Science.gov

Sample records for nebula photo-dissociation region

  1. Density structure of the Horsehead nebula photo-dissociation region

    NASA Astrophysics Data System (ADS)

    Habart, E.; Abergel, A.; Walmsley, C. M.; Teyssier, D.; Pety, J.

    2005-07-01

    We present high angular resolution images of the H2 1-0 S(1) line emission obtained with the Son of ISAAC (SOFI) at the New Technology Telescope (NTT) of the Horsehead nebula. These observations are analysed in combination with Hα line emission, aromatic dust, CO and dust continuum emissions. The Horsehead nebula illuminated by the O9.5V star σ Ori (χ ˜ 60) presents a typical photodissociation region (PDR) viewed nearly edge-on and offers an ideal opportunity to study the gas density structure of a PDR. The H2 fluorescent emission observations reveal extremely sharp and bright filaments associated with the illuminated edge of the nebula which spatially coincides with the aromatic dust emission. Analysis of the H2 fluorescent emission, sensitive to both the far-UV radiation field and the gas density, in conjunction with the aromatic dust and Hα line emission, brings new constraints on the illumination conditions and the gas density in the outer PDR region. Furthermore, combination of this data with millimeter observations of CO and dust continuum emission allows us to trace the penetration of the far-UV radiation field into the cloud and probe the gas density structure throughout the PDR. From comparison with PDR model calculations, we find that i) the gas density follows a steep gradient at the cloud edge, with a scale length of 0.02 pc (or 10'') and nH˜ 104 and 105 cm-3 in the H2 emitting and inner cold molecular layers respectively; and ii) this density gradient model is essentially a constant pressure model, with P˜ 4 × 106 K cm-3. The constraints derived here on the gas density profile are important for the study of physical and chemical processes in PDRs and provide new insight into the evolution of interstellar clouds. Also, this work shows the strong influence of the density structure on the PDR spatial stratification and illustrates the use of different tracers to determine this density structure.

  2. Photo-dissociated and Photoionized Regions Around Main Sequence Stars

    NASA Astrophysics Data System (ADS)

    Diaz-Miller, Rosa Izela

    1998-04-01

    Molecular Clouds are the sites were stars are formed. The birth of a star results in a strong UV flux that propagates through the cold molecular material, dissociating and ionizing the gas. A shell of ionized gas (an HII region) forms around the star, both of which are encapsulated by a shell of photo-dissociated gas (the PDR). The extent of these regions depends mainly on the effective temperature of the star, the cloud density and the opacity of the dust grains -- to a lesser extent on the metallicity of the star. In this thesis we calculate the rate of dissociating photons produced by main sequence stars of different spectral types and metallicities. The stellar fluxes are obtained using the LTE atmosphere models of Kurucz (1993, CD-ROOM 13; for stars with 7,500 K <= Teff <= 50,000 K) and the N-LTE atmosphere models of Aufdenberg et al. (1998, ApJ, 498, 837; for stars with 30,000 K <= Teff <= 51,230 K). In both cases we find that OB stars have a comparable rate of ionizing and dissociating photons. For cooler stars the dissociation rates are well above the ionization rates; the former becoming negligible when the Teff <= 13,000 K. Metallicity effects are only important for stars with Teff <= 15,000 K. In this case the dissociating rates increase approximately .5 dex as the metallicity goes from solar to 0.01 solar. Using a radiative transfer code and the Kurucz models we calculate the size of the HII region and PDR for uniform density clouds (n(H) = 10, 103 and 105 cm-3). The size of these regions are calculated for a medium where dust is optically thin to the UV radiation (regions with large grains; Landgraf & Grun 1997, Astro. Ph/11190) and a medium where dust is optically thick to the UV radiation. The results show that in an optically thin medium the PDRs are at least one order of magnitude larger than the HII regions; this difference is reduced to ~0.5 dex in a medium where dust is optically thick to the UV radiation. In both cases the ratio of the size of

  3. Probing the conditions within Photo-dissociation Regions with high resolution near-infrared spectroscopy of UV-excited molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Kaplan, Kyle; Dinerstein, Harriet L.; Jaffe, Daniel Thomas

    2017-01-01

    UV radiation regulates the energetics, ionization, and chemistry in much of the ISM. Regions between hot ionized and cool molecular gas where non-ionizing far-UV radiation dominates the state of the gas are called Photo-Dissociation or Photon-Dominated Regions (PDRs). PDRs are found in regions of high-mass star formation, planetary nebulae, and other environments that contain strong far-UV radiation fields. Hydrogen molecules (H2) are pumped by far-UV photons into excited rotational-vibrational levels of the ground electronic state, which give rise to a rich array of transitions in the near to mid-infrared. These transitions make an excellent probe of the physical conditions within a PDR. I will present near-IR spectra taken with the Immersion GRating Infrared Spectrometer (IGRINS; Park et al. 2014, Proc. SPIE, 9147), a novel, sensitive spectrometer with high spectral resolving power (R~45000) and instantaneous broad wavelength coverage (1.45-2.45 μm). Using IGRINS, I obtained deep spectra and measured up to 100 H2 rotational-vibrational transitions in the well-studied Orion Bar PDR, four other star formation complexes, and over a dozen planetary nebulae. Measurements of many lines from a wide range of vibrational states (v=1 to 13), rotational states (J=1 to 13), and excitation energies provides leverage for constraining the overall level populations and discerning the state of and physical processes within the gas. This combination of high spectral and spatial resolution enables us to distinguish previously unresolved spatio-kinematical components with distinct intrinsic spectra and excitation mechanisms (e.g. shocks vs. radiative excitation) within some individual planetary nebulae. I use the plasma simulation code Cloudy (Ferland et al. 2013, ApJ, 757, 79) as a tool for interpreting the observed H2 line ratios. Some sources are well fit by models with a single temperature and density, consistent with emission from a narrow region of the overall PDR structure

  4. [C II] 158 μm and [N II] 205 μm emission from IC 342. Disentangling the emission from ionized and photo-dissociated regions

    NASA Astrophysics Data System (ADS)

    Röllig, M.; Simon, R.; Güsten, R.; Stutzki, J.; Israel, F. P.; Jacobs, K.

    2016-06-01

    Context. Atomic fine-structure line emission is a major cooling process in the interstellar medium (ISM). In particular the [C II] 158 μm line is one of the dominant cooling lines in photon-dominated regions (PDRs). However, it is not confined to PDRs but can also originate from the ionized gas closely surrounding young massive stars. The proportion of the [C II] emission from H II regions relative to that from PDRs can vary significantly. Aims: We investigate the question of how much of the [C II] emission in the nucleus of the nearby spiral galaxy IC 342 is contributed by PDRs and by the ionized gas. We examine the spatial variations of starburst/PDR activity and study the correlation of the [C II] line with the [N II] 205 μm emission line coming exclusively from the H II regions. Methods: We present small maps of [C II] 158 μm and [N II] 205 μm lines recently observed with the GREAT receiver on board SOFIA. We present different methods to utilize the superior spatial and spectral resolution of our new data to infer information on how the gas kinematics in the nuclear region influence the observed line profiles. In particular we present a super-resolution method to derive how unresolved, kinematically correlated structures in the beam contribute to the observed line shapes. Results: We find that the emission coming from the ionized gas shows a kinematic component in addition to the general Doppler signature of the molecular gas. We interpret this as the signature of two bi-polar lobes of ionized gas expanding out of the galactic plane. We then show how this requires an adaptation of our understanding of the geometrical structure of the nucleus of IC 342. Examining the starburst activity we find ratios I( [C II] ) /I(12CO(1-0)) between 400 and 1800 in energy units. Applying predictions from numerical models of H II and PDR regions to derive the contribution from the ionized phase to the total [C II] emission we find that 35-90% of the observed [C II] intensity

  5. Isotope effects in photo dissociation of ozone with visible light

    NASA Astrophysics Data System (ADS)

    Früchtl, Marion; Janssen, Christof; Röckmann, Thomas

    2014-05-01

    Ozone (O3) plays a key role for many chemical oxidation processes in the Earth's atmosphere. In these chemical reactions, ozone can transfer oxygen to other trace gases. This is particularly interesting, since O3 has a very peculiar isotope composition. Following the mass dependent fractionation equation δ17O = 0.52 * δ18O, most fractionation processes depend directly on mass. However, O3 shows an offset to the mass dependent fractionation line. Processes, which show such anomalies, are termed mass independent fractionations (MIF). A very well studied example for a chemical reaction that leads to mass independent fractionation is the O3 formation reaction. To what degree O3 destruction reactions need to be considered in order to understand the isotope composition of atmospheric O3 is still not fully understood and an open question within scientific community. We set up new experiments to investigate the isotope effect resulting from photo dissociation of O3 in the Chappuis band (R1). Initial O3 is produced by an electric discharge. After photolysis O3 is collected in a cold trap at the triple point temperature of nitrogen (63K). O3 is then converted to O2 in order to measure the oxygen isotopes of O3 using isotope ratio mass spectrometry. To isolate O3 photo dissociation (R1) from O3 decomposition (R2) and secondary O3 formation (R3), we use varying amounts of carbon monoxide (CO) as O atom quencher (R4). In this way we suppress the O + O3 reaction (R3) and determine the isotope fractionation in R1 and R2 separately. We present first results on the isotope effects in O3 photo dissociation with visible light in the presence of different bath gases. Results are interpreted based on chemical kinetics modeling. (R1) O3 + hυ → O (3P) + O2 (R2) O3 + O (3P) → 2 O2 (R3) O + O2 + M → O3 + M (R4) O (3P) + CO + M → CO2 + M

  6. The Extended Region Around the Planetary Nebula NGC 3242

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This ultraviolet image from NASA's Galaxy Evolution Explorer shows NGC 3242, a planetary nebula frequently referred to as 'Jupiter's Ghost.'

    The unfortunate name of 'planetary nebula' for this class of celestial object is a historical legacy credited to William Herschel during the 18th century a time when telescopes where small and objects like these, at least the central region, looked very similar to gas-giant planets such as Saturn and Jupiter. In fact, NGC 3242 has no relation to Jupiter or any other planet.

    Telescopes and their detectors have dramatically improved over the past few centuries. Our understanding of what planetary nebulae truly are has improved accordingly.

    When stars with a mass similar to our sun approach the end of their lives by exhausting supplies of hydrogen and helium fuel in their cores, they swell up into cool red-giant stars. In a last gasp before death, they expel the layers of gas in their outer atmosphere. This exposes the core of the dying star, a dense hot ball of carbon and oxygen called a white dwarf. The white dwarf is so hot that it shines very brightly in the ultraviolet. The ultraviolet light from the white dwarf, in turn, ionizes the gaseous material expelled by the star causing it to glow. A planetary nebula is really the death of a low-mass star.

    Although low-mass stars like our sun live for billions of years, planetary nebulae only last for about ten thousand years. As the central white dwarf quickly cools and the ultraviolet light dwindles, the surrounding gas also cools and fades.

    In this image of NGC 3242 from the Galaxy Evolution Explorer, the extended region around the planetary nebula is shown in dramatic detail. The small circular white and blue area at the center of the image is the well-known portion of the famous planetary nebula. The precise origin and composition of the extended wispy white features is not known for certain. It is most likely material ejected during the star's red

  7. Photo-dissociation quantum yields of mammalian oxyhemoglobin investigated by a nanosecond laser technique

    SciTech Connect

    Yang Ningli; Zhang Shuyi . E-mail: zhangsy@nju.edu.cn; Kuo Paokuang; Qu Min; Fang Jianwen; Li Jiahuang; Hua Zichun

    2007-02-23

    The photo-dissociations of oxyhemoglobin of several mammals, such as human, bovine, pig, horse, and rabbit, have been studied. By means of optical pump-probe technique, the quantum yields for photo-dissociation of these oxyhemoglobin have been determined at pH 7 and 20 {sup o}C. A nanosecond laser at 532 nm is used as the pumping source, and a xenon lamp through a monochrometer provides a probe light at 432 nm. The experimental results show that the quantum yields of these mammalian oxyhemoglobin are different from each other, especially for that of rabbit. By analyzing the amino acid sequences and tetramer structures as well as the flexibility and hydrophobicity of the different hemoglobin, possible explanations for the differences are proposed.

  8. Surface mapping of selected regions in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Perry, P. M.; Turnrose, B. E.; Harvel, C. A.; Thompson, R. W.; Mallama, A. D.

    1981-01-01

    Low dispersion, large aperture, ultraviolet spectra of selected regions in the Orion Nebula were obtained with the International Ultraviolet Explorer (IUE) scientific instrument. Spectra obtained at 35 contiguous locations defining a mosaic within the nebula were used to generate monochromatic images of high spatial resolution at the wavelengths of the ultraviolet emission lines. Image processing techniques were utilized to generate and analyze these ultraviolet surface maps. The imagery at the three wavelengths studied shows definite differences in the spatial distribution of emission from the CII CIII and OII ions. Ways of using the imagery to determine ionization structure and C/O abundance ratios throughout the regions observed are developed, in addition to means of analyzing the extensive continuum measurements in terms of dust scattering characteristics.

  9. Ice Forming Regions during Evolution of the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2005-01-01

    The condensation/sublimation front using a two dimensional model of the evolving solar system is investigated based on combined viscous and radiative heating. The snow line is shown to be a two-branched curve reflecting the competing effects of solar heating in the photosphere and internal heating at the center plane. The evolution of the icy region is described from a limited region early in the disk evolution to final positions near 1 AU. The snow line evolution predicted using two surface density models, a Hayashi minimum mass power law and an analytical solution of the nebula evolution equation. Possible effects of this dynamic motion on disk chemistry and organic molecule formation is also described.

  10. GT2_proyer_3: Unveiling the evolutionary paths of the most massive stars through the study of their ejected nebulae

    NASA Astrophysics Data System (ADS)

    Royer, P.

    2011-05-01

    Several important questions remain open regarding the latest stages of evolution of the most massive stars, in particular regarding the exact evolutionary paths between the various subtypes of O stars, LBVs and Wolf-Rayet stars, and the mass-loss history of these objects throughout their lives. In the framework of the MESS GTKP+GT1, we have obtained or will obtain PACS imaging of 9 massive star nebulae of various types (LBV, LBV candidate, OF/WN, Of?p, WR) and PACS spectroscopy of 4 of them. In this short follow-up proposal we want to obtain PACS line spectroscopy for 3 peculiar massive and evolved objects for which spectroscopy is lacking. In particular, these observations will allow to determine the elemental abundances in the nebulae as well as the mass of the neutral gas using the fine structure lines formed in the ionized gas and in the photo-dissociation region respectively.

  11. Spectroscopy of planetary nebulae in the region of Canis Major

    NASA Astrophysics Data System (ADS)

    Kniazev, A. Yu.

    2012-11-01

    We present the results of a pilot project of spectroscopic observations for planetary nebulae (PNe) and PN candidates in Canis Major, a sky region where the remnant of a disrupted dwarf galaxy cannibalized by the Milky Way may be located. The spectra of seven objects were taken while testing the SALT spectrograph (South African Astronomical Observatory). All elemental abundances have been obtained by the T e method, where the electron temperature is calculated directly using the measured weak auroral [OIII] λ 4363 Å and/or [NII] λ 5755 Å lines. We have measured the intensities of all the detected emission lines and determined the abundances of oxygen and several other elements (N, Ne, S, Cl, C, and He) in all PNe. The radial velocity for one PN has been measured for the first time and the velocities for all of the remaining PNe have been measured with a considerably better accuracy than that of the previously published ones. The elemental abundances for three PNe have been calculated for the first time and the accuracies of determining the abundances for three others have been improved. The measured heavy-element abundance ratios (S/O, Ne/O, Cl/O) are in good agreement with their typical values for HII regions. Among the PNe studied, ESO 428-05 is the first and so far the most likely candidate for belonging to the remnants of a possible dwarf galaxy disrupted by the tidal interaction with the Milky Way.

  12. THE SINTERING REGION OF ICY DUST AGGREGATES IN A PROTOPLANETARY NEBULA

    SciTech Connect

    Sirono, Sin-iti

    2011-07-10

    Icy grain aggregates are formed in the outer region of a protoplanetary nebula. The infall of these aggregates to the central star is due to gas drag, and their temperature increases as the infall proceeds. The icy molecules on the grain move to the neck where the grains get connected through sublimation and condensation of the molecules. This process is called sintering. As the sintering proceeds, the mechanical strength of the neck changes considerably, strongly affecting the collisional evolution of the aggregates. The timescale required for sintering is determined in this study, based on which the region where the sintering proceeds within a prescribed timescale is obtained. It is found that the region covers a substantial fraction of the protoplanetary nebula, and the location of the region depends on the temperature distribution inside the nebula. If the aggregate is stirred up and the temperature of the aggregate increases temporally, the sintering region spreads to the whole nebula.

  13. A survey for PAH emission in H II regions, planetary and proto-planetary nebulae

    NASA Technical Reports Server (NTRS)

    Demuizon, M.; Cox, P.; Lequeux, J.

    1989-01-01

    The results of a systematic investigation of polycyclic aromatic hydrocarbon (PAH) emission in H II regions, planetary nebulae (PN), and proto-planetary nebulae (PNN), are reported. Data is obtained from the low resolution spectra (LRS) of IRAS. The results show that: PAHs are formed in carbon rich objects; and PAH emission is ubiquitous in general interstellar medium and requires the presence of ultraviolet photons, in planetary and proto-planetary nebulae, PAH emission is seen only where an ionizing flux is present and in carbon rich objects.

  14. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  15. A discussion of the H-alpha filamentary nebulae and galactic structure in the Cygnus region

    NASA Technical Reports Server (NTRS)

    Matthews, T. A.; Simonson, S. C., III

    1971-01-01

    From observation of the galactic structure in Cygnus, the system of filamentary nebulae was found to lie at a distance of roughly 1.5 kpc, in the same region as about half the thermal radio sources in Cygnus X, the supernova remnant near gamma Cygni, and the association Cygnus OB2, in the direction of which the X-ray source Cygnus XR-3 is observed. The source of excitation was probably the pulse of radiation from a supernova explosion, as proposed in the case of Gum nebula. However continuing excitation by early stars in the region of Cygnus X cannot be excluded.

  16. Photoionized gaseous nebulae and magnetized stellar winds: The evolution and shaping of H II regions and planetary nebulae

    NASA Astrophysics Data System (ADS)

    Franco, José; García-Segura, Guillermo; Kurtz, Stan E.; López, José A.

    2001-05-01

    The early evolution of hydrogen+ (H II) regions is controlled by the properties of the star-forming cloud cores. The observed density distributions in some young H II regions indicate that the power-law stratifications can be steeper than r-2. Ionization fronts can overrun these gradients and the ionized outflows are strongly accelerated along these steep density distributions. Thus, photoionized regions can either reach pressure equilibrium inside the inner parts of the high-pressure cores [with sizes and densities similar to those observed in ultra compact (UC) H II regions], or create bright H II regions with extended emission. The density inhomogeneities engulfed within the ionization fronts create corrugations in the front, which in turn drive instabilities in the ionization-shock (I-S) front. These instabilities grow on short time scales and lead to the fragmentation of the dense shells generated by the shock fronts. Thus, new clumps are continuously created from the fragmented shell, and the resulting finger-like structures can explain the existence of elephant trunks and cometary-like globules in most H II regions. In the case of planetary nebulae (PNe), wind asymmetries and magnetic fields from rotating stars, along with precession of the rotation axis, can create the wide range of observed PNe morphologies and collimated outflows (jets). Magnetic collimation and jet formation in PNe become very efficient after the flow has passed through the reverse shock of the PN.

  17. Laser pulse design using optimal control theory-based adaptive simulated annealing technique: vibrational transitions and photo-dissociation

    NASA Astrophysics Data System (ADS)

    Nath, Bikram; Mondal, Chandan Kumar

    2014-08-01

    We have designed and optimised a combined laser pulse using optimal control theory-based adaptive simulated annealing technique for selective vibrational excitations and photo-dissociation. Since proper choice of pulses for specific excitation and dissociation phenomena is very difficult, we have designed a linearly combined pulse for such processes and optimised the different parameters involved in those pulses so that we can get an efficient combined pulse. The technique makes us free from choosing any arbitrary type of pulses and makes a ground to check their suitability. We have also emphasised on how we can improve the performance of simulated annealing technique by introducing an adaptive step length of the different variables during the optimisation processes. We have also pointed out on how we can choose the initial temperature for the optimisation process by introducing heating/cooling step to reduce the annealing steps so that the method becomes cost effective.

  18. Photometry of the central region of the Andromeda Nebula

    SciTech Connect

    Sharov, A.S.; Liutyi, V.M.

    1980-05-01

    The photoelectric U, B, V observations of the central region of M81 made in 166 fields at distances of 54-351 arcsec from the center are used to explain the structure of the central condensation of the galaxy. The surface-brightness isophotes can be fit by ellipses varying in axial ratio from 0.9 to 0.6 and in position angle from 70 to 45 deg. The central condensation may include a bar in the form of a triaxial ellipsoid the nucleus occupies an asymmetric position in this condensation, shifted by 22 arcsec northwest relative to the most distant U isophote at a 368 arcsec. The apparent eccentricity with respect to the outlying isophotes is caused by distribution of dust, as shown by the colorimetric B - V, U - B color-index profiles reflecting the dust in the central condensation of M31.

  19. RESOLVING THE ELECTRON TEMPERATURE DISCREPANCIES IN H II REGIONS AND PLANETARY NEBULAE: {kappa}-DISTRIBUTED ELECTRONS

    SciTech Connect

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.

    2012-06-20

    The measurement of electron temperatures and metallicities in H II regions and planetary nebulae (PNe) has-for several decades-presented a problem: results obtained using different techniques disagree. What is worse, they disagree consistently. There have been numerous attempts to explain these discrepancies, but none has provided a satisfactory solution to the problem. In this paper, we explore the possibility that electrons in H II regions and PNe depart from a Maxwell-Boltzmann equilibrium energy distribution. We adopt a '{kappa}-distribution' for the electron energies. Such distributions are widely found in solar system plasmas, where they can be directly measured. This simple assumption is able to explain the temperature and metallicity discrepancies in H II regions and PNe arising from the different measurement techniques. We find that the energy distribution does not need to depart dramatically from an equilibrium distribution. From an examination of data from H II regions and PNe, it appears that {kappa} {approx}> 10 is sufficient to encompass nearly all objects. We argue that the kappa-distribution offers an important new insight into the physics of gaseous nebulae, both in the Milky Way and elsewhere, and one that promises significantly more accurate estimates of temperature and metallicity in these regions.

  20. Structure and physical conditions in the Huygens region of the Orion nebula

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.; Ferland, G. J.; Peimbert, M.

    2017-02-01

    Hubble Space Telescope images, MUSE maps of emission lines, and an atlas of high velocity resolution emission-line spectra have been used to establish for the first time correlations of the electron temperature, electron density, radial velocity, turbulence, and orientation within the main ionization front of the nebula. From the study of the combined properties of multiple features, it is established that variations in the radial velocity are primarily caused by the photoevaporating ionization front being viewed at different angles. There is a progressive increase of the electron temperature and density with decreasing distance from the dominant ionizing star θ1 Ori C. The product of these characteristics (ne × Te) is the most relevant parameter in modelling a blister-type nebula like the Huygens region, where this quantity should vary with the surface brightness in Hα. Several lines of evidence indicate that small-scale structure and turbulence exist down to the level of our resolution of a few arcseconds. Although photoevaporative flow must contribute at some level to the well-known non-thermal broadening of the emission lines, comparison of quantitative predictions with the observed optical line widths indicates that it is not the major additive broadening component. Derivation of Te values for H+ from radio+optical and optical-only ionized hydrogen emission showed that this temperature is close to that derived from [N II] and that the transition from the well-known flat extinction curve which applies in the Huygens region to a more normal steep extinction curve occurs immediately outside of the Bright Bar feature of the nebula.

  1. HST Parallel WFPC2 Imagery of a Region in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Dufour, R. J.; Vanorsow, D.; Walter, D. K.; Hester, J. J.; Currie, D. G.

    1995-12-01

    As part of the HST General Observer Program GO-6042, parallel WFPC2 images of locations in the large Carina H ii region were taken during a series of FOS spectra of several ejecta of Eta Carinae (cf., the poster by Glover et al. at this meeting). The observations were scheduled during two CVZ (continuous viewing zone) visits in 1995 October, enabling deep WFPC2 exposures to be taken in ten filters. The ``serendipitous'' target was an area which included the Cr 232 star cluster and surrounding H ii region, about 8 arcmin to the NW of Eta Carinae itself. Images of the nebula were obtained in the filters F656N (Hα ), F673N ([S ii] 6717+31 Angstroms), F658N ([N ii] 6583 Angstroms), F502N ([O iii] 5007 Angstroms), and F547M (continuum) for purposes of studying the ionization structure. In addition, relatively long ( ~ 1000 sec) exposures were obtained though the wide-band filters F336W, F439W, and F555W for purposes of obtaining UBV magnitudes and colors of stars down to a limiting magnitude of V ~ 25. We present the results of this imagery in the form of (a) color-coded emission line ratio maps of the nebulosity in the various lines noted above, and (b) color-magnitude (CMD) and color-color diagrams of faint stars in the field. At a distance of 2500 pc for the nebula and cluster, the spatial resolution of 0.1 arcsec on the WFPC2 imagery corresponds to 250 AU per pixel, a scale that resolves numerous Bok globules not previously seen from ground-based imagery. These globules are seen in absorption in the [O iii] images and with bright rims in [S ii] and [N ii], indicating their proximity to the cluster OB stars and location in the ionized volume of the nebula. Our CMDs, (very preliminary at the time of writing) reach M_V ~ +11 for stars at the distance of the Cr 232 cluster. A prominent reflection nebula is also seen around one of the stars in the cluster. This study is made possible by grants from AURA/STScI related to GO-6042 and the HST Cycle 5 TAC, which supported

  2. The chemical composition of planetary nebulae and HII regions in NGC 3109

    NASA Astrophysics Data System (ADS)

    Peña, M.; Stasińska, G.; Richer, M. G.

    2007-12-01

    Aims:We present deep spectrophotometry for a sample of 8 planetary nebulae (PNe) and 12 HII regions distributed throughout the dwarf irregular galaxy NGC 3109, in order to analyze the chemical composition of both types of nebulae. Methods: We describe the observations and data reduction, and present line intensities for the nebular emission lines detected. The physical conditions and the abundances of He, O, Ne, N, S and Ar are derived, using the classical T_e-based method. We confirm our previous identification of PNe and HII regions based on photometry, except for one object, which we argue is a compact HII region rather than a planetary nebula. Results: We find that the chemical composition of the interstellar medium in NGC 3109, as sampled by its HII regions, is remarkably uniform. The oxygen abundance is log O/H + 12 = 7.77 ± 0.07 in this galaxy, as compared to 8.05 ± 0.09 for the Small Magellanic Cloud (for which we rederived the metallicity in a homogeneous way). PNe show significantly higher oxygen abundances in NGC 3109: log O/H + 12 = 8.16 ± 0.19. Similarly to what has been suggested for some of the PNe in the Magellanic Clouds and other metal-poor galaxies, we argue that oxygen in the PNe in NGC 3109 is affected by dredge up in their progenitors. This could also be the case for neon, although the uncertainties for this element are bigger. Conclusions: From our analysis, we conclude that oxygen and neon are not always a safe indicator of the chemical composition of the interstellar medium at low metallicities. An alternative to the O and Ne enrichment in PNe is that the low metallicity in HII regions has been caused by dilution of the interstellar medium due to an interaction with a neighboring galaxy about a Gyr ago. The excitation patterns of the PNe in NGC 3109 are very different from the excitation patterns of PNe in other galaxies. This issue needs to be investigated further, as it implies that the evolution of PNe depends upon the properties of

  3. The Wind Interaction Regions of the VELA Pulsar: a Pulsar Jet and Bow Shock Nebula

    NASA Astrophysics Data System (ADS)

    Markwardt, Craig Bishop

    The Vela pulsar is a nearby young pulsar actively radiating radio to γ-rays. We present evidence in this work that the Vela pulsar is also interacting with its surroundings via a relativistic wind, which manifests itself as two different nebular structures. ROSAT PSPC observations of the Vela pulsar show that a 45 arcmin long collimated X-ray feature projects from the pulsar. We favor the interpretation that the feature is a 'cocoon' of heated gas formed when a jet outflow from the Vela pulsar interacts with the interior medium of the supernova remnant. This interpretation is consistent with the observed center-filled morphology and spectrum of the cocoon structure. Combined ROSAT + ASCA observations of the 'head' of the cocoon, the point where the jet is believed to interact with the supernova remnant, demonstrate that the spectrum has a thermal peak near 1 keV, but extends to at least 7 keV. No distinct spectral lines are seen. The spectral parameters of the cocoon could be produced by a cocoon with a pulsar jet whose speed is at least 800 km s-1, depending on the angle of inclination. The mechanical power driving the jet is ≥1036 erg s-1, consistent with the Vela pulsar's rotational energy loss rate. On smaller spatial scales, it has been known that the Vela pulsar is surrounded by a 2 arcmin diameter 'compact' nebula which has power law spectral emission. Our ROSAT HRI observations of the region show that the nebula very likely a bow shock structure formed by a nearly isotropic pulsar wind interacting with the supernova remnant. The axis of the nebula is aligned with the pulsar's known proper motion vector. The high particle energies and magnetic fields near the pulsar make the bow shock an ideal environment for generating X-ray synchrotron emission. We show that a full three dimensional model of the nebula, taking into account what is known about the geometry and pulsar wind physics, is consistent with the observations.

  4. FAST, LOW-IONIZATION EMISSION REGIONS OF THE PLANETARY NEBULA M2-42

    SciTech Connect

    Danehkar, A.; Parker, Q. A.; Steffen, W.

    2016-02-15

    Spatially resolved observations of the planetary nebula M2-42 (PN G008.2−04.8) obtained with the Wide Field Spectrograph on the Australian National University 2.3 m telescope have revealed the remarkable features of bipolar collimated jets emerging from its main structure. Velocity-resolved channel maps derived from the [N ii] λ6584 emission line disentangle different morphological components of the nebula. This information is used to develop a three-dimensional morpho-kinematic model, which consists of an equatorial dense torus and a pair of asymmetric bipolar outflows. The expansion velocity of about 20 km s{sup −1} is measured from the spectrum integrated over the main shell. However, the deprojected velocities of the jets are found to be in the range of 80–160 km s{sup −1} with respect to the nebular center. It is found that the mean density of the collimated outflows, 595 ± 125 cm{sup −3}, is five times lower than that of the main shell, 3150 cm{sup −3}, whereas their singly ionized nitrogen and sulfur abundances are about three times higher than those determined from the dense shell. The results indicate that the features of the collimated jets are typical of fast, low-ionization emission regions.

  5. Following the Water: the Evolution of Ice-forming Regions in the Early Solar Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2006-01-01

    The abundances of water-vapor and water-ice during the first ten million years of the protoplanetary solar nebula are simulated using a new condensation/sublimation model. This study builds on a "snow line" model reported in ApJ 627 L153 (2005); it uses a simple phenomenological model where water vapor molecules evolve from solar atomic abundance and eventually condenses to ice at colder points in the nebula once the water-vapor partial pressure exceeds a value determined by the phase diagram for water. The synthesis of water vapor from elementary species is modeled with a chemical network consisting of about 400 species and 4000 reactions. The evolution of the icy zone (and its relative abundance of solid ice) is traced from a limited region in the early hotter disk to its final state at the time when the gas is expelled and a planetary system begins to form. Possible effects of this dynamic motion on disk chemistry and organic molecule formation are also described.

  6. SPECTROPHOTOMETRY OF THE HUYGENS REGION OF THE ORION NEBULA, THE EXTENDED ORION NEBULA, AND M 43: SCATTERED LIGHT SYSTEMATICALLY DISTORTS CONDITIONS DERIVED FROM EMISSION LINES

    SciTech Connect

    O'Dell, C. R.; Harris, Jessica A. E-mail: jessica.a.harris@vanderbilt.ed

    2010-10-15

    We report on medium resolution spectrophotometry of the Orion Nebula region, including for the first time the Extended Orion Nebula (EON) and the nearby M 43. The 49 long-slit observations were divided into 99 smaller samples, which have allowed determinations of the amount of extinction, extinction-corrected H{beta} surface brightness, electron temperatures (from [S II], [N II], and [O III]), and electron densities (from [S II] and [Cl III]) throughout much of this complex region. We verify an earlier conclusion from a radio/optical study that beyond about 5' from {theta}{sup 1}Ori C local emission begins to be contaminated by scattering of light from the much brighter central Huygens region of M 42, and this scattered light component becomes dominant at large distances. This contamination means that the derived properties for the outer regions are not accurate. From comparison of the light from the dominant star in M 43 with the continuum of that nebula (which is almost entirely scattered starlight), it is determined that scattered light is enhanced in the blue, which can lead to observed Balmer line ratios that are theoretically impossible and erroneous electron temperatures. This blue scattering of emission lines is important even in the Huygens region because it means that at anything except very high spectroscopic resolution the observed lines are a blend of the original and scattered light, with shorter wavelength lines being artificially enhanced. This can lead to overestimates of the electron temperatures derived from the nebular and auroral line ratios of forbidden lines. This phenomenon is probably applicable to many other H II regions. We have been able to use extinction-insensitive line ratios, the extinction-corrected surface brightness in H{beta}, and the equivalent width of the continuum to create for the first time a three-dimensional model of the entire M 42, EON, and M 43 region. This is an irregular concave blister of ionized gas bounded on the

  7. Horsehead nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Rising from a sea of dust and gas like a giant seahorse, the Horsehead nebula is one of the most photographed objects in the sky. NASA's Hubble Space Telescope took a close-up look at this heavenly icon, revealing the cloud's intricate structure. This detailed view of the horse's head is being released to celebrate the orbiting observatory's eleventh anniversary. Produced by the Hubble Heritage Project, this picture is a testament to the Horsehead's popularity. Internet voters selected this object for the orbiting telescope to view.

    The Horsehead, also known as Barnard 33, is a cold, dark cloud of gas and dust, silhouetted against the bright nebula, IC 434. The bright area at the top left edge is a young star still embedded in its nursery of gas and dust. But radiation from this hot star is eroding the stellar nursery. The top of the nebula also is being sculpted by radiation from a massive star located out of Hubble's field of view.

    Only by chance does the nebula roughly resemble the head of a horse. Its unusual shape was first discovered on a photographic plate in the late 1800s. Located in the constellation Orion, the Horsehead is a cousin of the famous pillars of dust and gas known as the Eagle nebula. Both tower-like nebulas are cocoons of young stars.

    The Horsehead nebula lies just south of the bright star Zeta Orionis, which is easily visible to the unaided eye as the left-hand star in the line of three that form Orion's Belt. Amateur astronomers often use the Horsehead as a test of their observing skills; it is known as one of the more difficult objects to see visually in an amateur-sized telescope.

    The magnificent extent of the Horsehead is best appreciated in a new wide-field image of the nebula being released today by the National Optical Astronomy Observatory, taken by Travis Rector with the National Science Foundation's 0.9 meter telescope at Kitt Peak National Observatory near Tucson, AZ.

    This popular celestial target was the clear

  8. THE EMISSION NEBULA Sh 2-174: A RADIO INVESTIGATION OF THE SURROUNDING REGION

    SciTech Connect

    Ransom, R. R.; Kothes, R.; Geisbuesch, J.; Landecker, T. L.; Reich, W.

    2015-02-01

    Sh 2-174 is believed to be either a planetary nebula (PN) or ionized, ambient interstellar medium (ISM). We present in this paper 1420 MHz polarization, 1420 MHz total intensity (Stokes-I), and neutral hydrogen (H I) images of the region around Sh 2-174. The radio images address not only the nature of the object, but also the history of the relationship between Sh 2-174 and its surrounding environment. The H I images show that Sh 2-174 sits presently at the center of a ∼1.°2 × ∼0.°4 cloud (with peak hydrogen density n {sub H} = 4 ± 2 cm{sup –3}). The Stokes-I image shows thermal-emission peaks (with electron densities n{sub e} = 11 ± 3 cm{sup –3}) coincident with the R-band optical nebula, as well as low-surface-brightness emission from an ionized ''halo'' around Sh 2-174 and from an ionized ''plateau'' extending southeast from the cloud. The polarization images reveal Faraday-rotation structures along the projected trajectory of Sh 2-174, including a high-contrast structure with ''arms'' that run precisely along the eastern edge of the H I cloud and a wide central region that merges with the downstream edge of Sh 2-174. The high-contrast structure is consistent with an ionized tail that has both early-epoch (before Sh 2-174 entered the cloud) and present-epoch (after Sh 2-174 entered the cloud) components. Furthermore, our rotation-measure analysis indicates that the ISM magnetic field is deflected at the leading edge of Sh 2-174. The downstream tail and upstream field deflection point to a PN-ISM interaction. Our estimated space velocity for the host white dwarf (GD 561) demonstrates that Sh 2-174 entered the cloud ∼27,000 yr ago, and gives a PN-ISM interaction timescale ≲ 2.0 × 10{sup 5} yr. We estimate an ambient magnetic field in the cloud of 11 ± 3 μG.

  9. CCD Photometry and Classification of Stars in the North America and Pelican Nebulae Region. II. The Region of NGC 6996

    NASA Astrophysics Data System (ADS)

    Laugalys, V.; Straižys, V.; Vrba, F. J.; Boyle, R. P.; Philip, A. G. Davis; Kazlauskas, A.

    Magnitudes and color indices of 620 stars down to V = 17.5 mag in the eight-color Vilnius + I photometric system are obtained in the area of the open cluster NGC 6996 in the North America Nebula. By combining the results of optical photometry and the infrared 2MASS data an increased value of the ratio of total-to-selective extinction is found. For early-type stars it corresponds to RBV=3.5. Spectral types, interstellar color excesses, extinctions and distances of stars are determined from the photometric data. The plot of extinction vs. distance shows that the extinction exhibits a steep rise at 400 pc reaching 3--4 mag. Forty seven main-sequence stars and three red giants are identified as probable cluster members. The cluster distance is found to be 794 pc by ZAMS fitting and 781 pc by averaging individual distances of the 50 probable cluster members. The cluster stars show a range of interstellar extinction, with an average value of AV is 1.92 mag. Fitting the main sequence and red giants of the cluster to the isochrones in the MV vs. (B--V)0 plane gives an age of 3.5× 108 yr. Probably NGC 6996 has no genetic relation to the star-forming region in the North America and Pelican nebulae. About 35 stars in the magnitude range 16--17 in the field of NGC 6996 are suspected to be O--B5 stars belonging to the Perseus spiral arm.

  10. The PAH Emission Characteristics of the Reflection Nebula NGC 2023

    NASA Astrophysics Data System (ADS)

    Peeters, Els; Bauschlicher, Charles W., Jr.; Allamandola, Louis J.; Tielens, Alexander G. G. M.; Ricca, Alessandra; Wolfire, Mark G.

    2017-02-01

    We present 5–20 μm spectral maps of the reflection nebula NGC 2023 obtained with the Infrared Spectrograph SL and SH modes on board the Spitzer Space Telescope, which reveal emission from polycyclic aromatic hydrocarbons (PAHs), C60, and H2 superposed on a dust continuum. We show that several PAH emission bands correlate with each other and exhibit distinct spatial distributions that reveal a spatial sequence with distance from the illuminating star. We explore the distinct morphology of the 6.2, 7.7, and 8.6 μm PAH bands and find that at least two spatially distinct components contribute to the 7–9 μm PAH emission in NGC 2023. We report that the PAH features behave independently of the underlying plateaus. We present spectra of compact, oval PAHs ranging in size from C66 to C210, determined computationally using density functional theory, and we investigate trends in the band positions and relative intensities as a function of PAH size, charge, and geometry. Based on the NASA Ames PAH database, we discuss the 7–9 μm components in terms of band assignments and relative intensities. We assign the plateau emission to very small grains with possible contributions from PAH clusters and identify components in the 7–9 μm emission that likely originate in these structures. Based on the assignments and the observed spatial sequence, we discuss the photochemical evolution of the interstellar PAH family as the PAHs are more and more exposed to the radiation field of the central star in the evaporative flows associated with the Photo-Dissociation Regions in NGC 2023.

  11. The complete Einstein Observatory X-ray survey of the Orion Nebula region.

    NASA Technical Reports Server (NTRS)

    Gagne, Marc; Caillault, Jean-Pierre

    1994-01-01

    We have analyzed archival Einstein Observatory images of a roughly 4.5 square degree region centered on the Orion Nebula. In all, 245 distinct X-ray sources have been detected in six High Resolution Imager (HRI) and 17 Imaging Proportional Counter (IPC) observations. An optical database of over 2700 stars has been assembled to search for candidate counterparts to the X-ray sources. Roughly half the X-ray sources are identified with a single Orion Nebula cluster member. The 10 main-sequence O6-B5 cluster stars detected in Orion have X-ray activity levels comparable to field O and B stars. X-ray emission has also been detected in the direction of four main-sequence late-B and early-A type stars. Since the mechanisms producing X-rays in late-type coronae and early-type winds cannot operate in the late-B and early-A type atmospheres, we argue that the observed X-rays, with L(sub X) approximately = 3 x 10(exp 30) ergs/s, are probably produced in the coronae of unseen late-type binary companions. Over 100 X-ray sources have been associated with late-type pre-main sequence stars. The upper envelope of X-ray activity rises sharply from mid-F to late-G, with L(sub x)/L(sub bol) in the range 10(exp -4) to 2 x 10(exp -3) for stars later than approximately G7. We have looked for variability of the late-type cluster members on timescales of a day to a year and find that 1/4 of the stars show significantly variable X-ray emission. A handful of the late-type stars have published rotational periods and spectroscopic rotational velocities; however, we see no correlation between X-ray activity and rotation. Thus, for this sample of pre-main-sequence stars, the large dispersion in X-ray activity does not appear to be caused by the dispersion in rotation, in contrast with results obtained for low-mass main-sequence stars in the Pleiades and pre-main-sequence stars in Taurus-Auriga.

  12. A Broad 22 Micron Emission Feature in the Carina Nebula H ii Region.

    PubMed

    Chan; Onaka

    2000-04-10

    We report the detection of a broad 22 µm emission feature in the Carina Nebula H ii region by the Infrared Space Observatory (ISO) short-wavelength spectrometer. The feature shape is similar to that of the 22 µm emission feature of newly synthesized dust observed in the Cassiopeia A supernova remnant. This finding suggests that both of the features are arising from the same carrier and that supernovae are probably the dominant production sources of this new interstellar grain. A similar broad emission dust feature is also found in the spectra of two starburst galaxies from the ISO archival data. This new dust grain could be an abundant component of interstellar grains and can be used to trace the supernova rate or star formation rate in external galaxies. The existence of the broad 22 µm emission feature complicates the dust model for starburst galaxies and must be taken into account correctly in the derivation of dust color temperature. Mg protosilicate has been suggested as the carrier of the 22 µm emission dust feature observed in Cassiopeia A. The present results provide useful information in studies on the chemical composition and emission mechanism of the carrier.

  13. Clown Face Nebula (NGC 2392)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A planetary nebula, also known as the Eskimo Nebula, in the constellation Gemini, position RA 07 h 29.2 m, dec. +20° 55'. It is bluish, 13'' in diameter, and of ninth magnitude, with a tenth-magnitude central star. The blue-green nebula's hazy outer regions are thought to resemble an Eskimo's hood or clown's ruff....

  14. Spatial Analysis of Spectra from Galactic Planetary Nebulae and Extragalactic H II Regions: Testing for Abundance Variations

    NASA Astrophysics Data System (ADS)

    Miller, Timothy R.

    2017-01-01

    Presented here is a spatial analysis of spectra for seven planetary nebulae (NGC 2440, NGC 3242, NGC 5315, NGC 5882, NGC 7662, IC 2165, and IC 3568) as well as H II regions from six nearly face-on, spiral galaxies (NGC 2403, NGC 3310, NGC 4321, NGC 5194, NGC 5236, and NGC 5457). The two main goals of the study were (1) to investigate whether or not each planetary nebula (PN) is chemically homogeneous; and (2) to search for evidence of azimuthal abundance gradients in the disks of the galaxies. Each of these test the validity of assumptions commonly made for these two object types, i.e., (1) Ejecta from asymptotic giant branch stars are well mixed and (2) elements returned to the interstellar medium of a spiral galaxy are “instantaneously” distributed around the disk for a fixed distance from the center.The PN homogeneity problem was addressed by spatially dividing each long-slit HST/STIS spectrum into many smaller regions across each object and calculating the abundances of each region. The major result is that the ejecta are indeed homogeneous in each planetary nebula for the elements probed. A secondary goal was to constrain the temperature and luminosity of each PN central star, which was accomplished by modeling each object using the photoionization code CLOUDY.The spectra for the galaxies are from the VIRUS-P spectrograph, an integral field unit consisting of 246 fibers arranged in a square, with the observations centered on or near the nuclear bulge, covering a full 360 degrees around each galaxy and encompassing numerous H II regions located near the bulge. Additional goals for each galaxy included obtaining radial abundance gradients and accurate carbon and neon abundances for high metallicity H II regions.

  15. Polycyclic aromatic hydrocarbons and molecular hydrogen in oxygen-rich planetary nebulae: the case of NGC 6720

    PubMed Central

    Cox, N. L. J.; Pilleri, P.; Berné, O.; Cernicharo, J.; Joblin, C.

    2015-01-01

    Evolved stars are primary sources for the formation of polycyclic aromatic hydrocarbons (PAHs) and dust grains. Their circumstellar chemistry is usually designated as either oxygen-rich or carbon-rich, although dual-dust chemistry objects, whose infrared spectra reveal both silicate- and carbon-dust features, are also known. The exact origin and nature of this dual-dust chemistry is not yet understood. Spitzer-IRS mid-infrared spectroscopic imaging of the nearby, oxygen-rich planetary nebula NGC 6720 reveals the presence of the 11.3 μm aromatic (PAH) emission band. It is attributed to emission from neutral PAHs, since no band is observed in the 7–8 μm range. The spatial distribution of PAHs is found to closely follow that of the warm clumpy molecular hydrogen emission. Emission from both neutral PAHs and warm H2 is likely to arise from photo-dissociation regions associated with dense knots that are located within the main ring. The presence of PAHs together with the previously derived high abundance of free carbon (relative to CO) suggest that the local conditions in an oxygen-rich environment can also become conducive to in-situ formation of large carbonaceous molecules, such as PAHs, via a bottom-up chemical pathway. In this scenario, the same stellar source can enrich the interstellar medium with both oxygen-rich dust and large carbonaceous molecules. PMID:26924856

  16. Polycyclic aromatic hydrocarbons and molecular hydrogen in oxygen-rich planetary nebulae: the case of NGC 6720.

    PubMed

    Cox, N L J; Pilleri, P; Berné, O; Cernicharo, J; Joblin, C

    2016-02-11

    Evolved stars are primary sources for the formation of polycyclic aromatic hydrocarbons (PAHs) and dust grains. Their circumstellar chemistry is usually designated as either oxygen-rich or carbon-rich, although dual-dust chemistry objects, whose infrared spectra reveal both silicate- and carbon-dust features, are also known. The exact origin and nature of this dual-dust chemistry is not yet understood. Spitzer-IRS mid-infrared spectroscopic imaging of the nearby, oxygen-rich planetary nebula NGC 6720 reveals the presence of the 11.3 μm aromatic (PAH) emission band. It is attributed to emission from neutral PAHs, since no band is observed in the 7-8 μm range. The spatial distribution of PAHs is found to closely follow that of the warm clumpy molecular hydrogen emission. Emission from both neutral PAHs and warm H2 is likely to arise from photo-dissociation regions associated with dense knots that are located within the main ring. The presence of PAHs together with the previously derived high abundance of free carbon (relative to CO) suggest that the local conditions in an oxygen-rich environment can also become conducive to in-situ formation of large carbonaceous molecules, such as PAHs, via a bottom-up chemical pathway. In this scenario, the same stellar source can enrich the interstellar medium with both oxygen-rich dust and large carbonaceous molecules.

  17. ON THE NONTHERMAL κ-DISTRIBUTED ELECTRONS IN PLANETARY NEBULAE AND H ii REGIONS: THE κ INDEX AND ITS CORRELATIONS WITH OTHER NEBULAR PROPERTIES

    SciTech Connect

    Zhang, Yong; Zhang, Bing; Liu, Xiao-Wei

    2016-01-20

    Recently, a suspicion arose that the free electrons in planetary nebulae (PNs) and H ii regions might have nonthermal energy distributions. In this scenario, a κ index is introduced to characterize the electron energy distributions, with smaller κ values indicating larger deviations from Maxwell–Boltzmann distributions. Assuming that this is the case, we determine the κ values for a sample of PNs and H ii regions by comparing the intensities of [O iii] collisionally excited lines and the hydrogen Balmer jump. We find the average κ indices of PNs and H ii regions to be 27 and 32, respectively. Correlations between the resultant κ values and various physical properties of the nebulae are examined to explore the potential origin of nonthermal electrons in photoionized gaseous nebulae. However, no positive result is obtained. Thus, the current analysis does not lend support to the idea that κ-distributed electrons are present in PNs and H ii regions.

  18. THE INTEGRATED DIFFUSE X-RAY EMISSION OF THE CARINA NEBULA COMPARED TO OTHER MASSIVE STAR-FORMING REGIONS

    SciTech Connect

    Townsley, Leisa K.; Broos, Patrick S.; Chu, You-Hua; Gruendl, Robert A.; Oey, M. S.; Pittard, Julian M.

    2011-05-01

    The Chandra Carina Complex Project (CCCP) has shown that the Carina Nebula displays bright, spatially-complex soft diffuse X-ray emission. Here, we 'sum up' the CCCP diffuse emission work by comparing the global morphology and spectrum of Carina's diffuse X-ray emission to other famous sites of massive star formation with pronounced diffuse X-ray emission: M17, NGC 3576, NGC 3603, and 30 Doradus. All spectral models require at least two diffuse thermal plasma components to achieve adequate spectral fits, a softer component with kT = 0.2-0.6 keV and a harder component with kT = 0.5-0.9 keV. In several cases these hot plasmas appear to be in a state of non-equilibrium ionization that may indicate recent and current strong shocks. A cavity north of the embedded giant H II region NGC 3576 is the only region studied here that exhibits hard diffuse X-ray emission; this emission appears to be nonthermal and is likely due to a recent cavity supernova, as evidenced by a previously-known pulsar and a newly-discovered pulsar wind nebula also seen in this cavity. All of these targets exhibit X-ray emission lines that are not well modeled by variable-abundance thermal plasmas and that might be attributed to charge exchange at the shock between the hot, tenuous, X-ray-emitting plasma and cold, dense molecular material; this is likely evidence for dust destruction at the many hot/cold interfaces that characterize massive star-forming regions.

  19. Radial metallicity gradients in spiral galaxies from H II regions and planetary nebulae: probing galactic chemical evolution

    NASA Astrophysics Data System (ADS)

    Stanghellini, Letizia

    2015-08-01

    Radial metallicity gradients, typically observed in spiral galaxies, are excellent constraints for chemical evolution models. The contemporary studies of the two stellar populations, whose progenitors have formed at different times, yield to the chemical and time constraining of the models. In this context, planetary nebula and HII region analysis proved to be ideal two-epochs test populations. We present an assortment of galaxies whose oxygen abundances have been determined both with weak- and strong-line methods, and whose radial metallicity gradients and their evolution in time have disclosed very interesting correlations with the galaxy characteristics. New results from our Gemini/GMOS observations, and a review of the best literature data, set the stage for a better understanding of spiral galaxy evolution.

  20. CSO Bolocam 1.1 mm Continuum Mapping of the Braid Nebula Star Formation Region in Cygnus OB7

    NASA Astrophysics Data System (ADS)

    Aspin, Colin; Beck, Tracy L.; Davis, Chris J.; Froebrich, Dirk; Khanzadyan, Tigran; Magakian, Tigran Yu.; Moriarty-Schieven, Gerald H.; Movsessian, Tigran A.; Mitchison, Sharon; Nikogossian, Elena G.; Pyo, Tae-Soo; Smith, Michael D.

    2011-04-01

    We present a 1.1 mm map of the Braid Nebula star formation region in Cygnus OB7 taken using Bolocam on the Caltech Submillimeter Observatory. Within the 1 deg2 covered by the map, we have detected 55 cold dust clumps all of which are new detections. A number of these clumps are coincident with IRAS point sources although the majority are not. Some of the previously studied optical/near-IR sources are detected at 1.1 mm. We estimate total dust/gas masses for the 55 clumps together with peak visual extinctions. We conclude that over the whole region, approximately 20% of the clumps are associated with IRAS sources suggesting that these are protostellar objects. The remaining 80% are classed as starless clumps. In addition, both FU Orionis (FUor) like objects in the field, the Braid Star and HH 381 IRS, are associated with strong millimeter emission. This implies that FUor eruptions can occur at very early stages of pre-main-sequence life. Finally, we determine that the cumulative clump mass function for the region is very similar to that found in both the Perseus and ρ Ophiuchus star-forming regions.

  1. A Wide-Field Narrowband Optical Survey of the Braid Nebula Star Formation Region in Cygnus OB7

    NASA Astrophysics Data System (ADS)

    Magakian, Tigran Yu.; Nikogossian, Elena H.; Aspin, Colin; Pyo, Tae-Soo; Khanzadyan, Tigran; Movsessian, Tigran; Smith, Michael D.; Mitchison, Sharon; Davis, Chris J.; Beck, Tracy L.; Moriarty-Schieven, Gerald H.

    2010-03-01

    We study the population of Herbig-Haro (HH) flows and jets in an area of Cygnus OB7 designated the Braid Nebula star formation region. This complex forms part of the L 1003 dark cloud, and hosts two FU Orionis (FUor)-like objects as well as several other active young stars. To trace outflow activity and to relate both known and newly discovered flows to young star hosts we intercompare new, deep, narrowband Hα and [S II] optical images taken on the Subaru 8 m Telescope on Mauna Kea, Hawaii. Our images show that there is considerable outflow and jet activity in this region suggesting the presence of an extensive young star population. We confirm that both of the FUor-like objects drive extensive HH flows and document further members of the flows in both objects. The L 1003 star formation complex is a highly kinematically active region with young stars in several different stages of evolution. We trace collimated outflows from numerous young stars although the origin of some HH objects remains elusive. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  2. A WIDE-FIELD NARROWBAND OPTICAL SURVEY OF THE BRAID NEBULA STAR FORMATION REGION IN CYGNUS OB7

    SciTech Connect

    Magakian, Tigran Yu.; Nikogossian, Elena H.; Movsessian, Tigran; Aspin, Colin; Pyo, Tae-Soo; Khanzadyan, Tigran; Smith, Michael D.; Mitchison, Sharon; Davis, Chris J.; Beck, Tracy L.; Moriarty-Schieven, Gerald H. E-mail: elena@bao.sci.am E-mail: pyo@subaru.naoj.org E-mail: smm23@kent.ac.uk E-mail: c.davis@jach.hawaii.edu E-mail: gerald.schieven@nrc-cnrc.gc.ca

    2010-03-15

    We study the population of Herbig-Haro (HH) flows and jets in an area of Cygnus OB7 designated the Braid Nebula star formation region. This complex forms part of the L 1003 dark cloud, and hosts two FU Orionis (FUor)-like objects as well as several other active young stars. To trace outflow activity and to relate both known and newly discovered flows to young star hosts we intercompare new, deep, narrowband H{alpha} and [S II] optical images taken on the Subaru 8 m Telescope on Mauna Kea, Hawaii. Our images show that there is considerable outflow and jet activity in this region suggesting the presence of an extensive young star population. We confirm that both of the FUor-like objects drive extensive HH flows and document further members of the flows in both objects. The L 1003 star formation complex is a highly kinematically active region with young stars in several different stages of evolution. We trace collimated outflows from numerous young stars although the origin of some HH objects remains elusive.

  3. A Tactile Carina Nebula

    NASA Astrophysics Data System (ADS)

    Grice, Noreen A.; Mutchler, M.

    2010-01-01

    Astronomy was once considered a science restricted to fully sighted participants. But in the past two decades, accessible books with large print/Braille and touchable pictures have brought astronomy and space science to the hands and mind's eye of students, regardless of their visual ability. A new universally-designed tactile image featuring the Hubble mosaic of the Carina Nebula is being presented at this conference. The original dataset was obtained with Hubble's Advanced Camera for Surveys (ACS) hydrogen-alpha filter in 2005. It became an instant icon after being infused with additional color information from ground-based CTIO data, and released as Hubble's 17th anniversary image. Our tactile Carina Nebula promotes multi-mode learning about the entire life-cycle of stars, which is dramatically illustrated in this Hubble mosaic. When combined with descriptive text in print and Braille, the visual and tactile components seamlessly reach both sighted and blind populations. Specific touchable features of the tactile image identify the shapes and orientations of objects in the Carina Nebula that include star-forming regions, jets, pillars, dark and light globules, star clusters, shocks/bubbles, the Keyhole Nebula, and stellar death (Eta Carinae). Visit our poster paper to touch the Carina Nebula!

  4. Butterfly Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Hubble Space Telescope's Wide Field and Planetary Camera 2 (WFPC2) is back at work, capturing this image of the 'butterfly wing'- shaped nebula, NGC 2346. The nebula is about 2,000 light-years away from Earth in the direction of the constellation Monoceros. It represents the spectacular 'last gasp' of a binary star system at the nebula's center. The image was taken on March 6, 1997 as part of the recommissioning of the Hubble Space Telescope's previously installed scientific instruments following the successful servicing of the HST by NASA shuttle astronauts in February. WFPC2 was installed in HST during the servicing mission in 1993. At the center of the nebula lies a pair of stars that are so close together that they orbit around each other every 16 days. This is so close that, even with Hubble, the pair of stars cannot be resolved into its two components. One component of this binary is the hot core of a star that has ejected most of its outer layers, producing the surrounding nebula. Astronomers believe that this star, when it evolved and expanded to become a red giant, actually swallowed its companion star in an act of stellar cannibalism. The resulting interaction led to a spiraling together of the two stars, culminating in ejection of the outer layers of the red giant. Most of the outer layers were ejected into a dense disk, which can still be seen in the Hubble image, surrounding the central star. Later the hot star developed a fast stellar wind. This wind, blowing out into the surrounding disk, has inflated the large, wispy hourglass-shaped wings perpendicular to the disk. These wings produce the butterfly appearance when seen in projection. The total diameter of the nebula is about one-third of a light-year, or 2 trillion miles.

  5. Deprojection of planetary nebula images

    NASA Astrophysics Data System (ADS)

    Volk, Kevin; Leahy, Denis A.

    1993-11-01

    Several optical or radio images of planetary nebulae have been deprojected using the algorithm described in Leahy & Volk (1993). For each image 16 radial cuts from the center of the nebula were independently deprojected assuming either spherical symmetry or a weighting of the emissivity distribution towards the plane of the sky. The deprojection was carried out using the optical line images of Balick (1987) for the Ring Nebula (NGC 6720, PN G063.1+13.9) and NGC 40 (PN G120.0+09.8) and for the 15 GHz radio image of M3-35 (PN G071.6-02.3) from Aaquist & Kwok (1991). These three nebulae were chosen due to their generally ellipsoidal shapes as seen projected on the sky, but in all three cases the deprojection indicates that the nebuale are neither oblate or prolate ellipsoidal shells. Instead, these nebulae have two main regions of emission roughly oppositely positioned around the central star each of which covers a solid angle of approximately pi steradians, and most of the emission is in more or less cylindrical bands with very little emissivity at the 'poles' of the nebulae. The nebulae are therefore more barrel-shaped than ellipsoid-shaped. While the possibility that planetary nebulae are cylindrical in shape has been studied in the past, these results indicate that the body of the nebula is far more patchy than had been postulated which may resolve some of the difficulties that the hypothesis of cylindrical symmetry has had. Such shapes are more complicated than the simplest form of the interacting winds model of planetary nebula formation predicts, but can be explained if the progenitor red giant wind was rather asymmetrical.

  6. X-RAY INVESTIGATION OF THE DIFFUSE EMISSION AROUND PLAUSIBLE {gamma}-RAY EMITTING PULSAR WIND NEBULAE IN KOOKABURRA REGION

    SciTech Connect

    Kishishita, Tetsuichi; Bamba, Aya; Uchiyama, Yasunobu

    2012-05-10

    We report on the results from Suzaku X-ray observations of the radio complex region called Kookaburra, which includes two adjacent TeV {gamma}-ray sources HESS J1418-609 and HESS J1420-607. The Suzaku observation revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible pulsar wind nebula (PWN) Rabbit with elongated sizes of {sigma}{sub X} = 1.'66 and {sigma}{sub X} = 1.'49, respectively. The peaks of the diffuse X-ray emission are located within the {gamma}-ray excess maps obtained by H.E.S.S. and the offsets from the {gamma}-ray peaks are 2.'8 for PSR J1420-6048 and 4.'5 for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with {Gamma} = 1.7-2.3. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one-zone electron emission model as the first-order approximation, the ambient magnetic field strengths of HESS J1420-607 and HESS J1418-609 can be estimated as 3 {mu}G and 2.5 {mu}G, respectively. The X-ray spectral and spatial properties strongly support that both TeV sources are PWNe, in which electrons and positrons accelerated at termination shocks of the pulsar winds are losing their energies via the synchrotron radiation and inverse Compton scattering as they are transported outward.

  7. A search for planetary Nebulae with the Sloan digital sky survey: the outer regions of M31

    SciTech Connect

    Kniazev, Alexei Y.; Grebel, Eva K.; Martínez-Delgado, David; Zucker, Daniel B.; Rix, Hans-Walter; Snedden, Stephanie A.

    2014-01-01

    We have developed a method to identify planetary nebula (PN) candidates in imaging data of the Sloan Digital Sky Survey (SDSS). This method exploits the SDSS's five-band sampling of emission lines in PN spectra, which results in a color signature distinct from that of other sources. Selection criteria based on this signature can be applied to nearby galaxies in which PNe appear as point sources. We applied these criteria to the whole area of M31 as scanned by the SDSS, selecting 167 PN candidates that are located in the outer regions of M31. The spectra of 80 selected candidates were then observed with the 2.2 m telescope at Calar Alto Observatory. These observations and cross-checks with literature data show that our method has a selection rate efficiency of about 90%, but the efficiency is different for the different groups of PN candidates. In the outer regions of M31, PNe trace different well-known morphological features like the Northern Spur, the NGC 205 Loop, the G1 Clump, etc. In general, the distribution of PNe in the outer region 8 < R < 20 kpc along the minor axis shows the {sup e}xtended disk{sup —}a rotationally supported low surface brightness structure with an exponential scale length of 3.21 ± 0.14 kpc and a total mass of ∼10{sup 10} M {sub ☉}, which is equivalent to the mass of M33. We report the discovery of three PN candidates with projected locations in the center of Andromeda NE, a very low surface brightness giant stellar structure in the outer halo of M31. Two of the PNe were spectroscopically confirmed as genuine PNe. These two PNe are located at projected distances along the major axis of ∼48 Kpc and ∼41 Kpc from the center of M31 and are the most distant PNe in M31 found up to now. With the new PN data at hand we see the obvious kinematic connection between the continuation of the Giant Stream and the Northern Spur. We suggest that 20%-30% of the stars in the Northern Spur area may belong to the Giant Stream. In our data we also

  8. Orion Nebula and Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Dufour, Reginald J.

    1998-01-01

    This report summarizes the research performed at Rice University related to NASA-Ames University consortium grant NCC2-5199 during the two year period 1996 September 1 through 1998 August 31. The research program, titled Orion Nebula and Planetary Nebulae, involved the analysis of Hubble Space Telescope (HST) imagery and spectroscopy of the Orion Nebula and of the planetary nebulae NGC 6818 and NGC 6210. In addition, we analyzed infrared spectra of the Orion Nebula taken with the Infrared Space Observatory (ISO) The primary collaborators at NASA-Ames were Drs. R. H. Rubin, A. G. C. M. Tielens, S. W. J. Colgan, and S. D. Lord (Tielens & Lord has since changed institutions). Other collaborators include Drs. P. G. Martin (CITA, Toronto), G. J. Ferland (U. KY), J. A. Baldwin (CTIO, Chile), J. J. Hester (ASU), D. K. Walter (SCSU), and P. Harrington (U. MD). In addition to the Principal Investigator, Professor Reginald J. Dufour of the Department of Space Physics & Astronomy, the research also involved two students, Mr. Matthew Browning and Mr. Brent Buckalew. Mr. Browning will be graduating from Rice in 1999 May with a B.A. degree in Physics and Mr. Buckalew continues as a graduate student in our department, having recently received a NASA GSRP research fellowship (sponsored by Ames). The collaboration was very productive, with two refereed papers already appearing in the literature, several others in preparation, numerous meeting presentations and two press releases. Some of our research accomplishments are highlighted below. Attached to the report are copies of the two major publications. Note that this research continues to date and related extensions of it recently has been awarded time with the HST for 1999-2000.

  9. Stingray Nebula

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This Wide Field and Planetary Camera 2 image captures the infancy of the Stingray nebula (Hen-1357), the youngest known planetary nebula. In this image, the bright central star is in the middle of the green ring of gas. Its companion star is diagonally above it at 10 o'clock. A spur of gas (green) is forming a faint bridge to the companion star due to gravitational attraction. The image also shows a ring of gas (green) surrounding the central star, with bubbles of gas to the lower left and upper right of the ring. The wind of material propelled by radiation from the hot central star has created enough pressure to blow open holes in the ends of the bubbles, allowing gas to escape. The red curved lines represent bright gas that is heated by a 'shock' caused when the central star's wind hits the walls of the bubbles. The nebula is as large as 130 solar systems, but, at its distance of 18,000 light-years, it appears only as big as a dime viewed a mile away. The Stingray is located in the direction of the southern constellation Ara (the Altar). The colors shown are actual colors emitted by nitrogen (red), oxygen (green), and hydrogen (blue).

  10. Ant nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A new Hubble Space Telescope image of a celestial object called the Ant Nebula may shed new light on the future demise of our Sun. The image is available at http://www.jpl.nasa.gov/pictures/wfpc .

    The nebula, imaged on July 20, 1997, and June 30, 1998, by Hubble's Wide Field and Planetary Camera 2, was observed by Drs. Raghvendra Sahai and John Trauger of NASA's Jet Propulsion Laboratory, Pasadena, Calif.; Bruce Balick of the University of Washington in Seattle; and Vincent Icke of Leiden University in the Netherlands. JPL designed and built the camera.

    The Ant Nebula, whose technical name is Mz3, resembles the head and thorax of an ant when observed with ground-based telescopes. The new Hubble image, with 10 times the resolution revealing 100 times more detail, shows the 'ant's' body as a pair of fiery lobes protruding from a dying, Sun- like star. The Ant Nebula is located between 3,000 and 6,000 light years from Earth in the southern constellation Norma.

    The image challenges old ideas about what happens to dying stars. This observation, along with other pictures of various remnants of dying stars called planetary nebulae, shows that our Sun's fate will probably be much more interesting, complex and dramatic than astronomers previously believed.

    Although the ejection of gas from the dying star in the Ant Nebula is violent, it does not show the chaos one might expect from an ordinary explosion, but instead shows symmetrical patterns. One possibility is that the central star has a closely orbiting companion whose gravitational tidal forces shape the outflowing gas. A second possibility is that as the dying star spins, its strong magnetic fields are wound up into complex shapes like spaghetti in an eggbeater. Electrically charged winds, much like those in our Sun's solar wind but millions of times denser and moving at speeds up to 1,000 kilometers per second (more than 600 miles per second) from the star, follow the twisted field lines on their way

  11. Abundances of Planetary Nebula NGC 5315

    NASA Technical Reports Server (NTRS)

    Pottasch, S. R.; Beintema, D. A.; Koorneef, J.; Salas, J. Bernard; Feibelman, W. A.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    The ISO and IUE spectra of the elliptical nebula NGC 5315 is presented. These spectra axe combined with the spectra in the visual wavelength region to obtain a complete, extinction corrected, spectrum. The chemical composition of the nebulae is then calculated and compared to previous determinations. The HST Nicmos observations of the nebula in 3 emission lines are also presented. These observations are used to determine the helium abundance as a function of position in the nebula. A discussion is given of possible evolutionary effects.

  12. Neutral matter in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Dinerstein, Harriet L.

    1991-01-01

    A review of current studies of neutral envelopes is presented with particular attention given to the use of the envelopes as test cases for understanding the ionization and thermal structure of photodissociation regions. The study of near-IR H2 emission is discussed with detailed spectra given for a few planetary nebulae, and airborne observations of far-IR atomic lines are discussed. These two methods can discern photodissociation regions with warm gas and UV flux is fairly prominent. The use of resonance-absorption-line spectroscopy is also reviewed with respect to the analysis of the Na D lines, and thereby allows the measurement of integrated columns of material through the shell. The methods provide evidence for the notion that planetary nebulae consist of more than just ionized material; large amounts of neutral and molecular material are being confirmed, which has important implications for the mass-loss episode of the nebulae.

  13. Which Stars Are Ionizing the Orion Nebula?

    NASA Astrophysics Data System (ADS)

    O’Dell, C. R.; Kollatschny, W.; Ferland, G. J.

    2017-03-01

    The common assumption that {θ }1 {Ori} {{C}} is the dominant ionizing source for the Orion Nebula is critically examined. This assumption underlies much of the existing analysis of the nebula. In this paper we establish through comparison of the relative strengths of emission lines with expectations from Cloudy models and through the direction of the bright edges of proplyds that {θ }2 {Ori} {{A}}, which lies beyond the Bright Bar, also plays an important role. {θ }1 {Ori} {{C}} does dominate ionization in the inner part of the Orion Nebula, but outside of the Bright Bar as far as the southeast boundary of the Extended Orion Nebula, {θ }2 {Ori} {{A}} is the dominant source. In addition to identifying the ionizing star in sample regions, we were able to locate those portions of the nebula in 3D. This analysis illustrates the power of MUSE spectral imaging observations to identify sources of ionization in extended regions.

  14. Ghost Head Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Looking like a colorful holiday card, a new image from NASA's Hubble Space Telescope reveals a vibrant green and red nebula far from Earth.

    The image of NGC 2080, taken by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is available online at http://www.jpl.nasa.gov/images/wfpc . Images like this help astronomers investigate star formation in nebulas.

    NGC 2080, nicknamed 'The Ghost Head Nebula,' is one of a chain of star-forming regions lying south of the 30 Doradus nebula in the Large Magellanic Cloud. 30 Doradus is the largest star-forming complex in the local group of galaxies. This 'enhanced color' picture is composed of three narrow-band-filter images obtained by Hubble on March 28, 2000.

    The red and blue light come from regions of hydrogen gas heated by nearby stars. The green light on the left comes from glowing oxygen. The energy to illuminate the green light is supplied by a powerful stellar wind, a stream of high-speed particles coming from a massive star just outside the image. The central white region is a combination of all three emissions and indicates a core of hot, massive stars in this star-formation region. Intense emission from these stars has carved a bowl-shaped cavity in surrounding gas.

    In the white region, the two bright areas (the 'eyes of the ghost') - named A1 (left) and A2 (right) -- are very hot, glowing 'blobs' of hydrogen and oxygen. The bubble in A1 is produced by the hot, intense radiation and powerful stellar wind from one massive star. A2 contains more dust and several hidden, massive stars. The massive stars in A1 and A2 must have formed within the last 10,000 years, since their natal gas shrouds are not yet disrupted by the powerful radiation of the newborn stars.

    The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center

  15. The Reflection Nebula in Orion

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Just weeks after NASA astronauts repaired the Hubble Space Telescope in December 1999, the Hubble Heritage Project snapped this picture of NGC 1999, a nebula in the constellation Orion. The Heritage astronomers, in collaboration with scientists in Texas and Ireland, used Hubble's Wide Field and Planetary Camera 2 (WFPC2) to obtain the color image. NGC 1999 is an example of a reflection nebula. Like fog around a street lamp, a reflection nebula shines only because the light from an imbedded source illuminates its dust; the nebula does not emit any visible light of its own. NGC 1999 lies close to the famous Orion Nebula, about 1,500 light-years from Earth, in a region of our Milky Way galaxy where new stars are being formed actively. NGC 1999 was discovered some two centuries ago by Sir William Herschel and his sister Caroline, and was cataloged later in the 19th century as object 1999 in the New General Catalogue. This data was collected in January 2000 by the Hubble Heritage Team with the collaboration of star-formation experts C. Robert O'Dell (Rice University), Thomas P. Ray (Dublin Institute for Advanced Study), and David Corcoran (University of Limerick).

  16. Milliarcsecond-mapping of the inner regions of the protoplanetary nebula OH231.8+4.2

    NASA Astrophysics Data System (ADS)

    Sanchez Contreras, C.; Desmurs, J. F.; Bujarrabal, V.; Colomer, F.; Alcolea, J.

    2001-05-01

    Contrarily to the circumstellar envelopes around Asymptotic Giant Branch (AGB) stars, protoplanetary and planetary nebulae (PPNe & PNe; the subsequent evolutionary stages to the AGB) show conspicuous asymmetries and collimated jets whose origins are not yet well understood. To explain the evolution of post-AGB objects from spherical AGB envelopes, several models have postulated the presence of dense rings or disks very close to the central stars: such disks would be the main agents of the collimation and acceleration of the stellar wind. However, these inner equatorial disks have not been observed up to now. We present high-resolution ( ~ 0.3 mas) maps of the SiO maser emission at 43 GHz obtained with the Very Long Baseline Array (VLBA) of the PPN OH 231.8+4.2. These observations have provided by the first time the structure and kinematics of the close stellar surroundings in a PPN. Our observations of OH231.8 reveal the SiO maser emission arising from several 1013 cm-size spots forming a structure elongated in the direction perpendicular to the symmetry axis of the nebula. Such a distribution is consistent with a clumpy, equatorial torus of gas with a radius of ~ 5 AU around the central star. A complex velocity gradient is found along the torus. Such gradient is not well reproduced with pure rotation and suggest infall of material towards the star. The rotation and infalling velocities deduced are ~ 6 and ~ 10 km s-1, respectively. In order to correctly interpret the complex SiO emission in OH231.8 we intend to analyze the polarization of the maser spots, particularly relevant to place the central star and to investigate eventual magentic fields in the stellar surroundings. This work is partially funded through grant PB96-0104 to the spanish NAO and a Caltech postdoctoral fellowship to C.S.C.

  17. The Elephant Trunk Nebula and the Trumpler 37 cluster: contribution of triggered star formation to the total population of an H II region

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin V.; Feigelson, Eric D.; Sicilia-Aguilar, Aurora; Broos, Patrick S.; Kuhn, Michael A.; Garmire, Gordon P.

    2012-11-01

    Rich young stellar clusters produce H II regions whose expansion into the nearby molecular cloud is thought to trigger the formation of new stars. However, the importance of this mode of star formation is uncertain. This investigation seeks to quantify triggered star formation (TSF) in IC 1396A (aka the Elephant Trunk Nebula), a bright-rimmed cloud (BRC) on the periphery of the nearby giant H II region IC 1396 produced by the Trumpler 37 cluster. X-ray selection of young stars from Chandra X-ray Observatory data is combined with existing optical and infrared surveys to give a more complete census of the TSF population. Over 250 young stars in and around IC 1396A are identified; this doubles the previously known population. A spatio-temporal gradient of stars from the IC 1396A cloud towards the primary ionizing star HD 206267 is found. We argue that the TSF mechanism in IC 1396A is a radiation-driven implosion process persisting over several million years. Analysis of the X-ray luminosity and initial mass functions indicates that >140 stars down to 0.1 M⊙ were formed by TSF. Considering other BRCs in the IC 1396 H II region, we estimate the TSF contribution for the entire H II region exceeds 14-25 per cent today, and may be higher over the lifetime of the H II region. Such triggering on the periphery of H II regions may be a significant mode of star formation in the Galaxy.

  18. 3-D Flyover Visualization of Veil Nebula

    NASA Video Gallery

    This 3-D visualization flies across a small portion of the Veil Nebula as photographed by the Hubble Space Telescope. This region is a small part of a huge expanding remnant from a star that explod...

  19. The size and shape of Gum's nebula

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1971-01-01

    The ionizing light of the supernova which produced the Gum nebula is now fossilized in the still live, though failing, H II region. The main body of the nebula suggests a hollow center or shell form, with a characteristic radius of about half the distance to the outlying fragments. The edges of the main body patches are typically sharp and often bright. The structure of the Gum nebula appears to be dependent on the event of ionization and possibly on the details of heating. It is not now an unstructured ambient medium, as it may have been before the recent ionization. Several hypotheses are presented for a structured ambient medium.

  20. Interstellar gas in the Gum Nebula

    NASA Technical Reports Server (NTRS)

    Wallerstein, G.; Jenkins, E. B.; Silk, J.

    1980-01-01

    A survey of the interstellar gas near the Gum Nebula by optical observation of 67 stars at Ca II, 42 stars at Na I, and 14 stars in the UV with the Copernicus satellite provided radial velocities and column densities for all resolved absorption components. Velocity dispersions for gas in the Gum Nebula are not significantly larger than in the general interstellar medium; the ionization structure is predominantly that of an H II region with moderately high ionization. Denser, more highly ionized clouds are concentrated toward the Gum Nebula; these clouds do not show the anomalously high ionization observed in the Vela remnant clouds.

  1. Apparatus for extraction and separation of a preferentially photo-dissociated molecular isotope into positive and negative ions by means of an electric field

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E. (Inventor)

    1978-01-01

    Molecules of one and the same isotope were preferentially photodissociated by a laser and an ultraviolet source, or by multiphoton absorption of laser radiation. The resultant ions were confined with a magnetic field, moved in opposite directions by an electric field, extracted from the photodissociation region by means of screening and accelerating grids, and collected in ducts.

  2. Where Do Messy Planetary Nebulae Come From?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    triple stellar progenitor. The primary signs the authors look for are:SymmetriesIf a planetary nebula has a strong axisymmetric or point-symmetric structure (i.e., its bipolar, elliptical, spherical, etc.), it was likely not shaped by a triple progenitor. If clear symmetries are missing, however, or if there is a departure from symmetry in specific regions, the morphology of the planetary nebula may have been shaped by the presence of stars in a close triple system.Interaction with the interstellar mediumSome asymmetries, especially local ones, can be explained by interaction of the planetary nebula with the interstellar medium. The authors look for signs of such an interaction, which decreases the likelihood that a triple stellar system need be involved to produce the morphology we observe.Examples of planetary nebulae that are extremely likely to have been shaped by a triple stellar system. They have strong departures from symmetry and dont show signs of interacting with the interstellar medium. [Bear and Soker 2017]Influential TriosFrom the images in two planetary nebulae catalogs the Planetary Nebula Image Catelog and the HASH catalog Bear and Soker find that 275 and 372 planetary nebulae are categorizable, respectively. By assigning crude probabilities to their categories, the authors estimate that the total fraction of planetary nebulae shaped by three stars in a close system is around 1321%.The authors argue that in some cases, all three stars might survive. This means that we may be able to find direct evidence of these triple stellar systems lying in the hearts of especially messy planetary nebulae.CitationEaleal Bear and Noam Soker 2017 ApJL 837 L10. doi:10.3847/2041-8213/aa611c

  3. PULSAR WIND NEBULAE WITH THICK TOROIDAL STRUCTURE

    SciTech Connect

    Chevalier, Roger A.; Reynolds, Stephen P. E-mail: reynolds@ncsu.edu

    2011-10-10

    We investigate a class of pulsar wind nebulae that show synchrotron emission from a thick toroidal structure. The best studied such object is the small radio and X-ray nebula around the Vela pulsar, which can be interpreted as the result of interaction of a mildly supersonic inward flow with the recent pulsar wind. Such a flow near the center of a supernova remnant can be produced in a transient phase when the reverse shock reaches the center of the remnant. Other nebulae with a thick toroidal structure are G106.6+2.9 and G76.9+1.0. Their structure contrasts with young pulsar nebulae like the Crab Nebula and 3C 38, which show a more chaotic, filamentary structure in the synchrotron emission. In both situations, a torus-jet structure is present where the pulsar wind passes through a termination shock, indicating the flow is initially toroidal. We suggest that the difference is due to the Rayleigh-Taylor instability that operates when the outer boundary of the nebula is accelerating into freely expanding supernova ejecta. The instability gives rise to mixing in the Crab and related objects, but is not present in the nebulae with thick toroidal regions.

  4. Spatial variation of the cooling lines in the reflection nebula NGC 7023

    NASA Astrophysics Data System (ADS)

    Bernard-Salas, J.; Habart, E.; Köhler, M.; Abergel, A.; Arab, H.; Lebouteiller, V.; Pinto, C.; van der Wiel, M. H. D.; White, G. J.; Hoffmann, M.

    2015-02-01

    Context. The north-west photo-dissociation region (PDR) in the reflection nebula NGC 7023 displays a complex structure. Filament-like condensations at the edge of the cloud can be traced via the emission of the main cooling lines, offering a great opportunity to study the link between the morphology and energetics of these regions. Aims: We study the spatial variation of the far-infrared fine-structure lines of [C ii] (158 μm) and [O i] (63 and 145 μm). These lines trace the local gas conditions across the PDR. We also compare their emission with molecular tracers including rotational and ro-vibrational lines of H2 and high-rotational lines of CO. Methods: We used observations from the Herschel/PACS instrument to map the spatial distribution of these fine-structure lines. The observed region covers a square area of about 110″ × 110″ with an angular resolution that varies from 4'' to 11''. We compared this emission with ground-based and Spitzer observations of H2 lines, Herschel/SPIRE observations of CO lines, and Spitzer/IRAC 3.6 μm images that trace the emission of polycyclic aromatic hydrocarbons. We used a PDR code to model the [O i]145 μm line and infer the physical conditions in the region. Results: The [C ii] (158 μm) and [O i] (63 and 145 μm) lines arise from the warm cloud surface where the PDR is located and the gas is warm, cooling the region. We find that although the relative contribution to the cooling budget over the observed region is dominated by [O i]63 μm (>30%), H2 contributes significantly in the PDR (~35%), as does [C ii]158 μm outside the PDR (30%). Other species contribute little to the cooling ([O i]145 μm 9%, and CO 4%). Enhanced emission of these far-infrared atomic lines trace the presence of condensations, where high-excitation CO rotational lines and dust emission in the submillimetre are detected as well. The [O i] maps resolve these condensations into two structures and show that the peak of [O i] is slightly displaced

  5. High temperatures in the early solar nebula.

    PubMed

    Boss, A P

    1988-07-29

    One fundamental controversy about terrestrial planet and asteroid formation is the discrepancy between meteoritical evidence for high temperatures (1500 K to 2000 K) in the inner solar nebula, and much lower theoretical temperature predictions on the basis of models of viscous accretion disks that neglect compressional heating of infalling gas. It is shown here that rigorous numerical calculations of the collapse of a rotating, three-dimensional presolar nebula are capable of producing temperatures on the order of 1500 K in the asteroid region (2.5 astronomical units), in either nearly axisymmetric or strongly nonaxisymmetric nebula models. The latter models may permit significant thermal cycling of solid components in the early inner solar nebula.

  6. High temperatures in the early solar nebula

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1988-01-01

    One fundamental controversy about terrestrial planet and asteroid formation is the discrepancy between meteoritical evidence for high temperatures (1500 to 2000 K) in the inner solar nebula, and much lower theoretical temperature predictions on the basis of models of viscous accretion disks that neglect compressional heating of infalling gas. It is shown here that rigorous numerical calculations of the collapse of a rotating, three-dimensional presolar nebula are capable of producing temperatures on the order of 1500 K in the asteroid region (2.5 astronomical units), in either nearly axisymmetric or strongly nonaxisymmetric nebula models. The latter models may permit significant thermal cycling of solid components in the early inner solar nebula.

  7. A KINEMATIC DISTANCE STUDY OF THE PLANETARY NEBULAE-SUPERNOVA REMNANT-H II REGION COMPLEX AT G35.6–0.5

    SciTech Connect

    Zhu, H.; Tian, W. W.; Su, H. Q.; Torres, D. F.; Pedaletti, G. E-mail: tww@bao.ac.cn

    2013-10-01

    Two possible planetary nebulae (PN G035.5–00.4 and IRAS 18551+0159), one newly re-identified supernova remnant (SNR G35.6–0.4), and one H II region (G35.6–0.5) form a line-of-sight-overlapping complex known as G35.6–0.5. We analyze 21 cm H I absorption spectra toward the complex to constrain the kinematic distances of these objects. PN G035.5–00.4 has a distance from 3.8 ± 0.4 kpc to 5.4 ± 0.7 kpc. IRAS 18551+0159 is at 4.3 ± 0.5 kpc. We discuss the distance for SNR 35.6–0.4, for which the previous estimate was 10.5 kpc, and find a plausible distance of 3.6 ± 0.4 kpc. The new distance of SNR G35.6–0.4 and the derived mass for the ∼55 km s{sup –1} CO molecular cloud can accommodate an association with HESS J1858+020. We also conclude that SNR G35.6–0.4 is unlikely to be associated with PSR J1857+0210 or PSR J1857+0212, which are projected onto the SNR area.

  8. Stars in the Tarantula Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the most active starburst region in the local universe lies a cluster of brilliant, massive stars, known to astronomers as Hodge 301. Hodge 301, seen in the lower right hand corner of this image, lives inside the Tarantula Nebula in our galactic neighbor, the Large Magellanic Cloud. This star cluster is not the brightest, or youngest, or most populous star cluster in the Tarantula Nebula, that honor goes to the spectacular R136. In fact, Hodge 301 is almost 10 times older than the young cluster R136. But age has its advantages; many of the stars in Hodge 301 are so old that they have exploded as supernovae. These exploded stars are blasting material out into the surrounding region at speeds of almost 200 miles per second. This high speed ejecta are plowing into the surrounding Tarantula Nebula, shocking and compressing the gas into a multitude of sheets and filaments, seen in the upper left portion of the picture. Hodge 301 contains three red supergiants - stars that are close to the end of their evolution and are about to go supernova, exploding and sending more shocks into the Tarantula. Also present near the center of the image are small, dense gas globules and dust columns where new stars are being formed today, as part of the overall ongoing star formation throughout the Tarantula region.

  9. B fields in OB stars (BOB): The discovery of a magnetic field in a multiple system in the Trifid nebula, one of the youngest star forming regions

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Fossati, L.; Carroll, T. A.; Castro, N.; González, J. F.; Ilyin, I.; Przybilla, N.; Schöller, M.; Oskinova, L. M.; Morel, T.; Langer, N.; Scholz, R. D.; Kharchenko, N. V.; Nieva, M.-F.

    2014-04-01

    Aims: Recent magnetic field surveys in O- and B-type stars revealed that about 10% of the core-hydrogen-burning massive stars host large-scale magnetic fields. The physical origin of these fields is highly debated. To identify and model the physical processes responsible for the generation of magnetic fields in massive stars, it is important to establish whether magnetic massive stars are found in very young star-forming regions or whether they are formed in close interacting binary systems. Methods: In the framework of our ESO Large Program, we carried out low-resolution spectropolarimetric observations with FORS 2 in 2013 April of the three most massive central stars in the Trifid nebula, HD 164492A, HD 164492C, and HD 164492D. These observations indicated a strong longitudinal magnetic field of about 500-600 G in the poorly studied component HD 164492C. To confirm this detection, we used HARPS in spectropolarimetric mode on two consecutive nights in 2013 June. Results: Our HARPS observations confirmed the longitudinal magnetic field in HD 164492C. Furthermore, the HARPS observations revealed that HD 164492C cannot be considered as a single star as it possesses one or two companions. The spectral appearance indicates that the primary is most likely of spectral type B1-B1.5 V. Since in both observing nights most spectral lines appear blended, it is currently unclear which components are magnetic. Long-term monitoring using high-resolution spectropolarimetry is necessary to separate the contribution of each component to the magnetic signal. Given the location of the system HD 164492C in one of the youngest star formation regions, this system can be considered as a Rosetta Stone for our understanding of the origin of magnetic fields in massive stars. Based on observations obtained in the framework of the ESO Prg. 191.D-0255(A,B).

  10. Investigating CXOU J163802.6–471358: A new pulsar wind nebula in the norma region?

    SciTech Connect

    Jakobsen, Simone J.; Watson, Darach; Tomsick, John A.; Gotthelf, Eric V.; Kaspi, Victoria M.

    2014-06-01

    We present the first analysis of the extended source CXOU J163802.6–471358, which was discovered serendipitously during the Chandra X-ray survey of the Norma region of the Galactic spiral arms. The X-ray source exhibits a cometary appearance with a point source and an extended tail region. The complete source spectrum is fitted well with an absorbed power law model and jointly fitting the Chandra spectrum of the full source with one obtained from an archived XMM-Newton observation results in best fit parameters N {sub H} =1.5{sub −0.5}{sup +0.7}×10{sup 23} cm{sup −2} and Γ=1.1{sub −0.6}{sup +0.7} (90% confidence uncertainties). The unabsorbed luminosity of the full source is then L{sub X}∼4.8×10{sup 33}d{sub 10}{sup 2} erg s{sup –1} with d {sub 10} = d/10 kpc, where a distance of 10 kpc is a lower bound inferred from the large column density. The radio counterpart found for the source using data from the Molonglo Galactic Plane Survey epoch-2 shows an elongated tail offset from the X-ray emission. No infrared counterpart was found. The results are consistent with the source being a previously unknown pulsar driving a bow shock through the ambient medium.

  11. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  12. Argon and neon in Galactic nebulae

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Bregman, Jesse D.; Dinerstein, H. L.; Lester, Dan F.; Rank, David M.; Witteborn, F. C.; Wooden, D. H.

    1995-01-01

    KAO observations of the 6.98 micron line of (Ar II), and KAO and ground-based observations of the 8.99 micron line of (Ar III) and the 12.8 micron line of (Ne II) are presented for a number of Galactic H II regions and planetary nebulae.

  13. Lightning in the Protoplanetary Nebula?

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.

    1997-01-01

    Lightning in the protoplanetary nebula has been proposed as a mechanism for creating meteoritic chondrules: enigmatic mm-sized silicate spheres formed in the nebula by the brief melting of cold precursors.

  14. Hubble Space Telescope Image of Omega Nebula

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This sturning image, taken by the newly installed Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope (HST), is an image of the center of the Omega Nebula. It is a hotbed of newly born stars wrapped in colorful blankets of glowing gas and cradled in an enormous cold, dark hydrogen cloud. The region of nebula shown in this photograph is about 3,500 times wider than our solar system. The nebula, also called M17 and the Swan Nebula, resides 5,500 light-years away in the constellation Sagittarius. The Swan Nebula is illuminated by ultraviolet radiation from young, massive stars, located just beyond the upper-right corner of the image. The powerful radiation from these stars evaporates and erodes the dense cloud of cold gas within which the stars formed. The blistered walls of the hollow cloud shine primarily in the blue, green, and red light emitted by excited atoms of hydrogen, nitrogen, oxygen, and sulfur. Particularly striking is the rose-like feature, seen to the right of center, which glows in the red light emitted by hydrogen and sulfur. As the infant stars evaporate the surrounding cloud, they expose dense pockets of gas that may contain developing stars. One isolated pocket is seen at the center of the brightest region of the nebula. Other dense pockets of gas have formed the remarkable feature jutting inward from the left edge of the image. The color image is constructed from four separate images taken in these filters: blue, near infrared, hydrogen alpha, and doubly ionized oxygen. Credit: NASA, H. Ford (JHU), G. Illingworth (USCS/LO), M. Clampin (STScI), G. Hartig (STScI), the ACS Science Team, and ESA.

  15. The Gum Nebula.

    NASA Technical Reports Server (NTRS)

    Maran, S. P.

    1971-01-01

    A historical review of observations on the Gum Nebula is given together with a survey of knowledge on its size, emission features, and dynamics of expansion. The ultraviolet spectrum of Zeta Puppis is examined in terms of features caused by various absorption lines, and radio emission from Vela X is analyzed, together with the effects of nebular plasma on the propagation of radio pulses from pulsars in the Nebula. The density distribution and the possibility of being produced by the Vela X supernova are discussed.

  16. Infrared studies of dust grains in infrared reflection nebulae

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.; Tielens, Alexander G. G. M.; Werner, Michael W.

    1989-01-01

    IR reflection nebulae, regions of dust which are illuminated by nearby embedded sources, were observed in several regions of ongoing star formation. Near IR observation and theoretical modelling of the scattered light form IR reflection nebulae can provide information about the dust grain properties in star forming regions. IR reflection nebulae were modelled as plane parallel slabs assuming isotropically scattering grains. For the grain scattering properties, graphite and silicate grains were used with a power law grain size distribution. Among the free parameters of the model are the stellar luminosity and effective temperature, the optical depth of the nebula, and the extinction by foreground material. The typical results from this model are presented and discussed.

  17. The Gum nebula

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.

    1972-01-01

    The distance from the sun to the center of the star, Gamma Velorium, is determined in an effort to draw a physical model and identify the ionized energy source of the Gum nebula. The distance is calculated from the local hydrogen density of radio astronomy studies and the hydrogen measure.

  18. The Twin Jet Nebula

    NASA Technical Reports Server (NTRS)

    1997-01-01

    M2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in blue.

  19. Induced massive star formation in the trifid nebula?

    PubMed

    Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras

    1998-10-16

    The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.

  20. The ionization structure of planetary nebulae. IX - NGC 1535

    NASA Technical Reports Server (NTRS)

    Barker, Timothy

    1989-01-01

    The ionization structure of planetary nebula NGC 1535 was investigated using spectrophotometric observations of emission-line intensities over the spectral range 1400-7200 A, which were carried out in five positions in this nebula. The results obtained on the ionic abundances of He, O, N, Ne, C, and Ar in NGC 1535 suggest that it is a planetary nebula that formed initially in a somewhat metal-poor region and has undergone little or no enhancement of its original abundances by mixing with nuclear-processed material.

  1. Infrared polarimetry of the NGC 6334 V bipolar nebula

    SciTech Connect

    Nakagawa, Takao; Matsuhara, Hideo; Okuda, Haruyuki; Shibai, Hiroshi; Nagata, Tetsuya Kyoto Univ. )

    1990-03-01

    Exceptionally high degrees (up to about 100 percent) of polarization were observed in the L-prime band (3.8 microns) toward the NGC 6334 V bipolar nebula. The observed symmetric polarization pattern indicates that the nebula is a reflection nebula consisting of two lobes illuminated by a central obscured star. The distribution of polarization requires that one of the lobes consist of a lemon-shaped cavity which scatters light mainly at its surface, whereas a conical cavity model is appropriate for the other lobe. This asymmetry of the lobes is probably due to a density gradient in the ambient cloud material in this region. 17 refs.

  2. NIF Discovery Science Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Huntington, Channing; Casner, Alexis; Villette, Bruno; Mancini, Roberto

    2016-10-01

    For almost 20 years a team of astronomers, theorists and experimentalists have investigated the creation of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds, using a combination of astronomical observations, astrophysical simulations, and recently, scaled laboratory experiments. Eagle Nebula, one of the National Ignition Facility (NIF) Discovery Science programs, has completed four NIF shots to study the dense `shadowing' model of pillar formation, and been awarded more shots to study the `cometary' model. These experiments require a long-duration drive, 30 ns or longer, to generate deeply nonlinear ablative hydrodynamics. A novel x-ray source featuring multiple UV-driven hohlraums driven is used. The source directionally illuminates a science package, mimicking a cluster of stars. The first four NIF shots generated radiographs of shadowing-model pillars, and suggested that cometary structures can be generated. The velocity and column density profiles of the NIF shadowing and cometary pillars have been compared with observations of the Eagle Pillars made at millimeter observatories, and indicate cometary growth is key to matching observations. Supported in part by a Grant from the DOE OFES HEDLP program. Prepared by LLNL under Contract DE-AC52-07NA27344.

  3. Science on NIF Eagle Nebula

    NASA Astrophysics Data System (ADS)

    Kane, Jave; Martinez, David; Pound, Marc; Heeter, Robert; Casner, Alexis; Villette, Bruno; Mancini, Roberto

    2014-10-01

    For over fifteen years astronomers at the University of Maryland and scientists at LLNL have investigated the origin and dynamics of the famous Pillars of the Eagle Nebula and similar parsec-scale structures at the boundaries of HII regions in molecular hydrogen clouds. Eagle Nebula is one of the National Ignition Facility (NIF) Science programs, and has been awarded two days of NIF shots to study the cometary model of pillar formation. The NIF shots will feature a new long-duration x-ray source prototyped at the Omega EP laser, in which multiple hohlraums mimicking a cluster of stars are driven with UV light in series for 10 ns each to create a 30 ns output x-ray pulse. The drive generates deeply nonlinear hydrodynamics in the Eagle science package, which consists of a dense layered plastic and foam core embedded in lower-density background foam. The scaled Omega EP shots validated the multi-hohlraum concept, showing that earlier time hohlraums do not degrade later time hohlraums by preheat or by ejecting ablated plumes that deflect the later beams. The Omega EP shots illuminated three 2.8 mm long by 1.4 mm diameter Cu hohlraums with 4.3 kJ per hohlraum. At NIF each hohlraum will be 4 mm long by 3 mm in diameter and will be driven with 80-100 kJ. Prepared by LLNL under Contract DE-AC52-07NA27344.

  4. Solar nebula condensates and the composition of comets

    NASA Technical Reports Server (NTRS)

    Lunine, J. I.

    1989-01-01

    Interpretation of the volatile abundances in Halley's comet in terms of models for chemical and physical processes in the solar nebula are discussed. Key ratios of the oxidized and reduced species of nitrogen and carbon are identified which tell something of the chemical history of the environment in which cometary grains accreted to form the nucleus. Isotopic abundances are also applied to this problem. It will be shown that the abundances of methane and carbon monoxide are consistent both with models of solar nebula chemistry and chemical processing on grains in star-forming regions. Ultimately, limitations of the current data set on molecular abundances in comets and star-forming regions prevent a definitive choice between the two. Processes important to the composition of outer solar system bodies are: (1) gas phase chemistry in the solar nebula; (2) imperfect mixing in the solar nebula; (3) condensation; (4) clathration; (5) adsorption; and (6) processing of interstellar material.

  5. An internal velocity study of the Rosette Nebula

    NASA Technical Reports Server (NTRS)

    Fountain, W. F.; Gary, G. A.; Odell, C. R.

    1979-01-01

    Emission-line profiles of H-alpha were studied at about 700 points in the Rosette Nebula by using a multislit echelle spectrograph. Numerical analysis of the profiles indicates that variations in the line-of-sight velocity occur within the nebula, reaching about + or - 20 km/s in the inner regions. Evidence is presented that these highest velocities are more probably inward, favoring a model where the central cavity is due to a depletion resulting from rapid star formation

  6. The Cat's Eye Nebula

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This NASA Hubble Space Telescope image shows one of the most complex planetary nebulae ever seen, NGC 6543, nicknamed the 'Cat's Eye Nebula.' Hubble reveals surprisingly intricate structures including concentric gas shells, jets of high-speed gas and unusual shock-induced knots of gas. Estimated to be 1,000 years old, the nebula is a visual 'fossil record' of the dynamics and late evolution of a dying star. A preliminary interpretation suggests that the star might be a double-star system. The suspected companion star also might be responsible for a pair of high-speed jets of gas that lie at right angles to this equatorial ring. If the companion were pulling in material from a neighboring star, jets escaping along the companion's rotation axis could be produced. These jets would explain several puzzling features along the periphery of the gas lobes. Like a stream of water hitting a sand pile, the jets compress gas ahead of them, creating the 'curlicue' features and bright arcs near the outer edge of the lobes. The twin jets are now pointing in different directions than these features. This suggests the jets are wobbling, or precessing, and turning on and off episodically. This color picture, taken with the Wide Field Planetary Camera-2, is a composite of three images taken at different wavelengths. (red, hydrogen-alpha; blue, neutral oxygen, 6300 angstroms; green, ionized nitrogen, 6584 angstroms). The image was taken on September 18, 1994. NGC 6543 is 3,000 light- years away in the northern constellation Draco. The term planetary nebula is a misnomer; dying stars create these cocoons when they lose outer layers of gas. The process has nothing to do with planet formation, which is predicted to happen early in a star's life.

  7. The Gum nebula and related problems

    NASA Technical Reports Server (NTRS)

    Maran, S. P.; Brandt, J. C.; Stecher, T. P.

    1971-01-01

    Papers were presented in conference sessions on the Gum nebula, the Vela X remnant, the hot stars gamma Velorum and zeta Puppis, the B associations in the Vela-Puppis complex, and pulsars. Ground-based optical and radio astronomy; rocket and satellite observations in the radio, visible, ultraviolet, and X-ray regions; and theoretical problems in the physical state of the interstellar medium, stellar evolution, and runaway star dynamics were considered.

  8. 'Peony Nebula' Star Settles for Silver Medal

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Poster Version Movie

    If our galaxy, the Milky Way, were to host its own version of the Olympics, the title for the brightest known star would go to a massive star called Eta Carina. However, a new runner-up now the second-brightest star in our galaxy has been discovered in the galaxy's dusty and frenzied interior. This image from NASA's Spitzer Space Telescope shows the new silver medalist, circled in the inset above, in the central region of our Milky Way.

    Dubbed the 'Peony nebula' star, this blazing ball of gas shines with the equivalent light of 3.2 million suns. The reigning champ, Eta Carina, produces the equivalent of 4.7 million suns worth of light though astronomers say these estimates are uncertain, and it's possible that the Peony nebula star could be even brighter than Eta Carina.

    If the Peony star is so bright, why doesn't it stand out more in this view? The answer is dust. This star is located in a very dusty region jam packed with stars. In fact, there could be other super bright stars still hidden deep in the stellar crowd. Spitzer's infrared eyes allowed it to pierce the dust and assess the Peony nebula star's true brightness. Likewise, infrared data from the European Southern Observatory's New Technology Telescope in Chile were integral in calculating the Peony nebula star's luminosity.

    The Peony nebula, which surrounds the Peony nebular star, is the reddish cloud of dust in and around the white circle.

    The movie begins by showing a stretch of the dusty and frenzied central region of our Milky Way galaxy. It then zooms in to reveal the 'Peony nebula' star the new second-brightest star in the Milky Way, discovered in part by NASA's Spitzer Space Telescope.

    This is a three-color composite showing infrared observations from two Spitzer instruments. Blue represents 3.6-micron light and green shows light of 8 microns, both

  9. THE 'SPIROGRAPH' NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    THE 'SPIROGRAPH' NEBULA Glowing like a multi-faceted jewel, the planetary nebula IC 418 lies about 2,000 light-years from Earth in the direction of the constellation Lepus. This photograph is one of the latest from NASA's Hubble Space Telescope, obtained with the Wide Field Planetary Camera 2. A planetary nebula represents the final stage in the evolution of a star similar to our Sun. The star at the center of IC 418 was a red giant a few thousand years ago, but then ejected its outer layers into space to form the nebula, which has now expanded to a diameter of about 0.1 light-year. The stellar remnant at the center is the hot core of the red giant, from which ultraviolet radiation floods out into the surrounding gas, causing it to fluoresce. Over the next several thousand years, the nebula will gradually disperse into space, and then the star will cool and fade away for billions of years as a white dwarf. Our own Sun is expected to undergo a similar fate, but fortunately this will not occur until some 5 billion years from now. The Hubble image of IC 418 is shown in a false-color representation, based on Wide Field Planetary Camera 2 exposures taken in February and September, 1999 through filters that isolate light from various chemical elements. Red shows emission from ionized nitrogen (the coolest gas in the nebula, located furthest from the hot nucleus), green shows emission from hydrogen, and blue traces the emission from ionized oxygen (the hottest gas, closest to the central star). The remarkable textures seen in the nebula are newly revealed by the Hubble telescope, and their origin is still uncertain. Credit: NASA and The Hubble Heritage Team (STScI/AURA) Acknowledgment: Dr. Raghvendra Sahai (JPL) and Dr. Arsen R. Hajian (USNO). EDITOR'S NOTE: For additional information, please contact Dr. Raghvendra Sahai, Jet Propulsion Laboratory, MS 183-900, 4800 Oak Grove Drive, Pasadena, CA 91109, (phone) 818-354-0452, (fax) 818-393-9088, (e-mail) sahai@bb8.jpl

  10. Photodissociation Regions in the Interstellar Medium of Galaxies

    NASA Technical Reports Server (NTRS)

    Hollenbach, David J.; Tielens, A. G. G. M.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The interstellar medium of galaxies is the reservoir out of which stars are born and into which stars inject newly created elements as they age. The physical properties of the interstellar medium are governed in part by the radiation emitted by these stars. Far-ultraviolet (6 eV less than h(nu) less than 13.6 eV) photons from massive stars dominate the heating and influence the chemistry of the neutral atomic gas and much of the molecular gas in galaxies. Predominantly neutral regions of the interstellar medium in which the heating and chemistry are regulated by far ultraviolet photons are termed Photo-Dissociation Regions (PDRs). These regions are the origin of most of the non-stellar infrared (IR) and the millimeter and submillimeter CO emission from galaxies. The importance of PDRs has become increasingly apparent with advances in IR and submillimeter astronomy. The IR emission from PDRs includes fine structure lines of C, C+, and O; rovibrational lines of H2, rotational lines of CO; broad middle features of polycyclic aromatic hydrocarbons; and a luminous underlying IR continuum from interstellar dust. The transition of H to H2 and C+ to CO occurs within PDRs. Comparison of observations with theoretical models of PDRs enables one to determine the density and temperature structure, the elemental abundances, the level of ionization, and the radiation field. PDR models have been applied to interstellar clouds near massive stars, planetary nebulae, red giant outflows, photoevaporating planetary disks around newly formed stars, diffuse clouds, the neutral intercloud medium, and molecular clouds in the interstellar radiation field-in summary, much of the interstellar medium in galaxies. Theoretical PDR models explain the observed correlations of the [CII] 158 microns with the COJ = 1-0 emission, the COJ = 1-0 luminosity with the interstellar molecular mass, and the [CII] 158 microns plus [OI] 63 microns luminosity with the IR continuum luminosity. On a more global

  11. VLT Images the Horsehead Nebula

    NASA Astrophysics Data System (ADS)

    2002-01-01

    Summary A new, high-resolution colour image of one of the most photographed celestial objects, the famous "Horsehead Nebula" (IC 434) in Orion, has been produced from data stored in the VLT Science Archive. The original CCD frames were obtained in February 2000 with the FORS2 multi-mode instrument at the 8.2-m VLT KUEYEN telescope on Paranal (Chile). The comparatively large field-of-view of the FORS2 camera is optimally suited to show this extended object and its immediate surroundings in impressive detail. PR Photo 02a/02 : View of the full field around the Horsehead Nebula. PR Photo 02b/02 : Enlargement of a smaller area around the Horse's "mouth" A spectacular object ESO PR Photo 02a/02 ESO PR Photo 02a/02 [Preview - JPEG: 400 x 485 pix - 63k] [Normal - JPEG: 800 x 970 pix - 896k] [Full-Res - JPEG: 1951 x 2366 pix - 4.7M] ESO PR Photo 02b/02 ESO PR Photo 02b/02 [Preview - JPEG: 400 x 501 pix - 91k] [Normal - JPEG: 800 x 1002 pix - 888k] [Full-Res - JPEG: 1139 x 1427 pix - 1.9M] Caption : PR Photo 02a/02 is a reproduction of a composite colour image of the Horsehead Nebula and its immediate surroundings. It is based on three exposures in the visual part of the spectrum with the FORS2 multi-mode instrument at the 8.2-m KUEYEN telescope at Paranal. PR Photo 02b/02 is an enlargement of a smaller area. Technical information about these photos is available below. PR Photo 02a/02 shows the famous "Horsehead Nebula" , which is situated in the Orion molecular cloud complex. Its official name is Barnard 33 and it is a dust protrusion in the southern region of the dense dust cloud Lynds 1630 , on the edge of the HII region IC 434 . The distance to the region is about 1400 light-years (430 pc). This beautiful colour image was produced from three images obtained with the multi-mode FORS2 instrument at the second VLT Unit Telescope ( KUEYEN ), some months after it had "First Light", cf. PR 17/99. The image files were extracted from the VLT Science Archive Facility and the

  12. Atomic hydrogen in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Silverglate, Peter R.; Altschuler, Daniel R.; Giovanardi, Carlo

    1987-01-01

    The authors searched for neutral atomic hydrogen associated with 22 planetary nebulae and three evolved stars in the 21 cm line at the Arecibo Observatory. Objects whose radial velocities permitted discrimination from Galactic H I were chosen for observation. Hydrogen was detected in absorption from IC 4997. From the measurements new low limits are derived to the mass of atomic hydrogen associated with the undetected nebulae. Radio continuum observations were also made of several of the nebulae at 12.6 cm. The authors reexamine previous measurements of H I in planetary nebulae, and present the data on a consistent footing. The question of planetary nebula distances is considered at length. Finally, implications of the H I measurements for nebular evolution are discussed and it is suggested that atomic hydrogen seen in absorption was expelled from the progenitor star during the final 1000 yr prior to the onset of ionization.

  13. Direct photography of the Gum Nebula

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Roosen, R. G.; Thompson, J.; Ludden, D. J.

    1976-01-01

    The paper discusses a series of wide-angle photographs taken of the Gum Nebula in the traditional region including H-alpha with the aid of a 40-cm and an 80-cm lens in both the red and the green. The photographs support the large dimensions (75 deg in galactic longitude by 40 deg in galactic latitude) of the Gum Nebula suggested earlier, and the appearance is consistent with an origin due to photons from a supernova outburst. The relatively high-density gas has cooled and is visible on the red plates. The low-density gas has remained at a high temperature and may be visible as diffuse emission on the green plates.

  14. Rotten Egg Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Violent gas collisions that produced supersonic shock fronts in a dying star are seen in a new, detailed image from NASA's Hubble Space Telescope.

    The picture, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    Stars like our Sun will eventually die and expel most of their material outward into shells of gas and dust. These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae.

    'This new image gives us a rare view of the early death throes of stars like our Sun. For the first time, we can see phenomena leading to the formation of planetary nebulae. Until now, this had only been predicted by theory, but had never been seen directly,' said Dr. Raghvendra Sahai, research scientist and member of the science team at JPL for the Wide Field and Planetary Camera 2.

    The object is sometimes called the Rotten Egg Nebula, because it contains a lot of sulphur, which would produce an awful odor if one could smell in space. The object is also known as the Calabash Nebula or by the technical name OH231.8+4.2.

    The densest parts of the nebula are composed of material ejected recently by the central star and accelerated in opposite directions. This material, shown as yellow in the image, is zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Most of the star's original mass is now contained in these bipolar gas structures.

    A team of Spanish and American astronomers used NASA's Hubble Space Telescope to study how the gas stream rams into the surrounding material, shown in blue. They believe that such interactions dominate the formation process in planetary nebulae. Due to the high speed of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and

  15. Rotten Egg Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Violent gas collisions that produced supersonic shock fronts in a dying star are seen in a new, detailed image from NASA's Hubble Space Telescope.

    The picture, taken by Hubble's Wide Field and Planetary Camera 2, is online at http://www.jpl.nasa.gov/images/wfpc . The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    Stars like our Sun will eventually die and expel most of their material outward into shells of gas and dust. These shells eventually form some of the most beautiful objects in the universe, called planetary nebulae.

    'This new image gives us a rare view of the early death throes of stars like our Sun. For the first time, we can see phenomena leading to the formation of planetary nebulae. Until now, this had only been predicted by theory, but had never been seen directly,' said Dr. Raghvendra Sahai, research scientist and member of the science team at JPL for the Wide Field and Planetary Camera 2.

    The object is sometimes called the Rotten Egg Nebula, because it contains a lot of sulphur, which would produce an awful odor if one could smell in space. The object is also known as the Calabash Nebula or by the technical name OH231.8+4.2.

    The densest parts of the nebula are composed of material ejected recently by the central star and accelerated in opposite directions. This material, shown as yellow in the image, is zooming away at speeds up to one and a half million kilometers per hour (one million miles per hour). Most of the star's original mass is now contained in these bipolar gas structures.

    A team of Spanish and American astronomers used NASA's Hubble Space Telescope to study how the gas stream rams into the surrounding material, shown in blue. They believe that such interactions dominate the formation process in planetary nebulae. Due to the high speed of the gas, shock-fronts are formed on impact and heat the surrounding gas. Although computer calculations have predicted the existence and

  16. Ly(alpha) Photolysis in the Primitive Solar Nebula

    NASA Technical Reports Server (NTRS)

    Gladstone, G. Randall

    1998-01-01

    This is the final report for the third year of work on this project. Our proposal was to quantitatively investigate the importance of photochemistry in the solar nebula. In the generally accepted theory for the chemical evolution of the primitive solar nebula, Prinn and Fegley argued that photochemistry is unimportant, and that thermochemistry controls the relative abundances of molecular species throughout the planet-forming region. They provided useful estimates of the chemical energy available to the solar nebula from a variety of sources, and established that even the small photolysis rate due to starlight is more important than the photolysis rate from direct sunlight (although small, the UV flux from starlight could have processed a non-negligible fraction of the solar nebula. The reason for this is that the opacity of the disk was so large that direct sunlight could only penetrate to 0.1 AU or so, despite the expectation that the protosun, if comparable to a T-Tauri star, would be emitting up to 10(exp 4) more H I Ly(alpha) photons than the current sun. We developed a Monte Carlo resonance fine radiative transfer code, capable of accurately calculating the radiation field of H I Ly(alpha), He I 584 A, and He II 304 A emissions throughout the nebula and the nearby interstellar medium in which it is embedded. We applied the code to two appropriate models of the primitive solar nebula. Our model provided the photolysis rates of various species over the entire surface layer of the nebula, and from this we evaluated the importance of UV photochemistry due to backscattered solar UV resonance line emissions on different parts of the nebula. The results discussed below were presented.

  17. GIANT Hα NEBULA SURROUNDING THE STARBURST MERGER NGC 6240

    SciTech Connect

    Yoshida, Michitoshi; Yagi, Masafumi; Komiyama, Yutaka; Kashikawa, Nobunari; Ohyama, Youichi; Okamura, Sadanori

    2016-03-20

    We revealed the detailed structure of a vastly extended Hα-emitting nebula (“Hα nebula”) surrounding the starburst/merging galaxy NGC 6240 by deep narrow-band imaging observations with the Subaru Suprime-Cam. The extent of the nebula is ∼90 kpc in diameter and the total Hα luminosity amounts to L{sub Hα} ≈ 1.6 × 10{sup 42} erg s{sup −1}. The volume filling factor and the mass of the warm ionized gas are ∼10{sup −4}–10{sup −5} and ∼5 × 10{sup 8} M{sub ⊙}, respectively. The nebula has a complicated structure, which includes numerous filaments, loops, bubbles, and knots. We found that there is a tight spatial correlation between the Hα nebula and the extended soft-X-ray-emitting gas, both in large and small scales. The overall morphology of the nebula is dominated by filamentary structures radially extending from the center of the galaxy. A large-scale bipolar bubble extends along the minor axis of the main stellar disk. The morphology strongly suggests that the nebula was formed by intense outflows—superwinds—driven by starbursts. We also found three bright knots embedded in a looped filament of ionized gas that show head-tail morphologies in both emission-line and continuum, suggesting close interactions between the outflows and star-forming regions. Based on the morphology and surface brightness distribution of the Hα nebula, we propose the scenario that three major episodes of starburst/superwind activities, which were initiated ∼10{sup 2} Myr ago, formed the extended ionized gas nebula of NGC 6240.

  18. Giant Hα Nebula Surrounding the Starburst Merger NGC 6240

    NASA Astrophysics Data System (ADS)

    Yoshida, Michitoshi; Yagi, Masafumi; Ohyama, Youichi; Komiyama, Yutaka; Kashikawa, Nobunari; Tanaka, Hisashi; Okamura, Sadanori

    2016-03-01

    We revealed the detailed structure of a vastly extended Hα-emitting nebula (“Hα nebula”) surrounding the starburst/merging galaxy NGC 6240 by deep narrow-band imaging observations with the Subaru Suprime-Cam. The extent of the nebula is ˜90 kpc in diameter and the total Hα luminosity amounts to LHα ≈ 1.6 × 1042 erg s-1. The volume filling factor and the mass of the warm ionized gas are ˜10-4-10-5 and ˜5 × 108 M⊙, respectively. The nebula has a complicated structure, which includes numerous filaments, loops, bubbles, and knots. We found that there is a tight spatial correlation between the Hα nebula and the extended soft-X-ray-emitting gas, both in large and small scales. The overall morphology of the nebula is dominated by filamentary structures radially extending from the center of the galaxy. A large-scale bipolar bubble extends along the minor axis of the main stellar disk. The morphology strongly suggests that the nebula was formed by intense outflows—superwinds—driven by starbursts. We also found three bright knots embedded in a looped filament of ionized gas that show head-tail morphologies in both emission-line and continuum, suggesting close interactions between the outflows and star-forming regions. Based on the morphology and surface brightness distribution of the Hα nebula, we propose the scenario that three major episodes of starburst/superwind activities, which were initiated ˜102 Myr ago, formed the extended ionized gas nebula of NGC 6240. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  19. Ionization nebulae surrounding supersoft X-ray sources

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Chiang, E.; Kallman, T.; Malina, R.

    1994-01-01

    In this work we carry out a theoretical investigation of a new type of astrophysical gaseous nebula, viz., ionized regions surrounding supersoft X-ray sources. Supersoft X-ray sources, many of which have characteristic luminosities of approximately 10(exp 37)-(10(exp 38) ergs/s and effective temperatures of approximately 4 x 10(exp 5) K, were first discovered with the Einstein Observatory. These sources have now been shown to constitute a distinct class of X-ray source and are being found in substantial numbers with ROSAT. We predict that these sources should be surrounded by regions of ionized hydrogen and helium with properties that are distinct from other astrophysical gaseous nebulae. We present caluations of the ionization and temperature structure of these ionization nebulae, as well as the expected optical line fluxes. The ionization profiles for both hydrogen and helium exhibit substantially more gradual transitions from the ionized to the unionized state than is the case for conventional H II regions. The calculated optical line intensitites are presented as absolute fluxes from sources in the Large Magellanic Cloud and as fractions of the central source luminosity. We find, in particular, that (O III) lambda 5008 and He II lambda 4686 are especially prominent in these ionization nebulae as compared to other astrophysical nebulae. We propose that searches for supersoft X-rays via their characteristic optical lines may reveal sources in regions where the soft X-rays are nearly completely absorbed by the interstellar medium.

  20. Recent Progress in Studies of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Slane, Patrick

    2008-01-01

    The synchrotron-emitting nebulae formed by energetic winds from young pulsars provide information on a wide range phenomena that contribute to their structure. High resolution X-ray observations reveal jets and toroidal structures in many systems, along with knot-like structures whose emission is observed to be time-variable. Large-scale filaments seen in optical and radio images mark instability regions where the expanding nebulae interact with the surrounding ejecta, and spectral studies reveal the presence of these ejecta in the form of thermal X-ray emission. Infrared studies probe the frequency region where evolutionary and magnetic field effects conspire to change the broadband synchrotron spectrum dramatically, and studies of the innermost regions of the nebulae provide constraints on the spectra of particles entering the nebula. At the highest energies, TeV gamma-ray observations provide a probe of the spectral region that, for low magnetic fields, corresponds to particles with energies just below the X-ray-emitting regime. Here I summarize the structure of pulsar wind nebulae and review several new observations that have helped drive a recent resurgence in theoretical modeling of these systems.

  1. Lunar Occultation of X-ray Emission from the Crab Nebula.

    PubMed

    Bowyer, S; Byram, E T; Chubb, T A; Friedman, H

    1964-11-13

    The x-ray flux from the Crab Nebula was observed during a lunar occultation on 7 July 1964. As the moon covered the central region of the nebula, the x-ray flux decreased gradually. The source appears to extend over a volume about 1 light-year in diameter.

  2. Shock modelling of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Cuesta, L.; Phillips, J. P.; Mampaso, A.

    1994-06-01

    The kinematics of Planetary Nebulae are analyzed in terms of the solutions to the equations of hydrodynamic equilibrium developed by J. Canto. We apply our analysis to the Planetary Nebulae NGC 6905 and NGC 6537. A detailed spectroscopic study of these objects reveals the existence of high nuclear velocities, together with complex kinematic structures and unusual emission line intensities. Shock ionization clearly plays a key role in these nebulae. Remarkably good agreement is obtained when comparing the synthetic maps and spectra resulting from the shock solutions with the observational data.

  3. N44C nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Resembling the hair in Botticelli's famous portrait of the birth of Venus, an image from NASA's Hubble Space Telescope has captured softly glowing filaments streaming from hot young stars in a nearby nebula.

    The image, presented by the Hubble Heritage Project, was taken in 1996 by Hubble's Wide Field and Planetary Camera 2, designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The image is available online at

    http://heritage.stsci.edu , http://oposite.stsci.edu/pubinfo/pr/2002/12 orhttp://www.jpl.nasa.gov/images/wfpc .

    On the top right of the image is a source of its artistic likeness, a network of nebulous filaments surrounding the Wolf-Rayet star. This type of rare star is characterized by an exceptionally vigorous 'wind' of charged particles. The shock of the wind colliding with the surrounding gas causes the gas to glow.

    The Wolf-Rayet star is part of N44C, a nebula of glowing hydrogen gas surrounding young stars in the Large Magellanic Cloud. Visible from the Southern Hemisphere, the Large Magellanic Cloud is a small companion galaxy to the Milky Way.

    What makes N44C peculiar is the temperature of the star that illuminates it. The most massive stars -- those that are 10 to 50 times more massive than the Sun -- have maximum temperatures of 30,000 to 50,000 degrees Celsius (54,000 to 90,000 degrees Fahrenheit). The temperature of this star is about 75,000 degrees Celsius (135,000 degrees Fahrenheit). This unusually high temperature may be due to a neutron star or black hole that occasionally produces X-rays but is now inactive.

    N44C is part of a larger complex that includes young, hot, massive stars, nebulae, and a 'superbubble' blown out by multiple supernova explosions. Part of the superbubble is seen in red at the very bottom left of the Hubble image.

    The Space Telescope Science Institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard

  4. New portrait of Omega Nebula's glistening watercolours

    NASA Astrophysics Data System (ADS)

    2009-07-01

    The Omega Nebula, sometimes called the Swan Nebula, is a dazzling stellar nursery located about 5500 light-years away towards the constellation of Sagittarius (the Archer). An active star-forming region of gas and dust about 15 light-years across, the nebula has recently spawned a cluster of massive, hot stars. The intense light and strong winds from these hulking infants have carved remarkable filigree structures in the gas and dust. When seen through a small telescope the nebula has a shape that reminds some observers of the final letter of the Greek alphabet, omega, while others see a swan with its distinctive long, curved neck. Yet other nicknames for this evocative cosmic landmark include the Horseshoe and the Lobster Nebula. Swiss astronomer Jean-Philippe Loys de Chéseaux discovered the nebula around 1745. The French comet hunter Charles Messier independently rediscovered it about twenty years later and included it as number 17 in his famous catalogue. In a small telescope, the Omega Nebula appears as an enigmatic ghostly bar of light set against the star fields of the Milky Way. Early observers were unsure whether this curiosity was really a cloud of gas or a remote cluster of stars too faint to be resolved. In 1866, William Huggins settled the debate when he confirmed the Omega Nebula to be a cloud of glowing gas, through the use of a new instrument, the astronomical spectrograph. In recent years, astronomers have discovered that the Omega Nebula is one of the youngest and most massive star-forming regions in the Milky Way. Active star-birth started a few million years ago and continues through today. The brightly shining gas shown in this picture is just a blister erupting from the side of a much larger dark cloud of molecular gas. The dust that is so prominent in this picture comes from the remains of massive hot stars that have ended their brief lives and ejected material back into space, as well as the cosmic detritus from which future suns form. The

  5. A high-sigma model of pulsar wind nebulae

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2010-07-01

    Pulsars and central engines of long gamma-ray bursts - collapsars - may produce highly magnetized (Poynting-flux-dominated) outflows expanding in dense surroundings (interstellar medium or stellar material). For certain injection conditions, the magnetic flux of the wind cannot be accommodated within the cavity. In this case, ideal (non-dissipative) magnetohydrodynamics models, similar to the Kennel & Coroniti model of the Crab nebula, break down (the so-called `sigma problem'). This is typically taken to imply that the wind should become particle-dominated on scales much smaller than the size of the cavity. The wind is then slowed down by a fluid-type (low magnetization) reverse shock. Recent Fermi results, indicating that the synchrotron spectrum of the Crab nebula extends well beyond the upper limit of the most efficient radiation-reaction-limited acceleration, contradict the presence of a low-sigma reverse shock. We propose an alternative possibility, that in nearly aligned pulsars the excessive magnetic flux is destroyed in a reconnection-like process in two regions: near the rotational axis and near the equator. We construct an example of such a highly magnetized wind having two distinct reconnection regions and suggest that these reconnection sites are observed as tori and jets in pulsar wind nebulae. The model reproduces, qualitatively, the observed morphology of the Crab nebula. In parts of the nebula dissipation occurs in a relativistically moving wind, alleviating requirements on the acceleration rate.

  6. The Great Crab Nebula Superflare

    NASA Video Gallery

    There are strange goings-on in the Crab Nebula. On April 12, 2011, NASA's Fermi Gamma-ray Space Telescope detected the most powerful in a series of gamma-ray flares occurring somewhere within the s...

  7. Video Zoom into Veil Nebula

    NASA Video Gallery

    This video opens with a backyard view of the nighttime sky centered on the constellation Cygnus, the Swan. We zoom into a vast donut-shaped feature called the Veil Nebula. It is the tattered expand...

  8. Hot Gas in Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Gruendl, Robert A.; Chu, You-Hua; Guerrero, Martin

    2003-01-01

    It was successfully obtained the FUSE spectra of all targets awarded. The analysis of the spectra has been a complex task due to the superposition of the P-Cygni profile from the wind of the central star and absorption components from low ionization and molecular species in the nebular shell. In six of the eight targets there are narrow O VI absorption components that may arise from the interface layer between the hot (l0(exp 6) K) interior gas and the surrounding warm (l0(exp 4) K) dense nebular shell. To better determine whether these narrow O VI absorption lines arise from the interface region we have obtained ground-based high-dispersion spectroscopic observations of the central star and nebula to pin-point the precise line-of-sight velocity of the nebular emission lines. The comparison between these optical spectra with the far-UV spectra obtained with FUSE is complete. The analysis shows that in most cases the narrow O VI absorption components have velocities slightly redshifted from the emission lines which arise from the approaching side of the nebular shell. Preliminary results have been published in two papers.

  9. The Gum Nebula and Related Problems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Proceedings of a symposium concerning the Gum Nebula (GN) and related topics are reported. Papers presented include: Colin Gum and the discovery of the GN; identification of the GN as the fossil Stromgren sphere of Vela X Supernova; size and shape of GN; formation of giant H-2 regions following supernova explosions; radio astronomy Explorer 1 observations of GN; cosmic ray effects in the GN; low intensity H beta emission from the interstellar medium; and how to recognize and analyze GN. Astronomical charts and diagrams are included.

  10. The spatial distribution of infrared radiation from visible reflection nebulae

    NASA Technical Reports Server (NTRS)

    Luan, Ling; Werner, Michael W.; Dwek, Eli; Sellgren, Kris

    1989-01-01

    The emission at IRAS 12 and 25 micron bands of reflection nebulae is far in excess of that expected from the longer wavelength equilibrium thermal emission. The excess emission in the IRAS 12 micron band is a general phenomenon, seen in various components of interstellar medium such as IR cirrus clouds, H II regions, atomic and molecular clouds, and also normal spiral galaxies. This excess emission has been attributed to UV excited fluorescence in polycyclic aromatic hydrocarbon (PAH) molecules or to the effect of temperature fluctuations in very small grains. Results are presented of studies of IRAS data on reflection nebulae selected from the van den Bergh reflection nebulae sample. Detailed scans of flux ratio and color temperature across the nebulae were obtained in order to study the spatial distribution of IR emission. A model was used to predict the spatial distribution of IR emission from dust grains illuminated by a B type star. The model was also used to explore the excitation of the IRAS 12 micron band emission as a function of stellar temperature. The model predictions are in good agreement with the analysis of reflection nebulae, illuminated by stars with stellar temperature ranging from 21,000 down to 3,000 K.

  11. Ultraviolet Imaging Telescope observations of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore P.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.

    1992-01-01

    We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.

  12. Ultraviolet Imaging Telescope observations of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore R.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1992-08-01

    We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.

  13. The open cluster NGC 2818 and its associated planetary nebula

    SciTech Connect

    Pedreros, M. )

    1989-12-01

    New CCD UBV photometry of the open cluster NGC 2818 central region indicates that previously derived values of distance and reddening for the cluster have been considerably overestimated, leading to erroneous values for the physical parameters of its associated planetary nebula (PK 261 + 8.1 deg). The analysis of the new data yields E(B-V) = 0.18 + or - 0.03 and V(0)-M(v) = 11.80 + or - 0.2 (2.3 + or - 0.2 kpc) for the cluster's color excess and distance modulus, respectively. If cluster membership is assumed for the planetary nebula, the above estimates result in physical parameters that compare better with those of a typical planetary nebula in the Galaxy and the Magellanic Clouds. 26 refs.

  14. 3D Model of the Eta Carinae Little Homunculus Nebula

    NASA Astrophysics Data System (ADS)

    Steffen, Wolfgang; Teodoro, Mairan; Madura, Thomas; Groh, Jose H.; Gull, Theodore R.; Corcoran, Michael F.; Damineli, Augusto; Hamaguchi, Kenji

    2015-01-01

    We extend our morpho-kinematic 3D modeling of the Homunculus nebula (Steffen et al., 2014) to the interior nested Little Homunculus. The model is based on spectroscopic observations from HST/STIS. We find that the structure of the interior Little Homunculus is rather flat in the polar regions and interacts with the main Homunculus nebula only on one side, towards the periastron direction of the binary orbit. Furthermore, the two lobes of the LH are misaligned, also towards the periastron direction. As an explanation for the misalignment we propose that, in both cases, shortly after the eruptions that created the bipolar nebulae from the primary star, the off-center wind of the secondary has pushed the ejecta towards the periastron directions, since the secondary is most of the time near the apastron. Future hydrodynamic simulations are warranted to confirm this scenario.

  15. Infrared reflection nebulae in Orion Molecular Cloud 2

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne; Werner, M. W.; Capps, R.; Lester, D.

    1986-01-01

    New observations of Orion Molecular Cloud 2 have been made from 1 to 100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry, and spectrophotometry has shown that the extended emission regions associated with two of the previously known near-infrared sources, IRS 1 and IRS 4, are infrared reflection nebulae, and that the compact sources IRS 1 and IRS 4 are the main luminosity sources in the cloud. The constraints from the far-infrared observations and an analysis of the scattered light from the IRS 1 nebula show that OMC-2/IRS 1 can be characterized by L of 500 solar luminosities or less and T of roughly 1000 K. The near-infrared albedo of the grains in the IRS 1 nebula is greater than 0.08.

  16. Infrared reflection nebulae in Orion molecular cloud 2

    NASA Technical Reports Server (NTRS)

    Pendleton, Y.; Werner, M. W.; Capps, R.; Lester, D.

    1986-01-01

    New obervations of Orion Molecular Cloud-2 have been made from 1-100 microns using the NASA Infrared Telescope Facility and the Kuiper Airborne Observatory. An extensive program of polarimetry, photometry and spectrophotometry has shown that the extended emission regions associated with two of the previously known near infrared sources, IRS1 and IRS4, are infrared reflection nebulae, and that the compact sources IRS1 and IRS4 are the main luminosity sources in the cloud. The constraints from the far infrared observations and an analysis of the scattered light from the IRS1 nebula show that OMC-2/IRS1 can be characterized by L less than or equal to 500 Solar luminosities and T approx. 1000 K. The near infrared (1-5) micron albedo of the grains in the IRS1 nebula is greater than 0.08.

  17. THE TRIFID NEBULA: STELLAR SIBLING RIVALRY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    previously in the Eagle Nebula, another star-forming region photographed by Hubble. The stalk has survived because at its tip there is a knot of gas that is dense enough to resist being eaten away by the powerful radiation. Reflected starlight at the tip of the EGG may be due to light from the Trifid's central star, or from a young stellar object buried within the EGG. Similarly, a tiny spike of emission pointing outward from the EGG looks like a small stellar jet. Hubble astronomers are tentatively interpreting this jet as the last gasp from a star that was cut off from its supply lines 100,000 years ago. The images were taken Sept. 8, 1997 through filters that isolate emission from hydrogen atoms, ionized sulfur atoms, and doubly ionized oxygen atoms. The images were combined in a single color composite picture. While the resulting picture is not true color, it is suggestive of what a human eye might see. Credits: NASA and Jeff Hester (Arizona State University)

  18. HUBBLE'S PLANETARY NEBULA GALLERY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [Top left] - IC 3568 lies in the constellation Camelopardalis at a distance of about 9,000 light-years, and has a diameter of about 0.4 light-years (or about 800 times the diameter of our solar system). It is an example of a round planetary nebula. Note the bright inner shell and fainter, smooth, circular outer envelope. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Top center] - NGC 6826's eye-like appearance is marred by two sets of blood-red 'fliers' that lie horizontally across the image. The surrounding faint green 'white' of the eye is believed to be gas that made up almost half of the star's mass for most of its life. The hot remnant star (in the center of the green oval) drives a fast wind into older material, forming a hot interior bubble which pushes the older gas ahead of it to form a bright rim. (The star is one of the brightest stars in any planetary.) NGC 6826 is 2,200 light- years away in the constellation Cygnus. The Hubble telescope observation was taken Jan. 27, 1996 with the Wide Field and Planetary Camera 2. Credits: Bruce Balick (University of Washington), Jason Alexander (University of Washington), Arsen Hajian (U.S. Naval Observatory), Yervant Terzian (Cornell University), Mario Perinotto (University of Florence, Italy), Patrizio Patriarchi (Arcetri Observatory, Italy) and NASA [Top right ] - NGC 3918 is in the constellation Centaurus and is about 3,000 light-years from us. Its diameter is about 0.3 light-year. It shows a roughly spherical outer envelope but an elongated inner balloon inflated by a fast wind from the hot central star, which is starting to break out of the spherical envelope at the top and bottom of the image. Credits: Howard Bond (Space Telescope Science Institute), Robin Ciardullo (Pennsylvania State University) and NASA [Bottom left] - Hubble 5 is a striking example of a 'butterfly' or bipolar (two-lobed) nebula. The heat generated by fast winds causes

  19. Physics and Chemistry of the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Lunine, Jonathan I.

    The solar system is thought to have begun in a flattened disk of gas and dust referred to traditionally as the solar nebula. Such a construct seems to be a natural product of the collapse of dense parts of giant molecular clouds, the vast star-forming regions that pepper the Milky Way and other galaxies. Gravitational, magnetic and thermal forces within the solar nebula forced a gradual evolution of mass toward the center (where the sun formed) and angular momentum (borne by a small fraction of the mass) toward the outer more distant regions of the disk. This evolution was accompanied by heating and a strong temperature contrast from the hot, inner regions to the cold, more remote parts of the disk. The resulting chemistry in the disk determined the initial distribution of organic matter in the planets; most of the reduced carbon species, in condensed form, were located beyond the asteroid belt (the `outer' solar system). The Earth could have received much of its inventory of pre-biological material from comets and other icy fragments of the process of planetary formation in the outer solar system.

  20. Physics and chemistry of the solar nebula.

    PubMed

    Lunine, J I

    1997-06-01

    The solar system is thought to have begun in a flattened disk of gas and dust referred to traditionally as the solar nebula. Such a construct seems to be a natural product of the collapse of dense parts of giant molecular clouds, the vast star-forming regions that pepper the Milky Way and other galaxies. Gravitational, magnetic and thermal forces within the solar nebula forced a gradual evolution of mass toward the center (where the sun formed) and angular momentum (borne by a small fraction of the mass) toward the outer more distant regions of the disk. This evolution was accompanied by heating and a strong temperature contrast from the hot, inner regions to the cold, more remote parts of the disk. The resulting chemistry in the disk determined the initial distribution of organic matter in the planets; most of the reduced carbon species, in condensed form, were located beyond the asteroid belt (the 'outer' solar system). The Earth could have received much of its inventory of pre-biological material from comets and other icy fragments of the process of planetary formation in the outer solar system.

  1. COMPARING SYMBIOTIC NEBULAE AND PLANETARY NEBULAE LUMINOSITY FUNCTIONS

    SciTech Connect

    Frankowski, Adam; Soker, Noam E-mail: soker@physics.technion.ac.i

    2009-10-01

    We compare the observed symbiotic nebulae (SyN) luminosity function (SyNLF) in the [O III] lambda5007 A line to the planetary nebulae (PN) luminosity function (PNLF) and find that the intrinsic SyNLF (ISyNLF) of galactic SyNs has-within its uncertainty of 0.5-0.8 mag-very similar cutoff luminosity and general shape to those of the PNLF. The [O III]/(Halpha+[N II]) line ratios of SyNs and PNs are shown to be also related. Possible implications of these results for the universality of the PNLF are briefly outlined.

  2. The Formation of a Planetary Nebula.

    ERIC Educational Resources Information Center

    Harpaz, Amos

    1991-01-01

    Proposes a scenario to describe the formation of a planetary nebula, a cloud of gas surrounding a very hot compact star. Describes the nature of a planetary nebula, the number observed to date in the Milky Way Galaxy, and the results of research on a specific nebula. (MDH)

  3. Optical spectrum of the planetary nebula M 2-24

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Liu, X.-W.

    2003-06-01

    We have obtained medium-resolution, deep optical long-slit spectra of the bulge planetary nebula (PN) M 2-24. The spectrum covers the wavelength range from 3610-7330 Å. Over two hundred emission lines have been detected. The spectra show a variety of optical recombination lines (ORLs) from C, N, O and Ne ions. The diagnostic diagram shows significant density and temperature variations across the nebula. Our analysis suggests that the nebula has a dense central emission core. The nebula was thus studied by dividing it into two regions: 1) a high ionization region characterized by an electron temperature of Te=16 300 K and a density of log Ne(cm-3) = 6.3; and 2) a low ionization region represented by Te=11 400 K and log Ne(cm-3) = 3.7. A large number of ORLs from C, N, O and Ne ions have been used to determine the abundances of these elements relative to hydrogen. In general, the resultant abundances are found to be higher than the corresponding values deduced from collisionally excited lines (CELs). This bulge PN is found to have large enhancements in two alpha -elements, magnesium and neon. Full Table 2 is available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.126.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/545

  4. Contraction of the solar nebula

    NASA Astrophysics Data System (ADS)

    Rawal, J. J.

    1984-10-01

    The concept of Roche limit is applied to the Laplacian theory of the origin of the solar system to study the contraction of a spherical gas cloud (solar nebula). In the process of contraction of the solar nebula, it is assumed that the phenomenon of supersonic turbulent convection described by Prentice (1978) is operative. It is found that the radius of the contracting solar nebula follows Titius-Bode law Rp = R_sun; ap, where R_sun; is the radius of the present Sun and a = 1.442. The consequences of the relation are also discussed. The aim, here, is an attempt to explain, on the basis of the concept of Roche limit, the distribution of planets in the solar system and try to understand the physics underlying it.

  5. Forming Planets in the Hostile Carina Nebula

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    Can protoplanetary disks form and be maintained around low-mass stars in the harsh environment of a highly active, star-forming nebula? A recent study examines the Carina nebula to answer this question.Crowded ClustersStars are often born in clusters that contain both massive and low-mass stars. The most massive stars in these clusters emit far-ultraviolet and extreme-ultraviolet light that irradiates the region around them, turning the surrounding area into a hostile environment for potential planet formation.Planet formation from protoplanetary disks typically requires timescales of at least 12 million years. Could the harsh radiation from massive stars destroy the protoplanetary disks around low-mass stars by photoevaporation before planets even have a chance to form?Artists impression of a protoplanetary disk. Such disks can be photoevaporated by harsh ultraviolet light from nearby massive stars, causing the disk to be destroyed before planets have a chance to form within them. [ESO/L. Calada]Turning ALMA Toward CarinaA perfect case study for exploring hostile environments is the Carina nebula, located about 7500 lightyears away and home to nearly 100 O-type stars as well as tens of thousands of lower-mass young stars. The Carina population is ~14 Myr old: old enough to form planets within protoplanetary disks, but also old enough that photoevaporation could already have wreaked havoc on those disks.Due to the dense stellar populations in Carinas clusters, this is a difficult region to explore, but the Atacama Large Millimeter-submillimeter Array (ALMA) is up to the task. In a recent study, a team of scientists led by Adal Mesa-Delgado (Pontifical Catholic University of Chile) made use of ALMAs high spatial resolution to image four regions spaced throughout Carina, searching for protoplanetary disks.Detections and Non-DetectionsTwo evaporating gas globules in the Carina nebula, 104-593 and 105-600, that each contain a protoplanetary disk. The top panels are

  6. [Fe III] EMISSION LINES IN THE PLANETARY NEBULA NGC 2392

    SciTech Connect

    Zhang, Y.; Chau, W.; Hsia, C.-H.; Kwok, S.; Fang, X.; Liu, X.-W.; Koning, N.

    2012-07-20

    NGC 2392 is a young double-shell planetary nebula (PN). Its intrinsic structure and shaping mechanism are still not fully understood. In this paper we present new spectroscopic observations of NGC 2392. The slits were placed at two different locations to obtain the spectra of the inner and outer regions. Several [Fe III] lines are clearly detected in the inner region. We infer that NGC 2392 might have an intrinsic structure similar to the bipolar nebula Mz 3, which also exhibits a number of [Fe III] lines arising from the central regions. In this scenario, the inner and outer regions of NGC 2392 correspond to the inner lobes and the outer outflows of Mz 3, respectively. We construct a three-dimensional morpho-kinematic model to examine our hypothesis. We also compare the physical conditions and chemical composition of the inner and outer regions, and discuss the implications on the formation of this type of PN.

  7. Messier's nebulae and star clusters.

    NASA Astrophysics Data System (ADS)

    Jones, K. G.

    Charles Messier's Catalogue of nebulae and star clusters, published in 1784, marked the start of a new era of deep sky astronomy. Today, this tradition of observing galaxies and clusters is kept alive by serious amateur astronomers who study the objects of the deep sky. Nearly all the objects are visible in a small telescope. The author has revised his definitive version of Messier's Catalogue. His own observations and drawings, together with maps and diagrams, make this a valuable introduction to deep sky observing. Historical and astrophysical notes bring the science of these nebulae right up to date.

  8. DA 495: An Aging Pulsar Wind Nebula

    NASA Astrophysics Data System (ADS)

    Kothes, R.; Landecker, T. L.; Reich, W.; Safi-Harb, S.; Arzoumanian, Z.

    2008-11-01

    We present a radio continuum study of the pulsar wind nebula (PWN) DA 495 (G65.7+1.2), including images of total intensity and linear polarization from 408 to 10550 MHz based on the Canadian Galactic Plane Survey and observations with the Effelsberg 100 m Radio Telescope. Removal of flux density contributions from a superimposed H II region and from compact extragalactic sources reveals a break in the spectrum of DA 495 at 1.3 GHz, with a spectral index α = - 0.45 +/- 0.20 below the break and α = - 0.87 +/- 0.10 above it (Sν propto να). The spectral break is more than 3 times lower in frequency than the lowest break detected in any other PWN. The break in the spectrum is likely the result of synchrotron cooling, and DA 495, at an age of ~20,000 yr, may have evolved from an object similar to the Vela X nebula, with a similarly energetic pulsar. We find a magnetic field of ~1.3 mG inside the nebula. After correcting for the resulting high internal rotation measure, the magnetic field structure is quite simple, resembling the inner part of a dipole field projected onto the plane of the sky, although a toroidal component is likely also present. The dipole field axis, which should be parallel to the spin axis of the putative pulsar, lies at an angle of ~50° east of the north celestial pole and is pointing away from us toward the southwest. The upper limit for the radio surface brightness of any shell-type supernova remnant emission around DA 495 is Σ1GHz ~ 5.4 × 10-23 W m-2 Hz-1 sr-1 (assuming a radio spectral index of α = - 0.5), lower than the faintest shell-type remnant known to date.

  9. Binarity and the Abundance Discrepancy Problem in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Corradi, Romano L. M.; García-Rojas, Jorge; Jones, David; Rodríguez-Gil, Pablo

    2015-04-01

    The discrepancy between abundances computed using optical recombination lines and collisionally excited lines is a major unresolved problem in nebular astrophysics. Here, we show that the largest abundance discrepancies are reached in planetary nebulae with close binary central stars. We illustrate this using deep spectroscopy of three nebulae with a post common-envelope (CE) binary star. Abell 46 and Ou 5 have O2+/H+ abundance discrepancy factors larger than 50, and as high as 300 in the inner regions of Abell 46. Abell 63 has a smaller discrepancy factor around 10, which is still above the typical values in ionized nebulae. Our spectroscopic analysis supports previous conclusions that, in addition to “standard” hot ({{T}e} ˜ 104 K) gas, there exists a colder ({{T}e} ˜ 103 K), ionized component that is highly enriched in heavy elements. These nebulae have low ionized masses, between 10-3 and 10-1 M⊙ depending on the adopted electron densities and temperatures. Since the much more massive red giant envelope is expected to be entirely ejected in the CE phase, the currently observed nebulae would be produced much later, during post-CE mass loss episodes when the envelope has already dispersed. These observations add constraints to the abundance discrepancy problem. We revise possible explanations. Some explanations are naturally linked to binarity such as, for instance, high-metallicity nova ejecta, but it is difficult at this stage to depict an evolutionary scenario consistent with all of the observed properties. We also introduce the hypothesis that these nebulae are the result of tidal destruction, accretion, and ejection of Jupiter-like planets.

  10. A Self-Perpetuating Catalyst for the Production of Complex Organic Molecules in Protostellar Nebulae

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Johnson, N. M.

    2010-01-01

    The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. Many mechanisms may contribute to the total organic content in protostellar nebulae, ranging from organics formed via ion-molecule and atom-molecule reactions in the cold dark clouds from which such nebulae collapse, to similar ion-molecule and atom-molecule reactions in the dark regions of the nebula far from the proto star, to gas phase reactions in sub-nebulae around growing giant planets and in the nebulae themselves. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. The Haber-Bosch catalytic reduction of N2 by hydrogen was thought to produce the reduced nitrogen found in meteorites. However, the clean iron metal surfaces that catalyze these reactions are easily poisoned via reaction with any number of molecules, including the very same complex organics that they produce and both reactions work more efficiently in the hot regions of the nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Although none work as well as pure iron grains, and all produce a wide range of organic products rather than just pure methane, these materials are not truly catalysts.

  11. Preferrential Concentration of Particles in Protoplanetary Nebula Turbulence

    NASA Technical Reports Server (NTRS)

    Hartlep, Thomas; Cuzzi, Jeffrey N.

    2015-01-01

    Preferential concentration in turbulence is a process that causes inertial particles to cluster in regions of high strain (in-between high vorticity regions), with specifics depending on their stopping time or Stokes number. This process is thought to be of importance in various problems including cloud droplet formation and aerosol transport in the atmosphere, sprays, and also in the formation of asteroids and comets in protoplanetary nebulae. In protoplanetary nebulae, the initial accretion of primitive bodies from freely-floating particles remains a problematic subject. Traditional growth-by-sticking models encounter a formidable "meter-size barrier" [1] in turbulent nebulae. One scenario that can lead directly from independent nebula particulates to large objects, avoiding the problematic m-km size range, involves formation of dense clumps of aerodynamically selected, typically mm-size particles in protoplanetary turbulence. There is evidence that at least the ordinary chondrite parent bodies were initially composed entirely of a homogeneous mix of such particles generally known as "chondrules" [2]. Thus, while it is arcane, turbulent preferential concentration acting directly on chondrule size particles are worthy of deeper study. Here, we present the statistical determination of particle multiplier distributions from numerical simulations of particle-laden isotopic turbulence, and a cascade model for modeling turbulent concentration at lengthscales and Reynolds numbers not accessible by numerical simulations. We find that the multiplier distributions are scale dependent at the very largest scales but have scale-invariant properties under a particular variable normalization at smaller scales.

  12. Large-Scale Structure of the Carina Nebula.

    PubMed

    Smith; Egan; Carey; Price; Morse; Price

    2000-04-01

    Observations obtained with the Midcourse Space Experiment (MSX) satellite reveal for the first time the complex mid-infrared morphology of the entire Carina Nebula (NGC 3372). On the largest size scale of approximately 100 pc, the thermal infrared emission from the giant H ii region delineates one coherent structure: a (somewhat distorted) bipolar nebula with the major axis perpendicular to the Galactic plane. The Carina Nebula is usually described as an evolved H ii region that is no longer actively forming stars, clearing away the last vestiges of its natal molecular cloud. However, the MSX observations presented here reveal numerous embedded infrared sources that are good candidates for sites of current star formation. Several compact infrared sources are located at the heads of dust pillars or in dark globules behind ionization fronts. Because their morphology suggests a strong interaction with the peculiar collection of massive stars in the nebula, we speculate that these new infrared sources may be sites of triggered star formation in NGC 3372.

  13. Large-Scale Structure of the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Egan, Michael P.; Carey, Sean; Price, Stephan D.; Morse, Jon A.; Price, Paul A.

    2000-04-01

    Observations obtained with the Midcourse Space Experiment (MSX) satellite reveal for the first time the complex mid-infrared morphology of the entire Carina Nebula (NGC 3372). On the largest size scale of ~100 pc, the thermal infrared emission from the giant H II region delineates one coherent structure: a (somewhat distorted) bipolar nebula with the major axis perpendicular to the Galactic plane. The Carina Nebula is usually described as an evolved H II region that is no longer actively forming stars, clearing away the last vestiges of its natal molecular cloud. However, the MSX observations presented here reveal numerous embedded infrared sources that are good candidates for sites of current star formation. Several compact infrared sources are located at the heads of dust pillars or in dark globules behind ionization fronts. Because their morphology suggests a strong interaction with the peculiar collection of massive stars in the nebula, we speculate that these new infrared sources may be sites of triggered star formation in NGC 3372.

  14. Monitoring the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Reipurth, Bo

    The VYSOS (Variable Young Stars Optical Survey) project has at its disposal five small telescopes: a 5-inch and a 20-inch robotic optical imaging telescope in Hawaii funded by the NSF, and a 6-inch robotic optical imaging telescope, a 32-inch robotic infrared imaging telescope, and a 60-inch optical spectroscopic telescope in Chile, funded and operated from Germany. Through an agreement between the leaders of the two sites (B. Reipurth and R. Chini), it has been decided to devote a significant fraction of time on these facilities to a large Key Project, conducting a massive monitoring survey of the Orion Nebula Cluster. The vast data streams are being reduced through automated customized pipelines. The applicant seeks funding to employ a postdoc and an undergraduate assistant to work at the University of Hawaii and collaborate on the analysis of the data. Virtually all young stars are variable, with a wide range of amplitudes and characteristic timescales. This is mainly due to accretion shocks as material from circumstellar disks fall onto the stars along magnetic funnel flows, but also giant star spots, magnetic flares, occultations by orbiting dust condensations, and eclipses by companions can modulate the light from the nascent star. It is increasingly recognized that the rather static view of pre-main sequence evolution that has prevailed for many years is misleading, and that time-dependent phenomena may hold the key to an understanding of the way young stars grow and their circumstellar environments evolve. The VYSOS project is designed to bring sophisticated modern techniques to bear on the long neglected problem of variability in young solar type stars. To interpret the observations they will be compared to sophisticated MHD models of circumstellar disks around young stars. The Orion Nebula Cluster is the nearest rich region of star formation, and numerous, albeit heterogeneous, studies exist of the cluster members. The present study will provide the first

  15. A HYPERSPECTRAL VIEW OF THE CRAB NEBULA

    SciTech Connect

    Charlebois, M.; Drissen, L.; Bernier, A.-P.; Grandmont, F.; Binette, L. E-mail: ldrissen@phy.ulaval.c

    2010-05-15

    We have obtained spatially resolved spectra of the Crab nebula in the spectral ranges 450-520 nm and 650-680 nm, encompassing the H{beta}, [O III] {lambda}4959, {lambda}5007, H{alpha}, [N II] {lambda}6548, {lambda}6584, and [S II] {lambda}6717, {lambda}6731 emission lines, with the imaging Fourier transform spectrometer SpIOMM at the Observatoire du Mont-Megantic's 1.6 m telescope. We first compare our data with published observations obtained either from a Fabry-Perot interferometer or from a long-slit spectrograph. Using a spectral deconvolution technique similar to the one developed by Cadez et al., we identify and resolve multiple emission lines separated by large Doppler shifts and contained within the rapidly expanding filamentary structure of the Crab. This allows us to measure important line ratios, such as [N II]/H{alpha}, [S II]/H{alpha}, and [S II] {lambda}6717 /[S II] {lambda}6731 of individual filaments, providing a new insight on the SE-NW asymmetry in the Crab. From our analysis of the spatial distribution of the electronic density and of the respective shocked versus photoionized gas components, we deduce that the skin-less NW region must have evolved faster than the rest of the nebula. Assuming a very simple expansion model for the ejecta material, our data provide us with a complete tridimensional view of the Crab.

  16. The Eagle Nebula Science on NIF experiment

    NASA Astrophysics Data System (ADS)

    Kane, Jave; Heeter, Robert; Martinez, David; Pound, Marc; Remington, Bruce; Ryutov, Dmitri; Smalyuk, Vladimir

    2012-10-01

    The Eagle Nebula NIF experiment was one of nine selected for laser time through the Science on NIF program. The goal of this scale laboratory experiment is to study the dynamic evolution of distinctive structures in star forming regions of astrophysical molecular clouds such as the Pillars of the Eagle Nebula. That evolution is driven by photoionizing radiation from nearby stars. A critical aspect of the radiation is its very directional nature at the photoionization front. The long duration of the drive and its directionality can generate new classes of instabilities and dynamic flows at the front that may be responsible for the shapes of Pillars and other structures. The experiment will leverage and modify the existing NIF Radiation Transport platform, replacing the target at the back end of the halfraum with a collimating aperture, and extending the existing 20 ns drive to longer times, using a combination of gas fill and other new design features. The apertured, quasi-collimated drive will be used to drive a target placed 2 mm away from the aperture. The astrophysical background and the status of the experimental design will be presented.

  17. Optical line intensities in the Trifid nebula

    SciTech Connect

    Lynds, B.T.; Oneil, E.J. Jr.

    1985-07-01

    Observations of the Trifid nebula (M20) obtained in H-alpha; He I (587.6 nm); and the forbidden lines of N II (658.3 nm), S II (671.6 and 673 nm), O III (500.7 nm), and O II (272.6 and 372.9 nm) using either the CIT long-slit spectrograph or a direct-mode CCD with narrow-band interference filters on the 92-cm telescope at KPNO are reported. The data are presented in extensive graphs and characterized in detail and a model is proposed to explain the scattering measurements. Findings discussed include a single central O7 V star with Teff = about 37,500 K, a dusty plasma ionized by this star, mean nebular electron density 150/cu cm, a central hole of radius 0.2 times that of the ionized zone, dust extending beyond the ionized region, overall temperature 7000-8000 K, filament temperatures up to 9000 K, dust optical depth 1.5 at H-beta, dust albedo 0.5, emission-nebula radius 2.8 pc, and total mass about 1700 solar mass (comprising 340 solar mass ionized material, about 800 solar mass unionized cloud material, and about 600 solar mass in an outer dust sphere). 18 references.

  18. A Hyperspectral View of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Charlebois, M.; Drissen, L.; Bernier, A.-P.; Grandmont, F.; Binette, L.

    2010-05-01

    We have obtained spatially resolved spectra of the Crab nebula in the spectral ranges 450-520 nm and 650-680 nm, encompassing the Hβ, [O III] λ4959, λ5007, Hα, [N II] λ6548, λ6584, and [S II] λ6717, λ6731 emission lines, with the imaging Fourier transform spectrometer SpIOMM at the Observatoire du Mont-Mégantic's 1.6 m telescope. We first compare our data with published observations obtained either from a Fabry-Perot interferometer or from a long-slit spectrograph. Using a spectral deconvolution technique similar to the one developed by Čadež et al., we identify and resolve multiple emission lines separated by large Doppler shifts and contained within the rapidly expanding filamentary structure of the Crab. This allows us to measure important line ratios, such as [N II]/Hα, [S II]/Hα, and [S II] λ6717 /[S II] λ6731 of individual filaments, providing a new insight on the SE-NW asymmetry in the Crab. From our analysis of the spatial distribution of the electronic density and of the respective shocked versus photoionized gas components, we deduce that the skin-less NW region must have evolved faster than the rest of the nebula. Assuming a very simple expansion model for the ejecta material, our data provide us with a complete tridimensional view of the Crab.

  19. Abundances in photoionized nebulae of the Local Group and nucleosynthesis of intermediate mass stars

    NASA Astrophysics Data System (ADS)

    Maciel, W. J.; Costa, R. D. D.; Cavichia, O.

    2017-04-01

    Photoionized nebulae, comprising HII regions and planetary nebulae, are excellent laboratories to investigate the nucleosynthesis and chemical evolution of several elements in the Galaxy and other galaxies of the Local Group. Our purpose in this investigation is threefold: (i) compare the abundances of HII regions and planetary nebulae in each system in order to investigate the differences derived from the age and origin of these objects, (ii) compare the chemical evolution in different systems, such as the Milky Way, the Magellanic Clouds, and other galaxies of the Local Group, and (iii) investigate to what extent the nucleosynthesis contributions from the progenitor stars affect the observed abundances in planetary nebulae, which constrains the nucleosynthesis of intermediate mass stars. We show that all objects in the samples present similar trends concerning distance-independent correlations, and some constraints can be defined on the production of He and N by the PN progenitor stars.

  20. Multiple outflows in the planetary nebula NGC 6058

    NASA Astrophysics Data System (ADS)

    Guillén, P. F.; Vázquez, R.; Miranda, L. F.; Zavala, S.; Contreras, M. E.; Ayala, S.; Ortiz-Ambriz, A.

    2013-07-01

    We present narrow-band [O III]λ5007 and Hα images, as well as long-slit high-resolution echelle spectra of the planetary nebula NGC 6058. Our data reveal that NGC 6058 is a multipolar planetary nebula of ˜45 arcsec in extent that is formed by four bipolar outflows oriented at different position angles. Assuming homologous expansion for all the structures, and a distance of 3.5 kpc, we obtain polar velocities of ˜68 km s-1 for three of them. The estimated kinematical ages suggest that the three oldest outflows were ejected at intervals of ˜1100 and ˜400 yr, during which the ejection axis changed its orientation by ˜60° and ˜40°, respectively. Although an inner ring-like structure is suggested by the direct images, the kinematics shows that no equatorial ring or toroid exists in the nebula. On the contrary, the long-slit spectra reveal that the ring-like structure corresponds to a fourth outflow that is oriented almost perpendicular to the other three. This fourth outflow is the youngest one and appears to be interacting with the other three, creating a protruding zone that sweeps material in a region almost perpendicular to the major axes of the oldest outflows. This structure also presents two bright arcuate regions along the direction of the older outflows, and on opposite sides of the central star. From our model, we suggest that NGC 6058 could be at an intermediate evolutionary stage between starfish planetary nebulae and multipolar planetary nebula with apparent equatorial lobes.

  1. Spectral Classification of Central Stars of Bowshock Nebulae

    NASA Astrophysics Data System (ADS)

    Chick, William T.; Kobulnicky, Henry A.; Povich, Matthew S.; Dixon, Don; Lee, Daniel

    2017-01-01

    We present spectroscopic follow-up of bowshock-supporting stellar sources from our catalog of 709 bowshock nebula candidates using the 2.3m telescope at the Wyoming Infrared Observatory. We have collected optical spectra of 81 central stars of candidate nebulae which show that 71 of these nebulae are supported by massive early-type OB stars (88%). The remaining spectra may be explained as evolved descendants of massive stars, however our observations are unable to conclusively distinguish between dwarf and giant/supergiant evolutionary states. These results are in agreement with the accepted interpretation that bowshock nebulae are created by the interaction of strong stellar winds from massive stars with their surrounding interstellar medium where either the star is moving at a high peculiar velocity (estimated to be 77% of candidates in our catalog) or the star lies in an outflow of gas from a nearby photoevaporating molecular cloud (8%) or HII region (15%). This work is supported by the National Science Foundation under grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  2. New Proplyds, Outflows, Shocks, and a Reflection Nebula in M43 and the Outer Parts of the Orion Nebula

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.

    2001-11-01

    Hubble Space Telescope WFPC2 images made as planned parallel observations have produced emission-line images of fields in the outer portions of the Orion Nebula and near the center of the companion H II region, M43. Examination of these images have uncovered three new bright proplyds and one silhouette proplyd. Two of the bright proplyds lie within M43 and are photoionized by its central star, NU Ori. The new bright proplyd in the Orion Nebula shows a monopolar microjet, and analysis of its size and surface brightness indicates that it lies well in the foreground. Symmetric shocks indicate bipolar flow around the K8e star V1348 Ori (304-539) near θ2 Ori C. Evidence for multiple outflows from a source southeast of 036-927, well south of the bright bar feature of the nebula, is indicated. A bright reflection nebula was found around the B1.5 Vp star LP Ori (098-753). The form of this object indicates that this star is moving within the veil of neutral material that lies in front of M42. Based in part on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555.

  3. The planetary nebula NGC 6826

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.

    1981-01-01

    Monochromatic photographs have established the NGC 6826 nebula as the third member of a group of very rare triple-shell planetaries (Feibelman, 1971, 1974). Kaler (1974) also characterized NGC 6826 as a giant halo planetary. Numerous errors and confusing statements regarding its size, structure and stratification are discussed, and the correct dimensions of the nebula are reported: the inner ring is 12.7 arcsec x 8.7 arcsec (Feibelman, 1971); the outer ring is 27 arcsec x 24 arcsec according to Curtis (1918), 25.7 arcsec x 24.4 arcsec according to Feibelman (1971), and 36 arcsec x 36 arcsec according to Coleman et al. (1975). The halo measurements range in diameter from 110 arcsec (Duncan, 1937) to 130 arcsec (Kaler, 1974) to 142 arcsec (Millikan, 1974). Values for the distance of NGC 6826 range from 0.75-1.16 kpc (Cahn and Kaler, 1971) to 2.265 kpc (Cudworth, 1974).

  4. Formation of the protosolar nebula

    NASA Technical Reports Server (NTRS)

    Tscharnuter, Werner M.; Boss, Alan P.

    1991-01-01

    Theoretical models are discussed of the collapse of a dense molecular cloud core to form the protosolar nebula that produce the sun and the planet. The theoretical models use the equations of hydrodynamics, gravitation, and radiative transfer to follow the time evolution of a cloud collapsing under its own self-gravity. Both semi-analytical and fully numerical solutions (in two and three spatial dimensions) were calculated by several workers, One challenge is to find a set of initial conditions that will lead to the formation of a suitable protosolar nebula. Detailed results are shown for 2-D models, both with and without turbulent viscosity for redistributing angular momentum, and for 3-D models investigating the strength of gravitational torques associated with nonaxisymmetry produced during the collapse phase.

  5. Lyman Alpha Photochemistry in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1997-01-01

    The purpose of the project "Lyman Alpha Photochemistry in the Solar Nebula" was to model photochemistry in the primitive solar nebula and the early solar systems. As part of the modeling, it was necessary to model the composition of the gas and dust accreted by the solar nebula. This final report contains a list of publications where the results of this project have been published.

  6. Birth and early evolution of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.

    2000-06-01

    Birth and early evolution of planetary nebulae is described. The study of the young planetary nebula Hen 1357 (Stingray Nebula) with HST is discussed. The observed characteristics of few interesting PPNe and PNe are described. The presence of multiple arcs or rings, knots, jets, collimated and bipolar out flows and disks shows the complex nature of mass loss process during the AGB and post-AGB phases of evolution.

  7. The Orion nebula star cluster

    NASA Technical Reports Server (NTRS)

    Panek, R. J.

    1982-01-01

    Photography through filters which suppress nebular light reveal a clustering of faint red stars centered on the Trapezium, this evidences a distinct cluster within the larger OB1 association. Stars within about 20 ft of trapezium comprise the Orion Nebula star cluster are considered. Topics discussed re: (1) extinction by dust grains; (2) photometric peculiarities; (3) spectroscopic peculiarities; (4) young variables; (5) the distribution and motion of gas within the cluster.

  8. The western Veil nebula (Image)

    NASA Astrophysics Data System (ADS)

    Glenny, M.

    2009-12-01

    The western Veil nebula in Cygnus. 15-part mosaic by Mike Glenny, Gloucestershire, taken over several months mostly in the autumn of 2008. 200mm LX90/f10 autoguided, Meade UHC filter, 0.3xFR/FF, Canon 20Da DSLR. Exposures each typically 10x360 secs at ISO1600, processed in Registax4, PixInsight (for flat field correction) & Photoshop CS.

  9. A symmetric bipolar nebula around MWC 922.

    PubMed

    Tuthill, P G; Lloyd, J P

    2007-04-13

    We report regular and symmetric structure around dust-enshrouded Be star MWC 922 obtained with infrared imaging. Biconical lobes that appear nearly square in aspect, forming this "Red Square" nebula, are crossed by a series of rungs that terminate in bright knots or "vortices," and an equatorial dark band crossing the core delimits twin hyperbolic arcs. The intricate yet cleanly constructed forms that comprise the skeleton of the object argue for minimal perturbation from global turbulent or chaotic effects. We also report the presence of a linear comb structure, which may arise from optically projected shadows of a periodic feature in the inner regions, such as corrugations in the rim of a circumstellar disk. The sequence of nested polar rings draws comparison with the triple-ring system seen around the only naked-eye supernova in recent history: SN1987A.

  10. Radial Migration of Phyllosilicates in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Ciesla, F. J.; Lauretta, D. S.; Hood, L. L.

    2004-01-01

    It has long been recognized that the high temperatures of the inner solar nebula (within approx. 3 AU) would not have allowed water to be incorporated into solids. However, the presence of water on the surface of Earth, as well as evidence for it on the surface of an early Mars imply that water was incorporated into solid bodies in this region. How this water was delivered to the solid bodies has yet to be identified. In this abstract we explore the possibility that hydrous minerals, such as phyllosilicates, formed somewhere in the asteroid belt region of the solar nebula or beyond, and then migrated inward where they would be accreted into larger bodies.

  11. Detection of submillimeter polarization in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Hildebrand, R. H.; Dragovan, M.; Novak, G.

    1984-01-01

    Linear polarization of the submillimeter (270 micron) continuum radiation from two regions of Orion was observed: one centered on the Kleinmann-Low Nebula and one centered on the 400 micron peak 1.5' south of the nebula. The polarizations measured for these regions are P = (1.7 +/-0.4)% at phi = 23 deg +/-7 deg and P=(1.7 +/- 0.5)% at phi = 27 deg +/- 7 deg respectively. A 2(sigma) upper limit, P or = 1.6%, was found for the nebular W3(OH). The position angle at KL is orthogonal to that measured at 11 microns by Dyck and Beichman and at 11 and 20 microns by Knacke and Capps. The far-IR values for KL reported by Gull et. al. (approx 2%) and by Cudlip et al. (1 to 2% level) are consistent with the submillimeter results.

  12. Planetary nebulae near the Galactic Centre: chemical abundances

    NASA Astrophysics Data System (ADS)

    Cavichia, O.; Costa, R. D. D.; Maciel, W. J.; Mollá, M.

    2014-10-01

    In this work, we report physical parameters and abundances derived for a sample of high extinction planetary nebulae located in the Galactic bulge, near the Galactic Centre, based on low dispersion spectroscopy secured at the SOAR telescope using the Goodman spectrograph. The results show that the abundances of our sample are similar to those from other regions of the bulge. Nevertheless, the average abundances of the Galactic bulge do not follow the observed trend of the radial abundance gradient in the disk.

  13. ALMA OBSERVATIONS OF THE COLDEST PLACE IN THE UNIVERSE: THE BOOMERANG NEBULA

    SciTech Connect

    Sahai, R.; Vlemmings, W. H. T.; Huggins, P. J.; Nyman, L.-Å.; Gonidakis, I.

    2013-11-10

    The Boomerang Nebula is the coldest known object in the universe, and an extreme member of the class of pre-planetary nebulae, objects which represent a short-lived transitional phase between the asymptotic giant branch and planetary nebula evolutionary stages. Previous single-dish CO (J = 1-0) observations (with a 45'' beam) showed that the high-speed outflow in this object has cooled to a temperature significantly below the temperature of the cosmic background radiation. Here we report the first observations of the Boomerang Nebula with ALMA in the CO J = 2-1 and J = 1-0 lines to resolve the structure of this ultra-cold nebula. We find a central hourglass-shaped nebula surrounded by a patchy, but roughly round, cold high-velocity outflow. We compare the ALMA data with visible-light images obtained with the Hubble Space Telescope and confirm that the limb-brightened bipolar lobes seen in these data represent hollow cavities with dense walls of molecular gas and dust producing both the molecular-emission-line and scattered-light structures seen at millimeter and visible wavelengths. The large diffuse biconical shape of the nebula seen in the visible wavelength range is likely due to preferential illumination of the cold, high-velocity outflow. We find a compact source of millimeter-wave continuum in the nebular waist—these data, together with sensitive upper limits on the radio continuum using observations with ATCA, indicate the presence of a substantial mass of very large (millimeter-sized) grains in the waist of the nebula. Another unanticipated result is the detection of CO emission regions beyond the ultra-cold region which indicate the re-warming of the cold gas, most likely due to photoelectric grain heating.

  14. SCATTERED NEBULAR LIGHT IN THE EXTENDED ORION NEBULA

    SciTech Connect

    O'Dell, C. R.; Goss, W. M.

    2009-11-15

    We have combined 327.5 MHz radio observations and optical spectroscopy to study conditions in the Extended Orion Nebula (EON). We see a steady progression of characteristics with increasing distance from the dominant photoionizing star {theta}{sup 1}Ori C. This progression includes a decrease in the F(H{alpha})/F(H{beta}) ratio, an increase in the relative strength of scattered stellar continuum, decrease in electron density determined from the [S II] doublet, and increase in the ratio of emission measures derived from the H{beta} line and the 327.5 MHz radio continuum. We conclude that beyond about 5' south of {theta}{sup 1}Ori C that scattered light from the much brighter central Huygens region of the nebula significantly contaminates local emission. This strengthens earlier arguments that wavelength and model-dependent scattering of emission-line radiation imposes a fundamental limit on our ability to determine the physical conditions and abundances in this and arguably other similar Galactic Nebulae. The implications for the study of extragalactic H II regions are even more severe. We confirm the result of an earlier study that at least the eastern boundary of the EON is dominated by scattered light from the Huygens region.

  15. MULTIPLE GENERATIONS OF STARS IN THE TARANTULA NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In the most active starburst region in the local universe lies a cluster of brilliant, massive stars, known to astronomers as Hodge 301. Hodge 301, seen in the lower right hand corner of this image, lives inside the Tarantula Nebula in our galactic neighbor, the Large Magellanic Cloud. This star cluster is not the brightest, or youngest, or most populous star cluster in the Tarantula Nebula -- that honor goes to the spectacular R136. In fact, Hodge 301 is almost 10 times older than the young cluster R136. But age has its advantages; many of the stars in Hodge 301 are so old that they have exploded as supernovae. These exploded stars are blasting material out into the surrounding region at speeds of almost 200 miles per second. This high speed ejecta are plowing into the surrounding Tarantula Nebula, shocking and compressing the gas into a multitude of sheets and filaments, seen in the upper left portion of the picture. Note for your calendar; Hodge 301 contains three red supergiants - stars that are close to the end of their evolution and are about to go supernova, exploding and sending more shocks into the Tarantula. Also present near the center of the image are small, dense gas globules and dust columns where new stars are being formed today, as part of the overall ongoing star formation throughout the Tarantula region. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  16. ISO Spectroscopy of Proto-Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Hrivnak, Bruce J.

    2000-01-01

    The goal of this program was to determine the chemical properties of the dust shells around protoplanetary nebulae (PPNs) through a study of their short-wavelength (6-45 micron) infrared spectra. PPNs are evolved stars in transition from the asymptotic giant branch to the planetary nebula stages. Spectral features in the 10 to 20 gm region indicate the chemical nature (oxygen- or carbon-rich), and the strengths of the features relate to the physical properties of the shells. A few bright carbon-rich PPNs have been observed to show PAH features and an unidentified 21 micron emission feature. We used the Infrared Space Observatory (ISO) to observe a sample of IRAS sources that have the expected properties of PPNs and for which we have accurate positions. Some of these have optical counterparts (proposal SWSPPN01) and some do not (SWSPPN02). We had previously observed these from the ground with near-infrared photometry and, for those with visible counterparts, visible photometry and spectroscopy, which we have combined with these new ISO data in the interpretation of the spectra. We have completed a study of the unidentified emission feature at 21 micron in eight sources. We find the shape of the feature to be the same in all of the sources, with no evidence of any substructure. The ratio of the emission peak to continuum ranges from 0.13 to 1.30. We have completed a study of seven PPNs and two other carbon-rich objects for which we had obtained ISO 2-45 micron observations. The unidentified emission features at 21 and 30 micron were detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature was resolved and found to consist of a broad feature peaking at 27.2 micron (the "30 micron" feature) and a narrower feature peaking at 25.5 micron (the "26 micron" feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229+6208 and 16594-4656. The unidentified

  17. Interstellar Organics, the Solar Nebula, and Saturn's Satellite Phoebe

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.; Cruikshank, Dale P.

    2014-01-01

    The diffuse interstellar medium inventory of organic material (Pendleton et al. 1994, Pe 2002) was likely incorporated into the molecular cloud in which the solar nebula condensed. This provided the feedstock for the fo planets, and the smaller icy bodies in the region outside Neptune's orbit (transneptunian objects, or TNOs). Saturn's satellites Phoeb open a window to the composition of one class of TNO as revealed by the near-infrared mapping spectrometer (VIMS) on the Cass Phoebe (mean diameter 213 km) is a former TNO now orbiting Saturn. VIMS spectral maps of Phoebe's surface reveal a complex consisting of prominent aromatic (CH) and aliphatic hydrocarbon (CH2, CH3) absorption bands (3.2-3.6 µm). Phoebe is the source encircling Saturn, and from which particles (5-20 µm size) spiral inward toward Saturn. They encounter Iapetus and Hyperion wh blanket the native H2O ice of those two bodies. Quantitative analysis of the hydrocarbon bands on Iapetus demonstrates that aroma abundant as aliphatic CH2+CH3, significantly exceeding the strength of the aromatic signature in interplanetary dust particles, com carbonaceous meteorites (Cruikshank et al. 2013). A similar excess of aromatics over aliphatics is seen in the qualitative analysis o itself (Dalle Ore et al. 2012). The Iapetus aliphatic hydrocarbons show CH2/CH3 4, which is larger than the value found in the di as Phoebe is a primitive body that formed in the outer regions of the solar nebula and has preserved some of the original nebula inv understanding the content and degree of processing of that nebular material. There are other Phoebe-like TNOs that are presently b in the organic spectral region, but JWST will open that possibility for a number of objects. We now need to explore and understand organic-bearing Solar System material to the solar nebula and the inventory of ISM materials incorporated therein.

  18. The Spatial Distribution of Carbon Dust in the Early Solar Nebula and the Carbon Content of Planetesimals

    NASA Astrophysics Data System (ADS)

    Gail, H.-P.; Trieloff, M.

    2016-08-01

    The oxidation and pyrolysis processes in the chemically active regions of the Solar Nebula are considered that are responsible for the destruction of the pristine carbon inherited from the ISM and its conversion to hydrocarbons and ultimately to CO.

  19. Using Planetary Nebulae to Teach Physics

    NASA Astrophysics Data System (ADS)

    Kwitter, Karen B.

    2011-05-01

    We have developed an interactive website, "Gallery of Planetary Nebula Spectra," (www.williams.edu/Astronomy/research/PN/nebulae/) that contains high-quality optical-to-near-infrared spectra, atlas information, and bibliographic references for more than 160 planetary nebulae that we have observed in the Milky Way Galaxy. To make the material more accessible to students, I have created three undergraduate-level exercises that explore physics-related aspects of planetary nebulae. "Emission Lines and Central Star Temperature” uses the presence or absence of emission lines from species with different ionization potentials to rank the temperatures of the exciting stars in a selection of nebulae. "Interstellar Reddening” uses the observed Balmer decrement in a sample of planetary nebulae at different Galactic latitudes to infer the distribution of interstellar dust in the Milky Way. Finally, "Determining the Gas Density in Planetary Nebulae,” which I will focus on here, uses the observed intensity ratio of the 6717 Å and 6731 Å emission lines from singly ionized sulfur to determine the electron density in the nebular gas. These exercises demonstrate that planetary nebula spectra are useful real-world examples illustrating a variety of physical principles, including the behavior of blackbodies, wavelength-dependent particle scattering, recombination-line ratios, atomic physics, and statistical mechanics.

  20. The Orion Nebula in the Far-Infrared: FIFI-LS/SOFIA Mapped the PDR

    NASA Astrophysics Data System (ADS)

    Klein, Randolf

    2016-01-01

    The Orion Nebula is the closest massive star forming region allowing us to study the physical conditions in such a region with high spatial resolution. We used the far infrared integral-field spectrometer, FIFI-LS, on-board the airborne observatory SOFIA to study the atomic and molecular gas in the Orion Nebula at medium spectral resolution. The large maps in several fine structure lines obtained with FIFI-LS cover the nebula from the BN/KL-object in the west to the bar in the south-east and gull feature in north-east. The fine structure lines can be used as a diagnostic for the physical conditions of the photon-dominated region (PDR), the interface between the HII-region and the molecular cloud.

  1. A Smoking Gun in the Carina Nebula

    NASA Technical Reports Server (NTRS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Petre, Rob; Chu, You-Hua

    2009-01-01

    The Carina Nebula is one of thc youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for approx.30 years. The soft X-ray spectrum. consistent with kT approx.130 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicate that it is a, approx. 10(exp 6)-year-old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitor of the neutron star and massive stars in the Carina Nebula, in particular (eta)Car, are coeval. This result demonstrates that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star would be responsible for remnants of high energy activity seen in multiple wavelengths.

  2. A Smoking Gun in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Strohmayer, Tod; Petre, Rob; Chu, You-Hua

    2009-04-01

    The Carina Nebula is one of the youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for ~30 years. The soft X-ray spectrum, consistent with kT ~ 128 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicates that it is a ~106 year old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitors of the neutron star and massive stars in the Carina Nebula, in particular η Car, are coeval. This result suggests that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star may be responsible for remnants of high-energy activity seen in multiple wavelengths.

  3. Gamma-ray flares from the Crab Nebula.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Allafort, A; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Brandt, T J; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Çelik, Ö; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Costamante, L; Cutini, S; D'Ammando, F; Dermer, C D; de Angelis, A; de Luca, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guiriec, S; Hadasch, D; Hanabata, Y; Harding, A K; Hayashi, K; Hayashida, M; Hays, E; Horan, D; Itoh, R; Jóhannesson, G; Johnson, A S; Johnson, T J; Khangulyan, D; Kamae, T; Katagiri, H; Kataoka, J; Kerr, M; Knödlseder, J; Kuss, M; Lande, J; Latronico, L; Lee, S-H; Lemoine-Goumard, M; Longo, F; Loparco, F; Lubrano, P; Madejski, G M; Makeev, A; Marelli, M; Mazziotta, M N; McEnery, J E; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nakamori, T; Naumann-Godo, M; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Ormes, J F; Ozaki, M; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Ray, P S; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Romani, R W; Sadrozinski, H F-W; Sanchez, D; Saz Parkinson, P M; Scargle, J D; Schalk, T L; Sgrò, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Uchiyama, Y; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Wang, P; Wood, K S; Yang, Z; Ziegler, M

    2011-02-11

    A young and energetic pulsar powers the well-known Crab Nebula. Here, we describe two separate gamma-ray (photon energy greater than 100 mega-electron volts) flares from this source detected by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The first flare occurred in February 2009 and lasted approximately 16 days. The second flare was detected in September 2010 and lasted approximately 4 days. During these outbursts, the gamma-ray flux from the nebula increased by factors of four and six, respectively. The brevity of the flares implies that the gamma rays were emitted via synchrotron radiation from peta-electron-volt (10(15) electron volts) electrons in a region smaller than 1.4 × 10(-2) parsecs. These are the highest-energy particles that can be associated with a discrete astronomical source, and they pose challenges to particle acceleration theory.

  4. The peculiar planetary nebula 75+35 deg 1

    NASA Astrophysics Data System (ADS)

    Feibelman, Walter A.

    1987-04-01

    The high galactic latitude planetary nebula 75+35°1 was observed in the low-dispersion mode of the IUE. The UV spectrum is characterized by a strong continuum that matches the energy distribution of a blackbody curve of 90,000K±5000K. A color temperature of 94,000K±4000K is derived. The spectral type mimics that of an O7.5 V star. A very strong N V λ1240 feature with a P Cygni profile is present. There is no trace of C III] λ1909 which is usually the strongest emission line in planetary nebulae. A very slight depression in the λ2200 region suggests very little interstellar absorption with an upper limit of E(B-V) = 0.025 mag, as would be expected for a high galactic latitude object. The ultraviolet observations, in context with the optical data, indicate that this object is not a typical planetary.

  5. Magellanic cloud planetary nebula with suspected strong forbidden iron lines

    PubMed Central

    Aller, L. H.; Czyzak, S. J.

    1983-01-01

    The relatively high-excitation nebula (Westerlund-Smith object 25) in the large Magellanic cloud shows prominent forbidden lines of [Ar IV], the close [Ne IV] pair λ4724, 4726, [Ca V] λ5309, [Fe V] λ4227, and probably [Fe VI] and [Fe VII], as well. A conventional interpretation of observations secured with a vidicon detector at the Cerro Tololo 4-m telescopes indicates an essentially “normal” helium abundance but depletions of N, O, Ne, and other elements with respect to our own galaxy. When a comparison is made with diffuse nebulae or H II regions in the large Magellanic cloud, we find helium to be more abundant, oxygen to be depleted, and nitrogen, neon, and argon to be comparable. The abundance of sulfur is uncertain. Iron in the gaseous phase is certainly more plentiful than in conventional planetaries. PMID:16593294

  6. EXTERNAL PHOTOEVAPORATION OF THE SOLAR NEBULA: JUPITER's NOBLE GAS ENRICHMENTS

    SciTech Connect

    Monga, Nikhil; Desch, Steven

    2015-01-01

    We present a model explaining the elemental enrichments in Jupiter's atmosphere, particularly the noble gases Ar, Kr, and Xe. While He, Ne, and O are depleted, seven other elements show similar enrichments (∼3 times solar, relative to H). Being volatile, Ar is difficult to fractionate from H{sub 2}. We argue that external photoevaporation by far-ultraviolet (FUV) radiation from nearby massive stars removed H{sub 2}, He, and Ne from the solar nebula, but Ar and other species were retained because photoevaporation occurred at large heliocentric distances where temperatures were cold enough (≲ 30 K) to trap them in amorphous water ice. As the solar nebula lost H, it became relatively and uniformly enriched in other species. Our model improves on the similar model of Guillot and Hueso. We recognize that cold temperatures alone do not trap volatiles; continuous water vapor production is also necessary. We demonstrate that FUV fluxes that photoevaporated the disk generated sufficient water vapor in regions ≲ 30 K to trap gas-phase species in amorphous water ice in solar proportions. We find more efficient chemical fractionation in the outer disk: whereas the model of Guillot and Hueso predicts a factor of three enrichment when only <2% of the disk mass remains, we find the same enrichments when 30% of the disk mass remains. Finally, we predict the presence of ∼0.1 M {sub ⊕} of water vapor in the outer solar nebula and protoplanetary disks in H II regions.

  7. Astrophysics and the solar nebula

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph; Duley, Walter; Goebel, John; Greenberg, J. Mayo; Kerridge, John; Lin, Douglas; Mackinnon, Ian; Rietmeijer, Frans; Stephens, John; Tomasko, Martin; Nuth, Joseph

    1987-01-01

    The following types of experiments for a proposed Space Station Microgravity Particle Research Facility are described: (1) nucleation of refractory vapors at low pressure/high temperature; (2) coagulation of refractory grains; (3) optical properties of refractory grains; (4) mantle growth on refractory cores; (5) coagulation of core-mantle grains; (6) optical properties of core-mantle grains; (7) lightning strokes in the primitive solar nebula; and (8) separation of dust from a grain/gas mixture that interacts with a meter-sized planetesimal to determine if accretion occurs. The required capabilities and desired hardware for the facility are detailed.

  8. EXTENDED HARD X-RAY EMISSION FROM THE VELA PULSAR WIND NEBULA

    SciTech Connect

    Mattana, F.; Terrier, R.; Zurita Heras, J. A.; Goetz, D.; Caballero, I.; Soldi, S.; Schanne, S.; Ponti, G.; Falanga, M.; Renaud, M.

    2011-12-10

    The nebula powered by the Vela pulsar is one of the best examples of an evolved pulsar wind nebula, allowing access to the particle injection history and the interaction with the supernova ejecta. We report on the INTEGRAL discovery of extended emission above 18 keV from the Vela nebula. The northern side has no known counterparts and it appears larger and more significant than the southern one, which is in turn partially coincident with the cocoon, the soft X-ray, and TeV filament toward the center of the remnant. We also present the spectrum of the Vela nebula in the 18-400 keV energy range as measured by IBIS/ISGRI and SPI on board the INTEGRAL satellite. The apparent discrepancy between IBIS/ISGRI, SPI, and previous measurements is understood in terms of the point-spread function, supporting the hypothesis of a nebula more diffuse than previously thought. A break at {approx}25 keV is found in the spectrum within 6' from the pulsar after including the Suzaku XIS data. Interpreted as a cooling break, this points out that the inner nebula is composed of electrons injected in the last {approx}2000 years. Broadband modeling also implies a magnetic field higher than 10 {mu}G in this region. Finally, we discuss the nature of the northern emission, which might be due to fresh particles injected after the passage of the reverse shock.

  9. Observations of the planetary nebula RWT 152 with OSIRIS/GTC

    NASA Astrophysics Data System (ADS)

    Aller, A.; Miranda, L. F.; Olguín, L.; Solano, E.; Ulla, A.

    2016-11-01

    RWT 152 is one of the few known planetary nebulae with an sdO central star. We present subarcsecond red tunable filter Hα imaging and intermediate-resolution, long-slit spectroscopy of RWT 152 obtained with OSIRIS/GTC (Optical System for Imaging and low-Intermediate-Resolution Integrated Spectroscopy/Gran Telescopio Canarias) with the goal of analysing its properties. The Hα image reveals a bipolar nebula with a bright equatorial region and multiple bubbles in the main lobes. A faint circular halo surrounds the main nebula. The nebular spectra reveal a very low excitation nebula with weak emission lines from H+, He+ and double-ionized metals, and absence of emission lines from neutral and single-ionized metals, except for an extremely faint [N II] λ6584 emission line. These spectra may be explained if RWT 152 is a density-bounded planetary nebula. Low nebular chemical abundances of S, O, Ar, N and Ne are obtained in RWT 152, which, together with the derived high peculiar velocity (˜ 92-131 km s-1), indicate that this object is a halo planetary nebula. The available data are consistent with RWT 152 evolving from a low-mass progenitor (˜1 M⊙) formed in a metal-poor environment.

  10. Anatomy of the Photodissociation Region in the Orion Bar

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Meixner, M. M.; vanderWerf, P. P.; Bregman, J.; Tauber, J. A.; Stutzki, J.; Rank, D.

    1993-01-01

    Much of the interstellar gas resides in photodissociation regions whose chemistry and energy balance is controlled by the flux of far-ultraviolet radiation upon them. These photons can ionize and dissociate molecules and heat the gas through the photoelectric effect working on dust grains. These regions have been extensively modeled theoretically, but detailed observational studies are few. Mapping of the prominent Orion Bar photo-dissociation region at wavelengths corresponding to the carbon-hydrogen stretching mode of polycyclic aromatic hydrocarbons, the 1-0 S(l) line of molecular hydrogen, and the J = 1-0 rotational line of carbon monoxide allows the penetration of the far-ultraviolet radiation into the cloud to be traced. The results strongly support the theoretical models and show conclusively that the incident far-ultraviolet radiation field, not shocks as has sometimes been proposed, is responsible for the emission in the Orion Bar.

  11. Submillimeter Observations of the 30 Doradus Nebula

    NASA Astrophysics Data System (ADS)

    Kim, S.

    2007-06-01

    We present a mid-J CO emission line study of the largest H II complex, the 30 Doradus nebula in the Large Magellanic Cloud (LMC). This is the most luminous example of a starburst region in the Local Group. We have searched for 12CO J=7→6 emission towards the 30 Doradus complex with the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO), located at 2847 m above mean sea level at the Amundsen-Scott South Pole Station. As a result we have detected a 12CO J=7→6 emitting cloud near the 30 Doradus complex. The 12CO J=7→6/12CO J=4→3 line temperature ratio in this region is approximately a factor of two higher than that observed near the Sgr B2 complex. A radiative transfer calculation using the line ratios shows that the core of massive star formation in the LMC is much warmer and denser than that of the Milky Way region.

  12. Theory of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Bucciantini, N.

    2008-02-01

    Our understanding of Pulsar Wind Nebulae (PWNe), has greatly improved in the last years thanks to unprecedented high resolution images taken from the HUBBLE, CHANDRA and XMM satellites. The discovery of complex but similar inner features, with the presence of unexpected axisymmetric rings and jets, has prompted a new investigation into the dynamics of the interaction of the pulsar winds with the surrounding SNR, which, thanks to the improvement in the computational resources, has let to a better understanding of the properties of these objects. On the other hand the discovery of non-thermal emission from bow shock PWNe, and of systems with a complex interaction between pulsar and SNR, has led to the development of more reliable evolutionary models. I will review the standard theory of PWNe, their evolution, and the current status in the modeling of their emission properties, in particular I will show that our evolutionary models are able to describe the observations, and that the X-ray emission can now be reproduced with sufficient accuracy, to the point that we can use these nebulae to investigate fundamental issues as the properties of relativistic outflows and particle acceleration.

  13. Reconstruction and visualization of planetary nebulae.

    PubMed

    Magnor, Marcus; Kindlmann, Gordon; Hansen, Charles; Duric, Neb

    2005-01-01

    From our terrestrially confined viewpoint, the actual three-dimensional shape of distant astronomical objects is, in general, very challenging to determine. For one class of astronomical objects, however, spatial structure can be recovered from conventional 2D images alone. So-called planetary nebulae (PNe) exhibit pronounced symmetry characteristics that come about due to fundamental physical processes. Making use of this symmetry constraint, we present a technique to automatically recover the axisymmetric structure of many planetary nebulae from photographs. With GPU-based volume rendering driving a nonlinear optimization, we estimate the nebula's local emission density as a function of its radial and axial coordinates and we recover the orientation of the nebula relative to Earth. The optimization refines the nebula model and its orientation by minimizing the differences between the rendered image and the original astronomical image. The resulting model allows creating realistic 3D visualizations of these nebulae, for example, for planetarium shows and other educational purposes. In addition, the recovered spatial distribution of the emissive gas can help astrophysicists gain deeper insight into the formation processes of planetary nebulae.

  14. HUBBLE CAPTURES DYNAMICS OF CRAB NEBULA (color)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new sequence of Hubble Space Telescope images of the remnant of a tremendous stellar explosion is giving astronomers a remarkable look at the dynamic relationship between the tiny Crab Pulsar and the vast nebula that it powers. This colorful photo shows a ground-based image of the entire Crab Nebula, the remnant of a supernova explosion witnessed over 900 years ago. The nebula, which is 10 light-years across, is located 7,000 light-years away in the constellation Taurus. The green, yellow and red filaments concentrated toward the edges of the nebula are remnants of the star that were ejected into space by the explosion. At the center of the Crab Nebula lies the Crab Pulsar -- the collapsed core of the exploded star. The Crab Pulsar is a rapidly rotating neutron star -- an object only about six miles across, but containing more mass than our Sun. As it rotates at a rate of 30 times per second the Crab Pulsar's powerful magnetic field sweeps around, accelerating particles, and whipping them out into the nebula at speeds close to that of light. The blue glow in the inner part of the nebula -- light emitted by energetic electrons as they spiral through the Crab's magnetic field -- is powered by the Crab Pulsar. Credit: Jeff Hester and Paul Scowen (Arizona State University), and NASA

  15. Processing NASA Earth Science Data on Nebula Cloud

    NASA Technical Reports Server (NTRS)

    Chen, Aijun; Pham, Long; Kempler, Steven

    2012-01-01

    Three applications were successfully migrated to Nebula, including S4PM, AIRS L1/L2 algorithms, and Giovanni MAPSS. Nebula has some advantages compared with local machines (e.g. performance, cost, scalability, bundling, etc.). Nebula still faces some challenges (e.g. stability, object storage, networking, etc.). Migrating applications to Nebula is feasible but time consuming. Lessons learned from our Nebula experience will benefit future Cloud Computing efforts at GES DISC.

  16. THE ROTTEN EGG NEBULA A PLANETARY NEBULA IN THE MAKING

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The object shown in these NASA/ESA Hubble Space Telescope images is a remarkable example of a star going through death throes just as it dramatically transforms itself from a normal red giant star into a planetary nebula. This process happens so quickly that such objects are quite rare, even though astronomers believe that most stars like the Sun will eventually go through such a phase. This star, with the prosaic name of OH231.8+4.2, is seen in these infrared pictures blowing out gas and dust in two opposite directions. So much dust has been cast off and now surrounds the star that it cannot be seen directly, only its starlight that is reflected off the dust. The flow of gas is very fast, with a velocity up to 450,000 mph (700,000 km/h). With extreme clarity, these Hubble Near Infrared Camera and Multi-Object Spectrometer (NICMOS) images reveal that the fast-moving gas and dust are being collimated into several thin streamers (on the right) and a jet-like structure (on the left), which can be seen extending away from the centers of both pictures. On the right, wisps of material in jet-like streamers appear to strike some dense blobs of gas. This interaction must produce strong shock waves in the gas. The pictures represent two views of the object. The color image is a composite of four images taken with different NICMOS infrared filters on March 28, 1998. It shows that the physical properties of the material, both composition and temperature, vary significantly throughout the outflowing material. The black-and-white image was taken with one NICMOS infrared filter. That image is able to show more clearly the faint detail and structure in the nebula than can be achieved with the color composites. Observations by radio astronomers have found many unusual molecules in the gas around this star, including many containing sulfur, such as hydrogen sulfide and sulfur dioxide. These sulfur compounds are believed to be produced in the shock waves passing through the gas

  17. Mixing and Transport in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    2003-01-01

    models of marginally gravitationally unstable disks to study the preservation of isotopic heterogeneity in evolving protoplanetary disks. Such heterogeneity might arise from the infall onto the disk s surface of solids processed in the X-wind region of the disk, or derived from stellar nucleosynthesis and injected by R-T fingers. The technique used consists of solving a color equation, identical to the gas continuity equation, which follows the time evolution in three space dimensions of an arbitrarily placed initial color field, i.e., a dye inserted the disk. The models show that significant concentrations of color could persist for time periods of about a thousand years or more, even in the most dynamically active region of such a disk. Such a time period might be long enough for solids to coagulate and grow to significant sizes while retaining the isotopic signature of their birth region in the nebula.

  18. Far-ultraviolet imagery of the Barnard Loop Nebula

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.

    1977-01-01

    An electrographic Schmidt camera carried on a sounding rocket has yielded far-ultraviolet (1050-2000 A and 1230-2000 A) images of the Barnard Loop Nebula and of the general background in the Orion region due to scattering of ultraviolet starlight by interstellar dust particles. The total intensity in the Barnard Loop region agrees well with OAO-2 measurements, but the discrete Loop structure contributes only some 15% of the total. The measurements are consistent with a relatively high albedo for the dust grains in the far-ultraviolet.

  19. Millimeter-wave molecular line observations of the Tornado nebula

    SciTech Connect

    Sakai, D.; Oka, T.; Tanaka, K.; Matsumura, S.; Miura, K.; Takekawa, S.

    2014-08-10

    We report the results of millimeter-wave molecular line observations of the Tornado Nebula (G357.7-0.1), which is a bright radio source behind the Galactic center region. A 15' × 15' area was mapped in the J = 1-0 lines of CO, {sup 13}CO, and HCO{sup +} with the Nobeyama Radio Observatory 45 m telescope. The Very Large Array archival data of OH at 1720 MHz were also reanalyzed. We found two molecular clouds with separate velocities, V{sub LSR} = –14 km s{sup –1} and +5 km s{sup –1}. These clouds show rough spatial anti-correlation. Both clouds are associated with OH 1720 MHz emissions in the area overlapping with the Tornado Nebula. The spatial and velocity coincidence indicates violent interaction between the clouds and the Tornado Nebula. Modestly excited gas prefers the position of the Tornado 'head' in the –14 km s{sup –1} cloud, also suggesting the interaction. Virial analysis shows that the +5 km s{sup –1} cloud is more tightly bound by self-gravity than the –14 km s{sup –1} cloud. We propose a formation scenario for the Tornado Nebula; the +5 km s{sup –1} cloud collided into the –14 km s{sup –1} cloud, generating a high-density layer behind the shock front, which activates a putative compact object by Bondi-Hoyle-Lyttleton accretion to eject a pair of bipolar jets.

  20. H2 in low-ionization structures of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Akras, Stavros; Gonçalves, Denise R.; Ramos-Larios, Gerardo

    2017-02-01

    We report the detection of near-IR H2 emission from the low-ionization structures (knots) in two planetary nebulae. The deepest ever high-angular-resolution H2 (1-0) S(1) at 2.122 μm, H2 (2-1) S(1) at 2.248 μm and Brγ images of K 4-47 and NGC 7662, obtained using the Near InfraRed Imager and Spectrometer (NIRI) at Gemini-North, are analysed here. K 4-47 reveals a remarkable highly collimated bipolar structure not only in the optical but also in the molecular hydrogen emission. The H2 emission emanates from the walls of the bipolar outflows and also from the pair of knots at the tip of the outflows. The H2 (1-0) S(1)/(2-1) S(1) line ratio ranges from ∼7 to ∼10, suggesting the presence of shock interactions. Our findings can be explained by the interaction of a jet/bullet ejected from the central star with the surrounding asymptotic giant branch material. The strongest H2 line, (1-0) S(1), is also detected in several low-ionization knots located at the periphery of the elliptical planetary nebula NGC 7662, but only four of these knots are detected in the H2 (2-1) S(1) line. These four knots exhibit an H2 line ratio between 2 and 3.5, which suggests that the emission is caused by the UV ionizing flux of the central star. Our data confirm the presence of H2 gas in both fast- and slow-moving low-ionization knots, which has only been confirmed before in the nearby Helix nebula and Hu 1-2. Overall, the low-ionization structures of planetary nebulae are found to have similar traits to photodissociation regions.

  1. Runaway stars in the Gum Nebula

    NASA Technical Reports Server (NTRS)

    Got, J. R., III; Ostriker, J. P.

    1971-01-01

    It is proposed that the two pulsars PSR 0833-45 (the Vela pulsar) and MP 0835 are runaways from a common binary system originally located in the B association around gamma Velorum. Arguments are presented for a simple model of the Gum nebula in which two distinct ionized regions are present. The first consists of the Stromgren spheres of gamma Velorum and zeta Puppis, while the second is a larger, more filamentary region ionized by the supernova explosion associated with PSR 0833-45. Using this model and the available dispersion measures, the distances to the two pulsars were estimated and found to be compatible with a runaway origin. The position angle of the rotation axis of PSR 0833-45 is also compatible with this origin. The masses of the parent stars of the two pulsars can be deduced from the runaway star dynamics and an assumed age for MP 0835. It is concluded that the masses were in excess of 10 solar masses. The dynamically-determined parent star masses are in agreement with the values expected for evolved members of the B association around gamma Velorum.

  2. Eagle Nebula Flaunts its Infrared Feathers

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Figure 1 [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2 Figure 3

    This set of images from NASA's Spitzer Space Telescope shows the Eagle nebula in different hues of infrared light. Each view tells a different tale. The left picture shows lots of stars and dusty structures with clarity. Dusty molecules found on Earth called polycyclic aromatic hydrocarbons produce most of the red; gas is green and stars are blue.

    The middle view is packed with drama, because it tells astronomers that a star in this region violently erupted, or went supernova, heating surrounding dust (orange). This view also reveals that the hot dust is shell shaped, another indication that a star exploded.

    The final picture highlights the contrast between the hot, supernova-heated dust (green) and the cooler dust making up the region's dusty star-forming clouds and towers (red, blue and purple).

    The left image is a composite of infrared light with the following wavelengths: 3.6 microns (blue); 4.5 microns (green); 5.8 microns (orange); and 8 microns (red). The right image includes longer infrared wavelengths, and is a composite of light of 4.5 to 8.0 microns (blue); 24 microns (green); and 70 microns (red). The middle image is made up solely of 24-micron light.

  3. The spectrophotometry and chemical composition of the oxygen-poor bipolar nebula NGC 6164-5

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.; Parker, Robert A. R.; Henize, Karl G.

    1988-01-01

    The paper presents new ground-based and IUE spectrophotometry of several positions in NGC 6164-5 surrounding the Population I Of star HD 148937. Electron temperatures, densities, and abundances are derived for the various positions in the nebula using spectral line information. For all of the regions observed, Ne/H is depleted by an amount comparable to O/H, while S/H and Ar/H have normal values. The results suggest that the nebula consists partly of material ejected from inner shell-burning regions of the Of star. In effect, HD 148937 is older and more advanced than what was previously thought.

  4. Signatures of Chemical Evolution in Protostellar Nebulae

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha

    2011-01-01

    A decade ago observers began to take serious notice of the presence of crystalline silicate grains in the dust flowing away from some comets. While crystallinity had been seen in such objects previously, starting with the recognitions by Campins and Ryan (1990) that the 10 micron feature of Comet Halley resembled that of the mineral forsterite, most such observations were either ignored or dismissed as no path to explain such crystalline grains was available in the literature. When it was first suggested that an outward flow must be present to carry annealed silicate grains from the innermost regions of the Solar Nebula out to the regions where comets could form (Nuth, 1999; 2001) this suggestion was also dismissed because no such transport mechanism was known at the time. Since then not only have new models of nebular dynamics demonstrated the reality of long distance outward transport (Ciesla, 2007; 2008; 2009) but examination of older models (Boss, 2004) showed that such transport had been present but had gone unrecognized for many years. The most unassailable evidence for outward nebular transport came with the return of the Stardust samples from Comet Wild2, a Kuiper-belt comet that contained micron-scale grains of high temperature minerals resembling the Calcium-Aluminum Inclusions found in primitive meteorites (Zolensky et aI., 2006) that formed at T > 1400K. Now that outward transport in protostellar nebulae has been firmly established, a re-examination of its consequences for nebular gas is in order that takes into account both the factors that regulate both the outward flow as well as those that likely control the chemical composition of the gas. Laboratory studies of surface catalyzed reactions suggest that a trend toward more highly reduced carbon and nitrogen compounds in the gas phase should be correlated with a general increase in the crystallinity of the dust (Nuth et aI., 2000), but is such a trend actually observable? Unlike the Fischer-Tropsch or

  5. The Orion Nebula: Still Full of Surprises

    NASA Astrophysics Data System (ADS)

    2011-01-01

    This ethereal-looking image of the Orion Nebula was captured using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory, Chile. This nebula is much more than just a pretty face, offering astronomers a close-up view of a massive star-forming region to help advance our understanding of stellar birth and evolution. The data used for this image were selected by Igor Chekalin (Russia), who participated in ESO's Hidden Treasures 2010 astrophotography competition. Igor's composition of the Orion Nebula was the seventh highest ranked entry in the competition, although another of Igor's images was the eventual overall winner. The Orion Nebula, also known as Messier 42, is one of the most easily recognisable and best-studied celestial objects. It is a huge complex of gas and dust where massive stars are forming and is the closest such region to the Earth. The glowing gas is so bright that it can be seen with the unaided eye and is a fascinating sight through a telescope. Despite its familiarity and closeness there is still much to learn about this stellar nursery. It was only in 2007, for instance, that the nebula was shown to be closer to us than previously thought: 1350 light-years, rather than about 1500 light-years. Astronomers have used the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile to observe the stars within Messier 42. They found that the faint red dwarfs in the star cluster associated with the glowing gas radiate much more light than had previously been thought, giving us further insights into this famous object and the stars that it hosts. The data collected for this science project, with no original intention to make a colour image, have now been reused to create the richly detailed picture of Messier 42 shown here. The image is a composite of several exposures taken through a total of five different filters. Light that passed through a red filter as well as light from a filter that

  6. The Eagle Nebula on NIF

    NASA Astrophysics Data System (ADS)

    Kane, Jave; Cooper, Amy; Remington, Bruce; Ryutov, Dmitri; Smalyuk, Vladimir; Pound, Marc

    2011-10-01

    In one of the eight Science on NIF campaigns, dynamics of molecular clouds such as the Eagle Nebula will be studied in scaled laboratory astrophysics experiments, focusing on new hydrodynamic stabilities of ablation fronts induced by strong directionality of a sustained radiation drive, and on the formation of cometary structures as a model for the famous Eagle Pillars. The NIF Radiation Transport Platform will be adapted to drive a foam target stood off several mm from the halfraum to simulate a molecular cloud illuminated by a distant O-type star, with the drive collimated by an aperture. Pulses of length 20-100 ns generating effective radiation temperatures of 100 eV are being sought. Design of the experiment, theory of the directional radiation instabilities, and supporting astrophysical modeling will be presented. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Planetary nebulae and stellar evolution

    NASA Technical Reports Server (NTRS)

    Maran, S. P.

    1983-01-01

    Newly defined characteristics of planetary nebulae (PN) derived from analysis of a photometric survey of 57 PN are reported. The data were combined with measurements of 27 other PN made since 1918 and were found to indicate core masses ranging from 0.55-1.0 solar mass. N/O elemental abundance ratios observed were correlated with the planetary nuclei masses, and were in direct proportion. IUE data on PN that overlapped a large part of the survey indicated that the PN in the galactic disk are more massive than PN in the halo. It is suggested that PN evolve into white dwarfs, a hypothesis supported by astrometric solutions for three nearby visual binaries featuring white dwarfs with well-determined masses. It is noted, however, that PN with masses exceeding one solar mass have been sighted in the Magellanic Clouds.

  8. BY POPULAR DEMAND: HUBBLE OBSERVES THE HORSEHEAD NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Rising from a sea of dust and gas like a giant seahorse, the Horsehead nebula is one of the most photographed objects in the sky. NASA's Hubble Space Telescope took a close-up look at this heavenly icon, revealing the cloud's intricate structure. This detailed view of the horse's head is being released to celebrate the orbiting observatory's eleventh anniversary. Produced by the Hubble Heritage Project, this picture is a testament to the Horsehead's popularity. Internet voters selected this object for the orbiting telescope to view. The Horsehead, also known as Barnard 33, is a cold, dark cloud of gas and dust, silhouetted against the bright nebula, IC 434. The bright area at the top left edge is a young star still embedded in its nursery of gas and dust. But radiation from this hot star is eroding the stellar nursery. The top of the nebula also is being sculpted by radiation from a massive star located out of Hubble's field of view. Only by chance does the nebula roughly resemble the head of a horse. Its unusual shape was first discovered on a photographic plate in the late 1800s. Located in the constellation Orion, the Horsehead is a cousin of the famous pillars of dust and gas known as the Eagle nebula. Both tower-like nebulas are cocoons of young stars. The Horsehead nebula lies just south of the bright star Zeta Orionis, which is easily visible to the unaided eye as the left-hand star in the line of three that form Orion's Belt. Amateur astronomers often use the Horsehead as a test of their observing skills; it is known as one of the more difficult objects to see visually in an amateur-sized telescope. The magnificent extent of the Horsehead is best appreciated in a new wide-field image of the nebula being released today by the National Optical Astronomy Observatory, taken by Travis Rector with the National Science Foundation's 0.9 meter telescope at Kitt Peak National Observatory near Tucson, AZ. This popular celestial target was the clear winner among more

  9. Extended halos and intracluster light using Planetary Nebulae as tracers in nearby clusters

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda

    Since the first detection of intracluster planetary nebulae in 1996, imaging and spectroscopic surveys identified such stars to trace the radial extent and the kinematics of diffuse light in clusters. This topic of research is tightly linked with the studies of galaxy formation and evolution in dense environment, as the spatial distribution and kinematics of planetary nebulae in the outermost regions of galaxies and in the cluster cores is relevant for setting constraints on cosmological simulations. In this sense, extragalactic planetary nebulae play a very important role in the near-field cosmology, in order to measure the integrated mass as function of radius and the orbital distribution of stars in structures placed in the densest regions of the nearby universe.

  10. From stellar nebula to planetesimals

    NASA Astrophysics Data System (ADS)

    Marboeuf, Ulysse; Thiabaud, Amaury; Alibert, Yann; Cabral, Nahuel; Benz, Willy

    2014-10-01

    Context. Solar and extrasolar comets and extrasolar planets are the subject of numerous studies in order to determine their chemical composition and internal structure. In the case of planetesimals, their compositions are important as they govern in part the composition of future planets. Aims: The present works aims at determining the chemical composition of icy planetesimals, believed to be similar to present day comets, formed in stellar systems of solar chemical composition. The main objective of this work is to provide valuable theoretical data on chemical composition for models of planetesimals and comets, and models of planet formation and evolution. Methods: We have developed a model that calculates the composition of ices formed during the cooling of the stellar nebula. Coupled with a model of refractory element formation, it allows us to determine the chemical composition and mass ratio of ices to rocks in icy planetesimals throughout in the protoplanetary disc. Results: We provide relationships for ice line positions (for different volatile species) in the disc, and chemical compositions and mass ratios of ice relative to rock for icy planetesimals in stellar systems of solar chemical composition. From an initial homogeneous composition of the nebula, a wide variety of chemical compositions of planetesimals were produced as a function of the mass of the disc and distance to the star. Ices incorporated in planetesimals are mainly composed of H2O, CO, CO2, CH3OH, and NH3. The ice/rock mass ratio is equal to 1 ± 0.5 in icy planetesimals following assumptions. This last value is in good agreement with observations of solar system comets, but remains lower than usual assumptions made in planet formation models, taking this ratio to be of 2-3.

  11. Formation of solid materials in the preplanetary nebula and the composition of chondrites

    SciTech Connect

    Izakov, M.N.

    1986-07-01

    On the basis of the model of the formation of the preplanetary nebula as an accretion disk during the formation of the sun, the hypothesis is proposed that a significant fraction of the solid materials of the preplanetary nebula was formed by the successive condensation of the components of the gas of solar composition during its motion from the hot, dense region near the protosun to the periphery of the nebula into regions of ever decreasing values of temperature and pressure. The hypothesis removes the contradiction materials and the presence of traces of high-temperature phenomena in chondrite materials and the conclusion that there were never high temperature in the preplanetary nebula at distances of 2-4 AU from the sun, where meteorites encountering the earth originate, and also explains a number of properties of chondrites. It follows from this hypothesis that the mass and angular momentum of the nebula were close to their minimum possible values and that the loss of the nebular gas had already begun at the final stage of its formation.

  12. The origin of the argonium emission discovered in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Priestley, Felix; Barlow, Mike; Viti, Serena

    2016-06-01

    We present a study of the origin of the argonium (ArH+) emission discovered by Herschel in the Crab Nebula (Barlow et al. 2013). The argonium molecule is believed to be formed principally by the reaction of singly ionised argon (Ar+) with molecular hydrogen (H2), and to be destroyed by reactions with H2 and UV photons. For the case of the argonium ground state absorption lines seen by Herschel along several interstellar sightlines (Schilke et al. 2014), those authors argued that the presence of H2 in both the formation and destruction mechanisms means that ArH+ must form in largely atomic interstellar hydrogen clouds containing only trace amounts of H2. However, In the case of the Crab Nebula the observed argonium emission might originate either from transition regions containing both Ar+ and H2, or alternatively from inside the Crab Nebula's H2 knots into which X-ray photons or charged particles from the pulsar wind nebula have penetrated to produce Ar+ and other ions. We report the results of our numerical studies that have used a combination of photoionisation and photodissociation region codes to investigate these alternative scenarios for producing ArH+ in the Crab Nebula.

  13. Multiwavelength Observations of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Slane, Patrick

    The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the central engines, and the long-term fate of the energetic particles produced in these systems. Such observations reveal the presence of jets and wind termination shocks, time-varying compact emission structures, shocked supernova ejecta, and newly formed dust. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples from observations extending from the radio band to very-high-energy γ-rays that demonstrate our ability to constrain the history and ultimate fate of the energy released in the spin-down of young pulsars.

  14. The Cocoon nebula and its ionizing star: do stellar and nebular abundances agree?

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Simón-Díaz, S.; Esteban, C.

    2014-11-01

    Context. Main-sequence massive stars embedded in an H ii region should have the same chemical abundances as the surrounding nebular gas+dust. The Cocoon nebula (IC 5146), a close-by Galactic H ii region ionized by a narrow line B0.5 V single star (BD+46 3474), is an ideal target to compare nebular and stellar abundances in detail in the same Galactic region. Aims: We investigate the chemical content of oxygen and other elements in the Cocoon nebula from two different points of view: an empirical analysis of the nebular spectrum, and a detailed spectroscopic analysis of the associated early B-type star using state-of-the-art stellar atmosphere modeling. By comparing the stellar and nebular abundances, we aim to indirectly address the long-standing problem of the discrepancy found between abundances obtained from collisionally excited lines and optical recombination lines in photoionized nebulae. Methods: We collected long-slit spatially resolved spectroscopy of the Cocoon nebula and a high-resolution optical spectrum of the ionizing star. Standard nebular techniques along with updated atomic data were used to compute the physical conditions and gaseous abundances of O, N, and S in eight apertures extracted across a semidiameter of the nebula. We performed a self-consistent spectroscopic abundance analysis of BD+46 3474 based on the atmosphere code FASTWIND to determine the stellar parameters and Si, O, and N abundances. Results: The Cocoon nebula and its ionizing star, located at a distance of 800±80 pc, have a chemical composition very similar to the Orion nebula and other B-type stars in the solar vicinity. This result agrees with the high degree of homogeneity of the present-day composition of the solar neighborhood (up to 1.5 Kpc from the Sun) as derived from the study of the local cold-gas interstellar medium. The comparison of stellar and nebular collisionally excited line abundances in the Cocoon nebula indicates that O and N gas+dust nebular values agree

  15. The appearance of the Gum nebula

    NASA Technical Reports Server (NTRS)

    Bok, B. J.

    1971-01-01

    The dimensions of the Gum nebula complex appear to be overestimated. The distance of 460 parsecs to the central pulsar is rather on the large side, and likely contributions from gamma Velorum and zeta Puppis were underestimated. The multiorigin character of the Gum nebula is reaffirmed. The parts produced by traditional ultraviolet thermal radiation and by processes directly related to the supernova outburst must be defined.

  16. Reddening of planetary nebulae - NGC 2392

    NASA Technical Reports Server (NTRS)

    Zipoy, D. M.

    1976-01-01

    A method for finding the reddening of planetary nebulae is proposed which makes use of the fact that the color of a hot star is an insensitive function of its temperature. Spectrophotometric data of NGC 2392 are presented and used to compute its color excess by the present method as well as older methods; the present method appears to be viable. These results combined with previous measurements tend to support the idea that reddening is variable over the surface of the nebula.

  17. The Planetary Nebula System of M33

    NASA Astrophysics Data System (ADS)

    Ciardullo, Robin; Durrell, Patrick R.; Laychak, Mary Beth; Herrmann, Kimberly A.; Moody, Kenneth; Jacoby, George H.; Feldmeier, John J.

    2004-10-01

    We report the results of a photometric and spectroscopic survey for planetary nebulae (PNs) over the entire body of the Local Group spiral galaxy M33. We use our sample of 152 PNs to show that the bright end of the galaxy's [O III] λ5007 planetary nebula luminosity function (PNLF) has the same sharp cutoff seen in other galaxies. The apparent magnitude of this cutoff, along with the IRAS DIRBE foreground extinction estimate of E(B-V)=0.041, implies a distance modulus for the galaxy of (m-M)0=24.86+0.07-0.11 (0.94+0.03-0.05 Mpc). Although this value is ~15% larger than the galaxy's Cepheid distance, the discrepancy likely arises from differing assumptions about the system's internal extinction. Our photometry, which extends more than 3 mag down the PNLF, also reveals that the faint end of M33's PNLF is nonmonotonic, with an inflection point ~2 mag below the PNLF's bright limit. We argue that this feature is due to the galaxy's large population of high core mass planetaries and that its amplitude may eventually be a useful diagnostic for studies of stellar populations. Fiber-coupled spectroscopy of 140 of the PN candidates confirms that M33's PN population rotates along with the old disk, with a small asymmetric drift of ~10 km s-1. Remarkably, the population's line-of-sight velocity dispersion varies little over ~4 optical disk scale lengths, with σrad~20 km s-1. We show that this is due to a combination of factors, including a decline in the radial component of the velocity ellipsoid at small galactocentric radii and a gradient in the ratio of the vertical to radial velocity dispersion. We use our data to derive the dynamical scale length of M33's disk and the disk's mass-to-light ratio. Our most likely solution suggests that the surface mass density of M33's disk decreases exponentially, but with a scale length that is ~2.3 times larger than that of the system's IR luminosity. The large scale length also implies that the disk's V-band mass-to-light ratio changes

  18. The origin of the Gum nebula

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Kafatos, M.; Brandt, J. C.

    1983-01-01

    Obsrvations and theoretical investigations of the Gum nebula (GN) since about 1971 are reviewed. Direct observations of the GN, the Vela X supernova remnant (SNR), the Vela pulsar, and other stars in or near the GN are discussed with those of related phenomena such as the radio loops and known SNRs; the emphasis is on studies of the interstellar absorption lines, the evidence for hot gas in the GN, and the extended diffuse emission. The four basic models proposed for the GN are considered: a fossil Stromgren sphere, an old SNR, an H II region, or a superbubble. The GN physical parameters predicted by each model are listed in a table and compared. A minimum explanation which attributes the 36 x 36-deg filamentary structure and the 125-pc radius structure to the action of the stellar winds from Zeta Pup and Gamma-2 Vel (and perhaps the effect of a Vel X supernova explosion 20,000 years ago) is found most appropriate, at least until the questions of the net expansion rate of the GN (about 20 km/sec or about zero?) and the existence of the diffuse emission beyond the filamentary structure are resolved by observations.

  19. ELEMENT DISTRIBUTIONS IN THE CRAB NEBULA

    SciTech Connect

    Satterfield, Timothy J.; Katz, Andrea M.; Sibley, Adam R.; MacAlpine, Gordon M.; Uomoto, Alan

    2012-07-15

    Images of the Crab Nebula have been obtained through custom interference filters that transmit emission from the expanding supernova remnant in He II {lambda}4686, H{beta}, He I {lambda}5876, [O I] {lambda}{lambda}6300, 6364, [N II] {lambda}{lambda}6548, 6583, [S II] {lambda}{lambda}6716, 6731, [S III] {lambda}9069, and [C I] {lambda}{lambda}9823, 9850. We present both raw and flux-calibrated emission-line images. Arrays of 19,440 photoionization models, with extensive input abundance ranges, were matched pixel by pixel to the calibrated data in order to derive corresponding element abundance or mass-fraction distributions for helium, carbon, nitrogen, oxygen, and sulfur. These maps show distinctive structure, and they illustrate regions of gas in which various stages of nucleosynthesis have apparently occurred, including the CNO cycle, helium burning, carbon burning, and oxygen burning. It is hoped that the calibrated observations and chemical abundance distribution maps will be useful for developing a better understanding of the precursor star evolution and the supernova explosive process.

  20. Spectral line survey of the ultracompact HII region Monoceros R2

    NASA Astrophysics Data System (ADS)

    Ginard, D.; González-García, M.; Fuente, A.; Cernicharo, J.; Alonso-Albi, T.; Pilleri, P.; Gerin, M.; García-Burillo, S.; Ossenkopf, V.; Rizzo, J. R.; Kramer, C.; Goicoechea, J. R.; Pety, J.; Berné, O.; Joblin, C.

    2012-07-01

    Context. Ultracompact (UC) Hii regions constitute one of the earliest phases in the formation of a massive star and are characterized by extreme physical conditions (G0 > 105 Habing field and n > 106 cm-3). The UC Hii Mon R2 is the closest example and an excellent target to study the chemistry in these complex regions. Aims: Our goal is to investigate the chemistry of the molecular gas around UC Hii Mon R2 and the variations caused by the different local physical conditions. Methods: We carried out 3 mm and 1 mm spectral surveys using the IRAM 30-m telescope towards three positions that represent different physical environments in Mon R2: (i) the ionization front (IF) at (0″, 0″), and two peaks in the molecular cloud; (ii) molecular Peak 1 (hereafter MP1) at the offset (+15″, -15″); and (iii) molecular Peak 2 (hereafter MP2) at the farther offset (0″, 40″). In addition, we carried out extensive modeling to explain the chemical differences between the three observed regions. Results: We detected more than 30 different species (including isotopologues and deuterated compounds). In particular, we detected SO+ and C4H confirming that ultraviolet (UV) radiation plays an important role in the molecular chemistry of this region. In agreement with this interpretation, we detected the typical photo-dissociation region (PDR) molecules CN, HCN, HCO, C2H, and c-C3H2. There are chemical differences between the observed positions. While the IF and the MP1 have a chemistry similar to that found in high UV field and dense PDRs such as the Orion Bar, the MP2 is similar to lower UV/density PDRs such as the Horsehead nebula. Our chemical modeling supports this interpretation. In addition to the PDR-like species, we detected complex molecules such as CH3CN, H2CO, HC3N, CH3OH, and CH3C2H that are not usually found in PDRs. The sulfur compounds CS, HCS+, C2S, H2CS, SO, and SO2 and the deuterated species DCN and C2D were also identified. The origin of these complex species

  1. HUBBLE FINDS AN HOURGLASS NEBULA AROUND A DYING STAR

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is an image of MyCn18, a young planetary nebula located about 8,000 light-years away, taken with the Wide Field and Planetary Camera 2 (WFPC2) aboard NASA's Hubble Space Telescope (HST). This Hubble image reveals the true shape of MyCn18 to be an hourglass with an intricate pattern of 'etchings' in its walls. This picture has been composed from three separate images taken in the light of ionized nitrogen (represented by red), hydrogen (green), and doubly-ionized oxygen (blue). The results are of great interest because they shed new light on the poorly understood ejection of stellar matter which accompanies the slow death of Sun-like stars. In previous ground-based images, MyCn18 appears to be a pair of large outer rings with a smaller central one, but the fine details cannot be seen. According to one theory for the formation of planetary nebulae, the hourglass shape is produced by the expansion of a fast stellar wind within a slowly expanding cloud which is more dense near its equator than near its poles. What appears as a bright elliptical ring in the center, and at first sight might be mistaken for an equatorially dense region, is seen on closer inspection to be a potato shaped structure with a symmetry axis dramatically different from that of the larger hourglass. The hot star which has been thought to eject and illuminate the nebula, and therefore expected to lie at its center of symmetry, is clearly off center. Hence MyCn18, as revealed by Hubble, does not fulfill some crucial theoretical expectations. Hubble has also revealed other features in MyCn18 which are completely new and unexpected. For example, there is a pair of intersecting elliptical rings in the central region which appear to be the rims of a smaller hourglass. There are the intricate patterns of the etchings on the hourglass walls. The arc-like etchings could be the remnants of discrete shells ejected from the star when it was younger (e.g. as seen in the Egg Nebula), flow instabilities, or

  2. Double Engine for a Nebula

    NASA Astrophysics Data System (ADS)

    2009-08-01

    ESO has just released a stunning new image of a field of stars towards the constellation of Carina (the Keel). This striking view is ablaze with a flurry of stars of all colours and brightnesses, some of which are seen against a backdrop of clouds of dust and gas. One unusual star in the middle, HD 87643, has been extensively studied with several ESO telescopes, including the Very Large Telescope Interferometer (VLTI). Surrounded by a complex, extended nebula that is the result of previous violent ejections, the star has been shown to have a companion. Interactions in this double system, surrounded by a dusty disc, may be the engine fuelling the star's remarkable nebula. The new image, showing a very rich field of stars towards the Carina arm of the Milky Way, is centred on the star HD 87643, a member of the exotic class of B[e] stars [1]. It is part of a set of observations that provide astronomers with the best ever picture of a B[e] star. The image was obtained with the Wide Field Imager (WFI) attached to the MPG/ESO 2.2-metre telescope at the 2400-metre-high La Silla Observatory in Chile. The image shows beautifully the extended nebula of gas and dust that reflects the light from the star. The central star's wind appears to have shaped the nebula, leaving bright, ragged tendrils of gas and dust. A careful investigation of these features seems to indicate that there are regular ejections of matter from the star every 15 to 50 years. A team of astronomers, led by Florentin Millour, has studied the star HD 87643 in great detail, using several of ESO's telescopes. Apart from the WFI, the team also used ESO's Very Large Telescope (VLT) at Paranal. At the VLT, the astronomers used the NACO adaptive optics instrument, allowing them to obtain an image of the star free from the blurring effect of the atmosphere. To probe the object further, the team then obtained an image with the Very Large Telescope Interferometer (VLTI). The sheer range of this set of observations

  3. The Impact of FU Orionis Outbursts and the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Bell, Robbins; Young, Richard E. (Technical Monitor)

    1998-01-01

    including the following effects: (1) heating of the planet forming region by direct radiation from the hot inner nebula; (2) heating by the diffuse radiation field of a coccooning envelope; and (3) time-dependent penetration of the increased luminosity from the above sources into the optically thick nebula. Some of this work is currently in progress. The potential effects on condensation and migration in the nebula and the thermal processing of solids will be evaluated.

  4. AN INFRARED CENSUS OF STAR FORMATION IN THE HORSEHEAD NEBULA

    SciTech Connect

    Bowler, Brendan P.; Waller, William H.; Megeath, S. Thomas; Patten, Brian M.; Tamura, Motohide E-mail: william.waller@tufts.edu E-mail: bpatten@nsf.gov

    2009-03-15

    At {approx} 400 pc, the Horsehead Nebula (B33) is the closest radiatively sculpted pillar to the Sun, but the state and extent of star formation in this structure is not well understood. We present deep near-infrared (IRSF/SIRIUS JHK {sub S}) and mid-infrared (Spitzer/IRAC) observations of the Horsehead Nebula to characterize the star-forming properties of this region and to assess the likelihood of triggered star formation. Infrared color-color and color-magnitude diagrams are used to identify young stars based on infrared excess emission and positions to the right of the zero-age main sequence, respectively. Of the 45 sources detected at both near- and mid-infrared wavelengths, three bona fide and five candidate young stars are identified in this 7' x 7' region. Two bona fide young stars have flat infrared spectral energy distributions and are located at the western irradiated tip of the pillar. The spatial coincidence of the protostars at the leading edge of this elephant trunk is consistent with the radiation-driven implosion model of triggered star formation. There is no evidence, however, for sequential star formation within the immediate {approx} 1.'5 (0.17 pc) region from the cloud/H II region interface.

  5. An Infrared Census of Star Formation in the Horsehead Nebula

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Waller, William H.; Megeath, S. Thomas; Patten, Brian M.; Tamura, Motohide

    2009-03-01

    At ~ 400 pc, the Horsehead Nebula (B33) is the closest radiatively sculpted pillar to the Sun, but the state and extent of star formation in this structure is not well understood. We present deep near-infrared (IRSF/SIRIUS JHK S) and mid-infrared (Spitzer/IRAC) observations of the Horsehead Nebula to characterize the star-forming properties of this region and to assess the likelihood of triggered star formation. Infrared color-color and color-magnitude diagrams are used to identify young stars based on infrared excess emission and positions to the right of the zero-age main sequence, respectively. Of the 45 sources detected at both near- and mid-infrared wavelengths, three bona fide and five candidate young stars are identified in this 7' × 7' region. Two bona fide young stars have flat infrared spectral energy distributions and are located at the western irradiated tip of the pillar. The spatial coincidence of the protostars at the leading edge of this elephant trunk is consistent with the radiation-driven implosion model of triggered star formation. There is no evidence, however, for sequential star formation within the immediate ~ 1farcm5 (0.17 pc) region from the cloud/H II region interface.

  6. Dynamo magnetic field-induced angular momentum transport in protostellar nebulae - The 'minimum mass' protosolar nebula

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Levy, E. H.

    1990-01-01

    Magnetic torques can produce angular momentum redistribution in protostellar nebulas. Dynamo magnetic fields can be generated in differentially rotating and turbulent nebulas and can be the source of magnetic torques that transfer angular momentum from a protostar to a disk, as well as redistribute angular momentum within a disk. A magnetic field strength of 100-1000 G is needed to transport the major part of a protostar's angular momentum into a surrounding disk in a time characteristic of star formation, thus allowing formation of a solar-system size protoplanetary nebula in the usual 'minimum-mass' model of the protosolar nebula. This paper examines the possibility that a dynamo magnetic field could have induced the needed angular momentum transport from the proto-Sun to the protoplanetary nebula.

  7. Far-ultraviolet imagery of the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Carruthers, G. R.; Opal, C. B.

    1977-01-01

    Two electrographic cameras carried on a sounding rocket have yielded useful-resolution far-ultraviolet (1000-2000 A) imagery of the Orion Nebula. The brightness distribution in the images is consistent with a primary source which is due to scattering of starlight by dust grains, although an emission-line contribution, particularly in the fainter outer regions, is not ruled out. The results are consistent with an albedo of the dust grains that is high in the far-ultraviolet and which increases toward shorter wavelengths below 1230 A.

  8. Neutral carbon in the Egg Nebula (AFGL 2688)

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Masson, C.; Frerking, M. A.; Beichman, C. A.; Keene, J.; Phillips, T. G.; Wootten, H. A.

    1983-01-01

    A search for sub-mm C I emission from seven stars that are surrounded by dense molecular gas shells has led to the detection, in the case of the 'Egg Nebula' (AFGL 2688), of an 0.9 K line implying a C I/CO value greater than 5. The material surrounding this star must be extremely carbon-rich, and it is suggested that the apparently greater extent of the C I emission region may be due to the effects of the the galactic UV field on the shell's chemistry, as suggested by Huggins and Glassgold (1982).

  9. Neutral carbon in the Egg Nebula (AFGL 2688)

    NASA Technical Reports Server (NTRS)

    Beichman, C. A.; Keene, J.; Phillips, T. G.; Huggins, P. J.; Wooten, H. A.; Masson, C.; Frerking, M. A.

    1983-01-01

    A search for sub-mm C I emission from seven stars that are surrounded by dense molecular gas shells led to the detection, in the case of the "Egg Nebula' (AFGL 2688), of an 0.9 K line implying a C I/CO value greater than 5. The material surrounding this star must be extremely carbon-rich, and it is suggested that the apparently greater extent of the C I emission region may be due to the effects of the galactic UV field on the shell's chemistry, as suggested by Huggins and Glassgold (1982).

  10. Chemical evolution models for NGC 6822 using planetary nebulae abundances

    NASA Astrophysics Data System (ADS)

    Hernández-Martínez, Liliana; Carigi, Leticia; Peña, Miriam; Peimbert, Manuel

    2012-08-01

    We present chemical evolution models for the dwarf irregular NGC 6822, using chemical abundances of Planetary Nebulae (PNe) and HII regions and also the mass of gas (M gas ) as observational constraints. Chemical evolution models have been calculated to reproduce the abundances as derived from both, collisionally excited lines (CELs) and recombination lines (RLs). In our models, the chemical contribution of low and intermediate mass stars (LIMS) is time delayed, while for the massive stars the chemical contribution is instantaneous, as in Franco & Carigi (2008). The chemical contribution of SNIa is included in our model, thus we are also able to reproduce the observational Fe/H abundance obtained from A stars.

  11. Axisymmetric model of the ionized gas in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.; Simpson, J. P.; Haas, M. R.; Erickson, E. F.

    1991-01-01

    New ionization and thermal equilibrium models for the ionized gas in the Orion Nebula with an axisymmetric two-dimensional 'blister' geometry/density distribution are presented. The HII region is represented more realistically than in previous models, while the physical detail of the microphysics and radiative transfer of the earlier spherical modeling is maintained. The predicted surface brightnesses are compared with observations for a large set of lines at different positions to determine the best-fitting physical parameters. The model explains the strong singly ionized line emission along the lines of sight near the Trapezium.

  12. The Etched Hourglass Nebula MYCN 18. I. HUBBLE SPACE TELESCOPE Observations

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra; Dayal, Aditya; Watson, Alan M.; Trauger, John T.; Stapelfeldt, Karl R.; Burrows, Christopher J.; Gallagher, John S., III; Scowen, Paul A.; Hester, J. Jeff; Evans, Robin W.; Ballester, Gilda E.; Clarke, John T.; Crisp, David; Griffiths, Richard E.; Hoessel, John G.; Holtzman, Jon A.; Krist, John; Mould, Jeremy R.

    1999-07-01

    We have obtained emission-line and continuum images of the young planetary nebula MyCn 18 with the Wide Field Planetary Camera 2 on the Hubble Space Telescope (HST). Although from the ground MyCn 18 appeared to have a triple-ring structure similar to SN 1987A, the HST images show that MyCn 18 has an overall hourglass shape. A series of arcs appear to be etched on the walls of the hourglass near its rims. In the complex central region of the nebula we find a small, inner hourglass structure and two rings. Ring 1 is a bright elliptical ring, and ring 2 a smaller, higher excitation ring. The outer and inner hourglass, and ring 1 and ring 2, all have different centers, and none are coincident with the central star. The hourglass shape of the main nebula is consistent with the predictions of the generalized interacting-winds hypothesis for planetary nebula formation. However, the complex inner nebular structure of MyCn 18 and the offset of the central star from the center of the nebula remain a mystery. We discuss several mechanisms for producing the offset of the central star. Although none are found to be completely satisfactory, those involving a binary central star probably offer the best hope of successful explanation.

  13. Solar Nebula Magnetohydrodynamic Dynamos: Kinematic Theory, Dynamical Constraints, and Magnetic Transport of Angular Momentum

    NASA Technical Reports Server (NTRS)

    Stepinski, Tomasz F.; Reyes-Ruiz, Mauricio; Vanhala, Harri A. T.

    1993-01-01

    A hydromagnetic dynamo provides the best mechanism for contemporaneously producing magnetic fields in a turbulent solar nebula. We investigate the solar nebula in the framework of a steady-state accretion disk model and establish the criteria for a viable nebular dynamo. We have found that typically a magnetic gap exists in the nebula, the region where the degree of ionization is too small for the magnetic field to couple to the gas. The location and width of this gap depend on the particular model; the supposition is that gaps cover different parts of the nebula at different evolutionary stages. We have found, from several dynamical constraints, that the generated magnetic field is likely to saturate at a strength equal to equipartition with the kinetic energy of turbulence. Maxwell stress arising from a large-scale magnetic field may significantly influence nebular structure, and Maxwell stress due to small-scale fields can actually dominate other stresses in the inner parts of the nebula. We also argue that the bulk of nebular gas, within the scale height from the midplane, is stable against Balbus-Hawley instability.

  14. A New Model for Water Vapor/Ice Abundance in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2006-01-01

    Water is a unique substance in the protoplanetary nebula since both solid and gaseous phases coexist in large quantities. Quantitative estimates of their relative abundances are important parameters regarding the physical state of the nebula and planet formation processes. This new model is based on computing the chemical evolution of water molecules until its partial pressure is sufficient to pierce the vapor pressure curve for water. The point at which this occurs relative to its steady state values determines final gas/ice ratios. The wide range of temperatures and densities in typical protoplanetary disks result in a range of gadice ratios. It is found that although ice dominates the mid and far nebula, water vapor is predominant in the centerplane region of the near nebula and above the disk photosphere. An interesting near nebula effect is the appearance of a cloud of water ice at the temperature inversion elevation surrounded by vapor above and below. This work is partially supported by the NASA Astrobiology Institute.

  15. DISCOVERY OF A PULSAR WIND NEBULA CANDIDATE IN THE CYGNUS LOOP

    SciTech Connect

    Katsuda, Satoru; Yamada, Shin'ya; Tamagawa, Toru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert

    2012-07-20

    We report on a discovery of a diffuse nebula containing a pointlike source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the pointlike source are well represented by an absorbed power-law model with photon indices of 2.2 {+-} 0.1 and 1.6 {+-} 0.2, respectively. The photon indices as well as the flux ratio of F{sub nebula}/F{sub pointlike} {approx} 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5-8 keV luminosity of the nebula is computed to be 2.1 Multiplication-Sign 10{sup 31} (d/540 pc){sup 2} erg s{sup -1}, where d is the distance to the Loop. This implies a spin-down loss-energy E-dot {approx}2.6 Multiplication-Sign 10{sup 35} (d/540 pc){sup 2} erg s{sup -1}. The location of the neutron star candidate, {approx}2 Degree-Sign away from the geometric center of the Loop, implies a high transverse velocity of {approx}1850 ({theta}/2 Degree-Sign ) (d/540 pc) (t/10 kyr){sup -1} km s{sup -1}, assuming the currently accepted age of the Cygnus Loop.

  16. A Study of Planetary Nebulae using the Faint Object Infrared Camera for the SOFIA Telescope

    NASA Technical Reports Server (NTRS)

    Davis, Jessica

    2012-01-01

    A planetary nebula is formed following an intermediate-mass (1-8 solar M) star's evolution off of the main sequence; it undergoes a phase of mass loss whereby the stellar envelope is ejected and the core is converted into a white dwarf. Planetary nebulae often display complex morphologies such as waists or torii, rings, collimated jet-like outflows, and bipolar symmetry, but exactly how these features form is unclear. To study how the distribution of dust in the interstellar medium affects their morphology, we utilize the Faint Object InfraRed CAmera for the SOFIA Telescope (FORCAST) to obtain well-resolved images of four planetary nebulae--NGC 7027, NGC 6543, M2-9, and the Frosty Leo Nebula--at wavelengths where they radiate most of their energy. We retrieve mid infrared images at wavelengths ranging from 6.3 to 37.1 micron for each of our targets. IDL (Interactive Data Language) is used to perform basic analysis. We select M2-9 to investigate further; analyzing cross sections of the southern lobe reveals a slight limb brightening effect. Modeling the dust distribution within the lobes reveals that the thickness of the lobe walls is higher than anticipated, or rather than surrounding a vacuum surrounds a low density region of tenuous dust. Further analysis of this and other planetary nebulae is needed before drawing more specific conclusions.

  17. THE RADIO-2 mm SPECTRAL INDEX OF THE CRAB NEBULA MEASURED WITH GISMO

    SciTech Connect

    Arendt, R. G.; George, J. V.; Staguhn, J. G.; Benford, D. J.; Fixsen, D. J.; Maher, S. F.; Moseley, S. H.; Sharp, E.; Wollack, E. J.; Devlin, M. J.; Dicker, S. R.; Korngut, P. M.; Irwin, K. D.; Jhabvala, C. A.; Miller, T. M.; Kovacs, A.; Mason, B. S.; Navarro, S.; Sievers, A.; Sievers, J. L.

    2011-06-10

    We present results of 2 mm observations of the Crab Nebula, obtained using the Goddard-IRAM Superconducting 2 Millimeter Observer (GISMO) bolometer camera on the IRAM 30 m telescope. Additional 3.3 mm observations with the MUSTANG bolometer array on the Green Bank Telescope are also presented. The integrated 2 mm flux density of the Crab Nebula provides no evidence for the emergence of a second synchrotron component that has been proposed. It is consistent with the radio power-law spectrum, extrapolated up to a break frequency of log ({nu}{sub b}[GHz]) = 2.84 {+-} 0.29 or {nu}{sub b} = 695{sup +651}{sub -336} GHz. The Crab Nebula is well resolved by the {approx}16.''7 beam (FWHM) of GISMO. Comparison to radio data at comparable spatial resolution enables us to confirm significant spatial variation of the spectral index between 21 cm and 2 mm. The main effect is a spectral flattening in the inner region of the Crab Nebula, correlated with the toroidal structure at the center of the nebula that is prominent in the near-IR through X-ray regime.

  18. Discovery of a Pulsar Wind Nebula Candidate in the Cygnus Loop

    NASA Technical Reports Server (NTRS)

    Katsuda, Satoru; Tsunemi, Hiroshi; Mori, Koji; Uchida, Hiroyuki; Petre, Robert; Yamada, Shin'ya; Tamagawa, Toru

    2012-01-01

    We report on a discovery of a diffuse nebula containing a point-like source in the southern blowout region of the Cygnus Loop supernova remnant, based on Suzaku and XMM-Newton observations. The X-ray spectra from the nebula and the point-like source are well represented by an absorbed power-law model with photon indices of 2.2+/-0.1 and 1.6+/-0.2, respectively. The photon indices as well as the flux ratio of F(sub nebula)/F(sub point-like) approx. 4 lead us to propose that the system is a pulsar wind nebula, although pulsations have not yet been detected. If we attribute its origin to the Cygnus Loop supernova, then the 0.5-8 keV luminosity of the nebula is computed to be 2.1x10(exp 31)(d/540pc)(exp 2)ergss/2, where d is the distance to the Loop. This implies a spin-down loss-energy E approx. 2.6x10(exp 35)(d/540pc)(exp 2)ergs/s. The location of the neutron star candidate, approx.2deg away from the geometric center of the Loop, implies a high transverse velocity of approx.1850(theta/2deg)(d/540pc)(t/10kyr)/k/s assuming the currently accepted age of the Cygnus Loop.

  19. Bow-shock pulsar-wind nebulae passing through density discontinuities

    NASA Astrophysics Data System (ADS)

    Yoon, Doosoo; Heinz, Sebastian

    2017-01-01

    Bow-shock pulsar-wind nebulae are a subset of pulsar-wind nebulae that form when the pulsar has high velocity due to the natal kick during the supernova explosion. The interaction between the relativistic wind from the fast-moving pulsar and the interstellar medium produces a bow-shock and a trail, which are detectable in Hα emission. Among such bow-shock pulsar-wind nebulae, the Guitar Nebula stands out for its peculiar morphology, which consists of a prominent bow-shock head and a series of bubbles further behind. We present a scenario in which multiple bubbles can be produced when the pulsar encounters a series of density discontinuities in the ISM. We tested the scenario using 2D and 3D hydrodynamic simulations. The shape of the Guitar Nebula can be reproduced if the pulsar traversed a region of declining low density. We also show that if a pulsar encounters an inclined density discontinuity, it produces an asymmetric bow-shock head, consistent with observations of the bow-shock of the millisecond pulsar J2124-3358.

  20. Diffusion in pulsar wind nebulae: an investigation using magnetohydrodynamic and particle transport models

    NASA Astrophysics Data System (ADS)

    Porth, O.; Vorster, M. J.; Lyutikov, M.; Engelbrecht, N. E.

    2016-08-01

    We study the transport of high-energy particles in pulsar wind nebulae (PWN) using three-dimensional magnetohydrodynamic (MHD) and test-particle simulations, as well as a Fokker-Planck particle transport model. The latter includes radiative and adiabatic losses, diffusion, and advection on the background flow of the simulated MHD nebula. By combining the models, the spatial evolution of flux and photon index of the X-ray synchrotron emission is modelled for the three nebulae G21.5-0.9, the inner regions of Vela, and 3C 58, thereby allowing us to derive governing parameters: the magnetic field strength, average flow velocity, and spatial diffusion coefficient. For comparison, the nebulae are also modelled with the semi-analytic Kennel & Coroniti model but the Porth et al. model generally yields better fits to the observational data. We find that high velocity fluctuations in the turbulent nebula (downstream of the termination shock) give rise to efficient diffusive transport of particles, with average Péclet number close to unity, indicating that both advection and diffusion play an important role in particle transport. We find that the diffusive transport coefficient of the order of ˜ 2 × 1027(Ls/0.42 Ly) cm2 s- 1 (Ls is the size of the termination shock) is independent of energy up to extreme particle Lorentz factors of γp ˜ 1010.

  1. Symposium on the Orion Nebula to Honor Henry Draper, New York University, New York, NY, December 4, 5, 1981, Proceedings

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E. (Editor); Huggins, P. J. (Editor); Schucking, E. L.

    1982-01-01

    The present conference on astronomical studies of the Orion Nebula covers molecular clouds in Orion, the use of the nebula's cloak as a model for gas super-shells around OB associations, optical and UV data concerning the nebula's physical conditions, the presence of atomic carbon in Orion, large scale distribution of far-IR and sub-mm line emission, star formation studies in the IR, gas dynamics in the circumstellar nebula of the Becklin-Neugebauer source, maser sources and far-IR CO line emission in Orion-KL, and synthesis maps of mm molecular lines. Also discussed are Orion's star distributions, core region nebular condensations, energetic molecular flows in star-forming cloud cores, IR observations of HH objects, compact continuum radio sources, the SiO maser, shock waves, and the chemical evolution of OB associations.

  2. Model nebulae and determination of the chemical composition of the Magellanic Clouds

    PubMed Central

    Aller, L. H.; Keyes, C. D.; Czyzak, S. J.

    1979-01-01

    An analysis of previously presented photoelectric spectrophotometry of HII regions (emission-line diffuse nebulae) in the two Magellanic Clouds is carried out with the aid of theoretical nebular models, which are used primarily as interpolation devices. Some advantages and limitations of such theoretical models are discussed. A comparison of the finally obtained chemical compositions with those found by other observers shows generally a good agreement, suggesting that it is possible to obtain reliable chemical compositions from low excitation gaseous nebulae in our own galaxy as well as in distant stellar systems. PMID:16592633

  3. An outflow model for bipolar planetary nebulae and the case of NGC 6302

    NASA Astrophysics Data System (ADS)

    Silvestro, G.; Robberto, M.

    NGC 6302 is a bright, bipolar planetary nebula that exhibits a wide range of excitation and ionization conditions, together with complex structure and kinematics. High-velocity (>300 km s-1) flows were detected in the nebula, which are believed to originate as a wind from the central star. The authors present a numerical analysis of the morphology of the inner outflow region, based on a generalization of the equations given by Cantò (1980) and Barral and Cantò (1981). A discussion of the interpretation of NGC 6302 within a model of disk-confined stellar wind is given.

  4. Model nebulae and determination of the chemical composition of the Magellanic Clouds.

    PubMed

    Aller, L H; Keyes, C D; Czyzak, S J

    1979-04-01

    An analysis of previously presented photoelectric spectrophotometry of HII regions (emission-line diffuse nebulae) in the two Magellanic Clouds is carried out with the aid of theoretical nebular models, which are used primarily as interpolation devices. Some advantages and limitations of such theoretical models are discussed. A comparison of the finally obtained chemical compositions with those found by other observers shows generally a good agreement, suggesting that it is possible to obtain reliable chemical compositions from low excitation gaseous nebulae in our own galaxy as well as in distant stellar systems.

  5. Near-infrared and ultraviolet spectrophotometry of the young planetary nebula Hubble 12

    NASA Technical Reports Server (NTRS)

    Rudy, Richard J.; Rossano, George S.; Erwin, Peter; Puetter, R. C.; Feibelman, Walter A.

    1993-01-01

    The young planetary nebula Hubble 12 is observed using near-IR and UV spectrophotometry. The brightness of the O I lines, which is greater than in any other planetary nebula yet measured, indicates that fluorescent excitation by stellar continuum is the principal mechanism generating these lines. Extinction, electron density, and electron temperature are determined using infrared measurements combined with UV data and published optical observations. The range in extinction, density, and temperature implies that, within the ionized region, pockets of emission with distinctly different conditions exist. Logarithmic abundances for helium, oxygen, and sulfur are presented.

  6. Detection of C60 and C70 in a young planetary nebula.

    PubMed

    Cami, Jan; Bernard-Salas, Jeronimo; Peeters, Els; Malek, Sarah Elizabeth

    2010-09-03

    In recent decades, a number of molecules and diverse dust features have been identified by astronomical observations in various environments. Most of the dust that determines the physical and chemical characteristics of the interstellar medium is formed in the outflows of asymptotic giant branch stars and is further processed when these objects become planetary nebulae. We studied the environment of Tc 1, a peculiar planetary nebula whose infrared spectrum shows emission from cold and neutral C60 and C70. The two molecules amount to a few percent of the available cosmic carbon in this region. This finding indicates that if the conditions are right, fullerenes can and do form efficiently in space.

  7. Spectroscopic studies of four planetary nebulae with emission-line nuclei

    NASA Astrophysics Data System (ADS)

    Burlak, M. A.; Kniazev, A. Yu.

    2013-10-01

    Spectroscopic observations of four planetary nebulae (PNe) with emission-line central stars of different spectral types are presented: Cn 1-5, Pe 1-1, NGC 5873, and M1-19. The interstellar extinction, physical conditions ( n e , T e ), and abundances of several elements (He, N, O, Ne, S, Ar, Cl) have been determined for all nebulae. The nebula Cn 1-5 with fairly high abundances of helium and nitrogen is shown to belong to type I PNe. Possible variability of the intensities of low-excitation emission lines in NGC 5873 has been found; it can be related to variations of the stellar wind from the central star. The measured α-element abundance ratios (S/O, Ne/O, Ar/O, Cl/O) are in good agreement with those typical of HII regions.

  8. Spectrum and chemical analysis of the double-ring planetary nebula IC 1297

    NASA Technical Reports Server (NTRS)

    Aller, Lawrence H.; Keyes, Charles D.; Feibelman, Walter A.

    1986-01-01

    The double-ring planetary nebula IC 1297 resembles NGC 7662 in appearance, although it is of much lower surface brightness. What is remarkable is the great strength of the dielectronic recombination O V line. Although this line is seen as a P Cygni feature in a number of planetary nebulae, it is in those instances accompanied by a strong continuum and other easily recognized features of stellar origin. No star is visible on CCD images of IC 1297. Optical region measurements are supplemented by IUE observations. The following logarithmic abundance values are found: log N(He) = 11.065; log N(forbidden C) = 8.6; log N(N) = 8.1; log N(O) = 8.74; log N(Ne) = 8.16; log N(S) = 7.0; log N(Cl) = 5.4; log N(Ar) = 6.2. The nebula shows no dramatic pattern of nucleogenesis events.

  9. A recent change in the brightness and form of the HH46 reflection nebula

    NASA Technical Reports Server (NTRS)

    Graham, J. A.

    1987-01-01

    A several-fold increase in the surface brightness of the scattered light component of the southern Herbig-Haro object HH46 took place between January 1984 and May 1986. A more subtle change in the shape of the nebula also occurred in that a small region, formerly only prominent in the infrared, is now the brightest part of the reflection nebula in visible red light. The change is due either to a flaring of the adjacent but still invisible young stellar object or to a partial clearing of the dust which still surrounds it. In May 1987, the nebula still appeared bright suggesting that the change may be a long-term one.

  10. A Starfish Preplanetary Nebula: IRAS 19024+0044

    NASA Technical Reports Server (NTRS)

    Sahai, Raghvendra; Sanchez Contreras, Carmen; Morris, Mark

    2005-01-01

    Using the Hubble Space Telescope, we have imaged the OH/IR star IRAS 19024+0044 (I19024) at 0.6, 0.8, 1.1, and 1.6 micrometers, as part of our surveys of candidate preplanetary nebulae. The images show a multipolar nebula of size approximately equal to 3.'7 2.'3, with at least six elongated lobes emanating from the center of the nebula. Two of the lobes show limb-brightened tips having point-symmetric structure with respect to the expected location of the central star. The central region shows two dark bands southwest and northeast of a central shallow maximum that may be either two inclined dusty toroidal structures or the dense parts of a single wide, inhomogeneous, toroid. Avery faint, surface brightness-limited, diffuse halo surrounds the lobes. Long-slit/echelle optical spectroscopy obtained at the Mount Palomar and Keck observatories shows a spatially compact source of H(alpha) emission; the H(alpha) line shows a strong, narrow, central core with very broad (+/-1000 km/sec), weak wings, and a narrower blueshifted absorption feature signifying the presence of an approximately 100 km/sec(exp -1) outflow. The spectrum is characterized by a strong, relatively featureless, continuum and lacks the strong forbidden emission lines characteristic of planetary nebulae, confirming that IRAS 19024 is a preplanetary nebula; the spectral type for the central star, although uncertain, is most likely early G. Interferometric observations of the CO J = 1 -0 line emission with the Owens Valley Radio Interferometer show a marginally resolved molecular envelope (size 5.'5 x 4.'4) with an expansion velocity of 13 km/sec (exp -1), resulting from the asymptotic giant branch (AGB) progenitor's dense, slow wind. We derive a kinematic distance of 3.5 kpc to I19024, based on its radial velocity. The bolometric flux is 7:3 x 10(exp -9) erg s(exp -1) cm(exp -2), and the luminosity 2850 L. The relatively low luminosity of I19024, in comparison with stellar evolutionary models, indicates

  11. Near infrared photography with a vacuum-cold camera. [Orion nebula observation

    NASA Technical Reports Server (NTRS)

    Rossano, G. S.; Russell, R. W.; Cornett, R. H.

    1980-01-01

    Sensitized cooled plates have been obtained of the Orion nebula region and of Sh2-149 in the wavelength ranges 8000 A-9000 A and 9,000 A-11,000 A with a recently designed and constructed vacuum-cold camera. Sensitization procedures are described and the camera design is presented.

  12. Size distribution of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Asvarov, Abdul; Allahverdiyev, Ahad

    2015-08-01

    Despite a very long history of investigations, the nature and origin of planetary nebulae (PNe) are not fully understood. It is obvious that the observational properties of PNe are influenced by the properties of the central star and the conditions in the environment. In this presentation in order to understand the effects of these components we have modeled the evolution of radio luminosity and the expansion of PNe in the framework of different hypothesis on the origin of these objects. In this we have used the observational data on the central stars and clustered this data into gourps with the similar parameters of the central stars. For the each of these groups of PNe we have built statistical dependences radio luminosity - diameter, number of PNe - diameter which are then compared to the modeled ones. Unfortunately, the comparison of simulations with observations did not allow us to choose between the known models of the evolution of the PN shell. However with the increase of statistics the approach considered in this presentation may become more productive.

  13. GALEX Observations of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Panda, Swayamtrupta

    2016-05-01

    The first ultraviolet (UV) photometric observations of planetary nebulae (PNe) are presented using observations made by the Galaxy Evolution Explorer (GALEX). We have found 108 PNe detected by GALEX and resolved their angular diameters in near-UV (NUV) and also in far-UV (FUV) for 28 PNe considering a 3σ emission level beyond the background. Of the PNe, 57 are elliptical, 41 are circular and the rest 10 are bipolar in NUV. The emission lines that contribute to the NUV intrinsic flux are C III] and He II. The measured intrinsic luminosities considering the sole contribution from the central stars have been found to lie in the range of 10^37-10^51 erg/s. The comparative study of the angular sizes against effective wavelengths in 5 distinct regimes has shown that the listed PNe are bright in NUV which opens up the discussion related to the extent of hotness, the very high temperatures of the CSPNe and the exact nature of it. The intensity contour plots of the PNe have also provided us with over 10 well-defined candidates having bipolar morphological signatures, the origin and evolution of whose can be traced back to the dynamics of stellar winds in the post-AGB stage.

  14. Interstellar Organics, the Solar Nebula, and Saturn's Satellite Phoebe

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Cruikshank, D. P.

    2014-01-01

    The diffuse interstellar medium inventory of organic material (Pendleton et al. 1994, Pendleton & Allamandola 2002) was likely incorporated into the molecular cloud in which the solar nebula condensed. This provided the feedstock for the formation of the Sun, major planets, and the smaller icy bodies in the region outside Neptune's orbit (transneptunian objects, or TNOs). Saturn's satellites Phoebe, Iapetus, and Hyperion open a window to the composition of one class of TNO as revealed by the near-infrared mapping spectrometer (VIMS) on the Cassini spacecraft at Saturn. Phoebe (mean diameter 213 km) is a former TNO now orbiting Saurn. VIMS spaectral maps of PHoebe's surface reveal a complex organic spectral signature consisting of prominent aromatic (CH) and alophatic hydrocarbon (CH2, CH3) absorption bands (3.2-3.6 micrometers). Phoebe is the source of a huge debris ring encircling Saturn, and from which particles (approximately 5-20 micrometer size) spiral inward toward Saturn. They encounter Iapetus and Hperion where they mix with and blanket the native H2O ice of those two bodies. Quantitative analysis of the hydrocarbon bands on Iapetus demonstrates that aromatic CH is approximately 10 times as abundant as aliphatic CH2+CH3, significantly exceeding the strength of the aromatic signature in interplanetary dust particles, comet particles, ad in carbonaceous meteorites (Cruikshank et al. 2013). A similar excess of aromatics over aliphatics is seen in the qualitative analysis of Hyperion and Phoebe itself (Dalle Ore et al. 2012). The Iapetus aliphatic hydrocarbons show CH2/CH3 approximately 4, which is larger than the value found in the diffuse ISM (approximately 2-2.5). In so far as Phoebe is a primitive body that formed in the outer regions of the solar nebula and has preserved some of the original nebula inventory, it can be key to understanding the content and degree of procesing of the nebular material. There are other Phoebe-like TNOs that are presently

  15. H_2CO in the Horsehead nebula

    NASA Astrophysics Data System (ADS)

    Guzman, V.; Pety, J.; Goicoechea, J. R.; Gerin, M.; Roueff, E.

    2011-05-01

    Photodissociation region (PDR) models are used to understand the evolution of the far-UV illuminated matter both in our Galaxy and in external galaxies. The spectacular instrumental improvements, which happens in radioastronomy with the advent of Herschel, ALMA and NOEMA, call for matching progresses in PDR modeling. While it is now confirmed that some interstellar species are mostly formed in the gas phase (CO for instance) and others on grains (CH_3OH), the chemical routes for other species, like H_2CO, are still debated because it is likely that solid and gas phase processes are both needed. The availability of well defined observations is essential here to discriminate between chemical assumptions about the important grain surface processes: adsorption, desorption and reactivity. Due to its closeness (~400 pc) and simple geometry, the Horsehead PDR is particularly well suited to investigate the grain surface chemistry. We present observations of 7 transitions of formaldehyde (H_2CO) toward two positions: the edge of the nebula exposed to the UV-field (PDR), and a colder region (cold core) shielded from the UV radiation. A non-LTE Montecarlo radiative transfer code is used to determine the H2CO abundance from the observed intensities and line profiles. We find that the H_2CO abundance is very similar in the warm PDR and in the cold dense core. The inferred abundances are compared with PDR models, including both gas-phase and grain surface reactions, in order to study the dominant formation routes of H_2CO. Pure gas-phase chemistry models fail to reproduce the observed H2CO abundance by a factor ~10 in the PDR, while surface grain chemistry successfully reproduces the observed abundance.

  16. H2CO in the Horsehead nebula

    NASA Astrophysics Data System (ADS)

    Guzman, Viviana

    2011-07-01

    Photodissociation region (PDR) models are used to understand the evolution of the far-UV illuminated matter both in our Galaxy and in external galaxies. The spectacular instrumental improvements, which happens in radioastronomy with the advent of Herschel, ALMA and NOEMA, call for matching progresses in PDR modeling. While it is now confirmed that some interstellar species are mostly formed in the gas phase (CO for instance) and others on grains (CH3OH, Garrod et al. 2007), the chemical routes for other species, like H2CO, are still debated because it is likely that solid and gas phase processes are both needed. The availability of well defined observations is essential here to discriminate between chemical assumptions about the important grain surface processes: adsorption, desorption and reactivity. Due to its closeness (~400 pc) and simple geometry, the Horsehead PDR is particularly well suited to investigate the grain surface chemistry. We present observations of 7 transitions of formaldehyde (H2CO) toward two positions: the edge of the nebula exposed to the UV-field (PDR), and a colder region (cold core) shielded from the UV radiation. A non-LTE Montecarlo radiative transfer code is used to determine the H2CO abundance from the observed intensities and line profiles. We find that the H2CO abundance is very similar in the warm PDR and in the cold dense core. The inferred abundances are compared with PDR models, including both gas-phase and grain surface reactions, in order to study the dominant formation routes of H2CO. Pure gas-phase chemistry models fail to reproduce the observed H2CO abundance by a factor ~10 in the PDR, while surface grain chemistry increases the H2CO abundance up to 3 orders of magnitude in the PDR.

  17. The tiny globulettes in the Carina nebula

    NASA Astrophysics Data System (ADS)

    Grenman, T.; Gahm, G. F.

    2014-05-01

    Context. Small molecular cloudlets are abundant in many H ii regions surrounding newborn stellar clusters. In optical images these so-called globulettes appear as dark silhouettes against the bright nebular background. Aims: We aim to make an inventory of the population of globulettes in the Carina nebula complex, and to derive sizes and masses for comparisons with similar objects found in other H ii regions. Methods: The globulettes were identified from Hα images collected at the Hubble Space Telescope. Results: We have located close to 300 globulettes in the Carina complex, more than in any other region surveyed so far. The objects appear as well-confined dense clumps and, as a rule, lack thinner envelopes and tails. Objects with bright rims are in the minority, but more abundant than in other regions surveyed. Some globulettes are slightly elongated with their major axes oriented in the direction of young clusters in the complex. Many objects are quite isolated and reside at projected distances >1.5 pc from other molecular structures in the neighbourhood. No globulette coincides in position with recognized pre-main-sequence objects in the area. The objects are systematically much smaller, less massive, and much denser than those surveyed in other H ii regions. Practically all globulettes are of planetary mass, and most have masses less than one Jupiter mass. The average number densities exceed 105 cm-3 in several objects. We have found a statistical relation between density and radius (mass) in the sense that the smallest objects are also the densest. Conclusions: The population of small globulettes in Carina appears to represent a more advanced evolutionary state than those investigated in other H ii regions. The objects are subject to erosion in the intense radiation field, which would lead to a removal of any thinner envelope and an unveiling of the core, which becomes more compact with time. We discuss the possibility that the core may become

  18. Turbulent Concentration of MM-Size Particles in the Protoplanetary Nebula: Scaled-Dependent Multiplier Functions

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hartlep, Thomas; Weston, B.; Estremera, Shariff Kareem

    2014-01-01

    The initial accretion of primitive bodies (asteroids and TNOs) from freely-floating nebula particles remains problematic. Here we focus on the asteroids where constituent particle (read "chondrule") sizes are observationally known; similar arguments will hold for TNOs, but the constituent particles in those regions will be smaller, or will be fluffy aggregates, and are unobserved. Traditional growth-bysticking models encounter a formidable "meter-size barrier" [1] (or even a mm-cm-size barrier [2]) in turbulent nebulae, while nonturbulent nebulae form large asteroids too quickly to explain long spreads in formation times, or the dearth of melted asteroids [3]. Even if growth by sticking could somehow breach the meter size barrier, other obstacles are encountered through the 1-10km size range [4]. Another clue regarding planetesimal formation is an apparent 100km diameter peak in the pre-depletion, pre-erosion mass distribution of asteroids [5]; scenarios leading directly from independent nebula particulates to this size, which avoid the problematic m-km size range, could be called "leapfrog" scenarios [6-8]. The leapfrog scenario we have studied in detail involves formation of dense clumps of aerodynamically selected, typically mm-size particles in turbulence, which can under certain conditions shrink inexorably on 100-1000 orbit timescales and form 10-100km diameter sandpile planetesimals. The typical sizes of planetesimals and the rate of their formation [7,8] are determined by a statistical model with properties inferred from large numerical simulations of turbulence [9]. Nebula turbulence can be described by its Reynolds number Re = L/eta sup(4/3), where L = ETA alpha sup (1/2) the largest eddy scale, H is the nebula gas vertical scale height, and a the nebula turbulent viscosity parameter, and ? is the Kolmogorov or smallest scale in turbulence (typically about 1km), with eddy turnover time t?. In the nebula, Re is far larger than any numerical simulation can

  19. The AG Carinae nebula: abundant evidence for a red supergiant progenitor?

    NASA Astrophysics Data System (ADS)

    Smith, L. J.; Stroud, M. P.; Esteban, C.; Vilchez, J. M.

    1997-09-01

    AG Carinae is a massive, evolved supergiant which is thought to be in transition from an O star to a Wolf-Rayet (WR) star and is currently identified as a luminous blue variable (LBV) with logL/solar=6.0. We present an abundance study of the ejecta nebula surrounding AG Car with the aim of elucidating the evolutionary history of the central star. Physical parameters and abundances are derived for five regions across the nebula from high spatial resolution spectroscopy obtained at the Anglo-Australian Telescope (AAT). We derive an average T_e of 6350+/-400K, an n_e of 820+/-170cm^-3, and find that nitrogen (N) is enhanced by a factor of 4.5+/-1.3 and that oxygen (O) is deficient by a factor of 15.1+/-7.2. The derived abundances are compared with those determined for ejecta-type nebulae around WR stars and those predicted by hydrodynamical calculations and stellar evolutionary models. We find that the AG Car nebula is composed of mildly processed material that has not reached the CNO-equilibrium abundances predicted for LBV nebulae. The similarity of the AG Car nebular N abundance to WR nebulae leads us to suggest that the nebulae were ejected at the same evolutionary point, and have undergone no further chemical modification. For AG Car, this point appears to have occurred before the LBV phase because of the observed low N enrichment. Comparison of the observed N abundance with evolutionary model predictions indicates that the AG Car nebula may represent the hydrogen-rich (H- rich) envelope of a red supergiant (RSG). The problem of an RSG progenitor for AG Car is discussed and it is found that the LBV model of Stothers & Chin, incorporating a brief unstable RSG phase, is capable of explaining the observations. We conclude that despite its high luminosity, AG Car has probably experienced a brief RSG phase where it ejected its outer layers to form the currently observed nebula.

  20. Hydroxyl Emission in the Westbrook Nebula

    NASA Astrophysics Data System (ADS)

    Strack, Angelica; Araya, Esteban; Ghosh, Tapasi; Arce, Hector G.; Lebron, Mayra E.; Salter, Christopher J.; Minchin, Robert F.; Pihlstrom, Ylva; Kurtz, Stan; Hofner, Peter; Olmi, Luca

    2016-06-01

    CRL 618, also known as the Westbrook Nebula, is a carbon-rich pre-planetary nebula. Hydroxyl (OH) transitions are typically not detected in carbon-rich late-type stellar objects, however observations conducted with the 305m Arecibo Telescope in 2008 resulted in the detection of 4765 MHz OH emission in CRL 618. We present results of observations carried out a few months after the original detection that confirm the line. This is the first detection of 4765 MHz OH emission (most likely a maser) in a pre-planetary nebula. Follow up observations conducted in 2015 resulted in non-detection of the 4765 MHz OH transition. This behavior is consistent with the high level of variability of excited OH lines that have been detected toward a handful of other pre-planetary nebulae. Our work supports that excited OH masers are short-lived during the pre-planetary nebula phase. We also conducted a search for other OH transitions from 1612 MHz to 8611 MHz with the Arecibo Telescope; we report no other detections at rms levels of ~5 mJy.This work has made use of the computational facilities donated by Frank Rodeffer to the WIU Astrophysics Research Laboratory. We also acknowledge support from M. & C. Wong RISE scholarships and a grant from the WIU College of Arts and Sciences.

  1. Turbulent transport in the solar nebula

    NASA Technical Reports Server (NTRS)

    Thompson, K. W.

    1990-01-01

    This paper describes the current state of an ongoing project to simulate turbulent flow in a solar nebula, which is the flattened disk of dust and gas out of which a solar system forms. The goal of this project is to determine a model for the transport of mass and angular momentum in the nebula. The nebula flow exhibits compressibility, thermal conduction, viscosity, internal heating through viscous dissipation, a stable shear due to Keplerian rotation, and a gravitational acceleration in the vertical direction which is linear with altitude. These properties combine to give flow patterns not seen in terrestrial applications. Primordial solar systems are known to exist and are presumably undergoing an evolution similar to the early stages of our own solar system; for example, the IRAS infrared telescope has discovered such a protoplanetary system around the star Vega. Solar nebula evolution is the subject of much research in the astrophysical community. In the long run, researchers hope to gain a better understanding of planetary formation and the processes which dissipate the solar nebula with time.

  2. Molecular Content of the Helix Nebula

    NASA Astrophysics Data System (ADS)

    Zack, L. N.; Zeigler, N. R.; Ziurys, L. M.

    2012-06-01

    Multiple transitions of H_2CO, HCO^+, and CO were detected at nine positions across the planetary nebula NGC 7293, the Helix Nebula, using the 12m telescope and the Submillimeter Telescope (SMT) of the Arizona Radio Observatory (ARO). A complete map of the nebula has also been made in the J = 1 → 0 transition of HCO^+ at 89 GHz. HCO^+ emission was found to be widespread across the Helix, and is coincident with the ionized gas as traced in optical images. A complex velocity structure is apparent in the HCO^+ spectra, as well. The CO and H_2CO data (J = 1 → 0, 2 → 1, and 3 → 2) were modeled using a radiative transfer code at the nine positions observed in the Helix. Kinetic temperatures were typically found to be in the range Tkin ≈ 20 - 45 K and the gas density on the order of n(H_2) ≈ 105 cm-3 at these positions. The column densities for CO, H_2CO, and HCO^+ were determined to be 1015, 1012, and 1011 cm-2 respectively, corresponding to fractional abundances, relative to H_2, of f ≈ 10-4, 10-7, and 10-8. The extended distribution of HCO^+ suggests that dense clumps may exist throughout the nebula. Hence, the chemistry of evolved planetary nebulae may be more active than previously thought.

  3. Multiwavelength Studies of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Slane, Patrick O.

    2010-03-01

    The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the central engines, and the long-term fate of the energetic particles produced in these systems. High-energy observations, in particular, reveal the presence of jets and wind termination shocks, time-varying compact emission structures, shocked supernova ejecta, and emission from late-phase nebulae that are extremely faint in other bands. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples from observations extending from the radio band to very high energy gamma-rays that demonstrate our ability to constrain the history and ultimate fate of the energy released in the spin-down of young pulsars.

  4. Properties of interstellar dust in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, Kristin

    1988-01-01

    Observations of interstellar dust in reflection nebulae are the closest analog in the interstellar medium to studies of cometary dust in our solar system. The presence of a bright star near the reflection nebula dust provides the opportunity to study both the reflection and emission characteristics of interstellar dust. At 0.1 to 1 micrometer, the reflection nebula emission is due to starlight scattered by dust. The albedo and scattering phase function of the dust is determined from observations of the scattered light. At 50 to 200 micrometers, thermal emission from the dust in equilibrium with the stellar radiation field is observed. The derived dust temperature determines the relative values of the absorption coefficient of the dust at wavelengths where the stellar energy is absorbed and at far infrared wavelengths where the absorbed energy is reradiated. These emission mechanisms directly relate to those seen in the near and mid infrared spectra of comets. In a reflection nebula the dust is observed at much larger distances from the star than in our solar system, so that the equilibrium dust temperature is 50 K rather than 300 K. Thus, in reflection nebulae, thermal emission from dust is emitted at 50 to 200 micrometer.

  5. Nonuniform viscosity in the solar nebula and large masses of Jupiter and Saturn

    NASA Astrophysics Data System (ADS)

    Jin, L.

    2004-08-01

    I report a novel theory that nonuniform viscous frictional force in the solar nebula accounts for the largest mass of Jupiter and Saturn and their largest amount of H and He among the planets, two outstanding facts that are unsolved puzzles in our understanding of origin of the Solar System. It is shown that the nebula model of uniform viscosity does not match the present planet masses. By studying current known viscosity mechanisms, I show that viscosity is more efficient in the inner region inside Mercury and the outer region outside Jupiter-Saturn than the intermediate region. The more efficient viscosity drives faster radial inflow of material during the nebula evolution. Because the inflow in the outer region is faster than the intermediate region, the material tends to accumulate in Jupiter-Saturn region which is between the outer and intermediate region. It is demonstrated that the gas trapping time of Jovian planets is longer than the inflow time in the outer region. Therefore the gas already flows to Jupiter-Saturn region before Uranus and Neptune can capture significant gas. But the inflow in the Jupiter-Saturn region is so slow that they can capture large amount of gas before the gas can flow further inward. Hence they have larger masses with larger H and He content than Uranus and Neptune. I also extend the discussion to the masses of the terrestrial planets, especially low mass of Mercury. The advantages of this theory are discussed.

  6. The Orion Nebula in the Far-Infrared: High-J CO and fine-structure lines mapped by FIFI-LS/SOFIA

    NASA Astrophysics Data System (ADS)

    Klein, Randolf; Looney, Leslie W.; Cox, Erin; Fischer, Christian; Iserlohe, Christof; Krabbe, Alfred

    2017-03-01

    The Orion Nebula is the closest massive star forming region allowing us to study the physical conditions in such a region with high spatial resolution. We used the far infrared integral-field spectrometer, FIFI-LS, on-board the airborne observatory SOFIA to study the atomic and molecular gas in the Orion Nebula at medium spectral resolution. The large maps obtained with FIFI-LS cover the nebula from the BN/KL-object to the bar in several fine structure lines. They allow us to study the conditions of the photon-dominated region and the interface to the molecular cloud with unprecedented detail. Another investigation targeted the molecular gas in the BN/KL region of the Orion Nebula, which is stirred up by a violent explosion about 500 years ago. The explosion drives a wide angled molecular outflow. We present maps of several high-J CO observations, allowing us to analyze the heated molecular gas.

  7. The Stingray nebula: watching the rapid evolution of a newly born planetary nebula.

    NASA Astrophysics Data System (ADS)

    Bobrowsky, M.; Sahu, K. C.; Parthasarathy, M.; García-Lario, Pedro

    The formation and early evolution of planetary nebulae represent one of the most poorly understood phases of stellar evolution ( Kwok, 1987; Maddox, 1995). One of the youngest, the Stingray Nebula (He3-1357) ( Henize, 1967; Henize, 1976), shows all the tell-tale signs of a newly born planetary nebula: it has become ionized only within the past few decades ( Parthasarathy et al., 1993); the mass-loss from the central star has ceased within the past few years; and the central star is becoming hotter and fainter as expected from a star on its way to becoming a DA white dwarf ( Parthasarathy et al., 1995). The Stingray Nebula thus provides the ideal laboratory for examining the early structure and evolution of this class of objects. Images of the Stingray Nebula, obtained with the Hubble Space Telescope, show for the first time that its multiple expulsions of matter are focused by an equatorial ring and bubbles of gas located on opposite sides of the ring ( Bobrowsky et al., 1995). The position angle of the outflows has changed, possibly as a result of precessional motion induced by the presence of a companion star. This is consistent with the precessing jet model by Livio & Pringle (1996). Indeed, we have reported the discovery of a companion star in the Stingray Nebula ( Bobrowsky et al., 1998). Finally, we present evidence of the companion star dynamically distorting the gas in this newly-born planetary nebula.

  8. The Radio Spectral Index of the Crab Nebula

    DTIC Science & Technology

    1997-11-20

    We present the results of a new, comprehensive investigation of the radio spectral index of the Crab Nebula supernova remnant. New data at 74 MHz are...thermal material in the Crab Nebula’s filaments. Apart from some possible renewed acceleration occurring in the wisps, the dominant accelerator of relativistic electrons in the Crab Nebula is the pulsar itself.

  9. Monitoring the Crab Nebula with LOFT

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.

    2012-01-01

    From 2008-2010, the Crab Nebula was found to decline by 7% in the 15-50 keV band, consistently in Fermi GBM, INTEGRAL IBIS, SPI, and JEMX, RXTE PCA, and Swift BAT. From 2001-2010, the 15-50 keV flux from the Crab Nebula typically varied by about 3.5% per year. Analysis of RXTE PCA data suggests possible spectral variations correlated with the flux variations. I will present estimates of the LOFT sensitivity to these variations. Prior to 2001 and since 2010, the observed flux variations have been much smaller. Monitoring the Crab with the LOFT WFM and LAD will provide precise measurements of flux variations in the Crab Nebula if it undergoes a similarly active episode.

  10. Most Detailed Image of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This new Hubble image -- one among the largest ever produced with the Earth-orbiting observatory -- shows the most detailed view so far of the entire Crab Nebula ever made. The Crab is arguably the single most interesting object, as well as one of the most studied, in all of astronomy. The image is the largest image ever taken with Hubble's WFPC2 workhorse camera.

    The Crab Nebula is one of the most intricately structured and highly dynamical objects ever observed. The new Hubble image of the Crab was assembled from 24 individual exposures taken with the NASA/ESA Hubble Space Telescope and is the highest resolution image of the entire Crab Nebula ever made.

  11. Hubble Space Telescope Image of Omega Nebula

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this sturning image provided by the Hubble Space Telescope (HST), the Omega Nebula (M17) resembles the fury of a raging sea, showing a bubbly ocean of glowing hydrogen gas and small amounts of other elements such as oxygen and sulfur. The nebula, also known as the Swan Nebula, is a hotbed of newly born stars residing 5,500 light-years away in the constellation Sagittarius. The wavelike patterns of gas have been sculpted and illuminated by a torrent of ultraviolet radiation from the young massive stars, which lie outside the picture to the upper left. The ultraviolet radiation is carving and heating the surfaces of cold hydrogen gas clouds. The warmed surfaces glow orange and red in this photograph. The green represents an even hotter gas that masks background structures. Various gases represented with color are: sulfur, represented in red; hydrogen, green; and oxygen blue.

  12. Compact reflection nebulae, a transit phase of evolution from post-AGB to planetary nebulae

    NASA Technical Reports Server (NTRS)

    Hu, J. Y.; Slijkhuis, S.

    1989-01-01

    In a search of the optical counter-part of candidates of protoplanetary nebulae on the plates of UK Schmidt, ESO Schmidt, and POSS, five compact reflection nebulae associated with post-AGB stars were found. A simplified model (dust shell is spherical symmetric, expansion velocity of dust shell is constant, Q(sub sca)(lambda) is isotropic, and the dust grain properties are uniform) is used to estimate the visible condition of the dust shell due to the scattering of the core star's light. Under certain conditions the compact reflection nebulae can be seen of the POSS or ESO/SRC survey plates.

  13. Two different sources of water for the early solar nebula.

    PubMed

    Kupper, Stefan; Tornow, Carmen; Gast, Philipp

    2012-06-01

    Water is essential for life. This is a trivial fact but has profound implications since the forming of life on the early Earth required water. The sources of water and the related amount of delivery depend not only on the conditions on the early Earth itself but also on the evolutionary history of the solar system. Thus we ask where and when water formed in the solar nebula-the precursor of the solar system. In this paper we explore the chemical mechanics for water formation and its expected abundance. This is achieved by studying the parental cloud core of the solar nebula and its gravitational collapse. We have identified two different sources of water for the region of Earth's accretion. The first being the sublimation of the icy mantles of dust grains formed in the parental cloud. The second source is located in the inner region of the collapsing cloud core - the so-called hot corino with a temperature of several hundred Kelvin. There, water is produced efficiently in the gas phase by reactions between neutral molecules. Additionally, we analyse the dependence of the production of water on the initial abundance ratio between carbon and oxygen.

  14. Broad Halpha Wing Formation in the Planetary Nebula IC 4997.

    PubMed

    Lee; Hyung

    2000-02-10

    The young and compact planetary nebula IC 4997 is known to exhibit very broad wings with a width exceeding 5000 km s-1 around Halpha. We propose that the broad wings are formed through Rayleigh-Raman scattering that involves atomic hydrogen, by which Lybeta photons with a velocity width of a few 102 km s-1 are converted to optical photons and fill the Halpha broad wing region. The conversion efficiency reaches 0.6 near the line center, where the scattering optical depth is much larger than 1, and rapidly decreases in the far wings. Assuming that close to the central star there exists an unresolved inner compact core of high density, nH approximately 109-1010 cm-3, we use the photoionization code "CLOUDY" to show that sufficient Lybeta photons for scattering are produced. Using a top-hat-incident profile for the Lybeta flux and a scattering region with a H i column density NHi=2x1020 cm-2 and a substantial covering factor, we perform a profile-fitting analysis in order to obtain a satisfactory fit to the observed flux. We briefly discuss the astrophysical implications of the Rayleigh-Raman processes in planetary nebulae and other emission objects.

  15. Stars and Nebulae in the Southern Crown

    NASA Astrophysics Data System (ADS)

    2000-10-01

    The R Coronae Australis complex of young stars and interstellar gas clouds is one of the nearest star-forming regions, at a distance of approx. 500 light-years from the Sun. It is seen in the southern constellation of that name (The "Southern Crown"). Images of this sky area were recently obtained with the Wide Field Imager (WFI) , a 67-million pixel digital camera that is installed at the 2.2-m MPG/ESO Telescope at ESO's La Silla Observatory. Some of these exposures have been combined into a magnificent colour image, here reproduced as PR Photo 25a/00 . The field shown measures about 4.7 x 4.7 light-years 2. It displays the central part of the complex, its brightest stars, and the nebulosity that they illuminate. The interstellar clouds that are associated with the complex are visible all across this field and also beyond its borders (on other exposures), due to the obscuring effect of the dust particles that "dim" the light of stars behind these clouds. This effect is particularly noticeable in the lower left corner where very few stars are seen. R Coronae Australis , the bright star from which the entire complex is named, is located at the center of the field and illuminates the reddish nebula around it. The bright star in the lower part, illuminating a somewhat bluer nebula, is known as TY Coronae Australis . The brightness of these two stars and several others in the same field is variable. They belong to the so-called "T Tauri" class , a type that is quite common in star-forming regions. T Tauri stars are in the early stages of stellar evolution and display various observable characteristics of this phase, e.g. emission at visible and infrared wavelengths due to the accretion of matter left over from their formation, as well as X-ray emission. The nebulosity seen in this picture is mostly due to reflection of the stellar light by small dust particles. The stars in the R Coronae Australis complex do not emit sufficient ultraviolet light to ionize a substantial

  16. Turbulent transport in the solar nebula

    NASA Technical Reports Server (NTRS)

    Thompson, Kevin W.

    1989-01-01

    It is likely that turbulence played a major role in the evolution of the solar nebula, which is the flattened disk of dust and gas out of which our solar system formed. Relevant turbulent processes include the transport of angular momentum, mass, and heat, which were critically important to the formation of the solar system. This research will break ground in the modeling of compressible turbulence and its effects on the evolution of the solar nebula. The computational techniques which were developed should be of interest to researchers studying other astrophysical disk systems (e.g., active galactic nuclei), as well as turbulence modelers outside the astrophysics community.

  17. A new cometary nebula in Cygnus

    NASA Astrophysics Data System (ADS)

    Neckel, Th.; Staude, H. J.

    1987-09-01

    The authors present CCD images, surface polarimetry, and long-slit spectrograms of a hitherto unknown cometary reflection nebula associated with a dense dust cloud. A bright, compact Herbig-Haro object is embedded in its brightest part. The highly reddened illuminating star of about 3 - 5 M_sun; is located near the apex of the nebula; it emits a collimated bipolar high-velocity flow whose blueshifted component feeds the Herbig-Haro object. The redshifted component can be traced toward the interior of the dark cloud, where the density exceeds 105cm-3.

  18. Ultraviolet studies of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Talavera, A.

    2017-03-01

    The Crab Nebula (Messier 1) is one of the most observed sources with the XMM-Newton space telescope of ESA. The Crab and its related pulsar are a calibration source for the on-board X-rays cameras. There are around 80 observations between 2000 and 2015. In this observations, the XMM-Newton Optical and UV Monitor (OM) has also been used. We present a preliminary study of the Crab using images obtained the OM UV filters at 291, 231 and 212 nm. Photometric data for the pulsar (PSR0531+21), created in the supernova event of AD 1054 origin of the nebula, are also presented

  19. Gas absorption and dust extinction towards the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Hasenberger, Birgit; Forbrich, Jan; Alves, João; Wolk, Scott J.; Meingast, Stefan; Getman, Konstantin V.; Pillitteri, Ignazio

    2016-08-01

    Aims: We characterise the relation between the gas and dust content of the interstellar medium towards young stellar objects in the Orion Nebula Cluster. Methods: X-ray observations provide estimates of the absorbing equivalent hydrogen column density NH based on spectral fits. Near-infrared extinction values are calculated from intrinsic and observed colour magnitudes (J - H) and (H - Ks) as given by the VISTA Orion A survey. A linear fit of the correlation between column density and extinction values AV yields an estimate of the NH/AV ratio. We investigate systematic uncertainties of the results by describing and (if possible) quantifying the influence of circumstellar material and the adopted extinction law, X-ray models, and elemental abundances on the NH/AV ratio. Results: Assuming a Galactic extinction law with RV = 3.1 and solar abundances by Anders & Grevesse (1989, Geochim. Cosmochim. Acta, 53, 197), we deduce an NH/AV ratio of (1.39 ± 0.14) × 1021 cm-2 mag-1 for Class III sources in the Orion Nebula Cluster where the given error does not include systematic uncertainties. This ratio is consistent with similar studies in other star-forming regions and approximately 31% lower than the Galactic value. We find no obvious trends in the spatial distribution of NH/AV ratios. Changes in the assumed extinction law and elemental abundances are demonstrated to have a relevant impact on deduced AV and NH values, respectively. Large systematic uncertainties associated with metal abundances in the Orion Nebula Cluster represent the primary limitation for the deduction of a definitive NH/AV ratio and the physical interpretation of these results. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A7

  20. The Generation of Lighting in the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey; Desch, S. J.; DeVincenzi, Donald (Technical Monitor)

    1998-01-01

    The process that melted and formed the chondrules, mm-sized glassy beads within meteorites, has not been conclusively identified. Origin by lightning in the solar nebula is consistent with many features of chondrules, but no viable model of lightning has yet been advanced. We present a model demonstrating how lightning could be generated in the solar nebula which differs from previous models in three important aspects. First, we identify a new', powerful charging mechanism that is based on the differences in contact potentials between particles of different composition, a form of triboelectric charging. In the presence of fine silicate grains and fine iron metal grains, large silicate particles (the chondrules) can acquire charges of +10(exp 5) e. Second, we assume that the chondrule precursor particles are selectively concentrated in clumps 1 - 100 km in size by the turbulent concentration mechanism described by Cuzzi et al. (1996). The concentration of these highly charged particles into clumps, in a background of negatively charged metal grains, is what generates the strong electric fields. Third, we make refinements in the estimates of the breakdown electric field and the ionization rate. We calculate that electric fields large enough to trigger breakdown easily could have existed over regions large enough (approx. 100km) to generate very large discharges of electrical energy (approx. 10(exp 16)erg). The discharges would have been sufficiently energetic and frequent to have formed the chondrules. We place constraints on the generation of lightning and conclude that it could not be generated if the abundance of Al-26 in chondrules was as high as the level in the CAls. This conclusion is consistent with isotopic analyses of chondrules. This possibly implies that Al-26 was non-uniformly distributed in the solar nebula or that the chondrules formed several Myr after the CAIs.

  1. A Spitzer Census of the IC 348 Nebula

    NASA Astrophysics Data System (ADS)

    Muench, August A.; Lada, Charles J.; Luhman, K. L.; Muzerolle, James; Young, Erick

    2007-07-01

    Spitzer mid-infrared surveys enable an accurate census of young stellar objects by sampling large spatial scales, revealing very embedded protostars, and detecting low-luminosity objects. Taking advantage of these capabilities, we present a Spitzer-based census of the IC 348 nebula and embedded star cluster, covering a 2.5 pc region and comparable in extent to the Orion Nebula. Our Spitzer census supplemented with ground-based spectra has added 42 Class II T Tauri sources to the cluster membership and identified ~20 Class 0/I protostars. The population of IC 348 likely exceeds 400 sources after accounting statistically for unidentified diskless members. Our Spitzer census of IC 348 reveals a population of Class I protostars that is anticorrelated spatially with the Class II/III T Tauri members, which comprise the centrally condensed cluster around a B star. The protostars are instead found mostly at the cluster periphery about ~1 pc from the B star and spread out along a filamentary ridge. We further find that the star formation rate in this protostellar ridge is consistent with that rate which built the older exposed cluster, while the presence of 15 cold, starless, millimeter cores intermingled with this protostellar population indicates that the IC 348 nebula has yet to finish forming stars. Moreover, we show that the IC 348 cluster is of order 3-5 crossing times old, and, as evidenced by its smooth radial profile and confirmed mass segregation, is likely relaxed. While it seems apparent that the current cluster configuration is the result of dynamical evolution and its primordial structure has been erased, our finding of a filamentary ridge of Class I protostars supports a model in which embedded clusters are built up from numerous smaller subclusters. Finally, the results of our Spitzer census indicate that the supposition that star formation must progress rapidly in a dark cloud should not preclude these observations that show it can be relatively long lived.

  2. Nature versus Nurture: Luminous Blue Variable Nebulae in and near Massive Stellar Clusters at the Galactic Center

    NASA Astrophysics Data System (ADS)

    Lau, R. M.; Herter, T. L.; Morris, M. R.; Adams, J. D.

    2014-04-01

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical "twins" that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, no detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s-1) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ~ 35 Å) having a total dust mass of 0.03 M ⊙, and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 105 L ⊙. Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M ⊙. The total IR luminosity of the G0.120-0.048 nebula is ~105 L ⊙. From

  3. Nature versus nurture: Luminous blue variable nebulae in and near massive stellar clusters at the galactic center

    SciTech Connect

    Lau, R. M.; Herter, T. L.; Adams, J. D.; Morris, M. R.

    2014-04-20

    Three luminous blue variables (LBVs) are located in and near the Quintuplet Cluster at the Galactic center: the Pistol Star, G0.120-0.048, and qF362. We present imaging at 19, 25, 31, and 37 μm of the region containing these three LBVs, obtained with SOFIA using FORCAST. We argue that Pistol and G0.120-0.048 are identical 'twins' that exhibit contrasting nebulae due to the external influence of their different environments. Our images reveal the asymmetric, compressed shell of hot dust surrounding the Pistol Star and provide the first detection of the thermal emission from the symmetric, hot dust envelope surrounding G0.120-0.048. However, no detection of hot dust associated with qF362 is made. Dust and gas composing the Pistol nebula are primarily heated and ionized by the nearby Quintuplet Cluster stars. The northern region of the Pistol nebula is decelerated due to the interaction with the high-velocity (2000 km s{sup –1}) winds from adjacent Wolf-Rayet Carbon (WC) stars. From fits to the spectral energy distribution (SED) of the Pistol nebula with the DustEM code we determine that the Pistol nebula is composed of a distribution of very small, transiently heated grains (10 to ∼ 35 Å) having a total dust mass of 0.03 M {sub ☉}, and that it exhibits a gradient of decreasing grain size from south to north due to differential sputtering by the winds from the WC stars. The total IR luminosity of the Pistol nebula is 5.2 × 10{sup 5} L {sub ☉}. Dust in the G0.120-0.048 nebula is primarily heated by the central star; however, the nebular gas is ionized externally by the Arches Cluster. Unlike the Pistol nebula, the G0.120-0.048 nebula is freely expanding into the surrounding medium. A grain size distribution identical to that of the non-sputtered region of the Pistol nebula satisfies the constraints placed on the G0.120-0.048 nebula from DustEM model fits to its SED and implies a total dust mass of 0.021 M {sub ☉}. The total IR luminosity of the G0

  4. DIFFERENTIAL PROPER-MOTION MEASUREMENTS OF THE CYGNUS EGG NEBULA: THE PRESENCE OF EQUATORIAL OUTFLOWS

    SciTech Connect

    Ueta, Toshiya; Tomasino, Rachael L.; Ferguson, Brian A.

    2013-08-01

    We present the results of differential proper-motion analyses of the Egg Nebula (RAFGL 2688, V1610 Cyg) based on the archived two-epoch optical data taken with the Hubble Space Telescope. First, we determined that the polarization characteristics of the Egg Nebula are influenced by the higher optical depth of the central regions of the nebula (i.e., the 'dustsphere' of {approx}10{sup 3} AU radius), causing the nebula to illuminate in two steps-the direct starlight is first channeled into bipolar cavities and then scattered off to the rest of the nebula. We then measured the amount of motion of local structures and the signature concentric arcs by determining their relative shifts over the 7.25 yr interval. Based on our analysis, which does not rely on the single-scattering assumption, we concluded that the lobes have been excavated by a linear expansion along the bipolar axis for the past {approx}400 yr, while the concentric arcs have been generated continuously and moving out radially at about 10 km s{sup -1} for the past {approx}5500 yr, and there appears to be a colatitudinally increasing trend in the radial expansion velocity field of the concentric arcs. Numerical investigations into the mass-loss modulation by the central binary system exist, which predict such a colatitudinally increasing expansion velocity field in the spiral-shock trails of the mass-loss ejecta. Therefore, the Egg Nebula may represent a rare edge-on case of the binary-modulated circumstellar environs, corroborating the previous theoretical predictions.

  5. Transformation of Graphitic and Amorphous Carbon Dust to Complex Organic Molecules in a Massive Carbon Cycle in Protostellar Nebulae

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Johnson, Natasha M.

    2012-01-01

    More than 95% of silicate minerals and other oxides found in meteorites were melted, or vaporized and recondensed in the Solar Nebula prior to their incorporation into meteorite parent bodies. Gravitational accretion energy and heating via radioactive decay further transformed oxide minerals accreted into planetesimals. In such an oxygen-rich environment the carbonaceous dust that fell into the nebula as an intimate mixture with oxide grains should have been almost completely converted to CO. While some pre-collapse, molecular-cloud carbonaceous dust does survive, much in the same manner as do pre-solar oxide grains, such materials constitute only a few percent of meteoritic carbon and are clearly distinguished by elevated D/H, N-15/N-16, C-13/C-12 ratios or noble gas patterns. Carbonaceous Dust in Meteorites: We argue that nearly all of the carbon in meteorites was synthesized in the Solar Nebula from CO and that this CO was generated by the reaction of carbonaceous dust with solid oxides, water or OH. It is probable that some fraction of carbonaceous dust that is newly synthesized in the Solar Nebula is also converted back into CO by additional thermal processing. CO processing might occur on grains in the outer nebula through irradiation of CO-containing ice coatings or in the inner nebula via Fischer-Tropsch type (FTT) reactions on grain surfaces. Large-scale transport of both gaseous reaction products and dust from the inner nebula out to regions where comets formed would spread newly formed carbonaceous materials throughout the solar nebula. Formation of Organic Carbon: Carbon dust in the ISM might easily be described as inorganic graphite or amorphous carbon, with relatively low structural abundances of H, N, O and S . Products of FTT reactions or organics produced via irradiation of icy grains contain abundant aromatic and aliphatic hydrocarbons. aldehydes, keytones, acids, amines and amides.. The net result of the massive nebular carbon cycle is to convert

  6. A Morpho-kinematic and Spectroscopic study of Bipolar Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Clyne, Niall

    2015-09-01

    In this thesis, studies of the kinematic properties for a sample of Galactic bipolar planetary nebulae, based on optical and infrared observations, were performed using a morpho-kinematic code, optical and NIR diagnostic diagrams, and techniques using data analyses. The mechanisms that form complex bipolar planetary nebulae remain unclear, and their shapes can be generated either as a planetary or symbiotic nebula. The origin of the material ionised by the white dwarf is very different in these two scenarios, and it complicates the understanding of the morphologies of planetary nebulae. The physical properties, structure, and dynamics of the bipolar nebulae, MyCn 18, M 2-9, Mz 3, Hen 2-104, and Abell 14, are each investigated in detail with the aim of understanding their nature, shaping mechanisms, and evolutionary history. For MyCn 18, VLT infrared images, VLT ISAAC infrared spectra, and long-slit optical echelle spectra are used to investigate the inner and outer regions of the nebula. The morpho-kinematic modelling tool shape was used to firmly constrain the structure and kinematics of the source. A timescale analysis was used to help determine the kinematical age of the nebula and its main components. A spectroscopic study of MyCn 18's central region reveals the detailed make-up of its nebular composition. Molecular hydrogen, atomic helium, and Brackett gamma emission are detected in the central regions. ISAAC spectra from a slit position along the narrow waist of the nebula demonstrate that the ionised gas resides closer to the centre of the nebula than the molecular emission. A final reconstructed 3-D model of MyCn 18 was generated, providing kinematical information on the expansion velocity of its nebular components by means of position-velocity arrays (or observed long-slit spectra). A kinematical age of the nebula and its components were obtained using the position-velocity arrays and timescale analysis. For M 2-9, Mz 3, and Hen 2-104, long-slit optical

  7. Radio astronomy Explorer-1 observations of the Gum nebula

    NASA Technical Reports Server (NTRS)

    Alexander, J. K.

    1971-01-01

    Complicating factors in the spectrum analysis of the Gum nebula are discussed. These include accounting for the spectrum of supernova remnants in the direction of the nebula, the different absorption laws for radiation from beyond and within the nebula, and the Razin effect. This last results in a low frequency cutoff to the spectrum of synchrotron radiation by particles in a thermal plasma. These factors cause the observer to overestimate the amount of absorption occurring in the nebula. Data from the Explorer 38 satellite are presented for 3.93 and 6.55 MHz. Average optical depth for the nebula at 4 MHz was calculated.

  8. Evolution of the solar nebula. I - Nonaxisymmetric structure during nebula formation

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1989-01-01

    Numerical solutions of the equations of hydrodynamics, gravitation, and radiative transfer in three spatial dimensions are used to model the formation and time evolution of the early solar nebula in order to learn whether or not gravitational torques between nonaxisymmetric structures in the solar nebula can transport angular momentum rapidly enough to produce nebula clearing on astronomically indicated (10 to the 5 to 10 to the 7 yr) time scales. The models involve solutions for the collapse of spherical clouds with assumed initial density and rotation profiles onto protosuns of variable mass. Most of the models assume uniform initial density and rotation, and have variations in the initial parameters of cloud mass, cloud rotation rate, and protosun mass which are chosen to simulate a range of possible phases of early solar nebula evolution. The models show little tendency for directly forming small numbers of giant gaseous protoplanets through gaseous gravitational instability.

  9. Evolution of the solar nebula. I. Nonaxisymmetric structure during nebula formation

    SciTech Connect

    Boss, A.P. )

    1989-10-01

    Numerical solutions of the equations of hydrodynamics, gravitation, and radiative transfer in three spatial dimensions are used to model the formation and time evolution of the early solar nebula in order to learn whether or not gravitational torques between nonaxisymmetric structures in the solar nebula can transport angular momentum rapidly enough to produce nebula clearing on astronomically indicated (10 to the 5 to 10 to the 7 yr) time scales. The models involve solutions for the collapse of spherical clouds with assumed initial density and rotation profiles onto protosuns of variable mass. Most of the models assume uniform initial density and rotation, and have variations in the initial parameters of cloud mass, cloud rotation rate, and protosun mass which are chosen to simulate a range of possible phases of early solar nebula evolution. The models show little tendency for directly forming small numbers of giant gaseous protoplanets through gaseous gravitational instability. 69 refs.

  10. Spectrophotometric observations of a peculiar nitrogen-rich planetary nebula NGC 2440

    NASA Astrophysics Data System (ADS)

    Louise, R.

    1982-06-01

    By using the Boller and Chivens spectrograph with a moderate dispersion (59 A/mm) in the red spectral region, 65 spectra covering the whole surface of the planetary nebula NGC 2440 were obtained. Intensities of H-alpha, forbidden N II lines 6548-6584 A and forbidden S II lines 6717-6731 A are derived using the IDS system available at the ESO in La Silla (Chile). The nebula is known to be a nitrogen-rich nebula (Peimbert, 1978) surrounded by secondary structures (Minkowski, 1964). The unusual high value of the forbidden N II lines/H-alpha in the central core (approximately 3.0) is certainly due to the nitrogen overabundance occurring in that part of the nebula. Its variations from the center to the outer regions are interpreted as a consequence of small-scale ionization structure (Capriotti, Cromwell and Williams, 1971). The observations show clearly an outward increase of both forbidden N II lines/H-alpha and I(6717)/I(6713) ratios.

  11. The Nature and Frequency of Outflows from Stars in the Central Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    O'Dell, C. R.; Ferland, G. J.; Henney, W. J.; Peimbert, M.; García-Díaz, Ma. T.; Rubin, Robert H.

    2015-10-01

    Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig-Haro objects known within the inner Orion Nebula. We find that the best-known Herbig-Haro shocks originate from relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks are the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blueshifted because the redshifted outflows pass into the optically thick photon-dominated region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD database. Based on observations at the San Pedro Martir Observatory operated by the Universidad Nacional Autónoma de México.

  12. THE NATURE AND FREQUENCY OF OUTFLOWS FROM STARS IN THE CENTRAL ORION NEBULA CLUSTER

    SciTech Connect

    O’Dell, C. R.; Ferland, G. J.; Henney, W. J.; Peimbert, M.; García-Díaz, Ma. T.; Rubin, Robert H.

    2015-10-15

    Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized portion of the nebula and others within the host molecular cloud. We have doubled the number of Herbig–Haro objects known within the inner Orion Nebula. We find that the best-known Herbig–Haro shocks originate from relatively few stars, with the optically visible X-ray source COUP 666 driving many of them. While some isolated shocks are driven by single collimated outflows, many groups of shocks are the result of a single stellar source having jets oriented in multiple directions at similar times. This explains the feature that shocks aligned in opposite directions in the plane of the sky are usually blueshifted because the redshifted outflows pass into the optically thick photon-dominated region behind the nebula. There are two regions from which optical outflows originate for which there are no candidate sources in the SIMBAD database.

  13. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula.

    PubMed

    Lyons, J R; Young, E D

    2005-05-19

    The abundances of oxygen isotopes in the most refractory mineral phases (calcium-aluminium-rich inclusions, CAIs) in meteorites have hitherto defied explanation. Most processes fractionate isotopes by nuclear mass; that is, 18O is twice as fractionated as 17O, relative to 16O. In CAIs 17O and 18O are nearly equally fractionated, implying a fundamentally different mechanism. The CAI data were originally interpreted as evidence for supernova input of pure 16O into the solar nebula, but the lack of a similar isotope trend in other elements argues against this explanation. A symmetry-dependent fractionation mechanism may have occurred in the inner solar nebula, but experimental evidence is lacking. Isotope-selective photodissociation of CO in the innermost solar nebula might explain the CAI data, but the high temperatures in this region would have rapidly erased the signature. Here we report time-dependent calculations of CO photodissociation in the cooler surface region of a turbulent nebula. If the surface were irradiated by a far-ultraviolet flux approximately 10(3) times that of the local interstellar medium (for example, owing to an O or B star within approximately 1 pc of the protosun), then substantial fractionation of the oxygen isotopes was possible on a timescale of approximately 10(5) years. We predict that similarly irradiated protoplanetary disks will have H2O enriched in 17O and 18O by several tens of per cent relative to CO.

  14. A New Population of Galactic Bulge Planetary Nebulas

    NASA Astrophysics Data System (ADS)

    Stenborg, T. N.

    A new population of Galactic bulge planetary nebulas is presented. Nebula candidates were discovered by systematically reviewing archival [OIII] on/off band survey imaging of the central -5° ≤ l ≤ 5°, -5° ≤ b ≤ 5° region around the Galactic centre. An image segmentation and interleaving scheme was developed to facilitate this review. The resultant candidates (> 200) were then double checked against complementary archival Hα sky survey data to screen for obvious planetary nebula (PN) mimics or spurious image artefacts. Confirmatory spectroscopy of the PN candidates was pursued with thin slit, fibre multiobject and wide field spectrographs. Custom software was built to streamline interfacing with third-party spectroscopic management tools and a parallel greedy set cover algorithm implemented for efficient field selection in constrained multi-object observations. The combined imaging and spectroscopic evidence yielded true (4), probable (31) and possible (83) PNs toward the bulge. Secondary discoveries such as new PN mimics and late type stars were by-products of the confirmatory spectroscopy. Instances of literature PN duplication encountered during the investigation were noticed and documented. Spectral analysis of new PNs, including those obtained with a new optimised sky subtraction technique devised and demonstrated here, provided diagnostic data allowing radial velocity and Balmer decrement determination. Using a combined diameter and radial velocity criterion, bona fide bulge PNs were distinguished from new foreground PNs. Where Balmer decrements were available for new bulge PNs, differential aperture photometry was used to provide a modest data increment to Galactic bulge planetary nebula luminosity function (PNLF). The PNLF was revised with data from some new bulge PNs, but more significantly, by a series of corrections to the data derived from previously known bulge PNs (~225), such as improved filter transmission effects, statistically

  15. OBSERVATIONS OF THE CRAB NEBULA'S ASYMMETRICAL DEVELOPMENT

    SciTech Connect

    Loll, A. M.; Desch, S. J.; Scowen, P. A.; Foy, J. P.

    2013-03-10

    We present the first Hubble Space Telescope Wide Field Planetary Camera-2 imaging survey of the entire Crab Nebula, in the filters F502N ([O III] emission), F673N ([S II]), F631N ([O I]), and F547M (continuum). We use our mosaics to characterize the pulsar wind nebula (PWN) and its three-dimensional structure, the ionizational structure in the filaments forming at its periphery, the speed of the shock driven by the PWN into surrounding ejecta (by inferring the cooling rates behind the shock), and the morphology and ionizational structure of the Rayleigh-Taylor (R-T) fingers. We quantify a number of asymmetries between the northwest (NW) and southeast (SE) quadrants of the Crab Nebula. The lack of observed filaments in the NW, and our observations of the spatial extent of [O III] emission lead us to conclude that cooling rates are slower, and therefore the shock speeds are greater, in the NW quadrant of the nebula, compared with the SE. We conclude that R-T fingers are longer, more ionizationally stratified, and apparently more massive in the NW than in the SE, and the R-T instability appears more fully developed in the NW.

  16. INTERNAL PROPER MOTIONS IN THE ESKIMO NEBULA

    SciTech Connect

    García-Díaz, Ma. T.; Gutiérrez, L.; Steffen, W.; López, J. A.; Beckman, J. E-mail: leonel@astro.unam.mx E-mail: jal@astro.unam.mx

    2015-01-10

    We present measurements of internal proper motions at more than 500 positions of NGC 2392, the Eskimo Nebula, based on images acquired with WFPC2 on board the Hubble Space Telescope at two epochs separated by 7.695 yr. Comparisons of the two observations clearly show the expansion of the nebula. We measured the amplitude and direction of the motion of local structures in the nebula by determining their relative shift during that interval. In order to assess the potential uncertainties in the determination of proper motions in this object, in general, the measurements were performed using two different methods, used previously in the literature. We compare the results from the two methods, and to perform the scientific analysis of the results we choose one, the cross-correlation method, because it is more reliable. We go on to perform a ''criss-cross'' mapping analysis on the proper motion vectors, which helps in the interpretation of the velocity pattern. By combining our results of the proper motions with radial velocity measurements obtained from high resolution spectroscopic observations, and employing an existing 3D model, we estimate the distance to the nebula to be 1.3 kpc.

  17. Search for excess showers from Crab Nebula

    NASA Technical Reports Server (NTRS)

    Kirov, I. N.; Stamenov, J. N.; Ushev, S. Z.; Janminchev, V. D.; Aseikin, V. S.; Nikolsky, S. I.; Nikolskaja, N. M.; Yakovlev, V. I.; Morozov, A. E.

    1985-01-01

    The arrival directions of muon poor showers registrated in the Tien Shan experiment during an effective running time about I,8.IO(4)h were analyzed. It is shown that there is a significant excess of these showers coming the direction of Crab Nebula.

  18. Molecular line mapping of (young) planetary nebulae

    NASA Astrophysics Data System (ADS)

    Bujarrabal, Valentín

    2016-07-01

    In this contribution, I will review recent results obtained from high-resolution observations of molecular emission of planetary nebulae in the millimeter and submillimeter waves, stressing the easy interpretation of the data and the great amount of quantitative results obtained from them. Radio interferometers have been shown to be very efficient in the observation of our objects and, particularly since the arrival of ALMA, the amount of results is becoming impressive. We will deal mainly with young planetary nebulae or protoplanetary nebulae, since, as we will see, molecular lines tend to be weak in evolved objects because of photodissociation. In relatively young nebulae, the molecular gas represents most of the nebular material and can be well observed in line emission in mm- and submm-waves. Those observations have yielded many quantitative and accurate results on the structure, dynamics, and physical conditions of this largely dominant nebular component. In more evolved sources, we can follow the evolution of the chemical composition, although the data become rare.

  19. Nothing to Hide -- An X-ray Survey of Star Formation Activity in the Pipe Nebula

    NASA Astrophysics Data System (ADS)

    Forbrich, Jan; Posselt, Bettina; Lada, Charles J.; Covey, Kevin

    2009-09-01

    The Pipe Nebula, a large nearby molecular cloud, lacks obvious signposts of star formation in all but one of more than 130 dust extinction cores that have been identified within it. In a recent mid-infrared survey using Spitzer-MIPS to cover 13 square degrees, we have established that the star formation efficiency for the entire cloud is only ˜0.06%. The mid-infrared data are most sensitive for the earliest evolutionary stages of Young Stellar Objects (YSOs), covering class I protostars and typical class II sources (classical T Tauri stars). X-ray observations allow us to extend our survey to constrain any population of classical and weak-line T Tauri stars. In a first step, we use the ROSAT All-Sky Survey to constrain any overall T Tauri star population of the Pipe Nebula. Due to the fact that the Pipe Nebula is at a distance of only 130 pc, the ROSAT survey is already quite sensitive. Assuming a typical level of extinction, the completeness for G- and K-type stars is estimated to be about 50%. Subsequently, we use XMM-Newton observations pointed at three high-extinction regions within the Pipe Nebula to analyze these areas at higher sensitivity. These three regions are Barnard 59, the only core with ongoing star formation, the ``ring'' (i.e., the highest extinction region in the ``bowl'' of the Pipe), and Barnard 68. We additionally analyze the YSOs of Barnard 59 in the radio continuum to constrain high-energy processes. Overall, our results corroborate our previous Spitzer result that the star formation efficiency of the Pipe Nebula is very low.

  20. Comets Kick up Dust in Helix Nebula

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This infrared image from NASA's Spitzer Space Telescope shows the Helix nebula, a cosmic starlet often photographed by amateur astronomers for its vivid colors and eerie resemblance to a giant eye.

    The nebula, located about 700 light-years away in the constellation Aquarius, belongs to a class of objects called planetary nebulae. Discovered in the 18th century, these colorful beauties were named for their resemblance to gas-giant planets like Jupiter.

    Planetary nebulae are the remains of stars that once looked a lot like our sun. When sun-like stars die, they puff out their outer gaseous layers. These layers are heated by the hot core of the dead star, called a white dwarf, and shine with infrared and visible colors. Our own sun will blossom into a planetary nebula when it dies in about five billion years.

    In Spitzer's infrared view of the Helix nebula, the eye looks more like that of a green monster's. Infrared light from the outer gaseous layers is represented in blues and greens. The white dwarf is visible as a tiny white dot in the center of the picture. The red color in the middle of the eye denotes the final layers of gas blown out when the star died.

    The brighter red circle in the very center is the glow of a dusty disk circling the white dwarf (the disk itself is too small to be resolved). This dust, discovered by Spitzer's infrared heat-seeking vision, was most likely kicked up by comets that survived the death of their star. Before the star died, its comets and possibly planets would have orbited the star in an orderly fashion. But when the star blew off its outer layers, the icy bodies and outer planets would have been tossed about and into each other, resulting in an ongoing cosmic dust storm. Any inner planets in the system would have burned up or been swallowed as their dying star expanded.

    So far, the Helix nebula is one of only a few dead-star systems in which evidence for comet survivors has been found.

    This image

  1. Star Formation in the Molecular Cloud Associated with the Monkey Head Nebula: Sequential or Spontaneous?

    NASA Astrophysics Data System (ADS)

    Chibueze, J. O.; Imura, K.; Omodaka, T.; Handa, T.; Nagayama, T.; Fujisawa, K.; Sunada, K.; Nakano, M.; Kamezaki, T.; Yamaguchi, Y.

    2013-03-01

    We mapped the NH3 (1,1), (2,2), and (3,3) lines of the molecular cloud associated with the Monkey Head Nebula (MHN) with 1'.6 angular resolution using Kashima 34 m telescope. Its kinetic temperature distribution was contrary to what is expected for a molecular cloud at the edge of an expanding H II region and suggested that the massive star associated with S252A compact HII region formed spontaneously rather than through a sequential process.

  2. SOFIA/FORCAST Spectroscopy of NGC 7009, the Saturn Nebula

    NASA Astrophysics Data System (ADS)

    Sankrit, Ravi; Leal-Ferreira, Marcelo L.; Aleman, Isabel; Colgan, Sean W. J.; Simpson, Janet P.; Tielens, Xander; Tsamis, Yiannis G.

    2016-01-01

    We present spatially resolved mid-IR spectra of the well-studied Planetary Nebula (PN) NGC 7009 obtained with the FORCAST instrument on board the Stratospheric Observatory for Infrared Astronomy (SOFIA). NGC 7009 has a relatively high "abundance discrepancy factor" - the heavy element abundances derived from optical recombination lines (ORLs) are higher by a factor of about 5 than abundances derived from collisionally excited lines (CELs). One hypothesis to resolve this discrepancy is that two kinds of regions with distinct properties are responsible for the abundance measurements from ORLs and CELs. Lines from [OIV], [SIII], [SIV] and [ArIII] are detected in the FORCAST spectra, which cover the wavelength ranges 8.7--13.9 and 17.7--27.6 microns with moderate spectral resolution (R~100). We explore the abundance variations with radial distance from the center of the nebula and their possible correlations with the abundance discrepancy factor.Starting with our observations and results on NGC 7009 as an example, we present a survey of the capabilities of SOFIA, and describe its potential in the field of infra-red studies of Galactic PNe.

  3. The remarkably high excitation planetary nebula GC 6537.

    PubMed

    Aller, L H; Hung, S; Feibelman, W A

    1999-05-11

    NGC 6537 is an unusually high excitation point symmetric planetary nebula with a rich spectrum. Its kinematical structures are of special interest. We are here primarily concerned with the high resolution spectrum as revealed by the Hamilton echelle Spectrograph at Lick Observatory (resolution approximately 0.2 A) and supplemented by UV and near-UV data. These extensive data permit a determination of interstellar extinction, plasma diagnostics, and ionic concentrations. The photoionization models that have been used successfully for many planetary nebulae are not entirely satisfactory here. The plasma electron temperature of a photoionization model cannot much exceed 20,000 K, but plasma diagnostics show that regions emitting radiation of highly ionized atoms such as [NeIV] and [NeV] are much hotter, showing that shock excitation must be important, as suggested by the remarkable kinematics of this object. Hence, instead of employing a strict photoionization model, we are guided by the nebular diagnostics, which reveal how electron temperature varies with ionization potential and accommodates density effects. The predictions of the photoionization model may be useful in estimating ionization correction factor. In effect, we have estimated the chemical composition by using both photoionization and shock considerations.

  4. The remarkably high excitation planetary nebula GC 6537

    PubMed Central

    Aller, Lawrence H.; Hung, Siek; Feibelman, Walter A.

    1999-01-01

    NGC 6537 is an unusually high excitation point symmetric planetary nebula with a rich spectrum. Its kinematical structures are of special interest. We are here primarily concerned with the high resolution spectrum as revealed by the Hamilton echelle Spectrograph at Lick Observatory (resolution ≈ 0.2 Å) and supplemented by UV and near-UV data. These extensive data permit a determination of interstellar extinction, plasma diagnostics, and ionic concentrations. The photoionization models that have been used successfully for many planetary nebulae are not entirely satisfactory here. The plasma electron temperature of a photoionization model cannot much exceed 20,000 K, but plasma diagnostics show that regions emitting radiation of highly ionized atoms such as [Neiv] and [Nev] are much hotter, showing that shock excitation must be important, as suggested by the remarkable kinematics of this object. Hence, instead of employing a strict photoionization model, we are guided by the nebular diagnostics, which reveal how electron temperature varies with ionization potential and accommodates density effects. The predictions of the photoionization model may be useful in estimating ionization correction factor. In effect, we have estimated the chemical composition by using both photoionization and shock considerations. PMID:10318889

  5. On the possible wind nebula of magnetar Swift J1834.9-0846: a magnetism-powered synchrotron nebula

    NASA Astrophysics Data System (ADS)

    Tong, Hao

    2016-09-01

    Recently, the magnetar Swift J1834.9-0846 has been reported to have a possible wind nebula. It is shown that both the magnetar and its wind nebula are understandable in the wind braking scenario. The magnetar's rotational energy loss rate is not enough to power the particle luminosity. The required particle luminosity should be about 1036 erg s-1 to 1038 erg s-1. It is obtained in three different approaches: considering wind braking of Swift J1834.9-0846 the spectral and spatial observations of the wind nebula; and an empirical upper bound on wind nebula X-ray luminosity. The nebula magnetic field is about 10-4 G. The possible wind nebula of Swift J1834.9-0846 should be a magnetar wind nebula. It is powered by the magnetic energy released from the magnetar.

  6. Modeling the Orion nebula as an axisymmetric blister

    NASA Technical Reports Server (NTRS)

    Rubin, R. H.; Simpson, J. P.; Haas, M. R.; Erickson, E. F.

    1991-01-01

    The ionized gas in the Orion nebula is examined by means of axisymmetric modeling that is based on observational data from the ionized, neutral, and molecular regions. Nonsymmetrical features are omitted, radial dependence from the Trapezium is assumed, and azimuthal symmetry in the plane of the sky is used. Stellar properties and abundances of certain elements are described, and these data are used to compare the present axisymmetric-blister model to a previous spherical model. Strong singly-ionized emission that are visible near the Trapezium are found to originate in the ionization-bounded region in the dense Trapezium zone. The model can be more tightly constrained by adding near-IR data on noncentral zones for (Ar II), (AR III), (Ne II), and (S IV). The quadrant with the 'bar' creates an nonsymmetry that influences the observational data, and the model can therefore be improved with the additional data.

  7. Abundances, planetary nebulae, and stellar evolution

    NASA Astrophysics Data System (ADS)

    Aller, Lawrence H.

    1994-09-01

    Among Henry Norris Russell's many achievements were his contributions to solar and stellar spectroscopy, in particular, to an analysis of the chemical composition of the solar atmosphere. The question of composition differences between stars was hotly debated; some distinguished astronomers argued that all stars had the solar composition. Some early challenges to this doctrine are described. Determinations of chemical compositions of gaseous nebulae were much more difficult. If we observe the lines of a given chemical element in one ionization stage in a stellar spectrum, we can deduce readily the abundance of that element. No such luxury is available for a planetary or diffuse gaseous nebula. We must measure lines of as many ionization stages as we can. Furthermore, a nebula is an extended object. Often detailed spectroscopy is at hand only for narrow pencil columns taken through the image. Different observers use a variety of apertures. Fortunately it is possible to calculate theoretical spectra for any arbitrary cross section taken through a symmetrical model, so UV, optical, and IR observations all can be compared properly with a prediction. The value of high-resolution spectra obtained with instruments such as the Hamilton Echelle Spectrograph at Lick Observatory is emphasized. Improved fluxes for weak but important transitions are found. Close blends of lines of different ions can be resolved, and checks can be made on predictions of atomic parameters such as Einstein A-values and collision strengths. High spectral resolution data have been obtained and reduced for 22 planetary nebulae of varying size, structure, stellar population membership, dustiness, level of excitation, evolutionary status, and chemical compositions. The promise seems justified that with such extensive, high quality data, additional insights on nebular genesis and late states of stellar evolution can be found. The present survey is confined to nebulae of high surface brightness, but

  8. Dusty globules in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Grenman, T.; Gahm, G. F.; Elfgren, E.

    2017-03-01

    Context. Dust grains are widespread in the Crab Nebula. A number of small, dusty globules, are visible as dark spots against the background of continuous synchrotron emission in optical images. Aims: Our aim is to catalogue such dusty globules and investigate their properties. Methods: From existing broad-band images obtained with the Hubble Space Telescope, we located 92 globules, for which we derived positions, dimensions, orientations, extinctions, masses, proper motions, and their distributions. Results: The globules have mean radii ranging from 400 to 2000 AU and are not resolved in current infrared images of the nebula. The extinction law for dust grains in these globules matches a normal interstellar extinction law. Derived masses of dust range from 1 to 60 × 10-6M⊙, and the total mass contained in globules constitute a fraction of approximately 2% or less of the total dust content of the nebula. The globules are spread over the outer part of the nebula, and a fraction of them coincide in position with emission filaments, where we find elongated globules that are aligned with these filaments. Only 10% of the globules are coincident in position with the numerous H2-emitting knots found in previous studies. All globules move outwards from the centre with transversal velocities of 60 to 1600 km s-1, along with the general expansion of the remnant. We discuss various hypotheses for the formation of globules in the Crab Nebula. Based on observations collected with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute.

  9. Abundances, planetary nebulae, and stellar evolution

    NASA Technical Reports Server (NTRS)

    Aller, Lawrence H.

    1994-01-01

    Among Henry Norris Russell's many achievements were his contributions to solar and stellar spectroscopy, in particular, to an analysis of the chemical composition of the solar atmosphere. The question of composition differences between stars was hotly debated; some distinguished astronomers argued that all stars had the solar composition. Some early challenges to this doctrine are described. Determinations of chemical compositions of gaseous nebulae were much more difficult. If we observe the lines of a given chemical element in one ionization stage in a stellar spectrum, we can deduce readily the abundance of that element. No such luxury is available for a planetary or diffuse gaseous nebula. We must measure lines of as many ionization stages as we can. Furthermore, a nebula is an extended object. Often detailed spectroscopy is at hand only for narrow pencil columns taken through the image. Different observers use a variety of apertures. Fortunately it is possible to calculate theoretical spectra for any arbitrary cross section taken through a symmetrical model, so UV, optical, and IR observations all can be compared properly with a prediction. The value of high-resolution spectra obtained with instruments such as the Hamilton Echelle Spectrograph at Lick Observatory is emphasized. Improved fluxes for weak but important transitions are found. Close blends of lines of different ions can be resolved, and checks can be made on predictions of atomic parameters such as Einstein A-values and collision strengths. High spectral resolution data have been obtained and reduced for 22 planetary nebulae of varying size, structure, stellar population membership, dustiness, level of excitation, evolutionary status, and chemical compositions. The promise seems justified that with such extensive, high quality data, additional insights on nebular genesis and late states of stellar evolution can be found. The present survey is confined to nebulae of high surface brightness, but

  10. Spectropolarimetry of the post-main-sequence bipolar nebulae GL 618, M2-56, and M1-92

    NASA Technical Reports Server (NTRS)

    Trammell, Susan R.; Dinerstein, Harriet L.; Goodrich, Robert W.

    1993-01-01

    New high-quality spectropolarimetry of the post-main-sequence bipolar nebulae GL 618, M2-56, and M1-92 is presented which permits accurate separation of the scattered and unscattered components. Shock emission dominates the optical line spectrum of the three nebulae and probably plays a significant role in their dynamical evolution. The central H II region spectrum for GL 6189 is isolated and T(stellar) of 36,000-40,000 and log (N/O) = 0.0 +/- 0.2 are derived. GL 618 and M2-56 have shock velocities of 40-60 km/s; that of M1-92 is 60-100 km/s. Log (N/O) is derived for different regions of the three nebulae. There is an apparent correlation of outflow velocity with chemical abundance.

  11. Spectroscopy of Planetary Nebulae at the Bright End of the Luminosity Function

    NASA Astrophysics Data System (ADS)

    Rilinger, Anneliese; Kwitter, Karen B.; Balick, Bruce; Corradi, R. L. M.; Galera Rosillo, Rebeca; Jacoby, George H.; Shaw, Richard A.

    2017-01-01

    We have obtained spectra of 8 luminous planetary nebulae (PNe) in M31 and 4 in the Large Magellanic Cloud with the goal of understanding their properties and those of their progenitor stars. These PNe are at or near the M* region (the most luminous PNe) in their respective galaxies. M31 PNe were observed at the Gran Telescopio Canarias using the OSIRIS spectrograph; LMC PNe were observed with the FORS2 spectrograph at the Very Large Telescope. Line intensities were measured in IRAF. Using our n-level atom program, ELSA (Johnson, et.al, 2006, Planetary Nebulae in our Galaxy and Beyond, 234, 439), we determined temperature, density, and elemental abundances for each nebula. We then modeled the nebulae and central stars with Cloudy (Ferland, et al. 1998, PASP, 110, 761). We plan to use these models of the central stars to estimate the masses and ages of the progenitor stars. We hope to discover whether the progenitor stars of M* PNe exhibit consistently different characteristics from those of other PNe progenitors.

  12. A study of the neutral hydrogen in direction to the GUM nebula

    NASA Astrophysics Data System (ADS)

    Dubner, G.; Giacani, E.; Cappa de Nicolau, C.; Reynoso, E.

    1992-12-01

    This paper presents 44 gray-scale maps at constant velocity of the distribution of H I in the direction of the Gum nebula. It is shown that there is no H I shell with a size comparable to the 36 deg diameter optical nebulosities and that there is a thick H I shell, about 7 deg in radius, shifted from the center of the optical nebula by more than 10 deg. The observations are consistent with a model in which the Gum nebula is the remnant of a supernova explosion that occurred about 2.6 million yr ago. The presence of two new H I bubbles associated with SWR 12 and 14, plus a possible one around WR 13, are disclosed from analysis of the H I gas distribution around the four WR star located beyond the Gum nebula. These H I bubbles have characteristics similar to those previously observed. Three shell-like objects probably related to OB stars and H II regions are also described.

  13. Explosive reconnection of the double tearing mode in relativistic plasmas with application to the Crab nebula

    NASA Astrophysics Data System (ADS)

    Pétri, J.; Takamoto, M.; Baty, H.; Zenitani, S.

    2015-01-01

    The Crab pulsar and its surrounding nebula is a well-known relic of a massive star that exploded in 1054 AD. The Crab nebula was generally believed to be a good standard candle in gamma rays. Recently, this view has been challenged by sudden increases in the gamma-ray flux in a narrow spectral band within a few hundred MeV. These flares are short but powerful; their duration is between a few hours and up to several days with a rising/falling time of a few hours/days. To date it is neither clear what mechanism powers these flares nor where exactly in the nebula they should be located. However, recent models seem to favor emission sites inside the nebula. In the present work, we study the magneto-hydrodynamic tearing instability occurring in a double current sheet configuration with application to the Crab flares. This is investigated by means of resistive relativistic magneto-hydrodynamic simulations. These put some constraints on the maximum Lorentz factor of the striped wind, Γ≲150 and on the localization of the emission region, r ≈ 50 rL where rL = c/Ω is the light-cylinder radius, c is the speed of light and Ω is the rotation speed of the pulsar. Sites close to but outside the light-cylinder are favored in our model.

  14. The Crab Nebula: Linking MeV Synchrotron and 50 TeV Inverse Compton Photons

    NASA Astrophysics Data System (ADS)

    Horns, D.; Aharonian, F. A.

    2004-10-01

    Pulsar wind driven synchrotron nebulae are offering a unique view on the connection of the pulsar wind and the surrounding medium. The Crab nebula is particu- larly well suited for detailed studies of the different emis- sion regions. As inferred from the observed synchrotron emission extending beyond MeV energies, the Crab is a unique and extreme accelerator. In the framework of the synchrotron/inverse Compton emission model, the same electrons with energies exceeding 1015 eV that are re- sponsible for the MeV synchrotron emission produce via inverse Compton scattering 10-50 TeV radiation which has recently been observed with the HEGRA system of ground based gamma-ray telescopes. Here we discuss the close relation of the two energy bands covered by INTE- GRAL and ground based gamma-ray telescopes. Despite the lack of sufficient spatial resolution in both bands to resolve the emission region, correlation of the flux mea- surements in the two energy bands would allow to con- strain the structure of the emission region. The emission region is expected to be a very compact region (limited by the life-time of the electrons) near the termination shock of the pulsar wind. We extend previous model calcula- tions for the nebula's emission to include an additional compact non-thermal emission region recently detected at mm wavelengths. The overall good agreement of this model with data constrains additional emission processes (ions in the wind, inverse Compton from the unshocked wind) to be of little relevance. Key words: Crab nebula; acceleration; Crab pulsar; elec- trons; radiation; synchrotron; inverse Compton.

  15. HUBBLE SEES SUPERSONIC EXHAUST FROM NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    2-9 is a striking example of a 'butterfly' or a bipolar planetary nebula. Another more revealing name might be the 'Twin Jet Nebula.' If the nebula is sliced across the star, each side of it appears much like a pair of exhausts from jet engines. Indeed, because of the nebula's shape and the measured velocity of the gas, in excess of 200 miles per second, astronomers believe that the description as a super-super-sonic jet exhaust is quite apt. Ground-based studies have shown that the nebula's size increases with time, suggesting that the stellar outburst that formed the lobes occurred just 1,200 years ago. The central star in M2-9 is known to be one of a very close pair which orbit one another at perilously close distances. It is even possible that one star is being engulfed by the other. Astronomers suspect the gravity of one star pulls weakly bound gas from the surface of the other and flings it into a thin, dense disk which surrounds both stars and extends well into space. The disk can actually be seen in shorter exposure images obtained with the Hubble telescope. It measures approximately 10 times the diameter of Pluto's orbit. Models of the type that are used to design jet engines ('hydrodynamics') show that such a disk can successfully account for the jet-exhaust-like appearance of M2-9. The high-speed wind from one of the stars rams into the surrounding disk, which serves as a nozzle. The wind is deflected in a perpendicular direction and forms the pair of jets that we see in the nebula's image. This is much the same process that takes place in a jet engine: The burning and expanding gases are deflected by the engine walls through a nozzle to form long, collimated jets of hot air at high speeds. M2-9 is 2,100 light-years away in the constellation Ophiucus. The observation was taken Aug. 2, 1997 by the Hubble telescope's Wide Field and Planetary Camera 2. In this image, neutral oxygen is shown in red, once-ionized nitrogen in green, and twice-ionized oxygen in

  16. Photodestruction of PAHs in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Boechat-Roberty, H. M.; Neves, R.; Pilling, S.; de Souza G. G., B.; Lago, A.

    It is known that polycyclic aromatic hydrocarbons (PAHs) are mainly formed in the dust shells of late stages of AGB type carbon rich stars. After the ejection of H-rich envelope those stars become the proto-planetary nebulae (PPNs). The chemistry in PPNs has been strongly modified by the UV photons coming from the hot central star and by the X-rays associated with its high-velocity winds. Benzene (C6H6) and small PAHs like Anthracene (C14H10) were effectively detected in the PPNs CRL 618 (Cernicharo et al. 2001) and Red Rectangle (Vijh, Witt & Gordon 2004) respectively. The goal of this work is to experimentally study photoabsorption, photoionization and photodissociation processes of the benzene, biphenyl (C12H10), naphthalene (C10H8), phenanthrene (C14H10) and methyl-anthracene (C14H9(CH3)). The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), using soft X-ray and UV photons from a toroidal grating monochromator TGM beamline (12-310 eV). The experimental set-up consists of a high vacuum chamber with a Time-Of-Flight Mass Spectrometer (TOF-MS). Mass spectra were obtained using PhotoElectron PhotoIon Coincidence (PEPICO) technique. Kinetic energy distributions and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Dissociative and non-dissociative photoionization cross sections for some molecules were also determined (see for example: Boechat-Roberty, Pilling & Santos 2005). We have observed that PAHs molecules are extreme resistant to UV photons, confirming that PAHs absorb the UV photons and after some internal energetic rearrangements, they can emit in the IR range. However, these molecules are destroyed by soft X-rays photons producing several ionic fragments, some of them with great kinetic energy. In the mass spectra of the Benzene and methyl-anthracene molecules, the observed ionic fragments C4H2+, C6H2+, C4HCH3 and C2HCH3, could correspond to the same

  17. A morpho-kinematic and spectroscopic study of the bipolar nebulae: M 2-9, Mz 3, and Hen 2-104

    NASA Astrophysics Data System (ADS)

    Clyne, N.; Akras, S.; Steffen, W.; Redman, M. P.; Gonçalves, D. R.; Harvey, E.

    2015-10-01

    Context. Complex bipolar shapes can be generated either as a planetary nebula or a symbiotic system. The origin of the material ionised by the white dwarf is very different in these two scenarios, and it complicates the understanding of the morphologies of planetary nebulae. Aims: The physical properties, structure, and dynamics of the bipolar nebulae, M 2-9, Mz 3, and Hen 2-104, are investigated in detail with the aim of understanding their nature, shaping mechanisms, and evolutionary history. Both a morpho-kinematic study and a spectroscopic analysis, can be used to more accurately determine the kinematics and nature of each nebula. Methods: Long-slit optical echelle spectra are used to investigate the morpho-kinematics of M 2-9, Mz 3, and Hen 2-104. The morpho-kinematic modelling software SHAPE is used to constrain both the morphology and kinematics of each nebula by means of detailed 3D models. Near-infrared (NIR) data, as well as optical, spectra are used to separate Galactic symbiotic-type nebulae from genuine planetary nebulae by means of a 2MASS J-H/H-Ks diagram and a λ4363/Hγ vs. λ5007/Hβ diagnostic diagram, respectively. Results: The best-fitted 3D models for M 2-9, Mz 3, and Hen 2-104 provide invaluable kinematical information on the expansion velocity of its nebular components by means of synthetic spectra. The observed spectra match up very well with the synthetic spectra for each model, thus showing that each model is tightly constrained both morphologically and kinematically. Kinematical ages of the different structures of M 2-9 and Mz 3 have also been determined. Both diagnostic diagrams show M 2-9 and Hen 2-104 to fall well within the category of having a symbiotic source, whereas Mz 3 borders the region of symbiotic and young planetary nebulae in the optical diagram but is located firmly in the symbiotic region of the NIR colour-colour diagram. The optical diagnostic diagram is shown to successfully separate the two types of nebulae, however

  18. Birth and early evolution of a planetary nebula

    NASA Astrophysics Data System (ADS)

    Bobrowsky, Matthew; Sahu, Kailash C.; Parthasarathy, M.; García-Lario, Pedro

    1998-04-01

    The final expulsion of gas by a star as it forms a planetary nebula - the ionized shell of gas often observed surrounding a young white dwarf - is one of the most poorly understood stages of stellar evolution,. Such nebulae form extremely rapidly (about 100 years for the ionization) and so the formation process is inherently difficult to observe. Particularly puzzling is how a spherical star can produce a highly asymmetric nebula with collimated outflows. Here we report optical observations of the Stingray nebula,, which has become an ionized planetary nebula within the past few decades. We find that the collimated outflows are already evident, and we have identified the nebular structure that focuses the outflows. We have also found a companion star, reinforcing previous suspicions that binary companions play an important role in shaping planetary nebulae and changing the direction of successive outflows.

  19. The Orion Nebula: The Jewel in the Sword

    NASA Astrophysics Data System (ADS)

    2001-01-01

    /01 ESO PR Photo 03c/01 [Preview - JPEG: 400 x 452 pix - 57k] [Normal - JPEG: 800 x 904 pix - 488k] [Hires - JPEG: 2300 x 2600 pix - 3.3M] Caption : PR Photo 03b/01 and PR Photo 03c/01 show smaller, particularly interesting areas of PR Photo 03a/01 . Photo 03b/01 shows the traces of a massive outflow of gas from a very young object embedded in the dense molecular cloud behind the Orion Nebula. Shards of gas from the explosion create shocks and leave bow-waves as they move at speeds of up to 200 km/sec from the source. Photo 03c/01 shows the delicate tracery created at the so-called Bright Bar , as the intense UV-light and strong winds from the hot Trapezium stars eat their way into the surrounding molecular cloud. Also visible are a number of very young red objects partly hidden in the cloud, waiting to be revealed as new members of the Trapezium Cluster . Technical information about these photos is available below. Indeed, at visible wavelengths, the dense cluster of stars at the centre is drowned out by the light from the nebula and obscured by remnants of the dust in the gas from which they were formed. However, at longer wavelengths, these obscuring effects are reduced, and the cluster is revealed. In the past couple of years, several of the world's premier ground- and space-based telescopes have made new detailed infrared studies of the Orion Nebula and the Trapezium Cluster , but the VLT image shown here is the "deepest" wide-field image obtained so far. The large collecting area of the VLT and the excellent seeing of the Paranal site combined to yield this beautiful image, packed full of striking details. Powerful explosions and winds from the most massive stars in the region are evident, as well as the contours of gas sculpted by these stars, and more finely focused jets of gas flowing from the smaller stars. Sharper images from the VLT ESO PR Photo 03d/01 ESO PR Photo 03d/01 [Preview - JPEG: 400 x 490 pix - 28k] [Normal - JPEG: 800 x 980 pix - 192k] [Hi

  20. Shell nebulae around luminous evolved stars

    NASA Technical Reports Server (NTRS)

    Dufour, Reginald J.

    1989-01-01

    Shell nebulae around luminous Population I Wolf-Rayet, Of, and P-Cygni stars are astrophysically interesting since they are indicators of pre-supernova mass loss and how such massive stars prepare their surrounding interstellar medium prior to explosion. Some twenty-odd such nebulae are known, for which detailed study of their morphological and spectroscopic characteristics have only begun in this decade. In this paper, some of these characteristics are reviewed in general, and new observations are reported. Emphasis has been placed on several 'prototype 'objects (NGC 7635, NGC 2359, NGC 6888, and the Eta Carinae condensations) to illustrate the varied massive-star mass-loss, the physics of their winds and shell ejecta, and related nucleosynthesis effects in the compositions of the winds and shells.

  1. Chemical Abundances of Compact Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Lee, Ting-Hui; Shaw, Richard A.; Stanghellini, letizia; Riley, Ben

    2015-08-01

    We present preliminary results from an optical spectroscopic survey of compact planetary nebulae (PNe) in the Galactic disk. This is an ongoing optical+infrared spectral survey of 150 compact PNe to build a deep sample of PN chemical abundances. We obtained optical spectra of PNe with the Southern Astrophysical Research (SOAR) Telescope and Goodman High-Throughput Spectrograph between 2012 and 2015. These data were used to calculate the nebulae diagnostics such as electron temperature and density for each PN, and to derive the elemental abundances of He, N, O Ne, S and Ar. These abundances are vital to understanding the nature of the PNe, and their low- to intermediate-mass progenitor stars.

  2. Protostellar disks and the primitive solar nebula

    NASA Technical Reports Server (NTRS)

    Cassen, P. M.; Pollack, J. B.; Bunch, T.; Hubickyj, O.; Moins, P.; Yuan, C.

    1987-01-01

    The objective is to obtain quantitative information on the turbulent transport of mass, angular momentum, and energy under the conditions that characterize the solar nebula, by direct numerical calculations. These calculations were made possible by research conducted on supercomputers (Cray XMP and Cray 2) by the Ames Computational Fluid Dynamics Branch. Techniques were developed that permitted the accurate representation of turbulent flows over the full range of important eddy sizes. So far, these techniques were applied (and verified) primarily in mundane laboratory situations, but they have a strong potential for astrophysical applications. A sequence of numerical experiments were conducted to evaluate the Reynold's stress tensor, turbulent heat transfer rate, turbulent dissipation rate, and turbulent kinetic energy spectrum, as functions of position, for conditions relevant to the solar nebula. Emphasis is placed on the variation of these properties with appropriate nondimensional quantities, so that relations can be derived that will be useful for disk modeling under a variety of hypotheses and initial conditions.

  3. Heat conduction fronts in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Soker, Noam

    1994-01-01

    We present arguments which suggest that many of the x-ray, some optical, and some UV observations of planetary nebulae, can be explained by the presence of heat conduction fronts. The heat flows from the hot bubble formed by the shocked fast wind to the cool shell and halo. Heat conduction fronts are likely to account for emission of x rays from plasma at lower temperature than the expected temperature of the hot bubble. In the presence of magnetic fields, only a small fraction of the fast wind luminosity emerges as radiation. Heat conduction fronts can naturally produce some unusual line flux ratios, which are observed in some planetary nebulae. Heat conduction fronts may heat the halo and cause some material at the inner surface of the shell to expand slower than the rest of the shell. In the presence of an asymmetrical magnetic field, this flow, the x-ray intensity, and the emission lines, may acquire asymmetrical structure as well.

  4. The chemical composition of three planetary nebulae in the Magellanic Clouds

    NASA Technical Reports Server (NTRS)

    Dufour, R. J.; Killen, R. M.

    1977-01-01

    The paper studies the detailed spectral characteristics of the planetary nebulae N97 and N153 in the Large Magellanic Cloud (LMC), the planetary nebula N67 in the Small Magellanic Cloud (SMC), and the small H II regions N9, N61, and N81 in the SMC. Electron temperatures and densities for each nebula are derived from emission-line strengths determined by photographic spectrophotometry, and relative abundances are estimated for H, He, N, O, Ne, Ar, and S. The results show that: (1) N67 has a 60% overabundance in He/H while N97 and N153 have approximately normal He/H values; (2) all three planetaries have N/H values comparable to those of galactic planetaries but substantially higher than found in the H II regions of their respective Cloud; (3) the O/H values in the planetaries are similar to or lower than those in the H II regions of the respective Cloud; (4) the O/Ne, O/S, and O/Ar ratios in the two LMC planetaries are comparable to those in galactic planetaries; (5) the compositions of the small H II regions in the SMC are nearly identical to those of previously studied large H II regions in the same Cloud; and (6) the He/H ratio of the interstellar gas in the SMC is about 25% less than that in the Galaxy. It is concluded that most of the N abundance in both Clouds arose from nucleosynthesis sources other than planetary nebulae.

  5. Nebulae at keratoconus--the result after excimer laser removal.

    PubMed

    Fagerholm, P; Fitzsimmons, T; Ohman, L; Orndahl, M

    1993-12-01

    Ten patients underwent excimer laser ablation due to nebula formation at keratoconus. The nebulae interfered significantly with contact lens fit or wearing time. The mean follow-up time in these patients was 16.5 months. Following surgery all patients could be successfully fitted with a contact lens and thereby obtain good visual acuity. Furthermore, contact lens wearing time was 8 hours or more in all cases. In 2 patients the nebulae recurred but were successfully retreated.

  6. Trigonometric Parallaxes of Central Stars of Planetary Nebulae

    DTIC Science & Technology

    2007-02-01

    TRIGONOMETRIC PARALLAXES OF CENTRAL STARS OF PLANETARY NEBULAE Hugh C. Harris,1 Conard C. Dahn, Blaise Canzian, Harry H. Guetter, S. K. Leggett,2...parallaxes of 16 nearby planetary nebulae are presented, including reduced errors for seven objects with previous initial results and results for six new...unresolved close companions are detected. Key words: astrometry — planetary nebulae: general — stars: AGB and post-AGB — stars: distances 1. INTRODUCTION

  7. PARTICLE TRANSPORT IN YOUNG PULSAR WIND NEBULAE

    SciTech Connect

    Tang Xiaping; Chevalier, Roger A. E-mail: rac5x@virginia.edu

    2012-06-20

    The model for pulsar wind nebulae (PWNe) as a result of the magnetohydrodynamic (MHD) downstream flow from a shocked, relativistic pulsar wind has been successful in reproducing many features of the nebulae observed close to central pulsars. However, observations of well-studied young nebulae like the Crab Nebula, 3C 58, and G21.5-0.9 do not show the toroidal magnetic field on a larger scale that might be expected in the MHD flow model; in addition, the radial variation of spectral index due to synchrotron losses is smoother than expected in the MHD flow model. We find that pure diffusion models can reproduce the basic data on nebular size and spectral index variation for the Crab, 3C 58, and G21.5-0.9. Most of our models use an energy-independent diffusion coefficient; power-law variations of the coefficient with energy are degenerate with variation in the input particle energy distribution index in the steady state, transmitting boundary case. Energy-dependent diffusion is a possible reason for the smaller diffusion coefficient inferred for the Crab. Monte Carlo simulations of the particle transport allowing for advection and diffusion of particles suggest that diffusion dominates over much of the total nebular volume of the Crab. Advection dominates close to the pulsar and is likely to play a role in the X-ray half-light radius. The source of diffusion and mixing of particles is uncertain, but may be related to the Rayleigh-Taylor instability at the outer boundary of a young PWN or to instabilities in the toroidal magnetic field structure.

  8. Morpho-kinematic modeling of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Chan, Tsz-Pan (Henry)

    2009-11-01

    The Planetary Nebulae (PNe) are the transition phase between asymptotic giant branch (AGB) star and white dwarfs for stars with masses between 1 and 8 M⊙. They were originally thought to be well-studied and can be explained with simple models. With the advance of imaging technology especially on Space Telescope (HST), the shapes of PNe have been found to be much more complex than we assumed to be. We aimed to investigate on the basic but mysterious intrinsic three-dimensional structures using the newly developed modeling software. Astronomers usually use the morphological classification on group and classify different properties of PNe. Over the past century many attempts have been made for this classification to seek for explaining and understanding the threedimensional structure that is responsible for the observed images. There have been two beliefs in explaining the variety of shapes of PNe and among them the most amazing one is that the morphologies can be accounted by different orientations of a single structure (Khromov & Kohoutek, 1968). Motivated by the study of Ring Nebula on its intrinsic structure, we investigated the possibility that different types of morphology in PNe can be explained by a single model. We used the newly developed modeling code SHAPE (Steffen et al., 2006), which cooperates the use of spatial information as well as its kinematics, and aimed to quantitatively investigate the basic structure inside PNe. We investigated two classical nebulae: NGC 2346 and NGC 2440. We proposed a simple but adequate model for these nebulae. Stimulated optical images and the p-v arrays were derived by the modeling code SHAPE to make comparison with the observed data to seek for the correctness of the model. Hubble velocity field and inverse square law density distribution were assumed throughout the modeling process. This model provides insights in seeking further adequate intrinsic structure of PNe.

  9. Pulsating Radio Sources near the Crab Nebula.

    PubMed

    Staelin, D H; Reifenstein, E C

    1968-12-27

    Two new pulsating radio sources, designated NP 0527 and NP 0532, were found near the Crab Nebula and could be coincident with it. Both sources are sporadic, and no periodicities are evident. The pulse dispersions indicate that 1.58 +/- 0.03 and 1.74 +/- 0.02 x 10(20) electrons per square centimeter lie in the direction of NP 0527 and NP 0532, respectively.

  10. Multiband observations of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Krassilchtchikov, A. M.; Bykov, A. M.; Castelletti, G. M.; Dubner, G. M.; Kargaltsev, O. Yu; Pavlov, G. G.

    2017-01-01

    Results of simultaneous imaging of the Crab Nebula in the radio (JVLA), optical (HST), and X-ray (Chandra) bands are presented. The images show a variety of small-scale structures, including wisps mainly located to the north-west of the pulsar and knots forming a ring-like structure associated with the termination shock of the pulsar wind. The locations of the structures in different bands do not coincide with each other.

  11. The latest eruption of planetary nebula IC 2165

    NASA Astrophysics Data System (ADS)

    Bohigas, J.; Rodríguez, M.; Dufour, R. J.

    2013-10-01

    Open slit high dispersion spectroscopic observations of the inner region of planetary nebula (PN) IC 2165 indicate that the object has a relatively uniform and high electron temperature, with its density being much larger close to the PN nucleus. Abundances imply that it is a non-type I PN. Calcium and iron have been heavily depleted into grains. The ionized mass is at least ˜ 0.05 M_⊙. A photoionization model (CLOUDY, version 10.00) assuming an inverse square law for the density and abundances typical of a non-type I PN, produced a fair replica of the spectrum and of all electron density and temperature sensitive line ratios, but not of the global properties of this object. All evidence indicates that IC 2165 was produced by a metal poor 2 M_⊙ A5 V star that took off some 2×10^9 yr ago.

  12. SPECTROSCOPIC BINARIES IN THE ORION NEBULA CLUSTER AND NGC 2264

    SciTech Connect

    Kounkel, Marina; Hartmann, Lee; Mateo, Mario; Bailey, John I. III; Spencer, Meghin; Tobin, John J.

    2016-04-10

    We examine the spectroscopic binary population for two massive nearby regions of clustered star formation, the Orion Nebula Cluster (ONC) and NGC 2264, supplementing the data presented by Tobin et al. with more recent observations and more extensive analysis. The inferred multiplicity fraction up to 10 au based on these observations is 5.3 ± 1.2% for NGC 2264 and 5.8 ± 1.1% for the ONC; these values are consistent with the distribution of binaries in the field in the relevant parameter range. Eight of the multiple systems in the sample have enough epochs to perform an initial fit for the orbital parameters. Two of these sources are double-lined spectroscopic binaries; for them, we determine the mass ratio. Our reanalysis of the distribution of stellar radial velocities toward these clusters presents a significantly better agreement between stellar and gas kinematics than was previously thought.

  13. Protoplanetary Nebula Evolution using the Beta Viscosity Model

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2003-01-01

    The evolutionary dynamics of a protoplanetary disk is an important component of the planet formation process. In particular, the dynamic and thermodynamic field plays a critical role in chemical evolution, the migration of dust particles in the nebula, and the radial transport of meteoritic components. The dynamic evolution is investigated using analytical solutions of the surface density transport equations using a turbulence model based on hydrodynamic generation of turbulence. It captures the major properties of the disk including region of separation between radial inflow and-outflow and the evolution of the central plane temperature. The analytical formulas are compared with available numerical solutions based on the alpha viscosity model. The beta viscosity model, heretofore used for steady-state disks, is shown to be a useful approximation for unsteady problems.

  14. HUBBLE CAPTURES UNVEILING OF PLANETARY NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Wide Field and Planetary Camera 2 image captures the infancy of the Stingray nebula (Hen-1357), the youngest known planetary nebula. In this image, the bright central star is in the middle of the green ring of gas. Its companion star is diagonally above it at 10 o'clock. A spur of gas (green) is forming a faint bridge to the companion star due to gravitational attraction. The image also shows a ring of gas (green) surrounding the central star, with bubbles of gas to the lower left and upper right of the ring. The wind of material propelled by radiation from the hot central star has created enough pressure to blow open holes in the ends of the bubbles, allowing gas to escape. The red curved lines represent bright gas that is heated by a 'shock' caused when the central star's wind hits the walls of the bubbles. The nebula is as large as 130 solar systems, but, at its distance of 18,000 light-years, it appears only as big as a dime viewed a mile away. The Stingray is located in the direction of the southern constellation Ara (the Altar). The colors shown are actual colors emitted by nitrogen (red), oxygen (green), and hydrogen (blue). The filters used were F658N ([N II]), F502N ([O III]), and F487N (H-beta). The observations were made in March 1996. Credit: Matt Bobrowsky, Orbital Sciences Corporation and NASA

  15. Evidence of Nebula Processes from Primitive Meteorites

    NASA Technical Reports Server (NTRS)

    Cassen, Patrick

    2004-01-01

    Astronomical observations of T Tauri stars provide information about the masses, sizes, temperatures, and lifetimes of the solar-nebula-like disks surrounding these stars. Theoretical interpretations of these observations can be used to construct models of the evolution of the solar nebula, and to derive implications for the properties of meteoritic material. The consequences of nebular thermal history might have been retained in patterns of elemental fractionation, presolar grains abundances, and oxygen isotopes, among other meteorite properties. Thus, such data may be used in conjunction with models to constrain the parameters that describe the overall evolution of the solar nebula. On the other hand, major meteoritic components such as chondrules and CAIs apparently reflect localized processes that are not readily related to global thermal evolution. In several cases, the theoretical tools required for the evaluation of proposals for their mode of formation exist, but have yet to be applied. Proposals that meteoritic material was thermally and radiatively processed very close to the young Sun, based on the emerging picture of the interactions between young stars and their disks, have radical consequences for the distribution of solid material in the solar system and the formation of chondritic meteorites. Tests of these models may be provided by their predictions for irradiated material and the physical characteristics of primitive meteorites.

  16. THE [O III] NEBULA OF THE MERGER REMNANT NGC 7252: A LIKELY FAINT IONIZATION ECHO

    SciTech Connect

    Schweizer, Francois; Kelson, Daniel D.; Villanueva, Edward V.; Seitzer, Patrick; Walth, Gregory L.

    2013-08-20

    We present images and spectra of a {approx}10 kpc-sized emission-line nebulosity discovered in the prototypical merger remnant NGC 7252 and dubbed the ''[O III] nebula'' because of its dominant [O III] {lambda}5007 line. This nebula seems to yield the first sign of episodic active galactic nucleus (AGN) activity still occurring in the remnant, {approx}220 Myr after the coalescence of two gas-rich galaxies. Its location and kinematics suggest it belongs to a stream of tidal-tail gas falling back into the remnant. Its integrated [O III] {lambda}5007 luminosity is 1.4 Multiplication-Sign 10{sup 40} erg s{sup -1}, and its spectrum features some high-excitation lines, including He II {lambda}4686. In diagnostic line-ratio diagrams, the nebula lies in the domain of Seyfert galaxies, suggesting that it is photoionized by a source with a power-law spectrum. Yet, a search for AGN activity in NGC 7252 from X-rays to radio wavelengths yields no detection, with the most stringent upper limit set by X-ray observations. The upper luminosity limit of L{sub 2-10{sub keV,0}}<5 Multiplication-Sign 10{sup 39} erg s{sup -1} estimated for the nucleus is {approx}10{sup 3} times lower than the minimum ionizing luminosity of {approx}> 5 Multiplication-Sign 10{sup 42} erg s{sup -1} necessary to excite the nebula. This large discrepancy suggests that the nebula is a faint ionization echo excited by a mildly active nucleus that has declined by {approx}3 orders of magnitude over the past 20,000-200,000 yr. In many ways this nebula resembles the prototypical ''Hanny's Voorwerp'' near IC 2497, but its size is 3 Multiplication-Sign smaller and its [O III] luminosity {approx}100 Multiplication-Sign lower. We propose that it be classified as an extended emission-line region (EELR). The [O III] nebula is then the lowest-luminosity ionization echo and EELR discovered so far, indicative of recent, probably sputtering AGN activity of Seyfert-like intensity in NGC 7252.

  17. HUBBLE RESUMES GAZING AT THE HEAVENS BY TAKING A LOOK AT THE 'ESKIMO' NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In its first glimpse of the heavens following the successful December 1999 servicing mission, NASA's Hubble Space Telescope has captured a majestic view of a planetary nebula, the glowing remains of a dying, Sun-like star. This stellar relic, first spied by William Herschel in 1787, is nicknamed the 'Eskimo' Nebula (NGC 2392) because, when viewed through ground-based telescopes, it resembles a face surrounded by a fur parka. In this Hubble telescope image, the 'fur parka' is really a disk of material embellished with a ring of comet-shaped objects, with their tails streaming away from the central, dying star. The Eskimo's 'face' also contains some fascinating details. Although this bright central region resembles a ball of twine, it is, in reality, a bubble of material being blown into space by the central star's intense 'wind' of high-speed material. The planetary nebula began forming about 10,000 years ago, when the dying star began flinging material into space. The nebula is composed of two elliptically shaped lobes of matter streaming above and below the dying star. In this photo, one bubble lies in front of the other, obscuring part of the second lobe. Scientists believe that a ring of dense material around the star's equator, ejected during its red giant phase, created the nebula's shape. This dense waist of material is plodding along at 72,000 miles per hour (115,000 kilometers per hour), preventing high-velocity stellar winds from pushing matter along the equator. Instead, the 900,000-mile-per-hour (1.5-million-kilometer-per-hour) winds are sweeping the material above and below the star, creating the elongated bubbles. The bubbles are not smooth like balloons but have filaments of denser matter. Each bubble is about 1 light-year long and about half a light-year wide. Scientists are still puzzled about the origin of the comet-shaped features in the 'parka.' One possible explanation is that these objects formed from a collision of slow- and fast-moving gases

  18. Ultraviolet spectra of planetary nebulae. X - Physical conditions in the compact planetary nebula Sw St 1

    NASA Technical Reports Server (NTRS)

    Flower, D. R.; Goharji, A.; Cohen, M.

    1984-01-01

    Photoelectric visual and ultraviolet observations of the compact planetary nebula Sw St 1 are analyzed. The electron density, determined from the C III 1907/1909 A line ratio, is N(e) = (1.1 + or - 0.1) x 10 to the 5th/cu cm, consistent with the high emission measure and high critical frequency determined from observations of the thermal radio emission. The C/O abundance ratio in the nebula is found to be N(C)/N(O) = 0.72 + or - 0.1, i.e. the envelope is oxygen-rich, as suggested by the identification of the silicate feature in the 8-13 micron infrared spectrum. Difficulties remain in accurately determining the reddening constant to the nebula and its electron temperature.

  19. Overturning the Case for Gravitational Powering in the Prototypical Cooling Lyα Nebula

    NASA Astrophysics Data System (ADS)

    Prescott, Moire K. M.; Momcheva, Ivelina; Brammer, Gabriel B.; Fynbo, Johan P. U.; Møller, Palle

    2015-03-01

    The Nilsson et al. Lyα nebula has often been cited as the most plausible example of an Lyα nebula powered by gravitational cooling. In this paper, we bring together new data from the Hubble Space Telescope and the Herschel Space Observatory as well as comparisons to recent theoretical simulations in order to revisit the questions of the local environment and most likely power source for the Lyα nebula. In contrast to previous results, we find that this Lyα nebula is associated with six nearby galaxies and an obscured AGN that is offset by ˜4″ ≈ 30 kpc from the Lyα peak. The local region is overdense relative to the field, by a factor of ˜10, and at low surface brightness levels the Lyα emission appears to encircle the position of the obscured AGN, highly suggestive of a physical association. At the same time, we confirm that there is no compact continuum source located within ˜2-3″ ≈ 15-23 kpc of the Lyα peak. Since the latest cold accretion simulations predict that the brightest Lyα emission will be coincident with a central growing galaxy, we conclude that this is actually a strong argument against, rather than for, the idea that the nebula is gravitationally powered. While we may be seeing gas within cosmic filaments, this gas is primarily being lit up, not by gravitational energy, but due to illumination from a nearby buried AGN.

  20. OVERTURNING THE CASE FOR GRAVITATIONAL POWERING IN THE PROTOTYPICAL COOLING LYα NEBULA

    SciTech Connect

    Prescott, Moire K. M.; Fynbo, Johan P. U.; Momcheva, Ivelina; Brammer, Gabriel B.; Møller, Palle

    2015-03-20

    The Nilsson et al. Lyα nebula has often been cited as the most plausible example of an Lyα nebula powered by gravitational cooling. In this paper, we bring together new data from the Hubble Space Telescope and the Herschel Space Observatory as well as comparisons to recent theoretical simulations in order to revisit the questions of the local environment and most likely power source for the Lyα nebula. In contrast to previous results, we find that this Lyα nebula is associated with six nearby galaxies and an obscured AGN that is offset by ∼4″ ≈ 30 kpc from the Lyα peak. The local region is overdense relative to the field, by a factor of ∼10, and at low surface brightness levels the Lyα emission appears to encircle the position of the obscured AGN, highly suggestive of a physical association. At the same time, we confirm that there is no compact continuum source located within ∼2–3″ ≈ 15–23 kpc of the Lyα peak. Since the latest cold accretion simulations predict that the brightest Lyα emission will be coincident with a central growing galaxy, we conclude that this is actually a strong argument against, rather than for, the idea that the nebula is gravitationally powered. While we may be seeing gas within cosmic filaments, this gas is primarily being lit up, not by gravitational energy, but due to illumination from a nearby buried AGN.

  1. A PHOTOMETRICALLY AND MORPHOLOGICALLY VARIABLE INFRARED NEBULA IN L483

    SciTech Connect

    Connelley, Michael S.; Hodapp, Klaus W.; Fuller, Gary A.

    2009-03-15

    We present narrow and broad K-band observations of the Class 0/I source IRAS 18148-0440 that span 17 years. The infrared nebula associated with this protostar in the L483 dark cloud is both morphologically and photometrically variable on a timescale of only a few months. This nebula appears to be an infrared analog to other well known optically visible variable nebulae associated with young stars, such as Hubble's Variable Nebula. Along with Cepheus A, this is one of the first large variable nebulae to be found that is only visible in the infrared. The variability of this nebula is most likely due to changing illumination of the cloud rather than any motion of the structure in the nebula. Both morphological and photometric changes are observed on a timescale only a few times longer than the light crossing time of the nebula, suggesting very rapid intrinsic changes in the illumination of the nebula. Our narrowband observations also found that H{sub 2} knots are found nearly twice as far to the east of the source as to its west, and that H{sub 2} emission extends farther east of the source than the previously known CO outflow.

  2. Detection of a noble gas molecular ion, 36ArH+, in the Crab Nebula.

    PubMed

    Barlow, M J; Swinyard, B M; Owen, P J; Cernicharo, J; Gomez, H L; Ivison, R J; Krause, O; Lim, T L; Matsuura, M; Miller, S; Olofsson, G; Polehampton, E T

    2013-12-13

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (36)ArH(+) at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (36)ArH(+) emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  3. Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Barlow, M. J.; Swinyard, B. M.; Owen, P. J.; Cernicharo, J.; Gomez, H. L.; Ivison, R. J.; Krause, O.; Lim, T. L.; Matsuura, M.; Miller, S.; Olofsson, G.; Polehampton, E. T.

    2013-12-01

    Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of 36ArH+ at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed 36ArH+ emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.

  4. Integral field spectroscopy of M1-67. A Wolf-Rayet nebula with luminous blue variable nebula appearance

    NASA Astrophysics Data System (ADS)

    Fernández-Martín, A.; Vílchez, J. M.; Pérez-Montero, E.; Candian, A.; Sánchez, S. F.; Martín-Gordón, D.; Riera, A.

    2013-06-01

    Aims: This work aims to disentangle the morphological, kinematic, and chemical components of the nebula M1-67 to shed light on its process of formation around the central Wolf-Rayet (WR) star WR124. Methods: We have carried out integral field spectroscopy observations over two regions of M1-67, covering most of the nebula in the optical range. Maps of electron density, line ratios, and radial velocity were created to perform a detailed analysis of the two-dimensional structure. We studied the physical and chemical properties by means of integrated spectra selected over the whole nebula. Photoionization models were performed to confirm the empirical chemical results theoretically. In addition, we obtained and analysed infrared spectroscopic data and the MIPS 24 μm image of M1-67 from Spitzer. Results: We find that the ionized gas of M1-67 is condensed in knots aligned in a preferred axis along the NE-SW direction, like a bipolar structure. Both electron density and radial velocity decrease in this direction when moving away from the central star. From the derived electron temperature, Te ~ 8200 K, we have estimated chemical abundances, obtaining that nitrogen appears strongly enriched and oxygen depleted. From the last two results, we infer that this bipolarity is the consequence of an ejection of an evolved stage of WR124 with material processed in the CNO cycle. Furthermore, we find two regions placed outside of the bipolar structure with different spectral and chemical properties. The infrared study has revealed that the bipolar axis is composed of ionized gas with a low ionization degree that is well mixed with warm dust and of a spherical bubble surrounding the ejection at 24 μm. Taking the evolution of a 60 M⊙ star and the temporal scale of the bipolar ejection into account, we propose that the observed gas was ejected during an eruption in the luminous blue variable stage. The star has entered the WR phase recently without apparent signs of interaction

  5. The Rings Around the Egg Nebula

    NASA Technical Reports Server (NTRS)

    Harpaz, Amos; Rappaport, Saul; Soker, Noam

    1997-01-01

    We present an eccentric binary model for the formation of the proto-planetary nebula CRL 2688 (the Egg Nebula) that exhibits multiple concentric shells. Given the apparent regularity of the structure in the Egg Nebula, we postulate that the shells are caused by the periodic passages of a companion star. Such an orbital period would have to lie in the range of 100-500 yr, the apparent time that corresponds to the spacing between the rings. We assume, in this model, that an asymptotic giant branch (AGB) star, which is the origin of the matter within the planetary nebula, loses mass in a spherically symmetric wind. We further suppose that the AGB star has an extended atmosphere (out to approximately 10 stellar radii) in which the outflow speed is less than the escape speed; still farther out, grains form and radiation pressure accelerates the grains along with the trapped gas to the escape speed. Once escape speed has been attained, the presence of a companion star will not significantly affect the trajectories of the matter leaving in the wind and the mass loss will be approximately spherically symmetric. On the other hand, if the companion star is sufficiently close that the Roche lobe of the AGB star moves inside the extended atmosphere, then the slowly moving material will be forced to flow approximately along the critical potential surface (i.e., the Roche lobe) until it flows into the potential lobe of the companion star. Therefore, in our model, the shells are caused by periodic cessations of the isotropic wind rather than by any periodic enhancement in the mass-loss process. We carry out detailed binary evolution calculations within the context of this scenario, taking into account the nuclear evolution and stellar wind losses of the giant as well as the effects of mass loss and mass transfer on the evolution of the eccentric binary orbit. From the initial binary parameters that we find are required to produce a multiple concentric shell nebula and the known

  6. Hierarchies of Models: Toward Understanding Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Hajian, Arsen R.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Stars like our sun (initial masses between 0.8 to 8 solar masses) end their lives as swollen red giants surrounded by cool extended atmospheres. The nuclear reactions in their cores create carbon, nitrogen and oxygen, which are transported by convection to the outer envelope of the stellar atmosphere. As the star finally collapses to become a white dwarf, this envelope is expelled from the star to form a planetary nebula (PN) rich in organic molecules. The physics, dynamics, and chemistry of these nebulae are poorly understood and have implications not only for our understanding of the stellar life cycle but also for organic astrochemistry and the creation of prebiotic molecules in interstellar space. We are working toward generating three-dimensional models of planetary nebulae (PNe), which include the size, orientation, shape, expansion rate and mass distribution of the nebula. Such a reconstruction of a PN is a challenging problem for several reasons. First, the data consist of images obtained over time from the Hubble Space Telescope (HST) and spectra obtained from Kitt Peak National Observatory (KPNO) and Cerro Tololo Inter-American Observatory (CTIO). These images are of course taken from a single viewpoint in space, which amounts to a very challenging tomographic reconstruction. Second, the fact that we have two disparate and orthogonal data types requires that we utilize a method that allows these data to be used together to obtain a solution. To address these first two challenges we employ Bayesian model estimation using a parameterized physical model that incorporates much prior information about the known physics of the PN. In our previous works we have found that the forward problem of the comprehensive model is extremely time consuming. To address this challenge, we explore the use of a set of hierarchical models, which allow us to estimate increasingly more detailed sets of model parameters. These hierarchical models of increasing complexity are akin

  7. Hierarchies of Models: Toward Understanding Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Knuth, Kevin H.; Hajian, Arsen R.; Clancy, Daniel (Technical Monitor)

    2003-01-01

    Stars like our sun (initial masses between 0.8 to 8 solar masses) end their lives as swollen red giants surrounded by cool extended atmospheres. The nuclear reactions in their cores create carbon, nitrogen and oxygen, which are transported by convection to the outer envelope of the stellar atmosphere. As the star finally collapses to become a white dwarf, this envelope is expelled from the star to form a planetary nebula (PN) rich in organic molecules. The physics, dynamics, and chemistry of these nebulae are poorly understood and have implications not only for our understanding of the stellar life cycle but also for organic astrochemistry and the creation of prebiotic molecules in interstellar space. We are working toward generating three-dimensional models of planetary nebulae (PNe), which include the size, orientation, shape, expansion rate and mass distribution of the nebula. Such a reconstruction of a PN is a challenging problem for several reasons. First, the data consist of images obtained over time from the Hubble Space Telescope (HST) and spectra obtained from Kitt Peak National Observatory (KPNO) and Cerro Tololo Inter-American Observatory (CTIO). These images are of course taken from a single viewpoint in space, which amounts to a very challenging tomographic reconstruction. Second, the fact that we have two disparate and orthogonal data types requires that we utilize a method that allows these data to be used together to obtain a solution. To address these first two challenges we employ Bayesian model estimation using a parameterized physical model that incorporates much prior information about the known physics of the PN. In our previous works we have found that the forward problem of the comprehensive model is extremely time consuming. To address this challenge, we explore the use of a set of hierarchical models, which allow us to estimate increasingly more detailed sets of model parameters. These hierarchical models of increasing complexity are akin

  8. Properties of LMC planetary nebulae and parent populations in the MACHO database

    SciTech Connect

    Alves, D.R. |; Alcock, C.; Cook, K.H.

    1996-10-01

    The MACHO microlensing experiment's time-sampled photometry database contains blue and red lightcurves for nearly 9 million stars in the central bar region of the Large Magellanic Cloud (LMC). We have identified known LMC Planetary Nebulae (PN) in the database and find one, Jacoby 5, to be variable. We additionally present data on the ``parent populations`` of LMC PN, and discuss the star formation history of the LMC bar. 14 refs., 1 fig.

  9. Narrowband Near-Infrared Imaging of Young Planetary Nebulae and Transition Objects: Probing Core and Halo Structures

    NASA Technical Reports Server (NTRS)

    Hora, Joseph L.; Latter, William B.

    1997-01-01

    The new images presented here have high spatial resolution and are very sensitive to low levels of emission. We compare our new data to existing imaging and spectroscopic data to give clues as to the structure and formation of planetary nebulae, the role of shocks, and the evolution of photon-dominated regions.

  10. The "Water-Fountain Nebula" IRAS 16342-3814: Hubble Space Telescope/Very Large Array Study of a Bipolar Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Sahal, Raghvendra; teLintelHekkert, Peter; Morris, Mark; Zijlstra, Albert; Likkel, Lauren

    1999-01-01

    We present Hubble Space Telescope (HST) Wide-Field Planetary Camera 2 images and VLA OH maser emission-line maps of the cold infrared object IRAS 16342-3814, believed to be a protoplanetary nebula. The HST images show an asymmetrical bipolar nebula, with the lobes separated by a dark equatorial waist. The two bright lobes and the dark waist are simply interpreted as bubble-like reflection nebulae illuminated by starlight escaping through polar holes in a dense, flattened, optically thick cocoon of dust, which completely obscures the central star. A faint halo can be seen surrounding each of the lobes. The bubbles are likely to have been created by a fast outflow (evidenced by H2O emission) plowing into a surrounding dense, more slowly expanding, circumstellar envelope of the progenitor asymptotic giant-branch (AGB) star (evidenced by the halo). The IRAS fluxes indicate a circumstellar mass of about 0.7 solar mass (D/2 kpc) and an AGB mass-loss rate of about 10(exp -4) solar mass/yr (V(sub exp)/15 km/s)(D/2 kpc)(sup 2) (assuming a gas-to-dust ratio of 200). OH features with the largest redshifted and blueshifted velocities are concentrated around the bright eastern and western polar lobes, respectively, whereas intermediate-velocity features generally occur at low latitudes, in the dark waist region. We critically examine evidence for the post-AGB classification of IRAS 16342-3814.

  11. HH 666: The Axis of Evil in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Smith, Nathan; Bally, John; Brooks, Kate J.

    2004-05-01

    We report the discovery of the iniquitous parsec-scale outflow HH 666-the first protostellar jet in the Carina Nebula-as well as the infrared identification of its embedded driving source. The HH 666 jet emanates from a bright-rimmed molecular globule (G287.57-0.91) at the head of a dust pillar in the southern part of Carina. Optical and near-infrared images reveal structures that resemble bow shocks and internal working surfaces in other Herbig-Haro (HH) jets, and which are especially bright in [Fe II] λ16435. Except for extended bow shock wings, all features lie within a few degrees of a single axis oriented roughly southeast to northwest, with a remarkable highly collimated flow breaking out of the natal globule. Long-slit echelle spectra reveal only redshifted velocities toward the southeast of the globule and blueshifted velocities toward the northwest. The observed features conspire to form a single, coherent bipolar jet with a total projected length of over 4.5m, or more than 3 pc. Doppler shifts as high as +/-250 km s-1 are seen, indicating that the jet axis has a significant tilt from the plane of the sky, and the total length of the jet may be closer to 4 or 5 pc. HH 666 is therefore among the longest HH jets known. Condemned to toil in the inferno of the Carina Nebula, scorched by UV radiation from the hot stars that power the H II region, much of the jet is influenced by radiative excitation. Infrared images reveal a reddened star embedded in the molecular globule lying along the jet axis. We identify this evildoer (HH 666 IRS) as the likely driving source of the jet. The infrared spectral energy distribution of HH 666 IRS is consistent with that of a Class I protostellar object, with a luminosity of a few hundred to 103 Lsolar, and a probable main-sequence mass of a few to 8 Msolar. This Class I object associated with a prominent bipolar jet constitutes the first direct evidence of ongoing active star formation by accretion in the Carina Nebula.

  12. The Fe/Ni ratio in ionized nebulae: clues on dust depletion patterns

    NASA Astrophysics Data System (ADS)

    Delgado-Inglada, G.; Mesa-Delgado, A.; García-Rojas, J.; Rodríguez, M.; Esteban, C.

    2016-03-01

    We perform a homogeneous analysis of the Fe/Ni abundance ratio in eight Galactic planetary nebulae and three Galactic H II regions that include the Orion nebula, where we study four nebular zones and one shocked region. We use [Fe II], [Fe III], and [Ni III] lines, and ionization correction factors (ICFs) that account for the unobserved ions. We derive an ICF for nickel from an extensive grid of photoionization models. We compare our results with those derived by other authors for 16 neutral clouds in the solar neighbourhood with available Fe/Ni ratios in the literature. We find an excellent agreement between the ionized nebulae and the diffuse clouds, with both types of regions showing a clear correlation between the Fe/Ni ratios and the iron and nickel depletion factors. The trend shows that the objects with a relatively low depletion have near solar Fe/Ni ratios whereas at higher depletions the Fe/Ni ratio increases with the depletion. Our results confirm that, compared to iron atoms, nickel ones are more efficiently stuck to the dust grains in ambients where dust formation or growth have been more efficient.

  13. Deep high spectral resolution spectroscopy and chemical composition of ionized nebulae

    NASA Astrophysics Data System (ADS)

    Esteban, C.; García-Rojas, J.; Mesa-Delgado, A.; Toribio San Cipriano, L.

    2014-01-01

    High spectral resolution spectroscopy has proved to be very useful for the advancement of chemical abundances studies in photoionized nebulae, such as H II regions and planetary nebulae (PNe). Classical analyses make use of the intensity of bright collisionally excited lines (CELs), which have a strong dependence on the electron temperature and density. By using high resolution spectrophotometric data, our group has led the determination of chemical abundances of some heavy element ions, mainly O++, O+, and C++ from faint recombination lines (RLs), allowing us to deblend them from other nearby emission lines or sky features. The importance of these lines is that their emissivity depends weakly on the temperature and density structure of the gas. The unresolved issue in this field is that recombination lines of heavy element ions give abundances that are about 2-3 times higher than those derived from CELs - in H II regions - for the same ion, and can even be a factor of 70 times higher in some PNe. This uncertainty puts into doubt the validity of face values of metallicity that we use as representative not only for ionized nebulae in the Local Universe, but also for star-forming dwarf and spiral galaxies at different redshifts. Additionally, high-resolution data can allow us to detect and deblend faint lines of neutron capture element ions in PNe. This information would introduce further restrictions to evolution models of AGBs and would help to quantify the chemical enrichment in s-elements produced by low and intermediate mass stars. The availability of an échelle spectrograph at the E-ELT will be of paramount interest to: (a) extend the studies of heavy-element recombination lines to low metallicity objects, (b) to extend abundance determinations of s-elements to planetary nebulae in the extragalactic domain and to bright Galactic and extragalactic H II regions.

  14. Far-infrared emission line spectroscopy of planetary nebulae from the KAO

    NASA Technical Reports Server (NTRS)

    Dinerstein, Harriet L.

    1994-01-01

    The main focus of the overall project was to study the properties of planetary nebulae using far-infrared emission lines. The observations were conducted with the 'cooled grating spectrometer' or CGS, a moderate-resolution echelle spectrometer designed and built at the Ames Research Center. During the first few years of the program, the emphasis was on emission lines of doubly-ionized oxygen and nitrogen ((O III) 52 and 88 microns, (N III) 57 microns), which arise in the ionized regions of the nebulae. Starting around 1989, our emphasis shifted to observing fine-structure lines of neutral oxygen and singly-ionized carbon ((O I) 63 and 145 microns, (C II) 157 microns), which arise from predominantly neutral material outside the ionized regions. This program was typically assigned one or two observing flights per year. Because these studies required obtaining a substantial sample of objects in order to reach meaningful conclusions, publication of comprehensive papers summarizing all of the results is still pending. However, numerous interim reports based on the airborne results as well as on closely-related supporting observations have been published during the grant period. The bibliographic information for these reports is given in the publications section. An overall summary of the planetary nebula results was presented at the Airborne Astronomy Symposium (20th Anniversary of the KAO) on 8 July 1994; reprints will be provided when available. In parallel with the planetary nebula study, we also observed the (O III) and (N III) lines in several H II regions, and attempted (unsuccessfully) to detect these lines in several old nova remnants and the supernova remnant Cassiopeia A.

  15. Structure and Transport in the Solar Nebula from Constraints on Deuterium Enrichment and Giant Planets Formation

    NASA Astrophysics Data System (ADS)

    Drouart, A.; Dubrulle, B.; Gautier, D.; Robert, F.

    1999-07-01

    -Neptune region of the turbulent nebula and expelled toward the Oort cloud prior to the complete formation of these planets implies some reprocessing in the nebula of the cometary matter coming from the presolar cloud. It may not be easy however to expel comets toward the Oort cloud quite early in the history of the Solar System. It might be, according to the second scenario, that both comets coming from the Oort cloud and comets of the Jupiter family were formed farther than Neptune in a nonturbulent region of the nebula. In such a case, comets might have conserved to a large extent the chemical signature of the interstellar medium. Possible tests of the scenarios are considered.

  16. SOFIA/FORCAST Spectroscopy of NGC 7009, the Saturn Nebula

    NASA Astrophysics Data System (ADS)

    Sankrit, Ravi; Leal-Ferreira, Marcelo L.; Aleman, Isabel; Colgan, Sean; Simpson, Janet P.; Tielens, Alexander; Tsamis, Yiannis

    2015-08-01

    We present spatially resolved mid-IR spectra of the well-studied Planetary Nebula (PN) NGC 7009 obtained with the FORCAST instrument on board the Stratospheric Observatory for Infrared Astronomy (SOFIA). NGC 7009 has a relatively high "abundance discrepancy factor" - the heavy element abundances derived from optical recombination lines (ORLs) are higher by a factor of about 5 than abundances derived from collisionally excited lines (CELs). One hypothesis to resolve this discrepancy is that two kinds of regions with distinct properties are responsible for the abundance measurements from ORLs and CELs. Emission lines from Argon, Sulphur and Oxygen are detected in our spectra, which span the 8.7--13.9 and 17.7--27.6 micron ranges. By combining the SOFIA observations with Herschel/PACS spectra and HST narrowband imaging we explore the abundance variations in the nebula, and we examine the correlation of the IR to optical line ratios with the abundance discrepancy factor.We also use this concrete example as a starting point for a general survey of the capabilities of SOFIA in the field of PN research, and introduce the community to the wide array of instruments available. We show that SOFIA, which is currently the only operational facility allowing access to mid- and far-IR wavelengths for the general astronomical community, has the potential for continuing the studies initiated by Spitzer and Herschel and will provide detailed information about Galactic PNe. The results from such studies will in turn be crucial for our understanding and interpretation of data from more distant, extragalactic objects that will be obtained by future missions such as the James Webb Space Telescope.

  17. New View of Gas and Dust in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2010-08-01

    The recognizable components in meteorites differ in their relative abundances of the three oxygen isotopes (16O, 17O, and 18O). In particular, the amount of 16O varies from being like that of the Earth to substantially enriched compared to the other two isotopes. The current explanation for this interesting range in isotopic composition is that dust and gas in the solar nebula (the cloud of gas and dust surrounding the primitive Sun) began with the same 16O-rich composition, but the solids evolved towards the terrestrial value. A new analysis of the problem by Alexander Krot (University of Hawaii) and colleagues at the University of Hawaii, the University of Chicago, Clemson University, and Lawrence Livermore National Laboratory leads to the bold assertion that primordial dust and gas differed in isotopic composition. The gas was rich in 16O as previously thought (possibly slightly richer in 16O than the measurements of the solar wind returned by the Genesis Mission), but that the dust had a composition close to the 16O-depleted terrestrial average. In this new view, the dust had a different history than did the gas before being incorporated into the Solar System. Solids with compositions near the terrestrial line may have formed in regions of the solar nebula where dust had concentrated compared to the mean solar dust/gas ratio (1 : ~100). The idea has great implications for understanding the oxygen-isotope composition of the inner Solar System and the origin of materials in the molecular cloud from which the Solar System formed.

  18. Studies of bipolar nebulae. VI - Optical spectrophotometric mapping of GL 2688 /the Cygnus EGG Nebula/

    NASA Technical Reports Server (NTRS)

    Cohen, M.; Kuhi, L. V.

    1980-01-01

    Optical scanner spectra are presented for ten positions in the lobes of GL 2688. Color gradients exist across the nebulae, probably due to systematic variations in the sizes of typical scattering grains. Molecular emissions C2, C3, and SiC2 are found, similar to the spectra of comets. Resonance fluorescence seems to be indicated.

  19. The Enigmatic Guitar Nebula: Bow Shock Nebulae, Pulsar Parallaxes and the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Chatterjee, S.; Cordes, J. M.

    Bow shocks and pulsar wind nebulae probe the interaction of neutron star relativistic winds with the interstellar medium. We utilize scaling laws derived for bow shock nebulae, in combination with estimates of neutron star distances and velocities, to extract information about the interstellar medium as well as relativistic winds. Specifically, we report on Chandra X-ray Observatory and Hubble Space Telescope observations of the spectacular Guitar Nebula, produced by a high velocity but otherwise unremarkable neutron star. The observed time evolution in the position and morphology of the nebula leads us to infer the existence of small scale density fluctuations in the interstellar medium, while X-ray observations reveal potential evidence for magnetic reconnection. Increases in the sample of precise astrometric measurements, coupled with multi-wavelength observations, will enable a deeper understanding of neutron star relativistic winds: we introduce an ongoing project with the Very Long Baseline Array, which is expected to at least double the number of measured pulsar parallaxes in the next two years.

  20. Three-dimensional evolution of early solar nebula

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1991-01-01

    The progress is reported toward the goal of a complete theory of solar nebula formation, with an emphasis on three spatial dimension models of solar nebular formation and evolution. The following subject areas are covered: (1) initial conditions for protostellar collapse; (2) single versus binary star formation; (3) angular momentum transport mechanisms; (4) three dimensional solar nebula models; and (5) implications for planetary formation.

  1. X-ray Pulsar in the Crab Nebula.

    PubMed

    Fritz, G; Henry, R C; Meekins, J F; Chubb, T A; Friedman, H

    1969-05-09

    X-ray pulsations have been observed in the Crab Nebula at a frequency closely matching the radio and optical pulsations. About 5 percent of the total x-ray power of the nebula appears in the pulsed component. The x-ray pulsations have the form of a main pulse and an interpulse separated by about 12 milliseconds.

  2. Enhanced gamma-ray activity from the Crab nebula

    NASA Astrophysics Data System (ADS)

    Buehler, R.; Ciprini, S.

    2016-01-01

    Preliminary LAT analysis indicates enhanced gamma-ray activity from the Crab nebula. The daily-averaged gamma-ray emission (E > 100 MeV) from the direction of the Crab Nebula has surpassed 4.0 x 10^-6 ph cm^-2 s^-1 five times in the last 12 days.

  3. Three dimensional Monte Carlo simulations of ionized nebulae

    NASA Astrophysics Data System (ADS)

    Ercolano, Barbara

    2002-12-01

    The study of photoionized environments is fundamental to many astrophysical problems. Up to the present most photoionization codes have numerically solved the equations of radiative transfer by making the extreme simplifying assumption of spherical symmetry. Unfortunately very few real astronomical nebulae satisfy this requirement. To remedy these shortcomings, a self-consistent, three-dimensional radiative transfer code has been developed using Monte Carlo techniques. The code, Mocassin, is designed to build realistic models of photoionized nebulae having arbitrary geometries and density distributions with both the stellar and diffuse radiation fields treated self-consistently. In addition, the code is capable of treating one or more exciting stars located at non-central locations. The gaseous region is approximated by a cuboidal Cartesian grid composed of numerous cells. The physical conditions within each grid cell are determined by solving the thermal equilibrium and ionization balance equations. This requires a knowledge of the local primary and secondary radiation fields, which are calculated self-consistently by locally simulating the individual processes of ionization and recombination. The main structure and computational methods used in the Mocassin code are described in this thesis. Mocassin has been benchmarked against established one-dimensional spherically symmetric codes for a number of standard cases, as defined by the Lexington/Meudon photoionization workshops (Pequignot, 1986; Ferland et al., 1995; Pequignot et al., 2001). The results obtained for the benchmark cases are satisfactory and are presented in this work. A performance analysis has also been carried out and is discussed here. The code has been applied to construct a realistic model of the planetary nebula NGC 3918. Three different geometric models were tried, the first being the biconical density distribution already used by Clegg et al. (1987). In this model the nebula is approximated

  4. Saturn Satellite Densities and the C/O Chemistry of the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Johnson, T. V.; Lunine, J. I.

    2005-01-01

    The composition of material condensed in the outer solar system is very dependent on the state of carbon and oxygen in the solar or circumplanetary nebula, since oxygen is the dominant solid-forming element in a solar composition gas (in the form of silicates and water ice), and carbon is about half as abundant. Past discussions of solid material formed in these regions have focused on differences expected between material formed near giant planets where carbon is generally expected to be in the reduced, CH4, form and material formed in the outer protoplanetary solar nebula where CO is believed to be the dominant form [1]. The composition and expected density of these materials are quite sensitive to the C and O solar abundances in all these models. We discuss here the effects of recently suggested modifications to solar abundances on the interpretation of the mean densities for satellites in the Saturn system.

  5. Waiting in the Wings: Reflected X-ray Emission from the Homunculus Nebula

    NASA Technical Reports Server (NTRS)

    Corcoran, M. F.; Hamaguchi, K.; Gull, T.; Davidson, K.; Petre, R.; Hillier, D. J.; Smith, N.; Damineli, A.; Morse, J. A.; Walborn, N. R.

    2004-01-01

    We report the first detection of X-ray emission associated with the Homunculus Nebula which surrounds the supermassive star eta Carinae. The emission is characterized by a temperature in excess of 100 MK, and is consistent with scattering of the time-delayed X-ray flux associated with the star. The nebular emission is bright in the northwestern lobe and near the central regions of the Homunculus, and fainter in the southeastern lobe. We also report the detection of an unusually broad Fe K fluorescent line, which may indicate fluorescent scattering off the wind of a companion star or some other high velocity outflow. The X-ray Homunculus is the nearest member of the small class of Galactic X-ray reflection nebulae, and the only one in which both the emitting and reflecting sources are distinguishable.

  6. Spatially-resolved Spectroscopy of the IC443 Pulsar Wind Nebula and Environs

    NASA Technical Reports Server (NTRS)

    Swartz, D. A.; Weisskopf, M. C.; Zavlin, V. E.; Bucciantini, N.; Clarke, T. E.; Karovska, M.; Pavlov, G. G.; O'Dell, S. L.; vanderHorst, A J.; Yukita, M.

    2013-01-01

    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222117, in the supernova remnant IC443 reveal, for the first time, a ring-like morphology surrounding the pulsar and a jet-like structure oriented roughly north-south across the ring and through the pulsar location. The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar interpretation, (2) the non-thermal surrounding nebula is likely powered by the pulsar wind, and (3) the thermal-dominated spectrum at greater distances is consistent with emission from the supernova remnant. The cometary shape of the nebula, suggesting motion towards the southwest (or, equivalently, flow of ambient medium to the northeast), appears to be subsonic; there is no evidence for a strong bow shock, and the circular ring is not distorted by motion through the ambient medium.

  7. Constraints on the Detection of the Solar Nebula's Oxidation State Through Asteroid Observations

    NASA Technical Reports Server (NTRS)

    Abell, P. A.; Gaffey, M. J.; Hardersen, P. S.

    2005-01-01

    Introduction: Asteroids represent the only in situ surviving population of planetesimals from the formation of the inner solar system and therefore include materials from the very earliest stages of solar system formation. Hence, these bodies can provide constraints on the processes and conditions that were present during this epoch and can be used to test current models and theories describing the late solar nebula, the early solar system and subsequent planetary accretion. From detailed knowledge of asteroid mineralogic compositions the probable starting materials, thermal histories, and oxidation states of asteroid parent bodies can be inferred. If such data can be obtained from specific mainbelt source regions, then this information can be used to map out the formation conditions of the late solar nebula within the inner solar system and possibly distinguish any trends in oxidation state that may be present.

  8. A SPITZER CENSUS OF STAR FORMATION ACTIVITY IN THE PIPE NEBULA

    SciTech Connect

    Forbrich, Jan; Lada, Charles J.; Muench, August A.; Alves, Joao

    2009-10-10

    The Pipe Nebula, a large nearby molecular cloud, lacks obvious signposts of star formation in all but one of more than 130 dust extinction cores that have been identified within it. In order to quantitatively determine the current level of star formation activity in the Pipe Nebula, we analyzed 13 deg{sup 2} of sensitive mid-infrared maps of the entire cloud, obtained with the Multiband Imaging Photometer for Spitzer at wavelengths of 24 mum and 70 mum, to search for candidate young stellar objects (YSOs) in the high-extinction regions. We argue that our search is complete for class I and typical class II YSOs with luminosities of L {sub bol} approx 0.2 L {sub sun} and greater. We find only 18 candidate YSOs in the high-extinction regions of the entire Pipe cloud. Twelve of these sources are previously known members of a small cluster associated with Barnard 59, the largest and most massive dense core in the cloud. With only six candidate class I and class II YSOs detected toward extinction cores outside of this cluster, our findings emphatically confirm the notion of an extremely low level of star formation activity in the Pipe Nebula. The resulting star formation efficiency for the entire cloud mass is only approx0.06%.

  9. The Einstein survey of the young stars in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Zoonematkermani, S.; Caillault, J.-P.

    1987-01-01

    The Orion Nebula is the best studied site of recent star formation in the Galaxy. The complete Einstein Observatory survey of the Orion Nebula covering a 2 deg x 2 deg region centered on the Trapezium is reported. An X-ray mosaic is presented for the Nebula along with a complete X-ray catalogue for this very young cluster. Approximately 150 distinct sources were found in this 4 sq deg region; spectral types and colors were obtained for about 1/2 of the optical counterparts of these sources. Comparison of the variability of the Orion X-ray sources with those found in the Rho Ophiuchi cloud leads to the conclusion that the Orion sources' variability is also likely to result from continual flaring activities. Eleven new late B stars associated with X-ray emission far exceeding that expected from early type stars were discovered. The X-rays may originate from pre-main sequence companions to these stars; a T-Tauri star of the same age would have the correct L sub x. Comparison of the solar type stars in Orion with those in the Pleiades, the Hyades, and the field suggests that the decay of activity with age is most appropriately described by an exponential, rather than a power law fit.

  10. A large bubble around the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Reach, William T.; Koo, Bon Chul; Heiles, Carl

    1990-01-01

    IRAS and 21 cm observations of the interstellar medium around the Crab nebula show evidence of a large bubble surrounded by a partial shell. If located at the canonical 2 kpc distance of the Crab pulsar, the shell is estimated to have a radius of about 90 pc and to contain about 50,000 solar masses of swept-up gas. The way in which interior conditions of this bubble can have important implications for observations of the Crab are described, and the fashion in which presupernova evolution of the pulsar progenitor has affected its local environment is described.

  11. KINEMATIC DISTANCES OF GALACTIC PLANETARY NEBULAE

    SciTech Connect

    Yang, A. Y.; Tian, W. W.; Zhu, H.; Wu, D.; Leahy, D. A. E-mail: ayyang@bao.ac.cn

    2016-03-15

    We construct H i absorption spectra for 18 planetary nebulae (PNs) and their background sources using data from the International Galactic Plane Survey. We estimate the kinematic distances of these PNs, among which 15 objects’ kinematic distances are obtained for the first time. The distance uncertainties of 13 PNs range from 10% to 50%, which is a significant improvement with uncertainties of a factor of two or three smaller than most previous distance measurements. We confirm that PN G030.2−00.1 is not a PN because of its large distance found here.

  12. Silicon and magnesium in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Harrington, J. P.; Marionni, P. A.

    1981-01-01

    The IUE satellite spectra of some planetary nebulae show features due to silicon and magnesium: Si III wavelengths 1883, 1892; Si IV wavelengths 1394, 1403; Mg II wavelengths 2796, 2804 and Mg V wavelengths 2784, 2929. With the aid of modeling techniques, the corresponding elemental abundances are found. In addition to previous observations of NGC 7662 and IC 418, data were found for NGC 2440, Hu 1-2, IC 2003 and IC 2165. Silicon appears depleted by up to an order of magnitude relative to the sun. Large variations of magnesium abundance are found, which are likely to reflect differing degrees of depletion due to grain formation.

  13. Element Masses in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Sibley, Adam R.; Katz, Andrea M.; Satterfield, Timothy J.; Vanderveer, Steven J.; MacAlpine, Gordon M.

    2016-10-01

    Using our previously published element abundance or mass-fraction distributions in the Crab Nebula, we derived actual mass distributions and estimates for overall nebular masses of hydrogen, helium, carbon, nitrogen, oxygen and sulfur. As with the previous work, computations were carried out for photoionization models involving constant hydrogen density and also constant nuclear density. In addition, employing new flux measurements for [Ni ii] λ7378, along with combined photoionization models and analytic computations, a nickel abundance distribution was mapped and a nebular stable nickel mass estimate was derived.

  14. Quasi-Equilibrium Density Distributions of Small Dust Aggregations in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Sekiya, Minoru

    1998-06-01

    The rotational velocity of a fluid element around the midplane of the solar nebula increased as dust settled toward the midplane. The Kelvin and Helmholtz instability due to velocity difference of a dust-rich region and a dust-poor region should have occurred and the dust layer became turbulent when the Richardson number decreased below the critical value. Then, dust aggregations stirred up due to turbulent diffusion and were prevented to settle further. In this paper, the sizes of dust aggregations are assumed to be equal to or smaller than the typical radius of chondrules (∼0.3 mm). In this case, even very weak turbulence stirs up dust aggregations. Therefore a dust density distribution is considered to be self regulated so that the Richardson number is nearly equal to the critical value. The quasi-equilibrium dust density distribution is derived analytically by assuming that the Richardson number is equal to the critical value. The derived dust density at the midplane is much smaller than the critical density of the gravitational stability, if the solar composition of dust to gas ratio is assumed. On the other hand, the dust aggregations concentrate around the midplane and the dust layer becomes gravitationally unstable, if more than 97% (at 1 AU from the Sun) of the gaseous components have been dissipated from the nebula, leaving dusty components. Two alternative scenarios of planetesimal formation are proposed: planetesimals were formed by (1) mutual sticking of dust aggregations by nongravitational forces or by (2) gravitational instabilities in the nebula where the dust to gas ratio is much larger than the ratio with solar elemental abundance. Case (2) might be realized due to dissipation of the nebular gas and/or addition of dust by the bipolar outflow. In case (1), chondrule sizes do not indicate the maximum size of dust aggregations in the solar nebula.

  15. RESOLVING THE GALAXIES WITHIN A GIANT Ly{alpha} NEBULA: WITNESSING THE FORMATION OF A GALAXY GROUP?

    SciTech Connect

    Prescott, Moire K. M.; Dey, Arjun; Jannuzi, Buell T.; Brodwin, Mark; Chaffee, Frederic H.; Desai, Vandana; Soifer, B. T.; Eisenhardt, Peter; Le Floc'h, Emeric; Matsuda, Yuichi

    2012-06-20

    Detailed analysis of the substructure of Ly{alpha} nebulae can put important constraints on the physical mechanisms at work and the properties of galaxies forming within them. Using high-resolution Hubble Space Telescope (HST) imaging of a Ly{alpha} nebula at z Almost-Equal-To 2.656, we have taken a census of the compact galaxies in the vicinity, used optical/near-infrared colors to select system members, and put constraints on the morphology of the spatially extended emission. The system is characterized by (1) a population of compact, low-luminosity ({approx}0.1 L*) sources-17 primarily young, small (R{sub e} Almost-Equal-To 1-2 kpc), disky galaxies including an obscured active galactic nucleus-that are all substantially offset ({approx}>20 kpc) from the line-emitting nebula; (2) the lack of a central galaxy at or near the peak of the Ly{alpha} emission; and (3) several nearly coincident, spatially extended emission components-Ly{alpha}, He II, and UV continuum-that are extremely smooth. These morphological findings are difficult to reconcile with theoretical models that invoke outflows, cold flows, or resonant scattering, suggesting that while all of these physical phenomena may be occurring, they are not sufficient to explain the powering and large extent of Ly{alpha} nebulae. In addition, although the compact galaxies within the system are irrelevant as power sources, the region is significantly overdense relative to the field galaxy population (by at least a factor of four). These observations provide the first estimate of the luminosity function of galaxies within an individual Ly{alpha} nebula system and suggest that large Ly{alpha} nebulae may be the seeds of galaxy groups or low-mass clusters.

  16. Resolving the Galaxies within a Giant Lyα Nebula: Witnessing the Formation of a Galaxy Group?

    NASA Astrophysics Data System (ADS)

    Prescott, Moire K. M.; Dey, Arjun; Brodwin, Mark; Chaffee, Frederic H.; Desai, Vandana; Eisenhardt, Peter; Le Floc'h, Emeric; Jannuzi, Buell T.; Kashikawa, Nobunari; Matsuda, Yuichi; Soifer, B. T.

    2012-06-01

    Detailed analysis of the substructure of Lyα nebulae can put important constraints on the physical mechanisms at work and the properties of galaxies forming within them. Using high-resolution Hubble Space Telescope (HST) imaging of a Lyα nebula at z ≈ 2.656, we have taken a census of the compact galaxies in the vicinity, used optical/near-infrared colors to select system members, and put constraints on the morphology of the spatially extended emission. The system is characterized by (1) a population of compact, low-luminosity (~0.1 L*) sources—17 primarily young, small (Re ≈ 1-2 kpc), disky galaxies including an obscured active galactic nucleus—that are all substantially offset (gsim20 kpc) from the line-emitting nebula; (2) the lack of a central galaxy at or near the peak of the Lyα emission; and (3) several nearly coincident, spatially extended emission components—Lyα, He II, and UV continuum—that are extremely smooth. These morphological findings are difficult to reconcile with theoretical models that invoke outflows, cold flows, or resonant scattering, suggesting that while all of these physical phenomena may be occurring, they are not sufficient to explain the powering and large extent of Lyα nebulae. In addition, although the compact galaxies within the system are irrelevant as power sources, the region is significantly overdense relative to the field galaxy population (by at least a factor of four). These observations provide the first estimate of the luminosity function of galaxies within an individual Lyα nebula system and suggest that large Lyα nebulae may be the seeds of galaxy groups or low-mass clusters.

  17. The North American and Pelican Nebulae. I. IRAC Observations

    NASA Astrophysics Data System (ADS)

    Guieu, S.; Rebull, L. M.; Stauffer, J. R.; Hillenbrand, L. A.; Carpenter, J. M.; Noriega-Crespo, A.; Padgett, D. L.; Cole, D. M.; Carey, S. J.; Stapelfeldt, K. R.; Strom, S. E.

    2009-05-01

    We present a 9 deg2 map of the North American and Pelican Nebulae regions obtained in all four Infrared Array Camera (IRAC) channels with the Spitzer Space Telescope. The resulting photometry is merged with that at JHKs from Two Micron All Sky Survey and a more spatially limited BVI survey from previous ground-based work. We use a mixture of color-color diagrams to select a minimally contaminated set of more than 1600 objects that we claim are young stellar objects (YSOs) associated with the star-forming region. Because our selection technique uses infrared excess as a requirement, our sample is strongly biased against inclusion of Class III YSOs. The distribution of IRAC spectral slopes for our YSOs indicates that most of these objects are Class II, with a peak toward steeper spectral slopes but a substantial contribution from a tail of Flat spectrum and Class I type objects. By studying the small fraction of the sample that is optically visible, we infer a typical age of a few Myr for the low-mass population. The young stars are clustered, with about a third of them located in eight clusters that are located within or near the LDN 935 dark cloud. Half of the YSOs are located in regions with surface densities higher than 1000 YSOs/deg2. The Class I objects are more clustered than the Class II stars.

  18. THE NORTH AMERICAN AND PELICAN NEBULAE. I. IRAC OBSERVATIONS

    SciTech Connect

    Guieu, S.; Rebull, L. M.; Stauffer, J. R.; Noriega-Crespo, A.; Padgett, D. L.; Carey, S. J.; Cole, D. M.; Stapelfeldt, K. R.; Strom, S. E.

    2009-05-20

    We present a 9 deg{sup 2} map of the North American and Pelican Nebulae regions obtained in all four Infrared Array Camera (IRAC) channels with the Spitzer Space Telescope. The resulting photometry is merged with that at JHK{sub s} from Two Micron All Sky Survey and a more spatially limited BVI survey from previous ground-based work. We use a mixture of color-color diagrams to select a minimally contaminated set of more than 1600 objects that we claim are young stellar objects (YSOs) associated with the star-forming region. Because our selection technique uses infrared excess as a requirement, our sample is strongly biased against inclusion of Class III YSOs. The distribution of IRAC spectral slopes for our YSOs indicates that most of these objects are Class II, with a peak toward steeper spectral slopes but a substantial contribution from a tail of Flat spectrum and Class I type objects. By studying the small fraction of the sample that is optically visible, we infer a typical age of a few Myr for the low-mass population. The young stars are clustered, with about a third of them located in eight clusters that are located within or near the LDN 935 dark cloud. Half of the YSOs are located in regions with surface densities higher than 1000 YSOs/deg{sup 2}. The Class I objects are more clustered than the Class II stars.

  19. Planetary Nebulae and their parent stellar populations. Tracing the mass assembly of M87 and Intracluster light in the Virgo cluster core

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda; Longobardi, Alessia; Gerhard, Ortwin

    2016-08-01

    The diffuse extended outer regions of galaxies are hard to study because they are faint, with typical surface brightness of 1% of the dark night sky. We can tackle this problem by using resolved star tracers which remain visible at large distances from the galaxy centers. This article describes the use of Planetary Nebulae as tracers and the calibration of their properties as indicators of the star formation history, mean age and metallicity of the parent stars in the Milky Way and Local Group galaxies. We then report on the results from a deep, extended, planetary nebulae survey in a 0.5 deg2 region centered on the brightest cluster galaxy NGC 4486 (M87) in the Virgo cluster core, carried out with SuprimeCam@Subaru and FLAMES-GIRAFFE@VLT. Two planetary nebulae populations are identified out to 150 kpc distance from the center of M87. One population is associated with the M87 halo and the second one with the intracluster light in the Virgo cluster core. They have different line-of-sight velocity and spatial distributions, as well as different planetary nebulae specific frequencies and luminosity functions. The intracluster planetary nebulae in the surveyed region correspond to a luminosity of four times the luminosity of the Large Magellanic Cloud. The M87 halo planetary nebulae trace an older, more metal-rich, parent stellar population. A substructure detected in the projected phase-space of the line-of-sight velocity vs. major axis distance for the M87 halo planetary nebulae provides evidence for the recent accretion event of a satellite galaxy with luminosity twice that of M33. The satellite stars were tidally stripped about 1 Gyr ago, and reached apocenter at a major axis distance of 60-90 kpc from the center of M87. The M87 halo is still growing significantly at the distances where the substructure is detected.

  20. Abundances in the Planetary Nebula IC 5217

    NASA Technical Reports Server (NTRS)

    Hyung, Siek; Aller, Lawrence H.; Feibelman, Walter A.; Lee, Woo-Baik; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    High resolution optical wavelength spectroscopic data were secured in the optical wavelengths, 3700A - 10,050A, for the planetary nebula IC 5217 with the Hamilton Echelle Spectrograph at Lick Observatory. These optical spectra have been analyzed along with the near-UV and UV archive data. Diagnostic analyses indicate a nebular physical condition with electron temperature of about 10,700 K (from the [O III] lines) and the density of N(sub epsilon) = 5000/cm. Ionic concentrations have been derived with the representative diagnostics, and with the aid of a photoionization model construction, we derived the elemental abundances. Contrary to the previous studies found in the literature, He and C appear to be depleted compared to the average planetary nebula and to the Sun (and S marginally so), while the remaining elements appear to be close to the average value. IC 5217 may have evolved from an O-rich progenitor and the central star temperature of IC 5217 is likely to be 92,000 K.

  1. Si isotope homogeneity of the solar nebula

    SciTech Connect

    Pringle, Emily A.; Savage, Paul S.; Moynier, Frédéric; Jackson, Matthew G.; Barrat, Jean-Alix E-mail: savage@levee.wustl.edu E-mail: moynier@ipgp.fr E-mail: Jean-Alix.Barrat@univ-brest.fr

    2013-12-20

    The presence or absence of variations in the mass-independent abundances of Si isotopes in bulk meteorites provides important clues concerning the evolution of the early solar system. No Si isotopic anomalies have been found within the level of analytical precision of 15 ppm in {sup 29}Si/{sup 28}Si across a wide range of inner solar system materials, including terrestrial basalts, chondrites, and achondrites. A possible exception is the angrites, which may exhibit small excesses of {sup 29}Si. However, the general absence of anomalies suggests that primitive meteorites and differentiated planetesimals formed in a reservoir that was isotopically homogenous with respect to Si. Furthermore, the lack of resolvable anomalies in the calcium-aluminum-rich inclusion measured here suggests that any nucleosynthetic anomalies in Si isotopes were erased through mixing in the solar nebula prior to the formation of refractory solids. The homogeneity exhibited by Si isotopes may have implications for the distribution of Mg isotopes in the solar nebula. Based on supernova nucleosynthetic yield calculations, the expected magnitude of heavy-isotope overabundance is larger for Si than for Mg, suggesting that any potential Mg heterogeneity, if present, exists below the 15 ppm level.

  2. Chemical fractionation in the solar nebula

    NASA Technical Reports Server (NTRS)

    Grossman, L.

    1977-01-01

    The sequence of condensation of minerals from a cooling gas of solar composition has been calculated from thermodynamic data over the pressure range 0.001-0.00001 atm, assuming that complete chemical equilibrium is maintained. The results suggest that the Ca-Al-rich inclusions Allende and other carbonaceous chondrites are aggregates of the highest temperature condensates. Complete condensation of these elements is followed, 100 deg later, by the onset of the crystallization of nickel-iron, forsterite and enstatite. Transport of Ca-Al-rich refractory condensates from one part of the nebula to another before the condensation of these lower-temperature phases may have been responsible for the refractory element fractionations between the different classes of chondrites and possibly for the inferred refractory element enrichment of the Moon. The temperature gap between the condensation temperatures of nickel-iron and forsterite increases with increasing total pressure. Because pressure and temperature probably increased with decreasing heliocentric distance in the solar nebula, Mercury may have accreted from a condensate assemblage having a higher metal/silicate ratio than Venus or Earth which may, in turn, have formed from less oxidized material than Mars.

  3. Radial velocities of Planetary Nebulae revisited

    NASA Astrophysics Data System (ADS)

    Vázquez, Roberto; Ayala, Sandra A.; Wendolyn Blanco Cárdenas, Mónica; Contreras, María E.; Gómez-Muñoz, Marco Antonio; Guillén, Pedro F.; Olguín, Lorenzo; Ramos-Larios, Gerardo; Sabin, Laurence; Zavala, Saúl A.

    2015-08-01

    We present a new determination of radial velocities of a sample of Galactic Planetary Nebulae (PNe) using a systematic method and the same instrumental setting: the long-slit high-dispersion Manchester Echelle Spectrograph (MES) on the 2.1-m telescope at the San Pedro Mártir Observatory (OAN-SPM; Mexico). This project was inspired by the work of Schneider et al. (1983, A&AS, 52, 399), which has been an important reference during the last decades. Radial velocities of gaseous nebulae can be obtained using the central wavelength of a Gaussian fit, even when there is an expansion velocity, as expected in PNe, but with not enough resolution to see a spectral line splitting. We have used the software SHAPE, a morpho-kinematic modeling and reconstruction tool for astrophysical objects (Steffen et al. 2011, IEEE Trans. Vis. Comput. Graphics, 17, 454), to prove that non-uniform density or brightness, on an expanding shell, can lead to mistaken conclusions about the radial velocity. To determine radial velocities, we only use the spectral data in which a spectral line-splitting is seen, avoiding thus the problem of the possible biased one-Gaussian fit. Cases when this method is not recommended are discussed.This project has been supported by grant PAPIIT-DGAPA-UNAM IN107914. MWB is in grateful receipt of a DGAPA-UNAM postdoctoral scholarship. MAG acknowledges CONACYT for his graduate scholarship.

  4. HUBBLE CAPTURES DYNAMICS OF CRAB NEBULA

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A new sequence of Hubble Space Telescope images of the remnant of a tremendous stellar explosion is giving astronomers a remarkable look at the dynamic relationship between the tiny Crab Pulsar and the vast nebula that it powers. This picture shows a Hubble Space Telescope image of the inner parts of the Crab. The pulsar itself is visible as the left of the pair of stars near the center of the frame. Surrounding the pulsar is a complex of sharp knots and wisp-like features. This image is one of a sequence of Hubble images taken over the course of several months. This sequence shows that the inner part of the Crab Nebula is far more dynamic than previously understood. The Crab literally 'changes it stripes' every few days as these wisps stream away from the pulsar at half the speed of light. The Hubble Space Telescope photo was taken Nov. 5, 1995 by the Wide Field and Planetary Camera 2 at a wavelength of around 550 nanometers, in the middle of the visible part of the electromagnetic spectrum. Credit: Jeff Hester and Paul Scowen (Arizona State University), and NASA

  5. Hubble Space Telescope observations of Orion Nebula, Helix Nebula, and NGC 6822

    NASA Technical Reports Server (NTRS)

    Spitzer, Lyman; Fitzpatrick, Ed

    1999-01-01

    This grant covered the major part of the work of the Principal Investigator and his collaborators as a Guaranteed Time Observer on the Hubble Space Telescope. The work done naturally divided itself into two portions the first being study of nebular objects and the second investigation of the interstellar medium between stars. The latter investigation was pursued through a contract with Princeton University, with Professor Lyman Spitzer as the supervising astronomer, assisted by Dr. Ed Fitzpatrick. Following the abrupt death of Professor Spitzer, his responsibilities were shifted to Dr. Fitzpatrick. When Dr. Fitzpatrick relocated to Villanova University the concluding work on that portion of this grant was concluded under a direct service arrangement. This program has been highly successful and the resulting publications in scientific journals are listed below. To the scientist, this is the bottom line, so that I shall simply try to describe the general nature of what was accomplished. There were three nebular programs conducted, one on the Orion Nebula, the second on the Helix Nebula, and the third on NGC 6822. The largest program was that on the Orion Nebula. This involved both HST observations and supporting groundbased observations obtained with a variety of instruments, including the Coude Feed Telescope at the Kitt Peak National observatory in Arizona, the Cerro Tololo observatory in Chile, and the Keck Observatory on Mauna Kea, Hawaii. Moreover, considerable theoretical modeling was done and all of the data analysis was performed at the Rice University in Houston, except for the PI's period of sabbatical leave (6-96 through 7-97) when he was based at the Max Planck Institute for Astronomy in Heidelberg, Germany. The Orion Nebula program was the most productive part, resulting in numerous papers, but more important in the discovery of a new class of objects, for which we coined the name "proplyds". The proplyds are protoplanetary disks surrounding very young

  6. Mapping the latitude dependence of the primary stellar wind of eta Carinae using the spectrum reflected on the Homunculus nebula

    NASA Astrophysics Data System (ADS)

    Odessey, Rachel

    2016-01-01

    The binary star Eta Carinae underwent a massive eruption in the 1840s, resulting in a huge nebula of ejected material, called the Homunculus. Despite preventing us from the direct view from the central source, the Homunculus acts like a mirror, allowing us to see the spectrum of the central binary system from different stellar latitudes. Therefore, by mapping the spectrum along the nebula we are actually probing the dependence of the spectrum with stellar latitude. Our project focuses on the P Cyg absorption component of H lines mostly in the optical and near-infrared wavelengths. in order to investigate the structure of the primary stellar wind. A full spectral mapping of the entire nebula was constructed by combining multiple dithered long slit observations using the ESO/X-Shooter high-resolution spectrograph. Such mapping allowed us to assemble a data cube containing the spectrum of each position along the nebula. Preliminary analysis confirms that the primary wind indeed has a deeper absorption component at high stellar latitudes (polar region). Also, contrary to our expectations, our analysis indicates that the polar region does not seem entirely radially symmetric in terms of density, which invites further investigation into the source of these discrepancies.

  7. Discovery of a Circumstellar Disk in the Lagoon Nebula

    NASA Astrophysics Data System (ADS)

    1997-04-01

    Circumstellar disks of gas and dust play a crucial role in the formation of stars and planets. Until now, high-resolution images of such disks around young stars within the Orion Nebula obtained with the Hubble Space Telescope (HST) constituted the most direct proof of their existence. Now, another circumstellar disk has been detected around a star in the Lagoon Nebula - also known as Messier 8 (M8) , a giant complex of interstellar gas and dust with many young stars in the southern constellation of Sagittarius and four times more distant than the Orion Nebula. The observations were carried out by an international team of scientists led by Bringfried Stecklum (Thüringer Landessternwarte, Tautenburg, Germany) [1] who used telescopes located at the ESO La Silla observatory and also observations from the HST archive. These new results are paving the road towards exciting research programmes on star formation which will become possible with the ESO Very Large Telescope. The harsh environment of circumstellar disks The existence of circumstellar disks has been inferred from indirect measurements of young stellar objects, such as the spectral energy distribution, the analysis of the profiles of individual spectral lines and measurements of the polarisation of the emitted light [2]. Impressive images of such disks in the Orion Nebula, known as proplyds (PROto-PLanetarY DiskS), have been obtained by the HST during the recent years. They have confirmed the interpretation of previous ground-based emission-line observations and mapping by radio telescopes. Moreover, they demonstrated that those disks which are located close to hot and massive stars are subject to heating caused by the intense radiation from these stars. Subsequently, the disks evaporate releasing neutral gas which streams off. During this process, shock fronts (regions with increased density) with tails of ionised gas result at a certain distance between the disk and the hot star. These objects appear on

  8. a Surprise from the Pulsar in the Crab Nebula

    NASA Astrophysics Data System (ADS)

    1995-11-01

    at optical wavelengths and only one is bright enough to allow reasonably detailed spectroscopic observations with currently available optical telescopes. The Crab Pulsar This is the famous Crab Pulsar, also known as PSR 0531+21. It was discovered as a radio pulsar in 1968, soon after the detection of the first known radio pulsar. A little later, pulsed optical emission from the Crab Pulsar was also observed. It was quickly recognized that this emission obeys Pacini's law [2]. Stated in simple terms, this implies that the emission of optical light from the pulsar is due to the interaction between very energetic elementary particles close to the neutron star and its incredibly strong magnetic field. The Crab Pulsar is especially interesting, because we have detailed historical information about the event from which it was born: the very bright `guest star' which was so well observed and described by Chinese astronomers in the year 1054 AD in the constellation of Taurus (the Bull). At the exact location of this supernova is now observed the famous Crab Nebula in which the Crab Pulsar is embedded. The Crab Nebula is a very conspicuous object in the sky (the name alludes to its overall form), and it emits a very significant amount of energy at all wavelengths of the electromagnetic spectrum that have so far been explored, from long-wave radio waves to gamma-rays of ultra-high energy. At X-ray wavelengths (above 1 keV), it is in fact one of the brightest, continuously emitting sources in the sky. The Crab Pulsar also emits at all wavelengths, but it is much fainter than the surrounding nebula. This Press Release is accompanied by a photo with caption, showing the pulsar in the innermost region of the nebula. At optical wavelengths, the Crab Pulsar is a comparatively faint, point-like object of magnitude 16.6. It is interesting to note that, from the measured, outward motion of the individual condensations in the Crab Nebula, this object was recognized, already a decade

  9. Ice lines, planetesimal composition and solid surface density in the solar nebula

    NASA Astrophysics Data System (ADS)

    Dodson-Robinson, Sarah E.; Willacy, Karen; Bodenheimer, Peter; Turner, Neal J.; Beichman, Charles A.

    2009-04-01

    To date, there is no core accretion simulation that can successfully account for the formation of Uranus or Neptune within the observed 2-3 Myr lifetimes of protoplanetary disks. Since solid accretion rate is directly proportional to the available planetesimal surface density, one way to speed up planet formation is to take a full accounting of all the planetesimal-forming solids present in the solar nebula. By combining a viscously evolving protostellar disk with a kinetic model of ice formation, which includes not just water but methane, ammonia, CO and 54 minor ices, we calculate the solid surface density of a possible giant planet-forming solar nebula as a function of heliocentric distance and time. Our results can be used to provide the starting planetesimal surface density and evolving solar nebula conditions for core accretion simulations, or to predict the composition of planetesimals as a function of radius. We find three effects that favor giant planet formation by the core accretion mechanism: (1) a decretion flow that brings mass from the inner solar nebula to the giant planet-forming region, (2) the fact that the ammonia and water ice lines should coincide, according to recent lab results from Collings et al. [Collings, M.P., Anderson, M.A., Chen, R., Dever, J.W., Viti, S., Williams, D.A., McCoustra, M.R.S., 2004. Mon. Not. R. Astron. Soc. 354, 1133-1140], and (3) the presence of a substantial amount of methane ice in the trans-saturnian region. Our results show higher solid surface densities than assumed in the core accretion models of Pollack et al. [Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y., 1996. Icarus 124, 62-85] by a factor of 3-4 throughout the trans-saturnian region. We also discuss the location of ice lines and their movement through the solar nebula, and provide new constraints on the possible initial disk configurations from gravitational stability arguments.

  10. X-Ray Outburst from Young Star in McNeil's Nebula

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Observations with NASA's Chandra X-ray Observatory captured an X-ray outburst from a young star, revealing a probable scenario for the intermittent brightening of the recently discovered McNeil's Nebula. It appears the interaction between the young star's magnetic field and an orbiting disk of gas can cause dramatic, episodic increases in the light from the star and disk, illuminating the surrounding gas. "The story of McNeil's Nebula is a wonderful example of the importance of serendipity in science," said Joel Kastner of the Rochester Institute of Technology in Rochester, New York, lead author of a paper in the July 22 issue of Nature describing the X-ray results. "Visible-light images were made of this region several months before Jay McNeil made his discovery, so it could be determined approximately when and by how much the star flared up to produce McNeil's Nebula." The small nebula, which lies in the constellation Orion about 1300 light years from Earth, was discovered with a 3-inch telescope by McNeil, an amateur astronomer from Paducah, Kentucky, in January 2004. In November 2002, a team led by Ted Simon of the Institute for Astronomy in Hawaii had observed the star-rich region with Chandra in search of young, X-ray emitting stars, and had detected several objects. Optical and infrared astronomers had, as part of independent surveys, also observed the region about a year later, in 2003. After the announcement of McNeil's discovery, optical, infrared and X-ray astronomers rushed to observe the region again. They found that a young star buried in the nebula had flared up, and was illuminating the nebula. This star was coincident with one of the X-ray sources discovered earlier by Simon. Chandra observations obtained by Kastner's group just after the optical outburst showed that the source had brightened fifty-fold in X-rays when compared to Simon's earlier observation. The visible-light eruption provides evidence that the cause of the X-ray outburst is the

  11. The 'semitorrid' gas observed in the direction of Gamma-2 Velorum and the Gum nebula

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Kondo, J.; Mccluskey, G. E., Jr.

    1979-01-01

    On the basis of recent IUE observations in the far-ultraviolet, the authors report the detection of a 'semitorrid' region of the interstellar medium in the direction of Gamma-2 Velorum and the Gum nebula. The characteristic temperature of this gas is in the 40,000 K range, between the warm (around 1000 K) and hot (roughly 100,000-1,000,000 K) regions reported by various investigators. This temperature is compatible with the theoretical temperature ascribed to the 'fossil Stromgren sphere' by Brandt et al. and Alexander et al.

  12. SULFURIZATION OF IRON IN THE DYNAMIC SOLAR NEBULA AND IMPLICATIONS FOR PLANETARY COMPOSITIONS

    SciTech Connect

    Ciesla, Fred J.

    2015-02-10

    One explanation for the enhanced ratio of volatiles to hydrogen in Jupiter’s atmosphere compared to a a gas of solar composition is that the planet accreted volatile-bearing clathrates during its formation. Models, however, suggest that S would be over abundant if clathrates were the primary carrier of Jupiter’s volatiles. This led to the suggestion that S was depleted in the outer nebula due to the formation troilite (FeS). Here, this depletion is quantitatively explored by modeling the coupled dynamical and chemical evolution of Fe grains in the solar nebula. It is found that disks that undergo rapid radial expansion from an initially compact state may allow sufficient production of FeS and carry H{sub 2}S-depleted gas outward where ices would form, providing the conditions needed for S-depleted clathrates to form. However, this expansion would also carry FeS grains to this region, which could also be incorporated into planetesimals. Thus for clathrates to be a viable source of volatiles, models must account for the presence of both H{sub 2}S in FeS in the outer solar nebula.

  13. Monitoring of the Crab Nebula with Chandra and Other Observatories Including HST

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2014-01-01

    Subsequent to the detections AGILE and Fermi/LAT of the gamma-ray flares from the Crab Nebula in the fall of 2010, this team has been monitoring the X-Ray emission from the Crab on a regular basis. X-Ray observations have taken place typically once per month when viewing constraints allow and more recently four times per year. There have been notable exceptions, e.g. in April of 2011 and March 2013 when we initiated a set of Chandra Target of opportunity observations in conjunction with bright gamma-ray flares. For much of the time regular HST observations were made in conjunction with the Chandra observations. The aim of this program to further characterize, in depth, the X-Ray and optical variations that take place in the nebula, and by so doing determine the regions which contribute to the harder X-ray variations and, if possible, determine the precise location within the Nebula of the origin of the gamma-ray flares. As part of this project members of the team have developed Singular Value Decomposition techniques to sequences of images in order to more accurately characterize features. The current status of the project will be presented highlighting studies of the inner knot and possible correlations with the flares.

  14. A DETAILED SPATIOKINEMATIC MODEL OF THE CONICAL OUTFLOW OF THE MULTIPOLAR PLANETARY NEBULA NGC 7026

    SciTech Connect

    Clark, D. M.; Lopez, J. A.; Steffen, W.; Richer, M. G.

    2013-03-15

    We present extensive, long-slit, high-resolution coverage of the complex planetary nebula (PN) NGC 7026. We acquired 10 spectra using the Manchester Echelle Spectrometer at San Pedro Martir Observatory in Baja California, Mexico, and each shows exquisite detail, revealing the intricate structure of this object. Incorporating these spectra into the three-dimensional visualization and kinematic program SHAPE and using Hubble Space Telescope images of NGC 7026, we have produced a detailed structural and kinematic model of this PN. NGC 7026 exhibits remarkable symmetry consisting of three lobe pairs and four sets of knots, all symmetrical about the nucleus and displaying a conical outflow. Comparing the three-dimensional structure of this nebula to recent XMM-Newton X-ray observations, we investigate the extended X-ray emission in relation to the nebular structure. We find that the X-ray emission, while confined to the closed, northern lobes of this PN, shows an abrupt termination in the middle of the southeast lobe, which our long slit data show to be open. This is where the shocked fast wind seems to be escaping the interior of the nebula and the X-ray emission rapidly cools in this region.

  15. Near infrared photometric and optical spectroscopic study of 22 low mass star clusters embedded in nebulae

    NASA Astrophysics Data System (ADS)

    Soares, J. B.; Bica, E.; Ahumada, A. V.; Clariá, J. J.

    2008-02-01

    Aims:Among the star clusters in the Galaxy, those embedded in nebulae represent the youngest group, which has only recently been explored. The analysis of a sample of 22 candidate embedded stellar systems in reflection nebulae and/or HII environments is presented. Methods: We employed optical spectroscopic observations of stars in the directions of the clusters carried out at CASLEO (Argentina) together with near infrared photometry from the 2MASS catalogue. Our analysis is based on source surface density, colour-colour diagrams and on theoretical pre-main sequence isochrones. We take into account the field star contamination by carrying out a statistical subtraction. Results: The studied objects have the characteristics of low mass systems. We derive their fundamental parameters. Most of the cluster ages are younger than 2 Myr. The studied embedded stellar systems in reflection nebulae and/or HII region complexes do not have stars of spectral types earlier than B. The total stellar masses locked in the clusters are in the range 20-220 M⊙. They are found to be gravitationally unstable and are expected to dissolve in a timescale of a few Myr. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba and San Juan, Argentina.

  16. Emission lines of [K V] in the optical spectra of gaseous nebulae.

    PubMed

    Keenan, Francis P; Aller, Lawrence H; Espey, Brian R; Exter, Katrina M; Hyung, Siek; Keenan, Michael T C; Pollacco, Don L; Ryans, Robert S I

    2002-04-02

    Recent R-matrix calculations of electron impact excitation rates in K v are used to derive the nebular emission line ratio R = I(4122.6 A)/I(4163.3 A) as a function of electron density (N(e)). This ratio is found to be very sensitive to changes in N(e) over the density range 10(3) to 10(6) cm(-3), but does not vary significantly with electron temperature, and hence in principle should provide an excellent optical N(e) diagnostic for the high-excitation zones of nebulae. The observed value of R for the planetary nebula NGC 7027, measured from a spectrum obtained with the Hamilton Echelle spectrograph on the 3-m Shane Telescope, implies a density in excellent agreement with that derived from [Ne iv], formed in the same region of the nebula as [K v]. This observation provides observational support for the accuracy of the theoretical [K v] line ratios, and hence the atomic data on which they are based. However, the analysis of a high-resolution spectrum of the symbiotic star RR Telescopii, obtained with the University College London Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope, reveals that the [K v] 4122.6 A line in this object is badly blended with Fe ii 4122.6 A. Hence, the [K v] diagnostic may not be used for astrophysical sources that show a strong Fe ii emission line spectrum.

  17. On the Origin and Physics of Gamma Flares in Crab Nebula

    NASA Astrophysics Data System (ADS)

    Machabeli, George; Rogava, Andria; Shapakidze, David

    2015-11-01

    We consider parametric generation of electrostatic waves in the magnetosphere of the pulsar PSR0531. The suggested mechanism allows us to convert the pulsar rotational energy into the energy of Langmuir waves. The maximum growth rate is achieved in the “superluminal” area, where the phase velocity of perturbations exceeds the speed of light. Therefore, electromagnetic waves do not damp on particles. Instead, they create plasmon condensate, which is carried out outside of the pulsar magnetosphere and reaches the Crab Nebula. It is shown that the transfer of the energy of the plasmon condensate from the light cylinder to the active region of the nebula happens practically without losses. Unlike the plasma of the magnetosphere, the one of the nebula contains ions, i.e., it may sustain modulation instability, that leads to the collapse of the Langmuir condensate. Langmuir wave collapse, in turn, leads to the acceleration of the distribution function particles. Furthermore, the processes that lead to self-trapping of the synchrotron radiation are discussed. The self-trapping results in the growth of the radiation intensity, which manifests itself observationally as a flare. The condition for the self-trapping onset is derived, showing that if the phenomenon takes place at 100 MeV, then it does not happen at lower (or higher) energies. This specific kind of higher-/lower-energy cutoff could explain why when we observe the flare at 100 MeV that no enhanced emission is observed at lower/higher energies!

  18. High Spatial Resolution X-Ray Spectroscopy of the IC 443 Pulsar Wind Nebula and Environs

    NASA Astrophysics Data System (ADS)

    Swartz, Douglas A.; Pavlov, George G.; Clarke, Tracy; Castelletti, Gabriela; Zavlin, Vyacheslav E.; Bucciantini, Niccolò; Karovska, Margarita; van der Horst, Alexander J.; Yukita, Mihoko; Weisskopf, Martin C.

    2015-07-01

    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222127, in the supernova remnant (SNR) IC 443 reveal an ˜5″ radius ring-like structure surrounding the pulsar and a jet-like feature oriented roughly north-south across the ring and through the pulsar's location at 06h17m5.ˢ200 + 22°21‧27.″52 (J2000.0 coordinates). The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar, (2) the non-thermal spectrum and morphology of the surrounding nebula are consistent with a pulsar wind, and (3) the spectrum at greater distances is consistent with thermal emission from the SNR. The cometary shape of the nebula, suggesting motion toward the southwest, appears to be subsonic: There is no evidence either spectrally or morphologically for a bow shock or contact discontinuity; the nearly circular ring is not distorted by motion through the ambient medium; and the shape near the apex of the nebula is narrow. Comparing this observation with previous observations of the same target, we set a 99% confidence upper limit to the proper motion of CXOU J061705.3+222127 to be less than 44 mas yr-1 (310 km s-1 for a distance of 1.5 kpc), with the best-fit (but not statistically significant) projected direction toward the west.

  19. HIGH SPATIAL RESOLUTION X-RAY SPECTROSCOPY OF THE IC 443 PULSAR WIND NEBULA AND ENVIRONS

    SciTech Connect

    Swartz, Douglas A.; Zavlin, Vyacheslav E.; Pavlov, George G.; Clarke, Tracy; Castelletti, Gabriela; Bucciantini, Niccolò; Karovska, Margarita; Horst, Alexander J. van der; Yukita, Mihoko; Weisskopf, Martin C.

    2015-07-20

    Deep Chandra ACIS observations of the region around the putative pulsar, CXOU J061705.3+222127, in the supernova remnant (SNR) IC 443 reveal an ∼5″ radius ring-like structure surrounding the pulsar and a jet-like feature oriented roughly north–south across the ring and through the pulsar's location at 06{sup h}17{sup m}5.{sup s}200 + 22°21′27.″52 (J2000.0 coordinates). The observations further confirm that (1) the spectrum and flux of the central object are consistent with a rotation-powered pulsar, (2) the non-thermal spectrum and morphology of the surrounding nebula are consistent with a pulsar wind, and (3) the spectrum at greater distances is consistent with thermal emission from the SNR. The cometary shape of the nebula, suggesting motion toward the southwest, appears to be subsonic: There is no evidence either spectrally or morphologically for a bow shock or contact discontinuity; the nearly circular ring is not distorted by motion through the ambient medium; and the shape near the apex of the nebula is narrow. Comparing this observation with previous observations of the same target, we set a 99% confidence upper limit to the proper motion of CXOU J061705.3+222127 to be less than 44 mas yr{sup −1} (310 km s{sup −1} for a distance of 1.5 kpc), with the best-fit (but not statistically significant) projected direction toward the west.

  20. ON THE ORIGIN AND PHYSICS OF GAMMA FLARES IN CRAB NEBULA

    SciTech Connect

    Machabeli, George; Rogava, Andria; Shapakidze, David

    2015-11-20

    We consider parametric generation of electrostatic waves in the magnetosphere of the pulsar PSR0531. The suggested mechanism allows us to convert the pulsar rotational energy into the energy of Langmuir waves. The maximum growth rate is achieved in the “superluminal” area, where the phase velocity of perturbations exceeds the speed of light. Therefore, electromagnetic waves do not damp on particles. Instead, they create plasmon condensate, which is carried out outside of the pulsar magnetosphere and reaches the Crab Nebula. It is shown that the transfer of the energy of the plasmon condensate from the light cylinder to the active region of the nebula happens practically without losses. Unlike the plasma of the magnetosphere, the one of the nebula contains ions, i.e., it may sustain modulation instability, that leads to the collapse of the Langmuir condensate. Langmuir wave collapse, in turn, leads to the acceleration of the distribution function particles. Furthermore, the processes that lead to self-trapping of the synchrotron radiation are discussed. The self-trapping results in the growth of the radiation intensity, which manifests itself observationally as a flare. The condition for the self-trapping onset is derived, showing that if the phenomenon takes place at 100 MeV, then it does not happen at lower (or higher) energies. This specific kind of higher-/lower-energy cutoff could explain why when we observe the flare at 100 MeV that no enhanced emission is observed at lower/higher energies!.

  1. X-Ray Emission from the Guitar Nebula

    NASA Technical Reports Server (NTRS)

    Romani, Roger W.; Cordes, James M.; Yadigaroglu, I.-A.

    1997-01-01

    We have detected weak soft X-ray emission from the pulsar wind nebula trailing the high-velocity star PSR 2224+65 (the "Guitar Nebula"). This X-ray flux gives evidence of gamma approximately 10(exp 7) eV particles in the pulsar wind and constrains the properties of the postshock flow. The X-ray emission is most easily understood if the shocked pulsar wind is partly confined in the nebula and if magnetic fields in this zone can grow to near-equipartition values.

  2. THE 'NESSIE' NEBULA: CLUSTER FORMATION IN A FILAMENTARY INFRARED DARK CLOUD

    SciTech Connect

    Jackson, James M.; Finn, Susanna C.; Chambers, Edward T.; Rathborne, Jill M.; Simon, Robert E-mail: sfinn@bu.ed E-mail: rathborn@das.uchile.c

    2010-08-20

    The 'Nessie' Nebula is a filamentary infrared dark cloud (IRDC) with a large aspect ratio of over 150:1 (1.{sup 0}5 x 0.{sup 0}01 or 80 pc x 0.5 pc at a kinematic distance of 3.1 kpc). Maps of HNC (1-0) emission, a tracer of dense molecular gas, made with the Australia Telescope National Facility Mopra telescope, show an excellent morphological match to the mid-IR extinction. Moreover, because the molecular line emission from the entire nebula has the same radial velocity to within {+-}3.4 km s{sup -1}, the nebula is a single, coherent cloud and not the chance alignment of multiple unrelated clouds along the line of sight. The Nessie Nebula contains a number of compact, dense molecular cores which have a characteristic projected spacing of {approx}4.5 pc along the filament. The theory of gravitationally bound gaseous cylinders predicts the existence of such cores, which, due to the 'sausage' or 'varicose' fluid instability, fragment from the cylinder at a characteristic length scale. If turbulent pressure dominates over thermal pressure in Nessie, then the observed core spacing matches theoretical predictions. We speculate that the formation of high-mass stars and massive star clusters arises from the fragmentation of filamentary IRDCs caused by the 'sausage' fluid instability that leads to the formation of massive, dense molecular cores. The filamentary molecular gas clouds often found near high-mass star-forming regions (e.g., Orion, NGC 6334, etc.) may represent a later stage of IRDC evolution.

  3. BUBBLES AND KNOTS IN THE KINEMATICAL STRUCTURE OF THE BIPOLAR PLANETARY NEBULA NGC 2818

    SciTech Connect

    Vazquez, Roberto

    2012-06-01

    High-resolution Hubble Space Telescope archive imaging and high-dispersion spectroscopy are used to study the complex morphological and kinematical structure of the planetary nebula, NGC 2818. We analyze narrowband H{alpha}, [O III], [N II], [S II], and He II images, addressing important morphological features. Ground-based long-slit echelle spectra were obtained crossing NGC 2818 at five different positions to precisely determine kinematical features in the structure of the nebula. A distance of 2.5 kpc was used to determine physical scales. Constructing models to fit the data with modern computational tools, we find NGC 2818 is composed of (1) a non-uniform bipolar structure with a semimajor axis of 0.92 pc (75''), possibly deformed by the stellar wind, (2) a 0.17 pc (14'') diameter central region, which is potentially the remnant of an equatorial enhancement, and (3) a great number of cometary knots. These knots are preferentially located inside a radius of 0.24 pc (20'') around the central star. The major axis of the main structure is oriented at i {approx_equal} 60 Degree-Sign with respect to the line of sight and at P.A. = +89 Degree-Sign on the plane of the sky. Expansion velocities of this nebula are V{sub pol} = 105 km s{sup -1} and V{sub eq} = 20 km s{sup -1}, which lead to our estimate of the kinematical age of {tau}{sub k} {approx_equal} 8400 {+-} 3400 yr (assuming homologous expansion). Our observations do not support the idea that high-velocity collimated ejections are responsible for the formation of microstructures inside the nebula. We determine the systemic velocity of NGC 2818 to be V{sub HEL} = +26 {+-} 2 km s{sup -1}.

  4. Outflows, Dusty Cores, and a Burst of Star Formation in the North America and Pelican Nebulae

    NASA Astrophysics Data System (ADS)

    Bally, John; Ginsburg, Adam; Probst, Ron; Reipurth, Bo; Shirley, Yancy L.; Stringfellow, Guy S.

    2014-12-01

    We present observations of near-infrared 2.12 μm molecular hydrogen outflows emerging from 1.1 mm dust continuum clumps in the North America and Pelican Nebula (NAP) complex selected from the Bolocam Galactic Plane Survey (BGPS). Hundreds of individual shocks powered by over 50 outflows from young stars are identified, indicating that the dusty molecular clumps surrounding the NGC 7000/IC 5070/W80 H II region are among the most active sites of ongoing star formation in the solar vicinity. A spectacular X-shaped outflow, MHO 3400, emerges from a young star system embedded in a dense clump more than a parsec from the ionization front associated with the Pelican Nebula (IC 5070). Suspected to be a binary, the source drives a pair of outflows with orientations differing by 80°. Each flow exhibits S-shaped symmetry and multiple shocks indicating a pulsed and precessing jet. The "Gulf of Mexico," located south of the North America Nebula (NGC 7000), contains a dense cluster of molecular hydrogen objects (MHOs), Herbig-Haro (HH) objects, and over 300 young stellar objects (YSOs), indicating a recent burst of star formation. The largest outflow detected thus far in the North America and Pelican Nebula complex, the 1.6 parsec long MHO 3417 flow, emerges from a 500 M ⊙ BGPS clump and may be powered by a forming massive star. Several prominent outflows such as MHO 3427 appear to be powered by highly embedded YSOs only visible at λ > 70 μm. An "activity index" formed by dividing the number of shocks by the mass of the cloud containing their source stars is used to estimate the relative evolutionary states of Bolocam clumps. Outflows can be used as indicators of the evolutionary state of clumps detected in millimeter and submillimeter dust continuum surveys.

  5. A spectroscopic and photometric study of the planetary nebulae Kn 61 and Pa 5

    SciTech Connect

    García-Díaz, Ma. T.; González-Buitrago, D.; López, J. A.; Zharikov, S.; Tovmassian, G.; Borisov, N.; Valyavin, G. E-mail: dgonzalez@astro.unam.mx E-mail: zhar@astro.unam.mx E-mail: borisov@sao.ru

    2014-09-01

    We present the first morpho-kinematical analysis of the planetary nebulae Kn 61 and Pa 5 and explore the nature of their central stars. Our analysis is based on high-resolution and medium-resolution spectroscopic observations, deep narrow-band imaging, and integral photometry. This material allows us to identify the morphological components and study their kinematics. The direct images and spectra indicate an absence of the characteristic [N II] and [S II] emission lines in both nebulae. The nebular spectrum of Kn 61 suggests a hydrogen deficient planetary nebula and the stellar spectrum of the central star reveals a hydrogen-deficient PG 1159-type star. The [O III] position velocity diagram reveals that Kn 61 is a closed, empty, spherical shell with a thin border and a filamentary surface expanding at 67.6 km s{sup –1} and the shell is currently not expanding isotropically. We derived a kinematic age of ∼1.6 × 10{sup 4} yr for an assumed distance of 4 kpc. A photometric period of ∼5.7(±0.4) days has been detected for Kn 61, indicating the presence of a possible binary system at its core. A possible link between filamentary spherical shells and PG 1159-type stars is noted. The morphology of Pa 5 is dominated by an equatorial toroid and faint polar extensions. The equatorial region of this planetary nebula is expanding at 45.2 km s{sup –1}. The stellar spectrum corresponds to a very hot star and is dominated by a steep blue rising continuum and He II, Balmer, and Ca II photospheric lines.

  6. Outflows, dusty cores, and a burst of star formation in the North America and Pelican nebulae

    SciTech Connect

    Bally, John; Ginsburg, Adam; Probst, Ron; Reipurth, Bo; Shirley, Yancy L.; Stringfellow, Guy S. E-mail: aginsburg@eso.org E-mail: reipurth@ifa.hawaii.edu E-mail: Guy.Stringfellow@colorado.edu

    2014-12-01

    We present observations of near-infrared 2.12 μm molecular hydrogen outflows emerging from 1.1 mm dust continuum clumps in the North America and Pelican Nebula (NAP) complex selected from the Bolocam Galactic Plane Survey (BGPS). Hundreds of individual shocks powered by over 50 outflows from young stars are identified, indicating that the dusty molecular clumps surrounding the NGC 7000/IC 5070/W80 H II region are among the most active sites of ongoing star formation in the solar vicinity. A spectacular X-shaped outflow, MHO 3400, emerges from a young star system embedded in a dense clump more than a parsec from the ionization front associated with the Pelican Nebula (IC 5070). Suspected to be a binary, the source drives a pair of outflows with orientations differing by 80°. Each flow exhibits S-shaped symmetry and multiple shocks indicating a pulsed and precessing jet. The 'Gulf of Mexico', located south of the North America Nebula (NGC 7000), contains a dense cluster of molecular hydrogen objects (MHOs), Herbig-Haro (HH) objects, and over 300 young stellar objects (YSOs), indicating a recent burst of star formation. The largest outflow detected thus far in the North America and Pelican Nebula complex, the 1.6 parsec long MHO 3417 flow, emerges from a 500 M {sub ☉} BGPS clump and may be powered by a forming massive star. Several prominent outflows such as MHO 3427 appear to be powered by highly embedded YSOs only visible at λ > 70 μm. An 'activity index' formed by dividing the number of shocks by the mass of the cloud containing their source stars is used to estimate the relative evolutionary states of Bolocam clumps. Outflows can be used as indicators of the evolutionary state of clumps detected in millimeter and submillimeter dust continuum surveys.

  7. Formation of Explosive Comet in Proto-planetary Nebula

    NASA Astrophysics Data System (ADS)

    Gladysheva, O.

    2013-09-01

    The question about the formation of the comet's nucleus is examined, taking into account the peculiarities of the destruction of the Tunguska cosmic body. According to the suggested model, the comet's nucleus consists from ample quantity of organic coverings, one covering inserts into another covering, similar to Russian set of nesting dolls. The space between neighbouring coverings is filled by different size lumps and grains down to micron size. Comets were formed in the inner region of the solar system in the early stages of the evolution of the proto-planetary cloud. Proto-comets began to accumulate their mass on the periphery of protoplanetary nebula (far from the ecliptic), where the temperature decreases to <100 K. Then, under the influence of gravitation, comets many times crossed the plane of the ecliptic, performing relaxation oscillations. Coverings on comet surfaces formed during every crossing by the comet of the ecliptic area, where the temperature was high. During their oscillations, most comets were thrown out of the inner regions of the solar system by planetary perturbations in the Öpik-Oort cloud.

  8. The substellar content of the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Drass, Holger; Chini, Rolf; Nuernberger, Dieter; Bayo, Amelia; Hackstein, Moritz; Morales-Calderón, Maria; Hoffmeister, Vera; Haas, Martin

    2013-07-01

    The Substellar Initial Mass Function (SIMF) of many star-forming regions is still poorly known but the detailed knowledge of its shape will help to distinguish among the substellar formation theories. The Orion Nebula Cluster (ONC) is one of the most extensively studied star forming regions. We here present deep, wide-field JHK observations of the ONC taken with HAWK-I@VLT. These observations extend the IMF into the brown dwarf and free-floating planetary mass regime with unprecedented sensitivity. To obtain a clean sample of ONC members, we exclude potential background sources with the help of CO extinction maps. Masses are assigned by means of evolutionary tracks in the H vs. J-H Color-Magnitude Diagram (CMD). Besides the well known stellar peak at ~0.25 M_sun we find a pronounced second peak at ~0.04 M_sun in the SIMF and indications for a third rise in the free-floating planetary mass regime.

  9. HUBBLE SPACE TELESCOPE (HST) IMAGERY OF THE 30 DORADUS NEBULA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Hubble Space Telescope (HST) images of the 30 Doradus Nebula show its remarkable cluster of tightly-packed young stars 160,000 light years from Earth in the large Magellanic cloud galaxy. Panel A is a portion of a image made with the HST Wide Field Planetary Camera (WFPC). WFPC photographed four adjoining sky regions simultaneously which are assembled in this mosaic. Panel B is an enlargement of the central portion of the HST image which was made in violet light. It shows the compact star cluster R136, which consists of very hot and massive young stars. The star images have bright cores that are only 0.1 arc seconds wide, allowing many more stars to be distinguished than in previous ground-based telescopic photos. Panel C is a photograph of the same region as Panel B, obtained with the Max Planck 2.2 meter telescope at the European Southern Observatory in Chile. The star images are 0.6 arc seconds wide. Panel D shows how computer processing of the HST image in Panel B has sharpened its

  10. Silicon and carbon abundances in the Orion nebula

    NASA Technical Reports Server (NTRS)

    Rubin, Robert H.; Dufour, Reginald J.; Walter, Donald K.

    1993-01-01

    We assess the gas-phase abundances of Si and C from our recent measurements of Si(2+), C(2+), and C(+) in the Orion Nebula by expanding on our earlier 'blister' models. The C and Si abundances are derived from new IUE high-dispersion spectra of the C(2+) 1907, 1909 A and Si(2+) 1883, 1892 A lines and archival IUE data. Gas-phase Si/C = 0.016 in the Orion ionized volume and is particularly insensitive to uncertainties in extinction and temperature structure. The solar value is 0.098. Gas-phase C/H = 2.8 x 10 exp -4 and Si/H = 4.5 x 10 exp -6. Compared to solar, Si is depleted by a factor of about 8 in the ionized region, while C is much less depleted (factor of 1.3), if depleted at all. This suggests that most Si resides in dust grains even in the ionized volume. Thus, most of the observed forbidden Si II 34.8-micron emission in Orion does not arise in the H II region.

  11. THE YOUNG INTERSTELLAR BUBBLE WITHIN THE ROSETTE NEBULA

    SciTech Connect

    Bruhweiler, F. C.; Bourdin, M. O.; Gull, T. R. E-mail: theodore.r.gull@nasa.go

    2010-08-20

    We use high-resolution International Ultraviolet Explorer (IUE) data and the interstellar (IS) features of highly ionized Si IV and C IV seen toward the young, bright OB stars of NGC 2244 in the core of the Rosette Nebula to study the physics of young IS bubbles. Two discrete velocity components in Si IV and C IV are seen toward stars in the 6.2 pc radius central cavity, while only a single velocity component is seen toward those stars in the surrounding H II region, at the perimeter and external to this cavity. The central region shows characteristics of a very young, windblown bubble. The shell around the central hot cavity is expanding at 56 km s{sup -1} with respect to the embedded OB stars, while the surrounding H II region of the Rosette is expanding at {approx}13 km s{sup -1}. Even though these stars are quite young ({approx}2-4 Myr), both the radius and expansion velocity of the 6.2 pc inner shell point to a far younger age; t{sub age} {approx} 6.4 x 10{sup 4} years. These results represent a strong contradiction to theory and present modeling, where much larger bubbles are predicted around individual O stars and O associations. Specifically, the results for this small bubble and its deduced age extend the 'missing wind luminosity problem' to young evolving bubbles. These results indicate that OB star winds mix the surrounding H II regions and the wind kinetic energy is converted to turbulence and radiated away in the dense H II regions. These winds do not form hot, adiabatically expanding cavities. True IS bubbles appear only to form at later evolutionary times, perhaps triggered by increased mass loss rates or discrete ejection events. Means for rectifying discrepancies between theory and observations are discussed.

  12. Chandra Observations of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Slane, Patrick

    2014-11-01

    The high resolution capabilities provided by Chandra have provided unprecedented details about the structure of PWNe. The presence of jets, toroidal structures, shocked ejecta, and other complex structure with the nebulae provide crucial information on the conversion of spin-down energy into relativistic outflows, the spectrum of the injected particles, and the long-term evolution of these systems. Here I report on results from a series of Chandra Large Projects that have enabled detailed studies of individual PWNe to investigate their detailed structures and to provide a broad view of these systems at different stages of evolution. I concentrate, in particular, on deep observations of MSH 11-62 and G327.1-1.1, two such systems currently evolving within the confines of their host SNRs.

  13. The distances of highly evolved planetary nebulae

    NASA Astrophysics Data System (ADS)

    Phillips, J. P.

    2005-02-01

    The central stars of highly evolved planetary nebulae (PNe) are expected to have closely similar absolute visual magnitudes MV. This enables us to determine approximate distances to these sources where one knows their central star visual magnitudes, and levels of extinction. We find that such an analysis implies values of D which are similar to those determined by Phillips; Cahn, Kaler & Stanghellin; Acker, and Daub. However, our distances are very much smaller than those of Zhang; Bensby & Lundstrom, and van de Steene & Zijlstra. The reasons for these differences are discussed, and can be traced to errors in the assumed relation between brightness temperature and radius. Finally, we determine that the binary companions of such stars can be no brighter than MV~ 6mag, implying a spectral type of K0 or later in the case of main-sequence stars.

  14. Origin and Evolution of the Egg Nebula

    NASA Astrophysics Data System (ADS)

    Delamarter, G.; Frank, A.; Vieira, M.; Wood, K.; Welch, C.

    1999-12-01

    We report the results of new detailed numerical simulations of the Egg Nebula (CRL 2688). Our goal is to determine the correct mass loss history for the central star in terms of changes in mass loss rate and velocity. We also study time-dependent changes in the angular variation of both these quantities. Using a self-consistent treatment of H2 chemistry and cooling as well as post-processed scattered light images we have determining that the standard hydrodynamical Generalized Interacting Stellar Winds (GISW) Model can not create the structures observed in the Egg. Instead we find a model in which a gaseous torus is ejected first and is then followed by a collimated jet produce the best fit to the observations. Our models allow us to set constraints on the properties of both jet and torus. This work was funded NSF Career Award AST-9702484

  15. A Radio-Polarisation and Rotation Measure Study of the Gum Nebula and Its Environment

    NASA Astrophysics Data System (ADS)

    Purcell, C. R.; Gaensler, B. M.; Sun, X. H.; Carretti, E.; Bernardi, G.; Haverkorn, M.; Kesteven, M. J.; Poppi, S.; Schnitzeler, D. H. F. M.; Staveley-Smith, L.

    2015-05-01

    The Gum Nebula is 36°-wide shell-like emission nebula at a distance of only ˜450 pc. It has been hypothesized to be an old supernova remnant, fossil H ii region, wind-blown bubble, or combination of multiple objects. Here we investigate the magneto-ionic properties of the nebula using data from recent surveys: radio-continuum data from the NRAO VLA and S-band Parkes All Sky Surveys, and H α data from the Southern H-Alpha Sky Survey Atlas. We model the upper part of the nebula as a spherical shell of ionized gas expanding into the ambient medium. We perform a maximum-likelihood Markov chain Monte Carlo fit to the NVSS rotation measure data, using the H α data to constrain average electron density in the shell ne. Assuming a latitudinal background gradient in rotation measure, we find {{n}e}=1.3-0.4+0.4 c{{m}-3}, angular radius {{φ }outer}=22\\buildrel{\\circ}\\over{.} 7-0.1+0.1, shell thickness dr=18.5-1.4+1.5 pc, ambient magnetic field strength {{B}0}=3.9-2.2+4.9 μ G, and warm gas filling factor f=0.3-0.1+0.3. We constrain the local, small-scale (˜260 pc) pitch-angle of the ordered Galactic magnetic field to +7{}^\\circ ≲ \\wp ≲ +44{}^\\circ , which represents a significant deviation from the median field orientation on kiloparsec scales (˜-7.°2). The moderate compression factor X=6.0-2.5+5.1 at the edge of the H α shell implies that the “old supernova remnant” origin is unlikely. Our results support a model of the nebula as a H ii region around a wind-blown bubble. Analysis of depolarization in 2.3 GHz S-PASS data is consistent with this hypothesis and our best-fitting values agree well with previous studies of interstellar bubbles.

  16. POPULATION I WOLF-RAYET RUNAWAY STARS: THE CASE OF WR124 AND ITS EXPANDING NEBULA M1-67

    SciTech Connect

    Marchenko, S. V.; Moffat, A. F. J.; Crowther, P. A. E-mail: moffat@astro.umontreal.c

    2010-11-20

    In 1997 and 2008 we used the WFPC2 camera on board the Hubble Space Telescope to obtain two sets of narrow-band H{alpha} images of the runaway Wolf-Rayet (WR) star WR 124 surrounded by its nebula M1-67. This two-epoch imaging provides an expansion parallax and thus a practically assumption-free geometric distance to the nebula, d = 3.35 {+-} 0.67 kpc. Combined with the global velocity distribution in the ejected nebula, this confirms the extreme runaway status of WR 124. WR stars embedded within such ejection nebulae at the point of core collapse would produce different supernova characteristics from those expected for stars surrounded by wind-filled cavities. In galaxies with extremely low ambient metallicity, Z {<=} 10{sup -3} Z {sub sun}, {gamma}-ray bursts originating from fast-moving runaway WR stars may produce afterglows which appear to be coming from regions with a relatively homogeneous circumburst medium.

  17. Discovering Massive Runaway Stars with Infrared Bowshock Nebulae: Identifying Twelve New Early-Type Stars using SMOG

    NASA Astrophysics Data System (ADS)

    Chick, William T.; Andrews, Julian E.; Kobulnicky, Henry A.; Povich, Matthew S.; Dale, Daniel A.; Munari, Stephan; Olivier, Grace M.; Schurhammer, Danielle; Sorber, Rebecca L.; Wernke, Heather N.

    2016-01-01

    Massive O and B type stars are crucial to the evolution of the interstellar medium, dominating the production of ionizing radiation, mechanical energy, and heavy elements. However, due to their short lives and relative scarcity, these stars are some of the least well understood and are difficult to locate outside of large star forming regions. A small but significant fraction of these massive stars have been observed to be high-velocity runaway stars moving rapidly away from their origin. When these stars encounter nebular gas they create characteristic arc-shaped bowshocks of heated compressed dust and gas. Using the distinct infrared emission morphology of the hot dust, these bowshock nebulae are predicted to give the location of the massive early type stars.Visual inspection of 24-micron band images from the Spitzer Mapping of the Outer Galaxy (SMOG) revealed 12 new bowshock nebula candidates. Follow up optical spectroscopy from the Wyoming Infrared Observatory confirmed that all 12 of the associated stellar sources are early-type stars. Combined with related results from visual searches for bowshock nebulae using WISE and Spitzer surveys in the inner Galaxy, we have identified over 85 new early type bowshock supporting stellar sources, a 95% success rate. We conclude that morphological selection of arc-shared infrared nebulae with a symmetrically placed star is an efficient way to discover early type stars.This work is supported by the National Science Foundation under grants AST-1063146 (REU), AST-1411851 (RUI), and AST-1412845.

  18. The Formation of a Multiple Planetary Nebula:Hubble Space Telescope/WFPC2 Observations of KJPN 8

    NASA Astrophysics Data System (ADS)

    López, J. A.; Meaburn, J.; Rodríguez, L. F.; Vázquez, R.; Steffen, W.; Bryce, M.

    2000-07-01

    KjPn 8 is an extreme polypolar planetary nebula with a large-scale structure characterized by a giant biconical envelope. Spasmodic bipolar ejections in changing directions have occurred over thousands of years to create this peculiar nebula. Narrowband images of the core of KjPn 8 have now been obtained with the Wide Field Planetary Camera 2 on board the Hubble Space Telescope (HST) and are reported here. The central star is finally revealed in these observations, and its compact nebular core is resolved into a remarkably young elliptical ring, currently expanding at only 16 km s-1. This ring is the ionized inner region of larger molecular CO and H2 counterparts, all sharing the same orientation. The highest speed and youngest outflows are perpendicular to this central ring, which is identified as the latest event in the creation of this nebula. It is shown that the formation history of KjPn 8 has involved two distinct and consecutive planetary nebulae-like events, probably originating from a binary core evolution with components of very similar mass. These characteristics indicate that KjPn 8 may be a rare object in our Galaxy and the first ever detected of this class.

  19. The [NeIV] Lines in High Excitation Gaseous Nebulae.

    PubMed

    Aller, L H

    1970-04-01

    The "forbidden" lines of three times ionized neon are among the most precious indicators of electron temperature and excitation. They are also predicted to be among the strongest lines observed in the far ultraviolet spectra of high excitation nebulae.

  20. The Structure and Evolution of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Slane, Patrick O.

    2010-01-01

    The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the central engines, and the long-term fate of the energetic particles produced in these systems. Such observations reveal the presence of jets and wind termination shocks, time-varying compact emission structures, shocked supernova ejecta, and newly formed dust. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples from observations extending from the radio band to very high energy gamma-rays that demonstrate our ability to constrain the history and ultimate fate of the energy released in the spin-down of young pulsars.

  1. The carbon budget in the outer solar nebula

    SciTech Connect

    Simonelli, D.P.; Pollack, J.B.; Mckay, C.P.; Reynolds, R.T.; Summers, A.L. )

    1989-11-01

    The compositional contrast between the giant-planet satellites and the significantly rockier Pluto/Charon system is indicative of different formation mechanisms; cosmic abundance calculations, in conjunction with an assumption of the Pluto/Charon system's direct formation from solar nebula condensates, strongly suggest that most of the carbon in the outer solar nebula was in CO form, in keeping with both the inheritance from the dense molecular clouds in the interstellar medium, and/or the Lewis and Prinn (1980) kinetic-inhibition model of solar nebula chemistry. Laboratory studies of carbonaceous chondrites and Comet Halley flyby studies suggest that condensed organic material, rather than elemental carbon, is the most likely candidate for the small percentage of the carbon-bearing solid in the outer solar nebula. 71 refs.

  2. A New Color Image of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Wainscoat, R. J.; Kormendy, J.

    1997-03-01

    A new color image of the Crab Nebula is presented. This is a 2782 × 1904 pixel mosaic of CCD frames taken through B (blue), V (green), and R (red) filters; it was carefully color balanced so that the Sun would appear white. The resolution of the final image is approximately 0.8 arcsec FWHM. The technique by which this image was constructed is described, and some aspects of the structure of the Crab Nebula revealed by the image are discussed. We also discuss the weaknesses of this technique for producing ``true-color'' images, and describe how our image would differ from what the human eye might see in a very large wide-field telescope. The structure of the inner part of the synchrotron nebula is compared with recent high-resolution images from the Hubble Space Telescope and from the Canada-France-Hawaii Telescope. (SECTION: Interstellar Medium and Nebulae)

  3. The Crab Nebula: A Flickering X-ray Candle

    NASA Video Gallery

    The Crab Nebula, created by a supernova seen nearly a thousand years ago, is one of the sky's most famous "star wrecks." For decades, most astronomers have regarded it as the steadiest beacon at X-...

  4. Dust to planetesimals - Settling and coagulation in the solar nebula

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.

    1980-01-01

    The behavior of solid particles in a low-mass solar nebula during settling to the central plane and the formation of planetesimals is discussed. The gravitational instability in a dust layer and collisional accretion are examined as possible mechanisms of planetesimal formation. The shear between the gas and a dust layer is considered along with the differences in the planetesimal formation mechanisms between the inner and outer nebula. A numerical model for computing simultaneous coagulation and settling is described.

  5. Interpretation of the [ClIII] Lines in Gaseous Nebulae.

    PubMed

    Aller, L H; Czyzak, S J; Walker, M F; Krueger, T K

    1970-05-01

    The intensity ratio of the green lambdalambda5517 and 5537 lines of [ClIII] serves as an indicatrix of the electron density in many gaseous nebulae whose spectra can be observed with an image converter. Quantitative interpretation of the line ratio requires accurate values of the collisional strengths and transition probabilities. With improved values of these parameters we have revised electron densities for a number of nebulae; the results seem to be in good accord with those derived from other criteria.

  6. Accumulation of solid bodies in the solar nebula

    NASA Technical Reports Server (NTRS)

    Weidenschilling, S. J.; Davis, D. R.

    1987-01-01

    Research on the accumulation of solid bodies in the solar nebula is discussed. Studies of the earliest stage of accumulation of solid bodies in the solar system, which occured in the presence of the gaseous component of the solar nebula, are discussed. The combined effects of gas drag and gravitational perturbations of a planetary embryo on the orbital evolution of planetesimals, the effects of resonant trapping on planetesimals, and planetary mass accretion are discussed.

  7. Dust to planetesimals - Settling and coagulation in the solar nebula

    SciTech Connect

    Weidenschilling, S.J.

    1980-10-01

    The behavior of solid particles in a low-mass solar nebula during settling to the central plane and the formation of planetesimals is discussed. The gravitational instability in a dust layer and collisional accretion are examined as possible mechanisms of planetesimal formation. The shear between the gas and a dust layer is considered along with the differences in the planetesimal formation mechanisms between the inner and outer nebula. A numerical model for computing simultaneous coagulation and settling is described.

  8. Collimated Outflows in the Stingray Nebula (He 3-1357)

    NASA Astrophysics Data System (ADS)

    Bobrowsky, M.; Sahu, K. C.; Parthasarathy, M.; Garcia-Lario, P.

    1997-12-01

    Observations over the past four decades have revealed significant changes in the spectrum of the Stingray Nebula (He 3-1357). Here we present HST images and spectra showing the most recent developments. In 1950, Henize saw only Hα in emission; but more recent observations by Parthasarathy et al. in 1992 showed strong forbidden lines consistent with a young planetary nebula. The spherically aberrated 1992 HST images, in which Bobrowsky first optically resolved the nebula, showed a compact nebula surrounding the central star. Nebular gas appeared most strongly concentrated in an ellipse with its major axis subtending 1.('') 6 from NE to SW. If this ellipse is actually a circular ring viewed obliquely, then our line of sight is inclined from the symmetry axis by 56deg . Above and below the ring of gas are two bubbles containing lower-density gas. At the tip of each bubble, there is a hole where the gas inside the bubbles has broken through and is now escaping. While images of focused jets have been obtained previously (Borkowski et al.), this is the first case where the nebular structure responsible for the focusing of an outflow can be clearly seen. The windblown appearance of the nebula is consistent with the blueshifted Si IV (1394-1403 Angstroms) and Al III (1855-1863 Angstroms) doublets observed by Parthasarathy et al. that indicated the presence of a strong stellar wind. The N V (1239-1243 Angstroms) to C IV (1548-1551 Angstroms) ratio has increased in recent years, consistent with a young nebula becoming increasingly ionized. Our new spectra reveal additional developments that show the real-time development of this young nebula. Finally, the new HST Planetary Camera images of the nebula show detailed structure indicating a much more complex object than previously known, including the presence of a companion star 0.('') from the central star.

  9. PROBING THE ROSETTE NEBULA STELLAR BUBBLE WITH FARADAY ROTATION

    SciTech Connect

    Savage, Allison H.; Spangler, Steven R.; Fischer, Patrick D.

    2013-03-01

    We report the results of Faraday rotation measurements of 23 background radio sources whose lines of sight pass through or close to the Rosette Nebula. We made linear polarization measurements with the Karl G. Jansky Very Large Array (VLA) at frequencies of 4.4 GHz, 4.9 GHz, and 7.6 GHz. We find the background Galactic contribution to the rotation measure in this part of the sky to be +147 rad m{sup -2}. Sources whose lines of sight pass through the nebula have an excess rotation measure of 50-750 rad m{sup -2}, which we attribute to the plasma shell of the Rosette Nebula. We consider two simple plasma shell models and how they reproduce the magnitude and sign of the rotation measure, and its dependence on distance from the center of the nebula. These two models represent different modes of interaction of the Rosette Nebula star cluster with the surrounding interstellar medium. Both can reproduce the magnitude and spatial extent of the rotation measure enhancement, given plausible free parameters. We contend that the model based on a stellar bubble more closely reproduces the observed dependence of rotation measure on distance from the center of the nebula.

  10. Probing the Rosette Nebula stellar bubble with Faraday rotation

    NASA Astrophysics Data System (ADS)

    Savage, Allison Hainline

    We report the results of Faraday rotation measurements of 23 background radio sources whose lines of sight pass through or close to the Rosette Nebula. We made linear polarization measurements with the Karl G. Jansky Very Large Array (VLA) at frequencies of 4.4 GHz, 4.9 GHz, and 7.6 GHz. We find the background Galactic contribution to the rotation measure in this part of the sky to be +147 rad m-2. Sources whose lines of sight pass through the nebula have an excess rotation measure of 50-750 rad m-2, which we attribute to the plasma shell of the Rosette Nebula. We consider two simple plasma shell models and how they reproduce the magnitude and sign of the rotation measure, and its dependence on distance from the center of the nebula. These two models represent different modes of interaction of the Rosette Nebula star cluster with the surrounding interstellar medium. Both can reproduce the magnitude and spatial extent of the rotation measure enhancement, given plausible free parameters. We contend that the model based on a stellar bubble more closely reproduces the observed dependence of rotation measure on distance from the center of the nebula.

  11. Velocity field and star formation in the Horsehead nebula

    NASA Astrophysics Data System (ADS)

    Hily-Blant, P.; Teyssier, D.; Philipp, S.; Güsten, R.

    2005-09-01

    Using large scale maps in C18O(2-1) and in the continuum at 1.2 mm obtained at the IRAM-30 m antenna with the Heterodyne Receiver Array (HERA) and MAMBO2, we investigated the morphology and the velocity field probed in the inner layers of the Horsehead nebula. The data reveal a non-self-gravitating (m/m_vir≈ 0.3) filament of dust and gas (the “neck”, \\varnothing = 0.15-0.30 pc) connecting the Horsehead western ridge, a Photon-Dominated Region illuminated by σOri, to its parental cloud L1630. Several dense cores are embedded in the ridge and the neck. One of these cores appears particularly peaked in the 1.2 mm continuum map and corresponds to a feature seen in absorption on ISO maps around 7 μm. Its C18O emission drops at the continuum peak, suggestive of molecular depletion onto cold grains. The channel maps of the Horsehead exhibit an overall north-east velocity gradient whose orientation swivels east-west, showing a somewhat more complex structure than was recently reported by Pound et al. (2003) using BIMA CO(1-0) mapping. In both the neck and the western ridge, the material is rotating around an axis extending from the PDR to L1630 (angular velocity =1.5-4.0 km s-1). Moreover, velocity gradients along the filament appear to change sign regularly (3 km s-1 pc-1, period = 0.30 pc) at the locations of embedded integrated intensity peaks. The nodes of this oscillation are at the same velocity. Similar transverse cuts across the filament show a sharp variation of the angular velocity in the area of the main dense core. The data also suggest that differential rotation is occurring in parts of the filament. We present a new scenario for the formation and evolution of the nebula and discuss dense core formation inside the filament.

  12. PAH formation in O-rich planetary nebulae

    NASA Astrophysics Data System (ADS)

    Guzman-Ramirez, L.; Lagadec, E.; Jones, D.; Zijlstra, A. A.; Gesicki, K.

    2014-06-01

    Polycyclic aromatic hydrocarbons (PAHs) have been observed in O-rich planetary nebulae towards the Galactic bulge. This combination of oxygen-rich and carbon-rich material, known as dual-dust or mixed chemistry, is not expected to be seen around such objects. We recently proposed that PAHs could be formed from the photodissociation of CO in dense tori. In this work, using VISIR/VLT, we spatially resolved the emission of the PAH bands and ionized emission from the [S IV] line, confirming the presence of dense central tori in all the observed O-rich objects. Furthermore, we show that for most of the objects, PAHs are located at the outer edge of these dense/compact tori, while the ionized material is mostly present in the inner parts of these tori, consistent with our hypothesis for the formation of PAHs in these systems. The presence of a dense torus has been strongly associated with the action of a central binary star and, as such, the rich chemistry seen in these regions may also be related to the formation of exoplanets in post-common-envelope binary systems.

  13. FUSE observations of Hot Gas in the Carina Nebula

    NASA Astrophysics Data System (ADS)

    Iping, R. C.; Sonneborn, G.; Jenkins, E. B.; Bowen, D. V.

    2002-06-01

    We present an analysis of interstellar O VI 1031.93 toward several O and WR stars in the Tr 16 cluster, based on high-resolution spectra obtained with the FUSE satellite. The objective of this study is to investigate the distribution of O VI absorption within the cluster. The target stars include CPD-59D2628, CPD-59D2627, CPD-59D2632, HDE 303308, CPD -59 2600, CPD -59 2603, HD093205, HD093204, HD93162, HD093250 and HD 93308 (Eta Car). Two interstellar molecular hydrogen transitions, Lyman 6-0 P(3) 1031.19 and Lyman 6-0 R(4) 1032.35, are located very close to the interstellar O VI feature. These lines have been modelled by analyzing other P(3) and R(4) transitions in the FUSE spectrum. The column densities and distribution of the O VI ion in the Carina Nebulae is determined by using Gaussian profile fitting procedures. These results are compared with FUSE observations of other OB stars in the general vicinity of Carina, but outside the active region. This work has been supported in part by NASA grants NAG5-11137 to Catholic University of America and NASA contract NAS5-32985 to Johns Hopkins University.

  14. FLARES IN THE CRAB NEBULA DRIVEN BY UNTWISTING MAGNETIC FIELDS

    SciTech Connect

    Sturrock, Peter; Aschwanden, Markus J. E-mail: aschwanden@lmsal.com

    2012-06-01

    The recent discovery of PeV electrons from the Crab Nebula, produced on rapid timescales of one day or less with a sharply peaked gamma-ray spectrum without hard X-rays, challenges traditional models of diffusive shock acceleration followed by synchrotron radiation. Here, we outline an acceleration model involving a DC electric field parallel to the magnetic field in a twisted toroidal field around the pulsar. Sudden developments of resistivity in localized regions of the twisted field are thought to drive the particle acceleration, up to PeV energies, resulting in flares. This model can reproduce the observed timescales of T Almost-Equal-To 1 day, the peak photon energies of U{sub {Phi},rr} Almost-Equal-To 1 MeV, maximum electron energies of U{sub e,rr} Almost-Equal-To 1 PeV, and luminosities of L Almost-Equal-To 10{sup 36} erg s{sup -1}.

  15. GRAIN SORTING IN COMETARY DUST FROM THE OUTER SOLAR NEBULA

    SciTech Connect

    Wozniakiewicz, P. J.; Bradley, J. P.; Ishii, H. A.; Brownlee, D. E.; Kearsley, A. T.; Burchell, M. J.; Price, M. C.

    2012-12-01

    Most young stars are surrounded by a disk of gas and dust. Close to the hot stars, amorphous dust grains from the parent molecular cloud are reprocessed into crystals that are then distributed throughout the accretion disk. In some disks, there is a reduction in crystalline grain size with heliocentric distance from the star. We investigated crystalline grain size distributions in chondritic porous (CP) interplanetary dust particles (IDPs) believed to be from small, icy bodies that accreted in outer regions of the solar nebula. The grains are Mg-rich silicates and Fe-rich sulfides, the two most abundant minerals in CP IDPs. We find that they are predominantly <0.25 {mu}m in radius with a mean grain size that varies from one CP IDP to another. We report a size-density relationship between the silicates and sulfides. A similar size-density relationship between much larger silicate and sulfide grains in meteorites from the asteroid belt is ascribed to aerodynamic sorting. Since the silicate and sulfide grains in CP IDPs are theoretically too small for aerodynamic sorting, their size-density relationship may be due to another process capable of sorting small grains.

  16. Spitzer mid-infrared spectroscopic observations of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Mata, H.; Ramos-Larios, G.; Guerrero, M. A.; Nigoche-Netro, A.; Toalá, J. A.; Fang, X.; Rubio, G.; Kemp, S. N.; Navarro, S. G.; Corral, L. J.

    2016-06-01

    We present Spitzer Space Telescope archival mid-infrared (mid-IR) spectroscopy of a sample of 11 planetary nebulae (PNe). The observations, acquired with the Spitzer Infrared Spectrograph (IRS), cover the spectral range 5.2-14.5 μm that includes the H2 0-0 S(2) to S(7) rotational emission lines. This wavelength coverage has allowed us to derive the Boltzmann distribution and calculate the H2 rotational excitation temperature (Tex). The derived excitation temperatures have consistent values ≃900 ± 70 K for different sources despite their different structural components. We also report the detection of mid-IR ionic lines of [Ar III], [S IV], and [Ne II] in most objects, and polycyclic aromatic hydrocarbon features in a few cases. The decline of the [Ar III]/[Ne II] line ratio with the stellar effective temperature can be explained either by a true neon enrichment or by high density circumstellar regions of PNe that presumably descend from higher mass progenitor stars.

  17. STARING INTO THE WINDS OF DESTRUCTION: HST/NICMOS IMAGES OF THE PLANETARY NEBULA NGC 7027

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Hubble Space Telescope's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) has captured a glimpse of a brief stage in the burnout of NGC 7027, a medium-mass star like our sun. The infrared image (on the left) shows a young planetary nebula in a state of rapid transition. This image alone reveals important new information. When astronomers combine this photo with an earlier image taken in visible light, they have a more complete picture of the final stages of star life. NGC 7027 is going through spectacular death throes as it evolves into what astronomers call a 'planetary nebula.' The term planetary nebula came about not because of any real association with planets, but because in early telescopes these objects resembled the disks of planets. A star can become a planetary nebula after it depletes its nuclear fuel - hydrogen and helium - and begins puffing away layers of material. The material settles into a wind of gas and dust blowing away from the dying star. This NICMOS image captures the young planetary nebula in the middle of a very short evolutionary phase, lasting perhaps less than 1,000 years. During this phase, intense ultraviolet radiation from the central star lights up a region of gas surrounding it. (This gas is glowing brightly because it has been made very hot by the star's intense ultraviolet radiation.) Encircling this hot gas is a cloud of dust and cool molecular hydrogen gas that can only be seen by an infrared camera. The molecular gas is being destroyed by ultraviolet light from the central star. THE INFRARED VIEW -- The composite color image of NGC 7027 (on the left) is among the first data of a planetary nebula taken with NICMOS. This picture is actually composed of three separate images taken at different wavelengths. The red color represents cool molecular hydrogen gas, the most abundant gas in the universe. The image reveals the central star, which is difficult to see in images taken with visible light. Surrounding it is an

  18. PPAK integral field spectroscopy survey of the Orion nebula. Data release

    NASA Astrophysics Data System (ADS)

    Sánchez, S. F.; Cardiel, N.; Verheijen, M. A. W.; Martín-Gordón, D.; Vilchez, J. M.; Alves, J.

    2007-04-01

    Aims:We present a low-resolution spectroscopic survey of the Orion nebula. The data are released for public use. We show the possible applications of this dataset analyzing some of the main properties of the nebula. Methods: We perform an integral field spectroscopy mosaic of an area of ~5 arcmin× 6 arcmin centered on the Trapezium region of the nebula, including the ionization front to the south-east. Analysis of the line fluxes and line ratios of both the individual and integrated spectra allowed us to determine the main characteristics of the ionization throughtout the nebula. Results: The final dataset comprises 8182 individual spectra, sampled in a circular area of ~2.7 arcsec diameter. The data can be downloaded as a single row-stacked spectra fit file plus a position table or as an interpolated datacube with a final sampling of 1.5 arcsec/pixel. The integrated spectrum across the field-of-view was used to obtain the main integrated properties of the nebula, including the electron density and temperature, the dust extinction, the Hα integrated flux (after correcting for dust reddening), and the main diagnostic line ratios. The individual spectra were used to obtain line intensity maps of the different detected lines. These maps were used to study the distribution of the ionized hydrogen, the dust extinction, the electron density and temperature, and the helium and oxygen abundance. All of them show a considerable degree of structure as already shown in previous studies. In particular, there is a tight relation between the helium and oxygen abundances and the ionization structure that cannot be explained by case B recombination theory. Simple arguments like partial ionization and dust mixed with the emitting gas may explain these relations. However a more detailed modeling is required, for which we provide the dataset. Based on observations collected at the Centro Astronḿico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut

  19. Revealing the full young stellar population in the Carina Nebula, the nearest laboratory of massive star feedback, with VISTA

    NASA Astrophysics Data System (ADS)

    Zeidler, Peter; Preibisch, Thomas; Ratzka, Thorsten; Gaczkowski, Benjamin; Roccatagliata, Veronica

    2013-07-01

    The Carina Nebula (NGC 3372) represents one of the most massive star forming regions in our Galaxy. With a distance of 2.3 kpc, it has the most extreme stellar population within a few kpc of the sun (at least 65 O-type stars). It is our best connection between the nearby star forming regions like the Orion Nebula and the even larger and extremer, but more distant regions like 30 Doradus in the Large Magellanic Cloud. Therefore it is a unique target and our richest nearby laboratory for detailed studies of violent massive star formation and its resulting feedback effects of cloud dispersal and triggered star formation. Our recent Herschel far-infrared survey of the Carina Nebula showed that the cloud complex extends over some 2 × 2.5 deg on the sky. Most of the recent investigations of the Carina Nebula had, however, been focused on the central, ≤ 1 square-degree area of the region, leaving the periphery of the cloud complex poorly studied. In order to solve this problem and to allow a characterization of the young stars throughout the entire extent of the complex, we have used the ESO Visible and Infrared Survey Telescope for Astronomy (VISTA) to map a ˜2 × 3 deg area around the Carina Nebula in the near-infrared J-, H-, Ks bands. Our NIR survey is large enough to cover the full spatial extent of the Carina Nebula complex and is deep enough to detect all young stars down to masses of 0.1 Msun through extinctions of at least Av = 10 mag. We detected in more than ˜ 4 million individual point sources. The data has a typical completeness limit of J ≃ 18, H ≃ 18, and Ks ≃ 17. In combination with a recent Chandra X-ray survey, Spitzer-IRAC, and Herschel observations we have now a sample of data, which reaches from X-ray to the FIR. It will allow us to distinguish between young stars and background contaminating objects and it will allow the identification and characterization of all X-ray selected young stars and the embedded young stellar objects revealed by

  20. Chemical abundances of the WR-ring nebulae NGC 2359 and RCW 78

    NASA Astrophysics Data System (ADS)

    Esteban, C.; Vilchez, J. M.; Manchado, A.; Edmunds, M. G.

    1989-07-01

    This paper reports on extensive spectroscopic observations of the WR-ring nebulae NGC 2359 and RCW 78, respectively, excited by the WN5 stars HD 56925 and WN8 HD 117688. For the first object, abundances were determined for O/H, Ne/H, N/H, and He/H in many different positions, including the ionized gas in the bubble, inside the optical shell structure, and the outermost zones associated with the S 298 H II region. No significant difference in the N/H and O/H abundances was found over the entire nebula. The O/H and N/H abundances expected are close to those for a normal H II region located at similar distance. In the case of He/H, indication is found of local enhancements which sum to the abundance of metal-rich galactic H II regions like M17. RCW 78 appears to show slight overabundances of He/H and N/H in the two observed positions. The ionizing temperature for the WN central star (HD 56925) of NGC 2359 is determined from the observed H II region spectrum giving a value of 50,000 K, appropriate to its spectral type.

  1. Molecular Clouds in the North American and Pelican Nebulae: Structures

    NASA Astrophysics Data System (ADS)

    Zhang, Shaobo; Xu, Ye; Yang, Ji

    2014-03-01

    We present observations of a 4.25 deg2 area toward the North American and Pelican Nebulae in the J = 1-0 transitions of 12CO, 13CO, and C18O. Three molecules show different emission areas with their own distinct structures. These different density tracers reveal several dense clouds with a surface density of over 500 M ⊙ pc-2 and a mean H2 column density of 5.8, 3.4, and 11.9 × 1021 cm-2 for 12CO, 13CO, and C18O, respectively. We obtain a total mass of 5.4 × 104 M ⊙ (12CO), 2.0 × 104 M ⊙ (13CO), and 6.1 × 103 M ⊙ (C18O) in the complex. The distribution of excitation temperature shows two phases of gas: cold gas (~10 K) spreads across the whole cloud; warm gas (>20 K) outlines the edge of the cloud heated by the W80 H II region. The kinetic structure of the cloud indicates an expanding shell surrounding the ionized gas produced by the H II region. There are six discernible regions in the cloud: the Gulf of Mexico, Caribbean Islands and Sea, and Pelican's Beak, Hat, and Neck. The areas of 13CO emission range within 2-10 pc2 with mass of (1-5) × 103 M ⊙ and line width of a few km s-1. The different line properties and signs of star-forming activity indicate they are in different evolutionary stages. Four filamentary structures with complicated velocity features are detected along the dark lane in LDN 935. Furthermore, a total of 611 molecular clumps within the 13CO tracing cloud are identified using the ClumpFind algorithm. The properties of the clumps suggest that most of the clumps are gravitationally bound and at an early stage of evolution with cold and dense molecular gas.

  2. The carbon budget in the outer solar nebula.

    PubMed

    Simonelli, D P; Pollack, J B; McKay, C P; Reynolds, R T; Summers, A L

    1989-01-01

    Detailed models of the internal structures of Pluto and Charon, assuming rock and water ice as the only constituents, indicate that the mean silicate mass fraction of this two-body system is on the order of 0.7; thus the Pluto/Charon system is significantly "rockier" than the satellites of the giant planets (silicate mass fraction approximately 0.55). This compositional contrast reflects different formation mechanisms: it is likely that Pluto and Charon formed directly from the solar nebula, while the circumplanetary nebulae that produced the giant planet satellites were derived from envelopes that surrounded the forming giant planets (envelopes in which icy planetesimals dissolved more readily than rocky planetesimals). Simple cosmic abundance calculations, and the assumption that the Pluto/Charon system formed directly from solar nebula condensates, strongly suggest that the majority of the carbon in the outer solar nebula was in the form of carbon monoxide; these results are consistent with (1) inheritance from the dense molecular clouds in the interstellar medium (where CH4/CO < 10(-2) in the gas phase) and/or (2) of the Lewis and Prinn kinetic inhibition model of solar nebula chemistry. Theoretical predictions of the C/H enhancements in the atmospheres of the giant planets, when compared to the actual observed enhancements, suggest that 10%, or slightly more, of the carbon in the outer solar nebula was in the form of condensed materials (although the amount of condensed C may have dropped slightly with increasing heliocentric distance). Strict compositional limits computed for the Pluto/Charon system using the densities of CH4 and CO ices indicate that these pure ices are at best minor components in the interiors of these bodies, and imply that CH4 and CO ices were not the dominant C-bearing solids in the outer nebula. Clathrate-hydrates could not have appropriated enough CH4 or CO to be the major form of condensed carbon, although such clathrates may be

  3. THE CHANDRA X-RAY SURVEY OF PLANETARY NEBULAE (CHANPLANS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS

    SciTech Connect

    Kastner, J. H.; Montez, R. Jr.; Rapson, V.; Balick, B.; Frew, D. J.; De Marco, O.; Parker, Q. A.; Miszalski, B.; Sahai, R.; Blackman, E.; Frank, A.; Chu, Y.-H.; Guerrero, M. A.; Zijlstra, A.; Behar, E.; Bujarrabal, V.; Corradi, R. L. M.; Nordhaus, J.; Sandin, C. E-mail: soker@physics.technion.ac.il; and others

    2012-08-15

    We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate of {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication-Sign 10{sup

  4. GLOBAL SPECTRAL ENERGY DISTRIBUTION OF THE CRAB NEBULA IN THE PROSPECT OF THE PLANCK SATELLITE POLARIZATION CALIBRATION

    SciTech Connect

    MacIas-Perez, J. F.; Mayet, F.; Aumont, J.

    2010-03-01

    Within the framework of the Planck satellite polarization calibration, we present a study of the Crab Nebula spectral energy distribution (SED) over more than six decades in frequency ranging from 1 to 10{sup 6} GHz (from 299 to 2.99 x 10{sup -4} mm). The Planck satellite mission observes the sky from 30 to 857 GHz (from 9.99 to 0.3498 mm) and therefore we focus on the millimeter region. We use radio and submillimeter data from the WMAP satellite between 23 and 94 GHz (from 13 to 3.18 mm), from the Archeops balloon experiment between 143 (2.1 mm) and 545 GHz (0.55 mm), and a compendium of other Crab Nebula observations. The Crab SED is compared to models including three main components: synchrotron that is responsible for the emission at low and high frequencies, dust that explains the excess of flux observed by the IRAS satellite, and an extra component on the millimeter regime. From this analysis, we conclude that the unpolarized emission of the Crab Nebula at microwave and millimeter wavelengths is the same synchrotron emission as the one observed in the radio domain. Therefore, we expect the millimeter emission of the Crab Nebula to be polarized with the same degree of polarization and orientation as the radio emission. We set upper limits on the possible errors induced by any millimeter extra component on the reconstruction of the degree and angle of polarization at the percent level as a maximum. This result strongly supports the choice by the Planck collaboration of the Crab Nebula emission for performing polarization cross-checks in the range 30 (299 mm) to 353 GHz (0.849 mm).

  5. Meteoritic Constraints on Temperatures, Pressures, Cooling Rates, Chemical Compositions and Modes of Condensation in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Petaev, M. I.; Wood, J. A.

    2005-12-01

    Monotonic, equilibrium condensation of nebular materials from a chemically homogeneous solar nebula is unlikely. Condensation of nebular gas was quite rapid, resulting in significant deviations from chemical equilibrium between condensed phases and the residual gas. A few primitive nebular components condensed from a gas of solar composition; most of them formed in fractionated nebular systems. Local chemical variations caused by both depletion and enrichment in dust relative to gas were commonplace in the solar nebula. Local variations of nebular pressure were, in general, in the range of ~10-4 - 6×10-6 bar. Short-lived temperature excursions might have exceeded 2000 K, with the sustained temperatures in the 16O-rich nebular source regions of CAIs and AOAs being in the range of 1230-1350 K. Silicate melts might have been temporarily stable in nebular source regions heavily enriched in dust.

  6. Outward transport of high-temperature materials around the midplane of the solar nebula.

    PubMed

    Ciesla, Fred J

    2007-10-26

    The Stardust samples collected from Comet 81P/Wild 2 indicate that large-scale mixing occurred in the solar nebula, carrying materials from the hot inner regions to cooler environments far from the Sun. Similar transport has been inferred from telescopic observations of protoplanetary disks around young stars. Models for protoplanetary disks, however, have difficulty explaining the observed levels of transport. Here I report the results of a new two-dimensional model that shows that outward transport of high-temperature materials in protoplanetary disks is a natural outcome of disk formation and evolution. This outward transport occurs around the midplane of the disk.

  7. Structural details of the Orion Nebula - Detection of a network of stringlike ionized features

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.

    1990-09-01

    Continuum observations of the Orion Nebula, obtained at 20 cm using the A, B, C, and D configurations of the VLA during 1986-1987, are reported. Radio images of resolution 1.8 x 1.6 arcsec are presented and analyzed, with a focus on (1) the complex cone structure of M 42 and (2) an extended network of bright stringlike features concentrated near the Trapezium cluster. Possible theoretical explanations of these features are explored, starting from the blister model of H II regions developed by Tenorio and Tagle (1979).

  8. BRIGHT Lights, BIG City: Massive Galaxies, Giant Ly-A Nebulae, and Proto-Clusters

    SciTech Connect

    van Breugel, W; Reuland, M; de Vries, W; Stanford, A; Dey, A; Kurk, J; Venemans, B; Rottgering, H; Miley, G; De Breuck, C; Dopita, M; Sutherland, R; Bland-Hawthorn, J

    2002-08-01

    High redshift radio galaxies are great cosmological tools for pinpointing the most massive objects in the early Universe: massive forming galaxies, active super-massive black holes and proto-clusters. They report on deep narrow-band imaging and spectroscopic observations of several z > 2 radio galaxy fields to investigate the nature of giant Ly-{alpha} nebulae centered on the galaxies and to search for over-dense regions around them. They discuss the possible implications for our understanding of the formation and evolution of massive galaxies and galaxy clusters.

  9. Selective photo-dissociative ionization of methane molecule with TDDFT study

    NASA Astrophysics Data System (ADS)

    Irani, E.; Anvari, A.; Sadighi-Bonabi, R.

    2017-01-01

    Three dimensional calculation of control dynamics for finding the optimized laser filed is formulated using an iterative method and time-dependent density functional approach. An appropriate laser pulse is designed to control the desired products in the dissociation of methane molecule. The tailored laser pulse profile, eigenstate distributions and evolution of the efficient occupation numbers are predicted and exact energy levels of this five-atomic molecule is obtained. Dissociation rates of up to 78%, 80%, 90%, and 82% for CH2+, CH+, C+ and C++ are achieved. Based on the present approach one can reduce the controlling costs.

  10. Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula

    NASA Technical Reports Server (NTRS)

    Podosek, Frank A.; Cassen, Patrick

    1994-01-01

    There are a variety of isotopic data for meteorites which suggest that the protostellar nebula existed and was involved in making planetary materials for some 10(exp 7) yr or more. Many cosmochemists, however, advocate alternative interpretations of such data in order to comply with a perceived constraint, from theoretical considerations, that the nebula existed only for a much shorter time, usually stated as less than or equal to 10(exp 6) yr. In this paper, we review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modeling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars. Theoretical models based on observations of present star-forming regions indicate that stars like the Sun form by dynamical gravitational collapse of dense cores of cold molcular clouds in the interstellar clouds in the interstellar medium. The collapse to a star and disk occurs rapidly, on a time scale of the order 10(exp 5) yr. Disks evolve by dissipating energy while redistributing angular momentum, but it is difficult to predict the rate of evolution, particularly for low mass (compared to the star) disks which nonetheless still contain enough material to account for the observed planetary system. There is no compelling evidence, from available theories of disk structure and evolution, that the solar nebula must have evolved rapidly and could not have persisted for more than 1 Ma. In considering chronoloically relevant isotopic data for meteorites, we focus on three methodologies: absolute ages by U-Pb/Pb-Pb, and relative ages by short-lived radionuclides (especially Al-26) and by evolution of Sr-87/Sr-86. Two kinds of meteoritic materials-refractory inclusions such as CAIs and differential meteorites (eucrites and augrites) -- appear to have experienced potentially dateable nebular events. In both cases, the most straightforward interpretations of the available data indicate

  11. Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula

    NASA Technical Reports Server (NTRS)

    Podosek, Frank A.; Cassen, Patrick

    1994-01-01

    There are a variety of isotopic data for meteorites which suggest that the protostellar nebula existed and was involved in making planetary materials for some 10(exp 7) yr or more. Many cosmochemists, however, advocate alternative interpretations of such data in order to comply with a perceived constraint, from theoretical considerations, that the nebula existed only for a much shorter time, usually stated as less than or = 10(exp 6) yr. In this paper, we review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modelling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars. Theoretical models based on observations of present star-forming regions indicate that stars like the Sun form by dynamical gravitational collapse of dense cores of cold molecular clouds in the interstellar medium. The collapse to a star and disk occurs rapidly on a time scale of the order 10(exp 5) yr. Disks evolve by dissipating energy while redistributing angular momentum, but it is difficult to predict the rate of evolution, particularly for low mass (compared to the star) disks which nonetheless still contain enough material to account for the observed planetary system. There is no compelling evidence, from available theories of disk structure and evolution, that the solar nebula must have evolved rapidly and could not have persisted for more than 1 Ma. In considering chronologically relevant isotopic data for meteorites, we focus on three methodologies: absolute ages by U-Pb/Pb-Pb, and relative ages by short-lived radionuclides (especially Al-26) and by evolution of Sr-87/Sr-86. Two kinds of meteoritic materials-refractory inclusions such as CAIs and differentiated meteorites (eucrites and angrites) - appear to have experience potentially dateable nebular events. In both case, the most straightforward interpretations of the available data indicate nebular events spanning several Ma. We

  12. The Orion Nebula in the Far-Infrared: high-J CO and fine-structure lines mapped by FIFI-LS/SOFIA

    NASA Astrophysics Data System (ADS)

    Klein, Randolf; Looney, Leslie; Cox, Erin; Fischer, Christian; Iserlohe, Christof; Krabbe, Alfred

    2015-08-01

    The Orion Nebula is the closest massive star forming region allowing us to study the physical conditions in such a region with high spatial resolution. We used the far infrared integral-field spectrometer, FIFI-LS, on-board the airborne observatory SOFIA to study the atomic and molecular gas in the Orion Nebula at medium spectral resolution.The large maps obtained with FIFI-LS cover the nebula from the BN/KL-object to the bar in several fine structure lines. These spectral maps are the largest and highest spatially resolved to date. They allow us to study the conditions of the photon-dominated region and the interface to the molecular cloud with unprecedented detail.Another investigation targeted the molecular gas in the BN/KL region of the Orion Nebula, which is stirred up by a violent explosion about 500 years ago. The explosion drives a wide angled molecular outflow. We present maps of several high-J CO observations (J in the range of 10 to 30), allowing us to analyse of the heated molecular gas.The observations were taken during the commissioning of FIFI-LS last year and as recent as this March. The results are still preliminary as the data reduction and calibration is still under development.

  13. Abundances in Eight M31 Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Hensley, Kerry G.; Kwitter, Karen B.; Corradi, Romano; Galera-Rosillo, R.; Balick, Bruce; Henry, Richard B. C.

    2014-06-01

    As part of a continuing project using planetary nebulae (PNe) to study the chemical evolution and formation history of M31 (see accompanying poster by Balick et al.), we obtained spectra of eight PNe in the fall of 2013 with the OSIRIS spectrograph on the GTC. All of these PNe are located outside M31’s inner disk and bulge. Spectral coverage extended from 3700-7800Å with a resolution of ~6 Å. Especially important in abundance determinations is the detection of the weak, temperature-sensitive auroral line of [O III], at 4363Å, which is often contaminated by Hg I 4358Å from streetlights; the remoteness of the GTC eliminated this difficulty. We reduced and measured the spectra using IRAF, and derived nebular diagnostics and abundances with ELSA, our in-house five-level-atom program. Here we report the chemical abundances determined from these spectra. The bottom line is that the oxygen abundances in these PNe are all within a factor of 2-3 of the solar value, (as are all the other M31 PNe our team has previously measured) despite the significant range of galactocentric distance. Future work will use these abundances to constrain models of the central star to estimate progenitor masses and ages. In particular we will use the results to investigate the hypothesis that these PNe might represent a population related to the encounter between M31 and M33 ~3 Gy ago. We gratefully acknowledge support from Williams College.

  14. Planetary nebula progenitors that swallow binary systems

    NASA Astrophysics Data System (ADS)

    Soker, Noam

    2016-01-01

    I propose that some irregular messy planetary nebulae (PNe) owe their morphologies to triple-stellar evolution where tight binary systems evolve inside and/or on the outskirts of the envelope of asymptotic giant branch (AGB) stars. In some cases, the tight binary system can survive, in others, it is destroyed. The tight binary system might break up with one star leaving the system. In an alternative evolution, one of the stars of the broken-up tight binary system falls towards the AGB envelope with low specific angular momentum, and drowns in the envelope. In a different type of destruction process, the drag inside the AGB envelope causes the tight binary system to merge. This releases gravitational energy within the AGB envelope, leading to a very asymmetrical envelope ejection, with an irregular and messy PN as a descendant. The evolution of the triple-stellar system can be in a full common envelope evolution or in a grazing envelope evolution. Both before and after destruction (if destruction takes place), the system might launch pairs of opposite jets. One pronounced signature of triple-stellar evolution might be a large departure from axisymmetrical morphology of the descendant PN. I estimate that about one in eight non-spherical PNe is shaped by one of these triple-stellar evolutionary routes.

  15. The Nineteenth-Century Spiral Nebula Whodunit

    NASA Astrophysics Data System (ADS)

    Weekes, Trevor C.

    2010-06-01

    The discovery of the first spiral nebula was a milestone in the history of astronomy, but the initial observations of it are shrouded in mystery. The discovery came within months of the commissioning of the Third Earl of Rosse’s very large 72-inch optical telescope at Birr Castle in the center of Ireland. Unfortunately, no observing records have survived, and while there is no doubt that the observations took place in the spring of 1845, there is some uncertainty as to whom was actually present when the discovery was made. The construction of the Earl’s telescope (the Leviathan) was a magnificent achievement, since it was entirely of his design, built with his own funds, and constructed by his own workers who were literally taken “from the plough” on his estate. The summer of 1845 saw the first appearance of the Irish Potato Famine of 1845-1848, which would seriously curtail astronomical activity when Lord Rosse’s 72-inch telescope was in prime condition.

  16. Black Widow Nebula Hiding in the Dust

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In this Spitzer image, the two opposing bubbles are being formed in opposite directions by the powerful outflows from massive groups of forming stars. The baby stars can be seen as specks of yellow where the two bubbles overlap.

    When individual stars form from molecular clouds of gas and dust they produce intense radiation and very strong particle winds. Both the radiation and the stellar winds blow the dust outward from the star creating a cavity or, bubble.

    In the case of the Black Widow Nebula, astronomers suspect that a large cloud of gas and dust condensed to create multiple clusters of massive star formation. The combined winds from these groups of large stars probably blew out bubbles into the direction of least resistance, forming a double bubble.

    The infrared image was captured by the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) Legacy project. The Spitzer picture is a four-channel false-color composite, showing emission from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8.0 microns (red).

  17. Pinwheel Nebula around WR 98a.

    PubMed

    Monnier; Tuthill; Danchi

    1999-11-10

    We present the first near-infrared images of the dusty Wolf-Rayet star WR 98a. Aperture-masking interferometry has been utilized to recover images at the diffraction limit of the Keck I telescope, less, similar50 mas at 2.2 µm. Multiepoch observations spanning about 1 yr have resolved the dust shell into a "pinwheel" nebula, the second example of a new class of dust shell first discovered around WR 104 by Tuthill, Monnier, & Danchi. Interpreting the collimated dust outflow in terms of an interacting winds model, the binary orbital parameters and apparent wind speed are derived: a period of 565+/-50 days, a viewing angle of 35&j0;+/-6 degrees from the pole, and a wind speed of 99+/-23 mas yr-1. This period is consistent with a possible approximately 588 day periodicity in the infrared light curve, linking the photometric variation to the binary orbit. Important implications for binary stellar evolution are discussed by identifying WR 104 and WR 98a as members of a class of massive, short-period binaries whose orbits were circularized during a previous red supergiant phase. The current component separation in each system is similar to the diameter of a red supergiant, which indicates that the supergiant phase was likely terminated by Roche lobe overflow, leading to the present Wolf-Rayet stage.

  18. Edwin Hubble. Mariner of the nebulae.

    NASA Astrophysics Data System (ADS)

    Christianson, G. E.

    This biography of Edwin Hubble has been acclaimed by professionals and laymen alike. It is both the biography of an extraordinary human being and the story of the greatest quest in the history of astronomy since the Copernican revolution. Born in 1889 and reared in the village of Marshfield, Missouri, Edwin Powell Hubble became one of the towering figures in 20th century science. Hubble worked with the great 100 inch Hooker telescope at California's Mount Wilson Observatory and made a series of discoveries that revolutionized humanity's vision of the cosmos. In 1923 he was able to confirm the existence of other nebulae beyond our own Milky Way. By the end of the decade, he had proven that the universe is expanding, thus laying the very cornerstone of the "Big Bang" theory of creation. It was Hubble who developed the elegant scheme by which the galaxies are classified as ellipticals and spirals, and it was Hubble who first provided reliable evidence that the universe is homogeneous, the same in all directions as far as the telescope can see.

  19. FU Orionis Outbursts and the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Bell, Robbins; Young, Rich (Technical Monitor)

    1998-01-01

    Protostellar systems are variable on many timescales. The FU Orionis outburst is one of the most drastic forms of variability known to occur in low mass stellar systems. During a typical outburst lasting several decades, system luminosities may be a hundred times what is normal of the quiescent state. FU Orionis outburst events are believed to have significant impacts on the thermal structure of the protosolar nebula. Their existence has been utilized to explain features in the meteoritic record from thermally induced homogenization to chondrule formation. Recent numerical models have shown the viability of the hypothesis that the radiation observed during outburst is emitted by a luminous circumstellar disk transporting mass at a thousand times the quiescent rate. We will begin by describing what is known about the FU Orionis outburst phenomenon from recent observations and theory. We will discuss evidence that suggests that outburst radiation is emitted by a circumstellar disk rather than by the star and will briefly describe the thermal instability as a mechanism for outburst. Additional information is contained in the original extended abstract.

  20. The SPM Kinematic Catalogue of Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    López, J. A.; Richer, M.; Riesgo, H.; Steffen, W.; Meaburn, J.; García-Segura, G.; Escalante, K.

    2006-06-01

    We present a progress report on the San Pedro Mártir Kinematic Catalogue of Planetary Nebulae. Both, galactic PNe from the disk, bulge and halo populations, and PNe from galaxies in the local group from a diverse range of metallicities have been observed. Most of the observations have been made with the 2.1-m SPM telescope and the Manchester Echelle Spectrometer (Meaburn et al. 2003, RevMexAA, 39, 185). The data consists of spatially resoved long slit spectra at resolutions of ˜ 10 km s^{-1}. For most galactic targets more than one slit positions has been observed. The interpretation of the 3D structures and outflows derived from the kinematic data is being performed with the aid of SHAPE (see the contributions by Steffen, López, & Escalante, Steffen & López in this symposium). This unique database of high dispersion spectra will allow a firm characterisation of nebular shell properties in relation to progenitors from diverse stellar populations.

  1. The inner knot of the Crab nebula

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim; Komissarov, Serguei S.; Porth, Oliver

    2016-02-01

    We model the inner knot of the Crab nebula as a synchrotron emission coming from the non-spherical MHD termination shock of relativistic pulsar wind. The post-shock flow is mildly relativistic; as a result the Doppler beaming has a strong impact on the shock appearance. The model can reproduce the knot location, size, elongation, brightness distribution, luminosity and polarization provided the effective magnetization of the section of the pulsar wind producing the knot is low, σ ≤ 1. In the striped wind model, this implies that the striped zone is rather wide, with the magnetic inclination angle of the Crab pulsar ≥45°; this agrees with the previous model-dependent estimate based on the gamma-ray emission of the pulsar. We conclude that the tiny knot is indeed a bright spot on the surface of a quasi-stationary magnetic relativistic shock and that this shock is a site of efficient particle acceleration. On the other hand, the deduced low magnetization of the knot plasma implies that this is an unlikely site for the Crab's gamma-ray flares, if they are related to the fast relativistic magnetic reconnection events.

  2. New young planetary nebulae in IPHAS

    NASA Astrophysics Data System (ADS)

    Viironen, K.; Mampaso, A.; Corradi, R. L. M.; Rodríguez, M.; Greimel, R.; Sabin, L.; Sale, S. E.; Unruh, Y.; Delgado-Inglada, G.; Drew, J. E.; Giammanco, C.; Groot, P.; Parker, Q. A.; Sokoloski, J.; Zijlstra, A.

    2009-07-01

    Aims: We search for very small-diameter galactic planetary nebulae (PNe) representing the earliest phases of PN evolution. The IPHAS catalogue of Hα-emitting stars provides a useful basis for this study since all sources present in this catalogue must be of small angular diameter. Methods: The PN candidates are selected based on their location in two colour-colour diagrams: IPHAS (r' - Hα) vs. (r' - i'), and 2MASS (J - H) vs. (H - K_s). Spectroscopic follow-up was carried out on a sample of candidates to confirm their nature. Results: We present a total of 83 PN candidates. We were able to obtain spectra or find the classification from the literature for 35 candidates. Five of these objects are likely to be new PNe, including one large bipolar PN discovered serendipitously close to an emission-line star. PN distances deduced from extinction-distance relations based on IPHAS field-star photometry are presented for the first time. These yield distance estimates for our objects in the range 2 kpc and 6 kpc. From the data in hand, we conclude that four of the discovered objects are probably young PNe.

  3. A PROTOSOLAR NEBULA ORIGIN FOR THE ICES AGGLOMERATED BY COMET 67P/CHURYUMOV–GERASIMENKO

    SciTech Connect

    Mousis, O.; Vernazza, P.; Lunine, J. I.; Luspay-Kuti, A.; Hässig, M.; Waite, J. H.; Guillot, T.; Marty, B.; Ali-Dib, M.

    2016-03-10

    The nature of the icy material accreted by comets during their formation in the outer regions of the protosolar nebula (PSN) is a major open question in planetary science. Some scenarios of comet formation predict that these bodies agglomerated from crystalline ices condensed in the PSN. Concurrently, alternative scenarios suggest that comets accreted amorphous ice originating from the interstellar cloud or from the very distant regions of the PSN. On the basis of existing laboratory and modeling data, we find that the N{sub 2}/CO and Ar/CO ratios measured in the coma of the Jupiter-family comet 67P/Churyumov–Gerasimenko by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument on board the European Space Agency’s Rosetta spacecraft match those predicted for gases trapped in clathrates. If these measurements are representative of the bulk N{sub 2}/CO and Ar/CO ratios in 67P/Churyumov–Gerasimenko, it implies that the ices accreted by the comet formed in the nebula and do not originate from the interstellar medium, supporting the idea that the building blocks of outer solar system bodies have been formed from clathrates and possibly from pure crystalline ices. Moreover, because 67P/Churyumov–Gerasimenko is impoverished in Ar and N{sub 2}, the volatile enrichments observed in Jupiter’s atmosphere cannot be explained solely via the accretion of building blocks with similar compositions and require an additional delivery source. A potential source may be the accretion of gas from the nebula that has been progressively enriched in heavy elements due to photoevaporation.

  4. A Protosolar Nebula Origin for the Ices Agglomerated by Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Mousis, O.; Lunine, J. I.; Luspay-Kuti, A.; Guillot, T.; Marty, B.; Ali-Dib, M.; Wurz, P.; Altwegg, K.; Bieler, A.; Hässig, M.; Rubin, M.; Vernazza, P.; Waite, J. H.

    2016-03-01

    The nature of the icy material accreted by comets during their formation in the outer regions of the protosolar nebula (PSN) is a major open question in planetary science. Some scenarios of comet formation predict that these bodies agglomerated from crystalline ices condensed in the PSN. Concurrently, alternative scenarios suggest that comets accreted amorphous ice originating from the interstellar cloud or from the very distant regions of the PSN. On the basis of existing laboratory and modeling data, we find that the N2/CO and Ar/CO ratios measured in the coma of the Jupiter-family comet 67P/Churyumov-Gerasimenko by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument on board the European Space Agency’s Rosetta spacecraft match those predicted for gases trapped in clathrates. If these measurements are representative of the bulk N2/CO and Ar/CO ratios in 67P/Churyumov-Gerasimenko, it implies that the ices accreted by the comet formed in the nebula and do not originate from the interstellar medium, supporting the idea that the building blocks of outer solar system bodies have been formed from clathrates and possibly from pure crystalline ices. Moreover, because 67P/Churyumov-Gerasimenko is impoverished in Ar and N2, the volatile enrichments observed in Jupiter’s atmosphere cannot be explained solely via the accretion of building blocks with similar compositions and require an additional delivery source. A potential source may be the accretion of gas from the nebula that has been progressively enriched in heavy elements due to photoevaporation.

  5. PAHs in the Ices of Saturn's Satellites: Connections to the Solar Nebula and the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Cruikshank, Dale P.; Pendleton, Yvonne J.

    2015-01-01

    Aliphatic hydrocarbons and PAHs have been observed in the interstellar medium (e.g., Allamandola et al. 1985, Pendleton et al. 1994, Pendleton & Allamandola 2002, Tielens 2013, Kwok 2008, Chiar & Pendleton 2008) The inventory of organic material in the ISM was likely incorporated into the molecular cloud in which the solar nebula condensed, contributing to the feedstock for the formation of the Sun, major planets, and the smaller icy bodies in the region outside Neptune's orbit (transneptunian objects, or TNOs). Additional organic synthesis occurred in the solar nebula (Ciesla & Sandford 2012). Saturn's satellites Phoebe, Iapetus, and Hyperion open a window to the composition of one class of TNO as revealed by the near-infrared mapping spectrometer (VIMS) on the Cassini spacecraft at Saturn. Phoebe (mean diameter 213 km) is a former TNO now orbiting Saturn (Johnson & Lunine 2005). VIMS spectral maps of Phoebe's surface reveal a complex organic spectral signature consisting of prominent aromatic (CH) and aliphatic hydrocarbon (=CH2, -CH3) absorption bands (3.2-3.6 micrometers). Phoebe is the source of a huge debris ring encircling Saturn, and from which particles ((is) approximately 5-20 micrometers size) spiral inward toward Saturn (Verbiscer et al. 2009). They encounter Iapetus and Hyperion where they mix with and blanket the native H2O ice of those two bodies. Quantitative analysis of the hydrocarbon bands on Iapetus demonstrates that aromatic CH is approximately 10 times as abundant as aliphatic CH2+CH3, significantly exceeding the strength of the aromatic signature in interplanetary dust particles, comet particles, and in carbonaceous meteorites (Cruikshank et al. 2014). A similar excess of aromatics over aliphatics is seen in the qualitative analysis of Hyperion and Phoebe itself (Dalle Ore et al. 2012). The Iapetus aliphatic hydrocarbons show CH2/CH3 (is) approximately 4, which is larger than the value found in the diffuse ISM ((is) approximately 2

  6. Identification of the Gum nebula as the fossil Stroemgren sphere of the Vela X supernova

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.

    1971-01-01

    Evidence is presented for the production of the Gum nebula by the Vela X supernova, as opposed to its ionization by gamma Velorum and zeta Puppis. A model for the excitation of the nebula is proposed.

  7. MORPHOLOGY OF THE RED RECTANGLE PROTO-PLANETARY NEBULA

    SciTech Connect

    Koning, N.; Kwok, Sun; Steffen, W. E-mail: sunkwok@hku.hk

    2011-10-10

    The morphology of the Red Rectangle (RR) exhibits several singular attributes. Most prominent are a series of linear features perpendicular to the symmetry axis which appear as 'ladder rungs' across the nebula. At the edge of each 'rung' gas seemingly flows from bright knots in a parabolic shape toward the center of the nebula. We present a new model of the RR which explains these features as a projection effect of the more common concentric arcs seen in other proto-planetary nebulae (e.g., Egg Nebula). Using the three-dimensional morpho-kinematic modeling software SHAPE, we have created a model of the RR that consists of spherical shells evacuated by a bi-conical outflow. When the symmetry axis is oriented perpendicular to the line of sight, the spherical shells become linear, thereby reproducing the 'rungs' seen in the RR. When oriented at different inclinations, the linear features become spherical as observed in the Egg Nebula. The model also accurately reproduces the bright knots and the parabolic outflows from these knots that have proven difficult to explain in the past. Using this model, we are able to place a lower limit on the speed of the outflow of {approx}158 km s{sup -1}.

  8. a Study of HCO+ and CS in Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Edwards, Jessica L.; Ziurys, L. M.; Woolf, N. J.

    2011-06-01

    Millimeter-wave observations have been conducted towards a sample of planetary nebulae (PNe) using the 12-meter and Sub-millimeter telescopes of the Arizona Radio Observatory. HCO+ was observed in the J=3-2 transition at 1 mm and the J=1-0 transition at 3 mm. CS was observed in the J=5-4, J=3-2, and J=2-1 transitions at 1, 2, and 3 mm, respectively. Both molecules have been detected in NGC 6537 (Red Spider Nebula), K4-47, and M2-48, as well as NGC 6720 (Ring Nebula) and NGC 6853 (Dumbbell Nebula), which are both over 7,000 years old. Although a number of molecular line surveys of circumstellar envelopes have been done and one conducted towards a very young PNe, the molecular content of planetary nebulae is not well characterized. It was previously thought that the high ultraviolet radiation field of the central star would destroy any molecules leftover from the circumstellar envelope; however, molecules clearly exist well into the PNe stage. These data are currently being analyzed and molecular abundances being determined, which will be compared to those seen in diffuse interstellar material. The implications of these observations will be discussed in relation to the molecular content of diffuse clouds and the origins of the diffuse interstellar bands.

  9. Chandra Confirmation of a Pulsar Wind Nebula in DA 495

    NASA Technical Reports Server (NTRS)

    Arzoumanian, Z.; Safi-Harb, S.; Landecker, T.L.; Kothes, R.; Camilo, F.

    2008-01-01

    As part of a multiwavelength study of the unusual radio supernova remnant DA 495, we present observations made with the Chandra X-ray Observatory. Imaging and spectroscopic analysis confirms the previously detected X-ray source at the heart of the annular radio nebula, establishing the radiative properties of two key emission components: a soft unresolved source with a blackbody temperature of 1 MK consistent with a neutron star, surrounded by a nontherma1 nebula 40" in diameter exhibiting a power-law spectrum with photon index Gamma = 1.63, typical of a pulsar wind nebula. Morphologically, the nebula appears to be slightly extended along a direction, in projection on the sky, previously demonstrated to be of significance in radio and ASCA observations; we argue that this represents the orientation of the pulsar spin axis. At smaller scales, a narrow X-ray feature is seen extending out 5" from the point source, but energetic arguments suggest that it is not the resolved termination shock of the pulsar wind against the ambient medium. Finally, we argue based on synchrotron lifetimes in the nebular magnetic field that DA 495 represents the first example of a pulsar wind nebula in which electromagnetic flux makes up a significant part, together with particle flux, of the neutron star's wind.

  10. A turbulent two-phase flow model for nebula flows

    NASA Technical Reports Server (NTRS)

    Champney, Joelle M.; Cuzzi, Jeffrey N.

    1990-01-01

    A new and very efficient turbulent two-phase flow numericaly model is described to analyze the environment of a protoplanetary nebula at a stage prior to the formation of planets. Focus is on settling processes of dust particles in flattened gaseous nebulae. The model employs a perturbation technique to improve the accuracy of the numerical simulations of such flows where small variations of physical quantities occur over large distance ranges. The particles are allowed to be diffused by gas turbulence in addition to settling under gravity. Their diffusion coefficients is related to the gas turbulent viscosity by the non-dimensional Schmidt number. The gas turbulent viscosity is determined by the means of the eddy viscosity hypothesis that assumes the Reynolds stress tensor proportional to the mean strain rate tensor. Zero- and two-equation turbulence models are employed. Modeling assumptions are detailed and discussed. The numerical model is shown to reproduce an existing analytical solution for the settling process of particles in an inviscid nebula. Results of nebula flows are presented taking into account turbulence effects of nebula flows. Diffusion processes are found to control the settling of particles.

  11. Star Formation Regions in LDN 1667

    NASA Astrophysics Data System (ADS)

    Gyulbudaghian, A. L.

    2015-09-01

    A group of three star formation regions in the dark cloud LDN 1667 is examined. All three of these regions contain Trapezium type systems. 12C(1-0) observations are made of the part of the molecular cloud LDN 1667 associated with one of the star formation regions. Three molecular clouds were detected, one of which (the main cloud) has a red and a blue outflow. Three stars from the star formation regions are found to have annular nebulae and one star has a conical nebula. The dark cloud LDN 1667 is associated with a radial system of dark globules which is formed by the star HD 57061.

  12. Narrow band coronographic imaging of the bipolar nebula around the LBV R127

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Nota, Antonella; Golimowski, David A.; Leitherer, Claus

    1992-01-01

    New high resolution narrow band coronographic images of the R127 nebula have been recently obtained. The nebula displays a bipolar morphology and is similar in appearance to the nebula around AG Carinae. The observations improve the values for the linear dimensions (1.9 x 2.2 pc) and yield an estimated nebular mass of 3.1 solar mass.

  13. Lifetime of the solar nebula constrained by meteorite paleomagnetism

    NASA Astrophysics Data System (ADS)

    Wang, Huapei; Weiss, Benjamin P.; Bai, Xue-Ning; Downey, Brynna G.; Wang, Jun; Wang, Jiajun; Suavet, Clément; Fu, Roger R.; Zucolotto, Maria E.

    2017-02-01

    A key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (<0.6 microtesla) at 4563.5 ± 0.1 million years ago, ~3.8 million years after solar system formation. This indicates that the solar nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation of chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. The core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation.

  14. IUE observations of the 'Butterfly' Nebula M2-9

    NASA Technical Reports Server (NTRS)

    Feibelman, W. A.

    1984-01-01

    IUE observations of the peculiar 'Butterfy' nebula M2-9 indicate that it is not a normal planetary nebula. The ultraviolet spectrum is characterized by few emission lines and a weak continuum. Mg II 2800 A is the strongest emission line present and may be indicative of a binary nucleus. Lines of N v, Q I, N III, N IV, Si III, and C III are seen, but C IV and O III are conspicuous by their absence. T(e) = 10,250 + or - 400 K was determined for the core. Nitrogen in the core is found to be overabundant by about a factor of 5 over the solar value. M2-9 may be an object in the early stages of becoming a planetary nebula.

  15. Electrical discharge heating of chondrules in the solar nebula

    NASA Technical Reports Server (NTRS)

    Love, Stanley G.; Keil, Klaus; Scott, Edward R. D.

    1995-01-01

    We present a rudimentary theoretical assessment of electrical discharge heating as a candidate mechanism for the formation of chondrules in the solar nebula. The discharge model combines estimates of the properties of the nebula, a mechanism for terrestrial thunderstorm electrification, and some fundamental electrical properties of gases. Large uncertainties in the model inputs limit these calculations to order-or-magnitude accuracy. Despite the uncertainty, it is possible to estimate an upper limit to the efficiency of nebular discharges at melting millimeter-sized stony objects. We find that electrical arcs analogous to terrestrial lightning could have occurred in the nebula, but that under most conditions these discharges probably could not have melted chondrules. Despite our difficulties, we believe the topic worthy of further investigation and suggest some experiments which could improve our understanding of nebular discharges.

  16. THE PHASES OF WATER ICE IN THE SOLAR NEBULA

    SciTech Connect

    Ciesla, Fred J.

    2014-03-20

    Understanding the phases of water ice that were present in the solar nebula has implications for understanding cometary and planetary compositions as well as the internal evolution of these bodies. Here we show that amorphous ice formed more readily than previously recognized, with formation at temperatures <70 K being possible under protoplanetary disk conditions. We further argue that photodesorption and freeze-out of water molecules near the surface layers of the solar nebula would have provided the conditions needed for amorphous ice to form. This processing would be a natural consequence of ice dynamics and would allow for the trapping of noble gases and other volatiles in water ice in the outer solar nebula.

  17. Lifetime of the solar nebula constrained by meteorite paleomagnetism.

    PubMed

    Wang, Huapei; Weiss, Benjamin P; Bai, Xue-Ning; Downey, Brynna G; Wang, Jun; Wang, Jiajun; Suavet, Clément; Fu, Roger R; Zucolotto, Maria E

    2017-02-10

    A key stage in planet formation is the evolution of a gaseous and magnetized solar nebula. However, the lifetime of the nebular magnetic field and nebula are poorly constrained. We present paleomagnetic analyses of volcanic angrites demonstrating that they formed in a near-zero magnetic field (<0.6 microtesla) at 4563.5 ± 0.1 million years ago, ~3.8 million years after solar system formation. This indicates that the solar nebula field, and likely the nebular gas, had dispersed by this time. This sets the time scale for formation of the gas giants and planet migration. Furthermore, it supports formation of chondrules after 4563.5 million years ago by non-nebular processes like planetesimal collisions. The core dynamo on the angrite parent body did not initiate until about 4 to 11 million years after solar system formation.

  18. Irradiated Jets and Outflows in the Pelican Nebula

    NASA Astrophysics Data System (ADS)

    Bally, John; Reipurth, Bo

    2003-08-01

    We report the discovery of new Herbig-Haro objects in the Pelican Nebula (IC 4050). HH 555 is a bipolar jet emerging from the tip of a major elephant trunk protruding into the Pelican Nebula from the adjacent molecular cloud. Both beams of HH 555 bend toward the west, indicating deflection by a side wind. A chain of three nearly equally spaced bow shocks, HH 563, HH 564, and HH 565, trace a bent flow bursting out of the southern rim of the Pelican molecular cloud, possibly driven by the moderate-luminosity Class I protostar IRAS 20489+4406. Object HH 570 is a highly collimated jet emerging from a compact cloud located about 15' southeast of the Pelican molecular cloud. A parallel outflow, possibly driven by IRAS 20496+4354, powers the bright bow shock HH 569. These observations demonstrate that vigorous star formation is still occurring within the clouds that surround the evolved North America/Pelican Nebula complex.

  19. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    NASA Astrophysics Data System (ADS)

    Chen, A.; Pham, L.; Kempler, S.; Theobald, M.; Esfandiari, A.; Campino, J.; Vollmer, B.; Lynnes, C.

    2011-12-01

    Cloud Computing technology has been used to offer high-performance and low-cost computing and storage resources for both scientific problems and business services. Several cloud computing services have been implemented in the commercial arena, e.g. Amazon's EC2 & S3, Microsoft's Azure, and Google App Engine. There are also some research and application programs being launched in academia and governments to utilize Cloud Computing. NASA launched the Nebula Cloud Computing platform in 2008, which is an Infrastructure as a Service (IaaS) to deliver on-demand distributed virtual computers. Nebula users can receive required computing resources as a fully outsourced service. NASA Goddard Earth Science Data and Information Service Center (GES DISC) migrated several GES DISC's applications to the Nebula as a proof of concept, including: a) The Simple, Scalable, Script-based Science Processor for Measurements (S4PM) for processing scientific data; b) the Atmospheric Infrared Sounder (AIRS) data process workflow for processing AIRS raw data; and c) the GES-DISC Interactive Online Visualization ANd aNalysis Infrastructure (GIOVANNI) for online access to, analysis, and visualization of Earth science data. This work aims to evaluate the practicability and adaptability of the Nebula. The initial work focused on the AIRS data process workflow to evaluate the Nebula. The AIRS data process workflow consists of a series of algorithms being used to process raw AIRS level 0 data and output AIRS level 2 geophysical retrievals. Migrating the entire workflow to the Nebula platform is challenging, but practicable. After installing several supporting libraries and the processing code itself, the workflow is able to process AIRS data in a similar fashion to its current (non-cloud) configuration. We compared the performance of processing 2 days of AIRS level 0 data through level 2 using a Nebula virtual computer and a local Linux computer. The result shows that Nebula has significantly

  20. MULTIPOLAR PLANETARY NEBULAE: NOT AS GEOMETRICALLY DIVERSIFIED AS THOUGHT

    SciTech Connect

    Chong, S.-N.; Imai, H.; Chibueze, J.; Kwok, Sun; Tafoya, D. E-mail: sunkwok@hku.hk

    2012-12-01

    Planetary nebulae (PNe) have diverse morphological shapes, including point-symmetric and multipolar structures. Many PNe also have complicated internal structures such as tori, lobes, knots, and ansae. A complete accounting of all the morphological structures through physical models is difficult. A first step toward such an understanding is to derive the true three-dimensional structure of the nebulae. In this paper, we show that a multipolar nebula with three pairs of lobes can explain many such features, if orientation and sensitivity effects are taken into account. Using only six parameters-the inclination and position angles of each pair-we are able to simulate the observed images of 20 PNe with complex structures. We suggest that multipolar structure is an intrinsic structure of PNe and the statistics of multipolar PNe have been severely underestimated in the past.

  1. Revised Predictions of Neutrino Fluxes from Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Di Palma, Irene; Guetta, Dafne; Amato, Elena

    2017-02-01

    Several pulsar wind nebulae (PWN) have been detected in the TeV band in the last decade. TeV emission is typically interpreted in a purely leptonic scenario, but this often requires that the magnetic field in the nebula be much lower than the equipartition value, as well as the assumption of an enhanced density of target radiation at IR frequencies. In this work, we consider the possibility that, in addition to the relativistic electrons and positrons, relativistic hadrons are also present in these nebulae. Assuming that some of the emitted TeV photons are of hadronic origin, we compute the associated flux of ∼ 1{--}100 TeV neutrinos. We use IceCube non-detection to put constraints on the fraction of TeV photons that might be contributed by hadrons and estimate the number of neutrino events that can be expected from these sources in ANTARES and KM3Net.

  2. The surprising Crab pulsar and its nebula: a review

    NASA Astrophysics Data System (ADS)

    Bühler, R.; Blandford, R.

    2014-06-01

    The Crab nebula and its pulsar (referred to together as ‘the Crab’) have historically played a central role in astrophysics. True to this legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Strong gamma-ray flares, of durations of a few days, were discovered from within the nebula, while the source was previously expected to be stable in flux on these time scales. Here we review these intriguing and suggestive developments. In this context we give an overview of the observational properties of the Crab and our current understanding of pulsars and their nebulae.

  3. Formation of the low-mass solar nebula

    NASA Technical Reports Server (NTRS)

    Ruzmaikina, T. V.; Khatuncev, I. V.; Konkina, T. V.

    1993-01-01

    We study an accretional stage of the formation and early evolution of the solar nebula with relatively small angular momentum. We investigate the evolution of the disk and its vertical structure, particularly the shock front between disk and infalling material. Calculations start at a moment when a low-mass star-like core surrounded by small embryo disk have been formed at the center of the presolar nebula and the bulk of mass remained in the envelope. The forming solar nebula is approximated as a thin viscous disk surrounded by accreting envelope. The distribution of temperature in the infalling envelope is determined by solving spherically symmetric equations of radiative transfer. As the energy source, we take into account all energy released within the centrifugal radius of the infalling matter. Other aspects of this study are discussed.

  4. Featured Image: A Search for Stellar Bow Shock Nebulae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    These dynamic infrared images (click for the full view!) reveal what are known as bow shock nebulae nebulae that form at the interface between the interstellar medium and the stellar wind from a high-speed star zipping through the galaxy (the arrows show the direction of motion of the star). When the relative speed between the two is supersonic, an arc-shaped bow shock forms ahead of the star, like the six prototypical ones pictured here. A team of scientists led by Henry Kobulnicky (University of Wyoming) has recently searched through survey data from the Spitzer Space Telescope and the Wide Field Infrared Explorer (WISE) to build a catalog of more than 700 such bow-shock nebula candidates, the vast majority of which are new discoveries. To find out more about their sample, check out the paper below!CitationHenry A. Kobulnicky et al 2016 ApJS 227 18. doi:10.3847/0067-0049/227/2/18

  5. EVOLUTION OF THE CRAB NEBULA IN A LOW ENERGY SUPERNOVA

    SciTech Connect

    Yang, Haifeng; Chevalier, Roger A. E-mail: rac5x@virginia.edu

    2015-06-20

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼10{sup 50} erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  6. The surprising Crab pulsar and its nebula: a review.

    PubMed

    Bühler, R; Blandford, R

    2014-06-01

    The Crab nebula and its pulsar (referred to together as 'the Crab') have historically played a central role in astrophysics. True to this legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Strong gamma-ray flares, of durations of a few days, were discovered from within the nebula, while the source was previously expected to be stable in flux on these time scales. Here we review these intriguing and suggestive developments. In this context we give an overview of the observational properties of the Crab and our current understanding of pulsars and their nebulae.

  7. On the formation of ansae in planetary nebulae

    NASA Technical Reports Server (NTRS)

    Soker, Noam

    1990-01-01

    Formation mechanisms for the two optical bright knots in planetary nebulae, 'ansae', are investigated. Adiabatic two-dimensional numerical simulations of the interacting winds flow at early stages of the planetary nebulae evolution are performed. It is found that no real focusing of the shocked fast wind material toward the symmetry axis occurs, and thus the interaction of winds by itself will not form the ansae. A model is proposed, in which jets from the central star form the ansae. These jets are presumably being formed during the few hundred years in the period between the end of the slow wind and the beginning of the fast wind. It is shown that a companion to the progenitor red giant can lead to the degree of asymmetry observed in elliptical planetary nebulae.

  8. Evolution of the Crab Nebula in a Low Energy Supernova

    NASA Astrophysics Data System (ADS)

    Yang, Haifeng; Chevalier, Roger A.

    2015-06-01

    The nature of the supernova leading to the Crab Nebula has long been controversial because of the low energy that is present in the observed nebula. One possibility is that there is significant energy in extended fast material around the Crab but searches for such material have not led to detections. An electron capture supernova model can plausibly account for the low energy and the observed abundances in the Crab. Here, we examine the evolution of the Crab pulsar wind nebula inside a freely expanding supernova and find that the observed properties are most consistent with a low energy event. Both the velocity and radius of the shell material, and the amount of gas swept up by the pulsar wind point to a low explosion energy (∼1050 erg). We do not favor a model in which circumstellar interaction powers the supernova luminosity near maximum light because the required mass would limit the freely expanding ejecta.

  9. Gamma-rays from pulsar wind nebulae in starburst galaxies

    NASA Astrophysics Data System (ADS)

    Mannheim, Karl; Elsässer, Dominik; Tibolla, Omar

    2012-07-01

    Recently, gamma-ray emission at TeV energies has been detected from the starburst galaxies NGC253 (Acero et al., 2009) [1] and M82 (Acciari et al., 2009) [2]. It has been claimed that pion production due to cosmic rays accelerated in supernova remnants interacting with the interstellar gas is responsible for the observed gamma rays. Here, we show that the gamma-ray pulsar wind nebulae left behind by the supernovae contribute to the TeV luminosity in a major way. A single pulsar wind nebula produces about ten times the total luminosity of the Sun at energies above 1 TeV during a lifetime of 105 years. A large number of 3 × 104 pulsar wind nebulae expected in a typical starburst galaxy at a distance of 4 Mpc can readily produce the observed TeV gamma rays.

  10. Newest insights from MHD numerical modeling of Pulsar Wind Nebulae

    NASA Astrophysics Data System (ADS)

    Olmi, B.; Del Zanna, L.; Amato, E.; Bucciantini, N.; Bandiera, R.

    2016-06-01

    Numerical MHD models are considered very successful in accounting for many of the observed properties of Pulsar Wind Nebulae (PWNe), especially those concerning the high energy emission morphology and the inner nebula dynamics. Although PWNe are known to be among the most powerful accelerators in nature, producing particles up to PeV energies, the mechanisms responsible of such an efficient acceleration are still a deep mystery. Indeed, these processes take place in one of the most hostile environment for particle acceleration: the relativistic and highly magnetized termination shock of the pulsar wind. The newest results from numerical simulations of the Crab Nebula, the PWN prototype, will be presented, with special attention to the problem of particle acceleration. In particular it will be shown how a multi-wavelengths analysis of the wisps properties can be used to constrain the particle acceleration mechanisms working at the Crab's termination shock, by identifying the particle acceleration site at the shock front.

  11. Planetary Nebulae in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Dopita, M. A.

    The relative closeness, the low reddening, and accurately known distance to the Magellanic Clouds give the ideal set of circumstances to pursue quantitative examinations of individual stellar at metallicities lower than solar. Our understanding of the population of PN in the Magellanic Clouds has been much enhanced recently by imaging and spectroscopic studies using the HST. With the HST, details of the internal nebular structure are resolved as well as ground-based telescopes resolve galactic PN. In the UV, the low line of sight reddening ensures that high signal to noise nebular and central star spectra can be obtained; sufficient to examine the P-Cygni profiles of the mass-losing central stars in some cases. In conjuction with ground-based spectrophotometry, absolute flux, expansion velocity and density information, this data set permits fully self consistent diameters, ages, masses, and abundances to be derived for the nebulae, and the central stars can be accurately placed on the H-R Diagram. Thus, we can examine the details of the evolution, and of the mass- and age-dependent dredge-up processes in a way which is just not possible in the case of Galactic PN. A brief summary of the highlights of the results: * The younger, low excitation, compact planetary nebulae appear to have a central reservoir of dense atomic and molecular gas. This gas lies close to the central star and is undergoing ionisation and being accelerated into outflow, consistent with the "two-wind" model of PN evolution and shaping. * The PN previously classified as nitrogen-rich objects (Peimbert Type I), show the bipolar "butterfly" symmetry that is also a characteristic of their Galactic counterparts. These have been shown to have the most massive precursor stars, as had been long suspected for the Galactic Type I PN. * The PN divide into two evolutionary groups according to kinematic age / size relationships, which may be identified with stars which leave the AGB as He- or as H- burners

  12. Asymmetric Planetary Nebulae VI: the conference summary

    NASA Astrophysics Data System (ADS)

    De Marco, O.

    2014-04-01

    The Asymmetric Planetary Nebulae conference series, now in its sixth edition, aims to resolve the shaping mechanism of PN. Eighty percent of PN have non spherical shapes and during this conference the last nails in the coffin of single stars models for non spherical PN have been put. Binary theories abound but observational tests are lagging. The highlight of APN6 has been the arrival of ALMA which allowed us to measure magnetic fields on AGB stars systematically. AGB star halos, with their spiral patterns are now connected to PPN and PN halos. New models give us hope that binary parameters may be decoded from these images. In the post-AGB and pre-PN evolutionary phase the naked post-AGB stars present us with an increasingly curious puzzle as complexity is added to the phenomenologies of objects in transition between the AGB and the central star regimes. Binary central stars continue to be detected, including the first detection of longer period binaries, however a binary fraction is still at large. Hydro models of binary interactions still fail to give us results, if we make an exception for the wider types of binary interactions. More promise is shown by analytical considerations and models driven by simpler, 1D simulations such as those carried out with the code MESA. Large community efforts have given us more homogeneous datasets which will yield results for years to come. Examples are the ChanPlaN and HerPlaNe collaborations that have been working with the Chandra and Herschel space telescopes, respectively. Finally, the new kid in town is the intermediate-luminosity optical transient, a new class of events that may have contributed to forming several peculiar PN and pre-PN.

  13. An Interactive Gallery of Planetary Nebula Spectra

    NASA Astrophysics Data System (ADS)

    Kwitter, K. B.; Henry, R. B. C.

    2002-12-01

    We have created a website containing high-quality moderate-resolution spectra of 88 planetary nebulae (PNe) from 3600 to 9600 Å, obtained at KPNO and CTIO. Spectra are displayed in a zoomable window, and there are templates available that show wavelength and ion identifications. In addition to the spectra themselves, the website also contains a brief discussion of PNe as astronomical objects and as contributors to our understanding of stellar evolution, and a table with atlas information for each object along with a link to an image. This table can be re-ordered by object name, galactic or equatorial coordinates, distance from the sun, the galactic center, or the galactic plane. We envision that this website, which concentrates a large amount of data in one place, will be of interest to a variety of users. PN researchers might need to check the spectrum of a particular object of interest; the non-specialist astronomer might simply be interested in perusing such a collection of spectra; and finally, teachers of introductory astronomy can use this database to illustrate basic principles of atomic physics and radiation. To encourage such use, we have written two simple exercises at a basic level to introduce beginning astronomy students to the wealth of information that PN spectra contain. We are grateful to Adam Wang of the Williams College OIT and to his summer student teams who worked on various apects of the implementation of this website. This work has been supported by NSF grant AST-9819123 and by Williams College and the University of Oklahoma.

  14. Geminga’s Puzzling Pulsar Wind Nebula

    NASA Astrophysics Data System (ADS)

    Posselt, B.; Pavlov, G. G.; Slane, P. O.; Romani, R.; Bucciantini, N.; Bykov, A. M.; Kargaltsev, O.; Weisskopf, M. C.; Ng, C.-Y.

    2017-01-01

    We report on six new Chandra observations of the Geminga pulsar wind nebula (PWN). The PWN consists of three distinct elongated structures—two ≈ 0.2{d}250 pc long lateral tails and a segmented axial tail of ≈ 0.05{d}250 pc length, where {d}250=d/(250 {pc}). The photon indices of the power-law spectra of the lateral tails, {{Γ }}≈ 1, are significantly harder than those of the pulsar ({{Γ }}≈ 1.5) and the axial tail ({{Γ }}≈ 1.6). There is no significant diffuse X-ray emission between the lateral tails—the ratio of the X-ray surface brightness between the south tail and this sky area is at least 12. The lateral tails apparently connect directly to the pulsar and show indications of moving footpoints. The axial tail comprises time-variable emission blobs. However, there is no evidence for constant or decelerated outward motion of these blobs. Different physical models are consistent with the observed morphology and spectra of the Geminga PWN. In one scenario, the lateral tails could represent an azimuthally asymmetric shell whose hard emission is caused by the Fermi acceleration mechanism of colliding winds. In another scenario, the lateral tails could be luminous, bent polar outflows, while the blobs in the axial tail could represent a crushed torus. In a resemblance to planetary magnetotails, the blobs of the axial tail might also represent short-lived plasmoids, which are formed by magnetic field reconnection in the relativistic plasma of the pulsar wind tail.

  15. IFU spectroscopy of southern planetary nebulae - III

    NASA Astrophysics Data System (ADS)

    Ali, A.; Dopita, M. A.; Basurah, H. M.; Amer, M. A.; Alsulami, R.; Alruhaili, A.

    2016-10-01

    In this paper, we describe integral field spectroscopic observations of four southern Galactic planetary nebulae (PNe), M3-4, M3-6, Hen2-29 and Hen2-37 covering the spectral range 3400-7000 Å. We derive the ionization structure, the physical conditions, the chemical compositions and the kinematical characteristics of these PNe and find good agreement with previous studies that relied upon the long-slit technique in their co-spatial area. From their chemical compositions as well as their spatial and kinematic characteristics, we determined that Hen2-29 is of the Peimbert type I (He- and N-rich), while the other three are of type II. The strength of the nebular He II line reveals that M3-3, Hen2-29 and Hen2-37 are of mid to high excitation classes while M3-6 is a low-excitation PN. A series of emission-line maps extracted from the data cubes were constructed for each PN to describe its overall structure. These show remarkable morphological diversity. Spatially resolved spectroscopy of M3-6 shows that the recombination lines of C II, C III, C IV and N III are of nebular origin, rather than arising from the central star as had been previously proposed. This result increases doubts regarding the weak emission-line star (WELS) classification raised by Basurah et al. In addition, they reinforce the probability that most genuine cases of WELS arise from irradiation effects in close binary central stars.

  16. The Nature of Cometary Knots in the Helix Nebula

    NASA Astrophysics Data System (ADS)

    Burkert, A.; O'dell, C. R.

    1996-12-01

    Recent HST observations have revealed heretofore unseen fine scale structure in the Helix Nebula. Thousands of well resolved neutral dark cores have been detected in extinction against the background emission of the nebula. These Cometary Knots (CK) have a remarkably uniform appearance with photoionized cusps and tails trailing away from the cusps on almost radial lines. The total mass of the CK is similar to the total mass of the ionized diffuse gas in the ring which means that they represent an important component of the nebula. We discuss the origin and future of the CK in the Helix. It has been suggested that the CK result from Rayleigh-Taylor instabilities arising at the ionization front of the nebula (Capriotti 1973, 1996). Our hydrodynamical simulations indicate that indeed Rayleigh-Taylor instabilities could lead to filamentary structures within planetary nebulae. The substructure of these fingers differs, however, from the observations in important ways. The observed CK therefore must have a different origin. The knots might represent local density fluctuations which remained behind and were compressed as the main ionization front advanced into the neutral material. Another formation scenario is a thin shell instability which results from the interaction of the nebula with a fast stellar wind. Although no stellar wind features have been detected so far, the brightness distribution of the ionized cusps of the knots indicates that this gas is in pressure equilibrium with a high-temperature surrounding gas which could be generated by a shocked stellar wind. If such a wind would have high velocities and low densities it could fall beneath the threshold for spectroscopic detection although it could be important for understanding the formation and structure of the CK. Detailed high-resolution numerical simulations which take into account a fast wind phase as well as the time variation of the Central Star's UV photon flux are presented.

  17. The blue supergiant MN18 and its bipolar circumstellar nebula

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Bestenlehner, J. M.; Bodensteiner, J.; Langer, N.; Greiner, J.; Grebel, E. K.; Berdnikov, L. N.; Beletsky, Y.

    2015-11-01

    We report the results of spectrophotometric observations of the massive star MN18 revealed via discovery of a bipolar nebula around it with the Spitzer Space Telescope. Using the optical spectrum obtained with the Southern African Large Telescope, we classify this star as B1 Ia. The evolved status of MN18 is supported by the detection of nitrogen overabundance in the nebula, which implies that it is composed of processed material ejected by the star. We analysed the spectrum of MN18 by using the code CMFGEN, obtaining a stellar effective temperature of ≈21 kK. The star is highly reddened, E(B - V) ≈ 2 mag. Adopting an absolute visual magnitude of MV = -6.8 ± 0.5 (typical of B1 supergiants), MN18 has a luminosity of log L/L⊙ ≈ 5.42 ± 0.30, a mass-loss rate of ≈(2.8-4.5) × 10- 7 M⊙ yr- 1, and resides at a distance of ≈5.6^{+1.5} _{-1.2} kpc. We discuss the origin of the nebula around MN18 and compare it with similar nebulae produced by other blue supergiants in the Galaxy (Sher 25, HD 168625, [SBW2007] 1) and the Large Magellanic Cloud (Sk-69°202). The nitrogen abundances in these nebulae imply that blue supergiants can produce them from the main-sequence stage up to the pre-supernova stage. We also present a K-band spectrum of the candidate luminous blue variable MN56 (encircled by a ring-like nebula) and report the discovery of an OB star at ≈17 arcsec from MN18. The possible membership of MN18 and the OB star of the star cluster Lynga 3 is discussed.

  18. Excimer laser superficial keratectomy for proud nebulae in keratoconus.

    PubMed

    Moodaley, L; Liu, C; Woodward, E G; O'Brart, D; Muir, M K; Buckley, R

    1994-06-01

    Contact lens intolerance in keratoconus may be due to the formation of a proud nebula at or near the apex of the cone. Excimer laser superficial keratectomy was performed as an outpatients with proud nebulae as treatment patients with proud nebulae as treatment for their contact lens intolerance. The mean period of contact lens wear before the development of intolerance was 13.4 years (range 2 to 27 years). Following the development of intolerance, three patients abandoned contact lens wear in the affected eye while the remainder experienced a reduction in comfortable wearing time (mean = 3.75 hours; range: 0-14 hours). All patients had good potential Snellen visual acuity with a contact lens of 6/9 (nine eyes) and 6/12 (one eye). The proud nebulae were directly ablated with a 193 nm ArF excimer laser using a 1 mm diameter beam. Between 100-150 pulses were sufficient to ablate the raised area. Patients experienced no pain during the procedure and reported minimal discomfort postoperatively. In all cases flattening of the proud nebulae was achieved. Seven patients were able to resume regular contact lens wear (mean wearing time = 10.17 hours; range 8 to 16 hours). In three patients, resumption of contact lens wear was unsuccessful because of cone steepness. All patients achieved postoperative Snellen visual acuity of 6/12 or better with a contact lens. Four patients experienced a loss of one line in Snellen acuity. The mean follow up period was 8.3 months (range 2 to 17 months). Excimer laser superficial keratectomy is a useful technique for the treatment of contact lens intolerance caused by proud nebulae in patients with keratoconus. Penetrating keratoplasty is thus avoided.

  19. Evolution of the central stars of young planetary nebulae

    NASA Astrophysics Data System (ADS)

    Hajduk, M.; van Hoof, P. A. M.; Zijlstra, A. A.

    2015-01-01

    Aims: The evolution of central stars of planetary nebulae was so far documented in just a few cases. However, spectra collected a few decades ago may provide a good reference for studying the evolution of central stars using the emission line fluxes of their nebulae. We investigated evolutionary changes of the [O iii] 5007 Å line flux in the spectra of planetary nebulae. Methods: We compared nebular fluxes collected during a decade or longer. We used literature data and newly obtained spectra. A grid of cloudy models was computed using existing evolutionary models, and the models were compared with the observations. Results: An increase of the [O iii] 5007 Å line flux is frequently observed in young planetary nebulae hosting H-rich central stars. The increasing nebular excitation is the response to the increasing temperature and hardening radiation of the central stars. We did not observe any changes in the nebular fluxes in the planetary nebulae hosting late-type Wolf-Rayet (WR) central stars. This may indicate a slower temperature evolution (which may stem from a different evolutionary status) of late-[WR] stars. Conclusions: In young planetary nebulae with H-rich central stars, the evolution can be followed using optical spectra collected during a decade or longer. The observed evolution of H-rich central stars is consistent with the predictions of the evolutionary models provided in the literature. Late-[WR] stars possibly follow a different evolutionary path. Reduced spectra from the Torun and SAAO observatories are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/573/A65

  20. Image of the Great Nebula in Andromeda, M31 Taken by the High Energy Astronomy Observatory (HEAO)-2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Both of the High Energy Astronomy Observatory (HEAO)-2/Einstein Observatory imaging devices were used to observe the Great Nebula in Andromeda, M31. This is a smaller field and more detailed view of the central region of the Great Nebula in Andromeda, M31, taken with the High Resolution Imager. The HEAO-2, the first imaging and largest x-ray telescope built to date, was capable of producing actual photographs of x-ray objects. Shortly after launch, the HEAO-2 was nicknamed the Einstein Observatory by its scientific experimenters in honor of the centernial of the birth of Albert Einstein, whose concepts of relativity and gravitation have influenced much of modern astrophysics, particularly x-ray astronomy. The HEAO-2, designed and developed by TRW, Inc. under the project management of the Marshall Space Flight Center, was launched aboard an Atlas/Centaur launch vehicle on November 13, 1978.

  1. COMPARING SHOCKS IN PLANETARY NEBULAE WITH THE SOLAR WIND TERMINATION SHOCK

    SciTech Connect

    Soker, Noam; Rahin, Roi; Behar, Ehud; Kastner, Joel H.

    2010-12-20

    We show that suprathermal particles, termed pick-up ions (PUIs), might reduce the postshock temperature of the fast wind and jets in some planetary nebulae (PNs) and in symbiotic systems. The goal is to explain the finding that the temperature of the 'hot bubble' formed by the postshock gas in some PNs and symbiotic nebulae is lower, sometimes by more than an order of magnitude, than the value expected from simple hydrodynamical calculations. Although various explanations have been proposed, there is as yet no preferred solution for this 'low temperature problem'. PUIs have been invoked to explain the low temperature behind the termination shock of the solar wind. While in the case of the solar wind the neutral atoms that turn into PUIs penetrate the preshock solar wind region from the interstellar medium, in PNs the PUI source is more likely slowly moving clumps embedded in the fast wind or jets. These clumps are formed by instabilities or from backflowing cold gas. Our estimates indicate that in young PNs these PUIs will thermalize before leaving the system. Only in older PNs whose sizes exceed {approx}5000 AU and for which the fast wind mass loss rate is M-dot{sub w{approx}}<10{sup -7} M-sun yr{sup -1} do we expect the PUIs to be an efficient carrier of energy out of the postshock region (the hot bubble).

  2. Water formation in early solar nebula: II-Collapsing cloud core

    NASA Astrophysics Data System (ADS)

    Tornow, C.; Gast, P.; Motschmann, U.; Kupper, S.; Kührt, E.; Pelivan, I.

    2014-08-01

    The formation of water is a repetitive process and depends on the physical conditions in the different stages of the solar nebula and early solar system. Our solar nebula model considers the thermal and chemical evolution of a collapsing globular cloud core. We simulate the collapse with a semi-analytical model which is based on a multi-zone density distribution. This model describes the formation of a central protostellar object surrounded by a disk and a thin outer envelope. It considers an adiabatic equation of state, viscous gas flow and a resistive magnetic field. Due to the low temperatures in the hydrostatic stage of the core, icy layers of water mixed with other molecules build on the dust grains. In the course of the collapse the ice sublimates and drives a complex chemical evolution located in a warm region around the proto-stellar object called hot corino. Moreover, the relatively high temperatures in this region allow the gas phase formation of water together with other molecules. The abundances of the chemical compounds are computed from rate equations solved in a Lagrangian grid. We can show that there was high water density in the early and late accretion zone of the Earth. This water was sublimated from the dust or formed by hot neutral reactions in the gas phase. Thus, according to our collapse model, there were two sources delivering the water incorporated into the Earth.

  3. Existence of an 16O-rich gaseous reservoir in the solar nebula.

    PubMed

    Krot, Alexander N; McKeegan, Kevin D; Leshin, Laurie A; MacPherson, Glenn J; Scott, Edward R D

    2002-02-08

    Carbonaceous chondrite condensate olivine grains from two distinct petrographic settings, calcium-aluminum-rich inclusion (CAI) accretionary rims and amoeboid olivine aggregates (AOAs), are oxygen-16 (16O) enriched at the level previously observed inside CAIs. This requires that the gas in the nebular region where these grains condensed was 16O-rich. This contrasts with an 16O-poor gas present during the formation of chondrules, suggesting that CAIs and AOAs formed in a spatially restricted region of the solar nebula containing 16O-rich gas. The 16O-rich gas composition may have resulted either from mass-independent isotopic chemistry or from evaporation of regions with enhanced dust/gas ratios, possibly in an X-wind environment near the young Sun.

  4. Experimental simulations of sulfide formation in the solar nebula.

    PubMed

    Lauretta, D S; Lodders, K; Fegley, B

    1997-07-18

    Sulfurization of meteoritic metal in H2S-H2 gas produced three different sulfides: monosulfide solid solution [(Fe,Ni)1-xS], pentlandite [(Fe,Ni)9-xS8], and a phosphorus-rich sulfide. The composition of the remnant metal was unchanged. These results are contrary to theoretical predictions that sulfide formation in the solar nebula produced troilite (FeS) and enriched the remaining metal in nickel. The experimental sulfides are chemically and morphologically similar to sulfide grains in the matrix of the Alais (class CI) carbonaceous chondrite, suggesting that these meteoritic sulfides may be condensates from the solar nebula.

  5. s-process enrichment in the planetary nebula NGC 3918

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Madonna, S.; Luridiana, V.; Sterling, N. C.; Morisset, C.

    2015-05-01

    We present deep, high-resolution (R˜40000) UVES at VLT spectrophotometric data of the planetary nebula NGC 3918. This is one of the deepest spectra ever taken of a planetary nebula. We have identified and measured more than 700 emission lines and, in particular, we have detected very faint lines of several neutron-capture elements (s-process elements: Kr, Xe and Rb) that enable us to compute their chemical abundances with unprecedented accuracy, thus constraining the efficiency of the s-process and convective dredge-up.

  6. Young stars of low mass in the Gum nebula

    NASA Technical Reports Server (NTRS)

    Graham, J. A.; Heyer, Mark H.

    1989-01-01

    Observations are presented for four recently formed stars in the vicinity of the Gum nebula which are heavily obscured by surrounding dust and are associated with small reflection nebulae. HH46 is the only currently active star of the sample, and it is found to have a spectral type in the range of late G-early K, with superimposed emission lines of H-alpha, Ca II, Fe I, Fe II, and weak He I at near zero velocities. It is suggested that the observed scenario of low-mass stars in an older massive star environment may be analogous to the circumstances surrounding the birth of the sun.

  7. The global evolution of the primordial solar nebula

    NASA Technical Reports Server (NTRS)

    Ruden, S. P.; Lin, D. N. C.

    1986-01-01

    Complete radial, time-dependent calculations of the structure and evolution of the primordial solar nebula during the viscous diffusion stage are presented. The viscous stress is derived from analytic one-zone models of the vertical nebular structure based on detailed grain opacities. Comparisons with full numerical integrations indicate that the effective viscous alpha parameter is about 0.01. The evolution time of a minimum mass nebula is one-million yr or less. The flow pattern of fluid elements in the disk is examined and the implications the results have on the theory of the formation of the solar system are discussed.

  8. Facilitating NASA Earth Science Data Processing Using Nebula Cloud Computing

    NASA Technical Reports Server (NTRS)

    Pham, Long; Chen, Aijun; Kempler, Steven; Lynnes, Christopher; Theobald, Michael; Asghar, Esfandiari; Campino, Jane; Vollmer, Bruce

    2011-01-01

    Cloud Computing has been implemented in several commercial arenas. The NASA Nebula Cloud Computing platform is an Infrastructure as a Service (IaaS) built in 2008 at NASA Ames Research Center and 2010 at GSFC. Nebula is an open source Cloud platform intended to: a) Make NASA realize significant cost savings through efficient resource utilization, reduced energy consumption, and reduced labor costs. b) Provide an easier way for NASA scientists and researchers to efficiently explore and share large and complex data sets. c) Allow customers to provision, manage, and decommission computing capabilities on an as-needed bases

  9. Diffuse X-ray emission from the Dumbbell Nebula?

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Kwitter, Karen B.; Kaler, James B.

    1993-01-01

    We have analyzed ROSAT Position Sensitive Proportional Counter pointed observations of the Dumbbell Nebula and find that the previously reported 'extended' X-ray emission is an instrumental electronic ghost image at the softest energy band. At slightly higher energy bands, the image of the Dumbbell is not very different from that of the white dwarf HZ43. We conclude that the X-ray emission of the Dumbbell Nebula comes from its central star. A blackbody model is fitted to the spectrum and the best-fit temperature of not greater than 136,000 +/- 10,000 K is in excellent agreement with the Zanstra temperatures.

  10. The ionization structure of planetary nebulae 10: NGC 2392

    NASA Technical Reports Server (NTRS)

    Barker, Timothy

    1989-01-01

    Spectrophotometric observations of emission-line intensities over the spectral range 1400 to 7200 A were made in six positions in the planetary nebula NGC 2392. Standard equations used to correct for the existence of elements in other than the optically observable ionization stages give consistent results for the different positions that are in excellent agreement with abundances calculated using ultraviolet lines, and there is no evidence for any abundance gradient in the nebula. The logarithmic abundances agree well with determinations by Aller and Keyes.

  11. A Search for Gas-Phase Zirconium in s-process Enriched Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Dinerstein, Harriet L.; Lacy, J. H.; Sellgren, K.; Sterling, N. C.

    2006-12-01

    We report results from a search for the ground-state fine-structure line of triply ionized zirconium (Zr) near 8 microns, for several planetary nebulae known to have enhanced abundances of other light neutron-capture elements. The observations were made with the high spectral resolution mid-IR spectrometer TEXES (Lacy et al. 2002, PASP, 114, 153) on the IRTF. Zr, atomic number Z = 40, is part of the “light s-process” peak of nuclei which are synthesized in the region between the H and He-burning shells within AGB stars and mixed into the stellar envelope by dredge-up processes before expulsion of a planetary nebula. The targets included objects for which we have demonstrated that Ge (Z = 32) is enhanced by up to a factor of 5 (Sterling et al. 2005, ApJ, 625, 368), and Kr (Z = 36) is enhanced by factors of up to 10 (Sterling et al. 2006, submitted; Sterling & Dinerstein, in preparation). According to both evolutionary models and observations of Galactic S-type stars, Zr can be even more highly enriched than Ge or Kr, with enrichment factors of up to 20 30 (Busso et al. 2001, ApJ, 557, 802; Vanture & Wallerstein 2002, ApJ, 564, 397). If Zr is present primarily in gaseous form in these planetary nebulae, our failure to detect the mid-IR Zr line sets constraints on a combination of the initial mass of the progenitor stars and the details of the s-process and convective mixing. An alternate interpretation is that much of the Zr, a highly refractory element, is locked up in dust grains that formed in the AGB star’s atmosphere before or during envelope ejection. This research was supported by NSF grants AST 97-31156 and 04-06809.

  12. Half-megasecond Chandra spectral imaging of the hot circumgalactic nebula around quasar MRK 231

    SciTech Connect

    Veilleux, S.; Teng, S. H.; Rupke, D. S. N.; Maiolino, R.; Sturm, E.

    2014-08-01

    A deep 400 ks ACIS-S observation of the nearest quasar known, Mrk 231, is combined with archival 120 ks data to carry out the first ever spatially resolved spectral analysis of a hot X-ray-emitting circumgalactic nebula around a quasar. The 65 × 50 kpc X-ray nebula shares no resemblance with the tidal debris seen at optical wavelengths. One notable exception is the small tidal arc ∼3.5 kpc south of the nucleus where excess soft X-ray continuum emission and Si XIII 1.8 keV line emission are detected, consistent with star formation and its associated alpha-element enhancement, respectively. An X-ray shadow is also detected at the location of the 15 kpc northern tidal tail. The hard X-ray continuum emission within ∼6 kpc of the center is consistent with being due entirely to the bright central active galactic nucleus. The soft X-ray spectrum of the outer (≳6 kpc) portion of the nebula is best described as the sum of two thermal components with temperatures ∼3 and ∼8 million K and spatially uniform super-solar alpha-element abundances, relative to iron. This result implies enhanced star formation activity over ∼10{sup 8} yr, accompanied by redistribution of the metals on a large scale. The low-temperature thermal component is not present within ∼6 kpc of the nucleus, suggesting extra heating in this region from the circumnuclear starburst, the central quasar, or the optically identified ≳3 kpc quasar-driven outflow. The soft X-ray emission is weaker in the western quadrant, coincident with a deficit of Hα and some of the largest columns of neutral gas outflowing from the nucleus. Shocks may heat the gas to high temperatures at this location, consistent with the tentative ∼2σ detection of extended Fe XXV 6.7 keV line emission.

  13. Observations of feedback from radio-quiet quasars - II. Kinematics of ionized gas nebulae

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Zakamska, Nadia L.; Greene, Jenny E.; Nesvadba, Nicole P. H.; Liu, Xin

    2013-12-01

    The prevalence and energetics of quasar feedback is a major unresolved problem in galaxy formation theory. In this paper, we present Gemini Integral Field Unit observations of ionized gas around 11 luminous, obscured, radio-quiet quasars at z ˜ 0.5 out to ˜15 kpc from the quasar; specifically, we measure the kinematics and morphology of [O III] λ5007 Å emission. The round morphologies of the nebulae and the large line-of-sight velocity widths (with velocities containing 80 per cent of the emission as high as 103 km s-1) combined with relatively small velocity difference across them (from 90 to 520 km s-1) point towards wide-angle quasi-spherical outflows. We use the observed velocity widths to estimate a median outflow velocity of 760 km s-1, similar to or above the escape velocities from the host galaxies. The line-of-sight velocity dispersion declines slightly towards outer parts of the nebulae (by 3 per cent kpc-1 on average). The majority of nebulae show blueshifted excesses in their line profiles across most of their extents, signifying gas outflows. For the median outflow velocity, we find dot{E}_kin between 4 × 1044 and 3 × 1045 erg s-1 and dot{M} between 2 × 103 and 2 × 104 M⊙ yr-1. These values are large enough for the observed quasar winds to have a significant impact on their host galaxies. The median rate of converting bolometric luminosity to kinetic energy of ionized gas clouds is ˜2 per cent. We report four new candidates for `superbubbles' - outflows that may have broken out of the denser regions of the host galaxy.

  14. FERMI-LAT SEARCH FOR PULSAR WIND NEBULAE AROUND GAMMA-RAY PULSARS

    SciTech Connect

    Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Bastieri, D.; Buson, S.; Bonamente, E.; Brigida, M.; Bruel, P.

    2011-01-01

    The high sensitivity of the Fermi-LAT (Large Area Telescope) offers the first opportunity to study faint and extended GeV sources such as pulsar wind nebulae (PWNe). After one year of observation the LAT detected and identified three PWNe: the Crab Nebula, Vela-X, and the PWN inside MSH 15-52. In the meantime, the list of LAT detected pulsars increased steadily. These pulsars are characterized by high energy loss rates ( E-dot ) from {approx}3 x 10{sup 33} erg s{sup -1} to 5 x 10{sup 38} erg s{sup -1} and are therefore likely to power a PWN. This paper summarizes the search for PWNe in the off-pulse windows of 54 LAT-detected pulsars using 16 months of survey observations. Ten sources show significant emission, seven of these likely being of magnetospheric origin. The detection of significant emission in the off-pulse interval offers new constraints on the {gamma}-ray emitting regions in pulsar magnetospheres. The three other sources with significant emission are the Crab Nebula, Vela-X, and a new PWN candidate associated with the LAT pulsar PSR J1023-5746, coincident with the TeV source HESS J1023-575. We further explore the association between the HESS and the Fermi source by modeling its spectral energy distribution. Flux upper limits derived for the 44 remaining sources are used to provide new constraints on famous PWNe that have been detected at keV and/or TeV energies.

  15. 2-45 Micron Infrared Spectroscopy of Carbon-Rich Proto-Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Hrivnak, Bruce J.; Volk, Kevin; Kwok, Sun

    2000-01-01

    Infrared Space Observatory (ISO) 2-45 micron observations of seven proto-planetary nebulae (PPNs) and two other carbon-rich objects are presented. The unidentified emission features at 21 and 30 microns are detected in six sources, including four new detections of the 30 micron feature. This previously unresolved 30 micron feature is now resolved and found to consist of a broad feature peaking at 27.2 microns (the '30 micron' feature) and a narrower feature at 25.5 microns (the '26 micron' feature). This new 26 micron feature is detected in eight sources and is particularly strong in IRAS Z02229 + 6208 and 16594-4656. The unidentified infrared (UIR) emission features at 3.3, 6.2, 7.7, and 11.3 microns which are commonly observed in planetary nebulae and H II regions, are also seen in these PPNs. However, their strengths relative to the continuum plateaus at 8 and 12 microns are weaker than in planetary nebulae. The 6.9 micron feature, seen almost exclusively in PPNs, is strong. New millimeter CO and HCN observations were made; they support the carbon-rich nature of the objects and yield the expansion velocities of the gaseous envelopes. The spectral energy distributions of these PPNs were fitted with a radiative-transfer model, taking into account the emission features at 21, 26, and 30 microns. A significant fraction of the total energy output is emitted in these features: as high as 20% in the 30 micron feature and 8% in the 21 micron feature. The fact that so much energy is carried in these features suggests that the material responsible for these features must be made of abundant elements and most likely involves carbon. SiS, appears to be ruled out as the emitter of the 21 micron feature due to the absence of a predicted companion feature.

  16. Stellar Rotation in the Orion Nebula Cluster Flanking Fields

    NASA Astrophysics Data System (ADS)

    Rebull, L.

    1999-12-01

    We present an optical study of four 45' x 45' fields centered 35' north, south, east, and west of the Orion Nebula Cluster center. We have measured V and I C photometry for 5000 stars in three of these fields, and U photometry for 1600 of those. We have obtained spectral classifications for 300 of the stars with UVI C photometry plus an additional 200 stars located outside the area of our photometric survey. Based on these data, we find 230 active accretion disk candidates. We have also obtained time-series data for stars in each of these four fields, and 300 periods derived from these data will be presented and discussed. In recent months, several investigators have presented rotation rates for stars in the Trapezium and its immediate environs. The paradigm (e.g. Choi and Herbst 1996) until now has been that the slow rotators are still (magnetically) locked to their disks, and that the fast rotators have dissipated their disks sufficiently as to allow spinup. Herbst et al. (2000) claim they see a bimodal distribution of rotators in Orion; Stassun et al. (1999) claim not to see such a distribution in a very similar region, and in fact cast doubt on the bimodality of the original distribution. Different selection effects (as well as different numbers of stars) are likely to be affecting these conclusions; the addition of data presented here will clarify the issues. This research has made use of data taken at McDonald Observatory (by R. Makidon and M. Adams), data taken at the KPNO 0.9m (with B. Patten and C. Pavlovsky), data taken through the WIYN-Queue program, software written by B. Patten, and partial funding via NASA Origins Grants (L. Hillenbrand and S. Strom).

  17. The spatially resolved bipolar nebula of Sakurai's object

    SciTech Connect

    Hinkle, Kenneth H.; Joyce, Richard R. E-mail: rjoyce@noao.edu

    2014-04-20

    Sakurai's object (V4334 Sgr), the final flash object discovered in the mid-1990s, underwent rapid cooling during the first decade of the 21st century becoming as faint as K ∼ 25. This stage of evolution has ceased. Between observations in 2010 September and 2013 April V4334 Sgr brightened >2 mag to K = 14.2 and the effective temperature increased to ∼590 K. AO images show a central source and two extended globules defining a 13° position angle. The globules span a spatial extent of ∼0.''3 in 2013. This spatial extent is consistent with sizes derived from spectral energy distributions taken over the previous decade and a debris cloud expanding at 0.055 mas d{sup –1} since late 1998. Near-simultaneous 0.85-2.5 μm spectra reveal helium lines attributed to a wind-interaction shock. The He I 1.0830 μm emission has a spectral width of ∼1000 km s{sup –1} and a spatial extent of ∼1.''4. The helium shell is fragmented, spatially asymmetric, and five times larger than the dust debris cloud. [C I] and [N I] forbidden lines are present in the 1 μm region spectrum. The forbidden line spectrum is similar to that of proto-planetary nebulae. The [C I] 9850 Å line is spatially extended. The expansion velocity and change of angular size limit the distance to 2.1-3.7 kpc.

  18. A Comprehensive Search for Stellar Bowshock Nebulae in the Milky Way: A Catalog of 709 Mid-infrared Selected Candidates

    NASA Astrophysics Data System (ADS)

    Kobulnicky, Henry A.; Chick, William T.; Schurhammer, Danielle P.; Andrews, Julian E.; Povich, Matthew S.; Munari, Stephan A.; Olivier, Grace M.; Sorber, Rebecca L.; Wernke, Heather N.; Dale, Daniel A.; Dixon, Don M.

    2016-12-01

    We identify 709 arc-shaped mid-infrared nebula in 24 μm Spitzer Space Telescope or 22 μm Wide Field Infrared Explorer surveys of the Galactic Plane as probable dusty interstellar bowshocks powered by early-type stars. About 20% are visible at 8 μm or at shorter mid-infrared wavelengths. The vast majority (660) have no previous identification in the literature. These extended infrared sources are strongly concentrated near the Galactic mid-plane, with an angular scale height of ∼0.°6. All host a symmetrically placed star implicated as the source of a stellar wind sweeping up interstellar material. These are candidate “runaway” stars potentially having high velocities in the reference frame of the local medium. Among the 286 objects with measured proper motions, we find an unambiguous excess with velocity vectors aligned with the infrared morphology—kinematic evidence that many of these are “runaway” stars with large peculiar motions responsible for the bowshock signature. We discuss a population of “in situ” bowshocks (∼103 objects) that face giant H ii regions where the relative motions between the star and ISM may be caused by bulk outflows from an overpressured bubble. We also identify ∼58 objects that face 8 μm bright-rimmed clouds and apparently constitute a sub-class of in situ bowshocks where the stellar wind interacts with a photoevaporative flow (PEF) from an eroding molecular cloud interface (i.e., “PEF bowshocks”). Orientations of the arcuate nebulae exhibit a correlation over small angular scales, indicating that external influences such as H ii regions are responsible for producing some bowshock nebulae. However, the vast majority of the nebulae in this sample appear to be isolated (499 objects) from obvious external influences.

  19. A multiwavelength study of the Stingray Nebula; properties of the nebula, central star, and dust

    NASA Astrophysics Data System (ADS)

    Otsuka, Masaaki; Parthasarathy, Mudumba; Tajitsu, Akito; Hubrig, Swetlana

    2016-07-01

    We performed a detail chemical abundance analysis and photo-ionization modeling of the Stingray Nebula (Hen3-1357, Parthasarathy et al. 1993[1]) to more characterize this PN. We calculated nine elemental abundances using collisionally excited lines (CELs) and recombination lines (RLs). The RL C/O ratio indicates that this PN is O-rich, which is supported by the detection of the broad amorphous silicate features at 9 and 18 μm By photo-ionization modeling, we investigated properties of the central star and derived the gas and dust masses. The nebular elemental abundances, the core-mass of the central star, and the gas mass are in agreement with the AGB model for the initially 1.5 M ⊙ stars with the Z = 0.008.

  20. International Ultraviolet Explorer satellite observations of seven high-excitation planetary nebulae.

    PubMed

    Aller, L H; Keyes, C D

    1980-03-01

    Observations of seven high-excitation planetary nebulae secured with the International Ultraviolet Explorer (IUE) satellite were combined with extensive ground-based data to obtain electron densities, gas kinetic temperatures, and ionic concentrations. We then employed a network of theoretical model nebulae to estimate the factors by which observed ionic concentrations must be multiplied to obtain elemental abundances. Comparison with a large sample of nebulae for which extensive ground-based observations have been obtained shows nitrogen to be markedly enhanced in some of these objects. Possibly most, if not all, high-excitation nebulae evolve from stars that have higher masses than progenitors of nebulae of low-to-moderate excitation.