Science.gov

Sample records for nearby starburst galaxy

  1. THE NATURE OF STARBURSTS. I. THE STAR FORMATION HISTORIES OF EIGHTEEN NEARBY STARBURST DWARF GALAXIES

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Stark, David; Weisz, Daniel; Cannon, John M.; Dalcanton, Julianne; Williams, Benjamin; Dolphin, Andrew; Hidalgo-RodrIguez, Sebastian

    2010-09-20

    We use archival Hubble Space Telescope observations of resolved stellar populations to derive the star formation histories (SFHs) of 18 nearby starburst dwarf galaxies. In this first paper, we present the observations, color-magnitude diagrams (CMDs), and the SFHs of the 18 starburst galaxies, based on a homogeneous approach to the data reduction, differential extinction, and treatment of photometric completeness. We adopt a star formation rate (SFR) threshold normalized to the average SFR of the individual system as a metric for classifying starbursts in SFHs derived from resolved stellar populations. This choice facilitates finding not only the currently bursting galaxies but also 'fossil' bursts increasing the sample size of starburst galaxies in the nearby (D < 8 Mpc) universe. Thirteen of the eighteen galaxies are experiencing ongoing bursts and five galaxies show fossil bursts. From our reconstructed SFHs, it is evident that the elevated SFRs of a burst are sustained for hundreds of Myr with variations on small timescales. A long >100 Myr temporal baseline is thus fundamental to any starburst definition or identification method. The longer lived bursts rule out rapid 'self-quenching' of starbursts on global scales. The bursting galaxies' gas consumption timescales are shorter than the Hubble time for all but one galaxy confirming the short-lived nature of starbursts based on fuel limitations. Additionally, we find that the strength of the H{alpha} emission usually correlates with the CMD-based SFR during the last 4-10 Myr. However, in four cases, the H{alpha} emission is significantly less than what is expected for models of starbursts; the discrepancy is due to the SFR changing on timescales of a few Myr. The inherently short timescale of the H{alpha} emission limits identifying galaxies as starbursts based on the current characteristics which may or may not be representative of the recent SFH of a galaxy.

  2. (12)CO (3-2) & (1-0) emission line observations of nearby starburst galaxy nuclei

    NASA Technical Reports Server (NTRS)

    Devereux, Nicholas; Taniguchi, Yoshiaki; Sanders, D. B.; Nakai, N.; Young, J. S.

    1994-01-01

    New measurements of the (12)CO (1-0) and (12)CO (3-2) line emission are presented for the nuclei of seven nearby starburst galaxies selected from a complete sample of 21 nearby starburst galaxies for which the nuclear star formation rates are measured to be comparable to the archetype starburst galaxies M82 and NGC 253. The new observations capitalize on the coincidence between the beam size of the 45 m Nobeyama telescope at 115 GHz and that of the 15 m James Clerk Maxwell Telescope at 345 GHz to measure the value of the (12)CO (3-2)/(1-0) emission line ratio in a 15 sec (less than or equal to 2.5 kpc) diameter region centered on the nuclear starburst. In principle, the (12)CO (3-2)/(1-0) emission line ratio provides a measure of temperature and optical depth for the (12)CO gas. The error weighted mean value of the (12)CO (3-2)/(1-0) emission line ratio measured for the seven starburst galaxy nuclei is -0.64 +/- 0.06. The (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is significantly higher than the average value measured for molecular gas in the disk of the Galaxy, implying warmer temperatures for the molecular gas in starburst galaxy nuclei. On the other hand, the (12)CO (3-2)/(1-0) emission line ratio measured for the starburst galaxy nuclei is not as high as would be expected if the molecular gas were hot, greater than 20 K, and optically thin, tau much less than 1. The total mass of molecular gas contained within the central 1.2-2.8 kpc diameter region of the starburst galaxy nuclei ranges from 10(exp 8) to 10(exp 9) solar mass. While substantial, the molecular gas mass represents only a small percentage, approximately 9%-16%, of the dynamical mass in the same region.

  3. OBSERVATIONAL CONSTRAINTS ON THE MOLECULAR GAS CONTENT IN NEARBY STARBURST DWARF GALAXIES

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F.; Dolphin, Andrew E.; Cannon, John M.; Holtzman, Jon

    2012-06-01

    Using star formation histories derived from optically resolved stellar populations in 19 nearby starburst dwarf galaxies observed with the Hubble Space Telescope, we measure the stellar mass surface densities of stars newly formed in the bursts. By assuming a star formation efficiency (SFE), we then calculate the inferred gas surface densities present at the onset of the starbursts. Assuming an SFE of 1%, as is often assumed in normal star-forming galaxies, and assuming that the gas was purely atomic, translates to very high H I surface densities ({approx}10{sup 2}-10{sup 3} M{sub Sun} pc{sup -2}), which are much higher than have been observed in dwarf galaxies. This implies either higher values of SFE in these dwarf starburst galaxies or the presence of significant amounts of H{sub 2} in dwarfs (or both). Raising the assumed SFEs to 10% or greater (in line with observations of more massive starbursts associated with merging galaxies), still results in H I surface densities higher than observed in 10 galaxies. Thus, these observations appear to require that a significant fraction of the gas in these dwarf starbursts galaxies was in the molecular form at the onset of the bursts. Our results imply molecular gas column densities in the range 10{sup 19}-10{sup 21} cm{sup -2} for the sample. In the galaxies where CO observations have been made, these densities correspond to values of the CO-H{sub 2} conversion factor (X{sub CO}) in the range >(3-80) Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}, or up to 40 Multiplication-Sign greater than Galactic X{sub CO} values.

  4. Dynamics of starbursting dwarf galaxies. III. A H I study of 18 nearby objects

    NASA Astrophysics Data System (ADS)

    Lelli, Federico; Verheijen, Marc; Fraternali, Filippo

    2014-06-01

    We investigate the dynamics of starbursting dwarf galaxies, using both new and archival H I observations. We consider 18 nearby galaxies that have been resolved into single stars by HST observations, providing their star formation history and total stellar mass. We find that 9 objects have a regularly rotating H I disk, 7 have a kinematically disturbed H I disk, and 2 show unsettled H I distributions. Two galaxies (NGC 5253 and UGC 6456) show a velocity gradient along the minor axis of the H I disk, which we interpret as strong radial motions. For galaxies with a regularly rotating disk we derive rotation curves, while for galaxies with a kinematically disturbed disk, we estimate the rotation velocities in their outer parts. We derive baryonic fractions within about 3 optical scale lengths and find that, on average, baryons constitute at least 30% of the total mass. Despite the star formation having injected ~1056 ergs in the ISM in the past ~500 Myr, these starbursting dwarfs have both baryonic and gas fractions similar to those of typical dwarf irregulars, suggesting that they did not eject a large amount of gas out of their potential wells. Appendices are available in electronic form at http://www.aanda.orgH I datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A71

  5. Feedback in nearby dwarf starburst galaxies and giant extragalactic H II regions

    NASA Astrophysics Data System (ADS)

    Schwartz, Colleen

    Giant extragalactic H II regions in nearby normal galaxies are similar to dwarf starburst galaxies in luminosity/star formation rate, physical size, and stellar population, although they differ in gravitational potential, star formation rate per unit area, and surrounding environment. This dissertation compares feedback processes in these two types of star-forming regions. Feedback, the cycle which regulates the, relationship between star formation, the interstellar medium, and the intergalactic medium, is empirically measured via observations of interstellar gas in star-forming regions, where stellar winds and supernovae create galactic-scale outflows of interstellar gas and dust which in turn may heat and enrich the intergalactic medium. These kiloparsec-scale winds are most directly probed via the supernova-heated hot gas. However, the cold and photoionized warm interstellar gas from the disk is entrained in the flow and also traces large-scale motions of outflowing matter. I investigate this via optical and ultraviolet absorption-line spectroscopy of the cold neutral medium, as well as emission-line studies of the Ha recombination in the warm ionized gas. The H II regions in disks initially seem physically similar to dwarf starburst galaxies; shell fragments of ionized gas are found in both environments via high-resolution Ha emission spectroscopy. However, while complex Na D absorption profiles trace outflowing cold, neutral gas accelerated to near the escape velocity, no such counterpart is detected in the H II regions in outer disks. The lack of large-scale outflows of cold, neutral gas from the H II regions indicates that while dwarf starburst galaxies and the giant H II regions in normal galaxies may have similar properties, yet the feedback cycle in these regions is different.

  6. Starburst galaxies

    NASA Technical Reports Server (NTRS)

    Weedman, Daniel W.

    1987-01-01

    The infrared properties of star-forming galaxies, primarily as determined by the Infrared Astronomy Satellite (IRAS), are compared to X-ray, optical, and radio properties. Luminosity functions are reviewed and combined with those derived from optically discovered samples using 487 Markarian galaxies with redshifts and published IRAS 60 micron fluxes, and 1074 such galaxies in the Center for Astrophysics redshift survey. It is found that the majority of infrared galaxies which could be detected are low luminosity sources already known from the optical samples, but non-infrared surveys have found only a very small fraction of the highest luminosity sources. Distributions of infrared to optical fluxes and available spectra indicate that the majority of IRAS-selected galaxies are starburst galaxies. Having a census of starburst galaxies and associated dust allow severl important global calculations. The source counts are predicted as a function of flux limits for both infrared and radio fluxes. These galaxies are found to be important radio sources at faint flux limits. Taking the integrated flux to z = 3 indicates that such galaxies are a significant component of the diffuse X-ray background, and could be the the dominant component depending on the nature of the X-ray spectra and source evolution.

  7. The Green Bank Telescope Maps the Dense, Star-forming Gas in the Nearby Starburst Galaxy M82

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Leroy, Adam K.; Frayer, David; Usero, Antonio; Marvil, Josh; Walter, Fabian

    2014-01-01

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO+. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxies by presenting the most sensitive maps yet of HCN and HCO+ in the starburst galaxy M82. The HCN and HCO+ in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO+ emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.

  8. THE GREEN BANK TELESCOPE MAPS THE DENSE, STAR-FORMING GAS IN THE NEARBY STARBURST GALAXY M82

    SciTech Connect

    Kepley, Amanda A.; Frayer, David; Leroy, Adam K.; Usero, Antonio; Walter, Fabian

    2014-01-01

    Observations of the Milky Way and nearby galaxies show that dense molecular gas correlates with recent star formation, suggesting that the formation of this gas phase may help regulate star formation. A key test of this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation, but these observations have been limited because of the faintness of dense gas tracers like HCN and HCO{sup +}. Here we demonstrate the power of the Robert C. Byrd Green Bank Telescope (GBT)—the largest single-dish millimeter radio telescope—for mapping dense gas in galaxies by presenting the most sensitive maps yet of HCN and HCO{sup +} in the starburst galaxy M82. The HCN and HCO{sup +} in the disk of this galaxy correlates with both recent star formation and more diffuse molecular gas and shows kinematics consistent with a rotating torus. The HCO{sup +} emission extending to the north and south of the disk is coincident with the outflow previously identified in CO and traces the eastern edge of the hot outflowing gas. The central starburst region has a higher ratio of star formation to dense gas than the outer regions, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies, a capability that will increase further with the 16 element feed array under construction.

  9. Spatially Resolved Stellar Populations Of Nearby Post-Starburst Galaxies In SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Liu, Charles; Betances, Ashley; Bonilla, Alaina Marie; Gonzalez, Andrea; Migliore, Christina; Goddard, Daniel; Masters, Karen; SDSS-IV MaNGA Team

    2016-01-01

    We have selected five galaxies in the Mapping Nearby Galaxies at APO (MaNGA) project of the latest generation of the Sloan Digital Sky Survey (SDSS-IV) identified as post-starburst (E+A) systems, in the transition between "blue cloud" and "red sequence" galaxies. We measure the equivalent widths of the Balmer series, D4000 break, and metal lines across each galaxy, and produce maps of the stellar age, stellar mass, and metallicities of each galaxy using FIREFLY, a full spectral analysis code. We have found that the measured properties of the galaxies overall generally matches well with single-aperture SDSS spectra from which the original post-starburst identifications were made. The variation in the spatial distributions of the stellar populations, in particular the A-stars, give us insight into the details of the transitional E+A quenching phase. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement No. SSP483 to the CUNY College of Staten Island.

  10. Space Observations of Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.; Leitherer, Claus

    1997-01-01

    Led by JHU postdoc Gerhardt Meurer, we completed our analysis of far-UV HST FOC images of nine nearby starbursts. We have been able to delineate the structure of the regions in which the unusually vigorous star-formation is occurring (Meurer et al 1995). At 0.1 arcsec (2 to 20 pc) resolution, the starbursts are resolved into multiple clumps and bright star clusters distributed over a region several hundred pc to a few kpc in size. This suggests that compact sites of star-formation may propagate from place to place within a larger central gas reservoir over the duration of the burst. The UV and optical properties of these clusters suggest that they may correspond to newly 'minted' globular clusters. These clusters typically produce about 10% to 50% of the far-UV light, and are preferentially located in the heart of the starburst, where the background UV surface brightness is highest. Thus, massive star cluster (globular cluster?) formation is a fundamental part of the starburst phenomenon. This confirms and generalizes the results of Whitmore et al (1993). Our starburst images are also being compared to our recent analysis of the HST FOC image of R136 in the LMC (De Marchi et al 1993). We have also extended our results on the UV photometric structure of starbursts to star-forming galaxies in the early universe (Meurer et al 1997). We show that the most actively- star-forming galaxies at all redshifts seem to have approximately the same bolometric surface-brightness, and that the high redshift galaxies may be larger and more luminous versions of local starbursts.

  11. Starburst models of merging galaxies

    NASA Technical Reports Server (NTRS)

    Prestwich, Andrea H.

    1993-01-01

    In the past decade, infrared observations have shown that interacting and merging galaxies have higher luminosities than isolated systems, with the luminosities in mergers as high as 10(exp 12) solar luminosity. However, the origin of the luminosity found in mergers is controversial, with two main competing theories. The first is the starburst scenario. As two gas rich galaxies start to merge, cloud-cloud collisions induce fast shocks in the molecular gas. This gas cools, collapses, and fragments, producing a blast of star formation. The main rival to this theory is that the infrared luminosity is produced by a dust embedded active nucleus, the merger of two gas rich galaxies providing the 'fuel to feed the monster'. There has even been speculation that there is an evolutionary link between starbursts and active nuclei, and that possibly active galactic nuclei (AGN's) and QSO's were formed from a starburst. Assuming that the infrared luminosity in merging galaxies is due to star formation, there should be ionizing photons produced from the high mass stars, giving rise to recombination line emission. The objective is to use a simple starburst model to test the hypothesis that the extreme infrared luminosity of merging galaxies is due to a starburst.

  12. THE ACS NEARBY GALAXY SURVEY TREASURY. VII. THE NGC 4214 STARBURST AND THE EFFECTS OF STAR FORMATION HISTORY ON DWARF MORPHOLOGY

    SciTech Connect

    Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Weisz, Daniel R.; Seth, Anil C.; Skillman, Evan D.; Dolphin, Andrew E. E-mail: jd@astro.washington.edu E-mail: dweisz@astro.washington.edu E-mail: skillman@astro.umn.edu

    2011-07-01

    We present deep Hubble Space Telescope WFPC2 optical observations obtained as part of the ACS Nearby Galaxy Survey Treasury as well as early release Wide Field Camera 3 ultraviolet and infrared observations of the nearby dwarf starbursting galaxy NGC 4214. Our data provide a detailed example of how covering such a broad range in wavelength provides a powerful tool for constraining the physical properties of stellar populations. The deepest data reach the ancient red clump at M{sub F814W} {approx} - 0.2. All of the optical data reach the main-sequence turnoff for stars younger than {approx}300 Myr and the blue He-burning sequence for stars younger than 500 Myr. The full color-magnitude diagram (CMD) fitting analysis shows that all three fields in our data set are consistent with {approx}75% of the stellar mass being older than 8 Gyr, in spite of showing a wide range in star formation rates at present. Thus, our results suggest that the scale length of NGC 4214 has remained relatively constant for many gigayears. As previously noted by others, we also find the galaxy has recently ramped up production consistent with its bright UV luminosity and its population of UV-bright massive stars. In the central field we find UV point sources with F336W magnitudes as bright as -9.9. These are as bright as stars with masses of at least 52-56 M{sub sun} and ages near 4 Myr in stellar evolution models. Assuming a standard initial mass function, our CMD is well fitted by an increase in star formation rate beginning 100 Myr ago. The stellar populations of this late-type dwarf are compared with those of NGC 404, an early-type dwarf that is also the most massive galaxy in its local environment. The late-type dwarf appears to have a similar high fraction of ancient stars, suggesting that these dominant galaxies may form at early epochs even if they have low total mass and very different present-day morphologies.

  13. Chemical Classification of Nearby Active Galaxies

    NASA Astrophysics Data System (ADS)

    Aladro, R.; Martín, S.; Kramer, C.

    2015-12-01

    We present an unbiased λ=3 mm survey done with the IRAM 30 telescope towards the central parts of eight galaxies considered as archetypes of nearby starbursts, galaxies with an active galactic nucleus (AGN) and ultra-luminous infrared galaxies (ULIRGs). The spatial resolution range from ˜200 pc to ˜1.6 kpc, depending on the galaxy. We compare the abundances of thirty-seven species among the sample, and highlight the molecules that characterise the gas in each of them. These results can be very useful to prepare future interferometric observations of active galaxies.

  14. THE NATURE OF STARBURSTS. II. THE DURATION OF STARBURSTS IN DWARF GALAXIES

    SciTech Connect

    McQuinn, Kristen B. W.; Skillman, Evan D.; Stark, David; Weisz, Daniel; Cannon, John M.; Dalcanton, Julianne; Williams, Benjamin; Dolphin, Andrew; Hidalgo-RodrIguez, Sebastian

    2010-11-20

    The starburst phenomenon can shape the evolution of the host galaxy and the surrounding intergalactic medium. The extent of the evolutionary impact is partly determined by the duration of the starburst, which has a direct correlation with both the amount of stellar feedback and the development of galactic winds, particularly for smaller mass dwarf systems. We measure the duration of starbursts in twenty nearby, ongoing, and 'fossil' starbursts in dwarf galaxies based on the recent star formation histories derived from resolved stellar population data obtained with the Hubble Space Telescope. Contrary to the shorter times of 3-10 Myr often cited, the starburst durations we measure range from 450to650 Myr in fifteen of the dwarf galaxies and up to 1.3 Gyr in four galaxies; these longer durations are comparable to or longer than the dynamical timescales for each system. The same feedback from massive stars that may quench the flickering star formation does not disrupt the overall burst event in our sample of galaxies. While five galaxies present fossil bursts, fifteen galaxies show ongoing bursts and thus the final durations may be longer than we report here for these systems. One galaxy shows a burst that has been ongoing for only 20 Myr; we are likely seeing the beginning of a burst event in this system. Using the duration of the starbursts, we calculate that the bursts deposited 10{sup 53.9}-10{sup 57.2} erg of energy into the interstellar medium through stellar winds and supernovae, and produced 3%-26% of the host galaxy's mass.

  15. ACS Nearby Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne

    2006-07-01

    Existing HST observations of nearby galaxies comprise a sparse and highly non-uniform archive, making comprehensive comparative studies among galaxies essentially impossible. We propose to secure HST's lasting impact on the study of nearby galaxies by undertaking a systematic, complete, and carefully crafted imaging survey of ALL galaxies in the Local Universe outside the Local Group. The resulting images will allow unprecedented measurements of: {1} the star formation history {SFH} of a >100 Mpc^3 volume of the Universe with a time resolution of Delta[log{t}]=0.25; {2} correlations between spatially resolved SFHs and environment; {3} the structure and properties of thick disks and stellar halos; and {4} the color distributions, sizes, and specific frequencies of globular and disk clusters as a function of galaxy mass and environment. To reach these goals, we will use a combination of wide-field tiling and pointed deep imaging to obtain uniform data on all 72 galaxies within a volume-limited sample extending to 3.5 Mpc, with an extension to the M81 group. For each galaxy, the wide-field imaging will cover out to 1.5 times the optical radius and will reach photometric depths of at least 2 magnitudes below the tip of the red giant branch throughout the limits of the survey volume. One additional deep pointing per galaxy will reach SNR 10 for red clump stars, sufficient to recover the ancient SFH from the color-magnitude diagram. This proposal will produce photometric information for 100 million stars {comparable to the number in the SDSS survey} and uniform multi-color images of half a square degree of sky. The resulting archive will establish the fundamental optical database for nearby galaxies, in preparation for the shift of high-resolution imaging to the near-infrared.

  16. Stellar Evolution in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Conti, Peter

    2001-01-01

    The main thrust of the program was to obtain UV spectroscopy of a number of massive and hot luminous (OB type) stars in the nearby galaxy called the Small Magellanic Cloud (SMC). The objective was to analyze their atmospheres and winds so as to determine the effect of the lower abundance of the SIVIC on these parameters. Furthermore, the differences in evolution could be investigated. Additionally, the UV spectra themselves would be suitably weighted and systematically combined to provide a template for comparison to very distant galaxies formed in the early history of the Universe which also have a low abundance of elements. The spectra have been obtained and the analysis is proceeding, primarily by the groups in Munich and at STScl who are the leads for this project. Given the important role of the nearby SMC galaxy as a template of low metal abundance, I have begun to investigate the YOUNGEST phases of massive star birth, before the most massive and hottest stars become optically visible. Typically these stars form in clusters, in some cases having tens to hundreds of OB type stars. In this phase, each star is still buried in its natal cloud and visible only in the infrared (IR) from its self-heated dust and/or from radio free-free emission of the surrounding hydrogen (HII) region. Efforts to find and identify these buried clusters were conducted using a large radio telescope. A number of these were found and further analysis of the data is underway. These clusters are not visible optically, but ought to be seen in the IR, and are a likely topic for HST photometry on NICMOS. A proposal to do this will be made next semester. These objects are the precursors of the optically visible clusters that contain massive and hot luminous stars.

  17. AN IONIZATION CONE IN THE DWARF STARBURST GALAXY NGC 5253

    SciTech Connect

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael; Martin, Crystal L.

    2011-11-01

    There are few observational constraints on how the escape of ionizing photons from starburst galaxies depends on galactic parameters. Here we report on the first major detection of an ionization cone in NGC 5253, a nearby starburst galaxy. This high-excitation feature is identified by mapping the emission-line ratios in the galaxy using [S III] {lambda}9069, [S II] {lambda}6716, and H{alpha} narrowband images from the Maryland-Magellan Tunable Filter at Las Campanas Observatory. The ionization cone appears optically thin, which suggests the escape of ionizing photons. The cone morphology is narrow with an estimated solid angle covering just 3% of 4{pi} steradians, and the young, massive clusters of the nuclear starburst can easily generate the radiation required to ionize the cone. Although less likely, we cannot rule out the possibility of an obscured active galactic nucleus source. An echelle spectrum along the minor axis shows complex kinematics that are consistent with outflow activity. The narrow morphology of the ionization cone supports the scenario that an orientation bias contributes to the difficulty in detecting Lyman continuum emission from starbursts and Lyman break galaxies.

  18. Environments of Starburst Galaxies Diagnosed with the NVO

    NASA Astrophysics Data System (ADS)

    de Mello, D.; Sosey, M.

    2004-12-01

    We will present the analysis of the environment of starburst galaxies using the National Virtual Observatory. We have matched the sample of starburst galaxies by Wu et al. (2002) with the Sloan Digital Sky Survey (SDSS) and searched for companions in their neighborhood. We found: (i) three starbursts with no companion, (ii) four starbursts with clear interaction and in the process of merging, (iii) nine starbursts with at least one companion. We have compared the starburst sample with the sample of isolated galaxies by Karachentseva (1986) and with the SDSS merging galaxies by Allam et al. (2004). Using color selection criteria from the known sample of starburst galaxies, we have built a database of starburst candidates from the SDSS catalogue. This allowed us to do a more statistical comparison of starburst galaxies, their neighborhoods and possible environmental effects on their evolution. Direct links to the SDSS images and related photometry are provided for easy reference.

  19. The X-Ray Binary Population of the Nearby Dwarf Starburst Galaxy IC 10: Variable and Transient X-Ray Sources

    NASA Astrophysics Data System (ADS)

    Laycock, Silas; Cappallo, Rigel; Williams, Benjamin F.; Prestwich, Andrea; Binder, Breanna; Christodoulou, Dimitris M.

    2017-02-01

    We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3σ level, from a catalog of 110 unique point sources. We find four transients (flux variability ratio greater than 10) and a further eight objects with ratios >5. The observations span the years 2003–2010 and reach a limiting luminosity of >1035 erg s‑1, providing sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magellanic Clouds (40–200 My) where most of the known HMXBs reside. We find 10 strong HMXB candidates, 2 probable background Active Galactic Nuclei, 4 foreground flare-stars or active binaries, and 5 not yet classifiable sources. Complete classification of the sample requires optical spectroscopy for radial velocity analysis and deeper X-ray observations to obtain higher S/N spectra and search for pulsations. A catalog and supporting data set are provided.

  20. Compact starbursts in ultraluminous infrared galaxies

    NASA Technical Reports Server (NTRS)

    Condon, J. J.; Huang, Z.-P.; Yin, Q. F.; Thuan, T. X.

    1991-01-01

    The 40 ultraluminous galaxies in the IRAS Bright Galaxy Sample of sources stronger than S = 5.24 Jy at lambda = 60 microns were mapped with approximately 0.25 arcsec resolution at 8.44 GHz. Twenty-five contain diffuse radio sources obeying the FIR-radio correlation; these are almost certainly starburst galaxies. Fourteen other galaxies have nearly blackbody FIR spectra with color temperatures between 60 and 80 K so their (unmeasured) FIR angular sizes must exceed approximately 0.25 arcsec, yet they contain compact (but usually resolved) radio sources smaller than this limit. The unique radio and FIR properties of these galaxies can be modeled by ultraluminous nuclear starbursts so dense that they 67 are optically thick to free-free absorption at about 1.49 GHz and dust absorption at about 25 microns. Only one galaxy (UGC 08058 = Mrk 231) is a dominated by a variable radio source too compact to be an ultraluminous starburst; it must be powered by a 'monster'.

  1. Environments of Starburst Galaxies Diagnosed with the NVO

    NASA Astrophysics Data System (ADS)

    Nieto-Santisteban, M. A.; Sosey, M.; de Mello, D.

    2004-12-01

    We present an analysis of the environment of starburst galaxies using the National Virtual Observatory. We have matched the sample of starburst galaxies by Wu et al. (2002) with the Sloan Digital Sky Survey (SDSS) and searched for companions in their neighborhood. We also have compared the starburst sample with the sample of isolated galaxies by Karachentseva (1986) and with the SDSS merging galaxies by Allam et al. (2004). Using color selection criteria from the known sample of starburst galaxies, we have built a database of starburst candidates from the SDSS catalogue. This allowed us to do a more statistical comparison of starburst galaxies, their neighborhoods and possible environmental effects on their evolution. We see the NVO environment as an extrememly useful tool for astronomical research. As such, this poster also details the effective ways in which we were able to access both the SDSS catalogue as well as other internet resources, encorporating the entire project into a very useful internet website.

  2. Ionized gas pressure correlates with star formation intensity in nearby starbursts

    NASA Astrophysics Data System (ADS)

    Jiang, Tianxing; Malhotra, Sangeeta; Yang, Huan

    2016-06-01

    We estimate the electron density of the ionized gas and thus the thermal pressure in HII regions; and compare that to the SFR (star formation rate) surface density for a combined sample of about 40 green peas and Lyman Break Analogs at z < 0.30. The electron density of the ionized gas is measured from sulfur line ratio ([SII] 6716 / 6731). We find that the SFR surface density is correlated with the electron density and the thermal pressure in HII regions for the star-forming galaxies with SFR surface density above a certain threshold. This work shows quantitatively the correlation between SFR surface density and electron density and that between SFR surface density and the thermal pressure in HII regions for the nearby starburst galaxies. This is consistent with theoretical models of disks (e.g. Kim et al. (2011) if we assume that the thermal pressure in HII regions is comparable to the total diffuse gas pressure at the midplane of the diffuse neutral gas. It is also in agreement with the results from star-forming galaxies at z ~ 2.5. We might infer that the starburst galaxies at low-redshift (z < 0.3) share similar physical properties to the galaxies at high redshift (z ~ 2.5).

  3. Toward Gas Chemistry in Low Metallicity Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Meier, David S.; Anderson, Crystal N.; Turner, Jean; Ott, Juergen; Beck, Sara C.

    2017-01-01

    Dense gas, which is intimately connected with star formation, is key to understanding star formation. Though challenging to study, dense gas in low metallicity starbursts is important given these system's often extreme star formation and their potential implications for high redshift analogs. High spatial resolution (~50 pc) ALMA observations of several key probes of gas chemistry, including HCN(1-0), HCO+(1-0), CS(2-1), CCH(1-0;3/2-1/2) and SiO(2-1), towards the nearby super star-cluster (SSC) forming, sub-solar metallicity galaxy NGC 5253 are discussed. Dense gas is observed to be extended well beyond the current compact starburst, reaching into the apparently infalling molecular streamer. The faintness of HCN, the standard dense gas tracer, is extreme both in an absolute sense relative to high metallicity starbursts of a similar intensity and in a relative sense, with the HCO+/HCN ratio being one of the most elevated observed. UV-irradiated molecular gas, traced by CCH, is also extended over the mapped region, not being strongly correlated with the SSC. Despite the accretion of molecular gas from the halo and the intense burst of star formation, chemical signatures of shocked gas, traced by SiO (and HNCO), are not obvious. By placing NGC 5253 in context with other local starbursts, like 30 Doradus in the Large Magellanic Clouds and the high metallicity proto-typical starburst NGC 253, it is suggested that a combination of gas excitation and abundance changes associated with the sub solar metallicity may explain these anomalous dense gas properties.

  4. The gas content in starburst galaxies

    NASA Technical Reports Server (NTRS)

    Mirabel, I. F.; Sanders, D. B.

    1987-01-01

    The results from two large and homogeneous surveys, one in H I, the other in CO, are used for a statistical review of the gaseous properties of bright infrared galaxies. A constant ratio between the thermal FIR radiation and nonthermal radio emission is a universal property of star formation in spiral galaxies. The current rate of star formation in starburst galaxies is found to be 3-20 times larger than in the Milky Way. Galaxies with the higher FIR luminosities and warmer dust, have the larger mass fractions of molecular to atomic interstellar gas, and in some instances, striking deficiencies of neutral hydrogen are found. A statistical blueshift of the optical systemic velocities relative to the radio systemic velocities, may be due to an outward motion of the optical line-emitting gas. From the high rates of star formation, and from the short times required for the depletion of the interstellar gas, it is concluded that the most luminous infrared galaxies represent a brief but important phase in the evolution of some galaxies, when two galaxies merge changing substantially their overall properties.

  5. Investigating Starburst Galaxy Emission Line Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Meskhidze, Helen; Richardson, Chris T.

    2016-01-01

    Modeling star forming galaxies with spectral synthesis codes allows us to study the gas conditions and excitation mechanisms that are necessary to reproduce high ionization emission lines in both local and high-z galaxies. Our study uses the locally optimally-emitting clouds model to develop an atlas of starburst galaxy emission line equivalent widths. Specifically, we address the following question: What physical conditions are necessary to produce strong high ionization emission lines assuming photoionization via starlight? Here we present the results of our photoionization simulations: an atlas spanning 15 orders of magnitude in ionizing flux and 10 orders of magnitude in hydrogen density that tracks over 150 emission lines ranging from the UV to the near IR. Each simulation grid contains ~1.5x104 photoionization models calculated by supplying a spectral energy distribution, grain content, and chemical abundances. Specifically, we will be discussing the effects on the emission line equivalent widths of varying the metallicity of the cloud, Z = 0.2 Z⊙ to Z = 5.0 Z⊙, and varying the star-formation history, using the instantaneous and continuous evolution tracks and the newly released Starburst99 Geneva rotation tracks.

  6. "Dead quasars" in nearby galaxies?

    PubMed

    Rees, M J

    1990-02-16

    The nuclei of some galaxies undergo violent activity, quasars being the most extreme instances of this phenomenon. Such activity is probably short-lived compared to galactic lifetimes, and was most prevalent when the universe was only about one-fifth of its present age. A massive black hole seems the inevitable end point of such activity, and dead quasars should greatly outnumber active ones. In recent years, studies of stellar motions in the cores of several nearby galaxies indicate the presence of central dark masses which could be black holes. This article discusses how such evidence might be corroborated, and the potential implications for our understanding of active galaxies and black holes.

  7. From starburst to quiescence: testing active galactic nucleus feedback in rapidly quenching post-starburst galaxies

    SciTech Connect

    Yesuf, Hassen M.; Faber, S. M.; Trump, Jonathan R.; Koo, David C.; Fang, Jerome J.; Liu, F. S.; Wild, Vivienne; Hayward, Christopher C.

    2014-09-10

    Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M {sub ☉}) = 10.3-10.7, and identifies 'transiting' post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ∼0.3% of galaxies are starbursts, ∼0.1% are QPSBs, and ∼0.5% are the transiting types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher (≳ 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of ≳ 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as 'dust-obscured galaxies' (DOGs), with a near-UV-to-mid-IR flux ratio of ≳ 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during the post-starburst

  8. Feeding IC 342: The nuclear spiral of a starburst galaxy

    NASA Technical Reports Server (NTRS)

    Levine, D.; Turner, J. L.; Hurt, Robert L.

    1993-01-01

    IC 342 is a large nearby (1.8 Mpc, Turner and Hurt, 1991, hereafter T&H) spiral galaxy undergoing a moderate nuclear starburst. T&H have previously mapped the inner arcminute in CO-13(1-0) using the Owens Valley Millimeter Interferometer and found evidence that the nuclear molecular gas takes the form of spiral arms in a density wave pattern. They suggest that radial streaming along the arms may channel gas from the exterior of the galaxy into the nucleus, feeding the starburst. We have mapped the CO-12(1-0) emission of the inner 2 kpc of IC 342 at 2.8 inch resolution using the Owens Valley Radio Observatory (OVRO) Millimeter Interferometer. The greater sensitivity of CO-12 observations has allowed us to trace the spiral pattern out to a total extent of greater than 1 kpc. The CO-12 observations extend considerably the structure observed at CO-13 and offer further evidence that a spiral density wave may extend from the disk into the nucleus of IC 342.

  9. Radio identifications of UGC galaxies - Starbursts and monsters

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Broderick, J. J.

    1988-07-01

    Radio identifications of galaxies in the Uppsala General Catalogue of Galaxies with δ < +82° were made from the Green Bank 1400 MHz sky maps. Every source having peak flux density SP ≥ 150 mJy in the ≈12 arcmin FWHM map point-source response and position <5 arcmin in both coordinates from the optical position of any UGC galaxy was considered a candidate identification to ensure that very extended (up to 1 Mpc) and asymmetric sources would not be missed. Maps in the literature or new 1.49 GHz VLA C array maps made with 18 arcsec resolution were used to confirm or reject candidate identifications. The resulting list of 176 confirmed identifications should be complete, reliable, and suitable for statistical investigations of radio emission from nearby (D < 300 Mpc for H0 = 50 km s-1Mpc-1) galaxies of all morphological types. Three criteria for distinguishing starbursts from monsters on the basis of radio and far-infrared continuum only are given and used to classify the dominant energy sources in the N = 176 confirmed galaxy identifications.

  10. STAR CLUSTER DISRUPTION IN THE STARBURST GALAXY MESSIER 82

    SciTech Connect

    Li, Shuo; Li, Chengyuan; De Grijs, Richard; Anders, Peter

    2015-01-01

    Using high-resolution, multiple-passband Hubble Space Telescope images spanning the entire optical/near-infrared wavelength range, we obtained a statistically complete U-band-selected sample of 846 extended star clusters across the disk of the nearby starburst galaxy M82. Based on a careful analysis of the clusters' spectral energy distributions, we determined their galaxy-wide age and mass distributions. The M82 clusters exhibit three clear peaks in their age distribution, thus defining relatively young, log (t yr{sup –1}) ≤ 7.5, intermediate-age, log (t yr{sup –1}) in [7.5, 8.5], and old samples, log (t yr{sup –1}) ≥ 8.5. Comparison of the completeness-corrected mass distributions offers a firm handle on the galaxy's star cluster disruption history. The most massive star clusters in the young and old samples are (almost) all concentrated in the most densely populated central region, while the intermediate-age sample's most massive clusters are more spatially dispersed, which may reflect the distribution of the highest-density gas throughout the galaxy's evolutionary history, combined with the solid-body nature of the galaxy's central region.

  11. Search for post-starburst (E+A) galaxies in the cluster Abell 3266

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongyu

    The objective of this work is to use spectroscopic techniques to further the understanding of the dynamical state of the galaxy cluster Abell 3266. This is a very rich cluster in the southern skies that has been extensively studied by many groups. The cluster shows evidence of a merger of substructure in its midst, but the geometry, dynamics, and age of this merger remain uncertain. Low resolution, fiber spectra of galaxies in Abell 3266 were analyzed and searched for “E+A” (post-starburst) galaxies, from which we selected two candidate “E+A” galaxies for follow-up high-resolution spectroscopy. The 2 candidate galaxies are confirmed as “E+A” galaxies with high-resolution, slit spectra. The ages of these “E+A” galaxies (i.e. time since their starburst occurred) are determined with the method developed by Leonardi & Rose (1996). We find that both galaxies had a major starburst in the past, but they occurred at significantly different epochs. If the starbursts are related to the recent merger history of Abell 3266, instead of being just isolated events, they would indicate that there may have been more than one merger in this cluster in the past 3 Gyr or so. This might explain the rather disparate conclusions that have been obtained in the past about the merger history of this cluster. To compare with other nearby clusters, “E+A” galaxies were also searched for among nearly 2400 galaxies in 26 clusters fields. Only 4 candidates are found. This result is consistent with the general observational fact that there are substantially fewer spectroscopically disturbed galaxies in nearby clusters than in distant clusters. The result is also in quantitative agreement with the findings in the larger, more homogeneous Las Campanas Redshift Survey, confirming the reliability of our identification in Abell 3266. The impact of these statistical analyses on the understanding of galaxy evolution in cluster environment is also discussed.

  12. Lyman alpha emission in starburst galaxies

    NASA Astrophysics Data System (ADS)

    Kunth, Daniel

    1999-07-01

    We propose to perform a deep study of Ly-alpha emission and destruction in 3 star-forming galaxies. These objects have been already observed with the GHRS and exhibit a variety of situations, with Ly-alpha showing P Cyg profiles, secondary emissions or even a deep damped absorption line with no emission. They also span a range of intrinsic properties: IZW18 is a gas-rich, metal deficient dust free dwarf galaxy, Haro 2 has a simple morphology while IRAS 08339+6517 is a luminous IRAS starburst galaxy with more dust and complex Ly- alpha profile. The use of STIS will allow for the first time to study the geometrical/kinematical configuration of the ionized and neutral gas across the galaxies nuclear regions and pin point the effects of porosity and the kinematical structure of the ISM, that may play the key roles {in addition to dust} in the detectability of the line. This study will have important impact for cosmology since Ly-alpha emitters are nowaday found at high-re dshift. We strongly emphasize that since Ly-alpha is primarely a diagnostic of the ISM, a full understanding of how the ISM and Ly-alpha are related is a necessary step before we can hope to correlate Ly-alpha to the cosmic star-formation rate. Our results will be interpreted against the model of superbubble evolution developed with G. Tenorio Tagle.

  13. Panchromatic observations of dwarf starburst galaxies: Infant super star clusters and a low-luminosity AGN

    NASA Astrophysics Data System (ADS)

    Reines, Amy Ellen

    2011-01-01

    Globular star clusters and supermassive black holes are fundamental components of today's massive galaxies, with origins dating back to the very early universe. Both globular clusters and the seeds of supermassive black holes are believed to have formed in the progenitors of modern massive galaxies, although the details are poorly understood. Direct observations of these low-mass, distant, and hence faint systems are unobtainable with current capabilities. However, gas-rich dwarf starburst galaxies in the local universe, analogous in many ways to protogalaxies at high-redshift, can provide critical insight into the early stages of galaxy evolution including the formation of globular clusters and massive black holes. This thesis presents a panchromatic study of nearby dwarf starburst galaxies harboring nascent globular clusters still embedded in their birth material. Infant clusters are identified via their production of thermal radio emission at centimeter wavelengths, which comes from dense gas ionized by young massive stars. By combining radio observations with complementary data at ultraviolet, optical and infrared wavelengths, we obtain a comprehensive view of massive clusters emerging from their gaseous and dusty birth cocoons. This thesis also presents the first example of a nearby dwarf starburst galaxy hosting an actively accreting massive central black hole. The black hole in this dwarf galaxy is unusual in that it is not associated with a bulge, a nuclear star cluster, or any other well-defined nucleus, likely reflecting an early phase of black hole and galaxy evolution that has not been previously observed.

  14. The Ubiquity of Coeval Starbursts in Massive Galaxy Cluster Progenitors

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin M.

    2016-06-01

    The universe’s largest galaxy clusters likely built the majority of their massive >1011 M {}⊙ galaxies in simultaneous, short-lived bursts of activity well before virialization. This conclusion is reached based on emerging data sets for z\\gt 2 proto-clusters and the characteristics of their member galaxies, in particular, rare starbursts and ultraluminous active galactic nuclei (AGN). The most challenging observational hurdle in identifying such structures is their very large volumes, ˜104 comoving Mpc3 at z\\gt 2, subtending areas of approximately half a degree on the sky. Thus, the contrast afforded by an overabundance of very rare galaxies in comparison to the background can more easily distinguish overdense structures from the surrounding, normal density field. Five 2≲ z≲ 3 proto-clusters from the literature are discussed in detail and are found to contain up to 12 dusty starbursts or luminous AGN galaxies each, a phenomenon that is unlikely to occur by chance even in overdense environments. These are contrasted with three higher-redshift (4≲ z≲ 5.5) dusty star-forming galaxy (DSFG) groups, whose evolutionary fate is less clear. Measurements of DSFGs’ gas depletion times suggest that they are indeed short-lived on ˜100 Myr timescales, and accordingly the probability of finding a structure containing more than 8 such systems is ˜0.2%, unless their “triggering” is correlated on very large spatial scales, ˜10 Mpc across. The volume density of DSFG-rich proto-clusters is found to be comparable to all of the >1015 M {}⊙ galaxy clusters in the nearby universe, which is a factor of five larger than expected in some simulations. Some tension still exists between measurements of the volume density of DSFG-rich proto-clusters and the expectation that they are generated via short-lived episodes, as the latter suggests that only a fraction (\\lt \\tfrac{1}{2}) of all proto-clusters should be rich with DSFGs. However, improved observations of proto

  15. Structure of the Interacting Starburst Galaxy II Zw 23

    NASA Astrophysics Data System (ADS)

    Cigan, P. J.; Gallagher, J. S.; Rudie, G.; Wehner, E. H.

    2005-09-01

    II Zw 23 (UGC 3179) is a luminous (MB -21) nearby compact narrow emission line starburst galaxy with blue optical colors and strong emission lines. We present a photometric and morphological study of II Zw 23 and its interacting companion, PC016099, using data obtained with the WIYN 3.5-m telescope in combination with a WFPC2 image from the HST archives. II Zw 23 has a highly disturbed outer structure with long trails of debris that may be feeding tidal dwarfs. Its central regions appear disk-like, a structure that is consistent with the overall rotation pattern observed in the Hα emission line velocity field measured from Densepak observations obtained with WIYN. We discuss these results in terms of the different evolutionary paths followed by stars and gas during strong interactions and the possibility of rapid secondary galactic disk formation in such events.

  16. The ULX Population in the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Heckman, T. M.; Strickland, D. K.

    2004-01-01

    Optimism is mounting for the existence of intermediate mass black holes (IMBH), which occupy the mass spectrum somewhere between the stellar-mass and supermassive varieties. IMBH are naturally predicted by theoretical stellar and black hole evolution models, but the strong attention to them began only recently with the discovery of ultraluminous x-ray sources (ULX). If isotropic and accreting normally, ULX have luminosities tens to thousands of times greater than the Eddington luminosity of a neutron star or stellar-mass black hole. A standard interpretation of their x-ray flux implies that they are powered by IMBH. On the other hand, they may be stellar-mass black holes that are beamed or emit anisotropically. Therefore, the exact nature of ULX is highly controversial. ULX are common in starburst galaxies. At a distance of only 3 Mpc, NGC 253 is bright, nearby, and one of the best-studied starburst galaxies. Approximately 50 distinct x-ray point sources are detected in or near the plane of the galaxy. At least six of these are ULX, with luminosities greater than 10 times that expected for a stellar-mass, accreting compact object. We present new Chandra data from an 80 ksec observation of NGC 253 obtained in 2003 that provides high quality spectra of these sources. Comparing the 1999 and 2003 Chandra observations, the sources have varied significantly over the course of four years, with one of the ULX disappearing completely. The ULX spectra are similar to black-hole XRBs and at least one appears to possess an iron K line. We will discuss what insight these data provide for the nature of ULX in NGC 253 .

  17. HIGH-DENSITY MOLECULAR GAS PROPERTIES OF THE STARBURST GALAXY NGC 1614 REVEALED WITH ALMA

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2013-09-15

    We present the results of HCN/HCO{sup +}/HNC J = 4-3 transition line observations of the nearby starburst galaxy NGC 1614, obtained with ALMA Cycle 0. We find that high density molecular gas traced with these lines shows a velocity structure such that the northern (southern) side of the nucleus is redshifted (blueshifted) with respect to the nuclear velocity of this galaxy. The redshifted and blueshifted emission peaks are offset by {approx}0.''6 at the northern and southern sides of the nucleus, respectively. At these offset positions, observations at infrared >3 {mu}m indicate the presence of active dusty starbursts, supporting the picture that high-density molecular gas is the site of active starbursts. The enclosed dynamical mass within the central {approx}2'' in radius, derived from the dynamics of the high-density molecular gas, is {approx}10{sup 9} M{sub Sun }, which is similar to previous estimates. Finally, the HCN emission is weaker than HCO{sup +} but stronger than HNC for J = 4-3 for all starburst regions of NGC 1614, as seen for J = 1-0 transition lines in starburst-dominated galaxies.

  18. Upper limits to the water abundance in starburst galaxies

    NASA Astrophysics Data System (ADS)

    Wilson, C. D.; Booth, R. S.; Olofsson, A. O. H.; Olberg, M.; Persson, C. M.; Sandqvist, Aa.; Hjalmarson, Â.; Buat, V.; Encrenaz, P. J.; Fich, M.; Frisk, U.; Gerin, M.; Rydback, G.; Wiklind, T.

    2007-07-01

    Aims:We have searched for emission from the 557 GHz ortho-water line in the interstellar medium of six nearby starburst galaxies. Methods: We used the Odin satellite to observe the 110{-}101 transition of o-H2O in the galaxies NGC 253, IC 342, M 82, NGC 4258, CenA, and M 51. None of the galaxies in our sample was detected. Results: We derive three sigma upper limits to the H2O abundance relative to H2 ranging from 2×10-9 to 1×10-8. The best of these upper limits are comparable to the measured abundance of H2O in the Galactic star forming region W3. However, if only 10% of the molecular gas is in very dense cores, then the water abundance limits in the cores themselves would be larger by a factor of 10 i.e. 2×10-8 to 1×10-7. Conclusions: These observations suggest that detections of H2O emission in galaxies with the upcoming Herschel Space Observatory are likely to require on-source integration times of an hour or more except in the very brightest extragalactic targets such as M 82 and NGC 253. Based on observations with Odin, a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes) and Centre National d'Etude Spatiale (CNES). The Swedish Space Corporation has been the industrial prime contractor and also is operating the satellite.

  19. Chandra Observations of the Evening Core of the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Weaver, K. A.; Heckman, T. M.; Dahlem, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Chandra observations of the core of the nearby starburst galaxy NGC 253 reveal a heavily absorbed source of hard X-rays embedded within the nuclear starburst region. The source has an unabsorbed, 2 to 10 keV luminosity of greater than or equal to 10(exp 39) erg per s and photoionizes the surrounding gas. We observe this source through a dusty torus with a neutral absorbing column density of N(sub eta) approximately 2 x 10(exp 23)cm (exp -2). The torus is hundreds of pc across and collimates the starburst-driven nuclear outflow. We suggest that the ionizing source is an intermediate-mass black hole or a weakly accreting supermassive black hole, which may signal the beginnings or endings of AGN (active galactic nuclei) activity.

  20. Detection of gamma rays from a starburst galaxy.

    PubMed

    Acero, F; Aharonian, F; Akhperjanian, A G; Anton, G; Barres de Almeida, U; Bazer-Bachi, A R; Becherini, Y; Behera, B; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Borrel, V; Brucker, J; Brun, F; Brun, P; Bühler, R; Bulik, T; Büsching, I; Boutelier, T; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L-M; Clapson, A C; Coignet, G; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Fegan, S; Feinstein, F; Fiasson, A; Förster, A; Fontaine, G; Füssling, M; Gabici, S; Gallant, Y A; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göring, D; Hauser, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Hofverberg, P; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jung, I; Katarzyński, K; Katz, U; Kaufmann, S; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Keogh, D; Klochkov, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Kossakowski, R; Lamanna, G; Lenain, J-P; Lohse, T; Marandon, V; Martineau-Huynh, O; Marcowith, A; Masbou, J; Maurin, D; McComb, T J L; Medina, M C; Méhault, J; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; de Oña Wilhelmi, E; Orford, K J; Ostrowski, M; Panter, M; Paz Arribas, M; Pedaletti, G; Pelletier, G; Petrucci, P-O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, O; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sikora, M; Skilton, J L; Sol, H; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Superina, G; Szostek, A; Tam, P H; Tavernet, J-P; Terrier, R; Tibolla, O; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Venter, L; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A

    2009-11-20

    Starburst galaxies exhibit in their central regions a highly increased rate of supernovae, the remnants of which are thought to accelerate energetic cosmic rays up to energies of approximately 10(15) electron volts. We report the detection of gamma rays--tracers of such cosmic rays--from the starburst galaxy NGC 253 using the High Energy Stereoscopic System (H.E.S.S.) array of imaging atmospheric Cherenkov telescopes. The gamma-ray flux above 220 billion electron volts is F = (5.5 +/- 1.0(stat) +/- 2.8(sys)) x 10(-13) cm(-2) s(-1), implying a cosmic-ray density about three orders of magnitude larger than that in the center of the Milky Way. The fraction of cosmic-ray energy channeled into gamma rays in this starburst environment is five times as large as that in our Galaxy.

  1. Starburst galaxies as seen by gamma-ray telescopes

    NASA Astrophysics Data System (ADS)

    Ohm, Stefan

    2016-06-01

    Starburst galaxies have a highly increased star-formation rate compared to regular galaxies and inject huge amounts of kinetic power into the interstellar medium via supersonic stellar winds, and supernova explosions. Supernova remnants, which are considered to be the main source of cosmic rays (CRs), form an additional, significant energy and pressure component and might influence the star-formation process in a major way. Observations of starburst galaxies at γ-ray energies give us the unique opportunity to study non-thermal phenomena associated with hadronic CRs and their relation to the star-formation process. In this work, recent observations of starburst galaxies with space and ground-based γ-ray telescopes are being reviewed, and the current state of theoretical work on the γ-ray emission is discussed. A special emphasis is put on the prospects of the next-generation Cherenkov Telescope Array for the study of starburst galaxies in particular and star-forming galaxies in general. xml:lang="fr"

  2. The Butcher-Oemler effect in a nearby cluster of galaxies

    SciTech Connect

    Vigroux, L.; Boulade, O.; Rose, J.A. North Carolina Univ., Chapel Hill )

    1989-12-01

    The integrated spectra of early-type galaxies in the nearby Abell 262, Pegasus I, and Virgo clusters are compared with those of several field galaxies. The spectra of five galaxies in Pegasus I and one galaxy in the Virgo Cluster show evidence of recent star formation. The average blue magnitude for the star-forming galaxies is M(B) = -20. The star-formation activity in Pegasus I is found to be similar to that of starburst and poststarburst galaxies in Butcher-Oemler clusters at redshifts greater than 2. 38 refs.

  3. High Mass X-ray Binaries and Star Clusters in Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Prestwich, Andrea H.; Chandar, R.; Rangelov, B.; Jackson, F.

    2011-09-01

    High Mass X-ray Binaries (HMXB) are formed in copious numbers in starburst galaxies. Is there any relationship between HMXBs and young star clusters? Do HMXBs form preferentially in star clusters? What can star clusters tell us about nearby HMXBs, even if they are not directly related? We have studied a variety of nearby starburst galaxies -- including the Antennae, NGC 4449 (a star-bursting dwarf) and NGC 922 (a collisional ring galaxy). In all these systems, we find evidence that a large fraction of (but not all) HMXBs are spatially coincident with (or very close to) a star cluster. Approximately 50 percent of the clusters hosting bright HMXBs are extremely young -- less than 6 Myr. Stellar evolutionary models predict that all stars with initial masses higher than ≈ 30 M⊙ will have completed their main-sequence lifetime after 6 Myr. While still somewhat uncertain, models predict that stars this massive will end their lives as black holes. We therefore conclude that HMXBs coincident with these very young clusters are most likely black hole binaries. We also find evidence for a population of young (30-50 Myr) and intermediate age X-ray sources (100-300 Myr) that are associated with older clusters. The implications of these results for models of HMXB formation and evolution will be briefly discussed.

  4. High resolution sub-millimetre mapping of starburst galaxies: Comparison with CO emission

    NASA Technical Reports Server (NTRS)

    Smith, P. A.; Brand, P. W. J. L.; Puxley, Phil J.; Mountain, C. M.; Nakai, Naomasa

    1990-01-01

    Researchers present first results from a program of submillimeter continuum mapping of starburst galaxies, and comparison of their dust and CO emission. This project was prompted by surprising results from the first target, the nearby starburst M82, which shows in the dust continuum a morphology quite unlike that of its CO emission, in contrast to what might be expected if both CO and dust are accurately tracing the molecular hydrogen. Possible explanations for this striking difference are discussed. In the light of these results, the program has been extended to include sub-mm mapping of the nearby, vigorously star forming spirals, M83 and Maffei 2. The latter were also observed extensively in CO, in order to study excitation conditions in its central regions. The James Clerk Maxwell Telescope was used in these studies.

  5. HIERARCHICAL STAR FORMATION IN NEARBY LEGUS GALAXIES

    SciTech Connect

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.; Adamo, Angela; Gouliermis, Dimitrios A.; Aloisi, Alessandra; Bright, Stacey N.; Cignoni, Michele; Lee, Janice; Sabbi, Elena; Andrews, Jennifer; Calzetti, Daniela; Annibali, Francesca; Evans, Aaron S.; Johnson, Kelsey; Gallagher III, John S.; Grebel, Eva K.; Hunter, Deidre A.; Kim, Hwihyun; Smith, Linda J.; Thilker, David; and others

    2014-05-20

    Hierarchical structure in ultraviolet images of 12 late-type LEGUS galaxies is studied by determining the numbers and fluxes of nested regions as a function of size from ∼1 to ∼200 pc, and the number as a function of flux. Two starburst dwarfs, NGC 1705 and NGC 5253, have steeper number-size and flux-size distributions than the others, indicating high fractions of the projected areas filled with star formation. Nine subregions in seven galaxies have similarly steep number-size slopes, even when the whole galaxies have shallower slopes. The results suggest that hierarchically structured star-forming regions several hundred parsecs or larger represent common unit structures. Small galaxies dominated by only a few of these units tend to be starbursts. The self-similarity of young stellar structures down to parsec scales suggests that star clusters form in the densest parts of a turbulent medium that also forms loose stellar groupings on larger scales. The presence of super star clusters in two of our starburst dwarfs would follow from the observed structure if cloud and stellar subregions more readily coalesce when self-gravity in the unit cell contributes more to the total gravitational potential.

  6. Comparing Local Starbursts to High-Redshift Galaxies: A Search for Lyman-Break Analogs

    NASA Technical Reports Server (NTRS)

    Petty, Sara M.; de Mello, Duila F.; Gallagher III, John S.; Gardner, Jonathan; Lotz, Jennifer M.; Mountain, C. Matt; Smith, Linda J.

    2008-01-01

    We compare the restframe far-ultraviolet (FUV) morphologies of 8 nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 08, NGC 0520, NGC 1068, NGC 3079, NGC 3310, NGC 7673) with 54 galaxies at z approx.1.5 and 46 galaxies at z approx.4 in the Great Observatories Origins Deep Survey (GOODS) images taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. We calculate the Gini coefficient (G), the second order moment of 20% of the brightest pixels (M20), and the S ersic index (n). We find that 20% (11/54) of z approx.1.5 and 37% (17/46) of z approx.4 galaxies are bulge-like, using G and M20. We also find approx.70% of the z approx.1.5 and z approx.4 galaxies have exponential disks with n > 0.8. The 2D profile combined with the nonparametric methods provides more detail, concerning the nature of disturbed systems, such as merger and post-merger types. We also provide qualitative descriptions of each galaxy system and at each redshift. We conclude that Mrk 08, NGC 3079, and NGC 7673 have similar morphologies as the starburst FUV restframe galaxies and Lyman-break galaxies at z approx.1.5 and 4, and determine that they are Lyman-break analogs.

  7. An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10.

    PubMed

    Reines, Amy E; Sivakoff, Gregory R; Johnson, Kelsey E; Brogan, Crystal L

    2011-02-03

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first 'seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize 2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize 2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize 2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  8. An actively accreting massive black hole in the dwarf starburst galaxy Henize2-10

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Sivakoff, Gregory R.; Johnson, Kelsey E.; Brogan, Crystal L.

    2011-02-01

    Supermassive black holes are now thought to lie at the heart of every giant galaxy with a spheroidal component, including our own Milky Way. The birth and growth of the first `seed' black holes in the earlier Universe, however, is observationally unconstrained and we are only beginning to piece together a scenario for their subsequent evolution. Here we report that the nearby dwarf starburst galaxy Henize2-10 (refs 5 and 6) contains a compact radio source at the dynamical centre of the galaxy that is spatially coincident with a hard X-ray source. From these observations, we conclude that Henize2-10 harbours an actively accreting central black hole with a mass of approximately one million solar masses. This nearby dwarf galaxy, simultaneously hosting a massive black hole and an extreme burst of star formation, is analogous in many ways to galaxies in the infant Universe during the early stages of black-hole growth and galaxy mass assembly. Our results confirm that nearby star-forming dwarf galaxies can indeed form massive black holes, and that by implication so can their primordial counterparts. Moreover, the lack of a substantial spheroidal component in Henize2-10 indicates that supermassive black-hole growth may precede the build-up of galaxy spheroids.

  9. ALMA MULTI-LINE IMAGING OF THE NEARBY STARBURST NGC 253

    SciTech Connect

    Meier, David S.; Walter, Fabian; Zschaechner, Laura K.; Bolatto, Alberto D.; Veilleux, Sylvain; Warren, Steven R.; Leroy, Adam K.; Ott, Jürgen; Rosolowsky, Erik; Weiß, Axel; Zwaan, Martin A.

    2015-03-01

    We present spatially resolved (∼50 pc) imaging of molecular gas species in the central kiloparsec of the nearby starburst galaxy NGC 253, based on observations taken with the Atacama Large Millimeter/submillimeter Array. A total of 50 molecular lines are detected over a 13 GHz bandwidth imaged in the 3 mm band. Unambiguous identifications are assigned for 27 lines. Based on the measured high CO/C{sup 17}O isotopic line ratio (≳350), we show that {sup 12}CO(1-0) has moderate optical depths. A comparison of the HCN and HCO{sup +} with their {sup 13}C-substituted isotopologues shows that the HCN(1-0) and HCO{sup +}(1-0) lines have optical depths at least comparable to CO(1-0). H{sup 13}CN/H{sup 13}CO{sup +} (and H{sup 13}CN/HN{sup 13}C) line ratios provide tighter constraints on dense gas properties in this starburst. SiO has elevated abundances across the nucleus. HNCO has the most distinctive morphology of all the bright lines, with its global luminosity dominated by the outer parts of the central region. The dramatic variation seen in the HNCO/SiO line ratio suggests that some of the chemical signatures of shocked gas are being erased in the presence of dominating central radiation fields (traced by C{sub 2}H and CN). High density molecular gas tracers (including HCN, HCO{sup +}, and CN) are detected at the base of the molecular outflow. We also detect hydrogen β recombination lines that, like their α counterparts, show compact, centrally peaked morphologies, distinct from the molecular gas tracers. A number of sulfur based species are mapped (CS, SO, NS, C{sub 2}S, H{sub 2}CS, and CH{sub 3}SH) and have morphologies similar to SiO.

  10. Searching for Tidal Disruption Events in Post-Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Guevel, David; Arcavi, Iair

    2016-06-01

    Tidal Disruption Events (TDEs) are a class of transient phenomena that occur when a star passes sufficiently close to a supermassive black hole (SMBH) to be destroyed by tidal forces. Increasing the number of known TDEs will facilitate the study of SMBHs and black hole accretion physics. Recently it has been shown that TDEs occur most often in quiescent post-starburst galaxies (identified by strong Balmer absorption), some of which are know as "E+A" galaxies. These galaxies may have undergone a merger possibly contributing to the likelihood of TDEs. Using Las Cumbres Observatory Global Telescope (LCOGT) we are conducting a transient survey, called SEATiDE (Searching E+A Galaxies for Tidal Disruption Events), of 100 E+A galaxies. We experiment with different image subtraction techniques to improve our ability of detecting TDE flares in the centers of these galaxies. A future survey will cover an order of magnitude more post-starburst galaxies to measure their TDE rates in more detail with the aim of understanding why TDEs so strongly prefer post-starburst environments.

  11. Redshift differences of galaxies in nearby groups

    NASA Technical Reports Server (NTRS)

    Harrison, E. R.

    1975-01-01

    It is reported that galaxies in nearby groups exhibit anomalous nonvelocity redshifts. In this discussion, (1) four classes of nearby groups of galacies are analyzed, and no significant nonvelocity redshift effect is found; and (2) it is pointed out that transverse velocities (i.e., velocities transverse to the line of sight of the main galaxy, or center of mass) contribute components to the redshift measurements of companion galaxies. The redshifts of galaxies in nearby groups of appreciable angular size are considerably affected by these velocity projection effects. The transverse velocity contributions average out in rich, isotropic groups, and also in large samples of irregular groups of low membership, as in the four classes referred to in (1), but can introduce apparent discrepancies in small samples (as studied by Arp) of nearby groups of low membership.

  12. New constraints on the escape of ionizing photons from starburst galaxies using ionization-parameter mapping

    SciTech Connect

    Zastrow, Jordan; Oey, M. S.; Veilleux, Sylvain; McDonald, Michael

    2013-12-10

    The fate of ionizing radiation in starburst galaxies is key to understanding cosmic reionization. However, the galactic parameters on which the escape fraction of ionizing radiation depend are not well understood. Ionization-parameter mapping provides a simple, yet effective, way to study the radiative transfer in starburst galaxies. We obtain emission-line ratio maps of [S III]/[S II] for six, nearby, dwarf starbursts: NGC 178, NGC 1482, NGC 1705, NGC 3125, NGC 7126, and He 2-10. The narrowband images are obtained with the Maryland-Magellan Tunable Filter at Las Campanas Observatory. Using these data, we previously reported the discovery of an optically thin ionization cone in NGC 5253, and here we also discover a similar ionization cone in NGC 3125. This latter cone has an opening angle of 40° ± 5° (0.4 sr), indicating that the passageways through which ionizing radiation may travel correspond to a small solid angle. Additionally, there are three sample galaxies that have winds and/or superbubble activity, which should be conducive to escaping radiation, yet they are optically thick. These results support the scenario that an orientation bias limits our ability to directly detect escaping Lyman continuum in many starburst galaxies. A comparison of the star formation properties and histories of the optically thin and thick galaxies is consistent with the model that high escape fractions are limited to galaxies that are old enough (≳3 Myr) for mechanical feedback to have cleared optically thin passageways in the interstellar medium, but young enough (≲5 Myr) that the ionizing stars are still present.

  13. The Green Bank Telescope Maps the Dense Molecular Gas in the Starburst Galaxy M82

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Leroy, A. K.; Frayer, D. T.; Usero, A.; Marvil, J.; Walter, F.

    2014-01-01

    In both the Milky Way and nearby galaxies, the presence of dense molecular gas is correlated with recent star formation, suggesting that the formation of this gas may represent a key regulating step in the star formation process. Testing this idea requires wide-area, high-resolution maps of dense molecular gas in galaxies to explore how local physical conditions drive dense gas formation. Until now, these observations have been limited by the faintness of dense gas tracers like HCN and HCO+, but new instruments like the 4mm receiver on Robert C. Byrd Green Bank Telescope (GBT) -- the largest single-dish millimeter telescope -- are poised to change this picture. We present GBT maps of the dense gas tracers HCN and HCO+ in the prototypical nearby starburst galaxy M82. The HCN and HCO+ in the disk of M82 correlates both with recent star formation and the diffuse molecular gas and shows kinematics consistent with a rotating torus. HCO+ emission is also associated with the outflow of molecular gas previously identified in CO. These observations mark the first time that dense molecular gas like HCO+ has been associated with an outflow in a nearby galaxy and suggests that the outflow of dense molecular gas from the center of galaxies like M82 may regulate the star formation globally. Finally, the CO-to-HCN and CO-to-HCO+ line ratios reveal that there is more dense gas at the center of M82, pointing to the starburst as a key driver of this relationship. These results establish that the GBT can efficiently map the dense molecular gas at 90 GHz in nearby galaxies; this capability will increase further with the 16-element feed array currently being built for the GBT.

  14. An Infrared Search for Extinguished Supernovae in Starburst Galaxies

    SciTech Connect

    Grossan, B.; Spillar, E.; Tripp, R.; Pirzkal, N.; Sutin, B.M.; Barnaby, D.

    1999-08-01

    IR and radio-band observations of heavily extinguished regions in starburst galaxies suggest a high supernova (SN) rate associated with such regions. Optically measured SN rates may therefore underestimate the total SN rate by factors of up to 10, as a result of the very high extinction ({ital A}{sub {ital B}}thinsp{approximately}thinsp10{endash}20 mag) to core-collapse SNe in starburst regions. The IR/radio SN rates come from a variety of indirect means, however, which suffer from model dependence and other problems. We describe a direct measurement of the SN rate from a regular patrol of starburst galaxies done with {ital K}{prime}-band imaging to minimize the effects of extinction. A collection of {ital K}{prime}-band measurements of core-collapse SNe near maximum light is presented. Such measurements (excluding 1987A) are not well reported in the literature. Results of a preliminary {ital K}{prime}-band search, using the MIRC camera at the Wyoming Infrared Observatory and an improved search strategy using the new ORCA optics, are described. A monthly patrol of a sample of {ital IRAS} bright (mostly starburst) galaxies within 25 Mpc should yield 1{endash}6 SNe yr{sup {minus}1}, corresponding to the range of estimated SN rates. Our initial MIRC search with low resolution (2&arcsec;2 pixels) failed to find extinguished SNe in the {ital IRAS} galaxies, limiting the SN rate outside the nucleus (at greater than 15{double_prime} radius) to less than 3.8 far-IR SN rate units (SNe per century per 10{sup 10} {ital L}{sub {circle_dot}} measured at 60 and 100 {mu}m, or FIRSRU) at 90{percent} confidence. The MIRC camera had insufficient resolution to search nuclear starburst regions, where starburst and SN activity is concentrated; therefore, we were unable to rigorously test the hypothesis of high SN rates in heavily obscured star-forming regions. We conclude that high-resolution nuclear SN searches in starburst galaxies with small fields are more productive than low

  15. Important Nearby Galaxies without Accurate Distances

    NASA Astrophysics Data System (ADS)

    McQuinn, Kristen

    2014-10-01

    The Spitzer Infrared Nearby Galaxies Survey (SINGS) and its offspring programs (e.g., THINGS, HERACLES, KINGFISH) have resulted in a fundamental change in our view of star formation and the ISM in galaxies, and together they represent the most complete multi-wavelength data set yet assembled for a large sample of nearby galaxies. These great investments of observing time have been dedicated to the goal of understanding the interstellar medium, the star formation process, and, more generally, galactic evolution at the present epoch. Nearby galaxies provide the basis for which we interpret the distant universe, and the SINGS sample represents the best studied nearby galaxies.Accurate distances are fundamental to interpreting observations of galaxies. Surprisingly, many of the SINGS spiral galaxies have numerous distance estimates resulting in confusion. We can rectify this situation for 8 of the SINGS spiral galaxies within 10 Mpc at a very low cost through measurements of the tip of the red giant branch. The proposed observations will provide an accuracy of better than 0.1 in distance modulus. Our sample includes such well known galaxies as M51 (the Whirlpool), M63 (the Sunflower), M104 (the Sombrero), and M74 (the archetypal grand design spiral).We are also proposing coordinated parallel WFC3 UV observations of the central regions of the galaxies, rich with high-mass UV-bright stars. As a secondary science goal we will compare the resolved UV stellar populations with integrated UV emission measurements used in calibrating star formation rates. Our observations will complement the growing HST UV atlas of high resolution images of nearby galaxies.

  16. The ACS Nearby Galaxy Survey Treasury

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne; Williams, B.; Gogarten, S.; Weisz, D.; Skillman, E.; Seth, A.; ANGST Team

    2007-12-01

    The ACS Nearby Galaxy Survey Treasury program (ANGST) is a program to measure photometry for millions of stars in a volume limited sample of 70 nearby galaxies. With this data set, we are deriving spatially resolved star formation histories for both dwarfs and spirals in the local volume. I will highlight initial results from the survey, including ancient star formation histories for massive spirals, halos around dwarf galaxies, spatially-resolved star formation histories in dwarfs and spirals, and the detection of variable stars. I will also discuss the ANGST involved with switching to WFPC2. This program is funded by NASA grant HST GO-10915, administered by STScI.

  17. Dense Molecular Gas Tracers in the Outflow of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Walter, Fabian; Bolatto, Alberto D.; Leroy, Adam K.; Veilleux, Sylvain; Warren, Steven R.; Hodge, Jacqueline; Levy, Rebecca C.; Meier, David S.; Ostriker, Eve C.; Ott, Jürgen; Rosolowsky, Erik; Scoville, Nick; Weiss, Axel; Zschaechner, Laura; Zwaan, Martin

    2017-02-01

    We present a detailed study of a molecular outflow feature in the nearby starburst galaxy NGC 253 using ALMA. We find that this feature is clearly associated with the edge of NGC 253's prominent ionized outflow, has a projected length of ∼300 pc, with a width of ∼50 pc, and a velocity dispersion of ∼40 km s‑1, which is consistent with an ejection from the disk about 1 Myr ago. The kinematics of the molecular gas in this feature can be interpreted (albeit not uniquely) as accelerating at a rate of 1 km s‑1 pc‑1. In this scenario, the gas is approaching an escape velocity at the last measured point. Strikingly, bright tracers of dense molecular gas (HCN, CN, HCO+, CS) are also detected in the molecular outflow: we measure an HCN(1–0)/CO(1–0) line ratio of ∼ 1/10 in the outflow, similar to that in the central starburst region of NGC 253 and other starburst galaxies. By contrast, the HCN/CO line ratio in the NGC 253 disk is significantly lower (∼ 1/30), similar to other nearby galaxy disks. This strongly suggests that the streamer gas originates from the starburst, and that its physical state does not change significantly over timescales of ∼1 Myr during its entrainment in the outflow. Simple calculations indicate that radiation pressure is not the main mechanism for driving the outflow. The presence of such dense material in molecular outflows needs to be accounted for in simulations of galactic outflows.

  18. Hard Gamma Ray Emission from the Starburst Galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Jackson, James M.; Marscher, Alan M.

    1996-01-01

    We have completed the study to search for hard gamma ray emission from the starburst galaxy NGC 253. Since supernovae are thought to provide the hard gamma ray emission from the Milky Way, starburst galaxies, with their extraordinarily high supernova rates, are prime targets to search for hard gamma ray emission. We conducted a careful search for hard gamma ray emission from NGC 253 using the archival data from the EGRET experiment aboard the CGRO. Because this starburst galaxy happens to lie near the South Galactic Pole, the Galactic gamma ray background is minimal. We found no significant hard gamma ray signal toward NGC 253, although a marginal signal of about 1.5 sigma was found. Because of the low Galactic background, we obtained a very sensitive upper limit to the emission of greater than 100 MeV gamma-rays of 8 x 10(exp -8) photons/sq cm s. Since we expected to detect hard gamma ray emission, we investigated the theory of gamma ray production in a dense molecular medium. We used a leaky-box model to simulate diffusive transport in a starburst region. Since starburst galaxies have high infrared radiation fields, we included the effects of self-Compton scattering, which are usually ignored. By modelling the expected gamma-ray and synchrotron spectra from NGC 253, we find that roughly 5 - 15% of the energy from supernovae is transferred to cosmic rays in the starburst. This result is consistent with supernova acceleration models, and is somewhat larger than the value derived for the Galaxy (3 - 10%). Our calculations match the EGRET and radio data very well with a supernova rate of 0.08/ yr, a magnetic field B approx. greater than 5 x 10(exp -5) G, a density n approx. less than 100/sq cm, a photon density U(sub ph) approx. 200 eV/sq cm, and an escape time scale tau(sub 0) approx. less than 10 Myr. The models also suggest that NGC 253 should be detectable with only a factor of 2 - 3 improvement in sensitivity. Our results are consistent with the standard picture

  19. Gamma-rays from pulsar wind nebulae in starburst galaxies

    NASA Astrophysics Data System (ADS)

    Mannheim, Karl; Elsässer, Dominik; Tibolla, Omar

    2012-07-01

    Recently, gamma-ray emission at TeV energies has been detected from the starburst galaxies NGC253 (Acero et al., 2009) [1] and M82 (Acciari et al., 2009) [2]. It has been claimed that pion production due to cosmic rays accelerated in supernova remnants interacting with the interstellar gas is responsible for the observed gamma rays. Here, we show that the gamma-ray pulsar wind nebulae left behind by the supernovae contribute to the TeV luminosity in a major way. A single pulsar wind nebula produces about ten times the total luminosity of the Sun at energies above 1 TeV during a lifetime of 105 years. A large number of 3 × 104 pulsar wind nebulae expected in a typical starburst galaxy at a distance of 4 Mpc can readily produce the observed TeV gamma rays.

  20. HAWK-I infrared supernova search in starburst galaxies

    NASA Astrophysics Data System (ADS)

    Miluzio, M.; Cappellaro, E.; Botticella, M. T.; Cresci, G.; Greggio, L.; Mannucci, F.; Benetti, S.; Bufano, F.; Elias-Rosa, N.; Pastorello, A.; Turatto, M.; Zampieri, L.

    2013-06-01

    Context. The use of SN rates to probe explosion scenarios and to trace the cosmic star formation history received a boost from a number of synoptic surveys. There has been a recent claim of a mismatch by a factor of two between star formation and core collapse SN rates, and different explanations have been proposed for this discrepancy. Aims: We attempted an independent test of the relation between star formation and supernova rates in the extreme environment of starburst galaxies, where both star formation and extinction are extremely high. Methods: To this aim we conducted an infrared supernova search in a sample of local starbursts galaxies. The rationale behind searching in the infrared is to reduce the bias due to extinction, which is one of the putative reasons for the observed discrepancy between star formation and supernova rates. To evaluate the outcome of the search we developed a MonteCarlo simulation tool that is used to predict the number and properties of the expected supernovae based on the search characteristics and the current understanding of starburst galaxies and supernovae. Results: During the search we discovered 6 supernovae (4 with spectroscopic classification), which is in excellent agreement with the prediction of the MonteCarlo simulation tool that is, on average, 5.3 ± 2.3 events. Conclusions: The number of supernovae detected in starburst galaxies is consistent with what is predicted from their high star formation rate when we recognize that a major fraction (~ 60%) of the events remain hidden in the inaccessible, high-density nuclear regions because of a combination of reduced search efficiency and high extinction. ESO proposal: 083.D-0259, 085.D-0335, 085.D-0348, 087.D-0494, 087.D-0922. GTC proposal: GTC50-11B.

  1. Chandra Images the Seething Cauldron of Starburst Galaxy

    NASA Astrophysics Data System (ADS)

    2000-01-01

    NASA's Chandra X-ray Observatory has imaged the core of the nearest starburst galaxy, Messier 82 (M82). The observatory has revealed a seething cauldron of exploding stars, neutron stars, black holes, 100 million degree gas, and a powerful galactic wind. The discovery will be presented by a team of scientists from Carnegie Mellon University, Pittsburgh, Penn., Pennsylvania State University, University Park, and the University of Michigan, Ann Arbor, on January 14 at the 195th national meeting of the American Astronomical Society. "In the disk of our Milky Way Galaxy, stars form and die in a relatively calm fashion like burning embers in a campfire," said Richard Griffiths, Professor of Astrophysics at Carnegie Mellon University. "But in a starburst galaxy, star birth and death are more like explosions in a fireworks factory." Short-lived massive stars in a starburst galaxy produce supernova explosions, which heat the interstellar gas to millions of degrees, and leave behind neutron stars and black holes. These explosions emit light in the X rays rather than in visible light. Because the superhot components inside starburst galaxies are complex and sometimes confusing, astronomers need an X-ray-detecting telescope with the highest focusing power (spatial resolution) to clearly discriminate the various structures. "NASA's Chandra X-ray Observatory is the perfect tool for studying starburst galaxies since it has the critical combination of high-resolution optics and good sensitivity to penetrating X rays," said Gordon Garmire, the Evan Pugh Professor of Astronomy and Astrophysics at Pennsylvania State University, and head of the team that conceived and built Chandra's Advanced CCD Imaging Spectrograph (ACIS) X-ray camera, which acquired the data. Many intricate structures missed by earlier satellite observatories are now visible in the ACIS image, including more than twenty powerful X-ray binary systems that contain a normal star in a close orbit around a neutron star

  2. Integrated Optical Polarization of nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Jones, Amy; Wang, Lifan; Krisciunas, Kevin; Freeland, Emily

    2012-03-01

    We performed an integrated optical polarization survey of 70 nearby galaxies to study the relationship between linear polarization and galaxy properties. To date this is the largest survey of its kind. The data were collected at McDonald Observatory using the Imaging Grism Polarimeter on the Otto Struve 2.1 m telescope. Most of the galaxies did not have significant level of linear polarization, where the bulk is <1%. A fraction of the galaxies showed a loose correlation between the polarization and position angle of the galaxy, indicating that dust scattering is the main source of optical polarization. The unbarred spiral galaxies are consistent with the predicted relationship with inclination from scattering models of ~sin 2 i.

  3. INTEGRATED OPTICAL POLARIZATION OF NEARBY GALAXIES

    SciTech Connect

    Jones, Amy; Wang Lifan; Krisciunas, Kevin; Freeland, Emily

    2012-03-20

    We performed an integrated optical polarization survey of 70 nearby galaxies to study the relationship between linear polarization and galaxy properties. To date this is the largest survey of its kind. The data were collected at McDonald Observatory using the Imaging Grism Polarimeter on the Otto Struve 2.1 m telescope. Most of the galaxies did not have significant level of linear polarization, where the bulk is <1%. A fraction of the galaxies showed a loose correlation between the polarization and position angle of the galaxy, indicating that dust scattering is the main source of optical polarization. The unbarred spiral galaxies are consistent with the predicted relationship with inclination from scattering models of {approx}sin{sup 2} i.

  4. Circumnuclear ring of the starburst galaxy NGC 253. An Infrared view

    NASA Astrophysics Data System (ADS)

    Pérez GarcÍa, A. M.; Melo, V. P.; Acosta-Pulido, J.; Muñoz-Tuñón, C.; RodrÍguez-Espinosa, J. M.

    NGC 253 is a nearby spiral galaxy with an active starburst nucleus. Its proximity allows observation with good spatial resolution with state of the art mid and far IR facilities. Here we present preliminary results obtained from the ISO archive in 5 to 16 microns (ISOCAM-CVF) and 120 to 180 μm (ISOPHOT) ranges. The mid IR spectrum exhibits typical broad PAH features as well as weak atomic emission, which is not seen in the continuum nor in the [ArII] emission line. For the first time we present a far IR map (180 μm) as well as several profiles across the minor axis of the galaxy, showing a variation of the dust temperature. We detect an extension of the cold dust (20K) emission not seen previously in IRAS maps, which may contribute to a large fraction of the galaxy total mass.

  5. Starbursts in dwarf galaxies: A multiwavelength case study of NGC 625

    NASA Astrophysics Data System (ADS)

    Cannon, John Michael

    The results of a multiwavelength case study of the nearby dwarf starburst galaxy NGC 625 are presented. This low- mass galaxy hosts a massive starburst comparable in luminosity to 30 Doradus in the Large Magellanic Cloud; its proximity and high galactic latitude provide an ideal opportunity to investigate the starburst phenomenon and its impact on the ISM and IGM. We use Chandra, FUSE, HST, CTIO, ATCA, and VLA data to investigate the nature of the stellar population and multi-phase ISM. Our principal findings are summarized as follows: (1)Ground-based optical spectroscopy finds a prominent Wolf-Rayet (W-R) feature arising from the major starburst region, implying a brief burst duration (4 6 Myr); (2)A spatially resolved star formation history analysis using HST/WFPC2 data shows that the duration of the burst is actually much longer than the W-R features would imply (duration ≳ 50 Myr), and that the star formation has been widespread throughout the disk over this interval; (3)This extended starburst has input sufficient kinetic energy into the ISM to create a large-scale outflow; (4)H I observations from the ATCA show complex kinematics that are consistent with a minor-axis outflow of large amounts of neutral gas; (5)This outflow is verified by FUSE spectroscopy, where strong O VI coronal gas absorption is blueshifted with respect to the neutral and diffuse H2 absorption lines; (6)FUSE spectra also reveal an abundance offset between the neutral and nebular gas regions that may be a common component of the ISM of low-metallicity dwarf galaxies; (7)The ROSAT detection of diffuse soft x-ray emission is verified by new Chandra imaging of NGC 625; (8)VLA radio continuum data shows a thermal global spectral index and a mix of thermal and nonthermal indices for the individual major star formation regions, suggesting vigorous and (temporally and spatially) extended star formation throughout the disk. We interpret these results in the context of low-mass galaxy evolution

  6. Gas distribution and starbursts in shell galaxies

    NASA Technical Reports Server (NTRS)

    Weil, Melinda L.; Hernquist, Lars

    1993-01-01

    Detailed maps of most elliptical galaxies reveal that, whereas the greatest part of their luminous mass originates from a smooth distribution with a surface brightness approximated by a de Vaucouleurs law, a small percentage of their light is contributed by low surface brightness distortions termed 'fine structures'. The sharp-edged features called 'shells' are successfully reproduced by merger and infall models involving accretion from less massive companions. In this context, dwarf spheroidal and compact disk galaxies are likely progenitors of these stellar phenomena. However, it is probable that the sources of shell-forming material also contain significant amounts of gas. This component may play an important role in constraining the formation and evolution of shell galaxies. To investigate the effects of the gaseous component, numerical simulations were performed to study the tidal disruption of dwarf galaxies containing both gas and stars by more massive primaries, and the evolution of the ensuing debris. The calculations were performed with a hybrid N-body/hydrodynamics code. Collisionless matter is evolved using a conventional N-body technique and gas is treated using smoothed particle hydrodynamics in which self-gravitating fluid elements are represented as particles evolving according to Lagrangian hydrodynamic equations. An isothermal equation of state is employed so the gas remains at a temperature 104 K. Owing to the large mass ratio between the primary and companion, the primary is modeled as a rigid potential and the self-gravity of both galaxies is neglected.

  7. Morphology and Structures of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Mira; Ann, HongBae

    2015-08-01

    We performed an analysis of the structure of nearby dwarf galaxies based on a 2-dimensional decomposition of galaxy images using GALFIT. The present sample consists of ~1,100 dwarf galaxies with redshift less than z = 0.01, which is is derived from the morphology catalog of the Visually classified galaxies in the local universe (Ann, Seo, and Ha 2015). In this catalog, dwarf galaxies are divided into 5 subtypes: dS0, dE, dSph, dEbc, dEblue with distinction of the presence of nucleation in dE, dSph, and dS0. We found that dSph and dEblue galaxies are fainter than other subtypes of dwarf galaxies. In most cases, single component, represented by the Sersic profile with n=1~1.5, well describes the luminosity distribution of dwarf galaxies in the present sample. However, a significant fraction of dS0, dEbc, and dEbue galaxies show sub-structures such as spiral arms and rings. We will discuss the morphology dependent evolutionary history of the local dwarf galaxies.

  8. Radio identifications of UGC galaxies - starbursts and monsters

    SciTech Connect

    Condon, J.J.; Broderick, J.J.

    1988-07-01

    New and previously published observational data on galaxies with declination less than +82 deg from the Uppsala General Catalog (Nilson, 1973) are compiled in extensive tables and characterized in detail. Optical positions are confirmed by measurement of Palomar Sky Survey O prints, and radio identifications for 176 galaxies are made on the basis of 1.4-GHz Green Bank sky maps or 1.49-GHz observations obtained with the C configuration of the VLA in November-December 1986; contour maps based on the latter observations are provided. Radio-selected and IR-selected galaxy populations are found to be similar (and distinct from optically selected populations), and three radio/IR criteria are developed to distinguish galaxies powered by starbursts from those with supermassive black holes or other monster energy sources. 197 references.

  9. The ACS Nearby Galaxy Survey Treasury

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.

    2010-01-01

    The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D<4Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small & large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of 104 in luminosity and star formation rate. The survey data consists of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope, supplemented with archival data and new Wide Field Planetary Camera (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. We will discuss the many ways in which this data set is being used to reconstruct the star formation history of galaxies within the local volume.

  10. Crystallization of silicates in massive young star cluster Westerlund 1: a nearby starburst analog

    NASA Astrophysics Data System (ADS)

    Kemper, Francisca

    2014-10-01

    We propose to observe dust forming stars in massive young cluster Westerlund 1 with the FORCASTgrism modes. The objective of this proposal is to determine the crystalline fraction of the silicates formed by the brightest mid-infrared point sources in this cluster, by disentangling the crystalline and amorphous silicate contributions to the infrared spectroscopy. This research is motivated by the discovery of large amounts of crystalline silicate dust in starburst galaxies (Spoon et al. 2006), while the silicates in the interstellar medium of our own galaxies are completely amorphous (Kemper et al. 2004). Spoon et al. explain the high crystallinity by the production by massive stars, although models show this may not be sufficient (Kemper et al. 2011). With these observations we hope to accurately pin down the crystalline silicate production by massive stars in a starburst environment.

  11. Orbital masses of nearby luminous galaxies

    SciTech Connect

    Karachentsev, Igor D.; Kudrya, Yuri N. E-mail: yukudrya@gmail.com

    2014-09-01

    We use observational properties of galaxies accumulated in the Updated Nearby Galaxy Catalog to derive a dark matter mass of luminous galaxies via motions of their companions. The data on orbital-to-stellar mass ratio are presented for 15 luminous galaxies situated within 11 Mpc from us: the Milky Way, M31, M81, NGC 5128, IC342, NGC 253, NGC 4736, NGC 5236, NGC 6946, M101, NGC 4258, NGC 4594, NGC 3115, NGC 3627, and NGC 3368, as well as for a composite suite around other nearby galaxies of moderate and low luminosity. The typical ratio for these galaxies is M {sub orb}/M {sub *} = 31, corresponding to the mean local density of matter Ω {sub m} = 0.09, i.e., one-third of the global cosmic density. This quantity seems to be rather an upper limit of dark matter density, since the peripheric population of the suites may suffer from the presence of fictitious unbound members. We note that the Milky Way and M31 halos have lower dimensions and lower stellar masses than those of the other 13 nearby luminous galaxies. However, the dark-to-stellar mass ratio for both the Milky Way and M31 is typical for other neighboring luminous galaxies. The distortion in the Hubble flow, observed around the Local Group and five other neighboring groups, yields their total masses within the radius of a zero velocity surface, R {sub 0}; these masses are slightly lower than the orbital and virial values. This difference may be due to the effect of dark energy producing a kind of 'mass defect' within R {sub 0}.

  12. A more direct measure of supernova rates in starburst galaxies

    NASA Technical Reports Server (NTRS)

    Van Buren, Dave; Greenhouse, Matthew A.

    1994-01-01

    We determine ages for young supernova remnants in the starburst galaxies M82 and NGC 253 by applying Chevalier's model for radio emission from supernova blast waves expanding into the ejecta of their precursor stars. Absolute ages are determined by calibrating the model with radio observations of Cas A. We derive supernova rates of 0.10 and 0.08/yr for M82 and NGC 253, respectively. Assuming L (sub FIR) to be proportional to the supernova rate, we find r(sub SN) approximately equal 2 x 10(exp -12) x L(sub FIR), solar yr(exp -1) for these archetypal starburst galaxies. This approach is unique in that the supernova rate is derived from direct observation of supernova remnants rather than from star formation rates and an assumed initial mass function (IMF). We suggest that the approach presented here can be used to derive star-formation rates that are more directly related to observable quantities than those derived by other methods. We find that the supernova rate, far infrared (FIR) luminosity, and dynamical mass of the M82 starburst place few constraints on the initial mass function (IMF) slope and mass limits.

  13. Suites of Dwarfs around nearby Giant Galaxies

    NASA Astrophysics Data System (ADS)

    Karachentsev, Igor D.; Kaisina, Elena I.; Makarov, Dmitry I.

    2014-01-01

    The Updated Nearby Galaxy Catalog (UNGC) contains the most comprehensive summary of distances, radial velocities, and luminosities for 800 galaxies located within 11 Mpc from us. The high density of observables in the UNGC makes this sample indispensable for checking results of N-body simulations of cosmic structures on a ~1 Mpc scale. The environment of each galaxy in the UNGC was characterized by a tidal index Θ1, depending on the separation and mass of the galaxy's main disturber (MD). We grouped UNGC galaxies with a common MD in suites, and ranked suite members according to their Θ1. All suite members with positive Θ1 are assumed to be physical companions of the MD. About 58% of the sample are members of physical groups. The distribution of suites by the number of members, n, follows a relation N(n) ~ n -2. The 20 most populated suites contain 468 galaxies, i.e., 59% of the UNGC sample. The fraction of MDs among the brightest galaxies is almost 100% and drops to 50% at MB = -18m. We discuss various properties of MDs, as well as galaxies belonging to their suites. The suite abundance practically does not depend on the morphological type, linear diameter, or hydrogen mass of the MD, the tightest correlation being with the MD dynamical mass. Dwarf galaxies around MDs exhibit well-known segregation effects: the population of the outskirts has later morphological types, richer H I contents, and higher rates of star formation activity. Nevertheless, there are some intriguing cases where dwarf spheroidal galaxies occur at the far periphery of the suites, as well as some late-type dwarfs residing close to MDs. Comparing simulation results with galaxy groups, most studies assume the Local Group is fairly typical. However, we recognize that the nearby groups significantly differ from each other and there is considerable variation in their properties. The suites of companions around the Milky Way and M31, consisting of the Local Group, do not quite seem to be a typical

  14. Starburst Galaxies: Hard X-ray spectra and contribution to the diffuse background

    NASA Technical Reports Server (NTRS)

    Gruber, Duane E.

    1993-01-01

    During the period of this grant two main tasks were performed: a determination of a selection criterion for starburst galaxies most likely to emit X-rays, and performance of a pilot study of the X-ray emission from nine such systems. Starburst galaxies may be expected to emit flat-spectrum X-ray at energies above 10 keV resulting from the various remnants of the short-lived massive stars which characterize the starburst. The investigation to determine the optimum sample resulted in a change from an X-ray selected (HEAO-2) sample to infrared selection based on the IRAS catalogue. A much broader sample thereby available for study, and selection could be limited to only the nearest objects and still obtain a reasonably large sample. A sample of 99 of the brightest infrared starburst galaxies was settled on for the X-ray survey. For a set of practical size, this was then reduced to a subset of 53, based on luminosity and nearness. X-ray emission from these objects was individually measured from the UCSD HEAO-1 all-sky survey in four energy bands between 13 keV to 160 keV. This data base consists of about 20 optical disk volumes. Net significance for the result was roughly two sigma, and a very hard spectral shape is indicated for the net spectrum of the surveyed galaxies. With the possibility of detection of the class, it was then felt worthwhile to examine fluxes from these sources in other archival data. This was performed with the HEAO-1 A2 data and the HEAO-2 (EINSTEIN) main archive and slew survey. Positive results were also obtained for the sample, but again at weak significance. With three independent measures of weak X-ray fluxes from nearby starburst galaxies, we wrote a letter to the Astrophysical Journal (enclosed) discussing these results and their likely significance, in particular, for the contribution to the cosmic diffuse x-ray background, perhaps as much as 25 percent.

  15. Numerical models of starburst galaxies: Galactic winds and entrained gas

    NASA Astrophysics Data System (ADS)

    Tanner, Ryan

    My three-dimensional hydro-dynamical simulations of starbursts examine the formation of starburst-driven superbubbles over a range of driving luminosities and mass loadings that determine superbubble growth and wind velocity; floors of both 10 and 10. 4 K are considered. From this I determine the relationshipbetween the velocity of a galactic wind and the characteristics of the starburst. I find a threshold for the formation of a wind, above which the wind speed is not affected by grid resolution or the temperature floor of the radiative cooling employed. Optically bright filaments form at the edge of merging superbubbles, or where a cold dense cloud has been disrupted by the wind. Filaments formed by merging superbubbles will persist and grow to >400 pc in length if anchored to and fed from a star forming complex. For galaxies viewed edge on I use total emission from the superbubble to infer the wind velocity and starburst properties such as thermalization efficiency and mass loading factor. Using synthetic absorption profiles I probe different temperature regimes and measure the velocity of the cold, warm and hot gas phases. I find that the cold and warm gas entrained in the wind move at a much lower velocity than the hot gas, with some of the cold gas in the filaments hardly moving with respect to the galaxy. The absorption profiles show that the velocity of the hot galactic outflow does not depend on the star formation rate (SFR), but the velocity of the warm gas does. The velocity of the warm gas scales as SFR. delta untilthe wind velocity reaches 80 % of the analytic terminal wind speed. The value of delta depends on the atomic ionization with a lower value for low ionization, and a higher value for higher ionization.

  16. Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind.

    PubMed

    Bolatto, Alberto D; Warren, Steven R; Leroy, Adam K; Walter, Fabian; Veilleux, Sylvain; Ostriker, Eve C; Ott, Jürgen; Zwaan, Martin; Fisher, David B; Weiss, Axel; Rosolowsky, Erik; Hodge, Jacqueline

    2013-07-25

    The under-abundance of very massive galaxies in the Universe is frequently attributed to the effect of galactic winds. Although ionized galactic winds are readily observable, most of the expelled mass (that is, the total mass flowing out from the nuclear region) is likely to be in atomic and molecular phases that are cooler than the ionized phases. Expanding molecular shells observed in starburst systems such as NGC 253 (ref. 12) and M 82 (refs 13, 14) may facilitate the entrainment of molecular gas in the wind. Although shell properties are well constrained, determining the amount of outflowing gas emerging from such shells and the connection between this gas and the ionized wind requires spatial resolution better than 100 parsecs coupled with sensitivity to a wide range of spatial scales, a combination hitherto not available. Here we report observations of NGC 253, a nearby starburst galaxy (distance ∼ 3.4 megaparsecs) known to possess a wind, that trace the cool molecular wind at 50-parsec resolution. At this resolution, the extraplanar molecular gas closely tracks the Hα filaments, and it appears to be connected to expanding molecular shells located in the starburst region. These observations allow us to determine that the molecular outflow rate is greater than 3 solar masses per year and probably about 9 solar masses per year. This implies a ratio of mass-outflow rate to star-formation rate of at least 1, and probably ∼3, indicating that the starburst-driven wind limits the star-formation activity and the final stellar content.

  17. FIR colours and SEDs of nearby galaxies observed with Herschel

    NASA Astrophysics Data System (ADS)

    Boselli, A.; Ciesla, L.; Buat, V.; Cortese, L.; Auld, R.; Baes, M.; Bendo, G. J.; Bianchi, S.; Bock, J.; Bomans, D. J.; Bradford, M.; Castro-Rodriguez, N.; Chanial, P.; Charlot, S.; Clemens, M.; Clements, D.; Corbelli, E.; Cooray, A.; Cormier, D.; Dariush, A.; Davies, J.; de Looze, I.; di Serego Alighieri, S.; Dwek, E.; Eales, S.; Elbaz, D.; Fadda, D.; Fritz, J.; Galametz, M.; Galliano, F.; Garcia-Appadoo, D. A.; Gavazzi, G.; Gear, W.; Giovanardi, C.; Glenn, J.; Gomez, H.; Griffin, M.; Grossi, M.; Hony, S.; Hughes, T. M.; Hunt, L.; Isaak, K.; Jones, A.; Levenson, L.; Lu, N.; Madden, S. C.; O'Halloran, B.; Okumura, K.; Oliver, S.; Page, M.; Panuzzo, P.; Papageorgiou, A.; Parkin, T.; Perez-Fournon, I.; Pierini, D.; Pohlen, M.; Rangwala, N.; Rigby, E.; Roussel, H.; Rykala, A.; Sabatini, S.; Sacchi, N.; Sauvage, M.; Schulz, B.; Schirm, M.; Smith, M. W. L.; Spinoglio, L.; Stevens, J.; Sundar, S.; Symeonidis, M.; Trichas, M.; Vaccari, M.; Verstappen, J.; Vigroux, L.; Vlahakis, C.; Wilson, C.; Wozniak, H.; Wright, G.; Xilouris, E. M.; Zeilinger, W.; Zibetti, S.

    2010-07-01

    We present infrared colours (in the 25-500 μm spectral range) and UV to radio continuum spectral energy distributions of a sample of 51 nearby galaxies observed with SPIRE on Herschel. The observed sample includes all morphological classes, from quiescent ellipticals to active starbursts. Active galaxies have warmer colour temperatures than normal spirals. In ellipticals hosting a radio galaxy, the far-infrared (FIR) emission is dominated by the synchrotron nuclear emission. The colour temperature of the cold dust is higher in quiescent E-S0a than in star-forming systems probably because of the different nature of their dust heating sources (evolved stellar populations, X-ray, fast electrons) and dust grain properties. In contrast to the colour temperature of the warm dust, the f350/f500 index sensitive to the cold dust decreases with star formation and increases with metallicity, suggesting an overabundance of cold dust or an emissivity parameter β < 2 in low metallicity, active systems. Herschel is an ESA space observatory with science instruments provided by Principal Investigator consortia. It is open for proposals for observing time from the worldwide astronomical community.

  18. HC3N observations of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Jiang, Xue-Jian; Wang, Jun-Zhi; Gao, Yu; Gu, Qiu-Sheng

    2017-03-01

    Aims: We aim to systematically study the properties of the different transitions of the dense molecular gas tracer HC3N in galaxies. Methods: We have conducted single-dish observations of HC3N emission lines towards a sample of nearby gas-rich galaxies. HC3N(J = 2-1) was observed in 20 galaxies with the Effelsberg 100-m telescope. HC3N(J = 24-23) was observed in nine galaxies with the 10-m Submillimeter Telescope (SMT). Results: HC3N 2-1 is detected in three galaxies: IC 342, M 66, and NGC 660 (> 3σ). HC3N 24-23 is detected in three galaxies: IC 342, NGC 1068, and IC 694. These are the first measurements of HC3N 2-1 in a relatively large sample of external galaxies, although the detection rate is low. For the HC3N 2-1 non-detections, upper limits (2σ) are derived for each galaxy, and stacking the non-detections is attempted to recover the weak signal of HC3N. The stacked spectrum, however, does not show any significant signs of HC3N 2-1 emission. The results are also compared with other transitions of HC3N observed in galaxies. Conclusions: The low detection rate of both transitions suggests low abundance of HC3N in galaxies, which is consistent with other observational studies. The comparison between HC3N and HCN or HCO+shows a large diversity in the ratios between HC3N and HCN or HCO+. More observations are needed to interpret the behavior of HC3N in different types of galaxies.

  19. A Multiwavelength Study of the Starburst Galaxy NGC 7771

    NASA Technical Reports Server (NTRS)

    Davies, Richard I.; Alonso-Herrero, Almudena; Ward, Martin J.

    1997-01-01

    We present a multiwavelength study of the interacting starburst galaxy NGC 7771, including new optical and ultra-violet spectra and a previously unpublished soft X-ray ROSAT image and spectrum. The far-infrared, radio, and X-ray fluxes suggest that a massive burst of star-formation is currently in progress but the small equivalent width of the Balmer emission lines (equivalent width H(alpha approximately equals 100 A), the weak UV flux, the low abundance of ionised oxygen, and the shape of the optical spectrum lead us to conclude that there are few 0 stars. This might normally suggest that star-formation has ceased but the galaxy's barred gravitational potential and large gas reserves imply that this should not be so, and we therefore consider other explanations. We argue that the observations cannot be due to effects of geometry, density bounded nebulae, or dust within the nebulae, and conclude that a truncated IMF is required. The dwarf galaxy NGC 7770 appears to be in the initial stages of a merger with NGC 7771, and the resulting tidal perturbations may have induced the apparent two-armed spiral pattern, and driven a substantial fraction of the disk gas inwards. The presence of a bulge in NGC 7771 may be moderating the starburst so that, while still occuring on a large scale with a supernova rate of 0.8-1/yr, it is less violent and the IMF has a relatively low upper mass limit. We find that there is a cluster of stars obscuring part of the starburst region, and we offer an explanation of its origin.

  20. The multifrequency spectrum of the starburst galaxy NGC 2782

    NASA Technical Reports Server (NTRS)

    Kinney, A. L.; Bregman, J. N.; Huggins, P. J.; Glassgold, A. E.; Cohen, R. D.

    1984-01-01

    The nuclear region of NGC 2782 has been observed at radio, millimeter, infrared, optical, ultraviolet, and X-ray frequencies to understand the ionization source that gives rise to the narrow emission lines. The continuum is probably caused by a normal galactic population plus considerable numbers of young stars and warm dust. In the ultraviolet and optical spectra, which are powerful diagnostics, no strong lines are detected in the 1200 A-3200 A region aside from L-alpha, and the optical emission lines cover only a narrow ionization range. The line and continuum properties suggest that NGC 2782 is a starburst galaxy, in which young stars photoionize the surrounding gas.

  1. Search for Supernovae in Starburst Galaxies with HAWK-I

    NASA Astrophysics Data System (ADS)

    Miluzio, M.

    2014-03-01

    With the aim of testing the relation between supernova (SN) rate and star formation rate, we conducted a SN search in a sample of local starburst galaxies (SBs) where both star formation rates and extinction are extremely high. The search was performed in the near-infrared, where the bias due to extinction is reduced using HAWK-I on the VLT. We discovered six SNe, in excellent agreement with expectations, when considering that, even in our search, about 60% of events remain hidden in the nuclear regions due to a combination of reduced search efficiency and very high extinction.

  2. Characterizing Lyman Alpha Scattering in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bridge, Joanna; Hayes, Matthew; Melinder, Jens; Östlin, Göran; Gronwall, Caryl

    2017-01-01

    The hydrogen emission line of Lyman alpha (Lyα) has long been recognized as key to studying high redshift star-forming galaxies. However, due to the resonance of the emission line, the path that a Lyα photon takes from emission to eventual escape from the galaxy is essentially a mystery. This scattering poses a problem for using Lyα as a key emission feature of galaxies because it results in Lyα not being observed in all star-forming galaxies, and, in galaxies where it is observed, the place where the photon is originally emitted and where it is observed are two very different things. We discuss here how the Lyman-Alpha Reference Sample (LARS) provides a unique sample of 14 nearby (0.02 < z < 0.2) galaxies in which we investigate the role of scattering, both on the global scale of the galaxies and down to scales of ~ 50 parsecs using Hubble Space Telescope imaging. We compare the Lyα/Hα ratios with those expected from pure dust attenuation models, finding that in some cases significant positive departures are found on small scales, consistent with geometrical effects being important on sizes comparable to the HII regions. We then develop a simple scattering model in which we are able to estimate the average path length a Lyα photon travels with respect to non-resonant radiation, and quantifiy the excess dust optical depth to which Lyα radiation may be susceptible.

  3. Determining accurate distances to nearby galaxies

    NASA Astrophysics Data System (ADS)

    Bonanos, Alceste Zoe

    2005-11-01

    Determining accurate distances to nearby or distant galaxies is a very simple conceptually, yet complicated in practice, task. Presently, distances to nearby galaxies are only known to an accuracy of 10-15%. The current anchor galaxy of the extragalactic distance scale is the Large Magellanic Cloud, which has large (10-15%) systematic uncertainties associated with it, because of its morphology, its non-uniform reddening and the unknown metallicity dependence of the Cepheid period-luminosity relation. This work aims to determine accurate distances to some nearby galaxies, and subsequently help reduce the error in the extragalactic distance scale and the Hubble constant H 0 . In particular, this work presents the first distance determination of the DIRECT Project to M33 with detached eclipsing binaries. DIRECT aims to obtain a new anchor galaxy for the extragalactic distance scale by measuring direct, accurate (to 5%) distances to two Local Group galaxies, M31 and M33, with detached eclipsing binaries. It involves a massive variability survey of these galaxies and subsequent photometric and spectroscopic follow-up of the detached binaries discovered. In this work, I also present a catalog of variable stars discovered in one of the DIRECT fields, M31Y, which includes 41 eclipsing binaries. Additionally, we derive the distance to the Draco Dwarf Spheroidal galaxy, with ~100 RR Lyrae found in our first CCD variability study of this galaxy. A "hybrid" method of discovering Cepheids with ground-based telescopes is described next. It involves applying the image subtraction technique on the images obtained from ground-based telescopes and then following them up with the Hubble Space Telescope to derive Cepheid period-luminosity distances. By re-analyzing ESO Very Large Telescope data on M83 (NGC 5236), we demonstrate that this method is much more powerful for detecting variability, especially in crowded fields. I finally present photometry for the Wolf-Rayet binary WR 20a

  4. A Massive, Cooling-Flow-Induced Starburst in the Core of a Highly Luminous Galaxy Cluster

    NASA Technical Reports Server (NTRS)

    McDonald, M.; Bayliss, M.; Benson, B. A.; Foley, R. J.; Ruel, J.; Sullivan, P.; Veilleux, S.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bazin, G.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; deHaan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Egami, E.; Joy, M.

    2012-01-01

    In the cores of some galaxy clusters the hot intracluster plasma is dense enough that it should cool radiatively in the cluster s lifetime, leading to continuous "cooling flows" of gas sinking towards the cluster center, yet no such cooling flow has been observed. The low observed star formation rates and cool gas masses for these "cool core" clusters suggest that much of the cooling must be offset by astrophysical feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical, and infrared observations of the galaxy cluster SPT-CLJ2344-4243 at z = 0.596. These observations reveal an exceptionally luminous (L(sub 2-10 keV) = 8.2 10(exp 45) erg/s) galaxy cluster which hosts an extremely strong cooling flow (M(sub cool) = 3820 +/- 530 Stellar Mass/yr). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (740 +/- 160 Stellar Mass/ yr), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form via accretion of the intracluster medium, rather than the current picture of central galaxies assembling entirely via mergers.

  5. WINGS: WFIRST Infrared Nearby Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin

    WFIRST's combination of wide field and high resolution will revolutionize the study of nearby galaxies. We propose to produce and analyze simulated WFIRST data of nearby galaxies and their halos to maximize the scientific yield in the limited observing time available, ensuring the legacy value of WFIRST's eventual archive. We will model both halo structure and resolved stellar populations to optimize WFIRST's constraints on both dark matter and galaxy formation models in the local universe. WFIRST can map galaxy structure down to ~35 mag/square arcsecond using individual stars. The resulting maps of stellar halos and accreting dwarf companions will provide stringent tests of galaxy formation and dark matter models on galactic (and even sub-galactic) scales, which is where the most theoretical tension exists with the Lambda-CDM model. With a careful, coordinated plan, WFIRST can be expected to improve current sample sizes by 2 orders of magnitude, down to surface brightness limits comparable to those currently reached only in the Local Group, and that are >4 magnitudes fainter than achievable from the ground due to limitations in star-galaxy separation. WFIRST's maps of galaxy halos will simultaneously produce photometry for billions of stars in the main bodies of galaxies within 10 Mpc. These data will transform studies of star formation histories that track stellar mass growth as a function of time and position within a galaxy. They also will constrain critical stellar evolution models of the near-infrared bright, rapidly evolving stars that can contribute significantly to the integrated light of galaxies in the near-infrared. Thus, with WFIRST we can derive the detailed evolution of individual galaxies, reconstruct the complete history of star formation in the nearby universe, and put crucial constraints on the theoretical models used to interpret near-infrared extragalactic observations. We propose a three-component work plan that will ensure these gains by

  6. Predicting the peculiar velocities of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Sharpe, Jacob; Rowan-Robinson, Michael; Canavezes, A.; Saunders, W.; Efstathiou, G.; Frenk, C.; Keeble, O.; McMahon, R. G.; Maddox, S.; Oliver, S. J.; Sutherland, W.; Tadros, H.; White, S. D. M.

    1999-06-01

    We use the Least Action Principle to predict the peculiar velocities of PSC-z galaxies inside (cz = 2000 kms^{-1}). Linear theory is used to account for tidal effects to (cz = 15000 kms^{-1}), and we iterate galaxy positions to account for redshift distortions. As the Least Action Principle is valid beyond Linear theory, we can predict reliable velocities even for very nearby galaxies (ie cz <= 500 kms^{-1}). These predicted peculiar velocities are then compared with the observed velocities of 12 galaxies with Cepheid distances. The combination of the PSC-z galaxy survey (with its large sky coverage and uniform selection), with the accurate Cepheid distances, makes this comparison relatively free from systematic effects. We find that galaxies are good tracers of the mass, even at small (<= 10 h^{-1}Mpc) scales; and under the assumption of no biasing, β <= 0.75 (at 90% confidence). We use the reliable predicted peculiar velocities to estimate (H0) from the local volume without ``stepping up'' the distance ladder, finding a confidence range of 65-75 kms^{-1}Mpc^{-1} (at 90% confidence).

  7. The GALEX Ultraviolet Atlas of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Gil de Paz, Armando; Boissier, Samuel; Madore, Barry F.; Seibert, Mark; Joe, Young H.; Boselli, Alessandro; Wyder, Ted K.; Thilker, David; Bianchi, Luciana; Rey, Soo-Chang; Rich, R. Michael; Barlow, Tom A.; Conrow, Tim; Forster, Karl; Friedman, Peter G.; Martin, D. Christopher; Morrissey, Patrick; Neff, Susan G.; Schiminovich, David; Small, Todd; Donas, José; Heckman, Timothy M.; Lee, Young-Wook; Milliard, Bruno; Szalay, Alex S.; Yi, Sukyoung

    2007-12-01

    We present images, integrated photometry, and surface-brightness and color profiles for a total of 1034 nearby galaxies recently observed by the Galaxy Evolution Explorer (GALEX) satellite in its far-ultraviolet (FUV; λeff=1516 Å) and near-ultraviolet (NUV; λeff=2267 Å) bands. Our catalog of objects is derived primarily from the GALEX Nearby Galaxies Survey (NGS) supplemented by galaxies larger than 1' in diameter serendipitously found in these fields and in other GALEX exposures of similar of greater depth. The sample analyzed here adequately describes the distribution and full range of properties (luminosity, color, star formation rate [SFR]) of galaxies in the local universe. From the surface brightness profiles obtained we have computed asymptotic magnitudes, colors, and luminosities, along with the concentration indices C31 and C42. We have also morphologically classified the UV surface brightness profiles according to their shape. This data set has been complemented with archival optical, near-infrared, and far-infrared fluxes and colors. We find that the integrated (FUV-K) color provides robust discrimination between elliptical and spiral/irregular galaxies and also among spiral galaxies of different subtypes. Elliptical galaxies with brighter K-band luminosities (i.e., more massive) are redder in (NUV-K) color but bluer in (FUV-NUV) (a color sensitive to the presence of a strong UV upturn) than less massive ellipticals. In the case of the spiral/irregular galaxies our analysis shows the presence of a relatively tight correlation between the (FUV-NUV) color (or, equivalently, the slope of the UV spectrum, β) and the total infrared-to-UV ratio. The correlation found between (FUV-NUV) color and K-band luminosity (with lower luminosity objects being bluer than more luminous ones) can be explained as due to an increase in the dust content with galaxy luminosity. The images in this Atlas along with the profiles and integrated properties are publicly

  8. THE RADIO–GAMMA CORRELATION IN STARBURST GALAXIES

    SciTech Connect

    Eichmann, B.; Tjus, J. Becker

    2016-04-20

    We present a systematic study of non-thermal electron–proton plasma and its emission processes in starburst galaxies in order to explain the correlation between the luminosity in the radio band and the recently observed gamma luminosity. In doing so, a steady state description of the cosmic-ray (CR) electrons and protons within the spatially homogeneous starburst is considered where continuous momentum losses are included as well as catastrophic losses due to diffusion and advection. The primary source of the relativistic CRs, e.g., supernova remnants, provides a quasi-neutral plasma with a power-law spectrum in momentum where we account for rigidity-dependent differences between the electron and proton spectrum. We examine the resulting leptonic and hadronic radiation processes by synchrotron radiation, inverse Compton scattering, Bremsstrahlung, and hadronic pion production. Finally, the observations of NGC 253, M82, NGC 4945, and NGC 1068 in the radio and gamma-ray bands as well as the observed supernova rate are used to constrain a best-fit model. In the case of NGC 253, M82, and NGC 4945 our model is able to accurately describe the data, showing that: (i) supernovae are the dominant particle accelerators for NGC 253, M82, and NGC 4945, but not for NGC 1068; (ii) all considered starburst galaxies are poor proton calorimeters in which for NGC 253 the escape is predominantly driven by the galactic wind, whereas the diffusive escape dominates in NGC 4945 and M82 (at energies >1 TeV); and (iii) secondary electrons from hadronic pion production are important to model the radio flux, but the associated neutrino flux is below the current observation limit.

  9. Extragalactic molecular line surveys: the starburst galaxy NGC253

    NASA Astrophysics Data System (ADS)

    Martín, S.; Mauersberger, R.; Martín-Pintado, J.; Henkel, C.; García-Burillo, S.

    Figure 1 shows the first spectral line survey towards an extragalactic source, the starburst galaxy NGC253. The scan, carried out at the IRAM 30m telescope, covers ~86% of the observable 2mm atmospheric window from 129.1 to 175.2GHz. A total of ~ 100 spectral features have been identified as transitions from 25 different molecular species. Ten out of these 25 molecules have been detected for the first time towards a starbust galaxy. NO, NS, SO2, H2S and H2CS were reported by Martín et al.(2003), Martín et al.(2005) while C2S, CH2NH, NH2CN, HOCO+ and C3H are tentatively detected in the survey. These new detections implies an increase of ~ 40% in the 27 molecular species previosly detected outside the galaxy (Mauersberger & Henkel(1993), Mauersberger et al.(1995), Sage & Ziurys(1995), Heikkila et al.(1999).) Additionaly, DNC and N2D+, two deuterated species never obseved in the extragalactic ISM, are tentatively identified. The molecular abundances derived for each species in NGC253 have been compared with five Galactic sources known to be prototypes of different types of chemistry. The chemical complexity of NGC253 resembles closely that observed towards prototypical Galactic Center molecular clouds (SgrB2(OH) in, thought to be mainly dominated by low velocity shocks Martín-Pintado et al.(2001). This comparison certainly indicates that the chemistry of the molecular environment within the nuclear region of NGC253 and that in Galactic Center molecular clouds are driven by similar physical processes. Also a comparison has been performed with five selected prominent galaxies which clearly shows up the chemical differenciation between nuclei of galaxies. The chemical complexity of IC342, and also that of NGC4945 except for the observed lack of SiO, clearly resemble that of NGC253. On the other hand, it is remarkable the different chemical complexity observed between the starburst nuclei within NGC253 and M82. This difference has been interpreted in terms of the

  10. THE ACS NEARBY GALAXY SURVEY TREASURY

    SciTech Connect

    Dalcanton, Julianne J.; Williams, Benjamin F.; Rosema, Keith; Gogarten, Stephanie M.; Christensen, Charlotte; Gilbert, Karoline; Hodge, Paul; Seth, Anil C.; Dolphin, Andrew; Holtzman, Jon; Skillman, Evan D.; Weisz, Daniel; Cole, Andrew; Girardi, Leo; Karachentsev, Igor D.; Olsen, Knut; Freeman, Ken; Gallart, Carme; De Jong, Roelof S. E-mail: ben@astro.washington.edu E-mail: stephanie@astro.washington.edu E-mail: fabio@astro.washington.edu E-mail: aseth@cfa.harvard.edu

    2009-07-15

    The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D < 4 Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small and large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of {approx}10{sup 4} in luminosity and star formation rate. The survey data consist of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), supplemented with archival data and new Wide Field Planetary Camera 2 (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of m {sub F475W} = 28.0 mag, m {sub F606W} = 27.3 mag, and m {sub F814W} = 27.3 mag, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump. The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.

  11. The ACS Nearby Galaxy Survey Treasury

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne J.; Williams, Benjamin F.; Seth, Anil C.; Dolphin, Andrew; Holtzman, Jon; Rosema, Keith; Skillman, Evan D.; Cole, Andrew; Girardi, Léo; Gogarten, Stephanie M.; Karachentsev, Igor D.; Olsen, Knut; Weisz, Daniel; Christensen, Charlotte; Freeman, Ken; Gilbert, Karoline; Gallart, Carme; Harris, Jason; Hodge, Paul; de Jong, Roelof S.; Karachentseva, Valentina; Mateo, Mario; Stetson, Peter B.; Tavarez, Maritza; Zaritsky, Dennis; Governato, Fabio; Quinn, Thomas

    2009-07-01

    The ACS Nearby Galaxy Survey Treasury (ANGST) is a systematic survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D < 4 Mpc). The survey volume encompasses 69 galaxies in diverse environments, including close pairs, small and large groups, filaments, and truly isolated regions. The galaxies include a nearly complete range of morphological types spanning a factor of ~104 in luminosity and star formation rate. The survey data consist of images taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST), supplemented with archival data and new Wide Field Planetary Camera 2 (WFPC2) imaging taken after the failure of ACS. Survey images include wide field tilings covering the full radial extent of each galaxy, and single deep pointings in uncrowded regions of the most massive galaxies in the volume. The new wide field imaging in ANGST reaches median 50% completenesses of m F475W = 28.0 mag, m F606W = 27.3 mag, and m F814W = 27.3 mag, several magnitudes below the tip of the red giant branch (TRGB). The deep fields reach magnitudes sufficient to fully resolve the structure in the red clump. The resulting photometric catalogs are publicly accessible and contain over 34 million photometric measurements of >14 million stars. In this paper we present the details of the sample selection, imaging, data reduction, and the resulting photometric catalogs, along with an analysis of the photometric uncertainties (systematic and random), for both ACS and WFPC2 imaging. We also present uniformly derived relative distances measured from the apparent magnitude of the TRGB.

  12. THE DRIVING MECHANISM OF STARBURSTS IN GALAXY MERGERS

    SciTech Connect

    Teyssier, Romain; Chapon, Damien; Bournaud, Frederic

    2010-09-10

    We present hydrodynamic simulations of a major merger of disk galaxies, and study the interstellar medium (ISM) dynamics and star formation (SF) properties. High spatial and mass resolutions of 12 pc and 4 x 10{sup 4} M {sub sun} allow us to resolve cold and turbulent gas clouds embedded in a warmer diffuse phase. We compare lower-resolution models, where the multiphase ISM is not resolved and is modeled as a relatively homogeneous and stable medium. While merger-driven bursts of SF are generally attributed to large-scale gas inflows toward the nuclear regions, we show that once a realistic ISM is resolved, the dominant process is actually gas fragmentation into massive and dense clouds and rapid SF therein. As a consequence, SF is more efficient by a factor of up to {approx}10 and is also somewhat more extended, while the gas density probability distribution function rapidly evolves toward very high densities. We thus propose that the actual mechanism of starburst triggering in galaxy collisions can only be captured at high spatial resolution and when the cooling of gas is modeled down to less than 10{sup 3} K. Not only does our model reproduce the properties of the Antennae system, but it also explains the 'starburst mode' recently revealed in high-redshift mergers compared to quiescent disks.

  13. Alma observations of nearby luminous infrared galaxies with various agn energetic contributions using dense gas tracers

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2014-07-01

    We present the results of our ALMA Cycle 0 observations, using HCN/HCO{sup +}/HNC J = 4-3 lines, of six nearby luminous infrared galaxies with various energetic contributions from active galactic nuclei (AGNs) estimated from previous infrared spectroscopy. These lines are very effective for probing the physical properties of high-density molecular gas around the hidden energy sources in the nuclear regions of these galaxies. We find that HCN to HCO{sup +} J = 4-3 flux ratios tend to be higher in AGN-important galaxies than in starburst-dominated regions, as was seen at the J = 1-0 transition, while there is no clear difference in the HCN-to-HNC J = 4-3 flux ratios among observed sources. A galaxy with a starburst-type infrared spectral shape and very large molecular line widths shows a high HCN-to-HCO{sup +} J = 4-3 flux ratio, which could be due to turbulence-induced heating. We propose that enhanced HCN J = 4-3 emission relative to HCO{sup +} J = 4-3 could be used to detect more energetic activity than normal starbursts, including deeply buried AGNs, in dusty galaxy populations.

  14. A tidal disruption event in the nearby ultra-luminous infrared galaxy F01004-2237

    NASA Astrophysics Data System (ADS)

    Tadhunter, C.; Spence, R.; Rose, M.; Mullaney, J.; Crowther, P.

    2017-03-01

    Tidal disruption events (TDEs), in which stars are gravitationally disrupted as they pass close to the supermassive black holes in the centres of galaxies 1 , are potentially important probes of strong gravity and accretion physics. Most TDEs have been discovered in large-area monitoring surveys of many thousands of galaxies, and a relatively low rate of one event every 104-105 years per galaxy has been deduced 2-4 . However, given the selection effects inherent in such surveys, considerable uncertainties remain about the conditions that favour TDEs. Here we report the detection of unusually strong and broad helium emission lines following a luminous optical flare in the nucleus of the nearby ultra-luminous infrared galaxy F01004-2237. This particular combination of variabi­lity and post-flare emission line spectrum is unlike any known supernova or active galactic nucleus. The most plausible explanation is a TDE — the first detected in a galaxy with an ongoing massive starburst. The fact that this event has been detected in repeat spectroscopic observations of a sample of 15 ultra-luminous infrared galaxies over a period of just 10 years suggests a much higher rate of TDEs in starburst galaxies than in the general galaxy population.

  15. A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies.

    PubMed

    McDonald, M; Bayliss, M; Benson, B A; Foley, R J; Ruel, J; Sullivan, P; Veilleux, S; Aird, K A; Ashby, M L N; Bautz, M; Bazin, G; Bleem, L E; Brodwin, M; Carlstrom, J E; Chang, C L; Cho, H M; Clocchiatti, A; Crawford, T M; Crites, A T; de Haan, T; Desai, S; Dobbs, M A; Dudley, J P; Egami, E; Forman, W R; Garmire, G P; George, E M; Gladders, M D; Gonzalez, A H; Halverson, N W; Harrington, N L; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Jones, C; Joy, M; Keisler, R; Knox, L; Lee, A T; Leitch, E M; Liu, J; Lueker, M; Luong-Van, D; Mantz, A; Marrone, D P; McMahon, J J; Mehl, J; Meyer, S S; Miller, E D; Mocanu, L; Mohr, J J; Montroy, T E; Murray, S S; Natoli, T; Padin, S; Plagge, T; Pryke, C; Rawle, T D; Reichardt, C L; Rest, A; Rex, M; Ruhl, J E; Saliwanchik, B R; Saro, A; Sayre, J T; Schaffer, K K; Shaw, L; Shirokoff, E; Simcoe, R; Song, J; Spieler, H G; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Stubbs, C W; Suhada, R; van Engelen, A; Vanderlinde, K; Vieira, J D; Vikhlinin, A; Williamson, R; Zahn, O; Zenteno, A

    2012-08-16

    In the cores of some clusters of galaxies the hot intracluster plasma is dense enough that it should cool radiatively in the cluster's lifetime, leading to continuous 'cooling flows' of gas sinking towards the cluster centre, yet no such cooling flow has been observed. The low observed star-formation rates and cool gas masses for these 'cool-core' clusters suggest that much of the cooling must be offset by feedback to prevent the formation of a runaway cooling flow. Here we report X-ray, optical and infrared observations of the galaxy cluster SPT-CLJ2344-4243 (ref. 11) at redshift z = 0.596. These observations reveal an exceptionally luminous (8.2 × 10(45) erg s(-1)) galaxy cluster that hosts an extremely strong cooling flow (around 3,820 solar masses a year). Further, the central galaxy in this cluster appears to be experiencing a massive starburst (formation of around 740 solar masses a year), which suggests that the feedback source responsible for preventing runaway cooling in nearby cool-core clusters may not yet be fully established in SPT-CLJ2344-4243. This large star-formation rate implies that a significant fraction of the stars in the central galaxy of this cluster may form through accretion of the intracluster medium, rather than (as is currently thought) assembling entirely via mergers.

  16. The Distances to Nearby Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Scodeggio, Marco

    1997-12-01

    The properties of the Fundamental Plane (FP) of E and S0 galaxies are analyzed using a sample of early-type galaxies in s nearby clusters of galaxies. I band CCD observations are presented for 631 galaxies in the A262, Cancer, A1367, Coma, Pegasus, and A2634 clusters, and in the NGC 383 and NGC 507 groups. Medium dispersion spectroscopic observations are presented for a sub-set composed of 212 galaxies. Combining this data-set with data taken from the literature, gives a FP sample of 294 galaxies. The clusters are chosen to span as large as possible a range of environmental conditions, from a rich, relaxed, X-ray luminous cluster like Coma, to rather poor groups of galaxies like the NGC 383 group. They are also chosen among the clusters that have the largest available samples of Tully-Fisher (TF) measurements, to allow an accurate comparison of the distance scales obtained using the FP and TF relations independently. Both selection criteria are aimed at quantifying the possible presence of environmental effects on the FP relation. The scatter observed around the FP template implies that the distance to a single galaxy can be obtained, using the FP, with a 22% uncertainty (a 0.48 mag uncertainty on the galaxy distance modulus). The peculiar velocity estimates for the 8 clusters in the sample are all small, consistent with the clusters being at rest in the Cosmic Microwave Background reference frame. Monte Carlo simulations are used to quantify the effects of sample selection and measurement uncertainties on the FP template, and correct the resulting biases. After these corrections are applied, it is found that the properties of the FP do not change significantly as a function of the cluster richness, or as a function of the galaxy position within the cluster. Moreover there is very good agreement between the distance measurements obtained using the FP relation, and those obtained using the TF relation. These results are used to derive an upper limit of 5% on

  17. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, J. D.; Temi, P.; Rank, D.

    2000-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short enough times that many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extinction is especially severe. Thus, determining the supernova rate in active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micrometer emission line was the strongest line in the infrared spectrum for a period of a year and half after th explosion. Since dust extinction is much less at 6.63 micrometers than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the [NiII] line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micrometers using ISOCAM to search for the [NiII] emission line characteristic of recent supernovae. We did not detect any [NiII] line emission brighter than a 5-sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled ot the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a [NiII] line with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a [NiII] line luminosity greater than the line in SN1987A.

  18. Direct Measurement of the Supernova Rate in Starburst Galaxies

    NASA Technical Reports Server (NTRS)

    Bregman, Jesse D.; Temi, Pasquale; Rank, David; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    Supernovae play a key role in the dynamics, structure, and chemical evolution of galaxies. The massive stars that end their lives as supernovae live for short times. Many are still associated with dusty star formation regions when they explode, making them difficult to observe at visible wavelengths. In active star forming regions (galactic nuclei and starburst regions), dust extintion is especially severe. Thus, determining the supernova rate in the active star forming regions of galaxies, where the supernova rate can be one or two orders of magnitude higher than the average, has proven to be difficult. From observations of SN1987A, we know that the [NiII] 6.63 micron emission line was the strongest line in the infrared spectrum for a period of a year and a half after the explosion. Since dust extintion is much less at 6.63 pm than at visible wavelengths (A(sub 6.63)/A(sub V) = 0.025), the NiII line can be used as a sensitive probe for the detection of recent supernovae. We have observed a sample of starburst galaxies at 6.63 micron using ISOCAM to search for the NiII emission line characteristic of recent supernovae. We did not detect any NiII line emission brighter than a 5sigma limit of 5 mJy. We can set upper limits to the supernova rate in our sample, scaled to the rate in M82, of less than 0.3 per year at the 90% confidence level using Bayesian methods. Assuming that a supernova would have a NiII with the same luminosity as observed in SN1987A, we find less than 0.09 and 0.15 per year at the 50% and 67% confidence levels. These rates are somewhat less if a more normal type II supernovae has a NiII line luminosity greater than the line in SN1987A.

  19. Detection of the 158 Micrometers[CII] Transition at z=1.3: Evidence for a Galaxy-Wide Starburst

    NASA Technical Reports Server (NTRS)

    Hailey-Dunsheath, S.; Nikola, T.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Tucker, C. E.

    2010-01-01

    We report the detection of 158 micron [C II] fine-structure line emission from MIPS J142824.0+352619, a hyperluminous ( L(sub IR) approximates 10(exp 13) L (sub solar)) starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L(sub [Cu II] L(sub Fir) approximates 2 x 10(exp -3) of the far-IR (FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n approximates 10(exp 4.2) /cm(exp 3) , and that are illuminated by a far-UV radiation field approximately 10(exp 3.2) times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L(sub [CII])/L(sub FIR) ratio is higher than observed in local ultralummous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L(sub [CII])/L(sub FIR) and L(sub CO)/L(sub FIR) ratios are similar to the values seen in nearby starburst galaxies. This suggests that MIPS J142824.0+352619 is a scaled-up version of a starburst nucleus, with the burst extended over several kiloparsecs.

  20. CONNECTIONS BETWEEN GALAXY MERGERS AND STARBURST: EVIDENCE FROM THE LOCAL UNIVERSE

    SciTech Connect

    Luo, Wentao; Yang, Xiaohu; Zhang, Youcai E-mail: xyang@sjtu.edu.cn

    2014-07-01

    Major mergers and interactions between gas-rich galaxies with comparable masses are thought to be the main triggers of starburst. In this work, we study, for a large stellar mass range, the interaction rate of the starburst galaxies in the local universe. We focus independently on central and satellite star forming galaxies extracted from the Sloan Digital Sky Survey. Here the starburst galaxies are selected in the star formation rate (SFR) stellar mass plane with SFRs five times larger than the median value found for ''star forming'' galaxies of the same stellar mass. Through visual inspection of their images together with close companions determined using spectroscopic redshifts, we find that ∼50% of the ''starburst'' populations show evident merger features, i.e., tidal tails, bridges between galaxies, double cores, and close companions. In contrast, in the control sample we selected from the normal star forming galaxies, only ∼19% of galaxies are associated with evident mergers. The interaction rates may increase by ∼5% for the starburst sample and 2% for the control sample if close companions determined using photometric redshifts are considered. The contrast of the merger rate between the two samples strengthens the hypothesis that mergers and interactions are indeed the main causes of starburst.

  1. The Dragonfly Nearby Galaxies Survey: A Census of the Stellar Halos of Nearby Luminous Galaxies

    NASA Astrophysics Data System (ADS)

    Merritt, Allison T.

    2017-01-01

    The Dragonfly Telephoto Array, comprised of 48 individual Canon telephoto lenses operating together as a single telescope, is an innovative approach to low surface brightness imaging and the study of galactic stellar halos in particular. Sub-nanometer coatings on each optical element reduce scattered light from nearby bright stars and compact galaxy centers - typically a key obstacle for integrated light observations - by an order of magnitude, and Dragonfly's large field of view (2x2.6 degrees for a single frame) provides a large-scale view of stellar halos free from substructure biases. Using extremely deep (>30 mag/arcsec^2) optical imaging in g and r bands from the Dragonfly Nearby Galaxies Survey (DNGS), we have characterized the stellar halos of a sample of ~20 nearby luminous galaxies. I will present measurements of the stellar halo mass fractions of these galaxies as a function of stellar mass, morphology, and environment, and discuss the scatter in halo fractions in the context of the galaxies' individual accretion histories.

  2. The Evolution of Post-starburst Galaxies from z ~ 1 to the Present

    NASA Astrophysics Data System (ADS)

    Pattarakijwanich, Petchara; Strauss, Michael A.; Ho, Shirley; Ross, Nicholas P.

    2016-12-01

    Post-starburst galaxies are in the transitional stage between blue, star-forming galaxies and red, quiescent galaxies and therefore hold important clues for our understanding of galaxy evolution. In this paper, we systematically searched for and identified a large sample of post-starburst galaxies from the spectroscopic data set of the Sloan Digital Sky Survey (SDSS) Data Release 9. In total, we found more than 6000 objects with redshifts between z ˜ 0.05 and z ˜ 1.3, making this the largest sample of post-starburst galaxies in the literature. We calculated the luminosity function of the post-starburst galaxies using two uniformly selected subsamples: the SDSS main galaxy sample and the Baryon Oscillation Spectroscopic Survey CMASS sample. The luminosity functions are reasonably fit by half-Gaussian functions. The peak magnitudes shift as a function of redshift from M ˜ -23.5 at z ˜ 0.8 to M ˜ -20.3 at z ˜ 0.1. This is consistent with the downsizing trend, whereby more massive galaxies form earlier than low-mass galaxies. We compared the mass of the post-starburst stellar population found in our sample to the decline of the global star formation rate and found that only a small amount (˜1%) of all star formation quenching in the redshift range z = 0.2-0.7 results in post-starburst galaxies in the luminosity range our sample is sensitive to. Therefore, luminous post-starburst galaxies are not the place where most of the decline in the star formation rate of the universe is happening.

  3. ORIENTATION OF BRIGHTER GALAXIES IN NEARBY GALAXY CLUSTERS

    SciTech Connect

    Panko, E.; Juszczyk, T.; Flin, P. E-mail: sfflin@cyf-kr.edu.pl

    2009-12-15

    A sample of 6188 nearby galaxy structures, complete to r{sub F} = 18fm3 and containing at least 10 members each, was the observational basis for an investigation of the alignment of bright galaxies with the major axes for the parent clusters. The distribution of position angles for galaxies within the clusters, specifically the brightest, the second brightest, the third, and the tenth brightest galaxies was tested for isotropy. Galaxy position angles appear to be distributed isotropically, as are the distributions of underlying cluster structure position angles. The characterization of galaxy structures according to richness class also appears to be isotropic. Characterization according to BM types, which are known for 1056 clusters, is more interesting. Only in the case of clusters of BM type I is there an alignment of the brightest cluster member with the major axis of the parent cluster. The effect is observed at the 2 significance level. In other investigated cases the distributions are isotropic. The results confirm the special role of cD galaxies in the origin/evolution of large-scale structures.

  4. The evolution of post-starburst galaxies from z=2 to 0.5

    NASA Astrophysics Data System (ADS)

    Wild, Vivienne; Almaini, Omar; Dunlop, Jim; Simpson, Chris; Rowlands, Kate; Bowler, Rebecca; Maltby, David; McLure, Ross

    2016-11-01

    We present the evolution in the number density and stellar mass functions of photometrically selected post-starburst galaxies in the UKIDSS Ultra Deep Survey, with redshifts of 0.5 < z < 2 and stellar masses log (M/M⊙) >10. We find that this transitionary species of galaxy is rare at all redshifts, contributing ˜5 per cent of the total population at z ˜ 2, to <1 per cent by z ˜ 0.5. By comparing the mass functions of quiescent galaxies to post-starburst galaxies at three cosmic epochs, we show that rapid quenching of star formation can account for 100 per cent of quiescent galaxy formation, if the post-starburst spectral features are visible for ˜250 Myr. The flattening of the low-mass end of the quiescent galaxy stellar mass function seen at z ˜ 1 can be entirely explained by the addition of rapidly quenched galaxies. Only if a significant fraction of post-starburst galaxies have features that are visible for longer than 250 Myr, or they acquire new gas and return to the star-forming sequence, can there be significant growth of the red sequence from a slower quenching route. The shape of the mass function of these transitory post-starburst galaxies resembles that of quiescent galaxies at z ˜ 2, with a preferred stellar mass of log (M/M⊙) ˜10.6, but evolves steadily to resemble that of star-forming galaxies at z < 1. This leads us to propose a dual origin for post-starburst galaxies: (1) at z ≳ 2 they are exclusively massive galaxies that have formed the bulk of their stars during a rapid assembly period, followed by complete quenching of further star formation; (2) at z ≲ 1 they are caused by the rapid quenching of gas-rich star-forming galaxies, independent of stellar mass, possibly due to environment and/or gas-rich major mergers.

  5. THE MULTI-WAVELENGTH EXTREME STARBURST SAMPLE OF LUMINOUS GALAXIES. I. SAMPLE CHARACTERISTICS

    SciTech Connect

    Laag, Edward; Croft, Steve; Canalizo, Gabriela; Lacy, Mark

    2010-12-15

    This paper introduces the Multi-wavelength Extreme Starburst Sample (MESS), a new catalog of 138 star-forming galaxies (0.1 < z < 0.3) optically selected from the Sloan Digital Sky Survey using emission line strength diagnostics to have a high absolute star formation rate (SFR; minimum 11 M{sub sun} yr{sup -1} with median SFR {approx} 61 M{sub sun} yr{sup -1} based on a Kroupa initial mass function). The MESS was designed to complement samples of nearby star-forming galaxies such as the luminous infrared galaxies (LIRGs) and ultraviolet luminous galaxies (UVLGs). Observations using the Multi-band Imaging Photometer (24, 70, and 160 {mu}m channels) on the Spitzer Space Telescope indicate that the MESS galaxies have IR luminosities similar to those of LIRGs, with an estimated median L{sub TIR} {approx} 3 x 10{sup 11} L{sub sun}. The selection criteria for the MESS objects suggest they may be less obscured than typical far-IR-selected galaxies with similar estimated SFRs. Twenty out of 70 of the MESS objects detected in the Galaxy Evolution Explorer FUV band also appear to be UVLGs. We estimate the SFRs based directly on luminosities to determine the agreement for these methods in the MESS. We compare these estimates to the emission line strength technique, since the effective measurement of dust attenuation plays a central role in these methods. We apply an image stacking technique to the Very Large Array FIRST survey radio data to retrieve 1.4 GHz luminosity information for 3/4 of the sample covered by FIRST including sources too faint, and at too high a redshift, to be detected in FIRST. We also discuss the relationship between the MESS objects and samples selected through alternative criteria. Morphologies will be the subject of a forthcoming paper.

  6. Galaxies Probing Galaxies: Cool Halo Gas from a z = 0.47 Post-Starburst Galaxy

    NASA Astrophysics Data System (ADS)

    Rubin, Kate H. R.; Prochaska, J. Xavier; Koo, David C.; Phillips, Andrew C.; Weiner, Benjamin J.

    2010-03-01

    We study the cool gas around a galaxy at z = 0.4729 using Keck/LRIS spectroscopy of a bright (B = 21.7) background galaxy at z = 0.6942 at a transverse distance of 16.5h -1 70 kpc. The background galaxy spectrum reveals strong Fe II, Mg II, Mg I, and Ca II absorption at the redshift of the foreground galaxy, with an Mg II λ2796 rest equivalent width of 3.93 ± 0.08 Å, indicative of a velocity width exceeding 400 km s-1. Because the background galaxy is large (>4h -1 70 kpc), the high covering fraction of the absorbing gas suggests that it arises in a spatially extended complex of cool clouds with large velocity dispersion. Spectroscopy of the massive (log M */M sun = 11.15 ± 0.08) host galaxy reveals that it experienced a burst of star formation about 1 Gyr ago and that it harbors a weak active galactic nucleus. We discuss the possible origins of the cool gas in its halo, including multiphase cooling of hot halo gas, cold inflow, tidal interactions, and galactic winds. We conclude that the absorbing gas was most likely ejected or tidally stripped from the interstellar medium of the host galaxy or its progenitors during the past starburst event. Adopting the latter interpretation, these results place one of only a few constraints on the radial extent of cool gas driven or stripped from a galaxy in the distant universe. Future studies with integral field unit spectroscopy of spatially extended background galaxies will provide multiple sight lines through foreground absorbers and permit analysis of the morphology and kinematics of the gas surrounding galaxies with a diverse set of properties and environments. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  7. Chemical abundances in nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Richer, Michael Gerard

    2015-08-01

    The chemical abundances observed in planetary nebulae in the discs of spiral galaxies are revealing a rich variety of information about their progenitor stars as well as the structure and evolution of the galaxies they inhabit. As concerns galaxy structure and evolution, most of the attention has been on whether gradients in chemical abundances have changed with time, but there is also the issue of the formation and origin of the stellar progenitors of planetary nebulae. The gradients in oxygen abundances for planetary nebulae in M81 and NGC 300 are shallower than the corresponding gradients for H II regions in these galaxies. On the other hand, the gradients for H II regions and planetary nebulae are similar in M33. In the case of M31, there is mounting evidence whose simplest explanation may not be related to internal processes, but instead may lay in the gravitational interaction between it and its neighbours, past and present. As concerns the nucleosynthesis of the stellar progenitors of these planetary nebulae, some results for both nitrogen and oxygen may indicate the production of these elements during the previous evolutionary stages of their progenitor stars. Nominally, this may not be surprising for nitrogen, but the results do not agree quantitatively with canonical theory. At this point, though, there are still too few studies to draw very firm conclusions regrading any of these topics. Even so, the surprises among the results found so far make clear that interpreting the chemical abundances in the planetary nebulae in nearby spirals will require considering the processes affecting both stellar and galactic evolution.

  8. IRAS 23532+2513: a compact group including a Seyfert 1 and a starburst galaxy.

    NASA Astrophysics Data System (ADS)

    Zou, Z.-L.; Xia, X.-Y.; Deng, Z.-G.; Wu, H.

    1995-12-01

    The very luminous infrared source IRAS 23532 coincides with a compact group of galaxies including MCG 04-01-002, MCG 04-01-003 and MCG 04-01-004. Spectroscopic observations show that the bright-nucleus galaxy MCG 04-01-002 is a Seyfert 1 and the disturbed spiral galaxy MCG 04-01-003 is a starburst galaxy. CCD images in V band reveal that clear tidal interaction exists between those two objects. This is another example of tidal interaction triggering starburst and Seyfert activity.

  9. Aspects of the interstellar medium in starburst galaxies

    NASA Technical Reports Server (NTRS)

    Fanelli, Michael N.

    1990-01-01

    Researchers are engaged in a multifaceted program to investigate the stellar content and star formation history of actively star-forming galaxies. A large body of stellar spectra have been examined to identify spectral features characteristic of specific stellar types. These spectral diagnostics are then calibrated in terms of temperature (spectral type), gravity (luminosity class) and metallicity. The spectral data is compiled into a stellar library whose members represent specific locations in the HR diagram. Through the use of population synthesis techniques, both optimizing and evolutionary approaches, the stellar luminosity function in composite populations can be determined by analysis of their integrated light. Researchers have concentrated on the ultraviolet wavelength region (lambda lambda 1200 to 3200), utilizing the International Ultraviolet Explorer (IUE) archives supplemented by additional observations. In the optical, virtually all stars will contribute to the integrated light. In the ultraviolet however, cool stars will produce negligible flux due to their steep ultraviolet-to-visual continua, greatly simplifying the investigation of the hot component in a composite population. The researchers' initial stellar library has been applied to several blue compact galaxies, (BCGs), a class of starburst galaxy which is UV luminous. BCGs possess a complex interstellar medium which affects the emergent stellar continuum in several ways. This presents a challenge to the stellar analysis but affords insight into the properties of the gas and dust from which the massive OB stars have formed. The optimizing synthesis method solves for the stellar luminosity function and extinction simultaneously. This therefore provides an independent measure of the extinction affecting the hot population component. Despite the rise of the reddening law towards the ultraviolet, BCGs are found to be brighter in the ultraviolet than expected.

  10. How Does Dense Molecular Gas Contribute to Star Formation in the Starburst Galaxy NGC 2146?

    NASA Astrophysics Data System (ADS)

    Wofford, Alia

    2017-01-01

    The starburst galaxy NGC 2146 is believed to have been formed approximately 800 Myr ago, when two galaxies collided with each other possibly leading to a burst of star formation. NGC 2146 is known as a starburst galaxy for the high frequency of star formation going on in its molecular clouds. These clouds serve as nurseries for star formation to occur. Hydrogen Cyanide (HCN) and Carbon monoxide (CO) are molecules found in molecular gas clouds. HCN molecules are tracers for high density star forming gas. Whereas, CO molecules are tracers for low density star forming gas. In this project, we are observing these two molecules and their proximity to where the stars are forming in the galaxy to determine if the star formation is occurring in the same area as the high and low density molecular gas areas in starburst galaxy NGC 2146.

  11. THE STAR FORMATION HISTORY AND CHEMICAL EVOLUTION OF STAR-FORMING GALAXIES IN THE NEARBY UNIVERSE

    SciTech Connect

    Torres-Papaqui, J. P.; Coziol, R.; Ortega-Minakata, R. A.; Neri-Larios, D. M. E-mail: rcoziol@astro.ugto.mx E-mail: daniel@astro.ugto.mx

    2012-08-01

    We have determined the metallicity (O/H) and nitrogen abundance (N/O) of a sample of 122,751 star-forming galaxies (SFGs) from the Data Release 7 of the Sloan Digital Sky Survey. For all these galaxies we have also determined their morphology and obtained a comprehensive picture of their star formation history (SFH) using the spectral synthesis code STARLIGHT. The comparison of the chemical abundance with the SFH allows us to describe the chemical evolution of the SFGs in the nearby universe (z {<=} 0.25) in a manner consistent with the formation of their stellar populations and morphologies. A high fraction (45%) of the SFGs in our sample show an excess abundance of nitrogen relative to their metallicity. We also find this excess to be accompanied by a deficiency of oxygen, which suggests that this could be the result of effective starburst winds. However, we find no difference in the mode of star formation of the nitrogen-rich and nitrogen-poor SFGs. Our analysis suggests that they all form their stars through a succession of bursts of star formation extended over a period of few Gyr. What produces the chemical differences between these galaxies seems therefore to be the intensity of the bursts: the galaxies with an excess of nitrogen are those that are presently experiencing more intense bursts or have experienced more intense bursts in their past. We also find evidence relating the chemical evolution process to the formation of the galaxies: the galaxies with an excess of nitrogen are more massive, and have more massive bulges and earlier morphologies than those showing no excess. Contrary to expectation, we find no evidence that the starburst wind efficiency decreases with the mass of the galaxies. As a possible explanation we propose that the loss of metals consistent with starburst winds took place during the formation of the galaxies, when their potential wells were still building up, and consequently were weaker than today, making starburst winds more

  12. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. III. AN EXTREMELY METAL DEFICIENT GALAXY

    SciTech Connect

    Skillman, Evan D.; Berg, Danielle A.; Olive, Keith A.; McQuinn, Kristen B. W. E-mail: berg@astro.umn.edu E-mail: kmcquinn@astro.umn.edu; and others

    2013-07-01

    We present KPNO 4 m and LBT/MODS spectroscopic observations of an H II region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensitive [O III] {lambda}4363 line and determine a ''direct'' oxygen abundance of 12 + log(O/H) = 7.17 {+-} 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal {alpha} element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the ''delayed release'' hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509{sup +0.0184}{sub -0.0123}, which compares well with the WMAP + BBN prediction of 0.2483 {+-} 0.0002 for the primordial helium abundance. We suggest that surveys of very low mass galaxies compete well with emission line galaxy surveys for finding XMD galaxies. It is possible that XMD galaxies may be divided into two classes: the relatively rare XMD emission line galaxies which are associated with starbursts triggered by infall of low-metallicity gas and the more common, relatively quiescent XMD galaxies like Leo P, with very low chemical abundances due to their intrinsically small masses.

  13. Detection of the 158 Micrometers[CII] Transition at z=1.3: Evidence for a Galaxy-Wide Starburst

    NASA Technical Reports Server (NTRS)

    Hailey-Dunsheath, S.; Nikola, T.; Stacey, G. J.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Tucker, C. E.

    2010-01-01

    We report the detection of 158 micrometer [C II] fine-structure line emission from MIPS J 142824.0+3526l9, a hyperluminous (L(sub IR) approx. 10(exp 13) Solar Luminosity starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L[C II]/L(sub FIR) approx. equals 2 x l0(exp -3) of the far-IR(FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n approx. 10(exp 4.2)/cu cm., and that are illuminated by a far-UV radiation field approx. 10(exp 3.2) times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L[C II]/L(sub F1R) ratio is higher than observed in local ultraluminous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L[CII]/L(sub FIR) and L(sub CO)/L(sub FIR) ratios are similar to the values seen in nearby starburst galaxies

  14. The role of magnetic fields in starburst galaxies as revealed by OH megamasers

    SciTech Connect

    McBride, James; Quataert, Eliot; Heiles, Carl; Bauermeister, Amber E-mail: eliot@astro.berkeley.edu

    2014-01-10

    We present estimates of magnetic field strengths in the interstellar media of starburst galaxies derived from measurements of Zeeman splitting associated with OH megamasers. The results for eight galaxies with Zeeman detections suggest that the magnetic energy density in the interstellar medium of starburst galaxies is comparable to their hydrostatic gas pressure, as in the Milky Way. We discuss the significant uncertainties in this conclusion, and possible measurements that could reduce these uncertainties. We also compare the Zeeman splitting derived magnetic field estimates to magnetic field strengths estimated using synchrotron fluxes and assuming that the magnetic field and cosmic rays have comparable energy densities, known as the 'minimum energy' argument. We find that the minimum energy argument systematically underestimates magnetic fields in starburst galaxies, and that the conditions that would be required to produce agreement between the minimum energy estimate and the Zeeman derived estimate of interstellar medium magnetic fields are implausible. The conclusion that magnetic fields in starburst galaxies exceed the minimum energy magnetic fields is consistent with starburst galaxies adhering to the linearity of the far-infrared-radio correlation.

  15. Clumpy and Extended Starbursts in the Brightest Unlensed Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Iono, Daisuke; Yun, Min S.; Aretxaga, Itziar; Hatsukade, Bunyo; Hughes, David; Ikarashi, Soh; Izumi, Takuma; Kawabe, Ryohei; Kohno, Kotaro; Lee, Minju; Matsuda, Yuichi; Nakanishi, Kouichiro; Saito, Toshiki; Tamura, Yoichi; Ueda, Junko; Umehata, Hideki; Wilson, Grant; Michiyama, Tomonari; Ando, Misaki

    2016-09-01

    The central structure in three of the brightest unlensed z = 3-4 submillimeter galaxies is investigated through 0.″015-0.″05 (120-360 pc) 860 μm continuum images obtained using the Atacama Large Millimeter/submillimeter Array (ALMA). The distribution in the central kiloparsec in AzTEC1 and AzTEC8 is extremely complex, and they are composed of multiple ˜200 pc clumps. AzTEC4 consists of two sources that are separated by ˜1.5 kpc, indicating a mid-stage merger. The peak star formation rate densities in the central clumps are ˜300-3000 M ⊙ yr-1 kpc-2, suggesting regions with extreme star formation near the Eddington limit. By comparing the flux obtained by ALMA and Submillimeter Array, we find that 68%-90% of the emission is extended (≳1 kpc) in AzTEC4 and 8. For AzTEC1, we identify at least 11 additional compact (˜200 pc) clumps in the extended 3-4 kpc region. Overall, the data presented here suggest that the luminosity surface densities observed at ≲150 pc scales are roughly similar to that observed in local ULIRGs, as in the eastern nucleus of Arp 220. Between 10% and 30% of the 860 μm continuum is concentrated in clumpy structures in the central kiloparsec, while the remaining flux is distributed over ≳1 kpc regions, some of which could also be clumpy. These sources can be explained by a rapid inflow of gas such as a merger of gas-rich galaxies, surrounded by extended and clumpy starbursts. However, the cold mode accretion model is not ruled out.

  16. Accretion phenomena in nearby star-forming dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Annibali, F.; Tosi, M.; Aloisi, A.; Bellazzini, M.; Buzzoni, A.; Cignoni, M.; Ciotti, L.; Cusano, F.; Nipoti, C.; Sacchi, E.; Paris, D.; Romano, D.

    2017-03-01

    We present two pilot studies for the search and characterization of accretion events in star-forming dwarf galaxies. Our strategy consists of two complementary approaches: i) the direct search for stellar substructures around dwarf galaxies through deep wide-field imaging, and ii) the characterization of the chemical properties in these systems up to large galacto-centric distances. We show our results for two star-forming dwarf galaxies, the starburst irregular NGC 4449, and the extremely metal-poor dwarf DDO 68.

  17. Local starburst galaxies and their descendants. Statistics from the Sloan Digital Sky Survey

    NASA Technical Reports Server (NTRS)

    Bergvall, Nils; Marquart, Thomas; Way, Michael J.; Blomqvist, Anna; Holst, Emma; Ostlin, Goran; Zackrisson, Erik

    2016-01-01

    Despite strong interest in the starburst phenomenon in extragalactic astronomy, the concept remains ill-defined. Here we use a strict definition of starburst to examine the statistical properties of starburst galaxies in the local universe. We also seek to establish links between starburst galaxies, post-starburst (hereafter postburst) galaxies, and active galaxies. Data were selected from the Sloan Digital Sky Survey DR7. We applied a novel method of treating dust attenuation and derive star formation rates, ages, and stellar masses assuming a two-component stellar population model. Dynamical masses are calculated from the width of the H-alpha line. These masses agree excellently with the photometric masses. The mass (gas+stars) range is approximately 10( exp 9) - 10(exp 11.5) solar mass. As a selection criterion for starburst galaxies, we use, the birthrate parameter, b = SFR/SFR, requiring that b is greater than 3. For postburst galaxies, we use, the equivalent width of Hdelta in absorption with the criterion EW (sub Hdelta_abs) is greater than 6 A. Results. We find that only 1% of star-forming galaxies are starburst galaxies. They contribute 3-6% to the stellar production and are therefore unimportant for the local star formation activity. The median starburst age is 70 Myr roughly independent of mass, indicating that star formation is mainly regulated by local feedback processes. The b-parameter strongly depends on burst age. Values close to b = 60 are found at ages approximately 10 Myr, while almost no starbursts are found at ages greater than 1 Gyr. The median baryonic burst mass fraction of sub-L galaxies is 5% and decreases slowly towards high masses. The median mass fraction of the recent burst in the postburst sample is 5-10%. A smaller fraction of the postburst galaxies, however, originates in non-bursting galaxies. The age-mass distribution of the postburst progenitors (with mass fractions is greater than 3%) is bimodal with a break at logM(solar mass

  18. Spectral Analysis, Synthesis, & Energy Distributions of Nearby E+A Galaxies Using SDSS-IV MaNGA

    NASA Astrophysics Data System (ADS)

    Weaver, Olivia A.; Anderson, Miguel Ricardo; Wally, Muhammad; James, Olivia; Falcone, Julia; Liu, Allen; Wallack, Nicole; Liu, Charles; SDSS Collaboration

    2017-01-01

    Utilizing data from the Mapping Nearby Galaxies at APO (MaNGA) Survey (MaNGA Product Launch-4, or MPL-4), of the latest generation of the Sloan Digital Sky Survey (SDSS-IV), we identified nine post-starburst (E+A) systems that lie within the Green Valley transition zone. We identify the E+A galaxies by their SDSS single fiber spectrum and u-r color, then confirmed their classification as post-starburst by coding/plotting methods and spectral synthesis codes (FIREFLY and PIPE3D), as well as with their Spectral Energy Distributions (SEDs) from 0.15 µm to 22 µm, using GALEX, SDSS, 2MASS, and WISE data. We produced maps of gaussian-fitted fluxes, equivalent widths, stellar velocities, metallicities and age. We also produced spectral line ratio diagrams to classify regions of stellar populations of the galaxies. We found that our sample of E+As retain their post-starburst properties across the entire galaxy, not just at their center. We detected matching a trend line in the ultraviolet and optical bands, consistent with the expected SEDs for an E+A galaxy, and also through the J, H and Ks bands, except for one object. We classified one of the nine galaxies as a luminous infrared galaxy, unusual for a post-starburst object. Our group seeks to further study stellar population properties, spectral energy distributions and quenching properties in E+A galaxies, and investigate their role in galaxy evolution as a whole. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through from National Science Foundation.

  19. ISM gas removal from starburst galaxies and the premature death of star clusters

    NASA Astrophysics Data System (ADS)

    Melioli, C.; de Gouveia dal Pino, E. M.

    2006-01-01

    Recent observational studies of the age distribution of star clusters in nearby merging galaxies and starburst (SB) galaxies indicate a premature death of the young clusters. The fate of an evolving star cluster crucially depends of its gas content. This behaves like a glue that helps to keep the star system gravitationally bound. In SB systems where the rate of supernovae (SNe) explosions is elevated one should expect an efficient heating of the gas and its complete removal which could then favor the rapid dissociation of the evolving star clusters. Based on a contemporaneous study of the dynamical evolution of the interstellar gas in SB environments (Melioli & de Gouveia Dal Pino 2004, A&A, 424, 817) where it has been considered also the presence of dense clouds that may inhibit the heating efficiency of the interstellar gas by the SNe, we have here computed the timescales for gas removal from young clusters embedded in these systems and found that they are consistent with the very short timescales for cluster dissolution which are inferred from the observational studies above. Our results indicate that typical SB proto-clusters should start to disperse after less than 5 Myr. For a given total gas mass content, this result is nearly insensitive to the initial star formation efficiency.

  20. Cosmic-ray induced gamma-ray emission from the starburst galaxy NGC 253

    SciTech Connect

    Wang, Xilu; Fields, Brian D.

    2014-05-09

    Cosmic rays in galaxies interact with the interstellar medium and give us a direct view of nuclear and particle interactions in the cosmos. For example, cosmic-ray proton interactions with interstellar hydrogen produce gamma rays via PcrPism→π{sup 0}→γγ. For a 'normal' star-forming galaxy like the Milky Way, most cosmic rays escape the Galaxy before such collisions, but in starburst galaxies with dense gas and huge star formation rate, most cosmic rays do suffer these interactions [1,2]. We construct a 'thick-target' model for starburst galaxies, in which cosmic rays are accelerated by supernovae, and escape is neglected. This model gives an upper limit to the gamma-ray emission. Only two free parameters are involved in the model: cosmic-ray proton acceleration energy rate from supernova and the proton injection spectral index. The pionic gamma-radiation is calculated from 10 MeV to 10 TeV for the starburst galaxy NGC 253, and compared to Fermi and HESS data. Our model fits NGC 253 well, suggesting that cosmic rays in this starburst are in the thick target limit, and that this galaxy is a gamma-ray calorimeter.

  1. THE ROLE OF MERGER STAGE ON GALAXY RADIO SPECTRA IN LOCAL INFRARED-BRIGHT STARBURST GALAXIES

    SciTech Connect

    Murphy, Eric J.

    2013-11-01

    An investigation of the steep, high-frequency (i.e., ν ∼ 12 GHz) radio spectra among a sample of 31 local infrared-bright starburst galaxies is carried out in light of their Hubble-Space-Telescope-based merger classifications. Radio data covering as many as 10 individual bands allow for spectral indices to be measured over three frequency bins between 0.15 and 32.5 GHz. Sources having the flattest spectral indices measured at ∼2 and 4 GHz, arising from large free-free optical depths among the densest starbursts, appear to be in ongoing through post-stage mergers. The spectral indices measured at higher frequencies (i.e., ∼12 GHz) are steepest for sources associated with ongoing mergers in which their nuclei are distinct, but share a common stellar envelope and/or exhibit tidal tails. These results hold after excluding potential active galactic nuclei based on their low 6.2 μm polycyclic aromatic hydrocarbon equivalent widths. Consequently, the low-, mid-, and high-frequency spectral indices each appear to be sensitive to the exact merger stage. It is additionally shown that ongoing mergers, whose progenitors are still separated and share a common envelope and/or exhibit tidal tails, also exhibit excess radio emission relative to what is expected given the far-infrared/radio correlation, suggesting that there may be a significant amount of radio emission that is not associated with ongoing star formation. The combination of these observations, along with high-resolution radio morphologies, leads to a picture in which the steep high-frequency radio spectral indices and excess radio emission arise from radio continuum bridges and tidal tails that are not associated with star formation, similar to what is observed for so-called 'taffy' galaxies. This scenario may also explain the seemingly low far-infrared/radio ratios measured for many high-z submillimeter galaxies, a number of which are merger-driven starbursts.

  2. OT1_shaileyd_1: Testing the XDR/High-J CO Paradigm in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Hailey-Dunsheath, S.

    2010-07-01

    One of the most exciting first results from SPIRE and PACS spectroscopy is the detection of high-J CO emission in galaxies. Such emission has long been proposed as a tracer of X-ray dominated regions (XDRs) produced by AGN, and as a powerful diagnostic tool for future millimeter-wave study of AGN at high redshift. The shortest wavelength submillimeter CO lines detected by SPIRE-FTS in the X-ray luminous ULIRG Mrk 231 are interpreted as arising from an extended XDR, providing strong observational support for the XDR/high-J CO connection. However, our group (SHINING; PI E. Sturm) has used PACS to detect even higher-J far-IR CO emission in a few nearby galaxies, including 2 starburst galaxies with little evidence of a luminous AGN. Can high-J CO emission also be produced in gas heated by the UV radiation or mechanical output of a starburst? To address this question we propose to measure a set of far-IR CO lines in 4 nearby AGN and 4 starburst galaxies, as well as in 2 merging systems with large masses of shock-heated molecular gas. Does the high-J CO line SED reflect the different excitation mechanisms in these template objects? We additionally propose to use OH line observations to estimate the abundance of this molecule, which is a sensitive tracer of X-ray-driven chemistry. The OH line profiles will also be used to search for evidence of molecular outflows, which may drive shock heating. Each of these galaxies will have SHINING GT observations of the set of far-IR fine-structure lines, which includes important tracers of UV-, X-ray-, and shock-heated gas. The AGN subsample is restricted to the most nearby systems, where the high spatial resolution of PACS is sufficient to separate the nuclear AGN-heated gas from the circumnuclear star-forming regions. The PACS CO data obtained here will provide the first well-sampled far-IR extragalactic CO line SEDs, and will be an essential reference for future high redshift studies.

  3. HUBBLE'S ULTRAVIOLET VIEWS OF NEARBY GALAXIES YIELD CLUES TO EARLY UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers are using these three NASA Hubble Space Telescope images to help tackle the question of why distant galaxies have such odd shapes, appearing markedly different from the typical elliptical and spiral galaxies seen in the nearby universe. Do faraway galaxies look weird because they are truly weird? Or, are they actually normal galaxies that look like oddballs, because astronomers are getting an incomplete picture of them, seeing only the brightest pieces? Light from these galaxies travels great distances (billions of light-years) to reach Earth. During its journey, the light is 'stretched' due to the expansion of space. As a result, the light is no longer visible, but has been shifted to the infrared where present instruments are less sensitive. About the only light astronomers can see comes from regions where hot, young stars reside. These stars emit mostly ultraviolet light. But this light is stretched, appearing as visible light by the time it reaches Earth. Studying these distant galaxies is like trying to put together a puzzle with some of the pieces missing. What, then, do distant galaxies really look like? Astronomers studied 37 nearby galaxies to find out. By viewing these galaxies in ultraviolet light, astronomers can compare their shapes with those of their distant relatives. These three Hubble telescope pictures, taken with the Wide Field and Planetary Camera 2, represent a sampling from that survey. Astronomers observed the galaxies in ultraviolet and visible light to study all the stars that make up these 'cities of stars.' The results of their survey support the idea that astronomers are detecting the 'tip of the iceberg' of very distant galaxies. Based on these Hubble ultraviolet images, not all the faraway galaxies necessarily possess intrinsically odd shapes. The results are being presented today at the 197th meeting of the American Astronomical Society in San Diego, CA. The central region of the 'star-burst' spiral galaxy at far left

  4. Confirming the First Supermassive Black Hole in a Dwarf Starburst Galaxy

    NASA Astrophysics Data System (ADS)

    Reines, Amy

    2011-10-01

    In the modern universe, supermassive black holes lie at the heart of most, if not all, galaxies with bulges. However, the birth and growth of the first "seed" black holes, back in the earlier universe, is observationally unconstrained. Reines et al. {2011} have recently discovered a candidate million-solar mass black hole in the bulgeless dwarf starburst galaxy Henize 2-10, offering the first opportunity to study a growing black hole in a nearby galaxy much like those in the infant universe. The case for an accreting black hole in Henize 2-10 is strong {e.g. co-spatial non-thermal radio and hard X-ray point sources}, but not watertight. Our proposal aims to confirm {or refute} the presence of this candidate black hole using STIS optical spectroscopy to trace the kinematics and ionization conditions in its immediate vicinity. Existing HST observations show a marginally resolved H-alpha knot coincident with the radio and X-ray point source, so our primary aim is to detect a compact rotating disk of ionized gas, directly yielding a black hole mass. Our secondary aim is to find evidence for AGN-related emission line signatures at the location of the H-alpha knot, and possibly along a narrow jet-like filament. Confirming the presence of a supermassive black hole in Henize 2-10 with these HST observations has immediate implications for our understanding of the birth and early evolution of the first black holes in the high-redshift universe.

  5. HUBBLE SURVEYS DYING STARS IN NEARBY GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    From ground-based telescopes, the glowing gaseous debris surrounding dying, sun-like stars in a nearby galaxy, called the Large Magellanic Cloud, appear as small, shapeless dots of light. But through the 'eyes' of NASA's Hubble Space Telescope, these bright dots take on a variety of shapes, from round- to pinwheel-shaped clouds of gas. Using Hubble's Space Telescope Imaging Spectrograph, scientists probed the glowing gas surrounding 27 dying stars, called planetary nebulae, in the Large Magellanic Cloud. The observations represent the most detailed study of planetary nebulae outside the Milky Way. The six objects in the picture illustrate the assortment of planetary nebulae identified in the galaxy. SMP 16, 30, and 93 are examples of a bipolar nebula, twin lobes of gas projecting away from a dying star. SMP 10 has a pinwheel shape and is known as a 'point-symmetric' nebula. SMP 4 has an elliptical appearance, and SMP 27, consisting of four lobes of gas, is called a 'quadrupolar' nebula. The lines point to the objects' locations in the Large Magellanic Cloud. A ground-based observatory snapped the picture of this galaxy. In the pictures of the planetary nebulae, color corresponds to temperature. Blue represents hotter regions of the nebulae and red, cooler. Scientists are probing these illuminated stellar relics in our neighboring galaxy because they are at relatively the same distance - about 168,000 light-years -- from Earth. Knowing the distance to these objects allows scientists to compare their shapes and sizes, and precisely determine the brightness of their central stars. For this reason, even though these glowing remains of dying stars are about 50 times farther away than the stunning planetary nebulae photographed in the Milky Way, they are of invaluable importance. By sampling this population, scientists noticed that the bipolar nebulae are richer in some heavier elements, such as neon, than those with a more spherical shape. At the dawn of the universe

  6. Galaxy Clustering Around Nearby Luminous Quasars

    NASA Technical Reports Server (NTRS)

    Fisher, Karl B.; Bahcall, John N.; Kirhakos, Sofia; Schneider, Donald P.

    1996-01-01

    We examine the clustering of galaxies around a sample of 20 luminous low redshift (z approx. less than 0.30) quasars observed with the Wide Field Camera-2 on the Hubble Space Telescope (HST). The HST resolution makes possible galaxy identification brighter than V = 24.5 and as close as 1 min or 2 min to the quasar. We find a significant enhancement of galaxies within a projected separation of approx. less than 100 1/h kpc of the quasars. If we model the QSO/galaxy correlation function as a power law with a slope given by the galaxy/galaxy correlation function, we find that the ratio of the QSO/galaxy to galaxy/galaxy correlation functions is 3.8 +/- 0.8. The galaxy counts within r less than 15 1/h kpc of the quasars are too high for the density profile to have an appreciable core radius (approx. greater than 100 1/h kpc). Our results reinforce the idea that low redshift quasars are located preferentially in groups of 10-20 galaxies rather than in rich clusters. We see no significant difference in the clustering amplitudes derived from radio-loud and radio-quiet subsamples.

  7. MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES

    SciTech Connect

    Leroy, Adam K.; Munoz-Mateos, Juan-Carlos; Walter, Fabian; Sandstrom, Karin; Meidt, Sharon; Rix, Hans-Walter; Schinnerer, Eva; Schruba, Andreas; Bigiel, Frank; Bolatto, Alberto; Brinks, Elias; De Blok, W. J. G.; Rosolowsky, Erik; Schuster, Karl-Friedrich; Usero, Antonio

    2013-08-01

    We compare molecular gas traced by {sup 12}CO (2-1) maps from the HERACLES survey, with tracers of the recent star formation rate (SFR) across 30 nearby disk galaxies. We demonstrate a first-order linear correspondence between {Sigma}{sub mol} and {Sigma}{sub SFR} but also find important second-order systematic variations in the apparent molecular gas depletion time, {tau}{sub dep}{sup mol}={Sigma}{sub mol}/{Sigma}{sub SFR}. At the 1 kpc common resolution of HERACLES, CO emission correlates closely with many tracers of the recent SFR. Weighting each line of sight equally, using a fixed {alpha}{sub CO} equivalent to the Milky Way value, our data yield a molecular gas depletion time, {tau}{sub dep}{sup mol}={Sigma}{sub mol}/{Sigma}{sub SFR}{approx}2.2 Gyr with 0.3 dex 1{sigma} scatter, in very good agreement with recent literature data. We apply a forward-modeling approach to constrain the power-law index, N, that relates the SFR surface density and the molecular gas surface density, {Sigma}{sub SFR}{proportional_to}{Sigma}{sub mol}{sup N}. We find N = 1 {+-} 0.15 for our full data set with some scatter from galaxy to galaxy. This also agrees with recent work, but we caution that a power-law treatment oversimplifies the topic given that we observe correlations between {tau}{sub dep}{sup mol} and other local and global quantities. The strongest of these are a decreased {tau}{sub dep}{sup mol} in low-mass, low-metallicity galaxies and a correlation of the kpc-scale {tau}{sub dep}{sup mol} with dust-to-gas ratio, D/G. These correlations can be explained by a CO-to-H{sub 2} conversion factor ({alpha}{sub CO}) that depends on dust shielding, and thus D/G, in the theoretically expected way. This is not a unique interpretation, but external evidence of conversion factor variations makes this the most conservative explanation of the strongest observed {tau}{sub dep}{sup mol} trends. After applying a D/G-dependent {alpha}{sub CO}, some weak correlations between {tau}{sub dep

  8. EXTREME EMISSION-LINE GALAXIES IN CANDELS: BROADBAND-SELECTED, STARBURSTING DWARF GALAXIES AT z > 1

    SciTech Connect

    Van der Wel, A.; Rix, H.-W.; Jahnke, K.; Straughn, A. N.; Finkelstein, S. L.; Salmon, B. W.; Koekemoer, A. M.; Ferguson, H. C.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; Koo, D. C.; Hathi, N. P.; Dunlop, J. S.; Newman, J. A.; Dickinson, M.; De Mello, D. F.; and others

    2011-12-01

    We identify an abundant population of extreme emission-line galaxies (EELGs) at redshift z {approx} 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). Sixty-nine EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broadband magnitudes. Supported by spectroscopic confirmation of strong [O III] emission lines-with rest-frame equivalent widths {approx}1000 A-in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with {approx}10{sup 8} M{sub Sun} in stellar mass, undergoing an enormous starburst phase with M{sub *}/ M-dot{sub *} of only {approx}15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the comoving number density (3.7 Multiplication-Sign 10{sup -4} Mpc{sup -3}) can produce in {approx}4 Gyr much of the stellar mass density that is presently contained in 10{sup 8}-10{sup 9} M{sub Sun} dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  9. Distributions of molecules in the circumnuclear disk and surrounding starburst ring in the Seyfert galaxy NGC 1068 observed with ALMA

    NASA Astrophysics Data System (ADS)

    Takano, Shuro; Nakajima, Taku; Kohno, Kotaro; Harada, Nanase; Herbst, Eric; Tamura, Yoichi; Izumi, Takuma; Taniguchi, Akio; Tosaki, Tomoka

    2014-07-01

    Sensitive observations with the Atacama Large Millimeter/submillimeter Array (ALMA) allow astronomers to observe the detailed distributions of molecules with relatively weak intensity in nearby galaxies. In particular, we report distributions of several molecular transitions including shock and dust related species (13CO J = 1-0, C18O J = 1-0, 13CN N = 1-0, CS J = 2-1, SO JN = 32-21, HNCO JKa,Kc = 50,5-40,4, HC3N J = 11-10, 12-11, CH3OH JK = 2K-1K, and CH3CN JK = 6K-5K) in the nearby Seyfert 2 galaxy NGC 1068 observed with the ALMA early science program. The central ˜ 1'(˜ 4.3 kpc) of this galaxy was observed in the 100-GHz region covering ˜ 96-100 GHz and ˜ 108-111 GHz with an angular resolution of ˜ 4'' × 2'' (290 pc × 140 pc) to study the effects of an active galactic nucleus and its surrounding starburst ring on molecular abundances. Here, we present images and report a classification of molecular distributions into three main categories: (1) molecules concentrated in the circumnuclear disk (CND) (SO JN = 32-21, HC3N J = 11-10, 12-11, and CH3CN JK = 6K-5K), (2) molecules distributed both in the CND and the starburst ring (CS J = 2-1 and CH3OH JK = 2K-1K), and (3) molecules distributed mainly in the starburst ring (13CO J = 1-0 and C18O J = 1-0). Since most of the molecules such as HC3N observed in the CND are easily dissociated by UV photons and X-rays, our results indicate that these molecules must be effectively shielded. In the starburst ring, the relative intensity of methanol at each clumpy region is not consistent with those of 13CO, C18O, or CS. This difference is probably caused by the unique formation and destruction mechanisms of CH3OH.

  10. THE JAMES CLERK MAXWELL TELESCOPE NEARBY GALAXIES LEGACY SURVEY. II. WARM MOLECULAR GAS AND STAR FORMATION IN THREE FIELD SPIRAL GALAXIES

    SciTech Connect

    Warren, B. E.; Wilson, C. D.; Sinukoff, E.; Israel, F. P.; Van der Werf, P. P.; Serjeant, S.; Bendo, G. J.; Clements, D. L.; Brinks, E.; Irwin, J. A.; Knapen, J. H.; Leech, J.; Tan, B. K.; Matthews, H. E.; Muehle, S.; Mortimer, A. M. J.; Petitpas, G.; Spekkens, K.; Tilanus, R. P. J.; Usero, A. E-mail: wilson@physics.mcmaster.c E-mail: israel@strw.leidenuniv.n

    2010-05-01

    We present the results of large-area {sup 12}CO J = 3-2 emission mapping of three nearby field galaxies, NGC 628, NGC 3521, and NGC 3627, completed at the James Clerk Maxwell Telescope as part of the Nearby Galaxies Legacy Survey. These galaxies all have moderate to strong {sup 12}CO J = 3-2 detections over large areas of the fields observed by the survey, showing resolved structure and dynamics in their warm/dense molecular gas disks. All three galaxies were part of the Spitzer Infrared Nearby Galaxies Survey sample, and as such have excellent published multiwavelength ancillary data. These data sets allow us to examine the star formation properties, gas content, and dynamics of these galaxies on sub-kiloparsec scales. We find that the global gas depletion time for dense/warm molecular gas in these galaxies is consistent with other results for nearby spiral galaxies, indicating this may be independent of galaxy properties such as structures, gas compositions, and environments. Similar to the results from The H I Nearby Galaxy Survey, we do not see a correlation of the star formation efficiency with the gas surface density consistent with the Schmidt-Kennicutt law. Finally, we find that the star formation efficiency of the dense molecular gas traced by {sup 12}CO J = 3-2 is potentially flat or slightly declining as a function of molecular gas density, the {sup 12}CO J = 3-2/J = 1-0 ratio (in contrast to the correlation found in a previous study into the starburst galaxy M83), and the fraction of total gas in molecular form.

  11. Radio observations of nearby moderately luminous IRAS galaxies.

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Su, Bumei

    1999-05-01

    Six nearby moderately luminous IRAS galaxies have been observed at two wavelength by using the Australian AT. Among them, radio emissions have been detected for two galaxies, i.e. IRAS 20272-4738 and IRAS 23156-4238, and their radio parameters, like radio fluxes, peak positions, source sizes and spectral indices, are obtained. The radio sources are confirmed with infrared, radio and optical observations. Some characteristics of the radio emissions of these galaxies are discussed with previous observational data.

  12. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole.

  13. A Survey of nearby, nearly face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Garmire, Gordon

    2014-09-01

    This is a continuation of a survey of nearby, nearly face-on spiral galaxies. The main purpose is to search for evidence of collisions with small galaxies that show up in X-rays by the generation of hot shocked gas from the collision. Secondary objectives include study of the spatial distribution point sources in the galaxy and to detect evidence for a central massive blackhole. These are alternate targets.

  14. 13CO/C18O Gradients across the Disks of Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Jiménez-Donaire, María J.; Cormier, Diane; Bigiel, Frank; Leroy, Adam K.; Gallagher, Molly; Krumholz, Mark R.; Usero, Antonio; Hughes, Annie; Kramer, Carsten; Meier, David; Murphy, Eric; Pety, Jérôme; Schinnerer, Eva; Schruba, Andreas; Schuster, Karl; Sliwa, Kazimierz; Tomicic, Neven

    2017-02-01

    We use the IRAM Large Program EMPIRE and new high-resolution ALMA data to measure 13CO(1-0)/C18O(1-0) intensity ratios across nine nearby spiral galaxies. These isotopologues of 12CO are typically optically thin across most of the area in galaxy disks, and this ratio allows us to gauge their relative abundance due to chemistry or stellar nucleosynthesis effects. Resolved 13CO/C18O gradients across normal galaxies have been rare due to the faintness of these lines. We find a mean 13CO/C18O ratio of 6.0 ± 0.9 for the central regions of our galaxies. This agrees well with results in the Milky Way, but differs from results for starburst galaxies (3.4 ± 0.9) and ultraluminous infrared galaxies (1.1 ± 0.4). In our sample, the 13CO/C18O ratio consistently increases with increasing galactocentric radius and decreases with increasing star formation rate surface density. These trends could be explained if the isotopic abundances are altered by fractionation; the sense of the trends also agrees with those expected for carbon and oxygen isotopic abundance variations due to selective enrichment by massive stars.

  15. An Updated Ultraviolet Catalog of GALEX Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Zou, Hu; Liu, JiFeng; Wang, Song

    2015-09-01

    The ultraviolet (UV) catalog of nearby galaxies compiled by Gil de Paz et al. presents the integrated photometry and surface brightness profiles for 1034 nearby galaxies observed by GALEX. We provide an updated catalog of 4138 nearby galaxies based on the latest Genral Release (GR6/GR7) of GALEX. These galaxies are selected from HyperLeda with apparent diameters larger than 1‧. From the surface brightness profiles accurately measured using the deep NUV and FUV images, we have calculated the asymptotic magnitudes, aperture (D25) magnitudes, colors, structural parameters (effective radii and concentration indices), luminosities, and effective surface brightness for these galaxies. Archival optical and infrared photometry from HyperLeda, 2MASS, and IRAS are also integrated into the catalog. Our parameter measurements and some analyses are consistent with those of Paz et al. The (FUV - K) color provides a good criterion to distinguish between early- and late-type galaxies, which can be improved further using the concentration indices. The IRX-β relation is reformulated with our UV-selected nearby galaxies.

  16. AN UPDATED ULTRAVIOLET CATALOG OF GALEX NEARBY GALAXIES

    SciTech Connect

    Bai, Yu; Zou, Hu; Liu, JiFeng; Wang, Song E-mail: zouhu@nao.cas.cn E-mail: songw@nao.cas.cn

    2015-09-15

    The ultraviolet (UV) catalog of nearby galaxies compiled by Gil de Paz et al. presents the integrated photometry and surface brightness profiles for 1034 nearby galaxies observed by GALEX. We provide an updated catalog of 4138 nearby galaxies based on the latest Genral Release (GR6/GR7) of GALEX. These galaxies are selected from HyperLeda with apparent diameters larger than 1′. From the surface brightness profiles accurately measured using the deep NUV and FUV images, we have calculated the asymptotic magnitudes, aperture (D25) magnitudes, colors, structural parameters (effective radii and concentration indices), luminosities, and effective surface brightness for these galaxies. Archival optical and infrared photometry from HyperLeda, 2MASS, and IRAS are also integrated into the catalog. Our parameter measurements and some analyses are consistent with those of Paz et al. The (FUV − K) color provides a good criterion to distinguish between early- and late-type galaxies, which can be improved further using the concentration indices. The IRX–β relation is reformulated with our UV-selected nearby galaxies.

  17. Just-After THE FALL: Post-Starburst Galaxies and the E+B Phase

    NASA Astrophysics Data System (ADS)

    Smercina, Adam; Tremonti, Christina A.; Chisholm, John P.

    2015-01-01

    A key question in galaxy evolution is how star formation is quenched. Post-starburst galaxies, which can be identified by their distinctive optical spectra, are excellent laboratories for studying various quenching processes. However, canonical post-starbursts, called E+A's or K+A's, are several 100 Myr past the epoch of active quenching, making it challenging to measure quenching timescales and make inferences about the processes at work. To address this problem, we have identified a sample of 23 young, B-star dominated post-starbursts (E+B's) at z = 0.45 - 0.82 in SDSS-III's Baryon Oscillation Spectroscopic Survey (BOSS). In this new class of objects, we determine how abruptly star formation is truncated and probe the role of various possible feedback mechanisms.This work was supported by the National Science Foundation's REU program through NSF Award AST-1004881.

  18. Distribution of Molecules in the Circumnuclear Disk and Surrounding Starburst Ring in the Seyfert Galaxy NGC 1068 Observed with ALMA

    NASA Astrophysics Data System (ADS)

    Takano, S.; Nakajima, T.; Kohno, K.; Harada, N.; Herbst, E.; Tamura, Y.; Izumi, T.; Taniguchi, A.; Tosaki, T.

    2015-12-01

    We report distributions of several molecular transitions including shock and dust related species (13CO and C18O J = 1-0, 13CN N = 1-0, CS J = 2-1, SO JN = 32-21, HNCO JKa,Kc = 50,5-40,4, HC3N J = 11-10, 12-11, CH3OH JK = 2K-1K, and CH3CN JK = 6K-5K) in the nearby Seyfert 2 galaxy NGC 1068 observed with ALMA. The central ˜1' (˜4.3 kpc) of this galaxy was observed in the 100 GHz region with an angular resolution of ˜4" x 2" (290 pc x 140 pc) to study the effects of an active galactic nucleus and its surrounding starburst ring on molecular abundances. We report a classification of molecular distributions into three main categories. Organic molecules such as CH3CN are found to be concentrated in the circumnuclear disk. In the starburst ring, the intensity of methanol at each clumpy region is not consistent with that of 13CO.

  19. Superdense massive galaxies in the nearby universe

    NASA Astrophysics Data System (ADS)

    Ferré-Mateu, Anna; Trujillo, Ignacio

    2010-04-01

    At high-z the most superdense massive galaxies are supposed to be the result of gas-rich mergers resulting in compact remnant (Khochfar & Silk (2006); Naab et al. (2007)). After this, dry mergers are expected to be the mechanism that moves these very massive galaxies towards the current stellar mass size relation. Whitin these merging scenarios, a non-negligible fraction (1-10%) of these galaxies is expected to survive since that epoch retaining their compactness and presenting old stellar populations in the past universe.Using the NYU Value-Added Galaxy Catalog (DR6), we find only a tiny fraction of galaxies (~0.03%) with re ≤ 1.5 kpc and M* ≥ 8x1010M⊙ in the local Universe (z~0.2). Surprisingly, they are relatively young (~2Gyr) and metal rich ([Z/H]~0.2) These results have been published in Trujillo et al. (2009)

  20. The radio core structure of the luminous infrared galaxy NGC 4418. A young clustered starburst revealed?

    NASA Astrophysics Data System (ADS)

    Varenius, E.; Conway, J. E.; Martí-Vidal, I.; Aalto, S.; Beswick, R.; Costagliola, F.; Klöckner, H.-R.

    2014-06-01

    Context. The galaxy NGC 4418 contains one of the most compact obscured nuclei within a luminous infrared galaxy (LIRG) in the nearby Universe. This nucleus contains a rich molecular gas environment and an unusually high ratio of infrared-to-radio luminosity (q-factor). The compact nucleus is powered by either a compact starburst or an active galactic nucleus (AGN). Aims: The aim of this study is to constrain the nature of the nuclear region (starburst or AGN) within NGC 4418 via very-high-resolution radio imaging. Methods: Archival data from radio observations using the European Very Long Baseline Interferometry Network (EVN) and Multi-Element Radio Linked Interferometer Network (MERLIN) interferometers are imaged. Sizes and flux densities are obtained by fitting Gaussian intensity distributions to the image. The average spectral index of the compact radio emission is estimated from measurements at 1.4 GHz and 5.0 GHz. Results: The nuclear structure of NGC 4418 visible with EVN and MERLIN consists of eight compact (<49 mas i.e. <8 pc) features spread within a region of 250 mas, i.e. 41 pc. We derive an inverted spectral index α ≥ 0.7 (Sν ∝ να) for the compact radio emission. Conclusions: Brightness temperatures >104.8 K indicate that these compact features cannot be HII-regions. The complex morphology and inverted spectrum of the eight detected compact features is evidence against the hypothesis that an AGN alone is powering the nucleus of NGC 4418. The compact features could be super star clusters with intense star formation, and their associated free-free absorption could then naturally explain both their inverted radio spectrum and the low radio-to-IR ratio of the nucleus. The required star formation area density is extreme, however, and close to the limit of what can be observed in a well-mixed thermal/non-thermal plasma produced by star formation, and is also close to the limit of what can be physically sustained.

  1. Optical depth of molecular gas in starburst galaxies - Is M82 the prototype?

    NASA Technical Reports Server (NTRS)

    Verter, F.; Rickard, L. J.

    1989-01-01

    An attempt is made to survey the CO(2-1) emission toward the centers of 17 IR-luminous galaxies which have previously been detected in CO(1-0). These galaxies span a wide range of size and L(FIR)/L(B) ratio, many have multiple-wavelength studies establishing them as starbursts, and some bear a morphological resemblance to M 82. Nine galaxies are detected and useful upper limits are placed on the remaining eight. Using the CO(2-1)/CO(1-0) ratio of antenna temperature as a diagnostic of optical depth, it is found that all of the galaxies contain predominantly optically thick molecular gas. This implies that the phase of starburst during which the molecular gas is optically thin, currently witnessed in M 82, is either uncommon or short-lived.

  2. Extinction Mapping of Nearby Galaxies Using LEGUS

    NASA Astrophysics Data System (ADS)

    Kahre, Lauren; Walterbos, Rene A. M.; Calzetti, Daniela; Sabbi, Elena; Ubeda, Leonardo; LEGUS Collaboration

    2017-01-01

    Extinction by dust affects studies of star formation and stellar evolution in galaxies. There are different ways to measure the distribution of dust column densities across galaxies. Here we present work based on extinctions measured towards individual massive stars.Isochrones of massive stars lie in the same location on a color-color diagram with little dependence on metallicity and luminosity class, so the extinction can be directly derived from the observed photometry. We develop a method for generating extinction maps using photometry of massive stars from the Hubble Space Telescope for the nearly 50 galaxies observed by the Legacy Extragalactic Ultraviolet Survey (LEGUS). The derived extinction maps will allow us to correct ground-based and HST Halpha maps for extinction, and will be used to constrain changes in the dust-to-gas ratio across the galaxy sample and in different star formation, metallicity and morphological environments. Previous studies have found links between galaxy metallicity and the dust-to-gas mass ratio. Dust abundance and gas metallicity are critical constraints for chemical and galaxy evolution models. We present a study of LEGUS galaxies spanning a range of distances, metallicities, and galaxy morphologies, including metal-poor dwarfs Holmberg I and II and giant spirals NGC 6503 and NGC 628. We see clear evidence for changes in the dust-to-gas mass ratio with changing metallicity. We also examine changes in the dust-to-gas mass ratio with galactocentric radius. Ultimately, we will provide constraints on the dust-to-gas mass ratio across a wide range of galaxy environments.

  3. Shaken, Not Stirred: The Disrupted Disk of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2010-12-01

    Near-infrared images obtained with WIRCam on the Canada-France-Hawaii Telescope are used to investigate the recent history of the nearby Sculptor Group spiral NGC 253, which is one of the nearest starburst galaxies. Bright asymptotic giant branch (AGB) stars are traced out to projected distances of ~22-26 kpc (~13-15 disk scale lengths) along the major axis. The distribution of stars in the disk is lopsided, in the sense that the projected density of AGB stars in the northeast portion of the disk between 10 and 20 kpc from the galaxy center is ~0.5 dex higher than on the opposite side of the galaxy. A large population of red supergiants is also found in the northeast portion of the disk and, with the exception of the central 2 kpc, this area appears to have been the site of the highest levels of star-forming activity in the galaxy during the past ~0.1 Gyr. It is argued that such high levels of localized star formation may have produced a fountain that ejected material from the disk, and the extraplanar H I detected by Boomsma et al. may be one manifestation of such activity. Diffuse stellar structures are found in the periphery of the disk, and the most prominent of these is to the south and east of the galaxy. Bright AGB stars, including cool C stars that are identified based on their J - K colors, are detected out to 15 kpc above the disk plane, and these are part of a diffusely distributed, flattened extraplanar component. Comparisons between observed and model luminosity functions suggest that the extraplanar regions contain stars that formed throughout much of the age of the universe. Additional evidence of a diffuse, extraplanar stellar component that contains moderately young stars comes from archival Galaxy Evolution Explorer images. It is suggested that the disk of NGC 253 was disrupted by a tidal encounter with a now defunct companion. This encounter introduced asymmetries that remain to this day, and the projected distribution of stars in and around NGC

  4. SHAKEN, NOT STIRRED: THE DISRUPTED DISK OF THE STARBURST GALAXY NGC 253

    SciTech Connect

    Davidge, T. J.

    2010-12-10

    Near-infrared images obtained with WIRCam on the Canada-France-Hawaii Telescope are used to investigate the recent history of the nearby Sculptor Group spiral NGC 253, which is one of the nearest starburst galaxies. Bright asymptotic giant branch (AGB) stars are traced out to projected distances of {approx}22-26 kpc ({approx}13-15 disk scale lengths) along the major axis. The distribution of stars in the disk is lopsided, in the sense that the projected density of AGB stars in the northeast portion of the disk between 10 and 20 kpc from the galaxy center is {approx}0.5 dex higher than on the opposite side of the galaxy. A large population of red supergiants is also found in the northeast portion of the disk and, with the exception of the central 2 kpc, this area appears to have been the site of the highest levels of star-forming activity in the galaxy during the past {approx}0.1 Gyr. It is argued that such high levels of localized star formation may have produced a fountain that ejected material from the disk, and the extraplanar H I detected by Boomsma et al. may be one manifestation of such activity. Diffuse stellar structures are found in the periphery of the disk, and the most prominent of these is to the south and east of the galaxy. Bright AGB stars, including cool C stars that are identified based on their J - K colors, are detected out to 15 kpc above the disk plane, and these are part of a diffusely distributed, flattened extraplanar component. Comparisons between observed and model luminosity functions suggest that the extraplanar regions contain stars that formed throughout much of the age of the universe. Additional evidence of a diffuse, extraplanar stellar component that contains moderately young stars comes from archival Galaxy Evolution Explorer images. It is suggested that the disk of NGC 253 was disrupted by a tidal encounter with a now defunct companion. This encounter introduced asymmetries that remain to this day, and the projected distribution

  5. DETECTION OF THE 158 {mu}m [C II] TRANSITION AT z = 1.3: EVIDENCE FOR A GALAXY-WIDE STARBURST

    SciTech Connect

    Hailey-Dunsheath, S.; Nikola, T.; Stacey, G. J.; Oberst, T. E.; Parshley, S. C.; Benford, D. J.; Staguhn, J. G.; Tucker, C. E.

    2010-05-01

    We report the detection of 158 {mu}m [C II] fine-structure line emission from MIPS J142824.0+352619, a hyperluminous (L {sub IR} {approx} 10{sup 13} L {sub sun}) starburst galaxy at z = 1.3. The line is bright, corresponding to a fraction L {sub [CII]}/L {sub FIR} {approx} 2 x 10{sup -3} of the far-IR (FIR) continuum. The [C II], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n {approx} 10{sup 4.2} cm{sup -3}, and that are illuminated by a far-UV radiation field {approx}10{sup 3.2} times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L {sub [CII]}/L {sub FIR} ratio is higher than observed in local ultraluminous infrared galaxies or in the few high-redshift QSOs detected in [C II], but the L {sub [CII]}/L {sub FIR} and L {sub CO}/L {sub FIR} ratios are similar to the values seen in nearby starburst galaxies. This suggests that MIPS J142824.0+352619 is a scaled-up version of a starburst nucleus, with the burst extended over several kiloparsecs.

  6. A 2 Millimeter Spectral Line Survey of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Martín, S.; Mauersberger, R.; Martín-Pintado, J.; Henkel, C.; García-Burillo, S.

    2006-06-01

    We present the first unbiased molecular line survey toward an extragalactic source, namely the nuclear region of the starburst galaxy NGC 253. The scan covers the frequency band from 129.1 to 175.2 GHz, i.e., most of the 2 mm atmospheric window. We identify 111 spectral features as transitions from 25 different molecular species. Eight of which (three tentatively) are detected for the first time in the extragalactic interstellar medium. Among these newly detected species, we detected the rare isotopomers 34SO and HC18O+. Tentative detections of two deuterated species, DNC and N2D+, are reported for the first time from a target beyond the Magellanic Clouds. In addition, three hydrogen recombination lines are identified, while no organic molecules larger than methanol are detected. Column densities and rotation temperatures are calculated for all the species, including an upper limit to the ethanol abundance. A comparison of the chemical composition of the nuclear environment of NGC 253 with those of selected nearby galaxies demonstrates the chemical resemblance of IC 342 and NGC 4945 to that of NGC 253. On the other hand, the chemistries characterizing NGC 253 and M82 are clearly different. We also present a comparison of the chemical composition of NGC 253 with those observed in Galactic prototypical sources. The chemistry of NGC 253 shows a striking similarity with the chemistry observed toward the Galactic center molecular clouds, which are thought to be dominated by low-velocity shocks. This resemblance strongly suggests that the heating in the nuclear environment of NGC 253 is dominated by the same mechanism as that in the central region of the Milky Way.

  7. Gas Dynamics and Outflow in the Barred Starburst Galaxy NGC 1808 Revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Hatakeyama, Takuya; Miyamoto, Yusuke

    2016-05-01

    NGC 1808 is a nearby barred starburst galaxy with an outflow from the nuclear region. To study the inflow and outflow processes related to star formation and dynamical evolution of the galaxy, we have carried out 12CO (J=1-0) mapping observations of the central r ˜ 4 kpc of NGC 1808 using the Atacama Large Millimeter/submillimeter Array. Four distinct components of molecular gas are revealed at high spatial resolution of 2″ (˜100 pc): (1) a compact (r < 200 pc) circumnuclear disk (CND), (2) r ˜ 500 pc ring, (3) gas-rich galactic bar, and (4) spiral arms. Basic geometric and kinematic parameters are derived for the central 1 kpc region using tilted-ring modeling. The derived rotation curve reveals multiple mass components that include (1) a stellar bulge, (2) a nuclear bar and molecular CND, and (3) an unresolved massive (˜107 M ⊙) core. Two systemic velocities, 998 km s-1 for the CND and 964 km s-1 for the 500 pc ring, are revealed, indicating a kinematic offset. The pattern speed of the primary bar, derived by using a cloud-orbit model, is 56 ± 11 km s-1 kpc-1. Noncircular motions are detected associated with a nuclear spiral pattern and outflow in the central 1 kpc region. The ratio of the mass outflow rate to the star formation rate is {\\dot{M}}{out}/{SFR}˜ 0.2 in the case of optically thin CO (1-0) emission in the outflow, suggesting low efficiency of star formation quenching.

  8. Constraints on the low-mass IMF in young super-star clusters in starburst galaxies

    NASA Astrophysics Data System (ADS)

    Greissl, Julia Jennifer

    2010-12-01

    As evidence for variations in the initial mass function (IMF) in nearby star forming regions remains elusive we are forced to expand our search to more extreme regions of star formation. Starburst galaxies, which contain massive young clusters have in the past been reported to have IMFs different than that characterizing the field star IMF. In this thesis we use high signal-to-noise near-infrared spectra to place constraints on the shape of the IMF in extreme regions of extragalactic star formation and also try to understand the star formation history in these regions. Through high signal-to-noise near-infrared spectra it is possible to directly detect low-mass PMS stars in unresolved young super-star clusters, using absorption features that trace cool stars. Combining Starburst99 and available PMS tracks it is then possible to constrain the IMF in young super-star clusters using a combination of absorption lines each tracing different ranges of stellar masses and comparing observed spectra to models. Our technique can provide a direct test of the universality of the IMF compared to the Milky Way. We have obtained high signal-to-noise H- and K-band spectra of two young super-star clusters in the starburst galaxies NGC 4039/39 and NGC 253 in order to constrain the low-mass IMF and star formation history in the clusters. The cluster in NGC 4038/39 shows signs of youth such as thermal radio emission and strong hydrogen emission lines as well as late-type absorption lines indicative of cool stars. The strength and ratio of these absorption lines cannot be reproduced through either late-type pre-main sequence stars or red supergiants alone. We interpret the spectrum as a superposition of two star clusters of different ages over the physical region of 90 pc our spectrum represents. One cluster is young (≤ 3 Myr) and is responsible for part of the late-type absorption features, which are due to PMS stars in the cluster, and the hydrogen emission lines. The second

  9. HI absorption in nearby compact radio galaxies

    NASA Astrophysics Data System (ADS)

    Glowacki, M.; Allison, J. R.; Sadler, E. M.; Moss, V. A.; Curran, S. J.; Musaeva, A.; Deng, C.; Parry, R.; Sligo, M. C.

    2017-01-01

    HI absorption studies yield information on both AGN feeding and feedback processes. This AGN activity interacts with the neutral gas in compact radio sources, which are believed to represent the young or recently re-triggered AGN population. We present the results of a survey for HI absorption in a sample of 66 compact radio sources at 0.040 < z < 0.096 with the Australia Telescope Compact Array. In total, we obtained seven detections, five of which are new, with a large range of peak optical depths (3% to 87%). Of the detections, 71% exhibit asymmetric, broad (ΔvFWHM > 100 km s-1) features, indicative of disturbed gas kinematics. Such broad, shallow and offset features are also found within low-excitation radio galaxies which is attributed to disturbed circumnuclear gas, consistent with early-type galaxies typically devoid of a gas-rich disk. Comparing mid-infrared colours of our galaxies with HI detections indicates that narrow and deep absorption features are preferentially found in late-type and high-excitation radio galaxies in our sample. These features are attributed to gas in galactic disks. By combining XMM-Newton archival data with 21-cm data, we find support that absorbed X-ray sources may be good tracers of HI content within the host galaxy. This sample extends previous HI surveys in compact radio galaxies to lower radio luminosities and provides a basis for future work exploring the higher redshift universe.

  10. Hydrogen fluoride toward luminous nearby galaxies: NGC 253 and NGC 4945

    SciTech Connect

    Monje, R. R.; Lis, D. C.; Phillips, T. G.; Lord, S.; Falgarone, E.; Güsten, R.

    2014-04-10

    We present the detection of hydrogen fluoride (HF) in two luminous nearby galaxies, NGC 253 and NGC 4945 using the Heterodyne Instrument for the Far-Infrared on board the Herschel Space Observatory. The HF line toward NGC 253 has a P-Cygni profile, while an asymmetric absorption profile is seen toward NGC 4945. The P-Cygni profile in NGC 253 suggests an outflow of molecular gas with a mass of M(H{sub 2}){sub out} ∼ 1 × 10{sup 7} M {sub ☉} and an outflow rate as large as M-dot ∼6.4 M {sub ☉} yr{sup –1}. In the case of NGC 4945, the axisymmetric velocity components in the HF line profile are compatible with the interpretation of a fast-rotating nuclear ring surrounding the nucleus and the presence of inflowing gas. The gas falls into the nucleus with an inflow rate of ≤1.2 M {sub ☉} yr{sup –1}, inside an inner radius of ≤200 pc. The gas accretion rate to the central active galactic nucleus is much smaller, suggesting that the inflow may be triggering a nuclear starburst. From these results, the HF J = 1-0 line is seen to provide an important probe of the kinematics of absorbing material along the sight-line to nearby galaxies with bright dust continuum and a promising new tracer of molecular gas in high-redshift galaxies.

  11. A New Interpretation for the Variation in Starburst Galaxy Emission Line Spectra

    NASA Astrophysics Data System (ADS)

    Richardson, Chris T.; Allen, James T.; Baldwin, Jack A.; Hewett, Paul C.; Ferland, Gary J.; Meskhidze, Helen

    2015-01-01

    Starburst galaxies have been easily distinguished from AGN using diagnostic emission line ratio diagrams constraining their excitation mechanism. Previous modeling of the star forming (SF) galaxy sequence outlined on the BPT diagram has led to the interpretation that high metallicity SF galaxies and low ionization SF galaxies are synonymous. Here, we present a new interpretation. Using a large sample of low-z SDSS galaxies, we co-added similar spectra of pure star forming galaxies allowing many weaker emission lines to act as consistency checks on strong line diagnostics. For the first time, we applied a locally optimally-emitting cloud (LOC) model to understand the physical reason for the variation in starburst galaxy emission line spectra. We fit over twenty diagnostic diagrams constraining the excitation mechanism, SED, temperature, density, metallicity, and grain content, making this work far more constrained than previous studies. Our results indicate that low luminosity SF galaxies could simply have less concentrated regions of ionized gas compared to their high luminosity counterparts, but have similar metallicities, thus requiring reevaluation about underlying nature of star forming galaxies.

  12. A connection between star formation activity and cosmic rays in the starburst galaxy M82.

    PubMed

    2009-12-10

    Although Galactic cosmic rays (protons and nuclei) are widely believed to be mainly accelerated by the winds and supernovae of massive stars, definitive evidence of this origin remains elusive nearly a century after their discovery. The active regions of starburst galaxies have exceptionally high rates of star formation, and their large size-more than 50 times the diameter of similar Galactic regions-uniquely enables reliable calorimetric measurements of their potentially high cosmic-ray density. The cosmic rays produced in the formation, life and death of massive stars in these regions are expected to produce diffuse gamma-ray emission through interactions with interstellar gas and radiation. M82, the prototype small starburst galaxy, is predicted to be the brightest starburst galaxy in terms of gamma-ray emission. Here we report the detection of >700-GeV gamma-rays from M82. From these data we determine a cosmic-ray density of 250 eV cm(-3) in the starburst core, which is about 500 times the average Galactic density. This links cosmic-ray acceleration to star formation activity, and suggests that supernovae and massive-star winds are the dominant accelerators.

  13. Extended HI disks in nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Bosma, Albert

    2017-03-01

    In this short write-up, I will concentrate on a few topics of interest. In the 1970s I found very extended HI disks in galaxies such as NGC 5055 and NGC 2841, out to 2 - 2.5 times the Holmberg radius. Since these galaxies are warped, a ``tilted ring model'' allows rotation curves to be derived, and evidence for dark matter to be found. The evaluation of the amount of dark matter is hampered by a disk-halo degeneracy, which can possibly be broken by observations of velocity dispersions in both the MgI region and the CaII region.

  14. Pulsar searches in nearby dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Rubio-Herrera, Eduardo; Maccarone, Thomas

    2013-03-01

    We have been undertaking a comprehensive survey for pulsars and fast radio transients in the dwarf spheroidal satellite galaxies of the Milky Way using the Green Bank Radio Telescope operating at a central frequency of 350 MHz. Our search pipeline allows the detection of periodical signals and single dispersed pulses and it is optimized to search for millisecond radio pulsars. Here we present preliminary results of the searches we have conducted in the Ursa Minoris, Draco and Leo I dwarf spheroidal satellite galaxies. Our searches have revealed no periodic signals but a few unconfirmed millisecond single pulses at various dispersion measures, possibly related to neutron stars. Detecting neutron stars in these systems can potentially help to test the existence of haloes of dark matter surrounding these systems as predicted by Dehnen & King (2006).

  15. Chandra Survey of Nearby Galaxies: The Catalog

    NASA Astrophysics Data System (ADS)

    She, Rui; Ho, Luis C.; Feng, Hua

    2017-02-01

    We searched the public archive of the Chandra X-ray Observatory as of 2016 March and assembled a sample of 719 galaxies within 50 Mpc with available Advanced CCD Imaging Spectrometer observations. By cross-correlation with the optical or near-infrared nuclei of these galaxies, 314 of them are identified to have an X-ray active galactic nucleus (AGN). The majority of them are low-luminosity AGNs and are unlikely X-ray binaries based upon their spatial distribution and luminosity functions. The AGN fraction is around 60% for elliptical galaxies and early-type spirals, but drops to roughly 20% for Sc and later types, consistent with previous findings in the optical. However, the X-ray survey is more powerful in finding weak AGNs, especially from regions with active star formation that may mask the optical AGN signature. For example, 31% of the H ii nuclei are found to harbor an X-ray AGN. For most objects, a single power-law model subject to interstellar absorption is adequate to fit the spectrum, and the typical photon index is found to be around 1.8. For galaxies with a non-detection, their stacked Chandra image shows an X-ray excess with a luminosity of a few times 1037 erg s‑1 on average around the nuclear region, possibly composed of faint X-ray binaries. This paper reports on the technique and results of the survey; in-depth analysis and discussion of the results will be reported in forthcoming papers.

  16. STIS parallel archive proposal - Nearby Galaxies - Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul

    1997-07-01

    Using parallel opportunities with STIS which were not allocated by the TAC, we propose to obtain deep STIS imagery with both the Clear {50CCD} and Long-Pass {F28X50LP} filters in order to make color-magnitude diagrams and luminosity functions for nearby galaxies. For local group galaxies, we also include G750L slitless spectroscopy to search for e.g., Carbon stars, late M giants and S-type stars. This survey will be useful to study the star formation histories, chemical evolution, and distances to these galaxies. These data will be placed immediately into the Hubble Data Archive.

  17. STIS parallel archive proposal - Nearby Galaxies - Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul

    2002-07-01

    Using parallel opportunities with STIS which were not allocated by the TAC, we propose to obtain deep STIS imagery with both the Clear {50CCD} and Long-Pass {F28X50LP} filters in order to make color-magnitude diagrams and luminosity functions for nearby galaxies. For local group galaxies, we also include G750L slitless spectroscopy to search for e.g., Carbon stars, late M giants and S-type stars. This survey will be useful to study the star formation histories, chemical evolution, and distances to these galaxies. These data will be placed immediately into the Hubble Data Archive.

  18. Dynamic evolution of nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Biernacka, M.; Flin, P.

    2011-06-01

    A study of the evolution of 377 rich ACO clusters with redshift z<0.2 is presented. The data concerning galaxies in the investigated clusters were obtained using FOCAS packages applied to Digital Sky Survey I. The 377 galaxy clusters constitute a statistically uniform sample to which visual galaxy/star reclassifications were applied. Cluster shape within 2.0 h-1 Mpc from the adopted cluster centre (the mean and the median of all galaxy coordinates, the position of the brightest and of the third brightest galaxy in the cluster) was determined through its ellipticity calculated using two methods: the covariance ellipse method (hereafter CEM) and the method based on Minkowski functionals (hereafter MFM). We investigated ellipticity dependence on the radius of circular annuli, in which ellipticity was calculated. This was realized by varying the radius from 0.5 to 2 Mpc in steps of 0.25 Mpc. By performing Monte Carlo simulations, we generated clusters to which the two ellipticity methods were applied. We found that the covariance ellipse method works better than the method based on Minkowski functionals. We also found that ellipticity distributions are different for different methods used. Using the ellipticity-redshift relation, we investigated the possibility of cluster evolution in the low-redshift Universe. The correlation of cluster ellipticities with redshifts is undoubtly an indicator of structural evolution. Using the t-Student statistics, we found a statistically significant correlation between ellipticity and redshift at the significance level of α = 0.95. In one of the two shape determination methods we found that ellipticity grew with redshift, while the other method gave opposite results. Monte Carlo simulations showed that only ellipticities calculated at the distance of 1.5 Mpc from cluster centre in the Minkowski functional method are robust enough to be taken into account, but for that radius we did not find any relation between e and z. Since CEM

  19. Optical spectroscopy of the radio-loud nuclei of spiral galaxies: Starbursts or monsters

    SciTech Connect

    Heckman, T.M.; Van Breugel, W.; Miley, G.K.; Butcher, H.R.

    1983-08-01

    We present optical spectroscopic data pertaining to the physical state, kinematics, and spatial extent of the emission-line gas near the radio-loud nuclei of spiral galaxies. These data are combined with published optical, radio, and infrared data to evaluate the suggestions by Condon et al. (1982) that the nuclear radio emission in this class of galaxy is produced by multiple supernova remnants generated as a consequence of a nuclear starburst. As a whole, the radio-loud nuclei have stronger emission lines than radio-quiet nuclei of galaxies of similar Hubble/de Vaucouleurs type. This emission-line gas is generally at least as spatially extended as the radio continuum emission. However, we find that only about 1/3 of the spiral galaxies examined have optical spectroscopic properties consistent with those of ''extranuclear starbursts'' (i.e., giant H II regions). The majority of the nuclei seem to require a form of energy input to the ionized gas which is ''harder'' than the Lyman continuum radiation of OB stars, as their emission-line spectra are of the Seyfert or Liner variety. The nuclei with H II region spectra are distinct from the nuclei with Seyfert spectra in terms of radio morphology and radio spectral index, and tend to occur in spiral galaxies of much later Hubble type than do the Seyfert or Liner nuclei (Sc vs Sa). Moreover, the most luminous nuclear radio sources in our sample (PMHz> or =10/sup 22/ Watts Hz/sup -1/ Sr/sup -1/) are not associated with H II region nuclei. We summarize evidence that the putative nuclear starbursts must differ significantly from extranuclear starbursts.

  20. Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy.

    PubMed

    Geach, J E; Hickox, R C; Diamond-Stanic, A M; Krips, M; Rudnick, G H; Tremonti, C A; Sell, P H; Coil, A L; Moustakas, J

    2014-12-04

    Recent observations have revealed that starburst galaxies can drive molecular gas outflows through stellar radiation pressure. Molecular gas is the phase of the interstellar medium from which stars form, so these outflows curtail stellar mass growth in galaxies. Previously known outflows, however, involve small fractions of the total molecular gas content and have typical scales of less than a kiloparsec. In at least some cases, input from active galactic nuclei is dynamically important, so pure stellar feedback (the momentum return into the interstellar medium) has been considered incapable of rapidly terminating star formation on galactic scales. Molecular gas has been detected outside the galactic plane of the archetypal starburst galaxy M82 (refs 4 and 5), but so far there has been no evidence that starbursts can propel substantial quantities of cold molecular gas to the same galactocentric radius (about 10 kiloparsecs) as the warmer gas that has been traced by metal ion absorbers in the circumgalactic medium. Here we report observations of molecular gas in a compact (effective radius 100 parsecs) massive starburst galaxy at redshift 0.7, which is known to drive a fast outflow of ionized gas. We find that 35 per cent of the total molecular gas extends approximately 10 kiloparsecs, and one-third of this extended gas has a velocity of up to 1,000 kilometres per second. The kinetic energy associated with this high-velocity component is consistent with the momentum flux available from stellar radiation pressure. This demonstrates that nuclear bursts of star formation are capable of ejecting large amounts of cold gas from the central regions of galaxies, thereby strongly affecting their evolution by truncating star formation and redistributing matter.

  1. First Results From The Empire Nearby Galaxy Dense Gas Survey

    NASA Astrophysics Data System (ADS)

    Bigiel, Frank

    2016-09-01

    I will present first results from our EMPIRE survey, a large program ( 500 hr) at the IRAM 30m telescope to map high critical density gas and shock tracers (e.g., HCN, HCO+, HNC, N2H+, etc.) as well as the optically thin 1-0 lines of 13CO and C18O for the first time systematically across 9 prominent, nearby Disk Galaxies."How is star formation regulated across disk galaxies" is the central question framing our science. Specifically, and building on a large suite of available ancillary data from the radio to the UV, we study, among other things, dense gas fractions and star formation efficiencies and how they vary with environment within and among nearby disk galaxies. Of particular interest is how our measurements compare to studies in the Milky Way, predicting a fairly constant star formation efficiency of the dense gas. Already in our first case study focusing on the prominent nearby spiral galaxy M51, we find signifycant variations of this quantity across the disk.In my talk, I will present results from a first series of studies about to me submitted addressing these questions with our EMPIRE and complementary, high-resolution ALMA data. In addition, I will present details of the survey and report on ongoing projects and future directions. I will place our work in context with other work, including studies of dense gas tracers in other galaxies and in particular the Milky Way.

  2. ROSAT PSPC and HRI observations of the composite starburst/Seyfert 2 galaxy NGC 1672

    NASA Technical Reports Server (NTRS)

    Brandt, W. N.; Halpern, Jules P.; Iwasawa, K.

    1995-01-01

    The nearby barred spiral galaxy NGC 1672 has been observed with the Position Sensitive Proportional Counter (PSPC) and High Resolution Imager (HRI) instruments on board the ROSAT X-ray satellite. NGC 1672 is thought to have an obscured Seyfert nucleus, and it has strong starburst activity as well. Three bright X-ray sources with luminosities 1-2 x 10(exp 40) erg/s are clearly identified with NGC 1672. The strongest lies at the nucleus, and the other two lie at the ends of NGC 1672's prominent bar, locations that are also bright in H alpha and near-infrared images. The nuclear source is resolved by the HRI on about the scale of the recently identified nuclear ring, and one of the sources at the ends of the bar is also probably resolved. The X-ray spectrum of the nuclear source is quite soft, having a Raymond-Smith plasma temperature of approximately equals 0.7 keV and little evidence for intrinsic absorption. The ROSAT band X-ray flux of the nuclear source appears to be dominated not by X-ray binary emission but rather by diffuse gas emission. The absorption and emission properties of the sources, as well as their spatial extents, lead us to models of superbubbles driven by supernovae. However, the large density and emission measure of the nuclear X-ray source stretch the limits that can be comfortably accommodated by these models. We do not detect direct emission from the putative Seyfert nucleus, although an alternative model for the nuclear source is thermal emission from gas that is photoionized by a hidden Seyfert nucleus. The spectra of the other two X-ray sources are harder than that of the nuclear source, and have similar difficulties with regard to superbubble models.

  3. Starbursts and their dynamics

    NASA Technical Reports Server (NTRS)

    Norman, Colin

    1987-01-01

    Detailed mechanisms associated with dynamical process occurring in starburst galaxies are considered including the role of bars, waves, mergers, sinking satellites, self gravitating gas and bulge heating. The current understanding of starburst galaxies both observational and theoretical is placed in the context of theories of galaxy formations, Hubble sequence evolution, starbursts and activity, and the nature of quasar absorption lines.

  4. STAR FORMATION RATES FOR STARBURST GALAXIES FROM ULTRAVIOLET, INFRARED, AND RADIO LUMINOSITIES

    SciTech Connect

    Sargsyan, Lusine A.; Weedman, Daniel W. E-mail: dweedman@isc.astro.cornell.edu

    2009-08-20

    We present a comparison of star formation rates (SFR) determined from mid-infrared 7.7 {mu}m polycyclic aromatic hydrocarbon (PAH) luminosity [SFR(PAH)], from 1.4 GHz radio luminosity [SFR(radio)], and from far-ultraviolet luminosity [SFR(UV)] for a sample of 287 starburst galaxies with z < 0.5 having Spitzer IRS observations. The previously adopted relation log [SFR(PAH)] = log [{nu}L {sub {nu}}(7.7 {mu}m)] - 42.57 {+-} 0.2, for SFR in M{sub sun} yr{sup -1} and {nu}L {sub {nu}}(7.7 {mu}m) the luminosity at the peak of the 7.7 {mu}m PAH feature in erg s{sup -1}, is found to agree with SFR(radio). Comparing with SFR(UV) determined independently from ultraviolet observations of the same sources with the Galaxy Evolution Explorer mission (not corrected for dust extinction), the median log [SFR(PAH)/SFR(UV)] = 1.67, indicating that only 2% of the ultraviolet continuum typically escapes extinction by dust within a starburst. This ratio SFR(PAH)/SFR(UV) depends on infrared luminosity, with the form log [SFR(PAH)/SFR(UV)] = (0.53 {+-} 0.05)log [{nu}L{sub {nu}}(7.7 {mu}m)] - 21.5 {+-} 0.18, indicating that more luminous starbursts are also dustier. Using our adopted relation between {nu}L{sub {nu}}(7.7 {mu}m) and L {sub ir}, this becomes log [SFR(PAH)/SFR(UV)]= (0.53 {+-} 0.05)log L{sub ir} - 4.11 {+-} 0.18, for L{sub ir} in L{sub sun}. Only blue compact dwarf galaxies show comparable or greater SFR(UV) compared to SFR(PAH). We also find that the ratio SFR(PAH)/SFR(UV) is similar to that in infrared-selected starbursts for a sample of Markarian starburst galaxies originally selected using optical classification, which implies that there is no significant selection effect in SFR(PAH)/SFR(UV) using starburst galaxies discovered by Spitzer. These results indicate that SFRs determined with ultraviolet luminosities require dust corrections by a factor of {approx}10 for typical local starbursts but this factor increases to >700 for the most luminous starbursts at z {approx} 2

  5. A very deep IRAS survey - Constraints on the evolution of starburst galaxies

    NASA Astrophysics Data System (ADS)

    Hacking, Perry; Condon, J. J.; Houck, J. R.

    1987-05-01

    Counts of sources (primarily starburst galaxies) from a deep 60 microns IRAS survey published by Hacking and Houck (1987) are compared with four evolutionary models. The counts below 100 mJy are higher than expected if no evolution has taken place out to a redshift of approximately 0.2. Redshift measurements of the survey sources should be able to distinguish between luminosity-evolution and density-evolution models and detect as little as a 20 percent brightening or increase in density of infrared sources per billion years ago (H/0/ = 100 km/s per Mpc). Starburst galaxies cannot account for the reported 100 microns background without extreme evolution at high redshifts.

  6. Very deep IRAS survey - constraints on the evolution of starburst galaxies

    SciTech Connect

    Hacking, P.; Houck, J.R.; Condon, J.J.

    1987-05-01

    Counts of sources (primarily starburst galaxies) from a deep 60 microns IRAS survey published by Hacking and Houck (1987) are compared with four evolutionary models. The counts below 100 mJy are higher than expected if no evolution has taken place out to a redshift of approximately 0.2. Redshift measurements of the survey sources should be able to distinguish between luminosity-evolution and density-evolution models and detect as little as a 20 percent brightening or increase in density of infrared sources per billion years ago (H/0/ = 100 km/s per Mpc). Starburst galaxies cannot account for the reported 100 microns background without extreme evolution at high redshifts. 21 references.

  7. MaNGA: Mapping Nearby Galaxies at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Bundy, Kevin

    2015-01-01

    I present the design and execution of a new survey to obtain resolved spectroscopy for 10,000 nearby galaxies called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory). One of three core programs in the 6-year SDSS-IV project that began on July 1st, 2014, MaNGA will deploy 17 fiber-bundle IFUs across the Sloan 2.5m Telescope's 3 degree field-of-view, targeting a mass-selected sample with a median redshift of 0.03, typical spatial resolution of 1-2 kpc, and a per-fiber signal-to-noise ratio of 4-8 in the outskirts of target galaxies. For each galaxy in the sample, MaNGA will provide maps and measured gradients of the composition and dynamics of both stars and gas. Early results highlight MaNGA's potential to shed light on the ionization and chemical enrichment of gas in galaxies, spatial patterns in their star formation histories, and the internal makeup of stellar populations. MaNGA's unprecedented data set will not only provide powerful new insight on galaxy formation and evolution but will serve as a valuable benchmark for future high-z observations from large telescopes as well as space-based facilities.

  8. Study of Starburst/Activity/Interaction Phenomena based on the Multiple Byurakan-IRAS Galaxies

    NASA Astrophysics Data System (ADS)

    Harutyunyan, Gohar S.; Mickaelian, Areg M.

    2014-07-01

    The Byurakan-IRAS Galaxy (BIG) sample is the result of optical identifications of IRAS PSC sources at high-galactic latitudes using the First Byurakan Survey (FBS) low-dispersion spectra. Among the 1178 objects most are spiral galaxies and many have been proved to be AGN and starburst by spectroscopic observations, as well as there is a number of ULIRGs among these objects. BIG objects contain galaxy pairs, multiples, and small groups that are subject for study on the matter of the real IR-emitter in these systems. Given that these objects are powerful IR sources, they are considered as young systems indicating high rate of evolution and starburst activity exceeding 100 M o /yr. Spectroscopic observations show that all these systems are physical ones and we were able to measure the mutual distances and sizes for all components. Cross-correlations with the recent more accurate IR catalogues, such as 2MASS and WISE, as well as radio ones (NVSS, FIRST), provided accurate coordinates of the IR source and possibility to find the individual galaxy responsible for the IR. However, in almost half of the cases, IR position indicates the intermediate region between the components, which means that it comes from the system as a whole. Some more MW data have been matched to IR and radio to have an overall understanding on these systems. Given that these systems are mostly interacting/merging ones often containing AGN and most of them may be considered as powerful starbursts, it is possible to study starburst/activity/interaction phenomena and their interrelationship.

  9. Neutral hydrogen in the starburst galaxy NGC3690/IC694

    NASA Technical Reports Server (NTRS)

    Tolstoy, E.; Dickey, John M.; Israel, F. P.

    1990-01-01

    Researchers made observations of the neutral hydrogen (HI) emission structure surrounding the very deep absorption peak (observed earlier by Dickey (1986)) in the galaxy pair NGC3690/IC694. This galaxy pair is highly luminous in the far infrared, and known to exhibit extensive star formation as well as nuclear activity. Knowledge of the spatial distribution and velocity structure of the HI emission is of great importance to the understanding of the dynamics of the interaction and the resulting environmental effects on the galaxies.

  10. The distribution of Infrared point sources in nearby elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Gogoi, Rupjyoti; Misra, Ranjeev; Puthiyaveettil, Shalima

    Infra-red point sources in nearby early-type galaxies are often counterparts of sources in other wavebands such as optical and X-rays. In particular, the IR counterpart of X-ray sources may be due to a globular cluster hosting the X-ray source or could be associated directly with the binary, providing crucial information regarding their environment. In general, the IR sources would be from globular clusters and their IR colors would provide insight into their stellar composition. However, many of the IR sources maybe background objects and it is important to identify them or at least quantify the level of background contamination. Archival Spitzer IRAC images provide a unique opportunity to study these sources in nearby Ellipticals and in particular to estimate the distributions of their IR luminosity, color and distance from the center. We will present the results of such an analysis for three nearby galaxies. We have also estimated the background contamination using several blank fields. Our preliminary results suggest that IR colors can be effectively used to differentiate between the background and sources in the galaxy, and that the distribution of sources are markedly different for different Elliptical galaxies.

  11. Radial Star Formation Histories in 15 Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Dale, Daniel A.; Beltz-Mohrmann, Gillian D.; Egan, Arika A.; Hatlestad, Alan J.; Herzog, Laura J.; Leung, Andrew S.; McLane, Jacob N.; Phenicie, Christopher; Roberts, Jareth S.; Barnes, Kate L.; Boquien, Médéric; Calzetti, Daniela; Cook, David O.; Kobulnicky, Henry A.; Staudaher, Shawn M.; van Zee, Liese

    2016-01-01

    New deep optical and near-infrared imaging is combined with archival ultraviolet and infrared data for 15 nearby galaxies mapped in the Spitzer Extended Disk Galaxy Exploration Science survey. These images are particularly deep and thus excellent for studying the low surface brightness outskirts of these disk-dominated galaxies with stellar masses ranging between 108 and {10}11 {M}⊙ . The spectral energy distributions derived from this data set are modeled to investigate the radial variations in the galaxy colors and star formation histories. Taken as a whole, the sample shows bluer and younger stars for larger radii until reversing near the optical radius, whereafter the trend is for redder and older stars for larger galacto-centric distances. These results are consistent with an inside-out disk formation scenario coupled with an old stellar outer disk population formed through radial migration and/or the cumulative history of minor mergers and accretions of satellite dwarf galaxies. However, these trends are quite modest and the variation from galaxy to galaxy is substantial. Additional data for a larger sample of galaxies are needed to confirm or dismiss these modest sample-wide trends.

  12. The identification of post-starburst galaxies at z ˜ 1 using multiwavelength photometry: a spectroscopic verification

    NASA Astrophysics Data System (ADS)

    Maltby, David T.; Almaini, Omar; Wild, Vivienne; Hatch, Nina A.; Hartley, William G.; Simpson, Chris; McLure, Ross J.; Dunlop, James; Rowlands, Kate; Cirasuolo, Michele

    2016-06-01

    Despite decades of study, we still do not fully understand why some massive galaxies abruptly switch off their star formation in the early Universe, and what causes their rapid transition to the red sequence. Post-starburst galaxies provide a rare opportunity to study this transition phase, but few have currently been spectroscopically identified at high redshift (z > 1). In this paper, we present the spectroscopic verification of a new photometric technique to identify post-starbursts in high-redshift surveys. The method classifies the broad-band optical-near-infrared spectral energy distributions (SEDs) of galaxies using three spectral shape parameters (supercolours), derived from a principal component analysis of model SEDs. When applied to the multiwavelength photometric data in the UKIDSS Ultra Deep Survey, this technique identified over 900 candidate post-starbursts at redshifts 0.5 < z < 2.0. In this study, we present deep optical spectroscopy for a subset of these galaxies, in order to confirm their post-starburst nature. Where a spectroscopic assessment was possible, we find the majority (19/24 galaxies; ˜80 per cent) exhibit the strong Balmer absorption (H δ equivalent width Wλ > 5 Å) and Balmer break, characteristic of post-starburst galaxies. We conclude that photometric methods can be used to select large samples of recently-quenched galaxies in the distant Universe.

  13. The SDSS Discovery of a Strongly Lensed Post-Starburst Galaxy at z=0.766

    SciTech Connect

    Shin, Min-Su; Strauss, Michael A.; Oguri, Masamune; Inada, Naohisa; Falco, Emilio E.; Broadhurst, Tom; Gunn, James E.

    2008-09-30

    We present the first result of a survey for strong galaxy-galaxy lenses in Sloan Digital Sky Survey (SDSS) images. SDSS J082728.70+223256.4 was selected as a lensing candidate using selection criteria based on the color and positions of objects in the SDSS photometric catalog. Follow-up imaging and spectroscopy showed this object to be a lensing system. The lensing galaxy is an elliptical at z = 0.349 in a galaxy cluster. The lensed galaxy has the spectrum of a post-starburst galaxy at z = 0.766. The lensing galaxy has an estimated mass of {approx} 1.2 x 10{sup 12} M{sub {circle_dot}} and the corresponding mass to light ratio in the B-band is {approx} 26 M{sub {circle_dot}}/L{sub {circle_dot}} inside 1.1 effective radii of the lensing galaxy. Our study shows how catalogs drawn from multi-band surveys can be used to find strong galaxy-galaxy lenses having multiple lens images. Our strong lensing candidate selection based on photometry-only catalogs will be useful in future multi-band imaging surveys such as SNAP and LSST.

  14. Shaken, not Stirred: the Ancestry of the Starburst Galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Davidge, T. J.

    2011-12-01

    Near-infrared images obtained with WIRCam are used to investigate the recent history of the starburst galaxy NGC 253. The distribution of stars in the disk is lopsided, with the projected density of young and intermediate age stars in the north east portion of the disk higher than on the opposite side of the galaxy. Bright AGB stars are also detected out to 15 kpc above the disk plane. Comparisons with models suggest that the extraplanar stars formed over a broad range of ages, suggesting that the disk of NGC 253 was disrupted by a tidal encounter.

  15. The Starburst in the Abell 1835 Cluster Central Galaxy: A Case Study of Galaxy Formation Regulated by an Outburst from a Supermassive Black Hole

    NASA Astrophysics Data System (ADS)

    McNamara, B. R.; Rafferty, D. A.; Bîrzan, L.; Steiner, J.; Wise, M. W.; Nulsen, P. E. J.; Carilli, C. L.; Ryan, R.; Sharma, M.

    2006-09-01

    We present an analysis of the starburst in the Abell 1835 cluster's cD galaxy. The dense gas surrounding the galaxy is radiating X-rays at a rate of ~1045 ergs s-1, which is consistent with a cooling rate of ~1000-2000 Msolar yr-1. However, Chandra and XMM-Newton observations found less than 200 Msolar yr-1 of cooling below ~2 keV, a level that is consistent with the cD's current star formation rate of 100-180 Msolar yr-1. One or more heating agents (feedback) must then be replenishing the remaining radiative losses. Supernova explosions and thermal conduction are unable to do so. However, the active galactic nucleus (AGN) is pumping ~=1.4×1045 ergs s-1into the hot gas, which is enough power to offset most of the radiative cooling losses. The AGN jet power exceeds the radio synchrotron power by ~4000 times, making this one of the most radiatively inefficient radio sources known. The jet power implies that the supermassive black hole has accreted at a mean rate of ~0.3 Msolar yr-1 over the last 40 Myr or so, which is a small fraction of the Eddington accretion rate for a ~109 Msolar black hole. The ratio of black hole growth rate by accretion to bulge growth by star formation is consistent with the slope of the (Magorrian) relationship between bulge and central black hole mass in nearby quiescent galaxies. The starburst follows the Schmidt-Kennicutt parameterizations, indicating that the local environment is not substantially altering the IMF and other conditions leading to the onset of star formation. The consistency between net cooling, heating (feedback), and the cooling sink (star formation) in this system resolves the primary objection to traditional cooling flow models.

  16. Dusty starburst galaxies in the early Universe as revealed by gravitational lensing.

    PubMed

    Vieira, J D; Marrone, D P; Chapman, S C; De Breuck, C; Hezaveh, Y D; Weiβ, A; Aguirre, J E; Aird, K A; Aravena, M; Ashby, M L N; Bayliss, M; Benson, B A; Biggs, A D; Bleem, L E; Bock, J J; Bothwell, M; Bradford, C M; Brodwin, M; Carlstrom, J E; Chang, C L; Crawford, T M; Crites, A T; de Haan, T; Dobbs, M A; Fomalont, E B; Fassnacht, C D; George, E M; Gladders, M D; Gonzalez, A H; Greve, T R; Gullberg, B; Halverson, N W; High, F W; Holder, G P; Holzapfel, W L; Hoover, S; Hrubes, J D; Hunter, T R; Keisler, R; Lee, A T; Leitch, E M; Lueker, M; Luong-Van, D; Malkan, M; McIntyre, V; McMahon, J J; Mehl, J; Menten, K M; Meyer, S S; Mocanu, L M; Murphy, E J; Natoli, T; Padin, S; Plagge, T; Reichardt, C L; Rest, A; Ruel, J; Ruhl, J E; Sharon, K; Schaffer, K K; Shaw, L; Shirokoff, E; Spilker, J S; Stalder, B; Staniszewski, Z; Stark, A A; Story, K; Vanderlinde, K; Welikala, N; Williamson, R

    2013-03-21

    In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.

  17. HI Disks In Nearby Galaxies From The HALOGAS Survey

    NASA Astrophysics Data System (ADS)

    Jozsa, Gyula I. G.

    2016-09-01

    The HALOGAS (Hydrogen Accretion in LOcal GAlaxieS) survey with the Westerbork Synthesis Radio Telescope is the most sensitive systematic survey of the diffuse neutral hydrogen component in nearby spiral galaxies so far. The 5-sigma column density sensitivity reached for the sample of 22 galaxies is 10^19 atoms cm^-2 over the typical line width of the neutral gas in our target galaxies. The 3D observations are sensitive enough to perform detailed kinematical and dynamical analyses of the extended (vertical) disk structure of our targets. Additionally, we are able to provide a census of the complete cold neutral cloud population above the mass detection limit for individual objects of 10^5 solar masses on average. Our results are relevant in the context of theories describing star formation feedback on the gaseous interface of the galaxy disks with their surroundings, as well as gas accretion from the intergalactic medium. Most notably, we find that the presence of anomalous, slowly rotating extraplanar gas is related to the star formation surface density. I will present the consequences of our observations for the current accretion in local galaxies, and discuss the implied constraints on the accretion process more generally.

  18. From nearby to distant galaxies: kinematical and dynamical studies

    NASA Astrophysics Data System (ADS)

    Epinat, Benoit

    2009-09-01

    Kinematical studies of low and high redshift galaxies enables to probe galaxy formation and evolution scenarios. Integral field spectroscopy is a powerful tool to study with accuracy nearby galaxies kinematics. Recent observations also gives a new 2D vision of high redshift galaxies kinematics. This work mostly relies on the kinematical sample of galaxies GHASP. This control sample, composed of 203 local spiral and irregular galaxies in low density environments observed with Fabry-Perot techniques in the Ha line (6563 A), is by now the largest sample of Fabry-Perot data. After a revue on Fabry-Perot interferometry and a presentation of new data reduction procedures, my implications on both 3D-NTT Fabry-Perot instrument and the wide field spectrograph project (WFSpec) for galaxy evolution study with the european ELT are developed. The second section is dedicated to GHASP data. This sample have been fully reduced and analysed using new methods. The kinematical analysis of 2D kinematical maps has been undertaken with the study of the dark matter distribution, the rotation curves shape, bar signatures and the ionized gas velocity dispersion. In a third section, this local reference sample is used as a zero point for high redshift galaxies kinematical studies. The GHASP sample is projected at high redshift (z=1.7) in order to disentangle evolution effects from distance biases in high redshift galaxies kinematical data observed with SINFONI, OSIRIS and GIRAFFE. The kinematical analysis of new SINFONI high redshift observations is also presented and high redshift data found in the literature are compared with GHASP projected sample, suggesting some evolution of the galaxy dynamical support within the ages.

  19. The stellar populations of nearby early-type galaxies

    NASA Astrophysics Data System (ADS)

    Concannon, Kristi Dendy

    The recent completion of comprehensive photometric and spectroscopic galaxy surveys has revealed that early-type galaxies form a more heterogeneous family than previously thought. To better understand the star formation histories of early-type galaxies, we have obtained a set of high resolution, high signal-to-noise ratio spectra for a sample of 180 nearby early-type galaxies with the FAST spectrograph and the 1.5m telescope at F. L. Whipple Observatory. The spectra cover the wavelength range 3500 5500 Å which allows the comparison of various Balmer lines, most importantly the higher order lines in the blue, and have a S/N ratio higher than that of previous samples, which makes it easier to investigate the intrinsic spread in the observed parameters. The data set contains galaxies in both the local field and Virgo cluster environment and spans the velocity dispersion range 50 < log σ < 250km s -1. In conjunction with recent improvements in population synthesis modeling, our data set enables us to investigate the star formation history of E/S0 galaxies as a function of mass (σ), environment, and to some extent morphology. We are able to probe the effects of age and metallicity on fundamental observable relations such as the Mg-σ relation, and show that there is a significant spread in age in such diagrams, at all log σ, such that their “uniformity” can not be interpreted as a homogeneous history for early-type galaxies. Analyzing the age and [Fe/H] distribution as a function of the galaxy mass, we find that an age-σ relation exists among galaxies in both the local field and the Virgo cluster, such that the lower log σ galaxies have younger luminosity-weighted mean ages. The age spread of the low σ galaxies suggests that essentially all of the low-mass galaxies contain young to intermediate age populations, whereas the spread in age of the high log σ galaxies (log σ >˜ 2.0) is much larger, with galaxies spanning the age range of 4 19 Gyr. Thus, rather

  20. Radio observations of nearby moderately luminous IRAS galaxies

    NASA Astrophysics Data System (ADS)

    Li, Yong-sheng; Su, Bu-mei

    Six nearby moderately luminous IRAS galaxies have been observed at two wavelengths with the Australia Telescope Compact Array. Radio emission was detected in two of them, IRAS 20272-4738 and IRAS 23156-4238, and their parameters including flux, peak position, size and spectral index, obtained. These sources were confirmed with infrared, radio and optical data. Combining with previous results we discuss their emission characteristics.

  1. Weak lensing mass of nearby clusters of galaxies

    SciTech Connect

    Joffre, Michael; et al.

    1999-09-01

    We describe first results of a project to create weak lensing mass maps for a complete, X-ray luminosity-limited sample of 19 nearby (z < 0.1) southern galaxy clusters scheduled for Sunyaev-Zel'dovich observations by the Viper Telescope at the South Pole. We have collected data on 1/3 of the sample and present motivation for the project as well as projected mass maps of two clusters.

  2. The Mitchell Spectrograph: Studying Nearby Galaxies with the VIRUS Prototype

    NASA Astrophysics Data System (ADS)

    Blanc, Guillermo A.

    The Mitchell Spectrograph (a.k.a. VIRUS-P) on the 2.7m Harlan J. Smith telescope at McDonald Observatory is currently the largest field of view (FOV) integral field unit (IFU) spectrograph in the world (1.7'x1.7'). It was designed as a prototype for the highly replicable VIRUS spectrograph which consists of a mosaic of IFUs spread over a 16' diameter FOV feeding 150 spectrographs similar to the Mitchell. VIRUS will be deployed on the 9.2 meter Hobby-Eberly Telescope (HET) and will be used to conduct the HET Dark Energy Experiment (HETDEX). Since seeing first light in 2007 the Mitchell Spectrograph has been widely used, among other things, to study nearby galaxies in the local universe where their internal structure and the spatial distribution of different physical parameters can be studied in great detail. These observations have provided important insight into many aspects of the physics behind the formation and evolution of galaxies and have boosted the scientific impact of the 2.7 meter telescope enormously. Here I review the contributions of the Mitchell Spectrograph to the study of nearby galaxies, from the investigation of the spatial distribution of dark matter and the properties of supermassive black holes, to the studies of the process of star formation and the chemical composition of stars and gas in the ISM, which provide important information regarding the formation and evolution of these systems. I highlight the fact that wide field integral field spectrographs on small and medium size telescopes can be powerful cost effective tools to study the astrophysics of galaxies. Finally I briefly discuss the potential of HETDEX for conducting studies on nearby galaxies. The survey parameters make it complimentary and competitive to ongoing and future surveys like SAMI and MANGA.

  3. 0.8mm extragalactic surveys of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Villicaña-Pedraza, Ilhuiyolitzin; Martín, Sergio; Martín-Pintado, Jesus; Requena-Torres, Miguel; Guesten, Rolf; Armijos, Jairo; Pérez-Beaupuits, Juan Pablo; Klein, Bernd; Heyminck, Stefan; Díaz, Angeles I.; Binette, Luc; Carreto-Parra, Francisco; Aladro, Rebeca

    2017-03-01

    We present the first submillimetric line survey of extragalactic sources carried out by APEX. The surveys cover the 0.8 mm atmospheric window from 270 to 370GHz toward NGC253, NGC4945 and Arp220. We found in NGC 253, 150 transitions of 26 molecules. For NGC 4945, 136 transitions of 24 molecules, and 64 transitions of 17 molecules for Arp 220. Column densities and rotation temperatures have been determinate using the Local Thermodinamical Equilibrium(LTE) line profile simulation and fitting in the MADCUBA IJ software. The differences found in ratios between the Galactic Center and the starburst galaxies NGC 4945 and NGC 253 suggest that the gas is less processed in the latter than in the Galactic Center. The high 18O/17O ratios in the galaxies NGC 4945 and NGC 253 suggest also material less processed in the nuclei of these galaxies than in the Galactic Center. This is consistent with the claim that 17O is a more representative primary product than 18O in stellar nucleosynthesis (Wilson and Rood 1994); Also, we did a Multitransitions study of H3O+ at 307GHz, 364GHz, 388GHz and 396GHz. From our non-LTE analysis of H3O+ in NGC253 with RADEX we found that the collisional excitation can not explain the observed intensity of the ortho 396 GHz line. Excitation by radiation from the dust in the Far-IR can roughly explain the observations if the H2 densities are relatively low. From the derived H3O+ column densities we conclude that the chemistry of this molecule is dominated by ionization produce by the starburst in NGC253 (UV radiation from the O stars) and Arp 220 (cosmic rays from the supernovae) and likely from the AGN in NGC4549 (X-rays ); Finally, we report, for the first time, the tentative detection of the molecular ion HCNH+ (precursor of HCN and HNC) toward a galaxy, NGC4945, abundance explain the claimed enhancement of HCN abundance in the AGN, due to the enhancement of the ionization rate by X-rays. The abundance is much larger than the Galactic center of the

  4. A survey of the molecular ISM properties of nearby galaxies using the Herschel FTS

    SciTech Connect

    Kamenetzky, J.; Rangwala, N.; Glenn, J.; Maloney, P. R.; Conley, A.

    2014-11-10

    The {sup 12}CO J = 4 → 3 to J = 13 → 12 lines of the interstellar medium from nearby galaxies, newly observable with the Herschel SPIRE Fourier transform spectrometer, offer an opportunity to study warmer, more luminous molecular gas than that traced by {sup 12}CO J = 1 → 0. Here we present a survey of 17 nearby infrared-luminous galaxy systems (21 pointings). In addition to photometric modeling of dust, we modeled full {sup 12}CO spectral line energy distributions from J = 1 → 0 to J = 13 → 12 with two components of warm and cool CO gas, and included LTE analysis of [C I], [C II], [N II], and H{sub 2} lines. CO is emitted from a low-pressure/high-mass component traced by the low-J lines and a high-pressure/low-mass component that dominates the luminosity. We found that, on average, the ratios of the warm/cool pressure, mass, and {sup 12}CO luminosity are 60 ± 30, 0.11 ± 0.02, and 15.6 ± 2.7. The gas-to-dust-mass ratios are <120 throughout the sample. The {sup 12}CO luminosity is dominated by the high-J lines and is 4 × 10{sup –4} L {sub FIR} on average. We discuss systematic effects of single-component and multi-component CO modeling (e.g., single-component J ≤ 3 models overestimate gas pressure by ∼0.5 dex), as well as compare to Galactic star-forming regions. With this comparison, we show the molecular interstellar medium of starburst galaxies is not simply an ensemble of Galactic-type giant molecular clouds. The warm gas emission is likely dominated by regions resembling the warm extended cloud of Sgr B2.

  5. Resolved Star Formation Law In Nearby Infrared-bright Galaxies

    NASA Astrophysics Data System (ADS)

    Rahman, Nurur; Bolatto, A.; Wong, T.; Leroy, A.; Ott, J.; Calzetti, D.; Blitz, L.; Walter, F.; Rosolowsky, E.; West, A.; Vogel, S.; Bigiel, F.; Xue, R.

    2009-05-01

    An accurate knowledge of star formation law is crucial to make progress in understanding galaxy formation and evolution. We are studying this topic using CARMA STING (Survey Toward Infrared-bright Nearby Galaxies), an interferometric CO survey of a sample of 27 star-forming nearby galaxies with a wealth of multi-wavelength data designed to study star formation in environments throughout the blue sequence at sub-kpc scales. We present results for NGC 4254 (M99), one of our sample galaxies. We construct star formation rate surface density (SFRSD) and gas (atomic and molecular) surface density indicators using a combination of high resolution data from CARMA, KPNO, Spitzer, IRAM and VLA. We find a tight correlation between SFRSD and molecular gas surface density (MGSD), whereas the relation between atomic gas surface density and SFRSD shows very large scatter. Within the central 6 kpc (radius) where CARMA is the most sensitive the MGSD derived from CO(1-0) and CO(2-1) shows similar trend, however, in the extended disk the slope, derived from CO(2-1) data alone, gets steeper.

  6. SED fitting of nearby galaxies in the Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Ciesla, L.; Boselli, A.; Buat, V.; Cortese, L.; Auld, R.; Baes, M.; Bendo, G. J.; Bianchi, S.; Bock, J.; Bomans, D. J.; Bradford, M.; Castro-Rodriguez, N.; Chanial, P.; Charlot, S.; Clemens, M.; Clements, D.; Corbell, E.; Cooray, A.; Cormie, D.; Dariush, A.; Davies, J.; de Looze, I.; di Serego Alighieri, S.; Dwek, E.; Eales, S.; Elbaz, D.; Fadda, D.; Fritz, J.; Galametz, M.; Galliano, F.; Garcia-Appadoo, D. A.; Gavazzi, G.; Gear, W.; Giovanardi, C.; Glenn, J.; Gomez, H.; Griffin, M.; Grossi, M.; Hony, S.; Hughes, T. M.; Hunt, L.; Isaak, K.; Jones, A.; Levenson, L.; Lu, N.; Madden, S. C.; O'Halloran, B.; Okumura, K.; Oliver, S.; Page, M.; Panuzzo, P.; Papageorgiou, A.; Parkin, T.; Perez-Fournon, I.; Pierini, D.; Pohlen, M.; Rangwala, N.; Rigby, E.; Roussel, H.; Rykala, A.; Sabatini, S.; Sacchi, N.; Sauvage, M.; Schulz, B.; Schirm, M.; Smith, M. W. L.; Spinoglio, L.; Stevens, J.; Sundar, S.; Symeonidis, M.; Trichas, M.; Vaccari, M.; Verstappen, J.; Vigroux, L.; Vlahakis, C.; Wilson, C.; Wozniak, H.; Wright, G.; Xilouris, E. M.; Zeilinger, W.; Zibetti, S.

    2010-12-01

    We compute UV to radio continuum spectral energy distributions of 51 nearby galaxies recently observed with SPIRE onboard Herschel and present infrared colours (in the 25-500 μm spectral range). SPIRE data of normal galaxies are well reproduced with a modified black body (β=2) of temperature T≃q 20 K. In ellipticals hosting a radio galaxy, the far-infrared (FIR) emission is dominated by the synchrotron nuclear emission. The colour temperature of the cold dust is higher in quiescent E-S0a than in star-forming systems probably because of the different nature of their dust heating sources (evolved stellar populations, X-ray, fast electrons) and dust grain properties.

  7. Extended HCN and HCO+ Emission in the Starburst Galaxy M82

    NASA Astrophysics Data System (ADS)

    Salas, P.; Galaz, G.; Salter, D.; Herrera-Camus, R.; Bolatto, A. D.; Kepley, A.

    2014-12-01

    We mapped 3 mm continuum and line emission from the starburst galaxy M82 using the Combined Array for Research in Millimeter-wave Astronomy. We targeted the HCN, HCO+, HNC, CS, and HC3N lines, but here we focus on the HCN and HCO+ emission. The map covers a field of 1.'2 with an ≈5'' resolution. The HCN and HCO+ observations are short spacings corrected. The molecular gas in M82 had been previously found to be distributed in a molecular disk, coincident with the central starburst, and a galactic scale outflow which originates in the central starburst. With the new short spacings-corrected maps we derive some of the properties of the dense molecular gas in the base of the outflow. From the HCN and HCO+ J = (1-0) line emission, and under the assumptions of the gas being optically thin and in local thermodynamic equilibrium, we place lower limits on the amount of dense molecular gas in the base of the outflow. The lower limits are 7 × 106 M ⊙ and 21 × 106 M ⊙, or >~ 2% of the total molecular mass in the outflow. The kinematics and spatial distribution of the dense gas outside the central starburst suggests that it is being expelled through chimneys. Assuming a constant outflow velocity, the derived outflow rate of dense molecular gas is >=0.3 M ⊙ yr-1, which would lower the starburst lifetime by >=5%. The energy required to expel this mass of dense gas is (1-10) × 1052 erg.

  8. EXTENDED HCN AND HCO{sup +} EMISSION IN THE STARBURST GALAXY M82

    SciTech Connect

    Salas, P.; Galaz, G.; Salter, D.; Herrera-Camus, R.; Bolatto, A. D.; Kepley, A.

    2014-12-20

    We mapped 3 mm continuum and line emission from the starburst galaxy M82 using the Combined Array for Research in Millimeter-wave Astronomy. We targeted the HCN, HCO{sup +}, HNC, CS, and HC{sub 3}N lines, but here we focus on the HCN and HCO{sup +} emission. The map covers a field of 1.'2 with an ≈5'' resolution. The HCN and HCO{sup +} observations are short spacings corrected. The molecular gas in M82 had been previously found to be distributed in a molecular disk, coincident with the central starburst, and a galactic scale outflow which originates in the central starburst. With the new short spacings-corrected maps we derive some of the properties of the dense molecular gas in the base of the outflow. From the HCN and HCO{sup +} J = (1-0) line emission, and under the assumptions of the gas being optically thin and in local thermodynamic equilibrium, we place lower limits on the amount of dense molecular gas in the base of the outflow. The lower limits are 7 × 10{sup 6} M {sub ☉} and 21 × 10{sup 6} M {sub ☉}, or ≳ 2% of the total molecular mass in the outflow. The kinematics and spatial distribution of the dense gas outside the central starburst suggests that it is being expelled through chimneys. Assuming a constant outflow velocity, the derived outflow rate of dense molecular gas is ≥0.3 M {sub ☉} yr{sup –1}, which would lower the starburst lifetime by ≥5%. The energy required to expel this mass of dense gas is (1-10) × 10{sup 52} erg.

  9. X-Ray Properties of the Central kpc of AGN and Starbursts: The Latest News from Chandra

    NASA Astrophysics Data System (ADS)

    Weaver, Kimberly A.

    The X-ray properties of 15 nearby (v < 3000 kms-1) galaxies that possess AGN and/or starbursts are discussed. Two-thirds have nuclear extended emission on scales from ~0.5 to ~1.5 kpc that is either clearly associated with a nuclear outflow or morphologically resembles an outflow. Galaxies that are AGN-dominated tend to have linear structures while starburst-dominated galaxies tend to have plume-like structures. Significant X-ray absorption is present in the starburst regions, indicating that a circumnuclear starburst is sufficient to block an AGN at optical wavelengths. Galaxies with starburst activity possess more X-ray point sources within their central kpc than non-starbursts. Many of these sources are more luminous than typical X-ray binaries. The Chandra results are discussed in terms of the starburst--AGN connection, a revised unified model for AGN, and possible evolutionary scenarios.

  10. Detailed Analysis of Starburst and AGN Activity in Blue E/S0 Galaxies in RESOLVE

    NASA Astrophysics Data System (ADS)

    Bittner, Ashley; Snyder, Elaine M.; Kannappan, Sheila; Norman, Dara J.; Norris, Mark A.; Moffett, Amanda J.; Hoversten, Erik A.; Stark, David; RESOLVE Team

    2016-01-01

    We identify a population of ~120 blue E/S0 galaxies among the ~1350 galaxies that are targeted for spectroscopy and have measured morphologies in the highly complete REsolved Spectroscopy Of a Local Volume (RESOLVE) survey. Blue E/S0s are identified as being early type objects morphologically classified between E and S0/a that fall on the blue sequence. Most (~85%) of our blue E/S0s have stellar masses <10^10 M_sun. Using pPXF, we have measured the stellar velocity dispersions (sigma values) from high resolution 485 - 550 nm spectroscopy for ~15% of the blue E/S0 sample. Using three variations of the M_BH -- sigma relation, this kinematic subsample is estimated to typically host central black holes within the range log M_BH = 4-6 M_sun. Following up on previous suggestions of nuclear activity in the blue E/S0 population, we investigate nuclear starburst and/or AGN activity occurring within the full sample. Preliminary results from cross-checking known AGN catalogs with the blue E/S0 sample have revealed nuclear activity in ~20 of these galaxies based on heterogeneous criteria (BPT line ratio analysis, spectral line broadening, etc.), some of which may not entirely distinguish starburst from AGN activity. In an attempt to break the degeneracy between AGN and starburst activity, we perform detailed spectral analysis for a few of the galaxies with kinematic data. We also consider the viability of alternate AGN detection methods based on L_Edd estimates calculated from the M_BH estimates. This research has been supported by the National Science Foundation through the CAP REU Program (ACI-1156614) and the RESOLVE Survey (AST-0955368) as well as the National Space Grant College and Fellowship Program and the NC Space Grant Consortium.

  11. ISOCAM view of the starburst galaxies M 82, NGC 253 and NGC 1808

    NASA Astrophysics Data System (ADS)

    Förster Schreiber, N. M.; Sauvage, M.; Charmandaris, V.; Laurent, O.; Gallais, P.; Mirabel, I. F.; Vigroux, L.

    2003-03-01

    We present results of mid-infrared lambda = 5.0-16.5 μm spectrophotometric imaging of the starburst galaxies M 82, NGC 253, and NGC 1808 from the ISOCAM instrument on board the Infrared Space Observatory. The mid-infrared spectra of the three galaxies are very similar in terms of features present. The lambda >~ 11 μm continuum attributed to very small dust grains (VSGs) exhibits a large spread in intensity relative to the short-wavelength emission. We find that the 15 mu m dust continuum flux density correlates well with the fine-structure [Ar Ii] 6.99 mu m line flux and thus provides a good quantitative indicator of the level of star formation activity. By contrast, the lambda = 5-11 μm region dominated by emission from polycyclic aromatic hydrocarbons (PAHs) has a nearly invariant shape. Variations in the relative intensities of the PAH features are nevertheless observed, at the 20%-100% level. We illustrate extinction effects on the shape of the mid-infrared spectrum of obscured starbursts, emphasizing the differences depending on the applicable extinction law and the consequences for the interpretation of PAH ratios and extinction estimates. The relative spatial distributions of the PAH, VSG, and [Ar Ii] 6.99 mu m emission between the three galaxies exhibit remarkable differences. The la 1 kpc size of the mid-infrared source is much smaller than the optical extent of our sample galaxies and 70%-100% of the IRAS 12 mu m flux is recovered within the ISOCAM <= 1.5 arcmin2 field of view, indicating that the nuclear starburst dominates the total mid-infrared emission while diffuse light from quiescent disk star formation contributes little. Based on observations with ISO, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, The Netherlands, and the UK), and with participation of ISAS and NASA.

  12. Radio Identifications of UGC Galaxies - Starbursts and Monsters

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Broderick, J. J.

    1995-11-01

    Radio identifications of galaxies in the Uppsala General Catalogue of Galaxies with delta < +82 degrees were made from the Green Bank 1400 MHz sky maps. Every source having peak flux density S(P) >= 150 mJy in the approximately 12 arcmin FWHM map point-source response and position < 5 arcmin in both coordinates from the optical position of any UGC galaxy was considered a candidate identification to ensure that very extended (up to 1 Mpc) and asymmetric sources would not be missed. Maps in the literature or new 1.49 GHz VLA C-array maps made with 18 arcsec FWHM resolution were used to confirm or reject candidate identifications. The maps in this directory include both confirmed identifications and candidates rejected because of confusion or low flux density. For more information on this study, please see the following reference: Condon, J. J., and Broderick, J. J., 1988, AJ, 96, 30. The images and related TeX file come from the NRAO CDROM "Images From the Radio Universe" (c. 1992 National Radio Astronomy Observatory, used with permission).

  13. The Post-starburst Evolution of Tidal Disruption Event Host Galaxies

    NASA Astrophysics Data System (ADS)

    French, K. Decker; Arcavi, Iair; Zabludoff, Ann

    2017-02-01

    We constrain the recent star formation histories of the host galaxies of eight optical/UV-detected tidal disruption events (TDEs). Six hosts had quick starbursts of <200 Myr duration that ended 10–1000 Myr ago, indicating that TDEs arise at different times in their hosts’ post-starburst evolution. If the disrupted star formed in the burst or before, the post-burst age constrains its mass, generally excluding O, most B, and highly massive A stars. If the starburst arose from a galaxy merger, the time since the starburst began limits the coalescence timescale and thus the merger mass ratio to more equal than 12:1 in most hosts. This uncommon ratio, if also that of the central supermassive black hole (SMBH) binary, disfavors the scenario in which the TDE rate is boosted by the binary but is insensitive to its mass ratio. The stellar mass fraction created in the burst is 0.5%–10% for most hosts, not enough to explain the observed 30–200× boost in TDE rates, suggesting that the host’s core stellar concentration is more important. TDE hosts have stellar masses 109.4–1010.3 M⊙, consistent with the Sloan Digital Sky Survey volume-corrected, quiescent Balmer-strong comparison sample and implying SMBH masses of 105.5–107.5 M⊙. Subtracting the host absorption line spectrum, we uncover emission lines; at least five hosts have ionization sources inconsistent with star formation that instead may be related to circumnuclear gas, merger shocks, or post-AGB stars.

  14. Observations of the impact of starbursts on the interstellar medium in dwarf galaxies

    NASA Technical Reports Server (NTRS)

    Marlowe, Amanda T.; Heckman, Timothy M.; Wyse, Rosemary F. G.; Schommer, Robert

    1995-01-01

    Dwarf galaxies play a crucial role in our understanding of the formation and evolution of galaxies, and the concept of supernova-driven mass outflows is a vital ingredient in theories of the structure and evolution of dwarf galaxies. Despite the theoretical importance of these outflows, there is a very limited amount of direct observational evidence for their existence. We have therefore begun a detailed multi-wave-band search for outflows in dwarf (M(sub B) greater than or = -18) galaxies with extensive recent or ongoing centrally concentrated star formation. We report the first results of this search in the present paper. Observations of the ionized gas in dwarf amorphous galaxies with centrally concentrated populations of massive stars provide evidence for the large-scale expansion of their expansion of their ionized interstellar media. Fabry-Perot H alpha images reveal the presence of kiloparsec-scale 'superbubbles' and filaments which tend to be oriented along the galaxy minor axis. These structures are comparable in size to the chracteristic optical sizes of the galaxies, and dominate the morphology of the galaxies at low surface brightness in H alpha. Since expanding structure of this size and velocity are not observed in all low-mass galaxies with recent or ongoing star formation, we suggest that we are witnessing transient events that likely have a relatively low 'duty cycle' in such galaxies. That is, we argue that the particular galaxies in the present paper have had significantly elevated star formation rates over the past 10(exp 7)-10(exp 8) yr (i.e., these are starburst or young poststarburst systems). This interpretation is consistent with the optical colors and emission-line properties of these galaxies.

  15. Ultraviolet Radiative Transfer Modeling of Nearby Galaxies with Extraplanar Dusts

    NASA Astrophysics Data System (ADS)

    Shinn, Jong-Ho; Seon, Kwang-Il

    2015-12-01

    In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFRUV), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFRUV and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.

  16. ULTRAVIOLET RADIATIVE TRANSFER MODELING OF NEARBY GALAXIES WITH EXTRAPLANAR DUSTS

    SciTech Connect

    Shinn, Jong-Ho; Seon, Kwang-Il

    2015-12-20

    In order to examine their relation to the host galaxy, the extraplanar dusts of six nearby galaxies are modeled, employing a three-dimensional Monte Carlo radiative transfer code. The targets are from the highly inclined galaxies that show dust-scattered ultraviolet halos, and the archival Galaxy Evolution Explorer FUV band images were fitted with the model. The observed images are generally well-reproduced by two dust layers and one light source layer, whose vertical and radial distributions have exponential profiles. We obtained several important physical parameters, such as star formation rate (SFR{sub UV}), face-on optical depth, and scale-heights. Three galaxies (NGC 891, NGC 3628, and UGC 11794) show clear evidence for the existence of an extraplanar dust layer. However, it is found that the remaining three targets (IC 5249, NGC 24, and NGC 4173) do not necessarily need a thick dust disk to model the ultraviolet (UV) halo, because its contribution is too small and the UV halo may be caused by the wing part of the GALEX point spread function. This indicates that the galaxy samples reported to have UV halos may be contaminated by galaxies with negligible extraplanar (halo) dust. The galaxies showing evidence of an extraplanar dust layer fall within a narrow range on the scatter plots between physical parameters such as SFR{sub UV} and extraplanar dust mass. Several mechanisms that could possibly produce the extraplanar dust are discussed. We also found a hint that the extraplanar dust scale-height might not be much different from the polycyclic aromatic hydrocarbon emission characteristic height.

  17. EPISODIC STARBURSTS IN DWARF SPHEROIDAL GALAXIES: A SIMPLE MODEL

    SciTech Connect

    Nichols, Matthew; Bland-Hawthorn, Joss; Lin Doug

    2012-04-01

    Dwarf galaxies in the Local Group appear to be stripped of their gas within 270 kpc of the host galaxy. Color-magnitude diagrams of these dwarfs, however, show clear evidence of episodic star formation ({Delta}t {approx}a few Gyr) over cosmic time. We present a simple model to account for this behavior. Residual gas within the weak gravity field of the dwarf experiences dramatic variations in the gas cooling time around the eccentric orbit. This variation is due to two main effects. The azimuthal compression along the orbit leads to an increase in the gas cooling rate of {approx}([1 + {epsilon}]/[1 - {epsilon}]){sup 2}. The Galaxy's ionizing field declines as 1/R{sup 2} for R > R{sub disk} although this reaches a floor at R {approx} 150 kpc due to the extragalactic UV field ionizing intensity. We predict that episodic star formation is mostly characteristic of dwarfs on moderately eccentric orbits ({epsilon} > 0.2) that do not come too close to the center (R > R{sub disk}) and do not spend their entire orbit far away from the center (R {approx}> 200 kpc). Up to 40% of early infall dwarf spheroidals can be expected to have already had at least one burst since the initial epoch of star formation, and 10% of these dwarf spheroidals experiencing a second burst. Such a model can explain the timing of bursts in the Carina dwarf spheroidal and restrict the orbit of the Fornax dwarf spheroidal. However, this model fails to explain why some dwarfs, such as Ursa Minor, experience no burst post-infall.

  18. The Environment of X-Ray Binaries in the Dwarf Starburst Galaxy NGC 1569

    NASA Astrophysics Data System (ADS)

    Clark, David M.; Eikenberry, Stephen S.; Raines, Steven N.

    2008-05-01

    We use deep, J and Ks observations of NGC 1569 acquired with FLAMINGOS on the KPNO 4-m to search for star cluster counterparts to X-ray binaries identified in archived Chandra images of this dwarf starburst galaxy. Performing near-IR photometry on the star cluster counterparts, we determine their colors, luminosities and masses. Comparing these results to the properties for all clusters in this galaxy, we search for trends in clusters associated with X-ray sources. Combining this study with FISICA, near-IR spectral observations, we further characterize the surroundings to X-ray binaries in NGC 1569. Contrasting this work with findings from a similar study performed on the Antennae galaxies, a large, merging system, we investigate the differences in X-ray binary environments.

  19. THE ACS NEARBY GALAXY SURVEY TREASURY. X. QUANTIFYING THE STAR CLUSTER FORMATION EFFICIENCY OF NEARBY DWARF GALAXIES

    SciTech Connect

    Cook, David O.; Dale, Daniel A.; Seth, Anil C.; Johnson, L. Clifton; Weisz, Daniel R.; Fouesneau, Morgan; Dalcanton, Julianne J.; Olsen, Knut A. G.; Engelbracht, Charles W.

    2012-06-01

    We study the relationship between the field star formation and cluster formation properties in a large sample of nearby dwarf galaxies. We use optical data from the Hubble Space Telescope and from ground-based telescopes to derive the ages and masses of the young (t{sub age} {approx}< 100 Myr) cluster sample. Our data provide the first constraints on two proposed relationships between the star formation rate (SFR) of galaxies and the properties of their cluster systems in the low SFR regime. The data show broad agreement with these relationships, but significant galaxy-to-galaxy scatter exists. In part, this scatter can be accounted for by simulating the small number of clusters detected from stochastically sampling the cluster mass function. However, this stochasticity does not fully account for the observed scatter in our data, suggesting that there may be true variations in the fraction of stars formed in clusters in dwarf galaxies. Comparison of the cluster formation and the brightest cluster in our sample galaxies also provide constraints on cluster destruction models.

  20. Dust and Molecular Gas in the Winds of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    McCormick, Alexander N.

    Galactic winds provide a fundamental mechanism for galaxy evolution. The outflow of material in winds remains the most likely culprit responsible for a host of galaxy observations, plus mounting evidence for galactic winds at times in the past points to their importance in understanding the history of the universe. Therefore, detailed observations of galactic winds are critical to fleshing out the narrative of galaxy evolution. In particular, the dust and molecular gas of a galaxy's interstellar medium (ISM) play crucial roles in the absorption, scattering, and reemission of starlight, the heating of the ISM, and provide critical materials for star formation. We present results from archival Spitzer Space Telescope ata and exceptionally deep Herschel Space Observatory data of the dust and molecular gas found in and around 20 nearby galaxies known to host galactic-scale winds. Selecting nearby galaxies has allowed us the resolution and sensitivity to differentiate dust and molecular gas outside the galaxies and observe their typically faint emission. These are the most detailed surveys currently available of the faint dust and molecular gas components in galactic winds, and we have utilized them to address the following questions: i) What are the location and morphology of dust and molecular gas, and how do these components compare with better known neutral and ionized gas features? ii) How much do dust and molecular gas contribute to the mass and energy of galactic winds? iii) Do the properties of the dust and molecular gas correlate with the properties of the wind-hosting galaxy? Spitzer archival data has revealed kiloparsec-scale polycyclic aromatic hydrocarbon (PAH) structures in the extraplanar regions of nearly all the wind-hosting galaxies we investigated. We found a nearly linear correlation between the extraplanar PAH emission and the total infrared flux, a proxy for star formation. Our results also suggest a correlation between the height of extraplanar

  1. Diffuse hot gas in nearby face-on spiral galaxies

    NASA Astrophysics Data System (ADS)

    Doane, Nathaniel

    2007-08-01

    We present a study of the diffuse thermal emission in three nearby, face-on spiral galaxies, NGC 3631, NGC 628 and NGC 3184, using X-ray data from the Chandra X-ray Observatory and optical data from the WIYN observatory. We are able to separate out the X-ray emission from unresolved point sources from the total unresolved emission in order to study the truly diffuse X-ray emission. We find that in all cases, the spectrum of the hot gas is well fit using a two thermal-component model. In the three galaxies, we find a strong correlation between the X-ray surface brightness and regions of star formation. We also estimate the electron density, pressure and cooling time of the hot gas, finding that the pressure of the hot gas in these three galaxies is higher than the ambient Milky Way pressure. In addition to the standard two temperature spectral model of the hot-gas emission from spiral galaxies, we show a model with the hot gas at a continuum of temperatures provides an equally good fit and a more physical description of the gas. Finally, we discuss the Chandra ACIS background and our method of spectrally modeling it. We also present plots of all our spectral fits to each galaxy and its sub-regions using our background model.

  2. MaNGA: Mapping Nearby Galaxies at Apache Point Observatory

    NASA Astrophysics Data System (ADS)

    Bundy, Kevin

    2015-04-01

    I describe a new integral field spectroscopic survey called MaNGA (Mapping Nearby Galaxies at Apache Point Observatory). One of three core programs in the 6-year SDSS-IV project† that began on July 1st, 2014, MaNGA will deploy 17 fiber-bundle IFUs across the Sloan 2.5m Telescope's 3 degree field-of-view, targeting a mass-selected sample with a median redshift of 0.03, typical spatial resolution of 1-2 kpc, and a per-fiber signal-to-noise ratio of 4-8 in the outskirts of target galaxies. For each galaxy in the sample, MaNGA will provide maps and measured gradients of the composition and dynamics of both stars and gas. I discuss early results that highlight MaNGA's potential to shed light on the ionization and chemical enrichment of gas in galaxies, spatial patterns in their star formation histories, and the internal makeup of stellar populations. MaNGA's unprecedented data set will not only provide powerful new insight on galaxy formation and evolution but will serve as a valuable benchmark for future high-z observations from large telescopes and space-based facilities.

  3. Comparing [C II] , HI, and CO Dynamics of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    de Blok, W. J. G.; Walter, F.; Smith, J.-D. T.; Herrera-Camus, R.; Bolatto, A. D.; Requena-Torres, M. A.; Crocker, A. F.; Croxall, K. V.; Kennicutt, R. C.; Koda, J.; Armus, L.; Boquien, M.; Dale, D.; Kreckel, K.; Meidt, S.

    2016-08-01

    The H i and CO components of the interstellar medium (ISM) are usually used to derive the dynamical mass {M}{{dyn}} of nearby galaxies. Both components become too faint to be used as a tracer in observations of high-redshift galaxies. In those cases, the 158 μm line of atomic carbon ([C ii]) may be the only way to derive {M}{{dyn}}. As the distribution and kinematics of the ISM tracer affects the determination of {M}{{dyn}}, it is important to quantify the relative distributions of H i, CO, and [C ii]. H i and CO are well-characterized observationally, however, for [C ii] only very few measurements exist. Here we compare observations of CO, H i, and [C ii] emission of a sample of nearby galaxies, drawn from the HERACLES, THINGS, and KINGFISH surveys. We find that within R 25, the average [C ii] exponential radial profile is slightly shallower than that of the CO, but much steeper than the H i distribution. This is also reflected in the integrated spectrum (“global profile”), where the [C ii] spectrum looks more like that of the CO than that of the H i. For one galaxy, a spectrally resolved comparison of integrated spectra was possible; other comparisons were limited by the intrinsic line-widths of the galaxies and the coarse velocity resolution of the [C ii] data. Using high-spectral-resolution SOFIA [C ii] data of a number of star forming regions in two nearby galaxies, we find that their [C ii] linewidths agree better with those of the CO than the H i. As the radial extent of a given ISM tracer is a key input in deriving {M}{{dyn}} from spatially unresolved data, we conclude that the relevant length-scale to use in determining {M}{{dyn}} based on [C ii] data, is that of the well-characterized CO distribution. This length scale is similar to that of the optical disk.

  4. WINGS Data Release: a database of galaxies in nearby clusters

    NASA Astrophysics Data System (ADS)

    Moretti, A.; Poggianti, B. M.; Fasano, G.; Bettoni, D.; D'Onofrio, M.; Fritz, J.; Cava, A.; Varela, J.; Vulcani, B.; Gullieuszik, M.; Couch, W. J.; Omizzolo, A.; Valentinuzzi, T.; Dressler, A.; Moles, M.; Kjærgaard, P.; Smareglia, R.; Molinaro, M.

    2014-04-01

    Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims: The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies in a complete sample of low redshift clusters to be used as reference sample for evolutionary studies. The WINGS survey is still ongoing and the original dataset will be enlarged with new observations. This paper presents the entire collection of WINGS measurements obtained so far. Methods: We decided to make use of the Virtual Observatory (VO) tools to share the WINGS database (that will be updated regularly) with the community. In the database each object has one unique identification (WINGSID). Each subset of estimated properties is accessible using a cone search (including wide-field images). Results: We provide the scientific community with the entire set of wide-field images. Furthermore, the published database contains photometry of 759 024 objects and surface brightness analysis for 42 275 and 41 463 galaxies in the V and B band, respectively. The completeness depends on the image quality, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90% for J ≲ 20.5 and K ≲ 19.4. The IR subsample with a Sersic fit comprises 71 687 objects. A morphological classification is available for 39 923 galaxies. We publish spectroscopic data, including 6132 redshifts, 5299 star formation histories, and 4381 equivalent widths. Finally, a calculation of local density is presented and implemented in the VO catalogs for 66 164 galaxies. The latter is presented here for the first time.

  5. Understanding the Structure and Evolution of Nearby Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng

    2014-01-01

    In order to understand the structure and evolution of disk galaxies, we studied the stellar and gaseous components as well as the star formation rate in nearby disk galaxies. We used PS1 medium deep survey images to derive five-band (grizy) surface brightness profiles down to 30 ABmag/arcsec^2 for about 700 galaxies. From these stellar mass and mass-to-light ratio radial profiles are derived. The stellar mass radial profiles tend to bend-up at large radii, this often traces an extended old stellar population. The mass-to-light ratio profiles tend to rise outside the r25 radii. We also find a larger fraction of up-bending surface brightness profiles than Polen & Trujillo (2006). This may be because their sample is biased towards low surface brightness galaxies. We used HIPASS data as well as VLA HI 21cm data to study the gas component and dynamics of disk galaxies. We used the GALEX UV images to study the star formation of a HI-selected star-forming sample of about 400 galaxies, compiling a database of FUV and NUV radial profiles and related parameters. We used this to study the star forming efficiency (SFE, star formation rate per unit area divided by gas surface mass density) of the sample galaxies. We found that the UV based SFE has a tighter relationship with HI mass than an H_alpha based SFE as typically used in previous studies and the UV SFE is flat across wide range of stellar mass. We constructed a simple model to predict the distribution of interstellar medium and star formation rate in an equilibrium disk with constant two-fluid Toomre Q. This model can reproduces the SFE relations we derived.

  6. Resolving the Milky Way and Nearby Galaxies with WFIRST

    NASA Astrophysics Data System (ADS)

    Kalirai, Jasonjot

    High-resolution studies of nearby stellar populations have served as a foundation for our quest to understand the nature of galaxies. Today, studies of resolved stellar populations constrain fundamental relations -- such as the initial mass function of stars, the time scales of stellar evolution, the timing of mass loss and amount of energetic feedback, the color-magnitude relation and its dependency on age and metallicity, the stellar-dark matter connection in galaxy halos, and the build up of stellar populations over cosmic time -- that represent key ingredients in our prescription to interpret light from the Universe and to measure the physical state of galaxies. More than in any other area of astrophysics, WFIRST will yield a transformative impact in measuring and characterizing resolved stellar populations in the Milky Way and nearby galaxies. The proximity and level of detail that such populations need to be studied at directly map to all three pillars of WFIRST capabilities - sensitivity from a 2.4 meter space based telescope, resolution from 0.1" pixels, and large 0.3 degree field of view from multiple detectors. Our WFIRST GO Science Investigation Team (F) will develop three WFIRST (notional) GO programs related to resolved stellar populations to fully stress WFIRST's Wide Field Instrument. The programs will include a Survey of the Milky Way, a Survey of Nearby Galaxy Halos, and a Survey of Star-Forming Galaxies. Specific science goals for each program will be validated through a wide range of observational data sets, simulations, and new algorithms. As an output of this study, our team will deliver optimized strategies and tools to maximize stellar population science with WFIRST. This will include: new grids of IR-optimized stellar evolution and synthetic spectroscopic models; pipelines and algorithms for optimal data reduction at the WFIRST sensitivity and pixel scale; wide field simulations of MW environments and galaxy halos; cosmological simulations

  7. Evolution of molecular clouds in the starburst galaxy NGC 1808 revealed with ALMA

    NASA Astrophysics Data System (ADS)

    Salak, D.; Nakai, N.; Miyamoto, Y.

    2015-05-01

    We present large-field CO(1-0) observations of the starburst galaxy NGC 1808 conducted with ALMA. High-resolution (˜100 pc) images reveal a high concentration of molecular gas in the nucleus, 500-pc ring, gas-rich bar, and spiral arms. We derived the bar pattern speed and found an offset between CO and Hα emission peaks in the offset ridges along the bar. The results indicate that the evolution of molecular clouds on the galactic scale is driven by bar dynamics.

  8. The Hierarchical Distribution of Young Stellar Clusters in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Grasha, Kathryn; Calzetti, Daniela

    2017-01-01

    We investigate the spatial distributions of young stellar clusters in six nearby galaxies to trace the large scale hierarchical star-forming structures. The six galaxies are drawn from the Legacy ExtraGalactic UV Survey (LEGUS). We quantify the strength of the clustering among stellar clusters as a function of spatial scale and age to establish the survival timescale of the substructures. We separate the clusters into different classes, compact (bound) clusters and associations (unbound), and compare the clustering among them. We find that younger star clusters are more strongly clustered over small spatial scales and that the clustering disappears rapidly for ages as young as a few tens of Myr, consistent with clusters slowly losing the fractal dimension inherited at birth from their natal molecular clouds.

  9. Nearby Galaxy is a Hotbed of Star Birth Activity

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This new image taken with NASA's Hubble Space Telescope (HST) is of the nearby dwarf galaxy NGC 1569. This galaxy is a hotbed of vigorous star birth activity which blows huge bubbles that riddle its main body. The bubble structure is sculpted by the galactic super-winds and outflows caused by a colossal input of energy from collective supernova explosions that are linked with a massive episode of star birth. The bubbles seen in this image are made of hydrogen gas that glows when hit by the fierce wind and radiation from hot young stars and is racked by supernova shocks. Its 'star factories' are also manufacturing brilliant blue star clusters. NGC 1569 had a sudden onset of star birth about 25 million years ago, which subsided about the time the very earliest human ancestors appeared on Earth. The Marshall Space Flight Center had responsibility for the design, development, and construction of the HST.

  10. Full stellar kinematical profiles of central parts of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Vudragović, A.; Samurović, S.; Jovanović, M.

    2016-09-01

    Context. We present the largest catalog of detailed stellar kinematics of the central parts of nearby galaxies, which includes higher moments of the line-of-sight velocity distribution (LOSVD) function represented by the Gauss-Hermite series. The kinematics is measured on a sample of galaxies selected from the Arecibo Legacy Fast ALFA (Alfalfa) survey using spectroscopy from the Sloan Digital Sky Survey (SDSS DR7). Aims: The SDSS DR7 offers measurements of the LOSVD based on the assumption of a pure Gaussian shape of the broadening function caused by the combination of rotational and random motion of the stars in galaxies. We discuss the consequences of this oversimplification since the velocity dispersion, one of the measured quantities, often serves as the proxy to important modeling parameters such as the black-hole mass and the virial mass of galaxies. Methods: The publicly available pPXF code is used to calculate the full kinematical profile for the sample galaxies including higher moments of their LOSVD. Both observed and synthetic stellar libraries were used and the related template mismatch problem is discussed. Results: For the whole sample of 2180 nearby galaxies reflecting morphological distribution characteristic for the local Universe, we successfully recovered stellar kinematics of their central parts, including higher order moments of the LOSVD function, for signal-to-noise above 50. Conclusions: We show the consequences of the oversimplification of the LOSVD function with Gaussian function on the velocity dispersion for the empirical and the synthetic stellar library. For the empirical stellar library, this approximation leads to an increase in the virial mass of 13% on average, while for the synthetic library the effect is weaker, with an increase of 9% on average. Systematic erroneous estimates of the velocity dispersion comes from the use of the synthetic stellar library instead of the empirical one and is much larger than the value imposed by

  11. The effect of galaxy mass ratio on merger-driven starbursts

    NASA Astrophysics Data System (ADS)

    Cox, T. J.; Jonsson, Patrik; Somerville, Rachel S.; Primack, Joel R.; Dekel, Avishai

    2008-02-01

    We employ numerical simulations of galaxy mergers to explore the effect of galaxy mass ratio on merger-driven starbursts. Our numerical simulations include radiative cooling of gas, star formation, and stellar feedback to follow the interaction and merger of four disc galaxies. The galaxy models span a factor of 23 in total mass and are designed to be representative of typical galaxies in the local universe. We find that the merger-driven star formation is a strong function of merger mass ratio, with very little, if any, induced star formation for large mass ratio mergers. We define a burst efficiency that is useful to characterize the merger-driven star formation and test that it is insensitive to uncertainties in the feedback parametrization. In accord with previous work we find that the burst efficiency depends on the structure of the primary galaxy. In particular, the presence of a massive stellar bulge stabilizes the disc and suppresses merger-driven star formation for large mass ratio mergers. Direct, coplanar merging orbits produce the largest tidal disturbance and yield the most intense burst of star formation. Contrary to naive expectations, a more compact distribution of gas or an increased gas fraction both decrease the burst efficiency. Owing to the efficient feedback model and the newer version of smoothed particle hydrodynamics employed here, the burst efficiencies of the mergers presented here are smaller than in previous studies.

  12. Modelling the Pan-Spectral Energy Distribution of Starburst Galaxies: II. Control of the H II Region Parameters

    SciTech Connect

    Dopita, M A; Fischera, J; Sutherland, R S; Kewley, L J; Tuffs, R J; Popescu, C C; van Breugel, W; Groves, B A; Leitherer, C

    2006-03-01

    We examine from a theoretical viewpoint how the physical parameters of H II regions are controlled both in normal galaxies and in starburst environments. These parameters are the H II region luminosity function, the time-dependent size, the covering fraction of molecular clouds, the pressure in the ionized gas and the ionization parameter. The factors which control them are the initial mass function of the exciting stars, the cluster mass function, the metallicity and the mean pressure in the surrounding interstellar medium. We investigate the sensitivity of the H{alpha} luminosity to the IMF, and find that this can translate to about 30% variation in derived star formation rates. The molecular cloud dissipation timescale is estimated from a case study of M17 to be {approx} 1 Myr. Based upon H II luminosity function fitting for nearby galaxies, we propose that the cluster mass function has a log-normal form peaking at {approx} 185M{sub {circle_dot}}. This suggests that the cluster mass function is the continuation of the stellar IMF to higher mass. The pressure in the H II regions is controlled by the mechanical luminosity flux from the central cluster. Since this is closely related to the ionizing photon flux, we show that the ionization parameter is not a free variable, and that the diffuse ionized medium may be composed of many large, faint and old H II regions. Finally, we derive theoretical probability distributions for the ionization parameter as a function of metallicity and compare these to those derived for SDSS galaxies.

  13. The Red and Featureless Outer Disks of Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Watkins, Aaron E.; Mihos, J. Christopher; Harding, Paul

    2016-07-01

    We present results from deep, wide-field surface photometry of three nearby (D = 4-7 Mpc) spiral galaxies: M94 (NGC 4736), M64 (NGC 4826), and M106 (NGC 4258). Our imaging reaches a limiting surface brightness of {μ }B ˜ 28-30 mag arcsec-2 and probes colors down to {μ }B ˜ 27.5 mag arcsec-2. We compare our broadband optical data to available ultraviolet and high column density H i data to better constrain the star-forming history and stellar populations of the outermost parts of each galaxy’s disk. Each galaxy has a well-defined radius beyond which little star formation occurs and the disk light appears both azimuthally smooth and red in color, suggestive of old, well-mixed stellar populations. Given the lack of ongoing star formation or blue stellar populations in these galaxies’ outer disks, the most likely mechanisms for their formation are dynamical processes such as disk heating or radial migration, rather than inside-out growth of the disks. This is also implied by the similarity in outer disk properties despite each galaxy showing distinct levels of environmental influence, from a purely isolated galaxy (M94) to one experiencing weak tidal perturbations from its satellite galaxies (M106) to a galaxy recovering from a recent merger (M64), suggesting that a variety of evolutionary histories can yield similar outer disk structure. While this suggests a common secular mechanism for outer disk formation, the large extent of these smooth, red stellar populations—which reach several disk scale lengths beyond the galaxies’ spiral structure—may challenge models of radial migration given the lack of any nonaxisymmetric forcing at such large radii.

  14. Starburst galaxies in the COSMOS field: clumpy star-formation at redshift 0 < z < 0.5

    NASA Astrophysics Data System (ADS)

    Hinojosa-Goñi, R.; Muñoz-Tuñón, C.; Méndez-Abreu, J.

    2016-08-01

    Context. At high redshift, starburst galaxies present irregular morphologies with 10-20% of their star formation occurring in giant clumps. These clumpy galaxies are considered the progenitors of local disk galaxies. To understand the properties of starbursts at intermediate and low redshift, it is fundamental to track their evolution and the possible link with the systems at higher z. Aims: We present an extensive, systematic, and multiband search and analysis of the starburst galaxies at redshift (0 < z < 0.5) in the COSMOS field, as well as detailed characteristics of their star-forming clumps by using Hubble Space Telescope/Advance Camera for Surveys (HST/ACS) images. Methods: The starburst galaxies are identified using a tailor-made intermediate-band color excess selection, tracing the simultaneous presence of Hα and [OIII] emission lines in the galaxies. Our methodology uses previous information from the zCOSMOS spectral database to calibrate the color excess as a function of the equivalent width of both spectral lines. This technique allows us to identify 220 starburst galaxies at redshift 0 < z < 0.5 using the SUBARU intermediate-band filters. Combining the high spatial resolution images from the HST/ACS with ground-based multi-wavelength photometry, we identify and parametrize the star-forming clumps in every galaxy. Their principal properties, sizes, masses, and star formation rates are provided. Results: The mass distribution of the starburst galaxies is remarkably similar to that of the whole galaxy sample with a peak around M/M⊙ ~ 2 × 108 and only a few galaxies with M/M⊙ > 1010. We classify galaxies into three main types, depending on their HST morphology: single knot (Sknot), single star-forming knot plus diffuse light (Sknot+diffuse), and multiple star-forming knots (Mknots/clumpy) galaxy. We found a fraction of Mknots/clumpy galaxy fclumpy = 0.24 considering out total sample of starburst galaxies up to z ~ 0.5. The individual star

  15. The far infra-red SEDs of main sequence and starburst galaxies

    NASA Astrophysics Data System (ADS)

    Cowley, William I.; Béthermin, Matthieu; del P. Lagos, Claudia; Lacey, Cedric G.; Baugh, Carlton M.; Cole, Shaun

    2017-01-01

    We compare observed far infra-red/sub-millimetre (FIR/sub-mm) galaxy spectral energy distributions (SEDs) of massive galaxies (M⋆ ≳ 1010 h-1 M⊙) derived through a stacking analysis with predictions from a new model of galaxy formation. The FIR SEDs of the model galaxies are calculated using a self-consistent model for the absorption and re-emission of radiation by interstellar dust based on radiative transfer calculations and global energy balance arguments. Galaxies are selected based on their position on the specific star formation rate (sSFR) - stellar mass (M⋆) plane. We identify a main sequence of star-forming galaxies in the model, i.e. a well defined relationship between sSFR and M⋆, up to redshift z ˜ 6. The scatter of this relationship evolves such that it is generally larger at higher stellar masses and higher redshifts. There is remarkable agreement between the predicted and observed average SEDs across a broad range of redshifts (0.5 ≲ z ≲ 4) for galaxies on the main sequence. However, the agreement is less good for starburst galaxies at z ≳ 2, selected here to have elevated sSFRs>10 × the main sequence value. We find that the predicted average SEDs are robust to changing the parameters of our dust model within physically plausible values. We also show that the dust temperature evolution of main sequence galaxies in the model is driven by star formation on the main sequence being more burst-dominated at higher redshifts.

  16. Black Holes and Starbursts in the Cosmic Web: Clustering and Evolution of Quasars and Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan C.; Myers, A. D.; Bootes Survey Collaboration

    2011-01-01

    The growth of massive galaxies and their central supermassive black holes is linked to the their surrounding dark matter halos, whose masses can be inferred from measurements of spatial clustering. I will present a a novel technique for deriving real-space clustering using full photometric-redshift probability distributions, and discuss a recent study using this technique to measure clustering of dust-obscured (Type 2) and unobscured (Type 1) luminous quasars. I will present a similar measurement of the clustering of submillimeter galaxies, and will place the results in context of current models for the co-evolution of quasars and rapid starbursts. Finally I will briefly point toward future observational opportunities with Herschel and the proposed Wide Field X-ray Telescope mission. RCH is funded by an STFC Postdoctoral Fellowship.

  17. The Bright and Dark Sides of High-redshift Starburst Galaxies from Herschel and Subaru Observations

    NASA Astrophysics Data System (ADS)

    Puglisi, A.; Daddi, E.; Renzini, A.; Rodighiero, G.; Silverman, J. D.; Kashino, D.; Rodríguez-Muñoz, L.; Mancini, C.; Mainieri, V.; Man, A.; Franceschini, A.; Valentino, F.; Calabrò, A.; Jin, S.; Darvish, B.; Maier, C.; Kartaltepe, J. S.; Sanders, D. B.

    2017-04-01

    We present rest-frame optical spectra from the FMOS-COSMOS survey of 12 z ∼ 1.6 Herschel starburst galaxies, with star formation rate (SFR) elevated by ×8, on average, above the star-forming main sequence (MS). Comparing the Hα to IR luminosity ratio and the Balmer decrement, we find that the optically thin regions of the sources contain on average only ∼10% of the total SFR, whereas ∼90% come from an extremely obscured component that is revealed only by far-IR observations and is optically thick even in Hα. We measure the [N ii]6583/Hα ratio, suggesting that the less obscured regions have a metal content similar to that of the MS population at the same stellar masses and redshifts. However, our objects appear to be metal-rich outliers from the metallicity–SFR anticorrelation observed at fixed stellar mass for the MS population. The [S ii]6732/[S ii]6717 ratio from the average spectrum indicates an electron density n e ∼ 1100 cm‑3 , larger than what was estimated for MS galaxies but only at the 1.5σ level. Our results provide supporting evidence that high-z MS outliers are analogous of local ULIRGs and are consistent with a major-merger origin for the starburst event.

  18. The diffuse gamma-ray flux associated with sub-PEV/PEV neutrinos from starburst galaxies

    SciTech Connect

    Chang, Xiao-Chuan; Wang, Xiang-Yu

    2014-10-01

    One attractive scenario for the excess of sub-PeV/PeV neutrinos recently reported by IceCube is that they are produced by cosmic rays in starburst galaxies colliding with the dense interstellar medium. These proton-proton (pp) collisions also produce high-energy gamma rays, which finally contribute to the diffuse high-energy gamma-ray background. We calculate the diffuse gamma-ray flux with a semi-analytic approach and consider that the very high energy gamma rays will be absorbed in the galaxies and converted into electron-positron pairs, which then lose almost all of their energy through synchrotron radiation in the strong magnetic fields in the starburst region. Since the synchrotron emission goes into energies below GeV, this synchrotron loss reduces the diffuse high-energy gamma-ray flux by a factor of about two, thus leaving more room for other sources to contribute to the gamma-ray background. For an E{sub ν}{sup −2} neutrino spectrum, we find that the diffuse gamma-ray flux contributes about 20% of the observed diffuse gamma-ray background in the 100 GeV range. However, for a steeper neutrino spectrum, this synchrotron loss effect is less important, since the energy fraction in absorbed gamma rays becomes lower.

  19. Lyα Line Formation in Starbursting Galaxies. I. Moderately Thick, Dustless, and Static H I Media

    NASA Astrophysics Data System (ADS)

    Ahn, Sang-Hyeon; Lee, Hee-Won; Lee, Hyung Mok

    2001-06-01

    We investigate the Lyα line transfer in nearby and high-redshift starbursting galaxies, where the effects of high optical depths and the role of dust in the scattering medium are expected to be conspicuous and should be treated in a very careful manner. We present our first results in a dustless, static, and uniform H I media with moderate Lyα line center optical depths τ0=103-106. We assume the temperatures of the media to be T=101-104 K, and use a Monte Carlo technique. We investigate the basic processes of the line transfer and confirm the criterion of aτ0>103 for the validity of the diffusion approximation suggested by Neufeld in 1990, where a is the Voigt parameter. Adopting the model for evolution of a galactic supershell suggested by Tenorio-Tagle et al. in 1999, we performed calculations on the Lyα line formation for each evolutionary stage of an expanding supershell. The emergent Lyα profiles are characterized by the double peaks and the absorption trough at the line center. We found that the absorption troughs expected in most of the evolutionary stages are not wide enough to be observed with current instruments. However, the absorption trough in the Lyα emission profile from an expanding recombining supershell can be marginally detected.

  20. Black Holes At the Centers of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Moran, Edward C.; Shahinyan, Karlen; Sugarman, Hannah R.; Vélez, Darik O.; Eracleous, Michael

    2014-12-01

    Using a distance-limited portion of the Sloan Digital Sky Survey (SDSS) Data Release 7, we have identified 28 active galactic nuclei (AGNs) in nearby (d≤slant 80 Mpc) low-mass, low-luminosity dwarf galaxies. The accreting objects at the galaxy centers are expected to be intermediate-mass black holes (IMBHs) with {{M}BH}≤slant {{10}6} {{M}⊙ }. The AGNs were selected using several optical emission-line diagnostics after careful modeling of the continuum present in the spectra. We have limited our survey to objects with spectral characteristics similar to those of Seyfert nuclei, excluding emission-line galaxies with ambiguous spectra that could be powered by stellar processes. Thus, as a set, the host galaxies in our sample are the least massive objects in the very local universe certain to contain central black holes. Our sample is dominated by narrow-line (type 2) AGNs, and it appears to have a much lower fraction of broad-line objects than that observed for luminous, optically selected Seyfert galaxies. Given our focus on the nearest objects included in the SDSS, our survey is more sensitive to low-luminosity emission than previous optical searches for AGNs in low-mass galaxies. The [O iii] λ 5007 luminosities of the Seyfert nuclei in our sample have a median value of {{L}5007}=2× {{10}5} {{L}⊙ } and extend down to ˜ {{10}4} {{L}⊙ }. Using published data for broad-line IMBH candidates, we have derived an [O iii] bolometric correction of log ({{L}bol}/{{L}5007})=3.0+/- 0.3, which is significantly lower than values obtained for high-luminosity AGNs. Applying this correction to our sample, we obtain minimum black hole mass estimates that fall mainly in the 103 {{M}⊙ }-104 {{M}⊙ } range, which is roughly where the predicted mass functions for different black hole seed formation scenarios overlap the most. In the stellar mass range that includes the bulk of the AGN host galaxies in our sample, we derive a lower limit on the AGN fraction of a few

  1. GMRT HI Imaging of the Ly-α Emitting Starburst Galaxy Tololo 1924-416

    NASA Astrophysics Data System (ADS)

    Mendoza Davila, Cesar I.; Perez Sarmiento, Karen; Cannon, John M.; Hayes, Matthew; Melinder, Jens; Östlin, Göran; Pardy, Stephen; LARS Team

    2017-01-01

    The Lyman Alpha Reference Sample (LARS) and its extension (eLARS) form the most comprehensive effort to date to study the details of Lyman Alpha radiative transfer in galaxies. Direct imaging of Lyman Alpha emission from the Hubble Space Telescope is supplemented by a wealth of multi-wavelength observations designed to probe the complex processes that contribute to the escape or destruction of Lyman Alpha photons as they resonantly scatter in the neutral ISM. The 42 LARS+eLARS galaxies span a range of physical properties, including mass and star formation rate. In companion posters, we present results of HI imaging programs using the VLA and the GMRT. In this work, we present new HI imaging of the Lya-emitting starburst galaxy Tololo 1924-416; this source has a similar complement of HST imaging and spectroscopy as the LARS+eLARS galaxies. Tololo 1924-416 is known to be dramatically tidally interacting with ESO 338-IG04B; HI gas is strewn between the galaxies on scales of ~70 kpc. Our new data provide information on scales of ~2-10 kpc at the adopted distance of Tololo 1924-416 (37.5 Mpc). We study the HI morphology and dynamics of this interacting system.

  2. 3D spectroscopy of merger Seyfert galaxy Mrk 334: nuclear starburst, superwind and the circumnuclear cavern

    NASA Astrophysics Data System (ADS)

    Smirnova, Aleksandrina; Moiseev, Alexei

    2010-01-01

    We are presenting new results on kinematics and structure of the Mrk 334 Seyfert galaxy. Panoramic (3D) spectroscopy is performed at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences using the integral-field Multi-Pupil Fiber Spectrograph (MPFS) and scanning Fabry-Pérot interferometer. The deep images have revealed that Mrk 334 is observed during the final stage of its merging with a massive companion. A possible mass ratio ranges from 1/5 to 1/3. The merger has triggered mass redistribution in the disc resulting in an intensification of nuclear activity and in a burst of star formation in the inner region of the galaxy. The circumnuclear starburst is so intense that its contribution to the gas ionization exceeds that contribution of the active galactic nuclei (AGN). We interpret the nuclear gas outflow with velocities of ~200kms-1 as a galactic superwind that accompanies the violent star formation. This suggestion is consistent with the asymmetric X-ray brightness distribution in Mrk 334. The trajectory of the fragments of the disrupted satellite in the vicinity of the main galaxy nucleus can be traced. In the galaxy disc, a cavern is found that is filled with a low-density ionized gas. We consider this region to be the place where the remnants of the companion have recently penetrated through the gaseous disc of the main galaxy.

  3. LOCALIZED STARBURSTS IN DWARF GALAXIES PRODUCED BY THE IMPACT OF LOW-METALLICITY COSMIC GAS CLOUDS

    SciTech Connect

    Sánchez Almeida, J.; Muñoz-Tuñón, C.; Filho, M. E.; Elmegreen, B. G.; Elmegreen, D. M.; Pérez-Montero, E.; Vílchez, J. M.; Amorín, R.; Ascasibar, Y.; Papaderos, P.

    2015-09-10

    Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of gas from the web that penetrate their dark matter halos. Although these predictions are unambiguous, the observational support has been indirect so far. Here, we report spectroscopic evidence for this process in extremely metal-poor galaxies (XMPs) of the local universe, taking the form of localized starbursts associated with gas having low metallicity. Detailed abundance analyses based on Gran Telescopio Canarias optical spectra of 10 XMPs show that the galaxy hosts have metallicities around 60% solar, on average, while the large star-forming regions that dominate their integrated light have low metallicities of some 6% solar. Because gas mixes azimuthally in a rotation timescale (a few hundred Myr), the observed metallicity inhomogeneities are only possible if the metal-poor gas fell onto the disk recently. We analyze several possibilities for the origin of the metal-poor gas, favoring the metal-poor gas infall predicted by numerical models. If this interpretation is correct, XMPs trace the cosmic web gas in their surroundings, making them probes to examine its properties.

  4. From H I to Stars: H I Depletion in Starbursts and Star-forming Galaxies in the ALFALFA Hα Survey

    NASA Astrophysics Data System (ADS)

    Jaskot, A. E.; Oey, M. S.; Salzer, J. J.; Van Sistine, A.; Bell, E. F.; Haynes, M. P.

    2015-07-01

    H i in galaxies traces the fuel for future star formation and reveals the effects of feedback on neutral gas. Using a statistically uniform, H i-selected sample of 565 galaxies from the Arecibo Legacy Fast ALFA (ALFALFA) Hα survey, we explore H i properties as a function of star formation activity. ALFALFA Hα provides R-band and Hα imaging for a volume-limited subset of the 21 cm ALFALFA survey. We identify eight starbursts based on Hα equivalent width and six with enhanced star formation relative to the main sequence. Both starbursts and non-starbursts have similar H i-to-stellar mass ratios ({M}{{H} {{I}}}/{M}*), which suggests that feedback is not depleting the starbursts’ H i. Consequently, the starbursts do have shorter H i depletion times ({t}{dep}), implying more efficient H i-to-H2 conversion. While major mergers likely drive this enhanced efficiency in some starbursts, the lowest-mass starbursts may experience periodic bursts, consistent with enhanced scatter in {t}{dep} at low {M}*. Two starbursts appear to be pre-coalescence mergers; their elevated {M}{{H} {{I}}}/{M}* suggest that H i-to-H2 conversion is still ongoing at this stage. By comparing with the GASS sample, we find that {t}{dep} anticorrelates with stellar surface density for disks, while spheroids show no such trend. Among early-type galaxies, {t}{dep} does not correlate with bulge-to-disk ratio; instead, the gas distribution may determine the star formation efficiency. Finally, the weak connection between galaxies’ specific star formation rates and {M}{{H} {{I}}}/{M}* contrasts with the well-known correlation between {M}{{H} {{I}}}/{M}* and color. We show that dust extinction can explain the H i-color trend, which may arise from the relationship between {M}*, {M}{{H} {{I}}}, and metallicity.

  5. Star formation histories from resolved stellar populations in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Gogarten, Stephanie Morris

    We present the results of three applications of using resolved stellar populations to derive star formation histories (SFHs) of regions in the nearby spiral galaxies M81 and NGC 300. We use data from the Advanced Camera for Surveys (ACS) Nearby Galaxy Survey Treasury (ANGST) and compare observed color- magnitude diagrams (CMDs) with synthetic CMDs from stellar evolution models to find the best-fitting combination of stellar ages and metallicities. In the outer disk of M81, we probe the stellar populations of small regions which are UV-bright but Ha-faint as well as HII regions. We determine that the HII regions contain more massive stars than the other regions and are therefore consistent with being at least a few Myr younger; however, we cannot rule out a truncated initial mass function as an explanation for the differences between these regions. Our data for NGC 300 cover the location of an unusual optical transient, NGC 300 OT2008-1, which has been speculated to represent a new class of objects. Despite the lack of an optical precursor for this object, we infer the mass of the progenitor by deriving the SFH from the stars surrounding the transient location, under the assumption that since most stars form in clusters, the population should be coeval. We find a star formation event of age 8-13 Myr and determine that the progenitor should be a star which has recently turned off the main sequence, of mass 12-17 [Special characters omitted.] . Expanding our view of NGC 300 to a radial strip of the disk from the center to 5.4 kpc, we divide the galaxy into radial bins and derive the SFH at each location. We find that the percentage of young stars in the outer regions is considerably greater than in the inner regions, but the slope of the surface density of the disk increases only slightly with time.

  6. A high-dispersion molecular gas component in nearby galaxies

    SciTech Connect

    Caldú-Primo, Anahi; Walter, Fabian; Sandstrom, Karin; Schruba, Andreas; Leroy, Adam; De Blok, W. J. G.; Ianjamasimanana, R.; Mogotsi, K. M.

    2013-12-01

    We present a comprehensive study of the velocity dispersion of the atomic (H I) and molecular (H{sub 2}) gas components in the disks (R ≲ R {sub 25}) of a sample of 12 nearby spiral galaxies with moderate inclinations. Our analysis is based on sensitive high-resolution data from the THINGS (atomic gas) and HERACLES (molecular gas) surveys. To obtain reliable measurements of the velocity dispersion, we stack regions several kiloparsecs in size, after accounting for intrinsic velocity shifts due to galactic rotation and large-scale motions. We stack using various parameters: the galactocentric distance, star formation rate surface density, H I surface density, H{sub 2} surface density, and total gas surface density. We fit single Gaussian components to the stacked spectra and measure median velocity dispersions for H I of 11.9 ± 3.1 km s{sup –1} and for CO of 12.0 ± 3.9 km s{sup –1}. The CO velocity dispersions are thus, surprisingly, very similar to the corresponding ones of H I, with an average ratio of σ{sub HI}/σ{sub CO}= 1.0 ± 0.2 irrespective of the stacking parameter. The measured CO velocity dispersions are significantly higher (factor of ∼2) than the traditional picture of a cold molecular gas disk associated with star formation. The high dispersion implies an additional thick molecular gas disk (possibly as thick as the H I disk). Our finding is in agreement with recent sensitive measurements in individual edge-on and face-on galaxies and points toward the general existence of a thick disk of molecular gas, in addition to the well-known thin disk in nearby spiral galaxies.

  7. Origins Space Telescope: Interstellar Medium, Milky Way, and Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Battersby, Cara; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.This presentation will provide a summary of the science case related to the Interstellar Medium (ISM), the Milky Way, and Nearby Galaxies. Origins will enable a comprehensive view of magnetic fields, turbulence, and the multi-phase ISM; connecting physics at all scales, from galaxies to protostellar cores. With unprecedented sensitivity, Origins will measure and characterize the mechanisms of feedback from star formation and Active Galactic Nuclei (AGN) over cosmic time and trace the trail of water from interstellar clouds, to protoplanetary disks, to Earth itself in order to understand the abundance and availability of water for habitable planets.

  8. Neutral ISM, Lyα, and Lyman-continuum in the Nearby Starburst Haro11

    NASA Astrophysics Data System (ADS)

    Rivera-Thorsen, T. Emil; Östlin, Göran; Hayes, Matthew; Puschnig, Johannes

    2017-03-01

    Star-forming galaxies are believed to be a major source of Lyman continuum (LyC) radiation responsible for reionizing the early universe. Direct observations of escaping ionizing radiation have however been sparse and with low escape fractions. In the local universe, only 10 emitters have been observed, with typical escape fractions of a few percent. The mechanisms regulating this escape need to be strongly evolving with redshift in order to account for the epoch of reionization. Gas content and star formation feedback are among the main suspects, known to both regulate neutral gas coverage and evolve with cosmic time. In this paper, we reanalyze Hubble Space Telescope (HST)-Cosmic Origins Spectrograph (COS) spectrocopy of the first detected local LyC leaker, Haro 11. We examine the connection between LyC leakage and Lyα line shape, and feedback-influenced neutral interstellar medium (ISM) properties like kinematics and gas distribution. We discuss the two extremes of an optically thin, density bounded ISM and a riddled, optically thick, ionization bounded ISM, and how Haro 11 fits into theoretical predictions. We find that the most likely ISM model is a clumpy neutral medium embedded in a highly ionized medium with a combined covering fraction of unity and a residual neutral gas column density in the ionized medium high enough to be optically thick to Lyα, but low enough to be at least partly transparent to LyC and undetected in Si ii. This suggests that star formation feedback and galaxy-scale interaction events play a major role in opening passageways for ionizing radiation through the neutral medium. Based on observations with HST-COS, program GO 13017, obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and

  9. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    NASA Technical Reports Server (NTRS)

    vanderWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; Koo, D. C.; Ferguson, H. C.; Scarlata, C.; Hathi, N. P.; Dunlop, J. S.; Newman, J. A.; Dickinson, M.; Jahnke, K.; Salmon, B. W.; deMello, D. F.; Kkocevski, D. D.; Lai, K.; Grogin, N. A.; Rodney, S. A.; Guo, Yicheng

    2012-01-01

    We identify an abundant population of extreme emission line galaxies (EELGs) at redshift z approx. 1.7 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 EELG candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared broad-band magnitudes. Supported by spectroscopic confirmation of strong [OIII] emission lines . with rest-frame equivalent widths approx. 1000A in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are galaxies with approx.10(exp 8) Solar Mass in stellar mass, undergoing an enormous starburst phase with M*/M* of only approx. 15 Myr. These bursts may cause outflows that are strong enough to produce cored dark matter profiles in low-mass galaxies. The individual star formation rates and the co-moving number density (3.7x10(exp -4) Mpc(sup -3) can produce in approx.4 Gyr much of the stellar mass density that is presently contained in 10(exp 8) - 10(exp 9) Solar Mass dwarf galaxies. Therefore, our observations provide a strong indication that many or even most of the stars in present-day dwarf galaxies formed in strong, short-lived bursts, mostly at z > 1.

  10. Extreme Emission Line Galaxies in CANDELS: Broad-Band Selected, Star-Bursting Dwarf Galaxies at Z greater than 1

    NASA Technical Reports Server (NTRS)

    VanDerWel, A.; Straughn, A. N.; Rix, H.-W.; Finkelstein, S. L.; Koekemoer, A. M.; Weiner, B. J.; Wuyts, S.; Bell, E. F.; Faber, S. M.; Trump, J. R.; Koo, D.; Ferguson, H. C.; Scarlata, C.; Hathi, N. P.; Dunlop, J. S.; Newman, J. A.; Kocevski, D. D.; Lai, K.; Grogin, N. A.; Rodney, S. A.; Lee, K.-S.; Guo, Y.

    2011-01-01

    We identify an abundant population of extreme emission line galaxies at redshift z=1.6 - 1.8 in the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS) imaging from Hubble Space Telescope/Wide Field Camera 3 (HST/WFC3). 69 candidates are selected by the large contribution of exceptionally bright emission lines to their near-infrared, broad-band fluxes. Supported by spectroscopic confirmation of strong [OIII] emission lines - with equivalent widths approximately 1000A - in the four candidates that have HST/WFC3 grism observations, we conclude that these objects are dwarf galaxies with approximately 10(exp 8) solar mass in stellar mass, undergoing an enormous star-burst phase with M*/M* of only approximately 10 Myr. The star formation activity and the co-moving number density (3.7 x 10(exp -4) Mpc(exp -3)) imply that strong, short-lived bursts play a significant, perhaps even dominant role in the formation and evolution of dwarf galaxies at z greater than 1. The observed star formation activity can produce in less than 5 Gyr the same amount of stellar mass density as is presently contained in dwarf galaxies. Therefore, our observations provide a strong indication that the stellar populations of present-day dwarf galaxies formed mainly in strong, short-lived bursts, mostly at z greater than 1.

  11. Discovery of a Galaxy Cluster with a Violently Starbursting Core at z = 2.506

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Elbaz, David; Daddi, Emanuele; Finoguenov, Alexis; Liu, Daizhong; Schreiber, Corentin; Martín, Sergio; Strazzullo, Veronica; Valentino, Francesco; van der Burg, Remco; Zanella, Anita; Ciesla, Laure; Gobat, Raphael; Le Brun, Amandine; Pannella, Maurilio; Sargent, Mark; Shu, Xinwen; Tan, Qinghua; Cappelluti, Nico; Li, Yanxia

    2016-09-01

    We report the discovery of a remarkable concentration of massive galaxies with extended X-ray emission at z spec = 2.506, which contains 11 massive (M * ≳ 1011 M ⊙) galaxies in the central 80 kpc region (11.6σ overdensity). We have spectroscopically confirmed 17 member galaxies with 11 from CO and the remaining ones from Hα. The X-ray luminosity, stellar mass content, and velocity dispersion all point to a collapsed, cluster-sized dark matter halo with mass M 200c = 1013.9±0.2 M ⊙, making it the most distant X-ray-detected cluster known to date. Unlike other clusters discovered so far, this structure is dominated by star-forming galaxies (SFGs) in the core with only 2 out of the 11 massive galaxies classified as quiescent. The star formation rate (SFR) in the 80 kpc core reaches ˜3400 M ⊙ yr-1 with a gas depletion time of ˜200 Myr, suggesting that we caught this cluster in rapid build-up of a dense core. The high SFR is driven by both a high abundance of SFGs and a higher starburst fraction (˜25%, compared to 3%-5% in the field). The presence of both a collapsed, cluster-sized halo and a predominant population of massive SFGs suggests that this structure could represent an important transition phase between protoclusters and mature clusters. It provides evidence that the main phase of massive galaxy passivization will take place after galaxies accrete onto the cluster, providing new insights into massive cluster formation at early epochs. The large integrated stellar mass at such high redshift challenges our understanding of massive cluster formation.

  12. Stellar Populations of Highly Magnified Lensed Galaxies Young Starburst at Z to Approximately 2

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2011-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 170, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76 and SGAS J12265L3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 magnitudes allow a detailed study of the stellar populations and physical conditions. We compare star formation rates as measured from the SED fit, the Ha and [O II] .(lambda)3727 emission lines, and the UV+IR bolometric luminosity where 24micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z approx. 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses 3 - 7 x 10(exp 9) Stellar mass, young ages approx. 100 Myr, little dust content E(B - V)=0.10-0.25, and star formation rates around 20- 100 Stellar mass/y. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the build-up of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx. 2. Subject headings: galaxies: high-redshift, strong gravitational lensing, infrared: galaxies

  13. A Robust Test of the Unified Model for Seyfert Galaxies with Implications for the Starburst Phenomenon

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A.

    1997-01-01

    My research involves detailed analysis of X-ray emission from Active Galactic Nuclei (AGN). For over a decade, the paradigm for AGN has rested soundly on the unified model hypothesis, which posits that the only difference between broad-line objects (e.g., Type 1 Seyfert galaxies) and narrow-line objects (e.g., Type 2 Seyferts) is that in the former case our line of sight evades toroidal obscuration surrounding the nucleus, while in the latter, our line of sight is blocked by the optically thick torus. It is well established that some Seyfert 2s contain Seyfert I nuclei (i.e., a hidden broad line region), but whether or not all Seyfert 2s contain obscured Seyfert 1 nuclei or whether some Seyfert 2s are intrinsically Seyfert 2s is not known. Optical, IR, and UV surveys are not appropriate to examine this hypothesis because such emissions are either anisotropic or subject to the effects of obscuration, and thus depend strongly on viewing angle. Hard X-rays, on the other hand, can penetrate gas with column densities as high as 10( exp 24.5) cm(-2) and thus provide reliable, direct probes of the cores of heavily obscured AGN. Combining NASA archival data from the Advanced Satellite of Cosmology and Astrophysics (ASCA), the Rossi X-ray Timing Explorer (RXTE), and Rosat, I am accumulating X-ray data between 0.1 and 60 keV to produce a catalog of the broad-band X-ray spectral properties of Seyfert galaxies. These data will be used to perform concrete tests of the unified model, and (compared with similar data on Starbursts) to examine a possible evolutionary connection between Seyfert and Starburst galaxies.

  14. EVIDENCE FOR AN INTERACTION IN THE NEAREST STARBURSTING DWARF IRREGULAR GALAXY IC 10

    SciTech Connect

    Nidever, David L.; Slater, Colin T.; Bell, Eric F.; Ashley, Trisha; Simpson, Caroline E.; Ott, Jürgen; Johnson, Megan; Stanimirović, Snežana; Putman, Mary; Majewski, Steven R.; Jütte, Eva; Oosterloo, Tom A.; Burton, W. Butler

    2013-12-20

    Using deep 21 cm H I data from the Green Bank Telescope we have detected an ≳18.3 kpc long gaseous extension associated with the starbursting dwarf galaxy IC 10. The newly found feature stretches 1.°3 to the northwest and has a large radial velocity gradient reaching to ∼65 km s{sup –1} lower than the IC 10 systemic velocity. A region of higher column density at the end of the extension that possesses a coherent velocity gradient (∼10 km s{sup –1} across ∼26') transverse to the extension suggests rotation and may be a satellite galaxy of IC 10. The H I mass of IC 10 is 9.5 × 10{sup 7} (d/805 kpc){sup 2} M {sub ☉} and the mass of the new extension is 7.1 × 10{sup 5} (d/805 kpc){sup 2} M {sub ☉}. An IC 10-M31 orbit using known radial velocity and proper motion values for IC 10 show that the H I extension is inconsistent with the trailing portion of the orbit so that an M31-tidal or ram pressure origin seems unlikely. We argue that the most plausible explanation for the new feature is that it is the result of a recent interaction (and possible late merger) with another dwarf galaxy. This interaction could not only have triggered the origin of the recent starburst in IC 10, but could also explain the existence of previously found counter-rotating H I gas in the periphery of the IC 10 which was interpreted as originating from primordial gas infall.

  15. The Host Galaxies of Nearby, Optically Luminous, AGN

    NASA Astrophysics Data System (ADS)

    Petric, Andreea

    2016-01-01

    Coevolution of galaxies and their central black holes (BH) has been the central theme of much of recent extragalactic astronomical research. Observations of the dynamics of stars and gas in the nuclear regions of nearby galaxies suggest that the majority of spheroidal galaxies in the local Universe contain massive BHs and that the masses of those central BH correlate with the velocity dispersions of the stars in the spheroid and the bulge luminosity. Cold ISM is the basic fuel for star-formation and BH growth so its study is essential to understanding how galaxies evolve.I will present high sensitivity observations taken with the Herschel Space Observatory to measure the cold dust content in a sample of 85 nearby (z <= 0.5) QSOs chosen from the optically luminous broad-line PG QSOs sample (QSO1s) and in a complementary sample of 85 narrow-line QSOs (QSO2s) chosen to match the redshift and optical luminosity distribution of the broad-line targets. The FIR data are combined with NIR and MIR measurements from the Two Micron All Sky Survey and the Wide-Field Infrared Survey Explorer to determine their IR spectral energy distributions which we use to assess and compare the aggregate dust properties of QSO1s and QSO2s. I will also present NIR spectroscopy obtained with Gemini's Near-Infrared Spectrograph of a sub-sample of QSO2s and QSO1s which I use to compare the ratio of cold to warm H2 gas that emits in the NIR in the hosts of QSO1s and QSO2s.Finally I will present a comparison of star-formation in QSO1s and QSO2s. For both QSO1s and QSO2s 3stimates of star-formation rates that are based on the total IR continuum emission correlate with those based on the 11.3 micron PAH feature. However, for the QSO1s, star-formation rates estimated from the FIR continuum are higher than those estimated from the 11.3 micron PAH emission. This result can be attributed to a variety of factors including the possible destruction of the PAHs and that, in some sources, a fraction of the

  16. The Impact of Massive Starbursts on the Chemical Evolution of Galaxies

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Henry A.

    Young, compact star clusters containing hundreds to thousands of the most massive OB and Wolf-Rayet type stars are common features of actively star-forming galaxies. Radio-wave H scI and millimeter-wave CO aperture synthesis observations of the interstellar gas in several such systems reveal strong evidence for recent collisions or mergers with other galaxies which probably triggered the present burst. Most of the oxygen in the universe, and to a lesser extent carbon and nitrogen, is synthesized within massive stars and returned to the interstellar gas by stellar winds and supernova explosions as these stars evolve. Yet, spatially-resolved spectroscopic investigations of the ionized gas in several starburst galaxies fail to find any sign of recent nucleosynthesis products in the vicinity of evolved starclusters. The chemical abundances of O, N, He, and probably C, appear very homogeneous on scales of ~1 kpc or less, despite the fact that models of the chemical enrichment expected from a single 106/ Msolar burst show that large localized chemical enhancements should occur. That there is no evidence of localized chemical enrichment within the H scII regions of most metal-poor galaxies suggests the recently-released heavy elements are 'hiding' either in a hot, 106 phase or in a cool neutral atomic or molecular phase. In either case, the timescale for visible enrichment in galaxies appears to exceed the lifetimes of the H scII regions and the spatial scales must exceed 1 kpc. These data are inconsistent with the H scII region 'self-enrichment' or 'pollution' hypothesis. For now, heavy elements produced in starbursts can be considered 'missing', but upcoming X-ray observatories may be able to establish their physical phase and location. Hubble Space Telescope spectroscopic measurements show evidence for a correlation between C and N abundances among galaxies with similar metallicity (O/H). The existence of such a correlation implies that C and N production mechanisms

  17. H I observations of the nearest starburst galaxy NGC 253 with the SKA precursor KAT-7

    NASA Astrophysics Data System (ADS)

    Lucero, D. M.; Carignan, C.; Elson, E. C.; Randriamampandry, T. H.; Jarrett, T. H.; Oosterloo, T. A.; Heald, G. H.

    2015-07-01

    We present H I observations of the Sculptor group starburst spiral galaxy NGC 253, obtained with the Karoo Array Telescope (KAT-7). KAT-7 is a pathfinder for the Square Kilometre Array precursor MeerKAT, under construction. The short baselines and low system temperature of the telescope make it very sensitive to large-scale, low-surface-brightness emission. The KAT-7 observations detected 33 per cent more flux than previous Very Large Array observations, mainly in the outer parts and in the halo for a total H I mass of 2.1 ± 0.1 × 109 M⊙. H I can be found at large distances perpendicular to the plane out to projected distances of ˜9-10 kpc away from the nucleus and ˜13-14 kpc at the edge of the disc. A novel technique, based on interactive profile fitting, was used to separate the main disc gas from the anomalous (halo) gas. The rotation curve (RC) derived for the H I disc confirms that it is declining in the outer parts, as seen in previous optical Fabry-Perot measurements. As for the anomalous component, its RC has a very shallow gradient in the inner parts and turns over at the same radius as the disc, kinematically lagging by 100 km s-1. The kinematics of the observed extra-planar gas is compatible with an outflow due to the central starburst and galactic fountains in the outer parts. However, the gas kinematics shows no evidence for inflow. Analysis of the near-IR WISE data, shows clearly that the star formation rate is compatible with the starburst nature of NGC 253.

  18. Dust extinction of the stellar continua in starburst galaxies: The ultraviolet and optical extinction law

    NASA Technical Reports Server (NTRS)

    Calzetti, Daniela; Kinney, Anne L.; Storchi-Bergmann, Thaisa

    1994-01-01

    We analyze the International Ultraviolet Explorer (IUE) UV and the optical spectra of 39 starburst and blue compact galaxies in order to study the average properties of dust extinction in extended regions of galaxies. The optical spectra have been obtained using an aperture which matches that of IUE, so comparable regions within each galaxy are sampled. The data from the 39 galaxies are compared with five models for the geometrical distribution of dust, adopting as extinction laws both the Milky Way and the Large Magellanic Cloud laws. The commonly used uniform dust screen is included among the models. We find that none of the five models is in satisfactory agreement with the data. In order to understand the discrepancy between the data and the models, we have derived an extinction law directly from the data in the UV and optical wavelength range. The resulting curve is characterized by an overall slope which is more gray than the Milky Way extinction law's slope, and by the absence of the 2175 A dust feature. Remarkably, the difference in optical depth between the Balmer emission lines H(sub alpha) and H(sub beta) is about a factor of 2 larger than the difference in the optical depth between the continuum underlying the two Balmer lines. We interpret this discrepancy as a consequence of the fact that the hot ionizing stars are associated with dustier regions than the cold stellar population is. The absence of the 2175 A dust feature can be due either to the effects of the scattering and clumpiness of the dust or to a chemical composition different from that of the Milky Way dust grains. Disentangling the two interpretations is not easy because of the complexity of the spatial distribution of the emitting regions. The extinction law of the UV and optical spectral continua of extended regions can be applied to the spectra of medium- and high-redshift galaxies, where extended regions of a galaxy are, by necessity, sampled.

  19. Investigating the Processes Driving Low-Mass Galaxy Evolution with Gas Metallicities of Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Ly, Chun; Malkan, Matthew; Nagao, Tohru; Hayashi, Masao; Kashikawa, Nobunari; Shimasaku, Kazuhiro; Motohara, Kentaro

    2013-02-01

    There appears to be a ``fundamental" relationship that links the stellar masses, star-formation rates (SFRs), and gas metallicities of local galaxies. It has been used to constrain the major processes in galaxy evolution. However, it is unclear whether (1) this observed relation holds at earlier cosmic time, and (2) if it applies to low-mass galaxies and/or those with relatively higher specific SFRs (sSFRs). We request follow-up Hectospec spectroscopy %and DEIMOS spectroscopy to obtain gas metallicity measurements in key unexplored domains of galaxy parameter space. We will target Ntarget low-mass high equivalent width (EW) emission-line galaxies at zrange in the Subaru Deep Field (SDF). This sample is a factor of almost 4 larger than the existing data for galaxies with similar redshifts, SFRs and stellar masses. The SDF is ideal for such a survey because of its unique multi-wavelength imaging data that allow us to (1) identify a much higher surface density of high-EW star-forming galaxies over a wide redshift range than in any other survey, and (2) determine stellar masses and SFRs for individual galaxies. With the largest spectroscopic sample of low mass and/or high sSFR galaxies, we will determine the relationships between metallicity, stellar mass, and SFRs for dwarf galaxies. We will examine if the same galaxy evolution processes in massive galaxies also hold for lower mass galaxies over the past six billion years.

  20. Mid-infrared Colors of Dwarf Galaxies: Young Starbursts Mimicking Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Hainline, Kevin N.; Reines, Amy E.; Greene, Jenny E.; Stern, Daniel

    2016-12-01

    Searching for active galactic nuclei (AGNs) in dwarf galaxies is important for our understanding of the seed black holes that formed in the early universe. Here, we test infrared selection methods for AGN activity at low galaxy masses. Our parent sample consists of ˜18,000 nearby dwarf galaxies (M * < 3 × 109 M ⊙, z < 0.055) in the Sloan Digital Sky Survey with significant detections in the first three bands of the AllWISE data release from the Wide-field Infrared Survey Explorer (WISE). First, we demonstrate that the majority of optically selected AGNs in dwarf galaxies are not selected as AGNs using WISE infrared color diagnostics and that the infrared emission is dominated by the host galaxies. We then investigate the infrared properties of optically selected star-forming dwarf galaxies, finding that the galaxies with the reddest infrared colors are the most compact, with blue optical colors, young stellar ages, and large specific star formation rates. These results indicate that great care must be taken when selecting AGNs in dwarf galaxies using infrared colors, as star-forming dwarf galaxies are capable of heating dust in such a way that mimics the infrared colors of more luminous AGNs. In particular, a simple W1-W2 color cut alone should not be used to select AGNs in dwarf galaxies. With these complications in mind, we present a sample of 41 dwarf galaxies that fall in the WISE infrared color space typically occupied by more luminous AGNs and that are worthy of follow-up observations.

  1. Motions in Nearby Galaxy Cluster Reveal Presence of Hidden Superstructure

    NASA Astrophysics Data System (ADS)

    2004-09-01

    A nearby galaxy cluster is facing an intergalactic headwind as it is pulled by an underlying superstructure of dark matter, according to new evidence from NASA's Chandra X-ray Observatory. Astronomers think that most of the matter in the universe is concentrated in long large filaments of dark matter and that galaxy clusters are formed where these filaments intersect. A Chandra survey of the Fornax galaxy cluster revealed a vast, swept-back cloud of hot gas near the center of the cluster. This geometry indicates that the hot gas cloud, which is several hundred thousand light years in length, is moving rapidly through a larger, less dense cloud of gas. The motion of the core gas cloud, together with optical observations of a group of galaxies racing inward on a collision course with it, suggests that an unseen, large structure is collapsing and drawing everything toward a common center of gravity. X-ray Image of Fornax with labels X-ray Image of Fornax with labels "At a relatively nearby distance of about 60 million light years, the Fornax cluster represents a crucial laboratory for studying the interplay of galaxies, hot gas and dark matter as the cluster evolves." said Caleb Scharf of Columbia University in New York, NY, lead author of a paper describing the Chandra survey that was presented at an American Astronomical Society meeting in New Orleans, LA. "What we are seeing could be associated directly with the intergalactic gas surrounding a very large scale structure that stretches over millions of light years." The infalling galaxy group, whose motion was detected by Michael Drinkwater of the University of Melbourne in Australia, and colleagues, is about 3 million light years from the cluster core, so a collision with the core will not occur for a few billion years. Insight as to how this collision will look is provided by the elliptical galaxy NGC 1404 that is plunging into the core of the cluster for the first time. As discussed by Scharf and another group

  2. Diverse stellar haloes in nearby Milky Way mass disc galaxies

    NASA Astrophysics Data System (ADS)

    Harmsen, Benjamin; Monachesi, Antonela; Bell, Eric F.; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; Holwerda, Benne W.

    2017-04-01

    We have examined the resolved stellar populations at large galactocentric distances along the minor axis (from 10 kpc up to between 40 and 75 kpc), with limited major axis coverage, of six nearby highly inclined Milky Way (MW) mass disc galaxies using Hubble Space Telescope data from the Galaxy haloes, Outer discs, Substructure, Thick discs, and Star clusters (GHOSTS) survey. We select red giant branch stars to derive stellar halo density profiles. The projected minor axis density profiles can be approximated by power laws with projected slopes of -2 to -3.7 and a diversity of stellar halo masses of 1-6 × 109 M⊙, or 2-14 per cent of the total galaxy stellar masses. The typical intrinsic scatter around a smooth power-law fit is 0.05-0.1 dex owing to substructure. By comparing the minor and major axis profiles, we infer projected axis ratios c/a at ∼25 kpc between 0.4and0.75. The GHOSTS stellar haloes are diverse, lying between the extremes charted out by the (rather atypical) haloes of the MW and M31. We find a strong correlation between the stellar halo metallicities and the stellar halo masses. We compare our results with cosmological models, finding good agreement between our observations and accretion-only models where the stellar haloes are formed by the disruption of dwarf satellites. In particular, the strong observed correlation between stellar halo metallicity and mass is naturally reproduced. Low-resolution hydrodynamical models have unrealistically high stellar halo masses. Current high-resolution hydrodynamical models appear to predict stellar halo masses somewhat higher than observed but with reasonable metallicities, metallicity gradients, and density profiles.

  3. Hα kinematics of the Spitzer Infrared Nearby Galaxies Survey - II

    NASA Astrophysics Data System (ADS)

    Dicaire, I.; Carignan, C.; Amram, P.; Hernandez, O.; Chemin, L.; Daigle, O.; de Denus-Baillargeon, M.-M.; Balkowski, C.; Boselli, A.; Fathi, K.; Kennicutt, R. C.

    2008-04-01

    This is the second part of an Hα kinematics follow-up survey of the Spitzer Infrared Nearby Galaxies Survey (SINGS) sample. The aim of this paper is to shed new light on the role of baryons and their kinematics and on the dark/luminous matter relation in the star-forming regions of galaxies, in relation with studies at other wavelengths. The data for 37 galaxies are presented. The observations were made using Fabry-Perot interferometry with the photon-counting camera FaNTOmM on four different telescopes, namely the Canada-France-Hawaii 3.6-m, the ESO La Silla 3.6-m, the William Herschel 4.2-m and the Observatoire du mont Mégantic 1.6-m telescopes. The velocity fields are computed using custom IDL routines designed for an optimal use of the data. The kinematical parameters and rotation curves are derived using the GIPSY software. It is shown that non-circular motions associated with galactic bars affect the kinematical parameters fitting and the velocity gradient of the rotation curves. This leads to incorrect determinations of the baryonic and dark matter distributions in the mass models derived from those rotation curves. Based on observations made with the ESO 3.60-m telescope at La Silla Observatories under programme ID 076.B-0859 and on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France and the University of Hawaii. E-mail: isabelle@astro.umontreal.ca (ID);claude.carignan@umontreal.ca (CC) ‡ Visiting Astronomer, Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France and the University of Hawaii.

  4. STAR CLUSTER POPULATIONS IN THE OUTER DISKS OF NEARBY GALAXIES

    SciTech Connect

    Herbert-Fort, Stephane; Zaritsky, Dennis; Di Paola, Andrea; Pogge, Richard W.; Ragazzoni, Roberto E-mail: dennis.zaritsky@gmail.com

    2012-08-01

    We present a Large Binocular Telescope imaging study that characterizes the star cluster component of nearby galaxy outer disks (beyond the optical radius R{sub 25}). Expanding on the pilot project of Herbert-Fort et al., we present deep ({approx}27.5 mag V-band point-source limiting magnitude) U- and V-band imaging of six galaxies: IC 4182, NGC 3351, NGC 4736, NGC 4826, NGC 5474, and NGC 6503. We find that the outer disk of each galaxy is populated with marginally resolved star clusters with masses {approx}10{sup 3} M{sub Sun} and ages up to {approx}1 Gyr (masses and ages are limited by the depth of our imaging and uncertainties are large given how photometry can be strongly affected by the presence or absence of a few stars in such low-mass systems), and that they are typically found out to at least 2 R{sub 25} but sometimes as far as 3-4 R{sub 25}-even beyond the apparent H I disk. The mean rate of cluster formation for 1 R{sub 25} {<=} R {<=} 1.5 R{sub 25} is at least one every {approx}2.5 Myr and the clusters are spatially correlated with the H I, most strongly with higher density gas near the periphery of the optical disk and with lower density neutral gas at the H I disk periphery. We hypothesize that the clusters near the edge of the optical disk are formed in the extension of spiral structure from the inner disk and are a fairly consistent phenomenon and that the clusters formed at the periphery of the H I disk are the result of accretion episodes.

  5. RESOLVED NEAR-INFRARED STELLAR POPULATIONS IN NEARBY GALAXIES

    SciTech Connect

    Dalcanton, Julianne J.; Williams, Benjamin F.; Rosenfield, Philip A.; Gilbert, Karoline E-mail: ben@astro.washington.edu E-mail: kgilbert@astro.washington.edu; and others

    2012-01-01

    We present near-infrared (NIR) color-magnitude diagrams (CMDs) for the resolved stellar populations within 26 fields of 23 nearby galaxies ({approx}< 4 Mpc), based on images in the F110W and F160W filters taken with the Wide-Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). The CMDs are measured in regions spanning a wide range of star formation histories, including both old dormant and young star-forming populations. We match key NIR CMD features with their counterparts in more familiar optical CMDs, and identify the red core helium-burning (RHeB) sequence as a significant contributor to the NIR flux in stellar populations younger than a few 100 Myr old. The strength of this feature suggests that the NIR mass-to-light ratio can vary significantly on short timescales in star-forming systems. The NIR luminosity of star-forming galaxies is therefore not necessarily proportional to the stellar mass. We note that these individual RHeB stars may also be misidentified as old stellar clusters in images of nearby galaxies. For older stellar populations, we discuss the CMD location of asymptotic giant branch (AGB) stars in the HST filter set and explore the separation of AGB subpopulations using a combination of optical and NIR colors. We empirically calibrate the magnitude of the NIR tip of the red giant branch in F160W as a function of color, allowing future observations in this widely adopted filter set to be used for distance measurements. We also analyze the properties of the NIR red giant branch (RGB) as a function of metallicity, showing a clear trend between NIR RGB color and metallicity. However, based on the current study, it appears unlikely that the slope of the NIR RGB can be used as an effective metallicity indicator in extragalactic systems with comparable data. Finally, we highlight issues with scattered light in the WFC3, which becomes significant for exposures taken close to a bright Earth limb.

  6. OBSERVATIONS OF STARBURST GALAXIES WITH FAR-ULTRAVIOLET SPECTROGRAPHIC EXPLORER: GALACTIC FEEDBACK IN THE LOCAL UNIVERSE

    SciTech Connect

    Grimes, J. P.; Heckman, T.; Meurer, G.; Strickland, D.; Aloisi, A.; Leitherer, C.; Sembach, K.; Calzetti, D.; Martin, C. L. E-mail: heckman@pha.jhu.edu E-mail: dks@pha.jhu.edu E-mail: leitherer@stsci.edu E-mail: cmartin@physics.ucsb.edu

    2009-03-15

    We have analyzed FUSE (905-1187 A) spectra of a sample of 16 local starburst galaxies. These galaxies cover almost three orders of magnitude in star-formation rates and over two orders of magnitude in stellar mass. Absorption features from the stars and interstellar medium are observed in all the spectra. The strongest interstellar absorption features are generally blue-shifted by {approx} 50-300 km s{sup -1}, implying the almost ubiquitous presence of starburst-driven galactic winds in this sample. The outflow velocites increase with both the star-formation rate and the star-formation rate per unit stellar mass, consistent with a galactic wind, driven by the population of massive stars. We find outflowing coronal-phase gas (T {approx}10{sup 5.5} K) detected via the O VI absorption line in nearly every galaxy. The O VI absorption-line profile is optically thin, is generally weak near the galaxy-systemic velocity, and has a higher mean outflow velocity than seen in the lower ionization lines. The relationship between the line width and column density for the O VI absorbing gas is in good agreement with expectations for radiatively cooling and outflowing gas. Such gas will be created in the interaction of the hot out-rushing wind seen in X-ray emission and cool dense ambient material. O VI emission is not generally detected in our sample, suggesting that radiative cooling by the coronal gas is not dynamically significant in draining energy from galactic winds. We find that the measured outflow velocities in the H I and H II phases of the interstellar gas in a given galaxy increase with the strength (equivalent width) of the absorption feature and not with the ionization potential of the species. The strong lines often have profiles consisting of a broad and optically-thick component centered near the galaxy-systemic velocity and weaker but highly blue-shifted absorption. This suggests that the outflowing gas with high velocity has a lower column density than the more

  7. Uv Imaging of Circumnuclear Starburst Rings

    NASA Astrophysics Data System (ADS)

    Colina, Luis

    1996-07-01

    We propose to obtain F218W WFPC images of a well defined sample of nearby galaxies with face-on circumnuclear starburst rings, and covering different levels of activity from pure starbursts to Seyfert 1 {AGNs}. These high resolution images will allow to generate for the first time an homogeneous database with the UV properties of about 60 individual circumnuclear star-forming knots. The use of the database will allow for the first time a direct and quantitative determination of basic ultraviolet properties of individual nuclear/circumnuclear star-forming knots, and of the entire starburst ring, such as: {a} their size and structure, {b} their UV luminosity function and, {c} their contribution to the UV energy output in composite AGN+starburst galaxies. The database will help in our understanding of high redshift blue galaxies, thought to be star-forming galaxies, where the flux detected in optical filters corresponds to flux emitted at UV {1500-3000Angstrom} rest frame wavelengths. The requested UV images will be combined with ROSAT/HRI images to characterize for the first time the high energy end, i.e. UV to soft X-rays, of circumnuclear starburst rings.

  8. Stellar Populations of Highly Magnified Lensed Galaxies: Young Starbursts at Z approximately 2

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2012-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions (SEDs) and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 1.70, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76, and SGAS J122651.3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 mag allow a detailed study of the stellar populations and physical conditions. We compare star formation rates (SFRs) as measured from the SED fit, the Ha and [O II] ?3727 emission lines, and the UV+IR bolometric luminosity where 24 micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses (3-7) ? 10(exp 9)Solar M young ages approx 100 Myr, little dust content E(B - V) = 0.10-0.25, and SFRs around 20-100 solar M/ yr. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the buildup of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx 2.

  9. Stellar Populations of Highly Magnified Lensed Galaxies: Young Starbursts at z ~ 2

    NASA Astrophysics Data System (ADS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2012-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions (SEDs) and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 1.70, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76, and SGAS J122651.3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 mag allow a detailed study of the stellar populations and physical conditions. We compare star formation rates (SFRs) as measured from the SED fit, the Hα and [O II] λ3727 emission lines, and the UV+IR bolometric luminosity where 24 μm photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z ~ 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses (3-7) × 109 M ⊙, young ages ~100 Myr, little dust content E(B - V) = 0.10-0.25, and SFRs around 20-100 M ⊙ yr-1. Compared to typical values for the galaxy population at z ~ 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the buildup of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z ~ 2. Based in part on observations collected at the 3.5 m Apache Point Observatory telescope in New Mexico, which is owned and operated by the Astrophysical Research Consortium.

  10. Chandra Examines Black Holes Large and Small in Nearby Galaxy

    NASA Astrophysics Data System (ADS)

    2001-05-01

    Probing a large, nearby galaxy in the constellation of Circinus, NASA’s Chandra X-ray Observatory presents a new view of both the galaxy’s supermassive black hole and a host of potential smaller black holes sprinkled throughout its spiral arms. The results include the first detection of a black hole’s periodic variability in X-rays outside our galactic neighborhood. Astronomers from Penn State University used Chandra to discover a variable object within the dozen or so X-ray emitting sources sprinkled throughout the Circinus galaxy. The intensity of X-rays from this source changes on a cycle of 7.5 hours - the first time this "periodic variability" has been detected at X-ray wavelengths in an object outside the "Local Group" of galaxies. And, along with its brightness, this evidence strongly suggests that the system contains a black hole some 50 times the mass of the Sun. "Extremely luminous X-ray sources such as this one appear to be common among other galaxies," said Franz Bauer, a postdoctoral scholar at Penn State and lead author of a July 2001 paper in The Astronomical Journal. "But until Chandra, we have never had an instrument that could clearly identify whether they were simply massive X-ray binary systems, or if they represented a new class of objects" "The periodic variability in the Chandra data of Circinus provides us with a key signature that these objects are indeed X-ray binary systems," continued Bauer. "This is important because black holes with masses much larger than 10 times the mass of the Sun such as this one are difficult to explain under current theories of star formation and destruction. Definitively finding a periodic signal in one allows us to test some of our past assumptions." The X-ray data acquired by two independent teams -- one at Penn State and George Mason University and the other at the University of Maryland -- also provide evidence that strongly supports the "unified model," a theory in which a large doughnut-shaped ring

  11. Spatially resolved star formation relation in two HI-rich galaxies with central post-starburst signature

    NASA Astrophysics Data System (ADS)

    Klitsch, Anne; Zwaan, Martin A.; Kuntschner, Harald; Couch, Warrick J.; Pracy, Michael B.; Owers, Matt

    2017-04-01

    Context. E+A galaxies are post-starburst systems that are identified based on their optical spectra. These galaxies contain a substantial young A-type stellar component but display no emission lines, which indicates only little ongoing star formation (SF). HI 21 cm line emission is found in approximately half of the nearby E+A galaxies, indicating that they contain a reservoir of gas that could fuel active SF. Aims: We study the distribution and kinematics of atomic and molecular gas in two HI-rich galaxies, which show a typical E+A spectrum at the centre and SF at larger radii. From our results we aim to infer whether the SF activity of these galaxies is consistent with the activity seen in disc galaxies, or if it indicates a transition towards another evolutionary phase. Methods: We present newly obtained high spatial resolution radio interferometric observations of the HI 21 cm emission line using the Karl Jansky Very Large Array (VLA) and of the CO(1-0) emission line using the Atacama Large Millimeter/submillimeter Array (ALMA). We combine these data sets to predict the star formation rate (SFR) using a pressure-based SF relation and show that it does not correlate well with the SFR derived from Hα on sub-kpc scales. We apply a recently developed statistical model for the small-scale behaviour of the SF relation to predict and interpret the observed scatter. Results: We find regularly rotating HI gas that is smoothly distributed across the entire disc. The CO(1-0) emission line is not detected for either of the two galaxies. The derived upper limit on the CO mass implies a molecular gas depletion time of tdepl ≲ 20 Myr. However, because of the low metallicity, the CO-to-H2 conversion factor is highly uncertain. In the relations between the Hα-based SFR and the HI mass, we observe a substantial scatter we demonstrate results from small-number statistics of independent SF regions on sub-kpc scales. Conclusions: We confirm the HI-richness of ESO534-G001 and 2d

  12. 2D kinematical study in local luminous compact blue galaxies. Starburst origin in UCM2325+2318

    NASA Astrophysics Data System (ADS)

    Castillo-Morales, A.; Pérez-Gallego, J.; Gallego, J.; Guzmán, R.; Castander, F.; Garland, C.; Gruel, N.; Pisano, D. J.; Muñoz-Mateos, J. C.; Ocaña, F.; Zamorano, J.

    2013-05-01

    Luminous Compact Blue Galaxies (LCBGs) are small, but vigorously star forming galaxies. Their presence at different redshifts denotes their cosmological relevance and implies that local starburst galaxies, when properly selected, are unique laboratories for studying the complex ecosystem of the star formation process over time. We have selected a representative sample of 22 LCBGs from the SDSS and UCM databases which, although small, provides an excellent reference for comparison with current and future surveys of similar starbursts at high-z. We are carrying out a 2D optical spectroscopic study of this LCBG sample, including spatially resolved maps of kinematics, extinction, SFR and metallicity. This will help us to answer questions regarding the nature of these objects. In this poster we show our results on the kinematical study (Pérez-Gallego et al. 2011) which allows us to classify these galaxies into three different classes: rotating disk (RD) 48%, perturbed rotation (PR) 28% and complex kinematics (CK) 24%. We find 5% of objects show evidence of a recent major merger, 10% of a minor merger, and 45% of a companion. This argues in favor of ongoing interactions with close companions as a mechanism for the enhanced star formation activity in these galaxies. We find only 5% of objects with clear evidence of AGN activity, and 27% with kinematics consistent with SN-driven galactic winds. Therefore, a different mechanism may be responsible for quenching the star formation in LCBGs. The detailed analysis of the physical properties for each galaxy in the sample is on progress and we show in this poster the results on UCM2325+2318 as a prototype LCBG. Between the possible mechanisms to explain the starburst activity in this galaxy, our 2D spectroscopic data support the scenario of an on-going interaction with the possibility for clump B to be the dwarf satellite galaxy (Castillo-Morales et al. 2011, Pérez-Gallego et al. 2010).

  13. Modelling galaxy spectra in presence of interstellar dust - III. From nearby galaxies to the distant Universe

    NASA Astrophysics Data System (ADS)

    Cassarà, L. P.; Piovan, L.; Chiosi, C.

    2015-07-01

    Improving upon the standard evolutionary population synthesis technique, we present spectrophotometric models of galaxies with morphology going from spherical structures to discs, properly accounting for the effect of dust in the interstellar medium (ISM). The models contain three main physical components: the diffuse ISM made of gas and dust, the complexes of molecular clouds where active star formation occurs, and stars of any age and chemical composition. These models are based on robust evolutionary chemical description providing the total amount of gas and stars present at any age, and matching the properties of galaxies of different morphological types. We have considered the results obtained by Piovan et al. for the properties of the ISM, and those by Cassarà et al. for the spectral energy distribution (SED) of single stellar populations, both in presence of dust, to model the integral SEDs of galaxies of different morphological types, going from pure bulges to discs passing through a number of composite systems with different combinations of the two components. The first part of the paper is devoted to recall the technical details of the method and the basic relations driving the interaction between the physical components of the galaxy. Then, the main parameters are examined and their effects on the SED of three prototype galaxies are highlighted. The theoretical SEDs nicely match the observational ones both for nearby galaxies and those at high redshift.

  14. DIRECT DETECTIONS OF YOUNG STARS IN NEARBY ELLIPTICAL GALAXIES

    SciTech Connect

    Ford, H. Alyson; Bregman, Joel N.

    2013-06-20

    Small amounts of star formation in elliptical galaxies are suggested by several results: surprisingly young ages from optical line indices, cooling X-ray gas, and mid-infrared dust emission. Such star formation has previously been difficult to directly detect, but using ultraviolet Hubble Space Telescope Wide Field Camera 3 imaging, we have identified individual young stars and star clusters in four nearby ellipticals. Ongoing star formation is detected in all galaxies, including three ellipticals that have previously exhibited potential signposts of star-forming conditions (NGC 4636, NGC 4697, and NGC 4374), as well as the typical ''red and dead'' NGC 3379. The current star formation in our closest targets, where we are most complete, is between 2.0 and 9.8 Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}. The star formation history was roughly constant from 0.5 to 1.5 Gyr (at (3-5) Multiplication-Sign 10{sup -4} M{sub Sun} yr{sup -1}), but decreased by a factor of several in the past 0.3 Gyr. Most star clusters have a mass between 10{sup 2} and 10{sup 4} M{sub Sun }. The specific star formation rates of {approx}10{sup -16} yr{sup -1} (at the present day) or {approx}10{sup -14} yr{sup -1} (when averaging over the past Gyr) imply that a fraction 10{sup -8} of the stellar mass is younger than 100 Myr and 10{sup -5} is younger than 1 Gyr, quantifying the level of frosting of recent star formation over the otherwise passive stellar population. There is no obvious correlation between either the presence or spatial distribution of postulated star formation indicators and the star formation we detect.

  15. Star Formation and Supercluster Environment of 107 nearby Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.; Einasto, Maret; Vennik, Jaan

    2017-01-01

    We analyze the relationship between star formation (SF), substructure, and supercluster environment in a sample of 107 nearby galaxy clusters using data from the Sloan Digital Sky Survey. Previous works have investigated the relationships between SF and cluster substructure, and cluster substructure and supercluster environment, but definitive conclusions relating all three of these variables has remained elusive. We find an inverse relationship between cluster SF fraction (fSF) and supercluster environment density, calculated using the Galaxy luminosity density field at a smoothing length of 8 h‑1 Mpc (D8). The slope of fSF versus D8 is ‑0.008 ± 0.002. The fSF of clusters located in low-density large-scale environments, 0.244 ± 0.011, is higher than for clusters located in high-density supercluster cores, 0.202 ± 0.014. We also divide superclusters, according to their morphology, into filament- and spider-type systems. The inverse relationship between cluster fSF and large-scale density is dominated by filament- rather than spider-type superclusters. In high-density cores of superclusters, we find a higher fSF in spider-type superclusters, 0.229 ± 0.016, than in filament-type superclusters, 0.166 ± 0.019. Using principal component analysis, we confirm these results and the direct correlation between cluster substructure and SF. These results indicate that cluster SF is affected by both the dynamical age of the cluster (younger systems exhibit higher amounts of SF); the large-scale density of the supercluster environment (high-density core regions exhibit lower amounts of SF); and supercluster morphology (spider-type superclusters exhibit higher amounts of SF at high densities).

  16. Spitzer Observations of MAMBO Galaxies: Weeding Out Active Nuclei in Starbursting Protoellipticals

    NASA Astrophysics Data System (ADS)

    Ivison, R. J.; Greve, T. R.; Serjeant, S.; Bertoldi, F.; Egami, E.; Mortier, A. M. J.; Alonso-Herrero, A.; Barmby, P.; Bei, L.; Dole, H.; Engelbracht, C. W.; Fazio, G. G.; Frayer, D. T.; Gordon, K. D.; Hines, D. C.; Huang, J.-S.; Le Floc'h, E.; Misselt, K. A.; Miyazaki, S.; Morrison, J. E.; Papovich, C.; Pérez-González, P. G.; Rieke, M. J.; Rieke, G. H.; Rigby, J.; Rigopoulou, D.; Smail, I.; Wilson, G.; Willner, S. P.

    2004-09-01

    We present 3.6-24 μm Spitzer observations of an unbiased sample of nine luminous, dusty galaxies selected at 1200 μm by MAMBO on the IRAM 30 m telescope, a population akin to the well-known submillimeter or SCUBA galaxies (hereafter SMGs). Owing to the coarse resolution of submillimeter/millimeter cameras, SMGs have traditionally been difficult to identify at other wavelengths. We compare our multiwavelength catalogs to show that the overlap between 24 and 1200 μm must be close to complete at these flux levels. We find that all (4/4) of the most secure >=4 σ SMGs have >=4 σ counterparts at 1.4 GHz, while the fraction drops to 7/9 using all >=3 σ SMGs. We show that combining mid-infrared (MIR) and marginal (>=3 σ) radio detections provides plausible identifications in the remaining cases, enabling us to identify the complete sample. Accretion onto an obscured central engine is betrayed by the shape of the MIR continuum emission for several sources, confirming Spitzer's potential to weed out active galaxies. We demonstrate the power of an S24μm/S8μm versus S8μm/S4.5μm color-color plot as a diagnostic for this purpose. However, we conclude that the majority (~75%) of SMGs have rest-frame mid/far-IR spectral energy distributions commensurate with obscured starbursts. Sensitive 24 μm observations are clearly a useful route to identify and characterize reliable counterparts to high-redshift far-IR-bright galaxies, complementing what is possible via deep radio imaging.

  17. An enhanced fraction of starbursting galaxies among high Eddington ratio AGNs

    NASA Astrophysics Data System (ADS)

    Bernhard, E.; Mullaney, J. R.; Daddi, E.; Ciesla, L.; Schreiber, C.

    2016-07-01

    We investigate the star-forming properties of 1620 X-ray selected active galactic nuclei (AGN) host galaxies as a function of their specific X-ray luminosity (i.e. X-ray luminosity per unit host stellar mass) - a proxy of the Eddington ratio. Our motivation is to determine whether there is any evidence of a suppression of star formation at high Eddington ratios, which may hint towards `AGN feedback' effects. Star formation rates (SFRs) are derived from fits to Herschel-measured far-infrared spectral energy distributions, taking into account any contamination from the AGN. Herschel-undetected AGNs are included via stacking analyses to provide average SFRs in bins of redshift and specific X-ray luminosity (spanning 0.01 lesssim L_X/M_{ast } lesssim 100 L_{{⊙}} M_{{⊙}}^{-1}). After normalizing for the effects of mass and redshift arising from the evolving galaxy main sequence, we find that the SFRs of high specific luminosity AGNs are slightly enhanced compared to their lower specific luminosity counterparts. This suggests that the SFR distribution of AGN hosts changes with specific X-ray luminosity, a result reinforced by our finding of a significantly higher fraction of starbursting hosts among high specific luminosity AGNs compared to that of the general star-forming galaxy population (i.e. 8-10 per cent versus 3 per cent). Contrary to our original motivation, our findings suggest that high specific luminosity AGNs are more likely to reside in galaxies with enhanced levels of star formation.

  18. OT1_dweedman_1: Comparing [CII] 158 micron Luminosities to Spectral Properties of Luminous Starburst Galaxies and AGN

    NASA Astrophysics Data System (ADS)

    Weedman, D.

    2010-07-01

    Herschel PACS spectroscopy of the [CII] emission line at 158 microns is proposed for a carefully selected sample of 123 sources that already have complete low and high resolution mid-infrared spectra between 5 microns and 35 microns from the Spitzer Infrared Spectrograph, and which also have spectral energy distributions (SEDs) from IRAS and Akari photometry. [CII] 158 um is the strongest far-infrared emission line and therefore crucial to compare with other features in luminous, dusty galaxies. Sources have 0.004 < z < 0.34 and 43.0 < log L(IR) < 46.8 (erg per sec) and cover the full range of starburst galaxy and AGN classifications. Obtaining these [CII] line fluxes with PACS will allow: 1. determining how precisely [CII] luminosity measures star formation rate by comparing to PAH features and emission lines that arise in starburst galaxies; 2. determining how [CII] luminosity and equivalent width changes with starburst/AGN fraction, by comparing with strength and equivalent width of PAH and [NeII] emission arising from starbursts, and with strength of high ionization lines [NeV] and [OIV] and silicate absorption or emission arising from AGN; 3. determining how [CII] luminosity and equivalent width changes with dust temperature and bolometric luminosity, as derived from spectral energy distributions, and whether this depends on the starburst/AGN fraction. These determinations will allow interpretation of high redshift sources for which the only available diagnostics are the luminosity and equivalent width of the [CII] line and the far-infrared rest-frame SED. The total observing program requires 20.2 hours of Herschel observing time.

  19. Ultraviolet Signposts of Resonant Dynamics in the Starburst-ringed SAB Galaxy M94 (NGC 4736)

    NASA Astrophysics Data System (ADS)

    Waller, William H.; Fanelli, Michael N.; Keel, William C.; Bohlin, Ralph; Collins, Nicholas R.; Madore, Barry F.; Marcum, Pamela M.; Neff, Susan G.; O'Connell, Robert W.; Offenberg, Joel D.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    2001-03-01

    The dynamic orchestration of star-birth activity in the starburst-ringed galaxy M94 (NGC 4736) is investigated using images from the Ultraviolet Imaging Telescope (UIT; far-ultraviolet [FUV] band), Hubble Space Telescope (HST; near-ultraviolet [NUV] band), Kitt Peak 0.9 m telescope (Hα, R, and I bands), and Palomar 5 m telescope (B band), along with spectra from the International Ultraviolet Explorer (IUE) and the Lick 1 m telescope. The wide-field UIT image shows FUV emission from (1) an elongated nucleus, (2) a diffuse inner disk, where Hα is observed in absorption, (3) a bright inner ring of H II regions at the perimeter of the inner disk (R=48"=1.1 kpc), and (4) two 500 pc size knots of hot stars exterior to the ring on diametrically opposite sides of the nucleus (R=130"=2.9 kpc). The HST Faint Object Camera image resolves the NUV emission from the nuclear region into a bright core and a faint 20" long ``minibar'' at a position angle of 30°. Optical and IUE spectroscopy of the nucleus and diffuse inner disk indicates a ~107-108 yr old stellar population from low-level star-birth activity blended with some LINER activity. Analysis of the Hα-, FUV-, NUV-, B-, R-, and I-band emissions, along with other observed tracers of stars and gas in M94, indicates that most of the star formation is being orchestrated via ring-bar dynamics, involving the nuclear minibar, inner ring, oval disk, and outer ring. The inner starburst ring and bisymmetric knots at intermediate radius, in particular, argue for bar-mediated resonances as the primary drivers of evolution in M94 at the present epoch. Similar processes may be governing the evolution of the ``core-dominated'' galaxies that have been observed at high redshift. The gravitationally lensed ``Pretzel Galaxy'' (0024+1654) at a redshift of ~1.5 provides an important precedent in this regard.

  20. Gas disks and supermassive black holes in nearby radio galaxies

    NASA Astrophysics Data System (ADS)

    Noel-Storr, Jacob

    2004-12-01

    We present a detailed analysis of a set of medium- resolution spectra, obtained by the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope, of the emission-line gas present in the nuclei of a complete sample of 21 nearby, early-type galaxies with radio jets. For each galaxy nucleus we present spectroscopic data in the region of hydrogen-alpha and the kinematics derived therefrom. We find in 67% of the nuclei the gas appears to be rotating and, with one exception, the cases where rotation is not seen are either face on or have complex morphologies. We find that in 62% of the nuclei the fit to the central spectrum is improved by inclusion of a broad emission-line component. These broad components have a mean velocity dispersion of 1349 kilometers per second (with a standard deviation of 345 kilometers per second) and are redshifted from the narrow-line components (assuming an origin in hydrogen-alpha) by 486 kilometers per second (with a standard deviation of 443 kilometers per second). We generated model velocity profiles including no black hole, a one hundred million solar mass black hole and a nine hundred million solar mass black hole. We compared the predicted profiles to the observed velocity profiles from the above spectra, finding kinematic signatures compatible with black holes greater than one hundred million solar masses in 53% of the sample. We suspect that hydrodynamic flow of the gas is a significant factor in the nucleus of NGC 2329. We found hints of jet-disk interaction in 24% of the sample nuclei and signs of twists or warps in 19%. Twenty-four percent of the velocity profiles show signs of multiple kinematic components. We suggest that the gas disks in these galaxies are generally not well-settled systems. We characterize the kinematic state of the nuclear gas through three weighted mean parameters, and find that again the disks appear not to be well-settled. We show evidence of a connection between the stellar and gas velocity

  1. A Supermassive Black Hole in a Nearby Galaxy

    NASA Astrophysics Data System (ADS)

    2001-03-01

    ISAAC Inspects the Center of Centaurus A Summary The nearby galaxy Centaurus A harbours a supermassive black hole at its centre . Using the ISAAC instrument at the ESO Very Large Telescope (VLT) , an international team of astronomers [1] has peered right through the spectacular dust lane of the peculiar galaxy Centaurus A , located approximately 11 million light-years away. They were able to probe the thin disk of gas that surrounds the very center of this galaxy. The new measurements show that the compact nucleus in the middle weighs more than 200 million solar masses ! This is too much just to be due to normal stars. The astronomers thus conclude the existence of a supermassive black hole lurking at the centre of Centaurus A . PR Photo 08a/01 : Visual image of the centre of Centaurus A . PR Photo 08b/01 : ISAAC spectrum of the centre of Centaurus A . PR Photo 08c/01 : The corresponding rotation curve from which the mass of the black hole was deduced. A well studied galaxy with a hidden center ESO PR Photo 08a/01 ESO PR Photo 08a/01 [Preview - JPEG: 352 x 400 pix - 160k] [Normal - JPEG: 704 x 800 pix - 376k] Caption : PR Photo 08a/01 shows a small area in the direction of the heavily obscured centre of the peculiar radio galaxy Centaurus A , as seen in visual light. It measures about 80 x 80 arcsec 2 , or 4400 x 4400 light-year 2 at the distance of this galaxy, and has been reproduced from exposures made with the FORS2 multi-mode instrument at the 8.2-m VLT KUEYEN telescope at Paranal. The full field may be seen in PR Photo 05b/00. Technical information about this photo is available below. The galaxy Centaurus A (NGC 5128) is one of the most studied objects in the southern sky. The unique appearance of this galaxy was already noticed by the famous British astronomer John Herschel in 1847 who catalogued the southern skies and made a comprehensive list of "nebulae". A fine photo of Centaurus A from the VLT was published last year as PR Photo 05b/00. Herschel could

  2. Dusty Winds: Extraplanar Polycyclic Aromatic Hydrocarbon Features of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    McCormick, Alexander; Veilleux, Sylvain; Rupke, David S. N.

    2013-09-01

    Recent observations have shown the presence of dust and molecular material in galactic winds, but relatively little is known about the distribution of these outflow components. To shed some light on this issue, we have used IRAC images from the Spitzer Space Telescope archive to investigate polycyclic aromatic hydrocarbon (PAH) emission from a sample of 16 local galaxies with known winds. Our focus on nearby sources (median distance 8.6 Mpc) has revealed detailed PAH structure in the winds and allowed us to measure extraplanar PAH emission. We have identified extraplanar PAH features on scales of ~0.8-6.0 kpc. We find a nearly linear correlation between the amount of extraplanar PAH emission and the total infrared flux, a proxy for star formation activity in the disk. Our results also indicate a correlation between the height of extraplanar PAH emission and star formation rate surface density, which supports the idea of a surface density threshold on the energy or momentum injection rate for producing detectable extraplanar wind material.

  3. DUSTY WINDS: EXTRAPLANAR POLYCYCLIC AROMATIC HYDROCARBON FEATURES OF NEARBY GALAXIES

    SciTech Connect

    McCormick, Alexander; Veilleux, Sylvain; Rupke, David S. N. E-mail: veilleux@astro.umd.edu

    2013-09-10

    Recent observations have shown the presence of dust and molecular material in galactic winds, but relatively little is known about the distribution of these outflow components. To shed some light on this issue, we have used IRAC images from the Spitzer Space Telescope archive to investigate polycyclic aromatic hydrocarbon (PAH) emission from a sample of 16 local galaxies with known winds. Our focus on nearby sources (median distance 8.6 Mpc) has revealed detailed PAH structure in the winds and allowed us to measure extraplanar PAH emission. We have identified extraplanar PAH features on scales of {approx}0.8-6.0 kpc. We find a nearly linear correlation between the amount of extraplanar PAH emission and the total infrared flux, a proxy for star formation activity in the disk. Our results also indicate a correlation between the height of extraplanar PAH emission and star formation rate surface density, which supports the idea of a surface density threshold on the energy or momentum injection rate for producing detectable extraplanar wind material.

  4. HUBBLE PEEKS INTO A STELLAR NURSERY IN A NEARBY GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    HUBBLE PEEKS INTO A STELLAR NURSERY IN A NEARBY GALAXY NASA's Hubble Space Telescope has peered deep into a neighboring galaxy to reveal details of the formation of new stars. Hubble's target was a newborn star cluster within the Small Magellanic Cloud, a small galaxy that is a satellite of our own Milky Way. The new images show young, brilliant stars cradled within a nebula, or glowing cloud of gas, cataloged as N 81. These massive, recently formed stars inside N 81 are losing material at a high rate, sending out strong stellar winds and shock waves and hollowing out a cocoon within the surrounding nebula. The two most luminous stars, seen in the Hubble image as a very close pair near the center of N 81, emit copious ultraviolet radiation, causing the nebula to glow through fluorescence. Outside the hot, glowing gas is cooler material consisting of hydrogen molecules and dust. Normally this material is invisible, but some of it can be seen in silhouette against the nebular background, as long dust lanes and a small, dark, elliptical-shaped knot. It is believed that the young stars have formed from this cold matter through gravitational contraction. Few features can be seen in N 81 from ground-based telescopes, earning it the informal nick-name 'The Blob.' Astronomers were not sure if just one or a few hot stars were embedded in the cloud, or if it was a stellar nursery containing a large number of less massive stars. Hubble's high-resolution imaging shows the latter to be the case, revealing that numerous young, white-hot stars---easily visible in the color picture---are contained within N 81. This crucial information bears strongly on theories of star formation, and N 81 offers a singular opportunity for a close-up look at the turbulent conditions accompanying the birth of massive stars. The brightest stars in the cluster have a luminosity equal to 300,000 stars like our own Sun. Astronomers are especially keen to study star formation in the Small Magellanic

  5. SPECTRAL ANALYSIS AND INTERPRETATION OF THE {gamma}-RAY EMISSION FROM THE STARBURST GALAXY NGC 253

    SciTech Connect

    Abramowski, A.; Acero, F.; Akhperjanian, A. G.; Anton, G.; Balzer, A.; Brucker, J.; Barnacka, A.; Becherini, Y.; Birsin, E.; Biteau, J.; Brun, F.; Bolmont, J.; Brun, P.; Collaboration: H.E.S.S. Collaboration; and others

    2012-10-01

    Very high energy (VHE; E {>=} 100 GeV) and high-energy (HE; 100 MeV {<=} E {<=} 100 GeV) data from {gamma}-ray observations performed with the H.E.S.S. telescope array and the Fermi-LAT instrument, respectively, are analyzed in order to investigate the non-thermal processes in the starburst galaxy NGC 253. The VHE {gamma}-ray data can be described by a power law in energy with differential photon index {Gamma} = 2.14 {+-} 0.18{sub stat} {+-} 0.30{sub sys} and differential flux normalization at 1 TeV of F{sub 0} = (9.6 {+-} 1.5{sub stat}(+ 5.7, -2.9){sub sys}) Multiplication-Sign 10{sup -14} TeV{sup -1} cm{sup -2} s{sup -1}. A power-law fit to the differential HE {gamma}-ray spectrum reveals a photon index of {Gamma} 2.24 {+-} 0.14{sub stat} {+-} 0.03{sub sys} and an integral flux between 200 MeV and 200 GeV of F(0.2-200 GeV) = (4.9 {+-} 1.0{sub stat} {+-} 0.3{sub sys}) Multiplication-Sign 10{sup -9} cm{sup -2} s{sup -1}. No evidence for a spectral break or turnover is found over the dynamic range of both the LAT instrument and the H.E.S.S. experiment: a combined fit of a power law to the HE and VHE {gamma}-ray data results in a differential photon index {Gamma} = 2.34 {+-} 0.03 with a p-value of 30%. The {gamma}-ray observations indicate that at least about 20% of the energy of the cosmic rays (CRs) capable of producing hadronic interactions is channeled into pion production. The smooth alignment between the spectra in the HE and VHE {gamma}-ray domain suggests that the same transport processes dominate in the entire energy range. Advection is most likely responsible for charged particle removal from the starburst nucleus from GeV to multiple TeV energies. In a hadronic scenario for the {gamma}-ray production, the single overall power-law spectrum observed would therefore correspond to the mean energy spectrum produced by the ensemble of CR sources in the starburst region.

  6. Evolution of the ISM in main-sequence versus starburst galaxies: A motivation for molecular deep fields

    NASA Astrophysics Data System (ADS)

    Aravena, Manuel

    In the last decade, significant progress has been made to understand the evolution with redshift of star formation processes in galaxies. Its is now clear that the majority of galaxies at z<3 form a nearly linear correlation between their stellar mass and star formation rates and appear to create most of their stars in timescales of ~1 Gyr. At the highest luminosities, a significant fraction of galaxies deviate from this main-sequence, showing short duty cycles and thus producing most of their stars in a single burst of star formation within ~100 Myr, being likely driven by major merger activity. Despite the large luminosities of starbursts, main-sequence galaxies appear to dominate the star formation density of the Universe at its peak. While progress has been impressive, a number of questions are still unanswered. In this paper, I briefly review our current observational understanding of this main-sequence vs starburst galaxy paradigm, and address how future observations will help us to have better insights into the fundamental properties of the interstellar medium of these galaxies. Finally, I show recent attempts to conduct molecular deep field observations and the motivation to perform molecular deep field spectroscopy with the Atacama Large Millimeter/submillimeter Array.

  7. High resolution radio and optical observations of the central starburst in the low-metallicity dwarf galaxy II Zw 40

    SciTech Connect

    Kepley, Amanda A.; Reines, Amy E.; Johnson, Kelsey E.; Walker, Lisa May E-mail: areines@nrao.edu E-mail: lisamay@virginia.edu

    2014-02-01

    The extent to which star formation varies in galaxies with low masses, low metallicities, and high star formation rate surface densities is not well constrained. To gain insight into star formation under these physical conditions, this paper estimates the ionizing photon fluxes, masses, and ages for young massive clusters in the central region of II Zw 40—the prototypical low-metallicity dwarf starburst galaxy—from radio continuum and optical observations. Discrete, cluster-sized sources only account for half the total radio continuum emission; the remainder is diffuse. The young (≲ 5 Myr) central burst has a star formation rate surface density that significantly exceeds that of the Milky Way. Three of the 13 sources have ionizing photon fluxes (and thus masses) greater than R136 in 30 Doradus. Although isolating the effects of galaxy mass and metallicity is difficult, the H II region luminosity function and the internal extinction in the center of II Zw 40 appear to be primarily driven by a merger-related starburst. The relatively flat H II region luminosity function may be the result of an increase in interstellar medium pressure during the merger and the internal extinction is similar to that generated by the clumpy and porous dust in other starburst galaxies.

  8. THE LYMAN ALPHA MORPHOLOGY OF LOCAL STARBURST GALAXIES: RELEASE OF CALIBRATED IMAGES

    SciTech Connect

    Oestlin, Goeran; Hayes, Matthew; Kunth, Daniel; Atek, Hakim; Mas-Hesse, J. Miguel; Leitherer, Claus; Petrosian, Artashes E-mail: matthew.hayes@unige.ch

    2009-09-15

    We present reduced and calibrated high resolution Lyman-alpha (Ly{alpha}) images for a sample of six local star-forming galaxies. Targets were selected to represent a range in luminosity and metallicity and to include both known Ly{alpha} emitters and nonemitters. Far ultraviolet imaging was carried out with the Solar Blind Channel of the Advanced Camera for Surveys on the Hubble Space Telescope (HST) in the F122M (Ly{alpha} online) and F140LP (continuum) filters. The resulting Ly{alpha} images are the product of careful modeling of both the stellar and nebular continua, facilitated by supporting HST imaging at {lambda} {approx} 2200, 3300, 4400, 5500, H{alpha}, and 8000 A, combined with Starburst 99 evolutionary synthesis models, and prescriptions for dust extinction on the continuum. In all, the resulting morphologies in Ly{alpha}, H{alpha}, and UV continuum are qualitatively very different and we show that the bulk of Ly{alpha} emerges in a diffuse component resulting from resonant scattering events. Ly{alpha} escape fractions, computed from integrated H{alpha} luminosities and recombination theory, are found never to exceed 14%. Internal dust extinction is estimated in each pixel and used to correct Ly{alpha} fluxes. However, the extinction corrections are far too small (by factors from 2.6 to infinity) to reconcile the emerging global Ly{alpha} luminosities with standard recombination predictions. Surprisingly, when comparing the global equivalent widths of Ly{alpha} and H{alpha}, the two quantities appear to be anticorrelated, which may be due to the evolution of mechanical feedback from the starburst. This calls for caution in the interpretation of Ly{alpha} observations in terms of star formation rates. The images presented have a physical resolution 3 orders of magnitude better than attainable at high redshifts from the ground with current instrumentation and our images may therefore serve as useful templates for comparing with observations and modeling of

  9. MUSE Reveals a Recent Merger in the Post-starburst Host Galaxy of the TDE ASASSN-14li

    NASA Astrophysics Data System (ADS)

    Prieto, J. L.; Krühler, T.; Anderson, J. P.; Galbany, L.; Kochanek, C. S.; Aquino, E.; Brown, J. S.; Dong, Subo; Förster, F.; Holoien, T. W.-S.; Kuncarayakti, H.; Maureira, J. C.; Rosales-Ortega, F. F.; Sánchez, S. F.; Shappee, B. J.; Stanek, K. Z.

    2016-10-01

    We present Multi Unit Spectroscopic Explorer (MUSE) integral field spectroscopic observations of the host galaxy (PGC 043234) of one of the closest (z = 0.0206, D ≃ 90 Mpc) and best-studied tidal disruption events (TDEs), ASASSN-14li. The MUSE integral field data reveal asymmetric and filamentary structures that extend up to ≳10 kpc from the post-starburst host galaxy of ASASSN-14li. The structures are traced only through the strong nebular [O iii] λ5007, [N ii] λ6584, and Hα emission lines. The total off-nuclear [O iii] λ5007 luminosity is 4.7 × 1039 erg s-1, and the ionized H mass is ˜ {10}4(500/{n}{{e}}) {M}⊙ . Based on the Baldwin-Phillips-Terlevich diagram, the nebular emission can be driven by either AGN photoionization or shock excitation, with AGN photoionization favored given the narrow intrinsic line widths. The emission line ratios and spatial distribution strongly resemble ionization nebulae around fading AGNs such as IC 2497 (Hanny's Voorwerp) and ionization “cones” around Seyfert 2 nuclei. The morphology of the emission line filaments strongly suggest that PGC 043234 is a recent merger, which likely triggered a strong starburst and AGN activity leading to the post-starburst spectral signatures and the extended nebular emission line features we see today. We briefly discuss the implications of these observations in the context of the strongly enhanced TDE rates observed in post-starburst galaxies and their connection to enhanced theoretical TDE rates produced by supermassive black hole binaries.

  10. Dark Matter Searches with Cherenkov Telescopes: Nearby Dwarf Galaxies or Local Galaxy Clusters?

    SciTech Connect

    Sanchez-Conde, Miguel A.; Cannoni, Mirco; Zandanel, Fabio; Gomez, Mario E.; Prada, Francisco; /IAA, Granada

    2012-06-06

    In this paper, we compare dwarf galaxies and galaxy clusters in order to elucidate which object class is the best target for gamma-ray DM searches with imaging atmospheric Cherenkov telescopes (IACTs). We have built a mixed dwarfs+clusters sample containing some of the most promising nearby dwarf galaxies (Draco, Ursa Minor, Wilman 1 and Segue 1) and local galaxy clusters (Perseus, Coma, Ophiuchus, Virgo, Fornax, NGC 5813 and NGC 5846), and then compute their DM annihilation flux profiles by making use of the latest modeling of their DM density profiles. We also include in our calculations the effect of DM substructure. Willman 1 appears as the best candidate in the sample. However, its mass modeling is still rather uncertain, so probably other candidates with less uncertainties and quite similar fluxes, namely Ursa Minor and Segue 1, might be better options. As for galaxy clusters, Virgo represents the one with the highest flux. However, its large spatial extension can be a serious handicap for IACT observations and posterior data analysis. Yet, other local galaxy cluster candidates with more moderate emission regions, such as Perseus, may represent good alternatives. After comparing dwarfs and clusters, we found that the former exhibit annihilation flux profiles that, at the center, are roughly one order of magnitude higher than those of clusters, although galaxy clusters can yield similar, or even higher, integrated fluxes for the whole object once substructure is taken into account. Even when any of these objects are strictly point-like according to the properties of their annihilation signals, we conclude that dwarf galaxies are best suited for observational strategies based on the search of point-like sources, while galaxy clusters represent best targets for analyses that can deal with rather extended emissions. Finally, we study the detection prospects for present and future IACTs in the framework of the constrained minimal supersymmetric standard model. We

  11. Mapping Nearby Galaxies at APO: The MaNGA IFU Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Law, David R.; MaNGA Team

    2014-01-01

    MaNGA is a new survey that will begin in August 2014 as part of SDSS-IV with the aim of obtaining integral-field spectroscopy for an unprecedented sample of 10,000 nearby galaxies. MaNGA's key goals are to understand the "life cycle" of present day galaxies from imprinted clues of their birth and assembly, through their ongoing growth via star formation and merging, to their death from quenching at late times. To achieve these goals, MaNGA will channel the impressive capabilities of the SDSS-III BOSS spectrographs in a fundamentally new direction by marshaling the unique power of 2D spectroscopy. MaNGA will deploy 17 pluggable Integral Field Units (IFUs) made by grouping fibers into hexagonal bundles ranging from 19 to 127 fibers each. The spectra obtained by MaNGA will cover the wavelength range 3600-10,000 Angstroms (with a velocity resolution of ~ 60 km/s) and will characterize the internal composition and the dynamical state of a sample of 10,000 galaxies with stellar masses greater than 10^9 Msun and an average redshift of z ~ 0.03. Such IFU observations enable a leap forward because they provide an added dimension to the information available for each galaxy. MaNGA will provide two-dimensional maps of stellar velocity and velocity dispersion, mean stellar age and star formation history, stellar metallicity, element abundance ratio, stellar mass surface density, ionized gas velocity, ionized gas metallicity, star formation rate, and dust extinction for a statistically powerful sample. This legacy dataset will address urgent questions in our understanding of galaxy formation, including 1) The formation history of galaxy subcomponents, including the disk, bulge, and dark matter halo, 2) The nature of present-day galaxy growth via merging and gas accretion, and 3) The processes responsible for terminating star formation in galaxies. Finally, MaNGA will also play a vital role in the coming era of advanced IFU instrumentation, serving as the low-z anchor for

  12. Large-Field CO(J = 1→0) Observations of the Starburst Galaxy M 82

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Miyamoto, Yusuke; Yamauchi, Aya; Tsuru, Takeshi G.

    2013-06-01

    We present large-field (15.7 × 16.9 arcmin2) CO(J = 1→0) observations of the starburst galaxy M 82, at an angular resolution of 22" with the NRO 45-m telescope. The CO emission was detected in the galactic disk, outflow (driven by the galactic wind) up to ˜2 kpc above the galactic plane in the halo, and in tidal streams. The kinematics of the outflow (including CO line splitting) suggests that it has the shape of a cylinder that is diverging outwards. The mass and kinetic energy of the molecular gas outflow are estimated to be (0.26-1.0) × 109 M⊙ and (1-4) × 1056 erg. A clump of CO gas was discovered 3.5 kpc above the galactic plane; it coincides with a dark lane previously found in X-ray observations, and a peak in H I emission. A comparison with H I, hot molecular hydrogen and dust suggests that the molecular gas shows signatures of warm and cool components in the outflow and tidal streams, respectively.

  13. 12 and 20 micron imaging of the starburst galaxy NGC 253

    NASA Technical Reports Server (NTRS)

    Pina, R. K.; Jones, B.; Puetter, R. C.; Stein, W. A.

    1992-01-01

    The study presents 12- and 20-micron imaging of the starburst galaxy NGC 253 with a spatial resolution of 0.8 arcsec. A positional uncertainty of 1.6 arcsec in these images is estimated on the basis of previous ground-based mid-IR studies to determine the absolute position of the images. It is concluded that the proposed 'nucleus' of NGC 253, i.e., the dominant, bright, flat-spectrum radio source identified by Turner & Ho (1985) (TH 2), is not associated with the mid-IR peak, but rather is located 2.2 arcsec to the northeast. The mid-IR peak, IRS 1, is placed midway between TH 6 and TH 7. Several coincidences with the present 12-micron image are found: IRS 1 falls within 1 arcsec of the 2-micron peak; a second significantly weaker IR source, IRS 2, coincides with TH 2; and the brightest steep-spectrum 6-cm radio source, TH 9, coincides with a 'tongue' of emission extending to the southwest of IRS 1.

  14. Core Kinematics in the Starburst-Ring Sab Galaxy NGC 4736

    NASA Astrophysics Data System (ADS)

    Murphy, E. J.; Waller, W. H.; Kenney, J. D. P.

    2000-05-01

    NGC 4736 (M94) is notable as the nearest early-type spiral galaxy of low inclination, and as the nearest example of a starbursting resonance-ring system. Interior to its inner star-forming ring is a luminous core containing a mix of old red stars and young UV-bright stars. Early long-slit spectroscopy revealed unusually high rotation speeds relative to the velocity dispersions, prompting Kormendy (1982) to describe the core as the innermost part of the disk, rather than the densest part of the spheroid (ie. the classic ``bulge''). Using the WIYN 3.5-m telescope, DensePak fiber array, and Bench spectrograph, we have carried out integral field spectroscopy of the central 45'' x 30'' (1.0 kpc x 0.7 kpc) in M94. Our kinematic mapping confirms the earlier claims of high rotation velocities relative to the velocity dispersions. Rotation curves of the stars and CO gas (from a recent interferometric mapping by Wong and Blitz [2000]) show the stars rotating slower by ~20--35 km/sec relative to the gas. Plans for analyzing the stellar kinematics as a function of stellar type (and corresponding age) are described.

  15. Relationship between star formation rate and black hole accretion at z=3: the different contributions in quiescent, normal, and starburst galaxies

    SciTech Connect

    Rodighiero, G.; Franceschini, A.; Baronchelli, I.; Brusa, M.; Delvecchio, I.; Pozzi, F.; Cimatti, A.; Mullaney, J. R.; Lutz, D.; Gruppioni, C.; Silverman, J.

    2015-02-10

    We investigate the co-evolution of the black hole accretion rate (BHAR) and the star formation rate (SFR) in 1.5galaxies displaying a greater diversity of star-forming properties compared to previous studies. We combine X-ray stacking and far-IR photometry of stellar mass-limited samples of normal star-forming, starburst, and quiescent/quenched galaxies in the COSMOS field. We corroborate the existence of a strong correlation between BHAR (i.e., the X-ray luminosity, L{sub X}) and stellar mass (M{sub *}) for normal star-forming galaxies, though we find a steeper relation than previously reported. We find that starbursts show a factor of three enhancement in BHAR compared to normal SF galaxies (against a factor of six excess in SFR), while quiescents show a deficit of a factor times 5.5 at a given mass. One possible interpretation of this is that the starburst phase does not coincide with cosmologically relevant BH growth, or that starburst-inducing mergers are more efficient at boosting SFR than BHAR. Contrary to studies based on smaller samples, we find that the BHAR/SFR ratio of main-sequence (MS) galaxies is not mass invariant, but scales weakly as M{sub ∗}{sup 0.43±0.09}, implying faster BH growth in more massive galaxies at z∼2. Furthermore, BHAR/SFR during the starburst is a factor of two lower than in MS galaxies, at odds with the predictions of hydrodynamical simulations of merger galaxies that foresee a sudden enhancement of L{sub X}/SFR during the merger. Finally, we estimate that the bulk of the accretion density of the universe at z∼2 is associated with normal star-forming systems, with only ∼6(±1)% and ∼11(±1)% associated with starburst and quiescent galaxies, respectively.

  16. ALMA Reveals Weak [N ii] Emission in "Typical" Galaxies and Intense Starbursts at z = 5-6

    NASA Astrophysics Data System (ADS)

    Pavesi, Riccardo; Riechers, Dominik A.; Capak, Peter L.; Carilli, Christopher L.; Sharon, Chelsea E.; Stacey, Gordon J.; Karim, Alexander; Scoville, Nicholas Z.; Smolčić, Vernesa

    2016-12-01

    We report interferometric measurements of [N ii] 205 μm fine-structure line emission from a representative sample of three galaxies at z = 5-6 using the Atacama Large (sub)Millimeter Array (ALMA). These galaxies were previously detected in [C ii] and far-infrared continuum emission and span almost two orders of magnitude in star formation rate (SFR). Our results show at least two different regimes of ionized interstellar medium properties for galaxies in the first billion years of cosmic time, separated by their {L}[{{C}{{II}}]}/{L}[{{N}{{II}}]} ratio. We find extremely low [N ii] emission compared to [C ii] ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}={68}-28+200) from a “typical” ˜ {L}{UV}* star-forming galaxy, likely directly or indirectly (by its effect on the radiation field) related to low dust abundance and low metallicity. The infrared-luminous modestly star-forming Lyman-break galaxy (LBG) in our sample is characterized by an ionized-gas fraction ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}≲ 20) typical of local star-forming galaxies and shows evidence for spatial variations in its ionized-gas fraction across an extended gas reservoir. The extreme SFR, warm and compact dusty starburst AzTEC-3 shows an ionized fraction higher than expected given its SFR surface density ({L}[{{C}{{II}}]}/{L}[{{N}{{II}}]}=22+/- 8) suggesting that [N ii] dominantly traces a diffuse ionized medium rather than star-forming H ii regions in this type of galaxy. This highest redshift sample of [N ii] detections provides some of the first constraints on ionized and neutral gas modeling attempts and on the structure of the interstellar medium at z = 5-6 in “normal” galaxies and starbursts.

  17. The Dragonfly Nearby Galaxies Survey. II. Ultra-Diffuse Galaxies near the Elliptical Galaxy NGC 5485

    NASA Astrophysics Data System (ADS)

    Merritt, Allison; van Dokkum, Pieter; Danieli, Shany; Abraham, Roberto; Zhang, Jielai; Karachentsev, I. D.; Makarova, L. N.

    2016-12-01

    We present the unexpected discovery of four ultra-diffuse galaxies (UDGs) in a group environment. We recently identified seven extremely low surface brightness galaxies in the vicinity of the spiral galaxy M101, using data from the Dragonfly Telephoto Array. The galaxies have effective radii of 10″-38″ and central surface brightnesses of 25.6-27.7 mag arcsec-2 in the g-band. We subsequently obtained follow-up observations with HST to constrain the distances to these galaxies. Four remain persistently unresolved even with the spatial resolution of HST/ACS, which implies distances of D\\gt 17.5 Mpc. We show that the galaxies are most likely associated with a background group at ˜27 Mpc containing the massive ellipticals NGC 5485 and NGC 5473. At this distance, the galaxies have sizes of 2.6-4.9 kpc, and are classified as UDGs, similar to the populations that have been revealed in clusters such as Coma, Virgo, and Fornax, yet even more diffuse. The discovery of four UDGs in a galaxy group demonstrates that the UDG phenomenon is not exclusive to cluster environments. Furthermore, their morphologies seem less regular than those of the cluster populations, which may suggest a different formation mechanism or be indicative of a threshold in surface density below which UDGs are unable to maintain stability.

  18. Constraints on decaying dark matter from Fermi observations of nearby galaxies and clusters

    SciTech Connect

    Dugger, Leanna; Profumo, Stefano; Jeltema, Tesla E. E-mail: tesla@ucolick.org

    2010-12-01

    We analyze the impact of Fermi gamma-ray observations (primarily non-detections) of selected nearby galaxies, including dwarf spheroidals, and of clusters of galaxies on decaying dark matter models. We show that the fact that galaxy clusters do not shine in gamma rays puts the most stringent limits available to-date on the lifetime of dark matter particles for a wide range of particle masses and decay final states. In particular, our results put strong constraints on the possibility of ascribing to decaying dark matter both the increasing positron fraction reported by PAMELA and the high-energy feature in the electron-positron spectrum measured by Fermi. Observations of nearby dwarf galaxies and of the Andromeda Galaxy (M31) do not provide as strong limits as those from galaxy clusters, while still improving on previous constraints in some cases.

  19. The Halos and Environments of Nearby Galaxies (HERON) Survey

    NASA Astrophysics Data System (ADS)

    Rich, R. Michael; Brosch, Noah; Bullock, James; Burkert, Andreas; Collins, Michelle; de Groot, Laura; Kennefick, Julia; Koch, Andreas; Longstaff, Francis; Sales, Laura

    2017-03-01

    We have used dedicated 0.7m telescopes in California and Israel to image the halos of ~ 200 galaxies in the Local Volume to 29 mag/sq arcsec, the sample mainly drawn from the 2MASS Large Galaxy Atlas (LGA). We supplement the LGA sample with dwarf galaxies and more distant giant ellipticals. Low surface brightness halos exceeding 50 kpc in diameter are found only in galaxies more luminous than L*, and classic interaction signatures are relatively infrequent. Halo diameter is correlated with total galaxy luminosity. Extended low surface brightness halos are present even in galaxies as faint as MV = - 18. Edge-on galaxies with boxy bulges tend to lack extended spheroidal halos, while those with large classical bulges exhibit extended round halos, supporting the notions that boxy or barlike bulges originate from disks. Most face-on spiral galaxies present features that appear to be irregular extensions of spiral arms, although rare cases show smooth boundaries with no sign of star formation. Although we serendipitously discovered a dwarf galaxy undergoing tidal disruption in the halo of NGC 4449, we found no comparable examples in our general survey. A search for similar examples in the Local Volume identified hcc087, a tidally disrupting dwarf galaxy in the Hercules Cluster, but we do not confirm an anomalously large half-light radius reported for the dwarf VCC 1661.

  20. 3D structure of nearby groups of galaxies

    NASA Astrophysics Data System (ADS)

    Makarova, L.; Makarov, D.; Klypin, A.; Gottlöber, S.

    2016-10-01

    Using high accuracy distance estimates, we study the three-dimensional distribution of galaxies in five galaxy groups at a distance less than 5 Mpc from the Milky Way. Due to proximity of these groups our sample of galaxies is nearly complete down to extremely small dwarf galaxies with absolute magnitudes M B = -12. We find that the average number-density profile of the groups shows a steep power-law decline dn/dV ˜ R-3 at distances R=(100-500) kpc consistent with predictions of the standard cosmological model. We also find that there is no indication of a truncation or a cutoff in the density at the expected virial radius: the density profile extends at least to 1.5 Mpc. Vast majority of galaxies within 1.5 Mpc radius around group centres are gas-rich star-forming galaxies. Early-type galaxies are found only in the central ˜ 300 kpc region. Lack of dwarf spheroidal and dwarf elliptical galaxies in the field and in the outskirts of large groups is a clear indication that these galaxies experienced morphological transformation when they came close to the central region of forming galaxy group.

  1. High-Resolution Near-Infrared Spectroscopy of an Equivalent Width-Selected Sample of Starbursting Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Maseda, Michael V.; VanDerWeL, Arjen; DaChuna, Elisabete; Rix, Hans-Walter; Pacafichi, Camilla; Momcheva, Ivelina; Brammer, Gabriel B.; Franx, Marijn; VanDokkum, Pieter; Bell, Eric F.; Ferguson, Harry C.; Fumagalli, Mattia; Grogin, Norman A.; Kocevski, Dale D.; Koekemoer, Anton M.; Lundgren, Britt F.; Marchesini, Danilo; Nelson, Erica J.; Patel, Shannon; Skelton, Rosalind E.; Straughn, Amber N.; Trump, Jonathan R.; Weiner, Benjamin J.; Whitaker, Katherine E.; Wuyts, Stijn

    2013-01-01

    Spectroscopic observations from the Large Binocular Telescope and the Very Large Telescope reveal kinematically narrow lines (approx. 50 km/s) for a sample of 14 Extreme Emission Line Galaxies (EELGs) at redshifts 1.4 < zeta < 2.3. These measurements imply that the total dynamical masses of these systems are low ( 3 × 10(exp 9) M). Their large [O III]5007 equivalent widths (500 - 1100 A) and faint blue continuum emission imply young ages of 10-100 Myr and stellar masses of 10(exp 8)-10(exp 9) M, confirming the presence of a violent starburst. The stellar mass formed in this vigorous starburst phase thus represents a large fraction of the total (dynamical) mass, without a significantly massive underlying population of older stars. The occurrence of such intense events in shallow potentials strongly suggests that supernova-driven winds must be of critical importance in the subsequent evolution of these systems.

  2. Nearby galaxies as pointers to a better theory of cosmic evolution.

    PubMed

    Peebles, P J E; Nusser, Adi

    2010-06-03

    The great advances in the network of cosmological tests show that the relativistic Big Bang theory is a good description of our expanding Universe. However, the properties of nearby galaxies that can be observed in greatest detail suggest that a better theory would describe a mechanism by which matter is more rapidly gathered into galaxies and groups of galaxies. This more rapid growth occurs in some theoretical ideas now under discussion.

  3. POLYCYCLIC AROMATIC HYDROCARBON AND EMISSION LINE RATIOS IN ACTIVE GALACTIC NUCLEI AND STARBURST GALAXIES

    SciTech Connect

    Sales, Dinalva A.; Pastoriza, M. G.; Riffel, R. E-mail: pastoriza@ufrgs.b

    2010-12-10

    We study the polycyclic aromatic hydrocarbon (PAH) bands, ionic emission lines, and mid-infrared continuum properties in a sample of 171 emission line galaxies taken from the literature plus 15 new active galactic nucleus (AGN) Spitzer spectra. We normalize the spectra at {lambda} = 23 {mu}m and grouped them according to the type of nuclear activity. The continuum shape steeply rises for longer wavelengths and can be fitted with a warm blackbody distribution of T {approx} 150-300 K. The brightest PAH spectral bands (6.2, 7.7, 8.6, 11.3, and 12.7 {mu}m) and the forbidden emission lines of [Si II] 34.8 {mu}m, [Ar II] 6.9 {mu}m, [S III] 18.7 and 33.4 {mu}m were detected in all the starbursts and in {approx}80% of the Seyfert 2. Taking under consideration only the PAH bands at 7.7 {mu}m, 11.3 {mu}m, and 12.7 {mu}m, we find that they are present in {approx}80% of the Seyfert 1, while only half of this type of activity show the 6.2 {mu}m and 8.6 {mu}m PAH bands. The observed intensity ratios for neutral and ionized PAHs (6.2 {mu}m/7.7 {mu}m x 11.3 {mu}m/7.7 {mu}m) were compared to theoretical intensity ratios, showing that AGNs have higher ionization fraction and larger PAH molecules ({>=}180 carbon atoms) than SB galaxies. The ratio between the ionized (7.7 {mu}m) and the neutral PAH bands (8.6 {mu}m and 11.3 {mu}m) are distributed over different ranges for AGNs and SB galaxies, suggesting that these ratios could depend on the ionization fraction, as well as on the hardness of the radiation field. The ratio between the 7.7 {mu}m and 11.3 {mu}m bands is nearly constant with the increase of [Ne III]15.5 {mu}m/[Ne II] 12.8 {mu}m, indicating that the fraction of ionized to neutral PAH bands does not depend on the hardness of the radiation field. The equivalent width of both PAH features show the same dependence (strongly decreasing) with [Ne III]/[Ne II], suggesting that the PAH molecules, emitting either ionized (7.7 {mu}m) or neutral (11.3 {mu}m) bands, may be destroyed

  4. STAR-FORMING GALAXY EVOLUTION IN NEARBY RICH CLUSTERS

    SciTech Connect

    Tyler, K. D.; Rieke, G. H.; Bai, L.

    2013-08-20

    Dense environments are known to quench star formation in galaxies, but it is still unknown what mechanism(s) are directly responsible. In this paper, we study the star formation of galaxies in A2029 and compare it to that of Coma, combining indicators at 24 {mu}m, H{alpha}, and UV down to rates of 0.03 M{sub Sun} yr{sup -1}. We show that A2029's star-forming galaxies follow the same mass-SFR relation as the field. The Coma cluster, on the other hand, has a population of galaxies with star formation rates (SFRs) significantly lower than the field mass-SFR relation, indicative of galaxies in the process of being quenched. Over half of these galaxies also host active galactic nuclei. Ram-pressure stripping and starvation/strangulation are the most likely mechanisms for suppressing the star formation in these galaxies, but we are unable to disentangle which is dominating. The differences we see between the two clusters' populations of star-forming galaxies may be related to their accretion histories, with A2029 having accreted its star-forming galaxies more recently than Coma. Additionally, many early-type galaxies in A2029 are detected at 24 {mu}m and/or in the far-UV, but this emission is not directly related to star formation. Similar galaxies have probably been classified as star forming in previous studies of dense clusters, possibly obscuring some of the effects of the cluster environment on true star-forming galaxies.

  5. Millimeter and submillimeter observations of nearby radio galaxies

    NASA Technical Reports Server (NTRS)

    Knapp, G. R.; Patten, Brian M.

    1991-01-01

    Radio galaxies are often observed to be strong long wavelength infrared sources. Twenty-six radio galaxies with strong compact cores were observed at wavelengths near 1 mm with the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The detections and upper limits establish the presence of excess infrared emission for almost all of the galaxies in the sample. The exceptions are the BL Lac objects, which have smooth continuous spectra from radio to infrared wavelengths. The spectral energy distributions of the infrared emission from the radio galaxies favor a thermal origin due to emission from cool interstellar dust. The amounts of dust inferred to be present approach those observed in large spirals.

  6. VizieR Online Data Catalog: Updated catalog of GALEX nearby galaxies (Bai+, 2015)

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Zou, H.; Liu, J.; Wang, S.

    2015-10-01

    The ultraviolet (UV) catalog of nearby galaxies compiled by Gil de Paz et al. (2007, J/ApJS/173/185) presents the integrated photometry and surface brightness profiles for 1034 nearby galaxies observed by GALEX. We provide an updated catalog of 4138 nearby galaxies based on the latest General Release (GR6/GR7) of GALEX. These galaxies are selected from HyperLeda with apparent diameters larger than 1'. From the surface brightness profiles accurately measured using the deep NUV and FUV images, we have calculated the asymptotic magnitudes, aperture (D25) magnitudes, colors, structural parameters (effective radii and concentration indices), luminosities, and effective surface brightness for these galaxies. Archival optical and infrared photometry from HyperLeda, 2MASS, and IRAS are also integrated into the catalog. Our parameter measurements and some analyses are consistent with those of Paz et al. The (FUV-K) color provides a good criterion to distinguish between early- and late-type galaxies, which can be improved further using the concentration indices. The IRX-β relation is reformulated with our UV-selected nearby galaxies. (3 data files).

  7. HUNTING FOR SUPERMASSIVE BLACK HOLES IN NEARBY GALAXIES WITH THE HOBBY–EBERLY TELESCOPE

    SciTech Connect

    Bosch, Remco C. E. van den; Yıldırım, Akin; Gebhardt, Karl; Walsh, Jonelle L.; Gültekin, Kayhan

    2015-05-15

    We have conducted an optical long-slit spectroscopic survey of 1022 galaxies using the 10 m Hobby–Eberly Telescope (HET) at McDonald Observatory. The main goal of the HET Massive Galaxy Survey (HETMGS) is to find nearby galaxies that are suitable for black hole mass measurements. In order to measure accurately the black hole mass, one should kinematically resolve the region where the black hole dominates the gravitational potential. For most galaxies, this region is much less than an arcsecond. Thus, black hole masses are best measured in nearby galaxies with telescopes that obtain high spatial resolution. The HETMGS focuses on those galaxies predicted to have the largest sphere-of-influence, based on published stellar velocity dispersions or the galaxy fundamental plane. To ensure coverage over galaxy types, the survey targets those galaxies across a face-on projection of the fundamental plane. We present the sample selection and resulting data products from the long-slit observations, including central stellar kinematics and emission line ratios. The full data set, including spectra and resolved kinematics, is available online. Additionally, we show that the current crop of black hole masses are highly biased toward dense galaxies and that especially large disks and low dispersion galaxies are under-represented. This survey provides the necessary groundwork for future systematic black hole mass measurement campaigns.

  8. Star Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z=5.3

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared OR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multi wavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  9. Star and Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z equals 5.3

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multi wavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  10. Star and Dust Formation Activities in AzTEC-3: A Starburst Galaxy at z=5.3

    NASA Technical Reports Server (NTRS)

    Dwek, Eliahu

    2011-01-01

    Analyses of of high-redshift ultraluminous infrared (IR) galaxies traditionally use the observed optical to submillimeter spectral energy distribution (SED) and estimates of the dynamical mass as observational constraints to derive the star formation rate (SFR), the stellar mass, and age of these objects. In this lecture we add this constraint to the analysis of AzTEC-3, a starburst galaxy at z=5.3. We construct different stellar and chemical evolutionary scenarios, constrained to produce the inferred dust mass and observed luminosity before the associated stellar mass exceeds the observational limit. A robust result of our models is that all scenarios require most of the radiating dust mass to have been accreted in molecular clouds. Our new procedure highlights the importance of a multiwavelength approach, and of the use of dust evolution models in constraining the age and the star formation activity and history in galaxies.

  11. 3D-HST GRISM SPECTROSCOPY OF A GRAVITATIONALLY LENSED, LOW-METALLICITY STARBURST GALAXY AT z = 1.847

    SciTech Connect

    Brammer, Gabriel B.; Sanchez-Janssen, Ruben; Labbe, Ivo; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Da Cunha, Elisabete; Rix, Hans-Walter; Schmidt, Kasper B.; Van der Wel, Arjen; Erb, Dawn K.; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica; Skelton, Rosalind E.; Van Dokkum, Pieter G.; Wake, David A.; Whitaker, Katherine E.; Marchesini, Danilo; Quadri, Ryan

    2012-10-10

    We present Hubble Space Telescope (HST) imaging and spectroscopy of the gravitational lens SL2SJ02176-0513, a cusp arc at z = 1.847. The UV continuum of the lensed galaxy is very blue, which is seemingly at odds with its redder optical colors. The 3D-HST WFC3/G141 near-infrared spectrum of the lens reveals the source of this discrepancy to be extremely strong [O III] {lambda}5007 and H{beta} emission lines with rest-frame equivalent widths of 2000 {+-} 100 and 520 {+-} 40 A, respectively. The source has a stellar mass {approx}10{sup 8} M{sub Sun }, sSFR {approx} 100 Gyr{sup -1}, and detection of [O III] {lambda}4363 yields a metallicity of 12 + log (O/H) = 7.5 {+-} 0.2. We identify local blue compact dwarf analogs to SL2SJ02176-0513, which are among the most metal-poor galaxies in the Sloan Digital Sky Survey. The local analogs resemble the lensed galaxy in many ways, including UV/optical spectral energy distribution, spatial morphology, and emission line equivalent widths and ratios. Common to SL2SJ02176-0513 and its local counterparts is an upturn at mid-IR wavelengths likely arising from hot dust heated by starbursts. The emission lines of SL2SJ02176-0513 are spatially resolved owing to the combination of the lens and the high spatial resolution of HST. The lensed galaxy is composed of two clumps with combined size r{sub e} {approx}300 pc, and we resolve significant differences in UV color and emission line equivalent width between them. Though it has characteristics occasionally attributed to active galactic nuclei, we conclude that SL2SJ02176-0513 is a low-metallicity star-bursting dwarf galaxy. Such galaxies will be found in significant numbers in the full 3D-HST grism survey.

  12. Starbursting brightest cluster galaxy: a Herschel view of the massive cluster MACS J1931.8-2634

    NASA Astrophysics Data System (ADS)

    Santos, J. S.; Balestra, I.; Tozzi, P.; Altieri, B.; Valtchanov, I.; Mercurio, A.; Nonino, M.; Yu, Heng; Rosati, P.; Grillo, C.; Medezinski, E.; Biviano, A.

    2016-02-01

    We investigate the dust-obscured star formation (SF) properties of the massive, X-ray-selected galaxy cluster MACS J1931.8-2634 at z = 0.352. Using far-infrared (FIR) imaging in the range 100-500 μm obtained with the Herschel telescope, we extract 31 sources (2σ) within r ˜ 1 Mpc from the brightest cluster galaxy (BCG). Among these sources, we identify six cluster members for which we perform an analysis of their spectral energy distributions (SEDs). We measure total infrared luminosity (LIR), star formation rate (SFR) and dust temperature. The BCG, with LIR = 1.4 × 1012 L⊙ is an ultraluminous infrared galaxy and hosts a type-II active galactic nuclei (AGN). We decompose its FIR SED into AGN and starburst components and find equal contributions from AGN and starburst. We also recompute the SFR of the BCG finding SFR = 150 ± 15 M⊙ yr-1. We search for an isobaric cooling flow in the cool core using Chandra X-ray data, and find no evidence for gas colder than 1.8 keV in the inner 30 kpc, for an upper limit to the instantaneous mass-deposition rate of 58 M⊙ yr-1 at 95 per cent c.l. This value is 3× lower than the SFR in the BCG, suggesting that the on-going SF episode lasts longer than the intracluster medium cooling events.

  13. MID-INFRARED PROPERTIES OF NEARBY LUMINOUS INFRARED GALAXIES. I. SPITZER INFRARED SPECTROGRAPH SPECTRA FOR THE GOALS SAMPLE

    SciTech Connect

    Stierwalt, S.; Armus, L.; Surace, J. A.; Inami, H.; Petric, A. O.; Diaz-Santos, T.; Haan, S.; Howell, J.; Marshall, J.; Charmandaris, V.; Kim, D. C.; Mazzarella, J. M.; Chan, B.; Spoon, H. W. W.; Veilleux, S.; Evans, A.; Sanders, D. B.; Appleton, P.; Bothun, G.; Bridge, C. R.; and others

    2013-05-01

    The Great Observatories All-Sky LIRG Survey (GOALS) is a comprehensive, multiwavelength study of luminous infrared galaxies (LIRGs) in the local universe. Here we present low resolution Spitzer Infrared Spectrograph spectra covering 5-38 {mu}m and provide a basic analysis of the mid-IR spectral properties observed for nearby LIRGs. In a companion paper, we discuss detailed fits to the spectra and compare the LIRGs to other classes of galaxies. The GOALS sample of 244 nuclei in 180 luminous (10{sup 11} {<=} L {sub IR}/L {sub Sun} < 10{sup 12}) and 22 ultraluminous (L {sub IR}/L {sub Sun} {>=} 10{sup 12}) IR galaxies represents a complete subset of the IRAS Revised Bright Galaxy Sample and covers a range of merger stages, morphologies, and spectral types. The majority (>60%) of the GOALS LIRGs have high 6.2 {mu}m polycyclic aromatic hydrocarbon (PAH) equivalent widths (EQW{sub 6.2{mu}m} > 0.4 {mu}m) and low levels of silicate absorption (s {sub 9.7{mu}m} > -1.0). There is a general trend among the U/LIRGs for both silicate depth and mid-infrared (MIR) slope to increase with increasing L {sub IR}. U/LIRGs in the late to final stages of a merger also have, on average, steeper MIR slopes and higher levels of dust obscuration. Together, these trends suggest that as gas and dust is funneled toward the center of a coalescing merger, the nuclei become more compact and more obscured. As a result, the dust temperature increases also leading to a steeper MIR slope. The sources that depart from these correlations have very low PAH equivalent width (EQW{sub 6.2{mu}m} < 0.1 {mu}m) consistent with their emission being dominated by an active galactic nucleus (AGN) in the MIR. These extremely low PAH EQW sources separate into two distinct types: relatively unobscured sources with a very hot dust component (and thus very shallow MIR slopes) and heavily dust obscured nuclei with a steep temperature gradient. The most heavily dust obscured sources are also the most compact in their MIR

  14. Star Formation Quenching in High-redshift Large-scale Structure: Post-starburst Galaxies in the Cl 1604 Supercluster at z ~ 0.9

    NASA Astrophysics Data System (ADS)

    Wu, Po-Feng; Gal, Roy R.; Lemaux, Brian C.; Kocevski, Dale D.; Lubin, Lori M.; Rumbaugh, Nicholas; Squires, Gordon K.

    2014-09-01

    The Cl 1604 supercluster at z ~ 0.9 is one of the most extensively studied high-redshift large-scale structures, with more than 500 spectroscopically confirmed members. It consists of eight clusters and groups, with members numbering from a dozen to nearly a hundred, providing a broad range of environments for investigating the large-scale environmental effects on galaxy evolution. Here we examine the properties of 48 post-starburst galaxies in Cl 1604, comparing them to other galaxy populations in the same supercluster. Incorporating photometry from ground-based optical and near-infrared imaging, along with Spitzer mid-infrared observations, we derive stellar masses for all Cl 1604 members. The colors and stellar masses of the K+A galaxies support the idea that they are progenitors of red sequence galaxies. Their morphologies, residual star formation rates, and spatial distributions suggest that galaxy mergers may be the principal mechanism producing post-starburst galaxies. Interaction between galaxies and the dense intracluster medium (ICM) is also effective, but only in the cores of dynamically evolved clusters. The prevalence of post-starburst galaxies in clusters correlates with the dynamical state of the host cluster, as both galaxy mergers and the dense ICM produce post-starburst galaxies. We also investigate the incompleteness and contamination of K+A samples selected by means of Hδ and [O II] equivalent widths. K+A samples may be up to ~50% incomplete due to the presence of LINERs/Seyferts, and up to ~30% of K+A galaxies could have substantial star formation activity.

  15. Star formation quenching in high-redshift large-scale structure: post-starburst galaxies in the Cl 1604 supercluster at z ∼ 0.9

    SciTech Connect

    Wu, Po-Feng; Gal, Roy R.; Lemaux, Brian C.; Kocevski, Dale D.; Lubin, Lori M.; Rumbaugh, Nicholas; Squires, Gordon K.

    2014-09-01

    The Cl 1604 supercluster at z ∼ 0.9 is one of the most extensively studied high-redshift large-scale structures, with more than 500 spectroscopically confirmed members. It consists of eight clusters and groups, with members numbering from a dozen to nearly a hundred, providing a broad range of environments for investigating the large-scale environmental effects on galaxy evolution. Here we examine the properties of 48 post-starburst galaxies in Cl 1604, comparing them to other galaxy populations in the same supercluster. Incorporating photometry from ground-based optical and near-infrared imaging, along with Spitzer mid-infrared observations, we derive stellar masses for all Cl 1604 members. The colors and stellar masses of the K+A galaxies support the idea that they are progenitors of red sequence galaxies. Their morphologies, residual star formation rates, and spatial distributions suggest that galaxy mergers may be the principal mechanism producing post-starburst galaxies. Interaction between galaxies and the dense intracluster medium (ICM) is also effective, but only in the cores of dynamically evolved clusters. The prevalence of post-starburst galaxies in clusters correlates with the dynamical state of the host cluster, as both galaxy mergers and the dense ICM produce post-starburst galaxies. We also investigate the incompleteness and contamination of K+A samples selected by means of Hδ and [O II] equivalent widths. K+A samples may be up to ∼50% incomplete due to the presence of LINERs/Seyferts, and up to ∼30% of K+A galaxies could have substantial star formation activity.

  16. Millimeter and submillimeter observations of nearby radio galaxies

    SciTech Connect

    Knapp, G.R.; Patten, B.M. Hawaii, University, Honolulu )

    1991-05-01

    Radio galaxies are often observed to be strong long wavelength infrared sources. Twenty-six radio galaxies with strong compact cores were observed at wavelengths near 1 mm with the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The detections and upper limits establish the presence of excess infrared emission for almost all of the galaxies in the sample. The exceptions are the BL Lac objects, which have smooth continuous spectra from radio to infrared wavelengths. The spectral energy distributions of the infrared emission from the radio galaxies favor a thermal origin due to emission from cool interstellar dust. The amounts of dust inferred to be present approach those observed in large spirals. 55 refs.

  17. WINGS: A WIde-field Nearby Galaxy-cluster Survey. II. Deep optical photometry of 77 nearby clusters

    NASA Astrophysics Data System (ADS)

    Varela, J.; D'Onofrio, M.; Marmo, C.; Fasano, G.; Bettoni, D.; Cava, A.; Couch, W. J.; Dressler, A.; Kjærgaard, P.; Moles, M.; Pignatelli, E.; Poggianti, B. M.; Valentinuzzi, T.

    2009-04-01

    Context: This is the second paper of a series devoted to the WIde Field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long term project which is gathering wide-field, multi-band imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04 < z < 0.07) located far from the galactic plane (|b|≥ 20°). The main goal of this project is to establish a local reference for evolutionary studies of galaxies and galaxy clusters. Aims: This paper presents the optical (B,V) photometric catalogs of the WINGS sample and describes the procedures followed to construct them. We have paid special care to correctly treat the large extended galaxies (which includes the brightest cluster galaxies) and the reduction of the influence of the bright halos of very bright stars. Methods: We have constructed photometric catalogs based on wide-field images in B and V bands using SExtractor. Photometry has been performed on images in which large galaxies and halos of bright stars were removed after modeling them with elliptical isophotes. Results: We publish deep optical photometric catalogs (90% complete at V ~ 21.7, which translates to ˜ M^*_V+6 at mean redshift), giving positions, geometrical parameters, and several total and aperture magnitudes for all the objects detected. For each field we have produced three catalogs containing galaxies, stars and objects of “unknown” classification (~6%). From simulations we found that the uncertainty of our photometry is quite dependent of the light profile of the objects with stars having the most robust photometry and de Vaucouleurs profiles showing higher uncertainties and also an additional bias of ~-0.2^m. The star/galaxy classification of the bright objects (V < 20) was checked visually making negligible the fraction of misclassified objects. For fainter objects, we found that simulations do not provide reliable estimates of the possible misclassification and therefore we have compared our data

  18. A large sample of Kohonen selected E+A (post-starburst) galaxies from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Meusinger, H.; Brünecke, J.; Schalldach, P.; in der Au, A.

    2017-01-01

    Context. The galaxy population in the contemporary Universe is characterised by a clear bimodality, blue galaxies with significant ongoing star formation and red galaxies with only a little. The migration between the blue and the red cloud of galaxies is an issue of active research. Post starburst (PSB) galaxies are thought to be observed in the short-lived transition phase. Aims: We aim to create a large sample of local PSB galaxies from the Sloan Digital Sky Survey (SDSS) to study their characteristic properties, particularly morphological features indicative of gravitational distortions and indications for active galactic nuclei (AGNs). Another aim is to present a tool set for an efficient search in a large database of SDSS spectra based on Kohonen self-organising maps (SOMs). Methods: We computed a huge Kohonen SOM for 106 spectra from SDSS data release 7. The SOM is made fully available, in combination with an interactive user interface, for the astronomical community. We selected a large sample of PSB galaxies taking advantage of the clustering behaviour of the SOM. The morphologies of both PSB galaxies and randomly selected galaxies from a comparison sample in SDSS Stripe 82 (S82) were inspected on deep co-added SDSS images to search for indications of gravitational distortions. We used the Portsmouth galaxy property computations to study the evolutionary stage of the PSB galaxies and archival multi-wavelength data to search for hidden AGNs. Results: We compiled a catalogue of 2665 PSB galaxies with redshifts z < 0.4, among them 74 galaxies in S82 with EW(Hδ) > 3 Å and z < 0.25. In the colour-mass diagram, the PSB sample is clearly concentrated towards the region between the red and the blue cloud, in agreement with the idea that PSB galaxies represent the transitioning phase between actively and passively evolving galaxies. The relative frequency of distorted PSB galaxies is at least 57% for EW(Hδ) > 5 Å, significantly higher than in the comparison

  19. TANGO I: Interstellar medium in nearby radio galaxies. Molecular gas

    NASA Astrophysics Data System (ADS)

    Ocaña Flaquer, B.; Leon, S.; Combes, F.; Lim, J.

    2010-07-01

    Context. Powerful radio-AGN are hosted by massive elliptical galaxies that are usually very poor in molecular gas. Nevertheless, gas is needed at their very center to feed the nuclear activity. Aims: We study the molecular gas properties (i.e., mass, kinematics, distribution, origin) of these objects, and compare them with results for other known samples. Methods: At the IRAM-30m telescope, we performed a survey of the CO(1-0) and CO(2-1) emission from the most powerful radio galaxies of the Local Universe, selected only on the basis of their radio continuum fluxes. Results: The main result of our survey is that the molecular gas content of these galaxies is very low compared to spiral or FIR-selected galaxies. The median value of the molecular gas mass, including detections and upper limits, is 2.2 × 108 M⊙. When separated into FR-I and FR-II types, a difference in their H2 masses is found. The median value of FR-I galaxies is about 1.9 × 108 M⊙ and higher for FR-II galaxies, at about 4.5 × 108 M⊙. Which is probably entirely because of a Malmquist bias. Our results contrast with those of previous surveys, whose targets were mainly selected by means of their FIR emission, implying that we measure higher observed masses of molecular gas. Moreover, the shape of CO spectra suggest that a central molecular gas disk exists in 30% of these radio galaxies, a lower rate than in other active galaxy samples. Conclusions: We find a low level of molecular gas in our sample of radio-selected AGNs, indicating that galaxies do not need much molecular gas to host an AGN. The presence of a molecular gas disk in some galaxies and the wide range of molecular gas masses may be indicative of different origins for the gas, which we can not exclude at present (e.g., minor/major mergers, stellar mass loss, or accretion). Appendices and Figure 15 are only available in electronic form at http://www.aanda.org

  20. THE 0.3–30 keV SPECTRA OF POWERFUL STARBURST GALAXIES: NuSTAR AND CHANDRA OBSERVATIONS OF NGC 3256 AND NGC 3310

    SciTech Connect

    Lehmer, B. D.; Wik, D. R.; Yukita, M.; Tyler, J. B.; Hornschemeier, A. E.; Ptak, A.; Zhang, W. W.; Antoniou, V.; Zezas, A.; Boggs, S.; Craig, W. W.; Christensen, F. E.; Hailey, C. J.; Harrison, F. A.; Maccarone, T. J.; Stern, D.

    2015-06-10

    We present nearly simultaneous Chandra and NuSTAR observations of two actively star-forming galaxies within 50 Mpc: NGC 3256 and NGC 3310. Both galaxies are significantly detected by both Chandra and NuSTAR, which together provide the first-ever spectra of these two galaxies spanning 0.3–30 keV. The X-ray emission from both galaxies is spatially resolved by Chandra; we find that hot gas dominates the E < 1–3 keV emission while ultraluminous X-ray sources (ULXs) provide majority contributions to the emission at E > 1–3 keV. The NuSTAR galaxy-wide spectra of both galaxies follow steep power-law distributions with Γ ≈ 2.6 at E > 5–7 keV. Using new and archival Chandra data, we search for signatures of heavily obscured or low luminosity active galactic nuclei (AGNs). We find that both NGC 3256 and NGC 3310 have X-ray detected sources coincident with nuclear regions; however, the steep NuSTAR spectra of both galaxies restricts these sources to be either low luminosity AGNs (L{sub 2−10} {sub keV}/L{sub Edd} ≲ 10{sup −5}) or non-AGNs in nature (e.g., ULXs or crowded X-ray sources that reach L{sub 2−10} {sub keV} ∼ 10{sup 40} erg s{sup −1} cannot be ruled out). Combining our constraints on the 0.3–30 keV spectra of NGC 3256 and NGC 3310 with equivalent measurements for nearby star-forming galaxies M83 and NGC 253, we analyze the star formation rate (SFR) normalized spectra of these starburst galaxies. The spectra of all four galaxies show sharply declining power-law slopes at energies above 3–6 keV primarily due to ULX populations. Our observations therefore constrain the average spectral shape of galaxy-wide populations of luminous accreting binaries (i.e., ULXs). Interestingly, despite a completely different galaxy sample selection, emphasizing here a range of SFRs and stellar masses, these properties are similar to those of super-Eddington accreting ULXs that have been studied individually in a targeted NuSTAR ULX program. We also find that

  1. Star-forming galaxies as the origin of diffuse high-energy backgrounds: gamma-ray and neutrino connections, and implications for starburst history

    SciTech Connect

    Tamborra, Irene; Ando, Shin'ichiro; Murase, Kohta E-mail: s.ando@uva.nl

    2014-09-01

    Star-forming galaxies have been predicted to contribute considerably to the diffuse gamma-ray background as they are guaranteed reservoirs of cosmic rays. Assuming that the hadronic interactions responsible for high-energy gamma rays also produce high-energy neutrinos and that O(100) PeV cosmic rays can be produced and confined in starburst galaxies, we here discuss the possibility that star-forming galaxies are also the main sources of the high-energy neutrinos observed by the IceCube experiment. First, we compute the diffuse gamma-ray background from star-forming galaxies, adopting the latest Herschel PEP/HerMES luminosity function and relying on the correlation between the gamma-ray and infrared luminosities reported by Fermi observations. Then we derive the expected intensity of the diffuse high-energy neutrinos from star-forming galaxies including normal and starburst galaxies. Our results indicate that starbursts, including those with active galactic nuclei and galaxy mergers, could be the main sources of the high-energy neutrinos observed by the IceCube experiment. We find that assuming a cosmic-ray spectral index of 2.1–2.2 for all starburst-like galaxies, our predictions can be consistent with both the Fermi and IceCube data, but larger indices readily fail to explain the observed diffuse neutrino flux. Taking the starburst high-energy spectral index as free parameter, and extrapolating from GeV to PeV energies, we find that the spectra harder than E{sup -2.15} are likely to be excluded by the IceCube data, which can be more constraining than the Fermi data for this population.

  2. FORMATION OF DENSE MOLECULAR GAS AND STARS AT THE CIRCUMNUCLEAR STARBURST RING IN THE BARRED GALAXY NGC 7552

    SciTech Connect

    Pan, Hsi-An; Lim, Jeremy; Matsushita, Satoki; Wong, Tony; Ryder, Stuart

    2013-05-01

    We present millimeter molecular line complemented by optical observations, along with a reanalysis of archival centimeter H I and continuum data, to infer the global dynamics and determine where dense molecular gas and massive stars preferentially form in the circumnuclear starburst ring of the barred-spiral galaxy NGC 7552. We find diffuse molecular gas in a pair of dust lanes each running along the large-scale galactic bar, as well as in the circumnuclear starburst ring. We do not detect dense molecular gas in the dust lanes, but find such gas concentrated in two knots where the dust lanes make contact with the circumnuclear starburst ring. When convolved to the same angular resolution as the images in dense gas, the radio continuum emission of the circumnuclear starburst ring also exhibits two knots, each lying downstream of an adjacent knot in dense gas. The results agree qualitatively with the idea that massive stars form from dense gas at the contact points, where diffuse gas is channeled into the ring along the dust lanes, and later explode as supernovae downstream of the contact points. Based on the inferred rotation curve, however, the propagation time between the respective pairs of dense gas and centimeter continuum knots is about an order of magnitude shorter than the lifetimes of OB stars. We discuss possible reasons for this discrepancy, and conclude that either the initial mass function is top-heavy or massive stars in the ring do not form exclusively at the contact points where dense molecular gas is concentrated.

  3. DGSAT: Dwarf Galaxy Survey with Amateur Telescopes. I. Discovery of low surface brightness systems around nearby spiral galaxies

    NASA Astrophysics Data System (ADS)

    Javanmardi, B.; Martinez-Delgado, D.; Kroupa, P.; Henkel, C.; Crawford, K.; Teuwen, K.; Gabany, R. J.; Hanson, M.; Chonis, T. S.; Neyer, F.

    2016-04-01

    Context. We introduce the Dwarf Galaxy Survey with Amateur Telescopes (DGSAT) project and report the discovery of eleven low surface brightness (LSB) galaxies in the fields of the nearby galaxies NGC 2683, NGC 3628, NGC 4594 (M 104), NGC 4631, NGC 5457 (M 101), and NGC 7814. Aims: The DGSAT project aims to use the potential of small-sized telescopes to probe LSB features around large galaxies and to increase the sample size of the dwarf satellite galaxies in the Local Volume. Methods: Using long exposure images, fields of the target spiral galaxies are explored for extended LSB objects. After identifying dwarf galaxy candidates, their observed properties are extracted by fitting models to their light profiles. Results: We find three, one, three, one, one, and two new LSB galaxies in the fields of NGC 2683, 3628, 4594, 4631, 5457, and 7814, respectively. In addition to the newly found galaxies, we analyse the structural properties of nine already known galaxies. All of these 20 dwarf galaxy candidates have effective surface brightnesses in the range 25.3 ≲ μe ≲ 28.8 mag arcsec-2 and are fit with Sersic profiles with indices n ≲ 1. Assuming that they are in the vicinity of the above mentioned massive galaxies, their r-band absolute magnitudes, their effective radii, and their luminosities are in the ranges -15.6 ≲ Mr ≲ -7.8, 160 pc ≲ Re ≲ 4.1 kpc, and 0.1 × 106 ≲ (L/L⊙)r ≲ 127 × 106, respectively. To determine whether these LSB galaxies are indeed satellites of the above mentioned massive galaxies, their distances need to be determined via further observations. Conclusions: Using small telescopes, we are readily able to detect LSB galaxies with similar properties to the known dwarf galaxies of the Local Group.

  4. OmegaWINGS: The First Complete Census of Post-starburst Galaxies in Clusters in the Local Universe

    NASA Astrophysics Data System (ADS)

    Paccagnella, A.; Vulcani, B.; Poggianti, B. M.; Fritz, J.; Fasano, G.; Moretti, A.; Jaffé, Yara L.; Biviano, A.; Gullieuszik, M.; Bettoni, D.; Cava, A.; Couch, W.; D’Onofrio, M.

    2017-04-01

    Galaxies that abruptly interrupt their star formation in < 1.5 {Gyr} present recognizable features in their spectra (no emission and Hδ in absorption) and are called post-starburst (PSB) galaxies. By studying their stellar population properties and their location within the clusters, we obtain valuable insights on the physical processes responsible for star formation quenching. We present the first complete characterization of PSB galaxies in clusters at 0.04< z< 0.07, based on WINGS and OmegaWINGS data, and contrast their properties to those of passive (PAS) and emission-line (EML) galaxies. For V< 20, PSBs represent 7.2 ± 0.2% of cluster galaxies within 1.2 virial radii. Their incidence slightly increases from the outskirts toward the cluster center and from the least toward the most luminous and massive clusters, defined in terms of X-ray luminosity and velocity dispersion. The phase-space analysis and velocity-dispersion profile suggest that PSBs represent a combination of galaxies with different accretion histories. Moreover, PSBs with the strongest Hδ are consistent with being recently accreted. PSBs have stellar masses, magnitudes, colors, and morphologies intermediate between PAS and EML galaxies, typical of a population in transition from being star-forming to passive. Comparing the fraction of PSBs to the fraction of galaxies in transition on longer timescales, we estimate that the short-timescale star formation quenching channel contributes two times more than the long timescale one to the growth of the passive population. Processes like ram-pressure stripping and galaxy–galaxy interactions are more efficient than strangulation in affecting star formation.

  5. THE CHANDRA VIEW OF NEARBY X-SHAPED RADIO GALAXIES

    SciTech Connect

    Hodges-Kluck, Edmund J.; Reynolds, Christopher S.; Miller, M. Coleman; Cheung, Chi C.

    2010-02-20

    We present new and archival Chandra X-ray Observatory observations of X-shaped radio galaxies (XRGs) within z {approx} 0.1 alongside a comparison sample of normal double-lobed FR I and II radio galaxies. By fitting elliptical distributions to the observed diffuse hot X-ray emitting atmospheres (either the interstellar or intragroup medium), we find that the ellipticity and the position angle of the hot gas follow that of the stellar light distribution for radio galaxy hosts in general. Moreover, compared to the control sample, we find a strong tendency for X-shaped morphology to be associated with wings directed along the minor axis of the hot gas distribution. Taken at face value, this result favors the hydrodynamic backflow models for the formation of XRGs which naturally explain the geometry; the merger-induced rapid reorientation models make no obvious prediction about orientation.

  6. Hα kinematics of nearby galaxies using Fabry-Perot and IFU data

    NASA Astrophysics Data System (ADS)

    Erroz-Ferrer, Santiago; S4G Team; MUSE-GTO Consortium

    2017-03-01

    I present here analysis of the shapes of the rotation curves of a large sample of nearby spiral galaxies with high angular and spectral resolution Hα (Fabry-Perot GHαFaS) kinematics, and the resulting constraints on their total mass distributions. In particular I discuss how their rotation curve shapes relate to key galaxy properties. Finally I present related results from the MUSE Atlas of Disks (MAD) program, which is dissecting the nearby disk population with IFU spectroscopy at ~100pc resolution.

  7. Heaviest Stellar Black Hole Discovered in Nearby Galaxy

    NASA Astrophysics Data System (ADS)

    2007-10-01

    Astronomers have located an exceptionally massive black hole in orbit around a huge companion star. This result has intriguing implications for the evolution and ultimate fate of massive stars. The black hole is part of a binary system in M33, a nearby galaxy about 3 million light years from Earth. By combining data from NASA's Chandra X-ray Observatory and the Gemini telescope on Mauna Kea, Hawaii, the mass of the black hole, known as M33 X-7, was determined to be 15.7 times that of the Sun. This makes M33 X-7 the most massive stellar black hole known. A stellar black hole is formed from the collapse of the core of a massive star at the end of its life. Chandra X-ray Image of M33 X-7 Chandra X-ray Image of M33 X-7 "This discovery raises all sorts of questions about how such a big black hole could have been formed," said Jerome Orosz of San Diego State University, lead author of the paper appearing in the October 18th issue of the journal Nature. M33 X-7 orbits a companion star that eclipses the black hole every three and a half days. The companion star also has an unusually large mass, 70 times that of the Sun. This makes it the most massive companion star in a binary system containing a black hole. Hubble Optical Image of M33 X-7 Hubble Optical Image of M33 X-7 "This is a huge star that is partnered with a huge black hole," said coauthor Jeffrey McClintock of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "Eventually, the companion will also go supernova and then we'll have a pair of black holes." The properties of the M33 X-7 binary system - a massive black hole in a close orbit around a massive companion star - are difficult to explain using conventional models for the evolution of massive stars. The parent star for the black hole must have had a mass greater than the existing companion in order to have formed a black hole before the companion star. Gemini Optical Image of M33 X-7 Gemini Optical Image of M33 X-7 Such a massive star would

  8. Optical and Near Infrared studies of the photometric structure and starburst activity of Blue Compact Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Noeske, K. G.

    2003-03-01

    This thesis describes three studies of Blue Compact Dwarf Galaxies (BCDs), focussed on the structure of the stellar components, the star-forming activity, and the environment of such galaxies, as well as the physical background of their morphological variety. The analysis of deep Near Infrared (NIR) image data of a significant sample of BCDs allows to study the evolved stellar low surface brightness (LSB) components of BCDs more precisely than previous studies at visible wavelengths. Azimuthally averaged radial surface brightness profiles (SBPs) show an exponential intensity distribution of the stellar LSB components at large galactocentric radii. This result, along with the derived exponential scale lengths which are systematically smaller than those of dwarf Irregular and dwarf Elliptical galaxies, agrees with previous optical studies. Towards smaller radii, however, the NIR data reveal an inwards-flattening of the SBPs of the stellar LSB components with respect to their outer exponential slopes in more than half of the BCDs under study. Such inwards-flattening exponential SBPs are frequent in dwarf Irregulars and dwarf Ellipticals, but were hitherto largely undiscovered in the stellar hosts of BCDs. The physical origin of such SBPs in dwarf galaxies is to date not understood. Empirical approaches to their systematization and quantitative investigation are discussed, along with the various implications of the discovery of such SBPs in many BCDs for the understanding of such galaxies. Based on the derived structural information on the stellar LSB components and the starburst components, the hypothesis is raised that below a certain threshold density of the stellar LSB component, of the order of 0.4 solar masses per cubic parsec, burst-like star formation does not occur in gas-rich dwarf galaxies. On this hypothesis, the observed relations between the structure of the stellar LSB components of BCDs and their luminosity can be reproduced, as well as the systematic

  9. TURBULENT CAULDRON OF STARBIRTH IN NEARBY ACTIVE GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope offers a stunning unprecedented close-up view of a turbulent firestorm of starbirth along a nearly edge-on dust disk girdling Centaurus A, the nearest active galaxy to Earth. A ground-based telescopic view (upper left insert) shows that the dust lane girdles the entire elliptical galaxy. This lane has long been considered the dust remnant of a smaller spiral galaxy that merged with the large elliptical galaxy. The spiral galaxy deposited its gas and dust into the elliptical galaxy, and the shock of the collision compressed interstellar gas, precipitating a flurry of star formation. Resembling looming storm clouds, dark filaments of dust mixed with cold hydrogen gas are silhouetted against the incandescent yellow-orange glow from hot gas and stars behind it. Brilliant clusters of young blue stars lie along the edge of the dark dust rift. Outside the rift the sky is filled with the soft hazy glow of the galaxy's much older resident population of red giant and red dwarf stars. The dusty disk is tilted nearly edge-on, its inclination estimated to be only 10 or 20 degrees from our line-of-sight. The dust lane has not yet had enough time since the recent merger to settle down into a flat disk. At this oblique angle, bends and warps in the dust lane cause us to see a rippled 'washboard' structure. The picture is a mosaic of two Hubble Space Telescope images taken with the Wide Field Planetary Camera 2, on Aug. 1, 1997 and Jan. 10, 1998. The approximately natural color is assembled from images taken in blue, green and red light. Details as small as seven light-years across can be resolved. The blue color is due to the light from extremely hot, newborn stars. The reddish-yellow color is due in part to hot gas, in part to older stars in the elliptical galaxy and in part to scattering of blue light by dust -- the same effect that produces brilliant orange sunsets on Earth. Centaurus A (NGC 5128) Fast Facts: Right Ascension: 13: 25.5 (hours

  10. Spectra of nearby galaxies measured with a new very broadband receiver

    NASA Astrophysics Data System (ADS)

    Narayanan, Gopal; Snell, Ronald L.; Erickson, Neal R.; Chung, Aeree; Heyer, Mark H.; Yun, Min; Irvine, William M.

    2008-10-01

    Three-millimeter-wavelength spectra of a number of nearby galaxies have been obtained at the Five College Radio Astronomy Observatory (FCRAO) using a new, very broadband receiver. This instrument, which we call the Redshift Search Receiver, has an instantaneous bandwidth of 36 GHz and operates from 74 to 110.5 GHz. The receiver has been built at UMass/FCRAO to be part of the initial instrumentation for the Large Millimeter Telescope (LMT) and is intended primarily for determination of the redshift of distant, dust-obscured galaxies. It is being tested on the FCRAO 14 m by measuring the 3 mm spectra of a number of nearby galaxies. There are interesting differences in the chemistry of these galaxies.

  11. THE CONTRIBUTION OF TP-AGB STARS TO THE MID-INFRARED COLORS OF NEARBY GALAXIES

    SciTech Connect

    Chisari, Nora E.; Kelson, Daniel D.

    2012-07-10

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 {mu}m. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  12. The Contribution of TP-AGB Stars to the Mid-infrared Colors of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Chisari, Nora E.; Kelson, Daniel D.

    2012-07-01

    We study the mid-infrared color space of 30 galaxies from the Spitzer Infrared Nearby Galaxies Survey (SINGS) survey for which Sloan Digital Sky Survey data are also available. We construct two-color maps for each galaxy and compare them to results obtained from combining Maraston evolutionary synthesis models, galactic thermally pulsating asymptotic giant branch (TP-AGB) colors, and smooth star formation histories. For most of the SINGS sample, the spatially extended mid-IR emission seen by Spitzer in normal galaxies is consistent with our simple model in which circumstellar dust from TP-AGB stars dominates at 8 and 24 μm. There is a handful of exceptions that we identify as galaxies that have high star formation rates presumably with star formation histories that cannot be assumed to be smooth, or anemic galaxies, which were depleted of their H I at some point during their evolution and have very low ongoing star formation rates.

  13. The Galactic Center compared with nuclei of nearby galaxies

    NASA Astrophysics Data System (ADS)

    Combes, Francoise

    2017-01-01

    Understanding our Galactic Center is easier with insights from nearby galactic nuclei. Both the star formation activity in nuclear gas disks, driven by bars and nuclear bars, and the fueling of low-luminosity AGN, followed by feedback of jets, driving molecular outflows, were certainly present in our Galactic Center, which appears now quenched. Comparisons and diagnostics are reviewed, in particular of m = 2 and m = 1 modes, lopsidedness, different disk orientations, and fossil evidences of activity and feedback.

  14. The power spectrum of galaxies in the nearby universe

    NASA Technical Reports Server (NTRS)

    Da Costa, L. Nicolaci; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.; Park, Changbom

    1994-01-01

    We compute the power spectrum of galaxy density fluctuations in a recently completed Southern Sky Redshift Survey of optically selected galaxies (SSRS2). The amplitude and shape of the SSRS2 power spectrum are consistent with results of the Center for Astrophysics redshift survey of the northern hemisphere (CfA2), including the abrupt change of slope on a scale of 30-50/h Mpc; these results are reproducible for independent volumes of space, and variations are consistent with the errors estimated from mock surveys. Taken together, the SSRS2 and the CfA2 form a complete sample of 14,383 galaxies which covers one-third of the sky. The power spectrum of this larger sample continues to rise on scales up to approximately 200/h Mpc, with weak evidence for flattening on the largest scales. The SSRS2 + CfA2 power spectrum and the power spectrum constraints implied by COBE are well matched by an Omega(h) is approximately 0.2, Omega + lambda(sub 0) = 1 cold dark matter model with minimal biasing of optically selected galaxies.

  15. Atomic-to-Molecular Gas Transition in Nearby Galaxies: What can we learn from the CARMA Survey Toward IR-bright Nearby Galaxies (STING)?

    NASA Astrophysics Data System (ADS)

    Xue, Rui; Wong, Tony

    2011-10-01

    We present a detailed comparison of molecular and atomic gas distributions in 18 nearby galaxies at sub-kpc or kpc scales, based on the CO J = 1 - 0 data from the CARMA Survey Toward IR-Bright Nearby Galaxies (STING) and the HI 21cm data in the NRAO Very Large Array (VLA) archive. The observation spatial coverage extends to a quarter of the optical radius for each galaxy. The average molecular and atomic gas column density sensitivities are ~8M⊙/pc2 and ~3M⊙/pc2 at the comparison resolution. A metallicity dependence of the HI saturation limit was possibly detected in the galaxy sample ( 8.1<12+Log(O/H)<9.0 ). We used the CO and HI pixel-by-pixel comparison results to test models of the atomic-to-molecular transition and CO formation at different metallicities. An acceptable agreement was found at the limited spatial resolutions and sensitivities of the observational datasets.

  16. Host Galaxies of Type Ia Supernovae from the Nearby Supernova Factory

    NASA Astrophysics Data System (ADS)

    Childress, M.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Gangler, E.; Guy, J.; Hsiao, E. Y.; Kerschhaggl, M.; Kim, A. G.; Kowalski, M.; Loken, S.; Nugent, P.; Paech, K.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.; Wu, C.

    2013-06-01

    We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and Hα-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M */M ⊙) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

  17. STAR FORMATION AND RELAXATION IN 379 NEARBY GALAXY CLUSTERS

    SciTech Connect

    Cohen, Seth A.; Hickox, Ryan C.; Wegner, Gary A.

    2015-06-10

    We investigate the relationship between star formation (SF) and level of relaxation in a sample of 379 galaxy clusters at z < 0.2. We use data from the Sloan Digital Sky Survey to measure cluster membership and level of relaxation, and to select star-forming galaxies based on mid-infrared emission detected with the Wide-Field Infrared Survey Explorer. For galaxies with absolute magnitudes M{sub r} < −19.5, we find an inverse correlation between SF fraction and cluster relaxation: as a cluster becomes less relaxed, its SF fraction increases. Furthermore, in general, the subtracted SF fraction in all unrelaxed clusters (0.117 ± 0.003) is higher than that in all relaxed clusters (0.097 ± 0.005). We verify the validity of our SF calculation methods and membership criteria through analysis of previous work. Our results agree with previous findings that a weak correlation exists between cluster SF and dynamical state, possibly because unrelaxed clusters are less evolved relative to relaxed clusters.

  18. Blue Supergiant X-Ray Binaries in the Nearby Dwarf Galaxy IC 10

    NASA Astrophysics Data System (ADS)

    Laycock, Silas G. T.; Christodoulou, Dimitris M.; Williams, Benjamin F.; Binder, Breanna; Prestwich, Andrea

    2017-02-01

    In young starburst galaxies, the X-ray population is expected to be dominated by the relics of the most massive and short-lived stars, black hole and neutron-star high-mass X-ray binaries (XRBs). In the closest such galaxy, IC 10, we have made a multi-wavelength census of these objects. Employing a novel statistical correlation technique, we have matched our list of 110 X-ray point sources, derived from a decade of Chandra observations, against published photometric data. We report an 8σ correlation between the celestial coordinates of the two catalogs, with 42 X-ray sources having an optical counterpart. Applying an optical color–magnitude selection to isolate blue supergiant (SG) stars in IC 10, we find 16 matches. Both cases show a statistically significant overabundance versus the expectation value for chance alignments. The blue objects also exhibit systematically higher {f}x/{f}v ratios than other stars in the same magnitude range. Blue SG-XRBs include a major class of progenitors of double-degenerate binaries, hence their numbers are an important factor in modeling the rate of gravitational-wave sources. We suggest that the anomalous features of the IC 10 stellar population are explained if the age of the IC 10 starburst is close to the time of the peak of interaction for massive binaries.

  19. WINGS: a WIde-field nearby Galaxy-cluster survey. III. Deep near-infrared photometry of 28 nearby clusters

    NASA Astrophysics Data System (ADS)

    Valentinuzzi, T.; Woods, D.; Fasano, G.; Riello, M.; D'Onofrio, M.; Varela, J.; Bettoni, D.; Cava, A.; Couch, W. J.; Dressler, A.; Fritz, J.; Moles, M.; Omizzolo, A.; Poggianti, B. M.; Kjærgaard, P.

    2009-07-01

    Context: This is the third paper in a series devoted to the WIde-field Nearby Galaxy-cluster Survey (WINGS). WINGS is a long-term project aimed at gathering wide-field, multiband imaging and spectroscopy of galaxies in a complete sample of 77 X-ray selected, nearby clusters (0.04galaxies and galaxy clusters. Aims: This paper presents the near-infrared (J,K) photometric catalogs of 28 clusters of the WINGS sample and describes the procedures followed to construct them. Methods: The raw data has been reduced at CASU and special care has been devoted to the final coadding, drizzling technique, astrometric solution, and magnitude calibration for the WFCAM pipeline-processed data. We constructed the photometric catalogs based on the final calibrated, coadded mosaics (≈0.79 deg^2) in J (19 clusters) and K (27 clusters) bands. A customized interactive pipeline was used to clean the catalogs and to make mock images for photometric errors and completeness estimates. Results: We provide deep near-infrared photometric catalogs (90% complete in detection rate at total magnitudes J≈ 20.5, K≈ 19.4, and in classification rate at J≈19.5 and K≈ 18.5), giving positions, geometrical parameters, total and aperture magnitudes for all detected sources. For each field we classify the detected sources as stars, galaxies, and objects of “unknown” nature. Based on observations taken at the United Kingdom Infra-Red Telescope, operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the UK. J and K photometric catalogs are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/851

  20. On The Upper IMF in Nearby Dwarf Galaxies: Modeling the Effects of Star Formation Histories

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Johnson, B. D.; Johnson, L. C.; Skillman, E. D.; LVL Team

    2011-01-01

    Observations of lower than expected Hα-FUV flux ratios in nearby dwarf galaxies have led to suggestions that the upper stellar IMF may systematically vary with respect to environment. We investigate the influence of star formation histories (SFHs) on the Hα-FUV flux ratios in nearby galaxies to assess the plausibility that SFHs could account for the observed trends. We model a wide range of SFH parameters, including some that resemble those of measured SFHs from studies of resolved stellar populations in nearby galaxies. Assuming a fully populated Chabrier IMF, we generate model predictions of the Hα-FUV flux ratios, R-band surface brightness, and total stellar mass, and compare to observations of 127 nearby star forming galaxies from the LVL and SDSS samples. We find excellent agreement between the model SFH predications and the observational data, demonstrating that a systematically varying IMF is unnecessary to explain the observed trends. We also explore the how extinction corrections, sample completeness, and choice of independent physical parameter (e.g., stellar mass, R-band surface brightness) can all introduce unphysical biases into the data. Our findings do not rule out competing effects such as photon leakage or stochastic sampling of the IMF, and are consistent with a combination of these effects causing the observed trends.

  1. The Spitzer Local Volume Legacy Survey: Infrared Imaging and Photometry for 258 Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Dale, Daniel A.; LVL Team

    2009-01-01

    Near-, mid-, and far-infrared flux properties are presented for the Local Volume Legacy survey, a Spitzer Space Telescope legacy program built upon a foundation of GALEX ultraviolet and ground-based Hα imaging of 258 galaxies within 11 Mpc. The Local Volume Legacy survey covers an unbiased, representative, and statistically robust sample of nearby star-forming galaxies, exploiting the faintest absolute depth and highest extragalactic spatial resolution achievable with Spitzer. As a result of its approximately volume-limited nature, LVL augments previous Spitzer observations of present-day galaxies (such as from SINGS, the Spitzer Infrared Nearby Galaxies Survey) with improved sampling of the low-luminosity dwarf galaxy population. LVL's unique sample selection results in a large spread in mid-infrared colors, likely due to the conspicuous deficiency of PAH emission from low-metallicity galaxies. Conversely, the LVL sample shows a tighter correlation in the infrared-to-ultraviolet ratio versus ultraviolet spectral slope, due in large part to the lack of luminous early-type galaxies in the Local Volume.

  2. A comparison between observed and analytical velocity dispersion profiles of 20 nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad S.; Abdullah, Mohamed H.; Ali, Gamal B.

    2014-05-01

    We derive analytical expression for the velocity dispersion of galaxy clusters, using the statistical mechanical approach. We compare the observed velocity dispersion profiles for 20 nearby ( z≤0.1) galaxy clusters with the analytical ones. It is interesting to find that the analytical results closely match with the observed velocity dispersion profiles only if the presence of the diffuse matter in clusters is taken into consideration. This takes us to introduce a new approach to detect the ratio of diffuse mass, M diff , within a galaxy cluster. For the present sample, the ratio f= M diff / M, where M the cluster's total mass is found to has an average value of 45±12 %. This leads us to the result that nearly 45 % of the cluster mass is impeded outside the galaxies, while around 55 % of the cluster mass is settled in the galaxies.

  3. The star-formation history of the Universe from the stellar populations of nearby galaxies.

    PubMed

    Heavens, Alan; Panter, Benjamin; Jimenez, Raul; Dunlop, James

    2004-04-08

    The determination of the star-formation history of the Universe is a key goal of modern cosmology, as it is crucial to our understanding of how galactic structures form and evolve. Observations of young stars in distant galaxies at different times in the past have indicated that the stellar birthrate peaked some eight billion years ago before declining by a factor of around ten to its present value. Here we report an analysis of the 'fossil record' of the current stellar populations of 96,545 nearby galaxies, from which we obtained a complete star-formation history. Our results broadly support those derived from high-redshift galaxies. We find, however, that the peak of star formation was more recent--around five billion years ago. We also show that the bigger the stellar mass of the galaxy, the earlier the stars were formed, which indicates that high- and low-mass galaxies have very different histories.

  4. Lyα imaging of a very luminous z=2.3 starburst galaxy with WFPC2

    NASA Astrophysics Data System (ADS)

    Roche, Nathan; Lowenthal, James; Woodgate, Bruce

    2000-10-01

    We investigate the Lyα and UV continuum morphology of one of the most luminous known Lymanα emitting galaxies (the `Coup Fourré Galaxy'), associated with a z=2.3 damped Lyα absorption system in the spectrum of the QSO PHL 957. The galaxy is observed with the Hubble Space Telescope Wide-Field Planetary Camera 2 (HST WFPC2), through a narrow filter (F410M) corresponding to rest-frame Lyα for a total exposure time of 41.2ks, plus shorter exposures in F555W and F814W. In all three passbands, the galaxy is resolved into a close (~0.35arcsec) pair of two components, CFgA and CFgB, both of which are extended and elongated. The profile of CFgA is consistent with an exponential disk of similar scalelength in Lyα (rexp=0.23arcsec) and continuum (rexp=0.20arcsec), and no evidence of a central point source. In contrast, CFgB is closer to a bulge profile. We find that CFgA has by far the higher ratio of Lyα to continuum flux, and from the observed colours estimate rest-frame equivalent widths of W(Lyα)=151+/-16Å for CFgA and 33+/-13Å for CFgB. From the F814W and F555W magnitudes we estimate the rest-frame blue-band absolute magnitudes (for H0=50kms-1Mpc-1 and q0=0.05) of -23.12 for CFgA and -23.24 for CFgB, significantly brighter than local galaxies of the same size. CFgA shows a remarkable 3.9 magnitudes of surface brightness enhancement relative to local spirals. This object appears to be at the upper limit of both the range of surface brightness evolution observed in z>2 galaxies and the range of W(Lyα) in any star-forming galaxy. We speculate that its extreme surface brightness results from a very luminous starburst (~200Msolaryr-1), triggered by the merger of the two components, and the high W(Lyα) from a brief phase of the starburst in which most Lyα photons can escape, as predicted in the models of Tenorio-Tagle et al. (1999). We also investigated the F410M image of the QSO PHL 957. Subtraction of a normalized point-spead function leaves no significant

  5. Updated 34-band Photometry for the Sings/KINGFISH Samples of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Dale, D. A.; Cook, D. O.; Roussel, H.; Turner, J. A.; Armus, L.; Bolatto, A. D.; Boquien, M.; Brown, M. J. I.; Calzetti, D.; De Looze, I.; Galametz, M.; Gordon, K. D.; Groves, B. A.; Jarrett, T. H.; Helou, G.; Herrera-Camus, R.; Hinz, J. L.; Hunt, L. K.; Kennicutt, R. C.; Murphy, E. J.; Rest, A.; Sandstrom, K. M.; Smith, J.-D. T.; Tabatabaei, F. S.; Wilson, C. D.

    2017-03-01

    We present an update to the ultraviolet-to-radio database of global broadband photometry for the 79 nearby galaxies that comprise the union of the KINGFISH (Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel) and SINGS (Spitzer Infrared Nearby Galaxies Survey) samples. The 34-band data set presented here includes contributions from observational work carried out with a variety of facilities including GALEX, SDSS, Pan-STARRS1, NOAO, 2MASS, Wide-Field Infrared Survey Explorer, Spitzer, Herschel, Planck, JCMT, and the VLA. Improvements of note include recalibrations of previously published SINGS BVR C I C and KINGFISH far-infrared/submillimeter photometry. Similar to previous results in the literature, an excess of submillimeter emission above model predictions is seen primarily for low-metallicity dwarf or irregular galaxies. This 33-band photometric data set for the combined KINGFISH+SINGS sample serves as an important multiwavelength reference for the variety of galaxies observed at low redshift. A thorough analysis of the observed spectral energy distributions is carried out in a companion paper.

  6. Population studies in groups and clusters of galaxies. III. A catalog of galaxies in five nearby groups

    SciTech Connect

    Ferguson, H.C.; Sandage, A. Mount Wilson and Las Campanas Observatories, Pasadena, CA Space Telescope Science Institute, Baltimore, MD )

    1990-07-01

    Five nearby groups of galaxies have been surveyed using large-scale plates from the 2.5 m duPont Telescope at Las Campanas Observatory. Catalogs of galaxies brighter than B(T) = 20 are presented for the Leo, Dorado, NGC 1400, NGC 5044, and Antlia groups. A total of 1044 galaxies are included, from visual inspection of 14 plates, covering 31 deg square. Galaxies have been classified in the extended Hubble system, and group memberships have been assigned based on velocity (where available) and morphology. About half the galaxies listed are likely members of one of the nearby groups. The catalogs are complete to B(T) = 18, although the completeness limits vary slightly from group to group. Based on King model fits to the surface density profiles, the core radii of the groups range from 0.3 to 1 Mpc, and central densities range from 120 to 1900 galaxies Mpc exp-3 brighter than M(BT) = -12.5. Dynamical analysis indicates that all of the groups are likely to be gravitationally bound. 64 refs.

  7. UV-selected Young Massive Star Cluster Populations in Nearby Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Linda J.

    2015-08-01

    The Legacy ExtraGalactic UV Survey (LEGUS) is an HST Treasury program aimed at the investigation of star-formation and its relationship to environment in nearby galaxies. The results of a UV-selected study of young massive star clusters in a sample of nearby galaxies (< 10 Mpc) using detections based on the WFC3/UVIS F275W filter will be presented. Previous studies have used V or I-band detections and tend to ignore clusters younger than 10 Myr old. This very young population, which represents the most recent cluster-forming event in the LEGUS galaxies will be discussed.This poster is presented on behalf of the LEGUS team (PI Daniela Calzetti).

  8. The structure of the nearby universe traced by theIRAS galaxies

    NASA Technical Reports Server (NTRS)

    Yahil, Amos

    1993-01-01

    One of the most important discoveries of the Infrared Astronomical Satellite (IRAS) has been the detection of about 20,000 galaxies with 60 microns fluxes above 0.5 Jy. From the observational point of view, the IRAS galaxies are ideal tracers of density, since they are homogeneously detected over most of the sky, and their fluxes are unaffected by galactic extinction. The nearby universe was mapped by the IRAS galaxies to a distance of approximately 200 h(exp -1) Mpc for the absolute value of b less than 5 deg. The ability to map down to such low galactic latitudes has proven to be particularly imporant, since some of the most important nearby large-scale structures, such as the Great Attractor, the Perseus-Pisces region, and the Shapley concentration, all lie there. Two major results of the U.S. IRAS redshift survey are discussed.

  9. NGC 1277: A MASSIVE COMPACT RELIC GALAXY IN THE NEARBY UNIVERSE

    SciTech Connect

    Trujillo, Ignacio; Vazdekis, Alexandre; Balcells, Marc; Sánchez-Blázquez, Patricia

    2014-01-10

    As early as 10 Gyr ago, galaxies with more than 10{sup 11} M {sub ☉} of stars already existed. While most of these massive galaxies must have subsequently transformed through on-going star formation and mergers with other galaxies, a small fraction (≲0.1%) may have survived untouched until today. Searches for such relic galaxies, useful windows to explore the early universe, have been inconclusive to date: galaxies with masses and sizes like those observed at high redshift (M {sub *} ≳ 10{sup 11} M {sub ☉}; R{sub e} ≲ 1.5 kpc) have been found in the local universe, but their stars are far too young for the galaxy to be a relic galaxy. This paper explores the first case of a nearby galaxy, NGC 1277 (at a distance of 73 Mpc in the Perseus galaxy cluster), which fulfills many criteria to be considered a relic galaxy. Using deep optical spectroscopy, we derive the star formation history along the structure of the galaxy: the stellar populations are uniformly old (>10 Gyr) with no evidence for more recent star formation episodes. The metallicity of their stars is super-solar ([Fe/H] = 0.20 ± 0.04 with a smooth decline toward the outer regions) and α-enriched ([α/Fe] = 0.4 ± 0.1). This suggests a very short formation time scale for the bulk of the stars in this galaxy. This object also rotates very fast (V {sub rot} ∼ 300 km s{sup –1}) and has a large central velocity dispersion (σ > 300 km s{sup –1}). NGC 1277 allows the exploration in full detail of properties such as the structure, internal dynamics, metallicity, and initial mass function as they were at ∼10-12 Gyr ago when the first massive galaxies were built.

  10. WITNESSING THE FORMATION OF A BRIGHTEST CLUSTER GALAXY IN A NEARBY X-RAY CLUSTER

    SciTech Connect

    Rasmussen, Jesper; Mulchaey, John S.; Bai, Lei; Ponman, Trevor J.; Raychaudhury, Somak; Dariush, Ali

    2010-07-10

    The central dominant galaxies in galaxy clusters constitute the most massive and luminous galaxies in the universe. Despite this, the formation of these brightest cluster galaxies (BCGs) and the impact of this on the surrounding cluster environment remain poorly understood. Here we present multiwavelength observations of the nearby poor X-ray cluster MZ 10451, in which both processes can be studied in unprecedented detail. Chandra observations of the intracluster medium (ICM) in the cluster core, which harbors two optically bright early-type galaxies in the process of merging, show that the system has retained a cool core and a central metal excess. This suggests that any merger-induced ICM heating and mixing remain modest at this stage. Tidally stripped stars seen around either galaxy likely represent an emerging intracluster light component, and the central ICM abundance enhancement may have a prominent contribution from in situ enrichment provided by these stars. The smaller of the merging galaxies shows evidence for having retained a hot gas halo, along with tentative evidence for some obscured star formation, suggesting that not all BCG major mergers at low redshift are completely dissipationless. Both galaxies are slightly offset from the peak of the ICM emission, with all three lying on an axis that roughly coincides with the large-scale elongation of the ICM. Our data are consistent with a picture in which central BCGs are built up by mergers close to the cluster core, by galaxies infalling on radial orbits aligned with the cosmological filaments feeding the cluster.

  11. Environmental Effects on the ISM and Star Formation Properties of Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Wilson, Christine

    2015-08-01

    We present the results from a sample of HI flux-selected spiral galaxies within 25 Mpc from the JCMT Nearby Galaxies Legacy Survey (NGLS), subdivided into isolated, group, and Virgo cluster samples. The CO J=3-2 line was observed with the James Clerk Maxwell Telescope (JCMT), a tracer for the dense molecular gas linked to star formation. We combine the CO data with integrated star formation rates using H-alpha measurements and stellar masses from the S4G Survey in order to study the link between the gas and stars inside these galaxies. We find that while the mean atomic gas mass is lower for the Virgo galaxies compared to the isolated galaxies, the distributions of molecular gas masses are not significantly different between the three samples. The specific star formation rate is also lower for the Virgo sample, followed by the group and isolated galaxies. Finally, the molecular gas depletion time is longer for the Virgo galaxies compared to the group and isolated galaxies, which suggests the possible effects of environment on the galaxy's star formation properties.

  12. Spectroscopic observations of southern nearby galaxies. I. NGC 2442

    NASA Astrophysics Data System (ADS)

    Bajaja, E.; Agüero, E.; Paolantonio, S.

    1999-04-01

    The galaxy NGC 2442 was observed with a REOSC spectrograph, installed in the 2.15 m CASLEO telescope, in order to derive galactic parameters from the observed optical lines and to compare them with the results of radioastronomical observations made in the continuum, at 843 MHz, with the MOST and in the CO lines with the SEST telescope. Recent publications allowed us to extend the comparison to results from interferometric observations of Hα and H I 21 cm lines and of the continuum at 1415 MHz. The long slit observations were made placing the 5farcm 8 slit at six different positions on the optical image of the galaxy. The emission line intensity ratios at the nuclear region indicate that NGC 2442 is a LINER. The electron temperature and volume density are Te ~ 14 000 K and Ne ~ 530 cm(-3) , respectively. In contrast, a spectrum of a region 87arcsec to the NE shows the typical characteristics of a H Ii region. In this case Te ~ 6,500 K and Ne ~ 10 cm(-3) . Good correlations between the distributions of intensities, velocity fields and rotation curves have been found for the optical and radio lines. It is shown that the three intensity peaks along the line at PA = 40degr were not resolved by the observations at radio frequencies. The steep central rotation curve seen in CO has been confirmed and improved showing the existence of a disc or a ring, with a radius of 12.5 arcsec, rotating at 216/sin(i) km s(-1). Two velocity components in three optical spectra obtained in the nuclear region, have been related to two small Hα regions close to the nucleus and to the central ring. Asymmetries in the distributions of the emitting sources and irregularities in their velocity fields indicate the need of modelling the galaxy before any dynamical study is attempted. Based on observations made in the Complejo Astronomico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Cientificas y Tecnicas de la Republica Argentina and the National

  13. Detection of neutrinos from supernovae in nearby galaxies.

    PubMed

    Ando, Shin'ichiro; Beacom, John F; Yüksel, Hasan

    2005-10-21

    While existing detectors would see a burst of many neutrinos from a Milky Way supernova, the supernova rate is only a few per century. As an alternative, we propose the detection of approximately 1 neutrino per supernova from galaxies within 10 Mpc, in which there were at least 9 core-collapse supernovae since 2002. With a future 1 Mton scale detector, this could be a faster method for measuring the supernova neutrino spectrum, which is essential for calibrating numerical models and predicting the redshifted diffuse spectrum from distant supernovae. It would also allow a > or approximately 10(4) times more precise trigger time than optical data alone for high-energy neutrinos and gravitational waves.

  14. A NuSTAR SURVEY OF NEARBY ULTRALUMINOUS INFRARED GALAXIES

    SciTech Connect

    Teng, Stacy H.; Rigby, Jane R.; Ptak, Andrew; Stern, Daniel; Alexander, D. M.; Bauer, Franz E.; Boggs, Stephen E.; Craig, William W.; Brandt, W. Niel; Luo, Bin; Christensen, Finn E.; Comastri, Andrea; Farrah, Duncan; Gandhi, Poshak; Hailey, Charles J.; Harrison, Fiona A.; Hickox, Ryan C.; Koss, Michael; and others

    2015-11-20

    We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously possible. Six of the nine sources observed were detected sufficiently well by NuSTAR to model in detail their broadband X-ray spectra, and recover the levels of obscuration and intrinsic X-ray luminosities. Only one source (IRAS 13120–5453) has a spectrum consistent with a Compton-thick active galactic nucleus (AGN), but we cannot rule out that a second source (Arp 220) harbors an extremely highly obscured AGN as well. Variability in column density (reduction by a factor of a few compared to older observations) is seen in IRAS 05189–2524 and Mrk 273, altering the classification of these borderline sources from Compton-thick to Compton-thin. The ULIRGs in our sample have surprisingly low observed fluxes in high-energy (>10 keV) X-rays, especially compared to their bolometric luminosities. They have lower ratios of unabsorbed 2–10 keV to bolometric luminosity, and unabsorbed 2–10 keV to mid-IR [O iv] line luminosity than do Seyfert 1 galaxies. We identify IRAS 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk 231. We speculate that the X-ray weakness of IRAS 08572+3915 is related to its powerful outflow observed at other wavelengths.

  15. Thermal Pressure in the Cold Neutral Medium of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Herrera-Camus, R.; Bolatto, A.; Wolfire, M.; Ostriker, E.; Draine, B.; Leroy, A.; Sandstrom, K.; Hunt, L.; Kennicutt, R.; Calzetti, D.; Smith, J. D.; Croxall, K.; Galametz, M.; de Looze, I.; Dale, D.; Crocker, A.; Groves, B.

    2017-02-01

    Dynamic and thermal processes regulate the structure of the multiphase interstellar medium (ISM), and ultimately establish how galaxies evolve through star formation. Thus, to constrain ISM models and better understand the interplay of these processes, it is of great interest to measure the thermal pressure (Pth) of the diffuse, neutral gas. By combining [C ii] 158 μm, H I, and CO data from 31 galaxies selected from the Herschel KINGFISH sample, we have measured thermal pressures in 534 predominantly atomic regions with typical sizes of ∼1 kiloparsec. We find a distribution of thermal pressures in the Pth/k∼ 103-105 K cm-3 range. For a sub-sample of regions with conditions similar to those of the diffuse, neutral gas in the Galactic plane, we find thermal pressures that follow a log-normal distribution with a median value of Pth/k ≈ 3600 K cm-3. These results are consistent with thermal pressure measurements using other observational methods. We find that Pth increases with radiation field strength and star formation activity, as expected from the close link between the heating of the gas and the star formation rate. Our thermal pressure measurements fall in the regime where a two-phase ISM with cold and warm neutral media could exist in pressure equilibrium. Finally, we find that the midplane thermal pressure of the diffuse gas is about ∼30% of the vertical weight of the overlying ISM, consistent with results from hydrodynamical simulations of self-regulated star formation in galactic disks.

  16. VLA-ANGST: A High-resolution H I Survey of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Ott, Jürgen; Stilp, Adrienne M.; Warren, Steven R.; Skillman, Evan D.; Dalcanton, Julianne J.; Walter, Fabian; de Blok, W. J. G.; Koribalski, Bärbel; West, Andrew A.

    2012-10-01

    We present the "Very Large Array survey of Advanced Camera for Surveys Nearby Galaxy Survey Treasury galaxies (VLA-ANGST)." VLA-ANGST is a National Radio Astronomy Observatory Large Program consisting of high spectral (0.6-2.6 km s-1) and spatial (~6'') resolution observations of neutral, atomic hydrogen (H I) emission toward 35 nearby dwarf galaxies from the ANGST survey. ANGST is a systematic Hubble Space Telescope survey to establish a legacy of uniform multi-color photometry of resolved stars for a volume-limited sample of nearby galaxies (D <~ 4 Mpc). VLA-ANGST provides VLA H I observations of the sub-sample of ANGST galaxies with recent star formation that are observable from the northern hemisphere and that were not observed in the "The H I Nearby Galaxy Survey" (THINGS). The overarching scientific goal of VLA-ANGST is to investigate fundamental characteristics of the neutral interstellar medium (ISM) of dwarf galaxies. Here we describe the VLA observations, the data reduction, and the final VLA-ANGST data products. We present an atlas of the integrated H I maps, the intensity-weighted velocity fields, the second moment maps as a measure for the velocity dispersion of the H I, individual channel maps, and integrated H I spectra for each VLA-ANGST galaxy. We closely follow the observational setup and data reduction of THINGS to achieve comparable sensitivity and angular resolution. A major difference between VLA-ANGST and THINGS, however, is the high velocity resolution of the VLA-ANGST observations (0.65 and 1.3 km s-1 for the majority of the galaxies). The VLA-ANGST data products are made publicly available through a dedicated Web site (https://science.nrao.edu/science/surveys/vla-angst). With available star formation histories from resolved stellar populations and lower resolution ancillary observations from the far-infrared to the ultraviolet, VLA-ANGST will enable detailed studies of the relationship between the ISM and star formation in dwarf galaxies

  17. 3D Spectroscopic Surveys of Late-Type Nearby Galaxies in the Optical

    NASA Astrophysics Data System (ADS)

    Amram, Philippe

    2011-12-01

    Two classes of spectro-imagers are available, the first one, usually based on grisms, allows to cover intermediate fields of view and wide spectral ranges (decreasing when the spectral resolution increases) while the second one, usually based on tunable filters (like Fabry-Perot), is generally able to cover larger fields of view but on narrow spectral ranges (also depending on the spectral resolution). Both families of instrument have access to low or high spectral resolution and are used in seeing limited conditions for observing nearby galaxies. Spectro-imagers provide data cubes consisting of a spectrum for each spatial sample on the sky. From these spectra, using both emission and absorption lines, combined with the continuum emission, the history of the stars and the interstellar medium in nearby galaxies, encoded in different physical quantities, such as chemical abundances, kinematics properties, is deciphered. Only a few surveys of galaxies using spectro-imagers have been led up to now and mainly using 4-m class or smaller telescopes. This includes the case of nearby late-type galaxies surveyed in the optical. Two large surveys of some 600 galaxies each have just been launched, one on the Magellan 6m telescope (CGS) and the other one on the William Herschel 4.2m telescope (CALIFA). Surveys containing a smaller number of galaxies have been conducted elsewhere, for instance on the WIYN and Calar Alto 3.5m telescopes (the DiskMass survey, 146 galaxies); on the ESO and CFHT 3.6m telescopes (CIGALE, 269 galaxies); on the OHP 1.92m telescope (GHASP, 203 galaxies); on the mont Mégantic 1.6m telescope (107 galaxies) and on the San Pedro Mártir 2.1m telescope (79 galaxies). Other programs surveying less then 50 galaxies have been also led, like VENGA, SAURON, PINGS or GHaFaS. The scientific drivers of these surveys are broad, they span from the study of the structural properties, star formation histories, AGN content, to mass profiles and uncertainties in rotation

  18. High-Resolution Hα Velocity Fields of Nearby Spiral Galaxies with the Southern African Large Telescope

    NASA Astrophysics Data System (ADS)

    Mitchell, Carl; Williams, Ted; Spekkens, Kristine; Lee-Waddell, Karen; Kuzio de Naray, Rachel; Sellwood, Jerry

    2016-01-01

    In an effort to test ΛCDM predictions of galaxy mass distributions, we have obtained spectrophotometric observations of several nearby spiral galaxies with the Southern African Large Telescope (SALT) Fabry-Pérot (FP) interferometer as part of the RSS Imaging spectroscopy Nearby Galaxy Survey. Utilizing the SALT FP's 8 arcmin field of view and 2 arcsec angular resolution, we have derived 2D velocity fields of the Hα emission line to high spatial resolution at large radii. We have modeled these velocity fields with the DiskFit software package and found them to be in good agreement with lower-resolution velocity fields of the HI 21 cm line for the same galaxies. Here we present our Hα kinematic map of the barred spiral galaxy NGC 578. At the distance to this galaxy (22 Mpc), our kinematic data has a spatial resolution of 185 pc and extends to galactocentric radii of 13 kpc. The high spatial resolution of this data allows us to resolve the inner rising part of the rotation curves, which is compromised by beam smearing in lower-resolution observations. We are using these Hα kinematic data, combined with HI 21 cm kinematics and broadband photometric observations, to place constraints on NGC 578's mass distribution.

  19. Interstellar Absorption Lines in the Spectrum of the Starburst Galaxy NGC 1705

    NASA Astrophysics Data System (ADS)

    Sahu, M. S.

    1998-09-01

    A Goddard High Resolution Spectrograph archival study of the interstellar absorption lines in the line of sight to the H i-rich, starburst dwarf galaxy NGC 1705 in the 1170 to 1740 Å range at ~120 km s^-1 resolution is presented. The absorption features arising because of photospheric lines are distinctly different from the interstellar lines: the photospheric lines are weak, broad (equivalent widths >1 Å), asymmetric, and centered around the systemic LSR velocity of NGC 1705 (~610 km s^-1). The interstellar lines consist of three relatively narrow components at LSR velocities of -20, 260, and 540 km s^-1, and include absorption by neutral atoms (N i lambda1200 triplet and O i lambda1302), singly ionized atoms (Si ii lambdalambda1190, 1193, 1260, 1304, and 1526, S ii lambda1253, C ii lambda1334, C ii^* lambda1336, Fe ii lambda1608, and Al ii lambda1670), and atoms in higher ionization states (Si iii lambda1206, Si iv lambdalambda1393, 1402, and C iv lambdalambda1548, 1550). The Si iv and C iv absorption features have both interstellar and photospheric contributions. In an earlier study, Sahu & Blades identified the absorption system at -20 km s^-1 with Milky Way disk/halo gas, and the 260 km s^-1 system with a small, isolated high-velocity cloud HVC 487, which is probably associated with Magellanic Stream gas. The 540 km s^-1 absorption system is associated with a kiloparsec-scale expanding, ionized supershell centered on the super-star cluster NGC 1705-1. The analysis presented in this paper consists of (1) a list of all interstellar absorption features with greater than 3 sigma significance and their measured equivalent widths, (2) plots of the lines in the various atomic species together with the results of nonlinear least-squares fit profiles to the observed data, and (3) unpublished 21 cm maps from the Wakker & van Woerden survey showing the large-scale H i distribution in the region near the NGC 1705 sight line and HVC 487. Furthermore, weak N i lambda1200

  20. A Multi-wavelength Study of Nearby Galaxies Based on Molecular Line Surveys: MIPS Observations

    NASA Astrophysics Data System (ADS)

    Fazio, Giovanni; Wang, Zhong; Bush, Stephanie; Cox, Thomas J.; Keto, Eric; Pahre, Michael; Rosolowsky, Erik; Smith, Howard

    2008-03-01

    Dense molecular gas, warm dust, and hot ionized gas are different components of the multi-step transformation of cold gas into stars and star clusters. While empirical laws on star formation in galaxies have been established based on global measurements of these components, substantial galaxy-to-galaxy variations still exist and remain unexplained. To understand the mechanisms that induce and regulate star formation and thus galaxy evolution, we need to study processes on the local scales of typical star forming regions and giant molecular clouds. In a set of pilot studies, we analyzed the Spitzer and Galex data of nearby giant spirals M31, M33 and M99, and compared with the new interferometric CO maps of matching angular resolution. We found evidence that variations in local condition, environmental effects, and viewing geometry may explain much of the large scatter in the empirical relationships. Based on the success of this initial investigation, we have collected high- resolution CO images of 63 late-type galaxies from several large surveys, and we are working on obtaining a complete set of Spitzer and Galex data for these galaxies. A companion Spitzer archival research program will re-examine the existing observations along with CO, HI, UV and optical data, focusing on correlations in spatially resolved, individual star-forming regions. Here we propose MIPS imaging of the 11 galaxies in our CO sample that have not already been observed by Spitzer. A GO proposal will request IRAC time for these galaxies, which are a significant addition to our study because they substantially increase the fraction of gas-rich late types in the full sample. Insight from this program will be applicable to not only nearby system, but also high red-shift galaxies for which only integrated quantities are measurable.

  1. An infrared study of starbursts in the interacting galaxy pair Arp 299 (NGC 3690+IC 694)

    SciTech Connect

    Nakagawa, Takao; Nagata, Tetsuya; Geballe, T.R.; Okuda, Haruyuki; Shibai, Hiroshi; Tokyo Univ.; Kyoto Univ.; Joint Astronomy Center, Hilo, HI; Institute of Space and Astronautical Science, Sagamihara )

    1989-05-01

    Extensive infrared observations have been obtained of the three active regions in Arp 299. Multiaperture JHK photometry reveals that the colors of the three regions are totally different from each other, and that there are very red nuclei smaller than 4 arcsec in two of them. Multiaperture spectroscopy of the Br-gamma and the shock-excited H2 lines shows that both the atomic and molecular lines are spatially extended, indicating that Arp 299 is undergoing an active episode of star formation not only in its nuclei but also well outside of them. Although there is some evidence that suggests the presence of a compact, active galactic nucleus, a simple starburst model can explain the bolometric luminosities, production rates of ionizing photons, and H24 line luminosities of each active region in Arp 299. However, each starburst cannot last longer than 10 to the 8th yr. 56 refs.

  2. Dust evolution processes constrained by extinction curves in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Hou, Kuan-Chou; Hirashita, Hiroyuki; Michałowski, Michał J.

    2016-12-01

    Extinction curves, especially those in the Milky Way (MW), the Large Magellanic Cloud (LMC), and the Small Magellanic Cloud (SMC), have provided us with a clue to the dust properties in the nearby Universe. We examine whether or not these extinction curves can be explained by well-known dust evolution processes. We treat the dust production in stellar ejecta, destruction in supernova shocks, dust growth by accretion and coagulation, and dust disruption by shattering. To make a survey of the large parameter space possible, we simplify the treatment of the grain size distribution evolution by adopting the "two-size approximation," in which we divide the grain population into small (≲0.03 μm) and large (≳0.03 μm) grains. It is confirmed that the MW extinction curve can be reproduced in reasonable ranges for the time-scale of the above processes with a silicate-graphite mixture. This indicates that the MW extinction curve is a natural consequence of the dust evolution through the above processes. We also find that the same models fail to reproduce the SMC/LMC extinction curves. Nevertheless, this failure can be remedied by giving higher supernova destruction rates for small dust particles dust and considering amorphous carbon for carbonaceous dust; these modifications in fact fall in line with previous studies. Therefore, we conclude that the current dust evolution scenario composed of the aforementioned processes is successful in explaining the extinction curves. All the extinction curves favor efficient interstellar processing of dust, especially strong grain growth by accretion and coagulation.

  3. Modelling the Pan-Spectral Energy Distribution of Starburst Galaxies: III. Emission Line Diagnostics of Ensembles of H II Regions

    SciTech Connect

    Dopita, M A; Fischera, J; Sutherland, R S; Kewley, L J; Leitherer, C; Tuffs, R J; Popescu, C C; van Breugel, W; Groves, B A

    2006-05-10

    We have built, as far as possible, fully self-consistent models of H II regions around aging clusters of stars. These produce strong emission line diagnostics applicable to either individual H II regions in galaxies, or to the integrated emission line spectra of disk or starburst galaxies. The models assume that the expansion and internal pressure of individual H II regions is driven by the net input of mechanical energy from the central cluster, be it through winds or supernova events. This eliminates the ionization parameter as a free variable, replacing it with a parameter which depends on the ratio of the cluster mass to the pressure in the surrounding interstellar medium. These models explain why H II regions with low abundances have high excitation, and demonstrate that at least part of the warm ionized medium is the result of overlapping faint, old, large, and low pressure H II regions. We present a number of line ratios (at both optical and IR wavelengths) that provide reliable abundance diagnostics for either single H II regions or for integrated galaxy spectra, and others that are sensitive to the age of the cluster stars exciting individual H II regions.

  4. Physical properties of young stellar populations in 24 starburst galaxies observed with FUSE

    NASA Astrophysics Data System (ADS)

    Pellerin, Anne; Robert, Carmelle

    2007-10-01

    We present the main physical properties of very young stellar populations seen with the Far Ultraviolet Spectroscopic Explorer in 24 individual starbursts. These characteristics have been obtained using the evolutionary spectral synthesis technique in the far-ultraviolet range with the LAVALSB code. For each starburst, quantitative values for age, metallicity, initial mass function slope, stellar mass and internal extinction have been obtained and discussed in details. Limits of the code have been tested. One main conclusion is that most starbursts (and probably all of them) cannot be represented by any continuous star formation burst in the far ultraviolet. Also, quantitative values of various optical diagnostics related to these stellar populations have been predicted. Underlying stellar populations, dominated by B-type stars, have been detected in NGC1140, NGC4449 and possibly NGC3991. We characterized the young stellar populations of less than 5Myr in Seyfert2 nuclei. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. Far Ultraviolet Spectroscopic Explorer (FUSE) is operated for NASA by the Johns Hopkins University under NASA contract NAS5-32985. E-mail: pellerin@stsci.edu (AP); carobert@phy.ulaval.ca (CR)

  5. Detection of faint BLR components in the starburst/Seyfert galaxy NGC 6221 and measure of the central BH mass

    NASA Astrophysics Data System (ADS)

    La Franca, Fabio; Onori, Francesca; Ricci, Federica; Bianchi, Stefano; Marconi, Alessandro; Sani, Eleonora; Vignali, Cristian

    2016-04-01

    In the last decade, using single epoch virial based techniques in the optical band, it has been possible to measure the central black hole mass on large type 1 Active Galactive Nuclei (AGN) samples. However these measurements use the width of the broad line region as a proxy of the virial velocities and are therefore difficult to be carried out on those obscured (type 2) or low luminosity AGN where the nuclear component does not dominate in the optical. Here we present the optical and near infrared spectrum of the starburst/Seyfert galaxy NGC 6221, observed with X-shooter/VLT. Previous observations of NGC 6221 in the X-ray band shows an absorbed (N_H=8.5 +/- 0.4 x 10^21 cm^-2) spectrum typical of a type 2 AGN with luminosity log(L_14-195/ erg s^-1) = 42.05, while in the optical band its spectrum is typical of a reddened (A_V=3) starburst. Our deep X-shooter/VLT observations have allowed us to detect faint broad emission in the H_alpha, HeI and Pa_beta lines (FWHM=1400-2300 km s^-1) confirming previous studies indicating that NGC 6221 is a reddened starbust galaxy which hosts an AGN. We use the measure of the broad components to provide a first estimate of its central black hole mass (M_BH = 10^6.6+/-0.3 Msol, lambda_Edd=0.01-0.03), obtained using recently calibrated virial relations suitable for moderately obscured (N_H<10^24 cm^-2) AGN.

  6. VizieR Online Data Catalog: A GALEX UV imaging survey of nearby galaxies (Lee+, 2011)

    NASA Astrophysics Data System (ADS)

    Lee, J. C.; Gil de Paz, A.; Kennicutt, R. C. Jr; Bothwell, M.; Dalcanton, J.; Funes, S. J. J. G.; Johnson, B. D.; Sakai, S.; Skillman, E.; Tremonti, C.; van Zee, L.

    2011-03-01

    The Local Volume galaxies that were targeted for GALEX imaging were mainly selected from the sample given in Kennicutt et al. (Paper I, 2008, Cat. J/ApJS/178/247). The ACS Nearby Galaxy Survey Treasury (ANGST) program (Dalcanton et al. 2009ApJS..183...67D), which has obtained HST ACS and WFPC2 imaging for a ~4Mpc volume-limited sample, contains about 20 low-luminosity and/or early-type galaxies that were not already included in Paper I, and GALEX data were also obtained for these objects. Observations of the 11HUGS GALEX Legacy program (GI1047, GI4095) galaxies have also been extended into the infrared using the Spitzer Space Telescope as part of the Local Volume Legacy survey (Dale et al. 2009ApJ...703..517D). (3 data files).

  7. The nearby Galaxy structure toward the Vela Gum nebula

    NASA Astrophysics Data System (ADS)

    Giorgi, E. E.; Solivella, G. R.; Perren, G. I.; Vázquez, R. A.

    2015-10-01

    We report on UBVI photometry and spectroscopy for MK classification purposes carried out in the fields of five open clusters projected against the Vela Gum in the Third Galactic Quadrant of the Galaxy. They are Ruprecht 20, Ruprecht 47, Ruprecht 60, NGC 2660 and NGC 2910. We could improve/confirm the parameters of these objects derived before. Ruprecht 20 is not a real physical entity, in agreement with earlier suggestions. Ruprecht 47, a young cluster in the Galactic plane, at 4.4 kpc from the Sun is quite farther than in previous distance estimations and becomes, therefore, a member of the Puppis OB2 association. For the first time Ruprecht 60 was surveyed in UBVI photometry. We found it to be placed at 4.2 kpc from the Sun of about and 1 Gyr old. NGC 2660 is another old object in our survey for which distance and age are coincident with previous findings. NGC 2910 turns out to be a young cluster of Vela OB1 association at a distance of 1.4 kpc approximately and 60 Myr old. The spectroscopic parallax method has been applied to several stars located in the fields of four out of the five clusters to get their distances and reddenings. With this method we found two blue stars in the field of NGC 2910 at distances that make them likely members of Vela OB1 too. Also, projected against the fields of Ruprecht 20 and Ruprecht 47 we have detected other young stars favoring not only the existence of Puppis OB1 and OB2 but conforming a young stellar group at ∼ 1 kpc from the Sun and extending for more than 6 kpc outward the Galaxy. If this is the case, there is a thickening of the thin Galactic disk of more than 300 pc at just 2-3 kpc from the Sun. Ruprecht 60 and NGC 2660 are too old objects that have no physical relation with the associations under discussion. An astonishing result has been the detection in the background of Ruprecht 47 of a young star at the impressive distance of 9.5 kpc from the Sun that could be a member of the innermost part of the Outer Arm

  8. ULTRA-DEEP SUB-KILOPARSEC VIEW OF NEARBY MASSIVE COMPACT GALAXIES

    SciTech Connect

    Trujillo, Ignacio; Ferre-Mateu, Anna

    2012-05-20

    Using Gemini North telescope ultra-deep and high-resolution (sub-kiloparsec) K-band adaptive optics imaging of a sample of four nearby (z {approx} 0.15) massive ({approx}10{sup 11} M{sub Sun }) compact (R < 1.5 kpc) galaxies, we have explored the structural properties of these rare objects with unprecedented detail. Our surface brightness profiles expand over 12 mag in range allowing us to explore the presence of any faint extended envelope on these objects down to stellar mass densities {approx}10{sup 6} M{sub Sun} kpc{sup -2} at radial distances of {approx}15 kpc. We find no evidence for any extended faint tail altering the compactness of these galaxies. Our objects are elongated, visually resembling S0 galaxies, and have a central stellar mass density well above the stellar mass densities of objects with similar stellar mass but normal size in the present universe. If these massive compact objects will eventually transform into normal size galaxies, the processes driving this size growth will have to migrate around (2-3) Multiplication-Sign 10{sup 10} M{sub Sun} stellar mass from their inner (R < 1.7 kpc) region toward their outskirts. Nearby massive compact galaxies share with high-z compact massive galaxies not only their stellar mass, size, and velocity dispersion but also the shape of their profiles and the mean age of their stellar populations. This makes these singular galaxies unique laboratories to explore the early stages of the formation of massive galaxies.

  9. AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTINGS). I. OVERVIEW

    SciTech Connect

    Boyer, Martha L.; Sonneborn, George; McQuinn, Kristen B. W.; Gehrz, Robert D.; Skillman, Evan; Barmby, Pauline; Bonanos, Alceste Z.; Gordon, Karl D.; Meixner, Margaret; Groenewegen, M. A. T.; Lagadec, Eric; Lennon, Daniel; Marengo, Massimo; Sloan, G. C.; Van Loon, Jacco Th.; Zijlstra, Albert

    2015-01-01

    Nearby resolved dwarf galaxies provide excellent opportunities for studying the dust-producing late stages of stellar evolution over a wide range of metallicity (–2.7 ≲ [Fe/H] ≲ –1.0). Here, we describe DUSTiNGS (DUST in Nearby Galaxies with Spitzer): a 3.6 and 4.5 μm post-cryogen Spitzer Space Telescope imaging survey of 50 dwarf galaxies within 1.5 Mpc that is designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. The survey includes 37 dwarf spheroidal, 8 dwarf irregular, and 5 transition-type galaxies. This near-complete sample allows for the building of statistics on these rare phases of stellar evolution over the full metallicity range. The photometry is >75% complete at the tip of the red giant branch for all targeted galaxies, with the exception of the crowded inner regions of IC 10, NGC 185, and NGC 147. This photometric depth ensures that the majority of the dust-producing stars, including the thermally pulsing AGB stars, are detected in each galaxy. The images map each galaxy to at least twice the half-light radius to ensure that the entire evolved star population is included and to facilitate the statistical subtraction of background and foreground contamination, which is severe at these wavelengths. In this overview, we describe the survey, the data products, and preliminary results. We show evidence for the presence of dust-producing AGB stars in eight of the targeted galaxies, with metallicities as low as [Fe/H] = –1.9, suggesting that dust production occurs even at low metallicity.

  10. A low-luminosity type-1 QSO sample . IV. Molecular gas contents and conditions of star formation in three nearby Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    Moser, Lydia; Krips, Melanie; Busch, Gerold; Scharwächter, Julia; König, Sabine; Eckart, Andreas; Smajić, Semir; García-Marin, Macarena; Valencia-S., Mónica; Fischer, Sebastian; Dierkes, Jens

    2016-03-01

    We present a pilot study of ~3'' resolution observations of low CO transitions with the Submillimeter Array in three nearby Seyfert galaxies, which are part of the low-luminosity quasi-stellar object (LLQSOs) sample consisting of 99 nearby (z = 0.06) type-1 active galactic nuclei (AGN) taken from the Hamburg/ESO quasi-stellar object (QSO) survey. Two sources were observed in 12CO(2-1) and 13CO(2-1) and the third in 12CO(3-2) and HCO+(4-3). None of the sources is detected in continuum emission. More than 80% of the 12CO detected molecular gas is concentrated within a diameter (FWHM) < 1.8 kpc. 13CO is tentatively detected, while HCO+ emission could not be detected. All three objects show indications of a kinematically decoupled central unresolved molecular gas component. The molecular gas masses of the three galaxies are in the range Mmol = (0.7-8.7) × 109M⊙. We give lower limits for the dynamical masses of Mdyn> 1.5 × 109M⊙ and for the dust masses of Mdust> 1.6 × 106M⊙. The R21 = 12CO/13CO(2-1) line luminosity ratios show Galactic values of R21 ~ 5-7 in the outskirts and R21 ≳ 20 in the central region, similar to starbursts and (ultra)luminous infrared galaxies ((U)LIRGs; i.e. LIRGs and ULIRGs), implying higher temperatures and stronger turbulence. All three sources show indications of 12CO(2-1)/12CO(1-0) ratios of ~0.5, suggesting a cold or diffuse gas phase. Strikingly, the 12CO(3-2)/(1-0) ratio of ~1 also indicates a higher excited phase. Since these galaxies have high infrared luminosities of LIR ≥ 1011L⊙ and seem to contain a circumnuclear starburst with minimum surface densities of gas and star formation rate (SFR) around Σmol = 50-550 M⊙pc-2 and ΣSFR = 1.1-3.1 M⊙ kpc-2 yr-1, we conclude that the interstellar medium in the centers of these LIRG Seyferts is strongly affected by violent star formation and better described by the ULIRG mass conversion factor.

  11. Hubble Residuals of Nearby SN Ia Are Correlated with Host Galaxy Masses

    SciTech Connect

    Kelly, Patrick L.; Hicken, Malcolm; Burke, David L.; Mandel, Kaisey S.; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2010-05-03

    From Sloan Digital Sky Survey u{prime} g{prime} r{prime} i{prime} z{prime} imaging, we estimate the stellar masses of the host galaxies of 70 low redshift SN Ia (0.015 < z < 0.08) from the hosts absolute luminosities and mass-to-light ratios. These nearby SN were discovered largely by searches targeting luminous galaxies, and we find that their host galaxies are substantially more massive than the hosts of SN discovered by the flux-limited Supernova Legacy Survey. Testing four separate light curve fitters, we detect {approx}2.5{sigma} correlations of Hubble residuals with both host galaxy size and stellar mass, such that SN Ia occurring in physically larger, more massive hosts are {approx}10% brighter after light curve correction. The Hubble residual is the deviation of the inferred distance modulus to the SN, calculated from its apparent luminosity and light curve properties, away from the expected value at the SN redshift. Marginalizing over linear trends in Hubble residuals with light curve parameters shows that the correlations cannot be attributed to a light curve-dependent calibration error. Combining 180 higher-redshift ESSENCE, SNLS, and HigherZ SN with 30 nearby SN whose host masses are less than 10{sup 10.8} M{circle_dot} n a cosmology fit yields 1 + w = 0.22{sub -0.108}{sup +0.152}, while a combination where the 30 nearby SN instead have host masses greater than 10{sup 10.8} M{circle_dot} yields 1 + w = ?0.03{sub -0.143}{sup +0.217}. Progenitor metallicity, stellar population age, and dust extinction correlate with galaxy mass and may be responsible for these systematic effects. Host galaxy measurements will yield improved distances to SN Ia.

  12. Testing the Presence of Multiple Photometric Components in Nearby Early-type Galaxies using SDSS

    NASA Astrophysics Data System (ADS)

    Oh, Semyeong; Greene, Jenny E.; Lackner, Claire N.

    2017-02-01

    We investigate two-dimensional image decomposition of nearby, morphologically selected early-type galaxies (ETGs). We are motivated by recent observational evidence of significant size growth of quiescent galaxies and theoretical development advocating a two-phase formation scenario for ETGs. We find that a significant fraction of nearby ETGs show changes in isophotal shape that require multi-component models. The characteristic sizes of the inner and outer component are ∼3 and ∼15 kpc. The inner component lies on the mass–size relation of ETGs at z ∼ 0.25–0.75, while the outer component tends to be more elliptical and hints at a stochastic buildup process. We find real physical differences between single- and double-component ETGs, with double-component galaxies being younger and more metal-rich. The fraction of double-component ETGs increases with increasing σ and decreases in denser environments. We hypothesize that double-component systems were able to accrete gas and small galaxies until later times, boosting their central densities, building up their outer parts, and lowering their typical central ages. In contrast, the oldest galaxies, perhaps due to residing in richer environments, have no remaining hints of their last accretion episode.

  13. VizieR Online Data Catalog: Nearby early-type galaxies in Stripe 82 (Jiang+, 2011)

    NASA Astrophysics Data System (ADS)

    Jiang, F.-Z.; Huang, S.; Gu, Q.-S.

    2011-11-01

    We make use of the images from the Sloan Digital Sky Survey Stripe 82 (Stripe 82) to present an analysis of r band surface brightness profiles and radial color gradients (g-r, u-r) in our sample of 111 nearby early-type galaxies (ETGs). Thanks to the Stripe 82 images, each of which is co-added from about 50 single frames, we are able to pay special attention to the low-surface-brightness areas (LSB areas) of the galaxies. (1 data file).

  14. Inverse Compton X-Ray Halos Around High-z Radio Galaxies: A Feedback Mechanism Powered by Far-Infrared Starbursts or the Cosmic Microwave Background?

    NASA Technical Reports Server (NTRS)

    Small, Ian; Blundell, Katherine M.; Lehmer, B. D.; Alexander, D. M.

    2012-01-01

    We report the detection of extended X-ray emission around two powerful radio galaxies at z approx. 3.6 (4C 03.24 and 4C 19.71) and use these to investigate the origin of extended, inverse Compton (IC) powered X-ray halos at high redshifts. The halos have X-ray luminosities of L(sub X) approx. 3 x 10(exp 44) erg/s and sizes of approx.60 kpc. Their morphologies are broadly similar to the approx.60 kpc long radio lobes around these galaxies suggesting they are formed from IC scattering by relativistic electrons in the radio lobes, of either cosmic microwave background (CMB) photons or far-infrared photons from the dust-obscured starbursts in these galaxies. These observations double the number of z > 3 radio galaxies with X-ray-detected IC halos. We compare the IC X-ray-to-radio luminosity ratios for the two new detections to the two previously detected z approx. 3.8 radio galaxies. Given the similar redshifts, we would expect comparable X-ray IC luminosities if millimeter photons from the CMB are the dominant seed field for the IC emission (assuming all four galaxies have similar ages and jet powers). Instead we see that the two z approx. 3.6 radio galaxies, which are 4 fainter in the far-infrared than those at z 3.8, also have approx.4x fainter X-ray IC emission. Including data for a further six z > or approx. 2 radio sources with detected IC X-ray halos from the literature, we suggest that in the more compact, majority of radio sources, those with lobe sizes < or approx.100-200 kpc, the bulk of the IC emission may be driven by scattering of locally produced far-infrared photons from luminous, dust-obscured starbursts within these galaxies, rather than millimeter photons from the CMB. The resulting X-ray emission appears sufficient to ionize the gas on approx.100-200 kpc scales around these systems and thus helps form the extended, kinematically quiescent Ly(alpha) emission line halos found around some of these systems. The starburst and active galactic nucleus

  15. AGN and Starbursts in Dusty Galaxy Mergers: Insights from the Great Observatories All-sky LIRG Survey

    NASA Astrophysics Data System (ADS)

    Mazzarella, Joseph M.

    2014-07-01

    The Great Observatories All-sky LIRG Survey (GOALS) is combining imaging and spectroscopic data from the Herschel, Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes augmented with extensive ground-based observations in a multiwavelength study of approximately 180 Luminous Infrared Galaxies (LIRGs) and 20 Ultraluminous Infrared Galaxies (ULIRGs) that comprise a statistically complete subset of the 60μm-selected IRAS Revised Bright Galaxy Sample. The objects span the full range of galaxy environments (giant isolated spirals, wide and close pairs, minor and major mergers, merger remnants) and nuclear activity types (Seyfert 1, Seyfert 2, LINER, starburst/HII), with proportions that depend strongly on the total infrared luminosity. I will review the science motivations and present highlights of recent results selected from over 25 peer-reviewed journal articles published recently by the GOALS Team. Statistical investigations include detection of high-ionization Fe K emission indicative of deeply embedded AGN, comparison of UV and far-IR properties, investigations of the fraction of extended emission as a function of wavelength derived from mid-IR spectroscopy, mid-IR spectral diagnostics and spectral energy distributions revealing the relative contributions of AGN and starbursts to powering the bolometric luminosity, and quantitative structure analyses that delineate the evolution of stellar bars and nuclear stellar cusps during the merger process. Multiwavelength dissections of individual systems have unveiled large populations of young star clusters and heavily obscured AGN in early-stage (II Zw 96), intermediate-stage (Mrk 266, Mrk 273), and late-stage (NGC 2623, IC 883) mergers. A recently published study that matches numerical simulations to the observed morphology and gas kinematics in mergers has placed four systems on a timeline spanning 175-260 million years after their first passages, and modeling of additional (U)LIRGs is underway. A very

  16. X-ray Properties of the Central kpc of AGN and Starbursts: The Latest News from Chandra

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    The X-ray properties of 15 nearby (v less than 3,000 km/s) galaxies that possess AGN (active galactic nuclei) and/or starbursts are discussed. Two-thirds have nuclear extended emission on scales from approx. 0.5 to approx. 1.5 kpc that is either clearly associated with a nuclear outflow or morphologically resembles an outflow. Galaxies that are AGN-dominated tend to have linear structures while starburst-dominated galaxies tend to have plume-like structures. Significant X-ray absorption is present in the starburst regions, indicating that a circumnuclear starburst is sufficient to block an AGN at optical wavelengths. Galaxies with starburst activity possess more X-ray point sources within their central kpc than non-starbursts. Many of these sources are more luminous than typical X-ray binaries. The Chandra results are discussed in terms of the starburst-AGN connection, a revised unified model for AGN, and possible evolutionary scenarios.

  17. Environmental Variations in the Atomic and Molecular Gas Radial Profiles of Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Mok, Angus; Wilson, Christine; JCMT Nearby Galaxies Legacy Survey

    2017-01-01

    We present an analysis of the radial profiles of a sample of 43 HI-flux selected spiral galaxies from the Nearby Galaxies Legacy Survey (NGLS) with resolved James Clerk Maxwell Telescope (JCMT) CO J= 3-2 and/or Very Large Array (VLA) HI maps. Comparing the Virgo and non-Virgo populations, we confirm that the HI disks are truncated in the Virgo sample, even for these relatively HI-rich galaxies. On the other hand, the H2 distribution is enhanced for Virgo galaxies near their centres, resulting in higher H2 to HI ratios and steeper H2 and total gas radial profiles. This is likely due to the effects of moderate ram pressure stripping in the cluster environment, which would preferentially remove low density gas in the outskirts while enhancing higher density gas near the centre. Combined with Hα star formation rate data, we find that the star formation efficiency (SFR/H2) is relatively constant with radius for both samples, but Virgo galaxies have a ˜40% lower star formation efficiency than non-Virgo galaxies. These results suggest that the environment of spiral galaxies can play an important role in the formation of molecular gas and the star formation process.

  18. THE ORIGIN OF [O II] IN POST-STARBURST AND RED-SEQUENCE GALAXIES IN HIGH-REDSHIFT CLUSTERS

    SciTech Connect

    Lemaux, B. C.; Lubin, L. M.; Kocevski, D.; Shapley, A.; Gal, R. R.; Squires, G. K.

    2010-06-20

    of such galaxies that are classified as LINER/Seyfert, we estimate that at least {approx}20% of galaxies in high-redshift clusters with M{sub *}>10{sup 10}-10{sup 10.5} M{sub sun} contain a LINER/Seyfert component that can be revealed with line ratios. We also investigate the effect such a population has on the global star formation rate of cluster galaxies and the post-starburst fraction, concluding that LINER/Seyferts must be accounted for if these quantities are to be physically meaningful.

  19. From Nearby Low Luminosity AGN to High Redshift Radio Galaxies: Science Interests with Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Kharb, P.; Lal, D. V.; Singh, V.; Bagchi, J.; Ishwara Chandra, C. H.; Hota, A.; Konar, C.; Wadadekar, Y.; Shastri, P.; Das, M.; Baliyan, K.; Nath, B. B.; Pandey-Pommier, M.

    2016-12-01

    We present detailed science cases that a large fraction of the Indian AGN community is interested in pursuing with the upcoming Square Kilometre Array (SKA). These interests range from understanding low luminosity active galactic nuclei in the nearby Universe to powerful radio galaxies at high redshifts. Important unresolved science questions in AGN physics are discussed. Ongoing low-frequency surveys with the SKA pathfinder telescope GMRT, are highlighted.

  20. VizieR Online Data Catalog: NIR photometry in 10 nearby spiral galaxies (Grosboel+, 2012)

    NASA Astrophysics Data System (ADS)

    Grosbol, P.; Dottori, H.

    2012-04-01

    Near-infrared (NIR) aperture photometry of sources in 7 arcmin fields around 10 nearby, grand-design spiral galaxies is presented based on HAWK-I/VLT observations. The sources were identified using Sextractor (Bertin & Amouts, 1996A&AS..117..393B) and measured with an aperture of 1 arcsec diameter. The sources numbers are those of the original Sextractor search on the Ks maps and are not strictly sequential. (11 data files).

  1. Variations in the Dust-to-Gas Ratio in Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Schruba, Andreas; Walter, F.; Leroy, A.; Kennicutt, R.; Lee, J.; Gil de Paz, A.; Hunter, D.; Ott, J.

    2009-05-01

    We present the first part of a systematic study of the relationship between dust and gas in a large set of nearby dwarf irregular galaxies. These systems are rich in gas but poor in dust and heavy elements, a contrast that sets them apart from the Milky Way and other nearby spiral galaxies. The central role of dust in the creation and shielding of star-forming gas and its close link to the enrichment of the ISM make the dust-to-gas (DGR) ratio a key observable to understand star formation in these systems. We are combining maps of dust emission taken by Spitzer as part of the Local Volume Legacy (LVL) with atomic gas observations by the VLA large programs LITTLE THINGS, VLA-ANGST, and THINGS to measure the DGR as a function of position in a large sample of dwarf galaxies. This will populate the low end of the DGR vs. metallicity relation and allow us to measure the enrichment of the extended HI envelopes that surround many dwarf irregulars. By comparing the DGR in regions of active star formation to the DGR in nearby quiescent, we can also place an upper limit on the amount of H2 that can be present near the star forming peaks, a quantity that is otherwise difficult to constrain.

  2. SPT0346-52: Negligible AGN Activity in a Compact, Hyper-starburst Galaxy at z = 5.7

    NASA Astrophysics Data System (ADS)

    Ma, Jingzhe; Gonzalez, Anthony. H.; Vieira, J. D.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bothwell, M. S.; Brandt, W. N.; de Breuck, C.; Carlstrom, J. E.; Chapman, S. C.; Gullberg, B.; Hezaveh, Y.; Litke, K.; Malkan, M.; Marrone, D. P.; McDonald, M.; Murphy, E. J.; Spilker, J. S.; Sreevani, J.; Stark, A. A.; Strandet, M.; Wang, S. X.

    2016-12-01

    We present Chandra ACIS-S and Australia Telescope Compact Array (ATCA) radio continuum observations of the strongly lensed dusty, star-forming galaxy SPT-S J034640-5204.9 (hereafter SPT0346-52) at z = 5.656. This galaxy has also been observed with ALMA, HST, Spitzer, Herschel, Atacama Pathfinder EXperiment, and the Very Large Telescope. Previous observations indicate that if the infrared (IR) emission is driven by star formation, then the inferred lensing-corrected star formation rate (SFR) (˜4500 M ⊙ yr-1) and SFR surface density ΣSFR (˜2000 M ⊙ yr-1 kpc-2) are both exceptionally high. It remained unclear from the previous data, however, whether a central active galactic nucleus (AGN) contributes appreciably to the IR luminosity. The Chandra upper limit shows that SPT0346-52 is consistent with being star formation dominated in the X-ray, and any AGN contribution to the IR emission is negligible. The ATCA radio continuum upper limits are also consistent with the FIR-to-radio correlation for star-forming galaxies with no indication of an additional AGN contribution. The observed prodigious intrinsic IR luminosity of (3.6 ± 0.3) × 1013 L ⊙ originates almost solely from vigorous star formation activity. With an intrinsic source size of 0.61 ± 0.03 kpc, SPT0346-52 is confirmed to have one of the highest ΣSFR of any known galaxy. This high ΣSFR, which approaches the Eddington limit for a radiation pressure supported starburst, may be explained by a combination of very high star formation efficiency and gas fraction.

  3. VizieR Online Data Catalog: AGN in nearby low-mass galaxies (Sartori+, 2015)

    NASA Astrophysics Data System (ADS)

    Sartori, L. F.; Schawinski, K.; Treister, E.; Trakhtenbrot, B.; Koss, M.; Shirazi, M.; Oh, K.

    2016-07-01

    We assembled a sample of nearby dwarf galaxies in the SDSS DR7 (Abazajian et al., 2009ApJS..182..543A) starting from the OSSY catalogue (Oh-Sarzi-Schawinski-Yi; Oh et al., 2011ApJS..195...13O). The OSSY catalogue provides line measurements for the entire spectral atlas from SDSS DR7 with redshift z<0.2, as well as fitting quality assessment parameters.2 We selected the objects in the catalogue with SDSS SpecClass=2 (galaxy) and redshift lower than z=0.1. We then matched the sample to the MPA-JHU catalogue (Kauffmann et al., 2003MNRAS.341...33K; Brinchmann et al., 2004MNRAS.351.1151B) to obtain the stellar mass, and selected the galaxies with mass lower than M*=109.5M⊙. These masses were derived using fits to photometry and assuming h=0.7. We further excluded 0.17 per cent of the objects because of unreliable mass estimation. The final sample of nearby dwarf galaxies consists of 48416 objects. We searched for AGN in the nearby dwarf galaxy sample by applying three AGN selection techniques: 1. classical BPT selection (optical emission line diagnostic) based on the separation lines defined by Kewley et al. (2001ApJ...556..121K), Kauffmann et al. (2003MNRAS.346.1055K) and Schawinski et al. (2007MNRAS.382.1415S); 2. the emission line diagnostic based on HeII λ4686 described by Shirazi & Brinchmann (2012MNRAS.421.1043S) (in the following Shirazi HeII diagram); and 3. the mid-IR colour criteria described by Stern et al. (2012ApJ...753...30S) and Jarrett et al. (2011ApJ...735..112J). (7 data files).

  4. Mid-UV Imaging of Nearby Early to Mid-Type Galaxies as Templates for High Redshift Galaxy Classifications

    NASA Astrophysics Data System (ADS)

    Chiarenza, C. A. T.; Windhorst, R. A.; Taylor, V. A.; Odewahn, S. C.; Conselice, C. J.; MacKenty, J.; de Jong, R. S.; de Grijs, R.; Eskridge, P. B.; Frogel, J. A.; Gallagher, J. S.; Kobulnicky, H.; Hibbard, J. E.; Matthews, L. D.; O'Connell, R. W.

    2000-12-01

    Current samples of high redshift galaxies are primarily observed in their restframe mid-UV. They often resemble nearby late type galaxies, but are they really physically similar classes of objects? To explore this question we did a systematic imaging survey with the HST/WFPC2 of 37 nearby galaxies in two mid-UV bands. Our sample is carefully selected for size and surface brightness over a wide range of Hubble types and inclinations. All objects (will) have ground based UBVRIJ(H)K images, and 15 have far UV UIT images. The mid-UV is the missing keystone. With it we can examine the distribution of star formation and its history, dust, the SED's of star forming regions, and differentiate between age and metallicity. Our first results from this Cycle 9 project are: (1) Early type galaxies can show significant changes from the mid-UV to the red. Some are quite dim in the UV, reflecting their old stellar population. Others become point sources in the mid-UV (LINER's, Seyferts). This raises the question to what extent the apparently strong cosmological evolution of weak AGN in early type galaxies is due to ``morphological K-correction.'' (2) Mid type spirals and star forming galaxies can appear as later or different types in the mid-UV. Dust lanes are well traceable comparing F300W to F814W. We see a considerable range in scale and surface brightness of individual star-forming regions. We acknowledge NASA ADP grant NAG-6740, ASU NASA Space Grants, and NASA grants GO-8645.01-99A and AR-8765.01-99A from STScI. Based on observations with the VATT: the Alice P. Lennon Telescope and the Thomas J. Bannan Astrophysics Facility.

  5. (Star)bursts of FIRE: observational signatures of bursty star formation in galaxies

    NASA Astrophysics Data System (ADS)

    Sparre, Martin; Hayward, Christopher C.; Feldmann, Robert; Faucher-Giguère, Claude-André; Muratov, Alexander L.; Kereš, Dušan; Hopkins, Philip F.

    2017-04-01

    Galaxy formation models are now able to reproduce observed relations such as the relation between galaxies' star formation rates (SFRs) and stellar masses (M*) and the stellar-mass-halo-mass relation. We demonstrate that comparisons of the short-time-scale variability in galaxy SFRs with observational data provide an additional useful constraint on the physics of galaxy formation feedback. We apply SFR indicators with different sensitivity time-scales to galaxies from the Feedback in Realistic Environments (FIRE) simulations. We find that the SFR-M* relation has a significantly greater scatter when the Hα-derived SFR is considered compared with when the far-ultraviolet (FUV)-based SFR is used. This difference is a direct consequence of bursty star formation because the FIRE galaxies exhibit order-of-magnitude SFR variations over time-scales of a few Myr. We show that the difference in the scatter between the simulated Hα- and FUV-derived SFR-M* relations at z = 2 is consistent with observational constraints. We also find that the Hα/FUV ratios predicted by the simulations at z = 0 are similar to those observed for local galaxies except for a population of low-mass (M* ≲ 109.5 M⊙) simulated galaxies with lower Hα/FUV ratios than observed. We suggest that future cosmological simulations should compare the Hα/FUV ratios of their galaxies with observations to constrain the feedback models employed.

  6. Molecular gas in low-metallicity starburst galaxies:. Scaling relations and the CO-to-H2 conversion factor

    NASA Astrophysics Data System (ADS)

    Amorín, R.; Muñoz-Tuñón, C.; Aguerri, J. A. L.; Planesas, P.

    2016-04-01

    Context. Tracing the molecular gas-phase in low-mass star-forming galaxies becomes extremely challenging due to significant UV photo-dissociation of CO molecules in their low-dust, low-metallicity ISM environments. Aims: We aim to study the molecular content and the star-formation efficiency of a representative sample of 21 blue compact dwarf galaxies (BCDs), previously characterized on the basis of their spectrophotometric properties. Methods: We present CO (1-0) and (2-1) observations conducted at the IRAM-30m telescope. These data are further supplemented with additional CO measurements and multiwavelength ancillary data from the literature. We explore correlations between the derived CO luminosities and several galaxy-averaged properties. Results: We detect CO emission in seven out of ten BCDs observed. For two galaxies these are the first CO detections reported so far. We find the molecular content traced by CO to be correlated with the stellar and Hi masses, star formation rate (SFR) tracers, the projected size of the starburst, and its gas-phase metallicity. BCDs appear to be systematically offset from the Schmidt-Kennicutt (SK) law, showing lower average gas surface densities for a given ΣSFR, and therefore showing extremely low (≲0.1 Gyr) H2 and H2 +Hi depletion timescales. The departure from the SK law is smaller when considering H2 +Hi rather than H2 only, and is larger for BCDs with lower metallicity and higher specific SFR. Thus, the molecular fraction (ΣH2/ ΣHI) and CO depletion timescale (ΣH2/ ΣSFR) of BCDs is found to be strongly correlated with metallicity. Using this, and assuming that the empirical correlation found between the specific SFR and galaxy-averaged H2 depletion timescale of more metal-rich galaxies extends to lower masses, we derive a metallicity-dependent CO-to-H2 conversion factor αCO,Z ∝ (Z/Z⊙)- y, with y = 1.5(±0.3)in qualitative agreement with previous determinations, dust-based measurements, and recent model

  7. ROSAT Observations of a Complete Nearby Sample of Low Luminosity Radio Galaxies

    NASA Technical Reports Server (NTRS)

    Baum, Stefi

    2001-01-01

    We are studying the X-ray emission in a sample of nearby radio galaxies. The X-rays probe several important components: (1) the active galactic nuclei; (2) the interstellar medium of the host galaxy; and (3) the intergalactic or intracluster medium through which the jets propagate. The interaction of the radio plasma with the hot ambient gas will allow us to constrain the properties of the environments and the energetics of the radio source propagation. We have made excellent progress reducing the ROSAT new and archival data on our complete sample of nearby radio galaxies. The data reduction has taken longer than originally anticipated because we have identified bubbles of x-ray emission around many of the central galaxies and we have been exploring many different methodologies for assuring the results are robust before we publish and complete our interpretation. We have now begun the final phases of the work, with a draft paper under construction and a planned for submission date of early 2001. This work comprises 1/3 of the thesis work of a graduate student and will be the final phase in the completion of the thesis.

  8. Diffuse X-Ray Emission from the Hot ISM in Nearby Spiral Galaxies

    NASA Astrophysics Data System (ADS)

    Sanders, Wilton

    2002-09-01

    We propose 100-ks observations of two nearby face-on galaxies with the ACIS S3 chip to measure the X-ray emission from their hot ISM. We have selected NGC 3631 and NGC 3938 because of their relatively high star formation rates. Our primary goal is to characterize the spatial distribution and spectral characteristics of the hot interstellar plasma in spiral galaxies similar to the Milky Way. The CXO angular resolution allows us to separate diffuse and point source emission, and the ACIS spectral resolution allows us to find the temperature and abundance parameters of the hot ISM. Other goals are to better understand the diffuse X-ray emission seen in some edge-on galaxy halos, to study the point sources in the galactic disk, and to study the cosmological diffuse background below 0.5 keV.

  9. Long Term Temporal and Spectral Evolution of Point Sources in Nearby Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Durmus, D.; Guver, T.; Hudaverdi, M.; Sert, H.; Balman, Solen

    2016-06-01

    We present the results of an archival study of all the point sources detected in the lines of sight of the elliptical galaxies NGC 4472, NGC 4552, NGC 4649, M32, Maffei 1, NGC 3379, IC 1101, M87, NGC 4477, NGC 4621, and NGC 5128, with both the Chandra and XMM-Newton observatories. Specifically, we studied the temporal and spectral evolution of these point sources over the course of the observations of the galaxies, mostly covering the 2000 - 2015 period. In this poster we present the first results of this study, which allows us to further constrain the X-ray source population in nearby elliptical galaxies and also better understand the nature of individual point sources.

  10. Gradients of stellar population properties and evolution clues in a nearby galaxy M101

    SciTech Connect

    Lin, Lin; Kong, Xu; Lin, Xuanbin; Mao, Yewei; Cheng, Fuzhen; Zou, Hu; Jiang, Zhaoji; Zhou, Xu E-mail: xkong@ustc.edu.cn

    2013-06-01

    Multiband photometric images from ultraviolet and optical to infrared are collected to derive spatially resolved properties of the nearby Scd-type galaxy M101. With evolutionary stellar population synthesis models, two-dimensional distributions and radial profiles of age, metallicity, dust attenuation, and star formation timescale in the form of the Sandage star formation history are obtained. When fitting with the models, we use the IRX-A {sub FUV} relation, found to depend on a second parameter of birth rate b (ratio of present- and past-averaged star formation rates), to constrain the dust attenuation. There are obvious parameter gradients in the disk of M101, which supports the theory of an 'inside-out' disk growth scenario. Two distinct disk regions with different gradients of age and color are discovered, similar to another late-type galaxy, NGC 628. The metallicity gradient of the stellar content is flatter than that of H II regions. The stellar disk is optically thicker inside than outside and the global dust attenuation of this galaxy is lower compared with galaxies of similar and earlier morphological type. We note that a variational star formation timescale describes the real star formation history of a galaxy. The timescale increases steadily from the center to the outskirt. We also confirm that the bulge in this galaxy is a disk-like pseudobulge, whose evolution is likely to be induced by some secular processes of the small bar which is relatively young, metal-rich, and contains much dust.

  11. Gradients of Stellar Population Properties and Evolution Clues in a Nearby Galaxy M101

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Zou, Hu; Kong, Xu; Lin, Xuanbin; Mao, Yewei; Cheng, Fuzhen; Jiang, Zhaoji; Zhou, Xu

    2013-06-01

    Multiband photometric images from ultraviolet and optical to infrared are collected to derive spatially resolved properties of the nearby Scd-type galaxy M101. With evolutionary stellar population synthesis models, two-dimensional distributions and radial profiles of age, metallicity, dust attenuation, and star formation timescale in the form of the Sandage star formation history are obtained. When fitting with the models, we use the IRX-A FUV relation, found to depend on a second parameter of birth rate b (ratio of present- and past-averaged star formation rates), to constrain the dust attenuation. There are obvious parameter gradients in the disk of M101, which supports the theory of an "inside-out" disk growth scenario. Two distinct disk regions with different gradients of age and color are discovered, similar to another late-type galaxy, NGC 628. The metallicity gradient of the stellar content is flatter than that of H II regions. The stellar disk is optically thicker inside than outside and the global dust attenuation of this galaxy is lower compared with galaxies of similar and earlier morphological type. We note that a variational star formation timescale describes the real star formation history of a galaxy. The timescale increases steadily from the center to the outskirt. We also confirm that the bulge in this galaxy is a disk-like pseudobulge, whose evolution is likely to be induced by some secular processes of the small bar which is relatively young, metal-rich, and contains much dust.

  12. Understanding the Physical Conditions in Local Analogs of High-Redshift Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Spiewak, Renée; Erb, Dawn; Tremonti, Christina A.; Berg, Danielle

    2016-01-01

    Observations of strong nebular emission lines in high-redshift galaxies (z~2) can be illuminated through the use of analogous local galaxies (z<0.4), for which many more emission lines can be measured. The observed offset in the "BPT" ([N II]λ6584/Hα vs. [O III]λ5007/Hβ) nebular diagnostic diagram between the locus of high redshift galaxies and that of typical local galaxies indicates a change in the physical conditions of the galaxies with redshift; the cause of this offset is unknown, but it may be associated with the ionization parameter, the hardness of the ionizing spectrum, or the N/O abundance ratio. To study the offset, we have selected a sample of local galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey Data Release 12 (SDSS-III/BOSS DR12), which occupies the same space in the [N II]λ6584/Hα vs. [O III]λ5007/Hβ diagnostic diagram as the z~2 sample. Using a suite of >50 different emission lines, most of which are unavailable in analyses of higher redshift galaxies, and a novel method of improving the spectrophotometric calibration of BOSS data, we investigate the metallicity, ionization state, and abundance ratios of this offset sample in order to shed light on the physical conditions in galaxies in the early universe.

  13. Properties of the giant H II regions and bar in the nearby spiral galaxy NGC 5430

    NASA Astrophysics Data System (ADS)

    Brière, É.; Cantin, S.; Spekkens, K.

    2012-09-01

    In order to better understand the impact of the bar on the evolution of spiral galaxies, we measure the properties of giant H II regions and the bar in the SB(s)b galaxy NGC 5430. We use two complementary data sets, both obtained at the Observatoire du Mont-Mégantic: a hyperspectral data cube from the imaging Fourier transform spectrograph SpIOMM (Spectromètre-Imageur à transformée de Fourier de l-Observatoire du Mont-Mégantic) and high-resolution spectra across the bar from a long-slit spectrograph. We flux-calibrate SpIOMM spectra for the first time, and produce Hα and [N II]λ6584 Å intensity maps from which we identify 51 giant H II regions in the spiral arms and bar. We evaluate the type of activity, the oxygen abundance and the age of the young populations contained in these giant H II regions and in the bar. Thus, we confirm that NGC 5430 does not harbour a strong active galactic nucleus, and that its Wolf-Rayet knot shows a pure H II region nature. We find no variation in abundance or age between the bar and spiral arms, nor as a function of galactocentric radius. These results are consistent with the hypothesis that a chemical mixing mechanism is at work in the galaxy's disc to flatten the oxygen abundance gradient. Using the STARBURST99 model, we estimate the ages of the young populations, and again find no variations in age between the bar and the arms or as a function of radius. Instead, we find evidence for two galaxy-wide waves of star formation, about 7.1 and 10.5 Myr ago. While the bar in NGC 5430 is an obvious candidate to trigger these two episodes, it is not clear how the bar could induce widespread star formation on such a short time-scale.

  14. Highlighting XMM-Newton's Role in Time Domain Studies of Neutron Star and Black Hole X-ray binaries in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Leiter, K.; Kadler, M.; Wilms, J.; Braatz, J.; Grossberger, C.; Krauß, F.; Kreikenbohm, A.; Langejahn, M.; Litzinger, E.; Markowitz, A.

    2015-09-01

    XMM-Newton's combination of large effective area, superior event timing, and wide field imaging have provided a powerful capability for time-domain studies of nearby X-ray binary populations. In its first 15 years XMM has accomplished groundbreaking monitoring surveys for X-ray binaries; complemented by RXTE, Chandra, and Nustar. Over the next decade XMM's capabilities will complement a new generation of missions including Astrosat, Hitomi, and NICER. This paper highlights the role of XMM-Newton in combination with other missions, in exploring the HMXB populations of the Small Magellanic Cloud and IC 10. Both are nearby dwarf starburst galaxies, yet their ages and evolutionary scenarios are very different, the consequences of which have led to contrasting X-ray binary populations. In the SMC the definitive sample of X-ray binary pulsars assembled by RXTE is revealing fundamental accretion physics when probed by XMM. Finding and characterizing IC 10's youthful X-ray binaries required the combination of XMM together with Chandra and Nustar. Key results include the revelatory finding of an X-ray irradiated wind masking the mass-function in the WR+BH binary X-1 and the measurement of the BH's spin. Such studies have wide relevance to stellar/galactic evolution, implications for black hole masses and formation channels for BH+BH binaries.

  15. Highlighting XMM-Newton's Role in Time Domain Studies of Neutron Star and Black Hole X-ray binaries in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Laycock, S.; Yang, J.; Cappallo, R.; Christodoulou, D.; Steiner, J.

    2016-09-01

    XMM-Newton's combination of large effective area, superior event timing, and wide field imaging have provided a powerful capability for time-domain studies of nearby X-ray binary populations. In its first 15 years XMM has accomplished groundbreaking monitoring surveys for X-ray binaries; complemented by RXTE, Chandra, and Nustar. Over the next decade XMM's capabilities will complement a new generation of missions including Astrosat, Hitomi, and NICER. This paper highlights the role of XMM-Newton in combination with other missions, in exploring the HMXB populations of the Small Magellanic Cloud and IC 10. Both are nearby dwarf starburst galaxies, yet their ages and evolutionary scenarios are very different, the consequences of which have led to contrasting X-ray binary populations. In the SMC the definitive sample of X-ray binary pulsars assembled by RXTE is revealing fundamental accretion physics when probed by XMM. Finding and characterizing IC 10's youthful X-ray binaries required the combination of XMM together with Chandra and Nustar. Key results include the revelatory finding of an X-ray irradiated wind masking the mass-function in the WR+BH binary X-1 and the measurement of the BH's spin. Such studies have wide relevance to stellar/galactic evolution, implications for black hole masses and formation channels for BH+BH binaries.

  16. The progenitors of local ultra-massive galaxies across cosmic time: from dusty star-bursting to quiescent stellar populations

    SciTech Connect

    Marchesini, Danilo; Marsan, Cemile Z.; Muzzin, Adam; Franx, Marijn; Stefanon, Mauro; Brammer, Gabriel G.; Vulcani, Benedetta; Fynbo, J. P. U.; Milvang-Jensen, Bo; Dunlop, James S.; Buitrago, Fernando

    2014-10-10

    Using the UltraVISTA catalogs, we investigate the evolution in the 11.4 Gyr since z = 3 of the progenitors of local ultra-massive galaxies (log (M {sub star}/M {sub ☉}) ≈ 11.8; UMGs), providing a complete and consistent picture of how the most massive galaxies at z = 0 have assembled. By selecting the progenitors with a semi-empirical approach using abundance matching, we infer a growth in stellar mass of 0.56{sub −0.25}{sup +0.35} dex, 0.45{sub −0.20}{sup +0.16} dex, and 0.27{sub −0.12}{sup +0.08} dex from z = 3, z = 2, and z = 1, respectively, to z = 0. At z < 1, the progenitors of UMGs constitute a homogeneous population of only quiescent galaxies with old stellar populations. At z > 1, the contribution from star-forming galaxies progressively increases, with the progenitors at 2 < z < 3 being dominated by massive (M {sub star} ≈ 2 × 10{sup 11} M {sub ☉}), dusty (A {sub V} ∼ 1-2.2 mag), star-forming (SFR ∼ 100-400 M {sub ☉} yr{sup –1}) galaxies with a large range in stellar ages. At z = 2.75, ∼15% of the progenitors are quiescent, with properties typical of post-starburst galaxies with little dust extinction and strong Balmer break, and showing a large scatter in color. Our findings indicate that at least half of the stellar content of local UMGs was assembled at z > 1, whereas the remaining was assembled via merging from z ∼ 1 to the present. Most of the quenching of the star-forming progenitors happened between z = 2.75 and z = 1.25, in good agreement with the typical formation redshift and scatter in age of z = 0 UMGs as derived from their fossil records. The progenitors of local UMGs, including the star-forming ones, never lived on the blue cloud since z = 3. We propose an alternative path for the formation of local UMGs that refines previously proposed pictures and that is fully consistent with our findings.

  17. Preface: The Evolving ISM in the Milky Way and Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Sheth, K.; Noriega-Crespo, A.; Ingalls, J.; Paladini, R.

    2009-01-01

    The fourth Spitzer Science Symposium "The Evolving ISM in the Milky Way and Nearby Galaxies" was held in Pasadena, CA from 2-5 December, 2007. The conference focused on synthesizing recent results for the interstellar medium (ISM) and its interplay with star formation in the Milky Way and nearby galaxies. In the Milky Way and Local Group galaxies we have an unparalleled view of the astrophysics of the interstellar medium, where one can study in detail the spatially-resolved energetics and the complex interplay of physical and chemical processes that govern the ISM. The ISM is both a fossil record of past star formation and evolutionary processes and a natal medium for future star formation.The Spitzer Space Telescope has provided a plethora of exciting results that have revolutionized our understanding of the ISM and star formation, particularly from large programs such as MIPSGAL, GLIMPSE, C2D, etc. How do these new discoveries of the local processes governing the ISM impact our understanding of nearby galaxies? How important are local processes when averaged over an entire galaxy? Legacy programs like SINGS and SAGE are two examples of rich and diverse sets of data for nearby galaxies where such questions may be examined?. ISM physics is the critical ingredient for turning gas and dust diagnostics into information about evolutionary processes such as star formation. The exceptional view of the far-infrared Milky way captured by Spitzer and the extraordinary data gathered from nearby galaxies was the main reason for organizing this conference to synthesize the most recent developments in the coupled fields of the ISM and Nearby Galaxies. Over the three days, we heard invited and contributed talks from over fifty participants. The poster session had over 100 posters and results from nearly a quarter of them were also presented in an abbreviated one to two minute format. The conference also had some firsts. We tried to be as environmentally sensitive as possible by

  18. Identification and multi-filter photometry of HII regions from nearby galaxies with J-PLUS

    NASA Astrophysics Data System (ADS)

    Logroño-García, R.; Vilella-Rojo, G.; López-Sanjuan, C.; Varela, J.; Muniesa, D.; Lamadrid, J. L.; Cenarro, A. J.; J-PLUS, T.

    2017-03-01

    The Javalambre Photometric Local Universe Survey (J-PLUS) has already started the data acquisition phase at the Observatorio Astrofísico de Javalambre (OAJ) in Teruel, Spain. Benefiting from the large field of view (2 deg^2) and the 12 filters set of the T80Cam at the T80/JAST telescope, we aim to study the properties of HII regions in nearby galaxies (z < 0.015). In this poster, we apply our procedures to the galaxy Messier 101. We have developed a fully automatized pipeline to identify and characterize the nearby universe HII regions. This pipeline: (1) Homogenizes the PSF in the 12 images of the different filters. (2) Estimates realistic photometric errors following Labbé et al. (2003) method. (3) Constructs a detection image showing the excess of Hα+[NII], following Vilella-Rojo et al. (2015) prescriptions. (4) Performs the photometry in the 12 J-PLUS bands using as reference the Hα+NII detection image. (5) Constructs the photo-spectra for each identified HII region. We demonstrate the capabilities of this method by comparing synthetic aperture photometry from SDSS spectra with the Hα flux measured with J-PLUS data. Such comparison can be found in the poster by Vilella-Rojo et al. Once the pipeline is implemented, we will generate a catalog of nearby HII regions at z<0.015 in the 8500deg^2 of J-PLUS. With this catalog, we will study the impact of environment in the 2D star formation properties of nearby galaxies, taking advantage of the unprecedented large contiguous area that J-PLUS will offer.

  19. The frequency and properties of young tidal dwarf galaxies in nearby gas-rich groups

    NASA Astrophysics Data System (ADS)

    Lee-Waddell, K.; Spekkens, K.; Chandra, P.; Patra, N.; Cuillandre, J.-C.; Wang, J.; Haynes, M. P.; Cannon, J.; Stierwalt, S.; Sick, J.; Giovanelli, R.

    2016-08-01

    We present high-resolution Giant Metrewave Radio Telescope (GMRT) H I observations and deep Canada-France-Hawaii Telescope (CFHT) optical imaging of two galaxy groups: NGC 4725/47 and NGC 3166/9. These data are part of a multi-wavelength unbiased survey of the gas-rich dwarf galaxy populations in three nearby interacting galaxy groups. The NGC 4725/47 group hosts two tidal knots and one dwarf irregular galaxy (dIrr). Both tidal knots are located within a prominent H I tidal tail, appear to have sufficient mass (Mgas ≈ 108 M⊙) to evolve into long-lived tidal dwarf galaxies (TDGs) and are fairly young in age. The NGC 3166/9 group contains a TDG candidate, AGC 208457, at least three dIrrs and four H I knots. Deep CFHT imaging confirms that the optical component of AGC 208457 is bluer - with a 0.28 mag g - r colour - and a few Gyr younger than its purported parent galaxies. Combining the results for these groups with those from the NGC 871/6/7 group reported earlier, we find that the H I properties, estimated stellar ages and baryonic content of the gas-rich dwarfs clearly distinguish tidal features from their classical counterparts. We optimistically identify four potentially long-lived tidal objects associated with three separate pairs of interacting galaxies, implying that TDGs are not readily produced during interaction events as suggested by some recent simulations. The tidal objects examined in this survey also appear to have a wider variety of properties than TDGs of similar mass formed in current simulations of interacting galaxies, which could be the result of pre- or post-formation environmental influences.

  20. Observations of dwarfs in nearby voids: implications for galaxy formation and evolution

    NASA Astrophysics Data System (ADS)

    Pustilnik, Simon A.

    2016-10-01

    The intermediate results of the ongoing study of deep samples of ~200 galaxies residing in nearby voids, are presented. Their properties are probed via optical spectroscopy, ugri surface photometry, and HI 21-cm line measurements, with emphasis on their evolutionary status. We derive directly the hydrogen mass M(HI), the ratio M(HI)/LB and the evolutionary parameter gas-phase O/H. Their luminosities and integrated colours are used to derive stellar mass M* and the second evolutionary parameter - gas mass-fraction f g). The colours of the outer parts, typically representative of the galaxy oldest stellar population, are used to estimate the upper limits on time since the beginning of the main SF episode. We compare properties of void galaxies with those of the similar late-type galaxies in denser environments. Most of void galaxies show smaller O/H for their luminosity, in average by ~30\\%, indicating slower evolution. Besides, the fraction of ~10\\% of the whole void sample or ~30\\% of the least luminous void LSB dwarfs show the oxygen deficiency by a factor of 2-5. The majority of this group appear very gas-rich, with f g ~(95-99)%, while their outer parts appear rather blue, indicating the time of onset of the main star-formation episode of less than 1-4 Gyr. Such unevolved LSBD galaxies appear not rare among the smallest void objects, but turned out practically missed to date due to the strong observational selection effects. Our results evidense for unusual evolutionary properties of the sizable fraction of void galaxies, and thus, pose the task of better modelling of dwarf galaxy formation and evolution in voids.

  1. THE IMPACT OF MOLECULAR GAS ON MASS MODELS OF NEARBY GALAXIES

    SciTech Connect

    Frank, B. S.; Blok, W. J. G. de; Walter, F.; Leroy, A.; Carignan, C.

    2016-04-15

    We present CO velocity fields and rotation curves for a sample of nearby galaxies, based on data from HERACLES. We combine our data with THINGS, SINGS, and KINGFISH results to provide a comprehensive sample of mass models of disk galaxies inclusive of molecular gas. We compare the kinematics of the molecular (CO from HERACLES) and atomic (H i from THINGS) gas distributions to determine the extent to which CO may be used to probe the dynamics in the inner part of galaxies. In general, we find good agreement between the CO and H i kinematics, with small differences in the inner part of some galaxies. We add the contribution of the molecular gas to the mass models in our galaxies by using two different conversion factors α{sub CO} to convert CO luminosity to molecular gas mass surface density—the constant Milky Way value and the radially varying profiles determined in recent work based on THINGS, HERACLES, and KINGFISH data. We study the relative effect that the addition of the molecular gas has on the halo rotation curves for Navarro–Frenk–White and the observationally motivated pseudo-isothermal halos. The contribution of the molecular gas varies for galaxies in our sample—for those galaxies where there is a substantial molecular gas content, using different values of α{sub CO} can result in significant differences to the relative contribution of the molecular gas and hence the shape of the dark matter halo rotation curves in the central regions of galaxies.

  2. True Chemical Abundances of Galaxies in the Nearby Universe: A Comparison of Abundance Methods, Interstellar Processes, and Galaxy Types

    NASA Astrophysics Data System (ADS)

    Berg, Danielle Amanda

    2013-12-01

    Peeples et al. (2008) identified low-mass, high oxygen abundance outliers from the mass-metallicity (M-Z) relationship. We present new MMT spectroscopy of four of these dwarf galaxy outliers. We re-examined these anomalous spectra and compared to the parameter space for which standard strong-line methods are calibrated. We discuss the physical nature of these galaxies that leads to their unusual spectra (and previous classification as outliers), finding their low excitation, elevated N/O, and strong Balmer absorption are consistent with the properties expected from galaxies evolving past the "Wolf-Rayet galaxy" phase. To address the issue of securing the low-luminosity end of the M-Z relationship, we present MMT spectroscopic observations of HII regions in 42 low-luminosity galaxies in the Spitzer LVL survey. Direct oxygen abundances were determined based on the temperature sensitive [O III] lambda4363 line, measured at a strength of 4sigma or greater, for 31 of the 42 galaxies in our sample. Combining our results with previous direct abundance studies, we present a further refined sample, requiring reliable distance determinations. We characterize the direct L-Z and M-Z relationships at low-luminosity using the resulting 38 object sample. We show that the luminosity of a low-luminosity galaxy is often a better indicator of metallicity than strong-line methods. Additionally, our results provide the first direct estimates of oxygen abundance for 19 local volume dwarf galaxies. Properties of the ISM of spiral galaxies are known to show radial variations. Motivated by the need to place gradients on the same scale for comparisons amongst galaxies, we present direct oxygen abundance gradients of the nearby spiral galaxies NGC 628 and NGC 2403. A bi-modal N/O gradient pattern is measured for NGC 628. Notably, the N/O ratio plateaus beyond R25, demonstrating that primary nitrogen production is the dominant mechanism in the outer disk. The outer disk beyond R 25 was not

  3. NEARBY CLUMPY, GAS RICH, STAR-FORMING GALAXIES: LOCAL ANALOGS OF HIGH-REDSHIFT CLUMPY GALAXIES

    SciTech Connect

    Garland, C. A.; Pisano, D. J.; Rabidoux, K.; Low, M.-M. Mac; Kreckel, K.; Guzmán, R. E-mail: djpisano@mail.wvu.edu E-mail: mordecai@amnh.org E-mail: guzman@astro.ufl.edu

    2015-07-10

    Luminous compact blue galaxies (LCBGs) have enhanced star formation rates (SFRs) and compact morphologies. We combine Sloan Digital Sky Survey data with H i data of 29 LCBGs at redshift z ∼ 0 to understand their nature. We find that local LCBGs have high atomic gas fractions (∼50%) and SFRs per stellar mass consistent with some high-redshift star-forming galaxies (SFGs). Many local LCBGs also have clumpy morphologies, with clumps distributed across their disks. Although rare, these galaxies appear to be similar to the clumpy SFGs commonly observed at z ∼ 1–3. Local LCBGs separate into three groups: (1) interacting galaxies (∼20%); (2) clumpy spirals (∼40%); and (3) non-clumpy, non-spirals with regular shapes and smaller effective radii and stellar masses (∼40%). It seems that the method of building up a high gas fraction, which then triggers star formation, is not the same for all local LCBGs. This may lead to a dichotomy in galaxy characteristics. We consider possible gas delivery scenarios and suggest that clumpy spirals, preferentially located in clusters and with companions, are smoothly accreting gas from tidally disrupted companions and/or intracluster gas enriched by stripped satellites. Conversely, as non-clumpy galaxies are preferentially located in the field and tend to be isolated, we suggest clumpy, cold streams, which destroy galaxy disks and prevent clump formation, as a likely gas delivery mechanism for these systems. Other possibilities include smooth cold streams, a series of minor mergers, or major interactions.

  4. Hubble Space Telescope/WFPC2 and VLA Observations of the Ionized Gas in the Dwarf Starburst Galaxy NGC 4214

    NASA Astrophysics Data System (ADS)

    MacKenty, John W.; Maíz-Apellániz, Jesús; Pickens, Christopher E.; Norman, Colin A.; Walborn, Nolan R.

    2000-12-01

    We present new Hα and [O III] λ5007 narrowband images of the starbursting dwarf galaxy NGC 4214, obtained with the Wide Field and Planetary Camera (WFPC2) on board the Hubble Space Telescope (HST), together with VLA observations of the same galaxy. The HST images resolve features down to physical scales of 2-5 pc, revealing several young (<10 Myr) star-forming complexes of various ionized gas morphologies (compact knots, complete or fragmentary shells) and sizes (~10-200 pc). Our results are consistent with a uniform set of evolutionary trends: The youngest, smaller, filled regions that presumably are those just emerging from dense star-forming clouds tend to be of high excitation and are highly obscured. Evolved, larger shell-like regions have lower excitation and are less extincted owing to the action of stellar winds and supernovae. In at least one case we find evidence for induced star formation, which has led to a two-stage starburst. Age estimates based on W(Hα) measurements do not agree with those inferred from wind-driven shell models of expanding H II regions. The most likely explanation for this effect is the existence of an ~2 Myr delay in the formation of superbubbles caused by the pressure exerted by the high-density medium in which massive stars are born. We report the detection of a supernova remnant embedded in one of the two large H II complexes of NGC 4214. The dust in NGC 4214 is not located in a foreground screen but is physically associated with the warm ionized gas. Based on observations with the NASA/ESA Hubble Space Telescope and the NRAO Very Large Array. The HST observations were obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc. under NASA contract NAS5-26555. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  5. Tracing the Baryon Cycle within Nearby Galaxies with a next-generation VLA

    NASA Astrophysics Data System (ADS)

    Kepley, Amanda A.; Leroy, Adam; Murphy, Eric J.; ngVLA Baryon Cycle Science Working Group

    2017-01-01

    The evolution of galaxies over cosmic time is shaped by the cycling of baryons through these systems, namely the inflow of atomic gas, the formation of molecular structures, the birth of stars, and the expulsion of gas due to associated feedback processes. The best way to study this cycle in detail are observations of nearby galaxies. These systems provide a complete picture of baryon cycling over a wide range of astrophysical conditions. In the next decade, higher resolution/sensitivity observations of such galaxies will fundamentally improve our knowledge of galaxy formation and evolution, allowing us to better interpret higher redshift observations of sources that were rapidly evolving at epochs soon after the Big Bang. In particular, the centimeter-to-millimeter part of the spectrum provides critical diagnostics for each of the key baryon cycling processes and access to almost all phases of gas in galaxies: cool and cold gas (via emission and absorption lines), ionized gas (via free-free continuum and recombination lines), cosmic rays and hot gas (via synchrotron emission and the Sunyaev-Zeldovich effect). This poster highlights a number of key science problems in this area whose solutions require a next-generation radio-mm interferometer such as the next-generation VLA.

  6. Mid-UV HST Imaging of Nearby Late-Type, Irregular, and Peculiar Galaxies

    NASA Astrophysics Data System (ADS)

    Taylor, V. A.; Windhorst, R. A.; Chiarenza, C. A. T.; Odewahn, S. C.; Conselice, C. J.; MacKenty, J.; de Jong, R. S.; de Grijs, R.; Eskridge, P. B.; Frogel, J. A.; Gallagher, J. S.; Kobulnicky, H.; Hibbard, J. E.; Matthews, L. D.; O'Connell, R. W.

    2000-12-01

    Distant galaxies observed by HST appear to have primarily late-type, irregular, or peculiar morphologies. However, because of their high redshift they are observed in their restframe mid-UV. Nearby galaxies can look dramatically different in the rest-frame mid- and far-UV. We must therefore ask if these high redshift morphologies are due to real evolutionary effects or band-pass shifting and surface brightness dimming at high redshift. To address this, we have conducted a survey with HST of 37 nearby galaxies of various Hubble types and inclinations in two mid-UV bands. Most of these galaxies have supporting ground based data in UBVRJHK. A comparison of the photometric properties of these galaxies in these different band-passes will lead to a better ability to separate true evolutionary effects from the morphological K-correction. We will present and discuss preliminary results from the HST survey and ground-based observations in UBVR. Our preliminary results suggest that the late-types imaged so far are a heterogeneous mixture. More than half of the few irregulars/peculiars/mergers show a mid-UV F300W morphology that is similar to I-band F814W, but with important differences due to recognizable dust-lanes blocking out UV light, star-formation ``ridges,'' and hot stars or star-clusters that are mostly visible in F300W but not in F814W. Others yield significantly different classifications in F300W and F814W. We acknowledge NASA grant GO-8645.01-99A from STScI and the NASA Space Grant. This project is based on observations with the VATT: the Alice P. Lennon Telescope and the Thomas J. Bannan Astrophysics Facility.

  7. The 75-111 GHz Spectra of Ten Nearby Galaxies Obtained with the Redshift Search Receiver

    NASA Astrophysics Data System (ADS)

    Snell, Ronald L.; Narayanan, G.; Harley, L.; Yun, M.; Heyer, M. H.; Chung, A.; Irvine, W. M.; Erickson, N. R.

    2009-05-01

    The three-millimeter-wavelength spectra of ten nearby galaxies have been obtained at the Five College Radio Astronomy Observatory (FCRAO) using a new, very broadband receiver and spectrometer. This instrument, which we call the Redshift Search Receiver (RSR), has an instantaneous bandwidth of 36 GHz covering wavelengths from 75 to 111 GHz, and has a spectral resolution of 31 MHz ( 100 km/s). The RSR is being build as one of the facility instruments for the Large Millimeter Telescope and designed primarily to determine the redshift of distant, dust-obscured galaxies. Tests of the RSR on the FCRAO 14-m telescope provided an opportunity to obtain complete three-millimeter spectra of the central regions of 10 nearby galaxies, Within the wavelength band covered by the RSR we detected 20 spectral lines from 14 different atomic and molecular species. We present the results of this spectral survey, examine some key molecular line ratios and discuss how differences in the chemistry and physical properties might give rise to the observed variation in these line ratios.

  8. Searching for black holes in nearby galaxies with Simbol-X

    NASA Astrophysics Data System (ADS)

    Gorenstein, Paul

    The study of black holes links astrophysics to fundamental physics and to especially to general relativity. General relativity constrains the value of the spin of a black hole to be between 0 and 1. Only by finding many examples of black holes and measuring their spin can we verify that they are all within the regime of theoretical predictions. Nearby galaxies are likely to contain many examples of compact binaries containing black holes. By measuring their X-ray spectra and determining their mass from studies of the optical companion with the new generation of large telescopes we will be able to compare their sets of properties to what general relativity allows. By extrapolating spectral band fluxes of the sources in several nearby low inclination galaxies detected by Chandra as reported in the literature, we estimate the strength of a putative hard X-ray component for each source. For a few values of angular resolution we simulate Simbol-X 12 to 60 keV images that would be obtained by pointing at these galaxies. The most luminous objects in the 12 to 60 keV band are more likely to be black hole binaries than neutron star binaries or supernova remnants and therefore are the most promising targets for optical telescopes.

  9. Studying the dwarf galaxies in nearby groups of galaxies: Spectroscopic and photometric data

    NASA Astrophysics Data System (ADS)

    Hopp, U.; Vennik, J.

    2014-11-01

    Galaxy evolution by interaction-driven transformation is probably highly efficient in groups of galaxies. Dwarf galaxies with their shallow potential are expected to reflect the interaction most prominently in their observable structure. The major aim of this series of papers is to establish a data base which allows to study the impact of group interaction onto the morphology and star-forming properties of dwarf galaxies. Firstly, we present our selection rules for target groups and the morphological selection method of target dwarf member candidates. Secondly, the spectroscopic follow-up observations with the HET are presented. Thirdly, we applied own reduction methods based on adaptive filtering to derive surface photometry of the candidates. The spectroscopic follow-up indicate a dwarf identification success rate of roughly 55 %, and a group member success rate of about 33 %. A total of 17 new low surface-brightness members is presented. For all candidates, total magnitudes, colours, and light distribution parameters are derived and discussed in the context of scaling relations. We point out short comings of the SDSS standard pipeline for surface photometry for these dim objects. We conclude that our selection strategy is rather efficient to obtain a sample of dim, low surface brightness members of groups of galaxies within the Virgo super-cluster. The photometric scaling relation in these X-ray dim, rather isolated groups does not significantly differ from those of the galaxies within the local volume.

  10. The EFIGI catalogue of 4458 nearby galaxies with morphology. II. Statistical properties along the Hubble sequence

    NASA Astrophysics Data System (ADS)

    de Lapparent, V.; Baillard, A.; Bertin, E.

    2011-08-01

    Aims: The EFIGI catalogue of 4458 galaxies extracted from the PGC and SDSS DR4 was designed to provide a multiwavelength reference database of the morphological properties of nearby galaxies. The sample is limited in apparent diameter and densely samples all RC3 Hubble types. Methods: We examine the statistics of the 16 EFIGI shape attributes, describing the various dynamical components, the texture, and the contamination by the environment of each galaxy. Using the redshifts from SDSS, HyperLeda, or NED for 99.53% of EFIGI galaxies, we derive estimates of absolute major isophotal diameters and the corresponding mean surface brightness in the SDSS g-band. Results: We study the variations of the EFIGI morphological attributes with Hubble type and confirm that the visual Hubble sequence is a decreasing sequence of bulge-to-total ratio and an increasing sequence of disk contribution to the total galaxy flux. There is, nevertheless, a total spread of approximately five types for a given bulge-to-total ratio, because the Hubble sequence is primarily based on the strength and pitch angle of the spiral arms, independently from the bulge-to-total ratio. A steep decrease in the presence of dust from Sb to Sbc-Sc types appears to produce the grand spiral design of the Sc galaxies. In contrast, the scattered and giant HII regions show different strength variation patterns, with peaks for types Scd and Sm; hence, they do not appear to directly participate in the establishment of the visual Hubble sequence. The distortions from a symmetric profile also incidentally increase along the sequence. Bars and inner rings are frequent and occur in 41% and 25% of the disk galaxies respectively. Outer rings are half as frequent than inner rings, and outer pseudo-rings occur in 11% of barred galaxies. Finally, we find a smooth decrease in mean surface brightness and intrinsic size along the Hubble sequence. The largest galaxies are cD, ellipticals and Sab-Sbc intermediate spirals (20

  11. Tracing the evolution within nearby galaxy groups: a multi-wavelength approach

    NASA Astrophysics Data System (ADS)

    Bettoni, Daniela; Marino, Antonina; Rampazzo, Roberto; Plana, Henri; Rosado, Margarita; Galletta, Giuseppe; Mazzei, Paola; Bianchi, Luciana; Buson, Lucio M.; Ambrocio-Cruz, Patricia; Gabbasov, Ruslan

    2015-03-01

    Evolutionary scenarios suggest that several mechanisms (from inner secular evolution to accretion/merging) may transform galaxy members, driving groups from an active star forming phase to a more passive, typical of dense environments. We are investigating this transition in a nearby group sample, designed to cover a wide range of properties (see also Marino et al. (2010), Bettoni et al. (2011) and Marino et al. (2012)). We study two groups, USGC U268 and USGC U376 located in different regions of the Leo cloud, through a photometric and kinematic characterization of their member galaxies. We revisit the group membership, using results from recent red-shift surveys, and we investigate their substructures. U268, composed of 10 catalogued members and 11 new added members, has a small fraction (~24%) of early-type galaxies (ETGs). U376 has 16 plus 8 new added members, with ~38% of ETGs. We find the significant substructuring in both groups suggesting that they are likely accreting galaxies. U268 is located in a more loose environment than U376. For each member galaxy, broad band integrated and surface photometry have been obtained in far-UV (FUV) and near-UV (NUV) with GALEX, and in u, g, r, i, z (SDSS) bands. Hα imaging and 2D high resolution kinematical data have been obtained using PUMA Scanning Fabry-Perot interferometer at the 2.12 m telescope in San Pedro Mártir (Baja California, México). We improved the galaxy classification and we detected morphological and kinematical distortions that may be connected to either on-going and/or past interaction/accretion events or environmental induced secular evolution. U268 appears more active than U376, with a large fraction of galaxies showing interaction signatures (60% vs. 13%). The presence of bars among late-type galaxies is ~10% in U268 and 29% in U376. The cumulative distribution of (FUV - NUV) colors of galaxies in U268 is significantly different (bluer) than that of U376's galaxies. Most (80%) of the early

  12. A NEARBY ANALOG OF z {approx} 2 COMPACT QUIESCENT GALAXIES WITH A ROTATING DISK

    SciTech Connect

    Jiang, Fangzhou; Van Dokkum, Pieter; Bezanson, Rachel; Franx, Marijn

    2012-04-10

    Recent studies have identified a population of compact quiescent galaxies at z {approx} 2. These galaxies are very rare today and establishing the existence of a nearby analog could allow us to study its structure in greater detail than is possible at high redshift. Here we present such a local analog, NGC 5845, which has a dynamical mass of M{sub dyn} = 4.3 {+-} 0.6 Multiplication-Sign 10{sup 10} M{sub Sun} and an effective radius of only r{sub e} 0.45 {+-} 0.05 kpc. We study the structure and kinematics with HST/WFPC2 data and previously published spatially resolved kinematics. We find that NGC 5845 is similar to compact quiescent galaxies at z {approx} 2 in terms of size versus dynamical mass (r{sub e}-M{sub dyn}), effective velocity dispersion versus size ({sigma}{sub e}-r{sub e}), and effective velocity dispersion versus dynamical mass ({sigma}{sub e}-M{sub dyn}). The galaxy has a prominent rotating disk evident in both the photometry and the kinematics: it extends to well beyond {approx}> 1/3 effective radius and contribute to {approx}> 1/4 of the total light of the galaxy. Our results lend support to the idea that a fraction of z {approx} 2 compact galaxies have prominent disks and positive mass-to-light ratio gradients, although we caution that NGC 5845 may have had a different formation history than the more massive compact quiescent galaxies at z {approx} 2.

  13. What powers the starburst activity of NGC 1068? Star-driven gravitational instabilities caught in the act

    NASA Astrophysics Data System (ADS)

    Romeo, Alessandro B.; Fathi, Kambiz

    2016-08-01

    We explore the role that gravitational instability plays in NGC 1068, a nearby Seyfert galaxy that exhibits unusually vigorous starburst activity. For this purpose, we use the Romeo-Falstad disc instability diagnostics and data from the BIMA Survey of Nearby Galaxies, the Sloan Digital Sky Survey and the Spectrographic Areal Unit for Research on Optical Nebulae. Our analysis illustrates that NGC 1068 is a gravitationally unstable `monster'. Its starburst disc is subject to unusually powerful instabilities. Several processes, including feedback from the active galactic nucleus and starburst activity, try to quench such instabilities from inside out by depressing the surface density of molecular gas across the central kpc, but they do not succeed. Gravitational instability `wins' because it is driven by the stars via their much higher surface density. In this process, stars and molecular gas are strongly coupled, and it is such a coupling that ultimately triggers local gravitational collapse/fragmentation in the molecular gas.

  14. Neutral carbon and CO in 76 (U)LIRGs and starburst galaxy centers. A method to determine molecular gas properties in luminous galaxies

    NASA Astrophysics Data System (ADS)

    Israel, F. P.; Rosenberg, M. J. F.; van der Werf, P.

    2015-06-01

    In this paper we present fluxes in the [ CI ] lines of neutral carbon at the centers of some 76 galaxies with far-infrared luminosities ranging from 109 to 1012L⊙, as obtained with the Herschel Space Observatory and ground-based facilities, along with the line fluxes of the J = 7-6, J = 4-3, J = 2-112CO, and J = 2-113CO transitions. With this dataset, we determine the behavior of the observed lines with respect to each other and then investigate whether they can be used to characterize the molecular interstellar medium (ISM) of the parent galaxies in simple ways and how the molecular gas properties define the model results. In most starburst galaxies, the [ CI ] to 13CO line flux ratio is much higher than in Galactic star-forming regions, and it is correlated to the total far-infrared luminosity. The [ CI ] (1-0)/12CO (4-3), the [ CI ] (2-1)/12CO (7-6), and the [ CI ] (2-1)/(1-0) flux ratios are correlated, and they trace the excitation of the molecular gas. In the most luminous infrared galaxies (LIRGs), the ISM is fully dominated by dense (n( H2) = 104-105 cm-3) and moderately warm (Tkin ≈ 30 K) gas clouds that appear to have low [C°]/[CO] and [13CO]/[12CO] abundances. In less luminous galaxies, emission from gas clouds at lower densities becomes progressively more important, and a multiple-phase analysis is required to determine consistent physical characteristics. Neither the 12CO nor the [ CI ] velocity-integrated line fluxes are good predictors of molecular hydrogen column densities in individual galaxies. In particular, so-called X( [ CI ]) conversion factors are not superior to X( 12CO) factors. The methods and diagnostic diagrams outlined in this paper also provide a new and relatively straightforward means of deriving the physical characteristics of molecular gas in high-redshift galaxies up to z = 5, which are otherwise hard to determine.

  15. 2XMM ultraluminous X-ray source candidates in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Walton, D. J.; Roberts, T. P.; Mateos, S.; Heard, V.

    2011-09-01

    Ultraluminous X-ray sources (ULXs) are some of the most enigmatic X-ray bright sources known to date. It is generally accepted that they cannot host black holes as large as those associated with active galaxies, but they appear to be significantly more luminous than their better understood Galactic X-ray binary (XRB) cousins, while displaying an intriguing combination of differences and similarities with them. Through studying large, representative samples of these sources we may hope to enhance our understanding of them. To this end, we derive a large catalogue of 650 X-ray detections of 470 ULX candidates, located in 238 nearby galaxies, by cross-correlating the 2XMM Serendipitous Survey with the Third Reference Catalogue of Bright Galaxies. The presented dedicated catalogue offers a significant improvement over those previously published in terms of both the number and the contribution of background contaminants, e.g. distant quasars, which we estimate to be at most 24 per cent, but more likely ˜17 per cent. To undertake population studies, we define a 'complete' sub-sample of sources compiled from observations of galaxies with sensitivity limits below 1039 erg s-1. The luminosity function of this sample is consistent with a simple power law of form N(>LX) ∝ L-0.96 ± 0.11X. Although we do not find any statistical requirement for a cut-off luminosity of Lc˜ 1040 erg s-1, as has been reported previously, we are not able to rule out its presence. Also, we find that the number of ULXs per unit galaxy mass, Su, decreases with increasing galaxy mass for ULXs associated with spiral galaxies, and is well modelled with a power law of form Su ∝ M-0.64 ± 0.07. This is in broad agreement with previous results, and is likely to be a consequence of the decrease in specific star formation and increase in metallicity with increasing spiral galaxy mass. Su is consistent with being constant with galaxy mass for sources associated with elliptical galaxies, implying this

  16. The Interstellar Medium and Star Formation of Nearby, Low-Mass Galaxies

    NASA Astrophysics Data System (ADS)

    Warren, Steven Ray

    This thesis presents four different studies of the interstellar medium (ISM) and stellar content of ˜40 nearby (D ≲ 4 Mpc), low-mass galaxies. We aim to address two fundamental questions: "How do stellar processes effect the ISM in low-mass galaxies?" and "What are the local gas conditions which lead to molecular cloud formation?". Much of the data presented here come from our survey the "Very Large Array - Advanced Camera for Surveys Nearby Galaxy Survey Treasury" (VLA-ANGST). VLA-ANGST is a targeted atomic hydrogen (H I) emission line survey directed towards 35 low-mass galaxies selected from the ANGST Hubble Space Telescope (HST) galaxy sample of the nearby universe. The VLA-ANGST project is the largest survey of its kind, demanding nearly 600 hours of VLA observing time. This unprecedented amount of observing time gives us data which has long lasting legacy value for its wealth of high resolution and high sensitivity information on the H I gas content and dynamics in a large sample of nearby, low-mass galaxies. H I data from the VLA-ANGST project will be used to explore the interactions between the gas and stellar content as well as trace the underlying dark matter distribution. Combining the H I and HST data with other tracers of recent star formation (e.g., emission processes from far ultraviolet star light, dust in the infrared, and carbon monoxide in the submillimeter) provides a comprehensive census of each galaxy, useful for understanding their evolution. We investigate the role of multiple generations of star formation in the formation of large, kiloparsec scale cavities observed in the global H I distributions of five nearby, low mass galaxies. The small gravitational potential wells of some low-mass galaxies allow the outflow of energy from stellar

  17. Multi-Wavelength Observations of the Supernova Remnant Populations in the Nearby Spiral Galaxies IC 342 and NGC 4258

    NASA Astrophysics Data System (ADS)

    Pannuti, Thomas; Chomiuk, L.; Grimes, C. K.; Staggs, W. D.; Tussey, J. M.; Laine, S.; Schlegel, E.

    2011-01-01

    Supernova remnants (SNRs) are intimately tied to many crucial processes associated with the interstellar medium of galaxies, such as the acceleration of cosmic-ray particles and the deposition of vast amounts of kinetic energy and chemically-enriched material. Well-known observational challenges in the study of SNRs located in the Milky Way Galaxy (for example, formidable extinction along Galactic lines of sight and considerable uncertainties in the distances to these sources) have motivated searches for SNRs in nearby galaxies at such characteristic wavelengths as X-ray, optical and radio. These searches have revealed a considerable number of SNRs and led to new insights into their properties, but the SNR populations in only a handful of nearby galaxies have been adequately surveyed at multiple wavelengths. To help remedy this situation, we are conducting a multi-wavelength study of the SNR population of selected nearby galaxies. To illustrate our work, we present the results of studies of the SNR population in two nearby spiral galaxies, IC 342 and NGC 4258. Our results draw upon the analysis of pointed archival radio and X-ray observations of these two galaxies. Initial results will be presented and discussed.

  18. Ultra-deep imaging of nearby galaxy outskirts from the ground

    NASA Astrophysics Data System (ADS)

    Trujillo, Ignacio

    2017-03-01

    We show how present-day 10 meter class telescopes can provide broadband imaging 1.5-2 mag deeper than most previous results within a reasonable amount of time ( ~ 8h on source integration). We illustrate the ability of the 10.4 m Gran Telescopio de Canarias (GTC) telescope to produce imaging with a limiting surface brightness of 31.5 mag/arcsec2 (3σ in 10 × 10 arcsec boxes). We explore the stellar halos of nearby galaxies obtaining surface brightness radial profiles down to μ r ~ 33 mag/arcsec2. This depth is similar to that obtained using star counts techniques of Local Group galaxies, but is achieved at a distance where this technique is unfeasible.

  19. Dust-to-gas ratio and metallicity variations in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Issa, M. R.; MacLaren, I.; Wolfendale, A. W.

    1990-09-01

    The dependence of the dust-to-gas ratio on Galacto-centric radius and its relation to the known metallicity gradient in the Galaxy and nearby galaxies is investigated. Despite the large degree of uncertainty associated with both quantities, there is evidence for a correlation, with dust-to-gas ratio and metallicity decreasing at roughly the same rate with increasing radius. Such a result has important implications. For example, attempts using FIR surveys to estimate the conversion between observed CO emission and molecular hydrogen column density should allow for the varying dust-to-gas ratio. Broadbent et al. (1989) used a dust-to-gas ratio that varied in proportion to metallicity, following the approach used by Cox et al. (1986), and confirmed the previously estimated low value for the conversion factor; there is thus support for this result.

  20. THE ACS NEARBY GALAXY SURVEY TREASURY. III. CEPHEIDS IN THE OUTER DISK OF M81

    SciTech Connect

    McCommas, Les P.; Williams, Benjamin F.; Dalcanton, Julianne J.; Davis, Matthew R.; Yoachim, Peter; Dolphin, Andrew E. E-mail: jd@astro.washington.edu E-mail: mrdavis@astro.washington.edu E-mail: adolphin@ratheon.com

    2009-06-15

    The ACS Nearby Galaxy Survey Treasury (ANGST) has acquired deep ACS imaging of a field in the outer disk of the large spiral galaxy M81. These data were obtained over a total of 20 Hubble Space Telescope orbits, providing a baseline long enough to reliably identify Cepheid variable stars in the field. Fundamental mode and first overtone types have been distinguished through comparative fits with corresponding Cepheid light curve templates derived from principal component analysis of confirmed Cepheids in the Large Magellanic Cloud (LMC), Small Magellanic Cloud, and Milky Way. A distance modulus of 27.78 {+-} 0.05 {sub r} {+-} 0.14 {sub s} with a corresponding distance of 3.60 {+-} 0.23 Mpc has been calculated from a sample of 11 fundamental mode and two first overtone Cepheids (assuming an LMC distance modulus of {mu}{sub LMC} = 18.41 {+-} 0.10 {sub r} {+-} 0.13 {sub s})

  1. Compact radio sources in the starburst galaxy M82 and the Sigma-D relation for supernova remnants

    NASA Technical Reports Server (NTRS)

    Huang, Z. P.; Thuan, T. X.; Chevalier, R. A.; Condon, J. J.; Yin, Q. F.

    1994-01-01

    We have obtained an 8.4 GHz Very Large Array (VLA) A-array map of the starburst galaxy M82 with a resolution Full Width at Half Maximum (FWHM) approximately 0.182 sec. About 50 compact radio sources in the central region of M82 were detected with a peak surface brightness approximately greater than 10(exp -17) W/Hz/sq m/sr. Comparison with previous observations shows that most sources are declining in flux. Three previously visible sources have faded into the background of our map (approximately less than 0.2 mJy/beam), while a few sources, including the second and third brightest radio sources in M82, may have increased slightly in flux over the last decade. No new radio supernova was found. The birth rate of the compact radio sources is estimated to be 0.11 + or - 0.05/yr. We attribute the population of such bright, small supernova remnants (SNRs) in M82 to the high pressure in the central region that can truncate the mass loss during a red supergiant phase or allow dense ionized clouds to be present. The compact radio sources obey a Sigma(radio surface brightness) - D(diameter) relation which is remarkably similar to that followed by supernova remnants in the Galaxy and the Magellanic Clouds and by two of the strongest known extragalactic radio supernovae: SN 1986J and SN 1979C. A least-squares fit to the SNR data gives: Sigma(sub 8.4 GHz) (W/Hz/sq m/sr) = 4.4 x 10(exp -16) D(sub pc)(exp -3.5 +/- 0.1) covering seven orders of magnitude in Sigma. Possible selection effects are discussed and a theoretical discussion of the correlation is presented.

  2. REVISED MASS-TO-LIGHT RATIOS FOR NEARBY GALAXY GROUPS AND CLUSTERS

    SciTech Connect

    Shan, Yutong; Courteau, Stéphane; McDonald, Michael

    2015-02-20

    We present a detailed investigation of the cluster stellar mass-to-light (M*/L) ratio and cumulative stellar masses, derived on a galaxy-by-galaxy basis, for 12 massive (M {sub 500} ∼ 10{sup 14}-10{sup 15} M {sub ☉}), nearby clusters with available optical imaging data from the Sloan Digital Sky Survey Data Release 10 and X-ray data from the Chandra X-ray Observatory. Our method involves a statistical cluster membership using both photometric and spectroscopic redshifts when available to maximize completeness while minimizing contamination effects. We show that different methods of estimating the stellar mass-to-light ratio from observed photometry result in systematic discrepancies in the total stellar masses and average mass-to-light ratios of cluster galaxies. Nonetheless, all conversion methodologies point to a lack of correlation between M*/L{sub i} and total cluster mass, even though low-mass groups contain relatively more blue galaxies. We also find no statistically significant correlation between M*/L{sub i} and the fraction of blue galaxies (g – i < 0.85). For the mass range covered by our sample, the assumption of a Chabrier initial mass function (IMF) yields an integrated M*/L{sub i} ≅ 1.7 ± 0.2 M {sub ☉}/L {sub i,} {sub ☉}, a lower value than used in most similar studies, though consistent with the study of low-mass galaxy groups by Leauthaud et al. A light (diet) Salpeter IMF would imply a ∼60% increase in M*/L{sub i}.

  3. X-ray and Ultraviolet Properties of AGNs in Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Baldassare, Vivienne F.; Reines, Amy E.; Gallo, Elena; Greene, Jenny E.

    2017-02-01

    We present new Chandra X-ray Observatory and Hubble Space Telescope observations of eight optically selected broad-line active galactic nucleus (AGN) candidates in nearby dwarf galaxies (z < 0.055). Including archival Chandra observations of three additional sources, our sample contains all 10 galaxies from Reines et al. (2013) with both broad Hα emission and narrow-line AGN ratios (six AGNs, four composites), as well as one low-metallicity dwarf galaxy with broad Hα and narrow-line ratios characteristic of star formation. All 11 galaxies are detected in X-rays. Nuclear X-ray luminosities range from L 0.5–7keV ≈ 5 × 1039 to 1 × 1042 ergs‑1. In all cases except for the star-forming galaxy, the nuclear X-ray luminosities are significantly higher than would be expected from X-ray binaries, providing strong confirmation that AGNs and composite dwarf galaxies do indeed host actively accreting black holes (BHs). Using our estimated BH masses (which range from ∼7 × 104 to 1 × 106 M ⊙), we find inferred Eddington fractions ranging from ∼0.1% to 50%, i.e., comparable to massive broad-line quasars at higher redshift. We use the HST imaging to determine the ratio of UV to X-ray emission for these AGNs, finding that they appear to be less X-ray luminous with respect to their UV emission than more massive quasars (i.e., α OX values an average of 0.36 lower than expected based on the relation between α OX and 2500 Å luminosity). Finally, we discuss our results in the context of different accretion models onto nuclear BHs.

  4. Satellite accretion in action: a tidally disrupting dwarf spheroidal around the nearby spiral galaxy NGC 253

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron J.; Martínez-Delgado, David; Martin, Nicolas F.; Morales, Gustavo; Jennings, Zachary G.; GaBany, R. Jay; Brodie, Jean P.; Grebel, Eva K.; Schedler, Johannes; Sidonio, Michael

    2016-03-01

    We report the discovery of NGC 253-dw2, a dwarf spheroidal (dSph) galaxy candidate undergoing tidal disruption around a nearby spiral galaxy, NGC 253 in the Sculptor group: the first such event identified beyond the Local Group. The dwarf was found using small-aperture amateur telescopes, and followed up with Suprime-Cam on the 8 m Subaru Telescope in order to resolve its brightest stars. Using g- and Rc-band photometry, we detect a red giant branch consistent with an old, metal-poor stellar population at a distance of ˜3.5 Mpc. From the distribution of likely member stars, we infer a highly elongated shape with a semimajor axis half-light radius of (2 ± 0.4) kpc. Star counts also yield a luminosity estimate of ˜2 × 106 L⊙,V (MV ˜ -10.7). The morphological properties of NGC 253-dw2 mark it as distinct from normal dSphs and imply ongoing disruption at a projected distance of ˜50 kpc from the main galaxy. Our observations support the hierarchical paradigm wherein massive galaxies continuously accrete less massive ones, and provide a new case study for dSph infall and dissolution dynamics. We also note the continued efficacy of small telescopes for making big discoveries.

  5. The Abundance Properties of Nearby Late-type Galaxies. I. The Data

    NASA Astrophysics Data System (ADS)

    Pilyugin, L. S.; Grebel, E. K.; Kniazev, A. Y.

    2014-06-01

    We investigate the oxygen and nitrogen abundance distributions across the optical disks of 130 nearby late-type galaxies using around 3740 published spectra of H II regions. We use these data in order to provide homogeneous abundance determinations for all objects in the sample, including H II regions in which not all of the usual diagnostic lines were measured. Examining the relation between N and O abundances in these galaxies we find that the abundances in their centers and at their isophotal R 25 disk radii follow the same relation. The variation in N/H at a given O/H is around 0.3 dex. We suggest that the observed spread in N/H may be partly caused by the time delay between N and O enrichment and the different star formation histories in galaxies of different morphological types and dimensions. We study the correlations between the abundance properties (central O and N abundances, radial O and N gradients) of a galaxy and its morphological type and dimension.

  6. BaLROG: The Influence of Bars on the Dynamical Structure in Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Seidel, M. K.; Falcón-Barroso, J.; Martínez-Valpuesta, I.; Díaz-García, S.; Laurikainen, E.; Salo, H.; Knapen, J. H.

    2016-10-01

    Using the BaLROG (Bars in Low Redshift Optical Galaxies) sample of 16 morphologically distinct barred spirals, we constrain the influence of bars on nearby galaxies observationally. Our sample appears small compared to ongoing IFU surveys, but offers a tenfold sharper spatial resolution (˜100 pc) as each galaxy is a mosaic of several pointings observed with the IFU spectrograph SAURON. We demonstrate a correlation between the bar strength Qb determined from classical torque analysis using 3.6 μm Spitzer (S4G) images, with Qkin, a kinematic torque, calculated via our new method based solely on the kinematics. Using a large number of N-body simulations, we verify this correlation and the measurement of Qb. We also determine bar strengths from ionized gas kinematics and find that they are ˜2.5 larger than those measured from stellar kinematics. Further, inner kinematic features related to bars as predicted by simulations seem to be stronger for stronger bars. We find a stellar angular momentum dip at 0.2±0.1 bar lengths. In these central regions, about half of our sample also exhibits an anti-correlation of h3 - stellar velocity (v/σ). An increased flattening of the stellar σ gradient with increasing bar strength supports the notion of bar-induced orbit mixing. Our results constrain the spatial scales and magnitude of a kinematic influence of bar-driven secular evolution in present day galaxies.

  7. Modeling and Analysis of the Nearby Colliding Galaxy Pair NGC 6621/22

    NASA Astrophysics Data System (ADS)

    Schwenk, D. R.; Lamb, S. A.; Van Schelt, J. A.; Hearn, N. C.

    2005-12-01

    We present an analysis of the nearby interacting galaxies NGC 6621/22 (Arp 81), comparing the results of a combined N-body/SPH simulation of the collision between two suitable disk galaxy models with multi-wavelength observations. Arp 81 is undergoing a strong collision that has triggered periods of intense star formation in the pair. We use archived IRAC and HST images to identify regions of extensive star formation that took place in the system at previous times. From the simulation we obtain information on the physical conditions that likely existed in these regions, and that drove the star formation. By scaling the models, using best estimates of the mass and radius of each galaxy, we find the timescale for various star formation events. We deduce that there has been mass transfer from the more massive NGC 6621 to the less massive NGC 6622, and that this has led to nuclear star formation in NGC 6622. There has also been extensive star formation in two extended `arms' in NGC 6621, one of which formed a bridge between the two galaxies. (This work was supported in part by the National Science Foundation, under grant PHY-0243675, and by the Department of Energy under contract DOE LLNL B506657. The numerical simulations were performed on the Turing Computer Cluster in the College of Engineering at UIUC.)

  8. Multi-wavelength Lens Reconstruction of a Planck and Herschel-detected Star-bursting Galaxy

    NASA Astrophysics Data System (ADS)

    Timmons, Nicholas; Cooray, Asantha; Riechers, Dominik A.; Nayyeri, Hooshang; Fu, Hai; Jullo, Eric; Gladders, Michael D.; Baes, Maarten; Bussmann, R. Shane; Calanog, Jae; Clements, David L.; da Cunha, Elisabete; Dye, Simon; Eales, Stephen A.; Furlanetto, Cristina; Gonzalez-Nuevo, Joaquin; Greenslade, Joshua; Gurwell, Mark; Messias, Hugo; Michałowski, Michał J.; Oteo, Iván; Pérez-Fournon, Ismael; Scott, Douglas; Valiante, Elisabetta

    2016-09-01

    We present a source-plane reconstruction of a Herschel and Planck-detected gravitationally lensed dusty star-forming galaxy (DSFG) at z = 1.68 using Hubble, Submillimeter Array (SMA), and Keck observations. The background submillimeter galaxy (SMG) is strongly lensed by a foreground galaxy cluster at z = 0.997 and appears as an arc with a length of ˜15″ in the optical images. The continuum dust emission, as seen by SMA, is limited to a single knot within this arc. We present a lens model with source-plane reconstructions at several wavelengths to show the difference in magnification between the stars and dust, and highlight the importance of multi-wavelength lens models for studies involving lensed DSFGs. We estimate the physical properties of the galaxy by fitting the flux densities to model spectral energy distributions leading to a magnification-corrected star-formation rate (SFR) of 390 ± 60 M {}⊙ yr-1 and a stellar mass of 1.1+/- 0.4× {10}11 {M}⊙ . These values are consistent with high-redshift massive galaxies that have formed most of their stars already. The estimated gas-to-baryon fraction, molecular gas surface density, and SFR surface density have values of 0.43 ± 0.13, 350 ± 200 {M}⊙ pc-2, and ˜ 12+/- 7 M {}⊙ yr-1 kpc-2, respectively. The ratio of SFR surface density to molecular gas surface density puts this among the most star-forming systems, similar to other measured SMGs and local ULIRGs.

  9. An Extreme Starburst in the Core of a Rich Galaxy Cluster at z = 1.7

    NASA Astrophysics Data System (ADS)

    Webb, Tracy; Noble, Allison; DeGroot, Andrew; Wilson, Gillian; Muzzin, Adam; Bonaventura, Nina; Cooper, Mike; Delahaye, Anna; Foltz, Ryan; Lidman, Chris; Surace, Jason; Yee, H. K. C.; Chapman, Scott; Dunne, Loretta; Geach, James; Hayden, Brian; Hildebrandt, Hendrik; Huang, Jiasheng; Pope, Alexandra; Smith, Matthew W. L.; Perlmutter, Saul; Tudorica, Alex

    2015-08-01

    We have discovered an optically rich galaxy cluster at z = 1.7089 with star formation occurring in close proximity to the central galaxy. The system, SpARCS104922.6+564032.5, was detected within the Spitzer Adaptation of the red-sequence Cluster Survey, and confirmed through Keck-MOSFIRE spectroscopy. The rest-frame optical richness of Ngal (500 kpc) = 30 ± 8 implies a total halo mass, within 500 kpc, of ˜3.8 ± 1.2 × 1014 M⊙, comparable to other clusters at or above this redshift. There is a wealth of ancillary data available, including Canada-France-Hawaii Telescope optical, UKIRT-K, Spitzer-IRAC/MIPS, and Herschel-SPIRE. This work adds submillimeter imaging with the SCUBA2 camera on the James Clerk Maxwell Telescope and near-infrared imaging with the Hubble Space Telescope. The mid/far-infrared (M/FIR) data detect an Ultra-luminous Infrared Galaxy spatially coincident with the central galaxy, with LIR = 6.2 ± 0.9 × 1012 L⊙. The detection of polycyclic aromatic hydrocarbons at z = 1.7 in a Spitzer-IRS spectrum of the source implies the FIR luminosity is dominated by star formation (an Active Galactic Nucleus contribution of 20%) with a rate of ˜860 ± 130 M⊙ yr-1. The optical source corresponding to the IR emission is likely a chain of >10 individual clumps arranged as “beads on a string” over a linear scale of 66 kpc. Its morphology and proximity to the Brightest Cluster Galaxy (BCG) imply a gas-rich interaction at the center of the cluster triggered the star formation. This system indicates that wet mergers may be an important process in forming the stellar mass of BCGs at early times.

  10. AN EXTREME STARBURST IN THE CORE OF A RICH GALAXY CLUSTER AT z = 1.7

    SciTech Connect

    Webb, Tracy; Bonaventura, Nina; Delahaye, Anna; Noble, Allison; Yee, H. K. C.; DeGroot, Andrew; Wilson, Gillian; Foltz, Ryan; Muzzin, Adam; Chapman, Scott; Cooper, Mike; Lidman, Chris; Surace, Jason; Dunne, Loretta; Geach, James; Hayden, Brian; Hildebrandt, Hendrik; Huang, Jiasheng; Pope, Alexandra; Smith, Matthew W. L.; and others

    2015-08-20

    We have discovered an optically rich galaxy cluster at z = 1.7089 with star formation occurring in close proximity to the central galaxy. The system, SpARCS104922.6+564032.5, was detected within the Spitzer Adaptation of the red-sequence Cluster Survey, and confirmed through Keck-MOSFIRE spectroscopy. The rest-frame optical richness of N{sub gal} (500 kpc) = 30 ± 8 implies a total halo mass, within 500 kpc, of ∼3.8 ± 1.2 × 10{sup 14} M{sub ⊙}, comparable to other clusters at or above this redshift. There is a wealth of ancillary data available, including Canada–France–Hawaii Telescope optical, UKIRT-K, Spitzer-IRAC/MIPS, and Herschel-SPIRE. This work adds submillimeter imaging with the SCUBA2 camera on the James Clerk Maxwell Telescope and near-infrared imaging with the Hubble Space Telescope. The mid/far-infrared (M/FIR) data detect an Ultra-luminous Infrared Galaxy spatially coincident with the central galaxy, with L{sub IR} = 6.2 ± 0.9 × 10{sup 12} L{sub ⊙}. The detection of polycyclic aromatic hydrocarbons at z = 1.7 in a Spitzer-IRS spectrum of the source implies the FIR luminosity is dominated by star formation (an Active Galactic Nucleus contribution of 20%) with a rate of ∼860 ± 130 M{sub ⊙} yr{sup −1}. The optical source corresponding to the IR emission is likely a chain of >10 individual clumps arranged as “beads on a string” over a linear scale of 66 kpc. Its morphology and proximity to the Brightest Cluster Galaxy (BCG) imply a gas-rich interaction at the center of the cluster triggered the star formation. This system indicates that wet mergers may be an important process in forming the stellar mass of BCGs at early times.

  11. THE ACS NEARBY GALAXY SURVEY TREASURY. IX. CONSTRAINING ASYMPTOTIC GIANT BRANCH EVOLUTION WITH OLD METAL-POOR GALAXIES

    SciTech Connect

    Girardi, Leo; Williams, Benjamin F.; Gilbert, Karoline M.; Rosenfield, Philip; Dalcanton, Julianne J.; Marigo, Paola; Boyer, Martha L.; Dolphin, Andrew; Weisz, Daniel R.; Skillman, Evan; Melbourne, Jason; Olsen, Knut A. G.; Seth, Anil C.

    2010-12-01

    In an attempt to constrain evolutionary models of the asymptotic giant branch (AGB) phase at the limit of low masses and low metallicities, we have examined the luminosity functions and number ratios between AGB and red giant branch (RGB) stars from a sample of resolved galaxies from the ACS Nearby Galaxy Survey Treasury. This database provides Hubble Space Telescope optical photometry together with maps of completeness, photometric errors, and star formation histories for dozens of galaxies within 4 Mpc. We select 12 galaxies characterized by predominantly metal-poor populations as indicated by a very steep and blue RGB, and which do not present any indication of recent star formation in their color-magnitude diagrams. Thousands of AGB stars brighter than the tip of the RGB (TRGB) are present in the sample (between 60 and 400 per galaxy), hence, the Poisson noise has little impact in our measurements of the AGB/RGB ratio. We model the photometric data with a few sets of thermally pulsing AGB (TP-AGB) evolutionary models with different prescriptions for the mass loss. This technique allows us to set stringent constraints on the TP-AGB models of low-mass, metal-poor stars (with M < 1.5 M{sub sun}, [Fe/H]{approx}< -1.0). Indeed, those which satisfactorily reproduce the observed AGB/RGB ratios have TP-AGB lifetimes between 1.2 and 1.8 Myr, and finish their nuclear burning lives with masses between 0.51 and 0.55 M{sub sun}. This is also in good agreement with recent observations of white dwarf masses in the M4 old globular cluster. These constraints can be added to those already derived from Magellanic Cloud star clusters as important mileposts in the arduous process of calibrating AGB evolutionary models.

  12. Submillimetric study of nearby galaxies: A tool for new extragalactic molecules

    NASA Astrophysics Data System (ADS)

    Villicana Pedraza, Ilhuiyolitzin; Guesten, Rolf; Armijos Abendaño, Jairo; Carreto, Francisco; Martin, Sergio; Martin-Pintado, Jesus; Requena-Torres, Miguel; Perez-Beaupuits, Juan Pablo

    2016-07-01

    We present the first submillimetre line survey of extragalactic sources carried out by APEX, the results were presented inside of Villicana-Pedraza phd thesis in 2015. The surveys cover the 0.8 mm atmospheric window toward NGC253, NGC4945 and Arp220. We found HCN, C2H, CN, CS, C34S, HCO+, HNC, CO, N2H+, CH3OH are presents in all the sources, while 13CO,C18O and C17O, HNCO, H2CO, H2CS, SO, NO, SO2 were detected toward NGC253 and NGC4945, 13CN, *CO+, OCS, H2S in Arp220, 13CS, NH2CN, SiO in NGC253, and c-C3H2 in NGC4945 were detected. Column densities and rotation temperatures have been determinate using the Local Thermodinamical Equilibrium(LTE) line profile simulation and fitting in the MADCUBA IJ software. The differences found in the 32S/34S and 18O/17O ratios between the GC and the starburst galaxies NGC 4945 and NGC 253 suggest that the gas is less processed in the latter than in the GC. The high 18O/17O ratios in the galaxies NGC 4945 and NGC 253 suggest also material less processed in the nuclei of these galaxies than in the GC. This is consistent with the claim that 17O is a more representative primary product than 18O in stellar nucleosynthesis (Wilson and Rood 1994); Also, we did a Multitransitions study of H3O+ at 307GHz, 364GHz, 388GHz and 396GHz. From our non-LTE analysis of H3O+ in NGC253 with RADEX we found that the collisional excitation cannot explain the observed intensity of the ortho 396 GHz line. Excitation by radiation from the dust in the Far-IR can roughly explain the observations if the H2 densities are relatively low. From the derived H3O+ column densities we conclude that the chemistry of this molecule is dominated by ionization produce by the starburst in NGC253 (UV radiation from the O stars) and Arp 220 (cosmic rays from the supernovae) and likely from the AGN in NGC4549 (X-rays ); We report, for the first time, the tentative detection of the molecular ion HCNH+ (precursor of HCN and HNC) toward a galaxy, NGC4945, the abundance is much

  13. A CENSUS OF BROAD-LINE ACTIVE GALACTIC NUCLEI IN NEARBY GALAXIES: COEVAL STAR FORMATION AND RAPID BLACK HOLE GROWTH

    SciTech Connect

    Trump, Jonathan R.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D.

    2013-02-15

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  14. The mass of the central black hole in the nearby Seyfert galaxy NGC 5273

    SciTech Connect

    Bentz, Misty C.; Horenstein, Daniel; Bazhaw, Craig; Manne-Nicholas, Emily R.; Ou-Yang, Benjamin J.; Anderson, Matthew; Jones, Jeremy; Norris, Ryan P.; Parks, J. Robert; Saylor, Dicy; Teems, Katherine G.; Turner, Clay

    2014-11-20

    We present the results of a reverberation-mapping program targeting NGC 5273, a nearby early-type galaxy with a broad-lined active galactic nucleus (AGN). Over the course of the monitoring program, NGC 5273 showed strong variability that allowed us to measure time delays in the responses of the broad optical recombination lines to changes in the continuum flux. A weighted average of these measurements results in a black hole mass determination of M {sub BH} = (4.7 ± 1.6) × 10{sup 6} M {sub ☉}. An estimate of the size of the black hole sphere of influence in NGC 5273 puts it just at the limit of the resolution achievable with current ground-based large aperture telescopes. NGC 5273 is therefore an important future target for a black hole mass determination from stellar dynamical modeling, especially because it is the only nearby early-type galaxy hosting an AGN with a reverberation-based mass, allowing the best comparison for the masses determined from these two techniques.

  15. Analysis of the spatial distribution of stars, gas and dust in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Muñoz-Mateos, J. C.

    2013-05-01

    I summarize the main result of my thesis, which was awarded the Spanish Astronomical Society Award for the best thesis in Astronomy defended in 2010. This thesis was supervised by Armando Gil de Paz and Jaime Zamorano at Universidad Complutense de Madrid. In this work we quantified how the physical properties of stars, gas and dust vary with radius in nearby galactic disks, and used that information to infer the past assembly and evolution of galaxies. To do so we made use of spatially-resolved multi-wavelength images of nearby galaxies, all the way from the far-UV to the far-IR and radio. By comparing extinction- corrected profiles in the UV, optical and IR with models of disk evolution, we concluded that the current stellar population gradients are consistent with an inside-out growth of disks of ˜ 25% since z ˜ 1. We also found that the dust-to-gas ratio decreases with radius, and is tightly correlated with the local gas metallicity, which is again consistent with an inside-out assembly of disks. We measured the fraction of the dust mass which is in the form of PAHs at different radii. The resulting trend agrees with certain models of dust evolution, in which the abundance of PAHs is primarily determined by a delayed injection of carbon into the ISM by AGB stars.

  16. Star formation in infrared bright and infrared faint starburst interacting galaxies

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.; Bushouse, Howard A.; Towns, John W.

    1990-01-01

    Short wavelength IUE spectra of Arp 248b and UGC 8315N are combined with optical spectra and interpreted using a combination of spectrum synthesis and spectral diagnostics to place constraints on the massive star populations of the central regions of these galaxies and to deduce information about the star formation histories in the last 10(exp 8) years. The authors find that both galaxies have substantial fractions of their optical light coming from massive stars and that Arp 248b may be dominated in the UV by WR stars. The UV spectra are dominated by radiation from evolved massive stars and the authors place and age on the burst in Arp 248b of a few tens of millions of years.

  17. A Hubble Space Telescope Survey of the Mid-Ultraviolet Morphology of Nearby Galaxies

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.; Taylor, Violet A.; Jansen, Rolf A.; Odewahn, Stephen C.; Chiarenza, Claudia A. T.; Conselice, Christopher J.; de Grijs, Richard; de Jong, Roelof S.; MacKenty, John W.; Eskridge, Paul B.; Frogel, Jay A.; Gallagher, John S., III; Hibbard, John E.; Matthews, Lynn D.; O'Connell, Robert W.

    2002-11-01

    We present a systematic imaging survey of 37 nearby galaxies observed with the Hubble Space Telescope (HST) Wide Field and Planetary Camera 2 (WFPC2) in the mid-UV F300W filter, centered at 2930 Å, as well as in the I-band (F814W) filter at 8230 Å. Eleven of these galaxies were also imaged in the F255W filter, centered at 2550 Å. Our sample is carefully selected to include galaxies of sufficiently small radius and high predicted mid-UV surface brightness to be detectable with WFPC2 in one orbit and covers a wide range of Hubble types and inclinations. The mid-UV (2000-3200 Å) spans the gap between ground-based UBVR(IJHK) images, which are available or were acquired for the current study, and far-UV images available from the Astro/UIT missions for 15 galaxies in our sample. The first qualitative results from our study are as follows:1. Early-type galaxies show a significant decrease in surface brightness going from the red to the mid-UV, reflecting the absence of a dominant young stellar population and in some cases the presence of significant (central) dust lanes. Galaxies that are early types in the optical show a variety of morphologies in the mid-UV that can lead to a different morphological classification, although not necessarily as later type. Some early-type galaxies become dominated by a blue nuclear feature or a point source in the mid-UV, e.g., as a result of the presence of a Seyfert nucleus or a LINER. This is in part due to our mid-UV surface brightness selection, but it also suggests that part of the strong apparent evolution of weak AGNs in early-type galaxies may be due to surface brightness dimming of their UV-faint stellar population, which renders the early-type host galaxies invisible at intermediate to higher redshifts.2. About half of the mid-type spiral and star-forming galaxies appear as a later morphological type in the mid-UV, as Astro/UIT also found primarily in the far-UV. Sometimes these differences are dramatic (e.g., NGC 6782

  18. Spatially-resolved SFR in nearby disk galaxies using IFS data

    NASA Astrophysics Data System (ADS)

    Catalán-Torrecilla, C.; Gil de Paz, A.; Castillo-Morales, A.; Méndez-Abreu, J.; Pascual, S.; Ruiz-Lara, T.; de Lorenzo-Cáceres, A.; Sánchez-Menguiano, L.

    2017-03-01

    Exploring the spatial distribution of the star formation rate (SFR) in nearby galaxies is essential to understand their evolution through cosmic time. With this aim in mind, we use a representative sample that contains a variety of morphological types, the CALIFA Integral Field Spectroscopy (IFS) sample. Previous to this work, we have verified that our extinction-corrected Hα measurements successfully reproduce the values derived from other SFR tracers such as Hα obs + IR or UV obs + IR (Catalán-Torrecilla et al. 2015). Now, we go one step further applying 2-dimensional photometric decompositions (Méndez-Abreu et al. (2008), Méndez-Abreu et al. (2014)) over these datacubes. This method allows us to obtain the amount of SFR in the central part (bulge or nuclear source), the bar and the disk, separately. First, we determine the light coming from each component as the ratio between the luminosity in every component (bulge, bar or disk) and the total luminosity of the galaxy. Then, for each galaxy we multiply the IFS datacubes by these previous factors to recover the luminosity in each component. Finally, we derive the spectrum associated to each galaxy component integrating the spatial information in the weighted datacube using an elliptical aperture covering the whole galaxy. 2D photometric decomposition applied over 3D datacubes will give us a more detailed understanding of the role that disks play in more massive galaxies. Knowing if the disks in more massive SF galaxies have on average a lower or higher level of star formation activity and how these results are affected by the presence of nuclear bars are still open questions that we can now solve. We describe the behavior of these components in the SFR vs. stellar mass diagram. In particular, we highlight the role of the disks and their contribution to both the integrated SFR for the whole galaxy and the SFR in the disk at different stellar masses in the SFR vs. stellar mass diagram together with their

  19. SPATIALLY RESOLVED POLYCYCLIC AROMATIC HYDROCARBON EMISSION FEATURES IN NEARBY, LOW METALLICITY, STAR-FORMING GALAXIES

    SciTech Connect

    Haynes, Korey; Cannon, John M.; Skillman, Evan D.; Gehrz, Robert; Jackson, Dale C. E-mail: khaynes5@gmu.ed E-mail: gehrz@astro.umn.ed

    2010-11-20

    Low-resolution, mid-infrared Spitzer/IRS spectral maps are presented for three nearby, low-metallicity dwarf galaxies (NGC 55, NGC 3109, and IC 5152) for the purpose of examining the spatial distribution and variation of polycyclic aromatic hydrocarbon (PAH) emission. The sample straddles a metallicity of 12 + log(O/H) {approx} 8, a transition point below which PAH intensity empirically drops and the character of the interstellar medium changes. We derive quantitative radiances of PAH features and atomic lines on both global and spatially resolved scales. The Spitzer spectra, combined with extensive ancillary data from the UV through the mid-infrared, allow us to examine changes in the physical environments and in PAH feature radiances down to a physical scale of {approx}50 pc. We discuss correlations between various PAH emission feature and atomic line radiances. The (6.2 {mu}m)/(11.3 {mu}m), (7.7 {mu}m)/(11.3 {mu}m), (8.6 {mu}m)/(11.3 {mu}m), (7.7 {mu}m)/(6.2 {mu}m), and (8.6 {mu}m)/(6.2 {mu}m) PAH radiance ratios are found to be independent of position across all three galaxies, although the ratios do vary from galaxy to galaxy. As seen in other galaxies, we find no variation in the grain size distribution as a function of local radiation field strength. Absolute PAH feature intensities as measured by a ratio of PAH/(24 {mu}m) radiances are seen to vary both positionally within a given galaxy and from one galaxy to another when integrated over the full observed extent of each system. We examine direct comparisons of CC mode PAH ratios (7.7 {mu}m)/(6.2 {mu}m) and (8.6 {mu}m)/(6.2 {mu}m) to the mixed (CC/CH) mode PAH ratio (7.7 {mu}m)/(11.3 {mu}m). We find little variation in either mode and no difference in trends between modes. While the local conditions change markedly over the observed regions of these galaxies, the properties of PAH emission show a remarkable degree of uniformity.

  20. A Deeper Look at Faint Hα Emission in Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Janice C.; Veilleux, Sylvain; McDonald, Michael; Hilbert, Bryan

    2016-02-01

    We present deep Hα imaging of three nearby dwarf galaxies, carefully selected to optimize observations with the Maryland-Magellan Tunable Filter (MMTF) on the Magellan 6.5 m telescope. An effective bandpass of ˜13 Å is used, and the images reach 3σ flux limits of ˜8 × 10-18 erg s-1 cm-2, which is about an order of magnitude lower than standard narrowband observations obtained by the most recent generation of local Hα galaxy surveys. The observations were originally motivated by the finding that the Hα/FUV flux ratio of galaxies systematically declines as global galactic properties such as the star formation rate (SFR) and stellar mass decrease. The three dwarf galaxies selected for study have SFRs that, when calculated from their Hα luminosities using standard conversion recipes, are ˜50% of those based on the FUV. Follow-up studies of many of the potential causes for the trends in the Hα/FUV flux ratio have been performed, but the possibility that previous observations have missed a non-negligible fraction of faint ionized emission in dwarf galaxies has not been investigated. The MMTF observations reveal both diffuse and structured Hα emission (filaments, shells, possible single-star H ii regions) spanning extents up to 2.5 times larger relative to previous observations. However, only up to an additional ˜5% of Hα flux is captured, which does not account for the trends in the Hα/FUV ratio. Beyond investigation of the Hα/FUV ratio, the impact of the newly detected extended flux on our understanding of star formation, the properties of H ii regions, and the propagation of ionizing photons warrant further investigation.

  1. Jet-driven outflows of ionized gas in the nearby radio galaxy 3C 293

    NASA Astrophysics Data System (ADS)

    Mahony, E. K.; Oonk, J. B. R.; Morganti, R.; Tadhunter, C.; Bessiere, P.; Short, P.; Emonts, B. H. C.; Oosterloo, T. A.

    2016-01-01

    Fast outflows of gas, driven by the interaction between the radio jets and interstellar medium (ISM) of the host galaxy, are being observed in an increasing number of galaxies. One such example is the nearby radio galaxy 3C 293. In this paper we present integral field unit observations taken with OASIS on the William Herschel Telescope, enabling us to map the spatial extent of the ionized gas outflows across the central regions of the galaxy. The jet-driven outflow in 3C 293 is detected along the inner radio lobes with a mass outflow rate ranging from ˜0.05 to 0.17 M⊙ yr-1 (in ionized gas) and corresponding kinetic power of ˜0.5-3.5 × 1040 erg s-1. Investigating the kinematics of the gas surrounding the radio jets (i.e. not directly associated with the outflow), we find linewidths broader than 300 km s-1 up to 5 kpc in the radial direction from the nucleus (corresponding to 3.5 kpc in the direction perpendicular to the radio axis at maximum extent). Along the axis of the radio jet linewidths >400 km s-1 are detected out to 7 kpc from the nucleus and linewidths of >500 km s-1 at a distance of 12 kpc from the nucleus, indicating that the disturbed kinematics clearly extend well beyond the high surface brightness radio structures of the jets. This is suggestive of the cocoon structure seen in simulations of jet-ISM interaction and implies that the radio jets are capable of disturbing the gas throughout the central regions of the host galaxy in all directions.

  2. The nuclear and integrated far-infrared emission of nearby Seyfert galaxies

    NASA Astrophysics Data System (ADS)

    García-González, J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Pereira-Santaella, M.; Ramos-Almeida, C.; Acosta-Pulido, J. A.; Díaz-Santos, T.; Esquej, P.; González-Martín, O.; Ichikawa, K.; López-Rodríguez, E.; Povic, M.; Roche, P. F.; Sánchez-Portal, M.

    2016-06-01

    We present far-infrared (FIR) 70-500 μm imaging observations obtained with Herschel/Photodetector Array Camera (PACS) and Spectral and Photometric Imaging REceiver (SPIRE) of 33 nearby (median distance of 30 Mpc) Seyfert galaxies from the Revised Shapley-Ames (RSA) catalogue. We obtain the FIR nuclear (r = 1 kpc and r = 2 kpc) and integrated spectral energy distributions (SEDs). We estimate the unresolved nuclear emission at 70 μm and we fit the nuclear and integrated FIR SEDs with a grey body model. We find that the integrated FIR emission of the RSA Seyferts in our sample is dominated by emission from the host galaxy, with dust properties similar to those of normal galaxies (non-AGN). We use four criteria to select galaxies whose nuclear 70 μm emission has a significant AGN contribution: (1) elevated 70/160 μm flux ratios, (2) spatially resolved, high dust temperature gradient, (3) 70 μm excess emission with respect to the fit of the FIR SEDs with a grey body, and (4) excess of nuclear SFR obtained from 70 μm over SFR from mid-infrared indicators. 16 galaxies (48 per cent of the initial sample) satisfy at least one of these conditions, whereas 10 satisfy half or more. After careful examination of these, we select six bona fide candidates (18 per cent of the initial sample) and estimate that ˜40-70 per cent of their nuclear (r = 1-2 kpc) 70 μm emission is contributed by dust heated by the AGN.

  3. A DEEPER LOOK AT FAINT Hα EMISSION IN NEARBY DWARF GALAXIES

    SciTech Connect

    Lee, Janice C.; Hilbert, Bryan; Veilleux, Sylvain; McDonald, Michael

    2016-02-01

    We present deep Hα imaging of three nearby dwarf galaxies, carefully selected to optimize observations with the Maryland-Magellan Tunable Filter (MMTF) on the Magellan 6.5 m telescope. An effective bandpass of ∼13 Å is used, and the images reach 3σ flux limits of ∼8 × 10{sup −18} erg s{sup −1} cm{sup −2}, which is about an order of magnitude lower than standard narrowband observations obtained by the most recent generation of local Hα galaxy surveys. The observations were originally motivated by the finding that the Hα/FUV flux ratio of galaxies systematically declines as global galactic properties such as the star formation rate (SFR) and stellar mass decrease. The three dwarf galaxies selected for study have SFRs that, when calculated from their Hα luminosities using standard conversion recipes, are ∼50% of those based on the FUV. Follow-up studies of many of the potential causes for the trends in the Hα/FUV flux ratio have been performed, but the possibility that previous observations have missed a non-negligible fraction of faint ionized emission in dwarf galaxies has not been investigated. The MMTF observations reveal both diffuse and structured Hα emission (filaments, shells, possible single-star H ii regions) spanning extents up to 2.5 times larger relative to previous observations. However, only up to an additional ∼5% of Hα flux is captured, which does not account for the trends in the Hα/FUV ratio. Beyond investigation of the Hα/FUV ratio, the impact of the newly detected extended flux on our understanding of star formation, the properties of H ii regions, and the propagation of ionizing photons warrant further investigation.

  4. The Keck OSIRIS Nearby AGN Survey: Tracing Inflow within the Central 200 pc of Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Hicks, Erin K. S.; Müller-Sánchez, Francisco; Malkan, Matthew A.; Yu, Po-Chieh

    2016-08-01

    In an effort to identify the fundamental processes driving feeding and feedback in AGN we turn to local Seyfert galaxies and rely on a multi-wavelength approach. With the integral field unit OSIRIS and adaptive optics we characterize the nuclear stars and gas down to scales of 5-30 parsecs in a sample of 40 Seyfert galaxies with the Keck OSIRIS Nearby AGN (KONA) survey. The complex gas kinematics in these near-IR data are interpreted using an integrative approach through comparison with data available at a range of wavelengths. We present first results from the survey with a focus on work aimed at constraining the mechanism(s) driving inflow of material within the central 200 pc. Particularly useful in the identification of inflow mechanisms (e.g. nuclear spiral, external accretion) is spatial correlation of the molecular gas distribution and kinematics with dust features revealed in HST imaging (optical and near-IR). Also informative is comparison with X-ray emission to identify locations likely influenced by interactions with outflows. The stellar kinematics in the sample galaxies (traced by CO bandheads at 2.3 microns) indicate a stellar population within the central few 100 parsecs in circular rotation, and in the majority of the galaxies the molecular gas (traced by H2 emission at 2.1218 microns) is found to have a rotating component co-spatial with the stellar disk. A significant fraction of the galaxies also exhibit kinematic signatures of inflow superimposed on this disk rotation, with inflow driven by secular and non-secular processes identified. We explore statistical trends of the nuclear stellar and molecular gas properties, including primary fueling mechanism, with Seyfert type, AGN luminosity, and host environment with the goal of disentangling which properties are fundamental to the nature of the AGN.

  5. A Search for Stellar Dust Production in Leo P, a Nearby Analog of High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Boyer, Martha; McDonald, Iain; McQuinn, Kristen; Skillman, Evan; Sonneborn, George; Srinivasan, Sundar; van Loon, Jacco Th.; Zijlstra, Albert; Sloan, Greg

    2016-08-01

    The origin of dust in the early Universe is a matter of debate. One of the main potential dust contributors are Asymptotic Giant Branch (AGB) stars, and several studies have been devoted to investigating whether and how AGB dust production changes in metal-poor environments. Of particular interest are the most massive AGB stars (8-10 Msun), which can in principle enter the dust-producing phase <50 Myr after they form. However, these stars cannot produce their own condensable material (unlike carbon AGB stars), so the efficiency of dust production decreases with metallicity. Evidence for dust production in massive AGB stars more metal-poor than the Magellanic Clouds is scarce due both to the rarity of chemically-unevolved, star-forming systems reachable in the infrared and to the short lifetimes of these stars. The recently discovered galaxy Leo P provides an irresistible opportunity to search for these massive AGB stars: Leo P is a gas-rich, star-forming galaxy, it is nearby enough for resolved star photometry with Spitzer, and its interstellar medium is 0.4 dex more metal-poor than any other accessible star-forming galaxy. Models predict ~3 massive AGB stars may be present in Leo P, and optical HST observations reveal 7 candidates. We propose to use Spitzer to determine whether these stars are dusty, providing valuable constraints to the dust contribution from AGB stars up to at least redshift 3.2, or 11.7 Gyr ago, when massive spheroidals and Galactic globular clusters were still forming. This is a gain of 2.8 Gyr compared to other accessible galaxies. We also request 1 orbit of joint HST time to confirm whether the AGB candidates in Leo P are indeed massive AGB stars belonging to the galaxy. These observations will provide information crucial for potential JWST followup spectroscopy.

  6. Starburst and old stellar populations in the z ≃ 3.8 radio galaxies 4C 41.17 and TN J2007-1316

    NASA Astrophysics Data System (ADS)

    Rocca-Volmerange, B.; Drouart, G.; De Breuck, C.; Vernet, J.; Seymour, N.; Wylezalek, D.; Lehnert, M.; Nesvadba, N.; Fioc, M.

    2013-03-01

    Using the new evolutionary code PÉGASE.3, we undertook an evolutionary spectral synthesis of the optical-IR-submm spectral energy distribution of two distant (z = 3.8) radio galaxies, 4C 41.17 and TN J2007-1316. These two radio galaxies were selected from the HeRGÉ (Herschel Radio Galaxies Evolution) Project in particular for their faint active galactic nucleus contribution and because they show evidence of a large stellar contribution to their bolometric luminosity. PÉGASE.3 coherently models the reprocessing of the stellar luminosity to dust emission, allowing us to build UV to IR-submm spectral energy distribution libraries that can then be used to fit spectral energy distributions in the observer's frame. Our principal conclusion is that a single stellar population is insufficient to fit the spectral energy distribution of either radio galaxy. Our best fits are a sum of two evolving stellar populations - a recent starburst plus an old population - plus the thermal emission from an active galactic nucleus (which provides a good fit to the mid-IR emission). The two stellar components are: (i) a massive (≃ 1011 M⊙) starburst ≃30 Myr after formation,which is required simultaneously to fit the far-IR Herschel to submm data and the optical data; and (ii) an older massive (≃ 1011-12 M⊙) early-type galaxy population, ≃1.0 Gyr old, which is required principally to fit the mid-IR Spitzer/IRAC data. A young population alone is insufficient because an evolved giant star population produces a 1-μm rest-frame peak that is observed in the IRAC photometry. This discovery confirms that many of the stellar populations in high-redshift radio galaxies were formed by massive starbursts in the early Universe. Gas-rich mergers and/or jet-cloud interactions are favoured for triggering the intense star formation necessary to explain the properties of the spectral energy distributions. The discovery of similar characteristics in two distant radio galaxies suggeststhat

  7. The ACS Nearby Galaxy Survey Treasury. VIII. The Global Star Formation Histories of 60 Dwarf Galaxies in the Local Volume

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Dalcanton, Julianne J.; Williams, Benjamin F.; Gilbert, Karoline M.; Skillman, Evan D.; Seth, Anil C.; Dolphin, Andrew E.; McQuinn, Kristen B. W.; Gogarten, Stephanie M.; Holtzman, Jon; Rosema, Keith; Cole, Andrew; Karachentsev, Igor D.; Zaritsky, Dennis

    2011-09-01

    We present uniformly measured star formation histories (SFHs) of 60 nearby (D <~ 4 Mpc) dwarf galaxies based on color-magnitude diagrams of resolved stellar populations from images taken with the Hubble Space Telescope and analyzed as part of the ACS Nearby Galaxy Survey Treasury program (ANGST). This volume-limited sample contains 12 dwarf spheroidal (dSph)/dwarf elliptical (dE), 5 dwarf spiral, 28 dwarf irregular (dI), 12 dSph/dI (transition), and 3 tidal dwarf galaxies. The sample spans a range of ~10 mag in MB and covers a wide range of environments, from highly interacting to truly isolated. From the best-fit SFHs, we find three significant results for dwarf galaxies in the ANGST volume: (1) the majority of dwarf galaxies formed the bulk of their mass prior to z ~ 1, regardless of current morphological type; (2) the mean SFHs of dIs, transition dwarf galaxies (dTrans), and dSphs are similar over most of cosmic time, and only begin to diverge a few Gyr ago, with the clearest differences between the three appearing during the most recent 1 Gyr and (3) the SFHs are complex and the mean values are inconsistent with simple SFH models, e.g., single bursts, constant star formation rates (SFRs), or smooth, exponentially declining SFRs. The mean SFHs show clear divergence from the cosmic SFH at z <~ 0.7, which could be evidence that low-mass systems have experienced delayed star formation relative to more massive galaxies. The sample shows a strong density-morphology relationship, such that the dSphs in the sample are less isolated than the dIs. We find that the transition from a gas-rich to gas-poor galaxy cannot be solely due to internal mechanisms such as stellar feedback, and instead is likely the result of external mechanisms, e.g., ram pressure and tidal stripping and tidal forces. In terms of their environments, SFHs, and gas fractions, the majority of the dTrans appear to be low-mass dIs that simply lack Hα emission, similar to Local Group (LG) dTrans DDO 210

  8. A time domain experiment with Swift: monitoring of seven nearby galaxies

    NASA Astrophysics Data System (ADS)

    Andreoni, I.; D'Avanzo, P.; Campana, S.; Branchesi, M.; Bernardini, M. G.; Della Valle, M.; Mannucci, F.; Melandri, A.; Tagliaferri, G.

    2016-03-01

    Context. Focused on the study of transient sources, time domain astronomy today is one of the most active and growing areas of research in astronomy. Most of the present and planned surveys aimed at carrying out time domain studies work in the optical band and founded their searching strategies on fixed cadences. Although nothing similar currently exists in the X-ray and ultraviolet (UV) bands, the Swift satellite is certainly the most appropriate available instrument to carry out such surveys. Aims: We aimed to detect a supernova (SN) shock breakout (SBO) in nearby galaxies. The SBO marks the first escape of radiation from the blast wave that breaks through the photosphere of the star and launches the SN ejecta. The detection of an SBO is a diagnostic for the radius of the progenitor star and the ratio of explosion energy to ejecta mass. It also allows us to determine the onset of the explosion with an accuracy of a few hours to a few seconds. Methods: Using the XRT and UVOT instruments onboard the Swift satellite, we carried out a weekly cadenced, six-month monitoring of seven nearby galaxies: NGC 1084, NGC 2207/IC 2163, NGC 2770, NGC 4303/M 61, NGC 3147, NGC 3690, and NGC 6754. We searched for variable or tr