Science.gov

Sample records for nearby starburst galaxy

  1. THE NATURE OF STARBURSTS. I. THE STAR FORMATION HISTORIES OF EIGHTEEN NEARBY STARBURST DWARF GALAXIES

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Stark, David; Weisz, Daniel; Cannon, John M.; Dalcanton, Julianne; Williams, Benjamin; Dolphin, Andrew; Hidalgo-RodrIguez, Sebastian

    2010-09-20

    We use archival Hubble Space Telescope observations of resolved stellar populations to derive the star formation histories (SFHs) of 18 nearby starburst dwarf galaxies. In this first paper, we present the observations, color-magnitude diagrams (CMDs), and the SFHs of the 18 starburst galaxies, based on a homogeneous approach to the data reduction, differential extinction, and treatment of photometric completeness. We adopt a star formation rate (SFR) threshold normalized to the average SFR of the individual system as a metric for classifying starbursts in SFHs derived from resolved stellar populations. This choice facilitates finding not only the currently bursting galaxies but also 'fossil' bursts increasing the sample size of starburst galaxies in the nearby (D < 8 Mpc) universe. Thirteen of the eighteen galaxies are experiencing ongoing bursts and five galaxies show fossil bursts. From our reconstructed SFHs, it is evident that the elevated SFRs of a burst are sustained for hundreds of Myr with variations on small timescales. A long >100 Myr temporal baseline is thus fundamental to any starburst definition or identification method. The longer lived bursts rule out rapid 'self-quenching' of starbursts on global scales. The bursting galaxies' gas consumption timescales are shorter than the Hubble time for all but one galaxy confirming the short-lived nature of starbursts based on fuel limitations. Additionally, we find that the strength of the H{alpha} emission usually correlates with the CMD-based SFR during the last 4-10 Myr. However, in four cases, the H{alpha} emission is significantly less than what is expected for models of starbursts; the discrepancy is due to the SFR changing on timescales of a few Myr. The inherently short timescale of the H{alpha} emission limits identifying galaxies as starbursts based on the current characteristics which may or may not be representative of the recent SFH of a galaxy.

  2. Multi-Wavelength Observations of Nearby Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Janice

    2015-08-01

    Do cycles of violent, intense, but short-lived bursts constitute a significant mode of global star formation in present-day galaxies? Such events can have a profound effect on galaxies, particularly those with shallow potential wells, and observational measures of their prevalence inform our understanding of a wide range of issues in galaxy evolution. I will highlight what we have learned about starbursts from multi-wavelength observations of galaxies in the local volume on both galactic and smaller scales, and explore how connections with the study of the deaths of massive stars may further our understanding of open issues in galaxy evolution.

  3. Multi-Wavelength Observations of Nearby Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey; Lee, Janice

    Do cycles of violent, intense, but short-lived bursts constitute a significant mode of global starformation in present-day galaxies? Such events can have a profound effect on galaxies, particularly those with shallowpotential wells, and observational measures of their prevalence inform our understanding of a wide range of issues ingalaxy evolution. I will highlight what we have learned about starbursts from multi-wavelength observations of galaxiesin the local volume on both galactic and smaller scales, and explore how connections with the study of the deaths ofmassive stars may further our understanding of open issues in galaxy evolution.

  4. (12)CO (3-2) & (1-0) emission line observations of nearby starburst galaxy nuclei

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas; Taniguchi, Yoshiaki; Sanders, D. B.; Nakai, N.; Young, J. S.

    1994-01-01

    New measurements of the (12)CO (1-0) and (12)CO (3-2) line emission are presented for the nuclei of seven nearby starburst galaxies selected from a complete sample of 21 nearby starburst galaxies for which the nuclear star formation rates are measured to be comparable to the archetype starburst galaxies M82 and NGC 253. The new observations capitalize on the coincidence between the beam size of the 45 m Nobeyama telescope at 115 GHz and that of the 15 m James Clerk Maxwell Telescope at 345 GHz to measure the value of the (12)CO (3-2)/(1-0) emission line ratio in a 15 sec (less than or equal to 2.5 kpc) diameter region centered on the nuclear starburst. In principle, the (12)CO (3-2)/(1-0) emission line ratio provides a measure of temperature and optical depth for the (12)CO gas. The error weighted mean value of the (12)CO (3-2)/(1-0) emission line ratio measured for the seven starburst galaxy nuclei is -0.64 +/- 0.06. The (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is significantly higher than the average value measured for molecular gas in the disk of the Galaxy, implying warmer temperatures for the molecular gas in starburst galaxy nuclei. On the other hand, the (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is not as high as would be expected if the molecular gas were hot, greater than 20 K, and optically thin, tau much less than 1. The total mass of molecular gas contained within the central 1.2-2.8 kpc diameter region of the starburst galaxy nuclei ranges from 10(exp 8) to 10(exp 9) solar mass. While substantial, the molecular gas mass represents only a small percentage, approximately 9%-16%, of the dynamical mass in the same region.

  5. (12)CO (3-2) & (1-0) emission line observations of nearby starburst galaxy nuclei

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas; Taniguchi, Yoshiaki; Sanders, D. B.; Nakai, N.; Young, J. S.

    1994-01-01

    New measurements of the (12)CO (1-0) and (12)CO (3-2) line emission are presented for the nuclei of seven nearby starburst galaxies selected from a complete sample of 21 nearby starburst galaxies for which the nuclear star formation rates are measured to be comparable to the archetype starburst galaxies M82 and NGC 253. The new observations capitalize on the coincidence between the beam size of the 45 m Nobeyama telescope at 115 GHz and that of the 15 m James Clerk Maxwell Telescope at 345 GHz to measure the value of the (12)CO (3-2)/(1-0) emission line ratio in a 15 sec (less than or equal to 2.5 kpc) diameter region centered on the nuclear starburst. In principle, the (12)CO (3-2)/(1-0) emission line ratio provides a measure of temperature and optical depth for the (12)CO gas. The error weighted mean value of the (12)CO (3-2)/(1-0) emission line ratio measured for the seven starburst galaxy nuclei is -0.64 +/- 0.06. The (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is significantly higher than the average value measured for molecular gas in the disk of the Galaxy, implying warmer temperatures for the molecular gas in starburst galaxy nuclei. On the other hand, the (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is not as high as would be expected if the molecular gas were hot, greater than 20 K, and optically thin, tau much less than 1. The total mass of molecular gas contained within the central 1.2-2.8 kpc diameter region of the starburst galaxy nuclei ranges from 10(exp 8) to 10(exp 9) solar mass. While substantial, the molecular gas mass represents only a small percentage, approximately 9%-16%, of the dynamical mass in the same region.

  6. Starbursts versus Truncated Star Formation in Nearby Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Rose, James A.; Gaba, Alejandro E.; Caldwell, Nelson; Chaboyer, Brian

    2001-02-01

    We present long-slit spectroscopy, B- and R-bandpass imaging, and 21 cm observations of a sample of early-type galaxies in nearby clusters, which are known to be either in a star-forming phase or to have had star formation that recently terminated. From the long-slit spectra, obtained with the Blanco 4 m telescope, we find that emission lines in the star-forming cluster galaxies are significantly more centrally concentrated than in a sample of field galaxies. The broadband imaging reveals that two currently star-forming early-type galaxies in the Pegasus I cluster have blue nuclei, again indicating that recent star formation has been concentrated. In contrast, the two galaxies for which star formation has already ended show no central color gradient. The Pegasus I galaxy with the most evident signs of ongoing star formation (NGC 7648), exhibits signatures of a tidal encounter. Neutral hydrogen observations of that galaxy with the Arecibo radio telescope reveal the presence of ~4×108 Msolar of H I. Arecibo observations of other current or recent star-forming early-type galaxies in Pegasus I indicate smaller amounts of gas in one of them, and only upper limits in others. These observations indicate that NGC 7648 in the Pegasus I cluster owes its present star formation episode to some form of tidal interaction. The same may be true for the other galaxies with centralized star formation, but we cannot rule out the possibility that their outer disks have been removed via ram pressure stripping, followed by rapid quenching of star formation in the central region.

  7. PROPERTIES OF NEARBY STARBURST GALAXIES BASED ON THEIR DIFFUSE GAMMA-RAY EMISSION

    SciTech Connect

    Paglione, Timothy A. D.; Abrahams, Ryan D.

    2012-08-20

    The physical relationship between the far-infrared and radio fluxes of star-forming galaxies has yet to be definitively determined. The favored interpretation, the 'calorimeter model', requires that supernova generated cosmic-ray (CR) electrons cool rapidly via synchrotron radiation. However, this cooling should steepen their radio spectra beyond what is observed, and so enhanced ionization losses at low energies from high gas densities are also required. Further, evaluating the minimum energy magnetic field strength with the traditional scaling of the synchrotron flux may underestimate the true value in massive starbursts if their magnetic energy density is comparable to the hydrostatic pressure of their disks. Gamma-ray spectra of starburst galaxies, combined with radio data, provide a less ambiguous estimate of these physical properties in starburst nuclei. While the radio flux is most sensitive to the magnetic field, the GeV gamma-ray spectrum normalization depends primarily on gas density. To this end, spectra above 100 MeV were constructed for two nearby starburst galaxies, NGC 253 and M82, using Fermi data. Their nuclear radio and far-infrared spectra from the literature are compared to new models of the steady-state CR distributions expected from starburst galaxies. Models with high magnetic fields, favoring galaxy calorimetry, are overall better fits to the observations. These solutions also imply relatively high densities and CR ionization rates, consistent with molecular cloud studies.

  8. OBSERVATIONAL CONSTRAINTS ON THE MOLECULAR GAS CONTENT IN NEARBY STARBURST DWARF GALAXIES

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F.; Dolphin, Andrew E.; Cannon, John M.; Holtzman, Jon

    2012-06-01

    Using star formation histories derived from optically resolved stellar populations in 19 nearby starburst dwarf galaxies observed with the Hubble Space Telescope, we measure the stellar mass surface densities of stars newly formed in the bursts. By assuming a star formation efficiency (SFE), we then calculate the inferred gas surface densities present at the onset of the starbursts. Assuming an SFE of 1%, as is often assumed in normal star-forming galaxies, and assuming that the gas was purely atomic, translates to very high H I surface densities ({approx}10{sup 2}-10{sup 3} M{sub Sun} pc{sup -2}), which are much higher than have been observed in dwarf galaxies. This implies either higher values of SFE in these dwarf starburst galaxies or the presence of significant amounts of H{sub 2} in dwarfs (or both). Raising the assumed SFEs to 10% or greater (in line with observations of more massive starbursts associated with merging galaxies), still results in H I surface densities higher than observed in 10 galaxies. Thus, these observations appear to require that a significant fraction of the gas in these dwarf starbursts galaxies was in the molecular form at the onset of the bursts. Our results imply molecular gas column densities in the range 10{sup 19}-10{sup 21} cm{sup -2} for the sample. In the galaxies where CO observations have been made, these densities correspond to values of the CO-H{sub 2} conversion factor (X{sub CO}) in the range >(3-80) Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}, or up to 40 Multiplication-Sign greater than Galactic X{sub CO} values.

  9. Dynamics of starbursting dwarf galaxies. III. A H I study of 18 nearby objects

    NASA Astrophysics Data System (ADS)

    Lelli, Federico; Verheijen, Marc; Fraternali, Filippo

    2014-06-01

    We investigate the dynamics of starbursting dwarf galaxies, using both new and archival H I observations. We consider 18 nearby galaxies that have been resolved into single stars by HST observations, providing their star formation history and total stellar mass. We find that 9 objects have a regularly rotating H I disk, 7 have a kinematically disturbed H I disk, and 2 show unsettled H I distributions. Two galaxies (NGC 5253 and UGC 6456) show a velocity gradient along the minor axis of the H I disk, which we interpret as strong radial motions. For galaxies with a regularly rotating disk we derive rotation curves, while for galaxies with a kinematically disturbed disk, we estimate the rotation velocities in their outer parts. We derive baryonic fractions within about 3 optical scale lengths and find that, on average, baryons constitute at least 30% of the total mass. Despite the star formation having injected ~1056 ergs in the ISM in the past ~500 Myr, these starbursting dwarfs have both baryonic and gas fractions similar to those of typical dwarf irregulars, suggesting that they did not eject a large amount of gas out of their potential wells. Appendices are available in electronic form at http://www.aanda.orgH I datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A71

  10. Feedback in nearby dwarf starburst galaxies and giant extragalactic H II regions

    NASA Astrophysics Data System (ADS)

    Schwartz, Colleen

    Giant extragalactic H II regions in nearby normal galaxies are similar to dwarf starburst galaxies in luminosity/star formation rate, physical size, and stellar population, although they differ in gravitational potential, star formation rate per unit area, and surrounding environment. This dissertation compares feedback processes in these two types of star-forming regions. Feedback, the cycle which regulates the, relationship between star formation, the interstellar medium, and the intergalactic medium, is empirically measured via observations of interstellar gas in star-forming regions, where stellar winds and supernovae create galactic-scale outflows of interstellar gas and dust which in turn may heat and enrich the intergalactic medium. These kiloparsec-scale winds are most directly probed via the supernova-heated hot gas. However, the cold and photoionized warm interstellar gas from the disk is entrained in the flow and also traces large-scale motions of outflowing matter. I investigate this via optical and ultraviolet absorption-line spectroscopy of the cold neutral medium, as well as emission-line studies of the Ha recombination in the warm ionized gas. The H II regions in disks initially seem physically similar to dwarf starburst galaxies; shell fragments of ionized gas are found in both environments via high-resolution Ha emission spectroscopy. However, while complex Na D absorption profiles trace outflowing cold, neutral gas accelerated to near the escape velocity, no such counterpart is detected in the H II regions in outer disks. The lack of large-scale outflows of cold, neutral gas from the H II regions indicates that while dwarf starburst galaxies and the giant H II regions in normal galaxies may have similar properties, yet the feedback cycle in these regions is different.

  11. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  12. The Green Bank Telescope Maps the Dense, Star-forming Gas in the Nearby Starburst Galaxy M82

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Leroy, Adam K.; Frayer, David; Usero, Antonio; Marvil, Josh; Walter, Fabian

    2014-01-01

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO+. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxies by presenting the most sensitive maps yet of HCN and HCO+ in the starburst galaxy M82. The HCN and HCO+ in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO+ emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.

  13. CONSTRAINING STELLAR FEEDBACK: SHOCK-IONIZED GAS IN NEARBY STARBURST GALAXIES

    SciTech Connect

    Hong, Sungryong; Calzetti, Daniela; Gallagher, John S. III; Martin, Crystal L.; Conselice, Christopher J.; Pellerin, Anne

    2013-11-01

    We investigate the properties of feedback-driven shocks in eight nearby starburst galaxies using narrow-band imaging data from the Hubble Space Telescope. We identify the shock-ionized component via the line diagnostic diagram [O III] (λ5007)/Hβ versus [S II] (λλ6716, 6731) (or [N II] (λ6583))/Hα, applied to resolved regions 3-15 pc in size. We divide our sample into three sub-samples: sub-solar, solar, and super-solar, for consistent shock measurements. For the sub-solar sub-sample, we derive three scaling relations: (1) L{sub shock}∝SFR{sup 0.62}, (2) L{sub shock}∝Σ{sub SFR,{sub HL}} {sup 0.92}, and (3) L{sub shock}/L{sub tot}∝(L{sub H} /L{sub ☉,{sub H}}){sup –0.65}, where L{sub shock} is the Hα luminosity from shock-ionized gas, Σ{sub SFR,{sub HL}} the star formation rate (SFR) per unit half-light area, L{sub tot} the total Hα luminosity, and L{sub H} /L{sub ☉,{sub H}} the absolute H-band luminosity from the Two Micron All Sky Survey normalized to solar luminosity. The other two sub-samples do not have enough number statistics, but appear to follow the first scaling relation. The energy recovered indicates that the shocks from stellar feedback in our sample galaxies are fully radiative. If the scaling relations are applicable in general to stellar feedback, our results are similar to those by Hopkins et al. for galactic superwinds. This similarity should, however, be taken with caution at this point, as the underlying physics that enables the transition from radiative shocks to gas outflows in galaxies is still poorly understood.

  14. Dense gas in nearby galaxies. XVI. The nuclear starburst environment in NGC 4945

    NASA Astrophysics Data System (ADS)

    Wang, M.; Henkel, C.; Chin, Y.-N.; Whiteoak, J. B.; Hunt Cunningham, M.; Mauersberger, R.; Muders, D.

    2004-08-01

    A multi-line millimeter-wave study of the nearby starburst galaxy NGC 4945 has been carried out using the Swedish-ESO Submillimeter Telescope (SEST). The study covers the frequency range from 82 GHz to 354 GHz and includes 80 transitions of 19 molecules. 1.3 mm continuum data of the nuclear source are also presented. An analysis of CO and 1.3 mm continuum fluxes indicates that the conversion factor between H2 column density and CO J=1-0 integrated intensity is smaller than in the galactic disk by factors of 5-10. A large number of molecular species indicate the presence of a prominent high density interstellar gas component characterized by nH_2˜ 105 cm-3. Some spectra show Gaussian profiles. Others exhibit two main velocity components, one at ˜450 km s-1, the other at ˜710 km s-1. While the gas in the former component has a higher linewidth, the latter component arises from gas that is more highly excited as is indicated by HCN, HCO+ and CN spectra. Abundances of molecular species are calculated and compared with abundances observed toward the starburst galaxies NGC 253 and M 82 and galactic sources. Apparent is an ``overabundance'' of HNC in the nuclear environment of NGC 4945. While the HNC/HCN J=1-0 line intensity ratio is ˜0.5, the HNC/HCN abundance ratio is ˜1. From a comparison of Ka=0 and 1 HNCO line intensities, an upper limit to the background radiation of 30 K is derived. While HCN is subthermally excited (Tex˜8 K), CN is even less excited (Tex˜3-4 K), indicating that it arises from a less dense gas component and that its N=2-1 line can be optically thin even though its N=1-0 emission is moderately optically thick. Overall, fractional abundances of NGC 4945 suggest that the starburst has reached a stage of evolution that is intermediate between those observed in NGC 253 and M 82. Carbon, nitrogen, oxygen and sulfur isotope ratios are also determined. Within the limits of uncertainty, carbon and oxygen isotope ratios appear to be the same in the

  15. THE GREEN BANK TELESCOPE MAPS THE DENSE, STAR-FORMING GAS IN THE NEARBY STARBURST GALAXY M82

    SciTech Connect

    Kepley, Amanda A.; Frayer, David; Leroy, Adam K.; Usero, Antonio; Walter, Fabian

    2014-01-01

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO{sup +}. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxies by presenting the most sensitive maps yet of HCN and HCO{sup +} in the starburst galaxy M82. The HCN and HCO{sup +} in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO{sup +} emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.

  16. Spatially Resolved Stellar Populations Of Nearby Post-Starburst Galaxies In SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Liu, Charles; Betances, Ashley; Bonilla, Alaina Marie; Gonzalez, Andrea; Migliore, Christina; Goddard, Daniel; Masters, Karen; SDSS-IV MaNGA Team

    2016-01-01

    We have selected five galaxies in the Mapping Nearby Galaxies at APO (MaNGA) project of the latest generation of the Sloan Digital Sky Survey (SDSS-IV) identified as post-starburst (E+A) systems, in the transition between "blue cloud" and "red sequence" galaxies. We measure the equivalent widths of the Balmer series, D4000 break, and metal lines across each galaxy, and produce maps of the stellar age, stellar mass, and metallicities of each galaxy using FIREFLY, a full spectral analysis code. We have found that the measured properties of the galaxies overall generally matches well with single-aperture SDSS spectra from which the original post-starburst identifications were made. The variation in the spatial distributions of the stellar populations, in particular the A-stars, give us insight into the details of the transitional E+A quenching phase. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement No. SSP483 to the CUNY College of Staten Island.

  17. Starburst Galaxy NGC 3310

    NASA Image and Video Library

    1999-12-07

    Scientists using NASA Hubble Space Telescope are studying the colors of star clusters to determine the age and history of starburst galaxies, a technique somewhat similar to the process of learning the age of a tree by counting its rings.

  18. Space Observations of Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.; Leitherer, Claus

    1997-01-01

    Led by JHU postdoc Gerhardt Meurer, we completed our analysis of far-UV HST FOC images of nine nearby starbursts. We have been able to delineate the structure of the regions in which the unusually vigorous star-formation is occurring (Meurer et al 1995). At 0.1 arcsec (2 to 20 pc) resolution, the starbursts are resolved into multiple clumps and bright star clusters distributed over a region several hundred pc to a few kpc in size. This suggests that compact sites of star-formation may propagate from place to place within a larger central gas reservoir over the duration of the burst. The UV and optical properties of these clusters suggest that they may correspond to newly 'minted' globular clusters. These clusters typically produce about 10% to 50% of the far-UV light, and are preferentially located in the heart of the starburst, where the background UV surface brightness is highest. Thus, massive star cluster (globular cluster?) formation is a fundamental part of the starburst phenomenon. This confirms and generalizes the results of Whitmore et al (1993). Our starburst images are also being compared to our recent analysis of the HST FOC image of R136 in the LMC (De Marchi et al 1993). We have also extended our results on the UV photometric structure of starbursts to star-forming galaxies in the early universe (Meurer et al 1997). We show that the most actively- star-forming galaxies at all redshifts seem to have approximately the same bolometric surface-brightness, and that the high redshift galaxies may be larger and more luminous versions of local starbursts.

  19. Survey of Water and Ammonia in Nearby Galaxies (SWAN): Resolved Ammonia Thermometry, and Water and Methanol Masers in the Nuclear Starburst of NGC 253

    NASA Astrophysics Data System (ADS)

    Gorski, Mark; Ott, Jürgen; Rand, Richard; Meier, David S.; Momjian, Emmanuel; Schinnerer, Eva

    2017-06-01

    We present Karl G. Jansky Very Large Array molecular line observations of the nearby starburst galaxy NGC 253, from SWAN, the Survey of Water and Ammonia in Nearby galaxies. SWAN is a molecular line survey at centimeter wavelengths designed to reveal the physical conditions of star-forming gas over a range of star-forming galaxies. NGC 253 has been observed in four 1 GHz bands from 21 to 36 GHz at 6″ ˜ 100 pc) spatial and 3.5 km s-1 spectral resolution. In total we detect 19 transitions from 7 molecular and atomic species. We have targeted the metastable inversion transitions of ammonia (NH3) from (1, 1) to (5, 5) and the (9, 9) line, the 22.2 GHz water (H2O) ({6}16{--}{5}23) maser, and the 36.1 GHz methanol (CH3OH) ({4}-1{--}{3}0) maser. Using NH3 as a thermometer, we present evidence for uniform heating over the central kpc of NGC 253. The molecular gas is best described by a two kinetic temperature model with a warm 130 K and a cooler 57 K component. A comparison of these observations with previous ALMA results suggests that the molecular gas is not heated in photon-dominated regions or shocks. It is possible that the gas is heated by turbulence or cosmic rays. In the galaxy center we find evidence for NH3(3, 3) masers. Furthermore, we present velocities and luminosities of three water maser features related to the nuclear starburst. We partially resolve CH3OH masers seen at the edges of the bright molecular emission, which coincides with expanding molecular superbubbles. This suggests that the masers are pumped by weak shocks in the bubble surfaces.

  20. Starburst galaxy Messier 94

    NASA Image and Video Library

    2015-10-19

    This image shows the galaxy Messier 94, which lies in the small northern constellation of the Hunting Dogs, about 16 million light-years away. Within the bright ring around Messier 94 new stars are forming at a high rate and many young, bright stars are present within it – thanks to this, this feature is called a starburst ring. The cause of this peculiarly shaped star-forming region is likely a pressure wave going outwards from the galactic centre, compressing the gas and dust in the outer region. The compression of material means the gas starts to collapse into denser clouds. Inside these dense clouds, gravity pulls the gas and dust together until temperature and pressure are high enough for stars to be born.

  1. Starburst models of merging galaxies

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea H.

    1993-01-01

    In the past decade, infrared observations have shown that interacting and merging galaxies have higher luminosities than isolated systems, with the luminosities in mergers as high as 10(exp 12) solar luminosity. However, the origin of the luminosity found in mergers is controversial, with two main competing theories. The first is the starburst scenario. As two gas rich galaxies start to merge, cloud-cloud collisions induce fast shocks in the molecular gas. This gas cools, collapses, and fragments, producing a blast of star formation. The main rival to this theory is that the infrared luminosity is produced by a dust embedded active nucleus, the merger of two gas rich galaxies providing the 'fuel to feed the monster'. There has even been speculation that there is an evolutionary link between starbursts and active nuclei, and that possibly active galactic nuclei (AGN's) and QSO's were formed from a starburst. Assuming that the infrared luminosity in merging galaxies is due to star formation, there should be ionizing photons produced from the high mass stars, giving rise to recombination line emission. The objective is to use a simple starburst model to test the hypothesis that the extreme infrared luminosity of merging galaxies is due to a starburst.

  2. THE ACS NEARBY GALAXY SURVEY TREASURY. VII. THE NGC 4214 STARBURST AND THE EFFECTS OF STAR FORMATION HISTORY ON DWARF MORPHOLOGY

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Weisz, Daniel R.; Seth, Anil C.; Skillman, Evan D.; Dolphin, Andrew E. E-mail: jd@astro.washington.edu E-mail: dweisz@astro.washington.edu E-mail: skillman@astro.umn.edu

    2011-07-01

    We present deep Hubble Space Telescope WFPC2 optical observations obtained as part of the ACS Nearby Galaxy Survey Treasury as well as early release Wide Field Camera 3 ultraviolet and infrared observations of the nearby dwarf starbursting galaxy NGC 4214. Our data provide a detailed example of how covering such a broad range in wavelength provides a powerful tool for constraining the physical properties of stellar populations. The deepest data reach the ancient red clump at M{sub F814W} {approx} - 0.2. All of the optical data reach the main-sequence turnoff for stars younger than {approx}300 Myr and the blue He-burning sequence for stars younger than 500 Myr. The full color-magnitude diagram (CMD) fitting analysis shows that all three fields in our data set are consistent with {approx}75% of the stellar mass being older than 8 Gyr, in spite of showing a wide range in star formation rates at present. Thus, our results suggest that the scale length of NGC 4214 has remained relatively constant for many gigayears. As previously noted by others, we also find the galaxy has recently ramped up production consistent with its bright UV luminosity and its population of UV-bright massive stars. In the central field we find UV point sources with F336W magnitudes as bright as -9.9. These are as bright as stars with masses of at least 52-56 M{sub sun} and ages near 4 Myr in stellar evolution models. Assuming a standard initial mass function, our CMD is well fitted by an increase in star formation rate beginning 100 Myr ago. The stellar populations of this late-type dwarf are compared with those of NGC 404, an early-type dwarf that is also the most massive galaxy in its local environment. The late-type dwarf appears to have a similar high fraction of ancient stars, suggesting that these dominant galaxies may form at early epochs even if they have low total mass and very different present-day morphologies.

  3. Chemical Classification of Nearby Active Galaxies

    NASA Astrophysics Data System (ADS)

    Aladro, R.; Martín, S.; Kramer, C.

    2015-12-01

    We present an unbiased λ=3 mm survey done with the IRAM 30 telescope towards the central parts of eight galaxies considered as archetypes of nearby starbursts, galaxies with an active galactic nucleus (AGN) and ultra-luminous infrared galaxies (ULIRGs). The spatial resolution range from ˜200 pc to ˜1.6 kpc, depending on the galaxy. We compare the abundances of thirty-seven species among the sample, and highlight the molecules that characterise the gas in each of them. These results can be very useful to prepare future interferometric observations of active galaxies.

  4. Super Starburst Galaxy

    NASA Image and Video Library

    2008-07-10

    The green and red splotch in this image is the most active star-making galaxy in the very distant universe. Nicknamed Baby Boom, it was spotted 12.3 billion light-years away by a suite of telescopes, including NASA Spitzer Space Telescope.

  5. Do Tidal Interactions Trigger Starbursts in Dwarf Galaxies?

    NASA Astrophysics Data System (ADS)

    Martinkus, Charlotte; Cannon, John M.; McQuinn, Kristen B.; Johnson, Megan C.; Skillman, Evan D.; Bailin, Jeremy; Ford, Alyson; Koribalski, Baerbel

    2015-01-01

    Starburst dwarf galaxies are extensively studied systems, though the mechanism that triggers starbursts is poorly understood. Tidal interactions and gas accretion are thought to be potential starburst trigger mechanisms, although internal, secular drivers have not been ruled out. If starbursts are a result of external perturbations, then one would expect to see signatures of interaction in the gaseous disk of the galaxy. To examine this hypothesis, we analyze both archival and newly-obtained deep, wide-field HI maps from the Green Bank Telescope (GBT) of a sample of nineteen well-studied nearby starburst dwarf galaxies to search for such signs of interactions. Our sample is unique in that we have previously derived the star formation histories from Hubble Space Telescope imaging of the resolved stellar populations for all galaxies. In this work we focus on NGC 784 and NGC 672, which both may lie on a filament of dark matter isolated in space. We evaluate methods to determine the presence and properties of low surface-brightness neutral gas in the outer disk regions. This work serves as a prototype for forthcoming analysis of the full sample. With our results we hope to not only establish an effective data analysis procedure, but to also confirm or rule-out tidal interactions as a triggering mechanism of starbursts in this sample of dwarf galaxies.

  6. THE NATURE OF STARBURSTS. II. THE DURATION OF STARBURSTS IN DWARF GALAXIES

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Stark, David; Weisz, Daniel; Cannon, John M.; Dalcanton, Julianne; Williams, Benjamin; Dolphin, Andrew; Hidalgo-RodrIguez, Sebastian

    2010-11-20

    The starburst phenomenon can shape the evolution of the host galaxy and the surrounding intergalactic medium. The extent of the evolutionary impact is partly determined by the duration of the starburst, which has a direct correlation with both the amount of stellar feedback and the development of galactic winds, particularly for smaller mass dwarf systems. We measure the duration of starbursts in twenty nearby, ongoing, and 'fossil' starbursts in dwarf galaxies based on the recent star formation histories derived from resolved stellar population data obtained with the Hubble Space Telescope. Contrary to the shorter times of 3-10 Myr often cited, the starburst durations we measure range from 450to650 Myr in fifteen of the dwarf galaxies and up to 1.3 Gyr in four galaxies; these longer durations are comparable to or longer than the dynamical timescales for each system. The same feedback from massive stars that may quench the flickering star formation does not disrupt the overall burst event in our sample of galaxies. While five galaxies present fossil bursts, fifteen galaxies show ongoing bursts and thus the final durations may be longer than we report here for these systems. One galaxy shows a burst that has been ongoing for only 20 Myr; we are likely seeing the beginning of a burst event in this system. Using the duration of the starbursts, we calculate that the bursts deposited 10{sup 53.9}-10{sup 57.2} erg of energy into the interstellar medium through stellar winds and supernovae, and produced 3%-26% of the host galaxy's mass.

  7. ACS Nearby Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne

    2006-07-01

    Existing HST observations of nearby galaxies comprise a sparse and highly non-uniform archive, making comprehensive comparative studies among galaxies essentially impossible. We propose to secure HST's lasting impact on the study of nearby galaxies by undertaking a systematic, complete, and carefully crafted imaging survey of ALL galaxies in the Local Universe outside the Local Group. The resulting images will allow unprecedented measurements of: {1} the star formation history {SFH} of a >100 Mpc^3 volume of the Universe with a time resolution of Delta[log{t}]=0.25; {2} correlations between spatially resolved SFHs and environment; {3} the structure and properties of thick disks and stellar halos; and {4} the color distributions, sizes, and specific frequencies of globular and disk clusters as a function of galaxy mass and environment. To reach these goals, we will use a combination of wide-field tiling and pointed deep imaging to obtain uniform data on all 72 galaxies within a volume-limited sample extending to 3.5 Mpc, with an extension to the M81 group. For each galaxy, the wide-field imaging will cover out to 1.5 times the optical radius and will reach photometric depths of at least 2 magnitudes below the tip of the red giant branch throughout the limits of the survey volume. One additional deep pointing per galaxy will reach SNR 10 for red clump stars, sufficient to recover the ancient SFH from the color-magnitude diagram. This proposal will produce photometric information for 100 million stars {comparable to the number in the SDSS survey} and uniform multi-color images of half a square degree of sky. The resulting archive will establish the fundamental optical database for nearby galaxies, in preparation for the shift of high-resolution imaging to the near-infrared.

  8. Observing Nearby Galaxies with CCAT

    NASA Astrophysics Data System (ADS)

    Armus, Lee; Stacey, G. J.; Wilson, C.; Bolatto, A. D.; Rangwala, N.; Nikola, T.; Kauffmann, J.; Bertoldi, F.; Glenn, J.; CCAT Team

    2013-01-01

    CCAT, with its 25m primary, advanced detectors and fast mapping speed will be extremely adept at deep, large-scale surveys for distant, dusty galaxies in the early Universe, and the most deeply buried star-forming complexes in the Milky Way. However, since it will also be sensitive to low surface brightness emission from diffuse dust, and the key far-infrared and mm cooling lines of the ISM, CCAT will also be a superb telescope for studying nearby galaxies in exquisite detail. For the nearest systems (e.g. M83), CCAT will be able to produce diffraction-limited maps in the mid-J CO rotational lines, and the [CI] and [NII] fine-structure lines on physical scales approaching those of individual molecular clouds. For samples of luminous starburst galaxies out to 0.3-0.5, CCAT will offer unprecedented sensitivity and spatial resolution in the high-J CO lines which are critical for pinpointing X-ray dissociation regions heated by AGN. Here, we will outline the strong scientific case for using CCAT to map the cold dust, the molecular gas and the ionized and atomic interstellar medium in local galaxies.

  9. UPDATED NEARBY GALAXY CATALOG

    SciTech Connect

    Karachentsev, Igor D.; Makarov, Dmitry I.; Kaisina, Elena I.

    2013-04-15

    We present an all-sky catalog of 869 nearby galaxies having individual distance estimates within 11 Mpc or corrected radial velocities V{sub LG} < 600 km s{sup -1}. The catalog is a renewed and expanded version of the Catalog of Neighboring Galaxies by Karachentsev et al. It collects data on the following galaxy observables: angular diameters, apparent magnitudes in far-UV, B, and K{sub s} bands, H{alpha} and H I fluxes, morphological types, H I-line widths, radial velocities, and distance estimates. In this Local Volume (LV) sample, 108 dwarf galaxies still remain without measured radial velocities. The catalog yields also calculated global galaxy parameters: linear Holmberg diameter, absolute B magnitude, surface brightness, H I mass, stellar mass estimated via K-band luminosity, H I rotational velocity corrected for galaxy inclination, indicative mass within the Holmberg radius, and three kinds of ''tidal index,'' which quantify the local density environment. The catalog is supplemented with data based on the local galaxies, which presents their optical and available H{alpha} images, as well as other services. We briefly discuss the Hubble flow within the LV and different scaling relations that characterize galaxy structure and global star formation in them. We also trace the behavior of the mean stellar mass density, H I-mass density, and star formation rate density within the volume considered.

  10. Stellar Evolution in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Conti, Peter

    2001-01-01

    The main thrust of the program was to obtain UV spectroscopy of a number of massive and hot luminous (OB type) stars in the nearby galaxy called the Small Magellanic Cloud (SMC). The objective was to analyze their atmospheres and winds so as to determine the effect of the lower abundance of the SIVIC on these parameters. Furthermore, the differences in evolution could be investigated. Additionally, the UV spectra themselves would be suitably weighted and systematically combined to provide a template for comparison to very distant galaxies formed in the early history of the Universe which also have a low abundance of elements. The spectra have been obtained and the analysis is proceeding, primarily by the groups in Munich and at STScl who are the leads for this project. Given the important role of the nearby SMC galaxy as a template of low metal abundance, I have begun to investigate the YOUNGEST phases of massive star birth, before the most massive and hottest stars become optically visible. Typically these stars form in clusters, in some cases having tens to hundreds of OB type stars. In this phase, each star is still buried in its natal cloud and visible only in the infrared (IR) from its self-heated dust and/or from radio free-free emission of the surrounding hydrogen (HII) region. Efforts to find and identify these buried clusters were conducted using a large radio telescope. A number of these were found and further analysis of the data is underway. These clusters are not visible optically, but ought to be seen in the IR, and are a likely topic for HST photometry on NICMOS. A proposal to do this will be made next semester. These objects are the precursors of the optically visible clusters that contain massive and hot luminous stars.

  11. AN IONIZATION CONE IN THE DWARF STARBURST GALAXY NGC 5253

    SciTech Connect

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael; Martin, Crystal L.

    2011-11-01

    There are few observational constraints on how the escape of ionizing photons from starburst galaxies depends on galactic parameters. Here we report on the first major detection of an ionization cone in NGC 5253, a nearby starburst galaxy. This high-excitation feature is identified by mapping the emission-line ratios in the galaxy using [S III] {lambda}9069, [S II] {lambda}6716, and H{alpha} narrowband images from the Maryland-Magellan Tunable Filter at Las Campanas Observatory. The ionization cone appears optically thin, which suggests the escape of ionizing photons. The cone morphology is narrow with an estimated solid angle covering just 3% of 4{pi} steradians, and the young, massive clusters of the nuclear starburst can easily generate the radiation required to ionize the cone. Although less likely, we cannot rule out the possibility of an obscured active galactic nucleus source. An echelle spectrum along the minor axis shows complex kinematics that are consistent with outflow activity. The narrow morphology of the ionization cone supports the scenario that an orientation bias contributes to the difficulty in detecting Lyman continuum emission from starbursts and Lyman break galaxies.

  12. Environments of Starburst Galaxies Diagnosed with the NVO

    NASA Astrophysics Data System (ADS)

    de Mello, D.; Sosey, M.

    2004-12-01

    We will present the analysis of the environment of starburst galaxies using the National Virtual Observatory. We have matched the sample of starburst galaxies by Wu et al. (2002) with the Sloan Digital Sky Survey (SDSS) and searched for companions in their neighborhood. We found: (i) three starbursts with no companion, (ii) four starbursts with clear interaction and in the process of merging, (iii) nine starbursts with at least one companion. We have compared the starburst sample with the sample of isolated galaxies by Karachentseva (1986) and with the SDSS merging galaxies by Allam et al. (2004). Using color selection criteria from the known sample of starburst galaxies, we have built a database of starburst candidates from the SDSS catalogue. This allowed us to do a more statistical comparison of starburst galaxies, their neighborhoods and possible environmental effects on their evolution. Direct links to the SDSS images and related photometry are provided for easy reference.

  13. The X-Ray Binary Population of the Nearby Dwarf Starburst Galaxy IC 10: Variable and Transient X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Laycock, Silas; Cappallo, Rigel; Williams, Benjamin F.; Prestwich, Andrea; Binder, Breanna; Christodoulou, Dimitris M.

    2017-02-01

    We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3σ level, from a catalog of 110 unique point sources. We find four transients (flux variability ratio greater than 10) and a further eight objects with ratios >5. The observations span the years 2003-2010 and reach a limiting luminosity of >1035 erg s-1, providing sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magellanic Clouds (40-200 My) where most of the known HMXBs reside. We find 10 strong HMXB candidates, 2 probable background Active Galactic Nuclei, 4 foreground flare-stars or active binaries, and 5 not yet classifiable sources. Complete classification of the sample requires optical spectroscopy for radial velocity analysis and deeper X-ray observations to obtain higher S/N spectra and search for pulsations. A catalog and supporting data set are provided.

  14. Blueberry Galaxies: The Lowest Mass Young Starbursts

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Wang, Junxian

    2017-09-01

    Searching for extreme emission line galaxies allows us to find low-mass metal-poor galaxies that are good analogs of high redshift Lyα emitting galaxies. These low-mass extreme emission line galaxies are also potential Lyman-continuum leakers. Finding them at very low redshifts (z≲ 0.05) allows us to be sensitive to even lower stellar masses and metallicities. We report on a sample of extreme emission line galaxies at z≲ 0.05 (blueberry galaxies). We selected them from SDSS broadband images on the basis of their broadband colors and studied their properties with MMT spectroscopy. From the entire SDSS DR12 photometric catalog, we found 51 photometric candidates. We spectroscopically confirm 40 as blueberry galaxies. (An additional seven candidates are contaminants, and four remain without spectra.) These blueberries are dwarf starburst galaxies with very small sizes (<1 kpc) and very high ionization ([O iii]/[O ii] ∼ 10–60). They also have some of the lowest stellar masses ({log}(M/{M}ȯ )∼ 6.5{--}7.5) and lowest metallicities (7.1< 12+{log}({{O}}/{{H}})< 7.8) of starburst galaxies. Thus, they are small counterparts to green pea galaxies and high redshift Lyα emitting galaxies.

  15. Compact starbursts in ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Condon, J. J.; Huang, Z.-P.; Yin, Q. F.; Thuan, T. X.

    1991-01-01

    The 40 ultraluminous galaxies in the IRAS Bright Galaxy Sample of sources stronger than S = 5.24 Jy at lambda = 60 microns were mapped with approximately 0.25 arcsec resolution at 8.44 GHz. Twenty-five contain diffuse radio sources obeying the FIR-radio correlation; these are almost certainly starburst galaxies. Fourteen other galaxies have nearly blackbody FIR spectra with color temperatures between 60 and 80 K so their (unmeasured) FIR angular sizes must exceed approximately 0.25 arcsec, yet they contain compact (but usually resolved) radio sources smaller than this limit. The unique radio and FIR properties of these galaxies can be modeled by ultraluminous nuclear starbursts so dense that they 67 are optically thick to free-free absorption at about 1.49 GHz and dust absorption at about 25 microns. Only one galaxy (UGC 08058 = Mrk 231) is a dominated by a variable radio source too compact to be an ultraluminous starburst; it must be powered by a 'monster'.

  16. Compact starbursts in ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Condon, J. J.; Huang, Z.-P.; Yin, Q. F.; Thuan, T. X.

    1991-01-01

    The 40 ultraluminous galaxies in the IRAS Bright Galaxy Sample of sources stronger than S = 5.24 Jy at lambda = 60 microns were mapped with approximately 0.25 arcsec resolution at 8.44 GHz. Twenty-five contain diffuse radio sources obeying the FIR-radio correlation; these are almost certainly starburst galaxies. Fourteen other galaxies have nearly blackbody FIR spectra with color temperatures between 60 and 80 K so their (unmeasured) FIR angular sizes must exceed approximately 0.25 arcsec, yet they contain compact (but usually resolved) radio sources smaller than this limit. The unique radio and FIR properties of these galaxies can be modeled by ultraluminous nuclear starbursts so dense that they 67 are optically thick to free-free absorption at about 1.49 GHz and dust absorption at about 25 microns. Only one galaxy (UGC 08058 = Mrk 231) is a dominated by a variable radio source too compact to be an ultraluminous starburst; it must be powered by a 'monster'.

  17. Dense molecular gas in starburst galaxies: Warmer than expected?

    NASA Astrophysics Data System (ADS)

    Muhle, S.; Henkel, C.; de Maio, T.; Seaquist, E. R.

    2011-05-01

    Star formation processes and their feedback play a crucial role in the evolution of almost every galaxy, locally as well as at high redshifts. The question whether or not the initial mass function (IMF) is universal, i.e. the same in all kinds of environments, is still subject to intense debate. A number of recent observations have been interpreted as evidence for a top-heavy IMF, spanning a variety of objects, from the center of our Galaxy to circumnuclear starburst regions and ultra-compact dwarf galaxies. Hydrodynamical simulations can reproduce such a top-heavy IMF if the raw material of star formation, the dense molecular gas, is assumed to have a kinetic temperature of ˜ 100 K. Such a molecular gas phase is not observed in the dense cores in the Galactic plane, but may be present in active environments like the cores of starburst galaxies or near AGN. Unfortunately, the kinetic temperature of the molecular gas in many external galaxies is not well constrained, because many of the most common extragalactic tracer molecules suffer from a degeneracy between the kinetic temperature and the gas density in a non-LTE line ratio analysis. We demonstrate the diagnostic power of a selected set of para-formaldehyde lines as tracers of the kinetic temperature as well as the gas density in external galaxies using our non-LTE radiative transfer model. With this new observational tool, we have engaged in characterizing the properties of the dense molecular gas phase in a number of nearby starburst galaxies and near AGN. Our first results suggest the existence of a dense molecular gas phase that is significantly warmer than the dust and much warmer than dense molecular gas found in the Milky Way disk.

  18. Starburst in the Interacting HII Galaxy II Zw 40 and in Non-Interacting HII Galaxies

    NASA Astrophysics Data System (ADS)

    Telles, E.

    2010-06-01

    In this poster, I summarize the results of our integral field spectroscopic observations of the nearby prototype of HII galaxies, II Zw 40. Observations with GMOS-IFU on GEMINI-North in the optical allowed us to make a detailed kinematic picture of the central starburst, while SINFONI with adaptive optics on the ESO-VLT gave us a near-IR view of the interplay between the ISM phases. Here, I also address the question that not all starbursts require an external trigger such as a galaxy-galaxy encounter, as it seems to be the case for a fraction of low luminosity HII galaxies. We speculate that these may form stars spontaneously like "popcorn in a pan".

  19. Environments of Starburst Galaxies Diagnosed with the NVO

    NASA Astrophysics Data System (ADS)

    Nieto-Santisteban, M. A.; Sosey, M.; de Mello, D.

    2004-12-01

    We present an analysis of the environment of starburst galaxies using the National Virtual Observatory. We have matched the sample of starburst galaxies by Wu et al. (2002) with the Sloan Digital Sky Survey (SDSS) and searched for companions in their neighborhood. We also have compared the starburst sample with the sample of isolated galaxies by Karachentseva (1986) and with the SDSS merging galaxies by Allam et al. (2004). Using color selection criteria from the known sample of starburst galaxies, we have built a database of starburst candidates from the SDSS catalogue. This allowed us to do a more statistical comparison of starburst galaxies, their neighborhoods and possible environmental effects on their evolution. We see the NVO environment as an extrememly useful tool for astronomical research. As such, this poster also details the effective ways in which we were able to access both the SDSS catalogue as well as other internet resources, encorporating the entire project into a very useful internet website.

  20. HETDEX: Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Drory, Niv; Gebhardt, K.; Jogee, S.; Fabricius, M.; Greene, J.; HETDEX Collaboration

    2012-01-01

    The Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) is a blind spectroscopic survey using the VIRUS instrument. VIRUS consists of 75 IFUs distributed across the 22-arcmin field of the upgraded 9.2-m HET. Each 50x50 arcsec IFU is made up of 448 1.5-arcsec fibers, and feeds a pair of spectrographs with a fixed bandpass of 350-550 nm and resolving power R 700. The IFUs have a fill-factor of 1/3 which will be filled-in by dithering. We cover 1/4.5 of our 300-square-degree main survey area with fibers. We reach m_AB 22.6 (21.5,20.7) at S/N 3 (5,10) per resolution element. With these limits, g 17 spiral galaxies will have S/N>3 per resolution element per fiber in the continuum to 2 effective radii, and emission line spectra to at least their optical radius. HETDEX will spatially resolve 4000 local galaxies to that limit without any pre-selection; an additional 9000 local galaxies will have spatially resolved spectroscopy beyond that limit. At g 19 we still obtain integrated galaxy spectra at S/N 10 per resolution element in the continuum. These spatially resolved absorption and emission spectra provide information on star formation, the state of the IGM, and stellar populations, as well as rotation curves for an unbiased galaxy sample unprecedented in size. Since a wealth of information about a galaxy's formation history is encoded in gradients across the galaxy, moving from single-fiber (SDSS-like) spectra to large samples of spatially resolved galaxy spectroscopy opens a new parameter space for future studies of galaxy formation.

  1. Models of ring galaxies. II - Extended starbursts

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis; Appleton, P. N.

    1987-01-01

    Numerical models of the development of star-formation bursts in collisional ring galaxies are presented. To extend the work of Appleton and Struck-Marcell (1987) target disks which have relatively high mean cloud mass and gas density are emphasized. In such cases, even relatively low mass intruder galaxies are capable of triggering intense star-formation bursts in the density waves. Although the bursts are very short-lived in any individual gas element, pressure effects stimulate neighboring gas elements to burst, which can result in a sustained enhancement in the net star-formation rate. The results are capable of explaining the high far-infrared fluxes observed in righ galaxies and provide clues to the development of starburst activity in other colliding galaxies.

  2. Ionized gas pressure correlates with star formation intensity in nearby starbursts

    NASA Astrophysics Data System (ADS)

    Jiang, Tianxing; Malhotra, Sangeeta; Yang, Huan

    2016-06-01

    We estimate the electron density of the ionized gas and thus the thermal pressure in HII regions; and compare that to the SFR (star formation rate) surface density for a combined sample of about 40 green peas and Lyman Break Analogs at z < 0.30. The electron density of the ionized gas is measured from sulfur line ratio ([SII] 6716 / 6731). We find that the SFR surface density is correlated with the electron density and the thermal pressure in HII regions for the star-forming galaxies with SFR surface density above a certain threshold. This work shows quantitatively the correlation between SFR surface density and electron density and that between SFR surface density and the thermal pressure in HII regions for the nearby starburst galaxies. This is consistent with theoretical models of disks (e.g. Kim et al. (2011) if we assume that the thermal pressure in HII regions is comparable to the total diffuse gas pressure at the midplane of the diffuse neutral gas. It is also in agreement with the results from star-forming galaxies at z ~ 2.5. We might infer that the starburst galaxies at low-redshift (z < 0.3) share similar physical properties to the galaxies at high redshift (z ~ 2.5).

  3. Toward Gas Chemistry in Low Metallicity Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Meier, David S.; Anderson, Crystal N.; Turner, Jean; Ott, Juergen; Beck, Sara C.

    2017-01-01

    Dense gas, which is intimately connected with star formation, is key to understanding star formation. Though challenging to study, dense gas in low metallicity starbursts is important given these system's often extreme star formation and their potential implications for high redshift analogs. High spatial resolution (~50 pc) ALMA observations of several key probes of gas chemistry, including HCN(1-0), HCO+(1-0), CS(2-1), CCH(1-0;3/2-1/2) and SiO(2-1), towards the nearby super star-cluster (SSC) forming, sub-solar metallicity galaxy NGC 5253 are discussed. Dense gas is observed to be extended well beyond the current compact starburst, reaching into the apparently infalling molecular streamer. The faintness of HCN, the standard dense gas tracer, is extreme both in an absolute sense relative to high metallicity starbursts of a similar intensity and in a relative sense, with the HCO+/HCN ratio being one of the most elevated observed. UV-irradiated molecular gas, traced by CCH, is also extended over the mapped region, not being strongly correlated with the SSC. Despite the accretion of molecular gas from the halo and the intense burst of star formation, chemical signatures of shocked gas, traced by SiO (and HNCO), are not obvious. By placing NGC 5253 in context with other local starbursts, like 30 Doradus in the Large Magellanic Clouds and the high metallicity proto-typical starburst NGC 253, it is suggested that a combination of gas excitation and abundance changes associated with the sub solar metallicity may explain these anomalous dense gas properties.

  4. The gas content in starburst galaxies

    NASA Technical Reports Server (NTRS)

    Mirabel, I. F.; Sanders, D. B.

    1987-01-01

    The results from two large and homogeneous surveys, one in H I, the other in CO, are used for a statistical review of the gaseous properties of bright infrared galaxies. A constant ratio between the thermal FIR radiation and nonthermal radio emission is a universal property of star formation in spiral galaxies. The current rate of star formation in starburst galaxies is found to be 3-20 times larger than in the Milky Way. Galaxies with the higher FIR luminosities and warmer dust, have the larger mass fractions of molecular to atomic interstellar gas, and in some instances, striking deficiencies of neutral hydrogen are found. A statistical blueshift of the optical systemic velocities relative to the radio systemic velocities, may be due to an outward motion of the optical line-emitting gas. From the high rates of star formation, and from the short times required for the depletion of the interstellar gas, it is concluded that the most luminous infrared galaxies represent a brief but important phase in the evolution of some galaxies, when two galaxies merge changing substantially their overall properties.

  5. The gas content in starburst galaxies

    NASA Technical Reports Server (NTRS)

    Mirabel, I. F.; Sanders, D. B.

    1987-01-01

    The results from two large and homogeneous surveys, one in H I, the other in CO, are used for a statistical review of the gaseous properties of bright infrared galaxies. A constant ratio between the thermal FIR radiation and nonthermal radio emission is a universal property of star formation in spiral galaxies. The current rate of star formation in starburst galaxies is found to be 3-20 times larger than in the Milky Way. Galaxies with the higher FIR luminosities and warmer dust, have the larger mass fractions of molecular to atomic interstellar gas, and in some instances, striking deficiencies of neutral hydrogen are found. A statistical blueshift of the optical systemic velocities relative to the radio systemic velocities, may be due to an outward motion of the optical line-emitting gas. From the high rates of star formation, and from the short times required for the depletion of the interstellar gas, it is concluded that the most luminous infrared galaxies represent a brief but important phase in the evolution of some galaxies, when two galaxies merge changing substantially their overall properties.

  6. Investigating Starburst Galaxy Emission Line Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Meskhidze, Helen; Richardson, Chris T.

    2016-01-01

    Modeling star forming galaxies with spectral synthesis codes allows us to study the gas conditions and excitation mechanisms that are necessary to reproduce high ionization emission lines in both local and high-z galaxies. Our study uses the locally optimally-emitting clouds model to develop an atlas of starburst galaxy emission line equivalent widths. Specifically, we address the following question: What physical conditions are necessary to produce strong high ionization emission lines assuming photoionization via starlight? Here we present the results of our photoionization simulations: an atlas spanning 15 orders of magnitude in ionizing flux and 10 orders of magnitude in hydrogen density that tracks over 150 emission lines ranging from the UV to the near IR. Each simulation grid contains ~1.5x104 photoionization models calculated by supplying a spectral energy distribution, grain content, and chemical abundances. Specifically, we will be discussing the effects on the emission line equivalent widths of varying the metallicity of the cloud, Z = 0.2 Z⊙ to Z = 5.0 Z⊙, and varying the star-formation history, using the instantaneous and continuous evolution tracks and the newly released Starburst99 Geneva rotation tracks.

  7. Characterising Nearby Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Ramphul, R.; Vaisanen, P.; Van der Heyden, K.

    2017-06-01

    Luminous InfraRed Galaxies (LIRGs) in the local universe are known to be highly interacting galaxies with strong star-formation in obscured environments. LIRGs have diversity in terms of morphology and mode and location of SF, while their even more energetic counterparts, the Ultra-Luminous IR galaxies, ULIRGs, (LIR ≥ 10^12 Lsol ) are normally (remnants of) gas rich major mergers with centralised starbursts and AGN. I will present ongoing work on a survey of >40 (U)LIRGs, in a distance range of 40 to 300Mpc, observed with SALT/RSS in long-slit mode. The sample of galaxies are in various stages of interaction and merging, some with strong AGN contribution. The reduction of the SALT/RSS data, was performed efficiently with our custom-built pipeline written in python/iraf/pyraf and handles error-frames propagation. We are performing a rigorous stellar populations analysis of our sample using Starlight (Cid Fernandes, 2005) which will ultimately lead to understanding the star formation history of these galaxies. We also use automatic line intensity measurements to derive chemical abundances, star formation rates, metallicity and emission line diagnostic. The talk will showcase the latest results that we just obtained for this dataset and discuss some of the future works.

  8. "Dead quasars" in nearby galaxies?

    PubMed

    Rees, M J

    1990-02-16

    The nuclei of some galaxies undergo violent activity, quasars being the most extreme instances of this phenomenon. Such activity is probably short-lived compared to galactic lifetimes, and was most prevalent when the universe was only about one-fifth of its present age. A massive black hole seems the inevitable end point of such activity, and dead quasars should greatly outnumber active ones. In recent years, studies of stellar motions in the cores of several nearby galaxies indicate the presence of central dark masses which could be black holes. This article discusses how such evidence might be corroborated, and the potential implications for our understanding of active galaxies and black holes.

  9. From starburst to quiescence: testing active galactic nucleus feedback in rapidly quenching post-starburst galaxies

    SciTech Connect

    Yesuf, Hassen M.; Faber, S. M.; Trump, Jonathan R.; Koo, David C.; Fang, Jerome J.; Liu, F. S.; Wild, Vivienne; Hayward, Christopher C.

    2014-09-10

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M {sub ☉}) = 10.3-10.7, and identifies 'transiting' post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ∼0.3% of galaxies are starbursts, ∼0.1% are QPSBs, and ∼0.5% are the transiting types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (≳ 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of ≳ 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as 'dust-obscured galaxies' (DOGs), with a near-UV-to-mid-IR flux ratio of ≳ 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during the post-starburst

  10. Bright Submillimeter Galaxies: Evidence for Maximal Starbursts

    NASA Astrophysics Data System (ADS)

    Aretxaga, I.

    2014-09-01

    AzTEC is a sensitive bolometer camera that, coupled with 10 - 15m-class sub-mm telescopes, has mapped more than 3 sq. deg of the extragalactic sky to depths between 0.7 and 1.1 mJy at 1.1mm, prior to its current installation and operation on the 32m Large Millimeter Telescope (LMT). These extragalactic surveys targeted towards blank-fields and biased high-z environments alike have allowed us to identify a few thousands of submillimeter galaxies, powerful obscured starbursts at high-redshifts (z > 1), some of which have intrinsic Star Formation Rates SFR > 1000 Msun/yr and furthermore are extremely compact (~ 1 kpc). Our results imply that these extraordinary systems are forming stars in a gravitationally bound regime in which gravity prohibits the formation of superwinds, leading to matter accumulation within the galaxy and further generations of star formation.

  11. Feeding IC 342: The nuclear spiral of a starburst galaxy

    NASA Technical Reports Server (NTRS)

    Levine, D.; Turner, J. L.; Hurt, Robert L.

    1993-01-01

    IC 342 is a large nearby (1.8 Mpc, Turner and Hurt, 1991, hereafter T&H) spiral galaxy undergoing a moderate nuclear starburst. T&H have previously mapped the inner arcminute in CO-13(1-0) using the Owens Valley Millimeter Interferometer and found evidence that the nuclear molecular gas takes the form of spiral arms in a density wave pattern. They suggest that radial streaming along the arms may channel gas from the exterior of the galaxy into the nucleus, feeding the starburst. We have mapped the CO-12(1-0) emission of the inner 2 kpc of IC 342 at 2.8 inch resolution using the Owens Valley Radio Observatory (OVRO) Millimeter Interferometer. The greater sensitivity of CO-12 observations has allowed us to trace the spiral pattern out to a total extent of greater than 1 kpc. The CO-12 observations extend considerably the structure observed at CO-13 and offer further evidence that a spiral density wave may extend from the disk into the nucleus of IC 342.

  12. Feeding IC 342: The nuclear spiral of a starburst galaxy

    NASA Astrophysics Data System (ADS)

    Levine, D.; Turner, J. L.; Hurt, Robert L.

    1993-01-01

    IC 342 is a large nearby (1.8 Mpc, Turner and Hurt, 1991, hereafter T&H) spiral galaxy undergoing a moderate nuclear starburst. T&H have previously mapped the inner arcminute in CO-13(1-0) using the Owens Valley Millimeter Interferometer and found evidence that the nuclear molecular gas takes the form of spiral arms in a density wave pattern. They suggest that radial streaming along the arms may channel gas from the exterior of the galaxy into the nucleus, feeding the starburst. We have mapped the CO-12(1-0) emission of the inner 2 kpc of IC 342 at 2.8 inch resolution using the Owens Valley Radio Observatory (OVRO) Millimeter Interferometer. The greater sensitivity of CO-12 observations has allowed us to trace the spiral pattern out to a total extent of greater than 1 kpc. The CO-12 observations extend considerably the structure observed at CO-13 and offer further evidence that a spiral density wave may extend from the disk into the nucleus of IC 342.

  13. Radio identifications of UGC galaxies - Starbursts and monsters

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Broderick, J. J.

    1988-07-01

    Radio identifications of galaxies in the Uppsala General Catalogue of Galaxies with δ < +82° were made from the Green Bank 1400 MHz sky maps. Every source having peak flux density SP ≥ 150 mJy in the ≈12 arcmin FWHM map point-source response and position <5 arcmin in both coordinates from the optical position of any UGC galaxy was considered a candidate identification to ensure that very extended (up to 1 Mpc) and asymmetric sources would not be missed. Maps in the literature or new 1.49 GHz VLA C array maps made with 18 arcsec resolution were used to confirm or reject candidate identifications. The resulting list of 176 confirmed identifications should be complete, reliable, and suitable for statistical investigations of radio emission from nearby (D < 300 Mpc for H0 = 50 km s-1Mpc-1) galaxies of all morphological types. Three criteria for distinguishing starbursts from monsters on the basis of radio and far-infrared continuum only are given and used to classify the dominant energy sources in the N = 176 confirmed galaxy identifications.

  14. STAR CLUSTER DISRUPTION IN THE STARBURST GALAXY MESSIER 82

    SciTech Connect

    Li, Shuo; Li, Chengyuan; De Grijs, Richard; Anders, Peter

    2015-01-01

    Using high-resolution, multiple-passband Hubble Space Telescope images spanning the entire optical/near-infrared wavelength range, we obtained a statistically complete U-band-selected sample of 846 extended star clusters across the disk of the nearby starburst galaxy M82. Based on a careful analysis of the clusters' spectral energy distributions, we determined their galaxy-wide age and mass distributions. The M82 clusters exhibit three clear peaks in their age distribution, thus defining relatively young, log (t yr{sup –1}) ≤ 7.5, intermediate-age, log (t yr{sup –1}) in [7.5, 8.5], and old samples, log (t yr{sup –1}) ≥ 8.5. Comparison of the completeness-corrected mass distributions offers a firm handle on the galaxy's star cluster disruption history. The most massive star clusters in the young and old samples are (almost) all concentrated in the most densely populated central region, while the intermediate-age sample's most massive clusters are more spatially dispersed, which may reflect the distribution of the highest-density gas throughout the galaxy's evolutionary history, combined with the solid-body nature of the galaxy's central region.

  15. Search for post-starburst (E+A) galaxies in the cluster Abell 3266

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongyu

    The objective of this work is to use spectroscopic techniques to further the understanding of the dynamical state of the galaxy cluster Abell 3266. This is a very rich cluster in the southern skies that has been extensively studied by many groups. The cluster shows evidence of a merger of substructure in its midst, but the geometry, dynamics, and age of this merger remain uncertain. Low resolution, fiber spectra of galaxies in Abell 3266 were analyzed and searched for “E+A” (post-starburst) galaxies, from which we selected two candidate “E+A” galaxies for follow-up high-resolution spectroscopy. The 2 candidate galaxies are confirmed as “E+A” galaxies with high-resolution, slit spectra. The ages of these “E+A” galaxies (i.e. time since their starburst occurred) are determined with the method developed by Leonardi & Rose (1996). We find that both galaxies had a major starburst in the past, but they occurred at significantly different epochs. If the starbursts are related to the recent merger history of Abell 3266, instead of being just isolated events, they would indicate that there may have been more than one merger in this cluster in the past 3 Gyr or so. This might explain the rather disparate conclusions that have been obtained in the past about the merger history of this cluster. To compare with other nearby clusters, “E+A” galaxies were also searched for among nearly 2400 galaxies in 26 clusters fields. Only 4 candidates are found. This result is consistent with the general observational fact that there are substantially fewer spectroscopically disturbed galaxies in nearby clusters than in distant clusters. The result is also in quantitative agreement with the findings in the larger, more homogeneous Las Campanas Redshift Survey, confirming the reliability of our identification in Abell 3266. The impact of these statistical analyses on the understanding of galaxy evolution in cluster environment is also discussed.

  16. Panchromatic observations of dwarf starburst galaxies: Infant super star clusters and a low-luminosity AGN

    NASA Astrophysics Data System (ADS)

    Reines, Amy Ellen

    2011-01-01

    Globular star clusters and supermassive black holes are fundamental components of today's massive galaxies, with origins dating back to the very early universe. Both globular clusters and the seeds of supermassive black holes are believed to have formed in the progenitors of modern massive galaxies, although the details are poorly understood. Direct observations of these low-mass, distant, and hence faint systems are unobtainable with current capabilities. However, gas-rich dwarf starburst galaxies in the local universe, analogous in many ways to protogalaxies at high-redshift, can provide critical insight into the early stages of galaxy evolution including the formation of globular clusters and massive black holes. This thesis presents a panchromatic study of nearby dwarf starburst galaxies harboring nascent globular clusters still embedded in their birth material. Infant clusters are identified via their production of thermal radio emission at centimeter wavelengths, which comes from dense gas ionized by young massive stars. By combining radio observations with complementary data at ultraviolet, optical and infrared wavelengths, we obtain a comprehensive view of massive clusters emerging from their gaseous and dusty birth cocoons. This thesis also presents the first example of a nearby dwarf starburst galaxy hosting an actively accreting massive central black hole. The black hole in this dwarf galaxy is unusual in that it is not associated with a bulge, a nuclear star cluster, or any other well-defined nucleus, likely reflecting an early phase of black hole and galaxy evolution that has not been previously observed.

  17. Starbursts: From 30 Doradus to Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    de Grijs, R.; González Delgado, R. M.

    2005-05-01

    Starbursts are important features of early galaxy evolution. Many of the distant, high-redshift galaxies we are able to detect are in a starbursting phase, often apparently provoked by a violent gravitational interaction with another galaxy. In fact, if we did not know that major starbursts existed, these conference proceedings testify that we would indeed have difficulties explaining the key properties of the Universe! The enhanced synergy facilitated by the collaboration among observers using cutting-edge ground and space-based facilities, theorists and modellers has made these proceedings into a true reflection of the state of the art in this very rapidly evolving field.

  18. The Ubiquity of Coeval Starbursts in Massive Galaxy Cluster Progenitors

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin M.

    2016-06-01

    The universe’s largest galaxy clusters likely built the majority of their massive >1011 M {}⊙ galaxies in simultaneous, short-lived bursts of activity well before virialization. This conclusion is reached based on emerging data sets for z\\gt 2 proto-clusters and the characteristics of their member galaxies, in particular, rare starbursts and ultraluminous active galactic nuclei (AGN). The most challenging observational hurdle in identifying such structures is their very large volumes, ˜104 comoving Mpc3 at z\\gt 2, subtending areas of approximately half a degree on the sky. Thus, the contrast afforded by an overabundance of very rare galaxies in comparison to the background can more easily distinguish overdense structures from the surrounding, normal density field. Five 2≲ z≲ 3 proto-clusters from the literature are discussed in detail and are found to contain up to 12 dusty starbursts or luminous AGN galaxies each, a phenomenon that is unlikely to occur by chance even in overdense environments. These are contrasted with three higher-redshift (4≲ z≲ 5.5) dusty star-forming galaxy (DSFG) groups, whose evolutionary fate is less clear. Measurements of DSFGs’ gas depletion times suggest that they are indeed short-lived on ˜100 Myr timescales, and accordingly the probability of finding a structure containing more than 8 such systems is ˜0.2%, unless their “triggering” is correlated on very large spatial scales, ˜10 Mpc across. The volume density of DSFG-rich proto-clusters is found to be comparable to all of the >1015 M {}⊙ galaxy clusters in the nearby universe, which is a factor of five larger than expected in some simulations. Some tension still exists between measurements of the volume density of DSFG-rich proto-clusters and the expectation that they are generated via short-lived episodes, as the latter suggests that only a fraction (\\lt \\tfrac{1}{2}) of all proto-clusters should be rich with DSFGs. However, improved observations of proto

  19. Structure of the Interacting Starburst Galaxy II Zw 23

    NASA Astrophysics Data System (ADS)

    Cigan, P. J.; Gallagher, J. S.; Rudie, G.; Wehner, E. H.

    2005-09-01

    II Zw 23 (UGC 3179) is a luminous (MB -21) nearby compact narrow emission line starburst galaxy with blue optical colors and strong emission lines. We present a photometric and morphological study of II Zw 23 and its interacting companion, PC016099, using data obtained with the WIYN 3.5-m telescope in combination with a WFPC2 image from the HST archives. II Zw 23 has a highly disturbed outer structure with long trails of debris that may be feeding tidal dwarfs. Its central regions appear disk-like, a structure that is consistent with the overall rotation pattern observed in the Hα emission line velocity field measured from Densepak observations obtained with WIYN. We discuss these results in terms of the different evolutionary paths followed by stars and gas during strong interactions and the possibility of rapid secondary galactic disk formation in such events.

  20. The luminous starburst galaxy UGC 8387

    NASA Technical Reports Server (NTRS)

    Smith, Denise A.; Herter, Terry; Haynes, Martha P.; Beichman, C. A.; Gautier, T. N. Iii

    1995-01-01

    We present broad-band J, H, and K images and K-band spectroscopy of the luminous starburst galaxy UGC 8387. The images show a disturbed morphology, tidal tails, and a single elognated nucleus. Near infrared color maps constructed from the images reveal that the nucleus region is highly reddened. Strong emission from the central 3 arcseconds in the 2.166 micrometer Brackett gamma, 2.122 micrometer H2 v = 1-0 S(1), and 2.058 micrometer He I lines is present in the K-band spectrum. From the Brackett gamma and published radio fluxes, we find an optical depth toward the nucleus of tau(sub V) approximately 24. The CO band heads produce strong absorption in the spectral region long-ward of 2.3 micrometers. We measure a 'raw' CO index of 0.17 +/- 0.02 mag, consistent with a population of K2 supergiants of K4 giants. The nuclear colors, however, are not consistent with an obscured population of evolved stars. Instead, the red colors are best explained by an obscured mixture of stellar and warm dust emission. The amount of dust emission predicted by the near-infrared colors exceeds that expected from comparisons to galactic H II regions. After correcting the spectrum of UGC 8387 for dust emission and extinction, we obtain a CO index of greater than or equal to 0.25 mag. This value suggests the stellar component of the 2.2 micrometer light is dominated by young supergiants. The infrared excess, L(sub IR)/L(sub Ly alpha) derived for UGC 8387 is lower than that observed in galactic H II regions and M82. This implies that either the lower or upper mass cutoff of the initial mass function must be higher than those of local star-forming regions and M82. The intense nuclear starburst in this galaxy is presumably the result of merger activity; and we estimate the starburst age to be at least a few times 10(exp 7) yr.

  1. FISICA observations of the starburst galaxy, NGC 1569

    NASA Astrophysics Data System (ADS)

    Clark, D. M.; Eikenberry, S. S.; Raines, S. N.; Gruel, N.; Elston, R.; Guzman, R.; Julian, J.; Boreman, G.; Glenn, P. E.; Hull-Allen, C. G.; Hoffman, J.; Rodgers, M.; Thompson, K.; Flint, S.; Comstock, L.; Myrick, B.

    2006-06-01

    Using the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA) we obtained observations of the dwarf starburst galaxy NGC 1569. We present our JH band spectra, particularly noting the existence of extended emission in Paschen β and He I.

  2. The ULX Population in the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Heckman, T. M.; Strickland, D. K.

    2004-01-01

    Optimism is mounting for the existence of intermediate mass black holes (IMBH), which occupy the mass spectrum somewhere between the stellar-mass and supermassive varieties. IMBH are naturally predicted by theoretical stellar and black hole evolution models, but the strong attention to them began only recently with the discovery of ultraluminous x-ray sources (ULX). If isotropic and accreting normally, ULX have luminosities tens to thousands of times greater than the Eddington luminosity of a neutron star or stellar-mass black hole. A standard interpretation of their x-ray flux implies that they are powered by IMBH. On the other hand, they may be stellar-mass black holes that are beamed or emit anisotropically. Therefore, the exact nature of ULX is highly controversial. ULX are common in starburst galaxies. At a distance of only 3 Mpc, NGC 253 is bright, nearby, and one of the best-studied starburst galaxies. Approximately 50 distinct x-ray point sources are detected in or near the plane of the galaxy. At least six of these are ULX, with luminosities greater than 10 times that expected for a stellar-mass, accreting compact object. We present new Chandra data from an 80 ksec observation of NGC 253 obtained in 2003 that provides high quality spectra of these sources. Comparing the 1999 and 2003 Chandra observations, the sources have varied significantly over the course of four years, with one of the ULX disappearing completely. The ULX spectra are similar to black-hole XRBs and at least one appears to possess an iron K line. We will discuss what insight these data provide for the nature of ULX in NGC 253 .

  3. The ULX Population in the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Heckman, T. M.; Strickland, D. K.

    2004-01-01

    Optimism is mounting for the existence of intermediate mass black holes (IMBH), which occupy the mass spectrum somewhere between the stellar-mass and supermassive varieties. IMBH are naturally predicted by theoretical stellar and black hole evolution models, but the strong attention to them began only recently with the discovery of ultraluminous x-ray sources (ULX). If isotropic and accreting normally, ULX have luminosities tens to thousands of times greater than the Eddington luminosity of a neutron star or stellar-mass black hole. A standard interpretation of their x-ray flux implies that they are powered by IMBH. On the other hand, they may be stellar-mass black holes that are beamed or emit anisotropically. Therefore, the exact nature of ULX is highly controversial. ULX are common in starburst galaxies. At a distance of only 3 Mpc, NGC 253 is bright, nearby, and one of the best-studied starburst galaxies. Approximately 50 distinct x-ray point sources are detected in or near the plane of the galaxy. At least six of these are ULX, with luminosities greater than 10 times that expected for a stellar-mass, accreting compact object. We present new Chandra data from an 80 ksec observation of NGC 253 obtained in 2003 that provides high quality spectra of these sources. Comparing the 1999 and 2003 Chandra observations, the sources have varied significantly over the course of four years, with one of the ULX disappearing completely. The ULX spectra are similar to black-hole XRBs and at least one appears to possess an iron K line. We will discuss what insight these data provide for the nature of ULX in NGC 253 .

  4. Discovery of Large Molecular Gas Reservoirs in Post-starburst Galaxies

    NASA Astrophysics Data System (ADS)

    French, K. Decker; Yang, Yujin; Zabludoff, Ann; Narayanan, Desika; Shirley, Yancy; Walter, Fabian; Smith, John-David; Tremonti, Christy A.

    2015-03-01

    Post-starburst (or "E+A") galaxies are characterized by low Hα emission and strong Balmer absorption, suggesting a recent starburst, but little current star formation. Although many of these galaxies show evidence of recent mergers, the mechanism for ending the starburst is not yet understood. To study the fate of the molecular gas, we search for CO(1-0) and (2-1) emission with the IRAM 30 m and SMT 10 m telescopes in 32 nearby (0.01 < z < 0.12) post-starburst galaxies drawn from the Sloan Digital Sky Survey. We detect CO in 17 (53%). Using CO as a tracer for molecular hydrogen, and a Galactic conversion factor, we obtain molecular gas masses of M(H2) = 108.6-109.8 M ⊙ and molecular gas mass to stellar mass fractions of ~10-2-10-0.5, comparable to those of star-forming galaxies. The large amounts of molecular gas rule out complete gas consumption, expulsion, or starvation as the primary mechanism that ends the starburst in these galaxies. The upper limits on M(H2) for the 15 undetected galaxies range from 107.7 M ⊙ to 109.7 M ⊙, with the median more consistent with early-type galaxies than with star-forming galaxies. Upper limits on the post-starburst star formation rates (SFRs) are lower by ~10 × than for star-forming galaxies with the same M(H2). We also compare the molecular gas surface densities (Σ _H_2) to upper limits on the SFR surface densities (ΣSFR), finding a significant offset, with lower ΣSFR for a given Σ _H_2 than is typical for star-forming galaxies. This offset from the Kennicutt-Schmidt relation suggests that post-starburst galaxies have lower star formation efficiency, a low CO-to-H2 conversion factor characteristic of ultraluminous infrared galaxies, and/or a bottom-heavy initial mass function, although uncertainties in the rate and distribution of current star formation remain.

  5. HIGH-DENSITY MOLECULAR GAS PROPERTIES OF THE STARBURST GALAXY NGC 1614 REVEALED WITH ALMA

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2013-09-15

    We present the results of HCN/HCO{sup +}/HNC J = 4-3 transition line observations of the nearby starburst galaxy NGC 1614, obtained with ALMA Cycle 0. We find that high density molecular gas traced with these lines shows a velocity structure such that the northern (southern) side of the nucleus is redshifted (blueshifted) with respect to the nuclear velocity of this galaxy. The redshifted and blueshifted emission peaks are offset by {approx}0.''6 at the northern and southern sides of the nucleus, respectively. At these offset positions, observations at infrared >3 {mu}m indicate the presence of active dusty starbursts, supporting the picture that high-density molecular gas is the site of active starbursts. The enclosed dynamical mass within the central {approx}2'' in radius, derived from the dynamics of the high-density molecular gas, is {approx}10{sup 9} M{sub Sun }, which is similar to previous estimates. Finally, the HCN emission is weaker than HCO{sup +} but stronger than HNC for J = 4-3 for all starburst regions of NGC 1614, as seen for J = 1-0 transition lines in starburst-dominated galaxies.

  6. BLAST Observations of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Thomas, Nicholas Evan; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; Marsden, G.; Martin, P. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Truch, M. D. P.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.

    2009-01-01

    The Balloon-born Large Aperture Submillimeter Telescope (BLAST) is a 1.8 m mirror that uses focal plane arrays of bolometer detectors at 250, 350 and 500 microns to study the evolutionary history and processes associated with star formation. The most recent long duration balloon flight from Antarctica collected 250 hours of data during a circumpolar flight in December 2006. A large number of observations were conducted including deep and wide surveys to characterize submillimeter galaxies, a galactic plane survey in the Vela region, and a number of pointed observations toward nearby galaxies NGC1097, NGC1291, NGC1365, NGC1512, NGC1566, and NGC1808. In this talk we will focus on these galaxies and combine the BLAST data with Spitzer-MIPS data to uniquely determine dust properties such as temperature and emissivity. The BLAST collaboration acknowledges the support of NASA through grants NAG5 12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the Science and Technology Facilities Council (STFC), Canada's Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation, the Ontario Innovation Trust, the Puerto Rico Space Grant Consortium, the Fondo Institucional para la Investigacion of the University of Puerto Rico, and the National Science Foundation Office of Polar Programs.

  7. Triggering of starbursts in galaxies by minor mergers

    NASA Technical Reports Server (NTRS)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    Using numerical simulation, we explore the triggering of starburst activity in disk galaxies which accrete low-mass dwarf companions. In response to the tidal perturbation of an infalling satellite, a disk galaxy develops a strong two-armed spiral pattern, which in turn drives large quantities of disk gas into its central regions. The global star formation rate stays constant during the early stages of an accretion, before rising rapidly by an order of magnitude when the central gas density becomes very large. The associated central starburst is quite compact. Models which include a bulge component in the disk galaxy show that the presence of a bulge can suppress the radial gas flow and limit the strength of the associated starburst, depending on the overall mass profile. The fact that such relatively common 'minor' mergers may trigger strong starburst activity suggests that many disk galaxies may have experienced starbursts at some point in their lifetime. Implications for galaxy evolution and formation are discussed.

  8. Upper limits to the water abundance in starburst galaxies

    NASA Astrophysics Data System (ADS)

    Wilson, C. D.; Booth, R. S.; Olofsson, A. O. H.; Olberg, M.; Persson, C. M.; Sandqvist, Aa.; Hjalmarson, Â.; Buat, V.; Encrenaz, P. J.; Fich, M.; Frisk, U.; Gerin, M.; Rydback, G.; Wiklind, T.

    2007-07-01

    Aims:We have searched for emission from the 557 GHz ortho-water line in the interstellar medium of six nearby starburst galaxies. Methods: We used the Odin satellite to observe the 110{-}101 transition of o-H2O in the galaxies NGC 253, IC 342, M 82, NGC 4258, CenA, and M 51. None of the galaxies in our sample was detected. Results: We derive three sigma upper limits to the H2O abundance relative to H2 ranging from 2×10-9 to 1×10-8. The best of these upper limits are comparable to the measured abundance of H2O in the Galactic star forming region W3. However, if only 10% of the molecular gas is in very dense cores, then the water abundance limits in the cores themselves would be larger by a factor of 10 i.e. 2×10-8 to 1×10-7. Conclusions: These observations suggest that detections of H2O emission in galaxies with the upcoming Herschel Space Observatory are likely to require on-source integration times of an hour or more except in the very brightest extragalactic targets such as M 82 and NGC 253. Based on observations with Odin, a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes) and Centre National d'Etude Spatiale (CNES). The Swedish Space Corporation has been the industrial prime contractor and also is operating the satellite.

  9. Chandra Observations of the Evening Core of the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Heckman, T. M.; Dahlem, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Chandra observations of the core of the nearby starburst galaxy NGC 253 reveal a heavily absorbed source of hard X-rays embedded within the nuclear starburst region. The source has an unabsorbed, 2 to 10 keV luminosity of greater than or equal to 10(exp 39) erg per s and photoionizes the surrounding gas. We observe this source through a dusty torus with a neutral absorbing column density of N(sub eta) approximately 2 x 10(exp 23)cm (exp -2). The torus is hundreds of pc across and collimates the starburst-driven nuclear outflow. We suggest that the ionizing source is an intermediate-mass black hole or a weakly accreting supermassive black hole, which may signal the beginnings or endings of AGN (active galactic nuclei) activity.

  10. Detection of gamma rays from a starburst galaxy.

    PubMed

    Acero, F; Aharonian, F; Akhperjanian, A G; Anton, G; Barres de Almeida, U; Bazer-Bachi, A R; Becherini, Y; Behera, B; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Borrel, V; Brucker, J; Brun, F; Brun, P; Bühler, R; Bulik, T; Büsching, I; Boutelier, T; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L-M; Clapson, A C; Coignet, G; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fiasson, A; Förster, A; Fontaine, G; Füssling, M; Gabici, S; Gallant, Y A; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göring, D; Hauser, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jung, I; Katarzyński, K; Katz, U; Kaufmann, S; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Keogh, D; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Lamanna, G; Lenain, J-P; Lohse, T; Marandon, V; Martineau-Huynh, O; Marcowith, A; Masbou, J; Maurin, D; McComb, T J L; Medina, M C; Méhault, J; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; de Oña Wilhelmi, E; Orford, K J; Ostrowski, M; Panter, M; Paz Arribas, M; Pedaletti, G; Pelletier, G; Petrucci, P-O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, O; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sikora, M; Skilton, J L; Sol, H; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Superina, G; Szostek, A; Tam, P H; Tavernet, J-P; Terrier, R; Tibolla, O; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Venter, L; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A

    2009-11-20

    Starburst galaxies exhibit in their central regions a highly increased rate of supernovae, the remnants of which are thought to accelerate energetic cosmic rays up to energies of approximately 10(15) electron volts. We report the detection of gamma rays--tracers of such cosmic rays--from the starburst galaxy NGC 253 using the High Energy Stereoscopic System (H.E.S.S.) array of imaging atmospheric Cherenkov telescopes. The gamma-ray flux above 220 billion electron volts is F = (5.5 +/- 1.0(stat) +/- 2.8(sys)) x 10(-13) cm(-2) s(-1), implying a cosmic-ray density about three orders of magnitude larger than that in the center of the Milky Way. The fraction of cosmic-ray energy channeled into gamma rays in this starburst environment is five times as large as that in our Galaxy.

  11. The Butcher-Oemler effect in a nearby cluster of galaxies

    SciTech Connect

    Vigroux, L.; Boulade, O.; Rose, J.A. North Carolina Univ., Chapel Hill )

    1989-12-01

    The integrated spectra of early-type galaxies in the nearby Abell 262, Pegasus I, and Virgo clusters are compared with those of several field galaxies. The spectra of five galaxies in Pegasus I and one galaxy in the Virgo Cluster show evidence of recent star formation. The average blue magnitude for the star-forming galaxies is M(B) = -20. The star-formation activity in Pegasus I is found to be similar to that of starburst and poststarburst galaxies in Butcher-Oemler clusters at redshifts greater than 2. 38 refs.

  12. Starburst galaxies as seen by gamma-ray telescopes

    NASA Astrophysics Data System (ADS)

    Ohm, Stefan

    2016-06-01

    Starburst galaxies have a highly increased star-formation rate compared to regular galaxies and inject huge amounts of kinetic power into the interstellar medium via supersonic stellar winds, and supernova explosions. Supernova remnants, which are considered to be the main source of cosmic rays (CRs), form an additional, significant energy and pressure component and might influence the star-formation process in a major way. Observations of starburst galaxies at γ-ray energies give us the unique opportunity to study non-thermal phenomena associated with hadronic CRs and their relation to the star-formation process. In this work, recent observations of starburst galaxies with space and ground-based γ-ray telescopes are being reviewed, and the current state of theoretical work on the γ-ray emission is discussed. A special emphasis is put on the prospects of the next-generation Cherenkov Telescope Array for the study of starburst galaxies in particular and star-forming galaxies in general. xml:lang="fr"

  13. Hierarchical Star Formation in Nearby LEGUS Galaxies

    NASA Astrophysics Data System (ADS)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.; Adamo, Angela; Aloisi, Alessandra; Andrews, Jennifer; Annibali, Francesca; Bright, Stacey N.; Calzetti, Daniela; Cignoni, Michele; Evans, Aaron S.; Gallagher, John S., III; Gouliermis, Dimitrios A.; Grebel, Eva K.; Hunter, Deidre A.; Johnson, Kelsey; Kim, Hwihyun; Lee, Janice; Sabbi, Elena; Smith, Linda J.; Thilker, David; Tosi, Monica; Ubeda, Leonardo

    2014-05-01

    Hierarchical structure in ultraviolet images of 12 late-type LEGUS galaxies is studied by determining the numbers and fluxes of nested regions as a function of size from ~1 to ~200 pc, and the number as a function of flux. Two starburst dwarfs, NGC 1705 and NGC 5253, have steeper number-size and flux-size distributions than the others, indicating high fractions of the projected areas filled with star formation. Nine subregions in seven galaxies have similarly steep number-size slopes, even when the whole galaxies have shallower slopes. The results suggest that hierarchically structured star-forming regions several hundred parsecs or larger represent common unit structures. Small galaxies dominated by only a few of these units tend to be starbursts. The self-similarity of young stellar structures down to parsec scales suggests that star clusters form in the densest parts of a turbulent medium that also forms loose stellar groupings on larger scales. The presence of super star clusters in two of our starburst dwarfs would follow from the observed structure if cloud and stellar subregions more readily coalesce when self-gravity in the unit cell contributes more to the total gravitational potential.

  14. HIERARCHICAL STAR FORMATION IN NEARBY LEGUS GALAXIES

    SciTech Connect

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.; Adamo, Angela; Gouliermis, Dimitrios A.; Aloisi, Alessandra; Bright, Stacey N.; Cignoni, Michele; Lee, Janice; Sabbi, Elena; Andrews, Jennifer; Calzetti, Daniela; Annibali, Francesca; Evans, Aaron S.; Johnson, Kelsey; Gallagher III, John S.; Grebel, Eva K.; Hunter, Deidre A.; Kim, Hwihyun; Smith, Linda J.; Thilker, David; and others

    2014-05-20

    Hierarchical structure in ultraviolet images of 12 late-type LEGUS galaxies is studied by determining the numbers and fluxes of nested regions as a function of size from ∼1 to ∼200 pc, and the number as a function of flux. Two starburst dwarfs, NGC 1705 and NGC 5253, have steeper number-size and flux-size distributions than the others, indicating high fractions of the projected areas filled with star formation. Nine subregions in seven galaxies have similarly steep number-size slopes, even when the whole galaxies have shallower slopes. The results suggest that hierarchically structured star-forming regions several hundred parsecs or larger represent common unit structures. Small galaxies dominated by only a few of these units tend to be starbursts. The self-similarity of young stellar structures down to parsec scales suggests that star clusters form in the densest parts of a turbulent medium that also forms loose stellar groupings on larger scales. The presence of super star clusters in two of our starburst dwarfs would follow from the observed structure if cloud and stellar subregions more readily coalesce when self-gravity in the unit cell contributes more to the total gravitational potential.

  15. High Mass X-ray Binaries and Star Clusters in Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Prestwich, Andrea H.; Chandar, R.; Rangelov, B.; Jackson, F.

    2011-09-01

    High Mass X-ray Binaries (HMXB) are formed in copious numbers in starburst galaxies. Is there any relationship between HMXBs and young star clusters? Do HMXBs form preferentially in star clusters? What can star clusters tell us about nearby HMXBs, even if they are not directly related? We have studied a variety of nearby starburst galaxies -- including the Antennae, NGC 4449 (a star-bursting dwarf) and NGC 922 (a collisional ring galaxy). In all these systems, we find evidence that a large fraction of (but not all) HMXBs are spatially coincident with (or very close to) a star cluster. Approximately 50 percent of the clusters hosting bright HMXBs are extremely young -- less than 6 Myr. Stellar evolutionary models predict that all stars with initial masses higher than ≈ 30 M⊙ will have completed their main-sequence lifetime after 6 Myr. While still somewhat uncertain, models predict that stars this massive will end their lives as black holes. We therefore conclude that HMXBs coincident with these very young clusters are most likely black hole binaries. We also find evidence for a population of young (30-50 Myr) and intermediate age X-ray sources (100-300 Myr) that are associated with older clusters. The implications of these results for models of HMXB formation and evolution will be briefly discussed.

  16. High resolution sub-millimetre mapping of starburst galaxies: Comparison with CO emission

    NASA Technical Reports Server (NTRS)

    Smith, P. A.; Brand, P. W. J. L.; Puxley, Phil J.; Mountain, C. M.; Nakai, Naomasa

    1990-01-01

    Researchers present first results from a program of submillimeter continuum mapping of starburst galaxies, and comparison of their dust and CO emission. This project was prompted by surprising results from the first target, the nearby starburst M82, which shows in the dust continuum a morphology quite unlike that of its CO emission, in contrast to what might be expected if both CO and dust are accurately tracing the molecular hydrogen. Possible explanations for this striking difference are discussed. In the light of these results, the program has been extended to include sub-mm mapping of the nearby, vigorously star forming spirals, M83 and Maffei 2. The latter were also observed extensively in CO, in order to study excitation conditions in its central regions. The James Clerk Maxwell Telescope was used in these studies.

  17. Comparing Local Starbursts to High-Redshift Galaxies: A Search for Lyman-Break Analogs

    NASA Technical Reports Server (NTRS)

    Petty, Sara M.; de Mello, Duila F.; Gallagher III, John S.; Gardner, Jonathan; Lotz, Jennifer M.; Mountain, C. Matt; Smith, Linda J.

    2008-01-01

    We compare the restframe far-ultraviolet (FUV) morphologies of 8 nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 08, NGC 0520, NGC 1068, NGC 3079, NGC 3310, NGC 7673) with 54 galaxies at z approx.1.5 and 46 galaxies at z approx.4 in the Great Observatories Origins Deep Survey (GOODS) images taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. We calculate the Gini coefficient (G), the second order moment of 20% of the brightest pixels (M20), and the S ersic index (n). We find that 20% (11/54) of z approx.1.5 and 37% (17/46) of z approx.4 galaxies are bulge-like, using G and M20. We also find approx.70% of the z approx.1.5 and z approx.4 galaxies have exponential disks with n > 0.8. The 2D profile combined with the nonparametric methods provides more detail, concerning the nature of disturbed systems, such as merger and post-merger types. We also provide qualitative descriptions of each galaxy system and at each redshift. We conclude that Mrk 08, NGC 3079, and NGC 7673 have similar morphologies as the starburst FUV restframe galaxies and Lyman-break galaxies at z approx.1.5 and 4, and determine that they are Lyman-break analogs.

  18. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    PubMed

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-03

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  19. An actively accreting massive black hole in the dwarf starburst galaxy Henize2-10

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Sivakoff, Gregory R.; Johnson, Kelsey E.; Brogan, Crystal L.

    2011-02-01

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first `seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  20. Star Formation Processes in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Paladino, Rosita

    2017-06-01

    The new available observational facilities allow now studies of star formation processes in nearby galaxies with the level of details so far available only for star forming regions of the Galaxy. The statistical study of the properties of giant molecular clouds in different environments are now possible. I will review the current status of these studies, and present recent ALMA observations of a nearby galaxy NGC3627. ALMA observations allow the study of giant molecular clouds properties in the different environments (arms, inter-arms, bar, bar end regions) observable in this galaxies.

  1. The role of UV-optical obscuration in starburst galaxies

    NASA Technical Reports Server (NTRS)

    Keel, William C.

    1991-01-01

    The starburst phenomenon was viewed as increasingly important since the recognition that some galaxies have regions in which stars are forming so rapidly that a transient event must be seen. Such starbursts populate samples of galaxies selected either for UV or IR excess, and some were found from IRAS source identifications that must be quite heavily obscured at optical wavelengths. Many interpretations of the physical conditions in these objects and their stellar populations have relied on scaling from models of individual H II regions, and this certainly seems justified from the gross appearance of the optical spectra and IR spectral shapes. Collection of complementary UV, optical, and near-IR data is presented on a set of starbursts, with a preliminary analysis of models for more realistic internal structure.

  2. Searching for Tidal Disruption Events in Post-Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Guevel, David; Arcavi, Iair

    2016-06-01

    Tidal Disruption Events (TDEs) are a class of transient phenomena that occur when a star passes sufficiently close to a supermassive black hole (SMBH) to be destroyed by tidal forces. Increasing the number of known TDEs will facilitate the study of SMBHs and black hole accretion physics. Recently it has been shown that TDEs occur most often in quiescent post-starburst galaxies (identified by strong Balmer absorption), some of which are know as "E+A" galaxies. These galaxies may have undergone a merger possibly contributing to the likelihood of TDEs. Using Las Cumbres Observatory Global Telescope (LCOGT) we are conducting a transient survey, called SEATiDE (Searching E+A Galaxies for Tidal Disruption Events), of 100 E+A galaxies. We experiment with different image subtraction techniques to improve our ability of detecting TDE flares in the centers of these galaxies. A future survey will cover an order of magnitude more post-starburst galaxies to measure their TDE rates in more detail with the aim of understanding why TDEs so strongly prefer post-starburst environments.

  3. ALMA MULTI-LINE IMAGING OF THE NEARBY STARBURST NGC 253

    SciTech Connect

    Meier, David S.; Walter, Fabian; Zschaechner, Laura K.; Bolatto, Alberto D.; Veilleux, Sylvain; Warren, Steven R.; Leroy, Adam K.; Ott, Jürgen; Rosolowsky, Erik; Weiß, Axel; Zwaan, Martin A.

    2015-03-01

    We present spatially resolved (∼50 pc) imaging of molecular gas species in the central kiloparsec of the nearby starburst galaxy NGC 253, based on observations taken with the Atacama Large Millimeter/submillimeter Array. A total of 50 molecular lines are detected over a 13 GHz bandwidth imaged in the 3 mm band. Unambiguous identifications are assigned for 27 lines. Based on the measured high CO/C{sup 17}O isotopic line ratio (≳350), we show that {sup 12}CO(1-0) has moderate optical depths. A comparison of the HCN and HCO{sup +} with their {sup 13}C-substituted isotopologues shows that the HCN(1-0) and HCO{sup +}(1-0) lines have optical depths at least comparable to CO(1-0). H{sup 13}CN/H{sup 13}CO{sup +} (and H{sup 13}CN/HN{sup 13}C) line ratios provide tighter constraints on dense gas properties in this starburst. SiO has elevated abundances across the nucleus. HNCO has the most distinctive morphology of all the bright lines, with its global luminosity dominated by the outer parts of the central region. The dramatic variation seen in the HNCO/SiO line ratio suggests that some of the chemical signatures of shocked gas are being erased in the presence of dominating central radiation fields (traced by C{sub 2}H and CN). High density molecular gas tracers (including HCN, HCO{sup +}, and CN) are detected at the base of the molecular outflow. We also detect hydrogen β recombination lines that, like their α counterparts, show compact, centrally peaked morphologies, distinct from the molecular gas tracers. A number of sulfur based species are mapped (CS, SO, NS, C{sub 2}S, H{sub 2}CS, and CH{sub 3}SH) and have morphologies similar to SiO.

  4. Redshift differences of galaxies in nearby groups

    NASA Technical Reports Server (NTRS)

    Harrison, E. R.

    1975-01-01

    It is reported that galaxies in nearby groups exhibit anomalous nonvelocity redshifts. In this discussion, (1) four classes of nearby groups of galacies are analyzed, and no significant nonvelocity redshift effect is found; and (2) it is pointed out that transverse velocities (i.e., velocities transverse to the line of sight of the main galaxy, or center of mass) contribute components to the redshift measurements of companion galaxies. The redshifts of galaxies in nearby groups of appreciable angular size are considerably affected by these velocity projection effects. The transverse velocity contributions average out in rich, isotropic groups, and also in large samples of irregular groups of low membership, as in the four classes referred to in (1), but can introduce apparent discrepancies in small samples (as studied by Arp) of nearby groups of low membership.

  5. Redshift differences of galaxies in nearby groups

    NASA Technical Reports Server (NTRS)

    Harrison, E. R.

    1975-01-01

    It is reported that galaxies in nearby groups exhibit anomalous nonvelocity redshifts. In this discussion, (1) four classes of nearby groups of galacies are analyzed, and no significant nonvelocity redshift effect is found; and (2) it is pointed out that transverse velocities (i.e., velocities transverse to the line of sight of the main galaxy, or center of mass) contribute components to the redshift measurements of companion galaxies. The redshifts of galaxies in nearby groups of appreciable angular size are considerably affected by these velocity projection effects. The transverse velocity contributions average out in rich, isotropic groups, and also in large samples of irregular groups of low membership, as in the four classes referred to in (1), but can introduce apparent discrepancies in small samples (as studied by Arp) of nearby groups of low membership.

  6. New Constraints on the Escape of Ionizing Photons from Starburst Galaxies Using Ionization-parameter Mapping

    NASA Astrophysics Data System (ADS)

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael

    2013-12-01

    The fate of ionizing radiation in starburst galaxies is key to understanding cosmic reionization. However, the galactic parameters on which the escape fraction of ionizing radiation depend are not well understood. Ionization-parameter mapping provides a simple, yet effective, way to study the radiative transfer in starburst galaxies. We obtain emission-line ratio maps of [S III]/[S II] for six, nearby, dwarf starbursts: NGC 178, NGC 1482, NGC 1705, NGC 3125, NGC 7126, and He 2-10. The narrowband images are obtained with the Maryland-Magellan Tunable Filter at Las Campanas Observatory. Using these data, we previously reported the discovery of an optically thin ionization cone in NGC 5253, and here we also discover a similar ionization cone in NGC 3125. This latter cone has an opening angle of 40° ± 5° (0.4 sr), indicating that the passageways through which ionizing radiation may travel correspond to a small solid angle. Additionally, there are three sample galaxies that have winds and/or superbubble activity, which should be conducive to escaping radiation, yet they are optically thick. These results support the scenario that an orientation bias limits our ability to directly detect escaping Lyman continuum in many starburst galaxies. A comparison of the star formation properties and histories of the optically thin and thick galaxies is consistent with the model that high escape fractions are limited to galaxies that are old enough (gsim3 Myr) for mechanical feedback to have cleared optically thin passageways in the interstellar medium, but young enough (lsim5 Myr) that the ionizing stars are still present.

  7. New constraints on the escape of ionizing photons from starburst galaxies using ionization-parameter mapping

    SciTech Connect

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael

    2013-12-10

    The fate of ionizing radiation in starburst galaxies is key to understanding cosmic reionization. However, the galactic parameters on which the escape fraction of ionizing radiation depend are not well understood. Ionization-parameter mapping provides a simple, yet effective, way to study the radiative transfer in starburst galaxies. We obtain emission-line ratio maps of [S III]/[S II] for six, nearby, dwarf starbursts: NGC 178, NGC 1482, NGC 1705, NGC 3125, NGC 7126, and He 2-10. The narrowband images are obtained with the Maryland-Magellan Tunable Filter at Las Campanas Observatory. Using these data, we previously reported the discovery of an optically thin ionization cone in NGC 5253, and here we also discover a similar ionization cone in NGC 3125. This latter cone has an opening angle of 40° ± 5° (0.4 sr), indicating that the passageways through which ionizing radiation may travel correspond to a small solid angle. Additionally, there are three sample galaxies that have winds and/or superbubble activity, which should be conducive to escaping radiation, yet they are optically thick. These results support the scenario that an orientation bias limits our ability to directly detect escaping Lyman continuum in many starburst galaxies. A comparison of the star formation properties and histories of the optically thin and thick galaxies is consistent with the model that high escape fractions are limited to galaxies that are old enough (≳3 Myr) for mechanical feedback to have cleared optically thin passageways in the interstellar medium, but young enough (≲5 Myr) that the ionizing stars are still present.

  8. The Green Bank Telescope Maps the Dense Molecular Gas in the Starburst Galaxy M82

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Leroy, A. K.; Frayer, D. T.; Usero, A.; Marvil, J.; Walter, F.

    2014-01-01

    In both the Milky Way and nearby galaxies, the presence of dense molecular gas is correlated with recent star formation, suggesting that the formation of this gas may represent a key regulating step in the star formation process. Testing this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation. Until now, these observations have been limited by the faintness of dense gas tracers like HCN and HCO+, but new instruments like the 4mm receiver on Robert C. Byrd Green Bank Telescope (GBT) -- the largest single-dish millimeter telescope -- are poised to change this picture. We present GBT maps of the dense gas tracers HCN and HCO+ in the prototypical nearby starburst galaxy M82. The HCN and HCO+ in the disk of M82 correlates both with recent star formation and the diffuse molecular gas and shows kinematics consistent with a rotating torus. HCO+ emission is also associated with the outflow of molecular gas previously identified in CO. These observations mark the first time that dense molecular gas like HCO+ has been associated with an outflow in a nearby galaxy and suggests that the outflow of dense molecular gas from the center of galaxies like M82 may regulate the star formation globally. Finally, the CO-to-HCN and CO-to-HCO+ line ratios reveal that there is more dense gas at the center of M82, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies; this capability will increase further with the 16-element feed array currently being built for the GBT.

  9. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  10. Supernova Blast Bonanza in Nearby Galaxy

    NASA Image and Video Library

    2004-02-03

    The nearby dwarf galaxy NGC 1569 is a hotbed of vigorous star birth activity, which blows huge bubbles that riddle the galaxy main body. The image was taken by the WPF2 camera, designed and built by JPL, on NASA Hubble.

  11. An Infrared Search for Extinguished Supernovae in Starburst Galaxies

    SciTech Connect

    Grossan, B.; Spillar, E.; Tripp, R.; Pirzkal, N.; Sutin, B.M.; Barnaby, D.

    1999-08-01

    IR and radio-band observations of heavily extinguished regions in starburst galaxies suggest a high supernova (SN) rate associated with such regions. Optically measured SN rates may therefore underestimate the total SN rate by factors of up to 10, as a result of the very high extinction ({ital A}{sub {ital B}}thinsp{approximately}thinsp10{endash}20 mag) to core-collapse SNe in starburst regions. The IR/radio SN rates come from a variety of indirect means, however, which suffer from model dependence and other problems. We describe a direct measurement of the SN rate from a regular patrol of starburst galaxies done with {ital K}{prime}-band imaging to minimize the effects of extinction. A collection of {ital K}{prime}-band measurements of core-collapse SNe near maximum light is presented. Such measurements (excluding 1987A) are not well reported in the literature. Results of a preliminary {ital K}{prime}-band search, using the MIRC camera at the Wyoming Infrared Observatory and an improved search strategy using the new ORCA optics, are described. A monthly patrol of a sample of {ital IRAS} bright (mostly starburst) galaxies within 25 Mpc should yield 1{endash}6 SNe yr{sup {minus}1}, corresponding to the range of estimated SN rates. Our initial MIRC search with low resolution (2&arcsec;2 pixels) failed to find extinguished SNe in the {ital IRAS} galaxies, limiting the SN rate outside the nucleus (at greater than 15{double_prime} radius) to less than 3.8 far-IR SN rate units (SNe per century per 10{sup 10} {ital L}{sub {circle_dot}} measured at 60 and 100 {mu}m, or FIRSRU) at 90{percent} confidence. The MIRC camera had insufficient resolution to search nuclear starburst regions, where starburst and SN activity is concentrated; therefore, we were unable to rigorously test the hypothesis of high SN rates in heavily obscured star-forming regions. We conclude that high-resolution nuclear SN searches in starburst galaxies with small fields are more productive than low

  12. Spectroscopic Observations of the Star Formation Regions in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Kong, X.; Lin, L.; Li, J. R.; Zhou, X.; Zou, H.; Li, H. Y.; Chen, F. Z.; Du, W.; Fan, Z.; Mao, Y. W.; Wang, J.; Zhu, Y. N.; Zhou, Z. M.

    2014-01-01

    During the late 1990s and the first decade of the 21st century, the 8˜10 m scale ground-based telescopes are helping astronomers learn much more about how galaxies develop. The existing 2˜4 m scale telescopes become less important for astrophysical researches. To use the existing 2˜4 m scale telescopes to address important issues in cosmology and extragalactic and galactic astronomy, we have to consider very carefully which kind of things we can do, and which we can not. For this reason, the Time Allocation Committee (TAC) of the National Astronomical Observatories of China (NAOC) 2.16 m telescope decides to support some key projects since 2013. Nearby galaxies supply us with the opportunity to study galaxy dynamics and star formation on large scales, yet are close enough to reveal the details. Star formation regions in nearby galaxies provide an excellent laboratory to study the star formation processes, the evolution of massive stars, and the properties of the surrounding interstellar medium. A wealth of information can be obtained from the spectral analysis of the bright emission lines and the stellar continuum. Considering these, we proposed a long-term project ``Spectroscopic Observations of the Star Formation Regions in Nearby Galaxies'', and it becomes the key project of the NAOC 2.16 m telescope since 2013, supported with 30 dark/grey nights per year. The primary goal of this project is to observe the spectroscopy of star formation regions in 20 nearby galaxies, with the NAOC 2.16 m telescope and the Hectospec/MMT (Multiple Mirror Telescope) multifiber spectrograph by Telescope Access Program (TAP). With the spectra of a large sample of star formation regions, combining multi-wavelength data from UV to IR, we can investigate, understand, and quantify the nature of the deviation from the starbursts' IRX-β (the IR/UV ratio ``IRX'' versus the UV color ``β'') correlation. It will be important for a better understanding of the interaction of dust and

  13. Normal and Starburst Galaxies in Deep X-ray Surveys

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann

    2006-01-01

    This talk will cover progress of the last several years in unraveling the nature of normal and starburst galaxies in deep X-ray surveys. This includes discussion of the normal galaxy X-ray Luminosity Function in deep field and cluster surveys and what it tells us about the binary populations in galaxies. The utility of broad band X-ray emission, especially as compared to other multiwavelength measurements of current/recent star formation, will be reviewed. These broad band X-ray measurements of star formation are based upon X-ray/Star Formation Rate correlations that span the currently available redshift range (0 < z < 1). I will also discuss new efforts underway to systematically characterize the X-ray emission from galaxies in group and cluster environments, including a new effort underway in the Coma cluster of galaxies. I will finish with discussion of the redshift frontier for studies of X-ray star formation, currently 2 approx.4, where the UV-selected Lyman Break galaxies are the best glimpse we have into X-ray emission from star formation in the early Universe. Lyman Break galaxies are of particular interest due to the overlap in basic properties with starburst galaxies in the more local Universe. Understanding the outflows in such starburst galaxies is of critical importance to constraining the "stellar" portion of cosmic feedback. The talk will close with a brief discussion of distant normal galaxy science with future X-ray observatories such as the upcoming Con-X/XEUS mission(s).

  14. The ACS Nearby Galaxy Survey Treasury

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne; Williams, B.; Gogarten, S.; Weisz, D.; Skillman, E.; Seth, A.; ANGST Team

    2007-12-01

    The ACS Nearby Galaxy Survey Treasury program (ANGST) is a program to measure photometry for millions of stars in a volume limited sample of 70 nearby galaxies. With this data set, we are deriving spatially resolved star formation histories for both dwarfs and spirals in the local volume. I will highlight initial results from the survey, including ancient star formation histories for massive spirals, halos around dwarf galaxies, spatially-resolved star formation histories in dwarfs and spirals, and the detection of variable stars. I will also discuss the ANGST involved with switching to WFPC2. This program is funded by NASA grant HST GO-10915, administered by STScI.

  15. Dense Molecular Gas Tracers in the Outflow of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Bolatto, Alberto D.; Leroy, Adam K.; Veilleux, Sylvain; Warren, Steven R.; Hodge, Jacqueline; Levy, Rebecca C.; Meier, David S.; Ostriker, Eve C.; Ott, Jürgen; Rosolowsky, Erik; Scoville, Nick; Weiss, Axel; Zschaechner, Laura; Zwaan, Martin

    2017-02-01

    We present a detailed study of a molecular outflow feature in the nearby starburst galaxy NGC 253 using ALMA. We find that this feature is clearly associated with the edge of NGC 253's prominent ionized outflow, has a projected length of ∼300 pc, with a width of ∼50 pc, and a velocity dispersion of ∼40 km s‑1, which is consistent with an ejection from the disk about 1 Myr ago. The kinematics of the molecular gas in this feature can be interpreted (albeit not uniquely) as accelerating at a rate of 1 km s‑1 pc‑1. In this scenario, the gas is approaching an escape velocity at the last measured point. Strikingly, bright tracers of dense molecular gas (HCN, CN, HCO+, CS) are also detected in the molecular outflow: we measure an HCN(1–0)/CO(1–0) line ratio of ∼ 1/10 in the outflow, similar to that in the central starburst region of NGC 253 and other starburst galaxies. By contrast, the HCN/CO line ratio in the NGC 253 disk is significantly lower (∼ 1/30), similar to other nearby galaxy disks. This strongly suggests that the streamer gas originates from the starburst, and that its physical state does not change significantly over timescales of ∼1 Myr during its entrainment in the outflow. Simple calculations indicate that radiation pressure is not the main mechanism for driving the outflow. The presence of such dense material in molecular outflows needs to be accounted for in simulations of galactic outflows.

  16. Are bars essential for starbursts in non-interacting galaxies

    NASA Technical Reports Server (NTRS)

    Pompea, Stephen M.; Rieke, G. H.

    1990-01-01

    Analyzed here are the 1.6 and 2.2 micron images of a sample of galaxies that are classified as unbarred by the Revised Shapley-Ames Catalog. These galaxies have characteristic properties of nuclear starbursts and are examined through near infrared imaging in a search for hidden bars. Researchers selected a sample of 36 galaxies from the Revised Shapley-Ames Catalog that have far infrared luminosities greater than 10(exp 10) solar luminosity and hot Infrared Astronomy Satellite (IRAS) colors between 60 and 100 microns, indicative of nuclear starbursts, but are not classified as Seyfert 1 or 2. Their determination of the presence of a bar relies primarily on an analysis of the 2 micron image using the Galaxy Surface Photometry (GASP) package (Cawson, 1983). The GASP analysis programs determine the galaxy surface brightness and ellipticity profiles as well as the position angle and the center coordinates of the ellipses. To test the way that GASP will characterize the surface brightness of barred galaxies, two galaxies with known bars, NGC 1068 and NGC 2523, were imaged with the 2 micron camera and analyzed with GASP. Fifteen of the sample that are not clearly barred from optical data and are isolated were imaged at 1.6 and 2.2 microns; 9 of these do not appear to have bars. Strong bars therefore do not appear to be an absolute requirement for high infrared luminosity in isolated galaxies.

  17. Diffuse Gamma-Ray Emission from the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Bertsch, David L.; Paglione, Timothy A. D.; Marscher, Alan P.; Jackson, James M.

    1995-01-01

    The starburst galaxy NGC 253 was observed with the Energetic Gamma Ray Experiment Telescope (EGRET) aboard the Compton Gamma Ray Observatory (CGRO) satellite. We obtain a 2 sigma upper limit to the gamma-ray emission above 100 MeV of 8 x 10(exp -8) photons/sq cm/s. Because of their large gas column densities and supernova rates, nearby starburst galaxies were predicted to have gamma-ray fluxes detectable by EGRET. Our nondetection of gamma-rays from NGC 253 motivates us to reexamine in detail the premise of supernova acceleration of cosmic rays and the effect of enhanced cloud densities, photon densities, and magnetic fields on the high-energy spectra of galaxies. By modeling the expected gamma-ray and synchrotron spectra from NGC 253, we find that up to 20% of the energy from supernovae is transferred to cosmic rays in the starburst, which is consistent with supernova acceleration models. Our calculations match the EGRET and radio data well with a supernova rate of 0.08/yr, a magnetic field B greater than or approximately equal to 5 x 10(exp -5) G, a density n approximately 300/cu cm, a photon density U(sub ph) approximately 200 eV/cu cm, and an escape timescale tau(sub o) less than or approximately equal to 10 Myr.

  18. The fine line between normal and starburst galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Nicholas; Sheth, Kartik; Scott, Kimberly S.; Toft, Sune; Magdis, Georgios E.; Damjanov, Ivana; Zahid, H. Jabran; Casey, Caitlin M.; Cortzen, Isabella; Gómez Guijarro, Carlos; Karim, Alexander; Leslie, Sarah K.; Schinnerer, Eva

    2017-10-01

    Recent literature suggests that there are two modes through which galaxies grow their stellar mass - a normal mode characterized by quasi-steady star formation, and a highly efficient starburst mode possibly triggered by stochastic events such as galaxy mergers. While these differences are established for extreme cases, the population of galaxies between these two regimes is poorly studied and it is not clear where the transition between these two modes of star formation occurs. We utilize the Atacama Large Millimeter/submillimeter Array observations of the CO J = 3-2 line luminosity in a sample of 20 infrared luminous galaxies that lie in the intermediate range between normal and starburst galaxies at z ∼ 0.25-0.65 in the Cosmic Evolution Survey field to examine their gas content and star formation efficiency. We compare these quantities to the galaxies' deviation from the well-studied 'main sequence' (MS) correlation between star formation rate and stellar mass and find that at log(SFR/SFRMS) ≲ 0.6, a galaxy's distance to the main sequence is primarily driven by increased gas content, and not a more efficient star formation process.

  19. Discrete X-Ray Source Populations and Star Formation History in Nearby Galaxies

    NASA Technical Reports Server (NTRS)

    Zezas, Andreas; Hasan, Hashima (Technical Monitor)

    2005-01-01

    This program aims in understanding the connection between the discrete X-ray source populations observed in nearby galaxies and the history of star-formation in these galaxies. The ultimate goal is to use this knowledge in order to constrain X-ray binary evolution channels. For this reason although the program is primarily observational it has a significant modeling component. During the second year of this study we focused on detailed studies of the Antennae galaxies and the Small Magellanic Cloud (SMC). We also performed the initial analysis of the 5 galaxies forming a starburst-age sequence.

  20. Hard Gamma Ray Emission from the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Jackson, James M.; Marscher, Alan M.

    1996-01-01

    We have completed the study to search for hard gamma ray emission from the starburst galaxy NGC 253. Since supernovae are thought to provide the hard gamma ray emission from the Milky Way, starburst galaxies, with their extraordinarily high supernova rates, are prime targets to search for hard gamma ray emission. We conducted a careful search for hard gamma ray emission from NGC 253 using the archival data from the EGRET experiment aboard the CGRO. Because this starburst galaxy happens to lie near the South Galactic Pole, the Galactic gamma ray background is minimal. We found no significant hard gamma ray signal toward NGC 253, although a marginal signal of about 1.5 sigma was found. Because of the low Galactic background, we obtained a very sensitive upper limit to the emission of greater than 100 MeV gamma-rays of 8 x 10(exp -8) photons/sq cm s. Since we expected to detect hard gamma ray emission, we investigated the theory of gamma ray production in a dense molecular medium. We used a leaky-box model to simulate diffusive transport in a starburst region. Since starburst galaxies have high infrared radiation fields, we included the effects of self-Compton scattering, which are usually ignored. By modelling the expected gamma-ray and synchrotron spectra from NGC 253, we find that roughly 5 - 15% of the energy from supernovae is transferred to cosmic rays in the starburst. This result is consistent with supernova acceleration models, and is somewhat larger than the value derived for the Galaxy (3 - 10%). Our calculations match the EGRET and radio data very well with a supernova rate of 0.08/ yr, a magnetic field B approx. greater than 5 x 10(exp -5) G, a density n approx. less than 100/sq cm, a photon density U(sub ph) approx. 200 eV/sq cm, and an escape time scale tau(sub 0) approx. less than 10 Myr. The models also suggest that NGC 253 should be detectable with only a factor of 2 - 3 improvement in sensitivity. Our results are consistent with the standard picture

  1. Gamma-rays from pulsar wind nebulae in starburst galaxies

    NASA Astrophysics Data System (ADS)

    Mannheim, Karl; Elsässer, Dominik; Tibolla, Omar

    2012-07-01

    Recently, gamma-ray emission at TeV energies has been detected from the starburst galaxies NGC253 (Acero et al., 2009) [1] and M82 (Acciari et al., 2009) [2]. It has been claimed that pion production due to cosmic rays accelerated in supernova remnants interacting with the interstellar gas is responsible for the observed gamma rays. Here, we show that the gamma-ray pulsar wind nebulae left behind by the supernovae contribute to the TeV luminosity in a major way. A single pulsar wind nebula produces about ten times the total luminosity of the Sun at energies above 1 TeV during a lifetime of 105 years. A large number of 3 × 104 pulsar wind nebulae expected in a typical starburst galaxy at a distance of 4 Mpc can readily produce the observed TeV gamma rays.

  2. HAWK-I infrared supernova search in starburst galaxies

    NASA Astrophysics Data System (ADS)

    Miluzio, M.; Cappellaro, E.; Botticella, M. T.; Cresci, G.; Greggio, L.; Mannucci, F.; Benetti, S.; Bufano, F.; Elias-Rosa, N.; Pastorello, A.; Turatto, M.; Zampieri, L.

    2013-06-01

    Context. The use of SN rates to probe explosion scenarios and to trace the cosmic star formation history received a boost from a number of synoptic surveys. There has been a recent claim of a mismatch by a factor of two between star formation and core collapse SN rates, and different explanations have been proposed for this discrepancy. Aims: We attempted an independent test of the relation between star formation and supernova rates in the extreme environment of starburst galaxies, where both star formation and extinction are extremely high. Methods: To this aim we conducted an infrared supernova search in a sample of local starbursts galaxies. The rationale behind searching in the infrared is to reduce the bias due to extinction, which is one of the putative reasons for the observed discrepancy between star formation and supernova rates. To evaluate the outcome of the search we developed a MonteCarlo simulation tool that is used to predict the number and properties of the expected supernovae based on the search characteristics and the current understanding of starburst galaxies and supernovae. Results: During the search we discovered 6 supernovae (4 with spectroscopic classification), which is in excellent agreement with the prediction of the MonteCarlo simulation tool that is, on average, 5.3 ± 2.3 events. Conclusions: The number of supernovae detected in starburst galaxies is consistent with what is predicted from their high star formation rate when we recognize that a major fraction (~ 60%) of the events remain hidden in the inaccessible, high-density nuclear regions because of a combination of reduced search efficiency and high extinction. ESO proposal: 083.D-0259, 085.D-0335, 085.D-0348, 087.D-0494, 087.D-0922. GTC proposal: GTC50-11B.

  3. Morphological analysis of nearby elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Preetha, A. U.; Jithesh, V.; Joseph, Dhanya; Nikesh, N.; Ravikumar, C. D.

    We report correlations among bulge-disk parameters for a sample of twenty nearby (<30 Mpc) elliptical galaxies with K band observations from (Two Micron All Sky Survey (2MASS)). The global photometric parameters were extracted using the code ``GALFIT'' assuming Sersic bulge with an optional exponential disk. The sample contains all elliptical galaxies from Swartz et al. (2004) with identified non nuclear ultra luminous sources (ULXs) with intrinsic luminosities of LX > 10^{39} ergs/s in the 0.5-8.0 keV energy band. Out of 20 galaxies, seven (35%) shows no significant disk component in it. The rest of the galaxies in the sample show significant disk component with a mean B/T ratio 0.29±0.06. No obvious differences were obtained in various two and three parameter correlations with that of Coma cluster ellipticals, even though our sample is from the nearby Universe.

  4. INTEGRATED OPTICAL POLARIZATION OF NEARBY GALAXIES

    SciTech Connect

    Jones, Amy; Wang Lifan; Krisciunas, Kevin; Freeland, Emily

    2012-03-20

    We performed an integrated optical polarization survey of 70 nearby galaxies to study the relationship between linear polarization and galaxy properties. To date this is the largest survey of its kind. The data were collected at McDonald Observatory using the Imaging Grism Polarimeter on the Otto Struve 2.1 m telescope. Most of the galaxies did not have significant level of linear polarization, where the bulk is <1%. A fraction of the galaxies showed a loose correlation between the polarization and position angle of the galaxy, indicating that dust scattering is the main source of optical polarization. The unbarred spiral galaxies are consistent with the predicted relationship with inclination from scattering models of {approx}sin{sup 2} i.

  5. Integrated Optical Polarization of nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Jones, Amy; Wang, Lifan; Krisciunas, Kevin; Freeland, Emily

    2012-03-01

    We performed an integrated optical polarization survey of 70 nearby galaxies to study the relationship between linear polarization and galaxy properties. To date this is the largest survey of its kind. The data were collected at McDonald Observatory using the Imaging Grism Polarimeter on the Otto Struve 2.1 m telescope. Most of the galaxies did not have significant level of linear polarization, where the bulk is <1%. A fraction of the galaxies showed a loose correlation between the polarization and position angle of the galaxy, indicating that dust scattering is the main source of optical polarization. The unbarred spiral galaxies are consistent with the predicted relationship with inclination from scattering models of ~sin 2 i.

  6. Chandra Images the Seething Cauldron of Starburst Galaxy

    NASA Astrophysics Data System (ADS)

    2000-01-01

    NASA's Chandra X-ray Observatory has imaged the core of the nearest starburst galaxy, Messier 82 (M82). The observatory has revealed a seething cauldron of exploding stars, neutron stars, black holes, 100 million degree gas, and a powerful galactic wind. The discovery will be presented by a team of scientists from Carnegie Mellon University, Pittsburgh, Penn., Pennsylvania State University, University Park, and the University of Michigan, Ann Arbor, on January 14 at the 195th national meeting of the American Astronomical Society. "In the disk of our Milky Way Galaxy, stars form and die in a relatively calm fashion like burning embers in a campfire," said Richard Griffiths, Professor of Astrophysics at Carnegie Mellon University. "But in a starburst galaxy, star birth and death are more like explosions in a fireworks factory." Short-lived massive stars in a starburst galaxy produce supernova explosions, which heat the interstellar gas to millions of degrees, and leave behind neutron stars and black holes. These explosions emit light in the X rays rather than in visible light. Because the superhot components inside starburst galaxies are complex and sometimes confusing, astronomers need an X-ray-detecting telescope with the highest focusing power (spatial resolution) to clearly discriminate the various structures. "NASA's Chandra X-ray Observatory is the perfect tool for studying starburst galaxies since it has the critical combination of high-resolution optics and good sensitivity to penetrating X rays," said Gordon Garmire, the Evan Pugh Professor of Astronomy and Astrophysics at Pennsylvania State University, and head of the team that conceived and built Chandra's Advanced CCD Imaging Spectrograph (ACIS) X-ray camera, which acquired the data. Many intricate structures missed by earlier satellite observatories are now visible in the ACIS image, including more than twenty powerful X-ray binary systems that contain a normal star in a close orbit around a neutron star

  7. Circumnuclear ring of the starburst galaxy NGC 253. An Infrared view

    NASA Astrophysics Data System (ADS)

    Pérez GarcÍa, A. M.; Melo, V. P.; Acosta-Pulido, J.; Muñoz-Tuñón, C.; RodrÍguez-Espinosa, J. M.

    NGC 253 is a nearby spiral galaxy with an active starburst nucleus. Its proximity allows observation with good spatial resolution with state of the art mid and far IR facilities. Here we present preliminary results obtained from the ISO archive in 5 to 16 microns (ISOCAM-CVF) and 120 to 180 μm (ISOPHOT) ranges. The mid IR spectrum exhibits typical broad PAH features as well as weak atomic emission, which is not seen in the continuum nor in the [ArII] emission line. For the first time we present a far IR map (180 μm) as well as several profiles across the minor axis of the galaxy, showing a variation of the dust temperature. We detect an extension of the cold dust (20K) emission not seen previously in IRAS maps, which may contribute to a large fraction of the galaxy total mass.

  8. Starbursts in dwarf galaxies: A multiwavelength case study of NGC 625

    NASA Astrophysics Data System (ADS)

    Cannon, John Michael

    The results of a multiwavelength case study of the nearby dwarf starburst galaxy NGC 625 are presented. This low- mass galaxy hosts a massive starburst comparable in luminosity to 30 Doradus in the Large Magellanic Cloud; its proximity and high galactic latitude provide an ideal opportunity to investigate the starburst phenomenon and its impact on the ISM and IGM. We use Chandra, FUSE, HST, CTIO, ATCA, and VLA data to investigate the nature of the stellar population and multi-phase ISM. Our principal findings are summarized as follows: (1)Ground-based optical spectroscopy finds a prominent Wolf-Rayet (W-R) feature arising from the major starburst region, implying a brief burst duration (4 6 Myr); (2)A spatially resolved star formation history analysis using HST/WFPC2 data shows that the duration of the burst is actually much longer than the W-R features would imply (duration ≳ 50 Myr), and that the star formation has been widespread throughout the disk over this interval; (3)This extended starburst has input sufficient kinetic energy into the ISM to create a large-scale outflow; (4)H I observations from the ATCA show complex kinematics that are consistent with a minor-axis outflow of large amounts of neutral gas; (5)This outflow is verified by FUSE spectroscopy, where strong O VI coronal gas absorption is blueshifted with respect to the neutral and diffuse H2 absorption lines; (6)FUSE spectra also reveal an abundance offset between the neutral and nebular gas regions that may be a common component of the ISM of low-metallicity dwarf galaxies; (7)The ROSAT detection of diffuse soft x-ray emission is verified by new Chandra imaging of NGC 625; (8)VLA radio continuum data shows a thermal global spectral index and a mix of thermal and nonthermal indices for the individual major star formation regions, suggesting vigorous and (temporally and spatially) extended star formation throughout the disk. We interpret these results in the context of low-mass galaxy evolution

  9. Early Starbursts and Magnetic Field Generation in Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Völk, H. J.; Atoyan, A. M.

    2000-09-01

    We propose a mechanism for the early generation of the mean intracluster magnetic field in terms of magnetized galactic winds. These winds are the result of starburst phases of the cluster galaxies, assumed to produce the predominant population of early-type galaxies in mergers of gas-rich progenitors. After further cluster contraction, typical field strengths are 10-7 G. This estimate may increase to the level of 10-6 G if more extreme galactic parameters and subsequent shear amplification of the field are considered. The topology of the field is one of almost unconnected wind bubbles with Parker-type spiral field configurations over scales of the distance between galaxies. Further cluster accretion, which continues chaotically in space and time up to the present, will perturb these ``large-scale'' mean fields on smaller or at best comparable spatial scales. The small-scale fields in the resulting turbulent fluctuation spectrum should be able to confine relativistic particles over times longer than the age of the universe. The nonthermal particle content of galaxy clusters should therefore also have a ``cosmological'' hadronic component generated during the early starburst phase of the member galaxies. Already by itself it implies a nonthermal energy fraction of about 10% for the intracluster gas that should then be detectable by future γ-ray telescopes.

  10. Morphology and Structures of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Mira; Ann, HongBae

    2015-08-01

    We performed an analysis of the structure of nearby dwarf galaxies based on a 2-dimensional decomposition of galaxy images using GALFIT. The present sample consists of ~1,100 dwarf galaxies with redshift less than z = 0.01, which is is derived from the morphology catalog of the Visually classified galaxies in the local universe (Ann, Seo, and Ha 2015). In this catalog, dwarf galaxies are divided into 5 subtypes: dS0, dE, dSph, dEbc, dEblue with distinction of the presence of nucleation in dE, dSph, and dS0. We found that dSph and dEblue galaxies are fainter than other subtypes of dwarf galaxies. In most cases, single component, represented by the Sersic profile with n=1~1.5, well describes the luminosity distribution of dwarf galaxies in the present sample. However, a significant fraction of dS0, dEbc, and dEbue galaxies show sub-structures such as spiral arms and rings. We will discuss the morphology dependent evolutionary history of the local dwarf galaxies.

  11. Gas distribution and starbursts in shell galaxies

    NASA Technical Reports Server (NTRS)

    Weil, Melinda L.; Hernquist, Lars

    1993-01-01

    Detailed maps of most elliptical galaxies reveal that, whereas the greatest part of their luminous mass originates from a smooth distribution with a surface brightness approximated by a de Vaucouleurs law, a small percentage of their light is contributed by low surface brightness distortions termed 'fine structures'. The sharp-edged features called 'shells' are successfully reproduced by merger and infall models involving accretion from less massive companions. In this context, dwarf spheroidal and compact disk galaxies are likely progenitors of these stellar phenomena. However, it is probable that the sources of shell-forming material also contain significant amounts of gas. This component may play an important role in constraining the formation and evolution of shell galaxies. To investigate the effects of the gaseous component, numerical simulations were performed to study the tidal disruption of dwarf galaxies containing both gas and stars by more massive primaries, and the evolution of the ensuing debris. The calculations were performed with a hybrid N-body/hydrodynamics code. Collisionless matter is evolved using a conventional N-body technique and gas is treated using smoothed particle hydrodynamics in which self-gravitating fluid elements are represented as particles evolving according to Lagrangian hydrodynamic equations. An isothermal equation of state is employed so the gas remains at a temperature 104 K. Owing to the large mass ratio between the primary and companion, the primary is modeled as a rigid potential and the self-gravity of both galaxies is neglected.

  12. Extended hot-gas halos around starburst galaxies

    NASA Technical Reports Server (NTRS)

    Tomisaka, Kohji; Bregman, Joel N.

    1993-01-01

    A reanalysis of Einstein Imaging Proportional Counter (IPC) data and new observations from the Ginga Large Area (Proportional) counters (LAC) indicate the presence of extended X-ray emission (10-50 kpc) around the starburst galaxy M82. Here, we discuss our model of this emission, which was obtained by performing numerical hydrodynamic simulations of the starburst event to much later times and larger scales than were previously considered. For our models, we adopted a supernova rate of 0.1/yr, and an extended low-density static halo that is bound to the galaxy. There are three stages to the evolution of the wind-blown bubble and the propagation of the shock front: the bubble expands in an almost uniform density disk gas, with a deceleration of the shock front (t is less than or approximately 3.6 Myr); breakout from the disk and the upward acceleration of the shock front (3.6 Myr is less than or approximately t is less than or approximately 18 Myr); propagation into the halo, leading to a more spherical system and shock deceleration (18 Myr is less than or approximately t). For a halo density of 10(exp -3)/cu cm, the outflow reaches a distance of 40-50 kpc from the center of the starburst galaxy in 50 Myr. We calculated the time evolution of the X-ray luminosity and found that the extended starburst emits 3 x 10(exp 39) erg/s to 10(exp 40) in the Ginga LAC band and approximately 10(exp 41) erg/s in the Einstein band. The degree of the ionization equilibrium in the outflow and its effect on the iron K alpha line emission are discussed.

  13. The ACS Nearby Galaxy Survey Treasury

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.

    2010-01-01

    The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D<4Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small & large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of 104 in luminosity and star formation rate. The survey data consists of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope, supplemented with archival data and new Wide Field Planetary Camera (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. We will discuss the many ways in which this data set is being used to reconstruct the star formation history of galaxies within the local volume.

  14. Radio identifications of UGC galaxies - starbursts and monsters

    SciTech Connect

    Condon, J.J.; Broderick, J.J.

    1988-07-01

    New and previously published observational data on galaxies with declination less than +82 deg from the Uppsala General Catalog (Nilson, 1973) are compiled in extensive tables and characterized in detail. Optical positions are confirmed by measurement of Palomar Sky Survey O prints, and radio identifications for 176 galaxies are made on the basis of 1.4-GHz Green Bank sky maps or 1.49-GHz observations obtained with the C configuration of the VLA in November-December 1986; contour maps based on the latter observations are provided. Radio-selected and IR-selected galaxy populations are found to be similar (and distinct from optically selected populations), and three radio/IR criteria are developed to distinguish galaxies powered by starbursts from those with supermassive black holes or other monster energy sources. 197 references.

  15. Orbital masses of nearby luminous galaxies

    SciTech Connect

    Karachentsev, Igor D.; Kudrya, Yuri N. E-mail: yukudrya@gmail.com

    2014-09-01

    We use observational properties of galaxies accumulated in the Updated Nearby Galaxy Catalog to derive a dark matter mass of luminous galaxies via motions of their companions. The data on orbital-to-stellar mass ratio are presented for 15 luminous galaxies situated within 11 Mpc from us: the Milky Way, M31, M81, NGC 5128, IC342, NGC 253, NGC 4736, NGC 5236, NGC 6946, M101, NGC 4258, NGC 4594, NGC 3115, NGC 3627, and NGC 3368, as well as for a composite suite around other nearby galaxies of moderate and low luminosity. The typical ratio for these galaxies is M {sub orb}/M {sub *} = 31, corresponding to the mean local density of matter Ω {sub m} = 0.09, i.e., one-third of the global cosmic density. This quantity seems to be rather an upper limit of dark matter density, since the peripheric population of the suites may suffer from the presence of fictitious unbound members. We note that the Milky Way and M31 halos have lower dimensions and lower stellar masses than those of the other 13 nearby luminous galaxies. However, the dark-to-stellar mass ratio for both the Milky Way and M31 is typical for other neighboring luminous galaxies. The distortion in the Hubble flow, observed around the Local Group and five other neighboring groups, yields their total masses within the radius of a zero velocity surface, R {sub 0}; these masses are slightly lower than the orbital and virial values. This difference may be due to the effect of dark energy producing a kind of 'mass defect' within R {sub 0}.

  16. Suites of dwarfs around Nearby giant galaxies

    SciTech Connect

    Karachentsev, Igor D.; Kaisina, Elena I.; Makarov, Dmitry I. E-mail: kei@sao.ru

    2014-01-01

    The Updated Nearby Galaxy Catalog (UNGC) contains the most comprehensive summary of distances, radial velocities, and luminosities for 800 galaxies located within 11 Mpc from us. The high density of observables in the UNGC makes this sample indispensable for checking results of N-body simulations of cosmic structures on a ∼1 Mpc scale. The environment of each galaxy in the UNGC was characterized by a tidal index Θ{sub 1}, depending on the separation and mass of the galaxy's main disturber (MD). We grouped UNGC galaxies with a common MD in suites, and ranked suite members according to their Θ{sub 1}. All suite members with positive Θ{sub 1} are assumed to be physical companions of the MD. About 58% of the sample are members of physical groups. The distribution of suites by the number of members, n, follows a relation N(n) ∼ n {sup –2}. The 20 most populated suites contain 468 galaxies, i.e., 59% of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at M{sub B} = –18{sup m}. We discuss various properties of MDs, as well as galaxies belonging to their suites. The suite abundance practically does not depend on the morphological type, linear diameter, or hydrogen mass of the MD, the tightest correlation being with the MD dynamical mass. Dwarf galaxies around MDs exhibit well-known segregation effects: the population of the outskirts has later morphological types, richer H I contents, and higher rates of star formation activity. Nevertheless, there are some intriguing cases where dwarf spheroidal galaxies occur at the far periphery of the suites, as well as some late-type dwarfs residing close to MDs. Comparing simulation results with galaxy groups, most studies assume the Local Group is fairly typical. However, we recognize that the nearby groups significantly differ from each other and there is considerable variation in their properties. The suites of companions around the Milky Way and M31, consisting of the

  17. Suites of Dwarfs around nearby Giant Galaxies

    NASA Astrophysics Data System (ADS)

    Karachentsev, Igor D.; Kaisina, Elena I.; Makarov, Dmitry I.

    2014-01-01

    The Updated Nearby Galaxy Catalog (UNGC) contains the most comprehensive summary of distances, radial velocities, and luminosities for 800 galaxies located within 11 Mpc from us. The high density of observables in the UNGC makes this sample indispensable for checking results of N-body simulations of cosmic structures on a ~1 Mpc scale. The environment of each galaxy in the UNGC was characterized by a tidal index Θ1, depending on the separation and mass of the galaxy's main disturber (MD). We grouped UNGC galaxies with a common MD in suites, and ranked suite members according to their Θ1. All suite members with positive Θ1 are assumed to be physical companions of the MD. About 58% of the sample are members of physical groups. The distribution of suites by the number of members, n, follows a relation N(n) ~ n -2. The 20 most populated suites contain 468 galaxies, i.e., 59% of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at MB = -18m. We discuss various properties of MDs, as well as galaxies belonging to their suites. The suite abundance practically does not depend on the morphological type, linear diameter, or hydrogen mass of the MD, the tightest correlation being with the MD dynamical mass. Dwarf galaxies around MDs exhibit well-known segregation effects: the population of the outskirts has later morphological types, richer H I contents, and higher rates of star formation activity. Nevertheless, there are some intriguing cases where dwarf spheroidal galaxies occur at the far periphery of the suites, as well as some late-type dwarfs residing close to MDs. Comparing simulation results with galaxy groups, most studies assume the Local Group is fairly typical. However, we recognize that the nearby groups significantly differ from each other and there is considerable variation in their properties. The suites of companions around the Milky Way and M31, consisting of the Local Group, do not quite seem to be a typical

  18. A more direct measure of supernova rates in starburst galaxies

    NASA Technical Reports Server (NTRS)

    Van Buren, Dave; Greenhouse, Matthew A.

    1994-01-01

    We determine ages for young supernova remnants in the starburst galaxies M82 and NGC 253 by applying Chevalier's model for radio emission from supernova blast waves expanding into the ejecta of their precursor stars. Absolute ages are determined by calibrating the model with radio observations of Cas A. We derive supernova rates of 0.10 and 0.08/yr for M82 and NGC 253, respectively. Assuming L (sub FIR) to be proportional to the supernova rate, we find r(sub SN) approximately equal 2 x 10(exp -12) x L(sub FIR), solar yr(exp -1) for these archetypal starburst galaxies. This approach is unique in that the supernova rate is derived from direct observation of supernova remnants rather than from star formation rates and an assumed initial mass function (IMF). We suggest that the approach presented here can be used to derive star-formation rates that are more directly related to observable quantities than those derived by other methods. We find that the supernova rate, far infrared (FIR) luminosity, and dynamical mass of the M82 starburst place few constraints on the initial mass function (IMF) slope and mass limits.

  19. Crystallization of silicates in massive young star cluster Westerlund 1: a nearby starburst analog

    NASA Astrophysics Data System (ADS)

    Kemper, Francisca

    2014-10-01

    We propose to observe dust forming stars in massive young cluster Westerlund 1 with the FORCASTgrism modes. The objective of this proposal is to determine the crystalline fraction of the silicates formed by the brightest mid-infrared point sources in this cluster, by disentangling the crystalline and amorphous silicate contributions to the infrared spectroscopy. This research is motivated by the discovery of large amounts of crystalline silicate dust in starburst galaxies (Spoon et al. 2006), while the silicates in the interstellar medium of our own galaxies are completely amorphous (Kemper et al. 2004). Spoon et al. explain the high crystallinity by the production by massive stars, although models show this may not be sufficient (Kemper et al. 2011). With these observations we hope to accurately pin down the crystalline silicate production by massive stars in a starburst environment.

  20. Starburst Galaxies: Hard X-ray spectra and contribution to the diffuse background

    NASA Technical Reports Server (NTRS)

    Gruber, Duane E.

    1993-01-01

    During the period of this grant two main tasks were performed: a determination of a selection criterion for starburst galaxies most likely to emit X-rays, and performance of a pilot study of the X-ray emission from nine such systems. Starburst galaxies may be expected to emit flat-spectrum X-ray at energies above 10 keV resulting from the various remnants of the short-lived massive stars which characterize the starburst. The investigation to determine the optimum sample resulted in a change from an X-ray selected (HEAO-2) sample to infrared selection based on the IRAS catalogue. A much broader sample thereby available for study, and selection could be limited to only the nearest objects and still obtain a reasonably large sample. A sample of 99 of the brightest infrared starburst galaxies was settled on for the X-ray survey. For a set of practical size, this was then reduced to a subset of 53, based on luminosity and nearness. X-ray emission from these objects was individually measured from the UCSD HEAO-1 all-sky survey in four energy bands between 13 keV to 160 keV. This data base consists of about 20 optical disk volumes. Net significance for the result was roughly two sigma, and a very hard spectral shape is indicated for the net spectrum of the surveyed galaxies. With the possibility of detection of the class, it was then felt worthwhile to examine fluxes from these sources in other archival data. This was performed with the HEAO-1 A2 data and the HEAO-2 (EINSTEIN) main archive and slew survey. Positive results were also obtained for the sample, but again at weak significance. With three independent measures of weak X-ray fluxes from nearby starburst galaxies, we wrote a letter to the Astrophysical Journal (enclosed) discussing these results and their likely significance, in particular, for the contribution to the cosmic diffuse x-ray background, perhaps as much as 25 percent.

  1. Ultraviolet imaging of the AGN+starburst galaxy NGC 1068

    NASA Technical Reports Server (NTRS)

    Neff, Susan G.; Fanelli, Michael N.; Roberts, Laura J.; O'Connell, Robert W.; Bohlin, Ralph; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1994-01-01

    Images of the Seyfert 2 galaxy NGC 1068 were obtained at two ultraviolet wavelengths by the Ultraviolet Imaging Telescope (UIT). These data represent the first detailed UV imagery of a composite (active galactic nucleus + starburst) disk galaxy. NGC 1068 cotains multiple components at UV wavelengths: the central active galactic nucleus; a population of very luminous starburst knots; a bright oval inner disk; and a fainter, more circular halo. The most luminous knot, which is located approximately 750 pc from the nucleus at PA 315 deg, is approximately 80 times the luminosity of 30 Doradus and gives NGC 1068 a 'double nucleus' appearance in the UV. Significant extended emission is observed throughout the disk, unlike other disk galaxies so far observed in the UV. The radial brightness profile in both UV bandpasses generally follows an exponential decline to approximately 5 kpc. A faint halo extending to approximately 13 kpc is likely to be a galaxian-sized reflection nebula where ambient dust scatters the intense UV continuum from the inner galaxy. UV colors show a striking asymmetric morphology, which is correlated with the observed molecular CO emission.

  2. Winds of change: reionization by starburst galaxies

    NASA Astrophysics Data System (ADS)

    Sharma, Mahavir; Theuns, Tom; Frenk, Carlos; Bower, Richard G.; Crain, Robert A.; Schaller, Matthieu; Schaye, Joop

    2017-06-01

    We investigate the properties of the galaxies that reionized the Universe and the history of cosmic reionization using the 'Evolution and Assembly of Galaxies and their Environments' (eagle) cosmological hydrodynamical simulations. We obtain the evolution of the escape fraction of ionizing photons in galaxies assuming that galactic winds create channels through which 20 per cent of photons escape when the local surface density of star formation is greater than 0.1 M⊙ yr-1 kpc-2. Such threshold behaviour for the generation of winds is observed, and the rare local objects that have such high star formation surface densities exhibit high escape fractions of ˜10 per cent. In our model, the luminosity-weighted mean escape fraction increases with redshift as \\bar{f}_esc=0.045 ((1+z)/4)^{1.1} at z > 3, and the galaxy number weighted mean as = 2.2 × 10-3 ((1 + z)/4)4, and becomes constant ≈0.2 at redshift z > 10. The escape fraction evolves as an increasingly large fraction of stars forms above the critical surface density of star formation at earlier times. This evolution of the escape fraction, combined with that of the star formation rate density from eagle, reproduces the inferred evolution of the filling factor of ionized regions during the reionization epoch (6 < z < 8), the evolution of the post-reionization (0 ≤ z < 6) hydrogen photoionization rate and the optical depth due to Thomson scattering of the cosmic microwave background photons measured by the Planck satellite.

  3. Numerical models of starburst galaxies: Galactic winds and entrained gas

    NASA Astrophysics Data System (ADS)

    Tanner, Ryan

    My three-dimensional hydro-dynamical simulations of starbursts examine the formation of starburst-driven superbubbles over a range of driving luminosities and mass loadings that determine superbubble growth and wind velocity; floors of both 10 and 10. 4 K are considered. From this I determine the relationshipbetween the velocity of a galactic wind and the characteristics of the starburst. I find a threshold for the formation of a wind, above which the wind speed is not affected by grid resolution or the temperature floor of the radiative cooling employed. Optically bright filaments form at the edge of merging superbubbles, or where a cold dense cloud has been disrupted by the wind. Filaments formed by merging superbubbles will persist and grow to >400 pc in length if anchored to and fed from a star forming complex. For galaxies viewed edge on I use total emission from the superbubble to infer the wind velocity and starburst properties such as thermalization efficiency and mass loading factor. Using synthetic absorption profiles I probe different temperature regimes and measure the velocity of the cold, warm and hot gas phases. I find that the cold and warm gas entrained in the wind move at a much lower velocity than the hot gas, with some of the cold gas in the filaments hardly moving with respect to the galaxy. The absorption profiles show that the velocity of the hot galactic outflow does not depend on the star formation rate (SFR), but the velocity of the warm gas does. The velocity of the warm gas scales as SFR. delta untilthe wind velocity reaches 80 % of the analytic terminal wind speed. The value of delta depends on the atomic ionization with a lower value for low ionization, and a higher value for higher ionization.

  4. A Chandra survey of nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Kilgard, R. E.; Krauss, M. I.; Kaaret, P.; Prestwich, A. H.; Ward, M. J.

    We present results from a Chandra survey of 11 nearby, face-on spiral galaxies. 24 observations totalling 900 ks of new and archival Chandra data reveal more than 1000 X-ray point sources associated with the galaxies, diffuse emission, and hundreds of serendipitous sources. We discuss source populations and luminosity functions and show that the slope of the X-ray luminosity function is correlated with the star formation rate in the galaxies. We also discuss ultraluminous X-ray sources in comparison with sources within the Milky Way. Finally, we discuss ongoing work on source classification based upon X-ray colors and spectra, position within the host galaxies, and multiwavelenth counterparts.

  5. FIR colours and SEDs of nearby galaxies observed with Herschel

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Ciesla, L.; Buat, V.; Cortese, L.; Auld, R.; Baes, M.; Bendo, G. J.; Bianchi, S.; Bock, J.; Bomans, D. J.; Bradford, M.; Castro-Rodriguez, N.; Chanial, P.; Charlot, S.; Clemens, M.; Clements, D.; Corbelli, E.; Cooray, A.; Cormier, D.; Dariush, A.; Davies, J.; de Looze, I.; di Serego Alighieri, S.; Dwek, E.; Eales, S.; Elbaz, D.; Fadda, D.; Fritz, J.; Galametz, M.; Galliano, F.; Garcia-Appadoo, D. A.; Gavazzi, G.; Gear, W.; Giovanardi, C.; Glenn, J.; Gomez, H.; Griffin, M.; Grossi, M.; Hony, S.; Hughes, T. M.; Hunt, L.; Isaak, K.; Jones, A.; Levenson, L.; Lu, N.; Madden, S. C.; O'Halloran, B.; Okumura, K.; Oliver, S.; Page, M.; Panuzzo, P.; Papageorgiou, A.; Parkin, T.; Perez-Fournon, I.; Pierini, D.; Pohlen, M.; Rangwala, N.; Rigby, E.; Roussel, H.; Rykala, A.; Sabatini, S.; Sacchi, N.; Sauvage, M.; Schulz, B.; Schirm, M.; Smith, M. W. L.; Spinoglio, L.; Stevens, J.; Sundar, S.; Symeonidis, M.; Trichas, M.; Vaccari, M.; Verstappen, J.; Vigroux, L.; Vlahakis, C.; Wilson, C.; Wozniak, H.; Wright, G.; Xilouris, E. M.; Zeilinger, W.; Zibetti, S.

    2010-07-01

    We present infrared colours (in the 25-500 μm spectral range) and UV to radio continuum spectral energy distributions of a sample of 51 nearby galaxies observed with SPIRE on Herschel. The observed sample includes all morphological classes, from quiescent ellipticals to active starbursts. Active galaxies have warmer colour temperatures than normal spirals. In ellipticals hosting a radio galaxy, the far-infrared (FIR) emission is dominated by the synchrotron nuclear emission. The colour temperature of the cold dust is higher in quiescent E-S0a than in star-forming systems probably because of the different nature of their dust heating sources (evolved stellar populations, X-ray, fast electrons) and dust grain properties. In contrast to the colour temperature of the warm dust, the f350/f500 index sensitive to the cold dust decreases with star formation and increases with metallicity, suggesting an overabundance of cold dust or an emissivity parameter β < 2 in low metallicity, active systems. Herschel is an ESA space observatory with science instruments provided by Principal Investigator consortia. It is open for proposals for observing time from the worldwide astronomical community.

  6. HC3N observations of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Jiang, Xue-Jian; Wang, Jun-Zhi; Gao, Yu; Gu, Qiu-Sheng

    2017-04-01

    Aims: We aim to systematically study the properties of the different transitions of the dense molecular gas tracer HC3N in galaxies. Methods: We have conducted single-dish observations of HC3N emission lines towards a sample of nearby gas-rich galaxies. HC3N(J = 2-1) was observed in 20 galaxies with the Effelsberg 100-m telescope. HC3N(J = 24-23) was observed in nine galaxies with the 10-m Submillimeter Telescope (SMT). Results: HC3N 2-1 is detected in three galaxies: IC 342, M 66, and NGC 660 (> 3σ). HC3N 24-23 is detected in three galaxies: IC 342, NGC 1068, and IC 694. These are the first measurements of HC3N 2-1 in a relatively large sample of external galaxies, although the detection rate is low. For the HC3N 2-1 non-detections, upper limits (2σ) are derived for each galaxy, and stacking the non-detections is attempted to recover the weak signal of HC3N. The stacked spectrum, however, does not show any significant signs of HC3N 2-1 emission. The results are also compared with other transitions of HC3N observed in galaxies. Conclusions: The low detection rate of both transitions suggests low abundance of HC3N in galaxies, which is consistent with other observational studies. The comparison between HC3N and HCN or HCO+shows a large diversity in the ratios between HC3N and HCN or HCO+. More observations are needed to interpret the behavior of HC3N in different types of galaxies.

  7. Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind.

    PubMed

    Bolatto, Alberto D; Warren, Steven R; Leroy, Adam K; Walter, Fabian; Veilleux, Sylvain; Ostriker, Eve C; Ott, Jürgen; Zwaan, Martin; Fisher, David B; Weiss, Axel; Rosolowsky, Erik; Hodge, Jacqueline

    2013-07-25

    The under-abundance of very massive galaxies in the Universe is frequently attributed to the effect of galactic winds. Although ionized galactic winds are readily observable, most of the expelled mass (that is, the total mass flowing out from the nuclear region) is likely to be in atomic and molecular phases that are cooler than the ionized phases. Expanding molecular shells observed in starburst systems such as NGC 253 (ref. 12) and M 82 (refs 13, 14) may facilitate the entrainment of molecular gas in the wind. Although shell properties are well constrained, determining the amount of outflowing gas emerging from such shells and the connection between this gas and the ionized wind requires spatial resolution better than 100 parsecs coupled with sensitivity to a wide range of spatial scales, a combination hitherto not available. Here we report observations of NGC 253, a nearby starburst galaxy (distance ∼ 3.4 megaparsecs) known to possess a wind, that trace the cool molecular wind at 50-parsec resolution. At this resolution, the extraplanar molecular gas closely tracks the Hα filaments, and it appears to be connected to expanding molecular shells located in the starburst region. These observations allow us to determine that the molecular outflow rate is greater than 3 solar masses per year and probably about 9 solar masses per year. This implies a ratio of mass-outflow rate to star-formation rate of at least 1, and probably ∼3, indicating that the starburst-driven wind limits the star-formation activity and the final stellar content.

  8. A multiwavelength study of the starburst galaxy NGC 7771

    NASA Astrophysics Data System (ADS)

    Davies, Richard I.; Alonso-Herrero, Almudena; Ward, Martin J.

    1997-11-01

    We present a multiwavelength study of the interacting starburst galaxy NGC 7771, including new optical and ultraviolet spectra and a previously unpublished soft X-ray ROSAT image and spectrum. The FIR, radio, and X-ray fluxes suggest that a massive burst of star formation is currently in progress, but the small equivalent width of the Balmer emission lines, the weak UV flux, the low abundance of ionized oxygen, and the shape of the optical spectrum lead us to conclude that there are few O stars. This might normally suggest that star formation has ceased, but the barred gravitational potential and large gas reserves of the galaxy imply that this should not be so, and we therefore consider other explanations. We argue that the observations cannot be due to effects of geometry, density-bounded nebulae, or dust within the nebulae, and conclude that a truncated IMF is required. The dwarf galaxy NGC 7770 appears to be in the initial stages of a merger with NGC 7771, and the resulting tidal perturbations may have induced the apparent two-armed spiral pattern, and driven a substantial fraction of the disk gas inwards. The presence of a bulge in NGC 7771 may be moderating the starburst so that, while still occurring on a large scale with a supernova rate of 0.8-1/yr, it is less violent and the IMF has a relatively low upper mass limit. We find that there is a cluster of stars obscuring part of the starburst region, and we offer an explanation of its origin.

  9. A Multiwavelength Study of the Starburst Galaxy NGC 7771

    NASA Astrophysics Data System (ADS)

    Davies, Richard I.; Alonso-Herrero, Almudena; Ward, Martin J.

    1997-01-01

    We present a multiwavelength study of the interacting starburst galaxy NGC 7771, including new optical and ultra-violet spectra and a previously unpublished soft X-ray ROSAT image and spectrum. The far-infrared, radio, and X-ray fluxes suggest that a massive burst of star-formation is currently in progress but the small equivalent width of the Balmer emission lines (equivalent width H(alpha approximately equals 100 A), the weak UV flux, the low abundance of ionised oxygen, and the shape of the optical spectrum lead us to conclude that there are few 0 stars. This might normally suggest that star-formation has ceased but the galaxy's barred gravitational potential and large gas reserves imply that this should not be so, and we therefore consider other explanations. We argue that the observations cannot be due to effects of geometry, density bounded nebulae, or dust within the nebulae, and conclude that a truncated IMF is required. The dwarf galaxy NGC 7770 appears to be in the initial stages of a merger with NGC 7771, and the resulting tidal perturbations may have induced the apparent two-armed spiral pattern, and driven a substantial fraction of the disk gas inwards. The presence of a bulge in NGC 7771 may be moderating the starburst so that, while still occuring on a large scale with a supernova rate of 0.8-1/yr, it is less violent and the IMF has a relatively low upper mass limit. We find that there is a cluster of stars obscuring part of the starburst region, and we offer an explanation of its origin.

  10. A Multiwavelength Study of the Starburst Galaxy NGC 7771

    NASA Technical Reports Server (NTRS)

    Davies, Richard I.; Alonso-Herrero, Almudena; Ward, Martin J.

    1997-01-01

    We present a multiwavelength study of the interacting starburst galaxy NGC 7771, including new optical and ultra-violet spectra and a previously unpublished soft X-ray ROSAT image and spectrum. The far-infrared, radio, and X-ray fluxes suggest that a massive burst of star-formation is currently in progress but the small equivalent width of the Balmer emission lines (equivalent width H(alpha approximately equals 100 A), the weak UV flux, the low abundance of ionised oxygen, and the shape of the optical spectrum lead us to conclude that there are few 0 stars. This might normally suggest that star-formation has ceased but the galaxy's barred gravitational potential and large gas reserves imply that this should not be so, and we therefore consider other explanations. We argue that the observations cannot be due to effects of geometry, density bounded nebulae, or dust within the nebulae, and conclude that a truncated IMF is required. The dwarf galaxy NGC 7770 appears to be in the initial stages of a merger with NGC 7771, and the resulting tidal perturbations may have induced the apparent two-armed spiral pattern, and driven a substantial fraction of the disk gas inwards. The presence of a bulge in NGC 7771 may be moderating the starburst so that, while still occuring on a large scale with a supernova rate of 0.8-1/yr, it is less violent and the IMF has a relatively low upper mass limit. We find that there is a cluster of stars obscuring part of the starburst region, and we offer an explanation of its origin.

  11. Characterizing Lyman Alpha Scattering in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna; Hayes, Matthew; Melinder, Jens; Östlin, Göran; Gronwall, Caryl

    2017-01-01

    The hydrogen emission line of Lyman alpha (Lyα) has long been recognized as key to studying high redshift star-forming galaxies. However, due to the resonance of the emission line, the path that a Lyα photon takes from emission to eventual escape from the galaxy is essentially a mystery. This scattering poses a problem for using Lyα as a key emission feature of galaxies because it results in Lyα not being observed in all star-forming galaxies, and, in galaxies where it is observed, the place where the photon is originally emitted and where it is observed are two very different things. We discuss here how the Lyman-Alpha Reference Sample (LARS) provides a unique sample of 14 nearby (0.02 < z < 0.2) galaxies in which we investigate the role of scattering, both on the global scale of the galaxies and down to scales of ~ 50 parsecs using Hubble Space Telescope imaging. We compare the Lyα/Hα ratios with those expected from pure dust attenuation models, finding that in some cases significant positive departures are found on small scales, consistent with geometrical effects being important on sizes comparable to the HII regions. We then develop a simple scattering model in which we are able to estimate the average path length a Lyα photon travels with respect to non-resonant radiation, and quantifiy the excess dust optical depth to which Lyα radiation may be susceptible.

  12. The multifrequency spectrum of the starburst galaxy NGC 2782

    NASA Technical Reports Server (NTRS)

    Kinney, A. L.; Bregman, J. N.; Huggins, P. J.; Glassgold, A. E.; Cohen, R. D.

    1984-01-01

    The nuclear region of NGC 2782 has been observed at radio, millimeter, infrared, optical, ultraviolet, and X-ray frequencies to understand the ionization source that gives rise to the narrow emission lines. The continuum is probably caused by a normal galactic population plus considerable numbers of young stars and warm dust. In the ultraviolet and optical spectra, which are powerful diagnostics, no strong lines are detected in the 1200 A-3200 A region aside from L-alpha, and the optical emission lines cover only a narrow ionization range. The line and continuum properties suggest that NGC 2782 is a starburst galaxy, in which young stars photoionize the surrounding gas.

  13. Search for Supernovae in Starburst Galaxies with HAWK-I

    NASA Astrophysics Data System (ADS)

    Miluzio, M.

    2014-03-01

    With the aim of testing the relation between supernova (SN) rate and star formation rate, we conducted a SN search in a sample of local starburst galaxies (SBs) where both star formation rates and extinction are extremely high. The search was performed in the near-infrared, where the bias due to extinction is reduced using HAWK-I on the VLT. We discovered six SNe, in excellent agreement with expectations, when considering that, even in our search, about 60% of events remain hidden in the nuclear regions due to a combination of reduced search efficiency and very high extinction.

  14. Determining accurate distances to nearby galaxies

    NASA Astrophysics Data System (ADS)

    Bonanos, Alceste Zoe

    2005-11-01

    Determining accurate distances to nearby or distant galaxies is a very simple conceptually, yet complicated in practice, task. Presently, distances to nearby galaxies are only known to an accuracy of 10-15%. The current anchor galaxy of the extragalactic distance scale is the Large Magellanic Cloud, which has large (10-15%) systematic uncertainties associated with it, because of its morphology, its non-uniform reddening and the unknown metallicity dependence of the Cepheid period-luminosity relation. This work aims to determine accurate distances to some nearby galaxies, and subsequently help reduce the error in the extragalactic distance scale and the Hubble constant H 0 . In particular, this work presents the first distance determination of the DIRECT Project to M33 with detached eclipsing binaries. DIRECT aims to obtain a new anchor galaxy for the extragalactic distance scale by measuring direct, accurate (to 5%) distances to two Local Group galaxies, M31 and M33, with detached eclipsing binaries. It involves a massive variability survey of these galaxies and subsequent photometric and spectroscopic follow-up of the detached binaries discovered. In this work, I also present a catalog of variable stars discovered in one of the DIRECT fields, M31Y, which includes 41 eclipsing binaries. Additionally, we derive the distance to the Draco Dwarf Spheroidal galaxy, with ~100 RR Lyrae found in our first CCD variability study of this galaxy. A "hybrid" method of discovering Cepheids with ground-based telescopes is described next. It involves applying the image subtraction technique on the images obtained from ground-based telescopes and then following them up with the Hubble Space Telescope to derive Cepheid period-luminosity distances. By re-analyzing ESO Very Large Telescope data on M83 (NGC 5236), we demonstrate that this method is much more powerful for detecting variability, especially in crowded fields. I finally present photometry for the Wolf-Rayet binary WR 20a

  15. The IMACS Cluster Building Survey. V. Further Evidence for Starburst Recycling from Quantitative Galaxy Morphologies

    NASA Astrophysics Data System (ADS)

    Abramson, Louis E.; Dressler, Alan; Gladders, Michael D.; Oemler, Augustus, Jr.; Poggianti, Bianca M.; Monson, Andrew; Persson, Eric; Vulcani, Benedetta

    2013-11-01

    Using J- and K s-band imaging obtained as part of the IMACS Cluster Building Survey (ICBS), we measure Sérsic indices for 2160 field and cluster galaxies at 0.31 < z < 0.54. Using both mass- and magnitude-limited samples, we compare the distributions for spectroscopically determined passive, continuously star-forming, starburst, and post-starburst systems and show that previously established spatial and statistical connections between these types extend to their gross morphologies. Outside of cluster cores, we find close structural ties between starburst and continuously star-forming, as well as post-starburst and passive types, but not between starbursts and post-starbursts. These results independently support two conclusions presented in Paper II of this series: (1) most starbursts are the product of a non-disruptive triggering mechanism that is insensitive to global environment, such as minor mergers; (2) starbursts and post-starbursts generally represent transient phases in the lives of "normal" star-forming and quiescent galaxies, respectively, originating from and returning to these systems in closed "recycling" loops. In this picture, spectroscopically identified post-starbursts constitute a minority of all recently terminated starbursts, largely ruling out the typical starburst as a quenching event in all but the densest environments. Data were obtained using the 6.5 m Magellan Telescopes at Las Campanas Observatory, Chile.

  16. WINGS: WFIRST Infrared Nearby Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin

    WFIRST's combination of wide field and high resolution will revolutionize the study of nearby galaxies. We propose to produce and analyze simulated WFIRST data of nearby galaxies and their halos to maximize the scientific yield in the limited observing time available, ensuring the legacy value of WFIRST's eventual archive. We will model both halo structure and resolved stellar populations to optimize WFIRST's constraints on both dark matter and galaxy formation models in the local universe. WFIRST can map galaxy structure down to ~35 mag/square arcsecond using individual stars. The resulting maps of stellar halos and accreting dwarf companions will provide stringent tests of galaxy formation and dark matter models on galactic (and even sub-galactic) scales, which is where the most theoretical tension exists with the Lambda-CDM model. With a careful, coordinated plan, WFIRST can be expected to improve current sample sizes by 2 orders of magnitude, down to surface brightness limits comparable to those currently reached only in the Local Group, and that are >4 magnitudes fainter than achievable from the ground due to limitations in star-galaxy separation. WFIRST's maps of galaxy halos will simultaneously produce photometry for billions of stars in the main bodies of galaxies within 10 Mpc. These data will transform studies of star formation histories that track stellar mass growth as a function of time and position within a galaxy. They also will constrain critical stellar evolution models of the near-infrared bright, rapidly evolving stars that can contribute significantly to the integrated light of galaxies in the near-infrared. Thus, with WFIRST we can derive the detailed evolution of individual galaxies, reconstruct the complete history of star formation in the nearby universe, and put crucial constraints on the theoretical models used to interpret near-infrared extragalactic observations. We propose a three-component work plan that will ensure these gains by

  17. A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    NASA Technical Reports Server (NTRS)

    McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; hide

    2012-01-01

    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.

  18. Circumnuclear molecular gas in starburst and Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Taniguchi, Yoshiaki; Kameya, Osamo; Nakai, Naomasa

    1990-01-01

    In order to investigate circumnuclear molecular gaseous contents and their relation to the nuclear activity, researchers made a search for circumnuclear (12)CO (J=1-0) emission from 28 starburst-nucleus galaxies (SBNs) and 12 Seyfert galaxies with the recession velocities less than 5000 km/s, using the Nobeyama Radio Observatory 45-m telescope. The full half-power beam width of 17 arcsec covers a region of less than about 5 kpc in diameter for the sample galaxies. The circumnuclear CO emission was detected from twelve SBNs (one is marginal) and four Seyfert galaxies. The main results and conclusions are summarized. Researchers derived the circumnuclear surface density of molecular gas which is corrected for inclination of the galaxies. This analysis shows that the surface density spans a wide range over two orders of magnitude. Further, there is no significant difference in the surface densities between types 1 and 2 Seyfert galaxies. Thus, we may conclude that the circumnuclear molecular content is not a key parameter producing the dichotomy of the Seyfert galaxies. It is also shown that there is no significant difference in the circumnuclear surface densities of molecular gas among the Seyfert, starburst, and normal galaxies. This implies that the circumnuclear gaseous content is not a key parameter determining which activity occurs in nuclei. We may conclude that more centrally condensed (i.e., less than 10 - 100 pc in diameter) gas components play an essential role on the occurrence of nuclear activities. Comparing results with the previous ones, researchers deduced radial distribution of surface density of molecular gases. They cannot obtain evidence for strong central concentration of molecular gas in the sample Seyfert galaxies except for NGC 3227. This is consistent with the previous result by Blitz, Mathieu, and Bally (1986). Comparing the CO emission line profiles with the previous ones taken with the larger beams, researchers discovered circumnuclear

  19. Predicting the peculiar velocities of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Sharpe, Jacob; Rowan-Robinson, Michael; Canavezes, A.; Saunders, W.; Efstathiou, G.; Frenk, C.; Keeble, O.; McMahon, R. G.; Maddox, S.; Oliver, S. J.; Sutherland, W.; Tadros, H.; White, S. D. M.

    1999-06-01

    We use the Least Action Principle to predict the peculiar velocities of PSC-z galaxies inside (cz = 2000 kms^{-1}). Linear theory is used to account for tidal effects to (cz = 15000 kms^{-1}), and we iterate galaxy positions to account for redshift distortions. As the Least Action Principle is valid beyond Linear theory, we can predict reliable velocities even for very nearby galaxies (ie cz <= 500 kms^{-1}). These predicted peculiar velocities are then compared with the observed velocities of 12 galaxies with Cepheid distances. The combination of the PSC-z galaxy survey (with its large sky coverage and uniform selection), with the accurate Cepheid distances, makes this comparison relatively free from systematic effects. We find that galaxies are good tracers of the mass, even at small (<= 10 h^{-1}Mpc) scales; and under the assumption of no biasing, β <= 0.75 (at 90% confidence). We use the reliable predicted peculiar velocities to estimate (H0) from the local volume without ``stepping up'' the distance ladder, finding a confidence range of 65-75 kms^{-1}Mpc^{-1} (at 90% confidence).

  20. The GALEX Ultraviolet Atlas of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Gil de Paz, Armando; Boissier, Samuel; Madore, Barry F.; Seibert, Mark; Joe, Young H.; Boselli, Alessandro; Wyder, Ted K.; Thilker, David; Bianchi, Luciana; Rey, Soo-Chang; Rich, R. Michael; Barlow, Tom A.; Conrow, Tim; Forster, Karl; Friedman, Peter G.; Martin, D. Christopher; Morrissey, Patrick; Neff, Susan G.; Schiminovich, David; Small, Todd; Donas, José; Heckman, Timothy M.; Lee, Young-Wook; Milliard, Bruno; Szalay, Alex S.; Yi, Sukyoung

    2007-12-01

    We present images, integrated photometry, and surface-brightness and color profiles for a total of 1034 nearby galaxies recently observed by the Galaxy Evolution Explorer (GALEX) satellite in its far-ultraviolet (FUV; λeff=1516 Å) and near-ultraviolet (NUV; λeff=2267 Å) bands. Our catalog of objects is derived primarily from the GALEX Nearby Galaxies Survey (NGS) supplemented by galaxies larger than 1' in diameter serendipitously found in these fields and in other GALEX exposures of similar of greater depth. The sample analyzed here adequately describes the distribution and full range of properties (luminosity, color, star formation rate [SFR]) of galaxies in the local universe. From the surface brightness profiles obtained we have computed asymptotic magnitudes, colors, and luminosities, along with the concentration indices C31 and C42. We have also morphologically classified the UV surface brightness profiles according to their shape. This data set has been complemented with archival optical, near-infrared, and far-infrared fluxes and colors. We find that the integrated (FUV-K) color provides robust discrimination between elliptical and spiral/irregular galaxies and also among spiral galaxies of different subtypes. Elliptical galaxies with brighter K-band luminosities (i.e., more massive) are redder in (NUV-K) color but bluer in (FUV-NUV) (a color sensitive to the presence of a strong UV upturn) than less massive ellipticals. In the case of the spiral/irregular galaxies our analysis shows the presence of a relatively tight correlation between the (FUV-NUV) color (or, equivalently, the slope of the UV spectrum, β) and the total infrared-to-UV ratio. The correlation found between (FUV-NUV) color and K-band luminosity (with lower luminosity objects being bluer than more luminous ones) can be explained as due to an increase in the dust content with galaxy luminosity. The images in this Atlas along with the profiles and integrated properties are publicly

  1. The ACS Nearby Galaxy Survey Treasury

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne J.; Williams, Benjamin F.; Seth, Anil C.; Dolphin, Andrew; Holtzman, Jon; Rosema, Keith; Skillman, Evan D.; Cole, Andrew; Girardi, Léo; Gogarten, Stephanie M.; Karachentsev, Igor D.; Olsen, Knut; Weisz, Daniel; Christensen, Charlotte; Freeman, Ken; Gilbert, Karoline; Gallart, Carme; Harris, Jason; Hodge, Paul; de Jong, Roelof S.; Karachentseva, Valentina; Mateo, Mario; Stetson, Peter B.; Tavarez, Maritza; Zaritsky, Dennis; Governato, Fabio; Quinn, Thomas

    2009-07-01

    The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D < 4 Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small and large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of ~104 in luminosity and star formation rate. The survey data consist of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), supplemented with archival data and new Wide Field Planetary Camera 2 (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of m F475W = 28.0 mag, m F606W = 27.3 mag, and m F814W = 27.3 mag, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump. The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.

  2. THE ACS NEARBY GALAXY SURVEY TREASURY

    SciTech Connect

    Dalcanton, Julianne J.; Williams, Benjamin F.; Rosema, Keith; Gogarten, Stephanie M.; Christensen, Charlotte; Gilbert, Karoline; Hodge, Paul; Seth, Anil C.; Dolphin, Andrew; Holtzman, Jon; Skillman, Evan D.; Weisz, Daniel; Cole, Andrew; Girardi, Leo; Karachentsev, Igor D.; Olsen, Knut; Freeman, Ken; Gallart, Carme; De Jong, Roelof S. E-mail: ben@astro.washington.edu E-mail: stephanie@astro.washington.edu E-mail: fabio@astro.washington.edu E-mail: aseth@cfa.harvard.edu

    2009-07-15

    The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D < 4 Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small and large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of {approx}10{sup 4} in luminosity and star formation rate. The survey data consist of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), supplemented with archival data and new Wide Field Planetary Camera 2 (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of m {sub F475W} = 28.0 mag, m {sub F606W} = 27.3 mag, and m {sub F814W} = 27.3 mag, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump. The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.

  3. THE RADIO–GAMMA CORRELATION IN STARBURST GALAXIES

    SciTech Connect

    Eichmann, B.; Tjus, J. Becker

    2016-04-20

    We present a systematic study of non-thermal electron–proton plasma and its emission processes in starburst galaxies in order to explain the correlation between the luminosity in the radio band and the recently observed gamma luminosity. In doing so, a steady state description of the cosmic-ray (CR) electrons and protons within the spatially homogeneous starburst is considered where continuous momentum losses are included as well as catastrophic losses due to diffusion and advection. The primary source of the relativistic CRs, e.g., supernova remnants, provides a quasi-neutral plasma with a power-law spectrum in momentum where we account for rigidity-dependent differences between the electron and proton spectrum. We examine the resulting leptonic and hadronic radiation processes by synchrotron radiation, inverse Compton scattering, Bremsstrahlung, and hadronic pion production. Finally, the observations of NGC 253, M82, NGC 4945, and NGC 1068 in the radio and gamma-ray bands as well as the observed supernova rate are used to constrain a best-fit model. In the case of NGC 253, M82, and NGC 4945 our model is able to accurately describe the data, showing that: (i) supernovae are the dominant particle accelerators for NGC 253, M82, and NGC 4945, but not for NGC 1068; (ii) all considered starburst galaxies are poor proton calorimeters in which for NGC 253 the escape is predominantly driven by the galactic wind, whereas the diffusive escape dominates in NGC 4945 and M82 (at energies >1 TeV); and (iii) secondary electrons from hadronic pion production are important to model the radio flux, but the associated neutrino flux is below the current observation limit.

  4. Extragalactic molecular line surveys: the starburst galaxy NGC253

    NASA Astrophysics Data System (ADS)

    Martín, S.; Mauersberger, R.; Martín-Pintado, J.; Henkel, C.; García-Burillo, S.

    Figure 1 shows the first spectral line survey towards an extragalactic source, the starburst galaxy NGC253. The scan, carried out at the IRAM 30m telescope, covers ~86% of the observable 2mm atmospheric window from 129.1 to 175.2GHz. A total of ~ 100 spectral features have been identified as transitions from 25 different molecular species. Ten out of these 25 molecules have been detected for the first time towards a starbust galaxy. NO, NS, SO2, H2S and H2CS were reported by Martín et al.(2003), Martín et al.(2005) while C2S, CH2NH, NH2CN, HOCO+ and C3H are tentatively detected in the survey. These new detections implies an increase of ~ 40% in the 27 molecular species previosly detected outside the galaxy (Mauersberger & Henkel(1993), Mauersberger et al.(1995), Sage & Ziurys(1995), Heikkila et al.(1999).) Additionaly, DNC and N2D+, two deuterated species never obseved in the extragalactic ISM, are tentatively identified. The molecular abundances derived for each species in NGC253 have been compared with five Galactic sources known to be prototypes of different types of chemistry. The chemical complexity of NGC253 resembles closely that observed towards prototypical Galactic Center molecular clouds (SgrB2(OH) in, thought to be mainly dominated by low velocity shocks Martín-Pintado et al.(2001). This comparison certainly indicates that the chemistry of the molecular environment within the nuclear region of NGC253 and that in Galactic Center molecular clouds are driven by similar physical processes. Also a comparison has been performed with five selected prominent galaxies which clearly shows up the chemical differenciation between nuclei of galaxies. The chemical complexity of IC342, and also that of NGC4945 except for the observed lack of SiO, clearly resemble that of NGC253. On the other hand, it is remarkable the different chemical complexity observed between the starburst nuclei within NGC253 and M82. This difference has been interpreted in terms of the

  5. THE DRIVING MECHANISM OF STARBURSTS IN GALAXY MERGERS

    SciTech Connect

    Teyssier, Romain; Chapon, Damien; Bournaud, Frederic

    2010-09-10

    We present hydrodynamic simulations of a major merger of disk galaxies, and study the interstellar medium (ISM) dynamics and star formation (SF) properties. High spatial and mass resolutions of 12 pc and 4 x 10{sup 4} M {sub sun} allow us to resolve cold and turbulent gas clouds embedded in a warmer diffuse phase. We compare lower-resolution models, where the multiphase ISM is not resolved and is modeled as a relatively homogeneous and stable medium. While merger-driven bursts of SF are generally attributed to large-scale gas inflows toward the nuclear regions, we show that once a realistic ISM is resolved, the dominant process is actually gas fragmentation into massive and dense clouds and rapid SF therein. As a consequence, SF is more efficient by a factor of up to {approx}10 and is also somewhat more extended, while the gas density probability distribution function rapidly evolves toward very high densities. We thus propose that the actual mechanism of starburst triggering in galaxy collisions can only be captured at high spatial resolution and when the cooling of gas is modeled down to less than 10{sup 3} K. Not only does our model reproduce the properties of the Antennae system, but it also explains the 'starburst mode' recently revealed in high-redshift mergers compared to quiescent disks.

  6. Alma observations of nearby luminous infrared galaxies with various agn energetic contributions using dense gas tracers

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2014-07-01

    We present the results of our ALMA Cycle 0 observations, using HCN/HCO{sup +}/HNC J = 4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO{sup +} J = 4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J = 1-0 transition, while there is no clear difference in the HCN-to-HNC J = 4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO{sup +} J = 4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J = 4-3 emission relative to HCO{sup +} J = 4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.

  7. A tidal disruption event in the nearby ultra-luminous infrared galaxy F01004-2237

    NASA Astrophysics Data System (ADS)

    Tadhunter, C.; Spence, R.; Rose, M.; Mullaney, J.; Crowther, P.

    2017-03-01

    Tidal disruption events (TDEs), in which stars are gravitationally disrupted as they pass close to the supermassive black holes in the centres of galaxies 1 , are potentially important probes of strong gravity and accretion physics. Most TDEs have been discovered in large-area monitoring surveys of many thousands of galaxies, and a relatively low rate of one event every 104-105 years per galaxy has been deduced 2-4 . However, given the selection effects inherent in such surveys, considerable uncertainties remain about the conditions that favour TDEs. Here we report the detection of unusually strong and broad helium emission lines following a luminous optical flare in the nucleus of the nearby ultra-luminous infrared galaxy F01004-2237. This particular combination of variabi­lity and post-flare emission line spectrum is unlike any known supernova or active galactic nucleus. The most plausible explanation is a TDE — the first detected in a galaxy with an ongoing massive starburst. The fact that this event has been detected in repeat spectroscopic observations of a sample of 15 ultra-luminous infrared galaxies over a period of just 10 years suggests a much higher rate of TDEs in starburst galaxies than in the general galaxy population.

  8. The Distances to Nearby Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Scodeggio, Marco

    1997-12-01

    The properties of the Fundamental Plane (FP) of E and S0 galaxies are analyzed using a sample of early-type galaxies in s nearby clusters of galaxies. I band CCD observations are presented for 631 galaxies in the A262, Cancer, A1367, Coma, Pegasus, and A2634 clusters, and in the NGC 383 and NGC 507 groups. Medium dispersion spectroscopic observations are presented for a sub-set composed of 212 galaxies. Combining this data-set with data taken from the literature, gives a FP sample of 294 galaxies. The clusters are chosen to span as large as possible a range of environmental conditions, from a rich, relaxed, X-ray luminous cluster like Coma, to rather poor groups of galaxies like the NGC 383 group. They are also chosen among the clusters that have the largest available samples of Tully-Fisher (TF) measurements, to allow an accurate comparison of the distance scales obtained using the FP and TF relations independently. Both selection criteria are aimed at quantifying the possible presence of environmental effects on the FP relation. The scatter observed around the FP template implies that the distance to a single galaxy can be obtained, using the FP, with a 22% uncertainty (a 0.48 mag uncertainty on the galaxy distance modulus). The peculiar velocity estimates for the 8 clusters in the sample are all small, consistent with the clusters being at rest in the Cosmic Microwave Background reference frame. Monte Carlo simulations are used to quantify the effects of sample selection and measurement uncertainties on the FP template, and correct the resulting biases. After these corrections are applied, it is found that the properties of the FP do not change significantly as a function of the cluster richness, or as a function of the galaxy position within the cluster. Moreover there is very good agreement between the distance measurements obtained using the FP relation, and those obtained using the TF relation. These results are used to derive an upper limit of 5% on

  9. High-resolution X-ray imaging of the Starburst Galaxy M82

    NASA Technical Reports Server (NTRS)

    Bregman, Joel N.; Schulman, Eric; Tomisaka, Kohji

    1995-01-01

    Starburst galaxies are predicted to drive hot flows of gas from their central star-forming regions, and to test this expectation, a deep X-ray image was obtained of the nearby starburst galaxy M82 with the High-Resolution Imager (HRI) on the X-ray telescope ROSAT. Aside from three nuclear point sources, the flux is dominated by diffuse emission that we decompose into components along the disk and along the minor axis. The X-ray surface brightness of the disk component decreases exponentially with a scale length of 0.27 kpc, as does the optical line emission from warm ionized gas. This is not due to steady outflow of gas along the plane, but may indicate a rapid decrease in the star formation and energy input rate beyond the nuclear region. The X-ray emission along the minor axis is consistent with the outflow of gas in a jet that is partially confined within 1.6 kpc of the nucleus and expands freely at larger radii; this emission is detected to a distance of 6 kpc. In the center of M82, the hot gas density is 0.2-0.5/cu cm and the central gas pressure is P/k approximately = 0.3-3 x 10(exp 7) K/cu cm, which is similar to estimates of the pressure in the optical emission-line material and molecular gas.

  10. A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies.

    PubMed

    McDonald, M; Bayliss, M; Benson, B A; Foley, R J; Ruel, J; Sullivan, P; Veilleux, S; Aird, K A; Ashby, M L N; Bautz, M; Bazin, G; Bleem, L E; Brodwin, M; Carlstrom, J E; Chang, C L; Cho, H M; Clocchiatti, A; Crawford, T M; Crites, A T; de Haan, T; Desai, S; Dobbs, M A; Dudley, J P; Egami, E; Forman, W R; Garmire, G P; George, E M; Gladders, M D; Gonzalez, A H; Halverson, N W; Harrington, N L; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Jones, C; Joy, M; Keisler, R; Knox, L; Lee, A T; Leitch, E M; Liu, J; Lueker, M; Luong-Van, D; Mantz, A; Marrone, D P; McMahon, J J; Mehl, J; Meyer, S S; Miller, E D; Mocanu, L; Mohr, J J; Montroy, T E; Murray, S S; Natoli, T; Padin, S; Plagge, T; Pryke, C; Rawle, T D; Reichardt, C L; Rest, A; Rex, M; Ruhl, J E; Saliwanchik, B R; Saro, A; Sayre, J T; Schaffer, K K; Shaw, L; Shirokoff, E; Simcoe, R; Song, J; Spieler, H G; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Stubbs, C W; Suhada, R; van Engelen, A; Vanderlinde, K; Vieira, J D; Vikhlinin, A; Williamson, R; Zahn, O; Zenteno, A

    2012-08-16

    In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster's lifetime, leading to continuous 'cooling flows' of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates and cool gas masses for these 'cool-core' clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 10(45) erg s(-1)) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.

  11. Excess Of Post-Starburst Galaxies In Distant Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Socolovsky, Miguel; Almaini, Omar; Hatch, Nina

    2017-06-01

    I present a study on the impact of environment on galaxy evolution in distant galaxy clusters between redshifts 0.5 and 1.0. We find candidate galaxy clusters by applying a friends-of-friends algorithm to the deep photometric data of the UKIDSS Ultra-Deep Survey. Through studying the stellar mass functions, we reveal a strong excess of low-mass rapidly-quenched galaxies in cluster environments compared to the field. This indicates that low-mass objects are preferentially quenched in dense environments. I also show the radial distribution of different galaxy populations as a function of cluster-centric distance, which provides insight about where this environmental quenching is taking place and its timescale. Finally, I explain how these results, taken together, point to the existence of two environmental quenching pathways (fast and slow), operating on different timescales. Fast quenching acts on galaxies with high sSFR, switching them off on timescales shorter than the cluster dynamical time, and is more efficient for quenching low-mass galaxies. In contrast, slow quenching affects galaxies with moderate sSFR regardless of their stellar mass, acting on longer timescales.

  12. Excess of Post-Starburst Galaxies in Distant Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Socolovsky, Miguel; Hatch, Nina; Almaini, Omar; Wild, Vivienne

    2017-07-01

    I present a study on the impact of environment on galaxy evolution in distant galaxy clusters between redshifts 0.5 and 1.0. We find candidate galaxy clusters by applying a friends-of-friends algorithm to the deep photometric data of the UKIDSS Ultra-Deep Survey. Through studying the stellar mass functions, we reveal a strong excess of low-mass rapidly-quenched galaxies in cluster environments compared to the field. This indicates that low-mass objects are preferentially quenched in dense environments. I also show the radial distribution of different galaxy populations as a function of cluster-centric distance, which provides insight about where this environmental quenching is taking place and its timescale. Finally, I explain how these results, taken together, point to the existence of two environmental quenching pathways (fast and slow), operating on different timescales. Fast quenching acts on galaxies with high sSFR, switching them off on timescales shorter than the cluster dynamical time, and is more efficient for quenching low-mass galaxies. In contrast, slow quenching affects galaxies with moderate sSFR regardless of their stellar mass, acting on longer timescales.

  13. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.

  14. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, J. D.; Temi, P.; Rank, D.

    2000-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short enough times that many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extinction is especially severe. Thus, determining the supernova rate in active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micrometer emission line was the strongest line in the infrared spectrum for a period of a year and half after th explosion. Since dust extinction is much less at 6.63 micrometers than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the [NiII] line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micrometers using ISOCAM to search for the [NiII] emission line characteristic of recent supernovae. We did not detect any [NiII] line emission brighter than a 5-sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled ot the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a [NiII] line with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a [NiII] line luminosity greater than the line in SN1987A.

  15. SFR and Abundances of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Takamiya, Marianne; Berke, Daniel; Bremer, Forrest; Jones, Casey; Poquet, Guillaume

    We present star formation rates and nebular abundances of 59 different star-forming regions in 16 nearby galaxies. The star-forming regions were selected to be bright in Hα and were observed with the SNIFS integral field spectrograph on the UH 2.2m telescope. The spectra span the wavelength range between 3200Å and 1μm. We find that the local star formation rates depend on the local abundances in that low SFRs show a dependence but high SFR appear insensitive to it.

  16. Detection of the 158 Micrometers[CII] Transition at z=1.3: Evidence for a Galaxy-Wide Starburst

    NASA Technical Reports Server (NTRS)

    Hailey-Dunsheath, S.; Nikola, T.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Tucker, C. E.

    2010-01-01

    We report the detection of 158 micron [C II] fine-structure line emission from MIPS J142824.0+352619, a hyperluminous ( L(sub IR) approximates 10(exp 13) L (sub solar)) starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L(sub [Cu II] L(sub Fir) approximates 2 x 10(exp -3) of the far-IR (FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n approximates 10(exp 4.2) /cm(exp 3) , and that are illuminated by a far-UV radiation field approximately 10(exp 3.2) times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L(sub [CII])/L(sub FIR) ratio is higher than observed in local ultralummous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L(sub [CII])/L(sub FIR) and L(sub CO)/L(sub FIR) ratios are similar to the values seen in nearby starburst galaxies. This suggests that MIPS J142824.0+352619 is a scaled-up version of a starburst nucleus, with the burst extended over several kiloparsecs.

  17. Detection of the 158 Micrometers[CII] Transition at z=1.3: Evidence for a Galaxy-Wide Starburst

    NASA Technical Reports Server (NTRS)

    Hailey-Dunsheath, S.; Nikola, T.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Tucker, C. E.

    2010-01-01

    We report the detection of 158 micron [C II] fine-structure line emission from MIPS J142824.0+352619, a hyperluminous ( L(sub IR) approximates 10(exp 13) L (sub solar)) starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L(sub [Cu II] L(sub Fir) approximates 2 x 10(exp -3) of the far-IR (FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n approximates 10(exp 4.2) /cm(exp 3) , and that are illuminated by a far-UV radiation field approximately 10(exp 3.2) times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L(sub [CII])/L(sub FIR) ratio is higher than observed in local ultralummous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L(sub [CII])/L(sub FIR) and L(sub CO)/L(sub FIR) ratios are similar to the values seen in nearby starburst galaxies. This suggests that MIPS J142824.0+352619 is a scaled-up version of a starburst nucleus, with the burst extended over several kiloparsecs.

  18. CONNECTIONS BETWEEN GALAXY MERGERS AND STARBURST: EVIDENCE FROM THE LOCAL UNIVERSE

    SciTech Connect

    Luo, Wentao; Yang, Xiaohu; Zhang, Youcai E-mail: xyang@sjtu.edu.cn

    2014-07-01

    Major mergers and interactions between gas-rich galaxies with comparable masses are thought to be the main triggers of starburst. In this work, we study, for a large stellar mass range, the interaction rate of the starburst galaxies in the local universe. We focus independently on central and satellite star forming galaxies extracted from the Sloan Digital Sky Survey. Here the starburst galaxies are selected in the star formation rate (SFR) stellar mass plane with SFRs five times larger than the median value found for ''star forming'' galaxies of the same stellar mass. Through visual inspection of their images together with close companions determined using spectroscopic redshifts, we find that ∼50% of the ''starburst'' populations show evident merger features, i.e., tidal tails, bridges between galaxies, double cores, and close companions. In contrast, in the control sample we selected from the normal star forming galaxies, only ∼19% of galaxies are associated with evident mergers. The interaction rates may increase by ∼5% for the starburst sample and 2% for the control sample if close companions determined using photometric redshifts are considered. The contrast of the merger rate between the two samples strengthens the hypothesis that mergers and interactions are indeed the main causes of starburst.

  19. An excess of dusty starbursts related to the Spiderweb galaxy

    NASA Astrophysics Data System (ADS)

    Dannerbauer, H.; Kurk, J. D.; De Breuck, C.; Wylezalek, D.; Santos, J. S.; Koyama, Y.; Seymour, N.; Tanaka, M.; Hatch, N.; Altieri, B.; Coia, D.; Galametz, A.; Kodama, T.; Miley, G.; Röttgering, H.; Sanchez-Portal, M.; Valtchanov, I.; Venemans, B.; Ziegler, B.

    2014-10-01

    We present APEX LABOCA 870 μm observations of the field around the high-redshift radio galaxy MRC1138-262 at z = 2.16. We detect 16 submillimeter galaxies (SMGs) in this ~140 arcmin2 bolometer map with flux densities in the range 3-11 mJy. The raw number counts indicate a density of SMGs that is up to four times that of blank field surveys. Based on an exquisite multiwavelength database, including VLA 1.4 GHz radio and infrared observations, we investigate whether these sources are members of the protocluster structure at z ≈ 2.2. Using Herschel PACS and SPIRE and Spitzer MIPS photometry, we derive reliable far-infrared (FIR) photometric redshifts for all sources. Follow-up VLT ISAAC and SINFONI NIR spectra confirm that four of these SMGs have redshifts of z ≈ 2.2. We also present evidence that another SMG in this field, detected earlier at 850 μm, has a counterpart that exhibits Hα and CO(1-0) emission at z = 2.15. Including the radio galaxy and two SMGs with FIR photometric redshifts at z = 2.2, we conclude that at least eight submm sources are part of the protocluster at z = 2.16 associated with the radio galaxy MRC1138-262. We measure a star formation rate density SFRD ~1500 M⊙ yr-1 Mpc-3, four magnitudes higher than the global SFRD of blank fields at this redshift. Strikingly, these eight sources are concentrated within a region of 2 Mpc (the typical size of clusters in the local universe) and are distributed within the filaments traced by the HAEs at z ≈ 2.2. This concentration of massive, dusty starbursts is not centered on the submillimeter-bright radio galaxy which could support the infalling of these sources into the cluster center. Approximately half (6/11) of the SMGs that are covered by the Hα imaging data are associated with HAEs, demonstrating the potential of tracing SMG counterparts with this population. To summarize, our results demonstrate that submillimeter observations may enable us to study (proto)clusters of massive, dusty

  20. The Dragonfly Nearby Galaxies Survey: A Census of the Stellar Halos of Nearby Luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Merritt, Allison T.

    2017-01-01

    The Dragonfly Telephoto Array, comprised of 48 individual Canon telephoto lenses operating together as a single telescope, is an innovative approach to low surface brightness imaging and the study of galactic stellar halos in particular. Sub-nanometer coatings on each optical element reduce scattered light from nearby bright stars and compact galaxy centers - typically a key obstacle for integrated light observations - by an order of magnitude, and Dragonfly's large field of view (2x2.6 degrees for a single frame) provides a large-scale view of stellar halos free from substructure biases. Using extremely deep (>30 mag/arcsec^2) optical imaging in g and r bands from the Dragonfly Nearby Galaxies Survey (DNGS), we have characterized the stellar halos of a sample of ~20 nearby luminous galaxies. I will present measurements of the stellar halo mass fractions of these galaxies as a function of stellar mass, morphology, and environment, and discuss the scatter in halo fractions in the context of the galaxies' individual accretion histories.

  1. ORIENTATION OF BRIGHTER GALAXIES IN NEARBY GALAXY CLUSTERS

    SciTech Connect

    Panko, E.; Juszczyk, T.; Flin, P. E-mail: sfflin@cyf-kr.edu.pl

    2009-12-15

    A sample of 6188 nearby galaxy structures, complete to r{sub F} = 18fm3 and containing at least 10 members each, was the observational basis for an investigation of the alignment of bright galaxies with the major axes for the parent clusters. The distribution of position angles for galaxies within the clusters, specifically the brightest, the second brightest, the third, and the tenth brightest galaxies was tested for isotropy. Galaxy position angles appear to be distributed isotropically, as are the distributions of underlying cluster structure position angles. The characterization of galaxy structures according to richness class also appears to be isotropic. Characterization according to BM types, which are known for 1056 clusters, is more interesting. Only in the case of clusters of BM type I is there an alignment of the brightest cluster member with the major axis of the parent cluster. The effect is observed at the 2 significance level. In other investigated cases the distributions are isotropic. The results confirm the special role of cD galaxies in the origin/evolution of large-scale structures.

  2. The Evolution of Post-starburst Galaxies from z ~ 1 to the Present

    NASA Astrophysics Data System (ADS)

    Pattarakijwanich, Petchara; Strauss, Michael A.; Ho, Shirley; Ross, Nicholas P.

    2016-12-01

    Post-starburst galaxies are in the transitional stage between blue, star-forming galaxies and red, quiescent galaxies and therefore hold important clues for our understanding of galaxy evolution. In this paper, we systematically searched for and identified a large sample of post-starburst galaxies from the spectroscopic data set of the Sloan Digital Sky Survey (SDSS) Data Release 9. In total, we found more than 6000 objects with redshifts between z ˜ 0.05 and z ˜ 1.3, making this the largest sample of post-starburst galaxies in the literature. We calculated the luminosity function of the post-starburst galaxies using two uniformly selected subsamples: the SDSS main galaxy sample and the Baryon Oscillation Spectroscopic Survey CMASS sample. The luminosity functions are reasonably fit by half-Gaussian functions. The peak magnitudes shift as a function of redshift from M ˜ -23.5 at z ˜ 0.8 to M ˜ -20.3 at z ˜ 0.1. This is consistent with the downsizing trend, whereby more massive galaxies form earlier than low-mass galaxies. We compared the mass of the post-starburst stellar population found in our sample to the decline of the global star formation rate and found that only a small amount (˜1%) of all star formation quenching in the redshift range z = 0.2-0.7 results in post-starburst galaxies in the luminosity range our sample is sensitive to. Therefore, luminous post-starburst galaxies are not the place where most of the decline in the star formation rate of the universe is happening.

  3. Galaxies Probing Galaxies: Cool Halo Gas from a z = 0.47 Post-Starburst Galaxy

    NASA Astrophysics Data System (ADS)

    Rubin, Kate H. R.; Prochaska, J. Xavier; Koo, David C.; Phillips, Andrew C.; Weiner, Benjamin J.

    2010-03-01

    We study the cool gas around a galaxy at z = 0.4729 using Keck/LRIS spectroscopy of a bright (B = 21.7) background galaxy at z = 0.6942 at a transverse distance of 16.5h -1 70 kpc. The background galaxy spectrum reveals strong Fe II, Mg II, Mg I, and Ca II absorption at the redshift of the foreground galaxy, with an Mg II λ2796 rest equivalent width of 3.93 ± 0.08 Å, indicative of a velocity width exceeding 400 km s-1. Because the background galaxy is large (>4h -1 70 kpc), the high covering fraction of the absorbing gas suggests that it arises in a spatially extended complex of cool clouds with large velocity dispersion. Spectroscopy of the massive (log M */M sun = 11.15 ± 0.08) host galaxy reveals that it experienced a burst of star formation about 1 Gyr ago and that it harbors a weak active galactic nucleus. We discuss the possible origins of the cool gas in its halo, including multiphase cooling of hot halo gas, cold inflow, tidal interactions, and galactic winds. We conclude that the absorbing gas was most likely ejected or tidally stripped from the interstellar medium of the host galaxy or its progenitors during the past starburst event. Adopting the latter interpretation, these results place one of only a few constraints on the radial extent of cool gas driven or stripped from a galaxy in the distant universe. Future studies with integral field unit spectroscopy of spatially extended background galaxies will provide multiple sight lines through foreground absorbers and permit analysis of the morphology and kinematics of the gas surrounding galaxies with a diverse set of properties and environments. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  4. The evolution of post-starburst galaxies from z=2 to 0.5

    NASA Astrophysics Data System (ADS)

    Wild, Vivienne; Almaini, Omar; Dunlop, Jim; Simpson, Chris; Rowlands, Kate; Bowler, Rebecca; Maltby, David; McLure, Ross

    2016-11-01

    We present the evolution in the number density and stellar mass functions of photometrically selected post-starburst galaxies in the UKIDSS Ultra Deep Survey, with redshifts of 0.5 < z < 2 and stellar masses log (M/M⊙) >10. We find that this transitionary species of galaxy is rare at all redshifts, contributing ˜5 per cent of the total population at z ˜ 2, to <1 per cent by z ˜ 0.5. By comparing the mass functions of quiescent galaxies to post-starburst galaxies at three cosmic epochs, we show that rapid quenching of star formation can account for 100 per cent of quiescent galaxy formation, if the post-starburst spectral features are visible for ˜250 Myr. The flattening of the low-mass end of the quiescent galaxy stellar mass function seen at z ˜ 1 can be entirely explained by the addition of rapidly quenched galaxies. Only if a significant fraction of post-starburst galaxies have features that are visible for longer than 250 Myr, or they acquire new gas and return to the star-forming sequence, can there be significant growth of the red sequence from a slower quenching route. The shape of the mass function of these transitory post-starburst galaxies resembles that of quiescent galaxies at z ˜ 2, with a preferred stellar mass of log (M/M⊙) ˜10.6, but evolves steadily to resemble that of star-forming galaxies at z < 1. This leads us to propose a dual origin for post-starburst galaxies: (1) at z ≳ 2 they are exclusively massive galaxies that have formed the bulk of their stars during a rapid assembly period, followed by complete quenching of further star formation; (2) at z ≲ 1 they are caused by the rapid quenching of gas-rich star-forming galaxies, independent of stellar mass, possibly due to environment and/or gas-rich major mergers.

  5. ROSAT observations of Several Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Cui, Wei

    1994-01-01

    We have made observations of several nearby face-on normal spiral galaxies with the ROSAT PSPC to study their 01-2 0 keV diffuse X-ray emission. The cleaned X-ray images of NGC3184, M101, NGC4395, NGC4736 and NGC5055 in the 1/4, 3/4 and 1.5 keV energy bands are presented along with a detailed discussion of how to identify and model known types of non-cosmic X-ray background. Unresolved X-ray emission in the 0.1-2.0 keV range is detected in all the observed galaxies, bright at the center and getting fainter toward the outer edges. It is a combination of diffuse emission and contribution from un-resolved point sources in these galaxies, so represents an upper limit to the diffuse X-ray emission. The derived upper limits on the diffuse emission can be interpreted in terms of upper limits to average emission measure for a putative unabsorbed halo emission, or alternatively as limits on the filling factors of 106 K hot bubbles, similar to the one surrounding the Sun, in the disks of these galaxies. They can also be used to derive limits to the total energy radiated by hot gas as a function of its temperature for various assumed absorbing geometries. Another exciting possibility is to measure shadows of the 1/4 keV extragalactic X-ray background cast by the external galaxies, which then allow us to determine useful limits on it The absorption features observed at the outer edges of some of the galaxies are direct evidence for absorption of this background by matter in there galaxies, and we have derived a 96% confidence lower limit of 32 keV cm-2 s-l sr-l keV-l. This lower limit can be compared directly with the best 95% confidence upper limit derived from observations of the Small Magellanic Cloud, which is 45 keV cm-2 s-l , sr-l keV-l The e lower and upper limits are less than a factor of two apart, and bend to provide a reasonable measurement of the actual value of the 1/4 keV extragalactic X-ray intensity

  6. MaNGA: Mapping Nearby Galaxies at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Weijmans, A.-M.; MaNGA Team

    2016-10-01

    MaNGA (Mapping Nearby Galaxies at APO) is a galaxy integral-field spectroscopic survey within the fourth generation Sloan Digital Sky Survey (SDSS-IV). It will be mapping the composition and kinematics of gas and stars in 10,000 nearby galaxies, using 17 differently sized fiber bundles. MaNGA's goal is to provide new insights in galaxy formation and evolution, and to deliver a local benchmark for current and future high-redshift studies.

  7. Near-IR spectral evolution of dusty starburst galaxies

    NASA Astrophysics Data System (ADS)

    Lançon, Ariane; Rocca-Volmerange, Brigitte

    1996-11-01

    We propose a multicomponent analysis of starburst galaxies, based on a model that takes into account the young and evolved stellar components and the gas emission, with their respective extinction, in the frame of a coherent dust distribution pattern. Near-IR signatures are preferentially investigated, in order to penetrate as deep as possible into the dusty starburst cores. We computed the 1.4-2.5 μm spectra of synthetic stellar populations evolving through strong, short timescale bursts of star formation (continuum and lines, R ≃ 500). The evolution model is specifically sensitive to cool stellar populations (AGB and red supergiant stars). It takes advantage of the stellar library of Lançon & Rocca-Volmerange (1992) [A&ASS, 96, 593], observed with the same instrument (FTS/CFHT) as the analysed galaxy sample, so that the instrumental effects are minimised. The main near-IR observable constraints are the molecular signatures of CO and H2O and the slope of the continuum, observed over a range exceptionally broad for spectroscopic data. The H - K colour determined from the spectra measures the intrinsic stellar energy distribution but also differential extinction, which is further constrained by optical emission line ratios. Other observational constraints are the near-IR emission lines (Brγ, He I 2.06 μm, [Fe II] 1.64 μm, H2 2.12 μm) and the far-IR luminosity. The coherence of the results relies on the interpretation in terms of stellar populations from which all observable properties are derived, so that the link between the various wavelength ranges is secured. The luminosity LK is used for the absolute calibration. We apply this approach to the typical spectrum of the core of NGC 1614. Consistent solutions for the starburst characteristics (star-formation rate, IMF, burst age, morphology) are found and the role of each observational constraint in deriving satisfactory models is extensively discussed. The acceptable contamination of the K band light by the

  8. THE MULTI-WAVELENGTH EXTREME STARBURST SAMPLE OF LUMINOUS GALAXIES. I. SAMPLE CHARACTERISTICS

    SciTech Connect

    Laag, Edward; Croft, Steve; Canalizo, Gabriela; Lacy, Mark

    2010-12-15

    This paper introduces the Multi-wavelength Extreme Starburst Sample (MESS), a new catalog of 138 star-forming galaxies (0.1 < z < 0.3) optically selected from the Sloan Digital Sky Survey using emission line strength diagnostics to have a high absolute star formation rate (SFR; minimum 11 M{sub sun} yr{sup -1} with median SFR {approx} 61 M{sub sun} yr{sup -1} based on a Kroupa initial mass function). The MESS was designed to complement samples of nearby star-forming galaxies such as the luminous infrared galaxies (LIRGs) and ultraviolet luminous galaxies (UVLGs). Observations using the Multi-band Imaging Photometer (24, 70, and 160 {mu}m channels) on the Spitzer Space Telescope indicate that the MESS galaxies have IR luminosities similar to those of LIRGs, with an estimated median L{sub TIR} {approx} 3 x 10{sup 11} L{sub sun}. The selection criteria for the MESS objects suggest they may be less obscured than typical far-IR-selected galaxies with similar estimated SFRs. Twenty out of 70 of the MESS objects detected in the Galaxy Evolution Explorer FUV band also appear to be UVLGs. We estimate the SFRs based directly on luminosities to determine the agreement for these methods in the MESS. We compare these estimates to the emission line strength technique, since the effective measurement of dust attenuation plays a central role in these methods. We apply an image stacking technique to the Very Large Array FIRST survey radio data to retrieve 1.4 GHz luminosity information for 3/4 of the sample covered by FIRST including sources too faint, and at too high a redshift, to be detected in FIRST. We also discuss the relationship between the MESS objects and samples selected through alternative criteria. Morphologies will be the subject of a forthcoming paper.

  9. Chemical abundances in nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Richer, Michael Gerard

    2015-08-01

    The chemical abundances observed in planetary nebulae in the discs of spiral galaxies are revealing a rich variety of information about their progenitor stars as well as the structure and evolution of the galaxies they inhabit. As concerns galaxy structure and evolution, most of the attention has been on whether gradients in chemical abundances have changed with time, but there is also the issue of the formation and origin of the stellar progenitors of planetary nebulae. The gradients in oxygen abundances for planetary nebulae in M81 and NGC 300 are shallower than the corresponding gradients for H II regions in these galaxies. On the other hand, the gradients for H II regions and planetary nebulae are similar in M33. In the case of M31, there is mounting evidence whose simplest explanation may not be related to internal processes, but instead may lay in the gravitational interaction between it and its neighbours, past and present. As concerns the nucleosynthesis of the stellar progenitors of these planetary nebulae, some results for both nitrogen and oxygen may indicate the production of these elements during the previous evolutionary stages of their progenitor stars. Nominally, this may not be surprising for nitrogen, but the results do not agree quantitatively with canonical theory. At this point, though, there are still too few studies to draw very firm conclusions regrading any of these topics. Even so, the surprises among the results found so far make clear that interpreting the chemical abundances in the planetary nebulae in nearby spirals will require considering the processes affecting both stellar and galactic evolution.

  10. IRAS 23532+2513: a compact group including a Seyfert 1 and a starburst galaxy.

    NASA Astrophysics Data System (ADS)

    Zou, Z.-L.; Xia, X.-Y.; Deng, Z.-G.; Wu, H.

    1995-12-01

    The very luminous infrared source IRAS 23532 coincides with a compact group of galaxies including MCG 04-01-002, MCG 04-01-003 and MCG 04-01-004. Spectroscopic observations show that the bright-nucleus galaxy MCG 04-01-002 is a Seyfert 1 and the disturbed spiral galaxy MCG 04-01-003 is a starburst galaxy. CCD images in V band reveal that clear tidal interaction exists between those two objects. This is another example of tidal interaction triggering starburst and Seyfert activity.

  11. Exploring the Dust Content of Galactic Winds with Herschel: Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    McCormick, Alexander; Veilleux, S.; Melendez, M.; Bland-Hawthorn, J.; Cecil, G.; Engelbracht, C.; Heitsch, F.; Martin, C. L.; Mueller, T.; Rupke, D.; Trippe, M.; Zastrow, J.

    2014-01-01

    Galactic-scale winds manifest as the "smoking gun" of negative feedback, an essential mechanism for understanding galaxy evolution. Negative feedback has been invoked to resolve a number of issues: the mass-metalicity relation of star-forming galaxies, the tight bulge - black hole mass relation, and the presence of metals in galaxy halos and the intergalactic and intracluster media. Although negative feedback may assert even greater influence at high redshift, where strong starbursts and active galactic nuclei are more commonplace, nearby sources provide the best opportunities for detailed observations of the resultant winds. In recent years, observations have begun to illuminate the less obvious components of galactic-scale winds, including dust and molecular gas. Investigating the spatial distribution and properties of the dust in concert with host galaxy characteristics will give insight into the physics of dust entrainment, outflow energetics, and why the dust survives far outside the host galaxy. We will present results from new, deep Herschel observations of several nearby dwarf galaxies with known galactic-scale winds. Our results will compare flux measurements and the spatial distribution of cold dust in the outflows with star formation properties of the host galaxies. We will also compare these new observations with archival Spitzer and previous H-alpha observations.

  12. Aspects of the interstellar medium in starburst galaxies

    NASA Technical Reports Server (NTRS)

    Fanelli, Michael N.

    1990-01-01

    Researchers are engaged in a multifaceted program to investigate the stellar content and star formation history of actively star-forming galaxies. A large body of stellar spectra have been examined to identify spectral features characteristic of specific stellar types. These spectral diagnostics are then calibrated in terms of temperature (spectral type), gravity (luminosity class) and metallicity. The spectral data is compiled into a stellar library whose members represent specific locations in the HR diagram. Through the use of population synthesis techniques, both optimizing and evolutionary approaches, the stellar luminosity function in composite populations can be determined by analysis of their integrated light. Researchers have concentrated on the ultraviolet wavelength region (lambda lambda 1200 to 3200), utilizing the International Ultraviolet Explorer (IUE) archives supplemented by additional observations. In the optical, virtually all stars will contribute to the integrated light. In the ultraviolet however, cool stars will produce negligible flux due to their steep ultraviolet-to-visual continua, greatly simplifying the investigation of the hot component in a composite population. The researchers' initial stellar library has been applied to several blue compact galaxies, (BCGs), a class of starburst galaxy which is UV luminous. BCGs possess a complex interstellar medium which affects the emergent stellar continuum in several ways. This presents a challenge to the stellar analysis but affords insight into the properties of the gas and dust from which the massive OB stars have formed. The optimizing synthesis method solves for the stellar luminosity function and extinction simultaneously. This therefore provides an independent measure of the extinction affecting the hot population component. Despite the rise of the reddening law towards the ultraviolet, BCGs are found to be brighter in the ultraviolet than expected.

  13. How Does Dense Molecular Gas Contribute to Star Formation in the Starburst Galaxy NGC 2146?

    NASA Astrophysics Data System (ADS)

    Wofford, Alia

    2017-01-01

    The starburst galaxy NGC 2146 is believed to have been formed approximately 800 Myr ago, when two galaxies collided with each other possibly leading to a burst of star formation. NGC 2146 is known as a starburst galaxy for the high frequency of star formation going on in its molecular clouds. These clouds serve as nurseries for star formation to occur. Hydrogen Cyanide (HCN) and Carbon monoxide (CO) are molecules found in molecular gas clouds. HCN molecules are tracers for high density star forming gas. Whereas, CO molecules are tracers for low density star forming gas. In this project, we are observing these two molecules and their proximity to where the stars are forming in the galaxy to determine if the star formation is occurring in the same area as the high and low density molecular gas areas in starburst galaxy NGC 2146.

  14. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. III. AN EXTREMELY METAL DEFICIENT GALAXY

    SciTech Connect

    Skillman, Evan D.; Berg, Danielle A.; Olive, Keith A.; McQuinn, Kristen B. W. E-mail: berg@astro.umn.edu E-mail: kmcquinn@astro.umn.edu; and others

    2013-07-01

    We present KPNO 4 m and LBT/MODS spectroscopic observations of an H II region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensitive [O III] {lambda}4363 line and determine a ''direct'' oxygen abundance of 12 + log(O/H) = 7.17 {+-} 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal {alpha} element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the ''delayed release'' hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509{sup +0.0184}{sub -0.0123}, which compares well with the WMAP + BBN prediction of 0.2483 {+-} 0.0002 for the primordial helium abundance. We suggest that surveys of very low mass galaxies compete well with emission line galaxy surveys for finding XMD galaxies. It is possible that XMD galaxies may be divided into two classes: the relatively rare XMD emission line galaxies which are associated with starbursts triggered by infall of low-metallicity gas and the more common, relatively quiescent XMD galaxies like Leo P, with very low chemical abundances due to their intrinsically small masses.

  15. THE STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF STAR-FORMING GALAXIES IN THE NEARBY UNIVERSE

    SciTech Connect

    Torres-Papaqui, J. P.; Coziol, R.; Ortega-Minakata, R. A.; Neri-Larios, D. M. E-mail: rcoziol@astro.ugto.mx E-mail: daniel@astro.ugto.mx

    2012-08-01

    We have determined the metallicity (O/H) and nitrogen abundance (N/O) of a sample of 122,751 star-forming galaxies (SFGs) from the Data Release 7 of the Sloan Digital Sky Survey. For all these galaxies we have also determined their morphology and obtained a comprehensive picture of their star formation history (SFH) using the spectral synthesis code STARLIGHT. The comparison of the chemical abundance with the SFH allows us to describe the chemical evolution of the SFGs in the nearby universe (z {<=} 0.25) in a manner consistent with the formation of their stellar populations and morphologies. A high fraction (45%) of the SFGs in our sample show an excess abundance of nitrogen relative to their metallicity. We also find this excess to be accompanied by a deficiency of oxygen, which suggests that this could be the result of effective starburst winds. However, we find no difference in the mode of star formation of the nitrogen-rich and nitrogen-poor SFGs. Our analysis suggests that they all form their stars through a succession of bursts of star formation extended over a period of few Gyr. What produces the chemical differences between these galaxies seems therefore to be the intensity of the bursts: the galaxies with an excess of nitrogen are those that are presently experiencing more intense bursts or have experienced more intense bursts in their past. We also find evidence relating the chemical evolution process to the formation of the galaxies: the galaxies with an excess of nitrogen are more massive, and have more massive bulges and earlier morphologies than those showing no excess. Contrary to expectation, we find no evidence that the starburst wind efficiency decreases with the mass of the galaxies. As a possible explanation we propose that the loss of metals consistent with starburst winds took place during the formation of the galaxies, when their potential wells were still building up, and consequently were weaker than today, making starburst winds more

  16. Carbon Abundances in Starburst Galaxies of the Local Universe

    NASA Astrophysics Data System (ADS)

    Peña-Guerrero, María A.; Leitherer, Claus; de Mink, Selma; Wofford, Aida; Kewley, Lisa

    2017-10-01

    The cosmological origin of carbon, the fourth most abundant element in the universe, is not well known and a matter of heavy debate. We investigate the behavior of C/O to O/H in order to constrain the production mechanism of carbon. We measured emission-line intensities in the spectral range from 1600 to 10000 Å on Space Telescope Imaging Spectrograph (STIS) long-slit spectra of 18 starburst galaxies in the local universe. We determined chemical abundances through traditional nebular analysis, and we used a Markov Chain Monte Carlo method to determine where our carbon and oxygen abundances lie in the parameter space. We conclude that our C and O abundance measurements are sensible. We analyzed the behavior of our sample in the [C/O] versus [O/H] diagram with respect to other objects such as DLAs, neutral ISM measurements, and disk and halo stars, finding that each type of object seems to be located in a specific region of the diagram. Our sample shows a steeper C/O versus O/H slope with respect to other samples, suggesting that massive stars contribute more to the production of C than N at higher metallicities, only for objects where massive stars are numerous; otherwise, intermediate-mass stars dominate the C and N production.

  17. Detection of the 158 Micrometers[CII] Transition at z=1.3: Evidence for a Galaxy-Wide Starburst

    NASA Technical Reports Server (NTRS)

    Hailey-Dunsheath, S.; Nikola, T.; Stacey, G. J.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Tucker, C. E.

    2010-01-01

    We report the detection of 158 micrometer [C II] fine-structure line emission from MIPS J 142824.0+3526l9, a hyperluminous (L(sub IR) approx. 10(exp 13) Solar Luminosity starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L[C II]/L(sub FIR) approx. equals 2 x l0(exp -3) of the far-IR(FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n approx. 10(exp 4.2)/cu cm., and that are illuminated by a far-UV radiation field approx. 10(exp 3.2) times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L[C II]/L(sub F1R) ratio is higher than observed in local ultraluminous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L[CII]/L(sub FIR) and L(sub CO)/L(sub FIR) ratios are similar to the values seen in nearby starburst galaxies

  18. Detection of the 158 Micrometers[CII] Transition at z=1.3: Evidence for a Galaxy-Wide Starburst

    NASA Technical Reports Server (NTRS)

    Hailey-Dunsheath, S.; Nikola, T.; Stacey, G. J.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Tucker, C. E.

    2010-01-01

    We report the detection of 158 micrometer [C II] fine-structure line emission from MIPS J 142824.0+3526l9, a hyperluminous (L(sub IR) approx. 10(exp 13) Solar Luminosity starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L[C II]/L(sub FIR) approx. equals 2 x l0(exp -3) of the far-IR(FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n approx. 10(exp 4.2)/cu cm., and that are illuminated by a far-UV radiation field approx. 10(exp 3.2) times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L[C II]/L(sub F1R) ratio is higher than observed in local ultraluminous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L[CII]/L(sub FIR) and L(sub CO)/L(sub FIR) ratios are similar to the values seen in nearby starburst galaxies

  19. Accretion phenomena in nearby star-forming dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Tosi, M.; Aloisi, A.; Bellazzini, M.; Buzzoni, A.; Cignoni, M.; Ciotti, L.; Cusano, F.; Nipoti, C.; Sacchi, E.; Paris, D.; Romano, D.

    2017-03-01

    We present two pilot studies for the search and characterization of accretion events in star-forming dwarf galaxies. Our strategy consists of two complementary approaches: i) the direct search for stellar substructures around dwarf galaxies through deep wide-field imaging, and ii) the characterization of the chemical properties in these systems up to large galacto-centric distances. We show our results for two star-forming dwarf galaxies, the starburst irregular NGC 4449, and the extremely metal-poor dwarf DDO 68.

  20. The role of magnetic fields in starburst galaxies as revealed by OH megamasers

    SciTech Connect

    McBride, James; Quataert, Eliot; Heiles, Carl; Bauermeister, Amber E-mail: eliot@astro.berkeley.edu

    2014-01-10

    We present estimates of magnetic field strengths in the interstellar media of starburst galaxies derived from measurements of Zeeman splitting associated with OH megamasers. The results for eight galaxies with Zeeman detections suggest that the magnetic energy density in the interstellar medium of starburst galaxies is comparable to their hydrostatic gas pressure, as in the Milky Way. We discuss the significant uncertainties in this conclusion, and possible measurements that could reduce these uncertainties. We also compare the Zeeman splitting derived magnetic field estimates to magnetic field strengths estimated using synchrotron fluxes and assuming that the magnetic field and cosmic rays have comparable energy densities, known as the 'minimum energy' argument. We find that the minimum energy argument systematically underestimates magnetic fields in starburst galaxies, and that the conditions that would be required to produce agreement between the minimum energy estimate and the Zeeman derived estimate of interstellar medium magnetic fields are implausible. The conclusion that magnetic fields in starburst galaxies exceed the minimum energy magnetic fields is consistent with starburst galaxies adhering to the linearity of the far-infrared-radio correlation.

  1. Clumpy and Extended Starbursts in the Brightest Unlensed Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Iono, Daisuke; Yun, Min S.; Aretxaga, Itziar; Hatsukade, Bunyo; Hughes, David; Ikarashi, Soh; Izumi, Takuma; Kawabe, Ryohei; Kohno, Kotaro; Lee, Minju; Matsuda, Yuichi; Nakanishi, Kouichiro; Saito, Toshiki; Tamura, Yoichi; Ueda, Junko; Umehata, Hideki; Wilson, Grant; Michiyama, Tomonari; Ando, Misaki

    2016-09-01

    The central structure in three of the brightest unlensed z = 3-4 submillimeter galaxies is investigated through 0.″015-0.″05 (120-360 pc) 860 μm continuum images obtained using the Atacama Large Millimeter/submillimeter Array (ALMA). The distribution in the central kiloparsec in AzTEC1 and AzTEC8 is extremely complex, and they are composed of multiple ˜200 pc clumps. AzTEC4 consists of two sources that are separated by ˜1.5 kpc, indicating a mid-stage merger. The peak star formation rate densities in the central clumps are ˜300-3000 M ⊙ yr-1 kpc-2, suggesting regions with extreme star formation near the Eddington limit. By comparing the flux obtained by ALMA and Submillimeter Array, we find that 68%-90% of the emission is extended (≳1 kpc) in AzTEC4 and 8. For AzTEC1, we identify at least 11 additional compact (˜200 pc) clumps in the extended 3-4 kpc region. Overall, the data presented here suggest that the luminosity surface densities observed at ≲150 pc scales are roughly similar to that observed in local ULIRGs, as in the eastern nucleus of Arp 220. Between 10% and 30% of the 860 μm continuum is concentrated in clumpy structures in the central kiloparsec, while the remaining flux is distributed over ≳1 kpc regions, some of which could also be clumpy. These sources can be explained by a rapid inflow of gas such as a merger of gas-rich galaxies, surrounded by extended and clumpy starbursts. However, the cold mode accretion model is not ruled out.

  2. Local starburst galaxies and their descendants. Statistics from the Sloan Digital Sky Survey

    NASA Technical Reports Server (NTRS)

    Bergvall, Nils; Marquart, Thomas; Way, Michael J.; Blomqvist, Anna; Holst, Emma; Ostlin, Goran; Zackrisson, Erik

    2016-01-01

    Despite strong interest in the starburst phenomenon in extragalactic astronomy, the concept remains ill-defined. Here we use a strict definition of starburst to examine the statistical properties of starburst galaxies in the local universe. We also seek to establish links between starburst galaxies, post-starburst (hereafter postburst) galaxies, and active galaxies. Data were selected from the Sloan Digital Sky Survey DR7. We applied a novel method of treating dust attenuation and derive star formation rates, ages, and stellar masses assuming a two-component stellar population model. Dynamical masses are calculated from the width of the H-alpha line. These masses agree excellently with the photometric masses. The mass (gas+stars) range is approximately 10( exp 9) - 10(exp 11.5) solar mass. As a selection criterion for starburst galaxies, we use, the birthrate parameter, b = SFR/SFR, requiring that b is greater than 3. For postburst galaxies, we use, the equivalent width of Hdelta in absorption with the criterion EW (sub Hdelta_abs) is greater than 6 A. Results. We find that only 1% of star-forming galaxies are starburst galaxies. They contribute 3-6% to the stellar production and are therefore unimportant for the local star formation activity. The median starburst age is 70 Myr roughly independent of mass, indicating that star formation is mainly regulated by local feedback processes. The b-parameter strongly depends on burst age. Values close to b = 60 are found at ages approximately 10 Myr, while almost no starbursts are found at ages greater than 1 Gyr. The median baryonic burst mass fraction of sub-L galaxies is 5% and decreases slowly towards high masses. The median mass fraction of the recent burst in the postburst sample is 5-10%. A smaller fraction of the postburst galaxies, however, originates in non-bursting galaxies. The age-mass distribution of the postburst progenitors (with mass fractions is greater than 3%) is bimodal with a break at logM(solar mass

  3. Local starburst galaxies and their descendants. Statistics from the Sloan Digital Sky Survey

    NASA Technical Reports Server (NTRS)

    Bergvall, Nils; Marquart, Thomas; Way, Michael J.; Blomqvist, Anna; Holst, Emma; Ostlin, Goran; Zackrisson, Erik

    2016-01-01

    Despite strong interest in the starburst phenomenon in extragalactic astronomy, the concept remains ill-defined. Here we use a strict definition of starburst to examine the statistical properties of starburst galaxies in the local universe. We also seek to establish links between starburst galaxies, post-starburst (hereafter postburst) galaxies, and active galaxies. Data were selected from the Sloan Digital Sky Survey DR7. We applied a novel method of treating dust attenuation and derive star formation rates, ages, and stellar masses assuming a two-component stellar population model. Dynamical masses are calculated from the width of the H-alpha line. These masses agree excellently with the photometric masses. The mass (gas+stars) range is approximately 10( exp 9) - 10(exp 11.5) solar mass. As a selection criterion for starburst galaxies, we use, the birthrate parameter, b = SFR/SFR, requiring that b is greater than 3. For postburst galaxies, we use, the equivalent width of Hdelta in absorption with the criterion EW (sub Hdelta_abs) is greater than 6 A. Results. We find that only 1% of star-forming galaxies are starburst galaxies. They contribute 3-6% to the stellar production and are therefore unimportant for the local star formation activity. The median starburst age is 70 Myr roughly independent of mass, indicating that star formation is mainly regulated by local feedback processes. The b-parameter strongly depends on burst age. Values close to b = 60 are found at ages approximately 10 Myr, while almost no starbursts are found at ages greater than 1 Gyr. The median baryonic burst mass fraction of sub-L galaxies is 5% and decreases slowly towards high masses. The median mass fraction of the recent burst in the postburst sample is 5-10%. A smaller fraction of the postburst galaxies, however, originates in non-bursting galaxies. The age-mass distribution of the postburst progenitors (with mass fractions is greater than 3%) is bimodal with a break at logM(solar mass

  4. Spectral Analysis, Synthesis, & Energy Distributions of Nearby E+A Galaxies Using SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Weaver, Olivia A.; Anderson, Miguel Ricardo; Wally, Muhammad; James, Olivia; Falcone, Julia; Liu, Allen; Wallack, Nicole; Liu, Charles; SDSS Collaboration

    2017-01-01

    Utilizing data from the Mapping Nearby Galaxies at APO (MaNGA) Survey (MaNGA Product Launch-4, or MPL-4), of the latest generation of the Sloan Digital Sky Survey (SDSS-IV), we identified nine post-starburst (E+A) systems that lie within the Green Valley transition zone. We identify the E+A galaxies by their SDSS single fiber spectrum and u-r color, then confirmed their classification as post-starburst by coding/plotting methods and spectral synthesis codes (FIREFLY and PIPE3D), as well as with their Spectral Energy Distributions (SEDs) from 0.15 µm to 22 µm, using GALEX, SDSS, 2MASS, and WISE data. We produced maps of gaussian-fitted fluxes, equivalent widths, stellar velocities, metallicities and age. We also produced spectral line ratio diagrams to classify regions of stellar populations of the galaxies. We found that our sample of E+As retain their post-starburst properties across the entire galaxy, not just at their center. We detected matching a trend line in the ultraviolet and optical bands, consistent with the expected SEDs for an E+A galaxy, and also through the J, H and Ks bands, except for one object. We classified one of the nine galaxies as a luminous infrared galaxy, unusual for a post-starburst object. Our group seeks to further study stellar population properties, spectral energy distributions and quenching properties in E+A galaxies, and investigate their role in galaxy evolution as a whole. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through from National Science Foundation.

  5. ISM gas removal from starburst galaxies and the premature death of star clusters

    NASA Astrophysics Data System (ADS)

    Melioli, C.; de Gouveia dal Pino, E. M.

    2006-01-01

    Recent observational studies of the age distribution of star clusters in nearby merging galaxies and starburst (SB) galaxies indicate a premature death of the young clusters. The fate of an evolving star cluster crucially depends of its gas content. This behaves like a glue that helps to keep the star system gravitationally bound. In SB systems where the rate of supernovae (SNe) explosions is elevated one should expect an efficient heating of the gas and its complete removal which could then favor the rapid dissociation of the evolving star clusters. Based on a contemporaneous study of the dynamical evolution of the interstellar gas in SB environments (Melioli & de Gouveia Dal Pino 2004, A&A, 424, 817) where it has been considered also the presence of dense clouds that may inhibit the heating efficiency of the interstellar gas by the SNe, we have here computed the timescales for gas removal from young clusters embedded in these systems and found that they are consistent with the very short timescales for cluster dissolution which are inferred from the observational studies above. Our results indicate that typical SB proto-clusters should start to disperse after less than 5 Myr. For a given total gas mass content, this result is nearly insensitive to the initial star formation efficiency.

  6. THE ROLE OF MERGER STAGE ON GALAXY RADIO SPECTRA IN LOCAL INFRARED-BRIGHT STARBURST GALAXIES

    SciTech Connect

    Murphy, Eric J.

    2013-11-01

    An investigation of the steep, high-frequency (i.e., ν ∼ 12 GHz) radio spectra among a sample of 31 local infrared-bright starburst galaxies is carried out in light of their Hubble-Space-Telescope-based merger classifications. Radio data covering as many as 10 individual bands allow for spectral indices to be measured over three frequency bins between 0.15 and 32.5 GHz. Sources having the flattest spectral indices measured at ∼2 and 4 GHz, arising from large free-free optical depths among the densest starbursts, appear to be in ongoing through post-stage mergers. The spectral indices measured at higher frequencies (i.e., ∼12 GHz) are steepest for sources associated with ongoing mergers in which their nuclei are distinct, but share a common stellar envelope and/or exhibit tidal tails. These results hold after excluding potential active galactic nuclei based on their low 6.2 μm polycyclic aromatic hydrocarbon equivalent widths. Consequently, the low-, mid-, and high-frequency spectral indices each appear to be sensitive to the exact merger stage. It is additionally shown that ongoing mergers, whose progenitors are still separated and share a common envelope and/or exhibit tidal tails, also exhibit excess radio emission relative to what is expected given the far-infrared/radio correlation, suggesting that there may be a significant amount of radio emission that is not associated with ongoing star formation. The combination of these observations, along with high-resolution radio morphologies, leads to a picture in which the steep high-frequency radio spectral indices and excess radio emission arise from radio continuum bridges and tidal tails that are not associated with star formation, similar to what is observed for so-called 'taffy' galaxies. This scenario may also explain the seemingly low far-infrared/radio ratios measured for many high-z submillimeter galaxies, a number of which are merger-driven starbursts.

  7. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    SciTech Connect

    Wang, Xilu; Fields, Brian D.

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  8. Welcome to the Twilight Zone: The Mid-infrared Properties of Post-starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Alatalo, Katherine; Bitsakis, Theodoros; Lanz, Lauranne; Lacy, Mark; Brown, Michael J. I.; French, K. Decker; Ciesla, Laure; Appleton, Philip N.; Beaton, Rachael L.; Cales, Sabrina L.; Crossett, Jacob; Falcón-Barroso, Jesús; Kelson, Daniel D.; Kewley, Lisa J.; Kriek, Mariska; Medling, Anne M.; Mulchaey, John S.; Nyland, Kristina; Rich, Jeffrey A.; Urry, C. Meg

    2017-07-01

    We investigate the optical and Wide-field Survey Explorer (WISE) colors of “E+A” identified post-starburst galaxies, including a deep analysis of 190 post-starbursts detected in the 2 μm All Sky Survey Extended Source Catalog. The post-starburst galaxies appear in both the optical green valley and the WISE Infrared Transition Zone. Furthermore, we find that post-starbursts occupy a distinct region of [3.4]-[4.6] versus [4.6]-[12] WISE colors, enabling the identification of this class of transitioning galaxies through the use of broadband photometric criteria alone. We have investigated possible causes for the WISE colors of post-starbursts by constructing a composite spectral energy distribution (SED), finding that the mid-infrared (4-12 μm) properties of post-starbursts are consistent with either 11.3 μm polycyclic aromatic hydrocarbon emission, or thermally pulsating asymptotic giant branch (TP-AGB) and post-AGB stars. The composite SED of extended post-starburst galaxies with 22 μm emission detected with signal-to-noise ratio ≥slant 3 requires a hot dust component to produce their observed rising mid-infrared SED between 12 and 22 μm. The composite SED of WISE 22 μm non-detections (S/N < 3), created by stacking 22 μm images, is also flat, requiring a hot dust component. The most likely source of the mid-infrared emission of these E+A galaxies is a buried active galactic nucleus (AGN). The inferred upper limits to the Eddington ratios of post-starbursts are 10-2-10-4, with an average of 10-3. This suggests that AGNs are not radiatively dominant in these systems. This could mean that including selections capable of identifying AGNs as part of a search for transitioning and post-starburst galaxies would create a more complete census of the transition pathways taken as a galaxy quenches its star formation.

  9. OT1_shaileyd_1: Testing the XDR/High-J CO Paradigm in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Hailey-Dunsheath, S.

    2010-07-01

    One of the most exciting first results from SPIRE and PACS spectroscopy is the detection of high-J CO emission in galaxies. Such emission has long been proposed as a tracer of X-ray dominated regions (XDRs) produced by AGN, and as a powerful diagnostic tool for future millimeter-wave study of AGN at high redshift. The shortest wavelength submillimeter CO lines detected by SPIRE-FTS in the X-ray luminous ULIRG Mrk 231 are interpreted as arising from an extended XDR, providing strong observational support for the XDR/high-J CO connection. However, our group (SHINING; PI E. Sturm) has used PACS to detect even higher-J far-IR CO emission in a few nearby galaxies, including 2 starburst galaxies with little evidence of a luminous AGN. Can high-J CO emission also be produced in gas heated by the UV radiation or mechanical output of a starburst? To address this question we propose to measure a set of far-IR CO lines in 4 nearby AGN and 4 starburst galaxies, as well as in 2 merging systems with large masses of shock-heated molecular gas. Does the high-J CO line SED reflect the different excitation mechanisms in these template objects? We additionally propose to use OH line observations to estimate the abundance of this molecule, which is a sensitive tracer of X-ray-driven chemistry. The OH line profiles will also be used to search for evidence of molecular outflows, which may drive shock heating. Each of these galaxies will have SHINING GT observations of the set of far-IR fine-structure lines, which includes important tracers of UV-, X-ray-, and shock-heated gas. The AGN subsample is restricted to the most nearby systems, where the high spatial resolution of PACS is sufficient to separate the nuclear AGN-heated gas from the circumnuclear star-forming regions. The PACS CO data obtained here will provide the first well-sampled far-IR extragalactic CO line SEDs, and will be an essential reference for future high redshift studies.

  10. HUBBLE'S ULTRAVIOLET VIEWS OF NEARBY GALAXIES YIELD CLUES TO EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers are using these three NASA Hubble Space Telescope images to help tackle the question of why distant galaxies have such odd shapes, appearing markedly different from the typical elliptical and spiral galaxies seen in the nearby universe. Do faraway galaxies look weird because they are truly weird? Or, are they actually normal galaxies that look like oddballs, because astronomers are getting an incomplete picture of them, seeing only the brightest pieces? Light from these galaxies travels great distances (billions of light-years) to reach Earth. During its journey, the light is 'stretched' due to the expansion of space. As a result, the light is no longer visible, but has been shifted to the infrared where present instruments are less sensitive. About the only light astronomers can see comes from regions where hot, young stars reside. These stars emit mostly ultraviolet light. But this light is stretched, appearing as visible light by the time it reaches Earth. Studying these distant galaxies is like trying to put together a puzzle with some of the pieces missing. What, then, do distant galaxies really look like? Astronomers studied 37 nearby galaxies to find out. By viewing these galaxies in ultraviolet light, astronomers can compare their shapes with those of their distant relatives. These three Hubble telescope pictures, taken with the Wide Field and Planetary Camera 2, represent a sampling from that survey. Astronomers observed the galaxies in ultraviolet and visible light to study all the stars that make up these 'cities of stars.' The results of their survey support the idea that astronomers are detecting the 'tip of the iceberg' of very distant galaxies. Based on these Hubble ultraviolet images, not all the faraway galaxies necessarily possess intrinsically odd shapes. The results are being presented today at the 197th meeting of the American Astronomical Society in San Diego, CA. The central region of the 'star-burst' spiral galaxy at far left

  11. HUBBLE SURVEYS DYING STARS IN NEARBY GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    From ground-based telescopes, the glowing gaseous debris surrounding dying, sun-like stars in a nearby galaxy, called the Large Magellanic Cloud, appear as small, shapeless dots of light. But through the 'eyes' of NASA's Hubble Space Telescope, these bright dots take on a variety of shapes, from round- to pinwheel-shaped clouds of gas. Using Hubble's Space Telescope Imaging Spectrograph, scientists probed the glowing gas surrounding 27 dying stars, called planetary nebulae, in the Large Magellanic Cloud. The observations represent the most detailed study of planetary nebulae outside the Milky Way. The six objects in the picture illustrate the assortment of planetary nebulae identified in the galaxy. SMP 16, 30, and 93 are examples of a bipolar nebula, twin lobes of gas projecting away from a dying star. SMP 10 has a pinwheel shape and is known as a 'point-symmetric' nebula. SMP 4 has an elliptical appearance, and SMP 27, consisting of four lobes of gas, is called a 'quadrupolar' nebula. The lines point to the objects' locations in the Large Magellanic Cloud. A ground-based observatory snapped the picture of this galaxy. In the pictures of the planetary nebulae, color corresponds to temperature. Blue represents hotter regions of the nebulae and red, cooler. Scientists are probing these illuminated stellar relics in our neighboring galaxy because they are at relatively the same distance - about 168,000 light-years -- from Earth. Knowing the distance to these objects allows scientists to compare their shapes and sizes, and precisely determine the brightness of their central stars. For this reason, even though these glowing remains of dying stars are about 50 times farther away than the stunning planetary nebulae photographed in the Milky Way, they are of invaluable importance. By sampling this population, scientists noticed that the bipolar nebulae are richer in some heavier elements, such as neon, than those with a more spherical shape. At the dawn of the universe

  12. HUBBLE SURVEYS DYING STARS IN NEARBY GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    From ground-based telescopes, the glowing gaseous debris surrounding dying, sun-like stars in a nearby galaxy, called the Large Magellanic Cloud, appear as small, shapeless dots of light. But through the 'eyes' of NASA's Hubble Space Telescope, these bright dots take on a variety of shapes, from round- to pinwheel-shaped clouds of gas. Using Hubble's Space Telescope Imaging Spectrograph, scientists probed the glowing gas surrounding 27 dying stars, called planetary nebulae, in the Large Magellanic Cloud. The observations represent the most detailed study of planetary nebulae outside the Milky Way. The six objects in the picture illustrate the assortment of planetary nebulae identified in the galaxy. SMP 16, 30, and 93 are examples of a bipolar nebula, twin lobes of gas projecting away from a dying star. SMP 10 has a pinwheel shape and is known as a 'point-symmetric' nebula. SMP 4 has an elliptical appearance, and SMP 27, consisting of four lobes of gas, is called a 'quadrupolar' nebula. The lines point to the objects' locations in the Large Magellanic Cloud. A ground-based observatory snapped the picture of this galaxy. In the pictures of the planetary nebulae, color corresponds to temperature. Blue represents hotter regions of the nebulae and red, cooler. Scientists are probing these illuminated stellar relics in our neighboring galaxy because they are at relatively the same distance - about 168,000 light-years -- from Earth. Knowing the distance to these objects allows scientists to compare their shapes and sizes, and precisely determine the brightness of their central stars. For this reason, even though these glowing remains of dying stars are about 50 times farther away than the stunning planetary nebulae photographed in the Milky Way, they are of invaluable importance. By sampling this population, scientists noticed that the bipolar nebulae are richer in some heavier elements, such as neon, than those with a more spherical shape. At the dawn of the universe

  13. Galaxy Clustering Around Nearby Luminous Quasars

    NASA Technical Reports Server (NTRS)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1996-01-01

    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  14. Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies.

    PubMed

    Falgarone, E; Zwaan, M A; Godard, B; Bergin, E; Ivison, R J; Andreani, P M; Bournaud, F; Bussmann, R S; Elbaz, D; Omont, A; Oteo, I; Walter, F

    2017-08-24

    Starburst galaxies at the peak of cosmic star formation are among the most extreme star-forming engines in the Universe, producing stars over about 100 million years (ref. 2). The star-formation rates of these galaxies, which exceed 100 solar masses per year, require large reservoirs of cold molecular gas to be delivered to their cores, despite strong feedback from stars or active galactic nuclei. Consequently, starburst galaxies are ideal for studying the interplay between this feedback and the growth of a galaxy. The methylidyne cation, CH(+), is a most useful molecule for such studies because it cannot form in cold gas without suprathermal energy input, so its presence indicates dissipation of mechanical energy or strong ultraviolet irradiation. Here we report the detection of CH(+) (J = 1-0) emission and absorption lines in the spectra of six lensed starburst galaxies at redshifts near 2.5. This line has such a high critical density for excitation that it is emitted only in very dense gas, and is absorbed in low-density gas. We find that the CH(+) emission lines, which are broader than 1,000 kilometres per second, originate in dense shock waves powered by hot galactic winds. The CH(+) absorption lines reveal highly turbulent reservoirs of cool (about 100 kelvin), low-density gas, extending far (more than 10 kiloparsecs) outside the starburst galaxies (which have radii of less than 1 kiloparsec). We show that the galactic winds sustain turbulence in the 10-kiloparsec-scale environments of the galaxies, processing these environments into multiphase, gravitationally bound reservoirs. However, the mass outflow rates are found to be insufficient to balance the star-formation rates. Another mass input is therefore required for these reservoirs, which could be provided by ongoing mergers or cold-stream accretion. Our results suggest that galactic feedback, coupled jointly to turbulence and gravity, extends the starburst phase of a galaxy instead of quenching it.

  15. Large turbulent reservoirs of cold molecular gas around high-redshift starburst galaxies

    NASA Astrophysics Data System (ADS)

    Falgarone, E.; Zwaan, M. A.; Godard, B.; Bergin, E.; Ivison, R. J.; Andreani, P. M.; Bournaud, F.; Bussmann, R. S.; Elbaz, D.; Omont, A.; Oteo, I.; Walter, F.

    2017-08-01

    Starburst galaxies at the peak of cosmic star formation are among the most extreme star-forming engines in the Universe, producing stars over about 100 million years (ref. 2). The star-formation rates of these galaxies, which exceed 100 solar masses per year, require large reservoirs of cold molecular gas to be delivered to their cores, despite strong feedback from stars or active galactic nuclei. Consequently, starburst galaxies are ideal for studying the interplay between this feedback and the growth of a galaxy. The methylidyne cation, CH+, is a most useful molecule for such studies because it cannot form in cold gas without suprathermal energy input, so its presence indicates dissipation of mechanical energy or strong ultraviolet irradiation. Here we report the detection of CH+ (J = 1–0) emission and absorption lines in the spectra of six lensed starburst galaxies at redshifts near 2.5. This line has such a high critical density for excitation that it is emitted only in very dense gas, and is absorbed in low-density gas. We find that the CH+ emission lines, which are broader than 1,000 kilometres per second, originate in dense shock waves powered by hot galactic winds. The CH+ absorption lines reveal highly turbulent reservoirs of cool (about 100 kelvin), low-density gas, extending far (more than 10 kiloparsecs) outside the starburst galaxies (which have radii of less than 1 kiloparsec). We show that the galactic winds sustain turbulence in the 10-kiloparsec-scale environments of the galaxies, processing these environments into multiphase, gravitationally bound reservoirs. However, the mass outflow rates are found to be insufficient to balance the star-formation rates. Another mass input is therefore required for these reservoirs, which could be provided by ongoing mergers or cold-stream accretion. Our results suggest that galactic feedback, coupled jointly to turbulence and gravity, extends the starburst phase of a galaxy instead of quenching it.

  16. Confirming the First Supermassive Black Hole in a Dwarf Starburst Galaxy

    NASA Astrophysics Data System (ADS)

    Reines, Amy

    2011-10-01

    In the modern universe, supermassive black holes lie at the heart of most, if not all, galaxies with bulges. However, the birth and growth of the first "seed" black holes, back in the earlier universe, is observationally unconstrained. Reines et al. {2011} have recently discovered a candidate million-solar mass black hole in the bulgeless dwarf starburst galaxy Henize 2-10, offering the first opportunity to study a growing black hole in a nearby galaxy much like those in the infant universe. The case for an accreting black hole in Henize 2-10 is strong {e.g. co-spatial non-thermal radio and hard X-ray point sources}, but not watertight. Our proposal aims to confirm {or refute} the presence of this candidate black hole using STIS optical spectroscopy to trace the kinematics and ionization conditions in its immediate vicinity. Existing HST observations show a marginally resolved H-alpha knot coincident with the radio and X-ray point source, so our primary aim is to detect a compact rotating disk of ionized gas, directly yielding a black hole mass. Our secondary aim is to find evidence for AGN-related emission line signatures at the location of the H-alpha knot, and possibly along a narrow jet-like filament. Confirming the presence of a supermassive black hole in Henize 2-10 with these HST observations has immediate implications for our understanding of the birth and early evolution of the first black holes in the high-redshift universe.

  17. MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES

    SciTech Connect

    Leroy, Adam K.; Munoz-Mateos, Juan-Carlos; Walter, Fabian; Sandstrom, Karin; Meidt, Sharon; Rix, Hans-Walter; Schinnerer, Eva; Schruba, Andreas; Bigiel, Frank; Bolatto, Alberto; Brinks, Elias; De Blok, W. J. G.; Rosolowsky, Erik; Schuster, Karl-Friedrich; Usero, Antonio

    2013-08-01

    We compare molecular gas traced by {sup 12}CO (2-1) maps from the HERACLES survey, with tracers of the recent star formation rate (SFR) across 30 nearby disk galaxies. We demonstrate a first-order linear correspondence between {Sigma}{sub mol} and {Sigma}{sub SFR} but also find important second-order systematic variations in the apparent molecular gas depletion time, {tau}{sub dep}{sup mol}={Sigma}{sub mol}/{Sigma}{sub SFR}. At the 1 kpc common resolution of HERACLES, CO emission correlates closely with many tracers of the recent SFR. Weighting each line of sight equally, using a fixed {alpha}{sub CO} equivalent to the Milky Way value, our data yield a molecular gas depletion time, {tau}{sub dep}{sup mol}={Sigma}{sub mol}/{Sigma}{sub SFR}{approx}2.2 Gyr with 0.3 dex 1{sigma} scatter, in very good agreement with recent literature data. We apply a forward-modeling approach to constrain the power-law index, N, that relates the SFR surface density and the molecular gas surface density, {Sigma}{sub SFR}{proportional_to}{Sigma}{sub mol}{sup N}. We find N = 1 {+-} 0.15 for our full data set with some scatter from galaxy to galaxy. This also agrees with recent work, but we caution that a power-law treatment oversimplifies the topic given that we observe correlations between {tau}{sub dep}{sup mol} and other local and global quantities. The strongest of these are a decreased {tau}{sub dep}{sup mol} in low-mass, low-metallicity galaxies and a correlation of the kpc-scale {tau}{sub dep}{sup mol} with dust-to-gas ratio, D/G. These correlations can be explained by a CO-to-H{sub 2} conversion factor ({alpha}{sub CO}) that depends on dust shielding, and thus D/G, in the theoretically expected way. This is not a unique interpretation, but external evidence of conversion factor variations makes this the most conservative explanation of the strongest observed {tau}{sub dep}{sup mol} trends. After applying a D/G-dependent {alpha}{sub CO}, some weak correlations between {tau}{sub dep

  18. EXTREME EMISSION-LINE GALAXIES IN CANDELS: BROADBAND-SELECTED, STARBURSTING DWARF GALAXIES AT z > 1

    SciTech Connect

    Van der Wel, A.; Rix, H.-W.; Jahnke, K.; Straughn, A. N.; Finkelstein, S. L.; Salmon, B. W.; Koekemoer, A. M.; Ferguson, H. C.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; Koo, D. C.; Hathi, N. P.; Dunlop, J. S.; Newman, J. A.; Dickinson, M.; De Mello, D. F.; and others

    2011-12-01

    We identify an abundant population of extreme emission-line galaxies (EELGs) at redshift z {approx} 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). Sixty-nine EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broadband magnitudes. Supported by spectroscopic confirmation of strong [O III] emission lines-with rest-frame equivalent widths {approx}1000 A-in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with {approx}10{sup 8} M{sub Sun} in stellar mass, undergoing an enormous starburst phase with M{sub *}/ M-dot{sub *} of only {approx}15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the comoving number density (3.7 Multiplication-Sign 10{sup -4} Mpc{sup -3}) can produce in {approx}4 Gyr much of the stellar mass density that is presently contained in 10{sup 8}-10{sup 9} M{sub Sun} dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  19. THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. II. WARM MOLECULAR GAS AND STAR FORMATION IN THREE FIELD SPIRAL GALAXIES

    SciTech Connect

    Warren, B. E.; Wilson, C. D.; Sinukoff, E.; Israel, F. P.; Van der Werf, P. P.; Serjeant, S.; Bendo, G. J.; Clements, D. L.; Brinks, E.; Irwin, J. A.; Knapen, J. H.; Leech, J.; Tan, B. K.; Matthews, H. E.; Muehle, S.; Mortimer, A. M. J.; Petitpas, G.; Spekkens, K.; Tilanus, R. P. J.; Usero, A. E-mail: wilson@physics.mcmaster.c E-mail: israel@strw.leidenuniv.n

    2010-05-01

    We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allow us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.

  20. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole.

  1. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole. These are alternate targets.

  2. Radio observations of nearby moderately luminous IRAS galaxies.

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Su, Bumei

    1999-05-01

    Six nearby moderately luminous IRAS galaxies have been observed at two wavelength by using the Australian AT. Among them, radio emissions have been detected for two galaxies, i.e. IRAS 20272-4738 and IRAS 23156-4238, and their radio parameters, like radio fluxes, peak positions, source sizes and spectral indices, are obtained. The radio sources are confirmed with infrared, radio and optical observations. Some characteristics of the radio emissions of these galaxies are discussed with previous observational data.

  3. Distributions of molecules in the circumnuclear disk and surrounding starburst ring in the Seyfert galaxy NGC 1068 observed with ALMA

    NASA Astrophysics Data System (ADS)

    Takano, Shuro; Nakajima, Taku; Kohno, Kotaro; Harada, Nanase; Herbst, Eric; Tamura, Yoichi; Izumi, Takuma; Taniguchi, Akio; Tosaki, Tomoka

    2014-07-01

    Sensitive observations with the Atacama Large Millimeter/submillimeter Array (ALMA) allow astronomers to observe the detailed distributions of molecules with relatively weak intensity in nearby galaxies. In particular, we report distributions of several molecular transitions including shock and dust related species (13CO J = 1-0, C18O J = 1-0, 13CN N = 1-0, CS J = 2-1, SO JN = 32-21, HNCO JKa,Kc = 50,5-40,4, HC3N J = 11-10, 12-11, CH3OH JK = 2K-1K, and CH3CN JK = 6K-5K) in the nearby Seyfert 2 galaxy NGC 1068 observed with the ALMA early science program. The central ˜ 1'(˜ 4.3 kpc) of this galaxy was observed in the 100-GHz region covering ˜ 96-100 GHz and ˜ 108-111 GHz with an angular resolution of ˜ 4'' × 2'' (290 pc × 140 pc) to study the effects of an active galactic nucleus and its surrounding starburst ring on molecular abundances. Here, we present images and report a classification of molecular distributions into three main categories: (1) molecules concentrated in the circumnuclear disk (CND) (SO JN = 32-21, HC3N J = 11-10, 12-11, and CH3CN JK = 6K-5K), (2) molecules distributed both in the CND and the starburst ring (CS J = 2-1 and CH3OH JK = 2K-1K), and (3) molecules distributed mainly in the starburst ring (13CO J = 1-0 and C18O J = 1-0). Since most of the molecules such as HC3N observed in the CND are easily dissociated by UV photons and X-rays, our results indicate that these molecules must be effectively shielded. In the starburst ring, the relative intensity of methanol at each clumpy region is not consistent with those of 13CO, C18O, or CS. This difference is probably caused by the unique formation and destruction mechanisms of CH3OH.

  4. Rotating Starburst Cores In The Most Massive Galaxies At Z=2

    NASA Astrophysics Data System (ADS)

    Tadaki, Ken-ichi

    2017-06-01

    Given the Hubble sequence, massive star-forming galaxies are expected to form a dense core at some point and transform their morphology from disk-dominated to bulge-dominated before quenching the star formation activity. At the peak epoch of galaxy formation (z 2), the most massive star-forming galaxies still have extended disks, but are rapidly building up their central cores through extremely compact starbursts. In this talk, I will present new results from ALMA observations of the CO J=3-2 emission line in two z=2.5 massive galaxies hosting a compact starburst. The spatial extent of star-forming molecular gas is as compact as Re 2 kpc, but more extended than the dust emission. Contrasting the observed position-velocity diagrams to dynamical models, we find the starburst cores to be rotation-dominated. The comparisons among dynamical, stellar, gas, and dust mass suggest that the starburst CO-to-H2 conversion factor is appropriate in the spatially resolved cores. The dense cores are likely to be formed in extreme environments like central regions of local ultraluminous infrared galaxies.

  5. 13CO/C18O Gradients across the Disks of Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank; Leroy, Adam K.; Gallagher, Molly; Krumholz, Mark R.; Usero, Antonio; Hughes, Annie; Kramer, Carsten; Meier, David; Murphy, Eric; Pety, Jérôme; Schinnerer, Eva; Schruba, Andreas; Schuster, Karl; Sliwa, Kazimierz; Tomicic, Neven

    2017-02-01

    We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure 13CO(1-0)/C18O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of 12CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved 13CO/C18O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean 13CO/C18O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the 13CO/C18O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.

  6. An Updated Ultraviolet Catalog of GALEX Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Zou, Hu; Liu, JiFeng; Wang, Song

    2015-09-01

    The ultraviolet (UV) catalog of nearby galaxies compiled by Gil de Paz et al. presents the integrated photometry and surface brightness profiles for 1034 nearby galaxies observed by GALEX. We provide an updated catalog of 4138 nearby galaxies based on the latest Genral Release (GR6/GR7) of GALEX. These galaxies are selected from HyperLeda with apparent diameters larger than 1‧. From the surface brightness profiles accurately measured using the deep NUV and FUV images, we have calculated the asymptotic magnitudes, aperture (D25) magnitudes, colors, structural parameters (effective radii and concentration indices), luminosities, and effective surface brightness for these galaxies. Archival optical and infrared photometry from HyperLeda, 2MASS, and IRAS are also integrated into the catalog. Our parameter measurements and some analyses are consistent with those of Paz et al. The (FUV - K) color provides a good criterion to distinguish between early- and late-type galaxies, which can be improved further using the concentration indices. The IRX-β relation is reformulated with our UV-selected nearby galaxies.

  7. AN UPDATED ULTRAVIOLET CATALOG OF GALEX NEARBY GALAXIES

    SciTech Connect

    Bai, Yu; Zou, Hu; Liu, JiFeng; Wang, Song E-mail: zouhu@nao.cas.cn E-mail: songw@nao.cas.cn

    2015-09-15

    The ultraviolet (UV) catalog of nearby galaxies compiled by Gil de Paz et al. presents the integrated photometry and surface brightness profiles for 1034 nearby galaxies observed by GALEX. We provide an updated catalog of 4138 nearby galaxies based on the latest Genral Release (GR6/GR7) of GALEX. These galaxies are selected from HyperLeda with apparent diameters larger than 1′. From the surface brightness profiles accurately measured using the deep NUV and FUV images, we have calculated the asymptotic magnitudes, aperture (D25) magnitudes, colors, structural parameters (effective radii and concentration indices), luminosities, and effective surface brightness for these galaxies. Archival optical and infrared photometry from HyperLeda, 2MASS, and IRAS are also integrated into the catalog. Our parameter measurements and some analyses are consistent with those of Paz et al. The (FUV − K) color provides a good criterion to distinguish between early- and late-type galaxies, which can be improved further using the concentration indices. The IRX–β relation is reformulated with our UV-selected nearby galaxies.

  8. Superdense massive galaxies in the nearby universe

    NASA Astrophysics Data System (ADS)

    Ferré-Mateu, Anna; Trujillo, Ignacio

    2010-04-01

    At high-z the most superdense massive galaxies are supposed to be the result of gas-rich mergers resulting in compact remnant (Khochfar & Silk (2006); Naab et al. (2007)). After this, dry mergers are expected to be the mechanism that moves these very massive galaxies towards the current stellar mass size relation. Whitin these merging scenarios, a non-negligible fraction (1-10%) of these galaxies is expected to survive since that epoch retaining their compactness and presenting old stellar populations in the past universe.Using the NYU Value-Added Galaxy Catalog (DR6), we find only a tiny fraction of galaxies (~0.03%) with re ≤ 1.5 kpc and M* ≥ 8x1010M⊙ in the local Universe (z~0.2). Surprisingly, they are relatively young (~2Gyr) and metal rich ([Z/H]~0.2) These results have been published in Trujillo et al. (2009)

  9. Superdense Massive Galaxies in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Trujillo, Ignacio; Cenarro, A. Javier; de Lorenzo-Cáceres, Adriana; Vazdekis, Alexandre; de la Rosa, Ignacio G.; Cava, Antonio

    2009-02-01

    Superdense massive galaxies (re ~ 1 kpc; M ~ 1011 M sun) were common in the early universe (z gsim 1.5). Within some hierarchical merging scenarios, a non-negligible fraction (1%-10%) of these galaxies is expected to survive since that epoch, retaining their compactness and presenting old stellar populations in the present universe. Using the NYU Value-Added Galaxy Catalog from the Sloan Digital Sky Survey Data Release 6, we find only a tiny fraction of galaxies (~0.03%) with re lsim 1.5 kpc and M sstarf gsim 8 × 1010 M sun in the local universe (z < 0.2). Surprisingly, they are relatively young (~2 Gyr) and metal-rich ([Z/H] ~0.2). The consequences of these findings within the current two competing size evolution scenarios for the most massive galaxies ("dry" mergers vs. "puffing up" due to quasar activity) are discussed.

  10. Molecular gas during the post-starburst phase: low gas fractions in green-valley Seyfert post-starburst galaxies

    NASA Astrophysics Data System (ADS)

    Yesuf, Hassen M.; French, K. Decker; Faber, S. M.; Koo, David C.

    2017-08-01

    Post-starbursts (PSBs) are candidate for rapidly transitioning from starbursting to quiescent galaxies. We study the molecular gas evolution of PSBs at z ∼ 0.03-0.2. We undertook new CO (2-1) observations of 22 Seyfert PSB candidates using the Arizona Radio Observatory Submillimeter Telescope. This sample complements previous samples of PSBs by including green-valley PSBs with Seyfert-like emission, allowing us to analyse for the first time the molecular gas properties of 116 PSBs with a variety of AGN properties. The distribution of molecular gas to stellar mass fractions in PSBs is significantly different from normal star-forming galaxies in the CO Legacy Database (COLD) GASS survey. The combined samples of PSBs with Seyfert-like emission line ratios have a gas fraction distribution that is even more significantly different and is broader (∼0.03-0.3). Most of them have lower gas fractions than normal star-forming galaxies. We find a highly significant correlation between the WISE 12 and 4.6 μm flux ratios and molecular gas fractions in both PSBs and normal galaxies. We detect molecular gas in 27 per cent of our Seyfert PSBs. Taking into account the upper limits, the mean and the dispersion of the distribution of the gas fraction in our Seyfert PSB sample are much smaller (μ = 0.025, σ = 0.018) than previous samples of Seyfert PSBs or PSBs in general (μ ∼ 0.1-0.2, σ ∼ 0.1-0.2).

  11. Chandra survey of nearby highly inclined disc galaxies - III. Comparison with hydrodynamical simulations of circumgalactic coronae

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Tao; Crain, Robert A.; Wang, Q. Daniel

    2014-05-01

    X-ray observations of circumgalactic coronae provide a valuable means by which to test galaxy formation theories. Two primary mechanisms are thought to be responsible for the establishment of such coronae: accretion of intergalactic gas and/or galactic feedback. In this paper, we first compare our Chandra sample of galactic coronae of 53 nearby highly inclined disc galaxies to an analytical model considering only the accretion of intergalactic gas. We confirm the existing conclusion that this pure accretion model substantially overpredicts the coronal emission. We then select 30 field galaxies from our original sample, and correct their coronal luminosities to uniformly compare them to deep X-ray measurements of several massive disc galaxies from the literature, as well as to a comparable sample of simulated galaxies drawn from the Galaxies-Intergalactic Medium Interaction Calculation (GIMIC). These simulations explicitly model both accretion and supernovae feedback and yield galaxies that exhibit X-ray properties in broad agreement with our observational sample. However, notable and potentially instructive discrepancies exist between the slope and scatter of the LX-M200 and LX-SFR relations, highlighting some known shortcomings of GIMIC, for example, the absence of active galactic nuclei feedback, and possibly the adoption of constant stellar feedback parameters. The simulated galaxies exhibit a tight correlation (with little scatter) between coronal luminosity and halo mass. Having inferred M200 for our observational sample via the Tully-Fisher relation, we find a weaker and more scattered correlation. In the simulated and observed samples alike, massive non-starburst galaxies above a typical transition mass of M* ˜ 2 × 1011 M⊙ or M200 ˜ 1013 M⊙ tend to have higher LX/M* and LX/M200 than low-mass counterparts, indicating that the accretion of intergalactic gas plays an increasingly important role in establishing the observable hot circumgalactic medium

  12. Just-After THE FALL: Post-Starburst Galaxies and the E+B Phase

    NASA Astrophysics Data System (ADS)

    Smercina, Adam; Tremonti, Christina A.; Chisholm, John P.

    2015-01-01

    A key question in galaxy evolution is how star formation is quenched. Post-starburst galaxies, which can be identified by their distinctive optical spectra, are excellent laboratories for studying various quenching processes. However, canonical post-starbursts, called E+A's or K+A's, are several 100 Myr past the epoch of active quenching, making it challenging to measure quenching timescales and make inferences about the processes at work. To address this problem, we have identified a sample of 23 young, B-star dominated post-starbursts (E+B's) at z = 0.45 - 0.82 in SDSS-III's Baryon Oscillation Spectroscopic Survey (BOSS). In this new class of objects, we determine how abruptly star formation is truncated and probe the role of various possible feedback mechanisms.This work was supported by the National Science Foundation's REU program through NSF Award AST-1004881.

  13. Distribution of Molecules in the Circumnuclear Disk and Surrounding Starburst Ring in the Seyfert Galaxy NGC 1068 Observed with ALMA

    NASA Astrophysics Data System (ADS)

    Takano, S.; Nakajima, T.; Kohno, K.; Harada, N.; Herbst, E.; Tamura, Y.; Izumi, T.; Taniguchi, A.; Tosaki, T.

    2015-12-01

    We report distributions of several molecular transitions including shock and dust related species (13CO and C18O J = 1-0, 13CN N = 1-0, CS J = 2-1, SO JN = 32-21, HNCO JKa,Kc = 50,5-40,4, HC3N J = 11-10, 12-11, CH3OH JK = 2K-1K, and CH3CN JK = 6K-5K) in the nearby Seyfert 2 galaxy NGC 1068 observed with ALMA. The central ˜1' (˜4.3 kpc) of this galaxy was observed in the 100 GHz region with an angular resolution of ˜4" x 2" (290 pc x 140 pc) to study the effects of an active galactic nucleus and its surrounding starburst ring on molecular abundances. We report a classification of molecular distributions into three main categories. Organic molecules such as CH3CN are found to be concentrated in the circumnuclear disk. In the starburst ring, the intensity of methanol at each clumpy region is not consistent with that of 13CO.

  14. Snapshots in X-ray binary evolution: Using HAEs and post-starburst galaxies to study the time-dependence of XRB populations

    NASA Astrophysics Data System (ADS)

    Basu-Zych, Antara

    2017-08-01

    The X-ray emission in galaxies, due to X-ray binaries (XRBs), appears to depend on global galaxy properties such as stellar mass (M*), star formation rate (SFR), metallicity, and stellar age. This poster will present unique galaxy populations with well-defined stellar ages to test current relations and models. Specifically, H-alpha emitters, which are nearby analogs of galaxies in the early universe, trace how XRBs form and evolve in young, metal-poor environments. Post-starburst galaxies, selected by the strength of the H-delta equivalent width, probe the XRBs related to stellar ages of 0.1-1 Gyr. Together, these samples offer important constraints for the evolution of XRBs with stellar age.

  15. Extinction Mapping of Nearby Galaxies Using LEGUS

    NASA Astrophysics Data System (ADS)

    Kahre, Lauren; Walterbos, Rene A. M.; Calzetti, Daniela; Sabbi, Elena; Ubeda, Leonardo; LEGUS Collaboration

    2017-01-01

    Extinction by dust affects studies of star formation and stellar evolution in galaxies. There are different ways to measure the distribution of dust column densities across galaxies. Here we present work based on extinctions measured towards individual massive stars.Isochrones of massive stars lie in the same location on a color-color diagram with little dependence on metallicity and luminosity class, so the extinction can be directly derived from the observed photometry. We develop a method for generating extinction maps using photometry of massive stars from the Hubble Space Telescope for the nearly 50 galaxies observed by the Legacy Extragalactic Ultraviolet Survey (LEGUS). The derived extinction maps will allow us to correct ground-based and HST Halpha maps for extinction, and will be used to constrain changes in the dust-to-gas ratio across the galaxy sample and in different star formation, metallicity and morphological environments. Previous studies have found links between galaxy metallicity and the dust-to-gas mass ratio. Dust abundance and gas metallicity are critical constraints for chemical and galaxy evolution models. We present a study of LEGUS galaxies spanning a range of distances, metallicities, and galaxy morphologies, including metal-poor dwarfs Holmberg I and II and giant spirals NGC 6503 and NGC 628. We see clear evidence for changes in the dust-to-gas mass ratio with changing metallicity. We also examine changes in the dust-to-gas mass ratio with galactocentric radius. Ultimately, we will provide constraints on the dust-to-gas mass ratio across a wide range of galaxy environments.

  16. Optical depth of molecular gas in starburst galaxies - Is M82 the prototype?

    NASA Technical Reports Server (NTRS)

    Verter, F.; Rickard, L. J.

    1989-01-01

    An attempt is made to survey the CO(2-1) emission toward the centers of 17 IR-luminous galaxies which have previously been detected in CO(1-0). These galaxies span a wide range of size and L(FIR)/L(B) ratio, many have multiple-wavelength studies establishing them as starbursts, and some bear a morphological resemblance to M 82. Nine galaxies are detected and useful upper limits are placed on the remaining eight. Using the CO(2-1)/CO(1-0) ratio of antenna temperature as a diagnostic of optical depth, it is found that all of the galaxies contain predominantly optically thick molecular gas. This implies that the phase of starburst during which the molecular gas is optically thin, currently witnessed in M 82, is either uncommon or short-lived.

  17. Sub-mJy radio sources - A population of starburst galaxies at intermediate redshifts

    NASA Technical Reports Server (NTRS)

    Thuan, Trinh X.

    1987-01-01

    Optical-infrared observations are used to show that the sub-mJy sources, discovered in deep radio surveys and responsible for the upturn in the radio source counts at sub-mJy levels, represent a population of star-forming galaxies at intermediate redshifts and with Mv between about -23 and -20. The very high frequency of line-emission, the very large incidence of galaxy mergers and interactions associated with these sub-mJy sources, and the good agreement between the sub-mJy radio source counts and the counts of starburst galaxies from deep IRAS surveys imply that these star-forming galaxies are in fact undergoing starbursts.

  18. The radio core structure of the luminous infrared galaxy NGC 4418. A young clustered starburst revealed?

    NASA Astrophysics Data System (ADS)

    Varenius, E.; Conway, J. E.; Martí-Vidal, I.; Aalto, S.; Beswick, R.; Costagliola, F.; Klöckner, H.-R.

    2014-06-01

    Context. The galaxy NGC 4418 contains one of the most compact obscured nuclei within a luminous infrared galaxy (LIRG) in the nearby Universe. This nucleus contains a rich molecular gas environment and an unusually high ratio of infrared-to-radio luminosity (q-factor). The compact nucleus is powered by either a compact starburst or an active galactic nucleus (AGN). Aims: The aim of this study is to constrain the nature of the nuclear region (starburst or AGN) within NGC 4418 via very-high-resolution radio imaging. Methods: Archival data from radio observations using the European Very Long Baseline Interferometry Network (EVN) and Multi-Element Radio Linked Interferometer Network (MERLIN) interferometers are imaged. Sizes and flux densities are obtained by fitting Gaussian intensity distributions to the image. The average spectral index of the compact radio emission is estimated from measurements at 1.4 GHz and 5.0 GHz. Results: The nuclear structure of NGC 4418 visible with EVN and MERLIN consists of eight compact (<49 mas i.e. <8 pc) features spread within a region of 250 mas, i.e. 41 pc. We derive an inverted spectral index α ≥ 0.7 (Sν ∝ να) for the compact radio emission. Conclusions: Brightness temperatures >104.8 K indicate that these compact features cannot be HII-regions. The complex morphology and inverted spectrum of the eight detected compact features is evidence against the hypothesis that an AGN alone is powering the nucleus of NGC 4418. The compact features could be super star clusters with intense star formation, and their associated free-free absorption could then naturally explain both their inverted radio spectrum and the low radio-to-IR ratio of the nucleus. The required star formation area density is extreme, however, and close to the limit of what can be observed in a well-mixed thermal/non-thermal plasma produced by star formation, and is also close to the limit of what can be physically sustained.

  19. SHAKEN, NOT STIRRED: THE DISRUPTED DISK OF THE STARBURST GALAXY NGC 253

    SciTech Connect

    Davidge, T. J.

    2010-12-10

    Near-infrared images obtained with WIRCam on the Canada-France-Hawaii Telescope are used to investigate the recent history of the nearby Sculptor Group spiral NGC 253, which is one of the nearest starburst galaxies. Bright asymptotic giant branch (AGB) stars are traced out to projected distances of {approx}22-26 kpc ({approx}13-15 disk scale lengths) along the major axis. The distribution of stars in the disk is lopsided, in the sense that the projected density of AGB stars in the northeast portion of the disk between 10 and 20 kpc from the galaxy center is {approx}0.5 dex higher than on the opposite side of the galaxy. A large population of red supergiants is also found in the northeast portion of the disk and, with the exception of the central 2 kpc, this area appears to have been the site of the highest levels of star-forming activity in the galaxy during the past {approx}0.1 Gyr. It is argued that such high levels of localized star formation may have produced a fountain that ejected material from the disk, and the extraplanar H I detected by Boomsma et al. may be one manifestation of such activity. Diffuse stellar structures are found in the periphery of the disk, and the most prominent of these is to the south and east of the galaxy. Bright AGB stars, including cool C stars that are identified based on their J - K colors, are detected out to 15 kpc above the disk plane, and these are part of a diffusely distributed, flattened extraplanar component. Comparisons between observed and model luminosity functions suggest that the extraplanar regions contain stars that formed throughout much of the age of the universe. Additional evidence of a diffuse, extraplanar stellar component that contains moderately young stars comes from archival Galaxy Evolution Explorer images. It is suggested that the disk of NGC 253 was disrupted by a tidal encounter with a now defunct companion. This encounter introduced asymmetries that remain to this day, and the projected distribution

  20. Shaken, Not Stirred: The Disrupted Disk of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2010-12-01

    Near-infrared images obtained with WIRCam on the Canada-France-Hawaii Telescope are used to investigate the recent history of the nearby Sculptor Group spiral NGC 253, which is one of the nearest starburst galaxies. Bright asymptotic giant branch (AGB) stars are traced out to projected distances of ~22-26 kpc (~13-15 disk scale lengths) along the major axis. The distribution of stars in the disk is lopsided, in the sense that the projected density of AGB stars in the northeast portion of the disk between 10 and 20 kpc from the galaxy center is ~0.5 dex higher than on the opposite side of the galaxy. A large population of red supergiants is also found in the northeast portion of the disk and, with the exception of the central 2 kpc, this area appears to have been the site of the highest levels of star-forming activity in the galaxy during the past ~0.1 Gyr. It is argued that such high levels of localized star formation may have produced a fountain that ejected material from the disk, and the extraplanar H I detected by Boomsma et al. may be one manifestation of such activity. Diffuse stellar structures are found in the periphery of the disk, and the most prominent of these is to the south and east of the galaxy. Bright AGB stars, including cool C stars that are identified based on their J - K colors, are detected out to 15 kpc above the disk plane, and these are part of a diffusely distributed, flattened extraplanar component. Comparisons between observed and model luminosity functions suggest that the extraplanar regions contain stars that formed throughout much of the age of the universe. Additional evidence of a diffuse, extraplanar stellar component that contains moderately young stars comes from archival Galaxy Evolution Explorer images. It is suggested that the disk of NGC 253 was disrupted by a tidal encounter with a now defunct companion. This encounter introduced asymmetries that remain to this day, and the projected distribution of stars in and around NGC

  1. HI absorption in nearby compact radio galaxies

    NASA Astrophysics Data System (ADS)

    Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.

    2017-01-01

    HI absorption studies yield information on both AGN feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for HI absorption in a sample of 66 compact radio sources at 0.040 < z < 0.096 with the Australia Telescope Compact Array. In total, we obtained seven detections, five of which are new, with a large range of peak optical depths (3% to 87%). Of the detections, 71% exhibit asymmetric, broad (ΔvFWHM > 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disk. Comparing mid-infrared colours of our galaxies with HI detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic disks. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of HI content within the host galaxy. This sample extends previous HI surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.

  2. Gas Dynamics and Outflow in the Barred Starburst Galaxy NGC 1808 Revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Hatakeyama, Takuya; Miyamoto, Yusuke

    2016-05-01

    NGC 1808 is a nearby barred starburst galaxy with an outflow from the nuclear region. To study the inflow and outflow processes related to star formation and dynamical evolution of the galaxy, we have carried out 12CO (J=1-0) mapping observations of the central r ˜ 4 kpc of NGC 1808 using the Atacama Large Millimeter/submillimeter Array. Four distinct components of molecular gas are revealed at high spatial resolution of 2″ (˜100 pc): (1) a compact (r < 200 pc) circumnuclear disk (CND), (2) r ˜ 500 pc ring, (3) gas-rich galactic bar, and (4) spiral arms. Basic geometric and kinematic parameters are derived for the central 1 kpc region using tilted-ring modeling. The derived rotation curve reveals multiple mass components that include (1) a stellar bulge, (2) a nuclear bar and molecular CND, and (3) an unresolved massive (˜107 M ⊙) core. Two systemic velocities, 998 km s-1 for the CND and 964 km s-1 for the 500 pc ring, are revealed, indicating a kinematic offset. The pattern speed of the primary bar, derived by using a cloud-orbit model, is 56 ± 11 km s-1 kpc-1. Noncircular motions are detected associated with a nuclear spiral pattern and outflow in the central 1 kpc region. The ratio of the mass outflow rate to the star formation rate is {\\dot{M}}{out}/{SFR}˜ 0.2 in the case of optically thin CO (1-0) emission in the outflow, suggesting low efficiency of star formation quenching.

  3. A 2 Millimeter Spectral Line Survey of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Martín, S.; Mauersberger, R.; Martín-Pintado, J.; Henkel, C.; García-Burillo, S.

    2006-06-01

    We present the first unbiased molecular line survey toward an extragalactic source, namely the nuclear region of the starburst galaxy NGC 253. The scan covers the frequency band from 129.1 to 175.2 GHz, i.e., most of the 2 mm atmospheric window. We identify 111 spectral features as transitions from 25 different molecular species. Eight of which (three tentatively) are detected for the first time in the extragalactic interstellar medium. Among these newly detected species, we detected the rare isotopomers 34SO and HC18O+. Tentative detections of two deuterated species, DNC and N2D+, are reported for the first time from a target beyond the Magellanic Clouds. In addition, three hydrogen recombination lines are identified, while no organic molecules larger than methanol are detected. Column densities and rotation temperatures are calculated for all the species, including an upper limit to the ethanol abundance. A comparison of the chemical composition of the nuclear environment of NGC 253 with those of selected nearby galaxies demonstrates the chemical resemblance of IC 342 and NGC 4945 to that of NGC 253. On the other hand, the chemistries characterizing NGC 253 and M82 are clearly different. We also present a comparison of the chemical composition of NGC 253 with those observed in Galactic prototypical sources. The chemistry of NGC 253 shows a striking similarity with the chemistry observed toward the Galactic center molecular clouds, which are thought to be dominated by low-velocity shocks. This resemblance strongly suggests that the heating in the nuclear environment of NGC 253 is dominated by the same mechanism as that in the central region of the Milky Way.

  4. Detection of the 158 μm [C II] Transition at z = 1.3: Evidence for a Galaxy-wide Starburst

    NASA Astrophysics Data System (ADS)

    Hailey-Dunsheath, S.; Nikola, T.; Stacey, G. J.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Tucker, C. E.

    2010-05-01

    We report the detection of 158 μm [C II] fine-structure line emission from MIPS J142824.0+352619, a hyperluminous (L IR ~ 1013 L sun) starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L [C II]/L FIR ≈ 2 × 10-3 of the far-IR (FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n ~ 104.2 cm-3, and that are illuminated by a far-UV radiation field ~103.2 times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L [C II]/L FIR ratio is higher than observed in local ultraluminous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L [C II]/L FIR and L CO/L FIR ratios are similar to the values seen in nearby starburst galaxies. This suggests that MIPS J142824.0+352619 is a scaled-up version of a starburst nucleus, with the burst extended over several kiloparsecs.

  5. DETECTION OF THE 158 {mu}m [C II] TRANSITION AT z = 1.3: EVIDENCE FOR A GALAXY-WIDE STARBURST

    SciTech Connect

    Hailey-Dunsheath, S.; Nikola, T.; Stacey, G. J.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Tucker, C. E.

    2010-05-01

    We report the detection of 158 {mu}m [C II] fine-structure line emission from MIPS J142824.0+352619, a hyperluminous (L {sub IR} {approx} 10{sup 13} L {sub sun}) starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L {sub [CII]}/L {sub FIR} {approx} 2 x 10{sup -3} of the far-IR (FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n {approx} 10{sup 4.2} cm{sup -3}, and that are illuminated by a far-UV radiation field {approx}10{sup 3.2} times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L {sub [CII]}/L {sub FIR} ratio is higher than observed in local ultraluminous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L {sub [CII]}/L {sub FIR} and L {sub CO}/L {sub FIR} ratios are similar to the values seen in nearby starburst galaxies. This suggests that MIPS J142824.0+352619 is a scaled-up version of a starburst nucleus, with the burst extended over several kiloparsecs.

  6. Constraints on the low-mass IMF in young super-star clusters in starburst galaxies

    NASA Astrophysics Data System (ADS)

    Greissl, Julia Jennifer

    2010-12-01

    As evidence for variations in the initial mass function (IMF) in nearby star forming regions remains elusive we are forced to expand our search to more extreme regions of star formation. Starburst galaxies, which contain massive young clusters have in the past been reported to have IMFs different than that characterizing the field star IMF. In this thesis we use high signal-to-noise near-infrared spectra to place constraints on the shape of the IMF in extreme regions of extragalactic star formation and also try to understand the star formation history in these regions. Through high signal-to-noise near-infrared spectra it is possible to directly detect low-mass PMS stars in unresolved young super-star clusters, using absorption features that trace cool stars. Combining Starburst99 and available PMS tracks it is then possible to constrain the IMF in young super-star clusters using a combination of absorption lines each tracing different ranges of stellar masses and comparing observed spectra to models. Our technique can provide a direct test of the universality of the IMF compared to the Milky Way. We have obtained high signal-to-noise H- and K-band spectra of two young super-star clusters in the starburst galaxies NGC 4039/39 and NGC 253 in order to constrain the low-mass IMF and star formation history in the clusters. The cluster in NGC 4038/39 shows signs of youth such as thermal radio emission and strong hydrogen emission lines as well as late-type absorption lines indicative of cool stars. The strength and ratio of these absorption lines cannot be reproduced through either late-type pre-main sequence stars or red supergiants alone. We interpret the spectrum as a superposition of two star clusters of different ages over the physical region of 90 pc our spectrum represents. One cluster is young (≤ 3 Myr) and is responsible for part of the late-type absorption features, which are due to PMS stars in the cluster, and the hydrogen emission lines. The second

  7. Hydrogen fluoride toward luminous nearby galaxies: NGC 253 and NGC 4945

    SciTech Connect

    Monje, R. R.; Lis, D. C.; Phillips, T. G.; Lord, S.; Falgarone, E.; Güsten, R.

    2014-04-10

    We present the detection of hydrogen fluoride (HF) in two luminous nearby galaxies, NGC 253 and NGC 4945 using the Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory. The HF line toward NGC 253 has a P-Cygni profile, while an asymmetric absorption profile is seen toward NGC 4945. The P-Cygni profile in NGC 253 suggests an outflow of molecular gas with a mass of M(H{sub 2}){sub out} ∼ 1 × 10{sup 7} M {sub ☉} and an outflow rate as large as M-dot ∼6.4 M {sub ☉} yr{sup –1}. In the case of NGC 4945, the axisymmetric velocity components in the HF line profile are compatible with the interpretation of a fast-rotating nuclear ring surrounding the nucleus and the presence of inflowing gas. The gas falls into the nucleus with an inflow rate of ≤1.2 M {sub ☉} yr{sup –1}, inside an inner radius of ≤200 pc. The gas accretion rate to the central active galactic nucleus is much smaller, suggesting that the inflow may be triggering a nuclear starburst. From these results, the HF J = 1-0 line is seen to provide an important probe of the kinematics of absorbing material along the sight-line to nearby galaxies with bright dust continuum and a promising new tracer of molecular gas in high-redshift galaxies.

  8. NEARBY GALAXIES IN MORE DISTANT CONTEXTS

    SciTech Connect

    Eskew, Michael; Zaritsky, Dennis E-mail: dzaritsky@as.arizona.edu

    2011-02-15

    We use published reconstructions of the star formation history (SFH) of the Large Magellanic Cloud (LMC), Small Magellanic Cloud, and NGC 300 from the analysis of resolved stellar populations to investigate where such galaxies might land on well-known extragalactic diagnostic plots over the galaxies' lifetime (assuming that nothing other than their stellar populations change). For example, we find that the evolution of these galaxies implies a complex evolution in the Tully-Fisher relation with look-back time and that the observed scatter is consistent with excursions these galaxies take as their stellar populations evolve. We find that the growth of stellar mass is weighted to early times, despite the strongly star-forming current nature of the three systems. Lastly, we find that these galaxies can take circuitous paths across the color-magnitude diagram. For example, it is possible, within the constraints provided by the current determination of its SFH, that the LMC reached the red sequence at intermediate age prior to ending back up on the blue cloud at the current time. Unfortunately, this behavior happens at sufficiently early times that our resolved SFH is crude and insufficiently constraining to convincingly demonstrate that this was the actual evolutionary path. The limited sample size precludes any general conclusions, but we present these as examples how we can bridge the study of resolved populations and the more distant universe.

  9. HI in the Outskirts of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bosma, Albert

    The HI in disk galaxies frequently extends beyond the optical image and can trace the dark matter there. I briefly highlight the history of high spatial resolution HI imaging, the contribution it made to the dark matter problem, and the current tension between several dynamical methods to break the disk-halo degeneracy. I then turn to the flaring problem, which could in principle probe the shape of the dark halo. Instead, however, a lot of attention is now devoted to understanding the role of gas accretion via galactic fountains. The current Λ Λ cold dark matter theory has problems on galactic scales, such as the core-cusp problem, which can be addressed with HI observations of dwarf galaxies. For a similar range in rotation velocities, galaxies of Type Sd have thin disks, while those of Type Im are much thicker. After a few comments on Modified Newtonian Dynamics and on irregular galaxies, I close with statistics on the HI extent of galaxies.

  10. A New Interpretation for the Variation in Starburst Galaxy Emission Line Spectra

    NASA Astrophysics Data System (ADS)

    Richardson, Chris T.; Allen, James T.; Baldwin, Jack A.; Hewett, Paul C.; Ferland, Gary J.; Meskhidze, Helen

    2015-01-01

    Starburst galaxies have been easily distinguished from AGN using diagnostic emission line ratio diagrams constraining their excitation mechanism. Previous modeling of the star forming (SF) galaxy sequence outlined on the BPT diagram has led to the interpretation that high metallicity SF galaxies and low ionization SF galaxies are synonymous. Here, we present a new interpretation. Using a large sample of low-z SDSS galaxies, we co-added similar spectra of pure star forming galaxies allowing many weaker emission lines to act as consistency checks on strong line diagnostics. For the first time, we applied a locally optimally-emitting cloud (LOC) model to understand the physical reason for the variation in starburst galaxy emission line spectra. We fit over twenty diagnostic diagrams constraining the excitation mechanism, SED, temperature, density, metallicity, and grain content, making this work far more constrained than previous studies. Our results indicate that low luminosity SF galaxies could simply have less concentrated regions of ionized gas compared to their high luminosity counterparts, but have similar metallicities, thus requiring reevaluation about underlying nature of star forming galaxies.

  11. Extended HI disks in nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Bosma, Albert

    2017-03-01

    In this short write-up, I will concentrate on a few topics of interest. In the 1970s I found very extended HI disks in galaxies such as NGC 5055 and NGC 2841, out to 2 - 2.5 times the Holmberg radius. Since these galaxies are warped, a ``tilted ring model'' allows rotation curves to be derived, and evidence for dark matter to be found. The evaluation of the amount of dark matter is hampered by a disk-halo degeneracy, which can possibly be broken by observations of velocity dispersions in both the MgI region and the CaII region.

  12. A connection between star formation activity and cosmic rays in the starburst galaxy M82.

    PubMed

    2009-12-10

    Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size-more than 50 times the diameter of similar Galactic regions-uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse gamma-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in terms of gamma-ray emission. Here we report the detection of >700-GeV gamma-rays from M82. From these data we determine a cosmic-ray density of 250 eV cm(-3) in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.

  13. Kinematics of Interstellar Gas in Nearby UV-selected Galaxies Measured with HST STIS Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schwartz, C. M.; Martin, C. L.; Chandar, R.; Leitherer, C.; Heckman, T. M.; Oey, M. S.

    2006-08-01

    We measure Doppler shifts of interstellar absorption lines in HST STIS spectra of individual star clusters in nearby UV-selected galaxies. Values for systemic velocities, which are needed to quantify outflow speeds, are taken from the literature and verified with stellar lines. We detect outflowing gas in 8 of 17 galaxies via low-ionization lines (e.g., C II, Si II, Al II), which trace cold and/or warm gas. The starbursts in our sample are intermediate in luminosity (and mass) to dwarf galaxies and luminous infrared galaxies (LIRGs), and we confirm that their outflow speeds (ranging from -100 to nearly -520 km s-1, with an accuracy of ~80 km s-1) are intermediate to those previously measured in dwarf starbursts and LIRGs. We do not detect the outflow in high-ionization lines (such as C IV or Si IV); higher quality data will be needed to empirically establish how velocities vary with the ionization state of the outflow. We do verify that the low-ionization UV lines and optical Na I doublet give roughly consistent outflow velocities, solidifying an important link between studies of galactic winds at low and high redshift. To obtain a higher signal-to-noise ratio (S/N), we create a local average composite spectrum and compare it to the high-z Lyman break composite spectrum. It is surprising that the low-ionization lines show similar outflow velocities in the two samples. We attribute this to a combination of weighting toward higher luminosities in the local composite, as well as both samples being, on average, brighter than the ``turnover'' luminosity in the v-SFR relation. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program GO-9036.

  14. Modelling the star formation histories of nearby elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Bird, Katy

    Since Lick indices were introduced in 1994, they have been used as a source of observational data against which computer models of galaxy evolution have been compared. However, as this thesis demonstrates, observed Lick indices lead to mathematical ill-conditioning: small variations in observations can lead to very large differences in population synthesis models attempting to recreate the observed values. As such, limited reliance should be placed on any results currently or historically in the literature purporting to give the star formation history of a galaxy, or group of galaxies, where this is deduced from Lick observations taken from a single instrument, without separate verification from at least one other source. Within these limitations, this thesis also constrains the star formation histories of 21 nearby elliptical galaxies, finding that they formed 13.26 +0.09 -0.06 Gyrs ago, that all mergers are dry, and that galactic winds are formed from AGN activity (rather than being supernovae-driven). This thesis also finds evidence to support the established galaxy-formation theory of "downsizing". An existing galactic model from the literature is examined and evaluated, and the reasons for it being unable to establish star formation histories of individual galaxies are ascertained. A brand-new model is designed, developed, tested and used with two separate data sets, corroborated for 10 galaxies by data from a third source, and compared to results from a Single Stellar Population model from the literature, to model the star formation histories of nearby elliptical galaxies.

  15. Pulsar searches in nearby dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Rubio-Herrera, Eduardo; Maccarone, Thomas

    2013-03-01

    We have been undertaking a comprehensive survey for pulsars and fast radio transients in the dwarf spheroidal satellite galaxies of the Milky Way using the Green Bank Radio Telescope operating at a central frequency of 350 MHz. Our search pipeline allows the detection of periodical signals and single dispersed pulses and it is optimized to search for millisecond radio pulsars. Here we present preliminary results of the searches we have conducted in the Ursa Minoris, Draco and Leo I dwarf spheroidal satellite galaxies. Our searches have revealed no periodic signals but a few unconfirmed millisecond single pulses at various dispersion measures, possibly related to neutron stars. Detecting neutron stars in these systems can potentially help to test the existence of haloes of dark matter surrounding these systems as predicted by Dehnen & King (2006).

  16. High velocity clouds in nearby disk galaxies

    NASA Technical Reports Server (NTRS)

    Schulman, Eric; Bregman, Joel N.; Roberts, Morton S.; Brinks, Elias

    1993-01-01

    Clouds of neutral hydrogen in our galaxy with the absolute value of v greater than 100 km/s cover approximately 10 percent of the sky to a limiting column density of 1 x 10(exp 18) cm(exp -2). These high velocity clouds (HVCs) may dominate the kinetic energy of neutral hydrogen in non-circular motion, and are an important though poorly understood component of galactic gas. It has been suggested that the HVCs can be reproduced by a combination of three phenomena: a galactic fountain driven by disk supernovae which would account for most of the HVCs, material tidally torn from the Magellanic Clouds, and an outer arm complex which is associated with the large scale structure of the warped galactic disk. We sought to detect HVCs in external galaxies in order to test the galactic fountain model.

  17. Chandra Survey of Nearby Galaxies: The Catalog

    NASA Astrophysics Data System (ADS)

    She, Rui; Ho, Luis C.; Feng, Hua

    2017-02-01

    We searched the public archive of the Chandra X-ray Observatory as of 2016 March and assembled a sample of 719 galaxies within 50 Mpc with available Advanced CCD Imaging Spectrometer observations. By cross-correlation with the optical or near-infrared nuclei of these galaxies, 314 of them are identified to have an X-ray active galactic nucleus (AGN). The majority of them are low-luminosity AGNs and are unlikely X-ray binaries based upon their spatial distribution and luminosity functions. The AGN fraction is around 60% for elliptical galaxies and early-type spirals, but drops to roughly 20% for Sc and later types, consistent with previous findings in the optical. However, the X-ray survey is more powerful in finding weak AGNs, especially from regions with active star formation that may mask the optical AGN signature. For example, 31% of the H ii nuclei are found to harbor an X-ray AGN. For most objects, a single power-law model subject to interstellar absorption is adequate to fit the spectrum, and the typical photon index is found to be around 1.8. For galaxies with a non-detection, their stacked Chandra image shows an X-ray excess with a luminosity of a few times 1037 erg s‑1 on average around the nuclear region, possibly composed of faint X-ray binaries. This paper reports on the technique and results of the survey; in-depth analysis and discussion of the results will be reported in forthcoming papers.

  18. Detection of the 13CO J = 6→ 5 transition in the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Hailey-Dunsheath, S.; Nikola, T.; Stacey, G. J.; Oberst, T. E.; Parshley, S. C.; Bradford, C. M.; Ade, P. A. R.; Tucker, C. E.

    2008-12-01

    We report the detection of 13CO J = 6→ 5 emission from the nucleus of the starburst galaxy NGC 253 with the redshift (z) and Early Universe Spectrometer (ZEUS), a new submillimeter grating spectrometer. This is the first extragalactic detection of the 13CO J = 6→ 5 transition, which traces warm, dense molecular gas. We employ a multiline LVG analysis and find ≈35%-60% of the molecular interstellar medium is both warm (T ~ 110 K) and dense (nH2 ~ 104 cm-3). We analyze the potential heat sources and conclude that ultraviolet and X-ray photons are unlikely to be energetically important. Instead, the molecular gas is most likely heated by an elevated density of cosmic rays or by the decay of supersonic turbulence through shocks. If the cosmic rays and turbulence are created by stellar feedback within the starburst, then our analysis suggests the starburst may be self-limiting.

  19. Evidence of ongoing AGN-driven feedback in a quiescent post-starburst E+A galaxy

    NASA Astrophysics Data System (ADS)

    Baron, Dalya; Netzer, Hagai; Poznanski, Dovi; Prochaska, Jason Xavier; Förster Schreiber, Natascha M.

    2017-09-01

    Post-starburst E+A galaxies are thought to have experienced a significant starburst that was quenched abruptly. Their disturbed, bulge-dominated morphologies suggest that they are merger remnants. We present Echelle Spectrograph and Imager/Keck observations of SDSS J132401.63+454620.6, a post-starburst galaxy at redshift z = 0.125, with a starburst that started 400 Myr ago, and other properties, like the star formation rate consistent with what is measured in ultraluminous infrared galaxies (ULRIGs). The galaxy shows both zero velocity narrow lines, and blueshifted broader Balmer and forbidden emission lines (FWHM = 1350 ± 240 km s-1). The narrow component is consistent with LINER-like emission, and the broader component with Seyfert-like emission, both photoionized by an active galactic nucleus (AGN) whose properties we measure and model. The velocity dispersion of the broad component exceeds the escape velocity, and we estimate the mass outflow rate to be in the range 4-120 M⊙ yr-1. This is the first reported case of AGN-driven outflows, traced by ionized gas, in post-starburst E+A galaxies. We show, by ways of a simple model, that the observed AGN-driven winds can consistently evolve a ULIRG into the observed galaxy. Our findings reinforce the evolutionary scenario where the more massive ULIRGs are quenched by negative AGN feedback, evolve first to post-starburst galaxies, and later become typical red and dead ellipticals.

  20. Dynamic evolution of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Biernacka, M.; Flin, P.

    2011-06-01

    A study of the evolution of 377 rich ACO clusters with redshift z<0.2 is presented. The data concerning galaxies in the investigated clusters were obtained using FOCAS packages applied to Digital Sky Survey I. The 377 galaxy clusters constitute a statistically uniform sample to which visual galaxy/star reclassifications were applied. Cluster shape within 2.0 h-1 Mpc from the adopted cluster centre (the mean and the median of all galaxy coordinates, the position of the brightest and of the third brightest galaxy in the cluster) was determined through its ellipticity calculated using two methods: the covariance ellipse method (hereafter CEM) and the method based on Minkowski functionals (hereafter MFM). We investigated ellipticity dependence on the radius of circular annuli, in which ellipticity was calculated. This was realized by varying the radius from 0.5 to 2 Mpc in steps of 0.25 Mpc. By performing Monte Carlo simulations, we generated clusters to which the two ellipticity methods were applied. We found that the covariance ellipse method works better than the method based on Minkowski functionals. We also found that ellipticity distributions are different for different methods used. Using the ellipticity-redshift relation, we investigated the possibility of cluster evolution in the low-redshift Universe. The correlation of cluster ellipticities with redshifts is undoubtly an indicator of structural evolution. Using the t-Student statistics, we found a statistically significant correlation between ellipticity and redshift at the significance level of α = 0.95. In one of the two shape determination methods we found that ellipticity grew with redshift, while the other method gave opposite results. Monte Carlo simulations showed that only ellipticities calculated at the distance of 1.5 Mpc from cluster centre in the Minkowski functional method are robust enough to be taken into account, but for that radius we did not find any relation between e and z. Since CEM

  1. STIS parallel archive proposal - Nearby Galaxies - Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul

    1997-07-01

    Using parallel opportunities with STIS which were not allocated by the TAC, we propose to obtain deep STIS imagery with both the Clear {50CCD} and Long-Pass {F28X50LP} filters in order to make color-magnitude diagrams and luminosity functions for nearby galaxies. For local group galaxies, we also include G750L slitless spectroscopy to search for e.g., Carbon stars, late M giants and S-type stars. This survey will be useful to study the star formation histories, chemical evolution, and distances to these galaxies. These data will be placed immediately into the Hubble Data Archive.

  2. STIS parallel archive proposal - Nearby Galaxies - Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul

    2002-07-01

    Using parallel opportunities with STIS which were not allocated by the TAC, we propose to obtain deep STIS imagery with both the Clear {50CCD} and Long-Pass {F28X50LP} filters in order to make color-magnitude diagrams and luminosity functions for nearby galaxies. For local group galaxies, we also include G750L slitless spectroscopy to search for e.g., Carbon stars, late M giants and S-type stars. This survey will be useful to study the star formation histories, chemical evolution, and distances to these galaxies. These data will be placed immediately into the Hubble Data Archive.

  3. Molecular gas, dust, and star formation in galaxies. I. Dust properties and scalings in 1600 nearby galaxies

    NASA Astrophysics Data System (ADS)

    Orellana, G.; Nagar, N. M.; Elbaz, D.; Calderón-Castillo, P.; Leiton, R.; Ibar, E.; Magnelli, B.; Daddi, E.; Messias, H.; Cerulo, P.; Slater, R.

    2017-06-01

    Context. Dust and its emission is increasingly being used to constrain the evolutionary stage of a galaxy. A comprehensive characterization of dust, best achieved in nearby bright galaxies, is thus a highly useful resource. Aims: We aim to characterize the relationship between dust properties (mass, luminosity, and temperature) and their relationships with galaxy-wide properties (stellar, atomic, and molecular gas mass, and star formation mode). We also aim to provide equations to accurately estimate dust properties from limited observational datasets. Methods: We assemble a sample of 1630 nearby (z < 0.1) galaxies - over a large range of stellar masses (M∗), star formation rates (SFR) and specific star formation rates (sSFR = SFR/M∗) - for which comprehensive and uniform multi-wavelength observations are available from WISE, IRAS, Planck, and/or SCUBA. The characterization of dust emission comes from spectral energy distribution (SED) fitting using Draine & Li (2007, ApJ, 657, 810) dust models, which we parametrize using two components (warm at 45-70 K and cold at 18-31 K). The subsample of these galaxies with global measurements of CO and/or HI are used to explore the molecular and/or atomic gas content of the galaxies. Results: The total infrared luminosity (LIR), dust mass (Mdust), and dust temperature of the cold component (Tcold) form a plane that we refer to as the dust plane. A galaxy's sSFR drives its position on the dust plane: starburst (high sSFR) galaxies show higher LIR , Mdust , and Tcold compared to main sequence (typical sSFR) and passive galaxies (low sSFR). Starburst galaxies also show higher specific dust masses (Mdust/M∗) and specific gas masses (Mgas/M∗). We confirm earlier findings of an anti-correlation between the dust to stellar mass ratio and M∗ . We also find different anti-correlations depending on sSFR; the anti-correlation becomes stronger as the sSFR increases, with the spread due to different cold dust temperatures. The

  4. First Results From The Empire Nearby Galaxy Dense Gas Survey

    NASA Astrophysics Data System (ADS)

    Bigiel, Frank

    2016-09-01

    I will present first results from our EMPIRE survey, a large program ( 500 hr) at the IRAM 30m telescope to map high critical density gas and shock tracers (e.g., HCN, HCO+, HNC, N2H+, etc.) as well as the optically thin 1-0 lines of 13CO and C18O for the first time systematically across 9 prominent, nearby Disk Galaxies."How is star formation regulated across disk galaxies" is the central question framing our science. Specifically, and building on a large suite of available ancillary data from the radio to the UV, we study, among other things, dense gas fractions and star formation efficiencies and how they vary with environment within and among nearby disk galaxies. Of particular interest is how our measurements compare to studies in the Milky Way, predicting a fairly constant star formation efficiency of the dense gas. Already in our first case study focusing on the prominent nearby spiral galaxy M51, we find signifycant variations of this quantity across the disk.In my talk, I will present results from a first series of studies about to me submitted addressing these questions with our EMPIRE and complementary, high-resolution ALMA data. In addition, I will present details of the survey and report on ongoing projects and future directions. I will place our work in context with other work, including studies of dense gas tracers in other galaxies and in particular the Milky Way.

  5. Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy.

    PubMed

    Geach, J E; Hickox, R C; Diamond-Stanic, A M; Krips, M; Rudnick, G H; Tremonti, C A; Sell, P H; Coil, A L; Moustakas, J

    2014-12-04

    Recent observations have revealed that starburst galaxies can drive molecular gas outflows through stellar radiation pressure. Molecular gas is the phase of the interstellar medium from which stars form, so these outflows curtail stellar mass growth in galaxies. Previously known outflows, however, involve small fractions of the total molecular gas content and have typical scales of less than a kiloparsec. In at least some cases, input from active galactic nuclei is dynamically important, so pure stellar feedback (the momentum return into the interstellar medium) has been considered incapable of rapidly terminating star formation on galactic scales. Molecular gas has been detected outside the galactic plane of the archetypal starburst galaxy M82 (refs 4 and 5), but so far there has been no evidence that starbursts can propel substantial quantities of cold molecular gas to the same galactocentric radius (about 10 kiloparsecs) as the warmer gas that has been traced by metal ion absorbers in the circumgalactic medium. Here we report observations of molecular gas in a compact (effective radius 100 parsecs) massive starburst galaxy at redshift 0.7, which is known to drive a fast outflow of ionized gas. We find that 35 per cent of the total molecular gas extends approximately 10 kiloparsecs, and one-third of this extended gas has a velocity of up to 1,000 kilometres per second. The kinetic energy associated with this high-velocity component is consistent with the momentum flux available from stellar radiation pressure. This demonstrates that nuclear bursts of star formation are capable of ejecting large amounts of cold gas from the central regions of galaxies, thereby strongly affecting their evolution by truncating star formation and redistributing matter.

  6. Optical spectroscopy of the radio-loud nuclei of spiral galaxies: Starbursts or monsters

    SciTech Connect

    Heckman, T.M.; Van Breugel, W.; Miley, G.K.; Butcher, H.R.

    1983-08-01

    We present optical spectroscopic data pertaining to the physical state, kinematics, and spatial extent of the emission-line gas near the radio-loud nuclei of spiral galaxies. These data are combined with published optical, radio, and infrared data to evaluate the suggestions by Condon et al. (1982) that the nuclear radio emission in this class of galaxy is produced by multiple supernova remnants generated as a consequence of a nuclear starburst. As a whole, the radio-loud nuclei have stronger emission lines than radio-quiet nuclei of galaxies of similar Hubble/de Vaucouleurs type. This emission-line gas is generally at least as spatially extended as the radio continuum emission. However, we find that only about 1/3 of the spiral galaxies examined have optical spectroscopic properties consistent with those of ''extranuclear starbursts'' (i.e., giant H II regions). The majority of the nuclei seem to require a form of energy input to the ionized gas which is ''harder'' than the Lyman continuum radiation of OB stars, as their emission-line spectra are of the Seyfert or Liner variety. The nuclei with H II region spectra are distinct from the nuclei with Seyfert spectra in terms of radio morphology and radio spectral index, and tend to occur in spiral galaxies of much later Hubble type than do the Seyfert or Liner nuclei (Sc vs Sa). Moreover, the most luminous nuclear radio sources in our sample (PMHz> or =10/sup 22/ Watts Hz/sup -1/ Sr/sup -1/) are not associated with H II region nuclei. We summarize evidence that the putative nuclear starbursts must differ significantly from extranuclear starbursts.

  7. ROSAT PSPC and HRI observations of the composite starburst/Seyfert 2 galaxy NGC 1672

    NASA Technical Reports Server (NTRS)

    Brandt, W. N.; Halpern, Jules P.; Iwasawa, K.

    1995-01-01

    The nearby barred spiral galaxy NGC 1672 has been observed with the Position Sensitive Proportional Counter (PSPC) and High Resolution Imager (HRI) instruments on board the ROSAT X-ray satellite. NGC 1672 is thought to have an obscured Seyfert nucleus, and it has strong starburst activity as well. Three bright X-ray sources with luminosities 1-2 x 10(exp 40) erg/s are clearly identified with NGC 1672. The strongest lies at the nucleus, and the other two lie at the ends of NGC 1672's prominent bar, locations that are also bright in H alpha and near-infrared images. The nuclear source is resolved by the HRI on about the scale of the recently identified nuclear ring, and one of the sources at the ends of the bar is also probably resolved. The X-ray spectrum of the nuclear source is quite soft, having a Raymond-Smith plasma temperature of approximately equals 0.7 keV and little evidence for intrinsic absorption. The ROSAT band X-ray flux of the nuclear source appears to be dominated not by X-ray binary emission but rather by diffuse gas emission. The absorption and emission properties of the sources, as well as their spatial extents, lead us to models of superbubbles driven by supernovae. However, the large density and emission measure of the nuclear X-ray source stretch the limits that can be comfortably accommodated by these models. We do not detect direct emission from the putative Seyfert nucleus, although an alternative model for the nuclear source is thermal emission from gas that is photoionized by a hidden Seyfert nucleus. The spectra of the other two X-ray sources are harder than that of the nuclear source, and have similar difficulties with regard to superbubble models.

  8. STAR FORMATION RATES FOR STARBURST GALAXIES FROM ULTRAVIOLET, INFRARED, AND RADIO LUMINOSITIES

    SciTech Connect

    Sargsyan, Lusine A.; Weedman, Daniel W. E-mail: dweedman@isc.astro.cornell.edu

    2009-08-20

    We present a comparison of star formation rates (SFR) determined from mid-infrared 7.7 {mu}m polycyclic aromatic hydrocarbon (PAH) luminosity [SFR(PAH)], from 1.4 GHz radio luminosity [SFR(radio)], and from far-ultraviolet luminosity [SFR(UV)] for a sample of 287 starburst galaxies with z < 0.5 having Spitzer IRS observations. The previously adopted relation log [SFR(PAH)] = log [{nu}L {sub {nu}}(7.7 {mu}m)] - 42.57 {+-} 0.2, for SFR in M{sub sun} yr{sup -1} and {nu}L {sub {nu}}(7.7 {mu}m) the luminosity at the peak of the 7.7 {mu}m PAH feature in erg s{sup -1}, is found to agree with SFR(radio). Comparing with SFR(UV) determined independently from ultraviolet observations of the same sources with the Galaxy Evolution Explorer mission (not corrected for dust extinction), the median log [SFR(PAH)/SFR(UV)] = 1.67, indicating that only 2% of the ultraviolet continuum typically escapes extinction by dust within a starburst. This ratio SFR(PAH)/SFR(UV) depends on infrared luminosity, with the form log [SFR(PAH)/SFR(UV)] = (0.53 {+-} 0.05)log [{nu}L{sub {nu}}(7.7 {mu}m)] - 21.5 {+-} 0.18, indicating that more luminous starbursts are also dustier. Using our adopted relation between {nu}L{sub {nu}}(7.7 {mu}m) and L {sub ir}, this becomes log [SFR(PAH)/SFR(UV)]= (0.53 {+-} 0.05)log L{sub ir} - 4.11 {+-} 0.18, for L{sub ir} in L{sub sun}. Only blue compact dwarf galaxies show comparable or greater SFR(UV) compared to SFR(PAH). We also find that the ratio SFR(PAH)/SFR(UV) is similar to that in infrared-selected starbursts for a sample of Markarian starburst galaxies originally selected using optical classification, which implies that there is no significant selection effect in SFR(PAH)/SFR(UV) using starburst galaxies discovered by Spitzer. These results indicate that SFRs determined with ultraviolet luminosities require dust corrections by a factor of {approx}10 for typical local starbursts but this factor increases to >700 for the most luminous starbursts at z {approx} 2

  9. Starbursts and their dynamics

    NASA Technical Reports Server (NTRS)

    Norman, Colin

    1987-01-01

    Detailed mechanisms associated with dynamical process occurring in starburst galaxies are considered including the role of bars, waves, mergers, sinking satellites, self gravitating gas and bulge heating. The current understanding of starburst galaxies both observational and theoretical is placed in the context of theories of galaxy formations, Hubble sequence evolution, starbursts and activity, and the nature of quasar absorption lines.

  10. MaNGA: Mapping Nearby Galaxies at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Bundy, Kevin

    2015-01-01

    I present the design and execution of a new survey to obtain resolved spectroscopy for 10,000 nearby galaxies called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory). One of three core programs in the 6-year SDSS-IV project that began on July 1st, 2014, MaNGA will deploy 17 fiber-bundle IFUs across the Sloan 2.5m Telescope's 3 degree field-of-view, targeting a mass-selected sample with a median redshift of 0.03, typical spatial resolution of 1-2 kpc, and a per-fiber signal-to-noise ratio of 4-8 in the outskirts of target galaxies. For each galaxy in the sample, MaNGA will provide maps and measured gradients of the composition and dynamics of both stars and gas. Early results highlight MaNGA's potential to shed light on the ionization and chemical enrichment of gas in galaxies, spatial patterns in their star formation histories, and the internal makeup of stellar populations. MaNGA's unprecedented data set will not only provide powerful new insight on galaxy formation and evolution but will serve as a valuable benchmark for future high-z observations from large telescopes as well as space-based facilities.

  11. A very deep IRAS survey - Constraints on the evolution of starburst galaxies

    NASA Astrophysics Data System (ADS)

    Hacking, Perry; Condon, J. J.; Houck, J. R.

    1987-05-01

    Counts of sources (primarily starburst galaxies) from a deep 60 microns IRAS survey published by Hacking and Houck (1987) are compared with four evolutionary models. The counts below 100 mJy are higher than expected if no evolution has taken place out to a redshift of approximately 0.2. Redshift measurements of the survey sources should be able to distinguish between luminosity-evolution and density-evolution models and detect as little as a 20 percent brightening or increase in density of infrared sources per billion years ago (H/0/ = 100 km/s per Mpc). Starburst galaxies cannot account for the reported 100 microns background without extreme evolution at high redshifts.

  12. A systematic investigation of edge-on starburst galaxies: Evidence for supernova-driven superwinds

    NASA Technical Reports Server (NTRS)

    Lehnert, Matthew D.

    1993-01-01

    We are completing a project designed to realistically assess the global/cosmological significance of superwinds by attempting to systematize our understanding of them (determine their incidence rate and the dependence of their properties on the star-formation that drives them). Specifically, we are analyzing data from an optical spectroscopic and narrow-band imaging survey of an infrared flux-limited sample of about 50 starburst galaxies whose stellar disks are viewed nearly edge-on. This edge-on orientation is crucial because the relevant properties of the superwind can be far more easily measured when the flow is seen in isolation against the sky rather than projected onto the much brighter gas associated with the starburst galaxy itself.

  13. Very deep IRAS survey - constraints on the evolution of starburst galaxies

    SciTech Connect

    Hacking, P.; Houck, J.R.; Condon, J.J.

    1987-05-01

    Counts of sources (primarily starburst galaxies) from a deep 60 microns IRAS survey published by Hacking and Houck (1987) are compared with four evolutionary models. The counts below 100 mJy are higher than expected if no evolution has taken place out to a redshift of approximately 0.2. Redshift measurements of the survey sources should be able to distinguish between luminosity-evolution and density-evolution models and detect as little as a 20 percent brightening or increase in density of infrared sources per billion years ago (H/0/ = 100 km/s per Mpc). Starburst galaxies cannot account for the reported 100 microns background without extreme evolution at high redshifts. 21 references.

  14. Study of Starburst/Activity/Interaction Phenomena based on the Multiple Byurakan-IRAS Galaxies

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Gohar S.; Mickaelian, Areg M.

    2014-07-01

    The Byurakan-IRAS Galaxy (BIG) sample is the result of optical identifications of IRAS PSC sources at high-galactic latitudes using the First Byurakan Survey (FBS) low-dispersion spectra. Among the 1178 objects most are spiral galaxies and many have been proved to be AGN and starburst by spectroscopic observations, as well as there is a number of ULIRGs among these objects. BIG objects contain galaxy pairs, multiples, and small groups that are subject for study on the matter of the real IR-emitter in these systems. Given that these objects are powerful IR sources, they are considered as young systems indicating high rate of evolution and starburst activity exceeding 100 M o /yr. Spectroscopic observations show that all these systems are physical ones and we were able to measure the mutual distances and sizes for all components. Cross-correlations with the recent more accurate IR catalogues, such as 2MASS and WISE, as well as radio ones (NVSS, FIRST), provided accurate coordinates of the IR source and possibility to find the individual galaxy responsible for the IR. However, in almost half of the cases, IR position indicates the intermediate region between the components, which means that it comes from the system as a whole. Some more MW data have been matched to IR and radio to have an overall understanding on these systems. Given that these systems are mostly interacting/merging ones often containing AGN and most of them may be considered as powerful starbursts, it is possible to study starburst/activity/interaction phenomena and their interrelationship.

  15. Origin of the Starburst Phenomenon as Implied by Strong Star Formation Events in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Kravtsov, V. V.

    2017-07-01

    We report on evidence that the highest specific star formation rate (SSFR) in dwarf galaxies in the local Universe is achieved while they pass the same stage of their chemical evolution corresponding to metallicity of ˜1/3 Z⊙. It is supported by the observation that a strong star-burst event had occurred in early spheroids at the virtually same metallicity, imprinted in the peak metallicity of the sub-populations of metal-rich globular clusters (MRGCs).

  16. Radial Star Formation Histories in 15 Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Dale, Daniel A.; Beltz-Mohrmann, Gillian D.; Egan, Arika A.; Hatlestad, Alan J.; Herzog, Laura J.; Leung, Andrew S.; McLane, Jacob N.; Phenicie, Christopher; Roberts, Jareth S.; Barnes, Kate L.; Boquien, Médéric; Calzetti, Daniela; Cook, David O.; Kobulnicky, Henry A.; Staudaher, Shawn M.; van Zee, Liese

    2016-01-01

    New deep optical and near-infrared imaging is combined with archival ultraviolet and infrared data for 15 nearby galaxies mapped in the Spitzer Extended Disk Galaxy Exploration Science survey. These images are particularly deep and thus excellent for studying the low surface brightness outskirts of these disk-dominated galaxies with stellar masses ranging between 108 and {10}11 {M}⊙ . The spectral energy distributions derived from this data set are modeled to investigate the radial variations in the galaxy colors and star formation histories. Taken as a whole, the sample shows bluer and younger stars for larger radii until reversing near the optical radius, whereafter the trend is for redder and older stars for larger galacto-centric distances. These results are consistent with an inside-out disk formation scenario coupled with an old stellar outer disk population formed through radial migration and/or the cumulative history of minor mergers and accretions of satellite dwarf galaxies. However, these trends are quite modest and the variation from galaxy to galaxy is substantial. Additional data for a larger sample of galaxies are needed to confirm or dismiss these modest sample-wide trends.

  17. Morphology and luminosity segregation of galaxies in nearby loose groups

    NASA Astrophysics Data System (ADS)

    Girardi, M.; Rigoni, E.; Mardirossian, F.; Mezzetti, M.

    2003-08-01

    We study morphology and luminosity segregation of galaxies in loose groups. We analyze the two catalogs of groups identified in the Nearby Optical Galaxy (NOG) sample, by means of hierarchical and percolation ``friends-of-friends'' methods (HG and PG catalogs, respectively). In the first part of our analysis we consider 387 and 436 groups of HG and PG and compare morphology- (luminosity-) weighted to unweighted group properties: velocity dispersion, mean pairwise distance, and mean groupcentric distance of member galaxies. The second part of our analysis is based on two ensemble systems, one for each catalog, built by suitably combining together galaxies of all groups (1584 and 1882 galaxies for HG and PG groups). We find that earlier-type (brighter) galaxies are more clustered and lie closer to the group centers, both in position and in velocity, than later-type (fainter) galaxies. Spatial segregations are stronger than kinematical segregations. These effects are generally detected at the >˜ 3-sigma level. Luminosity segregation is shown to be independent of morphology segregation. Our main conclusions are strengthened by the detection of segregation in both hierarchical and percolation catalogs. Our results agree with a continuum of segregation properties of galaxies in systems, from low-mass groups to massive clusters.

  18. The distribution of Infrared point sources in nearby elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Gogoi, Rupjyoti; Misra, Ranjeev; Puthiyaveettil, Shalima

    Infra-red point sources in nearby early-type galaxies are often counterparts of sources in other wavebands such as optical and X-rays. In particular, the IR counterpart of X-ray sources may be due to a globular cluster hosting the X-ray source or could be associated directly with the binary, providing crucial information regarding their environment. In general, the IR sources would be from globular clusters and their IR colors would provide insight into their stellar composition. However, many of the IR sources maybe background objects and it is important to identify them or at least quantify the level of background contamination. Archival Spitzer IRAC images provide a unique opportunity to study these sources in nearby Ellipticals and in particular to estimate the distributions of their IR luminosity, color and distance from the center. We will present the results of such an analysis for three nearby galaxies. We have also estimated the background contamination using several blank fields. Our preliminary results suggest that IR colors can be effectively used to differentiate between the background and sources in the galaxy, and that the distribution of sources are markedly different for different Elliptical galaxies.

  19. Neutral hydrogen in the starburst galaxy NGC3690/IC694

    NASA Technical Reports Server (NTRS)

    Tolstoy, E.; Dickey, John M.; Israel, F. P.

    1990-01-01

    Researchers made observations of the neutral hydrogen (HI) emission structure surrounding the very deep absorption peak (observed earlier by Dickey (1986)) in the galaxy pair NGC3690/IC694. This galaxy pair is highly luminous in the far infrared, and known to exhibit extensive star formation as well as nuclear activity. Knowledge of the spatial distribution and velocity structure of the HI emission is of great importance to the understanding of the dynamics of the interaction and the resulting environmental effects on the galaxies.

  20. High-J CO Sleds in Nearby Infrared Bright Galaxies Observed By Herschel/PACS

    NASA Astrophysics Data System (ADS)

    Mashian, N.; Sturm, E.; Sternberg, A.; Janssen, A.; Hailey-Dunsheath, S.; Fischer, J.; Contursi, A.; González-Alfonso, E.; Graciá-Carpio, J.; Poglitsch, A.; Veilleux, S.; Davies, R.; Genzel, R.; Lutz, D.; Tacconi, L.; Verma, A.; Weiß, A.; Polisensky, E.; Nikola, T.

    2015-04-01

    We report the detection of far-infrared (FIR) CO rotational emission from nearby active galactic nuclei (AGNs) and starburst galaxies, as well as several merging systems and Ultra-Luminous Infrared Galaxies (ULIRGs). Using the Herschel Photodetector Array Camera and Spectrometer (PACS), we have detected transitions in the Jupp = 14-30 range. The PACS CO data obtained here provide the first reference of well-sampled FIR extragalactic CO spectral line energy distributions (SLEDs) for this range. We find a large range in the overall SLED shape, even among galaxies of similar type, demonstrating the uncertainties in relying solely on high-J CO diagnostics to characterize the excitation source of a galaxy. Combining our data with low-J line intensities taken from the literature, we present a CO ratio-ratio diagram and discuss its value in distinguishing excitation sources and physical properties of the molecular gas. The position of a galaxy on such a diagram is less a signature of its excitation mechanism, than an indicator of the presence of warm, dense molecular gas. We then quantitatively analyze the CO emission from a subset of the detected sources with single-component and two-component large velocity gradient (LVG) radiative transfer models to fit the CO SLEDs. From these fits we derive the molecular gas mass and the corresponding CO-to-H2 conversion factor, {{α }CO}, for each respective source. For the ULIRGs we find α values in the canonical range 0.4- 5M⊙ (K km s-1 pc2)-1, while for the other objects, α varies between 0.2 and 14. Finally, we compare our best-fit LVG model results with previous studies of the same galaxies and comment on any differences. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  1. Giant X-ray Flares in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Irwin, Jimmy; Maksym, W. Peter; Sivakoff, Gregory R.; Romanowsky, Aaron J.; Lin, Dacheng; Strader, Jay; Liu, Jifeng; Miller, Jon M.

    2017-08-01

    Very rapid (<1 minute), high amplitude (>100) variability at >1e40 erg/s is nearly unprecedented in our Universe. We have recently discovered a new class of X-ray point sources showing such variability in two nearby galaxies while analyzing archival Chandra, XMM-Newton, and Swift data. One source is located within a suspected globular cluster of the host galaxy and flared one time to 1e41 ergs/s, while the other source peaked at 1e40 ergs/s and is located in either a globular cluster of the host galaxy or the core of a stripped dwarf companion galaxy that flared on six occasions over a seven year time span. When not flaring, the sources appear as normal accreting neutron star or black hole X-ray binaries, indicating that the flare event does not significantly disrupt the system. We speculate on the nature of these explosive, yet non-destructive objects.

  2. UVES Abundances of Stars in Nearby Dwarf Spheroidal Galaxies

    NASA Astrophysics Data System (ADS)

    Tolstoy, Eline; Venn, Kim; Shetrone, Matt; Primas, Francesca; Hill, Vanessa; Kaufer, Andreas; Szeifert, Thomas

    2002-07-01

    It is a truth universally acknowledged, that a galaxy in possession of a good quantity of gas must want to form stars. It is the details of how and why that baffle us all. The simplest theories either would have this process a carefully self-regulated affair, or one that goes completely out of control and is capable of wrecking the galaxy which hosts it. Of course the majority of galaxies seem to amble along somewhere between these two extremes, and the mean properties tend to favour a quiescent self-regulated evolutionary scenario. But there area variety of observations which require us to invoke transitory ‘bursts’ of star-formation at one time or another in most galaxy types. Several nearby dwarf spheroidal galaxies have clearly determined star-formation histories with apparent periods of zero star formation followed by periods of fairly active star formation. If we are able to understand what separated these bursts we would understand several important phenomena in galaxy evolution. Were these galaxies able to clear out their gas reservoir in a burst of star formation? How did this gas return? or did it? Have these galaxies receieved gas from the IGM instead? Could stars from these types of galaxy contribute significantly to the halo population in our Galaxy? To answer these questions we need to combine accurate stellar photometry and Colour-Magnitude Diagram interpretation with detailed metal abundances to combine a star-formation rate versus time with a range of element abundances with time. Different elements trace different evolutionary process (e.g., relative contributions of type I and II supernovae). We often aren't even sure of the abundance spread in these galaxies. We have collected detailed high resolution UVES spectra of four nearby dwarf spheroidal galaxies (Sculptor, Fornax, Leo I & Carina) to begin to answer these questions. This is a precursor study to a more complete study with FLAMES. We presented at this meeting the initial results for

  3. Class I methanol megamasers: a potential probe of starburst activity and feedback in active galaxies

    NASA Astrophysics Data System (ADS)

    Chen, X.; Ellingsen, S. P.; Zhang, J.-S.; Wang, J.-Z.; Shen, Z.-Q.; Wu, Q.-W.; Wu, Z.-Z.

    2016-06-01

    Previous observations have shown that the distribution of 36.2-GHz class I methanol megamaser (MM) emission in Arp 220 is highly correlated with the diffuse X-rays. On this basis it was suggested that methanol MM may be produced either by the effects of galactic-outflow-driven shocks and/or cosmic rays. Here we report the results of a single-dish survey undertaken with the Greenbank Telescope (GBT) to improve our understanding of the pumping conditions of extragalactic class I methanol masers and their relationship to starburst and feedback processes within the host galaxies, towards a sample which includes 16 galaxies which show both extended soft X-ray emission, and either OH or H2O MM emission. Large baseline ripples in the GBT spectra limited our results to tentative detections towards 11 of the target galaxies. Analysis of these tentative detections shows that there are significant correlations between the methanol intensity and the host-galaxy infrared, radio and OH MM emission, but no correlation with the X-ray and H2O MM emission. Some sources show methanol emission significantly offset from the systemic velocity of the galaxy (by up to 1000 km s-1) and we propose that these are associated with galactic-scale outflows from active galactic nuclei (AGNs) feedback. The combined observational properties suggest that class I methanol MMs are related to significant starburst and molecular outflow activity and hence may provide a potential probe of AGN feedback and starburst processes in the host galaxies.

  4. The identification of post-starburst galaxies at z ˜ 1 using multiwavelength photometry: a spectroscopic verification

    NASA Astrophysics Data System (ADS)

    Maltby, David T.; Almaini, Omar; Wild, Vivienne; Hatch, Nina A.; Hartley, William G.; Simpson, Chris; McLure, Ross J.; Dunlop, James; Rowlands, Kate; Cirasuolo, Michele

    2016-06-01

    Despite decades of study, we still do not fully understand why some massive galaxies abruptly switch off their star formation in the early Universe, and what causes their rapid transition to the red sequence. Post-starburst galaxies provide a rare opportunity to study this transition phase, but few have currently been spectroscopically identified at high redshift (z > 1). In this paper, we present the spectroscopic verification of a new photometric technique to identify post-starbursts in high-redshift surveys. The method classifies the broad-band optical-near-infrared spectral energy distributions (SEDs) of galaxies using three spectral shape parameters (supercolours), derived from a principal component analysis of model SEDs. When applied to the multiwavelength photometric data in the UKIDSS Ultra Deep Survey, this technique identified over 900 candidate post-starbursts at redshifts 0.5 < z < 2.0. In this study, we present deep optical spectroscopy for a subset of these galaxies, in order to confirm their post-starburst nature. Where a spectroscopic assessment was possible, we find the majority (19/24 galaxies; ˜80 per cent) exhibit the strong Balmer absorption (H δ equivalent width Wλ > 5 Å) and Balmer break, characteristic of post-starburst galaxies. We conclude that photometric methods can be used to select large samples of recently-quenched galaxies in the distant Universe.

  5. The SDSS Discovery of a Strongly Lensed Post-Starburst Galaxy at z=0.766

    SciTech Connect

    Shin, Min-Su; Strauss, Michael A.; Oguri, Masamune; Inada, Naohisa; Falco, Emilio E.; Broadhurst, Tom; Gunn, James E.

    2008-09-30

    We present the first result of a survey for strong galaxy-galaxy lenses in Sloan Digital Sky Survey (SDSS) images. SDSS J082728.70+223256.4 was selected as a lensing candidate using selection criteria based on the color and positions of objects in the SDSS photometric catalog. Follow-up imaging and spectroscopy showed this object to be a lensing system. The lensing galaxy is an elliptical at z = 0.349 in a galaxy cluster. The lensed galaxy has the spectrum of a post-starburst galaxy at z = 0.766. The lensing galaxy has an estimated mass of {approx} 1.2 x 10{sup 12} M{sub {circle_dot}} and the corresponding mass to light ratio in the B-band is {approx} 26 M{sub {circle_dot}}/L{sub {circle_dot}} inside 1.1 effective radii of the lensing galaxy. Our study shows how catalogs drawn from multi-band surveys can be used to find strong galaxy-galaxy lenses having multiple lens images. Our strong lensing candidate selection based on photometry-only catalogs will be useful in future multi-band imaging surveys such as SNAP and LSST.

  6. Shaken, not Stirred: the Ancestry of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2011-12-01

    Near-infrared images obtained with WIRCam are used to investigate the recent history of the starburst galaxy NGC 253. The distribution of stars in the disk is lopsided, with the projected density of young and intermediate age stars in the north east portion of the disk higher than on the opposite side of the galaxy. Bright AGB stars are also detected out to 15 kpc above the disk plane. Comparisons with models suggest that the extraplanar stars formed over a broad range of ages, suggesting that the disk of NGC 253 was disrupted by a tidal encounter.

  7. Violent motions in starburst galaxies - The OH megamaser in IRAS 10039-3338

    NASA Astrophysics Data System (ADS)

    Kazes, I.; Proust, D.; Mirabel, L. F.; Combes, F.; Balkowski, C.; Martin, J. M.

    1990-10-01

    In a comparative study, optical and radio spectra are presented in order to further investigate violent turbulent motions in starburst galaxies. Emission-line, HI and OH profiles of IRAS 10039-3338 exhibit signs of a highly perturbed far-infrared galaxy. Remarkably narrow and distinct OH components are shown in the megamaser spectra. A molecular mass of 1010 Msun is deduced from CO observations. The presence of comparable numbers of blue and red-shifted OH-components is apparently not in favor of an outflow interpretation.

  8. Shrouded Starburst

    NASA Image and Video Library

    2010-11-19

    A brilliant burst of star formation is revealed in this image combining observations from NASA Spitzer and Hubble Space Telescopes. The collision of two spiral galaxies has triggered this luminous starburst.

  9. The Starburst in the Abell 1835 Cluster Central Galaxy: A Case Study of Galaxy Formation Regulated by an Outburst from a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    McNamara, B. R.; Rafferty, D. A.; Bîrzan, L.; Steiner, J.; Wise, M. W.; Nulsen, P. E. J.; Carilli, C. L.; Ryan, R.; Sharma, M.

    2006-09-01

    We present an analysis of the starburst in the Abell 1835 cluster's cD galaxy. The dense gas surrounding the galaxy is radiating X-rays at a rate of ~1045 ergs s-1, which is consistent with a cooling rate of ~1000-2000 Msolar yr-1. However, Chandra and XMM-Newton observations found less than 200 Msolar yr-1 of cooling below ~2 keV, a level that is consistent with the cD's current star formation rate of 100-180 Msolar yr-1. One or more heating agents (feedback) must then be replenishing the remaining radiative losses. Supernova explosions and thermal conduction are unable to do so. However, the active galactic nucleus (AGN) is pumping ~=1.4×1045 ergs s-1into the hot gas, which is enough power to offset most of the radiative cooling losses. The AGN jet power exceeds the radio synchrotron power by ~4000 times, making this one of the most radiatively inefficient radio sources known. The jet power implies that the supermassive black hole has accreted at a mean rate of ~0.3 Msolar yr-1 over the last 40 Myr or so, which is a small fraction of the Eddington accretion rate for a ~109 Msolar black hole. The ratio of black hole growth rate by accretion to bulge growth by star formation is consistent with the slope of the (Magorrian) relationship between bulge and central black hole mass in nearby quiescent galaxies. The starburst follows the Schmidt-Kennicutt parameterizations, indicating that the local environment is not substantially altering the IMF and other conditions leading to the onset of star formation. The consistency between net cooling, heating (feedback), and the cooling sink (star formation) in this system resolves the primary objection to traditional cooling flow models.

  10. X-Raying the Ultraluminous Infrared Starburst Galaxy and Broad Absorption Line QSO Markarian 231 with Chandra

    NASA Technical Reports Server (NTRS)

    Gallagher, S. C.; Brandt, W. N.; Chartas, G.; Garmire, G. P.; Sambruna, R. M.

    2002-01-01

    With 40 ks of Clzandra ACIS-S3 exposure, new information on both the starburst and QSO components of the X-ray emission of Markarian 231, an ultraluminous infrared galaxy and broad absorption line QSO, has been obtained. The bulk of the X-ray luminosity is emitted from an unresolved nuclear point source, and the spectrum is remarkably hard, with the majority of the flux emitted above 2 keV. Most notably, significant nuclear variability (a decrease of -45% in approximately 6 hr) at energies above 2 keV indicates that Chuizdra has probed within light-hours of the central black hole. Although we concur with Maloney & Reynolds that the direct continuum is not observed, this variability coupled with the 188 eV upper limit on the equivalent width of the Fe K o emission line argues against the reflection-dominated model put forth by these authors based on their ASCA data. Instead, we favor a model in which a small, Compton-thick absorber blocks the direct X-rays, and only indirect, scattered X-rays from multiple lines of sight can reach the observer. Extended soft, thermal emission encompasses the optical extent of the galaxy and exhibits resolved structure. An off-nuclear X-ray source with a 0.35-8.0 keV luminosity of Lx = 7 x 10 sup39 ergs s sup -1 , consistent with the ultraluminous X-ray sources in other nearby starbursts, is detected. We also present an unpublished Faint Object Spectrograph spectrum from the Hirhhle Spuce Telescope archive showing the broad C IV absorption.

  11. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing.

    PubMed

    Vieira, J D; Marrone, D P; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiβ, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R

    2013-03-21

    In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.

  12. HI Disks In Nearby Galaxies From The HALOGAS Survey

    NASA Astrophysics Data System (ADS)

    Jozsa, Gyula I. G.

    2016-09-01

    The HALOGAS (Hydrogen Accretion in LOcal GAlaxieS) survey with the Westerbork Synthesis Radio Telescope is the most sensitive systematic survey of the diffuse neutral hydrogen component in nearby spiral galaxies so far. The 5-sigma column density sensitivity reached for the sample of 22 galaxies is 10^19 atoms cm^-2 over the typical line width of the neutral gas in our target galaxies. The 3D observations are sensitive enough to perform detailed kinematical and dynamical analyses of the extended (vertical) disk structure of our targets. Additionally, we are able to provide a census of the complete cold neutral cloud population above the mass detection limit for individual objects of 10^5 solar masses on average. Our results are relevant in the context of theories describing star formation feedback on the gaseous interface of the galaxy disks with their surroundings, as well as gas accretion from the intergalactic medium. Most notably, we find that the presence of anomalous, slowly rotating extraplanar gas is related to the star formation surface density. I will present the consequences of our observations for the current accretion in local galaxies, and discuss the implied constraints on the accretion process more generally.

  13. From nearby to distant galaxies: kinematical and dynamical studies

    NASA Astrophysics Data System (ADS)

    Epinat, Benoit

    2009-09-01

    Kinematical studies of low and high redshift galaxies enables to probe galaxy formation and evolution scenarios. Integral field spectroscopy is a powerful tool to study with accuracy nearby galaxies kinematics. Recent observations also gives a new 2D vision of high redshift galaxies kinematics. This work mostly relies on the kinematical sample of galaxies GHASP. This control sample, composed of 203 local spiral and irregular galaxies in low density environments observed with Fabry-Perot techniques in the Ha line (6563 A), is by now the largest sample of Fabry-Perot data. After a revue on Fabry-Perot interferometry and a presentation of new data reduction procedures, my implications on both 3D-NTT Fabry-Perot instrument and the wide field spectrograph project (WFSpec) for galaxy evolution study with the european ELT are developed. The second section is dedicated to GHASP data. This sample have been fully reduced and analysed using new methods. The kinematical analysis of 2D kinematical maps has been undertaken with the study of the dark matter distribution, the rotation curves shape, bar signatures and the ionized gas velocity dispersion. In a third section, this local reference sample is used as a zero point for high redshift galaxies kinematical studies. The GHASP sample is projected at high redshift (z=1.7) in order to disentangle evolution effects from distance biases in high redshift galaxies kinematical data observed with SINFONI, OSIRIS and GIRAFFE. The kinematical analysis of new SINFONI high redshift observations is also presented and high redshift data found in the literature are compared with GHASP projected sample, suggesting some evolution of the galaxy dynamical support within the ages.

  14. The stellar populations of nearby early-type galaxies

    NASA Astrophysics Data System (ADS)

    Concannon, Kristi Dendy

    The recent completion of comprehensive photometric and spectroscopic galaxy surveys has revealed that early-type galaxies form a more heterogeneous family than previously thought. To better understand the star formation histories of early-type galaxies, we have obtained a set of high resolution, high signal-to-noise ratio spectra for a sample of 180 nearby early-type galaxies with the FAST spectrograph and the 1.5m telescope at F. L. Whipple Observatory. The spectra cover the wavelength range 3500 5500 Å which allows the comparison of various Balmer lines, most importantly the higher order lines in the blue, and have a S/N ratio higher than that of previous samples, which makes it easier to investigate the intrinsic spread in the observed parameters. The data set contains galaxies in both the local field and Virgo cluster environment and spans the velocity dispersion range 50 < log σ < 250km s -1. In conjunction with recent improvements in population synthesis modeling, our data set enables us to investigate the star formation history of E/S0 galaxies as a function of mass (σ), environment, and to some extent morphology. We are able to probe the effects of age and metallicity on fundamental observable relations such as the Mg-σ relation, and show that there is a significant spread in age in such diagrams, at all log σ, such that their “uniformity” can not be interpreted as a homogeneous history for early-type galaxies. Analyzing the age and [Fe/H] distribution as a function of the galaxy mass, we find that an age-σ relation exists among galaxies in both the local field and the Virgo cluster, such that the lower log σ galaxies have younger luminosity-weighted mean ages. The age spread of the low σ galaxies suggests that essentially all of the low-mass galaxies contain young to intermediate age populations, whereas the spread in age of the high log σ galaxies (log σ >˜ 2.0) is much larger, with galaxies spanning the age range of 4 19 Gyr. Thus, rather

  15. Fueling nuclear activity in disk galaxies: Starbursts and monsters

    NASA Astrophysics Data System (ADS)

    Heller, Clayton H.; Shlosman, Isaac

    1994-03-01

    We study the evolution of the gas distribution in a globally unstable galactic disk with a particular emphasis on the gasdynamics in the central kiloparsec and the fueling activity there. The two-component self-gravitating disk is embedded in a responsive halo of comparable mass. The gas and stars are evolved using a three-dimensional hybrid smoothed particle hydrodynamics/N-body code and the gravitational interactions are calculated using a hierarchical TREE algorithm. A massive 'star formation' is introduced when the gas becomes Jeans unstable and locally exceeds the critical density of approximately 100 solar mass pc-3. The newly formed OB stars deposit energy in the gas by means of radiation-driven winds and supernovae. This energy is partially thermalized (efficiency of a few percent); the rest is radiated away. Models without star formation are evolved for a comparison. The effect of a massive object at the disk center is studied by placing a 'seed' black hole (BH) of 5 x 107 solar mass with an accretion radius of 20 pc. The tendency of the system to form a massive object 'spontaneously' is tested in models without the BH. We find that for models without star formation the bar- or dynamical friction-driven inflows lead to (1) domination of the central kpc by a few massive clouds that evolve into a single object probably via a cloud binary system, with and without a 'seed' BH, (2) accretion onto the BH which has a sporadic character, and (3) formation of remnant disks around the BH with a radius of 60-80 pc which result from the capture and digestion of clouds. For models with star formation, we find that (1) the enrgy input into the gas induces angular momentum loss and inflow rates by a factor less than 3, (2) the star formation is concentrated mainly at the apocenters of the gaseous circulation in the stellar bar and in the nuclear region, (3) the nuclear starburst phase appears to be very luminous approximately 1045-1046 erg/s and episodic with a typical

  16. Radio observations of nearby moderately luminous IRAS galaxies

    NASA Astrophysics Data System (ADS)

    Li, Yong-sheng; Su, Bu-mei

    Six nearby moderately luminous IRAS galaxies have been observed at two wavelengths with the Australia Telescope Compact Array. Radio emission was detected in two of them, IRAS 20272-4738 and IRAS 23156-4238, and their parameters including flux, peak position, size and spectral index, obtained. These sources were confirmed with infrared, radio and optical data. Combining with previous results we discuss their emission characteristics.

  17. Starbursts triggered by central overpressure in interacting galaxies

    NASA Technical Reports Server (NTRS)

    Jog, Chanda J.; Das, Mousumi

    1993-01-01

    A triggering mechanism for the origin of enhanced, massive-star formation in the central regions of interacting spiral galaxy pairs is proposed. Our mechanism is based on the detailed evolution of a realistic interstellar medium in a galaxy following an encounter. As a disk giant molecular cloud (GMC) tumbles into the central region following a galaxy encounter, it undergoes a radiative shock compression via the pre-existing high pressure of the central intercloud medium. The shocked outer shell of a GMC becomes gravitationally unstable and begins to fragment thus resulting in a burst of star formation, when the growth time for the gravitational instabilities in the shell becomes smaller than the crossing time of the shock. The resulting values of typical infrared luminosity agree with observations.

  18. 0.8mm extragalactic surveys of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Villicaña-Pedraza, Ilhuiyolitzin; Martín, Sergio; Martín-Pintado, Jesus; Requena-Torres, Miguel; Guesten, Rolf; Armijos, Jairo; Pérez-Beaupuits, Juan Pablo; Klein, Bernd; Heyminck, Stefan; Díaz, Angeles I.; Binette, Luc; Carreto-Parra, Francisco; Aladro, Rebeca

    2017-03-01

    We present the first submillimetric line survey of extragalactic sources carried out by APEX. The surveys cover the 0.8 mm atmospheric window from 270 to 370GHz toward NGC253, NGC4945 and Arp220. We found in NGC 253, 150 transitions of 26 molecules. For NGC 4945, 136 transitions of 24 molecules, and 64 transitions of 17 molecules for Arp 220. Column densities and rotation temperatures have been determinate using the Local Thermodinamical Equilibrium(LTE) line profile simulation and fitting in the MADCUBA IJ software. The differences found in ratios between the Galactic Center and the starburst galaxies NGC 4945 and NGC 253 suggest that the gas is less processed in the latter than in the Galactic Center. The high 18O/17O ratios in the galaxies NGC 4945 and NGC 253 suggest also material less processed in the nuclei of these galaxies than in the Galactic Center. This is consistent with the claim that 17O is a more representative primary product than 18O in stellar nucleosynthesis (Wilson and Rood 1994); Also, we did a Multitransitions study of H3O+ at 307GHz, 364GHz, 388GHz and 396GHz. From our non-LTE analysis of H3O+ in NGC253 with RADEX we found that the collisional excitation can not explain the observed intensity of the ortho 396 GHz line. Excitation by radiation from the dust in the Far-IR can roughly explain the observations if the H2 densities are relatively low. From the derived H3O+ column densities we conclude that the chemistry of this molecule is dominated by ionization produce by the starburst in NGC253 (UV radiation from the O stars) and Arp 220 (cosmic rays from the supernovae) and likely from the AGN in NGC4549 (X-rays ); Finally, we report, for the first time, the tentative detection of the molecular ion HCNH+ (precursor of HCN and HNC) toward a galaxy, NGC4945, abundance explain the claimed enhancement of HCN abundance in the AGN, due to the enhancement of the ionization rate by X-rays. The abundance is much larger than the Galactic center of the

  19. The Mitchell Spectrograph: Studying Nearby Galaxies with the VIRUS Prototype

    NASA Astrophysics Data System (ADS)

    Blanc, Guillermo A.

    The Mitchell Spectrograph (a.k.a. VIRUS-P) on the 2.7m Harlan J. Smith telescope at McDonald Observatory is currently the largest field of view (FOV) integral field unit (IFU) spectrograph in the world (1.7'x1.7'). It was designed as a prototype for the highly replicable VIRUS spectrograph which consists of a mosaic of IFUs spread over a 16' diameter FOV feeding 150 spectrographs similar to the Mitchell. VIRUS will be deployed on the 9.2 meter Hobby-Eberly Telescope (HET) and will be used to conduct the HET Dark Energy Experiment (HETDEX). Since seeing first light in 2007 the Mitchell Spectrograph has been widely used, among other things, to study nearby galaxies in the local universe where their internal structure and the spatial distribution of different physical parameters can be studied in great detail. These observations have provided important insight into many aspects of the physics behind the formation and evolution of galaxies and have boosted the scientific impact of the 2.7 meter telescope enormously. Here I review the contributions of the Mitchell Spectrograph to the study of nearby galaxies, from the investigation of the spatial distribution of dark matter and the properties of supermassive black holes, to the studies of the process of star formation and the chemical composition of stars and gas in the ISM, which provide important information regarding the formation and evolution of these systems. I highlight the fact that wide field integral field spectrographs on small and medium size telescopes can be powerful cost effective tools to study the astrophysics of galaxies. Finally I briefly discuss the potential of HETDEX for conducting studies on nearby galaxies. The survey parameters make it complimentary and competitive to ongoing and future surveys like SAMI and MANGA.

  20. WINGS: WIde-field Nearby Galaxy-cluster Survey

    NASA Astrophysics Data System (ADS)

    Varela, Jesüs

    2007-05-01

    WINGS is a multiwavelength survey of 77 nearby (0.041043.5 erg/s) Galaxy Clusters. The main goal of this survey is to establish the zero point for evolutionary studies of clusters and galaxies in clusters. I will describe the different components of the WINGS project which includes: * Photometry - Optical (B,V) wide-field (˜30x30') deep photometry of 77 fields (Varela et al,2006). Catalogs contain ˜6x105 objects classified as stars and galaxies. Position, basic photometry (total magnitude and aperture photometry) and geometrical parameters (isophotal area, ellipticity, position angle,...) have been measured for each object. For the 10% largest galaxies surface photometry and objective morphological classification is also being performed with special designed tools. Images and catalogs will be publicly available. - NIR (J,K) wide field imaging focus on stellar mass analysis. - U and Hα wide field imaging for analysis of the star formation characteristics of the galaxies. - Other on-going photometric follow-up programs: Ultra-wide-field (˜1deg x 1deg) imaging in UBV to study the outer parts of the clusters of galaxies and their infalling regions; search for Ultra Compact Dwarf galaxies. * Spectroscopy - Spectra have been already taken for a subsample of 51 fields (˜100-200 galaxies per field) covering the wavelength range ˜3600-8000 Angstrom. This allows to obtain redshifts, for cluster membership and dynamical studies, as well as to analyse the star formation history, extinction and stellar masses of the different stellar populations that compound galaxies. Some of the first scientific results will also be presented.

  1. Resolved Star Formation Law In Nearby Infrared-bright Galaxies

    NASA Astrophysics Data System (ADS)

    Rahman, Nurur; Bolatto, A.; Wong, T.; Leroy, A.; Ott, J.; Calzetti, D.; Blitz, L.; Walter, F.; Rosolowsky, E.; West, A.; Vogel, S.; Bigiel, F.; Xue, R.

    2009-05-01

    An accurate knowledge of star formation law is crucial to make progress in understanding galaxy formation and evolution. We are studying this topic using CARMA STING (Survey Toward Infrared-bright Nearby Galaxies), an interferometric CO survey of a sample of 27 star-forming nearby galaxies with a wealth of multi-wavelength data designed to study star formation in environments throughout the blue sequence at sub-kpc scales. We present results for NGC 4254 (M99), one of our sample galaxies. We construct star formation rate surface density (SFRSD) and gas (atomic and molecular) surface density indicators using a combination of high resolution data from CARMA, KPNO, Spitzer, IRAM and VLA. We find a tight correlation between SFRSD and molecular gas surface density (MGSD), whereas the relation between atomic gas surface density and SFRSD shows very large scatter. Within the central 6 kpc (radius) where CARMA is the most sensitive the MGSD derived from CO(1-0) and CO(2-1) shows similar trend, however, in the extended disk the slope, derived from CO(2-1) data alone, gets steeper.

  2. A survey of the molecular ISM properties of nearby galaxies using the Herschel FTS

    SciTech Connect

    Kamenetzky, J.; Rangwala, N.; Glenn, J.; Maloney, P. R.; Conley, A.

    2014-11-10

    The {sup 12}CO J = 4 → 3 to J = 13 → 12 lines of the interstellar medium from nearby galaxies, newly observable with the Herschel SPIRE Fourier transform spectrometer, offer an opportunity to study warmer, more luminous molecular gas than that traced by {sup 12}CO J = 1 → 0. Here we present a survey of 17 nearby infrared-luminous galaxy systems (21 pointings). In addition to photometric modeling of dust, we modeled full {sup 12}CO spectral line energy distributions from J = 1 → 0 to J = 13 → 12 with two components of warm and cool CO gas, and included LTE analysis of [C I], [C II], [N II], and H{sub 2} lines. CO is emitted from a low-pressure/high-mass component traced by the low-J lines and a high-pressure/low-mass component that dominates the luminosity. We found that, on average, the ratios of the warm/cool pressure, mass, and {sup 12}CO luminosity are 60 ± 30, 0.11 ± 0.02, and 15.6 ± 2.7. The gas-to-dust-mass ratios are <120 throughout the sample. The {sup 12}CO luminosity is dominated by the high-J lines and is 4 × 10{sup –4} L {sub FIR} on average. We discuss systematic effects of single-component and multi-component CO modeling (e.g., single-component J ≤ 3 models overestimate gas pressure by ∼0.5 dex), as well as compare to Galactic star-forming regions. With this comparison, we show the molecular interstellar medium of starburst galaxies is not simply an ensemble of Galactic-type giant molecular clouds. The warm gas emission is likely dominated by regions resembling the warm extended cloud of Sgr B2.

  3. SED fitting of nearby galaxies in the Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Ciesla, L.; Boselli, A.; Buat, V.; Cortese, L.; Auld, R.; Baes, M.; Bendo, G. J.; Bianchi, S.; Bock, J.; Bomans, D. J.; Bradford, M.; Castro-Rodriguez, N.; Chanial, P.; Charlot, S.; Clemens, M.; Clements, D.; Corbell, E.; Cooray, A.; Cormie, D.; Dariush, A.; Davies, J.; de Looze, I.; di Serego Alighieri, S.; Dwek, E.; Eales, S.; Elbaz, D.; Fadda, D.; Fritz, J.; Galametz, M.; Galliano, F.; Garcia-Appadoo, D. A.; Gavazzi, G.; Gear, W.; Giovanardi, C.; Glenn, J.; Gomez, H.; Griffin, M.; Grossi, M.; Hony, S.; Hughes, T. M.; Hunt, L.; Isaak, K.; Jones, A.; Levenson, L.; Lu, N.; Madden, S. C.; O'Halloran, B.; Okumura, K.; Oliver, S.; Page, M.; Panuzzo, P.; Papageorgiou, A.; Parkin, T.; Perez-Fournon, I.; Pierini, D.; Pohlen, M.; Rangwala, N.; Rigby, E.; Roussel, H.; Rykala, A.; Sabatini, S.; Sacchi, N.; Sauvage, M.; Schulz, B.; Schirm, M.; Smith, M. W. L.; Spinoglio, L.; Stevens, J.; Sundar, S.; Symeonidis, M.; Trichas, M.; Vaccari, M.; Verstappen, J.; Vigroux, L.; Vlahakis, C.; Wilson, C.; Wozniak, H.; Wright, G.; Xilouris, E. M.; Zeilinger, W.; Zibetti, S.

    2010-12-01

    We compute UV to radio continuum spectral energy distributions of 51 nearby galaxies recently observed with SPIRE onboard Herschel and present infrared colours (in the 25-500 μm spectral range). SPIRE data of normal galaxies are well reproduced with a modified black body (β=2) of temperature T≃q 20 K. In ellipticals hosting a radio galaxy, the far-infrared (FIR) emission is dominated by the synchrotron nuclear emission. The colour temperature of the cold dust is higher in quiescent E-S0a than in star-forming systems probably because of the different nature of their dust heating sources (evolved stellar populations, X-ray, fast electrons) and dust grain properties.

  4. Galaxy Zoo: building the low-mass end of the red sequence with local post-starburst galaxies

    NASA Astrophysics Data System (ADS)

    Wong, O. I.; Schawinski, K.; Kaviraj, S.; Masters, K. L.; Nichol, R. C.; Lintott, C.; Keel, W. C.; Darg, D.; Bamford, S. P.; Andreescu, D.; Murray, P.; Raddick, M. J.; Szalay, A.; Thomas, D.; Vandenberg, J.

    2012-02-01

    We present a study of local post-starburst galaxies (PSGs) using the photometric and spectroscopic observations from the Sloan Digital Sky Survey and the results from the Galaxy Zoo project. We find that the majority of our local PSG population have neither early- nor late-type morphologies but occupy a well-defined space within the colour-stellar mass diagram, most notably, the low-mass end of the 'green valley' below the transition mass thought to be the mass division between low-mass star-forming galaxies and high-mass passively evolving bulge-dominated galaxies. Our analysis suggests that it is likely that local PSGs will quickly transform into 'red', low-mass early-type galaxies as the stellar morphologies of the 'green' PSGs largely resemble that of the early-type galaxies within the same mass range. We propose that the current population of PSGs represents a population of galaxies which is rapidly transitioning between the star-forming and the passively evolving phases. Subsequently, these PSGs will contribute towards the build-up of the low-mass end of the 'red sequence' once the current population of young stars fade and stars are no longer being formed. These results are consistent with the idea of 'downsizing' where the build-up of smaller galaxies occurs at later epochs. This publication has been made possible by the participation of more than 250 000 volunteers in the Galaxy Zoo project. Their contributions are individually acknowledged at .

  5. EXTENDED HCN AND HCO{sup +} EMISSION IN THE STARBURST GALAXY M82

    SciTech Connect

    Salas, P.; Galaz, G.; Salter, D.; Herrera-Camus, R.; Bolatto, A. D.; Kepley, A.

    2014-12-20

    We mapped 3 mm continuum and line emission from the starburst galaxy M82 using the Combined Array for Research in Millimeter-wave Astronomy. We targeted the HCN, HCO{sup +}, HNC, CS, and HC{sub 3}N lines, but here we focus on the HCN and HCO{sup +} emission. The map covers a field of 1.'2 with an ≈5'' resolution. The HCN and HCO{sup +} observations are short spacings corrected. The molecular gas in M82 had been previously found to be distributed in a molecular disk, coincident with the central starburst, and a galactic scale outflow which originates in the central starburst. With the new short spacings-corrected maps we derive some of the properties of the dense molecular gas in the base of the outflow. From the HCN and HCO{sup +} J = (1-0) line emission, and under the assumptions of the gas being optically thin and in local thermodynamic equilibrium, we place lower limits on the amount of dense molecular gas in the base of the outflow. The lower limits are 7 × 10{sup 6} M {sub ☉} and 21 × 10{sup 6} M {sub ☉}, or ≳ 2% of the total molecular mass in the outflow. The kinematics and spatial distribution of the dense gas outside the central starburst suggests that it is being expelled through chimneys. Assuming a constant outflow velocity, the derived outflow rate of dense molecular gas is ≥0.3 M {sub ☉} yr{sup –1}, which would lower the starburst lifetime by ≥5%. The energy required to expel this mass of dense gas is (1-10) × 10{sup 52} erg.

  6. Extended HCN and HCO+ Emission in the Starburst Galaxy M82

    NASA Astrophysics Data System (ADS)

    Salas, P.; Galaz, G.; Salter, D.; Herrera-Camus, R.; Bolatto, A. D.; Kepley, A.

    2014-12-01

    We mapped 3 mm continuum and line emission from the starburst galaxy M82 using the Combined Array for Research in Millimeter-wave Astronomy. We targeted the HCN, HCO+, HNC, CS, and HC3N lines, but here we focus on the HCN and HCO+ emission. The map covers a field of 1.'2 with an ≈5'' resolution. The HCN and HCO+ observations are short spacings corrected. The molecular gas in M82 had been previously found to be distributed in a molecular disk, coincident with the central starburst, and a galactic scale outflow which originates in the central starburst. With the new short spacings-corrected maps we derive some of the properties of the dense molecular gas in the base of the outflow. From the HCN and HCO+ J = (1-0) line emission, and under the assumptions of the gas being optically thin and in local thermodynamic equilibrium, we place lower limits on the amount of dense molecular gas in the base of the outflow. The lower limits are 7 × 106 M ⊙ and 21 × 106 M ⊙, or >~ 2% of the total molecular mass in the outflow. The kinematics and spatial distribution of the dense gas outside the central starburst suggests that it is being expelled through chimneys. Assuming a constant outflow velocity, the derived outflow rate of dense molecular gas is >=0.3 M ⊙ yr-1, which would lower the starburst lifetime by >=5%. The energy required to expel this mass of dense gas is (1-10) × 1052 erg.

  7. Starburst-driven Superwinds in Quasar Host Galaxies

    NASA Astrophysics Data System (ADS)

    Barthel, Peter; Podigachoski, Pece; Wilkes, Belinda; Haas, Martin

    2017-07-01

    During the past five decades astronomers have been puzzled by the presence of strong absorption features including metal lines, observed in the optical and ultraviolet spectra of quasars, signaling inflowing and outflowing gas winds with relative velocities up to several thousands of km s-1. In particular, the location of these winds—close to the quasar, further out in its host galaxy, or in its direct environment—and the possible impact on their surroundings have been issues of intense discussion and uncertainty. Using our Herschel Space Observatory data, we report a tendency for this so-called associated metal absorption to occur along with prodigious star formation in the quasar host galaxy, indicating that the two phenomena are likely to be interrelated, that the gas winds likely occur on the kiloparsec scale and would then have a strong impact on the interstellar medium of the galaxy. This correlation moreover would imply that the unusually high cold dust luminosities in these quasars are connected with ongoing star formation. Given that we find no correlation with the AGN strength, the wind feedback that we establish in these radio-loud objects is most likely associated with their host star formation rather than with their black hole accretion.

  8. Radio Identifications of UGC Galaxies - Starbursts and Monsters

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Broderick, J. J.

    1995-11-01

    Radio identifications of galaxies in the Uppsala General Catalogue of Galaxies with delta < +82 degrees were made from the Green Bank 1400 MHz sky maps. Every source having peak flux density S(P) >= 150 mJy in the approximately 12 arcmin FWHM map point-source response and position < 5 arcmin in both coordinates from the optical position of any UGC galaxy was considered a candidate identification to ensure that very extended (up to 1 Mpc) and asymmetric sources would not be missed. Maps in the literature or new 1.49 GHz VLA C-array maps made with 18 arcsec FWHM resolution were used to confirm or reject candidate identifications. The maps in this directory include both confirmed identifications and candidates rejected because of confusion or low flux density. For more information on this study, please see the following reference: Condon, J. J., and Broderick, J. J., 1988, AJ, 96, 30. The images and related TeX file come from the NRAO CDROM "Images From the Radio Universe" (c. 1992 National Radio Astronomy Observatory, used with permission).

  9. ISOCAM view of the starburst galaxies M 82, NGC 253 and NGC 1808

    NASA Astrophysics Data System (ADS)

    Förster Schreiber, N. M.; Sauvage, M.; Charmandaris, V.; Laurent, O.; Gallais, P.; Mirabel, I. F.; Vigroux, L.

    2003-03-01

    We present results of mid-infrared lambda = 5.0-16.5 μm spectrophotometric imaging of the starburst galaxies M 82, NGC 253, and NGC 1808 from the ISOCAM instrument on board the Infrared Space Observatory. The mid-infrared spectra of the three galaxies are very similar in terms of features present. The lambda >~ 11 μm continuum attributed to very small dust grains (VSGs) exhibits a large spread in intensity relative to the short-wavelength emission. We find that the 15 mu m dust continuum flux density correlates well with the fine-structure [Ar Ii] 6.99 mu m line flux and thus provides a good quantitative indicator of the level of star formation activity. By contrast, the lambda = 5-11 μm region dominated by emission from polycyclic aromatic hydrocarbons (PAHs) has a nearly invariant shape. Variations in the relative intensities of the PAH features are nevertheless observed, at the 20%-100% level. We illustrate extinction effects on the shape of the mid-infrared spectrum of obscured starbursts, emphasizing the differences depending on the applicable extinction law and the consequences for the interpretation of PAH ratios and extinction estimates. The relative spatial distributions of the PAH, VSG, and [Ar Ii] 6.99 mu m emission between the three galaxies exhibit remarkable differences. The la 1 kpc size of the mid-infrared source is much smaller than the optical extent of our sample galaxies and 70%-100% of the IRAS 12 mu m flux is recovered within the ISOCAM <= 1.5 arcmin2 field of view, indicating that the nuclear starburst dominates the total mid-infrared emission while diffuse light from quiescent disk star formation contributes little. Based on observations with ISO, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, The Netherlands, and the UK), and with participation of ISAS and NASA.

  10. Detailed Analysis of Starburst and AGN Activity in Blue E/S0 Galaxies in RESOLVE

    NASA Astrophysics Data System (ADS)

    Bittner, Ashley; Snyder, Elaine M.; Kannappan, Sheila; Norman, Dara J.; Norris, Mark A.; Moffett, Amanda J.; Hoversten, Erik A.; Stark, David; RESOLVE Team

    2016-01-01

    We identify a population of ~120 blue E/S0 galaxies among the ~1350 galaxies that are targeted for spectroscopy and have measured morphologies in the highly complete REsolved Spectroscopy Of a Local Volume (RESOLVE) survey. Blue E/S0s are identified as being early type objects morphologically classified between E and S0/a that fall on the blue sequence. Most (~85%) of our blue E/S0s have stellar masses <10^10 M_sun. Using pPXF, we have measured the stellar velocity dispersions (sigma values) from high resolution 485 - 550 nm spectroscopy for ~15% of the blue E/S0 sample. Using three variations of the M_BH -- sigma relation, this kinematic subsample is estimated to typically host central black holes within the range log M_BH = 4-6 M_sun. Following up on previous suggestions of nuclear activity in the blue E/S0 population, we investigate nuclear starburst and/or AGN activity occurring within the full sample. Preliminary results from cross-checking known AGN catalogs with the blue E/S0 sample have revealed nuclear activity in ~20 of these galaxies based on heterogeneous criteria (BPT line ratio analysis, spectral line broadening, etc.), some of which may not entirely distinguish starburst from AGN activity. In an attempt to break the degeneracy between AGN and starburst activity, we perform detailed spectral analysis for a few of the galaxies with kinematic data. We also consider the viability of alternate AGN detection methods based on L_Edd estimates calculated from the M_BH estimates. This research has been supported by the National Science Foundation through the CAP REU Program (ACI-1156614) and the RESOLVE Survey (AST-0955368) as well as the National Space Grant College and Fellowship Program and the NC Space Grant Consortium.

  11. A Widespread, Clumpy Starburst in the Isolated Ongoing Dwarf Galaxy Merger dm1647+21

    NASA Astrophysics Data System (ADS)

    Privon, G. C.; Stierwalt, S.; Patton, D. R.; Besla, G.; Pearson, S.; Putman, M.; Johnson, K. E.; Kallivayalil, N.; Liss, S.; Titans, TiNy

    2017-09-01

    Interactions between pairs of isolated dwarf galaxies provide a critical window into low-mass hierarchical, gas-dominated galaxy assembly and the build-up of stellar mass in low-metallicity systems. We present the first Very Large Telescope/Multi Unit Spectroscopic Explorer (VLT/MUSE) optical integral field unit (IFU) observations of the interacting dwarf pair dm1647+21 selected from the TiNy Titans survey. The Hα emission is widespread and corresponds to a total unobscured star formation rate (SFR) of 0.44 M ⊙ yr‑1, which is 2.7 times higher than the SFR inferred from Sloan Digital Sky Survey (SDSS) data. The implied specific SFR (sSFR) for the system is elevated by more than an order of magnitude above non-interacting dwarfs in the same mass range. This increase is dominated by the lower-mass galaxy, which has a sSFR enhancement of >50. Examining the spatially resolved maps of classic optical line diagnostics, we find that the interstellar medium (ISM) excitation can be fully explained by star formation. The velocity field of the ionized gas is not consistent with simple rotation. Dynamical simulations indicate that the irregular velocity field and the stellar structure is consistent with the identification of this system as an ongoing interaction between two dwarf galaxies. The widespread, clumpy enhancements in the star formation in this system point to important differences in the effect of mergers on dwarf galaxies, compared to massive galaxies; rather than the funneling of gas to the nucleus and giving rise to a nuclear starburst, starbursts in low-mass galaxy mergers may be triggered by large-scale ISM compression, and thus may be more distributed.

  12. Observations of the impact of starbursts on the interstellar medium in dwarf galaxies

    NASA Technical Reports Server (NTRS)

    Marlowe, Amanda T.; Heckman, Timothy M.; Wyse, Rosemary F. G.; Schommer, Robert

    1995-01-01

    Dwarf galaxies play a crucial role in our understanding of the formation and evolution of galaxies, and the concept of supernova-driven mass outflows is a vital ingredient in theories of the structure and evolution of dwarf galaxies. Despite the theoretical importance of these outflows, there is a very limited amount of direct observational evidence for their existence. We have therefore begun a detailed multi-wave-band search for outflows in dwarf (M(sub B) greater than or = -18) galaxies with extensive recent or ongoing centrally concentrated star formation. We report the first results of this search in the present paper. Observations of the ionized gas in dwarf amorphous galaxies with centrally concentrated populations of massive stars provide evidence for the large-scale expansion of their expansion of their ionized interstellar media. Fabry-Perot H alpha images reveal the presence of kiloparsec-scale 'superbubbles' and filaments which tend to be oriented along the galaxy minor axis. These structures are comparable in size to the chracteristic optical sizes of the galaxies, and dominate the morphology of the galaxies at low surface brightness in H alpha. Since expanding structure of this size and velocity are not observed in all low-mass galaxies with recent or ongoing star formation, we suggest that we are witnessing transient events that likely have a relatively low 'duty cycle' in such galaxies. That is, we argue that the particular galaxies in the present paper have had significantly elevated star formation rates over the past 10(exp 7)-10(exp 8) yr (i.e., these are starburst or young poststarburst systems). This interpretation is consistent with the optical colors and emission-line properties of these galaxies.

  13. Observations of the impact of starbursts on the interstellar medium in dwarf galaxies

    NASA Technical Reports Server (NTRS)

    Marlowe, Amanda T.; Heckman, Timothy M.; Wyse, Rosemary F. G.; Schommer, Robert

    1995-01-01

    Dwarf galaxies play a crucial role in our understanding of the formation and evolution of galaxies, and the concept of supernova-driven mass outflows is a vital ingredient in theories of the structure and evolution of dwarf galaxies. Despite the theoretical importance of these outflows, there is a very limited amount of direct observational evidence for their existence. We have therefore begun a detailed multi-wave-band search for outflows in dwarf (M(sub B) greater than or = -18) galaxies with extensive recent or ongoing centrally concentrated star formation. We report the first results of this search in the present paper. Observations of the ionized gas in dwarf amorphous galaxies with centrally concentrated populations of massive stars provide evidence for the large-scale expansion of their expansion of their ionized interstellar media. Fabry-Perot H alpha images reveal the presence of kiloparsec-scale 'superbubbles' and filaments which tend to be oriented along the galaxy minor axis. These structures are comparable in size to the chracteristic optical sizes of the galaxies, and dominate the morphology of the galaxies at low surface brightness in H alpha. Since expanding structure of this size and velocity are not observed in all low-mass galaxies with recent or ongoing star formation, we suggest that we are witnessing transient events that likely have a relatively low 'duty cycle' in such galaxies. That is, we argue that the particular galaxies in the present paper have had significantly elevated star formation rates over the past 10(exp 7)-10(exp 8) yr (i.e., these are starburst or young poststarburst systems). This interpretation is consistent with the optical colors and emission-line properties of these galaxies.

  14. The Post-starburst Evolution of Tidal Disruption Event Host Galaxies

    NASA Astrophysics Data System (ADS)

    French, K. Decker; Arcavi, Iair; Zabludoff, Ann

    2017-02-01

    We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10–1000 Myr ago, indicating that TDEs arise at different times in their hosts’ post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12:1 in most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5%–10% for most hosts, not enough to explain the observed 30–200× boost in TDE rates, suggesting that the host’s core stellar concentration is more important. TDE hosts have stellar masses 109.4–1010.3 M⊙, consistent with the Sloan Digital Sky Survey volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 105.5–107.5 M⊙. Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.

  15. ULTRAVIOLET RADIATIVE TRANSFER MODELING OF NEARBY GALAXIES WITH EXTRAPLANAR DUSTS

    SciTech Connect

    Shinn, Jong-Ho; Seon, Kwang-Il

    2015-12-20

    In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFR{sub UV}), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFR{sub UV} and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.

  16. Ultraviolet Radiative Transfer Modeling of Nearby Galaxies with Extraplanar Dusts

    NASA Astrophysics Data System (ADS)

    Shinn, Jong-Ho; Seon, Kwang-Il

    2015-12-01

    In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFRUV), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFRUV and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.

  17. X-Ray Properties of the Central kpc of AGN and Starbursts: The Latest News from Chandra

    NASA Astrophysics Data System (ADS)

    Weaver, Kimberly A.

    The X-ray properties of 15 nearby (v < 3000 kms-1) galaxies that possess AGN and/or starbursts are discussed. Two-thirds have nuclear extended emission on scales from ~0.5 to ~1.5 kpc that is either clearly associated with a nuclear outflow or morphologically resembles an outflow. Galaxies that are AGN-dominated tend to have linear structures while starburst-dominated galaxies tend to have plume-like structures. Significant X-ray absorption is present in the starburst regions, indicating that a circumnuclear starburst is sufficient to block an AGN at optical wavelengths. Galaxies with starburst activity possess more X-ray point sources within their central kpc than non-starbursts. Many of these sources are more luminous than typical X-ray binaries. The Chandra results are discussed in terms of the starburst--AGN connection, a revised unified model for AGN, and possible evolutionary scenarios.

  18. THE ACS NEARBY GALAXY SURVEY TREASURY. X. QUANTIFYING THE STAR CLUSTER FORMATION EFFICIENCY OF NEARBY DWARF GALAXIES

    SciTech Connect

    Cook, David O.; Dale, Daniel A.; Seth, Anil C.; Johnson, L. Clifton; Weisz, Daniel R.; Fouesneau, Morgan; Dalcanton, Julianne J.; Olsen, Knut A. G.; Engelbracht, Charles W.

    2012-06-01

    We study the relationship between the field star formation and cluster formation properties in a large sample of nearby dwarf galaxies. We use optical data from the Hubble Space Telescope and from ground-based telescopes to derive the ages and masses of the young (t{sub age} {approx}< 100 Myr) cluster sample. Our data provide the first constraints on two proposed relationships between the star formation rate (SFR) of galaxies and the properties of their cluster systems in the low SFR regime. The data show broad agreement with these relationships, but significant galaxy-to-galaxy scatter exists. In part, this scatter can be accounted for by simulating the small number of clusters detected from stochastically sampling the cluster mass function. However, this stochasticity does not fully account for the observed scatter in our data, suggesting that there may be true variations in the fraction of stars formed in clusters in dwarf galaxies. Comparison of the cluster formation and the brightest cluster in our sample galaxies also provide constraints on cluster destruction models.

  19. N/O abundance ratios in gamma-ray burst and supernova host galaxies at z < 4. Comparison with AGN, starburst and H ii regions

    NASA Astrophysics Data System (ADS)

    Contini, M.

    2017-08-01

    The distribution of the N/O element abundance ratios calculated by the detailed modelling of different galaxy spectra at z < 4 is investigated. Supernova (SN) and long gamma-ray-burst (LGRB) host galaxies cover different redshift domains. N/O ratios in SN hosts increase due to secondary N production towards low z (0.01) accompanying the growing trend of active galaxies [active galactic nucleus (AGN), low-ionization nuclear emission-line region (LINER)]. N/O ratios in LGRB hosts decrease rapidly between z > 1 and z ∼ 0.1 following the N/H trend and reach the characteristic N/O ratios calculated for the H ii regions in local and nearby galaxies. The few short-period gamma-ray-burst (SGRB) hosts included in the galaxy sample show N/H ≤ 0.04 solar and O/H solar. They seem to continue the low bound N/H trend of SN hosts at z < 0.3. The distribution of N/O as a function of metallicity for SN and LGRB hosts is compared with star chemical evolution models. The results show that several LGRB hosts can be explained by star multibursting models when 12+log(O/H) < 8.5, while some objects follow the trend of continuous star formation models. N/O in SN hosts at log(O/H)+12 < 8.5 are not well explained by stellar chemical evolution models calculated for starburst galaxies. At 12+log(O/H) > 8.5 many different objects are nested close to O/H solar with N/O ranging between the maximum corresponding to starburst galaxies and AGN and the minimum corresponding to H ii regions and SGRB.

  20. EPISODIC STARBURSTS IN DWARF SPHEROIDAL GALAXIES: A SIMPLE MODEL

    SciTech Connect

    Nichols, Matthew; Bland-Hawthorn, Joss; Lin Doug

    2012-04-01

    Dwarf galaxies in the Local Group appear to be stripped of their gas within 270 kpc of the host galaxy. Color-magnitude diagrams of these dwarfs, however, show clear evidence of episodic star formation ({Delta}t {approx}a few Gyr) over cosmic time. We present a simple model to account for this behavior. Residual gas within the weak gravity field of the dwarf experiences dramatic variations in the gas cooling time around the eccentric orbit. This variation is due to two main effects. The azimuthal compression along the orbit leads to an increase in the gas cooling rate of {approx}([1 + {epsilon}]/[1 - {epsilon}]){sup 2}. The Galaxy's ionizing field declines as 1/R{sup 2} for R > R{sub disk} although this reaches a floor at R {approx} 150 kpc due to the extragalactic UV field ionizing intensity. We predict that episodic star formation is mostly characteristic of dwarfs on moderately eccentric orbits ({epsilon} > 0.2) that do not come too close to the center (R > R{sub disk}) and do not spend their entire orbit far away from the center (R {approx}> 200 kpc). Up to 40% of early infall dwarf spheroidals can be expected to have already had at least one burst since the initial epoch of star formation, and 10% of these dwarf spheroidals experiencing a second burst. Such a model can explain the timing of bursts in the Carina dwarf spheroidal and restrict the orbit of the Fornax dwarf spheroidal. However, this model fails to explain why some dwarfs, such as Ursa Minor, experience no burst post-infall.

  1. Dust and Molecular Gas in the Winds of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    McCormick, Alexander N.

    Galactic winds provide a fundamental mechanism for galaxy evolution. The outflow of material in winds remains the most likely culprit responsible for a host of galaxy observations, plus mounting evidence for galactic winds at times in the past points to their importance in understanding the history of the universe. Therefore, detailed observations of galactic winds are critical to fleshing out the narrative of galaxy evolution. In particular, the dust and molecular gas of a galaxy's interstellar medium (ISM) play crucial roles in the absorption, scattering, and reemission of starlight, the heating of the ISM, and provide critical materials for star formation. We present results from archival Spitzer Space Telescope ata and exceptionally deep Herschel Space Observatory data of the dust and molecular gas found in and around 20 nearby galaxies known to host galactic-scale winds. Selecting nearby galaxies has allowed us the resolution and sensitivity to differentiate dust and molecular gas outside the galaxies and observe their typically faint emission. These are the most detailed surveys currently available of the faint dust and molecular gas components in galactic winds, and we have utilized them to address the following questions: i) What are the location and morphology of dust and molecular gas, and how do these components compare with better known neutral and ionized gas features? ii) How much do dust and molecular gas contribute to the mass and energy of galactic winds? iii) Do the properties of the dust and molecular gas correlate with the properties of the wind-hosting galaxy? Spitzer archival data has revealed kiloparsec-scale polycyclic aromatic hydrocarbon (PAH) structures in the extraplanar regions of nearly all the wind-hosting galaxies we investigated. We found a nearly linear correlation between the extraplanar PAH emission and the total infrared flux, a proxy for star formation. Our results also suggest a correlation between the height of extraplanar

  2. The Environment of X-Ray Binaries in the Dwarf Starburst Galaxy NGC 1569

    NASA Astrophysics Data System (ADS)

    Clark, David M.; Eikenberry, Stephen S.; Raines, Steven N.

    2008-05-01

    We use deep, J and Ks observations of NGC 1569 acquired with FLAMINGOS on the KPNO 4-m to search for star cluster counterparts to X-ray binaries identified in archived Chandra images of this dwarf starburst galaxy. Performing near-IR photometry on the star cluster counterparts, we determine their colors, luminosities and masses. Comparing these results to the properties for all clusters in this galaxy, we search for trends in clusters associated with X-ray sources. Combining this study with FISICA, near-IR spectral observations, we further characterize the surroundings to X-ray binaries in NGC 1569. Contrasting this work with findings from a similar study performed on the Antennae galaxies, a large, merging system, we investigate the differences in X-ray binary environments.

  3. MaNGA: Mapping Nearby Galaxies at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Bundy, Kevin

    2015-04-01

    I describe a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory). One of three core programs in the 6-year SDSS-IV project† that began on July 1st, 2014, MaNGA will deploy 17 fiber-bundle IFUs across the Sloan 2.5m Telescope's 3 degree field-of-view, targeting a mass-selected sample with a median redshift of 0.03, typical spatial resolution of 1-2 kpc, and a per-fiber signal-to-noise ratio of 4-8 in the outskirts of target galaxies. For each galaxy in the sample, MaNGA will provide maps and measured gradients of the composition and dynamics of both stars and gas. I discuss early results that highlight MaNGA's potential to shed light on the ionization and chemical enrichment of gas in galaxies, spatial patterns in their star formation histories, and the internal makeup of stellar populations. MaNGA's unprecedented data set will not only provide powerful new insight on galaxy formation and evolution but will serve as a valuable benchmark for future high-z observations from large telescopes and space-based facilities.

  4. Diffuse hot gas in nearby face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Doane, Nathaniel

    2007-08-01

    We present a study of the diffuse thermal emission in three nearby, face-on spiral galaxies, NGC 3631, NGC 628 and NGC 3184, using X-ray data from the Chandra X-ray Observatory and optical data from the WIYN observatory. We are able to separate out the X-ray emission from unresolved point sources from the total unresolved emission in order to study the truly diffuse X-ray emission. We find that in all cases, the spectrum of the hot gas is well fit using a two thermal-component model. In the three galaxies, we find a strong correlation between the X-ray surface brightness and regions of star formation. We also estimate the electron density, pressure and cooling time of the hot gas, finding that the pressure of the hot gas in these three galaxies is higher than the ambient Milky Way pressure. In addition to the standard two temperature spectral model of the hot-gas emission from spiral galaxies, we show a model with the hot gas at a continuum of temperatures provides an equally good fit and a more physical description of the gas. Finally, we discuss the Chandra ACIS background and our method of spectrally modeling it. We also present plots of all our spectral fits to each galaxy and its sub-regions using our background model.

  5. Wide Integral Field Infrared Spectroscopic Survey of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Sivanandam, Suresh; Moon, Dae-Sik; Zaritsky, Dennis F.; Chou, Richard; Meyer, Elliot; Ma, Ke; Jarvis, Miranda; Eisner, Joshua A.

    2015-01-01

    We are constructing a novel infrared integral field spectrograph with a large field of view (~50'x20') that will be available on the Kitt Peak 90' Bok telescope this spring. This wide integral field infrared spectrograph (WIFIS) operates over two wavelength ranges, zJ-band (0.9-1.35 microns) and H-band (1.5-1.8 microns), and has moderate spectral resolving power, 3,000 in zJ-band and 2,200 in H-band, respectively. WIFIS' field-of-view is comparable to current optical integral field spectrographs that are carrying out large galaxy surveys, e.g. SAMI, CALIFA, and MaNGA. We are designing a large nearby galaxy survey to complement the data already been taken by these optical integral field spectroscopic surveys. The near-infrared window provides a sensitive probe of the initial mass functions of stellar populations, the OB stellar fractions in massive star forming regions, and the kinematics of and obscured star formation within merging systems. This will be the first large scale infrared integral field spectroscopic survey of nearby galaxies.

  6. Rotating Starburst Cores in Massive Galaxies at z = 2.5

    NASA Astrophysics Data System (ADS)

    Tadaki, Ken-ichi; Kodama, Tadayuki; Nelson, Erica J.; Belli, Sirio; Förster Schreiber, Natascha M.; Genzel, Reinhard; Hayashi, Masao; Herrera-Camus, Rodrigo; Koyama, Yusei; Lang, Philipp; Lutz, Dieter; Shimakawa, Rhythm; Tacconi, Linda J.; Übler, Hannah; Wisnioski, Emily; Wuyts, Stijn; Hatsukade, Bunyo; Lippa, Magdalena; Nakanishi, Kouichiro; Ikarashi, Soh; Kohno, Kotaro; Suzuki, Tomoko L.; Tamura, Yoichi; Tanaka, Ichi

    2017-06-01

    We present spatially resolved ALMA observations of the CO J=3-2 emission line in two massive galaxies at z = 2.5 on the star-forming main sequence. Both galaxies have compact dusty star-forming cores with effective radii of {R}{{e}}=1.3+/- 0.1 {kpc} and {R}{{e}}=1.2+/- 0.1 {kpc} in the 870 μm continuum emission. The spatial extent of star-forming molecular gas is also compact with {R}{{e}}=1.9+/- 0.4 {kpc} and {R}{{e}}=2.3+/- 0.4 {kpc}, but more extended than the dust emission. Interpreting the observed position-velocity diagrams with dynamical models, we find the starburst cores to be rotation dominated with the ratio of the maximum rotation velocity to the local velocity dispersion of {v}\\max /{σ }0={7.0}-2.8+2.5 ({v}\\max ={386}-32+36 km s-1) and {v}\\max /{σ }0={4.1}-1.5+1.7 ({v}\\max ={391}-41+54 km s-1). Given that the descendants of these massive galaxies in the local universe are likely ellipticals with v/σ nearly an order of magnitude lower, the rapidly rotating galaxies would lose significant net angular momentum in the intervening time. The comparisons among dynamical, stellar, gas, and dust mass suggest that the starburst CO-to-H2 conversion factor of {α }{CO}=0.8 {M}⊙ (K km s-1 pc-2)-1 is appropriate in the spatially resolved cores. The dense cores are likely to be formed in extreme environments similar to the central regions of local ultraluminous infrared galaxies. Our work also demonstrates that a combination of medium-resolution CO and high-resolution dust continuum observations is a powerful tool for characterizing the dynamical state of molecular gas in distant galaxies.

  7. Understanding the Structure and Evolution of Nearby Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng

    2014-01-01

    In order to understand the structure and evolution of disk galaxies, we studied the stellar and gaseous components as well as the star formation rate in nearby disk galaxies. We used PS1 medium deep survey images to derive five-band (grizy) surface brightness profiles down to 30 ABmag/arcsec^2 for about 700 galaxies. From these stellar mass and mass-to-light ratio radial profiles are derived. The stellar mass radial profiles tend to bend-up at large radii, this often traces an extended old stellar population. The mass-to-light ratio profiles tend to rise outside the r25 radii. We also find a larger fraction of up-bending surface brightness profiles than Polen & Trujillo (2006). This may be because their sample is biased towards low surface brightness galaxies. We used HIPASS data as well as VLA HI 21cm data to study the gas component and dynamics of disk galaxies. We used the GALEX UV images to study the star formation of a HI-selected star-forming sample of about 400 galaxies, compiling a database of FUV and NUV radial profiles and related parameters. We used this to study the star forming efficiency (SFE, star formation rate per unit area divided by gas surface mass density) of the sample galaxies. We found that the UV based SFE has a tighter relationship with HI mass than an H_alpha based SFE as typically used in previous studies and the UV SFE is flat across wide range of stellar mass. We constructed a simple model to predict the distribution of interstellar medium and star formation rate in an equilibrium disk with constant two-fluid Toomre Q. This model can reproduces the SFE relations we derived.

  8. WINGS Data Release: a database of galaxies in nearby clusters

    NASA Astrophysics Data System (ADS)

    Moretti, A.; Poggianti, B. M.; Fasano, G.; Bettoni, D.; D'Onofrio, M.; Fritz, J.; Cava, A.; Varela, J.; Vulcani, B.; Gullieuszik, M.; Couch, W. J.; Omizzolo, A.; Valentinuzzi, T.; Dressler, A.; Moles, M.; Kjærgaard, P.; Smareglia, R.; Molinaro, M.

    2014-04-01

    Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims: The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies in a complete sample of low redshift clusters to be used as reference sample for evolutionary studies. The WINGS survey is still ongoing and the original dataset will be enlarged with new observations. This paper presents the entire collection of WINGS measurements obtained so far. Methods: We decided to make use of the Virtual Observatory (VO) tools to share the WINGS database (that will be updated regularly) with the community. In the database each object has one unique identification (WINGSID). Each subset of estimated properties is accessible using a cone search (including wide-field images). Results: We provide the scientific community with the entire set of wide-field images. Furthermore, the published database contains photometry of 759 024 objects and surface brightness analysis for 42 275 and 41 463 galaxies in the V and B band, respectively. The completeness depends on the image quality, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90% for J ≲ 20.5 and K ≲ 19.4. The IR subsample with a Sersic fit comprises 71 687 objects. A morphological classification is available for 39 923 galaxies. We publish spectroscopic data, including 6132 redshifts, 5299 star formation histories, and 4381 equivalent widths. Finally, a calculation of local density is presented and implemented in the VO catalogs for 66 164 galaxies. The latter is presented here for the first time.

  9. Resolving the Milky Way and Nearby Galaxies with WFIRST

    NASA Astrophysics Data System (ADS)

    Kalirai, Jasonjot

    High-resolution studies of nearby stellar populations have served as a foundation for our quest to understand the nature of galaxies. Today, studies of resolved stellar populations constrain fundamental relations -- such as the initial mass function of stars, the time scales of stellar evolution, the timing of mass loss and amount of energetic feedback, the color-magnitude relation and its dependency on age and metallicity, the stellar-dark matter connection in galaxy halos, and the build up of stellar populations over cosmic time -- that represent key ingredients in our prescription to interpret light from the Universe and to measure the physical state of galaxies. More than in any other area of astrophysics, WFIRST will yield a transformative impact in measuring and characterizing resolved stellar populations in the Milky Way and nearby galaxies. The proximity and level of detail that such populations need to be studied at directly map to all three pillars of WFIRST capabilities - sensitivity from a 2.4 meter space based telescope, resolution from 0.1" pixels, and large 0.3 degree field of view from multiple detectors. Our WFIRST GO Science Investigation Team (F) will develop three WFIRST (notional) GO programs related to resolved stellar populations to fully stress WFIRST's Wide Field Instrument. The programs will include a Survey of the Milky Way, a Survey of Nearby Galaxy Halos, and a Survey of Star-Forming Galaxies. Specific science goals for each program will be validated through a wide range of observational data sets, simulations, and new algorithms. As an output of this study, our team will deliver optimized strategies and tools to maximize stellar population science with WFIRST. This will include: new grids of IR-optimized stellar evolution and synthetic spectroscopic models; pipelines and algorithms for optimal data reduction at the WFIRST sensitivity and pixel scale; wide field simulations of MW environments and galaxy halos; cosmological simulations

  10. What Can We Learn From Dynamics Of Nearby Galaxies To Study Distant Galaxies?

    NASA Astrophysics Data System (ADS)

    Epinat, B.; Amram, P.; Balkowski, C.

    2007-05-01

    In order to study the evolution of the kinematics of galaxies through the ages, we use a reference sample of nearby galaxies for which we have the 3D data cubes. The Fabry-Perot seeing-limited data cubes of local galaxies are redshifted from z= 0.15 to 0.6 in order to compare with galaxies observed with 3D spectroscopy instruments on the VLT. Due to the high spatial resolution and the large field of view of nearby galaxies (ranging from a few Mpc to ˜100), the beam parameter (ratio between the galactic radius and the seeing) of these objects ranges from a few hundreds down to a few tens. On the other hand, the beam parameter of z= 0.15-to-0.6-galaxies ranges from ˜ten to a few units. A rotation curve of galaxy cannot be drawn, even from a 2-D velocity field, if the beam ratio is lower than ˜ten for several reasons. Indeed, a lack of spatial resolution has noticeable effects on physical parameters : the inner shape of the rotation curve tends to be underestimated, kinematical parameters (position of the kinematical major axis, inclination and centre position) are much less constrained and kinematical signature of non circular motion (like bar) and of fine structures (nucleus, rings, spiral arms, ...) are drastically attenuated, while having effects on resulting velocity field. Using the sample of nearby galaxies, we will review the biases induced by the observations of distant galaxies (in Tully Fisher law determination for example), the data processing methods (suitable for high redshift galaxies) and new tools to recover the hidden parameters, velocity field and rotation curve. We will conclude by a setting in prospect for the observational constraints of very distant galaxies and some necessary specifications for the new generation of spectro-imaging instruments for the Extremely Large Telescopes.

  11. Evolution of molecular clouds in the starburst galaxy NGC 1808 revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Salak, D.; Nakai, N.; Miyamoto, Y.

    2015-05-01

    We present large-field CO(1-0) observations of the starburst galaxy NGC 1808 conducted with ALMA. High-resolution (˜100 pc) images reveal a high concentration of molecular gas in the nucleus, 500-pc ring, gas-rich bar, and spiral arms. We derived the bar pattern speed and found an offset between CO and Hα emission peaks in the offset ridges along the bar. The results indicate that the evolution of molecular clouds on the galactic scale is driven by bar dynamics.

  12. Full stellar kinematical profiles of central parts of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Vudragović, A.; Samurović, S.; Jovanović, M.

    2016-09-01

    Context. We present the largest catalog of detailed stellar kinematics of the central parts of nearby galaxies, which includes higher moments of the line-of-sight velocity distribution (LOSVD) function represented by the Gauss-Hermite series. The kinematics is measured on a sample of galaxies selected from the Arecibo Legacy Fast ALFA (Alfalfa) survey using spectroscopy from the Sloan Digital Sky Survey (SDSS DR7). Aims: The SDSS DR7 offers measurements of the LOSVD based on the assumption of a pure Gaussian shape of the broadening function caused by the combination of rotational and random motion of the stars in galaxies. We discuss the consequences of this oversimplification since the velocity dispersion, one of the measured quantities, often serves as the proxy to important modeling parameters such as the black-hole mass and the virial mass of galaxies. Methods: The publicly available pPXF code is used to calculate the full kinematical profile for the sample galaxies including higher moments of their LOSVD. Both observed and synthetic stellar libraries were used and the related template mismatch problem is discussed. Results: For the whole sample of 2180 nearby galaxies reflecting morphological distribution characteristic for the local Universe, we successfully recovered stellar kinematics of their central parts, including higher order moments of the LOSVD function, for signal-to-noise above 50. Conclusions: We show the consequences of the oversimplification of the LOSVD function with Gaussian function on the velocity dispersion for the empirical and the synthetic stellar library. For the empirical stellar library, this approximation leads to an increase in the virial mass of 13% on average, while for the synthetic library the effect is weaker, with an increase of 9% on average. Systematic erroneous estimates of the velocity dispersion comes from the use of the synthetic stellar library instead of the empirical one and is much larger than the value imposed by

  13. The Hierarchical Distribution of Young Stellar Clusters in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Grasha, Kathryn; Calzetti, Daniela

    2017-01-01

    We investigate the spatial distributions of young stellar clusters in six nearby galaxies to trace the large scale hierarchical star-forming structures. The six galaxies are drawn from the Legacy ExtraGalactic UV Survey (LEGUS). We quantify the strength of the clustering among stellar clusters as a function of spatial scale and age to establish the survival timescale of the substructures. We separate the clusters into different classes, compact (bound) clusters and associations (unbound), and compare the clustering among them. We find that younger star clusters are more strongly clustered over small spatial scales and that the clustering disappears rapidly for ages as young as a few tens of Myr, consistent with clusters slowly losing the fractal dimension inherited at birth from their natal molecular clouds.

  14. Nearby Galaxy is a Hotbed of Star Birth Activity

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This new image taken with NASA's Hubble Space Telescope (HST) is of the nearby dwarf galaxy NGC 1569. This galaxy is a hotbed of vigorous star birth activity which blows huge bubbles that riddle its main body. The bubble structure is sculpted by the galactic super-winds and outflows caused by a colossal input of energy from collective supernova explosions that are linked with a massive episode of star birth. The bubbles seen in this image are made of hydrogen gas that glows when hit by the fierce wind and radiation from hot young stars and is racked by supernova shocks. Its 'star factories' are also manufacturing brilliant blue star clusters. NGC 1569 had a sudden onset of star birth about 25 million years ago, which subsided about the time the very earliest human ancestors appeared on Earth. The Marshall Space Flight Center had responsibility for the design, development, and construction of the HST.

  15. Nearby Galaxy is a Hotbed of Star Birth Activity

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This new image taken with NASA's Hubble Space Telescope (HST) is of the nearby dwarf galaxy NGC 1569. This galaxy is a hotbed of vigorous star birth activity which blows huge bubbles that riddle its main body. The bubble structure is sculpted by the galactic super-winds and outflows caused by a colossal input of energy from collective supernova explosions that are linked with a massive episode of star birth. The bubbles seen in this image are made of hydrogen gas that glows when hit by the fierce wind and radiation from hot young stars and is racked by supernova shocks. Its 'star factories' are also manufacturing brilliant blue star clusters. NGC 1569 had a sudden onset of star birth about 25 million years ago, which subsided about the time the very earliest human ancestors appeared on Earth. The Marshall Space Flight Center had responsibility for the design, development, and construction of the HST.

  16. Stellar Clustering and Associated Disruption Times in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Kaleida, Catherine

    2010-09-01

    We propose to catalog the stellar associations and clusters in a set of 50 nearby galaxies. Our primary goals are to assess the fraction of stars that are born in the field versus in clusters, and to determine the timescales for the disruption of the star clusters asa function of size, density, and mass. We will make extensive use of the source lists available through the Hubble Legacy Archive {HLA} to make this a practical reality. The galaxies in our sample have observations in the UBVI and H-alpha bands, using a combination of the ACS and WFPC2 detectors. This will allow for selection of stellar associations in various bands, subsequent age-dating of each association or cluster using Spectal Energy Distribution {SED} fitting, and the determination of red/blue stellar fraction in the associations. Once the stellar clusters and associations have been identified and age-dated, we can deduce disruption times from the age distribution {i.e., the dN/dt diagram} as a function of a variety of properties, including the morphological type of the galaxy, the position of the cluster/association within the galaxy, and the existence of global versus flocculent spiral structure. Some of our primary questions include: Are there prefered size scales for stellar clustering or does clustering of stars occur continuously on all size scales? What is the disruption time for the different size scales? Are these disruption times uniform in the nearby universe, or are they dependent on local galactic environment? In the process of answering these questions, we will produce compreshensive catalogs of stellar groupings on all scales, to complement and enhance the catalogs already available through the HLA.

  17. The effect of galaxy mass ratio on merger-driven starbursts

    NASA Astrophysics Data System (ADS)

    Cox, T. J.; Jonsson, Patrik; Somerville, Rachel S.; Primack, Joel R.; Dekel, Avishai

    2008-02-01

    We employ numerical simulations of galaxy mergers to explore the effect of galaxy mass ratio on merger-driven starbursts. Our numerical simulations include radiative cooling of gas, star formation, and stellar feedback to follow the interaction and merger of four disc galaxies. The galaxy models span a factor of 23 in total mass and are designed to be representative of typical galaxies in the local universe. We find that the merger-driven star formation is a strong function of merger mass ratio, with very little, if any, induced star formation for large mass ratio mergers. We define a burst efficiency that is useful to characterize the merger-driven star formation and test that it is insensitive to uncertainties in the feedback parametrization. In accord with previous work we find that the burst efficiency depends on the structure of the primary galaxy. In particular, the presence of a massive stellar bulge stabilizes the disc and suppresses merger-driven star formation for large mass ratio mergers. Direct, coplanar merging orbits produce the largest tidal disturbance and yield the most intense burst of star formation. Contrary to naive expectations, a more compact distribution of gas or an increased gas fraction both decrease the burst efficiency. Owing to the efficient feedback model and the newer version of smoothed particle hydrodynamics employed here, the burst efficiencies of the mergers presented here are smaller than in previous studies.

  18. The Red and Featureless Outer Disks of Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    2016-07-01

    We present results from deep, wide-field surface photometry of three nearby (D = 4-7 Mpc) spiral galaxies: M94 (NGC 4736), M64 (NGC 4826), and M106 (NGC 4258). Our imaging reaches a limiting surface brightness of {μ }B ˜ 28-30 mag arcsec-2 and probes colors down to {μ }B ˜ 27.5 mag arcsec-2. We compare our broadband optical data to available ultraviolet and high column density H i data to better constrain the star-forming history and stellar populations of the outermost parts of each galaxy’s disk. Each galaxy has a well-defined radius beyond which little star formation occurs and the disk light appears both azimuthally smooth and red in color, suggestive of old, well-mixed stellar populations. Given the lack of ongoing star formation or blue stellar populations in these galaxies’ outer disks, the most likely mechanisms for their formation are dynamical processes such as disk heating or radial migration, rather than inside-out growth of the disks. This is also implied by the similarity in outer disk properties despite each galaxy showing distinct levels of environmental influence, from a purely isolated galaxy (M94) to one experiencing weak tidal perturbations from its satellite galaxies (M106) to a galaxy recovering from a recent merger (M64), suggesting that a variety of evolutionary histories can yield similar outer disk structure. While this suggests a common secular mechanism for outer disk formation, the large extent of these smooth, red stellar populations—which reach several disk scale lengths beyond the galaxies’ spiral structure—may challenge models of radial migration given the lack of any nonaxisymmetric forcing at such large radii.

  19. Photometric and kinematic DISKFIT models of four nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Peters, Wesley; Kuzio de Naray, Rachel

    2017-08-01

    We present optical BVRI photometry, H α integrated field unit velocity fields and H α long-slit rotation curves for a sample of four nearby spiral galaxies having a range of morphologies and inclinations. We show that the DISKFIT code can be used to model the photometric and kinematic data of these four galaxies and explore how well the photometric data can be decomposed into structures like bars and bulges and to look for non-circular motions in the kinematic data. In general, we find good agreement between our photometric and kinematic models for most parameters. We find the best consistency between our photometric and kinematic models for NGC 6674, a relatively face-on spiral with clear and distinct bulge and bar components. We also find excellent consistency for NGC 2841, and find a bar ∼10° south of the disc major axis in the inner 20 arcsec. Due to geometric effects caused by its high inclination, we find the kinematic model for NGC 2654 to be less accurate than its photometry. We find the bar in NGC 2654 to be roughly parallel to the major axis of the galaxy. We are unable to photometrically model our most highly inclined galaxy, NGC 5746, with DISKFIT and instead use the galaxy isophotes to determine that the system contains a bar ∼5° to ∼10° east of the disc major axis. The high inclination and extinction in this galaxy also prevent our kinematic model from accurately determining parameters about the bar, though the data are better modelled when a bar is included.

  20. HI Emission in Nearby X-ray Detected Active Galaxies

    NASA Astrophysics Data System (ADS)

    George, Erin; Winter, L. M.; Zauderer, B.; Darling, J.; Koss, M.

    2013-01-01

    We have measured HI profiles in 96 nearby, active galaxies using the 100-meter Green Bank Telescope (GBT). Our sources contain active galactic nuclei (AGN) detected in the hard X-ray (14-195 keV) from Swift Gamma-ray Burst satellite’s Burst Alert Telescope (BAT) 22-month survey. This survey is unique because the sources were detected in the hard X-ray, allowing us to include galaxies that are otherwise obscured in other bands. The HI profiles we gathered are combined with the published optical, infrared, and X-ray data. We present the systemic velocities, outflow velocities, and cold gas mass in the sources. The mass of the cold gas is compared to the luminous mass in stars in order to find clues to unlock the nature of the host galaxies. A comparison of HI with the bolometric luminosity of the AGN is made. Our observations examine how the reservoir of cold gas is correlated with luminosity, as well. Through these data, we look for evolutionary differences in host galaxy types in order to understand how super massive black holes are fueled.

  1. Modelling the Pan-Spectral Energy Distribution of Starburst Galaxies: II. Control of the H II Region Parameters

    SciTech Connect

    Dopita, M A; Fischera, J; Sutherland, R S; Kewley, L J; Tuffs, R J; Popescu, C C; van Breugel, W; Groves, B A; Leitherer, C

    2006-03-01

    We examine from a theoretical viewpoint how the physical parameters of H II regions are controlled both in normal galaxies and in starburst environments. These parameters are the H II region luminosity function, the time-dependent size, the covering fraction of molecular clouds, the pressure in the ionized gas and the ionization parameter. The factors which control them are the initial mass function of the exciting stars, the cluster mass function, the metallicity and the mean pressure in the surrounding interstellar medium. We investigate the sensitivity of the H{alpha} luminosity to the IMF, and find that this can translate to about 30% variation in derived star formation rates. The molecular cloud dissipation timescale is estimated from a case study of M17 to be {approx} 1 Myr. Based upon H II luminosity function fitting for nearby galaxies, we propose that the cluster mass function has a log-normal form peaking at {approx} 185M{sub {circle_dot}}. This suggests that the cluster mass function is the continuation of the stellar IMF to higher mass. The pressure in the H II regions is controlled by the mechanical luminosity flux from the central cluster. Since this is closely related to the ionizing photon flux, we show that the ionization parameter is not a free variable, and that the diffuse ionized medium may be composed of many large, faint and old H II regions. Finally, we derive theoretical probability distributions for the ionization parameter as a function of metallicity and compare these to those derived for SDSS galaxies.

  2. Starburst galaxies in the COSMOS field: clumpy star-formation at redshift 0 < z < 0.5

    NASA Astrophysics Data System (ADS)

    Hinojosa-Goñi, R.; Muñoz-Tuñón, C.; Méndez-Abreu, J.

    2016-08-01

    Context. At high redshift, starburst galaxies present irregular morphologies with 10-20% of their star formation occurring in giant clumps. These clumpy galaxies are considered the progenitors of local disk galaxies. To understand the properties of starbursts at intermediate and low redshift, it is fundamental to track their evolution and the possible link with the systems at higher z. Aims: We present an extensive, systematic, and multiband search and analysis of the starburst galaxies at redshift (0 < z < 0.5) in the COSMOS field, as well as detailed characteristics of their star-forming clumps by using Hubble Space Telescope/Advance Camera for Surveys (HST/ACS) images. Methods: The starburst galaxies are identified using a tailor-made intermediate-band color excess selection, tracing the simultaneous presence of Hα and [OIII] emission lines in the galaxies. Our methodology uses previous information from the zCOSMOS spectral database to calibrate the color excess as a function of the equivalent width of both spectral lines. This technique allows us to identify 220 starburst galaxies at redshift 0 < z < 0.5 using the SUBARU intermediate-band filters. Combining the high spatial resolution images from the HST/ACS with ground-based multi-wavelength photometry, we identify and parametrize the star-forming clumps in every galaxy. Their principal properties, sizes, masses, and star formation rates are provided. Results: The mass distribution of the starburst galaxies is remarkably similar to that of the whole galaxy sample with a peak around M/M⊙ ~ 2 × 108 and only a few galaxies with M/M⊙ > 1010. We classify galaxies into three main types, depending on their HST morphology: single knot (Sknot), single star-forming knot plus diffuse light (Sknot+diffuse), and multiple star-forming knots (Mknots/clumpy) galaxy. We found a fraction of Mknots/clumpy galaxy fclumpy = 0.24 considering out total sample of starburst galaxies up to z ~ 0.5. The individual star

  3. The far infra-red SEDs of main sequence and starburst galaxies

    NASA Astrophysics Data System (ADS)

    Cowley, William I.; Béthermin, Matthieu; del P. Lagos, Claudia; Lacey, Cedric G.; Baugh, Carlton M.; Cole, Shaun

    2017-01-01

    We compare observed far infra-red/sub-millimetre (FIR/sub-mm) galaxy spectral energy distributions (SEDs) of massive galaxies (M⋆ ≳ 1010 h-1 M⊙) derived through a stacking analysis with predictions from a new model of galaxy formation. The FIR SEDs of the model galaxies are calculated using a self-consistent model for the absorption and re-emission of radiation by interstellar dust based on radiative transfer calculations and global energy balance arguments. Galaxies are selected based on their position on the specific star formation rate (sSFR) - stellar mass (M⋆) plane. We identify a main sequence of star-forming galaxies in the model, i.e. a well defined relationship between sSFR and M⋆, up to redshift z ˜ 6. The scatter of this relationship evolves such that it is generally larger at higher stellar masses and higher redshifts. There is remarkable agreement between the predicted and observed average SEDs across a broad range of redshifts (0.5 ≲ z ≲ 4) for galaxies on the main sequence. However, the agreement is less good for starburst galaxies at z ≳ 2, selected here to have elevated sSFRs>10 × the main sequence value. We find that the predicted average SEDs are robust to changing the parameters of our dust model within physically plausible values. We also show that the dust temperature evolution of main sequence galaxies in the model is driven by star formation on the main sequence being more burst-dominated at higher redshifts.

  4. The far infra-red SEDs of main sequence and starburst galaxies

    NASA Astrophysics Data System (ADS)

    Cowley, William I.; Béthermin, Matthieu; Lagos, Claudia del P.; Lacey, Cedric G.; Baugh, Carlton M.; Cole, Shaun

    2017-05-01

    We compare observed far infrared/sub-millimetre (FIR/sub-mm) galaxy spectral energy distributions (SEDs) of massive galaxies (M⋆ ≳ 1010 h-1 M⊙) derived through a stacking analysis with predictions from a new model of galaxy formation. The FIR SEDs of the model galaxies are calculated using a self-consistent model for the absorption and re-emission of radiation by interstellar dust based on radiative transfer calculations and global energy balance arguments. Galaxies are selected based on their position on the specific star formation rate (sSFR)-stellar mass (M⋆) plane. We identify a main sequence of star-forming galaxies in the model, i.e. a well-defined relationship between sSFR and M⋆, up to redshift z ˜ 6. The scatter of this relationship evolves such that it is generally larger at higher stellar masses and higher redshifts. There is a remarkable agreement between the predicted and observed average SEDs across a broad range of redshifts (0.5 ≲ z ≲ 4) for galaxies on the main sequence. However, the agreement is less good for starburst galaxies at z ≳ 2, selected here to have elevated sSFRs>10× the main-sequence value. We find that the predicted average SEDs are robust to changing the parameters of our dust model within physically plausible values. We also show that the dust temperature evolution of the main-sequence galaxies in the model is driven by star formation on the main sequence being more burst-dominated at higher redshifts.

  5. Black Holes and Starbursts in the Cosmic Web: Clustering and Evolution of Quasars and Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan C.; Myers, A. D.; Bootes Survey Collaboration

    2011-01-01

    The growth of massive galaxies and their central supermassive black holes is linked to the their surrounding dark matter halos, whose masses can be inferred from measurements of spatial clustering. I will present a a novel technique for deriving real-space clustering using full photometric-redshift probability distributions, and discuss a recent study using this technique to measure clustering of dust-obscured (Type 2) and unobscured (Type 1) luminous quasars. I will present a similar measurement of the clustering of submillimeter galaxies, and will place the results in context of current models for the co-evolution of quasars and rapid starbursts. Finally I will briefly point toward future observational opportunities with Herschel and the proposed Wide Field X-ray Telescope mission. RCH is funded by an STFC Postdoctoral Fellowship.

  6. Lyman Alpha Emitting Galaxies in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Hayes, Matthew

    2015-07-01

    The Lyman alpha emission line (Lyα) of neutral hydrogen (Hi) is intrinsically the brightest emission feature in the spectrum of astrophysical nebulae, making it a very attractive observational feature with which to survey galaxies. Moreover as an ultraviolet resonance line, Lyα possesses several unique characteristics that make it useful to study the properties of the interstellar medium and ionising stellar population at all cosmic epochs. In this review, I present a summary of Lyα observations of galaxies in the nearby universe. By ultraviolet continuum selection, at the magnitudes reachable with current facilities, only ≈ 5% of the local galaxy population shows a Lyα equivalent width (W Lyα) that exceeds 20 Å. This fraction increases dramatically at higher redshifts, but only in the local universe can we study galaxies in detail and assemble unprecedented multi-wavelength datasets. I discuss many local Lyα observations, showing that when galaxies show net Lyα emission, they ubiquitously also produce large-scale halos of scattered Lyα, that dominate the integrated luminosity. Concerning global measurements, we discuss how W Lyα and the Lyα escape fraction (f Lyα esc) are higher (W Lyα ≳ 20 Å and f Lyα esc ≳ 10%) in galaxies that represent the less massive and younger end of the distribution for local objects. This is connected with various properties, such that Lyα-emitting galaxies have lower metal abundances (median value of 12 + log(O/H) ~ 8.1) and dust reddening. However, the presence of galactic outflows/winds is also vital to Doppler shift the Lyα line out of resonance with the atomic gas, and high W Lyα is found only among galaxies with winds faster than ~ 50 km s-1. The empirical evidence is then assembled into a coherent picture, and the requirement for star-formation-driven feedback is discussed in the context of an evolutionary sequence where the interstellar medium is accelerated and/or subject to hydrodynamical instabilities

  7. Black holes at the centers of nearby dwarf galaxies

    SciTech Connect

    Moran, Edward C.; Shahinyan, Karlen; Sugarman, Hannah R.; Vélez, Darik O.; Eracleous, Michael

    2014-12-01

    Using a distance-limited portion of the Sloan Digital Sky Survey (SDSS) Data Release 7, we have identified 28 active galactic nuclei (AGNs) in nearby (d⩽80 Mpc) low-mass, low-luminosity dwarf galaxies. The accreting objects at the galaxy centers are expected to be intermediate-mass black holes (IMBHs) with M{sub BH}⩽10{sup 6} M{sub ⊙}. The AGNs were selected using several optical emission-line diagnostics after careful modeling of the continuum present in the spectra. We have limited our survey to objects with spectral characteristics similar to those of Seyfert nuclei, excluding emission-line galaxies with ambiguous spectra that could be powered by stellar processes. Thus, as a set, the host galaxies in our sample are the least massive objects in the very local universe certain to contain central black holes. Our sample is dominated by narrow-line (type 2) AGNs, and it appears to have a much lower fraction of broad-line objects than that observed for luminous, optically selected Seyfert galaxies. Given our focus on the nearest objects included in the SDSS, our survey is more sensitive to low-luminosity emission than previous optical searches for AGNs in low-mass galaxies. The [O iii] λ5007 luminosities of the Seyfert nuclei in our sample have a median value of L{sub 5007}=2×10{sup 5} L{sub ⊙} and extend down to ∼10{sup 4} L{sub ⊙}. Using published data for broad-line IMBH candidates, we have derived an [O iii] bolometric correction of log(L{sub bol}/L{sub 5007})=3.0±0.3, which is significantly lower than values obtained for high-luminosity AGNs. Applying this correction to our sample, we obtain minimum black hole mass estimates that fall mainly in the 10{sup 3} M{sub ⊙}–10{sup 4} M{sub ⊙} range, which is roughly where the predicted mass functions for different black hole seed formation scenarios overlap the most. In the stellar mass range that includes the bulk of the AGN host galaxies in our sample, we derive a lower limit on the AGN fraction

  8. Black Holes At the Centers of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Moran, Edward C.; Shahinyan, Karlen; Sugarman, Hannah R.; Vélez, Darik O.; Eracleous, Michael

    2014-12-01

    Using a distance-limited portion of the Sloan Digital Sky Survey (SDSS) Data Release 7, we have identified 28 active galactic nuclei (AGNs) in nearby (d≤slant 80 Mpc) low-mass, low-luminosity dwarf galaxies. The accreting objects at the galaxy centers are expected to be intermediate-mass black holes (IMBHs) with {{M}BH}≤slant {{10}6} {{M}⊙ }. The AGNs were selected using several optical emission-line diagnostics after careful modeling of the continuum present in the spectra. We have limited our survey to objects with spectral characteristics similar to those of Seyfert nuclei, excluding emission-line galaxies with ambiguous spectra that could be powered by stellar processes. Thus, as a set, the host galaxies in our sample are the least massive objects in the very local universe certain to contain central black holes. Our sample is dominated by narrow-line (type 2) AGNs, and it appears to have a much lower fraction of broad-line objects than that observed for luminous, optically selected Seyfert galaxies. Given our focus on the nearest objects included in the SDSS, our survey is more sensitive to low-luminosity emission than previous optical searches for AGNs in low-mass galaxies. The [O iii] λ 5007 luminosities of the Seyfert nuclei in our sample have a median value of {{L}5007}=2× {{10}5} {{L}⊙ } and extend down to ˜ {{10}4} {{L}⊙ }. Using published data for broad-line IMBH candidates, we have derived an [O iii] bolometric correction of log ({{L}bol}/{{L}5007})=3.0+/- 0.3, which is significantly lower than values obtained for high-luminosity AGNs. Applying this correction to our sample, we obtain minimum black hole mass estimates that fall mainly in the 103 {{M}⊙ }-104 {{M}⊙ } range, which is roughly where the predicted mass functions for different black hole seed formation scenarios overlap the most. In the stellar mass range that includes the bulk of the AGN host galaxies in our sample, we derive a lower limit on the AGN fraction of a few

  9. The Bright and Dark Sides of High-redshift Starburst Galaxies from Herschel and Subaru Observations

    NASA Astrophysics Data System (ADS)

    Puglisi, A.; Daddi, E.; Renzini, A.; Rodighiero, G.; Silverman, J. D.; Kashino, D.; Rodríguez-Muñoz, L.; Mancini, C.; Mainieri, V.; Man, A.; Franceschini, A.; Valentino, F.; Calabrò, A.; Jin, S.; Darvish, B.; Maier, C.; Kartaltepe, J. S.; Sanders, D. B.

    2017-04-01

    We present rest-frame optical spectra from the FMOS-COSMOS survey of 12 z ∼ 1.6 Herschel starburst galaxies, with star formation rate (SFR) elevated by ×8, on average, above the star-forming main sequence (MS). Comparing the Hα to IR luminosity ratio and the Balmer decrement, we find that the optically thin regions of the sources contain on average only ∼10% of the total SFR, whereas ∼90% come from an extremely obscured component that is revealed only by far-IR observations and is optically thick even in Hα. We measure the [N ii]6583/Hα ratio, suggesting that the less obscured regions have a metal content similar to that of the MS population at the same stellar masses and redshifts. However, our objects appear to be metal-rich outliers from the metallicity–SFR anticorrelation observed at fixed stellar mass for the MS population. The [S ii]6732/[S ii]6717 ratio from the average spectrum indicates an electron density n e ∼ 1100 cm‑3 , larger than what was estimated for MS galaxies but only at the 1.5σ level. Our results provide supporting evidence that high-z MS outliers are analogous of local ULIRGs and are consistent with a major-merger origin for the starburst event.

  10. The diffuse gamma-ray flux associated with sub-PEV/PEV neutrinos from starburst galaxies

    SciTech Connect

    Chang, Xiao-Chuan; Wang, Xiang-Yu

    2014-10-01

    One attractive scenario for the excess of sub-PeV/PeV neutrinos recently reported by IceCube is that they are produced by cosmic rays in starburst galaxies colliding with the dense interstellar medium. These proton-proton (pp) collisions also produce high-energy gamma rays, which finally contribute to the diffuse high-energy gamma-ray background. We calculate the diffuse gamma-ray flux with a semi-analytic approach and consider that the very high energy gamma rays will be absorbed in the galaxies and converted into electron-positron pairs, which then lose almost all of their energy through synchrotron radiation in the strong magnetic fields in the starburst region. Since the synchrotron emission goes into energies below GeV, this synchrotron loss reduces the diffuse high-energy gamma-ray flux by a factor of about two, thus leaving more room for other sources to contribute to the gamma-ray background. For an E{sub ν}{sup −2} neutrino spectrum, we find that the diffuse gamma-ray flux contributes about 20% of the observed diffuse gamma-ray background in the 100 GeV range. However, for a steeper neutrino spectrum, this synchrotron loss effect is less important, since the energy fraction in absorbed gamma rays becomes lower.

  11. LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS

    SciTech Connect

    Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E.; Elmegreen, B. G.; Elmegreen, D. M.; Pérez-Montero, E.; Vílchez, J. M.; Amorín, R.; Ascasibar, Y.; Papaderos, P.

    2015-09-10

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.

  12. 3D spectroscopy of merger Seyfert galaxy Mrk 334: nuclear starburst, superwind and the circumnuclear cavern

    NASA Astrophysics Data System (ADS)

    Smirnova, Aleksandrina; Moiseev, Alexei

    2010-01-01

    We are presenting new results on kinematics and structure of the Mrk 334 Seyfert galaxy. Panoramic (3D) spectroscopy is performed at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences using the integral-field Multi-Pupil Fiber Spectrograph (MPFS) and scanning Fabry-Pérot interferometer. The deep images have revealed that Mrk 334 is observed during the final stage of its merging with a massive companion. A possible mass ratio ranges from 1/5 to 1/3. The merger has triggered mass redistribution in the disc resulting in an intensification of nuclear activity and in a burst of star formation in the inner region of the galaxy. The circumnuclear starburst is so intense that its contribution to the gas ionization exceeds that contribution of the active galactic nuclei (AGN). We interpret the nuclear gas outflow with velocities of ~200kms-1 as a galactic superwind that accompanies the violent star formation. This suggestion is consistent with the asymmetric X-ray brightness distribution in Mrk 334. The trajectory of the fragments of the disrupted satellite in the vicinity of the main galaxy nucleus can be traced. In the galaxy disc, a cavern is found that is filled with a low-density ionized gas. We consider this region to be the place where the remnants of the companion have recently penetrated through the gaseous disc of the main galaxy.

  13. GMRT HI Imaging of the Ly-α Emitting Starburst Galaxy Tololo 1924-416

    NASA Astrophysics Data System (ADS)

    Mendoza Davila, Cesar I.; Perez Sarmiento, Karen; Cannon, John M.; Hayes, Matthew; Melinder, Jens; Östlin, Göran; Pardy, Stephen; LARS Team

    2017-01-01

    The Lyman Alpha Reference Sample (LARS) and its extension (eLARS) form the most comprehensive effort to date to study the details of Lyman Alpha radiative transfer in galaxies. Direct imaging of Lyman Alpha emission from the Hubble Space Telescope is supplemented by a wealth of multi-wavelength observations designed to probe the complex processes that contribute to the escape or destruction of Lyman Alpha photons as they resonantly scatter in the neutral ISM. The 42 LARS+eLARS galaxies span a range of physical properties, including mass and star formation rate. In companion posters, we present results of HI imaging programs using the VLA and the GMRT. In this work, we present new HI imaging of the Lya-emitting starburst galaxy Tololo 1924-416; this source has a similar complement of HST imaging and spectroscopy as the LARS+eLARS galaxies. Tololo 1924-416 is known to be dramatically tidally interacting with ESO 338-IG04B; HI gas is strewn between the galaxies on scales of ~70 kpc. Our new data provide information on scales of ~2-10 kpc at the adopted distance of Tololo 1924-416 (37.5 Mpc). We study the HI morphology and dynamics of this interacting system.

  14. A high-dispersion molecular gas component in nearby galaxies

    SciTech Connect

    Caldú-Primo, Anahi; Walter, Fabian; Sandstrom, Karin; Schruba, Andreas; Leroy, Adam; De Blok, W. J. G.; Ianjamasimanana, R.; Mogotsi, K. M.

    2013-12-01

    We present a comprehensive study of the velocity dispersion of the atomic (H I) and molecular (H{sub 2}) gas components in the disks (R ≲ R {sub 25}) of a sample of 12 nearby spiral galaxies with moderate inclinations. Our analysis is based on sensitive high-resolution data from the THINGS (atomic gas) and HERACLES (molecular gas) surveys. To obtain reliable measurements of the velocity dispersion, we stack regions several kiloparsecs in size, after accounting for intrinsic velocity shifts due to galactic rotation and large-scale motions. We stack using various parameters: the galactocentric distance, star formation rate surface density, H I surface density, H{sub 2} surface density, and total gas surface density. We fit single Gaussian components to the stacked spectra and measure median velocity dispersions for H I of 11.9 ± 3.1 km s{sup –1} and for CO of 12.0 ± 3.9 km s{sup –1}. The CO velocity dispersions are thus, surprisingly, very similar to the corresponding ones of H I, with an average ratio of σ{sub HI}/σ{sub CO}= 1.0 ± 0.2 irrespective of the stacking parameter. The measured CO velocity dispersions are significantly higher (factor of ∼2) than the traditional picture of a cold molecular gas disk associated with star formation. The high dispersion implies an additional thick molecular gas disk (possibly as thick as the H I disk). Our finding is in agreement with recent sensitive measurements in individual edge-on and face-on galaxies and points toward the general existence of a thick disk of molecular gas, in addition to the well-known thin disk in nearby spiral galaxies.

  15. Star formation histories from resolved stellar populations in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Gogarten, Stephanie Morris

    We present the results of three applications of using resolved stellar populations to derive star formation histories (SFHs) of regions in the nearby spiral galaxies M81 and NGC 300. We use data from the Advanced Camera for Surveys (ACS) Nearby Galaxy Survey Treasury (ANGST) and compare observed color- magnitude diagrams (CMDs) with synthetic CMDs from stellar evolution models to find the best-fitting combination of stellar ages and metallicities. In the outer disk of M81, we probe the stellar populations of small regions which are UV-bright but Ha-faint as well as HII regions. We determine that the HII regions contain more massive stars than the other regions and are therefore consistent with being at least a few Myr younger; however, we cannot rule out a truncated initial mass function as an explanation for the differences between these regions. Our data for NGC 300 cover the location of an unusual optical transient, NGC 300 OT2008-1, which has been speculated to represent a new class of objects. Despite the lack of an optical precursor for this object, we infer the mass of the progenitor by deriving the SFH from the stars surrounding the transient location, under the assumption that since most stars form in clusters, the population should be coeval. We find a star formation event of age 8-13 Myr and determine that the progenitor should be a star which has recently turned off the main sequence, of mass 12-17 [Special characters omitted.] . Expanding our view of NGC 300 to a radial strip of the disk from the center to 5.4 kpc, we divide the galaxy into radial bins and derive the SFH at each location. We find that the percentage of young stars in the outer regions is considerably greater than in the inner regions, but the slope of the surface density of the disk increases only slightly with time.

  16. From H I to Stars: H I Depletion in Starbursts and Star-forming Galaxies in the ALFALFA Hα Survey

    NASA Astrophysics Data System (ADS)

    Jaskot, A. E.; Oey, M. S.; Salzer, J. J.; Van Sistine, A.; Bell, E. F.; Haynes, M. P.

    2015-07-01

    H i in galaxies traces the fuel for future star formation and reveals the effects of feedback on neutral gas. Using a statistically uniform, H i-selected sample of 565 galaxies from the Arecibo Legacy Fast ALFA (ALFALFA) Hα survey, we explore H i properties as a function of star formation activity. ALFALFA Hα provides R-band and Hα imaging for a volume-limited subset of the 21 cm ALFALFA survey. We identify eight starbursts based on Hα equivalent width and six with enhanced star formation relative to the main sequence. Both starbursts and non-starbursts have similar H i-to-stellar mass ratios ({M}{{H} {{I}}}/{M}*), which suggests that feedback is not depleting the starbursts’ H i. Consequently, the starbursts do have shorter H i depletion times ({t}{dep}), implying more efficient H i-to-H2 conversion. While major mergers likely drive this enhanced efficiency in some starbursts, the lowest-mass starbursts may experience periodic bursts, consistent with enhanced scatter in {t}{dep} at low {M}*. Two starbursts appear to be pre-coalescence mergers; their elevated {M}{{H} {{I}}}/{M}* suggest that H i-to-H2 conversion is still ongoing at this stage. By comparing with the GASS sample, we find that {t}{dep} anticorrelates with stellar surface density for disks, while spheroids show no such trend. Among early-type galaxies, {t}{dep} does not correlate with bulge-to-disk ratio; instead, the gas distribution may determine the star formation efficiency. Finally, the weak connection between galaxies’ specific star formation rates and {M}{{H} {{I}}}/{M}* contrasts with the well-known correlation between {M}{{H} {{I}}}/{M}* and color. We show that dust extinction can explain the H i-color trend, which may arise from the relationship between {M}*, {M}{{H} {{I}}}, and metallicity.

  17. Origins Space Telescope: Interstellar Medium, Milky Way, and Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Battersby, Cara; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.This presentation will provide a summary of the science case related to the Interstellar Medium (ISM), the Milky Way, and Nearby Galaxies. Origins will enable a comprehensive view of magnetic fields, turbulence, and the multi-phase ISM; connecting physics at all scales, from galaxies to protostellar cores. With unprecedented sensitivity, Origins will measure and characterize the mechanisms of feedback from star formation and Active Galactic Nuclei (AGN) over cosmic time and trace the trail of water from interstellar clouds, to protoplanetary disks, to Earth itself in order to understand the abundance and availability of water for habitable planets.

  18. Mapping Dust through Emission and Absorption in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn; Groves, Brent; Schinnerer, Eva; Johnson, Benjamin D.; Aniano, Gonzalo; Calzetti, Daniela; Croxall, Kevin V.; Draine, Bruce T.; Gordon, Karl D.; Crocker, Alison F.; Dale, Daniel A.; Hunt, Leslie K.; Kennicutt, Robert C.; Meidt, Sharon E.; Smith, J. D. T.; Tabatabaei, Fatemeh S.

    2013-07-01

    Dust has long been identified as a barrier to measuring inherent galaxy properties. However, the link between dust and attenuation is not straightforward and depends on both the amount of dust and its distribution. Herschel imaging of nearby galaxies undertaken as part of the KINGFISH project allows us to map the dust as seen in emission with unprecedented sensitivity and ~1 kpc resolution. We present here new optical integral field unit spectroscopy for eight of these galaxies that provides complementary 100-200 pc scale maps of the dust attenuation through observation of the reddening in both the Balmer decrement and the stellar continuum. The stellar continuum reddening, which is systematically less than that observed in the Balmer decrement, shows no clear correlation with the dust, suggesting that the distribution of stellar reddening acts as a poor tracer of the overall dust content. The brightest H II regions are observed to be preferentially located in dusty regions, and we do find a correlation between the Balmer line reddening and the dust mass surface density for which we provide an empirical relation. Some of the high-inclination systems in our sample exhibit high extinction, but we also find evidence that unresolved variations in the dust distribution on scales smaller than 500 pc may contribute to the scatter in this relation. We caution against the use of integrated AV measures to infer global dust properties.

  19. Constraining Stellar Feedbacks: Photo-ionization vs. Shock-ionization in Local Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Hong, Sungryong; Calzetti, D.; Chandar, R.; Gallagher, J. S.; Kennicutt, R. C.; Martin, C.; Pellerin, A.; Strickland, D.; Dopita, M. A.

    2010-01-01

    We present the small- and intermediate-scale structure of interstellar medium(ISM) of five local starburst galaxies; NGC1569, NGC4449, Holmberg II, NGC5236, and HE2-10. Each galaxy has four narrow band images for H-beta(4861A), [OIII](5007A), H-alpha(6563A), and [SII](6717,6731A) (or [NII](6583A)), imaged by Advanced Camera for Survey(ACS), Wide Field Planetary Camera 2(WFPC2), and Wide Field Camera 3(WFC3) of the Hubble Space Telescope(HST). We produce line diagnostics diagrams from those narrow band images on a pixel-by-pixel basis and discriminate shock-ionized gas (pixels) by using the ``maximum starburst line'' of Kewley et al. (2001). The properties of line ratios, [SII]/H-alpha vs [OIII]/H-beta, H-alpha vs [OIII]/H-beta, and H-alpha vs [SII]/H-alpha, for photo-ionized gas are well explained by the photo-ionization model of Kewley et al. (2001). When comparing the four galaxies, NGC3077, NGC4214, NGC5236, and NGC5253, previously studied in Calzetti et al. (2004) with our galaxies, we have found similar groups which share the same trend in line ratio plots. The origin of the groups can be explained by the effects of different metallicity and different starforming strength with respect to potential depth, which are strongly related to cooling rate and galactic wind driving mechanism. We compare the shock-ionized gas with shock-ionization model of Allen et al. (2008). Although the ``maximum starburst line'' gives us conservative estimation of shock-ionized gas, our rough estimation of shock velocity 250km/s of HE2-10 is consistent with Mendez et al. (1999). As an Appendix, we present a new objective technique for continuum subtraction from narrow-band image. We have found that skewness values of continuum subtracted images show a transitional feature around the optimal subtraction. We present some real applications and discuss about the strong points and the weak points of this technique.

  20. FORMALDEHYDE DENSITOMETRY OF STARBURST GALAXIES: DENSITY-INDEPENDENT GLOBAL STAR FORMATION

    SciTech Connect

    Mangum, Jeffrey G.; Darling, Jeremy; Henkel, Christian; Menten, Karl M. E-mail: jdarling@origins.colorado.edu E-mail: kmenten@mpifr-bonn.mpg.de

    2013-04-01

    Accurate techniques that allow for the derivation of the spatial density in star formation regions are rare. A technique that has found application for the derivation of spatial densities in Galactic star formation regions utilizes the density-sensitive properties of the K-doublet transitions of formaldehyde (H{sub 2}CO). In this paper, we present an extension of our survey of the formaldehyde 1{sub 10}-1{sub 11} ({lambda} = 6.2 cm) and 2{sub 11}-2{sub 12} ({lambda} = 2.1 cm) K-doublet transitions of H{sub 2}CO in a sample of 56 starburst systems. We have extended the number of galaxies in which both transitions have been detected from 5 to 13. We have improved our spatial density measurements by incorporating kinetic temperatures based upon NH{sub 3} measurements of 11 of the galaxies with a total of 14 velocity components in our sample. Our spatial density measurements lie in a relatively narrow range from 10{sup 4.5} to 10{sup 5.5} cm{sup -3}. This implies that the Schmidt-Kennicutt relation between L{sub IR} and M{sub dense} (1) is an indication of the dense gas mass reservoir available to form stars and (2) is not directly dependent upon a higher average density driving the star formation process in the most luminous starburst galaxies. We have also used our H{sub 2}CO measurements to derive two separate measures of the dense gas mass which are generally smaller, in many cases by a factor of 10{sup 2}-10{sup 3}, than those derived using HCN. This disparity suggests that H{sub 2}CO traces a denser, more compact component of the giant molecular clouds in our starburst galaxy sample. We also report measurements of the rotationally excited {lambda} = 6.3 cm {sup 2}{Pi}{sub 1/2} J = 1/2 state of OH and the H111{alpha} radio recombination line taken concurrently with our H{sub 2}CO 1{sub 10}-1{sub 11} measurements.

  1. HST/ACS PHOTOMETRY OF OLD STARS IN NGC 1569: THE STAR FORMATION HISTORY OF A NEARBY STARBURST

    SciTech Connect

    Grocholski, Aaron J.; Van der Marel, Roeland P.; Aloisi, Alessandra E-mail: marel@stsci.edu; and others

    2012-05-15

    We used Hubble Space Telescope/Advanced Camera for Surveys to obtain deep V- and I-band images of NGC 1569, one of the closest and strongest starburst galaxies in the universe. These data allowed us to study the underlying old stellar population, aimed at understanding NGC 1569's evolution over a full Hubble time. We focus on the less-crowded outer region of the galaxy, for which the color-magnitude diagram (CMD) shows predominantly a red giant branch (RGB) that reaches down to the red clump/horizontal branch feature (RC/HB). A simple stellar population analysis gives clear evidence for a more complicated star formation history (SFH) in the outer region. We derive the full SFH using a newly developed code, SFHMATRIX, which fits the CMD Hess diagram by solving a non-negative least-squares problem. Our analysis shows that the relative brightnesses of the RGB tip and RC/HB, along with the curvature and color of the RGB, provide enough information to ameliorate the age-metallicity-extinction degeneracy. The distance/reddening combination that best fits the data is E(B - V) = 0.58 {+-} 0.03 and D = 3.06 {+-} 0.18 Mpc. Star formation began {approx}13 Gyr ago, and this accounts for the majority of the mass in the outer region. However, the initial burst was followed by a relatively low, but constant, rate of star formation until {approx}0.5-0.7 Gyr ago when there may have been a short, low intensity burst of star formation. Stellar metallicity increases over time, consistent with chemical evolution expectations. The dominant old population shows a considerable spread in metallicity, similar to the Milky Way halo. However, the star formation in NGC 1569's outer region lasted much longer than in the Milky Way. The distance and line-of-sight velocity of NGC 1569 indicate that it has moved through the IC 342 group of galaxies, which may have caused this extended star formation. Comparison with other recent work provides no evidence for radial population gradients in the old

  2. ALMA Imaging of Gas and Dust in a Galaxy Protocluster at Redshift 5.3: [C II] Emission in "Typical" Galaxies and Dusty Starbursts ≈1 Billion Years after the Big Bang

    NASA Astrophysics Data System (ADS)

    Riechers, Dominik A.; Carilli, Christopher L.; Capak, Peter L.; Scoville, Nicholas Z.; Smolčić, Vernesa; Schinnerer, Eva; Yun, Min; Cox, Pierre; Bertoldi, Frank; Karim, Alexander; Yan, Lin

    2014-12-01

    We report interferometric imaging of [C II](2 P 3/2→2 P 1/2) and OH(2Π1/2 J = 3/2→1/2) emission toward the center of the galaxy protocluster associated with the z = 5.3 submillimeter galaxy (SMG) AzTEC-3, using the Atacama Large (sub)Millimeter Array (ALMA). We detect strong [C II], OH, and rest-frame 157.7 μm continuum emission toward the SMG. The [C II](2 P 3/2→2 P 1/2) emission is distributed over a scale of 3.9 kpc, implying a dynamical mass of 9.7 × 1010 M ⊙, and a star formation rate (SFR) surface density of ΣSFR = 530 M ⊙ yr-1 kpc-2. This suggests that AzTEC-3 forms stars at ΣSFR approaching the Eddington limit for radiation pressure supported disks. We find that the OH emission is slightly blueshifted relative to the [C II] line, which may indicate a molecular outflow associated with the peak phase of the starburst. We also detect and dynamically resolve [C II](2 P 3/2→2 P 1/2) emission over a scale of 7.5 kpc toward a triplet of Lyman-break galaxies with moderate UV-based SFRs in the protocluster at ~95 kpc projected distance from the SMG. These galaxies are not detected in the continuum, suggesting far-infrared SFRs of <18-54 M ⊙ yr-1, consistent with a UV-based estimate of 22 M ⊙ yr-1. The spectral energy distribution of these galaxies is inconsistent with nearby spiral and starburst galaxies, but resembles those of dwarf galaxies. This is consistent with expectations for young starbursts without significant older stellar populations. This suggests that these galaxies are significantly metal-enriched, but not heavily dust-obscured, "normal" star-forming galaxies at z > 5, showing that ALMA can detect the interstellar medium in "typical" galaxies in the very early universe.

  3. SUPERMASSIVE BLACK HOLE GROWTH IN STARBURST GALAXIES OVER COSMIC TIME: CONSTRAINTS FROM THE DEEPEST CHANDRA FIELDS

    SciTech Connect

    Rafferty, D. A.; Brandt, W. N.; Xue, Y. Q.; Luo, B.; Alexander, D. M.; Lehmer, B. D.; Bauer, F. E.; Papovich, C.

    2011-11-20

    We present an analysis of deep multiwavelength data for z Almost-Equal-To 0.3-3 starburst galaxies selected by their 70 {mu}m emission in the Extended-Chandra Deep Field-South and Extended Groth Strip. We identify active galactic nuclei (AGNs) in these infrared sources through their X-ray emission and quantify the fraction that host an AGN. We find that the fraction depends strongly on both the mid-infrared color and rest-frame mid-infrared luminosity of the source, rising to {approx}50%-70% at the warmest colors (F{sub 24{mu}m}/F{sub 70{mu}m} {approx}< 0.2) and highest mid-infrared luminosities (corresponding to ultraluminous infrared galaxies), similar to the trends found locally. Additionally, we find that the AGN fraction depends strongly on the star formation rate (SFR) of the host galaxy (inferred from the observed-frame 70 {mu}m luminosity after subtracting the estimated AGN contribution), particularly for more luminous AGNs (L{sub 0.5{sub -8.0keV}} {approx}> 10{sup 43} erg s{sup -1}). At the highest SFRs ({approx}1000 M{sub Sun} yr{sup -1}), the fraction of galaxies with an X-ray detected AGN rises to Almost-Equal-To 30%, roughly consistent with that found in high-redshift submillimeter galaxies. Assuming that the AGN fraction is driven by the SFR (rather than stellar mass or redshift, for which our sample is largely degenerate), this result implies that the duty cycle of luminous AGN activity increases with the SFR of the host galaxy: specifically, we find that luminous X-ray detected AGNs are at least {approx}5-10 times more common in systems with high SFRs ({approx}> 300 M{sub Sun} yr{sup -1}) than in systems with lower SFRs ({approx}< 30 M{sub Sun} yr{sup -1}). Lastly, we investigate the ratio between the supermassive black hole accretion rate (inferred from the AGN X-ray luminosity) and the bulge growth rate of the host galaxy (approximated as the SFR) and find that, for sources with detected AGNs and star formation (and neglecting systems with low

  4. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    NASA Technical Reports Server (NTRS)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; Koo, D. C.; Ferguson, H. C.; Scarlata, C.; Hathi, N. P.; Dunlop, J. S.; Newman, J. A.; Dickinson, M.; Jahnke, K.; Salmon, B. W.; deMello, D. F.; Kkocevski, D. D.; Lai, K.; Grogin, N. A.; Rodney, S. A.; Guo, Yicheng

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  5. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    NASA Technical Reports Server (NTRS)

    VanDerWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; hide

    2011-01-01

    We identify an abundant population of extreme emission line galaxies at redshift z=1.6 - 1.8 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared, broad-band fluxes. Supported by spectroscopic confirmation of strong [OIII] emission lines - with equivalent widths approximately 1000A - in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are dwarf galaxies with approximately 10(exp 8) solar mass in stellar mass, undergoing an enormous star-burst phase with M*/M* of only approximately 10 Myr. The star formation activity and the co-moving number density (3.7 x 10(exp -4) Mpc(exp -3)) imply that strong, short-lived bursts play a significant, perhaps even dominant role in the formation and evolution of dwarf galaxies at z greater than 1. The observed star formation activity can produce in less than 5 Gyr the same amount of stellar mass density as is presently contained in dwarf galaxies. Therefore, our observations provide a strong indication that the stellar populations of present-day dwarf galaxies formed mainly in strong, short-lived bursts, mostly at z greater than 1.

  6. The history of star formation in nearby dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel Ray

    2010-11-01

    We present detailed analysis of color-magnitude diagrams (CMDs) of resolved stellar populations in nearby dwarf galaxies based on observations taken with the Hubble Space Telescope (HST). From the positions of individual stars on a CMD, we are able to derive the star formation histories (SFHs), i.e., the star formation rate (SFR) as a function of time and metallicity, of the observed stellar populations. Specifically, we apply this technique to a number of nearby dwarf galaxies to better understand the mechanisms driving their evolution. The ACS Nearby Galaxy Survey Treasury program (ANGST) provides multi-color photometry of resolved stars in ˜ 60 nearby dwarf galaxies from images taken with HST. This sample contains 12 dSph, 5 dwarf spiral, 28 dIrr, 12 dSph/dIrr (transition), and 3 tidal dwarf galaxies. The sample spans a range of ˜ 10 in MB and covers a wide range of environments, from highly interacting to truly isolated. From the best fit lifetime SFHs we find three significant results: (1) the average dwarf galaxy formed ˜ 60% of its stars by z ˜ 2 and 70% of its stars by z ˜ 1, regardless of morphological type, (2) the only statistically significant difference between the SFHs of different morphological types is within the most recent 1 Gyr (excluding tidal dwarf galaxies), and (3) the SFHs are complex and the mean values are inconsistent with simple SFH models, e.g., single epoch SF or constant SFH. We then present the recent ( ≲ 1 Gyr) SFHs of nine M81 Group Dwarf Galaxies. Comparing the SFHs, birthrate parameters, fraction of stars formed per time interval, and spatial distribution of stellar components as a function of luminosity, we find only minor differences in SF characteristics among the M81 Group dIs despite a wide range of physical properties. We extend our comparison to select dIs in the Local Group (LG), with similar quality photometry, and again find only minor differences in SF parameters. The lack of a clear trend in SF parameters over

  7. Neutral hydrogen in nearby elliptical and lenticular galaxies: the continuing formation of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Morganti, R.; de Zeeuw, P. T.; Oosterloo, T. A.; McDermid, R. M.; Krajnović, D.; Cappellari, M.; Kenn, F.; Weijmans, A.; Sarzi, M.

    2006-09-01

    We present the results of deep Westerbork Synthesis Radio Telescope observations of neutral hydrogen in 12 nearby elliptical and lenticular galaxies. The selected objects come from a representative sample of nearby galaxies earlier studied at optical wavelengths with the integral-field spectrograph SAURON (Spectrographic Areal Unit for Research on Optical Nebulae). They are field galaxies, or (in two cases) located in poor group environments. We detect HI - both in regular discs as well as in clouds and tails offset from the host galaxy - in 70 per cent of the galaxies. This detection rate is much higher than in previous, shallower single-dish surveys, and is similar to that for the ionized gas. The results suggest that at faint detection levels the presence of HI is a relatively common characteristic of field early-type galaxies, confirming what was suggested twenty years ago by Jura based on IRAS observations. The observed total HI masses range between a few times 106 to just over 109Msolar. The presence of regular disc-like structures is a situation as common as HI in offset clouds and tails around early-type galaxies. All galaxies where HI is detected also contain ionized gas, whereas no HI is found around galaxies without ionized gas. Galaxies with regular HI discs tend to have strong emission from ionized gas. In these cases, the similar kinematics of the neutral hydrogen and ionized gas suggest that they form one structure. The kinematical axis of the stellar component is nearly always misaligned with respect to that of the gas. We do not find a clear trend between the presence of HI and the global age of the stellar population or the global dynamical characteristics of the galaxies. More specifically, HI detections are uniformly spread through the (V/σ, ɛ) diagram. If fast and slow rotators - galaxies with high and low specific angular momentum - represent the relics of different formation paths, this does not appear in the presence and characteristics of

  8. Stellar Populations of Highly Magnified Lensed Galaxies Young Starburst at Z to Approximately 2

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2011-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 170, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76 and SGAS J12265L3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 magnitudes allow a detailed study of the stellar populations and physical conditions. We compare star formation rates as measured from the SED fit, the Ha and [O II] .(lambda)3727 emission lines, and the UV+IR bolometric luminosity where 24micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z approx. 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses 3 - 7 x 10(exp 9) Stellar mass, young ages approx. 100 Myr, little dust content E(B - V)=0.10-0.25, and star formation rates around 20- 100 Stellar mass/y. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the build-up of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx. 2. Subject headings: galaxies: high-redshift, strong gravitational lensing, infrared: galaxies

  9. Discovery of a Galaxy Cluster with a Violently Starbursting Core at z = 2.506

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Elbaz, David; Daddi, Emanuele; Finoguenov, Alexis; Liu, Daizhong; Schreiber, Corentin; Martín, Sergio; Strazzullo, Veronica; Valentino, Francesco; van der Burg, Remco; Zanella, Anita; Ciesla, Laure; Gobat, Raphael; Le Brun, Amandine; Pannella, Maurilio; Sargent, Mark; Shu, Xinwen; Tan, Qinghua; Cappelluti, Nico; Li, Yanxia

    2016-09-01

    We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at z spec = 2.506, which contains 11 massive (M * ≳ 1011 M ⊙) galaxies in the central 80 kpc region (11.6σ overdensity). We have spectroscopically confirmed 17 member galaxies with 11 from CO and the remaining ones from Hα. The X-ray luminosity, stellar mass content, and velocity dispersion all point to a collapsed, cluster-sized dark matter halo with mass M 200c = 1013.9±0.2 M ⊙, making it the most distant X-ray-detected cluster known to date. Unlike other clusters discovered so far, this structure is dominated by star-forming galaxies (SFGs) in the core with only 2 out of the 11 massive galaxies classified as quiescent. The star formation rate (SFR) in the 80 kpc core reaches ˜3400 M ⊙ yr-1 with a gas depletion time of ˜200 Myr, suggesting that we caught this cluster in rapid build-up of a dense core. The high SFR is driven by both a high abundance of SFGs and a higher starburst fraction (˜25%, compared to 3%-5% in the field). The presence of both a collapsed, cluster-sized halo and a predominant population of massive SFGs suggests that this structure could represent an important transition phase between protoclusters and mature clusters. It provides evidence that the main phase of massive galaxy passivization will take place after galaxies accrete onto the cluster, providing new insights into massive cluster formation at early epochs. The large integrated stellar mass at such high redshift challenges our understanding of massive cluster formation.

  10. Neutral ISM, Lyα, and Lyman-continuum in the Nearby Starburst Haro11

    NASA Astrophysics Data System (ADS)

    Rivera-Thorsen, T. Emil; Östlin, Göran; Hayes, Matthew; Puschnig, Johannes

    2017-03-01

    Star-forming galaxies are believed to be a major source of Lyman continuum (LyC) radiation responsible for reionizing the early universe. Direct observations of escaping ionizing radiation have however been sparse and with low escape fractions. In the local universe, only 10 emitters have been observed, with typical escape fractions of a few percent. The mechanisms regulating this escape need to be strongly evolving with redshift in order to account for the epoch of reionization. Gas content and star formation feedback are among the main suspects, known to both regulate neutral gas coverage and evolve with cosmic time. In this paper, we reanalyze Hubble Space Telescope (HST)-Cosmic Origins Spectrograph (COS) spectrocopy of the first detected local LyC leaker, Haro 11. We examine the connection between LyC leakage and Lyα line shape, and feedback-influenced neutral interstellar medium (ISM) properties like kinematics and gas distribution. We discuss the two extremes of an optically thin, density bounded ISM and a riddled, optically thick, ionization bounded ISM, and how Haro 11 fits into theoretical predictions. We find that the most likely ISM model is a clumpy neutral medium embedded in a highly ionized medium with a combined covering fraction of unity and a residual neutral gas column density in the ionized medium high enough to be optically thick to Lyα, but low enough to be at least partly transparent to LyC and undetected in Si ii. This suggests that star formation feedback and galaxy-scale interaction events play a major role in opening passageways for ionizing radiation through the neutral medium. Based on observations with HST-COS, program GO 13017, obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and

  11. The Host Galaxies of Nearby, Optically Luminous, AGN

    NASA Astrophysics Data System (ADS)

    Petric, Andreea

    2016-01-01

    Coevolution of galaxies and their central black holes (BH) has been the central theme of much of recent extragalactic astronomical research. Observations of the dynamics of stars and gas in the nuclear regions of nearby galaxies suggest that the majority of spheroidal galaxies in the local Universe contain massive BHs and that the masses of those central BH correlate with the velocity dispersions of the stars in the spheroid and the bulge luminosity. Cold ISM is the basic fuel for star-formation and BH growth so its study is essential to understanding how galaxies evolve.I will present high sensitivity observations taken with the Herschel Space Observatory to measure the cold dust content in a sample of 85 nearby (z <= 0.5) QSOs chosen from the optically luminous broad-line PG QSOs sample (QSO1s) and in a complementary sample of 85 narrow-line QSOs (QSO2s) chosen to match the redshift and optical luminosity distribution of the broad-line targets. The FIR data are combined with NIR and MIR measurements from the Two Micron All Sky Survey and the Wide-Field Infrared Survey Explorer to determine their IR spectral energy distributions which we use to assess and compare the aggregate dust properties of QSO1s and QSO2s. I will also present NIR spectroscopy obtained with Gemini's Near-Infrared Spectrograph of a sub-sample of QSO2s and QSO1s which I use to compare the ratio of cold to warm H2 gas that emits in the NIR in the hosts of QSO1s and QSO2s.Finally I will present a comparison of star-formation in QSO1s and QSO2s. For both QSO1s and QSO2s 3stimates of star-formation rates that are based on the total IR continuum emission correlate with those based on the 11.3 micron PAH feature. However, for the QSO1s, star-formation rates estimated from the FIR continuum are higher than those estimated from the 11.3 micron PAH emission. This result can be attributed to a variety of factors including the possible destruction of the PAHs and that, in some sources, a fraction of the

  12. A Robust Test of the Unified Model for Seyfert Galaxies with Implications for the Starburst Phenomenon

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A.

    1997-01-01

    My research involves detailed analysis of X-ray emission from Active Galactic Nuclei (AGN). For over a decade, the paradigm for AGN has rested soundly on the unified model hypothesis, which posits that the only difference between broad-line objects (e.g., Type 1 Seyfert galaxies) and narrow-line objects (e.g., Type 2 Seyferts) is that in the former case our line of sight evades toroidal obscuration surrounding the nucleus, while in the latter, our line of sight is blocked by the optically thick torus. It is well established that some Seyfert 2s contain Seyfert I nuclei (i.e., a hidden broad line region), but whether or not all Seyfert 2s contain obscured Seyfert 1 nuclei or whether some Seyfert 2s are intrinsically Seyfert 2s is not known. Optical, IR, and UV surveys are not appropriate to examine this hypothesis because such emissions are either anisotropic or subject to the effects of obscuration, and thus depend strongly on viewing angle. Hard X-rays, on the other hand, can penetrate gas with column densities as high as 10( exp 24.5) cm(-2) and thus provide reliable, direct probes of the cores of heavily obscured AGN. Combining NASA archival data from the Advanced Satellite of Cosmology and Astrophysics (ASCA), the Rossi X-ray Timing Explorer (RXTE), and Rosat, I am accumulating X-ray data between 0.1 and 60 keV to produce a catalog of the broad-band X-ray spectral properties of Seyfert galaxies. These data will be used to perform concrete tests of the unified model, and (compared with similar data on Starbursts) to examine a possible evolutionary connection between Seyfert and Starburst galaxies.

  13. EVIDENCE FOR AN INTERACTION IN THE NEAREST STARBURSTING DWARF IRREGULAR GALAXY IC 10

    SciTech Connect

    Nidever, David L.; Slater, Colin T.; Bell, Eric F.; Ashley, Trisha; Simpson, Caroline E.; Ott, Jürgen; Johnson, Megan; Stanimirović, Snežana; Putman, Mary; Majewski, Steven R.; Jütte, Eva; Oosterloo, Tom A.; Burton, W. Butler

    2013-12-20

    Using deep 21 cm H I data from the Green Bank Telescope we have detected an ≳18.3 kpc long gaseous extension associated with the starbursting dwarf galaxy IC 10. The newly found feature stretches 1.°3 to the northwest and has a large radial velocity gradient reaching to ∼65 km s{sup –1} lower than the IC 10 systemic velocity. A region of higher column density at the end of the extension that possesses a coherent velocity gradient (∼10 km s{sup –1} across ∼26') transverse to the extension suggests rotation and may be a satellite galaxy of IC 10. The H I mass of IC 10 is 9.5 × 10{sup 7} (d/805 kpc){sup 2} M {sub ☉} and the mass of the new extension is 7.1 × 10{sup 5} (d/805 kpc){sup 2} M {sub ☉}. An IC 10-M31 orbit using known radial velocity and proper motion values for IC 10 show that the H I extension is inconsistent with the trailing portion of the orbit so that an M31-tidal or ram pressure origin seems unlikely. We argue that the most plausible explanation for the new feature is that it is the result of a recent interaction (and possible late merger) with another dwarf galaxy. This interaction could not only have triggered the origin of the recent starburst in IC 10, but could also explain the existence of previously found counter-rotating H I gas in the periphery of the IC 10 which was interpreted as originating from primordial gas infall.

  14. The Structure Of Post-Starburst Galaxies In The Early Universe

    NASA Astrophysics Data System (ADS)

    Maltby, David; Almaini, Omar; Wild, Vivienne

    2017-06-01

    Despite decades of study, we still do not fully understand why some massive galaxies abruptly switch off their star formation in the early Universe, and what causes their rapid transition to the red sequence. Post-starburst galaxies (PSBs) are key to understanding this transition phase, as they represent systems in which a major burst of star formation was rapidly quenched within the last Gyr. Recently, a new photometric PCA technique, has identified over 900 candidate PSBs in the UDS field at redshifts 0.5 to 2. In this conference poster, I present spectroscopic verification of this technique and demonstrate that 80% of the photometrically-selected PSB candidates show spectral signatures characteristic of this population. I also present results on the morphological structure of these galaxies, obtained from a combination of deep ground- and space-based imaging (UDS UKIRT-WFCAM and CANDELS HST-ACS/WFC3). Using both 2D-Sersic modelling and an independent isophotal analysis, I show that PSB galaxies at high redshift (z above 1) are surprisingly compact and spheroidal, while at lower redshifts they are more extended and disc-dominated. I also discuss what these results can tell us about the potential quenching mechanisms operating in this important transitional population at different epochs.

  15. The Impact of Massive Starbursts on the Chemical Evolution of Galaxies

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Henry A.

    Young, compact star clusters containing hundreds to thousands of the most massive OB and Wolf-Rayet type stars are common features of actively star-forming galaxies. Radio-wave H scI and millimeter-wave CO aperture synthesis observations of the interstellar gas in several such systems reveal strong evidence for recent collisions or mergers with other galaxies which probably triggered the present burst. Most of the oxygen in the universe, and to a lesser extent carbon and nitrogen, is synthesized within massive stars and returned to the interstellar gas by stellar winds and supernova explosions as these stars evolve. Yet, spatially-resolved spectroscopic investigations of the ionized gas in several starburst galaxies fail to find any sign of recent nucleosynthesis products in the vicinity of evolved starclusters. The chemical abundances of O, N, He, and probably C, appear very homogeneous on scales of ~1 kpc or less, despite the fact that models of the chemical enrichment expected from a single 106/ Msolar burst show that large localized chemical enhancements should occur. That there is no evidence of localized chemical enrichment within the H scII regions of most metal-poor galaxies suggests the recently-released heavy elements are 'hiding' either in a hot, 106 phase or in a cool neutral atomic or molecular phase. In either case, the timescale for visible enrichment in galaxies appears to exceed the lifetimes of the H scII regions and the spatial scales must exceed 1 kpc. These data are inconsistent with the H scII region 'self-enrichment' or 'pollution' hypothesis. For now, heavy elements produced in starbursts can be considered 'missing', but upcoming X-ray observatories may be able to establish their physical phase and location. Hubble Space Telescope spectroscopic measurements show evidence for a correlation between C and N abundances among galaxies with similar metallicity (O/H). The existence of such a correlation implies that C and N production mechanisms

  16. H I observations of the nearest starburst galaxy NGC 253 with the SKA precursor KAT-7

    NASA Astrophysics Data System (ADS)

    Lucero, D. M.; Carignan, C.; Elson, E. C.; Randriamampandry, T. H.; Jarrett, T. H.; Oosterloo, T. A.; Heald, G. H.

    2015-07-01

    We present H I observations of the Sculptor group starburst spiral galaxy NGC 253, obtained with the Karoo Array Telescope (KAT-7). KAT-7 is a pathfinder for the Square Kilometre Array precursor MeerKAT, under construction. The short baselines and low system temperature of the telescope make it very sensitive to large-scale, low-surface-brightness emission. The KAT-7 observations detected 33 per cent more flux than previous Very Large Array observations, mainly in the outer parts and in the halo for a total H I mass of 2.1 ± 0.1 × 109 M⊙. H I can be found at large distances perpendicular to the plane out to projected distances of ˜9-10 kpc away from the nucleus and ˜13-14 kpc at the edge of the disc. A novel technique, based on interactive profile fitting, was used to separate the main disc gas from the anomalous (halo) gas. The rotation curve (RC) derived for the H I disc confirms that it is declining in the outer parts, as seen in previous optical Fabry-Perot measurements. As for the anomalous component, its RC has a very shallow gradient in the inner parts and turns over at the same radius as the disc, kinematically lagging by 100 km s-1. The kinematics of the observed extra-planar gas is compatible with an outflow due to the central starburst and galactic fountains in the outer parts. However, the gas kinematics shows no evidence for inflow. Analysis of the near-IR WISE data, shows clearly that the star formation rate is compatible with the starburst nature of NGC 253.

  17. Dust extinction of the stellar continua in starburst galaxies: The ultraviolet and optical extinction law

    NASA Technical Reports Server (NTRS)

    Calzetti, Daniela; Kinney, Anne L.; Storchi-Bergmann, Thaisa

    1994-01-01

    We analyze the International Ultraviolet Explorer (IUE) UV and the optical spectra of 39 starburst and blue compact galaxies in order to study the average properties of dust extinction in extended regions of galaxies. The optical spectra have been obtained using an aperture which matches that of IUE, so comparable regions within each galaxy are sampled. The data from the 39 galaxies are compared with five models for the geometrical distribution of dust, adopting as extinction laws both the Milky Way and the Large Magellanic Cloud laws. The commonly used uniform dust screen is included among the models. We find that none of the five models is in satisfactory agreement with the data. In order to understand the discrepancy between the data and the models, we have derived an extinction law directly from the data in the UV and optical wavelength range. The resulting curve is characterized by an overall slope which is more gray than the Milky Way extinction law's slope, and by the absence of the 2175 A dust feature. Remarkably, the difference in optical depth between the Balmer emission lines H(sub alpha) and H(sub beta) is about a factor of 2 larger than the difference in the optical depth between the continuum underlying the two Balmer lines. We interpret this discrepancy as a consequence of the fact that the hot ionizing stars are associated with dustier regions than the cold stellar population is. The absence of the 2175 A dust feature can be due either to the effects of the scattering and clumpiness of the dust or to a chemical composition different from that of the Milky Way dust grains. Disentangling the two interpretations is not easy because of the complexity of the spatial distribution of the emitting regions. The extinction law of the UV and optical spectral continua of extended regions can be applied to the spectra of medium- and high-redshift galaxies, where extended regions of a galaxy are, by necessity, sampled.

  18. Investigating the Processes Driving Low-Mass Galaxy Evolution with Gas Metallicities of Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malkan, Matthew; Nagao, Tohru; Hayashi, Masao; Kashikawa, Nobunari; Shimasaku, Kazuhiro; Motohara, Kentaro

    2013-02-01

    There appears to be a ``fundamental" relationship that links the stellar masses, star-formation rates (SFRs), and gas metallicities of local galaxies. It has been used to constrain the major processes in galaxy evolution. However, it is unclear whether (1) this observed relation holds at earlier cosmic time, and (2) if it applies to low-mass galaxies and/or those with relatively higher specific SFRs (sSFRs). We request follow-up Hectospec spectroscopy %and DEIMOS spectroscopy to obtain gas metallicity measurements in key unexplored domains of galaxy parameter space. We will target Ntarget low-mass high equivalent width (EW) emission-line galaxies at zrange in the Subaru Deep Field (SDF). This sample is a factor of almost 4 larger than the existing data for galaxies with similar redshifts, SFRs and stellar masses. The SDF is ideal for such a survey because of its unique multi-wavelength imaging data that allow us to (1) identify a much higher surface density of high-EW star-forming galaxies over a wide redshift range than in any other survey, and (2) determine stellar masses and SFRs for individual galaxies. With the largest spectroscopic sample of low mass and/or high sSFR galaxies, we will determine the relationships between metallicity, stellar mass, and SFRs for dwarf galaxies. We will examine if the same galaxy evolution processes in massive galaxies also hold for lower mass galaxies over the past six billion years.

  19. Simulated optical images of galaxies at z about 1 using ultraviolet images of nearby galaxies

    NASA Technical Reports Server (NTRS)

    Bohlin, Ralph C.; Cornett, Robert H.; Hill, Jesse K.; Hill, Robert S.; Landsman, Wayne B.; O'Connell, Robert W.; Neff, Susan G.; Smith, Andrew M.; Stecher, Theodore P.

    1991-01-01

    Ultraviolet sounding rocket images of several nearby galaxies are used to simulate the appearance in optical bandpasses of similar systems at redshifts z = 0.5-2.67, as observed by the WFPC on HST and by ground-based instruments. Since the morphology of galaxies is a strong function of the wavelength, the appearance of galaxies at large redshifts is subjected to a large k-correction effect. The strong dependence of monochromatic surface brightness on redshift also implies that observed morphology of distant systems will be crucially dependent on the limiting surface brightness set by the sky background. Although the angle subtended by sources depends only weakly on z, the fraction of a galaxy whose surface brightness is above the detection threshold varies strongly with z. Morphological distinctions of spiral from elliptical, spiral from irregular, and barred from unbarred types become more difficult, as does accurate evaluation of interactions or of the local environment.

  20. Motions in Nearby Galaxy Cluster Reveal Presence of Hidden Superstructure

    NASA Astrophysics Data System (ADS)

    2004-09-01

    A nearby galaxy cluster is facing an intergalactic headwind as it is pulled by an underlying superstructure of dark matter, according to new evidence from NASA's Chandra X-ray Observatory. Astronomers think that most of the matter in the universe is concentrated in long large filaments of dark matter and that galaxy clusters are formed where these filaments intersect. A Chandra survey of the Fornax galaxy cluster revealed a vast, swept-back cloud of hot gas near the center of the cluster. This geometry indicates that the hot gas cloud, which is several hundred thousand light years in length, is moving rapidly through a larger, less dense cloud of gas. The motion of the core gas cloud, together with optical observations of a group of galaxies racing inward on a collision course with it, suggests that an unseen, large structure is collapsing and drawing everything toward a common center of gravity. X-ray Image of Fornax with labels X-ray Image of Fornax with labels "At a relatively nearby distance of about 60 million light years, the Fornax cluster represents a crucial laboratory for studying the interplay of galaxies, hot gas and dark matter as the cluster evolves." said Caleb Scharf of Columbia University in New York, NY, lead author of a paper describing the Chandra survey that was presented at an American Astronomical Society meeting in New Orleans, LA. "What we are seeing could be associated directly with the intergalactic gas surrounding a very large scale structure that stretches over millions of light years." The infalling galaxy group, whose motion was detected by Michael Drinkwater of the University of Melbourne in Australia, and colleagues, is about 3 million light years from the cluster core, so a collision with the core will not occur for a few billion years. Insight as to how this collision will look is provided by the elliptical galaxy NGC 1404 that is plunging into the core of the cluster for the first time. As discussed by Scharf and another group

  1. Mid-infrared Colors of Dwarf Galaxies: Young Starbursts Mimicking Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Hainline, Kevin N.; Reines, Amy E.; Greene, Jenny E.; Stern, Daniel

    2016-12-01

    Searching for active galactic nuclei (AGNs) in dwarf galaxies is important for our understanding of the seed black holes that formed in the early universe. Here, we test infrared selection methods for AGN activity at low galaxy masses. Our parent sample consists of ˜18,000 nearby dwarf galaxies (M * < 3 × 109 M ⊙, z < 0.055) in the Sloan Digital Sky Survey with significant detections in the first three bands of the AllWISE data release from the Wide-field Infrared Survey Explorer (WISE). First, we demonstrate that the majority of optically selected AGNs in dwarf galaxies are not selected as AGNs using WISE infrared color diagnostics and that the infrared emission is dominated by the host galaxies. We then investigate the infrared properties of optically selected star-forming dwarf galaxies, finding that the galaxies with the reddest infrared colors are the most compact, with blue optical colors, young stellar ages, and large specific star formation rates. These results indicate that great care must be taken when selecting AGNs in dwarf galaxies using infrared colors, as star-forming dwarf galaxies are capable of heating dust in such a way that mimics the infrared colors of more luminous AGNs. In particular, a simple W1-W2 color cut alone should not be used to select AGNs in dwarf galaxies. With these complications in mind, we present a sample of 41 dwarf galaxies that fall in the WISE infrared color space typically occupied by more luminous AGNs and that are worthy of follow-up observations.

  2. Diverse stellar haloes in nearby Milky Way mass disc galaxies

    NASA Astrophysics Data System (ADS)

    Harmsen, Benjamin; Monachesi, Antonela; Bell, Eric F.; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; Holwerda, Benne W.

    2017-04-01

    We have examined the resolved stellar populations at large galactocentric distances along the minor axis (from 10 kpc up to between 40 and 75 kpc), with limited major axis coverage, of six nearby highly inclined Milky Way (MW) mass disc galaxies using Hubble Space Telescope data from the Galaxy haloes, Outer discs, Substructure, Thick discs, and Star clusters (GHOSTS) survey. We select red giant branch stars to derive stellar halo density profiles. The projected minor axis density profiles can be approximated by power laws with projected slopes of -2 to -3.7 and a diversity of stellar halo masses of 1-6 × 109 M⊙, or 2-14 per cent of the total galaxy stellar masses. The typical intrinsic scatter around a smooth power-law fit is 0.05-0.1 dex owing to substructure. By comparing the minor and major axis profiles, we infer projected axis ratios c/a at ∼25 kpc between 0.4and0.75. The GHOSTS stellar haloes are diverse, lying between the extremes charted out by the (rather atypical) haloes of the MW and M31. We find a strong correlation between the stellar halo metallicities and the stellar halo masses. We compare our results with cosmological models, finding good agreement between our observations and accretion-only models where the stellar haloes are formed by the disruption of dwarf satellites. In particular, the strong observed correlation between stellar halo metallicity and mass is naturally reproduced. Low-resolution hydrodynamical models have unrealistically high stellar halo masses. Current high-resolution hydrodynamical models appear to predict stellar halo masses somewhat higher than observed but with reasonable metallicities, metallicity gradients, and density profiles.

  3. Hα kinematics of the Spitzer Infrared Nearby Galaxies Survey - II

    NASA Astrophysics Data System (ADS)

    Dicaire, I.; Carignan, C.; Amram, P.; Hernandez, O.; Chemin, L.; Daigle, O.; de Denus-Baillargeon, M.-M.; Balkowski, C.; Boselli, A.; Fathi, K.; Kennicutt, R. C.

    2008-04-01

    This is the second part of an Hα kinematics follow-up survey of the Spitzer Infrared Nearby Galaxies Survey (SINGS) sample. The aim of this paper is to shed new light on the role of baryons and their kinematics and on the dark/luminous matter relation in the star-forming regions of galaxies, in relation with studies at other wavelengths. The data for 37 galaxies are presented. The observations were made using Fabry-Perot interferometry with the photon-counting camera FaNTOmM on four different telescopes, namely the Canada-France-Hawaii 3.6-m, the ESO La Silla 3.6-m, the William Herschel 4.2-m and the Observatoire du mont Mégantic 1.6-m telescopes. The velocity fields are computed using custom IDL routines designed for an optimal use of the data. The kinematical parameters and rotation curves are derived using the GIPSY software. It is shown that non-circular motions associated with galactic bars affect the kinematical parameters fitting and the velocity gradient of the rotation curves. This leads to incorrect determinations of the baryonic and dark matter distributions in the mass models derived from those rotation curves. Based on observations made with the ESO 3.60-m telescope at La Silla Observatories under programme ID 076.B-0859 and on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France and the University of Hawaii. E-mail: isabelle@astro.umontreal.ca (ID);claude.carignan@umontreal.ca (CC) ‡ Visiting Astronomer, Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France and the University of Hawaii.

  4. STAR CLUSTER POPULATIONS IN THE OUTER DISKS OF NEARBY GALAXIES

    SciTech Connect

    Herbert-Fort, Stephane; Zaritsky, Dennis; Di Paola, Andrea; Pogge, Richard W.; Ragazzoni, Roberto E-mail: dennis.zaritsky@gmail.com

    2012-08-01

    We present a Large Binocular Telescope imaging study that characterizes the star cluster component of nearby galaxy outer disks (beyond the optical radius R{sub 25}). Expanding on the pilot project of Herbert-Fort et al., we present deep ({approx}27.5 mag V-band point-source limiting magnitude) U- and V-band imaging of six galaxies: IC 4182, NGC 3351, NGC 4736, NGC 4826, NGC 5474, and NGC 6503. We find that the outer disk of each galaxy is populated with marginally resolved star clusters with masses {approx}10{sup 3} M{sub Sun} and ages up to {approx}1 Gyr (masses and ages are limited by the depth of our imaging and uncertainties are large given how photometry can be strongly affected by the presence or absence of a few stars in such low-mass systems), and that they are typically found out to at least 2 R{sub 25} but sometimes as far as 3-4 R{sub 25}-even beyond the apparent H I disk. The mean rate of cluster formation for 1 R{sub 25} {<=} R {<=} 1.5 R{sub 25} is at least one every {approx}2.5 Myr and the clusters are spatially correlated with the H I, most strongly with higher density gas near the periphery of the optical disk and with lower density neutral gas at the H I disk periphery. We hypothesize that the clusters near the edge of the optical disk are formed in the extension of spiral structure from the inner disk and are a fairly consistent phenomenon and that the clusters formed at the periphery of the H I disk are the result of accretion episodes.

  5. RESOLVED NEAR-INFRARED STELLAR POPULATIONS IN NEARBY GALAXIES

    SciTech Connect

    Dalcanton, Julianne J.; Williams, Benjamin F.; Rosenfield, Philip A.; Gilbert, Karoline E-mail: ben@astro.washington.edu E-mail: kgilbert@astro.washington.edu; and others

    2012-01-01

    We present near-infrared (NIR) color-magnitude diagrams (CMDs) for the resolved stellar populations within 26 fields of 23 nearby galaxies ({approx}< 4 Mpc), based on images in the F110W and F160W filters taken with the Wide-Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). The CMDs are measured in regions spanning a wide range of star formation histories, including both old dormant and young star-forming populations. We match key NIR CMD features with their counterparts in more familiar optical CMDs, and identify the red core helium-burning (RHeB) sequence as a significant contributor to the NIR flux in stellar populations younger than a few 100 Myr old. The strength of this feature suggests that the NIR mass-to-light ratio can vary significantly on short timescales in star-forming systems. The NIR luminosity of star-forming galaxies is therefore not necessarily proportional to the stellar mass. We note that these individual RHeB stars may also be misidentified as old stellar clusters in images of nearby galaxies. For older stellar populations, we discuss the CMD location of asymptotic giant branch (AGB) stars in the HST filter set and explore the separation of AGB subpopulations using a combination of optical and NIR colors. We empirically calibrate the magnitude of the NIR tip of the red giant branch in F160W as a function of color, allowing future observations in this widely adopted filter set to be used for distance measurements. We also analyze the properties of the NIR red giant branch (RGB) as a function of metallicity, showing a clear trend between NIR RGB color and metallicity. However, based on the current study, it appears unlikely that the slope of the NIR RGB can be used as an effective metallicity indicator in extragalactic systems with comparable data. Finally, we highlight issues with scattered light in the WFC3, which becomes significant for exposures taken close to a bright Earth limb.

  6. OBSERVATIONS OF STARBURST GALAXIES WITH FAR-ULTRAVIOLET SPECTROGRAPHIC EXPLORER: GALACTIC FEEDBACK IN THE LOCAL UNIVERSE

    SciTech Connect

    Grimes, J. P.; Heckman, T.; Meurer, G.; Strickland, D.; Aloisi, A.; Leitherer, C.; Sembach, K.; Calzetti, D.; Martin, C. L. E-mail: heckman@pha.jhu.edu E-mail: dks@pha.jhu.edu E-mail: leitherer@stsci.edu E-mail: cmartin@physics.ucsb.edu

    2009-03-15

    We have analyzed FUSE (905-1187 A) spectra of a sample of 16 local starburst galaxies. These galaxies cover almost three orders of magnitude in star-formation rates and over two orders of magnitude in stellar mass. Absorption features from the stars and interstellar medium are observed in all the spectra. The strongest interstellar absorption features are generally blue-shifted by {approx} 50-300 km s{sup -1}, implying the almost ubiquitous presence of starburst-driven galactic winds in this sample. The outflow velocites increase with both the star-formation rate and the star-formation rate per unit stellar mass, consistent with a galactic wind, driven by the population of massive stars. We find outflowing coronal-phase gas (T {approx}10{sup 5.5} K) detected via the O VI absorption line in nearly every galaxy. The O VI absorption-line profile is optically thin, is generally weak near the galaxy-systemic velocity, and has a higher mean outflow velocity than seen in the lower ionization lines. The relationship between the line width and column density for the O VI absorbing gas is in good agreement with expectations for radiatively cooling and outflowing gas. Such gas will be created in the interaction of the hot out-rushing wind seen in X-ray emission and cool dense ambient material. O VI emission is not generally detected in our sample, suggesting that radiative cooling by the coronal gas is not dynamically significant in draining energy from galactic winds. We find that the measured outflow velocities in the H I and H II phases of the interstellar gas in a given galaxy increase with the strength (equivalent width) of the absorption feature and not with the ionization potential of the species. The strong lines often have profiles consisting of a broad and optically-thick component centered near the galaxy-systemic velocity and weaker but highly blue-shifted absorption. This suggests that the outflowing gas with high velocity has a lower column density than the more

  7. Probing the circumnuclear stellar populations of starburst galaxies in the near-infrared

    NASA Astrophysics Data System (ADS)

    Dametto, N. Z.; Riffel, R.; Pastoriza, M. G.; Rodríguez-Ardila, A.; Hernandez-Jimenez, J. A.; Carvalho, E. A.

    2014-09-01

    We employ the NASA Infrared Telescope Facility's near-infrared spectrograph SpeX at 0.8-2.4 μm to investigate the spatial distribution of the stellar populations (SPs) in the four well-known starburst galaxies: NGC 34, NGC 1614, NGC 3310 and NGC 7714. We use the STARLIGHT code updated with the synthetic simple SPs models computed by Maraston. Our main results are that the near-infrared light in the nuclear surroundings of the galaxies is dominated by young-/intermediate-age SPs (t ≤ 2 × 109 yr), summing from ˜40 up to 100 per cent of the light contribution. In the nuclear aperture of two sources (NGC 1614 and NGC 3310), we detected a predominant old SP component (t > 2 × 109 yr), while for NGC 34 and NGC 7714 the younger component prevails. Furthermore, we found evidence of a circumnuclear star formation ring-like structure and a secondary nucleus in NGC 1614, in agreement with previous studies. We also suggest that the merger/interaction experienced by three of the galaxies studied, NGC 1614, NGC 3310 and NGC 7714, can explain the lower metallicity values derived for the young SP component of these sources. In this scenario, the fresh unprocessed metal poorer gas from the destroyed/interacting companion galaxy is driven to the centre of the galaxies and mixed with the central region gas, before star formation takes place. In order to deepen our analysis, we performed the same procedure of SP synthesis using the Maraston & Strömbäck evolutionary population synthesis models. Our results show that the newer and higher resolution M11 models tend to enhance the old-/intermediate-age SP contribution over the younger ages.

  8. Stellar Populations of Highly Magnified Lensed Galaxies: Young Starbursts at z ~ 2

    NASA Astrophysics Data System (ADS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2012-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions (SEDs) and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 1.70, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76, and SGAS J122651.3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 mag allow a detailed study of the stellar populations and physical conditions. We compare star formation rates (SFRs) as measured from the SED fit, the Hα and [O II] λ3727 emission lines, and the UV+IR bolometric luminosity where 24 μm photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z ~ 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses (3-7) × 109 M ⊙, young ages ~100 Myr, little dust content E(B - V) = 0.10-0.25, and SFRs around 20-100 M ⊙ yr-1. Compared to typical values for the galaxy population at z ~ 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the buildup of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z ~ 2. Based in part on observations collected at the 3.5 m Apache Point Observatory telescope in New Mexico, which is owned and operated by the Astrophysical Research Consortium.

  9. Stellar Populations of Highly Magnified Lensed Galaxies: Young Starbursts at Z approximately 2

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2012-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions (SEDs) and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 1.70, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76, and SGAS J122651.3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 mag allow a detailed study of the stellar populations and physical conditions. We compare star formation rates (SFRs) as measured from the SED fit, the Ha and [O II] ?3727 emission lines, and the UV+IR bolometric luminosity where 24 micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses (3-7) ? 10(exp 9)Solar M young ages approx 100 Myr, little dust content E(B - V) = 0.10-0.25, and SFRs around 20-100 solar M/ yr. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the buildup of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx 2.

  10. Compact Starbursts in z ˜ 3-6 Submillimeter Galaxies Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Ikarashi, Soh; Ivison, R. J.; Caputi, Karina I.; Aretxaga, Itziar; Dunlop, James S.; Hatsukade, Bunyo; Hughes, David H.; Iono, Daisuke; Izumi, Takuma; Kawabe, Ryohei; Kohno, Kotaro; Lagos, Claudia D. P.; Motohara, Kentaro; Nakanishi, Kouichiro; Ohta, Kouji; Tamura, Yoichi; Umehata, Hideki; Wilson, Grant W.; Yabe, Kiyoto; Yun, Min S.

    2015-09-01

    We report the source size distribution, as measured by ALMA millimetric continuum imaging, of a sample of 13 AzTEC-selected submillimeter galaxies (SMGs) at {z}{phot}˜ 3-6. Their infrared luminosities and star formation rates (SFRs) are {L}{IR}˜ 2-6× {10}12 {L}⊙ and ˜200-600 {M}⊙ yr-1, respectively. The sizes of these SMGs range from 0.″10 to 0.″38, with a median of 0.″20 {}-0\\buildrel{\\prime\\prime\\over{.} 05}+0\\buildrel{\\prime\\prime\\over{.} 03} (FWHM), corresponding to a median circularized effective radius ({R}{{c},{{e}}}) of {0.67}-0.14+0.13 kpc, comparable to the typical size of the stellar component measured in compact quiescent galaxies at z˜ 2 (cQGs)—{R}{{e}}˜ 1 kpc. The median surface SFR density of our SMGs is {100}-26+42 {M}⊙ yr-1 kpc-2, comparable to that seen in local merger-driven (U)LIRGs rather than in extended disk galaxies at low and high redshifts. The discovery of compact starbursts in z≳ 3 SMGs strongly supports a massive galaxy formation scenario wherein z˜ 3-6 SMGs evolve into the compact stellar components of z˜ 2 cQGs. These cQGs are then thought to evolve into the most massive ellipticals in the local universe, mostly via dry mergers. Our results thus suggest that z≳ 3 SMGs are the likely progenitors of massive local ellipticals, via cQGs, meaning that we can now trace the evolutionary path of the most massive galaxies over a period encompassing ˜90% of the age of the universe.

  11. Chandra Examines Black Holes Large and Small in Nearby Galaxy

    NASA Astrophysics Data System (ADS)

    2001-05-01

    Probing a large, nearby galaxy in the constellation of Circinus, NASA’s Chandra X-ray Observatory presents a new view of both the galaxy’s supermassive black hole and a host of potential smaller black holes sprinkled throughout its spiral arms. The results include the first detection of a black hole’s periodic variability in X-rays outside our galactic neighborhood. Astronomers from Penn State University used Chandra to discover a variable object within the dozen or so X-ray emitting sources sprinkled throughout the Circinus galaxy. The intensity of X-rays from this source changes on a cycle of 7.5 hours - the first time this "periodic variability" has been detected at X-ray wavelengths in an object outside the "Local Group" of galaxies. And, along with its brightness, this evidence strongly suggests that the system contains a black hole some 50 times the mass of the Sun. "Extremely luminous X-ray sources such as this one appear to be common among other galaxies," said Franz Bauer, a postdoctoral scholar at Penn State and lead author of a July 2001 paper in The Astronomical Journal. "But until Chandra, we have never had an instrument that could clearly identify whether they were simply massive X-ray binary systems, or if they represented a new class of objects" "The periodic variability in the Chandra data of Circinus provides us with a key signature that these objects are indeed X-ray binary systems," continued Bauer. "This is important because black holes with masses much larger than 10 times the mass of the Sun such as this one are difficult to explain under current theories of star formation and destruction. Definitively finding a periodic signal in one allows us to test some of our past assumptions." The X-ray data acquired by two independent teams -- one at Penn State and George Mason University and the other at the University of Maryland -- also provide evidence that strongly supports the "unified model," a theory in which a large doughnut-shaped ring

  12. Uv Imaging of Circumnuclear Starburst Rings

    NASA Astrophysics Data System (ADS)

    Colina, Luis

    1996-07-01

    We propose to obtain F218W WFPC images of a well defined sample of nearby galaxies with face-on circumnuclear starburst rings, and covering different levels of activity from pure starbursts to Seyfert 1 {AGNs}. These high resolution images will allow to generate for the first time an homogeneous database with the UV properties of about 60 individual circumnuclear star-forming knots. The use of the database will allow for the first time a direct and quantitative determination of basic ultraviolet properties of individual nuclear/circumnuclear star-forming knots, and of the entire starburst ring, such as: {a} their size and structure, {b} their UV luminosity function and, {c} their contribution to the UV energy output in composite AGN+starburst galaxies. The database will help in our understanding of high redshift blue galaxies, thought to be star-forming galaxies, where the flux detected in optical filters corresponds to flux emitted at UV {1500-3000Angstrom} rest frame wavelengths. The requested UV images will be combined with ROSAT/HRI images to characterize for the first time the high energy end, i.e. UV to soft X-rays, of circumnuclear starburst rings.

  13. Spatially resolved star formation relation in two HI-rich galaxies with central post-starburst signature

    NASA Astrophysics Data System (ADS)

    Klitsch, Anne; Zwaan, Martin A.; Kuntschner, Harald; Couch, Warrick J.; Pracy, Michael B.; Owers, Matt

    2017-04-01

    Context. E+A galaxies are post-starburst systems that are identified based on their optical spectra. These galaxies contain a substantial young A-type stellar component but display no emission lines, which indicates only little ongoing star formation (SF). HI 21 cm line emission is found in approximately half of the nearby E+A galaxies, indicating that they contain a reservoir of gas that could fuel active SF. Aims: We study the distribution and kinematics of atomic and molecular gas in two HI-rich galaxies, which show a typical E+A spectrum at the centre and SF at larger radii. From our results we aim to infer whether the SF activity of these galaxies is consistent with the activity seen in disc galaxies, or if it indicates a transition towards another evolutionary phase. Methods: We present newly obtained high spatial resolution radio interferometric observations of the HI 21 cm emission line using the Karl Jansky Very Large Array (VLA) and of the CO(1-0) emission line using the Atacama Large Millimeter/submillimeter Array (ALMA). We combine these data sets to predict the star formation rate (SFR) using a pressure-based SF relation and show that it does not correlate well with the SFR derived from Hα on sub-kpc scales. We apply a recently developed statistical model for the small-scale behaviour of the SF relation to predict and interpret the observed scatter. Results: We find regularly rotating HI gas that is smoothly distributed across the entire disc. The CO(1-0) emission line is not detected for either of the two galaxies. The derived upper limit on the CO mass implies a molecular gas depletion time of tdepl ≲ 20 Myr. However, because of the low metallicity, the CO-to-H2 conversion factor is highly uncertain. In the relations between the Hα-based SFR and the HI mass, we observe a substantial scatter we demonstrate results from small-number statistics of independent SF regions on sub-kpc scales. Conclusions: We confirm the HI-richness of ESO534-G001 and 2d

  14. Modelling galaxy spectra in presence of interstellar dust - III. From nearby galaxies to the distant Universe

    NASA Astrophysics Data System (ADS)

    Cassarà, L. P.; Piovan, L.; Chiosi, C.

    2015-07-01

    Improving upon the standard evolutionary population synthesis technique, we present spectrophotometric models of galaxies with morphology going from spherical structures to discs, properly accounting for the effect of dust in the interstellar medium (ISM). The models contain three main physical components: the diffuse ISM made of gas and dust, the complexes of molecular clouds where active star formation occurs, and stars of any age and chemical composition. These models are based on robust evolutionary chemical description providing the total amount of gas and stars present at any age, and matching the properties of galaxies of different morphological types. We have considered the results obtained by Piovan et al. for the properties of the ISM, and those by Cassarà et al. for the spectral energy distribution (SED) of single stellar populations, both in presence of dust, to model the integral SEDs of galaxies of different morphological types, going from pure bulges to discs passing through a number of composite systems with different combinations of the two components. The first part of the paper is devoted to recall the technical details of the method and the basic relations driving the interaction between the physical components of the galaxy. Then, the main parameters are examined and their effects on the SED of three prototype galaxies are highlighted. The theoretical SEDs nicely match the observational ones both for nearby galaxies and those at high redshift.

  15. Launching Outflows from Nuclei and Starbursts in Ultra-luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Rudy, Alexander R.; Medling, Anne Marie; U, Vivian; Srinath, Srikar; Max, Claire E.

    2015-08-01

    Multiple lines of evidence suggest that galaxies in the early universe expel much of the interstellar medium via massive outflows. Theory says that these outflows are needed to quench star formation, limit black hole accretion, and give rise to observed relationships between the central black hole's mass and properties of the galaxy's bulge. We present integral field spectroscopy of the central kiloparsec of 9 *nearby* ultra-luminous infrared-galaxies which are known to have high velocity (v>500 km/s) molecular outflows. These observations were performed with the OH-Suppressing Infra-red Imaging Spectrograph (OSIRIS) assisted by the Keck I and II Adaptive Optics systems, which enables spatial resolutions of a few 10s of parsecs. We present the preliminary results of a survey designed to explore the relationship between AGN luminosity fraction ($\\alpha_{AGN}$) and outflow properties among lower-redshift (z < 0.15) ULIRG systems that host high velocity outflows. Our data allow us to examine the opening angle and launching point of the outflow, excitation and temperature of outflowing components (through $H_2$ lines and high-excitation lines such as [SiIV] and [AlIX]), and molecular outflow mass in these systems. This work provides a nearby, spatially resolved analogue to higher-redshift outflows, allowing us to study the physical processes which launch outflows on their smallest scales, with the goal of relating this to the outflows which must govern the evolution of the most massive galaxies.

  16. 2D kinematical study in local luminous compact blue galaxies. Starburst origin in UCM2325+2318

    NASA Astrophysics Data System (ADS)

    Castillo-Morales, A.; Pérez-Gallego, J.; Gallego, J.; Guzmán, R.; Castander, F.; Garland, C.; Gruel, N.; Pisano, D. J.; Muñoz-Mateos, J. C.; Ocaña, F.; Zamorano, J.

    2013-05-01

    Luminous Compact Blue Galaxies (LCBGs) are small, but vigorously star forming galaxies. Their presence at different redshifts denotes their cosmological relevance and implies that local starburst galaxies, when properly selected, are unique laboratories for studying the complex ecosystem of the star formation process over time. We have selected a representative sample of 22 LCBGs from the SDSS and UCM databases which, although small, provides an excellent reference for comparison with current and future surveys of similar starbursts at high-z. We are carrying out a 2D optical spectroscopic study of this LCBG sample, including spatially resolved maps of kinematics, extinction, SFR and metallicity. This will help us to answer questions regarding the nature of these objects. In this poster we show our results on the kinematical study (Pérez-Gallego et al. 2011) which allows us to classify these galaxies into three different classes: rotating disk (RD) 48%, perturbed rotation (PR) 28% and complex kinematics (CK) 24%. We find 5% of objects show evidence of a recent major merger, 10% of a minor merger, and 45% of a companion. This argues in favor of ongoing interactions with close companions as a mechanism for the enhanced star formation activity in these galaxies. We find only 5% of objects with clear evidence of AGN activity, and 27% with kinematics consistent with SN-driven galactic winds. Therefore, a different mechanism may be responsible for quenching the star formation in LCBGs. The detailed analysis of the physical properties for each galaxy in the sample is on progress and we show in this poster the results on UCM2325+2318 as a prototype LCBG. Between the possible mechanisms to explain the starburst activity in this galaxy, our 2D spectroscopic data support the scenario of an on-going interaction with the possibility for clump B to be the dwarf satellite galaxy (Castillo-Morales et al. 2011, Pérez-Gallego et al. 2010).

  17. DIRECT DETECTIONS OF YOUNG STARS IN NEARBY ELLIPTICAL GALAXIES

    SciTech Connect

    Ford, H. Alyson; Bregman, Joel N.

    2013-06-20

    Small amounts of star formation in elliptical galaxies are suggested by several results: surprisingly young ages from optical line indices, cooling X-ray gas, and mid-infrared dust emission. Such star formation has previously been difficult to directly detect, but using ultraviolet Hubble Space Telescope Wide Field Camera 3 imaging, we have identified individual young stars and star clusters in four nearby ellipticals. Ongoing star formation is detected in all galaxies, including three ellipticals that have previously exhibited potential signposts of star-forming conditions (NGC 4636, NGC 4697, and NGC 4374), as well as the typical ''red and dead'' NGC 3379. The current star formation in our closest targets, where we are most complete, is between 2.0 and 9.8 Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}. The star formation history was roughly constant from 0.5 to 1.5 Gyr (at (3-5) Multiplication-Sign 10{sup -4} M{sub Sun} yr{sup -1}), but decreased by a factor of several in the past 0.3 Gyr. Most star clusters have a mass between 10{sup 2} and 10{sup 4} M{sub Sun }. The specific star formation rates of {approx}10{sup -16} yr{sup -1} (at the present day) or {approx}10{sup -14} yr{sup -1} (when averaging over the past Gyr) imply that a fraction 10{sup -8} of the stellar mass is younger than 100 Myr and 10{sup -5} is younger than 1 Gyr, quantifying the level of frosting of recent star formation over the otherwise passive stellar population. There is no obvious correlation between either the presence or spatial distribution of postulated star formation indicators and the star formation we detect.

  18. Star Formation and Supercluster Environment of 107 nearby Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2017-01-01

    We analyze the relationship between star formation (SF), substructure, and supercluster environment in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Previous works have investigated the relationships between SF and cluster substructure, and cluster substructure and supercluster environment, but definitive conclusions relating all three of these variables has remained elusive. We find an inverse relationship between cluster SF fraction (fSF) and supercluster environment density, calculated using the Galaxy luminosity density field at a smoothing length of 8 h‑1 Mpc (D8). The slope of fSF versus D8 is ‑0.008 ± 0.002. The fSF of clusters located in low-density large-scale environments, 0.244 ± 0.011, is higher than for clusters located in high-density supercluster cores, 0.202 ± 0.014. We also divide superclusters, according to their morphology, into filament- and spider-type systems. The inverse relationship between cluster fSF and large-scale density is dominated by filament- rather than spider-type superclusters. In high-density cores of superclusters, we find a higher fSF in spider-type superclusters, 0.229 ± 0.016, than in filament-type superclusters, 0.166 ± 0.019. Using principal component analysis, we confirm these results and the direct correlation between cluster substructure and SF. These results indicate that cluster SF is affected by both the dynamical age of the cluster (younger systems exhibit higher amounts of SF); the large-scale density of the supercluster environment (high-density core regions exhibit lower amounts of SF); and supercluster morphology (spider-type superclusters exhibit higher amounts of SF at high densities).

  19. Studying the diverse nature of faint galaxies in nearby clusters of the WINGS sample

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Kjærgaard, P.; Milvang-Jensen, B.; D'Onofrio, M.; Moretti, A.; Poggianti, B. M.; Fasano, G.; Moles, M.

    2011-03-01

    We present the first results of our X-shooter observations for a sample of dwarf (-17 galaxies in nearby (0.04 < z < 0.07) galaxy clusters. This luminosity range is fundamental to trace the evolution of higher-z star-forming cluster galaxies down to the present day, and to explore the galaxy scaling relations of early-type galaxies over a broad mass range. Thanks to high resolution and availability of several lines we can derive the velocity dispersion of the galaxies in this range of luminosities and we begin the construction of the fundamental plane of faint early-type galaxies.

  20. Spitzer Observations of MAMBO Galaxies: Weeding Out Active Nuclei in Starbursting Protoellipticals

    NASA Astrophysics Data System (ADS)

    Ivison, R. J.; Greve, T. R.; Serjeant, S.; Bertoldi, F.; Egami, E.; Mortier, A. M. J.; Alonso-Herrero, A.; Barmby, P.; Bei, L.; Dole, H.; Engelbracht, C. W.; Fazio, G. G.; Frayer, D. T.; Gordon, K. D.; Hines, D. C.; Huang, J.-S.; Le Floc'h, E.; Misselt, K. A.; Miyazaki, S.; Morrison, J. E.; Papovich, C.; Pérez-González, P. G.; Rieke, M. J.; Rieke, G. H.; Rigby, J.; Rigopoulou, D.; Smail, I.; Wilson, G.; Willner, S. P.

    2004-09-01

    We present 3.6-24 μm Spitzer observations of an unbiased sample of nine luminous, dusty galaxies selected at 1200 μm by MAMBO on the IRAM 30 m telescope, a population akin to the well-known submillimeter or SCUBA galaxies (hereafter SMGs). Owing to the coarse resolution of submillimeter/millimeter cameras, SMGs have traditionally been difficult to identify at other wavelengths. We compare our multiwavelength catalogs to show that the overlap between 24 and 1200 μm must be close to complete at these flux levels. We find that all (4/4) of the most secure >=4 σ SMGs have >=4 σ counterparts at 1.4 GHz, while the fraction drops to 7/9 using all >=3 σ SMGs. We show that combining mid-infrared (MIR) and marginal (>=3 σ) radio detections provides plausible identifications in the remaining cases, enabling us to identify the complete sample. Accretion onto an obscured central engine is betrayed by the shape of the MIR continuum emission for several sources, confirming Spitzer's potential to weed out active galaxies. We demonstrate the power of an S24μm/S8μm versus S8μm/S4.5μm color-color plot as a diagnostic for this purpose. However, we conclude that the majority (~75%) of SMGs have rest-frame mid/far-IR spectral energy distributions commensurate with obscured starbursts. Sensitive 24 μm observations are clearly a useful route to identify and characterize reliable counterparts to high-redshift far-IR-bright galaxies, complementing what is possible via deep radio imaging.

  1. An enhanced fraction of starbursting galaxies among high Eddington ratio AGNs

    NASA Astrophysics Data System (ADS)

    Bernhard, E.; Mullaney, J. R.; Daddi, E.; Ciesla, L.; Schreiber, C.

    2016-07-01

    We investigate the star-forming properties of 1620 X-ray selected active galactic nuclei (AGN) host galaxies as a function of their specific X-ray luminosity (i.e. X-ray luminosity per unit host stellar mass) - a proxy of the Eddington ratio. Our motivation is to determine whether there is any evidence of a suppression of star formation at high Eddington ratios, which may hint towards `AGN feedback' effects. Star formation rates (SFRs) are derived from fits to Herschel-measured far-infrared spectral energy distributions, taking into account any contamination from the AGN. Herschel-undetected AGNs are included via stacking analyses to provide average SFRs in bins of redshift and specific X-ray luminosity (spanning 0.01 lesssim L_X/M_{ast } lesssim 100 L_{{⊙}} M_{{⊙}}^{-1}). After normalizing for the effects of mass and redshift arising from the evolving galaxy main sequence, we find that the SFRs of high specific luminosity AGNs are slightly enhanced compared to their lower specific luminosity counterparts. This suggests that the SFR distribution of AGN hosts changes with specific X-ray luminosity, a result reinforced by our finding of a significantly higher fraction of starbursting hosts among high specific luminosity AGNs compared to that of the general star-forming galaxy population (i.e. 8-10 per cent versus 3 per cent). Contrary to our original motivation, our findings suggest that high specific luminosity AGNs are more likely to reside in galaxies with enhanced levels of star formation.

  2. OT1_dweedman_1: Comparing [CII] 158 micron Luminosities to Spectral Properties of Luminous Starburst Galaxies and AGN

    NASA Astrophysics Data System (ADS)

    Weedman, D.

    2010-07-01

    Herschel PACS spectroscopy of the [CII] emission line at 158 microns is proposed for a carefully selected sample of 123 sources that already have complete low and high resolution mid-infrared spectra between 5 microns and 35 microns from the Spitzer Infrared Spectrograph, and which also have spectral energy distributions (SEDs) from IRAS and Akari photometry. [CII] 158 um is the strongest far-infrared emission line and therefore crucial to compare with other features in luminous, dusty galaxies. Sources have 0.004 < z < 0.34 and 43.0 < log L(IR) < 46.8 (erg per sec) and cover the full range of starburst galaxy and AGN classifications. Obtaining these [CII] line fluxes with PACS will allow: 1. determining how precisely [CII] luminosity measures star formation rate by comparing to PAH features and emission lines that arise in starburst galaxies; 2. determining how [CII] luminosity and equivalent width changes with starburst/AGN fraction, by comparing with strength and equivalent width of PAH and [NeII] emission arising from starbursts, and with strength of high ionization lines [NeV] and [OIV] and silicate absorption or emission arising from AGN; 3. determining how [CII] luminosity and equivalent width changes with dust temperature and bolometric luminosity, as derived from spectral energy distributions, and whether this depends on the starburst/AGN fraction. These determinations will allow interpretation of high redshift sources for which the only available diagnostics are the luminosity and equivalent width of the [CII] line and the far-infrared rest-frame SED. The total observing program requires 20.2 hours of Herschel observing time.

  3. Gas disks and supermassive black holes in nearby radio galaxies

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob

    2004-12-01

    We present a detailed analysis of a set of medium- resolution spectra, obtained by the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, of the emission-line gas present in the nuclei of a complete sample of 21 nearby, early-type galaxies with radio jets. For each galaxy nucleus we present spectroscopic data in the region of hydrogen-alpha and the kinematics derived therefrom. We find in 67% of the nuclei the gas appears to be rotating and, with one exception, the cases where rotation is not seen are either face on or have complex morphologies. We find that in 62% of the nuclei the fit to the central spectrum is improved by inclusion of a broad emission-line component. These broad components have a mean velocity dispersion of 1349 kilometers per second (with a standard deviation of 345 kilometers per second) and are redshifted from the narrow-line components (assuming an origin in hydrogen-alpha) by 486 kilometers per second (with a standard deviation of 443 kilometers per second). We generated model velocity profiles including no black hole, a one hundred million solar mass black hole and a nine hundred million solar mass black hole. We compared the predicted profiles to the observed velocity profiles from the above spectra, finding kinematic signatures compatible with black holes greater than one hundred million solar masses in 53% of the sample. We suspect that hydrodynamic flow of the gas is a significant factor in the nucleus of NGC 2329. We found hints of jet-disk interaction in 24% of the sample nuclei and signs of twists or warps in 19%. Twenty-four percent of the velocity profiles show signs of multiple kinematic components. We suggest that the gas disks in these galaxies are generally not well-settled systems. We characterize the kinematic state of the nuclear gas through three weighted mean parameters, and find that again the disks appear not to be well-settled. We show evidence of a connection between the stellar and gas velocity

  4. A Supermassive Black Hole in a Nearby Galaxy

    NASA Astrophysics Data System (ADS)

    2001-03-01

    ISAAC Inspects the Center of Centaurus A Summary The nearby galaxy Centaurus A harbours a supermassive black hole at its centre . Using the ISAAC instrument at the ESO Very Large Telescope (VLT) , an international team of astronomers [1] has peered right through the spectacular dust lane of the peculiar galaxy Centaurus A , located approximately 11 million light-years away. They were able to probe the thin disk of gas that surrounds the very center of this galaxy. The new measurements show that the compact nucleus in the middle weighs more than 200 million solar masses ! This is too much just to be due to normal stars. The astronomers thus conclude the existence of a supermassive black hole lurking at the centre of Centaurus A . PR Photo 08a/01 : Visual image of the centre of Centaurus A . PR Photo 08b/01 : ISAAC spectrum of the centre of Centaurus A . PR Photo 08c/01 : The corresponding rotation curve from which the mass of the black hole was deduced. A well studied galaxy with a hidden center ESO PR Photo 08a/01 ESO PR Photo 08a/01 [Preview - JPEG: 352 x 400 pix - 160k] [Normal - JPEG: 704 x 800 pix - 376k] Caption : PR Photo 08a/01 shows a small area in the direction of the heavily obscured centre of the peculiar radio galaxy Centaurus A , as seen in visual light. It measures about 80 x 80 arcsec 2 , or 4400 x 4400 light-year 2 at the distance of this galaxy, and has been reproduced from exposures made with the FORS2 multi-mode instrument at the 8.2-m VLT KUEYEN telescope at Paranal. The full field may be seen in PR Photo 05b/00. Technical information about this photo is available below. The galaxy Centaurus A (NGC 5128) is one of the most studied objects in the southern sky. The unique appearance of this galaxy was already noticed by the famous British astronomer John Herschel in 1847 who catalogued the southern skies and made a comprehensive list of "nebulae". A fine photo of Centaurus A from the VLT was published last year as PR Photo 05b/00. Herschel could

  5. DUSTY WINDS: EXTRAPLANAR POLYCYCLIC AROMATIC HYDROCARBON FEATURES OF NEARBY GALAXIES

    SciTech Connect

    McCormick, Alexander; Veilleux, Sylvain; Rupke, David S. N. E-mail: veilleux@astro.umd.edu

    2013-09-10

    Recent observations have shown the presence of dust and molecular material in galactic winds, but relatively little is known about the distribution of these outflow components. To shed some light on this issue, we have used IRAC images from the Spitzer Space Telescope archive to investigate polycyclic aromatic hydrocarbon (PAH) emission from a sample of 16 local galaxies with known winds. Our focus on nearby sources (median distance 8.6 Mpc) has revealed detailed PAH structure in the winds and allowed us to measure extraplanar PAH emission. We have identified extraplanar PAH features on scales of {approx}0.8-6.0 kpc. We find a nearly linear correlation between the amount of extraplanar PAH emission and the total infrared flux, a proxy for star formation activity in the disk. Our results also indicate a correlation between the height of extraplanar PAH emission and star formation rate surface density, which supports the idea of a surface density threshold on the energy or momentum injection rate for producing detectable extraplanar wind material.

  6. Dusty Winds: Extraplanar Polycyclic Aromatic Hydrocarbon Features of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    McCormick, Alexander; Veilleux, Sylvain; Rupke, David S. N.

    2013-09-01

    Recent observations have shown the presence of dust and molecular material in galactic winds, but relatively little is known about the distribution of these outflow components. To shed some light on this issue, we have used IRAC images from the Spitzer Space Telescope archive to investigate polycyclic aromatic hydrocarbon (PAH) emission from a sample of 16 local galaxies with known winds. Our focus on nearby sources (median distance 8.6 Mpc) has revealed detailed PAH structure in the winds and allowed us to measure extraplanar PAH emission. We have identified extraplanar PAH features on scales of ~0.8-6.0 kpc. We find a nearly linear correlation between the amount of extraplanar PAH emission and the total infrared flux, a proxy for star formation activity in the disk. Our results also indicate a correlation between the height of extraplanar PAH emission and star formation rate surface density, which supports the idea of a surface density threshold on the energy or momentum injection rate for producing detectable extraplanar wind material.

  7. Ultraviolet Signposts of Resonant Dynamics in the Starburst-ringed SAB Galaxy M94 (NGC 4736)

    NASA Astrophysics Data System (ADS)

    Waller, William H.; Fanelli, Michael N.; Keel, William C.; Bohlin, Ralph; Collins, Nicholas R.; Madore, Barry F.; Marcum, Pamela M.; Neff, Susan G.; O'Connell, Robert W.; Offenberg, Joel D.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    2001-03-01

    The dynamic orchestration of star-birth activity in the starburst-ringed galaxy M94 (NGC 4736) is investigated using images from the Ultraviolet Imaging Telescope (UIT; far-ultraviolet [FUV] band), Hubble Space Telescope (HST; near-ultraviolet [NUV] band), Kitt Peak 0.9 m telescope (Hα, R, and I bands), and Palomar 5 m telescope (B band), along with spectra from the International Ultraviolet Explorer (IUE) and the Lick 1 m telescope. The wide-field UIT image shows FUV emission from (1) an elongated nucleus, (2) a diffuse inner disk, where Hα is observed in absorption, (3) a bright inner ring of H II regions at the perimeter of the inner disk (R=48"=1.1 kpc), and (4) two 500 pc size knots of hot stars exterior to the ring on diametrically opposite sides of the nucleus (R=130"=2.9 kpc). The HST Faint Object Camera image resolves the NUV emission from the nuclear region into a bright core and a faint 20" long ``minibar'' at a position angle of 30°. Optical and IUE spectroscopy of the nucleus and diffuse inner disk indicates a ~107-108 yr old stellar population from low-level star-birth activity blended with some LINER activity. Analysis of the Hα-, FUV-, NUV-, B-, R-, and I-band emissions, along with other observed tracers of stars and gas in M94, indicates that most of the star formation is being orchestrated via ring-bar dynamics, involving the nuclear minibar, inner ring, oval disk, and outer ring. The inner starburst ring and bisymmetric knots at intermediate radius, in particular, argue for bar-mediated resonances as the primary drivers of evolution in M94 at the present epoch. Similar processes may be governing the evolution of the ``core-dominated'' galaxies that have been observed at high redshift. The gravitationally lensed ``Pretzel Galaxy'' (0024+1654) at a redshift of ~1.5 provides an important precedent in this regard.

  8. EXTENDING THE NEARBY GALAXY HERITAGE WITH WISE: FIRST RESULTS FROM THE WISE ENHANCED RESOLUTION GALAXY ATLAS

    SciTech Connect

    Jarrett, T. H.; Masci, F.; Tsai, C. W.; Petty, S.; Lake, S.; Wright, E.; Cluver, M. E.; Assef, Roberto J.; Eisenhardt, P.; Benford, D.; Blain, A.; Bridge, C.; Neill, James D.; Donoso, E.; Koribalski, B.; Seibert, M.; Sheth, K.; Stanford, S.

    2013-01-01

    The Wide-field Infrared Survey Explorer (WISE) mapped the entire sky at mid-infrared wavelengths 3.4 {mu}m, 4.6 {mu}m, 12 {mu}m, and 22 {mu}m. The mission was primarily designed to extract point sources, leaving resolved and extended sources, for the most part, unexplored. Accordingly, we have begun a dedicated WISE Enhanced Resolution Galaxy Atlas (WERGA) project to fully characterize large, nearby galaxies and produce a legacy image atlas and source catalog. Here we demonstrate the first results of the WERGA project for a sample of 17 galaxies, chosen to be of large angular size, diverse morphology, and covering a range in color, stellar mass, and star formation. It includes many well-studied galaxies, such as M 51, M 81, M 87, M 83, M 101, and IC 342. Photometry and surface brightness decomposition is carried out after special super-resolution processing, achieving spatial resolutions similar to that of Spitzer Infrared Array Camera. The enhanced resolution method is summarized in the first paper of this two-part series. In this second work, we present WISE, Spitzer, and Galaxy Evolution Explorer (GALEX) photometric and characterization measurements for the sample galaxies, combining the measurements to study the global properties. We derive star formation rates using the polycyclic aromatic hydrocarbon sensitive 12 {mu}m (W3) fluxes, warm-dust sensitive 22 {mu}m (W4) fluxes, and young massive-star sensitive ultraviolet (UV) fluxes. Stellar masses are estimated using the 3.4 {mu}m (W1) and 4.6 {mu}m (W2) measurements that trace the dominant stellar mass content. We highlight and showcase the detailed results of M 83, comparing the WISE/Spitzer results with the Australia Telescope Compact Array H I gas distribution and GALEX UV emission, tracing the evolution from gas to stars. In addition to the enhanced images, WISE's all-sky coverage provides a tremendous advantage over Spitzer for building a complete nearby galaxy catalog, tracing both stellar mass and star

  9. HUBBLE PEEKS INTO A STELLAR NURSERY IN A NEARBY GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    HUBBLE PEEKS INTO A STELLAR NURSERY IN A NEARBY GALAXY NASA's Hubble Space Telescope has peered deep into a neighboring galaxy to reveal details of the formation of new stars. Hubble's target was a newborn star cluster within the Small Magellanic Cloud, a small galaxy that is a satellite of our own Milky Way. The new images show young, brilliant stars cradled within a nebula, or glowing cloud of gas, cataloged as N 81. These massive, recently formed stars inside N 81 are losing material at a high rate, sending out strong stellar winds and shock waves and hollowing out a cocoon within the surrounding nebula. The two most luminous stars, seen in the Hubble image as a very close pair near the center of N 81, emit copious ultraviolet radiation, causing the nebula to glow through fluorescence. Outside the hot, glowing gas is cooler material consisting of hydrogen molecules and dust. Normally this material is invisible, but some of it can be seen in silhouette against the nebular background, as long dust lanes and a small, dark, elliptical-shaped knot. It is believed that the young stars have formed from this cold matter through gravitational contraction. Few features can be seen in N 81 from ground-based telescopes, earning it the informal nick-name 'The Blob.' Astronomers were not sure if just one or a few hot stars were embedded in the cloud, or if it was a stellar nursery containing a large number of less massive stars. Hubble's high-resolution imaging shows the latter to be the case, revealing that numerous young, white-hot stars---easily visible in the color picture---are contained within N 81. This crucial information bears strongly on theories of star formation, and N 81 offers a singular opportunity for a close-up look at the turbulent conditions accompanying the birth of massive stars. The brightest stars in the cluster have a luminosity equal to 300,000 stars like our own Sun. Astronomers are especially keen to study star formation in the Small Magellanic

  10. SPECTRAL ANALYSIS AND INTERPRETATION OF THE {gamma}-RAY EMISSION FROM THE STARBURST GALAXY NGC 253

    SciTech Connect

    Abramowski, A.; Acero, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Brucker, J.; Barnacka, A.; Becherini, Y.; Birsin, E.; Biteau, J.; Brun, F.; Bolmont, J.; Brun, P.; Collaboration: H.E.S.S. Collaboration; and others

    2012-10-01

    Very high energy (VHE; E {>=} 100 GeV) and high-energy (HE; 100 MeV {<=} E {<=} 100 GeV) data from {gamma}-ray observations performed with the H.E.S.S. telescope array and the Fermi-LAT instrument, respectively, are analyzed in order to investigate the non-thermal processes in the starburst galaxy NGC 253. The VHE {gamma}-ray data can be described by a power law in energy with differential photon index {Gamma} = 2.14 {+-} 0.18{sub stat} {+-} 0.30{sub sys} and differential flux normalization at 1 TeV of F{sub 0} = (9.6 {+-} 1.5{sub stat}(+ 5.7, -2.9){sub sys}) Multiplication-Sign 10{sup -14} TeV{sup -1} cm{sup -2} s{sup -1}. A power-law fit to the differential HE {gamma}-ray spectrum reveals a photon index of {Gamma} 2.24 {+-} 0.14{sub stat} {+-} 0.03{sub sys} and an integral flux between 200 MeV and 200 GeV of F(0.2-200 GeV) = (4.9 {+-} 1.0{sub stat} {+-} 0.3{sub sys}) Multiplication-Sign 10{sup -9} cm{sup -2} s{sup -1}. No evidence for a spectral break or turnover is found over the dynamic range of both the LAT instrument and the H.E.S.S. experiment: a combined fit of a power law to the HE and VHE {gamma}-ray data results in a differential photon index {Gamma} = 2.34 {+-} 0.03 with a p-value of 30%. The {gamma}-ray observations indicate that at least about 20% of the energy of the cosmic rays (CRs) capable of producing hadronic interactions is channeled into pion production. The smooth alignment between the spectra in the HE and VHE {gamma}-ray domain suggests that the same transport processes dominate in the entire energy range. Advection is most likely responsible for charged particle removal from the starburst nucleus from GeV to multiple TeV energies. In a hadronic scenario for the {gamma}-ray production, the single overall power-law spectrum observed would therefore correspond to the mean energy spectrum produced by the ensemble of CR sources in the starburst region.

  11. Spectral Analysis and Interpretation of the γ-Ray Emission from the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Abramowski, A.; Acero, F.; Aharonian, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Barnacka, A.; Becherini, Y.; Becker, J.; Bernlöhr, K.; Birsin, E.; Biteau, J.; Bochow, A.; Boisson, C.; Bolmont, J.; Bordas, P.; Brucker, J.; Brun, F.; Brun, P.; Bulik, T.; Büsching, I.; Carrigan, S.; Casanova, S.; Cerruti, M.; Chadwick, P. M.; Charbonnier, A.; Chaves, R. C. G.; Cheesebrough, A.; Cologna, G.; Conrad, J.; Couturier, C.; Dalton, M.; Daniel, M. K.; Davids, I. D.; Degrange, B.; Deil, C.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; Drury, L. O'C.; Dubus, G.; Dutson, K.; Dyks, J.; Dyrda, M.; Egberts, K.; Eger, P.; Espigat, P.; Fallon, L.; Fegan, S.; Feinstein, F.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Förster, A.; Füßling, M.; Gajdus, M.; Gallant, Y. A.; Garrigoux, T.; Gast, H.; Gérard, L.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Göring, D.; Grondin, M.-H.; Häffner, S.; Hague, J. D.; Hahn, J.; Hampf, D.; Harris, J.; Hauser, M.; Heinz, S.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hillert, A.; Hinton, J. A.; Hofmann, W.; Hofverberg, P.; Holler, M.; Horns, D.; Jacholkowska, A.; Jahn, C.; Jamrozy, M.; Jung, I.; Kastendieck, M. A.; Katarzyński, K.; Katz, U.; Kaufmann, S.; Khélifi, B.; Klochkov, D.; Kluźniak, W.; Kneiske, T.; Komin, Nu.; Kosack, K.; Kossakowski, R.; Krayzel, F.; Laffon, H.; Lamanna, G.; Lenain, J.-P.; Lennarz, D.; Lohse, T.; Lopatin, A.; Lu, C.-C.; Marandon, V.; Marcowith, A.; Masbou, J.; Maurin, G.; Maxted, N.; Mayer, M.; McComb, T. J. L.; Medina, M. C.; Méhault, J.; Moderski, R.; Mohamed, M.; Moulin, E.; Naumann, C. L.; Naumann-Godo, M.; de Naurois, M.; Nedbal, D.; Nekrassov, D.; Nguyen, N.; Nicholas, B.; Niemiec, J.; Nolan, S. J.; Ohm, S.; de Oña Wilhelmi, E.; Opitz, B.; Ostrowski, M.; Oya, I.; Panter, M.; Paz Arribas, M.; Pekeur, N. W.; Pelletier, G.; Perez, J.; Petrucci, P.-O.; Peyaud, B.; Pita, S.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raue, M.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Ripken, J.; Rob, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Sanchez, D. A.; Santangelo, A.; Schlickeiser, R.; Schulz, A.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Sheidaei, F.; Skilton, J. L.; Sol, H.; Spengler, G.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Stinzing, F.; Stycz, K.; Sushch, I.; Szostek, A.; Tavernet, J.-P.; Terrier, R.; Tluczykont, M.; Valerius, K.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Viana, A.; Vincent, P.; Völk, H. J.; Volpe, F.; Vorobiov, S.; Vorster, M.; Wagner, S. J.; Ward, M.; White, R.; Wierzcholska, A.; Zacharias, M.; Zajczyk, A.; Zdziarski, A. A.; Zech, A.; Zechlin, H.-S.; H. E. S. S. Collaboration

    2012-10-01

    Very high energy (VHE; E >= 100 GeV) and high-energy (HE; 100 MeV <= E <= 100 GeV) data from γ-ray observations performed with the H.E.S.S. telescope array and the Fermi-LAT instrument, respectively, are analyzed in order to investigate the non-thermal processes in the starburst galaxy NGC 253. The VHE γ-ray data can be described by a power law in energy with differential photon index Γ = 2.14 ± 0.18stat ± 0.30sys and differential flux normalization at 1 TeV of F 0 = (9.6 ± 1.5stat(+ 5.7, -2.9)sys) × 10-14 TeV-1 cm-2 s-1. A power-law fit to the differential HE γ-ray spectrum reveals a photon index of Γ = 2.24 ± 0.14stat ± 0.03sys and an integral flux between 200 MeV and 200 GeV of F(0.2-200 GeV) = (4.9 ± 1.0stat ± 0.3sys) × 10-9 cm-2 s-1. No evidence for a spectral break or turnover is found over the dynamic range of both the LAT instrument and the H.E.S.S. experiment: a combined fit of a power law to the HE and VHE γ-ray data results in a differential photon index Γ = 2.34 ± 0.03 with a p-value of 30%. The γ-ray observations indicate that at least about 20% of the energy of the cosmic rays (CRs) capable of producing hadronic interactions is channeled into pion production. The smooth alignment between the spectra in the HE and VHE γ-ray domain suggests that the same transport processes dominate in the entire energy range. Advection is most likely responsible for charged particle removal from the starburst nucleus from GeV to multiple TeV energies. In a hadronic scenario for the γ-ray production, the single overall power-law spectrum observed would therefore correspond to the mean energy spectrum produced by the ensemble of CR sources in the starburst region. We dedicate this paper to the memory of our colleague Dalibor Nedbal, who died on 2012 May 15 at the age of 31. Dalibor was universally liked and respected as a scientist and colleague and will be greatly missed.

  12. Evolution of the ISM in main-sequence versus starburst galaxies: A motivation for molecular deep fields

    NASA Astrophysics Data System (ADS)

    Aravena, Manuel

    In the last decade, significant progress has been made to understand the evolution with redshift of star formation processes in galaxies. Its is now clear that the majority of galaxies at z<3 form a nearly linear correlation between their stellar mass and star formation rates and appear to create most of their stars in timescales of ~1 Gyr. At the highest luminosities, a significant fraction of galaxies deviate from this main-sequence, showing short duty cycles and thus producing most of their stars in a single burst of star formation within ~100 Myr, being likely driven by major merger activity. Despite the large luminosities of starbursts, main-sequence galaxies appear to dominate the star formation density of the Universe at its peak. While progress has been impressive, a number of questions are still unanswered. In this paper, I briefly review our current observational understanding of this main-sequence vs starburst galaxy paradigm, and address how future observations will help us to have better insights into the fundamental properties of the interstellar medium of these galaxies. Finally, I show recent attempts to conduct molecular deep field observations and the motivation to perform molecular deep field spectroscopy with the Atacama Large Millimeter/submillimeter Array.

  13. A Statistical Approach to Galaxy Cluster Gas Inhomogeneity: Chandra Observations of Nearby Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Reese, Erik D.; Kawahara, H.; Kitayama, T.; Sasaki, S.; Suto, Y.

    2009-01-01

    Motivated by cosmological hydrodynamic simulations, the intracluster medium (ICM) inhomogeneity of galaxy clusters is modeled statistically with a lognormal model for density inhomogeneity. Through mock observations of synthetic clusters the relationship between density inhomogeneities and that of the X-ray surface brightness has been developed. This enables one to infer the statistical properties of the fluctuations of the underlying three-dimensional density distribution of real galaxy clusters from X-ray observations. We explore inhomogeneity in the intracluster medium by applying the above methodology to Chandra observations of a sample of nearby galaxy clusters. We also consider extensions of the model, including Poissonian effects and compare this hybrid lognormal-Poisson model to the nearby cluster Chandra data. EDR gratefully acknowledges support from JSPS (Japan Society for the Promotion of Science) Postdoctoral Fellowhip for Foreign Researchers award P07030. HK is supported by Grands-in-Aid for JSPS of Science Fellows. This work is also supported by Grant-in-Aid for Scientific research of Japanese Ministry of Education, Culture, Sports, Science and Technology (Nos. 20.10466, 19.07030, 16340053, 20340041, and 20540235) and by JSPS Core-to-Core Program "International Research Network for Dark Energy".

  14. The Carnegie-Irvine Galaxy Survey. III. The Three-component Structure of Nearby Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Huang, Song; Ho, Luis C.; Peng, Chien Y.; Li, Zhao-Yu; Barth, Aaron J.

    2013-03-01

    Motivated by recent developments in our understanding of the formation and evolution of massive galaxies, we explore the detailed photometric structure of a representative sample of 94 bright, nearby elliptical galaxies, using high-quality optical images from the Carnegie-Irvine Galaxy Survey. The sample spans a range of environments and stellar masses, from M * = 1010.2 to 1012.0 M ⊙. We exploit the unique capabilities of two-dimensional image decomposition to explore the possibility that local elliptical galaxies may contain photometrically distinct substructure that can shed light on their evolutionary history. Compared with the traditional one-dimensional approach, these two-dimensional models are capable of consistently recovering the surface brightness distribution and the systematic radial variation of geometric information at the same time. Contrary to conventional perception, we find that the global light distribution of the majority (gsim75%) of elliptical galaxies is not well described by a single Sérsic function. Instead, we propose that local elliptical galaxies generically contain three subcomponents: a compact (Re <~ 1 kpc) inner component with luminosity fraction f ≈ 0.1-0.15; an intermediate-scale (Re ≈ 2.5 kpc) middle component with f ≈ 0.2-0.25; and a dominant (f = 0.6), extended (Re ≈ 10 kpc) outer envelope. All subcomponents have average Sérsic indices n ≈ 1-2, significantly lower than the values typically obtained from single-component fits. The individual subcomponents follow well-defined photometric scaling relations and the stellar mass-size relation. We discuss the physical nature of the substructures and their implications for the formation of massive elliptical galaxies.

  15. THE CARNEGIE-IRVINE GALAXY SURVEY. III. THE THREE-COMPONENT STRUCTURE OF NEARBY ELLIPTICAL GALAXIES

    SciTech Connect

    Huang, Song; Ho, Luis C.; Peng, Chien Y.; Li, Zhao-Yu; Barth, Aaron J.

    2013-03-20

    Motivated by recent developments in our understanding of the formation and evolution of massive galaxies, we explore the detailed photometric structure of a representative sample of 94 bright, nearby elliptical galaxies, using high-quality optical images from the Carnegie-Irvine Galaxy Survey. The sample spans a range of environments and stellar masses, from M{sub *} = 10{sup 10.2} to 10{sup 12.0} M{sub Sun }. We exploit the unique capabilities of two-dimensional image decomposition to explore the possibility that local elliptical galaxies may contain photometrically distinct substructure that can shed light on their evolutionary history. Compared with the traditional one-dimensional approach, these two-dimensional models are capable of consistently recovering the surface brightness distribution and the systematic radial variation of geometric information at the same time. Contrary to conventional perception, we find that the global light distribution of the majority ({approx}>75%) of elliptical galaxies is not well described by a single Sersic function. Instead, we propose that local elliptical galaxies generically contain three subcomponents: a compact (R{sub e} {approx}< 1 kpc) inner component with luminosity fraction f Almost-Equal-To 0.1-0.15; an intermediate-scale (R{sub e} Almost-Equal-To 2.5 kpc) middle component with f Almost-Equal-To 0.2-0.25; and a dominant (f = 0.6), extended (R{sub e} Almost-Equal-To 10 kpc) outer envelope. All subcomponents have average Sersic indices n Almost-Equal-To 1-2, significantly lower than the values typically obtained from single-component fits. The individual subcomponents follow well-defined photometric scaling relations and the stellar mass-size relation. We discuss the physical nature of the substructures and their implications for the formation of massive elliptical galaxies.

  16. Superwind evolution: the young starburst-driven wind galaxy NGC 2782

    NASA Astrophysics Data System (ADS)

    Bravo-Guerrero, Jimena; Stevens, Ian R.

    2017-06-01

    We present results from a 30-ks Chandra observation of the important starburst galaxy NGC 2782, covering the 0.3-10 keV energy band. We find evidence of a superwind of small extent, which is likely in an early stage of development. We find a total of 27 X-ray point sources within a region of radius 2D25 of the galaxy centre and that are likely associated with the galaxy. Of these, 13 are ultraluminous X-ray point sources (ULXs; LX ≥ 1039 erg s- 1) and a number have likely counterparts. The X-ray luminosities of the ULX candidates are 1.2-3.9 × 1039 erg s- 1. NGC 2782 seems to have an unusually large number of ULXs. Central diffuse X-ray emission extending to ˜3 kpc from the nuclear region has been detected. We also find an X-ray structure to the south of the nucleus, coincident with Hα filaments and with a 5-GHz radio source. We interpret this as a blow-out region of a forming superwind. This X-ray bubble has a total luminosity (0.3-10 keV) of 5 × 1039 erg s-1 (around 15 per cent of the total luminosity of the extended emission), and an inferred wind mass of 1.5 × 106 M⊙ . We also discuss the nature of the central X-ray source in NGC 2782, and conclude that it is likely a low-luminosity active galactic nucleus, with a total X-ray luminosity of LX = 6 × 1040 erg s-1, with strong Fe line emission at 6.4 keV.

  17. High resolution radio and optical observations of the central starburst in the low-metallicity dwarf galaxy II Zw 40

    SciTech Connect

    Kepley, Amanda A.; Reines, Amy E.; Johnson, Kelsey E.; Walker, Lisa May E-mail: areines@nrao.edu E-mail: lisamay@virginia.edu

    2014-02-01

    The extent to which star formation varies in galaxies with low masses, low metallicities, and high star formation rate surface densities is not well constrained. To gain insight into star formation under these physical conditions, this paper estimates the ionizing photon fluxes, masses, and ages for young massive clusters in the central region of II Zw 40—the prototypical low-metallicity dwarf starburst galaxy—from radio continuum and optical observations. Discrete, cluster-sized sources only account for half the total radio continuum emission; the remainder is diffuse. The young (≲ 5 Myr) central burst has a star formation rate surface density that significantly exceeds that of the Milky Way. Three of the 13 sources have ionizing photon fluxes (and thus masses) greater than R136 in 30 Doradus. Although isolating the effects of galaxy mass and metallicity is difficult, the H II region luminosity function and the internal extinction in the center of II Zw 40 appear to be primarily driven by a merger-related starburst. The relatively flat H II region luminosity function may be the result of an increase in interstellar medium pressure during the merger and the internal extinction is similar to that generated by the clumpy and porous dust in other starburst galaxies.

  18. THE LYMAN ALPHA MORPHOLOGY OF LOCAL STARBURST GALAXIES: RELEASE OF CALIBRATED IMAGES

    SciTech Connect

    Oestlin, Goeran; Hayes, Matthew; Kunth, Daniel; Atek, Hakim; Mas-Hesse, J. Miguel; Leitherer, Claus; Petrosian, Artashes E-mail: matthew.hayes@unige.ch

    2009-09-15

    We present reduced and calibrated high resolution Lyman-alpha (Ly{alpha}) images for a sample of six local star-forming galaxies. Targets were selected to represent a range in luminosity and metallicity and to include both known Ly{alpha} emitters and nonemitters. Far ultraviolet imaging was carried out with the Solar Blind Channel of the Advanced Camera for Surveys on the Hubble Space Telescope (HST) in the F122M (Ly{alpha} online) and F140LP (continuum) filters. The resulting Ly{alpha} images are the product of careful modeling of both the stellar and nebular continua, facilitated by supporting HST imaging at {lambda} {approx} 2200, 3300, 4400, 5500, H{alpha}, and 8000 A, combined with Starburst 99 evolutionary synthesis models, and prescriptions for dust extinction on the continuum. In all, the resulting morphologies in Ly{alpha}, H{alpha}, and UV continuum are qualitatively very different and we show that the bulk of Ly{alpha} emerges in a diffuse component resulting from resonant scattering events. Ly{alpha} escape fractions, computed from integrated H{alpha} luminosities and recombination theory, are found never to exceed 14%. Internal dust extinction is estimated in each pixel and used to correct Ly{alpha} fluxes. However, the extinction corrections are far too small (by factors from 2.6 to infinity) to reconcile the emerging global Ly{alpha} luminosities with standard recombination predictions. Surprisingly, when comparing the global equivalent widths of Ly{alpha} and H{alpha}, the two quantities appear to be anticorrelated, which may be due to the evolution of mechanical feedback from the starburst. This calls for caution in the interpretation of Ly{alpha} observations in terms of star formation rates. The images presented have a physical resolution 3 orders of magnitude better than attainable at high redshifts from the ground with current instrumentation and our images may therefore serve as useful templates for comparing with observations and modeling of

  19. VizieR Online Data Catalog: SDSS nearby galaxies morphologies (Yoshino+, 2015)

    NASA Astrophysics Data System (ADS)

    Yoshino, A.; Yamauchi, C.

    2015-01-01

    These catalogues are intended to study statistically Box/Peanut or Bar structures in edge-on or face-on nearby galaxies, containing values of surface brightness parameters of model galaxy, coordinate, redshift, morphology and matched PGC number for edge-on or face-on nearby galaxies in g, r and i-band selected from SDSS DR7. table1[gri].dat are the catalogues for edge-on galaxies in g, r and i-band, respectively. table2[gri].dat are those for face-on galaxies. table3[gri].dat contain only Box/Peanut galaxies extracted from table1[gri].dat. table4[gri].dat contain only Barred galaxies extracted from table2[gri].dat. (12 data files).

  20. AN INITIAL MASS FUNCTION STUDY OF THE DWARF STARBURST GALAXY NGC 4214

    SciTech Connect

    Andrews, J. E.; Calzetti, D.; Chandar, R.; Lee, J. C.; Whitmore, B.; Elmegreen, B. G.; Kennicutt, R. C.; Kissel, J. S.; Da Silva, Robert L.; Krumholz, Mark R.; O'Connell, R. W.; Dopita, M. A.; Frogel, Jay A.; Kim, Hwihyun E-mail: callzetti@astro.umass.edu

    2013-04-10

    The production rate of ionizing photons in young ({<=}8 Myr), unresolved stellar clusters in the nearby irregular galaxy NGC 4214 is probed using multi-wavelength Hubble Space Telescope WFC3 data. We normalize the ionizing photon rate by the cluster mass to investigate the upper end of the stellar initial mass function (IMF). We have found that within the uncertainties the upper end of the stellar IMF appears to be universal in this galaxy, and that deviations from a universal IMF can be attributed to stochastic sampling of stars in clusters with masses {approx}<10{sup 3} M{sub Sun }. Furthermore, we have found that there does not seem to be a dependence of the maximum stellar mass on the cluster mass. We have also found that for massive clusters, feedback may cause an underrepresentation in H{alpha} luminosities, which needs to be taken into account when conducting this type of analysis.

  1. Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?

    SciTech Connect

    Sánchez-Conde, Miguel A.; Cannoni, Mirco; Gómez, Mario E.; Zandanel, Fabio; Prada, Francisco E-mail: mirco.cannoni@dfa.uhu.es E-mail: mario.gomez@dfa.uhu.es

    2011-12-01

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  2. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    SciTech Connect

    Sanchez-Conde, Miguel A.; Cannoni, Mirco; Zandanel, Fabio; Gomez, Mario E.; Prada, Francisco; /IAA, Granada

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  3. Mapping Nearby Galaxies at APO: The MaNGA IFU Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Law, David R.; MaNGA Team

    2014-01-01

    MaNGA is a new survey that will begin in August 2014 as part of SDSS-IV with the aim of obtaining integral-field spectroscopy for an unprecedented sample of 10,000 nearby galaxies. MaNGA's key goals are to understand the "life cycle" of present day galaxies from imprinted clues of their birth and assembly, through their ongoing growth via star formation and merging, to their death from quenching at late times. To achieve these goals, MaNGA will channel the impressive capabilities of the SDSS-III BOSS spectrographs in a fundamentally new direction by marshaling the unique power of 2D spectroscopy. MaNGA will deploy 17 pluggable Integral Field Units (IFUs) made by grouping fibers into hexagonal bundles ranging from 19 to 127 fibers each. The spectra obtained by MaNGA will cover the wavelength range 3600-10,000 Angstroms (with a velocity resolution of ~ 60 km/s) and will characterize the internal composition and the dynamical state of a sample of 10,000 galaxies with stellar masses greater than 10^9 Msun and an average redshift of z ~ 0.03. Such IFU observations enable a leap forward because they provide an added dimension to the information available for each galaxy. MaNGA will provide two-dimensional maps of stellar velocity and velocity dispersion, mean stellar age and star formation history, stellar metallicity, element abundance ratio, stellar mass surface density, ionized gas velocity, ionized gas metallicity, star formation rate, and dust extinction for a statistically powerful sample. This legacy dataset will address urgent questions in our understanding of galaxy formation, including 1) The formation history of galaxy subcomponents, including the disk, bulge, and dark matter halo, 2) The nature of present-day galaxy growth via merging and gas accretion, and 3) The processes responsible for terminating star formation in galaxies. Finally, MaNGA will also play a vital role in the coming era of advanced IFU instrumentation, serving as the low-z anchor for

  4. MUSE Reveals a Recent Merger in the Post-starburst Host Galaxy of the TDE ASASSN-14li

    NASA Astrophysics Data System (ADS)

    Prieto, J. L.; Krühler, T.; Anderson, J. P.; Galbany, L.; Kochanek, C. S.; Aquino, E.; Brown, J. S.; Dong, Subo; Förster, F.; Holoien, T. W.-S.; Kuncarayakti, H.; Maureira, J. C.; Rosales-Ortega, F. F.; Sánchez, S. F.; Shappee, B. J.; Stanek, K. Z.

    2016-10-01

    We present Multi Unit Spectroscopic Explorer (MUSE) integral field spectroscopic observations of the host galaxy (PGC 043234) of one of the closest (z = 0.0206, D ≃ 90 Mpc) and best-studied tidal disruption events (TDEs), ASASSN-14li. The MUSE integral field data reveal asymmetric and filamentary structures that extend up to ≳10 kpc from the post-starburst host galaxy of ASASSN-14li. The structures are traced only through the strong nebular [O iii] λ5007, [N ii] λ6584, and Hα emission lines. The total off-nuclear [O iii] λ5007 luminosity is 4.7 × 1039 erg s-1, and the ionized H mass is ˜ {10}4(500/{n}{{e}}) {M}⊙ . Based on the Baldwin-Phillips-Terlevich diagram, the nebular emission can be driven by either AGN photoionization or shock excitation, with AGN photoionization favored given the narrow intrinsic line widths. The emission line ratios and spatial distribution strongly resemble ionization nebulae around fading AGNs such as IC 2497 (Hanny's Voorwerp) and ionization “cones” around Seyfert 2 nuclei. The morphology of the emission line filaments strongly suggest that PGC 043234 is a recent merger, which likely triggered a strong starburst and AGN activity leading to the post-starburst spectral signatures and the extended nebular emission line features we see today. We briefly discuss the implications of these observations in the context of the strongly enhanced TDE rates observed in post-starburst galaxies and their connection to enhanced theoretical TDE rates produced by supermassive black hole binaries.

  5. The Dragonfly Nearby Galaxies Survey. II. Ultra-Diffuse Galaxies near the Elliptical Galaxy NGC 5485

    NASA Astrophysics Data System (ADS)

    Merritt, Allison; van Dokkum, Pieter; Danieli, Shany; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2016-12-01

    We present the unexpected discovery of four ultra-diffuse galaxies (UDGs) in a group environment. We recently identified seven extremely low surface brightness galaxies in the vicinity of the spiral galaxy M101, using data from the Dragonfly Telephoto Array. The galaxies have effective radii of 10″-38″ and central surface brightnesses of 25.6-27.7 mag arcsec-2 in the g-band. We subsequently obtained follow-up observations with HST to constrain the distances to these galaxies. Four remain persistently unresolved even with the spatial resolution of HST/ACS, which implies distances of D\\gt 17.5 Mpc. We show that the galaxies are most likely associated with a background group at ˜27 Mpc containing the massive ellipticals NGC 5485 and NGC 5473. At this distance, the galaxies have sizes of 2.6-4.9 kpc, and are classified as UDGs, similar to the populations that have been revealed in clusters such as Coma, Virgo, and Fornax, yet even more diffuse. The discovery of four UDGs in a galaxy group demonstrates that the UDG phenomenon is not exclusive to cluster environments. Furthermore, their morphologies seem less regular than those of the cluster populations, which may suggest a different formation mechanism or be indicative of a threshold in surface density below which UDGs are unable to maintain stability.

  6. 12 and 20 micron imaging of the starburst galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Pina, R. K.; Jones, B.; Puetter, R. C.; Stein, W. A.

    1992-01-01

    The study presents 12- and 20-micron imaging of the starburst galaxy NGC 253 with a spatial resolution of 0.8 arcsec. A positional uncertainty of 1.6 arcsec in these images is estimated on the basis of previous ground-based mid-IR studies to determine the absolute position of the images. It is concluded that the proposed 'nucleus' of NGC 253, i.e., the dominant, bright, flat-spectrum radio source identified by Turner & Ho (1985) (TH 2), is not associated with the mid-IR peak, but rather is located 2.2 arcsec to the northeast. The mid-IR peak, IRS 1, is placed midway between TH 6 and TH 7. Several coincidences with the present 12-micron image are found: IRS 1 falls within 1 arcsec of the 2-micron peak; a second significantly weaker IR source, IRS 2, coincides with TH 2; and the brightest steep-spectrum 6-cm radio source, TH 9, coincides with a 'tongue' of emission extending to the southwest of IRS 1.

  7. Core Kinematics in the Starburst-Ring Sab Galaxy NGC 4736

    NASA Astrophysics Data System (ADS)

    Murphy, E. J.; Waller, W. H.; Kenney, J. D. P.

    2000-05-01

    NGC 4736 (M94) is notable as the nearest early-type spiral galaxy of low inclination, and as the nearest example of a starbursting resonance-ring system. Interior to its inner star-forming ring is a luminous core containing a mix of old red stars and young UV-bright stars. Early long-slit spectroscopy revealed unusually high rotation speeds relative to the velocity dispersions, prompting Kormendy (1982) to describe the core as the innermost part of the disk, rather than the densest part of the spheroid (ie. the classic ``bulge''). Using the WIYN 3.5-m telescope, DensePak fiber array, and Bench spectrograph, we have carried out integral field spectroscopy of the central 45'' x 30'' (1.0 kpc x 0.7 kpc) in M94. Our kinematic mapping confirms the earlier claims of high rotation velocities relative to the velocity dispersions. Rotation curves of the stars and CO gas (from a recent interferometric mapping by Wong and Blitz [2000]) show the stars rotating slower by ~20--35 km/sec relative to the gas. Plans for analyzing the stellar kinematics as a function of stellar type (and corresponding age) are described.

  8. Large-Field CO(J = 1→0) Observations of the Starburst Galaxy M 82

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Miyamoto, Yusuke; Yamauchi, Aya; Tsuru, Takeshi G.

    2013-06-01

    We present large-field (15.7 × 16.9 arcmin2) CO(J = 1→0) observations of the starburst galaxy M 82, at an angular resolution of 22" with the NRO 45-m telescope. The CO emission was detected in the galactic disk, outflow (driven by the galactic wind) up to ˜2 kpc above the galactic plane in the halo, and in tidal streams. The kinematics of the outflow (including CO line splitting) suggests that it has the shape of a cylinder that is diverging outwards. The mass and kinetic energy of the molecular gas outflow are estimated to be (0.26-1.0) × 109 M⊙ and (1-4) × 1056 erg. A clump of CO gas was discovered 3.5 kpc above the galactic plane; it coincides with a dark lane previously found in X-ray observations, and a peak in H I emission. A comparison with H I, hot molecular hydrogen and dust suggests that the molecular gas shows signatures of warm and cool components in the outflow and tidal streams, respectively.

  9. ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179

    NASA Astrophysics Data System (ADS)

    Zhao, Yinghe; Lu, Nanyao; Díaz-Santos, Tanio; Xu, C. Kevin; Gao, Yu; Charmandaris, Vassilis; van der Werf, Paul; Zhang, Zhi-Yu; Cao, Chen

    2017-08-01

    We present our high-resolution (0.″15 × 0.″13, ˜34 pc) observations of the CO (6-5) line emission, which probes the warm and dense molecular gas, and the 434 μm dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6-5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the CO (6-5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ˜10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa-α equivalent width. Within the nuclear region (radius ˜ 300 pc) and with a resolution of ˜34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s-1 (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  10. Detailed Study of a Very Low Mass, Low Metallicity Starburst Galaxy at z=1.85

    NASA Astrophysics Data System (ADS)

    Erb, Dawn

    2015-08-01

    We propose to carry out a detailed study of the ionizing spectrum and physical conditions in the gravitationally lensed arc SL2SJ021737-051329 at z=1.85, using rest-frame UV spectroscopy with LRIS. With stellar mass 10^8 Msun and metallicity Z 1/20 Zsun, SL2SJ0217 is one of the lowest metallicity star-forming galaxies yet identified at z>1. Due to its magnification by a factor of 35, this intrinsically faint object is amenable to detailed examination. Using the the combination of high S/N measurements of the rest-frame UV spectrum and rest-frame optical emission lines observed with the HST WFC3 grism, we will constrain the object's ionizing spectrum, confirm its low metallicity (so far determined indirectly), and study the Lya profile. High S/N in the rest-frame UV continuum will allow a sensitive test for galactic outflows in a very young starburst.

  11. Relationship between star formation rate and black hole accretion at z=3: the different contributions in quiescent, normal, and starburst galaxies

    SciTech Connect

    Rodighiero, G.; Franceschini, A.; Baronchelli, I.; Brusa, M.; Delvecchio, I.; Pozzi, F.; Cimatti, A.; Mullaney, J. R.; Lutz, D.; Gruppioni, C.; Silverman, J.

    2015-02-10

    We investigate the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5galaxies displaying a greater diversity of star-forming properties compared to previous studies. We combine X-ray stacking and far-IR photometry of stellar mass-limited samples of normal star-forming, starburst, and quiescent/quenched galaxies in the COSMOS field. We corroborate the existence of a strong correlation between BHAR (i.e., the X-ray luminosity, L{sub X}) and stellar mass (M{sub *}) for normal star-forming galaxies, though we find a steeper relation than previously reported. We find that starbursts show a factor of three enhancement in BHAR compared to normal SF galaxies (against a factor of six excess in SFR), while quiescents show a deficit of a factor times 5.5 at a given mass. One possible interpretation of this is that the starburst phase does not coincide with cosmologically relevant BH growth, or that starburst-inducing mergers are more efficient at boosting SFR than BHAR. Contrary to studies based on smaller samples, we find that the BHAR/SFR ratio of main-sequence (MS) galaxies is not mass invariant, but scales weakly as M{sub ∗}{sup 0.43±0.09}, implying faster BH growth in more massive galaxies at z∼2. Furthermore, BHAR/SFR during the starburst is a factor of two lower than in MS galaxies, at odds with the predictions of hydrodynamical simulations of merger galaxies that foresee a sudden enhancement of L{sub X}/SFR during the merger. Finally, we estimate that the bulk of the accretion density of the universe at z∼2 is associated with normal star-forming systems, with only ∼6(±1)% and ∼11(±1)% associated with starburst and quiescent galaxies, respectively.

  12. ALMA Reveals Weak [N ii] Emission in "Typical" Galaxies and Intense Starbursts at z = 5-6

    NASA Astrophysics Data System (ADS)

    Pavesi, Riccardo; Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.; Sharon, Chelsea E.; Stacey, Gordon J.; Karim, Alexander; Scoville, Nicholas Z.; Smolčić, Vernesa

    2016-12-01

    We report interferometric measurements of [N ii] 205 μm fine-structure line emission from a representative sample of three galaxies at z = 5-6 using the Atacama Large (sub)Millimeter Array (ALMA). These galaxies were previously detected in [C ii] and far-infrared continuum emission and span almost two orders of magnitude in star formation rate (SFR). Our results show at least two different regimes of ionized interstellar medium properties for galaxies in the first billion years of cosmic time, separated by their {L}[{{C}{{II}}]}/{L}[{{N}{{II}}]} ratio. We find extremely low [N ii] emission compared to [C ii] ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}={68}-28+200) from a “typical” ˜ {L}{UV}* star-forming galaxy, likely directly or indirectly (by its effect on the radiation field) related to low dust abundance and low metallicity. The infrared-luminous modestly star-forming Lyman-break galaxy (LBG) in our sample is characterized by an ionized-gas fraction ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}≲ 20) typical of local star-forming galaxies and shows evidence for spatial variations in its ionized-gas fraction across an extended gas reservoir. The extreme SFR, warm and compact dusty starburst AzTEC-3 shows an ionized fraction higher than expected given its SFR surface density ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}=22+/- 8) suggesting that [N ii] dominantly traces a diffuse ionized medium rather than star-forming H ii regions in this type of galaxy. This highest redshift sample of [N ii] detections provides some of the first constraints on ionized and neutral gas modeling attempts and on the structure of the interstellar medium at z = 5-6 in “normal” galaxies and starbursts.

  13. An optical and near-IR survey of nearby clusters of galaxies

    SciTech Connect

    S. Andreon et al.

    2003-07-02

    We present an optical and near-infrared survey of galaxies in nearby clusters aimed at determining fundamental quantities of galaxies, such as multivariate luminosity function and color distribution for each Hubble type. The main characteristics of our survey are completeness in absolute magnitude, wide wavelength coverage and faint limiting magnitudes.

  14. The Halos and Environments of Nearby Galaxies (HERON) Survey

    NASA Astrophysics Data System (ADS)

    Rich, R. Michael; Brosch, Noah; Bullock, James; Burkert, Andreas; Collins, Michelle; de Groot, Laura; Kennefick, Julia; Koch, Andreas; Longstaff, Francis; Sales, Laura

    2017-03-01

    We have used dedicated 0.7m telescopes in California and Israel to image the halos of ~ 200 galaxies in the Local Volume to 29 mag/sq arcsec, the sample mainly drawn from the 2MASS Large Galaxy Atlas (LGA). We supplement the LGA sample with dwarf galaxies and more distant giant ellipticals. Low surface brightness halos exceeding 50 kpc in diameter are found only in galaxies more luminous than L*, and classic interaction signatures are relatively infrequent. Halo diameter is correlated with total galaxy luminosity. Extended low surface brightness halos are present even in galaxies as faint as MV = - 18. Edge-on galaxies with boxy bulges tend to lack extended spheroidal halos, while those with large classical bulges exhibit extended round halos, supporting the notions that boxy or barlike bulges originate from disks. Most face-on spiral galaxies present features that appear to be irregular extensions of spiral arms, although rare cases show smooth boundaries with no sign of star formation. Although we serendipitously discovered a dwarf galaxy undergoing tidal disruption in the halo of NGC 4449, we found no comparable examples in our general survey. A search for similar examples in the Local Volume identified hcc087, a tidally disrupting dwarf galaxy in the Hercules Cluster, but we do not confirm an anomalously large half-light radius reported for the dwarf VCC 1661.

  15. 3D structure of nearby groups of galaxies

    NASA Astrophysics Data System (ADS)

    Makarova, L.; Makarov, D.; Klypin, A.; Gottlöber, S.

    2016-10-01

    Using high accuracy distance estimates, we study the three-dimensional distribution of galaxies in five galaxy groups at a distance less than 5 Mpc from the Milky Way. Due to proximity of these groups our sample of galaxies is nearly complete down to extremely small dwarf galaxies with absolute magnitudes M B = -12. We find that the average number-density profile of the groups shows a steep power-law decline dn/dV ˜ R-3 at distances R=(100-500) kpc consistent with predictions of the standard cosmological model. We also find that there is no indication of a truncation or a cutoff in the density at the expected virial radius: the density profile extends at least to 1.5 Mpc. Vast majority of galaxies within 1.5 Mpc radius around group centres are gas-rich star-forming galaxies. Early-type galaxies are found only in the central ˜ 300 kpc region. Lack of dwarf spheroidal and dwarf elliptical galaxies in the field and in the outskirts of large groups is a clear indication that these galaxies experienced morphological transformation when they came close to the central region of forming galaxy group.

  16. Constraints on decaying dark matter from Fermi observations of nearby galaxies and clusters

    SciTech Connect

    Dugger, Leanna; Profumo, Stefano; Jeltema, Tesla E. E-mail: tesla@ucolick.org

    2010-12-01

    We analyze the impact of Fermi gamma-ray observations (primarily non-detections) of selected nearby galaxies, including dwarf spheroidals, and of clusters of galaxies on decaying dark matter models. We show that the fact that galaxy clusters do not shine in gamma rays puts the most stringent limits available to-date on the lifetime of dark matter particles for a wide range of particle masses and decay final states. In particular, our results put strong constraints on the possibility of ascribing to decaying dark matter both the increasing positron fraction reported by PAMELA and the high-energy feature in the electron-positron spectrum measured by Fermi. Observations of nearby dwarf galaxies and of the Andromeda Galaxy (M31) do not provide as strong limits as those from galaxy clusters, while still improving on previous constraints in some cases.

  17. The Properties of Faint Galaxies in Nearby Clusters of the WINGS Sample

    NASA Astrophysics Data System (ADS)

    Bettoni, D.; Kjærgaard, P.; Milvan-Jensen, B.; D'Onofrio, M.; Moretti, A.; Poggianti, B. M.; Fasano, G.; Cava, A.; Couch, W.; Fritz, J.; Moles, M.

    We present the results of our X-shooter observations for a sample of dwarf (-17 < MB < -15) galaxies in nearby (0. 040 < z < 0. 068) galaxy clusters of the WINGS sample. The study of galaxies in this faint luminosity range is fundamental to trace the evolution of high-z star-forming cluster galaxies down to the present day. We measure the velocity dispersion of 22 galaxies in this range of luminosity and we explore their scaling relations. We found that the Fundamental Plane has a peculiar feature, suggesting the existence of some kind of warping at low luminosities.

  18. Nearby galaxies as pointers to a better theory of cosmic evolution.

    PubMed

    Peebles, P J E; Nusser, Adi

    2010-06-03

    The great advances in the network of cosmological tests show that the relativistic Big Bang theory is a good description of our expanding Universe. However, the properties of nearby galaxies that can be observed in greatest detail suggest that a better theory would describe a mechanism by which matter is more rapidly gathered into galaxies and groups of galaxies. This more rapid growth occurs in some theoretical ideas now under discussion.

  19. STAR-FORMING GALAXY EVOLUTION IN NEARBY RICH CLUSTERS

    SciTech Connect

    Tyler, K. D.; Rieke, G. H.; Bai, L.

    2013-08-20

    Dense environments are known to quench star formation in galaxies, but it is still unknown what mechanism(s) are directly responsible. In this paper, we study the star formation of galaxies in A2029 and compare it to that of Coma, combining indicators at 24 {mu}m, H{alpha}, and UV down to rates of 0.03 M{sub Sun} yr{sup -1}. We show that A2029's star-forming galaxies follow the same mass-SFR relation as the field. The Coma cluster, on the other hand, has a population of galaxies with star formation rates (SFRs) significantly lower than the field mass-SFR relation, indicative of galaxies in the process of being quenched. Over half of these galaxies also host active galactic nuclei. Ram-pressure stripping and starvation/strangulation are the most likely mechanisms for suppressing the star formation in these galaxies, but we are unable to disentangle which is dominating. The differences we see between the two clusters' populations of star-forming galaxies may be related to their accretion histories, with A2029 having accreted its star-forming galaxies more recently than Coma. Additionally, many early-type galaxies in A2029 are detected at 24 {mu}m and/or in the far-UV, but this emission is not directly related to star formation. Similar galaxies have probably been classified as star forming in previous studies of dense clusters, possibly obscuring some of the effects of the cluster environment on true star-forming galaxies.

  20. High-Resolution Near-Infrared Spectroscopy of an Equivalent Width-Selected Sample of Starbursting Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Maseda, Michael V.; VanDerWeL, Arjen; DaChuna, Elisabete; Rix, Hans-Walter; Pacafichi, Camilla; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; VanDokkum, Pieter; Bell, Eric F.; Ferguson, Harry C.; Fumagalli, Mattia; Grogin, Norman A.; Kocevski, Dale D.; Koekemoer, Anton M.; Lundgren, Britt F.; Marchesini, Danilo; Nelson, Erica J.; Patel, Shannon; Skelton, Rosalind E.; Straughn, Amber N.; Trump, Jonathan R.; Weiner, Benjamin J.; Whitaker, Katherine E.; Wuyts, Stijn

    2013-01-01

    Spectroscopic observations from the Large Binocular Telescope and the Very Large Telescope reveal kinematically narrow lines (approx. 50 km/s) for a sample of 14 Extreme Emission Line Galaxies (EELGs) at redshifts 1.4 < zeta < 2.3. These measurements imply that the total dynamical masses of these systems are low ( 3 × 10(exp 9) M). Their large [O III]5007 equivalent widths (500 - 1100 A) and faint blue continuum emission imply young ages of 10-100 Myr and stellar masses of 10(exp 8)-10(exp 9) M, confirming the presence of a violent starburst. The stellar mass formed in this vigorous starburst phase thus represents a large fraction of the total (dynamical) mass, without a significantly massive underlying population of older stars. The occurrence of such intense events in shallow potentials strongly suggests that supernova-driven winds must be of critical importance in the subsequent evolution of these systems.

  1. Millimeter and submillimeter observations of nearby radio galaxies

    NASA Technical Reports Server (NTRS)

    Knapp, G. R.; Patten, Brian M.

    1991-01-01

    Radio galaxies are often observed to be strong long wavelength infrared sources. Twenty-six radio galaxies with strong compact cores were observed at wavelengths near 1 mm with the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The detections and upper limits establish the presence of excess infrared emission for almost all of the galaxies in the sample. The exceptions are the BL Lac objects, which have smooth continuous spectra from radio to infrared wavelengths. The spectral energy distributions of the infrared emission from the radio galaxies favor a thermal origin due to emission from cool interstellar dust. The amounts of dust inferred to be present approach those observed in large spirals.

  2. POLYCYCLIC AROMATIC HYDROCARBON AND EMISSION LINE RATIOS IN ACTIVE GALACTIC NUCLEI AND STARBURST GALAXIES

    SciTech Connect

    Sales, Dinalva A.; Pastoriza, M. G.; Riffel, R. E-mail: pastoriza@ufrgs.b

    2010-12-10

    We study the polycyclic aromatic hydrocarbon (PAH) bands, ionic emission lines, and mid-infrared continuum properties in a sample of 171 emission line galaxies taken from the literature plus 15 new active galactic nucleus (AGN) Spitzer spectra. We normalize the spectra at {lambda} = 23 {mu}m and grouped them according to the type of nuclear activity. The continuum shape steeply rises for longer wavelengths and can be fitted with a warm blackbody distribution of T {approx} 150-300 K. The brightest PAH spectral bands (6.2, 7.7, 8.6, 11.3, and 12.7 {mu}m) and the forbidden emission lines of [Si II] 34.8 {mu}m, [Ar II] 6.9 {mu}m, [S III] 18.7 and 33.4 {mu}m were detected in all the starbursts and in {approx}80% of the Seyfert 2. Taking under consideration only the PAH bands at 7.7 {mu}m, 11.3 {mu}m, and 12.7 {mu}m, we find that they are present in {approx}80% of the Seyfert 1, while only half of this type of activity show the 6.2 {mu}m and 8.6 {mu}m PAH bands. The observed intensity ratios for neutral and ionized PAHs (6.2 {mu}m/7.7 {mu}m x 11.3 {mu}m/7.7 {mu}m) were compared to theoretical intensity ratios, showing that AGNs have higher ionization fraction and larger PAH molecules ({>=}180 carbon atoms) than SB galaxies. The ratio between the ionized (7.7 {mu}m) and the neutral PAH bands (8.6 {mu}m and 11.3 {mu}m) are distributed over different ranges for AGNs and SB galaxies, suggesting that these ratios could depend on the ionization fraction, as well as on the hardness of the radiation field. The ratio between the 7.7 {mu}m and 11.3 {mu}m bands is nearly constant with the increase of [Ne III]15.5 {mu}m/[Ne II] 12.8 {mu}m, indicating that the fraction of ionized to neutral PAH bands does not depend on the hardness of the radiation field. The equivalent width of both PAH features show the same dependence (strongly decreasing) with [Ne III]/[Ne II], suggesting that the PAH molecules, emitting either ionized (7.7 {mu}m) or neutral (11.3 {mu}m) bands, may be destroyed

  3. HUNTING FOR SUPERMASSIVE BLACK HOLES IN NEARBY GALAXIES WITH THE HOBBY–EBERLY TELESCOPE

    SciTech Connect

    Bosch, Remco C. E. van den; Yıldırım, Akin; Gebhardt, Karl; Walsh, Jonelle L.; Gültekin, Kayhan

    2015-05-15

    We have conducted an optical long-slit spectroscopic survey of 1022 galaxies using the 10 m Hobby–Eberly Telescope (HET) at McDonald Observatory. The main goal of the HET Massive Galaxy Survey (HETMGS) is to find nearby galaxies that are suitable for black hole mass measurements. In order to measure accurately the black hole mass, one should kinematically resolve the region where the black hole dominates the gravitational potential. For most galaxies, this region is much less than an arcsecond. Thus, black hole masses are best measured in nearby galaxies with telescopes that obtain high spatial resolution. The HETMGS focuses on those galaxies predicted to have the largest sphere-of-influence, based on published stellar velocity dispersions or the galaxy fundamental plane. To ensure coverage over galaxy types, the survey targets those galaxies across a face-on projection of the fundamental plane. We present the sample selection and resulting data products from the long-slit observations, including central stellar kinematics and emission line ratios. The full data set, including spectra and resolved kinematics, is available online. Additionally, we show that the current crop of black hole masses are highly biased toward dense galaxies and that especially large disks and low dispersion galaxies are under-represented. This survey provides the necessary groundwork for future systematic black hole mass measurement campaigns.

  4. VizieR Online Data Catalog: Updated catalog of GALEX nearby galaxies (Bai+, 2015)

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Zou, H.; Liu, J.; Wang, S.

    2015-10-01

    The ultraviolet (UV) catalog of nearby galaxies compiled by Gil de Paz et al. (2007, J/ApJS/173/185) presents the integrated photometry and surface brightness profiles for 1034 nearby galaxies observed by GALEX. We provide an updated catalog of 4138 nearby galaxies based on the latest General Release (GR6/GR7) of GALEX. These galaxies are selected from HyperLeda with apparent diameters larger than 1'. From the surface brightness profiles accurately measured using the deep NUV and FUV images, we have calculated the asymptotic magnitudes, aperture (D25) magnitudes, colors, structural parameters (effective radii and concentration indices), luminosities, and effective surface brightness for these galaxies. Archival optical and infrared photometry from HyperLeda, 2MASS, and IRAS are also integrated into the catalog. Our parameter measurements and some analyses are consistent with those of Paz et al. The (FUV-K) color provides a good criterion to distinguish between early- and late-type galaxies, which can be improved further using the concentration indices. The IRX-β relation is reformulated with our UV-selected nearby galaxies. (3 data files).

  5. OUTFLOWING GALACTIC WINDS IN POST-STARBURST AND ACTIVE GALACTIC NUCLEUS HOST GALAXIES AT 0.2 < z < 0.8

    SciTech Connect

    Coil, Alison L.; Aird, James; Weiner, Benjamin J.; Holz, Daniel E.; Cooper, Michael C.; Yan Renbin

    2011-12-10

    We present Keck/LRIS-B spectra for a sample of 10 AEGIS X-ray active galactic nucleus (AGN) host galaxies and 13 post-starburst galaxies from SDSS and DEEP2 at 0.2 < z < 0.8 in order to investigate the presence, properties, and influence of outflowing galactic winds at intermediate redshifts. We focus on galaxies that either host a low-luminosity AGN or have recently had their star formation quenched to test whether these galaxies have winds of sufficient velocity to potentially clear gas from the galaxy. We find, using absorption features of Fe II, Mg II, and Mg I, that six of the ten (60%) X-ray AGN host galaxies and four of the thirteen (31%) post-starburst galaxies have outflowing galactic winds, with typical velocities of {approx}200 km s{sup -1}. We additionally find that most of the galaxies in our sample show line emission, possibly from the wind, in either Fe II* or Mg II. A total of 100% of our X-ray AGN host sample (including four red sequence galaxies) and 77% of our post-starburst sample has either blueshifted absorption or line emission. Several K+A galaxies have small amounts of cool gas absorption at the systemic velocity, indicating that not all of the cool gas has been expelled. We conclude that while outflowing galactic winds are common in both X-ray low-luminosity AGN host galaxies and post-starburst galaxies at intermediate redshifts, the winds are likely driven by supernovae (as opposed to AGNs) and do not appear to have sufficiently high velocities to quench star formation in these galaxies.

  6. Star Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z=5.3

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared OR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multi wavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  7. Star and Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z equals 5.3

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multi wavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  8. Star and Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z=5.3

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  9. THE DWARF STARBURST HOST GALAXY OF A TYPE Ia SUPERNOVA AT z = 1.55 FROM CANDELS

    SciTech Connect

    Frederiksen, Teddy F.; Hjorth, Jens; Maund, Justyn R.; Rodney, Steven A.; Riess, Adam G.; Dahlen, Tomas; Mobasher, Bahram

    2012-12-01

    We present VLT/X-shooter observations of a high-redshift, Type Ia supernova (SN Ia) host galaxy, discovered with HST/WFC3 as part of the CANDELS Supernova project. The galaxy exhibits strong emission lines of Ly{alpha}, [O II], H{beta}, [O III], and H{alpha} at z = 1.54992{sup +0.00008} {sub -0.00004}. From the emission-line fluxes and spectral energy distribution fitting of broadband photometry we rule out activity from an active galactic nucleus and characterize the host galaxy as a young, low-mass, metal-poor, starburst galaxy with low intrinsic extinction and high Ly{alpha} escape fraction. The host galaxy stands out in terms of the star formation, stellar mass, and metallicity compared to its lower redshift counterparts, mainly because of its high specific star formation rate. If valid for a larger sample of high-redshift SN Ia host galaxies, such changes in the host galaxy properties with redshift are of interest because of the potential impact on the use of SN Ia as standard candles in cosmology.

  10. 3D-HST GRISM SPECTROSCOPY OF A GRAVITATIONALLY LENSED, LOW-METALLICITY STARBURST GALAXY AT z = 1.847

    SciTech Connect

    Brammer, Gabriel B.; Sanchez-Janssen, Ruben; Labbe, Ivo; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Da Cunha, Elisabete; Rix, Hans-Walter; Schmidt, Kasper B.; Van der Wel, Arjen; Erb, Dawn K.; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica; Skelton, Rosalind E.; Van Dokkum, Pieter G.; Wake, David A.; Whitaker, Katherine E.; Marchesini, Danilo; Quadri, Ryan

    2012-10-10

    We present Hubble Space Telescope (HST) imaging and spectroscopy of the gravitational lens SL2SJ02176-0513, a cusp arc at z = 1.847. The UV continuum of the lensed galaxy is very blue, which is seemingly at odds with its redder optical colors. The 3D-HST WFC3/G141 near-infrared spectrum of the lens reveals the source of this discrepancy to be extremely strong [O III] {lambda}5007 and H{beta} emission lines with rest-frame equivalent widths of 2000 {+-} 100 and 520 {+-} 40 A, respectively. The source has a stellar mass {approx}10{sup 8} M{sub Sun }, sSFR {approx} 100 Gyr{sup -1}, and detection of [O III] {lambda}4363 yields a metallicity of 12 + log (O/H) = 7.5 {+-} 0.2. We identify local blue compact dwarf analogs to SL2SJ02176-0513, which are among the most metal-poor galaxies in the Sloan Digital Sky Survey. The local analogs resemble the lensed galaxy in many ways, including UV/optical spectral energy distribution, spatial morphology, and emission line equivalent widths and ratios. Common to SL2SJ02176-0513 and its local counterparts is an upturn at mid-IR wavelengths likely arising from hot dust heated by starbursts. The emission lines of SL2SJ02176-0513 are spatially resolved owing to the combination of the lens and the high spatial resolution of HST. The lensed galaxy is composed of two clumps with combined size r{sub e} {approx}300 pc, and we resolve significant differences in UV color and emission line equivalent width between them. Though it has characteristics occasionally attributed to active galactic nuclei, we conclude that SL2SJ02176-0513 is a low-metallicity star-bursting dwarf galaxy. Such galaxies will be found in significant numbers in the full 3D-HST grism survey.

  11. MID-INFRARED PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES. I. SPITZER INFRARED SPECTROGRAPH SPECTRA FOR THE GOALS SAMPLE

    SciTech Connect

    Stierwalt, S.; Armus, L.; Surace, J. A.; Inami, H.; Petric, A. O.; Diaz-Santos, T.; Haan, S.; Howell, J.; Marshall, J.; Charmandaris, V.; Kim, D. C.; Mazzarella, J. M.; Chan, B.; Spoon, H. W. W.; Veilleux, S.; Evans, A.; Sanders, D. B.; Appleton, P.; Bothun, G.; Bridge, C. R.; and others

    2013-05-01

    The Great Observatories All-Sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present low resolution Spitzer Infrared Spectrograph spectra covering 5-38 {mu}m and provide a basic analysis of the mid-IR spectral properties observed for nearby LIRGs. In a companion paper, we discuss detailed fits to the spectra and compare the LIRGs to other classes of galaxies. The GOALS sample of 244 nuclei in 180 luminous (10{sup 11} {<=} L {sub IR}/L {sub Sun} < 10{sup 12}) and 22 ultraluminous (L {sub IR}/L {sub Sun} {>=} 10{sup 12}) IR galaxies represents a complete subset of the IRAS Revised Bright Galaxy Sample and covers a range of merger stages, morphologies, and spectral types. The majority (>60%) of the GOALS LIRGs have high 6.2 {mu}m polycyclic aromatic hydrocarbon (PAH) equivalent widths (EQW{sub 6.2{mu}m} > 0.4 {mu}m) and low levels of silicate absorption (s {sub 9.7{mu}m} > -1.0). There is a general trend among the U/LIRGs for both silicate depth and mid-infrared (MIR) slope to increase with increasing L {sub IR}. U/LIRGs in the late to final stages of a merger also have, on average, steeper MIR slopes and higher levels of dust obscuration. Together, these trends suggest that as gas and dust is funneled toward the center of a coalescing merger, the nuclei become more compact and more obscured. As a result, the dust temperature increases also leading to a steeper MIR slope. The sources that depart from these correlations have very low PAH equivalent width (EQW{sub 6.2{mu}m} < 0.1 {mu}m) consistent with their emission being dominated by an active galactic nucleus (AGN) in the MIR. These extremely low PAH EQW sources separate into two distinct types: relatively unobscured sources with a very hot dust component (and thus very shallow MIR slopes) and heavily dust obscured nuclei with a steep temperature gradient. The most heavily dust obscured sources are also the most compact in their MIR

  12. Starbursting brightest cluster galaxy: a Herschel view of the massive cluster MACS J1931.8-2634

    NASA Astrophysics Data System (ADS)

    Santos, J. S.; Balestra, I.; Tozzi, P.; Altieri, B.; Valtchanov, I.; Mercurio, A.; Nonino, M.; Yu, Heng; Rosati, P.; Grillo, C.; Medezinski, E.; Biviano, A.

    2016-02-01

    We investigate the dust-obscured star formation (SF) properties of the massive, X-ray-selected galaxy cluster MACS J1931.8-2634 at z = 0.352. Using far-infrared (FIR) imaging in the range 100-500 μm obtained with the Herschel telescope, we extract 31 sources (2σ) within r ˜ 1 Mpc from the brightest cluster galaxy (BCG). Among these sources, we identify six cluster members for which we perform an analysis of their spectral energy distributions (SEDs). We measure total infrared luminosity (LIR), star formation rate (SFR) and dust temperature. The BCG, with LIR = 1.4 × 1012 L⊙ is an ultraluminous infrared galaxy and hosts a type-II active galactic nuclei (AGN). We decompose its FIR SED into AGN and starburst components and find equal contributions from AGN and starburst. We also recompute the SFR of the BCG finding SFR = 150 ± 15 M⊙ yr-1. We search for an isobaric cooling flow in the cool core using Chandra X-ray data, and find no evidence for gas colder than 1.8 keV in the inner 30 kpc, for an upper limit to the instantaneous mass-deposition rate of 58 M⊙ yr-1 at 95 per cent c.l. This value is 3× lower than the SFR in the BCG, suggesting that the on-going SF episode lasts longer than the intracluster medium cooling events.

  13. Direct Detection CO 7-6 Spectroscopy of the Galactic Center and Starburst Galaxies: SPIFI at the JCMT

    NASA Astrophysics Data System (ADS)

    Bradford, C. M.; Stacey, G. J.; Nikola, T.; Swain, M. R.; Bolatto, A. D.; Jackson, J. M.; Savage, M. L.; Davidson, J. A.

    1999-12-01

    We present the results of the first two observing runs with our new submillimeter spectrometer, the South Pole Imaging Fabry-Perot Interferometer (SPIFI). SPIFI is the first of its kind -- a direct-detection imaging spectrometer for use in the submillimeter. Our first two runs were through the 350 μm telluric window on the 15 m James Clerk Maxwell Telescope (JCMT), but SPIFI can also access the 200, 450, and 600 μm windows available to the JCMT and the AST/RO telescope at the South Pole. Despite mediocre weather on our first two runs (atmospheric transmission < 10%), we mapped the entire Galactic Center circumnuclear ring (CNR) in CO (J=7-6) at 7 arcsec resolution (about 200 spectra). The high-J CO emission traces warm, dense molecular gas, and especially highlights shocks. We observe bright emission in both the CNR itself and in kinematically distinct infalling material such as the +70 km/s cloud and the northern arm. We also carried out the first extragalactic CO (7-6) obsevations, in the starburst galaxies NGC 253 and M82. The line intensities indicate that these starburst systems, especially NGC 253, are exciting large amounts of dense molecular gas to T 100 K. SPIFI's sensitivity at the telescope was very close to predicted. We measured system temperatures around 10,000 K with an atmospheric transmission of 8.5 %, which, accounting for the efficiencies, is equivalent to Trec (DSB) < 100 K. We intend to continue to improve SPIFI's performance, and good-weather projects in the near future include [CI] 370 μm mapping in the Galactic Center, starburst galaxies, dwarf galaxies, and ULIGs, as well as the first observations of far-IR fine structure lines in high-redshift systems.

  14. Star formation quenching in high-redshift large-scale structure: post-starburst galaxies in the Cl 1604 supercluster at z ∼ 0.9

    SciTech Connect