGS Publications Warehouse

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1994-01-01

    Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing the bioavailability of Fe(III) by adding suitable ligands provides a potential alternative to oxygen addition for the bioremediation of petroleum-contaminated aquifers.Contamination of ground waters with water-soluble aromatic hydrocarbons, common components of petroleum pollution, often produces anoxic conditions under which microbial degradation of the aromatics is slow. Oxygen is often added to contaminated ground water to stimulate biodegradation, but this can be technically difficult and expensive. Insoluble Fe(III) oxides, which are generally abundant in shallow aquifers, are alternative potential oxidants, but are difficult for microorganisms to access. Here we report that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments. We find that even benzene, which is notoriously refractory in the absence of oxygen, can be rapidly degraded. Our results suggest that increasing

  13. Tritirachium candoliense sp. nov., a novel basidiomycetous fungus isolated from the anoxic zone of the Arabian Sea.

    PubMed

    Manohar, Cathrine Sumathi; Boekhout, Teun; Müller, Wally H; Stoeck, Thorsten

    2014-02-01

    A fungal culture (FCAS11) was isolated from coastal sediments of the Arabian Sea during the anoxic season. Multigene phylogenetic analyses confidentially place the organism as a novel species within the recently defined class Tritirachiomycetes, subphylum Pucciniomycotina, phylum Basidiomycota. We named the new species Tritirachium candoliense and provide the first description of a member of this class from a marine environment. DNA sequences and morphological characters distinguish T. candoliense from previously described Tritirachium species. Its growth characteristics, morphology, and ultrastructural features showed that under anoxic conditions the species grows slowly and produces mainly hyphae with only few blastoconidia. Electron microscopy revealed differences when the culture was exposed to anoxic stress. Notable ultrastructural changes occur for example in mitochondrial cristae, irregularly shaped fat globules and the presence of intracellular membrane invaginations. We assume that the growth characteristics and substrate utilization patterns are an adaptation to its source location, the seasonally anoxic environment of the Arabian Sea.

  14. Using Biogenic Sulfur Gases as Remotely Detectable Biosignatures on Anoxic Planets

    PubMed Central

    Meadows, Victoria S.; Claire, Mark W.; Kasting, James F.

    2011-01-01

    Abstract We used one-dimensional photochemical and radiative transfer models to study the potential of organic sulfur compounds (CS2, OCS, CH3SH, CH3SCH3, and CH3S2CH3) to act as remotely detectable biosignatures in anoxic exoplanetary atmospheres. Concentrations of organic sulfur gases were predicted for various biogenic sulfur fluxes into anoxic atmospheres and were found to increase with decreasing UV fluxes. Dimethyl sulfide (CH3SCH3, or DMS) and dimethyl disulfide (CH3S2CH3, or DMDS) concentrations could increase to remotely detectable levels, but only in cases of extremely low UV fluxes, which may occur in the habitable zone of an inactive M dwarf. The most detectable feature of organic sulfur gases is an indirect one that results from an increase in ethane (C2H6) over that which would be predicted based on the planet's methane (CH4) concentration. Thus, a characterization mission could detect these organic sulfur gases—and therefore the life that produces them—if it could sufficiently quantify the ethane and methane in the exoplanet's atmosphere. Key Words: Exoplanets—Biosignatures—Anoxic atmospheres—Planetary atmospheres—Remote life detection—Photochemistry. Astrobiology 11, 419–441. PMID:21663401

  15. Iron uptake of the normoxic, anoxic and postanoxic microglial cell line RAW 264.7.

    PubMed

    Widmer, Rebecca; Grune, Tilman

    2005-01-01

    Iron is one of the trace elements playing a key role in the normal brain metabolism. An excess of free iron on the other hand is catalyzing the iron-mediated oxygen radical production. Such a condition might be a harmful event leading perhaps to serious tissue damage and degeneration. Therefore, during evolution a complex iron sequestering apparatus developed, minimizing the amount of redox-reactive free iron. However, this system might be severely disturbed under pathophysiological conditions including hypoxia or anoxia. Since little is known about the non-transferrin-mediated iron metabolism of the brain during anoxia/reoxygenation, we tested the ability of the microglial cell line RAW 264.7 to take up iron independently of transferrin under various oxygen concentrations. Microglial cells are thought to be the major player in the maintenance of the extracellular homeostasis in the brain. Therefore, we investigated the iron metabolism of microglial cells employing radiolabeled ferric chloride. We tested the uptake of iron under normoxic, anoxic and postanoxic conditions. Furthermore, the amount of ferritin was measured by immunoblotting. We were able to show that iron enters the microglial cell line in the absence of extracellular transferrin under normoxic, anoxic and postanoxic conditions. Interestingly, the amount of ferritin is decreasing in the early reoxygenation phase. Therefore, we concluded that microglia is able to contribute to the brain iron homeostasis under anoxic and postanoxic conditions.

  16. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments

    NASA Astrophysics Data System (ADS)

    Klüpfel, Laura; Piepenbrock, Annette; Kappler, Andreas; Sander, Michael

    2014-03-01

    Humic substances form through the degradation of microbial and plant precursors, and make up a significant fraction of natural organic matter in terrestrial and aquatic environments. Humic substances are redox-active and can act as terminal electron acceptors in anaerobic microbial respiration. Reduced humic substances may become re-oxidized during aeration of temporarily anoxic systems, such as wetlands, sediments and many soils. If the transfer of electrons from anaerobic respiration through humic substances to oxygen is sustained over many redox cycles, it may competitively suppress electron transfer to carbon dioxide, and thereby lower the formation of methane in temporarily anoxic systems. Here, we monitor changes in the redox states of four chemically distinct dissolved humic substances over successive cycles of reduction by the bacterium Shewanella oneidensis MR-1 and oxidation by oxygen, in a series of laboratory experiments. We show that electron transfer to and from these substances is fully reversible and sustainable over successive redox cycles. We suggest that redox cycling of humic substances may largely suppress methane production in temporarily anoxic systems.

  17. Small sewage treatment system with an anaerobic-anoxic-aerobic combined biofilter.

    PubMed

    Park, S M; Jun, H B; Hong, S P; Kwon, J C

    2003-01-01

    The objective of this study was to investigate a small sewage treatment system that could improve nitrogen and BOD5 removal efficiency as well as generate less solid using an anaerobic-anoxic-aerobic biofiltration system. Wastewater temperature was in the range of 14-25 degrees C, and hydraulic residual times were 12 h for each reactor. The upflow anaerobic digester equipped with anoxic filter was fed with both raw sewage and recycled effluent from the aerobic filter to induce denitrification and solid reduction simultaneously. In the subsequent aerobic filter, residual organic carbon and ammonia might be oxidized and finally nitrate formed. In the anaerobic reactor, about 71% of influent TCOD was removed by sedimentation of the un-filterable COD at the recycle ratio of 300%. Another 20% of influent TCOD was removed in the anoxic filter by denitrification of the recycled nitrate. After 100 days operation, solid reduction and nitrification efficiency were about 30% and 95%, respectively. Overall removal efficiencies of COD and total nitrogen (T-N) were above 94% and 70% at the recycle ratio of 300%, respectively. Total wasted solid from the system after 100 days operation was about 316 g, which was only 44% of the solid generated from a controlled activated sludge system operated at sludge retention time of 8 days.

  18. Incineration of tannery sludge under oxic and anoxic conditions: study of chromium speciation.

    PubMed

    Kavouras, P; Pantazopoulou, E; Varitis, S; Vourlias, G; Chrissafis, K; Dimitrakopulos, G P; Mitrakas, M; Zouboulis, A I; Karakostas, Th; Xenidis, A

    2015-01-01

    A tannery sludge, produced from physico-chemical treatment of tannery wastewaters, was incinerated without any pre-treatment process under oxic and anoxic conditions, by controlling the abundance of oxygen. Incineration in oxic conditions was performed at the temperature range from 300°C to 1200°C for duration of 2h, while in anoxic conditions at the temperature range from 400°C to 600°C and varying durations. Incineration under oxic conditions at 500°C resulted in almost total oxidation of Cr(III) to Cr(VI), with CaCrO4 to be the crystalline phase containing Cr(VI). At higher temperatures a part of Cr(VI) was reduced, mainly due to the formation of MgCr2O4. At 1200°C approximately 30% of Cr(VI) was reduced to Cr(III). Incineration under anoxic conditions substantially reduced the extent of oxidation of Cr(III) to Cr(VI). Increase of temperature and duration of incineration lead to increase of Cr(VI) content, while no chromium containing crystalline phase was detected.

  19. The removal of cyanobacteria and their metabolites through anoxic biodegradation in drinking water sludge.

    PubMed

    Ma, Guangxiang; Pei, Haiyan; Hu, Wenrong; Xu, Xiangchao; Ma, Chunxia; Li, Xiuqing

    2014-08-01

    The effects of environmental factors on cyanobacteria damage and microcystin-LR degradation in drinking water sludge were investigated under anoxic conditions. The rates of microcystin-LR release and degradation increased rapidly with the increasing temperature from 15°C to 40°C and the highest degradation rate of 99% was observed at 35°C within 10days. Compared to acidic conditions, microcystin-LR degraded more rapidly in weak alkali environments. In addition, the microbial community structures under different anoxic conditions were studied. The sequencing results showed that four phyla obtained from the DGGE profiles were as follows: Proteobacteria, Acidobacteria, Firmicutes and Cyanobacteria. Proteobacteria containing nine genera were the most common species. Pseudomonas, Methylosinus and Sphingomona all showed stronger activities and had significant increase as microcystin-LR degraded, so they should be responsible for the microcystin-LR degradation. This is the first report of Pseudomonas, Methylosinus and Sphingomonas as the microcystins-degrading microorganisms in anoxic drinking water sludge.

  20. The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization

    PubMed Central

    Ullah, Ghanim; Wei, Yina; Dahlem, Markus A; Wechselberger, Martin; Schiff, Steven J

    2015-01-01

    Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states. PMID:26273829

  1. Protistan grazing in a meromictic freshwater lake with anoxic bottom water.

    PubMed

    Oikonomou, Andreas; Pachiadaki, Maria; Stoeck, Thorsten

    2014-03-01

    Phagotrophic protists are an important mortality factor of prokaryotes in most aquatic habitats. However, no study has assessed protistan grazing as loss factor of bacterial biomass across the stratification gradient of a temperate freshwater meromictic lake. Protistan grazing effect was quantified in the mixolimnion, the transition zone, and the sulfidic anoxic monimolimnion of Lake Alatsee (Germany). Grazing experiments were performed using prey analogues from the natural prokaryotic assemblage. Daily grazing effect declined from the mixolimnion to the monimolimnion. Heterotrophic flagellates were phagotrophically active in all three water horizons and the main grazers in the monimolimnion. Pigmented flagellates accounted for 70% of total grazing in the mixolimnion and ciliates only for a small fraction of grazing in each depth. Prokaryotic biomass removal peaked in the interface, but protistan impact on the respective prokaryotic abundance was low. Grazing in the anoxic monimolimnion was negligible, with prokaryotic turnover rate being only 0.4% of standing stock. Our results support the assumption that protistan predation in anoxic waters is lower than in oxygenated ones and identify the interface as a microhabitat that supports high grazer biomass, pinpointing the importance of purple sulfur bacteria as carbon source for the upper mixolimnion and the bottom monimolimnion.

  2. Biological nutrient removal in a sequencing batch reactor operated as oxic/anoxic/extended-idle regime.

    PubMed

    Li, Xiao-ming; Chen, Hong-bo; Yang, Qi; Wang, Dong-bo; Luo, Kun; Zeng, Guang-ming

    2014-06-01

    Previous researches have demonstrated that biological phosphorus removal from wastewater could be induced by oxic/extended-idle (O/EI) regime. In this study, an anoxic period was introduced after the aeration to realize biological nutrient removal. High nitrite accumulation ratio and polyhydroxyalkanoates biosynthesis were obtained in the aeration and biological nutrient removal could be well achieved in oxic/anoxic/extended-idle (O/A/EI) regime for the wastewater used. In addition, nitrogen and phosphorus removal performance in O/A/EI regime was compared with that in conventional anaerobic/anoxic/aerobic (A(2)/O) and O/EI processes. The results showed that O/A/EI regime exhibited higher nitrogen and phosphorus removal than A(2)/O and O/EI processes. More ammonium oxidizing bacteria and polyphosphate accumulating organisms and less glycogen accumulating organisms containing in the biomass might be the principal reason for the better nitrogen and phosphorus removal in O/A/EI regime. Furthermore, biological nutrient removal with O/A/EI regime was demonstrated with municipal wastewater. The average TN, SOP and COD removal efficiencies were 93%, 95% and 87%, respectively.

  3. Anoxic Conditions Promote Species-Specific Mutualism between Gut Microbes In Silico

    PubMed Central

    Heinken, Almut

    2015-01-01

    The human gut is inhabited by thousands of microbial species, most of which are still uncharacterized. Gut microbes have adapted to each other's presence as well as to the host and engage in complex cross feeding. Constraint-based modeling has been successfully applied to predicting microbe-microbe interactions, such as commensalism, mutualism, and competition. Here, we apply a constraint-based approach to model pairwise interactions between 11 representative gut microbes. Microbe-microbe interactions were computationally modeled in conjunction with human small intestinal enterocytes, and the microbe pairs were subjected to three diets with various levels of carbohydrate, fat, and protein in normoxic or anoxic environments. Each microbe engaged in species-specific commensal, parasitic, mutualistic, or competitive interactions. For instance, Streptococcus thermophilus efficiently outcompeted microbes with which it was paired, in agreement with the domination of streptococci in the small intestinal microbiota. Under anoxic conditions, the probiotic organism Lactobacillus plantarum displayed mutualistic behavior toward six other species, which, surprisingly, were almost entirely abolished under normoxic conditions. This finding suggests that the anoxic conditions in the large intestine drive mutualistic cross feeding, leading to the evolvement of an ecosystem more complex than that of the small intestinal microbiota. Moreover, we predict that the presence of the small intestinal enterocyte induces competition over host-derived nutrients. The presented framework can readily be expanded to a larger gut microbial community. This modeling approach will be of great value for subsequent studies aiming to predict conditions favoring desirable microbes or suppressing pathogens. PMID:25841013

  4. Oxic and anoxic mineralization of simple carbon substrates in peat at low temperatures

    NASA Astrophysics Data System (ADS)

    Segura, Javier; Sparrman, Tobias; Nilsson, Mats; Schleucher, Jürgen; Öquist, Mats

    2016-04-01

    Northern peatlands store approximately one-quarter of the world's soil carbon and typically act as net carbon sinks. However a large fraction of the carbon fixed during the growing season can be emitted back to the atmosphere during winter as CO2 and CH4, despite low temperatures and frozen conditions, making low temperature biogeochemical processes crucial for the long-term net ecosystem carbon balance. However, the metabolic processes driving carbon mineralization under winter conditions are poorly understood and whether or not peat microbial communities can maintain metabolic activity at temperatures below freezing is uncertain. Here we present results from an incubation study aimed at elucidating the potential of peat microbial communities to mineralize simple carbon substrates to CO2 and CH4 at low temperatures. Peat samples from the acrotelm were amended with [13C]- glucose and incubated at -5 °C, -3 °C, +4 °C, and +9 °C under both oxic and anoxic conditions, and rates of CO2 and CH4 production were determined. In addition, incorporation of the labelled substrate into phospholipid fatty acids (PLFAs) were determined to account for microbial growth during mineralization and the metabolic partitioning between catabolic and anabolic activity. Biogenic [13C]-CO2 was produced from the added substrate in peat samples incubated both under oxic and anoxic conditions. Under oxic conditions the production rates were 3.5, 2.3, 0.3 and 0.07 mg CO2 g SOM-1day-1 at +9 °C, +4 °C, -3 °C and -5 °C, respectively, and corresponding rates for anoxic conditions were 1.1, 1.0, 0.03 and 0.01 mg CO2 g SOM-1day-1. Consequently the observed Q10 values of the temperature sensitivity under both oxic and anoxic conditions increased dramatically upon soil freezing. However, anoxic mineralization appears less sensitive to temperature as compared to when oxygen is present. Methane was also produced and detected across the range of the incubation temperatures in the anoxic

  5. Oxic and anoxic mineralization of simple carbon substrates in peat at low temperatures

    NASA Astrophysics Data System (ADS)

    Segura, Javier; Sparrman, Tobias; Nilsson, Mats; Schleucher, Jürgen; Öquist, Mats

    2016-04-01

    Northern peatlands store approximately one-quarter of the world's soil carbon and typically act as net carbon sinks. However a large fraction of the carbon fixed during the growing season can be emitted back to the atmosphere during winter as CO2 and CH4, despite low temperatures and frozen conditions, making low temperature biogeochemical processes crucial for the long-term net ecosystem carbon balance. However, the metabolic processes driving carbon mineralization under winter conditions are poorly understood and whether or not peat microbial communities can maintain metabolic activity at temperatures below freezing is uncertain. Here we present results from an incubation study aimed at elucidating the potential of peat microbial communities to mineralize simple carbon substrates to CO2 and CH4 at low temperatures. Peat samples from the acrotelm were amended with [13C]- glucose and incubated at -5 °C, -3 °C, +4 °C, and +9 °C under both oxic and anoxic conditions, and rates of CO2 and CH4 production were determined. In addition, incorporation of the labelled substrate into phospholipid fatty acids (PLFAs) were determined to account for microbial growth during mineralization and the metabolic partitioning between catabolic and anabolic activity. Biogenic [13C]-CO2 was produced from the added substrate in peat samples incubated both under oxic and anoxic conditions. Under oxic conditions the production rates were 3.5, 2.3, 0.3 and 0.07 mg CO2 g SOM‑1day‑1 at +9 °C, +4 °C, -3 °C and -5 °C, respectively, and corresponding rates for anoxic conditions were 1.1, 1.0, 0.03 and 0.01 mg CO2 g SOM‑1day‑1. Consequently the observed Q10 values of the temperature sensitivity under both oxic and anoxic conditions increased dramatically upon soil freezing. However, anoxic mineralization appears less sensitive to temperature as compared to when oxygen is present. Methane was also produced and detected across the range of the incubation temperatures in the anoxic

  6. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries

    NASA Astrophysics Data System (ADS)

    Wieczorek, A. S.; Hetz, S. A.; Kolb, S.

    2014-06-01

    Microbial degradation of chitin in soil substantially contributes to carbon cycling in terrestrial ecosystems. Chitin is globally the second most abundant biopolymer after cellulose and can be deacetylated to chitosan or can be hydrolyzed to N,N'-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities is unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, and carbon dioxide) and ammonia were detected, suggesting that butyric and propionic acid fermentation, along with ammonification, were likely responsible for anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of less than 50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions), genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions), and Planctomycetes (oxic conditions). Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions on community level.

  7. Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries

    NASA Astrophysics Data System (ADS)

    Wieczorek, A. S.; Hetz, S. A.; Kolb, S.

    2014-02-01

    Chitin is the second most abundant biopolymer in terrestrial ecosystems and is subject to microbial degradation. Chitin can be deacetylated to chitosan or can be hydrolyzed to N,N'-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities has previously been unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, carbon dioxide) and ammonia were detected, suggesting that butyric and propionic acid fermentation were along with ammonification likely responsible for apparent anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of >50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions), genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions), and Planctomycetes (oxic conditions). Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions at the level of the community.

  8. An anoxic, Fe(II)-rich, U-poor ocean 3.46 billion years ago

    NASA Astrophysics Data System (ADS)

    Li, Weiqiang; Czaja, Andrew D.; Van Kranendonk, Martin J.; Beard, Brian L.; Roden, Eric E.; Johnson, Clark M.

    2013-11-01

    The oxidation state of the atmosphere and oceans on the early Earth remains controversial. Although it is accepted by many workers that the Archean atmosphere and ocean were anoxic, hematite in the 3.46 billion-year-old (Ga) Marble Bar Chert (MBC) from Pilbara Craton, NW Australia has figured prominently in arguments that the Paleoarchean atmosphere and ocean was fully oxygenated. In this study, we report the Fe isotope compositions and U concentrations of the MBC, and show that the samples have extreme heavy Fe isotope enrichment, where δ56Fe values range between +1.5‰ and +2.6‰, the highest δ56Fe values for bulk samples yet reported. The high δ56Fe values of the MBC require very low levels of oxidation and, in addition, point to a Paleoarchean ocean that had high aqueous Fe(II) contents. A dispersion/reaction model indicates that O2 contents in the photic zone of the ocean were less than 10-3 μM, which suggests that the ocean was essentially anoxic. An independent test of anoxic conditions is provided by U-Th-Pb isotope systematics, which show that U contents in the Paleoarchean ocean were likely below 0.02 ppb, two orders-of-magnitude lower than the modern ocean. Collectively, the Fe and U data indicate a reduced, Fe(II)-rich, U-poor environment in the Archean oceans at 3.46 billion years ago. Given the evidence for photosynthetic communities provided by broadly coeval stromatolites, these results suggests that an important photosynthetic pathway in the Paleoarchean oceans may have been anoxygenic photosynthetic Fe(II) oxidation.

  9. [Construction and evaluation of an engineered bacterial strain for producing lipopeptide under anoxic conditions].

    PubMed

    Liang, Xiao-long; Zhao, Feng; Shi, Rong-jiu; Ban, Yun-he; Zhou, Ji-dong; Han, Si-qin; Zhang, Ying

    2015-08-01

    Biosurfactant-facilitated oil recovery is one of the most important aspects of microbial enhanced oil recovery (MEOR). However, the biosurfactant production by biosurfactant-producing microorganisms, most of which are aerobes, is severely suppressed due to the in-situ anoxic conditions within oil reservoirs. In this research, we successfully engineered a strain JD-3, which could grow rapidly and produce lipopeptide under anoxic conditions, by protoplast confusion using a Bacillus amyloliquefaciens strain BQ-2 which produces biosurfactant aerobically, and a facultative anaerobic Pseudomonas stutzeri strain DQ-1 as parent strains. The alignment of 16S rDNA sequence (99% similarity) and comparisons of cell colony morphology showed that fusant JD-3 was closer to the parental strain B. amyloliquefaciens BQ-2. The surface tension of culture broth of fusant JD-3, after 36-hour cultivation under anaerobic conditions, decreased from initially 63.0 to 32.5 mN · m(-1). The results of thin layer chromatography and infrared spectrum analysis demonstrated that the biosurfactant produced by JD-3 was lipopeptide. The surface-active lipopeptide had a low critical micelle concentration (CMC) of 90 mg · L(-1) and presented a good ability to emulsify various hydrocarbons such as crude oil, liquid paraffin, and kerosene. Strain JD-3 could utilize peptone as nitrogen source and sucrose, glucose, glycerin or other common organics as carbon sources for anaerobic lipopeptide synthesis. The subculture of fusant JD-3 showed a stable lipopeptide-producing ability even after ten serial passages. All these results indicated that fusant JD-3 holds a great potential to microbially enhance oil recovery under anoxic conditions. PMID:26685621

  10. Bacterial Adaptation of Respiration from Oxic to Microoxic and Anoxic Conditions: Redox Control

    PubMed Central

    Bueno, Emilio; Mesa, Socorro; Bedmar, Eulogio J.; Richardson, David J.

    2012-01-01

    Abstract Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments. Antioxid. Redox Signal. 16, 819–852. PMID:22098259

  11. Vivianite precipitation and phosphate sorption following iron reduction in anoxic soils.

    PubMed

    Heiberg, Lisa; Koch, Christian Bender; Kjaergaard, Charlotte; Jensen, Henning S; Hans Christian, B Hansen

    2012-01-01

    Phosphorus retention in lowland soils depends on redox conditions. The aim of this study was to evaluate how the Fe(III) reduction degree affects phosphate adsorption and precipitation. Two similarly P-saturated, ferric Fe-rich lowland soils, a sandy and a peat soil, were incubated under anaerobic conditions. Mössbauer spectroscopy demonstrated that Fe(III) in the sandy soil was present as goethite and phyllosilicates, whereas Fe(III) in the peat soil was mainly present as polynuclear, Fe-humic complexes. Following anoxic incubation, extensive formation of Fe(II) in the solids occurred. After 100 d, the Fe(II) production reached its maximum and 34% of the citrate-bicarbonate-dithionite extractable Fe (Fe(CBD)) was reduced to Fe(II) in the sandy soil. The peat soil showed a much faster reduction of Fe(III) and the maximum reduction of 89% of Fe(CBD) was reached after 200 d. Neoformation of a metavivianite/vivianite phase under anoxic conditions was identified by X-ray diffraction in the peat. The sandy soil exhibited small changes in the point of zero net sorption (EPC₀) and P(i) desorption with increasing Fe(III) reduction, whereas in the peat soil P desorption increased from 80 to 3100 μmol kg⁻¹ and EPC₀ increased from 1.7 to 83 μM, after 322 d of anoxic incubation. The fast Fe(III) reduction made the peat soils particularly vulnerable to changes in redox conditions. However, the precipitation of vivianite/metavivianite minerals may control soluble P(i) concentrations to between 2 and 3 μM in the long term if the soil is not disturbed.

  12. Redox processes in pore water of anoxic sediments with shallow gas.

    PubMed

    Ramírez-Pérez, A M; de Blas, E; García-Gil, S

    2015-12-15

    The Ría de Vigo (NW Spain) has a high organic matter content and high rates of sedimentation. The microbial degradation of this organic matter has led to shallow gas accumulations of methane, currently distributed all along the ría. These peculiar characteristics favor the development of anoxic conditions that can determine the dynamics of iron and manganese. In order to study the role played by iron and manganese in the processes that take place in anoxic sediments with shallow gas, four gravity cores were retrieved in anoxic sediments of the Ría de Vigo in November 2012. Methane was present in two of them, below 90cm in the inner zone and below 200cm, in the outer zone. Pore water was collected and analyzed for vertical profiles of pH, sulfide, sulfate, iron and manganese concentrations. Sulfate concentrations decreased with depth but never reached the minimum detection limit. High sulfide concentrations were measured in all cores. The highest sulfide concentrations were found in the inner zone with methane and the lowest were in the outer zone without methane. Concentrations of iron and manganese reached maximum values in the upper layers of the sediment, decreasing with depth, except in the outer zone without gas, where iron and manganese concentration increased strongly toward the bottom of the sediment. In areas with shallow gas iron reduction, sulfate reduction and methane production processes coexist, showing that the traditional redox cascade is highly simplified and suggesting that iron may be involved in a cryptic sulfur cycle and in the oxidation of methane. PMID:26312406

  13. Elevation of cytosolic calcium precedes anoxic gene expression in maize suspension-cultured cells.

    PubMed Central

    Subbaiah, C C; Bush, D S; Sachs, M M

    1994-01-01

    Based on pharmacological evidence, we previously proposed that intracellular Ca2+ mediates the perception of O2 deprivation in maize seedlings. Herein, using fluorescence imaging and photometry of Ca2+ in maize suspension-cultured cells, the proposal was further investigated. Two complementary approaches were taken: (1) real time analysis of anoxia-induced changes in cytosolic Ca2+ concentration ([Ca]i) and (2) experimental manipulation of [Ca]i and then assay of the resultant anoxia-specific responses. O2 depletion caused an immediate increase in [Ca2+]i, and this was reversible within a few seconds of reoxygenation. The [Ca]i elevation proceeded independent of extracellular Ca2+. The kinetics of the Ca2+ response showed that it occurred much earlier than any detectable changes in gene expression. Ruthenium red blocked the anoxic [Ca]i elevation and also the induction of adh1 (encoding alcohol dehydrogenase) and sh1 (encoding sucrose synthase) mRNA. Ca2+, when added along with ruthenium red, prevented the effects of the antagonist on the anoxic responses. Verapamil and bepridil failed to block the [Ca]i rise induced by anoxia and were equally ineffective on anoxic gene expression. Caffeine induced an elevation of [Ca]i as well as ADH activity under normoxia. The data provide direct evidence for [Ca]i elevation in maize cells as a result of anoxia-induced mobilization of Ca2+ from intracellular stores. Furthermore, any manipulation that modified the [Ca]i rise brought about a parallel change in the expression of two anoxia-inducible genes. Thus, these results corroborate our proposal that [Ca]i is a physiological transducer of anoxia signals in plants. PMID:7866021

  14. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event

    NASA Astrophysics Data System (ADS)

    Gill, Benjamin C.; Lyons, Timothy W.; Jenkyns, Hugh C.

    2011-12-01

    The Mesozoic Era was punctuated by intervals of widespread anoxia within the ocean, termed oceanic anoxic events or OAEs. The chemostratigraphy of these intervals also contains evidence of transient perturbations to many biogeochemically important elemental cycles. Here we present high-resolution sulfur isotope data from three stratigraphic sections spanning the Toarcian Oceanic Anoxic Event (T-OAE) of the Early Jurassic. All sections show a similar increase in the sulfur isotope ratio of sulfate parallel to an overall positive excursion in carbon isotopes during the OAE interval. Based on forward box modeling, the sulfate-S isotope excursion can be generated by transiently increasing the burial rate of pyrite in marine sediments likely deposited under euxinic (i.e., anoxic and sulfidic) conditions in the water column. In addition, modeling shows that prolonged recovery of the δ 34S of seawater sulfate—at least 8 Ma after the initial rise associated with the OAE—was due to the relatively long residence time of sulfate in the Jurassic ocean; estimates from our modeling put the Toarcian marine sulfate concentrations at 4 to 8 mM. The similarity of the sulfur isotope records from the North European epicontinental (or epeiric) sea and Tethyan continental margin suggests that local modification of the marine sulfur isotope signal was minimal: a point explored with isotope mixing models. Importantly, our results indicate that the sulfur isotope excursion reflects a globally significant perturbation in the sulfur cycle and that pyrite burial in the North European Epeiric Seaway alone cannot account for the excursion. This study, along with recent work from other Phanerozoic intervals of widespread marine oxygen deficiency, confirms that the sulfur cycle can be perturbed significantly by enhanced pyrite burial during periods of prolonged oceanic anoxia/euxinia.

  15. Cardiac pacing for severe childhood neurally mediated syncope with reflex anoxic seizures

    PubMed Central

    McLeod, K; Wilson, N; Hewitt, J; Norrie, J; Stephenson, J

    1999-01-01

    OBJECTIVE—To determine whether permanent cardiac pacing could prevent syncope and seizures in children with frequent severe neurally mediated syncope, and if so whether dual chamber pacing was superior to single chamber ventricular pacing.
METHODS—Dual chamber pacemakers were implanted into 12 children (eight male, four female) aged 2-14 years (median 2.8 years) with frequent episodes of reflex anoxic seizures and a recorded prolonged asystole during an attack. The pacemaker was programmed to sensing only (ODO), single chamber ventricular pacing with hysteresis (VVI), and dual chamber pacing with rate drop response (DDD) for four month periods, with each patient allocated to one of the six possible sequences of these modes, according to chronological order of pacemaker implantation. The parent and patient were blinded to the pacemaker mode and asked to record all episodes of syncope or presyncope ("near miss" events). The doctor analysing the results was blinded to the patient and pacemaker mode.
RESULTS—One patient was withdrawn from the study after the pacemaker was removed because of infection. In the remaining children, both dual chamber and single chamber pacing significantly reduced the number of syncopal episodes compared with sensing only (p = 0.0078 for both). VVI was as effective as DDD for preventing syncope, but DDD was superior to VVI in reducing near miss events (p = 0.016).
CONCLUSIONS—Permanent pacing is an effective treatment for children with severe neurally mediated syncope and reflex anoxic seizures. VVI is as effective as DDD in preventing syncope and seizures, but DDD is superior in preventing overall symptoms.


Keywords: syncope; reflex anoxic seizures; pacing; paediatric cardiology PMID:10573501

  16. Anoxic carbon degradation in Arctic sediments: Microbial transformations of complex substrates

    NASA Astrophysics Data System (ADS)

    Arnosti, C.; Finke, N.; Larsen, O.; Ghobrial, S.

    2005-05-01

    Complex substrates are degraded in anoxic sediments by the concerted activities of diverse microbial communities. To explore the effects of substrate complexity on carbon transformations in permanently cold anoxic sediments, four substrates— Spirulina cells, Isochrysis cells, and soluble high molecular weight carbohydrate-rich extracts of these cells (Spir-Ex and Iso-Ex)—were added to sediments collected from Svalbard. The sediments were homogenized, incubated anaerobically in gas-tight bags at 0°C, and enzyme activities, fermentation, and terminal respiration were monitored over a 1134 h time course. All substrate additions yielded a fraction (8%-13%) of carbon that was metabolized to CO 2 over the first 384 h of incubation. The timecourse of VFA (volatile fatty acid) production and consumption, as well as the suite of VFAs produced, was similar for all substrates. After this phase, pathways of carbon degradation diverged, with an additional 43%, 32%, 33%, and 8% of Isochrysis, Iso-Ex, Spirulina, and Spir-Ex carbon respired to CO 2 over the next 750 h of incubation. Somewhat surprisingly, the soluble, carbohydrate-rich extracts did not prove to be more labile substrates than the whole cells from which they were derived. Although Spirulina and Iso-Ex differed in physical and chemical characteristics (solid/soluble, C/N ratio, lipid and carbohydrate content), nearly identical quantities of carbon were respired to CO 2. In contrast, only 15% of Spir-Ex carbon was respired, despite the initial burst of activity that it fueled, its soluble nature, and its relatively high (50%) carbohydrate content. The microbial community in these cold anoxic sediments clearly has the capacity to react rapidly to carbon input; extent and timecourse of remineralization of added carbon is similar to observations made at much higher temperatures in temperate sediments. The extent of carbon remineralization from these specific substrates, however, would not likely have been predicted

  17. PROGRESSIVE VENTILATION OF THE OCEANS - POTENTIAL FOR RETURN TO ANOXIC CONDITIONS IN THE POST-PALEOZOIC

    SciTech Connect

    Wilde, Pat; Berry, William B.N.

    1980-09-01

    After the ventilation of the residual anoxic layer in the late Paleozoic (Berry and Wilde, 1978) a return to ephemeral anoxic conditions in the ocean is suggested by anoxic sediments found in the Mesozoic cores of the deep-sea drilling program (Schlanger and Jenkyns 1977, and Theide and Van Andel 1977). A preliminary physical oceanographic model is presented to explain the development of oxygen depleted layers in mid-waters below the surface wind-mixed layer during non-glacial climates. The model shows the range of temperature, salinity and density values for hypothetical water masses for two climatically related oceanographic situations: Case A where bottom waters are formed at mid-latitudes at the surface salinity maxima, and Case B where bottom waters are produced at high latitudes but not by sea-ice formation as in the modern ocean. The hypothetical water masses are characterized by examples from the modern ocean and extrapolation to non-glacial times is made by eliminating water masses produced by or influenced by sea-ice formation in modern glacial times. The state of oxidation is made by plotting the model water masses on an oxygen saturation diagram and comparing the relative oxygen capacity with modern conditions of zonal organic productivity. The model indicates for Case A (high latitude temperatures above 5°C) two oxygen, depleted layers in the equatorial regions (1) from about 200m to the depth of completed oxidation of surface material separated by an oxygenated zone to (2) a deep depleted zone along the base of the pycnocline at 2900 M. The deep depleted zone extends along the Case A pycnocline polarward toward the high latitude productivity maximum. For case B with a pycnocline at about 1500m the deep anoxic layer is not sustained. Considerations of density only, suggest that neutral stratification and the potential for overturn is enhanced for climates transitional between Case A and Case B where the density contrast between major water masses

  18. Jellyfish Lake, Palau: early diagenesis of organic matter in sediments of an anoxic marine lake

    USGS Publications Warehouse

    Orem, W.H.; Burnett, W.C.; Landing, W.M.; Lyons, W.B.; Showers, W.

    1991-01-01

    The major postdepositional change in the sedimentary organic matter is carbohydrate biodegradation. Lignin and aliphatic substances are preserved in the sediments. Dissolved organic matter in pore waters is primarily composed of carbohydrates, reflecting the degradation of sedimentary carbohydrates. Rate constants for organic carbon degradation and sulfate reduction in sediments of the lake are about 10?? lower than in other anoxic sediments. This may reflect the vascular plant source and partly degraded nature of the organic matter reaching the sediments of the lake. -from Authors

  19. Arsenic in an Alkaline AMD Treatment Sludge: Characterization and Stability Under Prolonged Anoxic Conditions

    SciTech Connect

    Beauchemin, S.; Fiset, J; Poirier, G; Ablett, J

    2010-01-01

    Lime treatment of acid mine drainage (AMD) generates large volumes of neutralization sludge that are often stored under water covers. The sludge consists mainly of calcite, gypsum and a widespread ferrihydrite-like Fe phase with several associated species of metal(loid) contaminants. The long-term stability of metal(loid)s in this chemically ill-defined material remains unknown. In this study, the stability and speciation of As in AMD sludge subjected to prolonged anoxic conditions is determined. The total As concentration in the sludge is 300 mg kg{sup -1}. In the laboratory, three distinct water cover treatments were imposed on the sludge to induce different redox conditions (100%N{sub 2}, 100%N{sub 2} + glucose, 95%N{sub 2}:5%H{sub 2}). These treatments were compared against a control of oxidized, water-saturated sludge. Electron micro-probe (EMP) analysis and spatially resolved synchrotron X-ray fluorescence (SXRF) results indicate that As is dominantly associated with Fe in the sludge. In all treatments and throughout the experiment, measured concentrations of dissolved As were less than 5 {micro}g L{sup -1}. Dissolved Mn concentration in the N{sub 2} + glucose treatment increased significantly compared to other treatments. Manganese and As K-edge X-ray absorption near edge structure spectroscopy (XANES) analyses showed that Mn was the redox-active element in the solid-phase, while As was stable. Arsenic(V) was still the dominant species in all water-covered sludges after 9 months of anoxic treatments. In contrast, Mn(IV) in the original sludge was partially reduced into Mn(II) in all water-covered sludges. The effect was most pronounced in the N{sub 2} + glucose treatment, suggesting microbial reduction. Micro-scale SXRF and XANES analysis of the treated sludge showed that Mn(II) accumulated in areas already enriched in Fe and As. Overall, the study shows that AMD sludges remain stable under prolonged anoxic conditions. External sources of chemical reductants

  20. Evaluation of metal partitioning and mobility in a sulfidic mine tailing pile under oxic and anoxic conditions.

    PubMed

    Pinto, Patricio X; Al-Abed, Souhail R; Holder, Christopher; Reisman, David J

    2014-07-01

    Mining-influenced water emanating from mine tailings and potentially contaminating surface water and groundwater is one of the most important environmental issues linked to the mining industry. In this study, two subsets of Callahan Mine tailings (mainly comprised of silicates, sulfides, and carbonates) were collected using sealed containers, which allowed keeping the samples under anoxic conditions during transportation and storage. Among the potential contaminants, in spite of high concentrations of Cu, Mn, Pb, and Zn present in the solid mine tailings, only small amounts of Mn and Zn were found in the overlying pore water. The samples were subjected to leaching tests at different reduction-oxidation (redox) conditions to compare metal and S mobilization under oxic and anoxic conditions. It was observed that Cd, Cu, Mn, Pb, S, and Zn were mobilized at higher rates under oxic conditions, while Fe was mobilized at a higher rate under anoxic conditions in comparable constant pH experiments. These results suggest that metal mobilization is significantly impacted by redox conditions. When anoxic metal mobilization assessment is required, it is recommended to always maintain anoxic conditions because oxygen exposure may affect metal mobilization. A sequential extraction performed under oxic conditions revealed that most of the metals in the samples were associated with the sulfidic fraction and that the labile fraction was associated with Mn and moderate amounts of Pb and Zn.

  1. Is the Coniacian-Santonian OAE3 a real and global anoxic event ? Insights from Spain, Texas and Egypt

    NASA Astrophysics Data System (ADS)

    Bomou, Brahimsamba; Adatte, Thierry; De Kaenel, Eric; Spangenberg, Jorge; Gertsch, Brian; Föllmi, Karl B.

    2013-04-01

    Several oceanic anoxic episodes (OAE) occurred on a worldwide scale throughout the Cretaceous. They are defined by the widespread accumulation of laminated organic-rich sediments and coincide with a positive excursion in δ13C. The Coniacian-Santonian OAE (= OAE3) is less well known and appears less expressed than the early Aptian and latest Cenomanian OAEs. This OAE appears not to be truly important on a global scale but was more dependent on local or regional conditions, as suggested by the paleogeographic distribution of organic-rich sediments. These are mainly restricted to the equatorial and South Atlantic basins and the Western Interior Seaway, and therein mostly to shallow-water settings and epicontinental seas. The mechanisms and paleoenvironmental conditions leading to and through OAE3 are poorly known, particularly with regards to the marine phosphorus cycle and changes therein, and to the climate conditions in general. Specifically, in our study, we focus on bulk and clay mineralogy, phosphorus, carbon isotopes, high-resolution biostratigraphy, and changes in climate and primary productivity. Several sections from different paleogeographic areas at different paleodepths were studied. Two sections were investigated, are candidates for the global boundary stratotype section and point (GSSP), Olazagutia (NW Spain) and Ten Mile Creek-Arbor Park (Texas, USA); an additional section was analysed in Gabal Ekma (Sinai, Egypt), which exhibits several layers enriched in organic matter associated with extensive bonebeds. In the Olazagutia section, the inoceramid Platyceramus undulatoplicatus, which marks the base of Santonian, occurs well above the Coniacian-Santonian boundary indicated by nannofossil biostratigraphy, and its first occurrence appears to have been environmentally controlled. In Texas, several bentonite layers have been recognized just above the proposed Coniacian-Santonian boundary, which may provide a more accurate age. Based on a weathering index

  2. Multi-proxy study of Ocean Anoxic Event 2 (Cenomanian-Turonian) yields new perspective on the drivers for Mesozoic anoxic events

    NASA Astrophysics Data System (ADS)

    Sageman, B. B.; Hurtgen, M.; Jacobson, A. D.; Selby, D. S.

    2015-12-01

    Mesozoic ocean anoxic events have long been a focus of intense study because they appear to reflect a large-scale oscillation of the marine redox state from oxic to anoxic, and at least locally sulfidic. The consensus view on the cause of these events has changed over the past 39 years, since they were first defined. A global net increase in primary production is now widely accepted as the key driver, and the evidence for a volcanic trigger of this process is strong. However, the exact pathway from volcanism to OAE is less certain. Some authors favor the direct role of a massive load of reduced compounds in LIP hydrothermal fluxes for consuming available marine oxygen. Others prefer the indirect pathway of oxygen consumption by enhanced organic matter flux, which requires a major increase in nutrient budgets. Metallic micronutrients in the hydrothermal fluxes have been hypothesized, as have increases in riverine phosphorus fluxes due to enhanced weathering that would result from volcanic CO2 driven warming. Our recent work on the OAE2 interval has led to some new ideas about these hypothesized drivers. In particular, refinement of the Late Cenomanian time scale, and comparison of the geochemical records of d13C, d34S, Osi, P phases, and d44Ca between selected sections in North America and Europe has suggested the following sequence of events: 1) Osi data indicate that the onset of a major volcanic event precedes the positive shift in C-isotopes by at least 40 to possibly 180 kyr; 2) a positive shift in d44Ca data interpreted to indicate ocean acidification is coincident with the volcanic event; 3) the positive shift in C-isotopes is interpreted to reflect the accumulated burial of marine organic matter sufficient to shift the C-reservoir to heavier values; thus, our data suggest that up to 180 kyr was required for the shift in nutrient supply, productivity increase, and organic matter burial. Two mechanisms that conceivably match the lagged character of the event

  3. Evolutionary and geologic consequences of organic carbon fixing in the primitive anoxic ocean

    NASA Astrophysics Data System (ADS)

    Berry, W. B. N.; Wilde, P.

    1983-03-01

    Steps leading to development of the modern photic-based marine food web are postulated as the result of modifications of the environment, enhanced by the activity of Archean sulfur chemoautotrophs. Such organisms (Anoxium) evolved in an anoxic ocean prior to 3.9 × 109 yr ago at Archean analogs of modern oceanic hydrothermal vents. At this time geothermal energy was more readily available to organisms than photic energy, given atmospheric conditions at the surface similar to Venus, where intensity is low and only middle and red visible wavelengths penetrate the cloudy CO2-rich atmosphere. Competition for the reduced sulfur developed due to oxidation and loss of sulfur to sediments. Consequently, evolutionary advantage shifted to Anoxium isolates that could use alternate energy sources such as light to supplement the diminished supplies of reduced sulfur. Initially, photo-sulfur organisms evolved similar to modern purple bacteria that absorb in the red visible spectra. Subsequent carbon fixing and oxidation improved both the quantity and range of light reaching the ocean surface. This permitted absorption in the blue visible range so that water splitting was now feasible, releasing free oxygen and accelerating oxidation. Eventually, reducing environments became restricted, completing the shift in the principal marine carbon-fixing activity from anoxic chemoautotrophic to aerobic photosynthetic organisms.

  4. Perils of categorical thinking: "Oxic/anoxic" conceptual model in environmental remediation

    USGS Publications Warehouse

    Bradley, Paul M.

    2012-01-01

    Given ambient atmospheric oxygen concentrations of about 21 percent (by volume), the lower limit for reliable quantitation of dissolved oxygen concentrations in groundwater samples is in the range of 0.1–0.5 mg/L. Frameworks for assessing in situ redox condition are often applied using a simple two-category (oxic/anoxic) model of oxygen condition. The "oxic" category defines the environmental range in which dissolved oxygen concentrations are clearly expected to impact contaminant biodegradation, either by supporting aerobic biodegradation of electron-donor contaminants like petroleum hydrocarbons or by inhibiting anaerobic biodegradation of electron-acceptor contaminants like chloroethenes. The tendency to label the second category "anoxic" leads to an invalid assumption that oxygen is insignificant when, in fact, the dissolved oxygen concentration is less than detection but otherwise unknown. Expressing dissolved oxygen concentrations as numbers of molecules per volume, dissolved oxygen concentrations that fall below the 0.1 mg/L field detection limit range from 1 to 1017 molecules/L. In light of recent demonstrations of substantial oxygen-linked biodegradation of chloroethene contaminants at dissolved oxygen concentrations well below the 0.1–0.5 mg/L field detection limit, characterizing "less than detection" oxygen concentrations as "insignificant" is invalid.

  5. Anoxic Oxidation of Arsenite Linked to Denitrification in Sludges and Sediments

    PubMed Central

    Sun, Wenjie; Sierra, Reyes; Field, Jim A.

    2008-01-01

    In this study, denitrification linked to the oxidation of arsenite (As(III)) to arsenate (As(V)) was shown to be a widespread microbial activity in anaerobic sludge and sediment samples that were not previously exposed to arsenic contamination. When incubated with 0.5 mM As(III) and 10 mM NO3−, the anoxic oxidation of As(III) commenced within a few days, achieving specific activities of up to 1.24 mmol As(V) formed g−1 volatile suspended solids d−1 due to growth (doubling times of 0.74 to 1.4 d). The anoxic oxidation of As(III) was partially to completely inhibited by 1.5 and 5 mM As(III), respectively. Inhibition was minimized by adding As(III) adsorbed onto activated aluminum (AA). The oxidation of As(III) was shown to be linked to the complete denitrification of NO3− to N2 by demonstrating a significantly enhanced production of N2 beyond the background endogenous production as a result of adding As(III)-AA to the cultures. The N2 production corresponded closely the expected stoichiometry of the reaction, 2.5 mol As(III) mol−1 N2-N. The oxidation of As(III) linked to the use of common occuring nitrate as an electron acceptor may be an important missing link in the biogeochemical cycling of arsenic. PMID:18762312

  6. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments

    USGS Publications Warehouse

    Oremland, R.S.; Marsh, L.M.; Polcin, S.

    1982-01-01

    It has been generally believed that sulphate reduction precludes methane generation during diagenesis of anoxic sediments1,2. Because most biogenic methane formed in nature is thought to derive either from acetate cleavage or by hydrogen reduction of carbon dioxide3-6, the removal of these compounds by the energetically more efficient sulphate-reducing bacteria can impose a substrate limitation on methanogenic bacteria 7-9. However, two known species of methanogens, Methanosarcina barkeri and Methanococcus mazei, can grow on and produce methane from methanol and methylated amines10-13. In addition, these compounds stimulate methane production by bacterial enrichments from the rumen11,14 and aquatic muds13,14. Methanol can enter anaerobic food webs through bacterial degradation of lignins15 or pectin16, and methylated amines can be produced either from decomposition of substances like choline, creatine and betaine13,14 or by bacterial reduction of trimethylamine oxide17, a common metabolite and excretory product of marine animals. However, the relative importance of methanol and methylated amines as precursors of methane in sediments has not been previously examined. We now report that methanol and trimethylamine are important substrates for methanogenic bacteria in salt marsh sediments and that these compounds may account for the bulk of methane produced therein. Furthermore, because these compounds do not stimulate sulphate reduction, methanogenesis and sulphate reduction can operate concurrently in sulphate-containing anoxic sediments. ?? 1982 Nature Publishing Group.

  7. Enhancing the intrinsic bioremediation of PAH-contaminated anoxic estuarine sediments with biostimulating agents.

    PubMed

    Bach, Quang-Dung; Kim, Sang-Jin; Choi, Sung-Chan; Oh, Young-Sook

    2005-08-01

    Estuarine sediments are frequently polluted with hydrocarbons from fuel spills and industrial wastes. Polycyclic aromatic hydrocarbons (PAHs) are components of these contaminants that tend to accumulate in the sediment due to their low aqueous solubility, low volatility, and high affinity for particulate matter. The toxic, recalcitrant, mutagenic, and carcinogenic nature of these compounds may require aggressive treatment to remediate polluted sites effectively. In petroleum-contaminated sediments near a petrochemical industry in Gwangyang Bay, Korea, in situ PAH concentrations ranged from 10 to 2,900 microg/kg dry sediment. To enhance the biodegradation rate of PAHs under anaerobic conditions, sediment samples were amended with biostimulating agents alone or in combination: nitrogen and phosphorus in the form of slow-release fertilizer (SRF), lactate, yeast extract (YE), and Tween 80. When added to the sediment individually, all tested agents enhanced the degradation of PAHs, including naphthalene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo[a]pyrene. Moreover, the combination of SRF, Tween 80, and lactate increased the PAH degradation rate 1.2-8.2 times above that of untreated sediment (0.01-10 microg PAH/kg dry sediment/day). Our results indicated that in situ contaminant PAHs in anoxic sediment, including high molecular weight PAHs, were degraded biologically and that the addition of stimulators increased the biodegradation potential of the intrinsic microbial populations. Our results will contribute to the development of new strategies for in situ treatment of PAH-contaminated anoxic sediments.

  8. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions

    PubMed Central

    Angel, Roey; Claus, Peter; Conrad, Ralf

    2012-01-01

    The prototypical representatives of the Euryarchaeota—the methanogens—are oxygen sensitive and are thought to occur only in highly reduced, anoxic environments. However, we found methanogens of the genera Methanosarcina and Methanocella to be present in many types of upland soils (including dryland soils) sampled globally. These methanogens could be readily activated by incubating the soils as slurry under anoxic conditions, as seen by rapid methane production within a few weeks, without any additional carbon source. Analysis of the archaeal 16S ribosomal RNA gene community profile in the incubated samples through terminal restriction fragment length polymorphism and quantification through quantitative PCR indicated dominance of Methanosarcina, whose gene copy numbers also correlated with methane production rates. Analysis of the δ13C of the methane further supported this, as the dominant methanogenic pathway was in most cases aceticlastic, which Methanocella cannot perform. Sequences of the key methanogenic enzyme methyl coenzyme M reductase retrieved from the soil samples before incubation confirmed that Methanosarcina and Methanocella are the dominant methanogens, though some sequences of Methanobrevibacter and Methanobacterium were also detected. The global occurrence of only two active methanogenic archaea supports the hypothesis that these are autochthonous members of the upland soil biome and are well adapted to their environment. PMID:22071343

  9. Dominant eukaryotic export production during ocean anoxic events reflects the importance of recycled NH4+

    PubMed Central

    Higgins, Meytal B.; Robinson, Rebecca S.; Husson, Jonathan M.; Carter, Susan J.; Pearson, Ann

    2012-01-01

    The Mesozoic is marked by several widespread occurrences of intense organic matter burial. Sediments from the largest of these events, the Cenomanian–Turonian Oceanic Anoxic Event (OAE 2) are characterized by lower nitrogen isotope ratios than are seen in modern marine settings. It has remained a challenge to describe a nitrogen cycle that could achieve such isotopic depletion. Here we use nitrogen-isotope ratios of porphyrins to show that eukaryotes contributed the quantitative majority of export production throughout OAE 2, whereas cyanobacteria contributed on average approximately 20%. Such data require that any explanation for the OAE nitrogen cycle and its isotopic values be consistent with a eukaryote-dominated ecosystem. Our results agree with models that suggest the OAEs were high-productivity events, supported by vigorous upwelling. Upwelling of anoxic deep waters would have supplied reduced N species (i.e., ) to primary producers. We propose that new production during OAE 2 primarily was driven by direct -assimilation supplemented by diazotrophy, whereas chemocline denitrification and anammox quantitatively consumed and . A marine nitrogen reservoir dominated by , in combination with known kinetic isotope effects, could lead to eukaryotic biomass depleted in 15N. PMID:22315397

  10. Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets.

    PubMed

    Domagal-Goldman, Shawn D; Meadows, Victoria S; Claire, Mark W; Kasting, James F

    2011-06-01

    We used one-dimensional photochemical and radiative transfer models to study the potential of organic sulfur compounds (CS(2), OCS, CH(3)SH, CH(3)SCH(3), and CH(3)S(2)CH(3)) to act as remotely detectable biosignatures in anoxic exoplanetary atmospheres. Concentrations of organic sulfur gases were predicted for various biogenic sulfur fluxes into anoxic atmospheres and were found to increase with decreasing UV fluxes. Dimethyl sulfide (CH(3)SCH(3), or DMS) and dimethyl disulfide (CH(3)S(2)CH(3), or DMDS) concentrations could increase to remotely detectable levels, but only in cases of extremely low UV fluxes, which may occur in the habitable zone of an inactive M dwarf. The most detectable feature of organic sulfur gases is an indirect one that results from an increase in ethane (C(2)H(6)) over that which would be predicted based on the planet's methane (CH(4)) concentration. Thus, a characterization mission could detect these organic sulfur gases-and therefore the life that produces them-if it could sufficiently quantify the ethane and methane in the exoplanet's atmosphere. PMID:21663401

  11. Effects of extracellular polymeric substances on granulation of anoxic sludge in sequencing batch reactor.

    PubMed

    Wang, Binbin; Liu, Shunlian; Zhao, Hongmei; Zhang, Xinyan; Peng, Dangcong

    2012-01-01

    Variations of extracellular polymeric substances (EPS) and its components with sludge granulation were examined in a lab-scale sequencing batch reactor (SBR) which was fed with sodium nitrate and sodium acetate. Ultrasonication plus cation exchange resin (CER) were used as the EPS extraction method. Results showed that after approximately 90 d cultivation, the sludge in the reactor was almost granulated. The content of extracellular polysaccharides increased from 10.36 mg/g-VSS (volatile suspended solids) at start-up with flocculent sludge to 23.18 mg/g-VSS at 91 d with matured granular sludge, while the content of extracellular proteins were almost unchanged. Polysaccharides were the major components of EPS in anoxic granular sludge, accounting for about 70.6-79.0%, while proteins and DNA accounted for about 16.5-18.9% and 4.6-9.9%, respectively. It is proposed that EPS play a positive role in anoxic sludge granulation and polysaccharides might be strongly involved in aggregation of flocs into granules.

  12. Oxidation of dissolved elemental mercury by thiol compounds under anoxic conditions

    SciTech Connect

    Zheng, Wang; Lin, Hui; Mann, Benjamin F; Liang, Liyuan; Gu, Baohua

    2013-01-01

    Mercuric mercury, Hg(II), forms strong complexes with thiol compounds that commonly dominate Hg(II) speciation in natural freshwater. However, reactions between dissolved elemental Hg(0) and thiols are not well understood although these processes are likely to be important in determining Hg speciation and geochemical cycling in the environment. In this study, reaction rates and mechanisms between dissolved Hg(0) and a number of selected organic ligands with varying molecular structures and sulfur (S) oxidation states were determined to assess the role of these ligands in Hg(0) redox transformation. We found that all thiols caused oxidation of Hg(0) under anoxic conditions but, contrary to expectation, compounds with higher S-oxidation states (e.g., disulfide) than thiols exhibited little or no reactivity with Hg(0) at pH 7. The rate and extent of Hg(0) oxidation varied widely, with smaller aliphatic thiols showing the greatest degree of oxidation. The mechanism of the oxidation is attributed to a two-step process involving adsorption of Hg(0) to thiols followed by the charge transfer from Hg(0) to electron acceptors. These observations demonstrate a unique thiol-induced oxidation pathway of dissolved Hg(0), with important implications for the redox transformation, speciation, and bioavailability of Hg for microbial methylation in anoxic environments.

  13. Microbial diversity of an anoxic zone of a hydroelectric power station reservoir in Brazilian Amazonia.

    PubMed

    Graças, Diego A; Miranda, Paulo R; Baraúna, Rafael A; McCulloch, John A; Ghilardi, Rubens; Schneider, Maria Paula C; Silva, Artur

    2011-11-01

    Microbial diversity was evaluated in an anoxic zone of Tucuruí Hydroelectric Power Station reservoir in Brazilian Amazonia using a culture-independent approach by amplifying and sequencing fragments of the 16S rRNA gene using metagenomic DNA as a template. Samples obtained from the photic, aphotic (40 m) and sediment (60 m) layers were used to construct six 16S rDNA libraries containing a total of 1,152 clones. The sediment, aphotic and photic layers presented 64, 33 and 35 unique archaeal operational taxonomic units (OTUs). The estimated richness of these layers was evaluated to be 153, 106 and 79 archaeal OTUs, respectively, using the abundance-based coverage estimator (ACE) and 114, 83 and 77 OTUs using the Chao1 estimator. For bacterial sequences, 114, 69 and 57 OTUs were found in the sediment, aphotic and photic layers, which presented estimated richnesses of 1,414, 522 and 197 OTUs (ACE) and 1,059, 1,014 and 148 OTUs (Chao1), respectively. Phylogenetic analyses of the sequences obtained revealed a high richness of microorganisms which participate in the carbon cycle, namely, methanogenic archaea and methanotrophic proteobacteria. Most sequences obtained belong to non-culturable prokaryotes. The present study offers the first glimpse of the huge microbial diversity of an anoxic area of a man-made lacustrine environment in the tropics.

  14. Lenticulostriate arterial distribution pathology may underlie pediatric anoxic brain injury in drowning

    PubMed Central

    Ishaque, Mariam; Manning, Janessa H.; Woolsey, Mary D.; Franklin, Crystal G.; Tullis, Elizabeth W.; Fox, Peter T.

    2016-01-01

    Drowning is a leading cause of neurological morbidity and mortality in young children. Anoxic brain injury (ABI) can result from nonfatal drowning and typically entails substantial neurological impairment. The neuropathology of drowning-induced pediatric ABI is not well established. Specifically, quantitative characterization of the spatial extent and tissue distribution of anoxic damage in pediatric nonfatal drowning has not previously been reported but could clarify the underlying pathophysiological processes and inform clinical management. To this end, we used voxel-based morphometric (VBM) analyses to quantify the extent and spatial distribution of consistent, between-subject alterations in gray and white matter volume. Whole-brain, high-resolution T1-weighted MRI datasets were acquired in 11 children with chronic ABI and 11 age- and gender-matched neurotypical controls (4–12 years). Group-wise VBM analyses demonstrated predominantly central subcortical pathology in the ABI group in both gray matter (bilateral basal ganglia nuclei) and white matter (bilateral external and posterior internal capsules) (P < 0.001); minimal damage was found outside of these deep subcortical regions. These highly spatially convergent gray and white matter findings reflect the vascular distribution of perforating lenticulostriate arteries, an end-arterial watershed zone, and suggest that vascular distribution may be a more important determinant of tissue loss than oxygen metabolic rate in pediatric ABI. Further, these results inform future directions for diagnostic and therapeutic modalities. PMID:26937385

  15. Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets.

    PubMed

    Domagal-Goldman, Shawn D; Meadows, Victoria S; Claire, Mark W; Kasting, James F

    2011-06-01

    We used one-dimensional photochemical and radiative transfer models to study the potential of organic sulfur compounds (CS(2), OCS, CH(3)SH, CH(3)SCH(3), and CH(3)S(2)CH(3)) to act as remotely detectable biosignatures in anoxic exoplanetary atmospheres. Concentrations of organic sulfur gases were predicted for various biogenic sulfur fluxes into anoxic atmospheres and were found to increase with decreasing UV fluxes. Dimethyl sulfide (CH(3)SCH(3), or DMS) and dimethyl disulfide (CH(3)S(2)CH(3), or DMDS) concentrations could increase to remotely detectable levels, but only in cases of extremely low UV fluxes, which may occur in the habitable zone of an inactive M dwarf. The most detectable feature of organic sulfur gases is an indirect one that results from an increase in ethane (C(2)H(6)) over that which would be predicted based on the planet's methane (CH(4)) concentration. Thus, a characterization mission could detect these organic sulfur gases-and therefore the life that produces them-if it could sufficiently quantify the ethane and methane in the exoplanet's atmosphere.

  16. Effects of sludge retention time on oxic-settling-anoxic process performance: Biosolids reduction and dewatering properties.

    PubMed

    Semblante, Galilee U; Hai, Faisal I; Bustamante, Heriberto; Price, William E; Nghiem, Long D

    2016-10-01

    In this study, the effect of sludge retention time (SRT) on oxic-settling-anoxic (OSA) process was determined using a sequencing batch reactor (SBR) attached to external aerobic/anoxic reactors. The SRT of the external reactors was varied from 10 to 40d. Increasing SRT from 10 to 20d enhanced volatile solids destruction in the external anoxic reactor as evidenced by the release of nutrients, however, increasing the SRT to 40d did not enhance volatile solids destruction further. Relatively short SRT (10-20d) favoured the conversion of destroyed solids into inert products. The application of an intermediate SRT (20d) of the external reactor showed the highest sludge reduction performance (>35%). Moreover, at the optimum SRT, OSA improved sludge dewaterability as demonstrated by lower capillary suction time and higher dewatered cake solids content. PMID:27474952

  17. A comparative study of methanol as a supplementary carbon source for enhancing denitrification in primary and secondary anoxic zones.

    PubMed

    Ginige, Maneesha P; Bowyer, Jocelyn C; Foley, Leah; Keller, Jürg; Yuan, Zhiguo

    2009-04-01

    A comparative study on the use of methanol as a supplementary carbon source to enhance denitrification in primary and secondary anoxic zones is reported. Three lab-scale sequencing batch reactors (SBR) were operated to achieve nitrogen and carbon removal from domestic wastewater. Methanol was added to the primary anoxic period of the first SBR, and to the secondary anoxic period of the second SBR. No methanol was added to the third SBR, which served as a control. The extent of improvement on the denitrification performance was found to be dependent on the reactor configuration. Addition to the secondary anoxic period is more effective when very low effluent nitrate levels are to be achieved and hence requires a relatively large amount of methanol. Adding a small amount of methanol to the secondary anoxic period may cause nitrite accumulation, which does not improve overall nitrogen removal. In the latter case, methanol should be added to the primary anoxic period. The addition of methanol can also improve biological phosphorus removal by creating anaerobic conditions and increasing the availability of organic carbon in wastewater for polyphosphate accumulating organisms. This potentially provides a cost-effective approach to phosphorus removal from wastewater with a low carbon content. New fluorescence in situ hybridisation (FISH) probes targeting methanol-utilising denitrifiers were designed using stable isotope probing. Microbial structure analysis of the sludges using the new and existing FISH probes clearly showed that the addition of methanol stimulated the growth of specific methanol-utilizing denitrifiers, which improved the capability of sludge to use methanol and ethanol for denitrification, but reduced its capability to use wastewater COD for denitrification. Unlike acetate, long-term application of methanol has no negative impact on the settling properties of the sludge.

  18. Consequences of artificial deepwater ventilation in the Bornholm Basin for oxygen conditions, cod reproduction and benthic biomass - a model study

    NASA Astrophysics Data System (ADS)

    Stigebrandt, A.; Rosenberg, R.; Råman Vinnå, L.; Ödalen, M.

    2014-07-01

    We develop and use a circulation model to estimate hydrographical and ecological changes in the isolated basin water of the Bornholm Basin. By pumping well oxygenated so-called winter water, residing beneath the level of the summer thermocline, to the greatest depth of the basin, where it is forced to mix with the resident water, the rate of density reduction should increase and thereby the frequency of intrusions of new oxygen-rich deepwater. We show that pumping 1000 m3 s-1 should increase the rates of water exchange and oxygen supply by 2.5 and 3 times, respectively. The CRV (Cod Reproduction Volume), the volume of water in the isolated basin meeting the requirements for successful cod reproduction (S > 11, O2 > 2 mL L-1), should every year be greater than 54 km3, which is an immense improvement since it in certain years is currently much less. Anoxic bottoms should no longer occur in the basin and hypoxic events will become rare. This should permit extensive colonization of fauna on the earlier periodically anoxic bottoms. Increased biomass of benthic fauna should also mean increased food supply to economically valuable demersal fish like cod and flatfish. In addition, the bioturbation activity and re-oxygenation of the sediments should lead to increased phosphorus retention by the sediments.

  19. Why Oceanic Anoxic Events Terminated? Data and Speculations About the end of OAE1a.

    NASA Astrophysics Data System (ADS)

    Erba, E.

    2006-12-01

    After three decades of research on oceanic anoxic events (OAEs), an impressive amount of geo-data has generated models that try to explain the peculiar mid Cretaceous ocean/atmosphere system. Plausible causes of oceanic anoxia have been identified and somehow substantiated with geological data. Refined and improved chronology has allowed the dating of events that perhaps accidentally concurred to trigger and maintain oceanic anoxia for long time intervals. Based on the original definition, OAEs are intervals of abnormal primary productivity in surface seawaters and oxygen-depletion in bottom seawaters. There is a general consensus on the role of carbon dioxide increases, and implicit tectonic-igneous events, triggering a major climate change, responses of marine biota and restructuring of chemical and physical characteristics of the ocean. An improved understanding of processes at the onset and during OAEs has been achieved, but less attention has been paid to the termination of anoxia. The early Aptian OAE 1a is an extreme and long lasting perturbation of the Cretaceous. It is associated with geochemical anomalies and fundamental changes in marine and terrestrial ecosystems. The end of OAE1a was characterized in pelagic sections, allowing the identification, dating and quantification of paleonvironmental changes. Specifically, nannofossil assemblages were quantified to estimate biogenic calcite production and fluxes, and reconstruct the evolution of calcareous phytoplankton, relative to changes in planktonic communities and in the ocean/atmosphere composition. The restoration of oxygenated bottom waters correlates with a renewal of nannoplankton calcification and a short- lived but distinctive cooling episode. The end of anoxia appears to be abrupt and unambiguously anticipates the long-lasting C isotopic positive excursion that is detached from organic carbon-rich black shales in pelagic sequences. The sharp re-oxygenation might imply a major external cause and

  20. Metabolic Strategies in Energy-Limited Microbial Communities in the Anoxic Subsurface (Frasassi Cave System, Italy)

    NASA Astrophysics Data System (ADS)

    McCauley, R. L.; Jones, D. S.; Schaperdoth, I.; Steinberg, L.; Macalady, J. L.

    2010-12-01

    Two major sources of energy, light and chemical potential, are available to microorganisms. However, energy is not always abundant and is often a limiting factor in microbial survival and replication. The anoxic, terrestrial subsurface offers a unique opportunity to study microorganisms and their potentially novel metabolic strategies that are relevant for understanding biogeochemistry and biosignatures as related to the non-photosynthetic, energy-limited environments on the modern and ancient Earth and elsewhere in the solar system. Geochemical data collected in a remote stratified lake 600 m below ground surface in the sulfidic Frasassi cave system (Italy) suggest that little redox energy is available for life, consistent with low signal from domain-specific FISH probes. The carbon isotope signatures of biofilms (-33‰) and DIC (-9‰) in the anoxic water suggest in situ production by lithoautotrophs using RuBisCO. 16S rDNA libraries constructed from the biofilm are dominated by diverse sulfate reducing bacteria. The remaining bacterial and archaeal clones affiliate with more than 11 major uncultivated or novel prokaryotic lineages. Diverse dsrAB gene sequences are consistent with high sulfate concentrations and undetectable or extremely low oxygen, nitrate, and iron concentrations. However, the electron donor for sulfate reduction is unclear. Methane is detectable in the anoxic water although no 16S rDNA sequences associated with known methanogens or anaerobic methane oxidizers were retrieved. mcrA gene sequences retrieved from the biofilm by cloning are not related to cultivated methanogens or to known anaerobic methane oxidizers. Non-purgable organic carbon (NPOC) is below detection limits (i.e. <42 μM acetate) suggesting that alternative electron donors or novel metabolisms may be important. A sample collected by cave divers in October 2009 was pyrosequenced at the Pennsylvania State University Genomics Core Facility using Titanium chemistry (454 Life

  1. Proxies for Redox Conditions during early Aptian Ocean Anoxic Event 1a

    NASA Astrophysics Data System (ADS)

    Brassell, S. C.

    2012-04-01

    Reports of higher concentrations of biomarkers for photic zone anoxia, namely isorenieratane and chlorobactane, in sediments that correspond to warmer episodes during the Cenomanian-Turonian oceanic anoxic event (OAE2) prompts consideration of the potential association of ocean stratification and anoxia with enhanced temperatures during other Ocean Anoxic Events (OAE). Recognition of temperature variations based on the TEX86 proxy for a sediment sequence rich in organic matter from Shatsky Rise (ODP Site 1207) corresponding to OAE1a (early Aptian) affords the opportunity for such an investigation. Moreover, the 50 cm continuous section of this OAE1a interval that was recovered enabled sampling to examine detailed stratigraphic variations in the abundances and compositions of a range of geochemical characteristics, both molecular and elemental, including possible biological responses to temperature fluctuations and other palaeoenvironmental conditions, notably the levels of oxygenation of the depositional setting. The temperature-dependent variations in biomarkers and other geochemical proxies through the OAE1a interval included: (i) decreasing concentrations of 2-methylhopanes derived from cyanobacteria with increasing temperature, and (ii) fluctuations in V concentrations that reflect temperature trends, and correspond closely with organic C contents, except where Corg >30%. Among parameters linked to levels of oxygenation, the biomarker constituents in the OAE1a interval include steroidal and hopanoid ketones consistent with an oxygenated water column, but the sediments also contain traces of isorenieratane from green sulphur bacteria suggesting intermittent photic zone anoxia. Similarly, the observed values far exceeding unity for the lycopane index [(lycopane + n-C35)/n-C31] imply anoxic bottom waters, although the location of Shatsky Rise in the mid-Pacific during the Aptian may skew this ratio because of the paucity of biological sources for n-C31. In

  2. Oxygen as Intermediate in Anoxic Environments: Nitrite-Dependent Methane Oxidation and Beyond

    NASA Astrophysics Data System (ADS)

    Ettwig, K. F.

    2014-12-01

    In recent years the known diversity of hydrocarbon activation mechanisms under anaerobic conditions has been extended by intra-aerobic denitrification, a process in which oxygen is derived from NO and used for substrate activation. For two phylogenetically unrelated bacterial species, the freshwater NC10 phylum bacterium Methylomirabilis oxyfera [1] and the marine γ-proteobacterial strain HdN1 [2] it has been shown that, under anoxic conditions with nitrate and/or nitrite, mono-oxygenases are used for methane and hexadecane oxidation, respectively. No degradation was observed with nitrous oxide (N2O) only. In the anaerobic methanotroph M. oxyfera, which lacks apparent nitrous oxide reductase in its genome, substrate activation in the presence of nitrite was directly associated with both O2 and N2 formation. These findings strongly argue for the role of nitric oxide (NO), or an oxygen species derived from it, in the activation reaction of methane. Although intracellular oxygen generation has been experimentally documented and elegantly explains the utilization of 'aerobic' pathways under anoxic conditions, research about the underlying molecular mechanism has just started. The proposed candidate enzymes for oxygen (or possibly another another reactive intermediate) production from NO, an NO dismutase (NOD) [3], related to quinol-dependent NO reductases (qNORs), is present and highly expressed in both M. oxyfera and strain HdN1. Besides that, several recently sequenced species from the Cytophaga-Flavobacterium-Bacteroides group harbor Nod/Nor genes, but experimential evidence is needed to show if these have NOD activity, are unusual but functional qNORs, or represent transition states between the two. Additionally, for several anaerobic hydrocarbon-degrading organisms the biochemical mechanism of substrate activation has not been elucidated yet: whereas signature genes of anaerobic degradation are missing, monooxygenase genes are present. Also these microorganisms

  3. Testing microtaphofacies as an analytic tool for integrated facies and sedimentological analysis using Lower Miocene mixed carbonate/siliciclastic sediments from the North Alpine Foreland Basin

    NASA Astrophysics Data System (ADS)

    Nebelsick, James; Bieg, Ulrich

    2010-05-01

    Taphonomic studies have mostly concentrated on the investigation and quantification of isolated macroscopic faunal and floral elements. Carbonate rocks, in contrary to isolated macroscopic objects, have rarely been specifically addressed in terms of taphonomic features, although many aspects of microfacies analyses are directly related to the preservation of constituent biogenic components. There is thus a high potential for analyzing and quantifying taphonomic features in carbonate rocks (microtaphofacies), not the least as an additional tool for facies analysis. Analyzing the role of taphonomy in carbonate environments can be used to determine how different skeletal architectures through time and evolving synecological relationships (bioerosion and encrustation) have influence carbonate environments and their preservation in the rock record. This pilot study analyses the microtaphofacies of Lower Miocene, shallow water, mixed carbonate - siliciclastic environment from the North Alpine Foreland Basin (Molasse Sea) of southern Germany. The sediments range from biogenic bryomol carbonates to pure siliciclastics. This allows environmental interpretation to be made not only with respect to biogenic composition (dominated by bivalves, gastropods, bryozoans and barnacles), but also to siliciclastic grain characteristics and sedimentary features. Facies interpretation is relatively straight forward with a somewhat varied near shore facies distribution characterized dominated by carbonate which grade into higher energy, siliciclastic offshore sediments. Taphonomic features are assessed along this gradient with respect to total component composition as well as by following the trajectories of individual components types. The results are interpreted with respect to biogenic production, fragmentation, abrasion and transport.

  4. Optimization of the activated sludge anoxic reactor configuration as a means to control nutrient removal kinetically.

    PubMed

    Plósz, Benedek Gy

    2007-04-01

    Factors influencing the determination of optimum reactor configuration for activated sludge denitrification are investigated in this paper. A kinetic optimization method is presented to evaluate optimal pre- and post-denitrification bioreactor stages. Applying the method developed, simulation studies were carried out to investigate the impacts of the ratio of the influent readily biodegradable and slowly biodegradable substrates and the oxygen entering the denitrification zones on the optimal anoxic reactor configuration. In addition, the paper describes the effects of the slowly biodegradable substrate on the denitrification efficiency using external substrate dosing, and it demonstrates kinetic considerations concerning the hydrolysis process. It has been shown that as a function of the biodegradable substrate composition, the stage system design with three optimized reactor compartments can effectively increase reaction rates in the denitrification zones, and can provide flexibility for varying operation conditions. PMID:17321565

  5. Coming back to oneself: a case of anoxic brain damage from a phenomenological perspective.

    PubMed

    Fürst, Elisabeth L'orange

    2015-03-01

    Struck by a cardiac arrest that lasted 3/4 of an hour, a 53-year-old man suddenly collapsed one day at work. The result was a serious anoxic brain damage that developed into dementia. This essay presents the process of 'coming back to himself' while it questions what this concept might imply. The descriptions and analyses rest upon an ethnographic study of his life, at hospitals and then at home, assisted by his wife, who is also the author of this article. Theoretically, the analysis depends on Merleau-Ponty's phenomenology of perception and is also based on the therapeutic use of music in treating people with dementia championed by Oliver Sachs. It is argued that the field of medicine has much to learn from the anthropological method of long-term observation, as well as theories of embodiment that see the body as simultaneously being an object and a subject. PMID:25300711

  6. The carbon isotope biogeochemistry of methane production in anoxic sediments. 1: Field observations

    NASA Technical Reports Server (NTRS)

    Blair, Neal E.; Boehme, Susan E.; Carter, W. Dale, Jr.

    1993-01-01

    The natural abundance C-13/C-12 ratio of methane from anoxic marine and freshwater sediments in temperate climates varies seasonally. Carbon isotopic measurements of the methanogenic precursors, acetate and dissolved inorganic carbon, from the marine sediments of Cape Lookout Bight, North Carolina were used to determine the sources of the seasonal variations at that site. Movement of the methanogenic zone over an isotopic gradient within the dissolved CO2 pool appears to be the dominant control of the methane C-13/C-12 ratio from February to June. The onset of acetoclastic methane-production is a second important controlling process during mid-summer. An apparent temperature dependence on the fractionation factor for CO2-reduction may have a significant influence on the isotopic composition of methane throughout the year.

  7. Reduction of Biological Sludge Production Applying an Alternating Oxic/anoxic Process in Water Line.

    PubMed

    Eusebi, Anna Laura; Panigutti, Maximiliano; Battistoni, Paolo

    2016-06-01

    Alternating oxic/anoxic process, applied for the main objective of the improvement of nitrogen performances, was studied in terms of secondary effect of biomass reduction. The process was carried out in one real water resource recovery facility and the data were compared with the previous conventional period when a conventional process was adopted. The main mechanism of the process for the sludge minimization is recognized in the metabolic uncoupling. In fact, an increase of the specific oxygen uptake rate in the biological reactor was recorded stimulated by the change of the oxidation reduction potential environment. Moreover, the heterotrophic growth yield was measured equal to 0.385 kgVSS/kgCOD. The global percentage of reduction was tested with the mass balance of solids. The process is able to decrease the observed sludge yield up to 20%. The specific energy consumption was evaluated. PMID:27225780

  8. Degradation of selected halogenated ethanes in anoxic sediment-water systems

    SciTech Connect

    Jafvert, C.T.; Wolfe, N.L.

    1987-01-01

    The degradation of selected halogenated ethanes was studied in anoxic sediment-water suspensions at 1 to 20% sediment concentrations. Batch kinetic experiments were used to quantify decay. Eh measurements of all suspensions were below -100mV (vs SHE), indicating reduced environmental conditions. Hexachloroethane (HCA), 1,1,2,2-tetrachloroethane (TTCA), 1,2-diiodoethane (DIA) and 1,2-dibromoethane (DBA) were degraded within minutes to days, but 1,2-dichloroethane (DCA) remained in the system through 35 d, at which point the study was ended. The major route of transformation of these compounds in the system was vicinal dehalogenation. Rates of disappearance followed pseudo-first-order kinetics at low reactant concentrations and high sediment concentration.

  9. Genomic potential for nitrogen assimilation in uncultivated members of Prochlorococcus from an anoxic marine zone.

    PubMed

    Astorga-Eló, Marcia; Ramírez-Flandes, Salvador; DeLong, Edward F; Ulloa, Osvaldo

    2015-05-01

    Cyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic marine organisms and key factors in the global carbon cycle. The understanding of their distribution and ecological importance in oligotrophic tropical and subtropical waters, and their differentiation into distinct ecotypes, is based on genetic and physiological information from several isolates. Currently, all available Prochlorococcus genomes show their incapacity for nitrate utilization. However, environmental sequence data suggest that some uncultivated lineages may have acquired this capacity. Here we report that uncultivated low-light-adapted Prochlorococcus from the nutrient-rich, low-light, anoxic marine zone (AMZ) of the eastern tropical South Pacific have the genetic potential for nitrate uptake and assimilation. All genes involved in this trait were found syntenic with those present in marine Synechococcus. Genomic and phylogenetic analyses also suggest that these genes have not been aquired recently, but perhaps were retained from a common ancestor, highlighting the basal characteristics of the AMZ lineages within Prochlorococcus.

  10. Calcareous Nannoplankton Response to Surface-Water Acidification Around Oceanic Anoxic Event 1a

    NASA Astrophysics Data System (ADS)

    Erba, Elisabetta; Bottini, Cinzia; Weissert, Helmut J.; Keller, Christina E.

    2010-07-01

    Ocean acidification induced by atmospheric CO2 may be a major threat to marine ecosystems, particularly to calcareous nannoplankton. We show that, during the Aptian (~120 million years ago) Oceanic Anoxic Event 1a, which resulted from a massive addition of volcanic CO2, the morphological features of calcareous nannofossils traced the biological response to acidified surface waters. We observe the demise of heavily calcified nannoconids and reduced calcite paleofluxes at the beginning of a pre-anoxia calcification crisis. Ephemeral coccolith dwarfism and malformation represent species-specific adjustments to survive lower pH, whereas later, abundance peaks indicate intermittent alkalinity recovery. Deepwater acidification occurred with a delay of 25,000 to 30,000 years. After the dissolution climax, nannoplankton and carbonate recovery developed over ~160,000 years under persisting global dysoxia-anoxia.

  11. Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics

    PubMed Central

    Burow, Luke C; Woebken, Dagmar; Marshall, Ian PG; Lindquist, Erika A; Bebout, Brad M; Prufert-Bebout, Leslie; Hoehler, Tori M; Tringe, Susannah G; Pett-Ridge, Jennifer; Weber, Peter K; Spormann, Alfred M; Singer, Steven W

    2013-01-01

    Photosynthetic microbial mats possess extraordinary phylogenetic and functional diversity that makes linking specific pathways with individual microbial populations a daunting task. Close metabolic and spatial relationships between Cyanobacteria and Chloroflexi have previously been observed in diverse microbial mats. Here, we report that an expressed metabolic pathway for the anoxic catabolism of photosynthate involving Cyanobacteria and Chloroflexi in microbial mats can be reconstructed through metatranscriptomic sequencing of mats collected at Elkhorn Slough, Monterey Bay, CA, USA. In this reconstruction, Microcoleus spp., the most abundant cyanobacterial group in the mats, ferment photosynthate to organic acids, CO2 and H2 through multiple pathways, and an uncultivated lineage of the Chloroflexi take up these organic acids to store carbon as polyhydroxyalkanoates. The metabolic reconstruction is consistent with metabolite measurements and single cell microbial imaging with fluorescence in situ hybridization and NanoSIMS. PMID:23190731

  12. Characteristics of Biological Nitrogen Removal in a Multiple Anoxic and Aerobic Biological Nutrient Removal Process

    PubMed Central

    Wang, Huoqing; Guan, Yuntao; Li, Li; Wu, Guangxue

    2015-01-01

    Two sequencing batch reactors, one with the conventional anoxic and aerobic (AO) process and the other with the multiple AO process, were operated to examine characteristics of biological nitrogen removal, especially of the multiple AO process. The long-term operation showed that the total nitrogen removal percentage of the multiple AO reactor was 38.7% higher than that of the AO reactor. In the multiple AO reactor, at the initial SBR cycle stage, due to the occurrence of simultaneous nitrification and denitrification, no nitrite and/or nitrate were accumulated. In the multiple AO reactor, activities of nitrite oxidizing bacteria were inhibited due to the multiple AO operating mode applied, resulting in the partial nitrification. Denitrifiers in the multiple AO reactor mainly utilized internal organic carbon for denitrification, and their activities were lower than those of denitrifiers in the AO reactor utilizing external organic carbon. PMID:26491676

  13. Reduction of Biological Sludge Production Applying an Alternating Oxic/anoxic Process in Water Line.

    PubMed

    Eusebi, Anna Laura; Panigutti, Maximiliano; Battistoni, Paolo

    2016-06-01

    Alternating oxic/anoxic process, applied for the main objective of the improvement of nitrogen performances, was studied in terms of secondary effect of biomass reduction. The process was carried out in one real water resource recovery facility and the data were compared with the previous conventional period when a conventional process was adopted. The main mechanism of the process for the sludge minimization is recognized in the metabolic uncoupling. In fact, an increase of the specific oxygen uptake rate in the biological reactor was recorded stimulated by the change of the oxidation reduction potential environment. Moreover, the heterotrophic growth yield was measured equal to 0.385 kgVSS/kgCOD. The global percentage of reduction was tested with the mass balance of solids. The process is able to decrease the observed sludge yield up to 20%. The specific energy consumption was evaluated.

  14. Genomic potential for nitrogen assimilation in uncultivated members of Prochlorococcus from an anoxic marine zone

    PubMed Central

    Astorga-Eló, Marcia; Ramírez-Flandes, Salvador; DeLong, Edward F; Ulloa, Osvaldo

    2015-01-01

    Cyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic marine organisms and key factors in the global carbon cycle. The understanding of their distribution and ecological importance in oligotrophic tropical and subtropical waters, and their differentiation into distinct ecotypes, is based on genetic and physiological information from several isolates. Currently, all available Prochlorococcus genomes show their incapacity for nitrate utilization. However, environmental sequence data suggest that some uncultivated lineages may have acquired this capacity. Here we report that uncultivated low-light-adapted Prochlorococcus from the nutrient-rich, low-light, anoxic marine zone (AMZ) of the eastern tropical South Pacific have the genetic potential for nitrate uptake and assimilation. All genes involved in this trait were found syntenic with those present in marine Synechococcus. Genomic and phylogenetic analyses also suggest that these genes have not been aquired recently, but perhaps were retained from a common ancestor, highlighting the basal characteristics of the AMZ lineages within Prochlorococcus. PMID:25700337

  15. Superparamagnetic Fe3O4 particles formed by oxidation of pyrite heated in an anoxic atmosphere

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Talley, R.; Hetherington, S.; Dulong, F.

    1990-01-01

    As a follow-up to previous gas analysis experiments in which pyrite was heated to 681 K in an anoxic (oxygen starved) atmosphere, the first oxidation product, FeSO4, was studied as a bulk material. No decomposition of FeSO4 to Fe3O4 was observed in the temperature range studied. The lack of decomposition of bulk FeSO4 to Fe3O4 suggests that FeS2 oxidizes directly to Fe3O4, or that FeSO4, FeS2 and O2 react together to form Fe3O4. Magnetic susceptibility and magnetization measurements, along with magnetic hysteresis curves, show that small particles of Fe3O4 form on the pyrite surface, rather than a continuous layer of bulk Fe3O4. A working model describing the oxidation steps is presented. ?? 1990.

  16. [Modeling and dynamic simulation of the multimode anaerobic/anoxic/aerobic wastewater treatment process].

    PubMed

    Zhou, Zhen; Wu, Zhi-Chao; Wang, Zhi-Wei; Du, Xing-Zhi; Jiang, Ling-Yan; Xing, Can

    2013-04-01

    Mathematical modeling is a useful tool for professional education, process development, design evaluation, operational optimization and automatic control of the wastewater treatment system, and has been extensively applied in numerous full-scale wastewater treatment plants. The ASM2d model was calibrated by the process data, and used to simulate 15 operational test runs of the multimode anaerobic/anoxic/aerobic (AAO) process. After calibration, the model was capable of simulating the sludge concentrations and effluent data in 15 test runs of the multimode AAO system. The dynamic simulation results showed an overall good agreement between the measured and simulated data, for both effluent data and sludge concentrations, with a good reproduction of dynamic processes in AO test runs. PMID:23798127

  17. Methane production from bicarbonate and acetate in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Crill, P. M.; Martens, C. S.

    1986-01-01

    Methane production from C-14 labeled bicarbonate and acetate was measured over the top 28 cm of anoxic Cape Lookout Bight sediments during the summer of 1983. The depth distribution and magnitude of summed radioisotopically determined rates compare well with previous measurements of total methane production and the sediment-water methane flux. Methane production from CO2 reduction and acetate fermentation accounts for greater than 80 percent of the total production rate and sediment-water flux. Methane production from bicarbonate was found to occur in all depth intervals sampled except those in the top 2 cm, whereas significant methane production from acetate only occurred at depths below 10 cm where sulfate was exhausted. Acetate provided 20 to 29 percent of the measured methane production integrated over the top 30 cm of the sediments.

  18. Genomic potential for nitrogen assimilation in uncultivated members of Prochlorococcus from an anoxic marine zone.

    PubMed

    Astorga-Eló, Marcia; Ramírez-Flandes, Salvador; DeLong, Edward F; Ulloa, Osvaldo

    2015-05-01

    Cyanobacteria of the genus Prochlorococcus are the most abundant photosynthetic marine organisms and key factors in the global carbon cycle. The understanding of their distribution and ecological importance in oligotrophic tropical and subtropical waters, and their differentiation into distinct ecotypes, is based on genetic and physiological information from several isolates. Currently, all available Prochlorococcus genomes show their incapacity for nitrate utilization. However, environmental sequence data suggest that some uncultivated lineages may have acquired this capacity. Here we report that uncultivated low-light-adapted Prochlorococcus from the nutrient-rich, low-light, anoxic marine zone (AMZ) of the eastern tropical South Pacific have the genetic potential for nitrate uptake and assimilation. All genes involved in this trait were found syntenic with those present in marine Synechococcus. Genomic and phylogenetic analyses also suggest that these genes have not been aquired recently, but perhaps were retained from a common ancestor, highlighting the basal characteristics of the AMZ lineages within Prochlorococcus. PMID:25700337

  19. Rogoznica Lake (Croatia), a unique anoxic seawater system on the Adriatic coast under the anthropogenic pressures

    NASA Astrophysics Data System (ADS)

    Ciglenečki, Irena; Bura-Nakić, Elvira; Marguš, Marija; Čanković, Milan; Carić, Marina; Viličić, Damir; Ljubešić, Zrinka; Kršinić, Frano; Batistić, Mirna; Janeković, Ivica; Plavčić, Filip

    2014-05-01

    Rogoznica Lake is a typical example of euxinic saline lake, situated on the eastern Adriatic coast (43o32'N 15o58'E). It is a karstic depression filled with seawater, with an area of 10276 m2 and a maximum depth of 15m The lake has circular shape and is surrounded with sheer, karstic cliffs (4-23 m high), which completely protect the lake from the influence of the wind. During the year the lake is thermally, densely and chemically stratified into oxic and anoxic layers. The surface water is well oxygenated, while hypoxia/anoxia occurs in the bottom layer. The mixolimnion varies seasonally and it is greatly influenced by meteorological conditions (temperature, wind, rainfall) which also influence the water layer mixing. Vertical mixing usually occurs during autumn/winter when cold, oxygen-rich water from the surface sinks downwards. Depending on the intensity of the mixing process anoxic conditions in the entire water column could appear. At the boundary oxia-anoxia usually a pinky colored chemocline layer, cca 50 cm thick develops. Anoxic deep water is characterized by high concentrations of reduced sulfur compounds (RSS up to 1mM, mainly in the form of sulfide), and nutrients (NH4+, up to 150 μM; PO43-, up to 22 μM; SiO44-, up to 400 μM) as well as dissolved organic carbon (DOC up to 6 mg l-1) indicating the pronounced remineralization of allochthonous organic matter produced in the surface water The eutrophication of the lake is strongly influenced by nutrient recycling under anaerobic conditions. Due to the extreme ecological conditions which prevail in this lake, phyto- and zooplankton populations are represented by a relatively small number of species, some of them, however, in the populations denser than those in the surrounding sea. After the period of total anoxia appearance, the number of species and their abundance are significantly reduced in comparison with the pre-anoxia values. Diatoms were found to be the dominant microphytoplankton group while

  20. Microbial pathways for the mobilization of mercury as Hg(O) in anoxic subsurface environments

    SciTech Connect

    Barkay, Tamar

    2005-06-01

    The goal of our project which was initiated in June 2005 is focused on the presence of merA in microbial communities of anoxic environments and the effect of anaerobic respiratory pathways on MR expression and activities. The following progress has been made to date: PCR primers were designed to span the known phylogenetic range of merA genes of Gram-negative bacteria. In control experiments, these primers successfully amplified a 288 bp region at the 3? end of previously characterized merA genes from Shewanella putrefaciens pMERPH, Acidithiobacillus ferrooxidans, Pseudomonas stutzeri pPB, Tn5041, Pseudomonas sp. K-62, and Serratia marcescens pDU1358.

  1. Glial Hsp70 Protects K+ Homeostasis in the Drosophila Brain during Repetitive Anoxic Depolarization

    PubMed Central

    Armstrong, Gary A. B.; Xiao, Chengfeng; Krill, Jennifer L.; Seroude, Laurent; Dawson-Scully, Ken; Robertson, R. Meldrum

    2011-01-01

    Neural tissue is particularly vulnerable to metabolic stress and loss of ion homeostasis. Repetitive stress generally leads to more permanent dysfunction but the mechanisms underlying this progression are poorly understood. We investigated the effects of energetic compromise in Drosophila by targeting the Na+/K+-ATPase. Acute ouabain treatment of intact flies resulted in subsequent repetitive comas that led to death and were associated with transient loss of K+ homeostasis in the brain. Heat shock pre-conditioned flies were resistant to ouabain treatment. To control the timing of repeated loss of ion homeostasis we subjected flies to repetitive anoxia while recording extracellular [K+] in the brain. We show that targeted expression of the chaperone protein Hsp70 in glial cells delays a permanent loss of ion homeostasis associated with repetitive anoxic stress and suggest that this is a useful model for investigating molecular mechanisms of neuroprotection. PMID:22174942

  2. Anoxic carbon flux in photosynthetic microbial mats as revealed by metatranscriptomics.

    PubMed

    Burow, Luke C; Woebken, Dagmar; Marshall, Ian P G; Lindquist, Erika A; Bebout, Brad M; Prufert-Bebout, Leslie; Hoehler, Tori M; Tringe, Susannah G; Pett-Ridge, Jennifer; Weber, Peter K; Spormann, Alfred M; Singer, Steven W

    2013-04-01

    Photosynthetic microbial mats possess extraordinary phylogenetic and functional diversity that makes linking specific pathways with individual microbial populations a daunting task. Close metabolic and spatial relationships between Cyanobacteria and Chloroflexi have previously been observed in diverse microbial mats. Here, we report that an expressed metabolic pathway for the anoxic catabolism of photosynthate involving Cyanobacteria and Chloroflexi in microbial mats can be reconstructed through metatranscriptomic sequencing of mats collected at Elkhorn Slough, Monterey Bay, CA, USA. In this reconstruction, Microcoleus spp., the most abundant cyanobacterial group in the mats, ferment photosynthate to organic acids, CO2 and H2 through multiple pathways, and an uncultivated lineage of the Chloroflexi take up these organic acids to store carbon as polyhydroxyalkanoates. The metabolic reconstruction is consistent with metabolite measurements and single cell microbial imaging with fluorescence in situ hybridization and NanoSIMS. PMID:23190731

  3. Assessing the Record of Anoxic/Dysoxic Events in Lower Aptian Cupido/La Peña Formations, Northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Maurrasse, F. J.; Barragan-Manzo, R.; Ponton, C.

    2008-05-01

    Lower Aptian series at the la Huasteca Canyon, Nuevo Leon, NE Mexico, include the uppermost part of the Cupido Formation, a shallow-platform facies (TIC > 60%) succeeded by the La Peña Formation (TIC very variable 17 - 92 %). The change indicated a long-term shift in sedimentation characterized by distinct periodic increase in terrigenous, organic matter and abundant occurrence of ammonites. The interbeds of marls, calcareous shales, marly calcilutites and calcirudites of the La Peña facies contain abundant thin-shelled ammonites, and few planktonic foraminifera. The change occurred in the Dufrenoya justinae ammonite Zone, coeval with the Dufrenoya furcata Zone of the standard ammonite biochronostratigraphy of the Mediterranean province for the uppermost Early Aptian (Barragan-Manzo and Mendez-Franco, 2005; Barragan and Maurrasse, 2008). These zones differentiate the upper part of the Lower Aptian, therefore posterior to OAE1a. Nonetheless, while microfacies of the La Peña Fm show also intermittent belemnites, small pelecypods other than rudists, and sea urchins, benthic foraminifera are mostly absent occurring toward younger levels in the Gargasian coincident with highest taxonomic diversity. Benthic foraminifers are conspicuously absent particularly at the levels closest to the transition zone with the infrajacent Cupido facies. Also, despite increase in TOC (up to 2.6 %) in the La Peña facies, ∂13 Corg curve shows little co-variation with increasing OM, which we interpret to represent a regional phenomenon related to super-productivity in the isolated sub-basin of the Mexican platform (Maurrasse et al., 2006). In contrast, typical Cupido Fm microfacies exhibit abundant miliolids (20-30 %), fragments of rudists, echinoids, ostracods (> 30-40%), very few thin ammonite shell debris, and oolites at intermittent levels. Rich benthic foraminifer assemblages are indicative of well-oxygenated bottom conditions. However, there are three horizons about 60 cm

  4. Nitrate-dependent iron oxidation limits iron transport in anoxic ocean regions

    NASA Astrophysics Data System (ADS)

    Scholz, Florian; Löscher, Carolin R.; Fiskal, Annika; Sommer, Stefan; Hensen, Christian; Lomnitz, Ulrike; Wuttig, Kathrin; Göttlicher, Jörg; Kossel, Elke; Steininger, Ralph; Canfield, Donald E.

    2016-11-01

    Iron is an essential element for life on Earth and limits primary production in large parts of the ocean. Oxygen-free continental margin sediments represent an important source of bioavailable iron to the ocean, yet little of the iron released from the seabed reaches the productive sea surface. Even in the anoxic water of oxygen minimum zones, where iron solubility should be enhanced, most of the iron is rapidly re-precipitated. To constrain the mechanism(s) of iron removal in anoxic ocean regions we explored the sediment and water in the oxygen minimum zone off Peru. During our sampling campaign the water column featured two distinct redox boundaries separating oxic from nitrate-reducing (i.e., nitrogenous) water and nitrogenous from weakly sulfidic water. The sulfidic water mass in contact with the shelf sediment contained elevated iron concentrations >300 nM. At the boundary between sulfidic and nitrogenous conditions, iron concentrations dropped sharply to <20 nM coincident with a maximum in particulate iron concentration. Within the iron gradient, we found an increased expression of the key functional marker gene for nitrate reduction (narG). Part of this upregulation was related to the activity of known iron-oxidizing bacteria. Collectively, our data suggest that iron oxidation and removal is induced by nitrate-reducing microbes, either enzymatically through anaerobic iron oxidation or by providing nitrite for an abiotic reaction. Given the important role that iron plays in nitrogen fixation, photosynthesis and respiration, nitrate-dependent iron oxidation likely represents a key-link between the marine biogeochemical cycles of nitrogen, oxygen and carbon.

  5. Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2.

    PubMed

    Owens, Jeremy D; Gill, Benjamin C; Jenkyns, Hugh C; Bates, Steven M; Severmann, Silke; Kuypers, Marcel M M; Woodfine, Richard G; Lyons, Timothy W

    2013-11-12

    The Mesozoic Era is characterized by numerous oceanic anoxic events (OAEs) that are diagnostically expressed by widespread marine organic-carbon burial and coeval carbon-isotope excursions. Here we present coupled high-resolution carbon- and sulfur-isotope data from four European OAE 2 sections spanning the Cenomanian-Turonian boundary that show roughly parallel positive excursions. Significantly, however, the interval of peak magnitude for carbon isotopes precedes that of sulfur isotopes with an estimated offset of a few hundred thousand years. Based on geochemical box modeling of organic-carbon and pyrite burial, the sulfur-isotope excursion can be generated by transiently increasing the marine burial rate of pyrite precipitated under euxinic (i.e., anoxic and sulfidic) water-column conditions. To replicate the observed isotopic offset, the model requires that enhanced levels of organic-carbon and pyrite burial continued a few hundred thousand years after peak organic-carbon burial, but that their isotope records responded differently due to dramatically different residence times for dissolved inorganic carbon and sulfate in seawater. The significant inference is that euxinia persisted post-OAE, but with its global extent dwindling over this time period. The model further suggests that only ~5% of the global seafloor area was overlain by euxinic bottom waters during OAE 2. Although this figure is ~30× greater than the small euxinic fraction present today (~0.15%), the result challenges previous suggestions that one of the best-documented OAEs was defined by globally pervasive euxinic deep waters. Our results place important controls instead on local conditions and point to the difficulty in sustaining whole-ocean euxinia.

  6. Toarcian oceanic anoxic event: An assessment of global causes using belemnite C isotope records

    NASA Astrophysics Data System (ADS)

    van de Schootbrugge, B.; McArthur, J. M.; Bailey, T. R.; Rosenthal, Y.; Wright, J. D.; Miller, K. G.

    2005-09-01

    Two hypotheses have been proposed to explain simultaneous large negative excursions (up to 7‰ PeeDee belemnite) in bulk carbonate (δ13Ccarb) and organic carbon isotope records (δ13Corg) from black shales marking the Toarcian oceanic anoxic event (T-OAE). The first explanation envisions recycling of dissolved inorganic carbon (DIC) with a light isotopic signature into the photic zone from the lower levels of a salinity-stratified water mass, essentially requiring a regional paleoceanographic driver of the carbon cycle. The second involves the rapid and massive dissociation of methane from gas hydrates that effectively renders the T-OAE a global perturbation of the carbon cycle. We present C isotope records from belemnites (δ13Cbel) sampled from two localities, calibrated with high-resolution ammonite biostratigraphy and Sr isotope stratigraphy, in Yorkshire (England) and Dotternhausen (Germany), that can be used to assess which model best explains the observed changes in carbon isotopes. Our records of the δ13C composition of belemnite calcite do not show the large negative C isotope excursions shown by coeval records of δ13C in sedimentary organic matter or bulk sedimentary carbonate. It follows that isotopically light carbon cannot have dominated the ocean-atmosphere carbon reservoir during the Toarcian OAE, as would be required were the methane release hypothesis correct. On the basis of an evaluation of available carbon isotope records we discuss a model in which the recycling of DIC from the deeper levels of a stratified water body, and shallowing of anoxic conditions into the photic zone, can explain all isotopic profiles. In particular, the model accounts for the higher C isotope values of belemnites that are characteristic of open ocean, well-mixed conditions, and the lower C isotope values of neritic phytoplankton communities that recorded the degree of density stratification and shallowing of anoxia in the photic zone.

  7. Anoxic Androgen Degradation by the Denitrifying Bacterium Sterolibacterium denitrificans via the 2,3-seco Pathway

    PubMed Central

    Wang, Po-Hsiang; Yu, Chang-Ping; Lee, Tzong-Huei; Lin, Ching-Wen; Ismail, Wael; Wey, Shiaw-Pyng; Kuo, An-Ti

    2014-01-01

    The biodegradation of steroids is a crucial biochemical process mediated exclusively by bacteria. So far, information concerning the anoxic catabolic pathways of androgens is largely unknown, which has prevented many environmental investigations. In this work, we show that Sterolibacterium denitrificans DSMZ 13999 can anaerobically mineralize testosterone and some C19 androgens. By using a 13C-metabolomics approach and monitoring the sequential appearance of the intermediates, we demonstrated that S. denitrificans uses the 2,3-seco pathway to degrade testosterone under anoxic conditions. Furthermore, based on the identification of a C17 intermediate, we propose that the A-ring cleavage may be followed by the removal of a C2 side chain at C-5 of 17-hydroxy-1-oxo-2,3-seco-androstan-3-oic acid (the A-ring cleavage product) via retro-aldol reaction. The androgenic activities of the bacterial culture and the identified intermediates were assessed using the lacZ-based yeast androgen assay. The androgenic activity in the testosterone-grown S. denitrificans culture decreased significantly over time, indicating its ability to eliminate androgens. The A-ring cleavage intermediate (≤500 μM) did not exhibit androgenic activity, whereas the sterane-containing intermediates did. So far, only two androgen-degrading anaerobes (Sterolibacterium denitrificans DSMZ 13999 [a betaproteobacterium] and Steroidobacter denitrificans DSMZ 18526 [a gammaproteobacterium]) have been isolated and characterized, and both of them use the 2,3-seco pathway to anaerobically degrade androgens. The key intermediate 2,3-seco-androstan-3-oic acid can be used as a signature intermediate for culture-independent environmental investigations of anaerobic degradation of C19 androgens. PMID:24657867

  8. Effect of Cretaceous oceanic anoxic events on the evolutionary trend of planktonic foraminifera

    NASA Astrophysics Data System (ADS)

    Kuroyanagi, A.; Ozaki, K.; Kawahata, H.

    2014-12-01

    It is widely thought that oceanic redox state is essential for the evolutionary history of life on the earth, and "anoxic events" have been proposed as one of the causal mechanisms for mass extinctions. During mid-Cretaceous, widely known as the extremely warm period, oceanic anoxic events (OAEs) occurred several times and they would have caused a substantial impact on the biosphere. Planktonic foraminifera are marine planktons with calcite tests and their productions constitute ~30-80% of the modern deep-marine calcite budget, thus they play an important role in the global carbon cycle. Previous study reported that planktonic foraminifera displayed the high turnover (extinction and speciation) rate at or near the major OAEs. However, the impact of Cretaceous OAEs on the evolutionary trend of planktonic foraminifera remains obscure. In this study, we investigated the role of spatiotemporal extent of anoxia on the evolutionary trend of planktonic foraminifera by assessing the extinction/speciation rate of planktonic foraminifera around Cretaceous OAEs. The number of foraminiferal species increased across the OAE1a and then showed a peak after this episode. Around OAE2, several planktonic foraminifera species became extinct and several speciated, however, long-term trends in foraminiferal evolution showed no drastic changes near the event. Therefore these results suggest that the ocean surface environment at OAEs would not have a direct effect on foraminiferal extinction/speciation. This interpretation is reinforced when considering the recent culturing results, which demonstrate that modern planktonic foraminifera have a high tolerance to extremely low dissolved oxygen levels than expected. Accumulating geochemical data also suggest a spatial heterogeneity of oceanic anoxia/euxinia during OAE2. These results lead us to conclude that Cretaceous OAEs would not directly related to planktonic foraminiferal extinction due to regional distribution of anoxia/euxinia.

  9. Enhanced dechlorination of tetrachloroethylene by zerovalent silicon in the presence of polyethylene glycol under anoxic conditions.

    PubMed

    Lee, Chun-Chi; Doong, Ruey-An

    2011-03-15

    The combination of zerovalent silicon (Si(0)) with polyethylene glycol (PEG) is a novel technique to enhance the dechlorination efficiency and rate of chlorinated hydrocarbons. In this study, the dechlorination of tetrachloroethylene (PCE) by Si(0) in the presence of various concentrations of PEG was investigated under anoxic conditions. Several surfactants including cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS), and Tween 80 were also selected for comparison. Addition of SDS and Tween 80 had little effect on the enhancement of PCE dechlorination, while CTAB and PEG significantly enhanced the dechlorination efficiency and rate of PCE by Si(0) under anoxic conditions. The Langmuir-Hinshelwood model was used to describe the dechlorination kinetics of PCE and could be simplified to pseudo-first-order kinetics at low PCE concentration. The rate constants (k(obs)) for PCE dechlorination were 0.21 and 0.36 h(-1) in the presence of CTAB and PEG, respectively. However, the reaction mechanisms for CTAB and PEG are different. CTAB could enhance the apparent water solubility of PCE in solution containing Si(0), leading to the enhancement of dechlorination efficiency and rate of PCE, while PEG prevented the formation of silicon dioxide, and significantly enhanced the dechlorination efficiency and rate of PCE at pH 8.3 ± 0.2. In addition, the dechlorination rate increased upon increasing PEG concentration and then leveled off to a plateau when the PEG concentration was higher than 0.2 μM. The k(obs) for PCE dechlorination by Si(0) in the presence of PEG was 106 times higher than that by Si(0) alone. Results obtained in this study would be helpful in facilitating the development of processes that could be useful for the enhanced degradation of cocontaminants by zerovalent silicon.

  10. Identification of Methanoculleus spp. as Active Methanogens during Anoxic Incubations of Swine Manure Storage Tank Samples

    PubMed Central

    Barret, Maialen; Gagnon, Nathalie; Kalmokoff, Martin L.; Topp, Edward; Verastegui, Yris; Brooks, Stephen P. J.; Matias, Fernando; Neufeld, Josh D.

    2013-01-01

    Methane emissions represent a major environmental concern associated with manure management in the livestock industry. A more thorough understanding of how microbial communities function in manure storage tanks is a prerequisite for mitigating methane emissions. Identifying the microorganisms that are metabolically active is an important first step. Methanogenic archaea are major contributors to methanogenesis in stored swine manure, and we investigated active methanogenic populations by DNA stable isotope probing (DNA-SIP). Following a preincubation of manure samples under anoxic conditions to induce substrate starvation, [U-13C]acetate was added as a labeled substrate. Fingerprint analysis of density-fractionated DNA, using length-heterogeneity analysis of PCR-amplified mcrA genes (encoding the alpha subunit of methyl coenzyme M reductase), showed that the incorporation of 13C into DNA was detectable at in situ acetate concentrations (∼7 g/liter). Fingerprints of DNA retrieved from heavy fractions of the 13C treatment were primarily enriched in a 483-bp amplicon and, to a lesser extent, in a 481-bp amplicon. Analyses based on clone libraries of the mcrA and 16S rRNA genes revealed that both of these heavy DNA amplicons corresponded to Methanoculleus spp. Our results demonstrate that uncultivated methanogenic archaea related to Methanoculleus spp. were major contributors to acetate-C assimilation during the anoxic incubation of swine manure storage tank samples. Carbon assimilation and dissimilation rate estimations suggested that Methanoculleus spp. were also major contributors to methane emissions and that the hydrogenotrophic pathway predominated during methanogenesis. PMID:23104405

  11. Paleoenvironmental responses to Late Cretaceous Oceanic Anoxic Event 2 on the Kerguelen Plateau

    NASA Astrophysics Data System (ADS)

    Dickson, A.; Saker-Clark, M.; Jenkyns, H. C.; Erba, E.; Bottini, C.; Murphy, M. J.; Gorbanenko, O.; Idiz, E.; van den Boorn, S.

    2014-12-01

    Oceanic Anoxic Event 2 (OAE-2, ~94 Ma: late Cretaceous) was characterized by a perturbation in seawater chemistry, an expansion of marine anoxia and euxinia, an increase in marine organic-carbon burial, a decrease in atmospheric pCO2 during an interval of high global temperatures, an extinction event among marine organisms, and changes in weathering intensity. However, many of the most detailed studies of OAE-2 are from the northern hemisphere, and consequently how global environmental changes were expressed at the local and regional scale in the southern hemisphere is poorly understood. A detailed geochemical, petrographic and micropalaeontological dataset from Ocean Drilling Program Site 1138 on the Kerguelen Plateau, southern Indian Ocean (53.5oS paleolatitude), identifies OAE-2 from a 3‰ positive carbon-isotope excursion (CIE) and from high-resolution nannofossil biostratigraphy. An enrichment of organic carbon (to ~15%) corresponds with a shift towards locally sub-oxic/anoxic conditions, as recorded by trace-metal enrichments and molybdenum-isotope compositions. The redox changes coincide stratigraphically with an abrupt decline in the delivery of highly weathered detrital material and terrestrial organic matter to Site 1138. A rapid relative sea-level rise occurring around the onset of OAE-2 could have reduced the input of highly weathered detrital sediments, while moving the local seafloor deeper into an oxygen minimum zone impinging on the margins of the Kerguelen Plateau. Alternatively, or additionally, intensified mid-latitude hydrological cycling in the early stages of OAE-2 could have rapidly destabilized terrestrial sediments from sub-aerial landmasses on the Kerguelen Plateau. In either case, the new datasets highlight the abrupt nature of the palaeoenvironmental response to OAE-2 in the mid-latitude southern hemisphere.

  12. Evidence for Global Biogeochemical Changes During the Toarcian Oceanic Anoxic Event

    NASA Astrophysics Data System (ADS)

    Them, T. R., II; Gill, B. C.; Gröcke, D. R.; Selby, D. S.; Martindale, R. C.; Caruthers, A. H.; Tulsky, E. T. T.

    2015-12-01

    The global versus regional nature of the Toarcian Oceanic Anoxic Event (T-OAE; ~183 million years ago) has been heavily debated over the course of the last decade. Several lines of geochemical evidence support a significant perturbation to the carbon cycle and redox-sensitive elemental cycles across this interval. It is thought that these represent feedbacks to the emplacement of the Karoo-Ferrar large igneous province. These include: elevated atmospheric pCO2, an enhanced greenhouse effect and hydrologic cycle leading to increased weathering rates, dissociation of biogenic methane clathrates, and widespread ocean anoxia. Despite evidence for these global phenomena, the overwhelming majority of stratigraphic successions studied are located in Europe. The global magnitude of these biogeochemical perturbations has been challenged, with some considering that this event was regional to Europe, and others suggesting that the carbon isotope excursion (CIE) itself is not a reliable stratigraphic marker. In order to test these competing hypotheses, we have generated a geochemical dataset to reconstruct paleoceanographic and paleoclimatological changes across the T-OAE from western North America. The Toarcian strata in western Alberta consist primarily of organic-rich calcareous siltstones and shales. These deposits represent ideal sedimentary facies to reconstruct environmental changes through the use of geochemical proxy data, especially those that use redox-sensitive transition metals. Ammonite biostratigraphy suggests a nearly continuous sequence from the late Pliensbachian to middle Toarcian. The organic carbon isotopes show the prominent negative CIE interpreted to relate to the release of isotopically depleted carbon at the onset of the T-OAE. Pyrite sulfur weight percentages increase across the CIE and remain elevated, and iron speciation data suggest the development of anoxic conditions. Initial osmium isotope compositions become more radiogenic during the CIE

  13. Characterization of microbial arsenate reduction in the anoxic bottom waters of Mono Lake, California

    USGS Publications Warehouse

    Hoeft, S.E.; Lucas, F.; Hollibaugh, J.T.; Oremland, R.S.

    2002-01-01

    Dissimilatory reduction of arsenate (DAsR) occurs in the arsenic-rich, anoxic water column of Mono Lake, California, yet the microorganisms responsible for this observed in situ activity have not been identified. To gain insight as to which microorganisms mediate this phenomenon, as well as to some of the biogeochemical constraints on this activity, we conducted incubations of arsenate-enriched bottom water coupled with inhibition/amendment studies and Denaturing Gradient Gel Electrophoresis (DGGE) characterization techniques. DAsR was totally inhibited by filter-sterilization and by nitrate, partially inhibited (~50%) by selenate, but only slightly (~25%) inhibited by oxyanions that block sulfate-reduction (molybdate and tungstate). The apparent inhibition by nitrate, however, was not due to action as a preferred electron acceptor to arsenate. Rather, nitrate addition caused a rapid, microbial re-oxidation of arsenite to arsenate, which gave the overall appearance of no arsenate loss. A similar microbial oxidation of As(III) was also found with Fe(III), a fact that has implications for the recycling of As(V) in Mono Lake's anoxic bottom waters. DAsR could be slightly (10%) stimulated by substrate amendments of lactate, succinate, malate, or glucose, but not by acetate, suggesting that the DAsR microflora is not electron donor limited. DGGE analysis of amplified 16S rDNA gene fragments from incubated arsenate-enriched bottom waters revealed the presence of two bands that were not present in controls without added arsenate. The resolved sequences of these excised bands indicated the presence of members of the epsilon (Sulfurospirillum) and delta (Desulfovibrio) subgroups of the Proteobacteria, both of which have representative species that are capable of anaerobic growth using arsenate as their electron acceptor.

  14. Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2.

    PubMed

    Owens, Jeremy D; Gill, Benjamin C; Jenkyns, Hugh C; Bates, Steven M; Severmann, Silke; Kuypers, Marcel M M; Woodfine, Richard G; Lyons, Timothy W

    2013-11-12

    The Mesozoic Era is characterized by numerous oceanic anoxic events (OAEs) that are diagnostically expressed by widespread marine organic-carbon burial and coeval carbon-isotope excursions. Here we present coupled high-resolution carbon- and sulfur-isotope data from four European OAE 2 sections spanning the Cenomanian-Turonian boundary that show roughly parallel positive excursions. Significantly, however, the interval of peak magnitude for carbon isotopes precedes that of sulfur isotopes with an estimated offset of a few hundred thousand years. Based on geochemical box modeling of organic-carbon and pyrite burial, the sulfur-isotope excursion can be generated by transiently increasing the marine burial rate of pyrite precipitated under euxinic (i.e., anoxic and sulfidic) water-column conditions. To replicate the observed isotopic offset, the model requires that enhanced levels of organic-carbon and pyrite burial continued a few hundred thousand years after peak organic-carbon burial, but that their isotope records responded differently due to dramatically different residence times for dissolved inorganic carbon and sulfate in seawater. The significant inference is that euxinia persisted post-OAE, but with its global extent dwindling over this time period. The model further suggests that only ~5% of the global seafloor area was overlain by euxinic bottom waters during OAE 2. Although this figure is ~30× greater than the small euxinic fraction present today (~0.15%), the result challenges previous suggestions that one of the best-documented OAEs was defined by globally pervasive euxinic deep waters. Our results place important controls instead on local conditions and point to the difficulty in sustaining whole-ocean euxinia. PMID:24170863

  15. Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2

    PubMed Central

    Owens, Jeremy D.; Gill, Benjamin C.; Jenkyns, Hugh C.; Bates, Steven M.; Severmann, Silke; Kuypers, Marcel M. M.; Woodfine, Richard G.; Lyons, Timothy W.

    2013-01-01

    The Mesozoic Era is characterized by numerous oceanic anoxic events (OAEs) that are diagnostically expressed by widespread marine organic-carbon burial and coeval carbon-isotope excursions. Here we present coupled high-resolution carbon- and sulfur-isotope data from four European OAE 2 sections spanning the Cenomanian–Turonian boundary that show roughly parallel positive excursions. Significantly, however, the interval of peak magnitude for carbon isotopes precedes that of sulfur isotopes with an estimated offset of a few hundred thousand years. Based on geochemical box modeling of organic-carbon and pyrite burial, the sulfur-isotope excursion can be generated by transiently increasing the marine burial rate of pyrite precipitated under euxinic (i.e., anoxic and sulfidic) water-column conditions. To replicate the observed isotopic offset, the model requires that enhanced levels of organic-carbon and pyrite burial continued a few hundred thousand years after peak organic-carbon burial, but that their isotope records responded differently due to dramatically different residence times for dissolved inorganic carbon and sulfate in seawater. The significant inference is that euxinia persisted post-OAE, but with its global extent dwindling over this time period. The model further suggests that only ∼5% of the global seafloor area was overlain by euxinic bottom waters during OAE 2. Although this figure is ∼30× greater than the small euxinic fraction present today (∼0.15%), the result challenges previous suggestions that one of the best-documented OAEs was defined by globally pervasive euxinic deep waters. Our results place important controls instead on local conditions and point to the difficulty in sustaining whole-ocean euxinia. PMID:24170863

  16. Simultaneous nitrification/denitrification and trace organic contaminant (TrOC) removal by an anoxic-aerobic membrane bioreactor (MBR).

    PubMed

    Phan, Hop V; Hai, Faisal I; Kang, Jinguo; Dam, Hoa K; Zhang, Ren; Price, William E; Broeckmann, Andreas; Nghiem, Long D

    2014-08-01

    Simultaneous nitrification/denitrification and trace organic contaminant (TrOC) removal during wastewater treatment by an integrated anoxic-aerobic MBR was examined. A set of 30 compounds was selected to represent TrOCs that occur ubiquitously in domestic wastewater. The system achieved over 95% total organic carbon (TOC) and over 80% total nitrogen (TN) removal. In addition, 21 of the 30 TrOCs investigated here were removed by over 90%. Low oxidation reduction potential (i.e., anoxic/anaerobic) regimes were conducive to moderate to high (50% to 90%) removal of nine TrOCs. These included four pharmaceuticals and personal care products (primidone, metronidazole, triclosan, and amitriptyline), one steroid hormone (17β-estradiol-17-acetate), one industrial chemical (4-tert-octylphenol) and all three selected UV filters (benzophenone, oxybenzone, and octocrylene). Internal recirculation between the anoxic and aerobic bioreactors was essential for anoxic removal of remaining TrOCs. A major role of the aerobic MBR for TOC, TN, and TrOC removal was observed.

  17. Treatment of phenolics, aromatic hydrocarbons, and cyanide-bearing wastewater in individual and combined anaerobic, aerobic, and anoxic bioreactors.

    PubMed

    Sharma, Naresh K; Philip, Ligy

    2015-01-01

    Studies were conducted on a mixture of pollutants commonly found in coke oven wastewater (CWW) to evaluate the biodegradation of various pollutants under anaerobic, aerobic, and anoxic conditions. The removal of the pollutants was monitored during individual bioreactor operation and using a combination of bioreactors operating in anaerobic-aerobic-anoxic sequence. While studying the performance of individual reactors, it was observed that cyanide removal (83.3 %) was predominant in the aerobic bioreactor, while much of the chemical oxygen demand (COD) (69 %) was consumed in the anoxic bioreactor. With the addition of cyanide, the COD removal efficiency was affected in all the bioreactors, and several intermediates were detected. While treating synthetic CWW using the combined bioreactor system, the overall COD removal efficiency was 86.79 % at an OLR of 2.4 g COD/L/day and an HRT of 96 h. The removal efficiency of 3,5-xylenol and cyanide, with inlet concentration of 150 and 10 mg/L, was found to be 91.8 and 93.6 % respectively. It was found that the impact of xylenol on the performance of the bioreactors was less than cyanide toxicity. Molecular analysis using T-RFLP revealed the dominance of strictly aerobic, mesophilic proteobacterium, Bosea minatitlanensis, in the aerobic bioreactor. The anoxic bioreactor was dominant with Rhodococcus pyridinivorans, known for its remarkable aromatic decomposing activity, while an unclassified Myxococcales bacterium was identified as the predominant bacterial species in the anaerobic bioreactor.

  18. Anoxic phases are the main N2O contributor in partial nitritation reactors treating high nitrogen loads with alternate aeration.

    PubMed

    Gabarró, J; González-Cárcamo, P; Ruscalleda, M; Ganigué, R; Gich, F; Balaguer, M D; Colprim, J

    2014-07-01

    Partial nitritation (PN) reactors treating complex industrial wastewater can be operated by alternating anoxic-aerobic phases to promote heterotrophic denitrification via NO2(-). However, denitrification under stringent conditions can lead to high N2O production. In this study, the suitability of including anoxic phases in a PN-SBR treating real industrial wastewater was assessed in terms of process performance and N2O production. The PN-SBR was operated successfully and, when the HCO3(-):NH4(+) molar ratio was adjusted, produced a suitable effluent for a subsequent anammox reactor. 10-20% of the total influent nitrogen was removed. N2O production accounted for 3.6% of the NLR and took place mainly during the anoxic phases (60%). Specific denitrification batch tests demonstrated that, despite the availability of biodegradable COD, NO2(-) denitrification advanced at a faster rate than N2O denitrification, causing high N2O accumulation. Thus, the inclusion of anoxic phases should be avoided in PN reactors treating industrial wastewaters with high nitrogen loads.

  19. Transport and removal of viruses in saturated sand columns under oxic and anoxic conditions--Potential implications for groundwater protection.

    PubMed

    Frohnert, Anne; Apelt, Susann; Klitzke, Sondra; Chorus, Ingrid; Szewzyk, Regine; Selinka, Hans-Christoph

    2014-11-01

    To protect groundwater as a drinking water resource from microbiological contamination, protection zones are installed. While travelling through these zones, concentrations of potential pathogens should decline to levels that pose no risks to human health. Removal of viruses during subsurface passage is influenced by physicochemical conditions, such as oxygen concentration, which also affects virus survival. The aim of our study was to evaluate the effect of redox conditions on the removal of viruses during sand filtration. Experiments in glass columns filled with medium-grained sand were conducted to investigate virus removal in the presence and absence of dissolved oxygen. Bacteriophages MS2 and PhiX174, as surrogates for human enteric viruses were spiked in pulsed or in continuous mode and pumped through the columns at a filter velocity of about 1m/d. Virus breakthrough curves were analyzed by calculating total viral elimination and fitted using one-dimensional transport models (CXTFIT and HYDRUS-1D). While short-term experiments with pulsed virus application showed only small differences with regard to virus removal under oxic and anoxic conditions, a long-term experiment with continuous dosing revealed a clearly lower elimination of viruses under anoxic conditions. These findings suggest that less inactivation and less adsorption of viruses in anoxic environments affect their removal. Therefore, in risk assessment studies aimed to secure drinking water resources from viral contamination and optimization of protection zones, the oxic and anoxic conditions in the subsurface should also be considered.

  20. Fermentation metabolism in roots of wheat seedlings after hypoxic pre-treatment in different anoxic incubation systems.

    PubMed

    Mustroph, Angelika; Albrecht, Gerd

    2007-04-01

    A hypoxic pre-treatment (HPT) can improve the anoxic survival of flooding sensitive plants. Here, we tested whether a 4-d HPT of wheat plants (Triticum aestivum L.) would improve their anoxic resistance, and if so, why. We found that the metabolic adjustment during prolonged HPT involved an increased lactate excretion rate, the up-regulation of glycolytic and fermentative enzymes as well as the accumulation of various sugars. Therefore, HPT wheat roots could sustain a 3 times higher ethanolic fermentation rate during an anoxic period compared to non-pre-treated (NHPT) roots. Nevertheless, the enhanced fermentation rate provided temporary relief to the energy crisis only, and both NHPT and HPT plants died after 5d of anoxia in illumination. Comparison of different low oxygen incubation systems using excised roots or roots of intact plants revealed striking differences. The benefits of intact shoots, oxygen transport as well as additional sugar supply enabled a more stable energy supply of anoxia-treated NHPT and HPT roots. However, the height of the fermentation rate was correlated with a high ATP content during dark anoxic incubation, but not in illumination.

  1. Fermentation metabolism in roots of wheat seedlings after hypoxic pre-treatment in different anoxic incubation systems.

    PubMed

    Mustroph, Angelika; Albrecht, Gerd

    2007-04-01

    A hypoxic pre-treatment (HPT) can improve the anoxic survival of flooding sensitive plants. Here, we tested whether a 4-d HPT of wheat plants (Triticum aestivum L.) would improve their anoxic resistance, and if so, why. We found that the metabolic adjustment during prolonged HPT involved an increased lactate excretion rate, the up-regulation of glycolytic and fermentative enzymes as well as the accumulation of various sugars. Therefore, HPT wheat roots could sustain a 3 times higher ethanolic fermentation rate during an anoxic period compared to non-pre-treated (NHPT) roots. Nevertheless, the enhanced fermentation rate provided temporary relief to the energy crisis only, and both NHPT and HPT plants died after 5d of anoxia in illumination. Comparison of different low oxygen incubation systems using excised roots or roots of intact plants revealed striking differences. The benefits of intact shoots, oxygen transport as well as additional sugar supply enabled a more stable energy supply of anoxia-treated NHPT and HPT roots. However, the height of the fermentation rate was correlated with a high ATP content during dark anoxic incubation, but not in illumination. PMID:16616971

  2. Elucidating the removal mechanism of N,N-dimethyldithiocarbamate in an anaerobic-anoxic-oxic activated sludge system.

    PubMed

    Li, Yongmei; Cao, Xianzhong; Wang, Lin

    2014-03-01

    N,N-Dimethyldithiocarbamate (DMDTC) is a typical precursor of N-nitrosodimethylamine (NDMA). Based on separate hydrolysis, sorption and biodegradation studies of DMDTC, a laboratory-scale anaerobic-anoxic-oxic (AAO) system was established to investigate the removal mechanism of DMDTC in this nutrient removal biological treatment system. DMDTC hydrolyzed easily in water solution under either acidic conditions or strong alkaline conditions, and dimethylamine (DMA) was the main hydrolysate. Under anaerobic, anoxic or oxic conditions, DMDTC was biodegraded and completely mineralized. Furthermore, DMA was the main intermediate in DMDTC biodegradation. In the AAO system, the optimal conditions for both nutrient and DMDTC removal were hydraulic retention time 8 hr, sludge retention time 20 day, mixed-liquor return ratio 3:1 and sludge return ratio 1:1. Under these conditions, the removal efficiency of DMDTC reached 99.5%; the removal efficiencies of chemical organic demand, ammonium nitrogen, total nitrogen and total phosphorus were 90%, 98%, 81% and 93%, respectively. Biodegradation is the dominant mechanism for DMDTC removal in the AAO system, which was elucidated as consisting of two steps: first, DMDTC is transformed to DMA in the anaerobic and anoxic units, and then DMA is mineralized to CO2 and NH3 in the anoxic and oxic units. The mineralization of DMDTC in the biological treatment system can effectively avoid the formation of NDMA during subsequent disinfection processes.

  3. Simultaneous organic carbon and nitrogen removal in an anoxic-oxic activated sludge system under various operating conditions.

    PubMed

    Rasool, Kashif; Ahn, Dae Hee; Lee, Dae Sung

    2014-06-01

    This study investigated a bench-scale anoxic-oxic activated sludge system for integrated removal of COD and nitrogen. The experimental unit includes four chambers and continuous feeding in first chamber without recycle of nitrified liquid from aerobic to anoxic chamber unlike the conventional anoxic-oxic process. Recycled excessive sludge was used for the purpose of recycling nitrified mixed liquor. Synthetic wastewater with average loading rates of 0.53 kg COD/m(3)/d and 0.067 kg NH4(+)-N/m(3)/d was fed to the reactor system at hydraulic residence times (HRT) of 24 and 18 h. The results of 100 days operation showed high removal efficiencies of organic matter of about 97% as total COD and more than 99% removal of ammonia-nitrogen. In anoxic-oxic operation phase, total inorganic nitrogen (TIN) removal was about 66% by pre-denitrification. Moreover, the solid liquid separation through final clarifier was excellent without any suspended solid in the effluent.

  4. Availability of free oxygen in deep bottom water of some Archean-Early Paleoproterozoic ocean basins as derived from iron formation facies analyses

    NASA Astrophysics Data System (ADS)

    Beukes, N. J.; Smith, A.

    2013-12-01

    Archean to Early Paleoproterozoic ocean basins are commonly, although not exclusively, depicted as rather static systems; either permanently stratified with shallow mixed oxygenated water overlying anoxic deep water or with a totally anoxic water column. The anoxic water columns are considered enriched in dissolved ferrous iron derived from hydrothermal plume activity. These sourced deposition of iron formations through precipitation of mainly ferrihydrite via reaction with free oxygen in the stratified model or anaerobic iron oxidizing photoautotrophs in the anoxic model. However, both these models face a simple basic problem if detailed facies reconstructions of deepwater microbanded iron formations (MIFs) are considered. In such MIFs it is common that the deepest water and most distal facies is hematite rich followed shoreward by magnetite, iron silicate and siderite facies iron formation. Examples of such facies relations are known from jaspilitic iron formation of the ~3,2 Ga Fig Tree Group (Barberton Mountainland), ~ 2,95 Ga iron formations of the Witwatersrand-Mozaan basin and the ~2,5 Ga Kuruman Iron Formation, Transvaal Supergroup, South Africa. Facies relations of these MIFs with associated siliciclastics or carbonates also indicate that the upper water columns of the basins, down to below wave base, were depleted in iron favoring anoxic-oxic stratification rather than total anoxia. In the MIFs it can be shown that hematite in the distal facies represents the earliest formed diagenetic mineral; most likely crystallized from primary ferrihydrite. The problem is one of how ferrihydrite could have been preserved on the ocean floor if it was in direct contact with reducing ferrous deep bottom water. Rather dissolved ferrous iron would have reacted with ferrihydrite to form diagenetic magnetite. This dilemma is resolved if in the area of deepwater hematite MIF deposition, the anoxic ferrous iron enriched plume was detached from the basin floor due to buoyancy

  5. Diverse super-giant petroleum deposits in the West Siberian oil-gas basin

    SciTech Connect

    Clarke, J.W.; Peterson, J.A. )

    1990-05-01

    The West Siberian sedimentary basin is a relatively uncomplicated basin where deposition has continued with little significant interruption during the almost 200 m.y. since the beginning of the Pliensbachian Age in the Early Jurassic. The petroleum deposits, however, are diverse, as exemplified by the Salym Samotlor, and Urengoy fields. During the Volgian Age, in the latest Jurassic, bituminous siliceous clays were deposited during a tectonic calm in an anoxic basin. These clays, now the cherty shale of the Bazhenov Formation were enriched in sapropelic organic matter and became source rock reservoir rock, and seal for the oil of Salym field. The oil occurs along fractures generated by the hydraulic effect of the generating oil. No significant water or gas accompanies the oil. Following the tectonic calm progradational deltaic deposits began to fill the sedimentary basin during the Early Cretaceous. Deltaic sands deposited on a mid-basin high were winnowed by currents that carried the finer material farther west. These sands became reservoirs whose source beds were either the distal pelitic facies to the west or the underlying bituminous Bazhenov Formation. The oil pools of Samotlor field which accounts for about 5% of the world production, are in these progradational sandstones. Deposition of sandy facies continued with little interruption through the Cenomanian after which clay was deposited during the Turonian in an anoxic environment similar to that of the Bazhenov. Urengoy field, probably the largest gas deposit in the world, occurs in the sandstones beneath the Turonian clays. The gas is almost pure methane and was sourced probably by both the humic organic matter in the rocks beneath and adjacent to the pool and by organic matter in the overlying Turonian bituminous clays. The source beds of the West Siberian basin are presently at those depths favorable for petroleum generation.

  6. Characterization of phosphorus in sinking particles in Cariaco Basin, Venezuela

    NASA Astrophysics Data System (ADS)

    Ranhofer, M. L.; Benitez-Nelson, C.; Thunell, R.

    2004-12-01

    Phosphorus (P) is an essential nutrient utilized by all organisms for biological productivity, yet little is known about its cycling within the marine realm. In this study, we used a five-step sequential sediment extraction method (SEDEX) to examine the composition of P in sinking particles obtained from one of the world's largest anoxic basins, Cariaco Basin, Venezuela. This method, which is usually applied to sediments, chemically separates particulate P into 5 phases: loosely bound or exchangeable (PEx), iron-bound (PFe), authigenic (PAut), detrital (PDet), and organic (POrg). Samples were collected from November 2000 to April 2002 using four automated sediment traps moored at depths of 275, 455, 930 and 1250 m, with the 275 m trap located just above the oxic/anoxic interface. Our results indicate that the composition of particulate P changes dramatically as the material sinks through the water column. The 275 m trap was comprised of a mixture of PEx (57 %), POrg (23 %) and PFe (15 %), whereas the deepest trap was dominated by POrg (55 %) and PEx (26 %). Total P fluxes decreased by a factor of four between 275 and 1250 m (85.7 versus 18.5 \\mu mol m-2 d-1), with much of this decrease due to the > 75 % loss of PEx (49.2 to 4.9 \\mu mol m-2 d-1) and PFe (12.6 to 1.8 \\mu mol m-2 d-1). POrg decreased by only 50 % between these two depths (19.9 versus 10.2 \\mu mol m-2 d-1). Our results are consistent with the expectation that PEx is the most labile fraction of P and PFe is rapidly reduced in the anoxic bottom waters of Cariaco Basin. PEx correlates well with organic C (COrg) only in samples from the shallowest trap (r2 = 0.6), while in the deeper traps there is a strong correlation with terrigenous material (r2 = 0.6). This implies a change in the major source, and hence lability of this material as it sinks to the sea floor. POrg was very well correlated to COrg at all depths (r2 > 0.9), implying little to no preferential remineralization below 275 m. Additional

  7. Crude oil in a shallow sand and gravel aquifer-III. Biogeochemical reactions and mass balance modeling in anoxic groundwater

    USGS Publications Warehouse

    Baedecker, M.J.; Cozzarelli, I.M.; Eganhouse, R.P.; Siegel, D.I.; Bennett, P.C.

    1993-01-01

    Crude oil floating on the water table in a sand and gravel aquifer provides a constant source of hydrocarbons to the groundwater at a site near Bemidji, Minnesota. The degradation of hydrocarbons affects the concentrations of oxidized and reduced aqueous species in the anoxic part of the contaminant plume that developed downgradient from the oil body. The concentrations of Fe2+, Mn2+ and CH4, Eh measurements, and the ??13C ratios of the total inorganic C indicate that the plume became more reducing ver a 5-a period. However, the size of the contaminant plume remained stable during this time. Field data coupled with laboratory microcosm experiments indicate that benzene and the alkylbenzenes are degraded in an anoxic environment. In anaerobic microcosm experiments conducted under field conditions, almost complete degradation (98%) was observed for benzene in 125 d and for toluene in 45 d. Concentrations of aqueous Fe2+ and Mn2+ increased in these experiments, indicating that the primary reactions were hydrocarbon degradation coupled with Fe and Mn reduction. Mass transfer calculations on a 40-m flowpath in the anoxic zone, downgradient from the oil body, indicated that the primary reactions in the anoxic zone are oxidation of organic compounds, precipitation of siderite and a ferroan calcite, dissolution of iron oxide and outgassing of CH4 and CO2. The major difference in the two models presented is the ratio of CO2 and CH4 that outgasses. Both models indicate quantitatively that large amounts of Fe are dissolved and reprecipitated as ferrous iron in the anoxic zone of the contaminant plume. ?? 1993.

  8. Metatranscriptomic Analyses of Plankton Communities Inhabiting Surface and Subpycnocline Waters of the Chesapeake Bay during Oxic-Anoxic-Oxic Transitions

    PubMed Central

    Eggleston, Erin M.; Doherty, Mary; Lee, Dong Yoon; Owens, Michael; Shapleigh, James P.; Cornwell, Jeffrey C.; Crump, Byron C.

    2014-01-01

    We used metatranscriptomics to study the gene transcription patterns of microbial plankton (0.2 to 64 μm) at a mesohaline station in the Chesapeake Bay under transitions from oxic to anoxic waters in spring and from anoxic to oxic waters in autumn. Samples were collected from surface (i.e., above pycnocline) waters (3 m) and from waters beneath the pycnocline (16 to 22 m) in both 2010 and 2011. Metatranscriptome profiles based on function and potential phylogeny were different between 2010 and 2011 and strongly variable in 2011. This difference in variability corresponded with a highly variable ratio of eukaryotic to bacterial sequences (0.3 to 5.5), reflecting transient algal blooms in 2011 that were absent in 2010. The similarity between metatranscriptomes changed at a lower rate during the transition from oxic to anoxic waters than after the return to oxic conditions. Transcripts related to photosynthesis and low-affinity cytochrome oxidases were significantly higher in shallow than in deep waters, while in deep water genes involved in anaerobic metabolism, particularly sulfate reduction, succinyl coenzyme A (succinyl-CoA)-to-propionyl-CoA conversion, and menaquinone synthesis, were enriched relative to in shallow waters. Expected transitions in metabolism between oxic and anoxic deep waters were reflected in elevated levels of anaerobic respiratory reductases and utilization of propenediol and acetoin. The percentage of archaeal transcripts increased in both years in late summer (from 0.1 to 4.4% of all transcripts in 2010 and from 0.1 to 6.2% in 2011). Denitrification-related genes were expressed in a predicted pattern during the oxic-anoxic transition. Overall, our data suggest that Chesapeake Bay microbial assemblages express gene suites differently in shallow and deep waters and that differences in deep waters reflect variable redox states. PMID:24162577

  9. Metatranscriptomic analyses of plankton communities inhabiting surface and subpycnocline waters of the Chesapeake Bay during oxic-anoxic-oxic transitions.

    PubMed

    Hewson, Ian; Eggleston, Erin M; Doherty, Mary; Lee, Dong Yoon; Owens, Michael; Shapleigh, James P; Cornwell, Jeffrey C; Crump, Byron C

    2014-01-01

    We used metatranscriptomics to study the gene transcription patterns of microbial plankton (0.2 to 64 μm) at a mesohaline station in the Chesapeake Bay under transitions from oxic to anoxic waters in spring and from anoxic to oxic waters in autumn. Samples were collected from surface (i.e., above pycnocline) waters (3 m) and from waters beneath the pycnocline (16 to 22 m) in both 2010 and 2011. Metatranscriptome profiles based on function and potential phylogeny were different between 2010 and 2011 and strongly variable in 2011. This difference in variability corresponded with a highly variable ratio of eukaryotic to bacterial sequences (0.3 to 5.5), reflecting transient algal blooms in 2011 that were absent in 2010. The similarity between metatranscriptomes changed at a lower rate during the transition from oxic to anoxic waters than after the return to oxic conditions. Transcripts related to photosynthesis and low-affinity cytochrome oxidases were significantly higher in shallow than in deep waters, while in deep water genes involved in anaerobic metabolism, particularly sulfate reduction, succinyl coenzyme A (succinyl-CoA)-to-propionyl-CoA conversion, and menaquinone synthesis, were enriched relative to in shallow waters. Expected transitions in metabolism between oxic and anoxic deep waters were reflected in elevated levels of anaerobic respiratory reductases and utilization of propenediol and acetoin. The percentage of archaeal transcripts increased in both years in late summer (from 0.1 to 4.4% of all transcripts in 2010 and from 0.1 to 6.2% in 2011). Denitrification-related genes were expressed in a predicted pattern during the oxic-anoxic transition. Overall, our data suggest that Chesapeake Bay microbial assemblages express gene suites differently in shallow and deep waters and that differences in deep waters reflect variable redox states.

  10. Microbial eukaryote life in the new hypersaline deep-sea basin Thetis.

    PubMed

    Stock, Alexandra; Breiner, Hans-Werner; Pachiadaki, Maria; Edgcomb, Virginia; Filker, Sabine; La Cono, Violetta; Yakimov, Michail M; Stoeck, Thorsten

    2012-01-01

    Only recently, a novel anoxic hypersaline (thalassic) basin in the eastern Mediterranean was discovered at a depth of 3,258 m. The halite-saturated brine of this polyextreme basin revealed one of the highest salt concentrations ever reported for such an environment (salinity of 348‰). Using a eukaryote-specific probe and fluorescence in situ hybridization, we counted 0.6 × 10(4) protists per liter of anoxic brine. SSU rRNA sequence analyses, based on amplification of environmental cDNA identified fungi as the most diverse taxonomic group of eukaryotes in the brine, making deep-sea brines sources of unknown fungal diversity and hotspots for the discovery of novel metabolic pathways and for secondary metabolites. The second most diverse phylotypes are ciliates and stramenopiles (each 20%). The occurrence of closely related ciliate sequences exclusively in other Mediterranean brine basins suggests specific adaptations of the respective organisms to such habitats. Betadiversity-analyses confirm that microeukaryote communities in the brine and the interface are notably different. Several distinct morphotypes in brine samples suggest that the rRNA sequences detected in Thetis brine can be linked to indigenous polyextremophile protists. This contradicts previous assumptions that such extremely high salt concentrations are anathema to eukaryotic life. The upper salinity limits for eukaryotic life remain unidentified.

  11. Reserves in Western Basins

    SciTech Connect

    Caldwell, R.H.; Cotton, B.W.

    1993-12-31

    The objective of this project is to investigate the reserves potential of overpressured tight (OPT) gas reservoirs in three Rocky Mountain basins. These are the Greater Green River Basin (GGRB), Uinta Basin and Piceance Basin. By documenting productive characteristics in these basins and characterizing the nature of the vast gas resources in place, the reserves potential may be understood and quantified. Through this understanding, it is hoped that the oil and gas industry will be encouraged to pursue exploitation of this resource. At this point in time, the GGRB work has been completed and the final report submitted for publication. Work on the Uinta basin has just commenced and work on the Piceance basin will commence next year. Since the GGRB portion of this project has been completed, further discussion centers upon this Basin.

  12. The corrosion and electrochemistry of copper in aqueous, anoxic sulphide solutions

    NASA Astrophysics Data System (ADS)

    Smith, Jared M.

    A proposed method of disposal of Swedish/Finnish/Canadian high-level nuclear waste is to place it in corrosion resistant containers and bury it approximately 500--1000 m deep in granite environments. The chosen material for the fabrication of these containers is copper, selected primarily because of its thermodynamic stability in the aqueous anoxic environments anticipated in such repositories. The present design consists of an outer copper shell (˜5 cm thick) and an inner liner of nodular cast iron. The presence of sulphide films shifts the corrosion potential for copper dissolution to more negative values, this could render copper susceptible to corrosion via the reduction of water. Possible components of the immediate vault environment, as well as the bentonite clay, include pyrite (FeS 2) and sulphate (SO42-) both of which are potential sources of sulphide, and it is well known that sulphate-reducing bacteria (SRB) exist which can convert sulphates to sulphides. A number of factors, such as the mechanical pressure from the swelling bentonite, the low water activity in the bentonite, gamma-radiation and the heat from radionuclide decay processes will ensure that there is no microbial activity in the vicinity of the container. Remotely produced sulphide could, however, be transported slowly through the compacted buffer to the container surface. The mechanism and kinetics of Cu corrosion in anoxic aqueous chloride solutions containing sulphide have been investigated electrochemically and under natural corrosion conditions. Under these conditions, the anodic growth of a chalcocite (Cu2S)/digenite (Cu1.8S) films on Cu is supported by the cathodic reduction of water. Electrochemical experiments at rotating disc electrodes and impedance spectroscopy show that the film growth occurs under SH- transport control as stagnant conditions are approached. Film growth can follow two distinct pathways. The initially formed film grows rapidly via an ion (or associated defect

  13. Archaebacterial activity in the Orca Basin determined by the isolation of characteristic isopranyl ether-linked lipids

    NASA Astrophysics Data System (ADS)

    Dickins, Holli D.; Van Vleet, Edward S.

    1992-04-01

    Phytanyl glycerol ether lipids characteristic of archaebacterial inputs have been quantified in 30 water samples taken in the Orca Basin, an anoxic hypersaline basin located in the northwestern Gulf of Mexico. Because of the Basin's anoxic hypersaline character, it seems likely that archaebacteria may play a significant role in the microbial ecology of the brine. Physical data, including temperature, salinity, per cent transmission, oxygen and nutrient concentrations, also were collected from six depths at five sampling sites in the Basin. Four of the five sites were characterized by a 200 m thick, anoxic brine (salinity ≈ 250 ppt) at an approximate water depth of 2240 m. A stepwise increase in salinity was associated with the brine-seawater interface, increasing from 38 to 150 ppt within the upper portion of the 10 m interface and to >250 ppt within the brine. Three distinct layers of particulate material were observed within the 10 m interface. Corresponding with the salinity gradient was a decrease in dissolved oxygen from 5.0 ml l -1 at 2040 m to 0 ml l -1 within the brine. Ammonia and phosphate concentrations increased from 0 and 2.5 μM above the brine to 519 and 63.5 μM within the brine. At the same time, nitrate concentrations decreased from 22 μM above the brine to negligible within the brine. Depletion of oxygen, with concomitant increases in ammonia and phosphate, decreased nitrate, and the production of methane suggest microbially mediated processes may be occurring at the brine-seawater interface. Highest concentrations of phytanyl ether lipids were observed within the interface, ranging from 29.7 to 84.1 ng l -1. Concentrations were negligible below the interface. Elevated phytanyl ether lipid concentrations in conjunction with microbial activity studies carried out by other investigators suggest that archaebacterial activity is occurring within the brine particulate layers. A decline in ether lipid concentration and microbial activity below this

  14. Decoupling of carbon isotope records between organic matter and carbonate prior to the Toarcian Oceanic Anoxic Event (Early Jurassic)

    NASA Astrophysics Data System (ADS)

    Bodin, Stephane; Kothe, Tim; Krencker, Francois-Nicolas; Suan, Guillaume; Heimhofer, Ulrich; Immenhauser, Adrian

    2014-05-01

    Across the Pliensbachian-Toarcian boundary (P-To, Early Jurassic), ca. 1 Myr before the Toarcian Oceanic Anoxic Event (T-OAE), an initial negative carbon isotope excursion has been documented in western Tethys sedimentary rocks. In carbonate, its amplitude (2-3 permil) is similar to the subsequent excursion recorded at the onset of the T-OAE. Being also associated with a rapid warming event, the significance of this first carbon isotope shift, in terms of paleoenvironmental interpretation and triggering mechanism, remains however elusive. Taking advantage of expanded and rather continuous sections in the High Atlas of Morocco, several high-resolution, paired organic-inorganic carbon isotope records have been obtained across the Upper Pliensbachian - Lower Toarcian interval. At the onset of the T-OAE, an abrupt 1-2 permil negative shift is recorded in both organic and inorganic phases, succeeded by a relatively longer term 1-2 permil negative trend and a final slow return to pre-excursion conditions. In accordance with previous interpretations, this pattern indicates a perturbation of the entire exogenic carbon isotope reservoir at the onset of the T-OAE by the sudden release of isotopically light carbon into the atmosphere. By contrast, there is no negative shift in carbon isotopes for the P-To event recorded in bulk organic matter of Morocco. Given the strong dominance of terrestrial particles in the bulk organic matter fraction, this absence indicates that massive input of 12C-rich carbon into the atmosphere is not likely to have happened during the P-To event. A pronounced (2 permil) and abrupt negative shift in carbon isotope is however recorded in the bulk carbonate phase. We suggest that this decoupling between organic and inorganic phase is due to changes in the nature of the bulk carbonate phase. Indeed, the negative shift occurs at the lithological transition between Pliensbachian-lowermost Toarcian limestone-marl alternations and the Lower Toarcian marl

  15. In situ Measurement of Pore-Water pH in Anoxic Sediments Using Laser Raman Spectrometry

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Luna, M.; Walz, P. M.; Zhang, X.; Brewer, P. G.

    2010-12-01

    Accurate measurement of the geochemical properties of sediment pore waters is of fundamental importance in ocean geochemistry and microbiology. Recent work has shown that the properties of pore waters can be measured rapidly in situ with a novel Raman based insertion probe (Zhang et al., 2010), and that data obtained from anoxic sediments on in situ dissolved methane concentrations are very different (~30x) than from recovered cores due the large scale degassing that occurs during core recovery (Zhang et al., submitted). Degassing of methane must carry with it via Henry’s Law partioning significant quantities of H2S, which is clearly detectable by smell during sample processing, and thus in situ measurement of H2S is also highly desirable. In practice, dissolved H2S is partitioned between the HS- and H2S species as a function of pH with pKa ~7 for the acid dissociation reaction. Since both species are Raman active full determination of the sulfide system is possible if the relative Raman cross sections are known. The diagenetic equations for these reactions are commonly summarized as: 2CH2O + SO4= ↔ 2HCO3- + H2S CH4 + SO4= ↔ HCO3- + HS- + H2O Three of the major components of these equations, CH4, SO4=, and H2S/HS-, are all observable directly by Raman spectroscopy; but the detection of HCO3- presents a challenge due to its low Raman cross section and thus poor sensitivity. We show that pore water pH, which is a good estimator of HCO3- if total CO2 or alkalinity are known, can be measured by observing the H2S / HS- ratio via the equation: pH = pKa + log([HS-]/[H2S]) thereby fully constraining these equations within a single measurement protocol. The Raman peak for HS- is at 2573 cm-1 and for H2S is at 2592 cm-1; thus the peaks are well separated and may easily be deconvoluted from the observed spectrum. We have determined the relative Raman cross sections by a series of laboratory measurements over a range of pH and by using the definition that when pH = p

  16. Fossil proxies of near-shore sea surface temperatures and seasonality from the late Neogene Antarctic shelf.

    PubMed

    Clark, Nicola A; Williams, Mark; Hill, Daniel J; Quilty, Patrick G; Smellie, John L; Zalasiewicz, Jan; Leng, Melanie J; Ellis, Michael A

    2013-08-01

    We evaluate the available palaeontological and geochemical proxy data from bivalves, bryozoans, silicoflagellates, diatoms and cetaceans for sea surface temperature (SST) regimes around the nearshore Antarctic coast during the late Neogene. These fossils can be found in a number of shallow marine sedimentary settings from three regions of the Antarctic continent, the northern Antarctic Peninsula, the Prydz Bay region and the western Ross Sea. Many of the proxies suggest maximum spring-summer SSTs that are warmer than present by up to 5 °C, which would result in reduced seasonal sea ice. The evidence suggests that the summers on the Antarctic shelf during the late Neogene experienced most of the warming, while winter SSTs were little changed from present. Feedbacks from changes in summer sea ice cover may have driven much of the late Neogene ocean warming seen in stratigraphic records. Synthesized late Neogene and earliest Quaternary Antarctic shelf proxy data are compared to the multi-model SST estimates of the Pliocene Model Intercomparison Project (PlioMIP) Experiment 2. Despite the fragmentary geographical and temporal context for the SST data, comparisons between the SST warming in each of the three regions represented in the marine palaeontological record of the Antarctic shelf and the PlioMIP climate simulations show a good concordance.

  17. The effect of surficial disturbance on exchange between groundwater and surface water in near-shore margins

    USGS Publications Warehouse

    Rosenberry, Donald O.; Toran, Laura; Nyquist, Jonathan E.

    2010-01-01

    Low-permeability sediments situated at or near the sediment-water interface can influence seepage in nearshore margins, particularly where wave energy or currents are minimal. Seepage meters were used to quantify flow across the sediment-water interface at two lakes where flow was from surface water to groundwater. Disturbance of the sediment bed substantially increased seepage through the sandy sediments of both lakes. Seepage increased by factors of 2.6 to 7.7 following bed disturbance at seven of eight measurement locations at Mirror Lake, New Hampshire, where the sediment representing the greatest restriction to flow was situated at the sediment-water interface. Although the veneer of low-permeability sediment was very thin and easily disturbed, accumulation on the bed surface was aided by a physical setting that minimized wind-generated waves and current. At Lake Belle Taine, Minnesota, where pre-disturbance downward seepage was smaller than at Mirror Lake, but hydraulic gradients were very large, disturbance of a 20 to 30 cm thick medium sand layer resulted in increases in seepage of 2 to 3 orders of magnitude. Exceptionally large seepage rates, some exceeding 25,000 cm/d, were recorded following bed disturbance. Since it is common practice to walk on the bed while installing or making seepage measurements, disruption of natural seepage rates may be a common occurrence in nearshore seepage studies. Disturbance of the bed should be avoided or minimized when utilizing seepage meters in shallow, nearshore settings, particularly where waves or currents are infrequent or minimal.

  18. Near-shore sand thickness and stratigraphy mapping with a submerged GPR antenna system; southeast Lake Michigan

    SciTech Connect

    Sauck, W.A.; Seng, D.L. )

    1994-04-01

    Twenty-one shore perpendicular profiles, spaced at nominal 5 km intervals, have been surveyed with a bottom-sled mounted Ground Penetrating Radar (GPR) antenna system between Benton Harbor, MI, and Gary, IN. Either a commercial 500 MHz or a custom 145 MHz antenna were used. The bottom sled also carried an upward looking SONAR transducer to give concurrent water depth, and was towed from the beach out to water depths of 6 meters or more, usually ending about 500 meters from shore. Bedding structures and details are clearly visible on the GPR sections within the sand bars and sand blankets. Bottom morphology and the nature of the sand bodies change markedly from the NE to the SW limits of the survey area. At the NE profiles there are multiple, pronounced (or high amplitude) offshore bars, with the substrate (glacial clay, shale, or silty sand) exposed or nearly exposed between bars. Internal structure is generally foreset or cross bedding in the bars. Sand was thin or missing immediately to the Sw of several other jetty structures in addition to the one at St. Joseph. In general the sand bars became much less pronounced to the SW, and internal structures were dominated by parallel bedding and subtle angular unconformities. Near St. Joseph, the exposed substrate is almost certainly being eroded, even to water depths as great as 6 meters. Thus, the equilibrium bottom profile continues to deepen shoreward, causing the continued threat of bluff erosion in spite of annual beach nourishment efforts at this site.

  19. Interactions of aquaculture, marine coastal ecosystems, and near-shore waters: A bibliography. Bibliographies and literature of agriculture (Final)

    SciTech Connect

    Hanfman, D.T.; Coleman, D.E.; Tibbitt, S.J.

    1991-01-01

    The bibliography contains selected literature citations on the interactions of aquaculture and marine coastal ecosystems. The focus is on aquaculture effluents and their impact on marine coastal ecosystems and waterways as well as the impact of pollutants on aquaculture development. Factors affecting these issues include domestic and industrial wastes, thermal discharges, acid rain, heavy metals, oil spills, and microbial contamination of marine waters and aquatic species. Coastal zone management, environmenal impact of aquaculture, and water quality issues are also included in the bibliography.

  20. PHOTO-INDUCED POLYCYCLIC AROMATIC HYDROCARBON TOXIC POTENTIALS OF NEAR SHORE LARVAL FISH HABITAT IN THE GREAT LAKES, USA

    EPA Science Inventory

    Photo-induced toxicity (PIT) of polycyclic aromatic hydrocarbons (PAH) has been documented in laboratory studies for both invertebrate and vertebrate aquatic organisms. PIT has not been verified in field studies for larval fish to date. Filtered water samples and larval fish were...

  1. Detecting Land-based Signals in the Near-shore Zone of Lake Erie During Summer 2009

    EPA Science Inventory

    We conducted two styles of nearshore surveys in Lake Erie during August to mid-September 2009. The first used a spatially-balanced probability survey (SBS) design to establish discrete stations within a GIS-defined target populationthe nearshore zone extending approximately 5 km...

  2. The use of the marine gastropod, Cellana tramoserica, as a biomonitor of metal contamination in near shore environments.

    PubMed

    Maher, W; Maher, N; Taylor, A; Krikowa, F; Ubrihien, R; Mikac, K M

    2016-07-01

    The use of the marine gastropod, Cellana tramoserica, as a biomonitor of metal exposure was investigated. The factors influencing metal concentrations, such as mass, gender, substrate, shoreline position and temporal variation were examined. Tissue metal concentrations were mostly found to be independent of mass and gender. When metal concentrations were significantly correlated with mass, correlations were low and explained little variability. The underlying substrate and position in the littoral zone had only a small influence on metal concentrations. Variation between individuals, inherent variability due to genetic variability, was the most significant contribution to the overall variation in metal concentrations, resulting in positive skewing of population distributions. The mean metal concentrations varied temporally; metal masses were relatively constant with fluctuations in metal concentrations related to fluctuations in metal body burdens. The populations from a metal-contaminated site had significantly higher tissue Cu, Zn, As and Pb concentrations than the populations from relatively uncontaminated locations. C. tramoserica therefore can be considered to be a net accumulator of metals. A sample number of >10 is required to detect changes of 25 % from the mean concentrations at uncontaminated locations. This species meets the requirements of a suitable biomonitor for metal contaminants in the environment i.e. hardy, sessile, widespread, sufficient tissue mass and a metal accumulator. As the measurement of metal concentrations in C. tramesoria were influenced by substrate and shore position and, sometimes, mass, sites with similar substrates and organisms of similar mass and shoreline position should be chosen for comparison. When comparing metal concentrations in gastropods from different locations, they should be collected over the same period to minimise variability due to mass differences, spawning and other seasonal/temporal effects.

  3. Investigation of Wave Energy Converter Effects on Near-shore Wave Fields: Model Generation Validation and Evaluation - Kaneohe Bay HI.

    SciTech Connect

    Roberts, Jesse D.; Chang, Grace; Jones, Craig

    2014-09-01

    The numerical model, SWAN (Simulating WAves Nearshore) , was used to simulate wave conditions in Kaneohe Bay, HI in order to determine the effects of wave energy converter ( WEC ) devices on the propagation of waves into shore. A nested SWAN model was validated then used to evaluate a range of initial wave conditions: significant wave heights (H s ) , peak periods (T p ) , and mean wave directions ( MWD) . Differences between wave height s in the presence and absence of WEC device s were assessed at locations in shore of the WEC array. The maximum decrease in wave height due to the WEC s was predicted to be approximately 6% at 5 m and 10 m water depths. Th is occurred for model initiation parameters of H s = 3 m (for 5 m water depth) or 4 m (10 m water depth) , T p = 10 s, and MWD = 330deg . Subsequently, bottom orbital velocities were found to decrease by about 6%.

  4. Surficial substrates and bathymetry of five historical lake trout spawning reefs in near-shore waters of the Great Lakes

    USGS Publications Warehouse

    Edsall, Thomas A.; Brown, Charles L.; Kennedy, Gregory W.; French, John R. P.

    1992-01-01

    The reestablishment of self-sustaining stocks of lake trout (Salvelinus namaycush) in the lower four Great Lakes has been substantially impeded because planted fish do not produce enough progeny that survive and reproduce. The causes for this failure are unknown, but many historical spawning sites of lake trout have been degraded by human activities and can no longer produce viable swim-up fry. In this study, we used side-scan sonar and an underwater video camera to survey, map, and evaluate the sustainability of one reef in each of the five Great Lakes for lake trout spawning and fry production. At four of the reef sites, we found good-to-excellent substrate for spawning and fry production by the shallow-water strains of lake trout that are now being planted. These substrates were in water 6-22 m deep and were composed largely of rounded or angular rubble and cobble. Interstitial spaces in these substrates were 20 cm or deeper and would protect naturally spawned eggs and fry from predators, ice scour, and buffeting by waves and currents. Subsequent studies of egg survival by other researchers confirmed our evaluation that the best substrates at two of these sites still have the potential to produce viable swim-up fry.

  5. Consequences of artificial deepwater ventilation in the Bornholm Basin for oxygen conditions, cod reproduction and benthic biomass - a model study

    NASA Astrophysics Data System (ADS)

    Stigebrandt, A.; Rosenberg, R.; Råman Vinnå, L.; Ödalen, M.

    2015-01-01

    We develop and use a circulation model to estimate hydrographical and ecological changes in the isolated basin water of the Bornholm Basin. By pumping well-oxygenated so-called winter water to the greatest depth, where it is forced to mix with the resident water, the rate of deepwater density reduction increases as well as the frequency of intrusions of new oxygen-rich deepwater. We show that pumping 1000 m3 s-1 should increase the rates of water exchange and oxygen supply by 2.5 and 3 times, respectively. The CRV (cod reproduction volume), the volume of water in the isolated basin meeting the requirements for successful cod reproduction (S > 11, O2 > 2 mL L-1), should every year be greater than 54 km3, which is an immense improvement, since it has been much less in certain years. Anoxic bottoms should no longer occur in the basin, and hypoxic events will become rare. This should permit extensive colonization of fauna on the earlier periodically anoxic bottoms. Increased biomass of benthic fauna should also mean increased food supply to economically valuable demersal fish like cod and flatfish. In addition, re-oxygenation of the sediments should lead to increased phosphorus retention by the sediments.

  6. Occurrence, distribution and transport of pesticides into the Salton Sea Basin, California, 2001-2002

    USGS Publications Warehouse

    LeBlanc, L.A.; Kuivila, K.M.

    2008-01-01

    The Salton Sea is a hypersaline lake located in southeastern California. Concerns over the ecological impacts of sediment quality and potential human exposure to dust emissions from exposed lakebed sediments resulting from anticipated shrinking of shoreline led to a study of pesticide distribution and transport within the Salton Sea Basin, California, in 2001-2002. Three sampling stations-upriver, river mouth, and offshore-were established along each of the three major rivers that discharge into the Salton Sea. Large-volume water samples were collected for analysis of pesticides in water and suspended sediments at the nine sampling stations. Samples of the bottom sediment were also collected at each site for pesticide analysis. Sampling occurred in October 2001, March-April 2002, and October 2002, coinciding with the regional fall and spring peaks in pesticide use in the heavily agricultural watershed. Fourteen current-use pesticides were detected in water and the majority of dissolved concentrations ranged from the limits of detection to 151 ng/l. Diazinon, EPTC and malathion were detected at much higher concentrations (940-3,830 ng/l) at the New and Alamo River upriver and near-shore stations. Concentrations of carbaryl, dacthal, diazinon, and EPTC were higher in the two fall sampling periods, whereas concentrations of atrazine, carbofuran, and trifluralin were higher during the spring, which matched seasonal use patterns of these pesticides. Current-use pesticides were also detected on suspended and bed sediments in concentrations ranging from detection limits to 106 ng/g. Chlorpyrifos, dacthal, EPTC, trifluralin, and DDE were the most frequently detected pesticides on sediments from all three rivers. The number of detections and concentrations of suspended sediment-associated pesticides were often similar for the river upriver and near-shore sites, consistent with downstream transport of pesticides via suspended sediment. While detectable suspended sediment

  7. The roles of production and preservation during Oceanic Anoxic Event III: A multi-proxy record from the Western Interior Seaway

    NASA Astrophysics Data System (ADS)

    Tessin, A. C.; Hendy, I. L.; Sheldon, N. D.

    2013-12-01

    Cretaceous marine deposits are characterized by periods of enhanced organic carbon burial, known as Oceanic Anoxic Events (OAEs). A major unresolved debate about OAEs is whether changes in preservation or production are responsible for organic carbon burial. To address this question it is important to determine the relative roles of reducing bottom water conditions and surface water primary productivity at the onset of the event. Here we examine the Coniacian-Santonian event (OAE III) using high-resolution major element and trace metal records of the Niobrara Formation recovered in the USGS #1 Portland core from Cañon City Basin, Colorado. Preliminary results of redox sensitive trace metals (Re, Mo, U) and trace metals associated with organic matter (Cd, Ag) indicate that both bottom water suboxia and elevated primary productivity played a role in organic carbon burial during OAE III. The onset of organic carbon accumulation is characterized by two distinct periods of redox-sensitive trace metal enrichments indicating that initial carbon burial is associated with the development of bottom water suboxia. The second enrichment is followed by a shift in trace metal baseline values. Elevated concentrations of Cd and Ag without corresponding major enrichments in Re, Mo and U indicate the increased influence of high primary productivity. We compare trace metals records with bulk organic analyses (%TOC, C:N ratios, and organic carbon isotopes) to further elucidate the relationship between organic carbon accumulation, primary productivity, and bottom water oxygenation. Results from the Portland core are also compared to nearby cores in Colorado and Kansas to evaluate spatial variability throughout the carbon burial event, to examine differences between marginal and open seaway records, and to assess the role of proximity to terrestrial input.

  8. Diversity and Variability of Geoporphyrins and Chlorins During Cretaceous Oceanic Anoxic Event II.

    NASA Astrophysics Data System (ADS)

    Junium, C. K.; Mawson, D. H.; Arthur, M. A.; Keely, B. J.

    2005-12-01

    Geoporphyrins and chlorins are biomarkers that result from the transformation of tetrapyrroles including chlorophylls, bacteriochlorophylls and haems. The transformation reactions are initiated in the water column and sediments during early diagenesis and are dependent on a range of variables including, but not limited to water column redox state, burial conditions, and time. Geoporphyrins and chlorins can retain structural characteristics that allow unambiguous assignment of precursor structures and source organisms making their utility in paleoenvironmental studies extraordinary where such information is preserved. Black shales from Oceanic Anoxic Event II (OAE II, Cenomanian-Turonian Boundary) of ODP Leg 207 present a unique opportunity for investigating the variations in the tetrapyrrole record in very well preserved sediments across a globally significant biogeochemcal event. Identification and structural assignment of tetrapyrroles in this study were achieved by a combination of high-performance-liquid-chromatography (HPLC)/diode-array-detection (DAD) and liquid chromatography-mass spectrometry (LC-MSn) on acetone extracts. Stratigraphic variations in geoporphyrin compounds occur through OAE II. The relative proportions of metallated vs. free-base (metal free) porphyrins vary throughout the sequence, favoring free-base porphyrins during the height of the anoxic event. The greater proportion of free-base porphyrins associated with more extensive reducing conditions is consistent with metal ion limitation during euxinia. For example, vanadyl porphyrins become much less abundant during the peak of the event suggesting that the oceanic inventory of V was sequestered in black shales and unavailable. Preliminary characterization of the tetrapyrroles through OAE II of ODP Leg 207, Demerara Rise, reveals a wide range of geoporphyrins and chlorins. Notably, positive identification of chlorins, the geologically unstable intermediates between highly reactive

  9. Acid mine drainage treatment with a combined wetland/anoxic limestone drain: Greenhouse and field systems

    SciTech Connect

    Skousen, J.; Sexstone, A.; Cliff, J.; Sterner, P.; Calabrese, J.; Ziemkiewicz, P.

    1999-07-01

    The most common methods for treating acid mine drainage (AMD) involve applying a strong base to neutralize the acidity and to precipitate metals. Limestone use in AMD treatment has been largely confined to anaerobic wetlands, anoxic limestone drains (ALDs) and open limestone channels. If Fe{sup 3+} and Al could be removed from AMD before introduction into limestone systems, then the use of limestone for AMD treatment could be greatly expanded. The authors developed and monitored a passive AMD system to determine if AMD containing Fe{sup 3+} as ferrous sulfides (FeS{sub x}) through sulfate reduction. Further, Fe and al may be adsorbed to organic matter in the wetland thereby eliminating the formation of metal hydroxides with subsequent plugging of limestone pores. A field scale wetland/anoxic limestone drain (WALD) system located at Douglas, WV exported net alkaline water (mean of 127 mg/L as CaCO{sub 3}) for one year. However, dissolved oxygen and Fe data suggest that poor hydraulic conductivity caused this system to act as an Fe-oxidizing system, rather than an Fe-reducing system. As such, the system's long term effectiveness for treating AMD was compromised. After five years of operation, the system still reduces the acidity of the water from about 500 mg/L as CaCO{sub 3} to about 150 mg/L. A small scale Greenhouse system performed more like an Fe-reducing system, decreasing acidity for seven months and exporting Fe{sup 2+}, although the water existing the wetland did not contain excess alkalinity. While complications arose in the authors systems due to high flows in the Douglas system and high acidity in the Greenhouse system, pre-treating AMD with organic material can improve the condition of the water for proper treatment by an ALD or underlying limestone. For low to moderate flows (<400 L/min) and low Fe concentrations (<50 mg/L), a passive system that pre-treats AMD with organic substrates and then directs the water into limestone may be effective for many

  10. An endobiont-bearing allogromiid from the Santa Barbara Basin: Implications for the early diversification of foraminifera

    NASA Astrophysics Data System (ADS)

    Bernhard, Joan M.; Habura, Andrea; Bowser, Samuel S.

    2006-09-01

    Our current understanding of paleoecology and paleoceanography is largely based on the superb Phanerozoic fossil record of foraminiferan protists. The early history of the group is unresolved, however, because basal foraminiferans (allogromiids) are unmineralized and thus fossilize poorly. Molecular-clock studies date foraminiferal origins to the Neoproterozoic, but the deep sea, one of Earth's most extensive habitats and presently hosting a significant fraction of basal foraminiferal diversity, was probably anoxic at that time and, until now, anaerobic allogromiids were unknown. Molecular, cell, and ecological analyses reveal the presence of a previously unknown allogromiid inhabiting anoxic, sulfidic deep-sea sediments (Santa Barbara Basin, California). The fact that the new foraminifer harbors prokaryotic endobionts implicates symbiogenesis as a driving force in early foraminiferal diversification.

  11. Petroleum geology and resources of the West Siberian Basin, Russia

    USGS Publications Warehouse

    Ulmishek, Gregory F.

    2003-01-01

    The West Siberian basin is the largest petroleum basin in the world covering an area of about 2.2 million km2. The basin occupies a swampy plain between the Ural Mountains and the Yenisey River. On the north, the basin extends offshore into the southern Kara Sea. On the west, north, and east, the basin is surrounded by the Ural, Yenisey Ridge, and Turukhan-Igarka foldbelts that experienced major deformations during the Hercynian tectonic event and the Novaya Zemlya foldbelt that was deformed in early Cimmerian (Triassic) time. On the south, the folded Caledonian structures of the Central Kazakhstan and Altay-Sayan regions dip northward beneath the basin?s sedimentary cover. The basin is a relatively undeformed Mesozoic sag that overlies the Hercynian accreted terrane and the Early Triassic rift system. The basement is composed of foldbelts that were deformed in Late Carboniferous?Permian time during collision of the Siberian and Kazakhstan continents with the Russian craton. The basement also includes several microcontinental blocks with a relatively undeformed Paleozoic sedimentary sequence. The sedimentary succession of the basin is composed of Middle Triassic through Tertiary clastic rocks. The lower part of this succession is present only in the northern part of the basin; southward, progressively younger strata onlap the basement, so that in the southern areas the basement is overlain by Toarcian and younger rocks. The important stage in tectono-stratigraphic development of the basin was formation of a deep-water sea in Volgian?early Berriasian time. The sea covered more than one million km2 in the central basin area. Highly organic-rich siliceous shales of the Bazhenov Formation were deposited during this time in anoxic conditions on the sea bottom. Rocks of this formation have generated more than 80 percent of West Siberian oil reserves and probably a substantial part of its gas reserves. The deep-water basin was filled by prograding clastic clinoforms

  12. Genetic Diversity of Microbial Eukaryotes in Anoxic Sediment of the Saline Meromictic Lake Namako-ike (Japan): On the Detection of Anaerobic or Anoxic-tolerant Lineages of Eukaryotes.

    PubMed

    Takishita, Kiyotaka; Tsuchiya, Masashi; Kawato, Masaru; Oguri, Kazumasa; Kitazato, Hiroshi; Maruyama, Tadashi

    2007-01-01

    Available sequence data on eukaryotic small-subunit ribosomal DNA (SSU rDNA) directly retrieved from various environments have increased recently, and the diversity of microbial eukaryotes (protists) has been shown to be much greater than previously expected. However, the molecular information accumulated to date does still not thoroughly reveal ecological distribution patterns of microbial eukaryotes. In the ongoing challenge to detect anaerobic or anoxic-tolerant lineages of eukaryotes, we directly extracted DNA from the anoxic sediment of a saline meromictic lake, constructed genetic libraries of PCR-amplified SSU rDNA, and performed phylogenetic analyses with the cloned SSU rDNA sequences. Although a few sequences could not be confidently assigned to any major eukaryotic groups in the analyses and are debatable regarding their taxonomic positions, most sequences obtained have affiliations with known major lineages of eukaryotes (Cercozoa, Alveolata, Stramenopiles, and Opisthokonta). Among these sequences, some branched with lineages predominantly composed of uncultured environmental clones retrieved from other anoxic environments, while others were closely related to those of eukaryotic parasites (e.g. Phytomyxea of Cercozoa, Gregarinea of Alveolata, and Ichthyosporea of Opisthokonta).

  13. Treatment of petrochemical wastewater by microaerobic hydrolysis and anoxic/oxic processes and analysis of bacterial diversity.

    PubMed

    Yang, Qi; Xiong, Panpan; Ding, Pengyuan; Chu, Libing; Wang, Jianlong

    2015-11-01

    Microaerobic hydrolysis-acidification (MHA)-anoxic-oxic (A/O) processes were developed to treat actual petrochemical wastewater. The results showed that the overall COD removal efficiency was 72-79% at HRT=20h, and MHA accounted for 33-42% of COD removal, exhibiting good efficiency of acidogenic fermentation. Ammonium removal was more than 94%. The main pollutants in the influent were identified to be benzene, ketone, alcohols, amine, nitrile and phenols by GC-MS, and the majority of pollutants could be removed by MHA-A/O treatment. Proteobacteria was the most dominant bacteria in the system, accounting for more than 55% of the reads. The predominant genera in MHA, anoxic and oxic reactors were Anaerolineaceae and Sulfuritalea, Lactococcus and Blastocatella, and Saprospiraceae uncultured and Nitrosomonadaceae, respectively. This treatment system exhibited good performance in degrading the complex compounds in the petrochemical wastewater.

  14. Metabolic behavior and enzymatic aspects of denitrifying EBPR sludge in a continuous-flow anaerobic-anoxic system.

    PubMed

    Zafiriadis, Ilias; Ntougias, Spyridon; Kapagiannidis, Anastasios G; Aivasidis, Alexander

    2013-10-01

    The metabolic aspects of enhanced biological phosphorus removal (EBPR) were investigated for the first time in a continuous-flow anaerobic-anoxic plant fed with acetate, propionate, or substrates which are involved in the tricarboxylic acid and/or glyoxylate cycle, i.e., fumarate, malate, or oxaloacetate, as the sole carbon source. Although the polyphosphate-accumulating organisms (PAOs) population remained stable with any carbon source examined, no typical EBPR metabolism was observed during fumarate, malate, or oxaloacetate utilization. Specific enzymatic activities related to EBPR were determined in activated sludge homogenates and directly correlated with the nutrient metabolic rates. The experimental results indicated the direct involvement of alkaline phosphatase, pyrophosphatase, and exopolyphosphatase in the denitrifying EBPR process. Metabolic aspects of glyoxylate cycle enzymes are discussed with regard to the biomass anaerobic and anoxic activity. Process performance was highly influenced by the kind of substrate utilized, indicating that specific metabolic pathways should be followed to favor efficient EBPR.

  15. Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment

    USGS Publications Warehouse

    Finster, K.; Coates, J.D.; Liesack, W.; Pfennig, N.

    1997-01-01

    A mesophilic, acetate-oxidizing, sulfur-reducing bacterium, strain NZ27(T), was isolated from anoxic mud from a freshwater sulfur spring. The cells were ovoid, motile, and gram negative. In addition to acetate, the strain oxidized pyruvate, succinate, and fumarate. Sulfur flower could be replaced by polysulfide as an electron acceptor. Ferric nitrilotriacetic acid was reduced in the presence of pyruvate; however, this reduction did not sustain growth. These phenotypic characteristics suggested that strain NZ27(T) is affiliated with the genus Desulfuromonas. A phylogenetic analysis based on the results of comparative 16S ribosomal DNA sequencing confirmed that strain NZ27(T) belongs to the Desulfuromonas cluster in the recently proposed family 'Geobacteraceae' in the delta subgroup of the Proteobacteria. In addition, the results of DNA-DNA hybridization studies confirmed that strain NZ27(T) represents a novel species. Desulfuromonas thiophila, a name tentatively used in previous publications, is the name proposed for strain NZ27(T) in this paper.

  16. Carbonate platform evidence of ocean acidification at the onset of the early Toarcian oceanic anoxic event

    NASA Astrophysics Data System (ADS)

    Trecalli, Alberto; Spangenberg, Jorge; Adatte, Thierry; Föllmi, Karl B.; Parente, Mariano

    2012-12-01

    The early Toarcian oceanic anoxic event (Early Jurassic;˜183 Myr ago) is associated with one of the largest negative carbon isotope excursion (CIE) in the whole Phanerozoic (3-7‰). Estimates of the magnitude and rate of CO2 injection in the ocean-atmosphere system are compatible with a scenario of ocean acidification. Many carbonate platforms drowned in the Pliensbachian, well before the early Toarcian event. In this paper we test the hypothesis of surface water ocean acidification by presenting data from a resilient carbonate platform: the Apennine Carbonate Platform of southern Italy. The studied sections document a dramatic shift of the carbonate factory from massive biocalcification to chemical precipitation. Lithiotis bivalves and calcareous algae (Palaeodasycladus mediterraneus), which were the most prolific carbonate producers of Pliensbachian carbonate platforms, disappear during the first phase of the early Toarcian CIE, before the most depleted values are reached. We discuss the local versus supraregional significance of this shift and propose a scenario involving abrupt decline of carbonate saturation, forced by CO2 release at the beginning of the early Toarcian CIE, followed by a calcification overshoot, driven by the recovery of ocean alkalinity. Attribution of the demise of carbonate platform hypercalcifiers to ocean acidification is supported by palaeophysiology and reinforced by experimental data on the detrimental effects of ocean acidification on recent shellfishes and calcareous algae.

  17. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions.

    PubMed

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl-Heinz

    2012-05-01

    Due to its high global warming potential, nitrous oxide (N(2)O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N(2)O production. In this study, two lab-scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N(2)O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH(4)(+)) and nitrite (NO(2)(-)) led to increased N(2)O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N(2)O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments.

  18. Late Jurassic ocean anoxic event: evidence from voluminous sulphide deposition and preservation in the Panthalassa

    PubMed Central

    Nozaki, Tatsuo; Kato, Yasuhiro; Suzuki, Katsuhiko

    2013-01-01

    The historically productive copper-bearing Besshi-type sulphide deposits in the Japanese accretionary complex were formed as volcanogenic massive sulphide deposits on the deep-sea floor of the Panthalassa Ocean. Here we report that eleven typical Besshi-type deposits yielded Re-Os isochron ages around 150 Ma (148.4 ± 1.4 Ma from the composite isochron) in Late Jurassic time. This date coincides with the lowest marine 87Sr/86Sr ratio and highest atmospheric CO2 concentration of the past 300 million years. We infer that intense mid-ocean ridge hydrothermal and volcanic activity in the Late Jurassic produced huge sulphide deposits and large emissions of CO2 gas, leading to global warming and a stratified Panthalassa Ocean with anoxic deep seas that favored preservation of sulphides in the pelagic environment. The emergence of ocean anoxia triggered by seafloor volcanism is also consistent with a positive δ13C excursion and widespread deposition of petroleum source rocks and black shales. PMID:23712471

  19. Substrate uptake and subcellular compartmentation of anoxic cholesterol catabolism in Sterolibacterium denitrificans.

    PubMed

    Lin, Ching-Wen; Wang, Po-Hsiang; Ismail, Wael; Tsai, Yu-Wen; El Nayal, Ashraf; Yang, Chia-Ying; Yang, Fu-Chun; Wang, Chia-Hsiang; Chiang, Yin-Ru

    2015-01-01

    Cholesterol catabolism by actinobacteria has been extensively studied. In contrast, the uptake and catabolism of cholesterol by Gram-negative species are poorly understood. Here, we investigated microbial cholesterol catabolism at the subcellular level. (13)C metabolomic analysis revealed that anaerobically grown Sterolibacterium denitrificans, a β-proteobacterium, adopts an oxygenase-independent pathway to degrade cholesterol. S. denitrificans cells did not produce biosurfactants upon growth on cholesterol and exhibited high cell surface hydrophobicity. Moreover, S. denitrificans did not produce extracellular catabolic enzymes to transform cholesterol. Accordingly, S. denitrificans accessed cholesterol by direction adhesion. Cholesterol is imported through the outer membrane via a putative FadL-like transport system, which is induced by neutral sterols. The outer membrane steroid transporter is able to selectively import various C27 sterols into the periplasm. S. denitrificans spheroplasts exhibited a significantly higher efficiency in cholest-4-en-3-one-26-oic acid uptake than in cholesterol uptake. We separated S. denitrificans proteins into four fractions, namely the outer membrane, periplasm, inner membrane, and cytoplasm, and we observed the individual catabolic reactions within them. Our data indicated that, in the periplasm, various periplasmic and peripheral membrane enzymes transform cholesterol into cholest-4-en-3-one-26-oic acid. The C27 acidic steroid is then transported into the cytoplasm, in which side-chain degradation and the subsequent sterane cleavage occur. This study sheds light into microbial cholesterol metabolism under anoxic conditions.

  20. Substrate Uptake and Subcellular Compartmentation of Anoxic Cholesterol Catabolism in Sterolibacterium denitrificans*

    PubMed Central

    Lin, Ching-Wen; Wang, Po-Hsiang; Ismail, Wael; Tsai, Yu-Wen; El Nayal, Ashraf; Yang, Chia-Ying; Yang, Fu-Chun; Wang, Chia-Hsiang; Chiang, Yin-Ru

    2015-01-01

    Cholesterol catabolism by actinobacteria has been extensively studied. In contrast, the uptake and catabolism of cholesterol by Gram-negative species are poorly understood. Here, we investigated microbial cholesterol catabolism at the subcellular level. 13C metabolomic analysis revealed that anaerobically grown Sterolibacterium denitrificans, a β-proteobacterium, adopts an oxygenase-independent pathway to degrade cholesterol. S. denitrificans cells did not produce biosurfactants upon growth on cholesterol and exhibited high cell surface hydrophobicity. Moreover, S. denitrificans did not produce extracellular catabolic enzymes to transform cholesterol. Accordingly, S. denitrificans accessed cholesterol by direction adhesion. Cholesterol is imported through the outer membrane via a putative FadL-like transport system, which is induced by neutral sterols. The outer membrane steroid transporter is able to selectively import various C27 sterols into the periplasm. S. denitrificans spheroplasts exhibited a significantly higher efficiency in cholest-4-en-3-one-26-oic acid uptake than in cholesterol uptake. We separated S. denitrificans proteins into four fractions, namely the outer membrane, periplasm, inner membrane, and cytoplasm, and we observed the individual catabolic reactions within them. Our data indicated that, in the periplasm, various periplasmic and peripheral membrane enzymes transform cholesterol into cholest-4-en-3-one-26-oic acid. The C27 acidic steroid is then transported into the cytoplasm, in which side-chain degradation and the subsequent sterane cleavage occur. This study sheds light into microbial cholesterol metabolism under anoxic conditions. PMID:25418128

  1. A lab-scale anoxic/oxic-bioelectrochemical reactor for leachate treatments.

    PubMed

    Zhang, Guodong; Jiao, Yan; Lee, Duu-Jong

    2015-06-01

    A membraneless, liter-scale bioelectrochemical reactor with both bioanode and biocathode was established for landfill leachate treatment. Anoxic/oxic (A/O) zones at anode compartment and cathode compartment, respectively, were connected with a reflux to facilitate nitrogen removal. With raw landfill leachate of 17,500-22,600 mg L(-1) chemical oxygen demand (COD) and 1170-1490 mg L(-1) NH4(+)-N, the tested reactor removed 89.1±1.6% of chemical oxygen demand and 99.2±0.1% of NH4(+)-N at 3.0 kg COD m(-3) d(-1). The corresponding maximum power density was 2.71±0.09 W m(-3), with internal resistance of 46.7±1.6 Ω and open circuit voltage of 727±7 mV. The species of Pseudomonas, Desulfovibrio, Bacillus, Enterococcus, Pelospora, Dehalobacter dominated the anodic community, while those of methylotrophs, Rhodobacter, Verrucomicrobiaceae, Geobacter, Flavobacterium, Thauera, Desulfovibrio and Aeromonas dominated the cathodic community. The proposed A/O bioelectrochemical reactor is a prototype for practical treatment of landfill leachate at affordable costs. PMID:25812812

  2. Simultaneous removal of phenol and nitrate in an anoxic fluidized bed reactor.

    PubMed

    Omena, Sylvia P F; Sader, Leandro T; Silva, Edson L

    2013-01-01

    The general purpose of this study was to characterize a biological treatment system for phenol removal in an anoxic fluidized bed reactor (AFBR) that employed nitrate as the final electron acceptor. The average influent phenol concentrations in the study were 52, 107, 201, 335, and 518 mg/L so that phenol was not detected in the effluent for influent concentrations up to 335 mg/L. The removal efficiency dropped to 70% when the AFBR was operated with influent phenol concentrations above 500 mg/L. The ratio of carbon (derived solely from phenol) to nitrate (N-NO(3)) was approximately 1. Hence, the average influent N-NO(3) concentrations in the study were 45, 79, 157, 260, and 362 mg/L, with corresponding nitrogen removal efficiencies of 94%, 89%, 86%, 79%, and 51%. Nitrite accumulation was not observed because the average effluent N-NO(3) concentration during the entire reactor operation period was 1.5 mg/L.

  3. Influence of green waste compost on azimsulfuron dissipation and soil functions under oxic and anoxic conditions.

    PubMed

    García-Jaramillo, M; Cox, L; Hermosín, M C; Cerli, C; Kalbitz, K

    2016-04-15

    Concerns have been raised over the sustainability of intensive rice cultivation, where the use of chemical fertilizers and pesticides has been associated with numerous environmental problems. The objective of this study was to test the effect of the herbicide azimsulfuron on important soil functions as affected by amendment with a byproduct of the olive oil industry. Soil was collected from a Mediterranean rice field. Part of it was amended with alperujo compost (AC). Amended and unamended soils were incubated for 43days in presence or not of azimsulfuron, under anoxic-flooded (AF) and oxic-unflooded (OU) conditions. We monitored the dissipation of the herbicide azimsulfuron, C mineralization, soil microbial biomass (SMB) and dissolved organic carbon (DOC) content and its nature. Under AF conditions, the application of compost produced an increase in the dissipation of the herbicide (up to 12.4%). It was related with the higher DOC content, 4 times higher than under OU conditions. Though increases in carbon turnover (under AF and OU conditions) and reduction of SMBC after herbicide application (only under AF conditions) were observed, the differences were not statistically significant. The application of this organic amendment is presented as an efficient management strategy to increase C turnover in agricultural soils and reduce some of the negative effects derived from the application of azimsulfuron under flooded conditions.

  4. Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution.

    PubMed

    Ullmann, Clemens Vinzenz; Thibault, Nicolas; Ruhl, Micha; Hesselbo, Stephen P; Korte, Christoph

    2014-07-15

    The Toarcian oceanic anoxic event (T-OAE; ∼ 183 million y ago) is possibly the most extreme episode of widespread ocean oxygen deficiency in the Phanerozoic, coinciding with rapid atmospheric pCO2 increase and significant loss of biodiversity in marine faunas. The event is a unique past tipping point in the Earth system, where rapid and massive release of isotopically light carbon led to a major perturbation in the global carbon cycle as recorded in organic and inorganic C isotope records. Modern marine ecosystems are projected to experience major loss in biodiversity in response to enhanced ocean anoxia driven by anthropogenic release of greenhouse gases. Potential consequences of this anthropogenic forcing can be approximated by studying analog environmental perturbations in the past such as the T-OAE. Here we present to our knowledge the first organic carbon isotope record derived from the organic matrix in the calcite rostra of early Toarcian belemnites. We combine both organic and calcite carbon isotope analyses of individual specimens of these marine predators to obtain a refined reconstruction of the early Toarcian global exogenic carbon cycle perturbation and belemnite paleoecology. The organic carbon isotope data combined with measurements of oxygen isotope values from the same specimens allow for a more robust interpretation of the interplay between the global carbon cycle perturbation, environmental change, and biotic response during the T-OAE. We infer that belemnites adapted to environmental change by shifting their habitat from cold bottom waters to warm surface waters in response to expanded seafloor anoxia.

  5. Dissolved organic matter in anoxic pore waters from Mangrove Lake, Bermuda

    USGS Publications Warehouse

    Orem, W.H.; Hatcher, P.G.; Spiker, E. C.; Szeverenyi, N.M.; Maciel, G.E.

    1986-01-01

    Dissolved organic matter and dissolved inorganic chemical species in anoxic pore water from Mangrove Lake, Bermuda sediments were studied to evaluate the role of pore water in the early diagenesis of organic matter. Dissolved sulphate, titration alkalinity, phosphate, and ammonia concentration versus depth profiles were typical of many nearshore clastic sediments and indicated sulphate reduction in the upper 100 cm of sediment. The dissolved organic matter in the pore water was made up predominantly of large molecules, was concentrated from large quantities of pore water by using ultrafiltration and was extensively tudied by using elemental and stable carbon isotope analysis and high-resolution, solid state 13C nuclear magnetic resonance and infrared spectroscopy. The results indicate that this material has a predominantly polysaccharide-like structure and in addition contains a large amount of oxygen-containing functional groups (e.g., carboxyl groups). The 13C nulcear magnetic resonance spectra of the high-molecular-weight dissolved organic matter resemble those of the organic matter in the surface sediments of Mangrove Lake. We propose that this high-molecular-weight organic matter in pore waters represents the partially degraded, labile organic components of the sedimentary organic matter and that pore waters serve as a conduit for removal of these labile organic components from the sediments. The more refractory components are, thus, selectively preserved in the sediments as humic substances (primarily humin). ?? 1986.

  6. Influence of green waste compost on azimsulfuron dissipation and soil functions under oxic and anoxic conditions.

    PubMed

    García-Jaramillo, M; Cox, L; Hermosín, M C; Cerli, C; Kalbitz, K

    2016-04-15

    Concerns have been raised over the sustainability of intensive rice cultivation, where the use of chemical fertilizers and pesticides has been associated with numerous environmental problems. The objective of this study was to test the effect of the herbicide azimsulfuron on important soil functions as affected by amendment with a byproduct of the olive oil industry. Soil was collected from a Mediterranean rice field. Part of it was amended with alperujo compost (AC). Amended and unamended soils were incubated for 43days in presence or not of azimsulfuron, under anoxic-flooded (AF) and oxic-unflooded (OU) conditions. We monitored the dissipation of the herbicide azimsulfuron, C mineralization, soil microbial biomass (SMB) and dissolved organic carbon (DOC) content and its nature. Under AF conditions, the application of compost produced an increase in the dissipation of the herbicide (up to 12.4%). It was related with the higher DOC content, 4 times higher than under OU conditions. Though increases in carbon turnover (under AF and OU conditions) and reduction of SMBC after herbicide application (only under AF conditions) were observed, the differences were not statistically significant. The application of this organic amendment is presented as an efficient management strategy to increase C turnover in agricultural soils and reduce some of the negative effects derived from the application of azimsulfuron under flooded conditions. PMID:26849340

  7. A lab-scale anoxic/oxic-bioelectrochemical reactor for leachate treatments.

    PubMed

    Zhang, Guodong; Jiao, Yan; Lee, Duu-Jong

    2015-06-01

    A membraneless, liter-scale bioelectrochemical reactor with both bioanode and biocathode was established for landfill leachate treatment. Anoxic/oxic (A/O) zones at anode compartment and cathode compartment, respectively, were connected with a reflux to facilitate nitrogen removal. With raw landfill leachate of 17,500-22,600 mg L(-1) chemical oxygen demand (COD) and 1170-1490 mg L(-1) NH4(+)-N, the tested reactor removed 89.1±1.6% of chemical oxygen demand and 99.2±0.1% of NH4(+)-N at 3.0 kg COD m(-3) d(-1). The corresponding maximum power density was 2.71±0.09 W m(-3), with internal resistance of 46.7±1.6 Ω and open circuit voltage of 727±7 mV. The species of Pseudomonas, Desulfovibrio, Bacillus, Enterococcus, Pelospora, Dehalobacter dominated the anodic community, while those of methylotrophs, Rhodobacter, Verrucomicrobiaceae, Geobacter, Flavobacterium, Thauera, Desulfovibrio and Aeromonas dominated the cathodic community. The proposed A/O bioelectrochemical reactor is a prototype for practical treatment of landfill leachate at affordable costs.

  8. Chloropigment nitrogen isotopes: new insights on export production during oceanic anoxic events

    NASA Astrophysics Data System (ADS)

    Higgins, M. B.; Robinson, R. S.; Pearson, A.

    2011-12-01

    The Mesozoic is marked by several widespread occurrences of intense organic matter burial, corresponding to proposed Oceanic Anoxic Events (OAEs). Sediments from the largest of these events, the Cenomanian-Turonian OAE 2, are characterized by lower nitrogen isotope ratios than are seen in modern marine settings. We use a high-resolution porphyrin nitrogen isotope record through OAE 2 to interpret nitrogen isotope depletion that is common during OAEs. Nitrogen isotope values of sedimentary chloropigments reflect a diagenetically unaltered signal of surface water nitrogen sources. Additionally, due to taxonomic differences in chlorophyll nitrogen fractionation, the nitrogen isotopic offset between chloropigments and bulk nitrogen can be used to estimate the relative contribution of cyanobacteria and eukaryotic algae to export production. Our porphyrin data show that eukaryotes contributed the quantitative majority of export production throughout OAE 2, suggesting that any explanation for the OAE nitrogen cycle and its isotopic values be consistent with a eukaryote-dominated ecosystem. We propose that new production during OAE 2 primarily was driven by direct assimilation of upwelled NH4+, supplemented by diazotrophy. A marine nitrogen reservoir dominated by NH4+, in combination with known kinetic isotope effects, could lead to eukaryotic biomass depleted in 15N.

  9. Ion channel involvement in anoxic depolarization induced by cardiac arrest in rat brain.

    PubMed

    Xie, Y; Zacharias, E; Hoff, P; Tegtmeier, F

    1995-07-01

    Anoxic depolarization (AD) and failure of ion homeostasis play an important role in ischemia-induced neuronal injury. In the present study, different drugs with known ion-channel-modulating properties were examined for their ability to interfere with cardiac-arrest-elicited AD and with the changes in the extracellular ion activity in rat brain. Our results indicate that only drugs primarily blocking membrane Na+ permeability (NBQX, R56865, and flunarizine) delayed the occurrence of AD, while compounds affecting cellular Ca2+ load (MK-801 and nimodipine) did not influence the latency time. The ischemia-induced [Na+]e reduction was attenuated by R56865. Blockade of the ATP-sensitive K+ channels with glibenclamide reduced the [K+]e increase upon ischemia, indicating an involvement of the KATP channels in ischemia-induced K+ efflux. The KATP channel opener cromakalim did not affect the AD or the [K+]e concentration. The ischemia-induced rapid decline of extracellular calcium was attenuated by receptor-operated Ca2+ channel blockers MK-801 and NBQX, but not by the voltage-operated Ca2+ channel blocker nimodipine, R56865, and flunarizine. PMID:7540620

  10. Immobilization of selenate by iron in aqueous solution under anoxic conditions and the influence of uranyl

    NASA Astrophysics Data System (ADS)

    Puranen, Anders; Jonsson, Mats; Dähn, Rainer; Cui, Daqing

    2009-08-01

    In proposed high level radioactive waste repositories a large part of the spent nuclear fuel (SNF) canisters are commonly composed of iron. Selenium is present in spent nuclear fuel as a long lived fission product. This study investigates the influence of iron on the uptake of dissolved selenium in the form of selenate and the effect of the presence of dissolved uranyl on the above interaction of selenate. The iron oxide, and selenium speciation on the surfaces was investigated by Raman spectroscopy. X-ray Absorption Spectroscopy was used to determine the oxidation state of the selenium and uranium on the surfaces. Under the simulated groundwater conditions (10 mM NaCl, 2 mM NaHCO 3, <0.1 ppm O 2) the immobilized selenate was found to be reduced to oxidation states close to zero or lower and uranyl was found to be largely reduced to U(IV). The near simultaneous reduction of uranyl was found to greatly enhance the rate of selenate reduction. These findings suggest that the presence of uranyl being reduced by an iron surface could substantially enhance the rate of reduction of selenate under anoxic conditions relevant for a repository.

  11. Modeling simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater.

    PubMed

    Mendes, Carlos; Esquerre, Karla; Queiroz, Luciano Matos

    2016-07-15

    This paper presents a mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) to simulate the effects of nitrate concentration and hydraulic retention time (HRT) on the simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater. The model was calibrated using previously published experimental data obtained from anaerobic batch tests for different COD/ [Formula: see text] ratios. Model simulations were performed to predict the SCNR in a completely mixed reactor (CSTR) operating under mesophilic conditions (35 °C). Six different scenarios were evaluated to investigate the performance of the SCNR based on typical influent characteristics of domestic wastewater. The variables analyzed were chemical oxygen demand (COD) removal, nitrate concentration, methane production, nitrogen gas, volatile fatty acids (VFA) concentration, pH and percentage of COD used by the denitrifying and methanogenic microorganisms. The HRT was decreased stepwise from 15 to 4 h. The results indicate that Scenario (S5) with a COD/ [Formula: see text] ratio equal to 10 and an HRT equal to 15 h ensures the occurrence of the stable SCNR. Furthermore, the accumulation of denitrification intermediates and a significant reduction in the biogas production when the organic matter is limited was verified. PMID:27088208

  12. Key respiratory genes elucidate bacterial community respiration in a seasonally anoxic estuary.

    PubMed

    Eggleston, Erin M; Lee, Dong Y; Owens, Michael S; Cornwell, Jeffrey C; Crump, Byron C; Hewson, Ian

    2015-07-01

    Intense annual spring phytoplankton blooms and thermohaline stratification lead to anoxia in Chesapeake Bay bottom waters. Once oxygen becomes depleted in the system, microbial communities use energetically favourable alternative electron acceptors for respiration. The extent to which changes in respiration are reflected in community gene expression have only recently been investigated. Metatranscriptomes prepared from near-bottom water plankton over a 4-month time series in central Chesapeake Bay demonstrated changes consistent with terminal electron acceptor availability. The frequency of respiration-related genes in metatranscriptomes was examined by BLASTx against curated databases of genes intimately and exclusively involved in specific electron acceptor utilization pathways. The relative expression of genes involved in denitrification and dissimilatory nitrate reduction to ammonium were coincident with changes in nitrate, nitrite and ammonium concentrations. Dissimilatory iron and manganese reduction transcript ratios increase during anoxic conditions and corresponded with the highest soluble reactive phosphate and manganese concentrations. The sulfide concentration peaked in late July and early August and also matched dissimilatory sulfate reduction transcript ratios. We show that rather than abrupt transitions between terminal electron acceptors, there is substantial overlap in time and space of these various anaerobic respiratory processes in Chesapeake Bay.

  13. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event

    PubMed

    Hesselbo; Grocke; Jenkyns; Bjerrum; Farrimond; Morgans Bell HS; Green

    2000-07-27

    In the Jurassic period, the Early Toarcian oceanic anoxic event (about 183 million years ago) is associated with exceptionally high rates of organic-carbon burial, high palaeotemperatures and significant mass extinction. Heavy carbon-isotope compositions in rocks and fossils of this age have been linked to the global burial of organic carbon, which is isotopically light. In contrast, examples of light carbon-isotope values from marine organic matter of Early Toarcian age have been explained principally in terms of localized upwelling of bottom water enriched in 12C versus 13C (refs 1,2,5,6). Here, however, we report carbon-isotope analyses of fossil wood which demonstrate that isotopically light carbon dominated all the upper oceanic, biospheric and atmospheric carbon reservoirs, and that this occurred despite the enhanced burial of organic carbon. We propose that--as has been suggested for the Late Palaeocene thermal maximum, some 55 million years ago--the observed patterns were produced by voluminous and extremely rapid release of methane from gas hydrate contained in marine continental-margin sediments.

  14. Modeling simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater.

    PubMed

    Mendes, Carlos; Esquerre, Karla; Queiroz, Luciano Matos

    2016-07-15

    This paper presents a mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) to simulate the effects of nitrate concentration and hydraulic retention time (HRT) on the simultaneous carbon and nitrogen removal (SCNR) in anaerobic/anoxic reactor treating domestic wastewater. The model was calibrated using previously published experimental data obtained from anaerobic batch tests for different COD/ [Formula: see text] ratios. Model simulations were performed to predict the SCNR in a completely mixed reactor (CSTR) operating under mesophilic conditions (35 °C). Six different scenarios were evaluated to investigate the performance of the SCNR based on typical influent characteristics of domestic wastewater. The variables analyzed were chemical oxygen demand (COD) removal, nitrate concentration, methane production, nitrogen gas, volatile fatty acids (VFA) concentration, pH and percentage of COD used by the denitrifying and methanogenic microorganisms. The HRT was decreased stepwise from 15 to 4 h. The results indicate that Scenario (S5) with a COD/ [Formula: see text] ratio equal to 10 and an HRT equal to 15 h ensures the occurrence of the stable SCNR. Furthermore, the accumulation of denitrification intermediates and a significant reduction in the biogas production when the organic matter is limited was verified.

  15. Environmental magnetism of the Toarcian Oceanic Anoxic Event at Peniche (Portugal)

    NASA Astrophysics Data System (ADS)

    Font, Eric; Vitor Duarte, Luis; Adatte, Thierry; Mirão, José

    2016-04-01

    The Pliensbachian-Toarcian section of Peniche has been recently selected as the global stratotype section and point for this time interval. It represents one of the best examples of the record of the oceanic anoxic event (OAE) in the world. Here we conducted a detailed a magnetostratigraphic and environmental study in order to improve the time-scale calibration and to provide new magnetic markers for period of oceanic anoxia recorded in marine sediments. Our results show that the magnetic signal is carried by very low coercive magnetic minerals and exhibit unstable and unreliable data for magnetostratigraphic investigation. In counterpart, bulk magnetic properties (magnetic susceptibility, isothermal remanent magnetization curves, etc) coupled to Scanning Electron Microscopy (SEM) show a striking negative correlation with carbonate content and 13DC previously published in the literature. Particularly, the most pronounced negative C isotopic composition of the OAE interval correlates with high magnetic susceptibility values. SEM-EDS analysis show that the strata featured by high MS values contain ubiquitous pyrite and greigite framboids. These insights provide new markers to identify the magnetic signature of OAE in the marine record. Funded by IDL (FCT UID/GEO/50019/2013)

  16. Textiles wastewater treatment using anoxic filter bed and biological wriggle bed-ozone biological aerated filter.

    PubMed

    Fu, Zhimin; Zhang, Yugao; Wang, Xiaojun

    2011-02-01

    In this study, the performance of the anoxic filter bed and biological wriggle bed-ozone biological aerated filter (AFB-BWB-O(3)-BAF) process treating real textile dyeing wastewater was investigated. After more than 2 month process operation, the average effluent COD concentration of the AFB, BWB, O(3)-BAF were 704.8 mg/L, 294.6 mg/L and 128.8 mg/L, with HRT being 8.1-7.7h, 9.2h and 5.45 h, respectively. Results showed that the effluent COD concentration of the AFB decreased with new carriers added and the average removal COD efficiency was 20.2%. During operation conditions, HRT of the BWB and O(3)-BAF was increased, resulting in a decrease in the effluent COD concentration. However, on increasing the HRT, the COD reduction capability expressed by the unit carrier COD removal loading of the BWB reactor increased, while that of the O(3)-BAF reactor decreased. This study is a beneficial attempt to utilize the AFB-BWB-O(3)-BAF combine process for textile wastewater treatment.

  17. Bacterial ethane formation from reduced, ethylated sulfur compounds in anoxic sediments

    USGS Publications Warehouse

    Oremland, R.S.; Whiticar, Michael J.; Strohmaier, F.E.; Kiene, R.P.

    1988-01-01

    Trace levels of ethane were produced biologically in anoxic sediment slurries from five chemically different aquatic environments. Gases from these locations displayed biogenic characteristics, having 12C-enriched values of ??13CH4 (-62 to -86%.), ??13C2H6 (-35 to -55%.) and high ratios (720 to 140,000) of CH4 [C2H6 + C3H8]. Endogenous production of ethane by slurries was inhibited by autoclaving or by addition of the inhibitor of methanogenic bacteria, 2-bromoethanesulfonic acid (BES). Ethane formation was stimulated markedly by ethanethiol (ESH), and, to a lesser extent, by diethylsulfide (DES). Formation of methane and ethane in ESH- or DES-amended slurries was blocked by BES. Experiments showed that ethionine (or an analogous compound) could be a precursor of ESH. Ethylamine or ethanol additions to slurries caused only a minor stimulation of ethane formation. Similarly, propanethiol additions resulted in only a minor enhancement of propane formation. Cell suspensions of a methyltrophic methanogen produced traces of ethane when incubated in the presence of DES, although the organism did not grow on this compound. These results indicate that methanogenic bacteria produce ethane from the traces of ethylated sulfur compounds present in recent sediments. Preliminary estimates of stable carbon isotope fractionation associated with sediment methane formation from dimethylsulfide was about 40%., while ethane formation from DES and ESH was only 4. 6 and 6.5%., respectively. ?? 1988.

  18. Reduction in Neural Performance following Recovery from Anoxic Stress Is Mimicked by AMPK Pathway Activation

    PubMed Central

    Money, Tomas G. A.; Sproule, Michael K. J.; Hamour, Amr F.; Robertson, R. Meldrum

    2014-01-01

    Nervous systems are energetically expensive to operate and maintain. Both synaptic and action potential signalling require a significant investment to maintain ion homeostasis. We have investigated the tuning of neural performance following a brief period of anoxia in a well-characterized visual pathway in the locust, the LGMD/DCMD looming motion-sensitive circuit. We hypothesised that the energetic cost of signalling can be dynamically modified by cellular mechanisms in response to metabolic stress. We examined whether recovery from anoxia resulted in a decrease in excitability of the electrophysiological properties in the DCMD neuron. We further examined the effect of these modifications on behavioural output. We show that recovery from anoxia affects metabolic rate, flight steering behaviour, and action potential properties. The effects of anoxia on action potentials can be mimicked by activation of the AMPK metabolic pathway. We suggest this is evidence of a coordinated cellular mechanism to reduce neural energetic demand following an anoxic stress. Together, this represents a dynamically-regulated means to link the energetic demands of neural signaling with the environmental constraints faced by the whole animal. PMID:24533112

  19. Key respiratory genes elucidate bacterial community respiration in a seasonally anoxic estuary.

    PubMed

    Eggleston, Erin M; Lee, Dong Y; Owens, Michael S; Cornwell, Jeffrey C; Crump, Byron C; Hewson, Ian

    2015-07-01

    Intense annual spring phytoplankton blooms and thermohaline stratification lead to anoxia in Chesapeake Bay bottom waters. Once oxygen becomes depleted in the system, microbial communities use energetically favourable alternative electron acceptors for respiration. The extent to which changes in respiration are reflected in community gene expression have only recently been investigated. Metatranscriptomes prepared from near-bottom water plankton over a 4-month time series in central Chesapeake Bay demonstrated changes consistent with terminal electron acceptor availability. The frequency of respiration-related genes in metatranscriptomes was examined by BLASTx against curated databases of genes intimately and exclusively involved in specific electron acceptor utilization pathways. The relative expression of genes involved in denitrification and dissimilatory nitrate reduction to ammonium were coincident with changes in nitrate, nitrite and ammonium concentrations. Dissimilatory iron and manganese reduction transcript ratios increase during anoxic conditions and corresponded with the highest soluble reactive phosphate and manganese concentrations. The sulfide concentration peaked in late July and early August and also matched dissimilatory sulfate reduction transcript ratios. We show that rather than abrupt transitions between terminal electron acceptors, there is substantial overlap in time and space of these various anaerobic respiratory processes in Chesapeake Bay. PMID:25470994

  20. Modified aluminosilicates as low-cost sorbents of As(III) from anoxic groundwater.

    PubMed

    Dousová, Barbora; Fuitová, Lucie; Grygar, Tomás; Machovic, Vladimír; Kolousek, David; Herzogová, Lenka; Lhotka, Miloslav

    2009-06-15

    The utilization of low-grade clay materials as selective sorbents represents one of the most effective possibilities of As removal from contaminated water reservoirs. The simple pre-treatment of these materials with Fe (Al, Mn) salts can significantly improve their sorption affinity to As oxyanions. The natural kaolin calcined at 550 degrees C (mostly metakaolin) and raw bentonite (mostly montmorillonite) pre-treated with Fe(II), Fe(III), Al(III) and Mn(II) salts were used to remove of As from the model anoxic groundwater with As(III) concentration about 0.5 and 10 mg L(-1). All the pre-treating methods were appropriate for bentonite; the efficiency of As(III) sorption varied from 92 to >99%, by the sorption capacity higher than 4.5 mg g(-1). In the case of metakaolin, Fe(II)- and Mn(II)-treatments proved the high sorption efficiency (>97%), while only <50% of As was removed after Fe(III) and Al(III) pre-treatment. The sorption capacities of treated metakaolin ranged from 0.1 to 2.0 mg g(-1).

  1. Seasonal C-13 variations of methane from an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Blair, Neal; Desmarais, David S.; Martens, Christopher S.

    1985-01-01

    Recent analyses of glacial ice suggest that the atmospheric concentration of methane has doubled in the last several hundred years, presumably due to anthropogenic perturbations of the relevant biogeochemical cycles. In principal, carbon isotopic measurements of atmospheric methane would provide information concerning changes in the sources and sinks of methane. The isotopic composition of methane is dependent on the source of the methane carbon, the mechanism of methane synthesis, and the degree and mode of oxidation which the methane has experienced. Unfortunately, few carbon isotopic measurements of atmospheric variations have been reported, so conclusions about temporal isotopic variations cannot be made. Also, before isotopic measurements of atmospheric methane can be used to identify changes in methane isotopic composition from different sources must be obtained. Methane bubbles from the anoxic sediments of Cape Lookout Bight, NC exhibit seasonal C-13 variations. The C-13 values ranged from -58 in August to -64 in the winter months with the evolution of the C-13 enriched gas occurring during periods of peak methane production. Even though a few intramolecular C-13 measurements of the pore water acetate have been made (methyl group, -26 per mil; carbonyl, -6 per mil), it is not clear how the acetate fermentation pathway affects the methane C-13/C-12 composition.

  2. Degradation of chiral neonicotinoid insecticide cycloxaprid in flooded and anoxic soil.

    PubMed

    Liu, Xuanqi; Xu, Xiaoyong; Li, Chao; Zhang, Hanxue; Fu, Qiuguo; Shao, Xusheng; Ye, Qingfu; Li, Zhong

    2015-01-01

    Cycloxaprid (CYC), with two stereogenic centers from oxabridged ring, is a novel potent neonicotinoid insecticide. The investigation of relevant transformation products (TPs) is critical for the risk evaluation of CYC on environment impact and further regulatory decisions. In this study, stereoselective soil metabolism of CYC enantiomers was investigated using isotope labeling techniques. Liquid scintillation counting with LC-MS/MS was used to identify and quantify the major transformation products (TPs) of CYC enantiomers in four various soils under anoxic and flooded condition. Most of CYC had been transformed in four soils at 5d after treatment. Furthermore, CYC was found converted to a range of transformation products, which exhibited soil-specific dynamic changes. Cleavage of the oxabridged seven-member ring, reductive dechlorination in the chloropyridinyl and cleavage of C-N between the chloropyridinylmethyl and imidazalidine ring are the main transformation pathways of CYC. It is presumed that acidic condition may conduce to form the cleavage product of oxabridged seven-member ring. However, abiotic or biotic stereoselective persistence of TPs in all soils was not observed from the experimental data and may be attributed to the unstable oxabridged ring. PMID:25043960

  3. Acetate-utilizing bacteria at an oxic-anoxic interface in the Baltic Sea.

    PubMed

    Berg, Carlo; Beckmann, Sabrina; Jost, Günter; Labrenz, Matthias; Jürgens, Klaus

    2013-08-01

    Pelagic redoxclines represent chemical gradients of elevated microbial activities. While chemolithoautotrophic microorganisms in these systems are well known as catalysts of major biogeochemical cycles, comparable knowledge on heterotrophic organisms is scarce. Thus, in this study, identity and biogeochemical involvement of active heterotrophs were investigated in stimulation experiments and activity measurements based on samples collected from pelagic redoxclines of the central Baltic Sea in 2005 and 2009. In the 2009 samples, (13)C-acetate 16S rRNA stable isotope probing (16S rRNA-SIP) identified gammaproteobacteria affiliated with Colwellia sp. and Neptunomonas sp. in addition to epsilonproteobacteria related to Arcobacter spp. as active heterotrophs at the oxic-anoxic interface layer. Incubations from sulfidic waters were dominated by two phylogenetic subgroups of Arcobacter. In the 2005 samples, organics, manganese(IV), and iron(III) were added to the sulfidic waters, followed by the determination of metal reduction and identification of the stimulated organisms. Here, the same Arcobacter and Colwellia subgroups were stimulated as in 2009, with Arcobacter predominating in samples, in which manganese(IV) reduction was highest. Our results offer new insights into the heterotrophic bacterial assemblage of Baltic Sea pelagic redoxclines and suggest Arcobacter spp. as a heterotroph with presumed relevance also for manganese cycling.

  4. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes.

    PubMed

    Miller, Laurence G; Oremland, Ronald S

    2008-11-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress.

  5. Metal impacts on microbial biomass in the anoxic sediments of a contaminated lake

    SciTech Connect

    Gough, Heidi L.; Dahl, Amy L.; Nolan, Melissa A.; Gaillard, Jean-Francois; Stahl, David A.

    2008-04-26

    Little is known about the long-term impacts of metal contamination on the microbiota of anoxic lake sediments. In this study, we examined microbial biomass and metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, and zinc) in the sediments of Lake DePue, a backwater lake located near a former zinc smelter. Sediment core samples were examined using two independent measures for microbial biomass (total microscopic counts and total phospholipid-phosphate concentrations), and for various fractions of each metal (pore water extracts, sequential extractions, and total extracts of all studied metals and zinc speciation by X-ray absorption fine structure (XAFS). Zinc concentrations were up to 1000 times higher than reported for sediments in the adjacent Illinois River, and ranged from 21,400 mg/kg near the source to 1,680 mg/kg near the river. However, solid metal fractions were not well correlated with pore water concentrations, and were not good predictors of biomass concentrations. Instead, biomass, which varied among sites by as much as two-times, was inversely correlated with concentrations of pore water zinc and arsenic as established by multiple linear regression. Monitoring of other parameters known to naturally influence biomass in sediments (e.g., organic carbon concentrations, nitrogen concentrations, pH, sediment texture, and macrophytes) revealed no differences that could explain observed biomass trends. This study provides strong support for control of microbial abundance by pore water metal concentrations in contaminated freshwater sediments.

  6. Hydrobiogeochemical interactions in 'anoxic' limestone drains for neutralization of acidic mine drainage

    USGS Publications Warehouse

    Robbins, E.I.; Cravotta, C.A.; Savela, C.E.; Nord, G.L.

    1999-01-01

    Processes affecting neutralization of acidic coal mine drainage were evaluated within 'anoxic' limestone drains (ALDs). Influents had pH???3.5 and dissolved oxygen <2 mg/l. Even though effluents were near neutral (pH 6 and alkalinity acidity), two of the four ALDs were failing due to clogging. Mineral-saturation indices indicated the potential for dissolution of calcite and gypsum, and precipitation of Al3+ and Fe3+ compounds. Cleavage mounts of calcite and gypsum that were suspended within the ALDs and later examined microscopically showed dissolution features despite coatings by numerous bacteria, biofilms, and Fe-Al-Si precipitates. In the drain exhibiting the greatest flow reduction, Al-hydroxysulfates had accumulated on limestone surfaces and calcite etch points, thus causing the decline in transmissivity and dissolution. Therefore, where Al loadings are high and flow rates are low, a pre-treatment step is indicated to promote Al removal before diverting acidic mine water into alkalinity-producing materials. ?? 1998 Elsevier Science Ltd.

  7. Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution

    NASA Astrophysics Data System (ADS)

    Vinzenz Ullmann, Clemens; Thibault, Nicolas; Ruhl, Micha; Hesselbo, Stephen P.; Korte, Christoph

    2014-07-01

    The Toarcian oceanic anoxic event (T-OAE; ∼183 million y ago) is possibly the most extreme episode of widespread ocean oxygen deficiency in the Phanerozoic, coinciding with rapid atmospheric pCO2 increase and significant loss of biodiversity in marine faunas. The event is a unique past tipping point in the Earth system, where rapid and massive release of isotopically light carbon led to a major perturbation in the global carbon cycle as recorded in organic and inorganic C isotope records. Modern marine ecosystems are projected to experience major loss in biodiversity in response to enhanced ocean anoxia driven by anthropogenic release of greenhouse gases. Potential consequences of this anthropogenic forcing can be approximated by studying analog environmental perturbations in the past such as the T-OAE. Here we present to our knowledge the first organic carbon isotope record derived from the organic matrix in the calcite rostra of early Toarcian belemnites. We combine both organic and calcite carbon isotope analyses of individual specimens of these marine predators to obtain a refined reconstruction of the early Toarcian global exogenic carbon cycle perturbation and belemnite paleoecology. The organic carbon isotope data combined with measurements of oxygen isotope values from the same specimens allow for a more robust interpretation of the interplay between the global carbon cycle perturbation, environmental change, and biotic response during the T-OAE. We infer that belemnites adapted to environmental change by shifting their habitat from cold bottom waters to warm surface waters in response to expanded seafloor anoxia.

  8. Oxygen delivery from hyperbarically loaded microtanks extends cell viability in anoxic environments.

    PubMed

    Cook, Colin A; Hahn, Kathryn C; Morrissette-McAlmon, Justin B F; Grayson, Warren L

    2015-06-01

    Oxygen diffusion limitations within nascent tissue engineered (TE) grafts lead to the development of hypoxic regions, cell death, and graft failure. Previous efforts have been made to deliver oxygen within TE scaffolds, including peroxide-doping, perfluorocarbons, and hyperbaric oxygen therapy, to mitigate these effects and help maintain post transplantation cell viability, but these have suffered from significant drawbacks. Here we present a novel approach utilizing polymeric hollow-core microspheres that can be hyperbarically loaded with oxygen and subsequently provide prolonged oxygen delivery. These oxygen carriers are termed, microtanks. With an interest in orthopedic applications, we combined microtanks within polycaprolactone to form solid phase constructs with oxygen delivery capabilities. The mathematical laws governing oxygen delivery from microtank-loaded constructs are developed along with empirical validation. Constructs achieved periods of oxygen delivery out to 6 days, which was shown to prolong the survival of human adipose derived stem cells (hASCs) and human umbilical vein endothelial cells (HUVECs) as well as to enhance their cellular morphology under anoxic conditions. The results of this study suggest the microtank approach may be a feasible means of maintaining cell viability in TE scaffolds during the critical period of vascularization in vivo.

  9. Formation of methane and carbon dioxide from dimethylselenide in anoxic sediments and by a methanogenic bacterium

    USGS Publications Warehouse

    Oremland, Ronald S.; Zehr, Jon P.

    1986-01-01

    Anaerobic San Francisco Bay salt marsh sediments rapidly metabolized [14C]dimethylselenide (DMSe) to 14CH4 and 14CO2. Addition of selective inhibitors (2-bromoethanesulfonic acid or molybdate) to these sediments indicated that both methanogenic and sulfate-respiring bacteria could degrade DMSe to gaseous products. However, sediments taken from the selenium-contaminated Kesterson Wildlife Refuge produced only 14CO2 from [14C]DMSe, implying that methanogens were not important in the Kesterson samples. A pure culture of a dimethylsulfide (DMS)-grown methylotrophic methanogen converted [14C]DMSe to 14CH4 and14CO2. However, the organism could not grow on DMSe. Addition of DMS to either sediments or the pure culture retarded the metabolism of DMSe. This effect appeared to be caused by competitive inhibition, thereby indicating a common enzyme system for DMS and DMSe metabolism. DMSe appears to be degraded as part of the DMS pool present in anoxic environments. These results suggest that methylotrophic methanogens may demethylate methylated forms of other metals and metalloids found in nature.

  10. The importance of diazotrophic cyanobacteria as primary producers during Cretaceous Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Ohkouchi, N.; Kashiyama, Y.; Kuroda, J.; Ogawa, N. O.; Kitazato, H.

    2006-10-01

    In Livello Bonarelli black shale deposited during Cretaceous Oceanic Anoxic Event 2 (OAE-2, ca. 94 Ma), nitrogen isotopic compositions of bulk sediments are mostly in a narrow range from -2.7 to -0.7‰. We also determined molecular distribution and nitrogen isotopic compositions of geoporphyrins extracted from the black shale. The nitrogen isotopic compositions of C32 Ni deoxophylloerythroetioporphyrin (DPEP) and total Ni porphyrins are -3.5 and -3.3‰, respectively, leading us to the estimation that the mean nitrogen isotopic composition of photoautotrophic cells were around +1‰ during the formation of Bonarelli black shale. This value is suggestive of N2-fixation, a dominant process for these photoautotrophs when assimilating nitrogen. Furthermore, Ni-chelated C32 DPEP, derived mainly from chlorophyll a had the highest concentration. Based on this evidence, we conclude that diazotrophic cyanobacteria were major primary producers during that time. Cyanobacteria may be key photoautotrophs during the formation of black shale type sediments intermittently observed throughout the later half of the Earth's history, and hence may have played a crucial role in the evolution of geochemical cycles even in the later half of the Earth's history.

  11. An importance of diazotrophic cyanobacteria as a primary producer during Cretaceous Oceanic Anoxic Event 2

    NASA Astrophysics Data System (ADS)

    Ohkouchi, N.; Kashiyama, Y.; Kuroda, J.; Ogawa, N. O.; Kitazato, H.

    2006-06-01

    In Livello Bonarelli black shale deposited during Cretaceous Oceanic Anoxic Event 2 (OAE-2, ca. 94 Ma), nitrogen isotopic compositions of bulk sediments are in a narrow range from -2.7 to -0.7. We also determined molecular distribution and nitrogen isotopic compositions of geoporphyrins extracted from the black shale. The nitrogen isotopic compositions of C32 Ni deoxophylloerythroetioporphyrin (DPEP) and total Ni porphyrins are -3.5 and -3.3, respectively, leading us to the estimation that the mean nitrogen isotopic composition of photoautotrophic cell was around +1 during the formation of Bonarelli black shale. This value is suggestive of N2-fixation a dominant process for these photoautotrophs when assimilating nitrogen. Furthermore, Ni-chelated C32 DPEP, derived mainly from chlorophyll a was the highest concentration. Based on these evidence, we conclude that diazotrophic cyanobacteria were major primary producers during that time. The cyanobacteria may be key photoautotrophs during the formation of black shale type sediments intermittently observed throughout the later half of the Earth's history, and hence may have played a crucial role in the evolution of geochemical cycles.

  12. On the formation of hydrogen gas on copper in anoxic water

    NASA Astrophysics Data System (ADS)

    Johansson, Adam Johannes; Lilja, Christina; Brinck, Tore

    2011-08-01

    Hydrogen gas has been detected in a closed system containing copper and pure anoxic water [P. Szakalos, G. Hultquist, and G. Wikmark, Electrochem. Solid-State Lett. 10, C63 (2007), 10.1149/1.2772085 and G. Hultquist, P. Szakalos, M. Graham, A. Belonoshko, G. Sproule, L. Grasjo, P. Dorogokupets, B. Danilov, T. Aastrup, G. Wikmark, G. Chuah, J. Eriksson, and A. Rosengren, Catal. Lett. 132, 311 (2009), 10.1007/s10562-009-0113-x]. Although bulk corrosion into any of the known phases of copper is thermodynamically forbidden, the present paper shows how surface reactions lead to the formation of hydrogen gas in limited amounts. While water cleavage on copper has been reported and investigated before, formation of molecular hydrogen at a single-crystal Cu[100] surface is here explored using density functional theory and transition state theory. It is found that although solvent catalysis seems possible, the fastest route to the formation of molecular hydrogen is the direct combination of hydrogen atoms on the copper surface. The activation free energy (△Gs‡f) of hydrogen formation in condensed phase is 0.70 eV, which corresponds to a rate constant of 10 s-1 at 298.15 K, i.e., a relatively rapid process. It is estimated that at least 2.4 ng hydrogen gas could form per cm2 on a perfect copper surface.

  13. Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways.

    PubMed

    Mus, Florence; Dubini, Alexandra; Seibert, Michael; Posewitz, Matthew C; Grossman, Arthur R

    2007-08-31

    Both prokaryotic and eukaryotic photosynthetic microbes experience conditions of anoxia, especially during the night when photosynthetic activity ceases. In Chlamydomonas reinhardtii, dark anoxia is characterized by the activation of an extensive set of fermentation pathways that act in concert to provide cellular energy, while limiting the accumulation of potentially toxic fermentative products. Metabolite analyses, quantitative PCR, and high density Chlamydomonas DNA microarrays were used to monitor changes in metabolite accumulation and gene expression during acclimation of the cells to anoxia. Elevated levels of transcripts encoding proteins associated with the production of H2, organic acids, and ethanol were observed in congruence with the accumulation of fermentation products. The levels of over 500 transcripts increased significantly during acclimation of the cells to anoxic conditions. Among these were transcripts encoding transcription/translation regulators, prolyl hydroxylases, hybrid cluster proteins, proteases, transhydrogenase, catalase, and several putative proteins of unknown function. Overall, this study uses metabolite, genomic, and transcriptome data to provide genome-wide insights into the regulation of the complex metabolic networks utilized by Chlamydomonas under the anaerobic conditions associated with H2 production. PMID:17565990

  14. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  15. No support for widespread surface ocean acidification during Oceanic Anoxic Event 1a

    NASA Astrophysics Data System (ADS)

    Naafs, B. D.; Castro, J. M.; De Gea, G. A.; Quijano, M. L.; Schmidt, D. N.; Pancost, R. D.

    2014-12-01

    Various studies suggested that changes in morphology and the demise of calcareous nannoplankton around Cretaceous Oceanic Anoxic Event (OAE) 1a were the result of large-scale (surface) ocean acidification caused by a substantial input of CO2. However, the link between extinction, changes in morphology, calcification crisis and surface ocean acidification is heavily debated. Crucially the relative timing, magnitude and duration of CO2 input during OAE 1a and hence potential to change surface ocean pH and calcite saturation state (Ω) are unconstraint. Here we provide the first high-resolution record of atmospheric CO2 across OAE 1a that depicts the often-inferred increase and decrease in pCO2. Crucially, we show that the initial increase in pCO2 was a gradual and sustained process that lasted at least 100 kyr. Earth system modeling indicates that over such timescales buffering of ocean chemistry by dissolution of deep-sea carbonates and weathering on land prevent surface ocean acidification. Widespread surface ocean acidification could therefore not have occurred during OAE 1a. Our results challenge recent suggestion of widespread ocean acidification across OAE 1a and highlight that the currently observed and further predicted anthropogenic decrease in surface ocean pH and Ω is extremely rare if not unique within the geological record.

  16. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event

    PubMed

    Hesselbo; Grocke; Jenkyns; Bjerrum; Farrimond; Morgans Bell HS; Green

    2000-07-27

    In the Jurassic period, the Early Toarcian oceanic anoxic event (about 183 million years ago) is associated with exceptionally high rates of organic-carbon burial, high palaeotemperatures and significant mass extinction. Heavy carbon-isotope compositions in rocks and fossils of this age have been linked to the global burial of organic carbon, which is isotopically light. In contrast, examples of light carbon-isotope values from marine organic matter of Early Toarcian age have been explained principally in terms of localized upwelling of bottom water enriched in 12C versus 13C (refs 1,2,5,6). Here, however, we report carbon-isotope analyses of fossil wood which demonstrate that isotopically light carbon dominated all the upper oceanic, biospheric and atmospheric carbon reservoirs, and that this occurred despite the enhanced burial of organic carbon. We propose that--as has been suggested for the Late Palaeocene thermal maximum, some 55 million years ago--the observed patterns were produced by voluminous and extremely rapid release of methane from gas hydrate contained in marine continental-margin sediments. PMID:10935632

  17. Bacterial dissimilatory reduction of arsenic(V) to arsenic(III) in anoxic sediments

    USGS Publications Warehouse

    Dowdle, P.R.; Laverman, A.M.; Oremland, R.S.

    1996-01-01

    Incubation of anoxic salt marsh sediment slurries with 10 mM As(V) resulted in the disappearance over time of the As(V) in conjunction with its recovery as As(III). No As(V) reduction to As(III) occurred in heat- sterilized or formalin-killed controls or in live sediments incubated in air. The rate of As(V) reduction in slurries was enhanced by addition of the electron donor lactate, H2, or glucose, whereas the respiratory inhibitor/uncoupler dinitrophenol, rotenone, or 2-heptyl-4-hydroxyquinoline N-oxide blocked As(V) reduction. As(V) reduction was also inhibited by tungstate but not by molybdate, sulfate, or phosphate. Nitrate inhibited As(V) reduction by its action as a preferred respiratory electron acceptor rather than as a structural analog of As(V). Nitrate-respiring sediments could reduce As(V) to As(III) once all the nitrate was removed. Chloramphenicol blocked the reduction of As(V) to As(III) in nitrate- respiring sediments, suggesting that nitrate and arsenate were reduced by separate enzyme systems. Oxidation of [2-14C]acetate to 14CO2 by salt marsh and freshwater sediments was coupled to As(V). Collectively, these results show that reduction of As(V) in sediments proceeds by a dissimilatory process. Bacterial sulfate reduction was completely inhibited by As(V) as well as by As(III).

  18. Degradation of chiral neonicotinoid insecticide cycloxaprid in flooded and anoxic soil.

    PubMed

    Liu, Xuanqi; Xu, Xiaoyong; Li, Chao; Zhang, Hanxue; Fu, Qiuguo; Shao, Xusheng; Ye, Qingfu; Li, Zhong

    2015-01-01

    Cycloxaprid (CYC), with two stereogenic centers from oxabridged ring, is a novel potent neonicotinoid insecticide. The investigation of relevant transformation products (TPs) is critical for the risk evaluation of CYC on environment impact and further regulatory decisions. In this study, stereoselective soil metabolism of CYC enantiomers was investigated using isotope labeling techniques. Liquid scintillation counting with LC-MS/MS was used to identify and quantify the major transformation products (TPs) of CYC enantiomers in four various soils under anoxic and flooded condition. Most of CYC had been transformed in four soils at 5d after treatment. Furthermore, CYC was found converted to a range of transformation products, which exhibited soil-specific dynamic changes. Cleavage of the oxabridged seven-member ring, reductive dechlorination in the chloropyridinyl and cleavage of C-N between the chloropyridinylmethyl and imidazalidine ring are the main transformation pathways of CYC. It is presumed that acidic condition may conduce to form the cleavage product of oxabridged seven-member ring. However, abiotic or biotic stereoselective persistence of TPs in all soils was not observed from the experimental data and may be attributed to the unstable oxabridged ring.

  19. Dephosphorylation of Ezrin as an Early Event in Renal Microvillar Breakdown and Anoxic Injury

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Cohn, Jonathan A.; Mandel, Lazaro J.

    1995-08-01

    Disruption of the renal proximal tubule (PT) brush border is a prominent early event during ischemic injury to the kidney. The molecular basis for this event is unknown. Within the brush border, ezrin may normally link the cytoskeleton to the cell plasma membrane. Anoxia causes ezrin to dissociate from the cytoskeleton and also causes many cell proteins to become dephosphorylated in renal PTs. This study examines the hypothesis that ezrin dephosphorylation accompanies and may mediate the anoxic disruption of the rabbit renal PT. During normoxia, 73 ±. 3% of the cytoskeleton-associated (Triton-insoluble) ezrin was phosphorylated, but 88 ± 6% of dissociated (Triton-soluble) ezrin was dephosphorylated. Phosphorylation was on serine/threonine residues, since ezrin was not detectable by an antibody against phosphotyrosine. After 60 min of anoxia, phosphorylation of total intracellular ezrin significantly decreased from 72 ± 2% to 21 ± 9%, and ezrin association with the cytoskeleton decreased from 91 ± 2% to 58 ± 2%. Calyculin A (1 μM), the serine/threonine phosphatase inhibitor, inhibited the dephosphorylation of ezrin during anoxia by 57% and also blocked the dissociation of ezrin from the cytoskeleton by 53%. Our results demonstrate that (i) the association of ezrin with the renal microvillar cytoskeleton is correlated with phosphorylation of ezrin serine/threonine residues and (ii) anoxia may cause disruption of the renal brush border by dephosphorylating ezrin and thereby dissociating the brush border membrane from the cytoskeleton.

  20. Oxygen Delivery from Hyperbarically Loaded Microtanks Extends Cell Viability in Anoxic Environments

    PubMed Central

    Cook, Colin A.; Hahn, Kathryn C.; Morrissette-McAlmon, Justin B.F.; Grayson, Warren L.

    2016-01-01

    Oxygen diffusion limitations within nascent tissue engineered (TE) grafts lead to the development of hypoxic regions, cell death, and graft failure. Previous efforts have been made to deliver oxygen within TE scaffolds, including peroxide-doping, perfluorocarbons, and hyperbaric oxygen therapy, to mitigate these effects and help maintain post transplantation cell viability, but these have suffered from significant drawbacks. Here we present a novel approach utilizing polymeric hollow-core microspheres that can be hyperbarically loaded with oxygen and subsequently provide prolonged oxygen delivery. These oxygen carriers are termed, microtanks. With an interest in orthopedic applications, we combined microtanks within polycaprolactone to form solid phase constructs with oxygen delivery capabilities. The mathematical laws governing oxygen delivery from microtank-loaded constructs are developed along with empirical validation. Constructs achieved periods of oxygen delivery out to 6 days, which was shown to prolong the survival of human adipose derived stem cells (hASCs) and human umbilical vein endothelial cells (HUVECs) as well as to enhance their cellular morphology under anoxic conditions. The results of this study suggest the microtank approach may be a feasible means of maintaining cell viability in TE scaffolds during the critical period of vascularization in vivo. PMID:25818444

  1. Changes in calcareous nannoplankton calcification during the latest Cenomanian Oceanic Anoxic Event 2 and similarity with other Cretaceous Oceanic Anoxic Events

    NASA Astrophysics Data System (ADS)

    Faucher, Giulia; Erba, Elisabetta; Bottini, Cinzia

    2016-04-01

    The Cenomanian has been characterized by greenhouse climate conditions and profound environmental perturbations, including the latest Cenomanian Oceanic Anoxic Event 2 (OAE 2), an episode of widespread organic matter burial in oxygen-depleted oceans. OAE 2 is thought to be related to the emplacement of the Caribbean Plateau which probably introduced in the atmosphere a large amount of CO2 with consequent impact on biota, climate and ocean chemistry. The perturbation of the carbon cycle is reflected in the carbon isotopic record that evidences a positive shift at