Science.gov

Sample records for nebular oxygen reservoirs

  1. Oxygen Isotopes in Chondritic Interplanetary Dust: Parent-Bodies and Nebular Oxygen Reservoirs

    SciTech Connect

    Aleon, J; McKeegan, K D; Leshin, L

    2006-02-14

    Planetary objects have preserved various amounts of oxygen issued from isotopically different oxygen reservoirs reflecting their origin and physico-chemical history. An {sup 16}O-rich component is preserved in refractory inclusions (CAIs) whereas meteorites matrices are enriched in an {sup 16}O-poor component. The origin of these components is still unclear. The most recent models are based on isotope selective photodissociation of CO in a {sup 16}O-rich nebula/presolr cloud resulting in a {sup 16}O-poor gas in the outer part of the nebula. However because most meteorite components are thought to be formed in the inner 3AU of the solar nebula, the precise isotopic composition of outer solar system components is yet unknown. In that respect, the oxygen isotopic composition of cometary dust is a key to understand the origin of the solar system. The Stardust mission will bring back to the Earth dust samples from comet Wild2, a short period comet from the Jupiter family. A precise determination of the oxygen isotope composition of Wild2 dust grains is essential to decipher the oxygen reservoirs of the outer solar system. However, Stardust samples may be extremely fragmented upon impact in the collector. In addition, interplanetary dust particles (IDPs) collected in the stratosphere are likely to contain comet samples. Therefore, they started to investigate the oxygen isotopic composition of a suite of chondritic interplanetary dust particles that includes IDPs of potential cometary origin using a refined procedure to increase the lateral resolution for the analysis of Stardust grains or IDP subcomponents down to {approx} 3 {micro}m. High precision data for 4 IDPs were previously reported, here they have measured 6 additional IDPs.

  2. Lightning and Mass Independent Oxygen Isotopic Fractionation in Nebular Silicates

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.

    2009-01-01

    Lightning has long been postulated as the agent of Chondru|e formation in the solar nebula, but it may have an additional role to play as well. Lightning bolts of almost any scale will both vaporize dust and liberate oxygen atoms that will then interact with both nebular gases as well as the refractory silicate vapor as it re-condenses. Such processes should result in the addition of the heavy oxygen isotopes to the growing silicate grains while the light oxygen-16 becomes part of the gas phase water. This process will proceed to some extent throughout the history of any turbulent nebula and will result in the gradual increase of O-16 in the gas phase and in a much larger relative increase in the O-17 and O-18 content of the nebular dust. Laboratory experiments have demonstrated the production of such "heavy oxygen enriched", non-mass-dependently-fractionated dust grains in a high voltage discharge in a hydrogen rich gas containing small quantities of silane, pentacarbonyl iron and oxygen.

  3. Can Lightning Produce Significant Levels of Mass-Independent Oxygen Isotopic Fractionation in Nebular Dust?

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Paquette, John A.; Farquhar, Adam

    2012-01-01

    Based on recent evidence that oxide grains condensed from a plasma will contain oxygen that is mass independently fractionated compared to the initial composition of the vapor, we present a first attempt to evaluate the potential magnitude of this effect on dust in the primitive solar nebula. This assessment relies on previous studies of nebular lightning to provide reasonable ranges of physical parameters to form a very simple model to evaluate the plausibility that lightning could affect a significant fraction of nebular dust and that such effects could cause a significant change in the oxygen isotopic composition of solids in the solar nebula over time. If only a small fraction of the accretion energy is dissipated as lightning over the volume of the inner solar nebula, then a large fraction of nebular dust will be exposed to lightning. If the temperature of such bolts is a few percent of the temperatures measured in terrestrial discharges, then dust will vaporize and recondense in an ionized environment. Finally, if only a small average decrease is assumed in the O-16 content of freshly condensed dust, then over the last 5 million years of nebular accretion the average delta O-17 of the dust could increase by more than 30 per mil. We conclude that it is possible that the measured " slope 1" oxygen isotope line measured in meteorites and their components represents a time-evolution sequence of nebular dust over the last several million years of nebular evolution O-16-rich materials formed first, then escaped further processing as the average isotopic composition of the dust graduaUy became increasingly depleted in O-16 .

  4. OPTICAL SPECTROSCOPY AND NEBULAR OXYGEN ABUNDANCES OF THE SPITZER/SINGS GALAXIES

    SciTech Connect

    Moustakas, John; Kennicutt, Robert C. Jr.; Tremonti, Christy A.; Dale, Daniel A.; Smith, John-David T.; Calzetti, Daniela

    2010-10-15

    We present intermediate-resolution optical spectrophotometry of 65 galaxies obtained in support of the Spitzer Infrared Nearby Galaxies Survey (SINGS). For each galaxy we obtain a nuclear, circumnuclear, and semi-integrated optical spectrum designed to coincide spatially with mid- and far-infrared spectroscopy from the Spitzer Space Telescope. We make the reduced, spectrophotometrically calibrated one-dimensional spectra, as well as measurements of the fluxes and equivalent widths of the strong nebular emission lines, publicly available. We use optical emission-line ratios measured on all three spatial scales to classify the sample into star-forming, active galactic nuclei (AGNs), and galaxies with a mixture of star formation and nuclear activity. We find that the relative fraction of the sample classified as star forming versus AGN is a strong function of the integrated light enclosed by the spectroscopic aperture. We supplement our observations with a large database of nebular emission-line measurements of individual H II regions in the SINGS galaxies culled from the literature. We use these ancillary data to conduct a detailed analysis of the radial abundance gradients and average H II-region abundances of a large fraction of the sample. We combine these results with our new integrated spectra to estimate the central and characteristic (globally averaged) gas-phase oxygen abundances of all 75 SINGS galaxies. We conclude with an in-depth discussion of the absolute uncertainty in the nebular oxygen abundance scale.

  5. Does Oxygen Isotopic Heterogeneity in Refractory Inclusions and Their Wark-Lovering Rims Record Nebular Repressing?

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2013-01-01

    Large systematic variations in O-isotopic compositions found within individual mineral layers of rims surrounding Ca-, Al-rich inclusions (CAIs) and at the margins of some CAIs imply formation from distinct environments [e.g., 1-3]. The O-isotope compositions of many CAIs preserve a record of the Solar nebula gas believed to initially be O-16-rich (delta O-17 less than or equal to -25%0) [4-5]. Data from a recent study of the compact Type A Allende CAI, A37, preserve a diffusion profile in the outermost 70 micrometers of the inclusion and show greater than 25%0 variations in delta O-17 within its 100 micrometer-thick Wark-Lovering rim (WL-rim) [3]. This and comparable heterogeneity measured in several other CAIs have been explained by isotopic mixing between the O-16-rich Solar reservoir and a second O-16-poor reservoir (probably nebular gas) with a planetary-like isotopic composition, e.g., [1,2,3,6]. However, there is mineralogical and isotopic evidence from the interiors of CAIs, in particular those from Allende, for parent body alteration. At issue is how to distinguish the record of secondary reprocessing in the nebula from that which occurred on the parent body. We have undertaken the task to study a range of CAI types with varying mineralogies, in part, to address this problem.

  6. OXYGEN ISOTOPIC COMPOSITIONS OF THE ALLENDE TYPE C CAIs: EVIDENCE FOR ISOTOPIC EXCHANGE DURING NEBULAR MELTING AND ASTEROIDAL THERMAL METAMORPHISM

    SciTech Connect

    Krot, A N; Chaussidon, M; Yurimoto, H; Sakamoto, N; Nagashima, K; Hutcheon, I D; MacPherson, G J

    2008-02-21

    that CAIs 100, 160 and CG5 experienced melting in an {sup 16}O-rich ({Delta}{sup 17}O < -20{per_thousand}) nebular gas in the CAI-forming region. The Type C and Type-B-like portions of CAI 6-1-72 experienced melting in an {sup 16}O-depleted ({Delta}{sup 17}O {ge} -13{per_thousand}) nebular gas. CAIs ABC, TS26 and 93 experienced isotopic exchange during re-melting in the presence of an {sup 16}O-poor ({Delta}{sup 17}O {ge} -10{per_thousand}) nebular gas in the chondrule-forming region(s). Subsequently, Allende Type C CAIs experienced post-crystallization isotopic exchange with an {sup 16}O-poor reservoir that affected largely melilite and anorthite. Because pseudomorphic replacement of lacy melilite by grossular, monticellite and forsterite occurred during thermal metamorphism, some oxygen isotopic exchange of melilite and anorthite must have continued after formation of these secondary minerals. We suggest that some or all oxygen isotopic exchange in melilite and anorthite occurred during fluid-assisted thermal metamorphism on the CV parent asteroid. Similar processes may have also affected melilite and anorthite of CAIs in metamorphosed CO chondrites.

  7. Oxygen isotopic abundances in calcium- aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity.

    PubMed

    McKeegan, K D; Leshin, L A; Russell, S S; MacPherson, G J

    1998-04-17

    The oxygen isotopic compositions of two calcium-aluminum-rich inclusions (CAIs) from the unequilibrated ordinary chondrite meteorites Quinyambie and Semarkona are enriched in 16O by an amount similar to that in CAIs from carbonaceous chondrites. This may indicate that most CAIs formed in a restricted region of the solar nebula and were then unevenly distributed throughout the various chondrite accretion regions. The Semarkona CAI is isotopically homogeneous and contains highly 16O-enriched melilite, supporting the hypothesis that all CAI minerals were originally 16O-rich, but that in most carbonaceous chondrite inclusions some minerals exchanged oxygen isotopes with an external reservoir following crystallization.

  8. Temperature and oxygen in Missouri reservoirs

    USGS Publications Warehouse

    Jones, John R.; Knowlton, Matthew F.; Obrecht, Daniel V.; Graham, Jennifer L.

    2011-01-01

    Vertical profiles of water temperature (n = 7193) and dissolved oxygen (n = 6516) were collected from 235 Missouri reservoirs during 1989–2007; most data were collected during May–August and provide a regional summary of summer conditions. Collectively, surface water temperature ranged from a mean of ~22 C in May to 28 C in July, and individual summer maxima typically were 28–32 C. Most (~95%) reservoirs stably stratify by mid-May, but few are deep enough to have hypolimnia with near-uniform temperatures. Among stratified reservoirs, maximum effective length and maximum depth accounted for 75% of the variation in mixed depth and thermocline depth. Ephemeral, near-surface thermoclines occurred in 39% of summer profiles and were most frequent in small, turbid reservoirs. Isotherms below the mixed layer deepen during stratification, and the water column is >20 C by August in all but the deepest reservoirs. Most reservoirs showed incipient dissolved oxygen (DO) depletion by mid-May, and by August, 80% of profiles had DO minima of 50% of variation in DO below the mixed layer during summer. Warm summer temperatures and widespread low DO often limit available fish habitat in Missouri reservoirs and compress warm-water fish communities into subsurface layers that exceed their thermal preferences. This study provides a regional baseline of reservoir temperature and oxygen conditions useful for future evaluations of eutrophication and the effects of a warming climate.

  9. Investigation of Nebular Processes Through Oxygen Isotopic Analysis of Primitive Meteorite Materials

    NASA Technical Reports Server (NTRS)

    Leshin, Laurie

    2002-01-01

    As a direct result of support provided by this grant, precise and accurate determination of delta(18)O and delta(17)O in silicates (and other minerals) by ion microprobe (both IMS 6f and IMS 1270) are now being carried out in several laboratories, and these analyses, combined with application of laser fluorination techniques, have led to a proliferation of oxygen isotopic data in the past approx. 3 years. The applications of these techniques in cosmochemical research have been myriad, from understanding the most refractory objects in the nebula (CAIs) to the low temperature alteration processes on meteorite parent bodies. Here, we describe our progress in understanding the oxygen isotopic microdistributions in primitive meteorite materials, as directly supported by this Origins grant.

  10. NEBULAR WATER DEPLETION AS THE CAUSE OF JUPITER'S LOW OXYGEN ABUNDANCE

    SciTech Connect

    Mousis, Olivier; Madhusudhan, Nikku; Johnson, Torrence V.

    2012-05-20

    Motivated by recent spectroscopic observations suggesting that atmospheres of some extrasolar giant planets are carbon-rich, i.e., carbon/oxygen ratio (C/O) {>=} 1, we find that the whole set of compositional data for Jupiter is consistent with the hypothesis that it should be a carbon-rich giant planet. We show that the formation of Jupiter in the cold outer part of an oxygen-depleted disk (C/O {approx} 1) reproduces the measured Jovian elemental abundances at least as well as the hitherto canonical model of Jupiter formed in a disk of solar composition (C/O 0.54). The resulting O abundance in Jupiter's envelope is then moderately enriched by a factor of {approx}2 Multiplication-Sign solar (instead of {approx}7 Multiplication-Sign solar) and is found to be consistent with values predicted by thermochemical models of the atmosphere. That Jupiter formed in a disk with C/O {approx} 1 implies that water ice was heterogeneously distributed over several AU beyond the snow line in the primordial nebula and that the fraction of water contained in icy planetesimals was a strong function of their formation location and time. The Jovian oxygen abundance to be measured by NASA's Juno mission en route to Jupiter will provide a direct and strict test of our predictions.

  11. Nebular Paleomagnetism

    NASA Astrophysics Data System (ADS)

    Fu, R. R.; Weiss, B. P.; Andrade Lima, E.; Harrison, R. J.; Bai, X. N.; Ebel, D. S.; Suavet, C. R.; Wang, H.

    2014-12-01

    Theoretical work suggests that magnetic fields play a fundamental role in the evolution of protoplanetary systems. Efficient radial transport of angular momentum in the protoplanetary disk, an essential requirement for the formation of stars and planets, may be mediated by the magneto-rotational instability (MRI) or magnetocentrifugal winds (MCW). Magnetic fields may also generate turbulence in the nebular gas, potentially leading to instabilities that created the first planetesimals. Finally, magnetic reconnection events may lead to the formation of chondrules, which are millimeter-sized meteoritic inclusions that likely constituted a major building block of terrestrial planets in the solar system. Direct measurements of the magnetic field in the planet-forming region of a protoplanetary disk, which have remained hitherto elusive to astronomical observations, are necessary to test the theoretical models discussed above. Because chondrules were heated and cooled in the nebula, they potentially carry a record of nebular magnetic fields. Newly developed microsampling and magnetic field mapping techniques based on the SQUID microscope can measure very weak moments (<10-13 Am2) from oriented small (~100 μm) samples, enabling the recovery of detailed paleomagnetic data from single chondrules. We performed paleomagnetic experiments on 13 chondrules from the primitive LL3.0 chondrite Semarkona. We showed that dusty olivine-bearing chondrules (Fig. 1) were magnetized prior to the assembly of the meteorite in a magnetic field of 54±21 μT. This field strength provides evidence against chondrule formation near the sun as predicted by the x-wind model while favoring weak-field processes such as nebular shocks or planetesimal collisions. Furthermore, such fields are sufficient to redistribute angular momentum efficiently via either the MRI or MCW, strongly suggesting that magnetic fields are the primary driver of mass accretion in protoplanetary disks. Ongoing paleomagnetic

  12. A coupled bubble plume-reservoir model for hypolimnetic oxygenation

    NASA Astrophysics Data System (ADS)

    Singleton, V. L.; Rueda, F. J.; Little, J. C.

    2010-12-01

    A model for a linear bubble plume used for hypolimnetic oxygenation was coupled with a three-dimensional hydrodynamic model to simulate the complex interaction between bubble plumes and the large-scale processes of transport and mixing. The coupled model accurately simulated the evolution of dissolved oxygen (DO) and temperature fields that occurred during two full-scale diffuser tests in a water supply reservoir. The prediction of asymmetric circulation cells laterally and longitudinally on both sides of the linear diffuser was due to the uneven reservoir bathymetry. Simulation of diffuser operation resulted in baroclinic pressure gradients, which caused vertical oscillations above the hypolimnion and contributed to distribution of plume detrainment upstream and downstream of the diffuser. On the basis of a first-order variance analysis, the largest source of uncertainty for both predicted DO and temperature was the model bathymetry, which accounted for about 90% of the overall uncertainty. Because the oxygen addition rate was 4 times the sediment oxygen uptake (SOU) rate, DO predictions were not sensitive to SOU. In addition to bathymetry, the momentum assigned to plume entrainment and detrainment is a significant source of uncertainty in the coupled model structure and appreciably affects the predicted intensity of mixing and lake circulation. For baseline runs, the entrainment and detrainment velocities were assumed to be half of the velocities through the flux face of the grid cells. Additional research on appropriate values of the plume detrainment momentum for the coupled model is required.

  13. Artificial neural network modeling of dissolved oxygen in reservoir.

    PubMed

    Chen, Wei-Bo; Liu, Wen-Cheng

    2014-02-01

    The water quality of reservoirs is one of the key factors in the operation and water quality management of reservoirs. Dissolved oxygen (DO) in water column is essential for microorganisms and a significant indicator of the state of aquatic ecosystems. In this study, two artificial neural network (ANN) models including back propagation neural network (BPNN) and adaptive neural-based fuzzy inference system (ANFIS) approaches and multilinear regression (MLR) model were developed to estimate the DO concentration in the Feitsui Reservoir of northern Taiwan. The input variables of the neural network are determined as water temperature, pH, conductivity, turbidity, suspended solids, total hardness, total alkalinity, and ammonium nitrogen. The performance of the ANN models and MLR model was assessed through the mean absolute error, root mean square error, and correlation coefficient computed from the measured and model-simulated DO values. The results reveal that ANN estimation performances were superior to those of MLR. Comparing to the BPNN and ANFIS models through the performance criteria, the ANFIS model is better than the BPNN model for predicting the DO values. Study results show that the neural network particularly using ANFIS model is able to predict the DO concentrations with reasonable accuracy, suggesting that the neural network is a valuable tool for reservoir management in Taiwan.

  14. Environmental Aspects of Artificial Aeration and Oxygenation of Reservoirs: A Review of Theory, Techniques, and Experiences.

    DTIC Science & Technology

    1982-05-01

    RIVER RESERVOIR 1828 MONROE RESERVOIR 4220 BELTZVILLE LAKE 1909 RATHBUN RESERVOIR 4228 STILLWATER LAKE 1910 RED ROCK RESERVOIR 4505 LAKE HARTWELL 2002...of Engineers. 1973. ALLATOONA LAKE , DESTRATIFICATION EQUIPMENT TEST REPORT. U.S. Army Engineer District, Savannah, Georgia . 64 pp. This report...usually elevates dissolved oxygen content of the lake by bringing anoxic bot- tom waters to the lake surface where aeration occurs through contact with the

  15. Cometary Silicates: Interstellar and Nebular Materials

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.

    2002-01-01

    Evidence for interstellar material in comets is deduced from IR spectra, insitu measurements of Halley, and chondritic porous interplanetary dust particles (CP IDPs). IR spectra of comets reveal the spectrally active minerals: amorphous carbon, amorphous silicates, and (in some comets) crystalline silicates. Evidence suggests amorphous silicates are of interstellar origin while crystalline silicates are of nebular origin. 10 microns spectra of comets and submicron amorphous silicate spherules in CP IDPs have shapes similar to lines-of-sight through the ISM. Thermal emission models of cometary IR spectra require Fe-bearing amorphous silicates. Fe-bearing amorphous silicates may be Fe-bearing crystalline silicates formed in AGB outflows that are amorphized through He+ ion bombardment in supernova shocks in the ISM. Crystalline silicates in comets, as revealed by IR spectra, and their apparent absence in the ISM, argues for their nebular origin. The high temperatures (less than l000 K) at which crystals form or are annealed occur in the inner nebula or in nebular shocks in the 5-10 AU region. Oxygen isotope studies of CP IDPs show by mass only 1 % of the silicate crystals are of AGB origin. Together this suggests crystalline silicates in comets are probably primitive grains from the early solar nebula.

  16. Oxygen isotope geochemistry of The Geysers reservoir rocks, California

    SciTech Connect

    Gunderson, Richard P.; Moore, Joseph N.

    1994-01-20

    Whole-rock oxygen isotopic compositions of Late Mesozoic graywacke, the dominant host rock at The Geysers, record evidence of a large liquid-dominated hydrothermal system that extended beyond the limits of the present steam reservoir. The graywackes show vertical and lateral isotopic variations that resulted from gradients in temperature, permeability, and fluid composition during this early liquid-dominated system. All of these effects are interpreted to have resulted from the emplacement of the granitic "felsite" intrusion 1-2 million years ago. The {delta}{sup 18}O values of the graywacke are strongly zoned around a northwest-southeast trending low located near the center of and similar in shape to the present steam system. Vertical isotopic gradients show a close relationship to the felsite intrusion. The {delta}{sup 18}O values of the graywacke decrease from approximately 15 per mil near the surface to 4-7 per mil 300 to 600 m above the intrusive contact. The {delta}{sup 18}O values then increase downward to 8-10 per mil at the felsite contact, thereafter remaining nearly constant within the intrusion itself. The large downward decrease in {delta}{sup 18}O values are interpreted to be controlled by variations in temperature during the intrusive event, ranging from 150{degree}C near the surface to about 425{degree}C near the intrusive contact. The upswing in {delta}{sup 18}O values near the intrusive contact appears to have been caused by lower rock permeability and/or heavier fluid isotopic composition there. Lateral variations in the isotopic distributions suggests that the effects of temperature were further modified by variations in rock permeability and/or fluid-isotopic composition. Time-integrated water:rock ratios are thought to have been highest within the central isotopic low where the greatest isotopic depletions are observed. We suggest that this region of the field was an area of high permeability within the main upflow zone of the liquid

  17. Oxygen reservoirs in the early solar nebula inferred from an Allende CAI.

    PubMed

    Young, E D; Russell, S S

    1998-10-16

    Ultraviolet laser microprobe analyses of a calcium-aluminum-rich inclusion (CAI) from the Allende meteorite suggest that a line with a slope of exactly 1.00 on a plot of delta (17)O against delta (18)O represents the primitive oxygen isotope reservoir of the early solar nebula. Most meteorites are enriched in (17)O and (18)O relative to this line, and their oxygen isotope ratios can be explained by mass fractionation or isotope exchange initiating from the primitive reservoir. These data establish a link between the oxygen isotopic composition of the abundant ordinary chondrites and the primitive (16)O-rich component of CAIs.

  18. Oxygen reservoirs in the early solar nebula inferred from an allende CAI

    PubMed

    Young; Russell

    1998-10-16

    Ultraviolet laser microprobe analyses of a calcium-aluminum-rich inclusion (CAI) from the Allende meteorite suggest that a line with a slope of exactly 1.00 on a plot of delta17O against delta18O represents the primitive oxygen isotope reservoir of the early solar nebula. Most meteorites are enriched in 17O and 18O relative to this line, and their oxygen isotope ratios can be explained by mass fractionation or isotope exchange initiating from the primitive reservoir. These data establish a link between the oxygen isotopic composition of the abundant ordinary chondrites and the primitive 16O-rich component of CAIs.

  19. One-dimensional simulation of stratification and dissolved oxygen in McCook Reservoir, Illinois

    USGS Publications Warehouse

    Robertson, Dale M.

    2000-01-01

    As part of the Chicagoland Underflow Plan/Tunnel and Reservoir Plan, the U.S. Army Corps of Engineers, Chicago District, plans to build McCook Reservoir.a flood-control reservoir to store combined stormwater and raw sewage (combined sewage). To prevent the combined sewage in the reservoir from becoming anoxic and producing hydrogen sulfide gas, a coarse-bubble aeration system will be designed and installed on the basis of results from CUP 0-D, a zero-dimensional model, and MAC3D, a three-dimensional model. Two inherent assumptions in the application of MAC3D are that density stratification in the simulated water body is minimal or not present and that surface heat transfers are unimportant and, therefore, may be neglected. To test these assumptions, the previously tested, one-dimensional Dynamic Lake Model (DLM) was used to simulate changes in temperature and dissolved oxygen in the reservoir after a 1-in-100-year event. Results from model simulations indicate that the assumptions made in MAC3D application are valid as long as the aeration system, with an air-flow rate of 1.2 cubic meters per second or more, is operated while the combined sewage is stored in the reservoir. Results also indicate that the high biochemical oxygen demand of the combined sewage will quickly consume the dissolved oxygen stored in the reservoir and the dissolved oxygen transferred through the surface of the reservoir; therefore, oxygen must be supplied by either the rising bubbles of the aeration system (a process not incorporated in DLM) or some other technique to prevent anoxia.

  20. Effects of climate events driven hydrodynamics on dissolved oxygen in a subtropical deep reservoir in Taiwan.

    PubMed

    Fan, Cheng-Wei; Kao, Shuh-Ji

    2008-04-15

    The seasonal concentrations of dissolved oxygen in a subtropical deep reservoir were studied over a period of one year. The study site was the Feitsui Reservoir in Taiwan. It is a dam-constructed reservoir with a surface area of 10.24 km(2) and a mean depth of 39.6 m, with a maximum depth of 113.5 m near the dam. It was found that certain weather and climate events, such as typhoons in summer and autumn, as well as cold fronts in winter, can deliver oxygen-rich water, and consequently have strong impacts on the dissolved oxygen level. The typhoon turbidity currents and winter density currents played important roles in supplying oxygen to the middle and bottom water, respectively. The whole process can be understood by the hydrodynamics driven by weather and climate events. This work provides the primary results of dissolved oxygen in a subtropical deep reservoir, and the knowledge is useful in understanding water quality in subtropical regions.

  1. Effectiveness of hypolimnetic oxygenation for preventing accumulation of Fe and Mn in a drinking water reservoir.

    PubMed

    Munger, Zackary W; Carey, Cayelan C; Gerling, Alexandra B; Hamre, Kathleen D; Doubek, Jonathan P; Klepatzki, Spencer D; McClure, Ryan P; Schreiber, Madeline E

    2016-12-01

    The accumulation of Fe and Mn in seasonally stratified drinking water reservoirs adversely impacts water quality. To control issues with Fe and Mn at the source, some drinking water utilities have deployed hypolimnetic oxygenation systems to create well-oxygenated conditions in the water column that are favorable for the oxidation, and thus removal, of Fe and Mn. However, in addition to being controlled by dissolved oxygen (DO), Fe and Mn concentrations are also influenced by pH and metal-oxidizing microorganisms. We studied the response of Fe and Mn concentrations to hypolimnetic oxygenation in a shallow drinking water reservoir in Vinton, Virginia, USA by sequentially activating and deactivating an oxygenation system over two summers. We found that maintaining well-oxygenated conditions effectively prevented the accumulation of soluble Fe in the hypolimnion. However, while the rate of Mn oxidation increased under well-oxygenated conditions, soluble Mn still accumulated in the slightly acidic to neutral (pH 5.6 to 7.5) hypolimnion. In parallel, we conducted laboratory incubation experiments, which showed that the presence of Mn-oxidizing microorganisms increased the rate of Mn oxidation in comparison with rates under oxic, abiotic conditions. Combined, our field and laboratory results demonstrate that increasing DO concentrations in the water column is important for stimulating the oxidation of Fe and Mn, but that the successful management of Mn is also tied to the activity of Mn-oxidizing organisms in the water column and favorable (neutral to alkaline) pH.

  2. Non-equilibrium effects on the chemistry of nebular condensates - Implications for the planets and asteroids

    NASA Technical Reports Server (NTRS)

    Blander, M.

    1979-01-01

    Kinetic effects, for example nucleation constraints and slow reactions, should have been important in nebular condensation. Consideration of these effects leads to the prediction of pressure-dependent compositions and physical properties of nebular condensates which is consistent with (1) the differences between different classes of chondritic meteorites, (2) some of the differences between planets, and (3) the presence of oxidized iron on the moon and in the eucrite parent body (presumably an asteroid) despite the low abundance of volatiles. Diffusion effects appear to be important for understanding oxygen isotope anomalies in refractory inclusions in Allende. The consideration of kinetic effects leads to more information concerning nebular processes than if equilibrium is assumed.

  3. Thermal and dissolved oxygen characteristics of a South Carolina cooling reservoir

    USGS Publications Warehouse

    Oliver, James L.; Hudson, Patrick L.

    1987-01-01

    Temperature and dissolved oxygen concentrations were measured monthly from January 1971 to December 1982 at 1-m depth intervals at 13 stations in Keowee Reservoir in order to characterize spatial and temporal changes associated with operation of the Oconee Nuclear Station. The reservoir water column was i to 4°C warmer in operational than in non-operational years. The thermo-dine was at depths of 5 to 15 m before the operation of Oconee Nuclear Station, but was always below the upper level of the intake (20 m) after the station was in full operation; this suggests that pumping by the Oconee Nuclear Station had depleted all available cool hypolimnetic water to this depth. As a result summer water temperatures at depths greater than 10 m were usually 10°C higher after plant operation began than before. By fall the reservoir was nearly homothemious to a depth of 27 m, where a thermocine developed. Seasonal temperature profiles varied with distance from the plant; a cool water plume was evident in spring and a warm water plume was present in the summer, fall, and winter. A cold water plume also developed in the northern section of the reservoir due to the operation of Jocassee Pumped Storage Station. Increases in the mean water temperature of the reservoir during operational periods were correlated with the generating output of the power plant. The annual heat load to the reservoir increased by one-third after plant operations began. The alteration of the thermal stratification of the receiving water during the summer also caused the dissolved oxygen to mix to greater depths.

  4. Evaluation of membrane oxygenators and reservoirs in terms of capturing gaseous microemboli and pressure drops.

    PubMed

    Guan, Yulong; Palanzo, David; Kunselman, Allen; Undar, Akif

    2009-11-01

    An increasing amount of evidence points to cerebral embolization during cardiopulmonary bypass (CPB) as the principal etiologic factor of neurologic complications. In this study, the capability of capturing and classification of gaseous emboli and pressure drop of three different membrane oxygenators (Sorin Apex, Terumo Capiox SX25, Maquet QUADROX) were measured in a simulated adult model of CPB using a novel ultrasound detection and classification quantifier system. The circuit was primed with 1000 mL heparinized human packed red blood cells and 1000 mL lactated Ringer's solution (total volume 2000 mL, corrected hematocrit 26-28%). After the injection of 5 mL air into the venous line, an Emboli Detection and Classification Quantifier was used to simultaneously record microemboli counts at post-pump, post-oxygenator, and post-arterial filter sites. Trials were conducted at normothermic (35 degrees C) and hypothermic (25 degrees C) conditions. Pre-oxygenator and post-oxygenator pressure were recorded in real time and pressure drop was calculated. Maquet QUADROX membrane oxygenator has the lowest pressure drops compared to the other two oxygenators (P < 0.001). The comparison among the three oxygenators indicated better capability of capturing gaseous emboli with the Maquet QUADROX and Terumo Capiox SX25 membrane oxygenator and more emboli may pass through the Sorin Apex membrane oxygenator. Microemboli counts uniformly increased with hypothermic perfusion (25 degrees C). Different types of oxygenators and reservoirs have different capability of capturing gaseous emboli and transmembrane pressure drop. Based on this investigation, Maquet QUADROX membrane oxygenator has the lowest pressure drop and better capability for capturing gaseous microemboli.

  5. Reservoir Cannulas for Pediatric Oxygen Therapy: A Proof-of-Concept Study

    PubMed Central

    Wu, Grace; DiBlasi, Robert M.; Saxon, Eugene; Austin, Glenn; Ginsburg, Amy Sarah

    2016-01-01

    Hypoxemia is a complication of pneumonia—the leading infectious cause of death in children worldwide. Treatment generally requires oxygen-enriched air, but access in low-resource settings is expensive and unreliable. We explored use of reservoir cannulas (RCs), which yield oxygen savings in adults but have not been examined in children. Toddler, small child, and adolescent breathing profiles were simulated with artificial lung and airway models. An oxygen concentrator provided flow rates of 0 to 5 L/min via a standard nasal cannula (NC) or RC, and delivered oxygen fraction (FdO2) was measured. The oxygen savings ratio (SR) and absolute flow savings (AFS) were calculated, comparing NC and RC. We demonstrated proof-of-concept that pendant RCs could conserve oxygen during pediatric therapy. SR mean and standard deviation were 1.1 ± 0.2 to 1.4 ± 0.4, 1.1 ± 0.1 to 1.7 ± 0.3, and 1.3 ± 0.1 to 2.4 ± 0.3 for toddler, small child, and adolescent models, respectively. Maximum AFS observed were 0.3 ± 0.3, 0.2 ± 0.1, and 1.4 ± 0.3 L/min for the same models. RCs have the potential to reduce oxygen consumption during treatment of hypoxemia in children; however, further evaluation of products is needed, followed by clinical analysis in patients. PMID:27999601

  6. First report of the successful operation of a side stream supersaturation hypolimnetic oxygenation system in a eutrophic, shallow reservoir.

    PubMed

    Gerling, Alexandra B; Browne, Richard G; Gantzer, Paul A; Mobley, Mark H; Little, John C; Carey, Cayelan C

    2014-12-15

    Controlling hypolimnetic hypoxia is a key goal of water quality management. Hypoxic conditions can trigger the release of reduced metals and nutrients from lake sediments, resulting in taste and odor problems as well as nuisance algal blooms. In deep lakes and reservoirs, hypolimnetic oxygenation has emerged as a viable solution for combating hypoxia. In shallow lakes, however, it is difficult to add oxygen into the hypolimnion efficiently, and a poorly designed hypolimnetic oxygenation system could potentially result in higher turbidity, weakened thermal stratification, and warming of the sediments. As a result, little is known about the viability of hypolimnetic oxygenation in shallow bodies of water. Here, we present the results from recent successful tests of side stream supersaturation (SSS), a type of hypolimnetic oxygenation system, in a shallow reservoir and compare it to previous side stream deployments. We investigated the sensitivity of Falling Creek Reservoir, a shallow (Zmax = 9.3 m) drinking water reservoir located in Vinton, Virginia, USA, to SSS operation. We found that the SSS system increased hypolimnetic dissolved oxygen concentrations at a rate of ∼1 mg/L/week without weakening stratification or warming the sediments. Moreover, the SSS system suppressed the release of reduced iron and manganese, and likely phosphorus, from the sediments. In summary, SSS systems hold great promise for controlling hypolimnetic oxygen conditions in shallow lakes and reservoirs.

  7. Hypolimnetic dissolved-oxygen dynamics within selected White River reservoirs, northern Arkansas-southern Missouri, 1974-2008

    USGS Publications Warehouse

    De Lanois, Jeanne L.; Green, W. Reed

    2011-01-01

    Dissolved oxygen is a critical constituent in reservoirs and lakes because it is essential for metabolism by all aerobic aquatic organisms. In general, hypolimnetic temperature and dissolved-oxygen concentrations vary from summer to summer in reservoirs, more so than in natural lakes, largely in response to the magnitude of flow into and release out of the water body. Because eutrophication is often defined as the acceleration of biological productivity resulting from increased nutrient and organic loading, hypolimnetic oxygen consumption rates or deficits often provide a useful tool in analyzing temporal changes in water quality. This report updates a previous report that evaluated hypolimnetic dissolved-oxygen dynamics for a 21-year record (1974-94) in Beaver, Table Rock, Bull Shoals, and Norfork Lakes, as well as analyzed the record for Greers Ferry Lake. Beginning in 1974, vertical profiles of temperature and dissolved-oxygen concentrations generally were collected monthly from March through December at sites near the dam of each reservoir. The rate of change in the amount of dissolved oxygen present below a given depth at the beginning and end of the thermal stratification period is referred to as the areal hypolimnetic oxygen deficit. Areal hypolimnetic oxygen deficit was normalized for each reservoir based on seasonal flushing rate between April 15 and October 31 to adjust for wet year and dry year variability. Annual cycles in thermal stratification within Beaver, Table Rock, Bull Shoals, Norfork, and Greers Ferry Lakes exhibited typical monomictic (one extended turnover period per year) characteristics. Flow dynamics drive reservoir processes and need to be considered when analyzing areal hypolimnetic oxygen deficit rates. A nonparametric, locally weighted scatter plot smooth line describes the relation between areal hypolimnetic oxygen deficit and seasonal flushing rates, without assuming linearity or normality of the residuals. The results in this report

  8. Nebular spectroscopy of the nearby Type IIb supernova 2011dh

    NASA Astrophysics Data System (ADS)

    Shivvers, Isaac; Mazzali, Paolo; Silverman, Jeffrey M.; Botyánszki, János; Cenko, S. Bradley; Filippenko, Alexei V.; Kasen, Daniel; Van Dyk, Schuyler D.; Clubb, Kelsey I.

    2013-12-01

    We present nebular spectra of the nearby Type IIb supernova (SN) 2011dh taken between 201 and 678 d after core collapse. At these late times, SN 2011dh exhibits strong emission lines including a broad and persistent Hα feature. New models of the nebular spectra confirm that the progenitor of SN 2011dh was a low-mass giant (M ≈ 13-15 M⊙) that ejected ˜ 0.07 M⊙ of 56Ni and ˜ 0.27 M⊙ of oxygen at the time of explosion, consistent with the recent disappearance of a candidate yellow supergiant progenitor. We show that light from the SN location is dominated by the fading SN at very late times (˜ 2 yr) and not, for example, by a binary companion or a background source. We present evidence for interaction between the expanding SN blast wave and a circumstellar medium at late times and show that the SN is likely powered by positron deposition ≳1 yr after explosion. We also examine the geometry of the ejecta and show that the nebular line profiles of SN 2011dh indicate a roughly spherical explosion with aspherical components or clumps.

  9. The effect of Sequoyah Nuclear Plant on dissolved oxygen in Chickamauga Reservoir

    SciTech Connect

    Butkus, S.R.; Shiao, M.C.; Yeager, B.L.

    1990-09-01

    During the summer of 1985, the Tennessee Division of Water Pollution Control and the Tennessee Wildlife Resources Agency measured dissolved oxygen (DO) concentrations downstream from the Sequoyah Nuclear Plant (SQN) discharge mixing zone that were below the state criterion for DO. The Tennessee General Water Quality Criteria'' specifies that DO should be a minimum of 5.0 mg/l measured at a depth of 5 feet for the protection of fish and aquatic life. The Tennessee Valley Authority developed the present study to answer general concerns about reservoir conditions and potential for adverse effects on aquatic biota. Four objectives were defined for this study: (1) to better define the extent and duration of the redistribution of DO in the reservoir, (2) to better understand DO dynamics within the mixing zone, (3) to determine whether DO is being lost (or added) as the condenser cooling water passes through the plant, and (4) to evaluate the potential for impact on aquatic life in the reservoir.

  10. Workshop on Parent-Body and Nebular Modification of Chondritic Materials

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E. (Editor); Krot, A. N. (Editor); Scott, E. R. D. (Editor)

    1997-01-01

    Topics considered include: thermal Metamorphosed Antarctic CM and CI Carbonaceous Chondrites in Japanese Collections, and Transformation Processes of Phyllosilicates; use of Oxygen Isotopes to Constrain the Nebular and Asteroidal Modification of Chondritic Materials; effect of Revised Nebular Water Distribution on Enstatite Chondrite Formation; interstellar Hydroxyls in Meteoritic Chondrules: Implications for the Origin of Water in the Inner Solar System; theoretical Models and Experimental Studies of Gas-Grain Chemistry in the Solar Nebula; chemical Alteration of Chondrules on Parent Bodies; thermal Quenching of Silicate Grains in Protostellar Sources; an Experimental Study of Magnetite Formation in the Solar Nebula; the Kaidun Meteorite: Evidence for Pre- and Postaccretionary Aqueous Alteration; a Transmission Electron Microscope Study of the Matrix Mineralogy of the Leoville CV3 (Reduced-Group) Carbonaceous Chondrite: Nebular and Parent-Body Features; rubidium-Strontium Isotopic Systematic of Chondrules from the Antarctic CV Chondrites Yamato 86751 and Yamato 86009: Additional Evidence for Late Parent-Body Modification; oxygen-Fugacity Indicators in Carbonaceous Chondrites: Parent-Body Alteration or High-Temperature Nebular Oxidation; thermodynamic Modeling of Aqueous Alteration in CV Chondrites; asteroidal Modification of C and O Chondrites: Myths and Models; oxygen Fugacity in the Solar Nebular; and the History of Metal and Sulfides in Chondrites.

  11. Variations in triple isotope composition of dissolved oxygen and primary production in a subtropical reservoir

    NASA Astrophysics Data System (ADS)

    Jurikova, Hana; Guha, Tania; Abe, Osamu; Shiah, Fuh-Kwo; Wang, Chung-Ho; Liang, Mao-Chang

    2016-12-01

    Lakes and reservoirs play an important role in the carbon cycle, and therefore monitoring their metabolic rates is essential. The triple oxygen-isotope anomaly of dissolved O2 [17Δ = ln(1+δ17O) - 0.518 × ln(1 + δ18O)] offers a new, in situ, perspective on primary production, yet little is known about 17Δ from freshwater systems. We investigated the 17Δ together with the oxygen : argon ratio [Δ(O2 / Ar)] in the subtropical Feitsui Reservoir in Taiwan from June 2014 to July 2015. Here, we present the seasonal variations in 17Δ, GP (gross production), NP (net production) and the NP / GP (net to gross ratio) in association with environmental parameters. The 17Δ varied with depth and season, with values ranging between 26 and 205 per meg. The GP rates were observed to be higher (702 ± 107 mg C m-2 d-1) in winter than those (303 ± 66 mg C m-2 d-1) recorded during the summer. The overall averaged GP was 220 g C m-2 yr-1 and NP was -3 g C m-2 yr-1, implying the reservoir was net heterotrophic on an annual basis. This is due to negative NP rates from October to February (-198 ± 78 mg C m-2 d-1). Comparisons between GP rates obtained from the isotope mass balance approach and 14C bottle incubation method (14C-GP) showed consistent values on the same order of magnitude with a GP / 14C-GP ratio of 1.2 ± 1.1. Finally we noted that, although typhoon occurrences were scarce, higher than average 17Δ values and GP rates were recorded after typhoon events.

  12. SNAP: Spreadsheet Nebular Analysis Package

    NASA Astrophysics Data System (ADS)

    Komljenovic, M.; Krawchuk, C.; McCall, M.; Kingsburgh, R.; Richer, Michael; Stevenson, C.

    1996-12-01

    A flexible and extensible software package for two dimensional nebular analyses has been implemented using Visual Basic within Microsoft Excel (version 5). From a calibrated list of fluxes and errors for each spectral row (or object), the program first identifies the lines by their source ions by referring to wavelengths generated from atomic data. The atomic data used in all the calculations is easily updated or augmented by the user. Colour excesses can be computed from a reddening law and ratio of total to selective extinction of a user's choice. For each spectral row, line fluxes can be corrected for stellar absorption and reddening and reported in a format suitable for publication. Temperatures, densities, emission coefficients, and ionic abundances are computed using an adaptation of the FIVEL five-level atom routine. The user has complete control over which spectral lines are used in an analysis -- there are no pre-ordained methods. Abundance analyses can be performed using physical conditions either measured or specified for each spectrum. Since the software is embedded in Microsoft Excel, graphical representations of the data are easily created, and extended analyses using the full functionality of the spreadsheet are easily implemented.

  13. Collision strengths for nebular [O III] optical and infrared lines

    NASA Astrophysics Data System (ADS)

    Storey, P. J.; Sochi, Taha; Badnell, N. R.

    2014-07-01

    We present electron collision strengths and their thermally averaged values for the nebular forbidden lines of the astronomically abundant doubly ionized oxygen ion, O2+, in an intermediate coupling scheme using the Breit-Pauli relativistic terms as implemented in an R-matrix atomic scattering code. We use several atomic targets for the R-matrix scattering calculations including one with 72 atomic terms. We also compare with new results obtained using the intermediate coupling frame transformation method. We find spectroscopically significant differences against a recent Breit-Pauli calculation for the excitation of the [O III] λ4363 transition but confirm the results of earlier calculations.

  14. Sediment Mobilization From Reservoirs Can Cause Short Term Oxygen Depletion In Downstream Receiving Waters

    NASA Astrophysics Data System (ADS)

    Anderson, C.; Schenk, L.; Bragg, H.; Singer, M.; Hume, N.

    2013-12-01

    Reservoir management can cause incidences of short-term sediment mobilization, e.g. during dam removal or drawdown for maintenance or habitat purposes. Much of the associated planning focuses on predicting, quantifying, and mitigating the physical impacts of sediment mobilization, transport, and deposition. Sediment pulses can cause multiple regulatory and management concerns, such as turbidity or suspended sediment concentrations that may exceed State standards, geomorphic change and effects on property or infrastructure, or wildlife impacts such as stress to fish via gill abrasion or burial of critical habitat. Water-quality issues associated with sediment mobilization, including nutrient and contaminant transport, are often given less attention, presumably because their effects are less immediate or because of resource constraints. Recent experience with large pulses of sediment from several western reservoirs involving dam removals and temporary drawdowns indicates that oxygen demand, leading to depletion of downstream dissolved oxygen (DO), can also be a significant short-term concern. During the October 2011 Condit Dam removal on the White Salmon River in Washington, DO in receiving waters about 4.5 km downstream of the dam dropped to less than 1 mg/L within 2 hours of the demolition; in response, salmonids were observed to be in distress, apparently gulping for air at the water surface. DO remained low for at least 24 hours in this reach, and dead fish were observed. In December 2012, during a drawdown designed to aid juvenile-salmonid migration through Fall Creek Reservoir in Oregon, DO dropped precipitously about 1.5 km downstream as turbidity peaked, and a muted DO decrease was also observed approximately 14 miles further downstream despite a large dilution from unaffected sources. Laboratory experiments and modeling using sediments from reservoirs proposed for removal on the Klamath River, California, demonstrated the likelihood for downstream DO

  15. Denitrifier Community in the Oxygen Minimum Zone of a Subtropical Deep Reservoir

    PubMed Central

    Yu, Zheng; Yang, Jun; Liu, Lemian

    2014-01-01

    Denitrification is an important pathway for nitrogen removal from aquatic systems and this could benefit water quality. However, little is known about the denitrifier community composition and key steps of denitrification in the freshwater environments, and whether different bacteria have a role in multiple processes of denitrification reduction. In this study, quantitative PCR, quantitative RT-PCR, clone library and 454 pyrosequencing were used together to investigate the bacterial and denitrifier community in a subtropical deep reservoir during the strongly stratified period. Our results indicated that the narG gene recorded the highest abundance among the denitrifying genes (2.76×109 copies L−1 for DNA and 4.19×108 copies L−1 for RNA), and the lowest value was nosZ gene (7.56×105 copies L−1 for DNA and undetected for RNA). The RNA: DNA ratios indicated that narG gene was the most active denitrifying gene in the oxygen minimum zone of Dongzhen Reservoir. Further, α-, β- and γ- Proteobacteria were the overwhelmingly dominant classes of denitrifier communities. Each functional gene had its own dominant groups which were different at the genus level: the narG gene was dominated by Albidiferax, while nirS gene was dominated by Dechloromonas. The main OTU of nirK gene was Rhodopseudomonas palustris, but for norB and nosZ genes, they were Bacillus and Bradyrhizobium, respectively. These results contribute to the understanding of linkages between denitrifier community, function and how they work together to complete the denitrification process. Studies on denitrifier community and activity may be useful in managing stratified reservoirs for the ecosystem services and aiding in constructing nitrogen budgets. PMID:24664112

  16. Forecasting of dissolved oxygen in the Guanting reservoir using an optimized NGBM (1,1) model.

    PubMed

    An, Yan; Zou, Zhihong; Zhao, Yanfei

    2015-03-01

    An optimized nonlinear grey Bernoulli model was proposed by using a particle swarm optimization algorithm to solve the parameter optimization problem. In addition, each item in the first-order accumulated generating sequence was set in turn as an initial condition to determine which alternative would yield the highest forecasting accuracy. To test the forecasting performance, the optimized models with different initial conditions were then used to simulate dissolved oxygen concentrations in the Guanting reservoir inlet and outlet (China). The empirical results show that the optimized model can remarkably improve forecasting accuracy, and the particle swarm optimization technique is a good tool to solve parameter optimization problems. What's more, the optimized model with an initial condition that performs well in in-sample simulation may not do as well as in out-of-sample forecasting.

  17. Ambient pressure oxygen reservoir apparatus for use during one-lung anaesthesia.

    PubMed

    Pfitzner, J; Peacock, M J; Daniels, B W

    1999-05-01

    An ambient pressure oxygen reservoir bag apparatus for connecting to the nonventilated lung as soon as single-lung ventilation is initiated is described. The theoretical benefits are the facilitation of collapse of the lung on the side of surgery and a reduced likelihood of arterial desaturation. Although these main benefits are yet to be proven, the authors believe that the weight of theoretical argument and practical observation serves to justify the use of the apparatus while the outcome of suitably designed clinical trials is awaited. It can be used for all one-lung anaesthetics and is especially recommended for thoracoscopic surgery, where temporary re-expansion of the nonventilated lung is either counter-productive or contraindicated, and where there is a possibility that lung collapse may be delayed.

  18. Dissolved-oxygen depletion and other effects of storing water in Flaming Gorge Reservoir, Wyoming and Utah

    USGS Publications Warehouse

    Bolke, E.L.

    1979-01-01

    The circulation of water in Flaming Gorge Reservoir is caused chiefly by insolation, inflow-outflow relationships, and wind, which is significant due to the geographical location of the reservoir. During 1970-75, there was little annual variation in the thickness, dissolved oxygen, and specific conductance of the hypolimnion near Flaming Gorge Dam. Depletion of dissolved oxygen occurred simultaneously in the bottom waters of both tributary arms in the upstream part of the reservoir and was due to reservoir stratification. Anaerobic conditions in the bottom water during summer stratification eventually results in a metalimnetie oxygen minimum in the reservoir. The depletion of flow in the river below Flaming Gorge Dam due to evaporation and bank storage in the reservoir for the 1983-75 period was 1,320 cubic hectometers, and the increase of dissolved-solids load in the river was 1,947,000 metric tens. The largest annual variations in dissolved-solids concentration in the river was about 800 milligrams per liter before closure of the dam and about 200 milligrams per liter after closure. The discharge weighted-average dissolved-solids concentration for the 5 years prior to closure was 888 milligrams per liter and 512 milligrams per liter after closure. The most significant changes in the individual dissolved-ion loads in the river during 1973-75 were the increase in sulfate (0.48 million metric tons), which was probably derived from the solution of gypsum, and the decrease in bicarbonate (0.39 million metric tons), which can be attributed to chemical precipitation. The maximum range in temperature in the Green River below the reservoir prior to closure of the dam in 1982 was from 0?C in winter to 21?C in summer. After closure until 1970 the temperature ranged from 2 ? to 12?C, but since 1970 the range has been from 4 ? to 9?C. During September 1975, a massive algal bloom was observed in the upstream part of the reservoir. The bloom covered approximately 16 kilometers

  19. Evaluation of mercury cycling and hypolimnetic oxygenation in mercury-impacted seasonally stratified reservoirs in the Guadalupe River watershed, California

    NASA Astrophysics Data System (ADS)

    McCord, Stephen A.; Beutel, Marc W.; Dent, Stephen R.; Schladow, S. G.

    2016-10-01

    Surface water reservoirs trap inorganic mercury delivered from their watersheds, create conditions that convert inorganic mercury to highly toxic methylmercury (MeHg), and host sportfish in which MeHg bioaccumulates. The Santa Clara Valley Water District (District) actively manages and monitors four mercury-impaired reservoirs that help to serve communities in South San Francisco Bay, California. The Guadalupe River watershed, which contains three of those reservoirs, also includes the New Almaden mercury-mining district, the largest historic mercury producer in North America. Monthly vertical profiles of field measurements and grab samples in years 2011-2013 portray annual cycling of density stratification, dissolved oxygen (DO), and MeHg. Monitoring results highlight the role that hypolimnetic hypoxia plays in MeHg distribution in the water column, as well as the consistent, tight coupling between MeHg in ecological compartments (water, zooplankton, and bass) across the four reservoirs. Following the 2011-2013 monitoring period, the District designed and installed hypolimnetic oxygenation systems (HOS) in the four reservoirs in an effort to repress MeHg buildup in bottom waters and attain regulatory targets for MeHg in water and fish tissue. Initial HOS operation in Calero Reservoir in 2014 enhanced bottom water DO and depressed hypolimnetic buildup of MeHg, but did not substantially decrease mercury levels in zooplankton or small fish.

  20. Nebular Emission Line Ratios in z ≃ 2–3 Star-forming Galaxies with KBSS-MOSFIRE: Exploring the Impact of Ionization, Excitation, and Nitrogen-to-Oxygen Ratio

    NASA Astrophysics Data System (ADS)

    Strom, Allison L.; Steidel, Charles C.; Rudie, Gwen C.; Trainor, Ryan F.; Pettini, Max; Reddy, Naveen A.

    2017-02-01

    We present a detailed study of the rest-optical (3600–7000 Å) nebular spectra of ∼380 star-forming galaxies at z≃ 2{--}3, obtained with Keck/Multi-object Spectrometer for Infrared Exploration (MOSFIRE) as part of the Keck Baryonic Structure Survey (KBSS). The KBSS-MOSFIRE sample is representative of star-forming galaxies at these redshifts, with stellar masses {M}* ={10}9{--}{10}11.5 {M}ȯ and star formation rates SFR = 3–1000 {M}ȯ yr‑1. We focus on robust measurements of many strong diagnostic emission lines for individual galaxies: [O ii]λλ3727, 3729, [Ne iii]λ3869, Hβ, [O iii]λ λ 4960, 5008, [N ii]λλ 6549, 6585, Hα, and [S ii]λλ6718, 6732. Comparisons with observations of typical local galaxies from the Sloan Digital Sky Survey and between subsamples of KBSS-MOSFIRE show that high-redshift galaxies exhibit a number of significant differences in addition to the well-known offset in log([O iii]λ 5008/Hβ) and log([N ii]λ 6585/Hα). We argue that the primary difference between H ii regions in z∼ 2.3 galaxies and those at z∼ 0 is an enhancement in the degree of nebular excitation, as measured by [O iii]/Hβ and {{R}}23\\equiv {log}[([O iii]λ λ 4960,5008+[O ii]λ λ 3727,3729)/Hβ]. At the same time, KBSS-MOSFIRE galaxies are ∼10 times more massive than z∼ 0 galaxies with similar ionizing spectra and have higher N/O (likely accompanied by higher O/H) at fixed excitation. These results indicate the presence of harder ionizing radiation fields at fixed N/O and O/H relative to typical z∼ 0 galaxies, consistent with Fe-poor stellar population models that include massive binaries, and highlight a population of massive, high-specific star formation rate galaxies at high redshift with systematically different star formation histories than galaxies of similar stellar mass today. The data presented in this paper were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of

  1. NEBULAR: A Simple Synthesis Code for the Hydrogen and Helium Nebular Spectrum

    NASA Astrophysics Data System (ADS)

    Schirmer, Mischa

    2016-11-01

    NEBULAR is a lightweight code to synthesize the spectrum of an ideal, mixed hydrogen and helium gas in ionization equilibrium, over a useful range of densities, temperatures and wavelengths. Free-free, free-bound and two-photon continua are included as well as parts of the H i, He i and He ii line series. NEBULAR interpolates over publicly available data tables; it can be used to easily extract information from these tables without prior knowledge about their data structure. The resulting spectra can be used to e.g., determine equivalent line widths, constrain the contribution of the nebular continuum to a bandpass, and for educational purposes. NEBULAR can resample the spectrum on a user-defined wavelength grid for direct comparison with an observed spectrum; however, it can not be used to fit an observed spectrum.

  2. Evaporation of nebular fines during chondrule formation

    NASA Astrophysics Data System (ADS)

    Wasson, John T.

    2008-06-01

    Studies of matrix in primitive chondrites provide our only detailed information about the fine fraction (diameter <2 μm) of solids in the solar nebula. A minor fraction of the fines, the presolar grains, offers information about the kinds of materials present in the molecular cloud that spawned the Solar System. Although some researchers have argued that chondritic matrix is relatively unaltered presolar matter, meteoritic chondrules bear witness to multiple high-temperature events each of which would have evaporated those fines that were inside the high-temperature fluid. Because heat is mainly transferred into the interior of chondrules by conduction, the surface temperatures of chondrules were probably at or above 2000 K. In contrast, the evaporation of mafic silicates in a canonical solar nebula occurs at around 1300 K and FeO-rich, amorphous, fine matrix evaporates at still lower temperatures, perhaps near 1200 K. Thus, during chondrule formation, the temperature of the placental bath was probably >700 K higher than the evaporation temperatures of nebular fines. The scale of chondrule forming events is not known. The currently popular shock models have typical scales of about 10 km. The scale of nebular lightning is less well defined, but is certainly much smaller, perhaps in the range 1 to 1000 m. In both cases the temperature pulses were long enough to evaporate submicrometer nebular fines. This interpretation disagrees with common views that meteoritic matrix is largely presolar in character and CI-chondrite-like in composition. It is inevitable that presolar grains (both those recognized by their anomalous isotopic compositions and those having solar-like compositions) that were within the hot fluid would also have evaporated. Chondrule formation appears to have continued down to the temperatures at which planetesimals formed, possibly around 250 K. At temperatures >600 K, the main form of C is gaseous CO. Although the conversion of CO to CH 4 at lower

  3. ALIEN: A nebular spectra analysis software

    NASA Astrophysics Data System (ADS)

    Cook, R.; Vazquez, R.

    2000-11-01

    A new C-coded software, designed to analyze nebular spectra, is presented. T his software is able to read the fluxes of the most important ions directly from IRAF's output file (splot.log). Spectra can be dereddened using the Balmer lines ratio and the Seaton's extinction law. Electron temperature and density, as well as ionic abundances by number are estimated by means of numeric calculations based on the five-level atom model. The dereddened spectra and the table containing the ionic abundances can be saved in a LaTex formatted file. This software has been initially designed to work with a low dispersion spectra.

  4. The Cocoon nebula and its ionizing star: do stellar and nebular abundances agree?

    NASA Astrophysics Data System (ADS)

    García-Rojas, J.; Simón-Díaz, S.; Esteban, C.

    2014-11-01

    Context. Main-sequence massive stars embedded in an H ii region should have the same chemical abundances as the surrounding nebular gas+dust. The Cocoon nebula (IC 5146), a close-by Galactic H ii region ionized by a narrow line B0.5 V single star (BD+46 3474), is an ideal target to compare nebular and stellar abundances in detail in the same Galactic region. Aims: We investigate the chemical content of oxygen and other elements in the Cocoon nebula from two different points of view: an empirical analysis of the nebular spectrum, and a detailed spectroscopic analysis of the associated early B-type star using state-of-the-art stellar atmosphere modeling. By comparing the stellar and nebular abundances, we aim to indirectly address the long-standing problem of the discrepancy found between abundances obtained from collisionally excited lines and optical recombination lines in photoionized nebulae. Methods: We collected long-slit spatially resolved spectroscopy of the Cocoon nebula and a high-resolution optical spectrum of the ionizing star. Standard nebular techniques along with updated atomic data were used to compute the physical conditions and gaseous abundances of O, N, and S in eight apertures extracted across a semidiameter of the nebula. We performed a self-consistent spectroscopic abundance analysis of BD+46 3474 based on the atmosphere code FASTWIND to determine the stellar parameters and Si, O, and N abundances. Results: The Cocoon nebula and its ionizing star, located at a distance of 800±80 pc, have a chemical composition very similar to the Orion nebula and other B-type stars in the solar vicinity. This result agrees with the high degree of homogeneity of the present-day composition of the solar neighborhood (up to 1.5 Kpc from the Sun) as derived from the study of the local cold-gas interstellar medium. The comparison of stellar and nebular collisionally excited line abundances in the Cocoon nebula indicates that O and N gas+dust nebular values agree

  5. The large, oxygen-rich halos of star-forming galaxies are a major reservoir of galactic metals.

    PubMed

    Tumlinson, J; Thom, C; Werk, J K; Prochaska, J X; Tripp, T M; Weinberg, D H; Peeples, M S; O'Meara, J M; Oppenheimer, B D; Meiring, J D; Katz, N S; Davé, R; Ford, A B; Sembach, K R

    2011-11-18

    The circumgalactic medium (CGM) is fed by galaxy outflows and accretion of intergalactic gas, but its mass, heavy element enrichment, and relation to galaxy properties are poorly constrained by observations. In a survey of the outskirts of 42 galaxies with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope, we detected ubiquitous, large (150-kiloparsec) halos of ionized oxygen surrounding star-forming galaxies; we found much less ionized oxygen around galaxies with little or no star formation. This ionized CGM contains a substantial mass of heavy elements and gas, perhaps far exceeding the reservoirs of gas in the galaxies themselves. Our data indicate that it is a basic component of nearly all star-forming galaxies that is removed or transformed during the quenching of star formation and the transition to passive evolution.

  6. Melilite-Rich CAIs and Wark-Lovering Rims Formed from a Common Oxygen Reservoir

    NASA Astrophysics Data System (ADS)

    Bodénan, J.-D.; Starkey, N. A.; Russell, S. S.; Wright, I. P.; Franchi, I. A.

    2013-09-01

    O isotopic ratio profiles in CAIs from the unaltered meteorites Léoville and QUE 99177 and their Wark-Lovering rims show no variation, indicating that they sampled the same O isotopic reservoir that persisted until the end of WL rim formation.

  7. Atmospheric oxygenation driven by unsteady growth of the continental sedimentary reservoir

    NASA Astrophysics Data System (ADS)

    Husson, Jon M.; Peters, Shanan E.

    2017-02-01

    Atmospheric oxygen concentration has increased over Earth history, from ∼0 before 2.5 billion years ago to its present-day concentration of 21%. The initial rise in pO2 approximately 2.3 billion years ago required oxygenic photosynthesis, but the evolution of this key metabolic pathway was not sufficient to propel atmospheric oxygen to modern levels, which were not sustained until approximately two billion years later. The protracted lag between the origin of oxygenic photosynthesis and abundant O2 in the surface environment has many implications for the evolution of animals, but the reasons for the delay remain unknown. Here we show that the history of sediment accumulation on continental crust covaries with the history of atmospheric oxygen concentration. A forward model based on the empirical record of net organic carbon burial and oxidative weathering of the crust predicts two significant rises in pO2 separated by three comparatively stable plateaus, a pattern that reproduces major biological transitions and proxy-based pO2 records. These results suggest that the two-phased oxygenation of Earth's surface environment, and the long delays between the origin of life, the evolution of metazoans, and their subsequent diversification during the Cambrian Explosion, was caused by step-wise shifts in the ability of the continents to accumulate and store sedimentary organic carbon. The geodynamic mechanisms that promote and inhibit sediment accumulation on continental crust have, therefore, exerted a first-order control on the evolution of Earth's life and environment.

  8. Isotopic Investigations of Nebular and Parent Body Processes with a High Sensitivity Ion Microprobe

    NASA Technical Reports Server (NTRS)

    McKeegan, Kevin D.

    2005-01-01

    NASA supported the development of the CAMECA ims 1270 ion microprobe at UCLA for applications in cosmochemistry. The primary investigations centered on measuring the microscopic distributions of key isotopic abundances in primitive meteoritic materials as a means of constraining the nature of important thermal and chemical processes in the solar nebula and the timescales associated with those processes. Our prior work on oxygen isotope anomalies in a wide variety of meteoritic materials had led us to a view of a spatially heterogeneous nebula, and in particular, a restricted region for CAI formation that is characterized by O-16-rich gas. Because of its production of CAIs in the energetic local environment near the protosun, the existence of a natural transport mechanism via bipolar outflows, and a general astrophysical plausibility, we were attracted to the fluctuating X-wind model which had been put forward by Frank Shu, Typhoon Lee, and colleagues. With our collaborators, we undertook a series of investigations to test the viability of this hypothesis; this work led directly to the discovery of live Be in CAIs and a clear demonstration of the existence of 160-rich condensates, which necessarily implies an O-16-rich gaseous reservoir in the nebula. Both of these observations fit well within the context of X-wind type models, i.e. formation of CAIs (or condensation of their precursors) in the reconnection ring sunward of the inner edge of the accretion disk, however much work remains to be done to test whether the physical parameters of the model can quantitatively predict not only the thermal histories of CAIs but also their radioactivity. The issue of spatial heterogeneity in the nebula, central to the X-wind model, is also at the heart of any chronology based on short-lived radioisotopes. In this work, we followed up on strong hints for presence of exireme:j: (53 day) short-lived Be-7, and have prepared a manuscript (in revision). We also measured A1-Mg

  9. Mineral equilibrium in fractionated nebular systems

    NASA Technical Reports Server (NTRS)

    Wood, John A.; Hashimoto, Akihiko

    1993-01-01

    We investigated the equilibrium mineral assemblages in chemically fractionated nebular systems, using a computer routine that finds the set of minerals and gases which minimizes the Gibbs free energy of a system with stipulated elemental abundances. Diagrams are presented showing the equilibrium mineralogy, as a function of temperature (400-2300 K), for unfractionated solar material and five fractionated systems. The fractionated systems were defined by mixing, in various proportions, the following four volatility components that solar material can be divided into: refractory dust, carbonaceous matter, ices, and H2 gas. Dust enrichment is seen to increase temperatures of condensation/evaporation and the Fe(2+) content of mafic minerals and to permit existence of stable melt phases. Enrichment of dust and organic matter produces mineral assemblages that are similar in many ways to those of enstatite chondrites, but with mafic minerals that are far more reduced than those in primitive enstatite chondrites. Enrichment of dust, organics, and ices leads to highly ferrous mineralogies even at the highest temperatures but does not predict the stability of hydrous phases above about 450 K.

  10. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz

    PubMed Central

    Budd, David A.; Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Smith, Victoria C.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Hilton, David R.; Halldórsson, Sæmundur A.; Bindeman, Ilya N.

    2017-01-01

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆core−rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems. PMID:28120860

  11. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz

    NASA Astrophysics Data System (ADS)

    Budd, David A.; Troll, Valentin R.; Deegan, Frances M.; Jolis, Ester M.; Smith, Victoria C.; Whitehouse, Martin J.; Harris, Chris; Freda, Carmela; Hilton, David R.; Halldórsson, Sæmundur A.; Bindeman, Ilya N.

    2017-01-01

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆core‑rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

  12. Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz.

    PubMed

    Budd, David A; Troll, Valentin R; Deegan, Frances M; Jolis, Ester M; Smith, Victoria C; Whitehouse, Martin J; Harris, Chris; Freda, Carmela; Hilton, David R; Halldórsson, Sæmundur A; Bindeman, Ilya N

    2017-01-25

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ(18)O values. Overall, Toba quartz crystals exhibit comparatively high δ(18)O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ(18)O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆core-rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ(18)O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ(18)O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

  13. Eutrophication trends inferred from hypolimnetic dissolved-oxygen dynamics within selected White River reservoirs, northern Arkansas-southern Missouri, 1974-94

    USGS Publications Warehouse

    Green, W.R.

    1996-01-01

    The White River Basin in northern Arkansas and southern Missouri contains four major reservoirs. Beaver, Table Rock, and Bull Shoals Lakes form a chain of reservoirs on the main stem of the White River. Norfork Lake is on the North Fork River, a tributary of the White River. Vertical water- column profiles of temperature and dissolved- oxygen concentrations have been collected monthly, in general, at sites near the dam of each reservoir since 1974. Hypolimnetic dissolved- oxygen dynamics of these reservoirs from 1974 through 1994 were examined based on the near-dam data and used to infer temporal changes in eutrophication. Regression models indicated that a positive relation existed between discharge through the dam during the stratification season and the areal hypolimnetic deficit. Temporal changes in the relative areal hypolimnetic oxygen deficit, a model that adjusts the areal hypolimnetic oxygen deficit to standard temperature and depth, showed a decreasing trend in Beaver Lake from 1974 through 1994, indicating that the level of eutrophication decreased. Little or no change in the relative areal hypolimnetic oxygen deficit occurred in Table Rock, Bull Shoals, or Norfork Lakes over the period of record. Temporal analysis of the residuals from the oxygen deficit-discharge model indicated that the oxygen deficit-discharge function changed over time in Beaver and Table Rock Lakes. There was little or no temporal trend in residuals of areal hypolimnetic oxygen deficit over the period of record for Bull Shoals and Norfork Lakes. Multiple regression using a time variable and discharge through the dam during the stratification season was examined for the four reservoirs. The slope coefficient of the time variable for both Beaver and Table Rock Lakes was negative, indicating that the temporal function driving the discharge related areal hypolimnetic oxygen deficit decreased over the period of record. This temporal function may be an expression of biological

  14. Nebular spectra of pair-instability supernovae

    NASA Astrophysics Data System (ADS)

    Jerkstrand, A.; Smartt, S. J.; Heger, A.

    2016-01-01

    If very massive stars (M ≳ 100 M⊙) can form and avoid too strong mass-loss during their evolution, they are predicted to explode as pair-instability supernovae (PISNe). One critical test for candidate events is whether their nucleosynthesis yields and internal ejecta structure, being revealed through nebular-phase spectra at t ≳ 1 yr, match those of model predictions. Here, we compute theoretical spectra based on model PISN ejecta at 1-3 yr post-explosion to allow quantitative comparison with observations. The high column densities of PISNe lead to complete gamma-ray trapping for t ≳ 2 yr which, combined with fulfilled conditions of steady state, leads to bolometric supernova luminosities matching the 56Co decay. Most of the gamma-rays are absorbed by the deep-lying iron and silicon/sulphur layers. The ionization balance shows a predominantly neutral gas state, which leads to emission lines of Fe I, Si I, and S I. For low-mass PISNe, the metal core expands slowly enough to produce a forest of distinct lines, whereas high-mass PISNe expand faster and produce more featureless spectra. Line blocking is complete below ˜5000 Å for several years, and the model spectra are red. The strongest line is typically [Ca II] λλ7291, 7323, one of few lines from ionized species. We compare our models with proposed PISN candidates SN 2007bi and PTF12dam, finding discrepancies for several key observables and thus no support for a PISN interpretation. We discuss distinct spectral features predicted by the models, and the possibility of detecting pair-instability explosions among non-superluminous supernovae.

  15. The circumplanetary nebular environment: A possible source region for chondrules

    NASA Technical Reports Server (NTRS)

    Sanders, I. S.

    1994-01-01

    Hypotheses for the origin of chondrules fall into two broad groups: nebular and planetary. Arguments against the latter have prevailed in recent years such that, by default, the less testable nebular setting for chondrule formation is now generally favored. However, the recognition in ordinary chondrites of igneous clasts that probably formed on, or in, small planetoids hints that some parent bodies were still accreting after others had evolved magmatically and lost material to space, presumably by impact. If melting of planetoids can predate accretion, could the same early melting even be related to chondrule production? My affirmative response to this interesting question is expanded here in a chondrule-forming scenario, which incorporates both planetary and nebular features.

  16. On the Nebular-Phase Spectra of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Kumar, Sahana; Graham, Melissa; Filippenko, Alexei V.

    2017-01-01

    Here we present nebular-phase spectra of 8 Type Ia supernovae. These objects have large host-galaxy offsets and have been observed and studied at early times by LCOGT and KAIT. The nebular-phase spectra presented here were obtained using the Gemini South and Keck telescopes. By analyzing early-time observations and verifying previous predictions for the nebular phase, we hope to gain insights into the progenitor systems and determine the accuracy of early-time subclassifications of these objects. Several of our supernovae exhibit double-peaked spectral lines, which may indicate a violent merger progenitor system. We also remark on interesting spectral features and compare our sample of objects to other well-observed Type Ia supernovae presented in other papers.

  17. Pioneer Nebular Theorists from Zanstra to Seaton: and Beyond

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    2002-02-01

    A brief history of theoretical nebular astrophysics, particularly in USA, is presented. The importance of observational knowledge of objects that actually exist is emphasized as a prerequisite for most theories. Herman Zanstra and Ira Bowen were the two most important theorists in opening the field. Donald Menzel and his students, especially James Baker, Leo Goldberg, and Lawrence Aller, were quite important in the further development of it. Henry Norris Russell started nebular astrophysics rolling, and several other later theorists, including Bengt Strömgren, Lyman Spitzer, Iosif Shklovsky and Michael Seaton, also made important contributions to it.

  18. Igneous rock from Severnyi Kolchim (H3) chondrite: Nebular origin

    NASA Technical Reports Server (NTRS)

    Nazarov, M. A.; Brandstaetter, F.; Kurat, G.

    1993-01-01

    The discovery of lithic fragments with compositions and textures similar to igneous differentiates in unequilibrated ordinary chondrites (UOC's) and carbonaceous chondrites (CC's) has been interpreted as to suggest that planetary bodies existed before chondrites were formed. As a consequence, chondrites (except, perhaps CI chondrites) cannot be considered primitive assemblages of unprocessed nebular matter. We report about our study of an igneous clast from the Severnyi Kolchim (H3) chondrite. The results of the study are incompatible with an igneous origin of the clast but are in favor of a nebular origin similar to that of chondrules.

  19. Chondritic Meteorites: Nebular and Parent-Body Formation Processes

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Lindstrom, David (Technical Monitor)

    2002-01-01

    It is important to identify features in chondrites that formed as a result of parent-body modification in order to disentangle nebular and asteroidal processes. However, this task is difficult because unmetamorphosed chondritic meteorites are mixtures of diverse components including various types of chondrules, chondrule fragments, refractory and mafic inclusions, metal-sulfide grains and fine-grained matrix material. Shocked chondrites can contain melt pockets, silicate-darkened material, metal veins, silicate melt veins, and impact-melt-rock clasts. This grant paid for several studies that went far in helping to distinguish primitive nebular features from those produced during asteroidal modification processes.

  20. Modelling the nebular emission from primeval to present-day star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Gutkin, Julia; Charlot, Stéphane; Bruzual, Gustavo

    2016-10-01

    We present a new model of the nebular emission from star-forming galaxies in a wide range of chemical compositions, appropriate to interpret observations of galaxies at all cosmic epochs. The model relies on the combination of state-of-the-art stellar population synthesis and photoionization codes to describe the ensemble of H II regions and the diffuse gas ionized by young stars in a galaxy. A main feature of this model is the self-consistent yet versatile treatment of element abundances and depletion on to dust grains, which allows one to relate the observed nebular emission from a galaxy to both gas-phase and dust-phase metal enrichment. We show that this model can account for the rest-frame ultraviolet and optical emission-line properties of galaxies at different redshifts and find that ultraviolet emission lines are more sensitive than optical ones to parameters such as C/O abundance ratio, hydrogen gas density, dust-to-metal mass ratio and upper cut-off of the stellar initial mass function. We also find that, for gas-phase metallicities around solar to slightly subsolar, widely used formulae to constrain oxygen ionic fractions and the C/O ratio from ultraviolet and optical emission-line luminosities are reasonable faithful. However, the recipes break down at non-solar metallicities, making them inappropriate to study chemically young galaxies. In such cases, a fully self-consistent model of the kind presented in this paper is required to interpret the observed nebular emission.

  1. Versatile nebular insect-eye fabry-perot spectrograph.

    PubMed

    Meaburn, J

    1975-02-01

    The design and performance of an insect-eye F.P. spectrograph used on the 249-cm Isaac Newton telescope, which can also be converted into a nebular filter camera, is presented. This device has several novel features, including a pressure-controlled optically contacted etalon and an image tube as a detector.

  2. ALIEN: A Software Package for Nebular Spectral Analysis

    NASA Astrophysics Data System (ADS)

    Cook, R.; Vázquez, R.

    2002-02-01

    ALIEN is a software designed to analyze low dispersion nebular spectra. Dereddening and calculation of physical conditions and ionic abundances by number are included. This software was written in the C language under Linux, the GUI has been developed using XForms (Kubat 1996) to provide a user friendly environment.

  3. Nebular Hydrogen Absorption in the Ejecta of Eta Carinae

    NASA Technical Reports Server (NTRS)

    Gull, Theodore R.; Ishibashi, K.; Davidson, K.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    Space Telescope Imaging Spectrograph (STIS) observations of Eta Carinae and immediate ejecta reveal narrow Balmer absorption lines in addition to the nebular-scattered broad P-Cygni absorptions. The narrow absorption correlates with apparent disk structure that separates the two Homunculus lobes. We trace these features about half way up the Northern lobe until the scattered stellar Balmer line doppler-shifts redward beyond the nebular absorption feature. Three-dimensional data cubes, made by mapping the Homunculus at Balmer alpha and Balmer beta with the 52 x 0.1 arcsecond aperture and about 5000 spectral resolving power, demonstrate that the absorption feature changes slowly in velocity with nebular position. We have monitored the stellar Balmer alpha line profile of the central source over the past four years. The equivalent width of the nebular absorption feature changes considerably between observations. The changes do not correlate with measured brightness of Eta Carinae. Likely clumps of neutral hydrogen with a scale size comparable to the stellar disk diameter are passing through the intervening light path on the timescales less than several months. The excitation mechanism involves Lyman alpha radiation (possibly the Lyman series plus Lyman continuum) and collisions leading to populating the 2S metastable state. Before the electron can jump to the ground state by two photon emission (lifetime about 1/8 second), a stellar Balmer photon is absorbed and the electron shifts to an NP level. We see the absorption feature in higher Balmer lines, and but not in Paschen lines. Indeed we see narrow nebular Paschen emission lines. At present, we do not completely understand the details of the absorption. Better understanding should lead to improved insight of the unique conditions around Eta Carinae that leads to these absorptions.

  4. Determining Carbon and Oxygen Stable Isotope Systematics in Brines at Elevated p/T Conditions to Enhance Monitoring of CO2 Induced Processes in Carbon Storage Reservoirs

    NASA Astrophysics Data System (ADS)

    Becker, V.; Myrttinen, A.; Mayer, B.; Barth, J. A.

    2012-12-01

    Stable carbon isotope ratios (δ13C) are a powerful tool for inferring carbon sources and mixing ratios of injected and baseline CO2 in storage reservoirs. Furthermore, CO2 releasing and consuming processes can be deduced if the isotopic compositions of end-members are known. At low CO2 pressures (pCO2), oxygen isotope ratios (δ18O) of CO2 usually assume the δ18O of the water plus a temperature-dependent isotope fractionation factor. However, at very high CO2 pressures as they occur in CO2 storage reservoirs, the δ18O of the injected CO2 may in fact change the δ18O of the reservoir brine. Hence, changing δ18O of brine constitutes an additional tracer for reservoir-internal carbon dynamics and allows the determination of the amount of free phase CO2 present in the reservoir (Johnson et al. 2011). Further systematic research to quantify carbon and oxygen isotope fractionation between the involved inorganic carbon species (CO2, H2CO3, HCO3-, CO32-, carbonate minerals) and kinetic and equilibrium isotope effects during gas-water-rock interactions is necessary because p/T conditions and salinities in CO2 storage reservoirs may exceed the boundary conditions of typical environmental isotope applications, thereby limiting the accuracy of stable isotope monitoring approaches in deep saline formations (Becker et al. 2011). In doing so, it is crucial to compare isotopic patterns observed in laboratory experiments with artificial brines to similar experiments with original fluids from representative field sites to account for reactions of dissolved inorganic carbon (DIC) with minor brine components. In the CO2ISO-LABEL project, funded by the German Ministry for Education and Research, multiple series of laboratory experiments are conducted to determine the influence of pressure, temperature and brine composition on the δ13C of DIC and the δ18O of brines in water-CO2-rock reactions with special focus placed on kinetics and stable oxygen and carbon isotope fractionation

  5. Remarkable Rise in Electron-Ion Recombination of O II for Low Temperature Nebular Plasmas

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana; Pradhan, Anil

    2011-05-01

    Recombination is dominant in cooler nebular plasmas and recombination lines (RCL) of O II are commonly detected. Collisionally excited lines (CEL) are also common. But a longstanding discrepancy of lower and higher oxygen abundance exists predicted from the RCL and CEL respectively. This is a puzzle since existent atomic parameters for O II are known to be accurate. We have studied the low energy photoionization and low temperature recombination of O II using the unified method based on relativistic Breit-Pauli R-matrix method and close coupling approximation. We find that the fine structure effects in the low temperature region, studied for the first time, cause considerable enhancement in electron-ion recombination rates. The enhancement comes from the intense narrow resonances, allowed in fine structure but not in LS coupling approximation, in a small energy region right at the ionization threshold. Due to the small energy range that contains these resonances, experiment was unable to detect them. We will present detailed features and recombination rates at low temperature which are expected to narrow the gap of discrepancy in oxygem abundance in nebular plasmas. Partial supports: NSF, DOE

  6. Exploring the Origins of Deuterium Enrichments in Solar Nebular Organics

    NASA Astrophysics Data System (ADS)

    Cleeves, L. Ilsedore; Bergin, Edwin A.; O'D. Alexander, Conel M.; Du, Fujun; Graninger, Dawn; Öberg, Karin I.; Harries, Tim J.

    2016-03-01

    Deuterium-to-hydrogen (D/H) enrichments in molecular species provide clues about their original formation environment. The organic materials in primitive solar system bodies generally have higher D/H ratios and show greater D/H variation when compared to D/H in solar system water. We propose this difference arises at least in part due to (1) the availability of additional chemical fractionation pathways for organics beyond that for water, and (2) the higher volatility of key carbon reservoirs compared to oxygen. We test this hypothesis using detailed disk models, including a sophisticated, new disk ionization treatment with a low cosmic-ray ionization rate, and find that disk chemistry leads to higher deuterium enrichment in organics compared to water, helped especially by fractionation via the precursors CH2D+/CH3+. We also find that the D/H ratio in individual species varies significantly depending on their particular formation pathways. For example, from ˜20-40 au, CH4 can reach {{D}}/{{H}}˜ 2× {10}-3, while D/H in CH3OH remains locally unaltered. Finally, while the global organic D/H in our models can reproduce intermediately elevated D/H in the bulk hydrocarbon reservoir, our models are unable to reproduce the most deuterium-enriched organic materials in the solar system, and thus our model requires some inheritance from the cold interstellar medium from which the Sun formed.

  7. The Nebular Hypothesis - A False Paradigm Misleading Scientists

    NASA Astrophysics Data System (ADS)

    Myers, L. S.

    2005-05-01

    Science has reached a turning point in history after being misled for 250 years by Immanuel Kant's nebular hypothesis, the most fundamental assumption in science. The nebular hypothesis assumes all nine planets were created 4.5 billion years ago (Ga) as molten bodies that cooled with the same size and chemical composition they have today. Reevaluation of the nebular hypothesis proves it has been wrong since its inception. The proof has lain in plain sight for centuries-coal beds that could not have existed at the assumed time of creation because they formed on Earth's surface after creation of the planet when forests and swamps were exposed to solar energy. The coal beds were subsequently buried under overburden accreted in later millennia, steadily increasing Earth's mass and diameter. The coal beds and layers of overburden are proof Earth was not created 4.5 Ga but is growing and expanding by accretion of extraterrestrial mass and core expansion-a process termed "Accreation" (creation by accretion). Each process accelerates over time, but internal expansion exceeds the rate of external accretion. Because the nebular hypothesis is erroneous researchers assumed Earth's diameter never changes, and, faced with the possibility the Earth might be expanding after the Atlantic basin was discovered to be widening, this assumption led to the unworkable concept of subduction to maintain a constant diameter Earth. Subduction will prove to be one of the greatest errors in the history of science. Nullification of the nebular hypothesis also nullifies subduction and rejuvenates Carey's earth expansion theory. Accreation provides Carey's missing energy source and mechanism of expansion. Expansion is proved by morphologic evidence today's continents were once a single planetary landmass on a smaller Earth when today's oceans, covering 70% of the planet, did not exist 200-250 Ma. Despite hundreds of tons of meteorites and dust known to accrete daily, its cumulative effect has been

  8. LIME silicates in amoeboid olivine aggregates in carbonaceous chondrites: Indicator of nebular and asteroidal processes

    NASA Astrophysics Data System (ADS)

    Komatsu, Mutsumi; Fagan, Timothy J.; Mikouchi, Takashi; Petaev, Michail I.; Zolensky, Michael E.

    2015-07-01

    MnO/FeO ratios in olivine from amoeboid olivine aggregates (AOAs) reflect conditions of nebular condensation and can be used in concert with matrix textures to compare metamorphic conditions in carbonaceous chondrites. LIME (low-iron, Mn-enriched) olivine was identified in AOAs from Y-81020 (CO3.05), Kaba (CV~3.1), and in Y-86009 (CV3), Y-86751 (CV3), NWA 1152 (CR/CV3), but was not identified in AOAs from Efremovka (CV3.1-3.4) or Allende (CV>3.6). According to thermodynamic models of nebular condensation, LIME olivine is stable at lower temperatures than Mn-poor olivine and at low oxygen fugacities (dust enrichment <10× solar). Although this set of samples does not represent a single metamorphic sequence, the higher subtypes tend to have AOA olivine with lower Mn/Fe, suggesting that Mn/Fe decreases during parent body metamorphism. Y-81020 has the lowest subtype and most forsteritic AOA olivine (Fo>95) in our study, whereas Efremovka AOAs are slightly Fe-rich (Fo>92). AOA olivines from Kaba are mostly forsteritic, but rare Fe-rich olivine precipitated from an aqueous fluid. A combination of precipitation of Fe-rich olivine and diffusion of Fe into primary olivine grains resulted in iron-rich compositions (Fo97-59) in Allende AOAs. Variations from fine-grained, nonporous matrix toward higher porosity and coarser lath-like matrix olivine can be divided into six stages represented by (1) Y-81020, Efremovka, NWA 1152; (2) Y-86751 lithology B; (3) Y-86009; (4) Kaba; (5) Y-86751 lithology A; (6) Allende. These stages are inferred to represent general degree of metamorphism, although the specific roles of thermally driven grain growth and diffusion versus aqueous dissolution and precipitation remain uncertain.

  9. Volatile elements in chondrites - Metamorphism or nebular fractionation

    NASA Technical Reports Server (NTRS)

    Takahashi, H.; Gros, J.; Higuchi, H.; Morgan, J. W.; Anders, E.

    1978-01-01

    Three of the most highly metamorphosed meteorites of their respective classes, Shaw (LL7), Karoonda (C5), and Coolidge (C4), were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Os, Pd, Rb, Re, Sb, Se, Te, Tl, U, and Zn. Comparison with data by Lipschutz and coworkers (1977) on artificially heated primitive meteorites shows that the natural metamorphism of meteorites cannot have taken place in a system open to volatiles. Shaw, metamorphosed at 1300 C for more than 1 million yr, is less depleted in In, Bi, Ag, Te, Zn, and Tl than Krymka heated at 1000 C for 1 week. Karoonda, metamorphosed at 600 C for many millennia, is less depleted in Bi and Tl than Allende heated at 600 C for 1 week. Data on primordial noble gases also show that the volatile-element patterns of ordinary and carbonaceous chondrites were established by nebular condensation and changed little, if at all, during metamorphism. For enstatite chondrites, the evidence is still incomplete but seems to favor a nebular origin of the volatile pattern.

  10. Elucidating microbial processes in nitrate- and sulfate-reducing systems using sulfur and oxygen isotope ratios: The example of oil reservoir souring control

    NASA Astrophysics Data System (ADS)

    Hubert, Casey; Voordouw, Gerrit; Mayer, Bernhard

    2009-07-01

    Sulfate-reducing bacteria (SRB) are ubiquitous in anoxic environments where they couple the oxidation of organic compounds to the production of hydrogen sulfide. This can be problematic for various industries including oil production where reservoir "souring" (the generation of H 2S) requires corrective actions. Nitrate or nitrite injection into sour oil fields can promote SRB control by stimulating organotrophic nitrate- or nitrite-reducing bacteria (O-NRB) that out-compete SRB for electron donors (biocompetitive exclusion), and/or by lithotrophic nitrate- or nitrite-reducing sulfide oxidizing bacteria (NR-SOB) that remove H 2S directly. Sulfur and oxygen isotope ratios of sulfide and sulfate were monitored in batch cultures and sulfidic bioreactors to evaluate mitigation of SRB activities by nitrate or nitrite injection. Sulfate reduction in batch cultures of Desulfovibrio sp. strain Lac15 indicated typical Rayleigh-type fractionation of sulfur isotopes during bacterial sulfate reduction (BSR) with lactate, whereas oxygen isotope ratios in unreacted sulfate remained constant. Sulfur isotope fractionation in batch cultures of the NR-SOB Thiomicrospira sp. strain CVO was minimal during the oxidation of sulfide to sulfate, which had δ18O SO4 values similar to that of the water-oxygen. Treating an up-flow bioreactor with increasing doses of nitrate to eliminate sulfide resulted in changes in sulfur isotope ratios of sulfate and sulfide but very little variation in oxygen isotope ratios of sulfate. These observations were similar to results obtained from SRB-only, but different from those of NR-SOB-only pure culture control experiments. This suggests that biocompetitive exclusion of SRB took place in the nitrate-injected bioreactor. In two replicate bioreactors treated with nitrite, less pronounced sulfur isotope fractionation and a slight decrease in δ18O SO4 were observed. This indicated that NR-SOB played a minor role during dosing with low nitrite and that

  11. Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China).

    PubMed

    Zhang, Yunlin; Wu, Zhixu; Liu, Mingliang; He, Jianbo; Shi, Kun; Zhou, Yongqiang; Wang, Mingzhu; Liu, Xiaohan

    2015-05-15

    From January 2010 to March 2014, detailed depth profiles of water temperature, dissolved oxygen (DO), and chromophoric dissolved organic matter (CDOM) were collected at three sites in Lake Qiandaohu, a large, deep subtropical reservoir in China. Additionally, we assessed the changes in DO stratification over the past 61 years (1953-2013) based on our empirical models and long-term air temperature and transparency data. The DO concentration never fell below 2 mg/L, the critical value for anoxia, and the DO depth profiles were closely linked to the water temperature depth profiles. In the stable stratification period in summer and autumn, the significant increase in CDOM in the metalimnion explained the decrease in DO due to the oxygen consumed by CDOM. Well-developed oxygen stratification was detected at the three sites in spring, summer and autumn and was associated with thermal stratification. Oxycline depth was significantly negatively correlated with daily air temperature and thermocline thickness but significantly positively correlated with thermocline depth during the stratification weakness period (July-February). However, there were no significant correlations among these parameters during the stratification formation period (March-June). The increase of 1.67 °C in yearly average daily air temperature between 1980 and 2013 and the decrease of 0.78 m in Secchi disk depth caused a decrease of 1.65 m and 2.78 m in oxycline depth, respectively, facilitating oxygen stratification and decreasing water quality. Therefore, climate warming has had a substantial effect on water quality through changing the DO regime in Lake Qiandaohu.

  12. Anomalous Oxygen Isotopic Fractionation in Vacuum Ultraviolet Photodissociation of Carbon Monoxide and Test of Self-Shielding: Relevance for Meteorite Oxygen Isotopes

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Ahmed, M.; Jackson, T. L.; Thiemens, M. H.

    2008-12-01

    Oxygen is the predominant elemental constituent of rocky planets and asteroids. It is the third most abundant element in the solar system after hydrogen and helium. The isotopic compo-sition of oxygen in three-isotope space (δ18O vs. δ17O plot) exhibits large heterogeneity among different bodies formed from the same primordial gas and dust mixture, termed the solar nebula. It is not possible to fully understand the formation and evolution of our own planetary system, unless we resolve the source of the oxygen isotopes. At present, there are two models: self shielding photochemistry in the solar nebula, and symmetry driven gas-phase and/or surface chemistry in the solar nebula, which can also involve photochemistry, but isn't required. Photochemistry is a dominant process at the outer layers of the nebular disk and isotopically selective photodissociation (a process known as isotopic self-shielding) of carbon monoxide, the most abundant nebular oxygen bearing molecule, has been suggested as a source of isotopically anomalous oxygen in the solar reservoir [1-3]. However, these models have had no experimental verification of the relevant isotopic fractionation associated with VUV-CO photodissociation at the relevant wavelengths. Recently, we have performed a series of CO photodissociation experiment with a windowless flow chamber at the Advanced Light Source (LBNL) synchrotron at Berkeley. These experiments demonstrate an anomalously enriched atomic oxygen reservoir is generated through CO photo-dissociation, but, without requiring isotopic self shielding [4]. These results emphasize the importance of chemistry in the solar nebula as we have previously demonstrated through recent laboratory experiments [5]. It is clear that the mass- independent oxygen isotopic composition, as observed in some of the first condensed solids in the solar system (Calcium-Aluminum rich Inclusions- CAIs, Chondrules etc.), can be generated through symmetry driven gas-phase chemical

  13. The Carlisle Lakes-type chondrites: A new grouplet with high. Delta. sup 17 O and evidence for nebular oxidation

    SciTech Connect

    Weisberg, M.K. Brooklyn Coll., NY ); Prinz, M. ); Kojima, Hideyasu; Yanai, Keizo ); Clayton, R.N.; Mayeda, T.K. )

    1991-09-01

    Carlisle Lakes, ALH85151, and Y75302 are similar ungrouped chondrites which have petrologic and bulk compositional similarities to the ordinary chondrites, but are more oxidized; and their oxygen isotopic compositions differ. They represent a new grouplet which the authors call the Carlisle Lakes-type chondrites. They have the highest {Delta}{sup 17}O values (up to 2.91) measured to date. The whole chondrites and most of their chondrules plot on the same mass fractionation line on an oxygen 3-isotope diagram. They are olivine rich (>70 vol%), essentially metal free, and most olivine is FeO rich, equilibrated at Fa{sub 38}. Rare olivine and pyroxene grains in chondrules and fragments are zoned, and these are important in discerning the history of these chondrites. The zoning does not appear to have formed during crystallization from a melt droplet chondrule, but post-dated chondrule formation. Two hypotheses are postulated to explain the zoning: (1) parent-body thermal metamorphism and (2) nebular gas-solid exchange reactions accompanied by condensation of new FeO-rich olivine, utilizing existing olivine surfaces as nucleation sites. The occurrence of steep Fe-Mg compositional gradients of core-to-rim profiles, oscillatory zoning in olivine, fayalitic rims of Fa{sub 45} that exceed instead of approach the equilibrium composition of the matrix (Fa{sub 38}), and olivine-filled veins in zoned pyroxenes are more compatible with the nebular hypothesis. The Carlisle Lakes-type chondrites may have originally been derived from an ordinary chondrite-like precursor which was later oxidized, prior to its final lithification. However, the oxygen isotopic compositions of the whole chondrites and most of their chondrules suggest that the precursor probably formed in an oxygen isotopically distinct environment.

  14. Supernova 1987 A - The nebular loops and 'Napoleon's Hat'

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wampler, E. J.

    1992-08-01

    We discuss observations of the circumstellar environment of SN 1987A that were obtained between August 1989 and January 1992 at ESO's New Technology Telescope. We find that the angular dimensions of the two nebular loops (Wampler et al., 1990) have not changed during this period. Therefore these loops are confined to a small region. The expansion velocity of the loops is less than about 40 km/s if the loops expanded with a uniform velocity from a common origin. This structure and velocity is hard to reproduce with existing wind interaction models. Our observations further suggest that the Napoleon's Hat nebula does not originate from the general background LMC dust, but from a bow shock dust whose origins are closely related to the stellar winds from the progenitor star of SN 1987A.

  15. Chondritic Meteorites: Nebular and Parent-Body Formation Process

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1997-01-01

    Chondritic meteorites are the products of condensation, agglomeration and accretion of material in the solar nebula; these objects are the best sources of information regarding processes occurring during the early history of the solar system. We obtain large amounts of high-quality chemical and petrographic data and use them to infer chemical fractionation processes that occurred in the solar nebula and on meteorite parent bodies during thermal metamorphism, shock metamorphism and aqueous alteration. We compare diverse groups of chondrites and model their different properties in terms of processes that differed at different nebular locations or on different parent-bodies. In order to expand our set of geochemically important elements (particularly Si, C, P and S) and to distinguish the different oxidation states of Fe, Greg Kallemeyn spent three months (1 Sept. - 30 Nov. 1995) at the Smithsonian Institution to learn Eugene Jarosewich's wet chemical techniques. Key specimens from the recently established CK, CR and R chondrite groups were analyzed.

  16. Water level fluctuations in a tropical reservoir: the impact of sediment drying, aquatic macrophyte dieback, and oxygen availability on phosphorus mobilization.

    PubMed

    Keitel, Jonas; Zak, Dominik; Hupfer, Michael

    2016-04-01

    Reservoirs in semi-arid areas are subject to water level fluctuations (WLF) that alter biogeochemical processes in the sediment. We hypothesized that wet-dry cycles may cause internal eutrophication in such systems when they affect densely vegetated shallow areas. To assess the impact of WLF on phosphorus (P) mobilization and benthic P cycling of iron-rich sediments, we tested the effects of (i) sediment drying and rewetting, (ii) the impact of organic matter availability in the form of dried Brazilian Waterweed (Egeria densa), and (iii) alternating redox conditions in the surface water. In principle, drying led to increased P release after rewetting both in plant-free and in plant-amended sediments. Highest P mobilization was recorded in plant amendments under oxygen-free conditions. After re-establishment of aerobic conditions, P concentrations in surface water decreased substantially owing to P retention by sediments. In desiccated and re-inundated sediments, P retention decreased by up to 30% compared to constantly inundated sediments. We showed that WLF may trigger biochemical interactions conducive to anaerobic P release. Thereby, E. densa showed high P release and even P uptake that was redox-controlled and superimposed sedimentary P cycling. Macrophytes play an important role in the uptake of P from the water but may be also a significant source of P in wet-dry cycles. We estimated a potential for the abrupt release of soluble reactive phosphorus (SRP) by E. densa of 0.09-0.13 g SRP per m(2) after each wet-dry cycle. Released SRP may exceed critical P limits for eutrophication, provoking usage restrictions. Our results have implications for management of reservoirs in semi-arid regions affected by WLF.

  17. Constraining the Type Ia Supernova Progenitor: The Search for Hydrogen in Nebular Spectra

    NASA Astrophysics Data System (ADS)

    Leonard, Douglas C.

    2007-12-01

    Despite intense scrutiny, the progenitor system(s) that gives rise to Type Ia supernovae remains unknown. The favored theory invokes a carbon-oxygen white dwarf accreting hydrogen-rich material from a close companion until a thermonuclear runaway ensues that incinerates the white dwarf. However, simulations resulting from this single-degenerate, binary channel demand the presence of low-velocity Hα emission in spectra taken during the late nebular phase, since a portion of the companion's envelope becomes entrained in the ejecta. This hydrogen has never been detected, but has only rarely been sought. Here we present results from a campaign to obtain deep, nebular-phase spectroscopy of nearby Type Ia supernovae, and include multiepoch observations of two events: SN 2005am (slightly subluminous) and SN 2005cf (normally bright). No Hα emission is detected in the spectra of either object. An upper limit of 0.01 Msolar of solar abundance material in the ejecta is established from the models of Mattila et al., which, when coupled with the mass-stripping simulations of Marietta et al. and Meng et al., effectively rules out progenitor systems for these supernovae with secondaries close enough to the white dwarf to be experiencing Roche lobe overflow at the time of explosion. Alternative explanations for the absence of Hα emission, along with suggestions for future investigations necessary to confidently exclude them as possibilities, are critically evaluated. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Additional observations were obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a

  18. Asteroids and Comets — Did the Diversify of Nebular Solids Decline with Distance from the Sun?

    NASA Astrophysics Data System (ADS)

    Brownlee, D. E.; Joswiak, D. J.

    2015-07-01

    The Mn contents of ferrous olivine grains in a cluster IDP of probable cometary origin match what is seen in comet Wild 2 olivines. This finding is consistent with suggestions that most comets contain similar averaged samplings of nebular solids.

  19. No nebular magnetization in the Allende CV carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Fu, R. R.; Lima, E. A.; Weiss, B. P.

    2014-10-01

    Magnetic fields in the solar nebula may have played a central role in mass and angular momentum transport in the protosolar disk and facilitated the accretion of the first planetesimals. Thought to be key evidence for this hypothesis is the high unblocking-temperature, randomly oriented magnetization in chondrules in the Allende CV carbonaceous chondrite. However, it has recently been realized that most of the ferromagnetic minerals in Allende are products of secondary processes on the parent planetesimal. Here we reevaluate the pre-accretional magnetism hypothesis for Allende using new paleomagnetic analyses of chondrules including the first measurements of mutually oriented subsamples from within individual chondrules. We confirm that Allende chondrules carry a high-temperature component of magnetization that is randomly oriented among chondrules. However, we find that subsamples of individual chondrules are also non-unidirectionally magnetized. Therefore, the high-temperature magnetization in Allende chondrules is not a record of nebular magnetic fields and is instead best explained by remagnetization during metasomatism in a <8 μT magnetic field. This low field intensity suggests that any core dynamo on the CV parent body decayed before the end of metasomatism, likely <40 My after the formation of calcium aluminum-rich inclusions (CAIs). Despite widespread practice, the magnetization in Allende should not be used to constrain magnetic fields in the protosolar nebula.

  20. THE DECELERATION OF NEBULAR SHELLS IN EVOLVED PLANETARY NEBULAE

    SciTech Connect

    Pereyra, Margarita; Richer, Michael G.; Lopez, Jose Alberto E-mail: richer@astrosen.unam.mx

    2013-07-10

    We have selected a group of 100 evolved planetary nebulae (PNe) and study their kinematics based upon spatially-resolved, long-slit, echelle spectroscopy. The data have been drawn from the San Pedro Martir Kinematic Catalogue of PNe. The aim is to characterize in detail the global kinematics of PNe at advanced stages of evolution with the largest sample of homogenous data used to date for this purpose. The results reveal two groups that share kinematics, morphology, and photo-ionization characteristics of the nebular shell and central star luminosities at the different late stages under study. The typical flow velocities we measure are usually larger than seen in earlier evolutionary stages, with the largest velocities occurring in objects with very weak or absent [N II] {lambda}6584 line emission, by all indications the least evolved objects in our sample. The most evolved objects expand more slowly. This apparent deceleration during the final stage of PNe evolution is predicted by hydrodynamical models, but other explanations are also possible. These results provide a template for comparison with the predictions of theoretical models.

  1. The Carlisle Lakes-type chondrites - A new grouplet with high Delta(17)O and evidence for nebular oxidation

    NASA Technical Reports Server (NTRS)

    Weisberg, Michael K.; Prinz, Martin; Kojima, Hideyasu; Yanai, Keizo; Clayton, Robert N.; Mayeda, Toshiko K.

    1991-01-01

    The petrogenesis of the Carlisle Lakes-type chondrites and their relationship to other chondrites are studied using new petrologic data, especially on mineralogical zoning patterns, and oxygen isotopic analyses of the whole chondrites and some of chondrules. Detailed zoning profiles of mafic silicates are measured in order to determine the environment(s) in which their oxidation states are established. It is concluded that the zoning did not form during crystallization from a melt droplet chondrule but post-dated chondrule formation. Parent-body thermal metamorphism and nebular gas-solid exchange reactions accompanied by condensation of new FeO-rich olivine, utilizing existing olivine surfaces as nucleation sites are considered as hypotheses explaining the zoning. The occurrence of zoned grains in a host that is mainly equilibrated suggests that the equilibration of the Carlisle Lakes-type chondrites occurred prior to final lithification.

  2. History of Nebular Processing Traced by Silicate Stardust in IDPS

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Keller, L. P.; Nakamura-Messenger, K.

    2010-01-01

    Chondritic porous interplanetary dust particles (CP-IDPs) may be the best preserved remnants of primordial solar system materials, in part because they were not affected by parent body hydrothermal alteration. Their primitive characteristics include fine grained, unequilibrated, anhydrous mineralogy, enrichment in volatile elements, and abundant molecular cloud material and silicate stardust. However, while the majority of CP-IDP materials likely derived from the Solar System, their formation processes and provenance are poorly constrained. Stardust abundances provide a relative measure of the extent of processing that the Solar System starting materials has undergone in primitive materials. For example, among primitive meteorites silicate stardust abundances vary by over two orders of magnitude (less than 10-200 ppm). This range of abundances is ascribed to varying extents of aqueous processing in the meteorite parent bodies. The higher average silicate stardust abundances among CP-IDPs (greater than 375 ppm) are thus attributable to the lack of aqueous processing of these materials. Yet, silicate stardust abundances in IDPs also vary considerably. While the silicate stardust abundance in IDPs having anomalous N isotopic compositions was reported to be 375 ppm, the abundance in IDPs lacking N anomalies is less than 10 ppm. Furthermore, these values are significantly eclipsed among some IDPs with abundances ranging from 2,000 ppm to 10,000 ppm. Given that CP-IDPs have not been significantly affected by parent body processes, the difference in silicate stardust abundances among these IDPs must reflect varying extents of nebular processing. Here we present recent results of a systematic coordinated mineralogical/isotopic study of large cluster IDPs aimed at (1) characterizing the mineralogy of presolar silicates and (2) delineating the mineralogical and petrographic characteristics of IDPs with differing silicate stardust abundances. One of the goals of this study is

  3. Understanding and reducing statistical uncertainties in nebular abundance determinations

    NASA Astrophysics Data System (ADS)

    Wesson, R.; Stock, D. J.; Scicluna, P.

    2012-06-01

    Whenever observations are compared to theories, an estimate of the uncertainties associated with the observations is vital if the comparison is to be meaningful. However, many or even most determinations of temperatures, densities and abundances in photoionized nebulae do not quote the associated uncertainty. Those that do typically propagate the uncertainties using analytical techniques which rely on assumptions that generally do not hold. Motivated by this issue, we have developed Nebular Empirical Analysis Tool (NEAT), a new code for calculating chemical abundances in photoionized nebulae. The code carries out a standard analysis of lists of emission lines using long-established techniques to estimate the amount of interstellar extinction, calculate representative temperatures and densities, compute ionic abundances from both collisionally excited lines and recombination lines, and finally to estimate total elemental abundances using an ionization correction scheme. NEATuses a Monte Carlo technique to robustly propagate uncertainties from line flux measurements through to the derived abundances. We show that, for typical observational data, this approach is superior to analytic estimates of uncertainties. NEAT also accounts for the effect of upward biasing on measurements of lines with low signal-to-noise ratio, allowing us to accurately quantify the effect of this bias on abundance determinations. We find not only that the effect can result in significant overestimates of heavy element abundances derived from weak lines, but also that taking it into account reduces the uncertainty of these abundance determinations. Finally, we investigate the effect of possible uncertainties in R, the ratio of selective-to-total extinction, on abundance determinations. We find that the uncertainty due to this parameter is negligible compared to the statistical uncertainties due to typical line flux measurement uncertainties.

  4. Extended nebular emission in CALIFA early-type galaxies

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Kehrig, C.; Vílchez, J. M.; Lehnert, M. D.

    2015-02-01

    The morphological, spectroscopic and kinematical properties of the warm interstellar medium ( wim ) in early-type galaxies (ETGs) hold key observational constraints to nuclear activity and the buildup history of these massive quiescent systems. High-quality integral field spectroscopy (IFS) data with a wide spectral and spatial coverage, such as those from the CALIFA survey, offer a precious opportunity for advancing our understanding in this respect. We use deep IFS data from CALIFA (califa.caha.es) to study the wim over the entire extent and optical spectral range of 32 nearby ETGs. We find that all ETGs in our sample show faint (Hα equivalent width EW(Hα)~0.5 ... 2 Å) extranuclear nebular emission extending out to >=2 Petrosian50 radii. Confirming and strengthening our conclusions in Papaderos et al. (2013, hereafter P13) we argue that ETGs span a broad continuous sequence with regard to the properties of their wim , and they can be roughly subdivided into two characteristic classes. The first one (type i) comprises ETGs with a nearly constant EW(Hα)~1-3 Å in their extranuclear component, in quantitative agreement with (even though, no proof for) the hypothesis of photoionization by the post-AGB stellar component being the main driver of extended wim emission. The second class (type ii) consists of virtually wim -evacuated ETGs with a large Lyman continuum (Ly c) photon escape fraction and a very low (<=0.5 Å) EW(Hα) in their nuclear zone. These two ETG classes appear indistinguishable from one another by their LINER-specific emission-line ratios. Additionally, here we extend the classification by P13 by the class i+ which stands for a subset of type i ETGs with low-level star-forming activity in contiguous spiral-arm like features in their outermost periphery. These faint features, together with traces of localized star formation in several type i&i+ systems point to a non-negligible contribution from young massive stars to the global ionizing photon

  5. Superluminous Supernova SN 2015bn in the Nebular Phase: Evidence for the Engine-powered Explosion of a Stripped Massive Star

    NASA Astrophysics Data System (ADS)

    Nicholl, M.; Berger, E.; Margutti, R.; Chornock, R.; Blanchard, P. K.; Jerkstrand, A.; Smartt, S. J.; Arcavi, I.; Challis, P.; Chambers, K. C.; Chen, T.-W.; Cowperthwaite, P. S.; Gal-Yam, A.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Kankare, E.; Magnier, E. A.; Maguire, K.; Mazzali, P. A.; McCully, C.; Milisavljevic, D.; Smith, K. W.; Taubenberger, S.; Valenti, S.; Wainscoat, R. J.; Yaron, O.; Young, D. R.

    2016-09-01

    We present nebular-phase imaging and spectroscopy for the hydrogen-poor superluminous supernova (SLSN) SN 2015bn, at redshift z = 0.1136, spanning +250-400 days after maximum light. The light curve exhibits a steepening in the decline rate from 1.4 mag (100 days)-1 to 1.7 mag (100 days)-1, suggestive of a significant decrease in the opacity. This change is accompanied by a transition from a blue continuum superposed with photospheric absorption lines to a nebular spectrum dominated by emission lines of oxygen, calcium, and magnesium. There are no obvious signatures of circumstellar interaction or large 56Ni mass. We show that the spectrum at +400 days is virtually identical to a number of energetic SNe Ic such as SN 1997dq, SN 2012au, and SN 1998bw, indicating similar core conditions and strengthening the link between “hypernovae”/long gamma-ray bursts and SLSNe. A single explosion mechanism may unify these events that span absolute magnitudes of -22 < M B < -17. Both the light curve and spectrum of SN 2015bn are consistent with an engine-driven explosion ejecting 7-30 M ⊙ of oxygen-dominated ejecta (for reasonable choices in temperature and opacity). A strong and relatively narrow O i λ7774 line, seen in a number of these energetic events but not in normal supernovae, may point to an inner shell that is the signature of a central engine.

  6. On Bowen enhancement of the N III spectrum under solar and nebular conditions

    NASA Technical Reports Server (NTRS)

    Kastner, S. O.; Bhatia, A. K.

    1984-01-01

    Expected enhancement of the N III emission-line spectrum by the Bowen He II to O III to N III resonant photoexcitation process is computed using a six-configuration model. Preliminary comparisons with available solar and nebular observations indicate that the process may play only a small role, although photoexcitation quenching of the N III and O III far-infrared fine-structure lines is noted as a possibly important mechanism. Some features are discussed in connection with the nebular emission at 1750 A, which is suggested as an indicator of excitation class for planetary nebulae.

  7. NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES

    SciTech Connect

    Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam; Nayyeri, Hooshang; Miller, Sarah; Sobral, David

    2015-11-20

    We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this

  8. Nebular and Stellar Dust Extinction Across the Disk of Emission-line Galaxies on Kiloparsec Scales

    NASA Astrophysics Data System (ADS)

    Hemmati, Shoubaneh; Mobasher, Bahram; Darvish, Behnam; Nayyeri, Hooshang; Sobral, David; Miller, Sarah

    2015-11-01

    We investigate the resolved kiloparsec-scale stellar and nebular dust distribution in eight star-forming galaxies at z ∼ 0.4 in the Great Observatories Origins Deep Survey fields. This is to get a better understanding of the effect of dust attenuation on measurements of physical properties and its variation with redshift. Constructing the observed spectral energy distributions (SEDs) per pixel, based on seven bands of photometric data from Hubble Space Telescope/Advanced Camera for Surveys and WFC3, we performed pixel-by-pixel SED fits to population synthesis models and estimated the small-scale distribution of stellar dust extinction. We use Hα/Hβ nebular emission line ratios from Keck/DEIMOS high-resolution spectra at each spatial resolution element to measure the amount of attenuation faced by ionized gas at different radii from the centers of galaxies. We find a good agreement between the integrated and median of resolved color excess measurements in our galaxies. The ratio of integrated nebular to stellar dust extinction is always greater than unity, but does not show any trend with stellar mass or star formation rate (SFR). We find that inclination plays an important role in the variation of the nebular to stellar excess ratio. The stellar color excess profiles are found to have higher values at the center compared to outer parts of the disk. However, for lower mass galaxies, a similar trend is not found for the nebular color excess. We find that the nebular color excess increases with stellar mass surface density. This explains the absence of radial trend in the nebular color excess in lower mass galaxies which lack a large radial variation of stellar mass surface density. Using standard conversions of SFR surface density to gas mass surface density, and the relation between dust mass surface density and color excess, we find no significant variation in the dust-to-gas ratio in regions with high gas mass surface densities over the scales probed in this

  9. Reconciling the Stellar and Nebular Spectra of High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Steidel, Charles C.; Strom, Allison L.; Pettini, Max; Rudie, Gwen C.; Reddy, Naveen A.; Trainor, Ryan F.

    2016-08-01

    We present a combined analysis of rest-frame far-UV (FUV; 1000-2000 Å) and rest-frame optical (3600-7000 Å) composite spectra formed from very deep Keck/LRIS and Keck/MOSFIRE observations of a sample of 30 star-forming galaxies with z=2.40+/- 0.11, selected to be broadly representative of the full KBSS-MOSFIRE spectroscopic survey. Since the same massive stars are responsible for the observed FUV continuum and for the excitation of the observed nebular emission, a self-consistent stellar population synthesis model should simultaneously match the details of the FUV stellar+nebular continuum and—when inserted as the excitation source in photoionization models—predict all observed nebular emission line ratios. We find that only models including massive star binaries, having low stellar metallicity ({Z}* /{Z}⊙ ≃ 0.1) but relatively high nebular (ionized gas-phase) abundances ({Z}{{neb}}/{Z}⊙ ≃ 0.5), can successfully match all of the observational constraints. We show that this apparent discrepancy is naturally explained by highly super-solar O/Fe (≃ 4{--}5 {({{O}}/{Fe})}⊙ ), expected for a gas whose enrichment is dominated by the products of core-collapse supernovae. While O dominates the physics of the ionized gas (and thus the nebular emission lines), Fe dominates the extreme-UV (EUV) and FUV opacity and controls the mass-loss rate from massive stars, resulting in particularly dramatic effects for massive stars in binary systems. This high nebular excitation—caused by the hard EUV spectra of Fe-poor massive stars—is much more common at high redshift (z≳ 2) than low redshift due to systematic differences in the star formation history of typical galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  10. Ordinary Chondrite Chondrules: Oxygen Isotope Variations

    NASA Astrophysics Data System (ADS)

    Metzler, K.; Pack, A.; Hezel, D. C.

    2017-02-01

    Chondrules in some H and LL chondrites show positive/negative correlations between size and oxygen isotopic composition. This indicates that they exchanged oxygen with different oxygen reservoirs and cannot stem from a common chondrule population.

  11. A link between oxygen, calcium and titanium isotopes in 26Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula

    NASA Astrophysics Data System (ADS)

    Kööp, Levke; Davis, Andrew M.; Nakashima, Daisuke; Park, Changkun; Krot, Alexander N.; Nagashima, Kazuhide; Tenner, Travis J.; Heck, Philipp R.; Kita, Noriko T.

    2016-09-01

    PLACs (platy hibonite crystals) and related hibonite-rich calcium-, aluminum-rich inclusions (CAIs; hereafter collectively referred to as PLAC-like CAIs) have the largest nucleosynthetic isotope anomalies of all materials believed to have formed in the solar system. Most PLAC-like CAIs have low inferred initial 26Al/27Al ratios and could have formed prior to injection or widespread distribution of 26Al in the solar nebula. In this study, we report 26Al-26Mg systematics combined with oxygen, calcium, and titanium isotopic compositions for a large number of newly separated PLAC-like CAIs from the Murchison CM2 chondrite (32 CAIs studied for oxygen, 26 of these also for 26Al-26Mg, calcium and titanium). Our results confirm (1) the large range of nucleosynthetic anomalies in 50Ti and 48Ca (our data range from -70‰ to +170‰ and -60‰ to +80‰, respectively), (2) the substantial range of Δ17O values (-28‰ to -17‰, with Δ17O = δ17O - 0.52 × δ18O), and (3) general 26Al-depletion in PLAC-like CAIs. The multielement approach reveals a relationship between Δ17O and the degree of variability in 50Ti and 48Ca: PLAC-like CAIs with the highest Δ17O (∼-17‰) show large positive and negative 50Ti and 48Ca anomalies, while those with the lowest Δ17O (∼-28‰) have small to no anomalies in 50Ti and 48Ca. These observations could suggest a physical link between anomalous 48Ca and 50Ti carriers and an 16O-poor reservoir. We suggest that the solar nebula was isotopically heterogeneous shortly after collapse of the protosolar molecular cloud, and that the primordial dust reservoir, in which anomalous carrier phases were heterogeneously distributed, was 16O-poor (Δ17O ⩾ -17‰) relative to the primordial gaseous (CO + H2O) reservoir (Δ17O < -35‰). However, other models such as CO self-shielding in the protoplanetary disk are also considered to explain the link between oxygen and calcium and titanium isotopes in PLAC-like CAIs.

  12. Nebular condensation of Ga, Ge and Sb and the chemical classification of iron meteorites

    NASA Technical Reports Server (NTRS)

    Wai, C. M.; Wasson, J. T.

    1979-01-01

    The quantization of the Ga and Ge contents in iron meteorites, which is used as a key parameter in the chemical classification of iron meteorites, is discussed in terms of nebular condensation. The calculation of nebular equilibrium condensation is examined, taking into account the dependence of the activity coefficient on temperature and composition, and recent calculations of the condensation temperatures of Ga, Ge, Sb, Au, As and Cu are presented, noting that Ge is the most volatile siderophile, followed by Ga and Sb. The narrow intragroup ranges of Ga and Ge are interpreted in terms of minimal fractionation during core crystallization, while the larger ranges of Sb are attributed to its significantly smaller solid/liquid distribution coefficient in IIIAB meteorites.

  13. The spectral evolution of nebular phase from Nova V5668 Sgr

    NASA Astrophysics Data System (ADS)

    Muztaba, Robiatul; Malasan, Hakim L.; Arai, Akira

    2016-11-01

    The spectral evolution of the Nova V5668 Sgr has been observed on 12 June, 23 June, and 15 August 2015 using NEO-R1000 spectrograph attached to the C-11 telescope at Bosscha Observatory, Lembang, Indonesia. The observed spectra indicate that the nova has been entering the nebular phase. The spectra during this phase showed strong forbidden lines of [O I] λ6300, 6364, [O II] λ7320, and [O III] λ5007, [N II] λ5755. The spectra also showed emission line of Fe II λ4924, 5169, 5317, 6149. We classify Nova V5668 Sgr into the Fe II type. We present and discuss the variation of nebular abundance N(X)/N(H) of the Nova V5668 Sgr in the light of its evolutionary stages.

  14. New Nickel Vapor Pressure Measurements: Possible Implications for Nebular Condensates

    NASA Technical Reports Server (NTRS)

    Johnson, N. M.; Meibom, A.; Ferguson, F. T.; Nuth, J. A., III

    2004-01-01

    Temperatures high enough to vaporize even refractory solids existed in the midplane of the solar nebula during its earliest evolutionary stages and played an important role in the processing of materials that went into the formation of the inner planets and asteroids. A variety of such high-T materials have been identified in primitive chondritic meteorites. These include chemically zoned FeNi metal grains that are generally believed to have formed directly by gas-solid condensation from a gas of approximately solar composition. These FeNi particles provide important information about the times scales of formation and physical transport mechanisms in the nebula, as well as formation temperature, pressure and gas chemistry. Currently, however, the interpretation of the chemical signatures in these FeNi particles rests on less than perfect information about the condensation sequence of siderophile elements. For example much, if not all, of the thermodynamic data for the vapor pressures of moderately refractory metals , such as Fe, Ni and Co, do not cover the desired temperature range. As a result, quite large extrapolations are needed. These extrapolations can be complex and uncertain due to factors such as oxygen fugacity or the presence of hydrogen gas.

  15. Iron isotope systematics in planetary reservoirs

    NASA Astrophysics Data System (ADS)

    Sossi, Paolo A.; Nebel, Oliver; Foden, John

    2016-10-01

    Iron is the only polyvalent major element, and controls reduction-oxidation (redox) reactions in a host of geologic processes and reservoirs, from the mineral- to planetary-scale, on Earth and in space. Mass transfer of Fe is often accompanied by changes in bonding environment, meaning the resultant variation in bond-strength in crystals, liquids and gases induces stable isotope fractionation, even at high temperatures. In the absence of iron exchange, electron transfer can also affect iron's valence state and calculated oxygen fugacity (fO2), however its isotope composition remains unchanged. Thus, iron isotopes are a powerful tool to investigate processes that involve mass transfer, redox reactions and changes in bonding environment in planetary systems. Primitive chondritic meteorites show remarkable isotopic homogeneity, δ57 Fe = - 0.01 ± 0.01 ‰ (2SE), over a wide range of Fe/Mg vs Ni/Mg, a proxy for fO2 in the solar nebula. In chondrites, there are iron isotope differences between metal and silicates that become more pronounced at higher metamorphic grades. However, on a planetary scale, Mars and Vesta overlap with chondrites, preserving no trace of core formation or volatile depletion on these bodies. Upon assessment of pristine lherzolites, the Bulk Silicate Earth is heavier than chondrites (δ57 Fe = + 0.05 ± 0.01 ‰; 2SE), and similar to or slightly lighter than the Moon. That the mantles of some differentiated inner solar system bodies extend to heavier compositions (+ 0.2 ‰) than chondrites may principally result from volatile depletion either at a nebular or late accretion stage. Within terrestrial silicate reservoirs, iron isotopes provide insight into petrogenetic and geodynamic processes. Partial melting of the upper mantle produces basalts that are heavier than their sources, scaling with degree of melting and driving the increasingly refractory peridotite to lighter compositions. Mid-Ocean Ridge Basalts (MORBs) are homogeneous to δ57 Fe

  16. DETECTION OF DIFFUSE X-RAY EMISSION FROM PLANETARY NEBULAE WITH NEBULAR O VI

    SciTech Connect

    Ruiz, N.; Guerrero, M. A.; Jacob, R.; Schoenberner, D.; Steffen, M.

    2013-04-10

    The presence of O VI ions can be indicative of plasma temperatures of a few Multiplication-Sign 10{sup 5} K that are expected in heat conduction layers between the hot shocked stellar wind gas at several 10{sup 6} K and the cooler (10{sup 4} K) nebular gas of planetary nebulae (PNe). We have used FUSE observations of PNe to search for nebular O VI emission or absorption as a diagnostic of the conduction layer to ensure the presence of hot interior gas. Three PNe showing nebular O VI, namely IC 418, NGC 2392, and NGC 6826, have been selected for Chandra observations and diffuse X-ray emission is indeed detected in each of these PNe. Among the three, NGC 2392 has peculiarly high diffuse X-ray luminosity and plasma temperature compared with those expected from its stellar wind's mechanical luminosity and terminal velocity. The limited effects of heat conduction on the plasma temperature of a hot bubble at the low terminal velocity of the stellar wind of NGC 2392 may partially account for its high plasma temperature, but the high X-ray luminosity needs to be powered by processes other than the observed stellar wind, probably the presence of an unseen binary companion of the central star of the PN (CSPN) of NGC 2392. We have compiled relevant information on the X-ray, stellar, and nebular properties of PNe with a bubble morphology and found that the expectations of bubble models including heat conduction compare favorably with the present X-ray observations of hot bubbles around H-rich CSPNe, but have notable discrepancies for those around H-poor [WR] CSPNe. We note that PNe with more massive central stars can produce hotter plasma and higher X-ray surface brightness inside central hot bubbles.

  17. VizieR Online Data Catalog: Nebular emission lines towards NGC3372 center (Damiani+, 2016)

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Bonito, R.; Magrini, L.; Prisinzano, L.; Mapelli, M.; Micela, G.; Kalari, V.; Maiz Apellaniz, J.; Gilmore, G.; Randich, S.; Alfaro, E.; Flaccomio, E.; Koposov, S.; Klutsch, A.; Lanzafame, A. C.; Pancino, E.; Sacco, G. G.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Franciosini, E.; Hourihane, A.; Lardo, C.; Lewis, J.; Monaco, L.; Morbidelli, L.; Worley, C.; Zaggia, S.; Zwitter, T.; Dorda, R.

    2016-04-01

    Nebular emission lines of H-alpha, [NII] 6584Å, HeI 6678Å, [SII] 6717Å, [SII] 6731Å, towards the center of Carina nebula, are modeled with two gaussians each ('blue' and 'red' components). Best-fit parameters are given in the table. Line widths include the instrumental width of the Giraffe spectrograph (7km/s). Radial velocities are heliocentric. (1 data file).

  18. Nebular phase observations of the Type-Ib supernova iPTF13bvn favour a binary progenitor

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Maeda, K.; Bersten, M. C.; Folatelli, G.; Morrell, N.; Hsiao, E. Y.; González-Gaitán, S.; Anderson, J. P.; Hamuy, M.; de Jaeger, T.; Gutiérrez, C. P.; Kawabata, K. S.

    2015-07-01

    Aims: We present and analyse late-time observations of the Type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, which were done ~300 days after the explosion. We discuss them in the context of constraints on the supernova's progenitor. Previous studies have proposed two possible natures for the progenitor of the supernova, i.e. a massive Wolf-Rayet star or a lower-mass star in a close binary system. Methods: Our observations show that the supernova has entered the nebular phase, with the spectrum dominated by Mg I]λλ4571, [O I]λλ6300, 6364, and [Ca II]λλ7291, 7324 emission lines. We measured the emission line fluxes to estimate the core oxygen mass and compared the [O I]/[Ca II] line ratio with other supernovae. Results.The core oxygen mass of the supernova progenitor was estimated to be ≲0.7 M⊙, which implies initial progenitor mass that does not exceed ~15-17 M⊙.Since the derived mass is too low for a single star to become a Wolf-Rayet star, this result lends more support to the binary nature of the progenitor star of iPTF13bvn. The comparison of [O I]/[Ca II] line ratio with other supernovae also shows that iPTF13bvn appears to be in close association with the lower mass progenitors of stripped-envelope and Type-II supernovae. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); Chilean Telescope Time Allocation Committee proposal CN2014A-91.

  19. Carbonate petroleum reservoirs

    SciTech Connect

    Roehl, P.O.; Choquette, P.W.

    1985-01-01

    This book presents papers on the geology of petroleum deposits. Topics considered include diagenesis, porosity, dolomite reservoirs, deposition, reservoir rock, reefs, morphology, fracture-controlled production, Cenozoic reservoirs, Mesozoic reservoirs, and Paleozoic reservoirs.

  20. NO STRIPPED HYDROGEN IN THE NEBULAR SPECTRA OF NEARBY TYPE Ia SUPERNOVA 2011fe

    SciTech Connect

    Shappee, Benjamin J.; Stanek, K. Z.; Pogge, R. W.; Garnavich, P. M. E-mail: kstanek@astronomy.ohio-state.edu E-mail: pgarnavi@nd.edu

    2013-01-01

    A generic prediction of the single-degenerate model for Type Ia supernovae (SNe Ia) is that a significant amount of material will be stripped from the donor star ({approx}0.5 M{sub Sun} for a giant donor and {approx}0.15 M{sub Sun} for a main-sequence donor) by the supernova ejecta. This material, excited by gamma-rays from radioactive decay, would then produce relatively narrow ({approx}<1000 km s{sup -1}) emission features observable once the supernova enters the nebular phase. Such emission has never been detected, which already provides strong constraints on Type Ia progenitor models. In this Letter, we report the deepest limit yet on the presence of H{alpha} emission originating from the stripped hydrogen in the nebular spectrum of an SN Ia obtained using a high signal-to-noise spectrum of the nearby normal SN Ia 2011fe 274 days after B-band maximum light with the Large Binocular Telescope's Multi-Object Double Spectrograph. We put a conservative upper limit on the H{alpha} flux of 3.14 Multiplication-Sign 10{sup -17} erg s{sup -1} cm{sup -2}, which corresponds to a luminosity of 1.57 Multiplication-Sign 10{sup 35} erg s{sup -1}. By scaling models from the literature, our flux limit translates into an upper limit of {approx}<0.001 M{sub Sun} of stripped material. This is an order of magnitude stronger than previous limits. SN 2011fe was a typical SN Ia, special only in its proximity, and we argue that lack of hydrogen emission in its nebular spectrum adds yet another strong constraint on the single-degenerate class of models for SNe Ia.

  1. Galactic planetary nebulae with precise nebular abundances as a tool to understand the evolution of asymptotic giant branch stars

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Ventura, P.; Delgado-Inglada, G.; Dell'Agli, F.; Di Criscienzo, M.; Yagüe, A.

    2016-09-01

    We present nucleosynthesis predictions (HeCNOCl) from asymptotic giant branch (AGB) models, with diffusive overshooting from all the convective borders, in the metallicity range Z⊙/4 < Z < 2 Z⊙. They are compared to recent precise nebular abundances in a sample of Galactic planetary nebulae (PNe) that is divided among double-dust chemistry (DC) and oxygen-dust chemistry (OC) according to the infrared dust features. Unlike the similar subsample of Galactic carbon-dust chemistry PNe recently analysed by us, here the individual abundance errors, the higher metallicity spread, and the uncertain dust types/subtypes in some PNe do not allow a clear determination of the AGB progenitor masses (and formation epochs) for both PNe samples; the comparison is thus more focused on a object-by-object basis. The lowest metallicity OC PNe evolve from low-mass (˜1 M⊙) O-rich AGBs, while the higher metallicity ones (all with uncertain dust classifications) display a chemical pattern similar to the DC PNe. In agreement with recent literature, the DC PNe mostly descend from high-mass (M ≥ 3.5 M⊙) solar/supersolar metallicity AGBs that experience hot bottom burning (HBB), but other formation channels in low-mass AGBs like extra mixing, stellar rotation, binary interaction, or He pre-enrichment cannot be disregarded until more accurate C/O ratios would be obtained. Two objects among the DC PNe show the imprint of advanced CNO processing and deep second dredge-up, suggesting progenitors masses close to the limit to evolve as core collapse supernovae (above 6M⊙). Their actual C/O ratio, if confirmed, indicate contamination from the third dredge-up, rejecting the hypothesis that the chemical composition of such high-metallicity massive AGBs is modified exclusively by HBB.

  2. Mid- and Far-IR Spectroscopy of the Nebular Phase of SN1987A

    NASA Technical Reports Server (NTRS)

    Wooden, Diane; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    The mid- and far-infrared (IR) spectra of the nebular phase of SM 987A spans 250 days through more than 1000 days after the event. Analysis of the spectra, largely obtained from the Kuiper Airborne Observatory, leads to a rich picture of the structure of the supernebula. The evidence for dust grain formation. In the nebula after about 580 days will be reviewed. The dust continuum emission spectrum was gray and dust appears to have condensed in optically thick 'clumps' throughout a significant fraction of the nebula. Additional information is contained in the original extended abstract.

  3. Dust Attenuation of the Nebular Regions of z ~ 2 Star-forming Galaxies: Insight from UV, IR, and Emission Lines

    NASA Astrophysics Data System (ADS)

    De Barros, S.; Reddy, N.; Shivaei, I.

    2016-04-01

    We use a sample of 149 spectroscopically confirmed UV-selected galaxies at z ˜ 2 to investigate the relative dust attenuation of the stellar continuum and the nebular emission lines. For each galaxy in the sample, at least one rest-frame optical emission line (Hα/[N ii] λ6583 or [O iii] λ5007) measurement has been taken from the litterature, and 41 galaxies have additional Spitzer/MIPS 24 μm observations that are used to infer infrared luminosities. We use a spectral energy distribution (SED) fitting code that predicts nebular line strengths when fitting the stellar populations of galaxies in our sample, and we perform comparisons between the predictions of our models and the observed/derived physical quantities. We find that on average our code is able to reproduce all the physical quantities (e.g., UV β slopes, infrared luminosities, emission line fluxes), but we need to apply a higher dust correction to the nebular emission compared to the stellar emission for the largest star formation rate (SFR) (log SFR/M⊙ yr-1 > 1.82, Salpeter initial mass function). We find a correlation between SFR and the difference in nebular and stellar color excesses, which could resolve the discrepant results regarding nebular dust correction at z ˜ 2 from previous studies.

  4. Prevention of Reservoir Interior Discoloration

    SciTech Connect

    Arnold, K.F.

    2001-04-03

    Contamination is anathema in reservoir production. Some of the contamination is a result of welding and some appears after welding but existed before. Oxygen was documented to be a major contributor to discoloration in welding. This study demonstrates that it can be controlled and that some of the informal cleaning processes contribute to contamination.

  5. STELLAR AUTOPSIES: THE ANALYSIS OF TWO GRB-SNE IN THE NEBULAR PHASE

    NASA Astrophysics Data System (ADS)

    Villar, Victoria; Soderberg, A. M.; Milisavljevic, D.; Drout, M.

    2014-01-01

    Spectroscopy and photometry of core-collapse supernovae (SNe) during the nebular phase (T>=40 days) can be used to constrain explosion characteristics, including asymmetry. Here we model the nebular phase light curves of two hydrogen-stripped SNe, SN 2003dh and SN 2006aj, associated with gamma-ray bursts 030329 and 060218, respectively. We estimate the kinetic energy, nickel mass and ejected mass of the explosions. Using Hubble Legacy data in the F814W [I-band], F625W [R-band], F606W [V-band] and F435W [B-band] filters taken between 50 and 450 days after the gamma ray bursts, we reconstruct the bolometric light curve and apply a spherically symmetric, radiative decay model. For SN 2003dh, we find a nickel mass of ~0.35 M_solar, and for SN 2006aj we find a nickel mass of ~0.18 M_solar. Both are in good agreement with estimates from early photometric data suggesting minimal asymmetry within the SN explosion. We compare our results with other supernovae associated with gamma ray bursts. This work is supported in part by the NSF REU and DOD ASSURE programs under NSF grant no. 1262851 and by the Smithsonian Institution.

  6. Lunar and Planetary Science XXXV: From Ancient Mists: Presolar and Nebular Processes

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "From Ancient Mists: Presolar and Nebular Processes" included the following reports: Interpretation of the Meteoritic Extinct Radioactivity - Mean Life Relation; On the Issue of Molybdenum Isotopic Anomalies in Meteorites: Is It Still "FUN"?; (26Al/27Al)o of the Solar Nebula Inferred from Al-Mg Systematic in Bulk CAIs from CV3 Chondrites; Magnesium Isotopic Compositions of Igneous CAIs in the CR Carbonaceous Chondrites: Evidence for an Early and Late-stage Melting of CAIs; The 26Al-26Mg Chronology of a Type C CAI and POIs in Ningqiang Carbonaceous Chondrite; Bulk Compositions of CAIs and Al-rich Chondrules: Implications of the Reversal of the Anorthite / Forsterite Condensation Sequence at Low Nebular Pressures; Synthesis of Refractory Minerals by High-Temperature Condensation of a Gas of Solar Composition; Elemental and Isotopic Fractionation by Diffusion-limited Evaporation; "Nonideal" Isotopic Fractionation Behavior of Magnesium in Evaporation Residues; Determination of Primordial Refractory Inclusion Compositions; Zoning Patterns in Spinel from Type B Ca-Al-rich Inclusions: Constraints on Sub-Solidus Thermal History; Radial Migration of Materials from Inner to Outer Solar Nebula: Evidence from Meteorite Matrix; and Refractory Forsterites in Chondritic Meteorites, a Link Between CAIs and Chondrules.

  7. Trophic status evaluation of TVA reservoirs

    SciTech Connect

    Placke, J.F.

    1983-10-01

    TVA tributary and mainstem reservoirs show generalized differences in morphometry, hydraulics, nutrient loads, and response to nutrient concentrations. Neither type of reservoir is strictly comparable to the natural lakes on which classical eutrophication studies have been based. The majority of published trophic state indices and standards (e.g., hypolimnetic dissolved oxygen depletion, Secchi depth, areas nutrient loading rates, in-reservoir phosphorus concentrations) are inappropriate for evaluation of some or all TVA reservoirs. No single trophic potential or trophic response variable summarizes the mechanisms and manifestations of eutrophication sufficiently to be used as a sole criterion for judging or regulating TVA reservoir water quality. Relative multivariate trophic state indices were developed for mainstem and tributary reservoirs. Ranking of the mainstem reservoirs is based on chlorophyll, macrophyte coverage, hydraulic retention time, reservoir area less than five feet deep, annual pool elevation drawdown, and Secchi depth. Based on available data, the rank from least eutrophic to most eutrophic is: Pickwick, Kentucky, Chickamauga, Nickajack, Wilson, Fort Loudoun, Watts Bar, Wheeler, and Guntersville Reservoirs. Ranking of the tributary reservoirs is based on chlorophyll, total phosphorus and total nitrogen weighted by the N:P ratio, and bio-available inorganic carbon levels. The rank from least eutrophic to most eutrophic is: Hiwassee, Blue Ridge, Chatuge, Norris and Fontana, Watauga, South Holston, Tims Ford, Cherokee, Douglas, and Boone Reservoirs. 130 references, 18 figures, 30 tables.

  8. To Cool is to Accrete: Analytic Scalings for Nebular Accretion of Planetary Atmospheres

    NASA Astrophysics Data System (ADS)

    Lee, Eve J.; Chiang, Eugene

    2015-09-01

    Planets acquire atmospheres from their parent circumstellar disks. We derive a general analytic expression for how the atmospheric mass grows with time t as a function of the underlying core mass {M}{core} and nebular conditions, including the gas metallicity Z. Planets accrete as much gas as can cool: an atmosphere's doubling time is given by its Kelvin-Helmholtz time. Dusty atmospheres behave differently from atmospheres made dust-free by grain growth and sedimentation. The gas-to-core mass ratio (GCR) of a dusty atmosphere scales as GCR \\propto {t}0.4{M}{core}1.7{Z}-0.4{μ }{rcb}3.4, where {μ }{rcb}\\propto 1/(1-Z) (for Z not too close to 1) is the mean molecular weight at the innermost radiative-convective boundary. This scaling applies across all orbital distances and nebular conditions for dusty atmospheres; their radiative-convective boundaries, which regulate cooling, are not set by the external environment, but rather by the internal microphysics of dust sublimation, H2 dissociation, and the formation of H-. By contrast, dust-free atmospheres have their radiative boundaries at temperatures {T}{rcb} close to nebular temperatures {T}{out}, and grow faster at larger orbital distances where cooler temperatures, and by extension lower opacities, prevail. At 0.1 AU in a gas-poor nebula, GCR \\propto {t}0.4{T}{rcb}-1.9{M}{core}1.6{Z}-0.4{μ }{rcb}3.3, while beyond 1 AU in a gas-rich nebula, GCR \\propto {t}0.4{T}{rcb}-1.5{M}{core}1{Z}-0.4{μ }{rcb}2.2. We confirm our analytic scalings against detailed numerical models for objects ranging in mass from Mars (0.1{M}\\oplus ) to the most extreme super-Earths (10-20{M}\\oplus ), and explain why heating from planetesimal accretion cannot prevent the latter from undergoing runaway gas accretion.

  9. Chickamauga reservoir embayment study - 1990

    SciTech Connect

    Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

    1992-12-01

    The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

  10. Strong nebular line ratios in the spectra of z ∼ 2-3 star forming galaxies: first results from KBSS-MOSFIRE

    SciTech Connect

    Steidel, Charles C.; Rudie, Gwen C.; Strom, Allison L.; Trainor, Ryan F.; Konidaris, Nicholas P.; Matthews, Keith; Pettini, Max; Reddy, Naveen A.; Shapley, Alice E.; Kulas, Kristin R.; Mace, Gregory; McLean, Ian S.; Erb, Dawn K.; Turner, Monica L.

    2014-11-10

    We present initial results of a deep near-IR spectroscopic survey covering the 15 fields of the Keck Baryonic Structure Survey using the recently commissioned MOSFIRE spectrometer on the Keck 1 telescope. We focus on a sample of 251 galaxies with redshifts 2.0 < z < 2.6, star formation rates (SFRs) 2 ≲ SFR ≲ 200 M {sub ☉} yr{sup –1}, and stellar masses 8.6 < log (M {sub *}/M {sub ☉}) < 11.4, with high-quality spectra in both H- and K-band atmospheric windows. We show unambiguously that the locus of z ∼ 2.3 galaxies in the 'BPT' nebular diagnostic diagram exhibits an almost entirely disjointed, yet similarly tight, relationship between the line ratios [N II] λ6585/Hα and [O III]/Hβ as compared to local galaxies. Using photoionization models, we argue that the offset of the z ∼ 2.3 BPT locus relative to that at z ∼ 0 is caused by a combination of harder stellar ionizing radiation field, higher ionization parameter, and higher N/O at a given O/H compared to most local galaxies, and that the position of a galaxy along the z ∼ 2.3 star-forming BPT locus is surprisingly insensitive to gas-phase oxygen abundance. The observed nebular emission line ratios are most easily reproduced by models in which the net stellar ionizing radiation field resembles a blackbody with effective temperature T {sub eff} = 50, 000-60, 000 K, the gas-phase oxygen abundances lie in the range 0.2 < Z/Z {sub ☉} < 1.0, and the ratio of gas-phase N/O is close to the solar value. We critically assess the applicability at high redshift of commonly used strong line indices for estimating gas-phase metallicity, and consider the implications of the small intrinsic scatter of the empirical relationship between excitation-sensitive line indices and M {sub *} (i.e., the 'mass-metallicity' relation) at z ≅ 2.3.

  11. Strong Nebular Line Ratios in the Spectra of z ~ 2-3 Star Forming Galaxies: First Results from KBSS-MOSFIRE

    NASA Astrophysics Data System (ADS)

    Steidel, Charles C.; Rudie, Gwen C.; Strom, Allison L.; Pettini, Max; Reddy, Naveen A.; Shapley, Alice E.; Trainor, Ryan F.; Erb, Dawn K.; Turner, Monica L.; Konidaris, Nicholas P.; Kulas, Kristin R.; Mace, Gregory; Matthews, Keith; McLean, Ian S.

    2014-11-01

    We present initial results of a deep near-IR spectroscopic survey covering the 15 fields of the Keck Baryonic Structure Survey using the recently commissioned MOSFIRE spectrometer on the Keck 1 telescope. We focus on a sample of 251 galaxies with redshifts 2.0 < z < 2.6, star formation rates (SFRs) 2 <~ SFR <~ 200 M ⊙ yr-1, and stellar masses 8.6 < log (M */M ⊙) < 11.4, with high-quality spectra in both H- and K-band atmospheric windows. We show unambiguously that the locus of z ~ 2.3 galaxies in the "BPT" nebular diagnostic diagram exhibits an almost entirely disjointed, yet similarly tight, relationship between the line ratios [N II] λ6585/Hα and [O III]/Hβ as compared to local galaxies. Using photoionization models, we argue that the offset of the z ~ 2.3 BPT locus relative to that at z ~ 0 is caused by a combination of harder stellar ionizing radiation field, higher ionization parameter, and higher N/O at a given O/H compared to most local galaxies, and that the position of a galaxy along the z ~ 2.3 star-forming BPT locus is surprisingly insensitive to gas-phase oxygen abundance. The observed nebular emission line ratios are most easily reproduced by models in which the net stellar ionizing radiation field resembles a blackbody with effective temperature T eff = 50, 000-60, 000 K, the gas-phase oxygen abundances lie in the range 0.2 < Z/Z ⊙ < 1.0, and the ratio of gas-phase N/O is close to the solar value. We critically assess the applicability at high redshift of commonly used strong line indices for estimating gas-phase metallicity, and consider the implications of the small intrinsic scatter of the empirical relationship between excitation-sensitive line indices and M * (i.e., the "mass-metallicity" relation) at z ~= 2.3. Based on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous

  12. DEPENDENCE OF NEBULAR HEAVY-ELEMENT ABUNDANCE ON H I CONTENT FOR SPIRAL GALAXIES

    SciTech Connect

    Robertson, Paul; Shields, Gregory A.; Wright, Audrey; Dave, Romeel; Blanc, Guillermo A.

    2013-08-10

    We analyze the galactic H I content and nebular log (O/H) for 60 spiral galaxies in the Moustakas et al. (2006a) spectral catalog. After correcting for the mass-metallicity relationship, we show that the spirals in cluster environments show a positive correlation for log (O/H) on DEF, the galactic H I deficiency parameter, extending the results of previous analyses of the Virgo and Pegasus I clusters. Additionally, we show for the first time that galaxies in the field obey a similar dependence. The observed relationship between H I deficiency and galactic metallicity resembles similar trends shown by cosmological simulations of galaxy formation including inflows and outflows. These results indicate the previously observed metallicity-DEF correlation has a more universal interpretation than simply a cluster's effects on its member galaxies. Rather, we observe in all environments the stochastic effects of metal-poor infall as minor mergers and accretion help to build giant spirals.

  13. Evidence for primitive nebular components in chondrules from the Chainpur chondrite

    NASA Astrophysics Data System (ADS)

    Grossman, J. N.; Wasson, J. T.

    1982-06-01

    In view of the fact that the least equilibrated ordinary chondrites contain chondrules that have changed little since the time of their formation in the early solar system, and are therefore excellent indicators of the physical and chemical nature of the solar nebula, 36 chondrules were separated from the Chainpur chondrite and analyzed for 20 elements and petrographic properties. The dominant nebular components found are: (1) a mixture of metal and sulfide whose composition is similar to whole rock metal and sulfide, (2) Ir-rich metal, (3) olivine-rich silicates, (4) pyroxene-rich silicates, and possibly (5) a component containing the more volatile lithophiles. Although etching experiments confirm that chondrule rims are enriched in metal, troilite and moderately volatile elements relative to the bulk chondrules, a large fraction of the volatiles remains in the unetched interior.

  14. Chemistry of primitive solar material. [nebular hypothesis of planetary systems formation

    NASA Technical Reports Server (NTRS)

    Barshay, S. S.; Lewis, J. S.

    1976-01-01

    The paper reviews chemical processes that occurred in the cooler outer regions of the primitive solar nebula (PSN) at the time of intimate chemical contact between the preplanetary condensate and the nebular gas. The elemental composition of the PSN is discussed, the 15 most abundant elements in it are listed, and numerical models of it are examined. Various condensation models are described and tested against observed properties of the planets, their satellites, and the asteroids. The chemistry of abundant volatile elements in the PSN is investigated along with stability limits of graphite in a solar-composition gas, regions of dominance of the most abundant carbon-containing gas species in the same gas, and implications of the moon's composition for its origin. Some theories that have been proposed as alternatives to the condensation models are noted.

  15. Petrologic evolution of CM chondrites: The difficulty of discriminating between nebular and parent-body effects

    NASA Astrophysics Data System (ADS)

    Kerridge, J. F.; McSween, H. Y., Jr.; Bunch, T. E.

    1994-07-01

    We wish to draw attention to a major controversy that has arisen in the area of CM-chondrite petrology. The problem is important because its resolution will have profound implications for ideas concerning nebular dynamics, gas-solid interactions in the nebula, and accretionary processes in the nebula, among other issues. On the one hand, cogent arguments have been presented that 'accretionary dust mantles,' were formed in the solar nebula prior to accretion of the CM parent asteroid(s). On the other hand, no-less-powerful arguments have been advanced that a significant fraction of the CM lithology is secondary, produced by aqueous alteration in the near-surface regions of an asteroid-sized object. Because most, if not all, CM chondrites are breccias, these two views could coexist harmoniously, were it not for the fact that some of the coarse-grained lithologies surrounded by 'accretion dust mantles' are themselves of apparently secondary origin. Such an observation must clearly force a reassessment of one or both of the present schools of thought. Our objective here is to stimulate such a reassessment. Four possible resolutions of this conflict may be postulated. First, perhaps nature found a way of permitting such secondary alteration to take place in the nebula. Second, maybe dust mantles could form in a regolith, rather than a nebular, environment. Third, it is possible that dust mantles around secondary lithologies are different from those around primary lithologies. Finally, perhaps formation of CM chondrites involved a more complex sequence of events than visualized so far, so that some apparently 'primary' processes postdated certain 'secondary' processes.

  16. Nebular and auroral emission lines of [Cl III] in the optical spectra of planetary nebulae.

    PubMed

    Keenan, F P; Aller, L H; Ramsbottom, C A; Bell, K L; Crawford, F L; Hyung, S

    2000-04-25

    Electron impact excitation rates in Cl III, recently determined with the R-matrix code, are used to calculate electron temperature (T(e)) and density (N(e)) emission line ratios involving both the nebular (5517.7, 5537.9 A) and auroral (8433.9, 8480.9, 8500.0 A) transitions. A comparison of these results with observational data for a sample of planetary nebulae, obtained with the Hamilton Echelle Spectrograph on the 3-m Shane Telescope, reveals that the R(1) = I(5518 A)/I(5538 A) intensity ratio provides estimates of N(e) in excellent agreement with the values derived from other line ratios in the echelle spectra. This agreement indicates that R(1) is a reliable density diagnostic for planetary nebulae, and it also provides observational support for the accuracy of the atomic data adopted in the line ratio calculations. However the [Cl iii] 8433.9 A line is found to be frequently blended with a weak telluric emission feature, although in those instances when the [Cl iii] intensity may be reliably measured, it provides accurate determinations of T(e) when ratioed against the sum of the 5518 and 5538 A line fluxes. Similarly, the 8500.0 A line, previously believed to be free of contamination by the Earth's atmosphere, is also shown to be generally blended with a weak telluric emission feature. The [Cl iii] transition at 8480.9 A is found to be blended with the He i 8480.7 A line, except in planetary nebulae that show a relatively weak He i spectrum, where it also provides reliable estimates of T(e) when ratioed against the nebular lines. Finally, the diagnostic potential of the near-UV [Cl iii] lines at 3344 and 3354 A is briefly discussed.

  17. Atomic Data for Nebular Abundance Determinations: Photoionization and Recombination Properties of Xenon Ions

    NASA Astrophysics Data System (ADS)

    Sterling, Nicholas C.; Kerlin, Austin B.

    2016-01-01

    We present preliminary results of a study of the photoionization (PI) and recombination properties of low-charge Xe ions. The abundances of neutron(n)-capture elements (atomic number Z > 30) are of interest in planetary nebulae (PNe) since they can be enriched by slow n-capture nucleosynthesis (the ``s-process'') in the progenitor asymptotic giant branch (AGB) stars. Xe is particularly valuable, because it is the most widely-observed ``heavy-s'' species (Z > 40) in PNe. Its abundance relative to lighter n-capture elements can be used to determine s-process neutron exposures, and constrain s-process enrichment patterns as a function of progenitor metallicity. Using the atomic structure code AUTOSTRUCTURE (Badnell 2011, Comp. Phys. Comm., 182, 1528), we have computed multi-configuration Breit-Pauli distorted-wave PI cross sections and radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for neutral through six-times ionized Xe, data which are critically needed for accurate Xe abundance determinations in ionized nebulae. We find good agreement between our computed direct PI cross sections and experimental measurements. Internal uncertainties are estimated for our calculations by using three different configuration interaction expansions for each ion, and by testing the sensitivity of our results to the radial orbital scaling parameters. As found for other n-capture elements (Sterling & Witthoeft 2011, A&A, 529, A147; Sterling 2011, A&A, 533, A62), DR is the dominant recombination mechanism for Xe ions at nebular temperatures (~104 K). Following Sterling et al. (2015, ApJS, 218, 25), these data will be added to nebular modeling codes to compute ionization correction factors for unobserved Xe ions in PNe, which will enable elemental Xe abundances to be determined with much higher accuracy than is currently possible. This work is supported by NSF award AST-1412928.

  18. Oxygen isotopic variations in the outer margins and Wark-Lovering rims of refractory inclusions

    NASA Astrophysics Data System (ADS)

    Simon, Justin I.; Matzel, Jennifer E. P.; Simon, Steven B.; Hutcheon, Ian D.; Ross, D. Kent; Weber, Peter K.; Grossman, Lawrence

    2016-08-01

    Oxygen isotopic variations across the outer margins and Wark-Lovering (WL) rims of a diverse suite of six coarse-grained Types A and B refractory inclusions from both oxidized and reduced CV3 chondrites suggest that CAIs originated from a 16O-rich protosolar gas reservoir and were later exposed to both relatively 17,18O-rich and 16O-rich reservoirs. The O-isotope profiles of CAIs can be explained by changes in the composition of gas near the protoSun or the migration of CAIs through a heterogeneous nebula. Variability within the inclusion interiors appears to have been set prior to WL rim growth. Modeling the isotopic zoning profiles as diffusion gradients between inclusion interiors and edges establishes a range of permissible time-temperature combinations for their exposure in the nebula. At mean temperatures of 1400 K, models that match the isotope gradients in the inclusions yield timescales ranging from 5 × 103 to 3 × 105 years. Assuming CAIs originated with a relatively 16O-rich (protosolar) isotopic composition, differences among the melilite interiors and the isotopic gradients in their margins imply the existence of a number of isotopically distinct reservoirs. Evidence at the edges of some CAIs for subsequent isotopic exchange may relate to the beginning of rim formation. In the WL rim layers surrounding the interiors, spinel is relatively 16O-rich but subtly distinct among different CAIs. Melilite is often relatively 16O-poor, but rare relatively 16O-rich grains also exist. Pyroxene generally exhibits intermediate O-isotope compositions and isotopic zoning. Olivine in both WL and accretionary rims, when present, is isotopically heterogeneous. The extreme isotopic heterogeneity among and within individual WL rim layers and in particular, the observed trends of outward 16O-enrichments, suggest that rims surrounding CAIs contained in CV3 chondrites, like the inclusions themselves, formed from a number of isotopically distinct gas reservoirs. Collectively

  19. Rhizosphere dynamics of two riparian plant species from the water fluctuation zone of Three Gorges Reservoir, P.R. China - pH, oxygen and LMWOA monitoring during short flooding events

    NASA Astrophysics Data System (ADS)

    Schreiber, Christina M.; Schurr, Ulrich; Zeng, Bo; Höltkemeier, Agnes; Kuhn, Arnd J.

    2010-05-01

    Since the construction of the Three Gorges Dam at the Yangtze River in China, the reservoir management created a new 30m water fluctuation zone 45-75m above the original water level. Only species well adapted to long-time flooding (up to several months) will be able to vegetate the river banks and replace the original vegetation. To investigate how common species of the riverbanks cope with submergence, Alternanthera philoxeroides Mart. and Arundinella anomala Steud., two flooding resistant riparian species, have been examined in a rhizotron environment. Short-time (2 days waterlogging, 2 days flooding, 2 days recovery) flooding cycles in the original substrate and long time (14 days waterlogging, flooding, recovery) flooding cycles, in original substrate and sterile glass bead substrate, have been simulated in floodable two-way access rhizotrons. Oxygen- and pH-sensitive foils (planar optodes, PreSens) automatically monitored root reaction in a confined space (2cm2 each) on the backside of the rhizotron, while soil solution samples were taken 2 times a day from the other side of the rhizotron at the corresponding area through filter and steel capillaries. The samples were analyzed by capillary electrophoresis for low molecular weight organic acids (LMWOA, i.e. oxalic, formic, succinic, malic, acetic, glyoxylic, lactic and citric acid). Results show diurnal rhythms of rhizospheric acidification for both species in high resolution, combined with oxygen entry into the root surrounding during waterlogged state. Flooding caused stronger acidification in the rhizosphere, that were however not accompanied by increased occurrence of LMWOA except for acetic and glyoxylic acid. First results from longer flooding periods show stable diurnal rhythms during waterlogging, but no strongly increased activity during the flooding event. Performance of the two species is not hampered by being waterlogged, and they follow a silencing strategy during a longer phase of anoxia without

  20. Longitudinal gradients along a reservoir cascade

    USGS Publications Warehouse

    Miranda, L.E.; Habrat, M.D.; Miyazono, S.

    2008-01-01

    Reservoirs have traditionally been regarded as spatially independent entities rather than as longitudinal segments of a river system that are connected upstream and downstream to the river and other reservoirs. This view has frustrated advancement in reservoir science by impeding adequate organization of available information and by hindering interchanges with allied disciplines that often consider impounded rivers at the basin scale. We analyzed reservoir morphology, water quality, and fish assemblage data collected in 24 reservoirs of the Tennessee River; we wanted to describe longitudinal changes occurring at the scale of the entire reservoir series (i.e., cascade) and to test the hypothesis that fish communities and environmental factors display predictable gradients like those recognized for unimpounded rivers. We used a data set collected over a 7-year period; over 3 million fish representing 94 species were included in the data set. Characteristics such as reservoir mean depth, relative size of the limnetic zone, water retention time, oxygen stratification, thermal stratification, substrate size, and water level fluctuations increased in upstream reservoirs. Conversely, reservoir area, extent of riverine and littoral zones, access to floodplains and associated wetlands, habitat diversity, and nutrient and sediment inputs increased in downstream reservoirs. Upstream reservoirs included few, largely lacustrine, ubiquitous fish taxa that were characteristic of the lentic upper reaches of the basin. Fish species richness increased in a downstream direction from 12 to 67 species/ reservoir as riverine species became more common. Considering impoundments at a basin scale by viewing them as sections in a river or links in a chain may generate insight that is not always available when the impoundments are viewed as isolated entities. Basin-scale variables are rarely controllable but constrain the expression of processes at smaller scales and can facilitate the

  1. Planetary Accretion, Oxygen Isotopes and the Central Limit Theorem

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A., III; Hill, Hugh G. M.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The accumulation of presolar dust into increasingly larger aggregates (CAIs and Chondrules, Asteroids, Planets) should result in a very drastic reduction in the numerical spread in oxygen isotopic composition between bodies of similar size, in accord with the Central Limit Theorem. Observed variations in oxygen isotopic composition are many orders of magnitude larger than would be predicted by a simple, random accumulation model that begins in a well-mixed nebula - no matter which size-scale objects are used as the beginning or end points of the calculation. This discrepancy implies either that some as yet unspecified process acted on the solids in the Solar Nebula to increase the spread in oxygen isotopic composition during each and every stage of accumulation or that the nebula was heterogeneous and maintained this heterogeneity throughout most of nebular history. Large-scale nebular heterogeneity would have significant consequences for many areas of cosmochemistry, including the application of some well-known isotopic systems to the dating of nebular events or the prediction of bulk compositions of planetary bodies on the basis of a uniform cosmic abundance.

  2. Properties of z ~ 3-6 Lyman break galaxies. II. Impact of nebular emission at high redshift

    NASA Astrophysics Data System (ADS)

    de Barros, S.; Schaerer, D.; Stark, D. P.

    2014-03-01

    Context. To gain insight on the mass assembly and place constraints on the star formation history (SFH) of Lyman break galaxies (LBGs), it is important to accurately determine their properties. Aims: We estimate how nebular emission and different SFHs affect parameter estimation of LBGs. Methods: We present a homogeneous, detailed analysis of the spectral energy distribution (SED) of ~1700 LBGs from the GOODS-MUSIC catalogue with deep multi-wavelength photometry from the U band to 8 μm to determine stellar mass, age, dust attenuation, and star formation rate. Using our SED fitting tool, which takes into account nebular emission, we explore a wide parameter space. We also explore a set of different star formation histories. Results: Nebular emission is found to significantly affect the determination of the physical parameters for the majority of z ~ 3-6 LBGs. We identify two populations of galaxies by determining the importance of the contribution of emission lines to broadband fluxes. We find that ~65% of LBGs show detectable signs of emission lines, whereas ~35% show weak or no emission lines. This distribution is found over the entire redshift range. We interpret these groups as actively star-forming and more quiescent LBGs, respectively. We find that it is necessary to considerer SED fits with very young ages (<50 Myr) to reproduce some colours affected by strong emission lines. Other arguments favouring episodic star formation and relatively short star formation timescales are also discussed. Considering nebular emission generally leads to a younger age, lower stellar mass, higher dust attenuation, higher star formation rate, and a large scatter in the SFR-M⋆ relation. Our analysis yields a trend of increasing specific star formation rate with redshift, as predicted by recent galaxy evolution models. Conclusions: The physical parameters of approximately two thirds of high redshift galaxies are significantly modified when we account for nebular emission. The

  3. Optimizing withdrawal from drinking water reservoirs to reduce downstream temperature pollution and reservoir hypoxia.

    PubMed

    Weber, M; Rinke, K; Hipsey, M R; Boehrer, B

    2017-03-20

    Sustainable management of drinking water reservoirs requires balancing the demands of water supply whilst minimizing environmental impact. This study numerically simulates the effect of an improved withdrawal scheme designed to alleviate the temperature pollution downstream of a reservoir. The aim was to identify an optimal withdrawal strategy such that water of a desirable discharge temperature can be supplied downstream without leading to unacceptably low oxygen concentrations within the reservoir. First, we calibrated a one-dimensional numerical model for hydrodynamics and oxygen dynamics (GLM-AED2), verifying that the model reproduced water temperatures and hypolimnetic dissolved oxygen concentrations accurately over a 5 year period. Second, the model was extended to include an adaptive withdrawal functionality, allowing for a prescribed withdrawal temperature to be found, with the potential constraint of hypolimnetic oxygen concentration. Scenario simulations on epi-/metalimnetic withdrawal demonstrate that the model is able to autonomously determine the best withdrawal height depending on the thermal structure and the hypolimnetic oxygen concentration thereby optimizing the ability to supply a desirable discharge temperature to the downstream river during summer. This new withdrawal strategy also increased the hypolimnetic raw water volume to be used for drinking water supply, but reduced the dissolved oxygen concentrations in the deep and cold water layers (hypolimnion). Implications of the results for reservoir management are discussed and the numerical model is provided for operators as a simple and efficient tool for optimizing the withdrawal strategy within different reservoir contexts.

  4. Non-nebular Origin of Dark Mantles Around Chondrules and Inclusions in CM Chondrites

    NASA Technical Reports Server (NTRS)

    Trigo-Rodriquez, Josep M.; Rubin, Alan E.; Wasson, John T.

    2006-01-01

    Our examination of nine CM chondrites that span the aqueous alteration sequence leads us to conclude that compact dark fine mantles surrounding chondrules and inclusions in CM chondrites are not discrete fine-grained rims acquired in the solar nebula as modeled by Metzler et al. [Accretionary dust mantles in CM chondrites: evidence for solar nebula processes. Geochim. Cosmochim. Acta 56, 1992, 2873-28971. Nebular processes that lead to agglomeration produce materials with porosities far higher than those in the dark mantles. We infer that the mantles were produced from porous nebular materials on the CM parent asteroid by impact-compaction (a process that produces the lowest porosity adjacent to chondrules and inclusions). Compaction was followed by aqueous alteration that formed tochilinite, serpentine, Ni-bearing sulfide, and other secondary products in voids in the interchondrule regions. Metzler et al. reported a correlation between mantle thickness and the radius of the enclosed object. In Yamato 791 198 we find no correlation when all sizes of central objects and dark lumps are included but a significant correlation (r(sup 2) = 0.44) if we limit consideration to central objects with radii >35 microns; a moderate correlation is also found in QUE 97990. We suggest that impact-induced shear of a plum-pudding-like precursor produced the observed "mantles"; these were shielded from comminution during impact events by the adjacent stronger chondrules and inclusions. Some mantles in CM chondrites with low degrees of alteration show distinct layers that may largely reflect differences in porosity. Typically, a gray, uniform inner layer is surrounded by an outer layer consisting of darker silicates with BSE-bright speckles. The CM-chondrite objects characterized as "primary accretionary rocks" by Metzler et al. did not form in the nebula, but rather on the parent body. The absence of solar-flare particle tracks and solar-wind-implanted rare gases in these clasts

  5. Quantifying the impact of AGN and nebular emission on stellar population properties with REBETIKO

    NASA Astrophysics Data System (ADS)

    Cardoso, L. S. M.; Gomes, J. M.; Papaderos, P.

    2016-06-01

    Spectral synthesis enables the reconstruction of the star formation and chemical evolution histories (SFH & CEH) of a galaxy that are encoded in its spectral energy distribution (SED). Most state-of-the-art population synthesis codes however consider only purely stellar emission and are hence inadequate for modelling studies of galaxies where non-stellar emission components contribute significantly to the SED. This work combines evolutionary and population synthesis techniques to quantify the impact of active galactic nucleus (AGN) and nebular emission on the determination of the stellar population properties in galaxies. We have developed an evolutionary synthesis code called REBETIKO - Reckoning galaxy Emission By means of Evolutionary Tasks with Input Key Observables - to compute and study the time evolution of the SED of AGN-hosts and starburst galaxies. Our code takes into account the main ingredients of a galaxy's SED (e.g. non-thermal emission and/or nebular continuum and lines) for various commonly used parameterizations of the SFH, such as instantaneous burst, constant, exponentially decreasing, and gradually increasing peaking at a redshift between 1-10. Synthetic SEDs computed with REBETIKO have been subsequently fitted with the STARLIGHT population synthesis code (PSC) which can be regarded as representative for currently available state-of-the-art (i.e. purely stellar) PSCs. The objective is to study the impact of non-stellar SED components on the recovery of the true total stellar mass M_{star} and SFH of a galaxy, as well as other evolutionary properties, such as CEH and light- and mass-weighted mean stellar age and metallicity. We find that purely stellar fits in galaxies with a strong non-stellar continuum (e.g. Seyfert and/or starburst galaxies) can for instance overestimate M_{star} by up to 3 orders of magnitude, while the mean stellar age and metallicity can deviate from their true values up to 2 and 4 dex, respectively. These results imply

  6. Destratification of an impounding reservoir using compressed air??case of Mudi reservoir, Blantyre, Malawi

    NASA Astrophysics Data System (ADS)

    Chipofya, V. H.; Matapa, E. J.

    This paper reviews the operational and cost effectiveness of a compressed air destratification system that was installed in the Mudi reservoir for destratifying the reservoir. Mudi reservoir is a raw water source for the Blantyre Water Board. It has a capacity of 1,400,000 cubic metres. The reservoir is 15.3 m deep at top water level. In the absence of any artificial circulation of air, the reservoir stratifies into two layers. There is a warm epilimnion in the top 3 m of the reservoir, with temperatures ranging from 23 to 26 °C. There is prolific algal growth in this layer. The bottom layer has much lower temperatures, and is oxygen deficient. Under such anaerobic conditions, ammonia, sulphides, iron and manganese are released from the sediments of the reservoir. As a result of nutrient inflow from the catchments, coupled with tropical ambient temperatures, the reservoir is most times infested with blue-green algae. This results into water treatment problems in respect of taste and odour and iron and manganese soluble salts. To abate such problems, air is artificially circulated in the reservoir, near the intake tower, through a perforated pipe that is connected to an electrically driven compressor. This causes artificial circulation of water in the hypolimnion region of the reservoir. As a result of this circulation, a hostile environment that inhibits the propagation of algae is created. Dissolved oxygen and temperature profiles are practically uniform from top to bottom of reservoir. Concentrations of iron and manganese soluble salts are much reduced at any of the draw-off points available for the water treatment process. The paper concludes by highlighting the significant cost savings in water treatment that are accrued from the use of compressed air destratification in impounding water storage reservoirs for the control of algae and other chemical pollutants.

  7. The Kinematics of the Nebular Shells Around Low Mass Progenitors of PNe with Low Metallicity

    NASA Astrophysics Data System (ADS)

    Pereyra, Margarita; López, José Alberto; Richer, Michael G.

    2016-03-01

    We analyze the internal kinematics of 26 planetary nebulae (PNe) with low metallicity that appear to derive from progenitor stars of the lowest masses, including the halo PN population. Based upon spatially resolved, long-slit, echelle spectroscopy drawn from the San Pedro Mártir Kinematic Catalog of PNe, we characterize the kinematics of these PNe measuring their global expansion velocities based upon the largest sample used to date for this purpose. We find kinematics that follow the trends observed and predicted in other studies, but also find that most of the PNe studied here tend to have expansion velocities less than 20 km s-1 in all of the emission lines considered. The low expansion velocities that we observe in this sample of low metallicity PNe with low mass progenitors are most likely a consequence of a weak central star (CS) wind driving the kinematics of the nebular shell. This study complements previous results that link the expansion velocities of the PN shells with the characteristics of the CS. The observations reported herein were acquired at the Observatorio Astronómico Nacional in the Sierra San Pedro Mártir (OAN-SPM), B. C., Mexico.

  8. THE KINEMATICS OF THE NEBULAR SHELLS AROUND LOW MASS PROGENITORS OF PNe WITH LOW METALLICITY

    SciTech Connect

    Pereyra, Margarita; López, José Alberto; Richer, Michael G. E-mail: jal@astrosen.unam.mx

    2016-03-15

    We analyze the internal kinematics of 26 planetary nebulae (PNe) with low metallicity that appear to derive from progenitor stars of the lowest masses, including the halo PN population. Based upon spatially resolved, long-slit, echelle spectroscopy drawn from the San Pedro Mártir Kinematic Catalog of PNe, we characterize the kinematics of these PNe measuring their global expansion velocities based upon the largest sample used to date for this purpose. We find kinematics that follow the trends observed and predicted in other studies, but also find that most of the PNe studied here tend to have expansion velocities less than 20 km s{sup −1} in all of the emission lines considered. The low expansion velocities that we observe in this sample of low metallicity PNe with low mass progenitors are most likely a consequence of a weak central star (CS) wind driving the kinematics of the nebular shell. This study complements previous results that link the expansion velocities of the PN shells with the characteristics of the CS.

  9. The nebular emission of star-forming galaxies in a hierarchical universe

    NASA Astrophysics Data System (ADS)

    Orsi, Álvaro; Padilla, Nelson; Groves, Brent; Cora, Sofía; Tecce, Tomás; Gargiulo, Ignacio; Ruiz, Andrés

    2014-09-01

    Galaxy surveys targeting emission lines are characterizing the evolution of star-forming galaxies, but there is still little theoretical progress in modelling their physical properties. We predict nebular emission from star-forming galaxies within a cosmological galaxy formation model. Emission lines are computed by combining the semi-analytical model SAG with the photoionization code MAPPINGS-III. We characterize the interstellar medium of galaxies by relating the ionization parameter of gas in galaxies to their cold gas metallicity, obtaining a reasonable agreement with the observed Hα, [O II] λ 3727, [O III] λ 5007 luminosity functions, and the BPT diagram for local star-forming galaxies. The average ionization parameter is found to increase towards low star formation rates and high redshifts, consistent with recent observational results. The predicted link between different emission lines and their associated star formation rates is studied by presenting scaling relations to relate them. Our model predicts that emission-line galaxies have modest clustering bias, and thus reside in dark matter haloes of masses below Mhalo ≲ 1012 [h-1 M⊙]. Finally, we exploit our modelling technique to predict galaxy number counts up to z ˜ 10 by targeting far-infrared emission lines detectable with submillimetre facilities.

  10. Behind the Curtain: Revealing the Nebular Influence on X-ray Emission from Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Montez, Rodolfo, Jr.

    2017-01-01

    Planetary Nebulae (PNe), the ionized shells of gas surrounding dying low- to intermediate-mass stars, are interesting astrophysical plasma laboratories because of the range of plasma conditions that exist in close proximity. Early in the lifetime of PNe, a 106 K plasma---called a hot bubble---fills the 104 K nebular shell. The interaction of these two plasmas is the potential origin of cooler than expected hot bubble temperatures. Studying high-spatial resolution imaging by the Hubble Space Telescope and the Chandra X-ray Observatory offer an opportunity to study the interaction of these two plasmas. Yet the Chandra and HST observations of PN BD+30°3639 indicate distinct X-ray and optical morphologies that do not appear directly correlated. However, we have developed a method that uses Chandra imaging spectroscopy to study the spatial distribution of the hot bubble X-ray emission. Remarkably, applying this method to the X-ray observation reveals the influence of the surrounding nebula and mimics the optical morphology that is otherwise hidden in the X-ray images. We present the methodology, images derived using the method, and the distribution of the physical conditions that likely give rise to the observed effect. Further improvement of the method and establishing its limitations in the low-count regime will help establish the utility of this method for other low-count extended X-ray sources.

  11. Coordinated Oxygen Isotopic and Petrologic Studies of CAIS Record Varying Composition of Protosolar

    NASA Technical Reports Server (NTRS)

    Simon, Justin I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2012-01-01

    Ca-, Al-rich inclusions (CAIs) record the O-isotope composition of Solar nebular gas from which they grew [1]. High spatial resolution O-isotope measurements afforded by ion microprobe analysis across the rims and margin of CAIs reveal systematic variations in (Delta)O-17 and suggest formation from a diversity of nebular environments [2-4]. This heterogeneity has been explained by isotopic mixing between the O-16-rich Solar reservoir [6] and a second O-16-poor reservoir (probably nebular gas) with a "planetary-like" isotopic composition [e.g., 1, 6-7], but the mechanism and location(s) where these events occur within the protoplanetary disk remain uncertain. The orientation of large and systematic variations in (Delta)O-17 reported by [3] for a compact Type A CAI from the Efremovka reduced CV3 chondrite differs dramatically from reports by [4] of a similar CAI, A37 from the Allende oxidized CV3 chondrite. Both studies conclude that CAIs were exposed to distinct, nebular O-isotope reservoirs, implying the transfer of CAIs among different settings within the protoplanetary disk [4]. To test this hypothesis further and the extent of intra-CAI O-isotopic variation, a pristine compact Type A CAI, Ef-1 from Efremovka, and a Type B2 CAI, TS4 from Allende were studied. Our new results are equally intriguing because, collectively, O-isotopic zoning patterns in the CAIs indicate a progressive and cyclic record. The results imply that CAIs were commonly exposed to multiple environments of distinct gas during their formation. Numerical models help constrain conditions and duration of these events.

  12. Oxygen isotope exchange between refractory inclusion in Allende and solar nebula gas.

    PubMed

    Yurimoto, H; Ito, M; Nagasawa, H

    1998-12-04

    A calcium-aluminum-rich inclusion (CAI) from the Allende meteorite was analyzed and found to contain melilite crystals with extreme oxygen-isotope composition (approximately 5 percent oxygen-16 enrichment relative to terrestrial oxygen-16). Some of the melilite is also anomalously enriched in oxygen-16 compared with oxygen isotopes measured in other CAIs. The oxygen isotopic variation measured among the minerals (melilite, spinel, and fassaite) indicates that crystallization of the CAI started from oxygen-16-rich materials that were probably liquid droplets in the solar nebula, and oxygen isotope exchange with the surrounding oxygen-16-poor nebular gas progressed through the crystallization of the CAI. Additional oxygen isotope exchange also occurred during subsequent reheating events in the solar nebula.

  13. Oxygen isotope exchange between refractory inclusion in allende and solar nebula Gas

    PubMed

    Yurimoto; Ito; Nagasawa

    1998-12-04

    A calcium-aluminum-rich inclusion (CAI) from the Allende meteorite was analyzed and found to contain melilite crystals with extreme oxygen-isotope compositions ( approximately 5 percent oxygen-16 enrichment relative to terrestrial oxygen-16). Some of the melilite is also anomalously enriched in oxygen-16 compared with oxygen isotopes measured in other CAIs. The oxygen isotopic variation measured among the minerals (melilite, spinel, and fassaite) indicates that crystallization of the CAI started from oxygen-16-rich materials that were probably liquid droplets in the solar nebula, and oxygen isotope exchange with the surrounding oxygen-16-poor nebular gas progressed through the crystallization of the CAI. Additional oxygen isotope exchange also occurred during subsequent reheating events in the solar nebula.

  14. The peculiar type II supernova 1993J in M81: Transition to the nebular phase

    NASA Technical Reports Server (NTRS)

    Filippenko, Alexei V.; Matheson, Thomas; Barth, Aaron J.

    1994-01-01

    We present optical spectra of the bright, peculiar Type II supernova 1993J in M81 spanning the first 14 months of its existence, revealing its transition to the nebular phase. Unlike the case in normal Type II supernovae, during the first 2-10 months the H-alpha emission line gradually becomes less prominent relative to other features such as (O I) lambda lambda 6300, 6364 and (Ca II) lambda lambda 7291, 7324, as we had predicted based on early-time (tau less than or approximately equal to 2 months) spectra. The nebular spectrum resembles those of the Type Ib/Ic supernovae 1985F and 1987M, although weak H-alpha emission is easily visible even at late times in SN 1993J. At tau = 8 months a close similarity is found with the spectrum of SN 1987K, the only other Type II supernova known to have undergone such a metamorphosis. The emission lines are considerably broader than those of normal Type II supernovae at comparable phases, consistent with the progenitor having lost a majority of its hydrogen envelope prior to exploding. Consequently, there is now little doubt that Type Ib, and probably Type Ic, supernovae result from core collapse in stripped, massive stars; models of the chemical evolution of galaxies in which these subtypes are ascribed to exploding white dwarfs must be appropriately modified. Although all of the emission lines in spectra of SN 1993J fade roughly exponentially for a considerable time, the fading of H-alpha begins to slow down at tau approximately = 8 months, and in the interval tau = 10-14 months its flux is constant, or even slightly rising in the wings of the line. This behavior, together with the box-like shape and great breadth (full width at half maximum (FWHM) approximately = 17 000 km/s) of the line profile, suggests that the H-alpha emission is being produced by the high-velocity outer layer of hydrogen ejecta interacting with circumstellar gas released by the progenitor prior to its explosion. A similar phenomenon has previously been

  15. ALH85085: a unique volatile-poor carbonaceous chondrite with possible implications for nebular fractionation processes

    USGS Publications Warehouse

    Grossman, J.N.; Rubin, A.E.; MacPherson, G.J.

    1988-01-01

    Allan Hills 85085 is a unique chondrite with affinities to the Al Rais-Renazzo clan of carbonaceous chondrites. Its constituents are less than 50 ??m in mean size. Chondrules and microchondrules of all textures are present; nonporphyritic chondrules are unusually abundant. The mean compositions of porphyritic, nonporphyritic and barred olivine chondrules resemble those in ordinary chondrites except that they are depleted in volatile elements. Ca-, Al-rich inclusions are abundant and largely free of nebular alteration; they comprise types similar to those in CM and CO chondrites, as well as unique types. Calcium dialuminate occurs in several inclusions. Metal, silicate and sulfide compositions are close to those in CM-CO chondrites and Al Rais and Renazzo. C1-chondrite clasts and metal-rich "reduced" clasts are present, but opaque matrix is absent. Siderophile abundances in ALH85085 are extremely high (e.g., Fe Si = 1.7 ?? solar), and volatiles are depleted (e.g., Na Si = 0.25 ?? solar, S Si = 0.03 ?? solar). Nonvolatile lithophile abundances are similar to those in Al Rais, Renazzo, and CM and CO chondrites. ALH85085 agglomerated when temperatures in the nebula were near 1000 K, in the same region where Renazzo, Al Rais and the CI chondrites formed. Agglomeration of high-temperature material may thus be a mechanism by which the fractionation of refractory lithophiles occurred in the nebula. Chondrule formation must have occurred at high temperatures when clumps of precursors were small. After agglomeration, ALH85085 was annealed and lightly shocked. C1 and other clasts were subsequently incorporated during late-stage brecciation. ?? 1988.

  16. THE EVOLUTION OF THE KINEMATICS OF NEBULAR SHELLS IN PLANETARY NEBULAE IN THE MILKY WAY BULGE

    SciTech Connect

    Richer, Michael G.; Lopez, Jose Alberto; Garcia-Diaz, Maria Teresa; Clark, David M.; Pereyra, Margarita; Diaz-Mendez, Enrique E-mail: jal@astrosen.unam.m E-mail: dmclark@astrosen.unam.m E-mail: e.d.mendez@tcu.ed

    2010-06-10

    We study the line widths in the [O III]{lambda}5007 and H{alpha} lines for two groups of planetary nebulae in the Milky Way bulge based upon spectroscopy obtained at the Observatorio Astronomico Nacional in the Sierra San Pedro Martir (OAN-SPM) using the Manchester Echelle Spectrograph. The first sample includes objects early in their evolution, having high H{beta} luminosities, but [O III]{lambda}5007/H{beta} < 3. The second sample comprises objects late in their evolution, with He II {lambda}4686/H{beta}>0.5. These planetary nebulae represent evolutionary phases preceding and following those of the objects studied by Richer et al. in 2008. Our sample of planetary nebulae with weak [O III]{lambda}5007 has a line width distribution similar to that of the expansion velocities of the envelopes of asymptotic giant branch stars and shifted to systematically lower values as compared to the less evolved objects studied by Richer et al. The sample with strong He II {lambda}4686 has a line width distribution indistinguishable from that of the more evolved objects from Richer et al., but a distribution in angular size that is systematically larger and so they are clearly more evolved. These data and those of Richer et al. form a homogeneous sample from a single Galactic population of planetary nebulae, from the earliest evolutionary stages until the cessation of nuclear burning in the central star. They confirm the long-standing predictions of hydrodynamical models of planetary nebulae, where the kinematics of the nebular shell are driven by the evolution of the central star.

  17. Optical Transients Powered by Magnetars: Dynamics, Light Curves, and Transition to the Nebular Phase

    NASA Astrophysics Data System (ADS)

    Wang, Ling-Jun; Wang, S. Q.; Dai, Z. G.; Xu, Dong; Han, Yan-Hui; Wu, X. F.; Wei, Jian-Yan

    2016-04-01

    Millisecond magnetars can be formed via several channels: core collapse of massive stars, accretion-induced collapse of white dwarfs (WDs), double WD mergers, double neutron star (NS) mergers, and WD-NS mergers. Because the mass of ejecta from these channels could be quite different, their light curves are also expected to be diverse. We evaluate the dynamic evolution of optical transients powered by millisecond magnetars. We find that the magnetar with a short spin-down timescale converts its rotational energy mostly into the kinetic energy of the transient, while the energy of a magnetar with a long spin-down timescale goes into radiation of the transient. This leads us to speculate that hypernovae could be powered by magnetars with short spin-down timescales. At late times the optical transients will gradually evolve into a nebular phase because of the photospheric recession. We treat the photosphere and nebula separately because their radiation mechanisms are different. In some cases the ejecta could be light enough that the magnetar can accelerate it to a relativistic speed. It is well known that the peak luminosity of a supernova (SN) occurs when the luminosity is equal to the instantaneous energy input rate, as shown by Arnett. We show that photospheric recession and relativistic motion can modify this law. The photospheric recession always leads to a delay of the peak time {t}{pk} relative to the time {t}× at which the SN luminosity equals the instantaneous energy input rate. Relativistic motion, however, may change this result significantly.

  18. Diffuse gas in retired galaxies: nebular emission templates and constraints on the sources of ionization

    NASA Astrophysics Data System (ADS)

    Johansson, Jonas; Woods, Tyrone E.; Gilfanov, Marat; Sarzi, Marc; Chen, Yan-Mei; Oh, Kyuseok

    2016-10-01

    We present emission-line templates for passively-evolving (`retired') galaxies, useful for investigation of the evolution of the interstellar medium in these galaxies, and characterization of their high-temperature source populations. The templates are based on high signal-to-noise (>800) co-added spectra (3700-6800 Å) of ˜11 500 gas-rich Sloan Digital Sky Survey galaxies devoid of star formation and active galactic nuclei. Stacked spectra are provided for the entire sample and sub-samples binned by mean stellar age. In our previous paper, Johansson et al., these spectra provided the first measurements of the He II 4686 Å line in passively-evolving galaxies, and the observed He II/Hβ ratio constrained the contribution of accreting white dwarfs (the `single-degenerate' scenario) to the Type Ia supernova rate. In this paper, the full range of unambiguously detected emission lines are presented. Comparison of the observed [O I] 6300 Å/Hα ratio with photoionization models further constrains any high-temperature single-degenerate scenario for Type Ia supernovae (with 1.5 ≲ T/105 K ≲ 10) to ≲3-6 per cent of the observed rate in the youngest age bin (i.e. highest SN Ia rate). Hence, for the same temperatures, in the presence of an ambient population of post-asymptotic giant branch stars, we exclude additional high-temperature sources with a combined ionizing luminosity of ≈1.35 × 1030 L⊙/M⊙,* for stellar populations with mean ages of 1-4 Gyr. Furthermore, we investigate the extinction affecting both the stellar and nebular continuum. The latter shows about five times higher values. This contradicts isotropically distributed dust and gas that renders similar extinction values for both cases.

  19. Isotopic diversity in nebular dust: The distribution of Ti isotopic anomalies in carbonaceous chondrites

    SciTech Connect

    Niemeyer, S. )

    1988-12-01

    Average Ti isotopic patterns are derived for each class of carbonaceous chondrite from a chemically characterized suite of whole-rock samples. There is a well-resolved excess of {sup 50}Ti in a subset of CI meteorites. Mean values of the {sup 50}Ti excess for the four classes span a range of only 2 {epsilon}-units, with an apparent positive correlation with Al content. Previous evidence for anomalies in chondrules is augmented here by demonstrating that: (1) the more pristine Ca-Al-rich inclusions (CAIs) in Efremovka show the same isotopic pattern as the typical Allende CAI; and, (2) CM and CV matrix carry {sup 50}Ti excesses of about 2 {epsilon}-units. The distribution of Ti isotopic anomalies among matrix, chondrules, and CAIs suggests a model in which all three constituents formed from precursor-assemblages in which some chemical memories were still intact; the isotopic differences reflect fractionations among the carrier phases of the different isotopic components. Chondrules formed by a mostly closed-system melting of their precursors, and thus provide a recording of the extent of nebular heterogeneity on the mg-size scale. The larger anomalies in CAIs, compared to matrix and most (but not all) chondrules, are attributed primarily to an open- rather than closed-system processing of the CAI precursors. Precursors of both FUN and normal CAIs experienced an episode of intense processing, perhaps partial melting, that created the FUN characteristics, but for normal CAIs the FUN effects were erased by subsequent isotopic equilibration and exchange.

  20. The multifaceted Type II-L supernova 2014G from pre-maximum to nebular phase

    NASA Astrophysics Data System (ADS)

    Terreran, G.; Jerkstrand, A.; Benetti, S.; Smartt, S. J.; Ochner, P.; Tomasella, L.; Howell, D. A.; Morales-Garoffolo, A.; Harutyunyan, A.; Kankare, E.; Arcavi, I.; Cappellaro, E.; Elias-Rosa, N.; Hosseinzadeh, G.; Kangas, T.; Pastorello, A.; Tartaglia, L.; Turatto, M.; Valenti, S.; Wiggins, P.; Yuan, F.

    2016-10-01

    We present multiband ultraviolet, optical, and near-infrared photometry, along with visual-wavelength spectroscopy, of supernova (SN) 2014G in the nearby galaxy NGC 3448 (25 Mpc). The early-phase spectra show strong emission lines of the high ionization species He II/N IV/C IV during the first 2-3 d after explosion, traces of a metal-rich circumstellar material (CSM) probably due to pre-explosion mass-loss events. These disappear by day 9 and the spectral evolution then continues matching that of normal Type II SNe. The post-maximum light curve declines at a rate typical of Type II-L class. The extensive photometric coverage tracks the drop from the photospheric stage and constrains the radioactive tail, with a steeper decline rate than that expected from the 56Co decay if γ-rays are fully trapped by the ejecta. We report the appearance of an unusual feature on the blue side of H α after 100 d, which evolves to appear as a flat spectral feature linking H α and the [O I] doublet. This may be due to interaction of the ejecta with a strongly asymmetric, and possibly bipolar CSM. Finally, we report two deep spectra at ˜190 and 340 d after explosion, the latter being arguably one of the latest spectra for a Type II-L SN. By modelling the spectral region around the [Ca II], we find a supersolar Ni/Fe production. The strength of the [O I] λλ6300,6363 doublet, compared with synthetic nebular spectra, suggests a progenitor with a zero-age main-sequence mass between 15 and 19 M⊙.

  1. Status of Norris Reservoir

    SciTech Connect

    Not Available

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Norris Reservoir summarizes reservoir and watershed characteristics, reservoir uses, conditions that impair reservoir uses, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most up-to-date publications and data available, and from interviews with water resource professionals in various federal, state, and local agencies, and in public and private water supply and wastewater treatment facilities. 14 refs., 3 figs.

  2. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, Appendices, 1984 Annual Report.

    SciTech Connect

    Shepard, Bradley B.

    1985-06-01

    The appendices include: (1) stream habitat inventory procedures; (2) lengths and volumes across hydroacoustic transects in Libby Reservoir; (3) temperature, pH, dissolved oxygen, and conductivity profiles in Libby Reservoir; (4) habitat survey information by reach; (5) gill net catches by species; (6) annual catches of fish in floating gill nets; (7) vertical distributions of fish and zooplankton; (8) timing of juvenile and adult movement through traps; (9) food habits information for collected fish; (10) estimated densities and composition of zooplankton by genera; (11) seasonal catch of macroinvertebrates; and (12) initial modeling effort on the Libby Reservoir fishery. (ACR)

  3. Frozen-Plug Technique for Liquid-Oxygen Plumbing

    NASA Technical Reports Server (NTRS)

    McCaskey, C. E. " Mac" ; Lobmeyer, Dennis; Nagy, Zoltan; Peltzer, Rich

    2005-01-01

    A frozen-plug technique has been conceived as a means of temporarily blocking the flow of liquid oxygen or its vapor through a tube or pipe. The technique makes it possible to perform maintenance, repair, or other work on downstream parts of the cryogenic system in which the oxygen is used, without having to empty an upstream liquid-oxygen reservoir and, hence, without wasting the stored liquid oxygen and without subjecting the reservoir to the stresses of thermal cycling.

  4. DUST ATTENUATION OF THE NEBULAR REGIONS OF z ∼ 2 STAR-FORMING GALAXIES: INSIGHT FROM UV, IR, AND EMISSION LINES

    SciTech Connect

    De Barros, S.; Reddy, N.; Shivaei, I.

    2016-04-01

    We use a sample of 149 spectroscopically confirmed UV-selected galaxies at z ∼ 2 to investigate the relative dust attenuation of the stellar continuum and the nebular emission lines. For each galaxy in the sample, at least one rest-frame optical emission line (Hα/[N ii] λ6583 or [O iii] λ5007) measurement has been taken from the litterature, and 41 galaxies have additional Spitzer/MIPS 24 μm observations that are used to infer infrared luminosities. We use a spectral energy distribution (SED) fitting code that predicts nebular line strengths when fitting the stellar populations of galaxies in our sample, and we perform comparisons between the predictions of our models and the observed/derived physical quantities. We find that on average our code is able to reproduce all the physical quantities (e.g., UV β slopes, infrared luminosities, emission line fluxes), but we need to apply a higher dust correction to the nebular emission compared to the stellar emission for the largest star formation rate (SFR) (log SFR/M{sub ⊙} yr{sup −1} > 1.82, Salpeter initial mass function). We find a correlation between SFR and the difference in nebular and stellar color excesses, which could resolve the discrepant results regarding nebular dust correction at z ∼ 2 from previous studies.

  5. Status of Cherokee Reservoir

    SciTech Connect

    Not Available

    1990-08-01

    This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

  6. Status of Wheeler Reservoir

    SciTech Connect

    Not Available

    1990-09-01

    This is one in a series of status reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Wheeler Reservoir summarizes reservoir purposes and operation, reservoir and watershed characteristics, reservoir uses and use impairments, and water quality and aquatic biological conditions. The information presented here is from the most recent reports, publications, and original data available. If no recent data were available, historical data were summarized. If data were completely lacking, environmental professionals with special knowledge of the resource were interviewed. 12 refs., 2 figs.

  7. Oxygen Therapy

    MedlinePlus

    Oxygen therapy is a treatment that provides you with extra oxygen. Oxygen is a gas that your body needs to function. Normally, your lungs absorb oxygen from the air you breathe. But some conditions ...

  8. Secondary Mineralization of Components in CV3 Chondrites: Nebular and Asteroidal Models

    NASA Astrophysics Data System (ADS)

    Scott, E. R. D.; Krot, A. N.; Zolensky, M. E.

    1995-09-01

    Our review of mineralogical variations among CV3 chondrites suggests that all components, chondrules, matrices, and CAIs, were affected by various degrees of secondary mineralization. Chondrules and CAIs are rimmed with fayalitic olivine [1, 2]; metal in all components is oxidized and sulfidized to magnetite, Ni-rich metal and sulfides [3]; silicates in all components are aqueously altered to phyllosilicates [4]; and nepheline, sodalite, wollastonite, and hedenbergite replace primary minerals in CAIs [5]. In those CV3s with altered CAIs, nepheline etc. are also present in chondrule mesostases [6] and in matrices [7]. Correlated occurrences of secondary minerals indicate that they have related origins. CV3 chondrites can be divided into three kinds according to their secondary features. Reduced CV3s (e.g., Efremovka) lack magnetite [8] and show minimal secondary features. Oxidized CV3s [8] generally show all features: those like Mokoia contain minor fayalitic rims, nepheline, etc, whereas those like Allende lack phyllosilicates but contain well developed fayalite rims and abundant nepheline, etc. Allende-like CV3 chondrites also contain abundant plate-like matrix olivine (Fa(sub)45-55). Similarities in chemistry and O isotopic composition and petrographic observations suggest that fayalitic rims and plate-like matrix olivine have related origins [1, 9]. The presence of secondary minerals in all components implies that alteration postdated component formation. The absence of secondary minerals in reduced CV3s indicates that CV3 oxidized formed from CV3 reduced-like material. Oxidized and reduced materials coexist in some breccias indicating a common parent asteroid. Nebular origins are widely accepted for most secondary features. To form fayalitic rims and matrix , Palme and colleagues [10, 11] suggest that chondritic components were briefly exposed to a hot (>1500 K), highly oxidizing nebula with H2O/H2 to about 1. Such an environment could have resulted from

  9. Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, II

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Special Session: Oxygen in the Solar System, II, included the following reports:Evolution of Oxygen Isotopes in the Solar Nebula; Disequilibrium Melting of Refractory Inclusions: A Mechanism for High-Temperature Oxygen; Isotope Exchange in the Solar Nebula; Oxygen Isotopic Compositions of the Al-rich Chondrules in the CR Carbonaceous Chondrites: Evidence for a Genetic Link to Ca-Al-rich Inclusions and for Oxygen Isotope Exchange During Chondrule Melting; Nebular Formation of Fayalitic Olivine: Ineffectiveness of Dust Enrichment; Water in Terrestrial Planets: Always an Oxidant?; Oxygen Barometry of Basaltic Glasses Based on Vanadium Valence Determination Using Synchrotron MicroXANES; A New Oxygen Barometer for Solar System Basaltic Glasses Based on Vanadium Valence; The Relationship Between Clinopyroxene Fe3+ Content and Oxygen Fugacity ; and Olivine-Silicate Melt Partitioning of Iridium.

  10. Nebular emission from AGN in the ultraviolet/optical: diagnostics of the ionizing source and gas properties

    NASA Astrophysics Data System (ADS)

    Feltre, A.

    2016-08-01

    Spectroscopic studies of active galactic nuclei (AGN) are powerful means of probing the physical properties of the ionized gas within them. In particular, forthcoming facilities such as JWST and the E-ELT, will provide rest-frame ultraviolet and optical spectra of the very distant AGN. To lay the groundwork for the interpretation of these revolutionary datasets, we have recently computed new photoionization models of the narrow-line emitting regions (NLR) of AGN and combined them with similar models of the nebular emission from star-forming galaxies. In this talk, I will first describe how new ultraviolet and standard optical spectral diagnostics allow one to distinguish between nuclear activity and star formation. I will then explain how predictions of AGN nebular emission can be best used to understand the physical properties of the AGN NLR gas. In particular, I will present recent results from a study on one of the most comprehensive set of optical spectra (from VIMOS/VLT) sampling the rest-frame ultraviolet range of ~90 type 2 AGN (1.5 < z < 3), drawn from the z-COSMOS deep survey. To conclude, I will show how the implementation of AGN photoionization calculations in an innovative Bayesian fitting code can help us best interpret current, and future, spectro-photometric data on active galaxies.

  11. Dolomite reservoirs: Porosity evolution and reservoir characteristics

    SciTech Connect

    Sun, S.Q.

    1995-02-01

    Systematic analyses of the published record of dolomite reservoirs worldwide reveal that the majority of hydrocarbon-producing dolomite reservoirs occurs in (1) peritidal-dominated carbonate, (2) subtidal carbonate associated with evaporitic tidal flat/lagoon, (3) subtidal carbonate associated with basinal evaporite, and (4) nonevaporitic carbonate sequence associated with topographic high/unconformity, platform-margin buildup or fault/fracture. Reservoir characteristics vary greatly from one dolomite type to another depending upon the original sediment fabric, the mechanism by which dolomite was formed, and the extent to which early formed dolomite was modified by post-dolomitization diagenetic processes (e.g., karstification, fracturing, and burial corrosion). This paper discusses the origin of dolomite porosity and demonstrates the porosity evolution and reservoir characteristics of different dolomite types.

  12. Organic carbon burial efficiency in a subtropical hydroelectric reservoir

    NASA Astrophysics Data System (ADS)

    Mendonça, Raquel; Kosten, Sarian; Sobek, Sebastian; Jaqueline Cardoso, Simone; Figueiredo-Barros, Marcos Paulo; Henrique Duque Estrada, Carlos; Roland, Fábio

    2016-06-01

    Hydroelectric reservoirs bury significant amounts of organic carbon (OC) in their sediments. Many reservoirs are characterized by high sedimentation rates, low oxygen concentrations in bottom water and a high share of terrestrially derived OC, and all of these factors have been linked to a high efficiency of OC burial. However, investigations of OC burial efficiency (OCBE, i.e., the ratio between buried and deposited OC) in reservoirs are limited to a few studies, none of which include spatially resolved analyses. In this study we determined the spatial variation in OCBE in a large subtropical reservoir and related it to sediment characteristics. Our results show that the sediment accumulation rate explains up to 92 % of the spatial variability in OCBE, outweighing the effect of other variables, such as OC source and oxygen exposure time. OCBE at the pelagic sites varied from 48 to 86 % (mean 67 %) and decreased towards the dam. At the margins, OCBE was lower (9-17 %) due to the low sediment accumulation in shallow areas. Our data show that the variability in OCBE both along the rivers-dam and the margin-pelagic axes must be considered in whole-reservoir assessments. Combining these results with a spatially resolved assessment of sediment accumulation and OC burial in the studied reservoir, we estimated a spatially resolved mean OC burial efficiency of 57 %. Being the first assessment of OCBE with such a high spatial resolution in a reservoir, these results suggest that reservoirs may bury OC more efficiently than natural lakes.

  13. 95. BOUQUET RESERVOIR LOOKING UP VALLEY TO RESERVOIR LOOKING EAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    95. BOUQUET RESERVOIR LOOKING UP VALLEY TO RESERVOIR LOOKING EAST - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  14. Particle Size Distributions Obtained Through Unfolding 2D Sections: Towards Accurate Distributions of Nebular Solids in the Allende Meteorite

    NASA Technical Reports Server (NTRS)

    Christoffersen, P. A.; Simon, Justin I.; Ross, D. K.; Friedrich, J. M.; Cuzzi, J. N.

    2012-01-01

    Size distributions of nebular solids in chondrites suggest an efficient sorting of these early forming objects within the protoplanetary disk. The effect of this sorting has been documented by investigations of modal abundances of CAIs (e.g., [1-4]) and chondrules (e.g., [5-8]). Evidence for aerodynamic sorting in the disk is largely qualitative, and needs to be carefully assessed. It may be a way of concentrating these materials into planetesimal-mass clumps, perhaps 100 fs of ka after they formed. A key parameter is size/density distributions of particles (i.e., chondrules, CAIs, and metal grains), and in particular, whether the radius-density product (rxp) is a better metric for defining the distribution than r alone [9]. There is no consensus between r versus rxp based models. Here we report our initial tests and preliminary results, which when expanded will be used to test the accuracy of current dynamical disk models.

  15. Problems for the WELS classification of planetary nebula central stars: self-consistent nebular modelling of four candidates

    NASA Astrophysics Data System (ADS)

    Basurah, Hassan M.; Ali, Alaa; Dopita, Michael A.; Alsulami, R.; Amer, Morsi A.; Alruhaili, A.

    2016-05-01

    We present integral field unit (IFU) spectroscopy and self-consistent photoionization modelling for a sample of four southern Galactic planetary nebulae (PNe) with supposed weak emission-line central stars. The Wide Field Spectrograph on the ANU 2.3 m telescope has been used to provide IFU spectroscopy for NGC 3211, NGC 5979, My 60, and M 4-2 covering the spectral range of 3400-7000 Å. All objects are high-excitation non-Type I PNe, with strong He II emission, strong [Ne V] emission, and weak low-excitation lines. They all appear to be predominantly optically thin nebulae excited by central stars with Teff > 105 K. Three PNe of the sample have central stars which have been previously classified as weak emission-line stars (WELS), and the fourth also shows the characteristic recombination lines of a WELS. However, the spatially resolved spectroscopy shows that rather than arising in the central star, the C IV and N III recombination line emission is distributed in the nebula, and in some cases concentrated in discrete nebular knots. This may suggest that the WELS classification is spurious, and that, rather, these lines arise from (possibly chemically enriched) pockets of nebular gas. Indeed, from careful background subtraction we were able to identify three of the sample as being hydrogen rich O(H)-Type. We have constructed fully self-consistent photoionization models for each object. This allows us to independently determine the chemical abundances in the nebulae, to provide new model-dependent distance estimates, and to place the central stars on the Hertzsprung-Russell diagram. All four PNe have similar initial mass (1.5 < M/M⊙ < 2.0) and are at a similar evolutionary stage.

  16. Nebular Emission From AGN In The Ultraviolet/Optical: Linking Observations and Theory With New Generation Spectral Models

    NASA Astrophysics Data System (ADS)

    Feltre, Anna; Charlot, S.; Gutkin, J.; Hirschmann, M.; Mignoli, M.; Calura, F.; Gilli, R.; Bongiorno, A.; NEOGAL Team

    2016-10-01

    Spectroscopic studies of AGN are powerful means of probing the physical properties of the ionized gas within them. In particular, forthcoming facilities such as JWST and the E-ELT, will provide rest-frame ultraviolet and optical spectra of the very distant AGN. To lay the groundwork for the interpretation of the revolutionary datasets, we have recently computed new photoionization models of the narrow-line emitting regions (NLR) of AGN and combined them with similar models of the nebular emission from star-forming galaxies. In this talk, I will first describe how new ultraviolet and standard optical spectral diagnostics allow one to distinguish between nuclear activity and star formation. I will then present how the nebular emission from both young stars and AGN can be coupled with a new set of cosmological hydrodynamical zoom-in simulations of massive galaxies to achieve a better understanding of black hole growth and galaxy evolution with cosmic time. I will also present an innovative Bayesian fitting code that can help us best interpret current, and future, spectro-photometric data on active galaxies. In particular, the implementation of AGN photoionization calculations within this fitting tool allows us to better understand the physical properties of the AGN NLR gas. I will conclude showing some results from a recent analysis on one of the most comprehensive set of optical spectra (from VIMOS/VLT) sampling the rest-frame ultraviolet range of 90 type 2 AGN (1.5 < z < 3), drawn from the z-COSMOS deep survey.

  17. Petrologic evolution of CM chondrites: The difficulty of discriminating between nebular and parent-body effects. [Abstract only

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.; Mcsween, H. Y., Jr.; Bunch, T. E.

    1994-01-01

    We wish to draw attention to a major controversy that has arisen in the area of CM-chondrite petrology. The problem is important because its resolution will have profound implications for ideas concerning nebular dynamics, gas-solid interactions in the nebula, and accretionary processes in the nebula, among other issues. On the one hand, cogent arguments have been presented that 'accretionary dust mantles,' were formed in the solar nebula prior to accretion of the CM parent asteroid(s). On the other hand, no-less-powerful arguments have been advanced that a significant fraction of the CM lithology is secondary, produced by aqueous alteration in the near-surface regions of an asteroid-sized object. Because most, if not all, CM chondrites are breccias, these two views could coexist harmoniously, were it not for the fact that some of the coarse-grained lithologies surrounded by 'accretion dust mantles' are themselves of apparently secondary origin. Such an observation must clearly force a reassessment of one or both of the present schools of thought. Our objective here is to stimulate such a reassessment. Four possible resolutions of this conflict may be postulated. First, perhaps nature found a way of permitting such secondary alteration to take place in the nebula. Second, maybe dust mantles could form in a regolith, rather than a nebular, environment. Third, it is possible that dust mantles around secondary lithologies are different from those around primary lithologies. Finally, perhaps formation of CM chondrites involved a more complex sequence of events than visualized so far, so that some apparently 'primary' processes postdated certain 'secondary' processes.

  18. Reservoir Inflation Schedule

    SciTech Connect

    Ponden, Raymond F.

    1991-11-22

    Inflation of the reservoir is to begin on Friday afternoon, November 22 and continue through mid day on Monday, November 25. Inflation of the reservoir shall be accomplished by using only injection pump, HP-2. NOTE: Under no circumstances should injection pump, HP-1 be operated.

  19. Geothermal reservoir engineering research

    NASA Technical Reports Server (NTRS)

    Ramey, H. J., Jr.; Kruger, P.; Brigham, W. E.; London, A. L.

    1974-01-01

    The Stanford University research program on the study of stimulation and reservoir engineering of geothermal resources commenced as an interdisciplinary program in September, 1972. The broad objectives of this program have been: (1) the development of experimental and computational data to evaluate the optimum performance of fracture-stimulated geothermal reservoirs; (2) the development of a geothermal reservoir model to evaluate important thermophysical, hydrodynamic, and chemical parameters based on fluid-energy-volume balances as part of standard reservoir engineering practice; and (3) the construction of a laboratory model of an explosion-produced chimney to obtain experimental data on the processes of in-place boiling, moving flash fronts, and two-phase flow in porous and fractured hydrothermal reservoirs.

  20. Conowingo Reservoir Sedimentation and Chesapeake Bay: State of the Science.

    PubMed

    Cerco, Carl F

    2016-05-01

    The Conowingo Reservoir is situated on the Susquehanna River, immediately upstream of Chesapeake Bay, the largest estuary in the United States. Sedimentation in the reservoir provides an unintended benefit to the bay by preventing sediments, organic matter, and nutrients from entering the bay. The sediment storage capacity of the reservoir is nearly exhausted, however, and the resulting increase in loading of sediments and associated materials is a potential threat to Chesapeake Bay water quality. In response to this threat, the Lower Susquehanna River Watershed Assessment was conducted. The assessment indicates the reservoir is in a state of "dynamic equilibrium" in which sediment loads from the upstream watershed to the reservoir are balanced by sediments leaving the reservoir. Increased sediment loads are not a threat to bay water quality. Increased loads of associated organic matter and nutrients are, however, detrimental. Bottom-water dissolved oxygen declines of 0.1 to 0.2 g m are projected as a result of organic matter oxidation and enhanced eutrophication. The decline is small relative to normal variations but results in violations of standards enforced in a recently enacted total maximum daily load. Enhanced reductions in nutrient loads from the watershed are recommended to offset the decline in water quality caused by diminished retention in the reservoir. The assessment exposed several knowledge gaps that require additional investigation, including the potential for increased loading at flows below the threshold for reservoir scour and the nature and reactivity of organic matter and nutrients scoured from the reservoir bottom.

  1. Water quality of Rob Roy Reservoir and Lake Owen, Albany County, and Granite Springs and Crystal Lake Reservoirs, Laramie County, Wyoming, 1997-98

    USGS Publications Warehouse

    Ogle, Kathy Muller; Peterson, D.A.; Spillman, Bud; Padilla, Rosie

    1999-01-01

    The water quality of four reservoirs was assessed during 1997 and 1998 as a cooperative project between the Cheyenne Board of Public Utilities and the U. S. Geological Survey. The four reservoirs, Rob Roy, Lake Owen, Granite Springs, and Crystal Lake, provide approximately 75 percent of the public water supply for Cheyenne, Wyoming. Samples of water and bottom sediment were collected and analyzed for selected physical, chemical, and biological characteristics to provide data about the reservoirs. Water flows between the reservoirs through a series of pipelines and stream channels. The reservoirs differ in physical characteristics such as elevation, volume, and depth.Profiles of temperature, dissolved oxygen, specific conductance, and pH were examined. Three of the four reservoirs exhibited stratification during the summer. The profiles indicate that stratification develops in all reservoirs except Lake Owen. Stratification developed in Rob Roy, Granite Springs, and Crystal Lake Reservoirs by mid-July in 1998 and continued until September, with the thickness of the epilimnion increasing during that time. Secchi disk readings indicated Rob Roy Reservoir had the clearest water of the four reservoirs studied.The composition of the phytoplankton community was different in the upper two reservoirs from that in the lower two reservoirs. Many of the species found in Rob Roy Reservoir and Lake Owen are associated with oligotrophic, nutrient-poor conditions. In contrast, many of the species found in Granite Springs and Crystal Lake Reservoirs are associated with mesotrophic or eutrophic conditions. The total number of taxa identified also increased downstream.The chemical water type in the reservoirs was similar, but dissolved-solids concentrations were greater in the downstream reservoirs. Water in all four reservoirs was a calcium-bicarbonate type. In the fall of 1997, Rob Roy Reservoir had the lowest dissolved-solids concentration (19 milligrams per liter), whereas

  2. DIRECT EVIDENCE FOR CONDENSATION IN THE EARLY SOLAR SYSTEM AND IMPLICATIONS FOR NEBULAR COOLING RATES

    SciTech Connect

    Berg, T.; Maul, J.; Schoenhense, G.; Marosits, E.; Hoppe, P.; Ott, U.; Palme, H.

    2009-09-10

    We have identified in an acid resistant residue of the carbonaceous chondrite Murchison a large number (458) of highly refractory metal nuggets (RMNs) that once were most likely hosted by Ca,Al-rich inclusions (CAIs). While osmium isotopic ratios of two randomly selected particles rule out a presolar origin, the bulk chemistry of 88 particles with sizes in the submicron range determined by energy dispersive X-ray (EDX) spectroscopy shows striking agreement with predictions of single-phase equilibrium condensation calculations. Both chemical composition and morphology strongly favor a condensation origin. Particularly important is the presence of structurally incompatible elements in particles with a single-crystal structure, which also suggests the absence of secondary alteration. The metal particles represent the most pristine early solar system material found so far and allow estimation of the cooling rate of the gaseous environment from which the first solids formed by condensation. The resulting value of 0.5 K yr{sup -1} is at least 4 orders of magnitude lower than the cooling rate of molten CAIs. It is thus possible, for the first time, to see through the complex structure of most CAIs and infer the thermal history of the gaseous reservoir from which their components formed by condensation.

  3. Reservoir Temperature Estimator

    SciTech Connect

    Palmer, Carl D.

    2014-12-08

    The Reservoir Temperature Estimator (RTEst) is a program that can be used to estimate deep geothermal reservoir temperature and chemical parameters such as CO2 fugacity based on the water chemistry of shallower, cooler reservoir fluids. This code uses the plugin features provided in The Geochemist’s Workbench (Bethke and Yeakel, 2011) and interfaces with the model-independent parameter estimation code Pest (Doherty, 2005) to provide for optimization of the estimated parameters based on the minimization of the weighted sum of squares of a set of saturation indexes from a user-provided mineral assemblage.

  4. Reservoir characterization of Pennsylvanian sandstone reservoirs. Final report

    SciTech Connect

    Kelkar, M.

    1995-02-01

    This final report summarizes the progress during the three years of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description; (ii) scale-up procedures; (iii) outcrop investigation. The first section describes the methods by which a reservoir can be described in three dimensions. The next step in reservoir description is to scale up reservoir properties for flow simulation. The second section addresses the issue of scale-up of reservoir properties once the spatial descriptions of properties are created. The last section describes the investigation of an outcrop.

  5. KECK SPECTROSCOPY OF 3 < z < 7 FAINT LYMAN BREAK GALAXIES: THE IMPORTANCE OF NEBULAR EMISSION IN UNDERSTANDING THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS DENSITY

    SciTech Connect

    Stark, Daniel P.; Robertson, Brant; Schenker, Matthew A.; Ellis, Richard; McLure, Ross; Dunlop, James

    2013-02-15

    The physical properties inferred from the spectral energy distributions (SEDs) of z > 3 galaxies have been influential in shaping our understanding of early galaxy formation and the role galaxies may play in cosmic reionization. Of particular importance is the stellar mass density at early times, which represents the integral of earlier star formation. An important puzzle arising from the measurements so far reported is that the specific star formation rates (sSFRs) evolve far less rapidly than expected in most theoretical models. Yet the observations underpinning these results remain very uncertain, owing in part to the possible contamination of rest-optical broadband light from strong nebular emission lines. To quantify the contribution of nebular emission to broadband fluxes, we investigate the SEDs of 92 spectroscopically confirmed galaxies in the redshift range 3.8 < z < 5.0 chosen because the H{alpha} line lies within the Spitzer/IRAC 3.6 {mu}m filter. We demonstrate that the 3.6 {mu}m flux is systematically in excess of that expected from stellar continuum alone, which we derive by fitting the SED with population synthesis models. No such excess is seen in a control sample of spectroscopically confirmed galaxies with 3.1 < z < 3.6 in which there is no nebular contamination in the IRAC filters. From the distribution of our 3.6 {mu}m flux excesses, we derive an H{alpha} equivalent width distribution and consider the implications for both the derived stellar masses and the sSFR evolution. The mean rest-frame H{alpha} equivalent width we infer at 3.8 < z < 5.0 (270 A) indicates that nebular emission contributes at least 30% of the 3.6 {mu}m flux and, by implication, nebular emission is likely to have a much greater impact for galaxies with z {approx_equal} 6-7 where both warm IRAC filters are contaminated. Via our empirically derived equivalent width distribution, we correct the available stellar mass densities and show that the sSFR evolves more rapidly at z

  6. Geysers reservoir studies

    SciTech Connect

    Bodvarsson, G.S.; Lippmann, M.J.; Pruess, K. )

    1993-01-01

    Lawrence Berkeley Laboratory is conducting several research projects related to issues of interest to The Geysers operators, including those that deal with understanding the nature of vapor-dominated systems, measuring or inferring reservoir processes and parameters, and studying the effects of liquid injection. All of these topics are directly or indirectly relevant to the development of reservoir strategies aimed at stabilizing or increasing production rates of non-corrosive steam, low in non-condensable gases. Three reservoir engineering studies are described in some detail, that is: (a) Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs; (b) Numerical modeling studies of Geysers injection experiments; and (c) Development of a dual-porosity model to calculate mass flow between rock matrix blocks and neighboring fractures.

  7. Potential Mammalian Filovirus Reservoirs

    PubMed Central

    Carroll, Darin S.; Mills, James N.; Johnson, Karl M.

    2004-01-01

    Ebola and Marburg viruses are maintained in unknown reservoir species; spillover into human populations results in occasional human cases or epidemics. We attempted to narrow the list of possibilities regarding the identity of those reservoir species. We made a series of explicit assumptions about the reservoir: it is a mammal; it supports persistent, largely asymptomatic filovirus infections; its range subsumes that of its associated filovirus; it has coevolved with the virus; it is of small body size; and it is not a species that is commensal with humans. Under these assumptions, we developed priority lists of mammal clades that coincide distributionally with filovirus outbreak distributions and compared these lists with those mammal taxa that have been tested for filovirus infection in previous epidemiologic studies. Studying the remainder of these taxa may be a fruitful avenue for pursuing the identity of natural reservoirs of filoviruses. PMID:15663841

  8. Origin of opaque assemblages in C3V meteorites - Implications for nebular and planetary processes

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Wasserburg, G. J.; Hutcheon, I. D.; Beckett, J. R.; Stolper, E. M.

    1989-01-01

    The results of analyses of meteoritic opaque assemblages (OAs) are presented and used in conjunction with literature data on phase equilibria and diffusion to further develop the hypothesis of Blum et al. (1989) for the origin of OAs in Ca,Al-rich inclusions (CAIs). Based on the results of the analyses, it is suggested that OAs formed after the crystallization of host CAIs by exsolution, sulfidation, and oxidation of precursor alloys at low temperatures (about 770 K) and higher than solar gas sulfur and oxygen fugacities. This model contrasts with previous models that call upon the formation of CAI OAs by aggregation of previously formed phases in the solar nebula prior to the crystallization of CAIs.

  9. THE IRON PROJECT & THE RMAX PROJECT: Highly excited Core resonances in photoionzation of Fe XVII and impact on plasma opacities, oscillator strengths of Fe XIV, and nebular abundance of O II

    NASA Astrophysics Data System (ADS)

    Pradhan, Anil; Nahar, Sultana; Palay, Ethan; Eissner, Werner

    2011-05-01

    The aims of the Iron Project and the Rmax Project are detailed study of radiative and collisional processes of astrophysically abundant atoms and ions, mainly iron and iron-peak elements, over a wide energy range, from infra-red to X-rays. We will illustrate the dominance of high energy photoexciation-of-core (PEC) resonances in photoionization of Fe XVII due to strong coupling effects on dipole transition arrays 2p5 --> 2p4 (3 s , 3 d) in the core and examine PEC and non-PEC resonance strengths for their expanded role to incorporate inner-shell excitations for improved opacities. Comparisons show that the currently available cross sections from the Opacity Project are considerably underestimated. For Fe XIV, we present preliminary results from a large scale computation where 747 fine structure levels with n <= 10, l <= 9, and 0.5 <= J <= 9.5, and 71,407 electric dipole allowed fine structure transitions have been obtained. We will also demonstrate the fine structure effects on the collision strengths and in very low energy photoionzation for in nebular oxygen abundance. Partial Supports: NSF, DOE

  10. Geothermal reservoir simulation

    NASA Technical Reports Server (NTRS)

    Mercer, J. W., Jr.; Faust, C.; Pinder, G. F.

    1974-01-01

    The prediction of long-term geothermal reservoir performance and the environmental impact of exploiting this resource are two important problems associated with the utilization of geothermal energy for power production. Our research effort addresses these problems through numerical simulation. Computer codes based on the solution of partial-differential equations using finite-element techniques are being prepared to simulate multiphase energy transport, energy transport in fractured porous reservoirs, well bore phenomena, and subsidence.

  11. Session: Reservoir Technology

    SciTech Connect

    Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

  12. Using oxygen at home

    MedlinePlus

    Oxygen - home use; COPD - home oxygen; Chronic obstructive airways disease - home oxygen; Chronic obstructive lung disease - home oxygen; Chronic bronchitis - home oxygen; Emphysema - home oxygen; Chronic respiratory ...

  13. Andrew integrated reservoir description

    SciTech Connect

    Todd, S.P.

    1996-12-31

    The Andrew field is an oil and gas accumulation in Palaeocene deep marine sands in the Central North Sea. It is currently being developed with mainly horizontal oil producers. Because of the field`s relatively small reserves (mean 118 mmbbls), the performance of each of the 10 or so horizontal wells is highly important. Reservoir description work at sanction time concentrated on supporting the case that the field could be developed commercially with the minimum number of wells. The present Integrated Reservoir Description (IRD) is focussed on delivering the next level of detail that will impact the understanding of the local reservoir architecture and dynamic performance of each well. Highlights of Andrew IRD Include: (1) Use of a Reservoir Uncertainty Statement (RUS) developed at sanction time to focus the descriptive effort of both asset, support and contract petrotechnical staff, (2) High resolution biostratigraphic correlation to support confident zonation of the reservoir, (3) Detailed sedimentological analysis of the core including the use of dipmeter to interpret channel/sheet architecture to provide new insights into reservoir heterogeneity; (4) Integrated petrographical and petrophysical investigation of the controls on Sw-Height and relative permeability of water; (5) Fluids description using oil geochemistry and Residual Salt Analysis Sr isotope studies. Andrew IRD has highlighted several important risks to well performance, including the influence of more heterolithic intervals on gas breakthrough and the controls on water coning exerted by suppressed water relative permeability in the transition zone.

  14. Andrew integrated reservoir description

    SciTech Connect

    Todd, S.P.

    1996-01-01

    The Andrew field is an oil and gas accumulation in Palaeocene deep marine sands in the Central North Sea. It is currently being developed with mainly horizontal oil producers. Because of the field's relatively small reserves (mean 118 mmbbls), the performance of each of the 10 or so horizontal wells is highly important. Reservoir description work at sanction time concentrated on supporting the case that the field could be developed commercially with the minimum number of wells. The present Integrated Reservoir Description (IRD) is focussed on delivering the next level of detail that will impact the understanding of the local reservoir architecture and dynamic performance of each well. Highlights of Andrew IRD Include: (1) Use of a Reservoir Uncertainty Statement (RUS) developed at sanction time to focus the descriptive effort of both asset, support and contract petrotechnical staff, (2) High resolution biostratigraphic correlation to support confident zonation of the reservoir, (3) Detailed sedimentological analysis of the core including the use of dipmeter to interpret channel/sheet architecture to provide new insights into reservoir heterogeneity; (4) Integrated petrographical and petrophysical investigation of the controls on Sw-Height and relative permeability of water; (5) Fluids description using oil geochemistry and Residual Salt Analysis Sr isotope studies. Andrew IRD has highlighted several important risks to well performance, including the influence of more heterolithic intervals on gas breakthrough and the controls on water coning exerted by suppressed water relative permeability in the transition zone.

  15. Monitoring and evaluation of aquatic resource health and use suitability in Tennessee Valley Authority reservoirs

    SciTech Connect

    Dycus, D.L.; Meinert, D.L.

    1993-06-01

    TVA initiated a Reservoir Monitoring Program in 1990 with two objectives -- to evaluate the health of the reservoir ecosystem and to examine how well each reservoir meets the swimmable and fishable goals of the Clean Water Act. In 1990 reservoir health was evaluated subjectively using a weight-of-evidence approach (a reservoir was deemed healthy if most of the physical, chemical, and biological monitoring components appeared healthy). In the second year (1991) a more objective, quantitative approach was developed using information on five important indicators of reservoir health -- dissolved oxygen, chlorophyll, sediment quality, benthic macroinvertebrates, and fishes. The most recent information (1992) was evaluated with the same basic approach, modified to incorporate improvements based on comments from reviewers and additional data. Reservoirs were stratified into two groups for evaluation: run-of-the-river reservoirs and tributary storage reservoirs. Key locations are sampled in each reservoir (forebay, transition zone or midreservoir, inflow, and major embayments) for most or all of these five reservoir health indicators. For each indicator (or metric), scoring criteria have been developed that assign a score ranging from 1 to 5 representing poor to good conditions, respectively. Scores for the metrics at a location are summed and then the sums for all locations are totaled. Each reservoir has one to four sample locations depending on reservoir characteristics. The resultant total is divided by the maximum possible score (all metrics good at all locations) for the reservoir. Thus, the possible range of scores is from 20 percent (all metrics poor) to 100 percent (all metrics good). This reservoir ecological health evaluation method is proving to be a valuable tool for providing the public with information about the condition of the Valley`s reservoirs, for allowing meaningful comparisons among reservoirs, and for tracking changes in reservoir health with time.

  16. Interpreting isotopic analyses of microbial sulfate reduction in oil reservoirs

    NASA Astrophysics Data System (ADS)

    Hubbard, C. G.; Engelbrektson, A. L.; Druhan, J. L.; Cheng, Y.; Li, L.; Ajo Franklin, J. B.; Coates, J. D.; Conrad, M. E.

    2013-12-01

    Microbial sulfate reduction in oil reservoirs is often associated with secondary production of oil where seawater (28 mM sulfate) is commonly injected to maintain reservoir pressure and displace oil. The hydrogen sulfide produced can cause a suite of operating problems including corrosion of infrastructure, health exposure risks and additional processing costs. We propose that monitoring of the sulfur and oxygen isotopes of sulfate can be used as early indicators that microbial sulfate reduction is occurring, as this process is well known to cause substantial isotopic fractionation. This approach relies on the idea that reactions with reservoir (iron) minerals can remove dissolved sulfide, thereby delaying the transport of the sulfide through the reservoir relative to the sulfate in the injected water. Changes in the sulfate isotopes due to microbial sulfate reduction may therefore be measurable in the produced water before sulfide is detected. However, turning this approach into a predictive tool requires (i) an understanding of appropriate fractionation factors for oil reservoirs, (ii) incorporation of isotopic data into reservoir flow and reactive transport models. We present here the results of preliminary batch experiments aimed at determining fractionation factors using relevant electron donors (e.g. crude oil and volatile fatty acids), reservoir microbial communities and reservoir environmental conditions (pressure, temperature). We further explore modeling options for integrating isotope data and discuss whether single fractionation factors are appropriate to model complex environments with dynamic hydrology, geochemistry, temperature and microbiology gradients.

  17. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis.

    PubMed

    Ward, Lewis M; Kirschvink, Joseph L; Fischer, Woodward W

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis-autotrophic growth by splitting water with sunlight-by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.

  18. Timescales of Oxygenation Following the Evolution of Oxygenic Photosynthesis

    NASA Astrophysics Data System (ADS)

    Ward, Lewis M.; Kirschvink, Joseph L.; Fischer, Woodward W.

    2016-03-01

    Among the most important bioenergetic innovations in the history of life was the invention of oxygenic photosynthesis—autotrophic growth by splitting water with sunlight—by Cyanobacteria. It is widely accepted that the invention of oxygenic photosynthesis ultimately resulted in the rise of oxygen by ca. 2.35 Gya, but it is debated whether this occurred more or less immediately as a proximal result of the evolution of oxygenic Cyanobacteria or whether they originated several hundred million to more than one billion years earlier in Earth history. The latter hypothesis involves a prolonged period during which oxygen production rates were insufficient to oxidize the atmosphere, potentially due to redox buffering by reduced species such as higher concentrations of ferrous iron in seawater. To examine the characteristic timescales for environmental oxygenation following the evolution of oxygenic photosynthesis, we applied a simple mathematical approach that captures many of the salient features of the major biogeochemical fluxes and reservoirs present in Archean and early Paleoproterozoic surface environments. Calculations illustrate that oxygenation would have overwhelmed redox buffers within ~100 kyr following the emergence of oxygenic photosynthesis, a geologically short amount of time unless rates of primary production were far lower than commonly expected. Fundamentally, this result arises because of the multiscale nature of the carbon and oxygen cycles: rates of gross primary production are orders of magnitude too fast for oxygen to be masked by Earth's geological buffers, and can only be effectively matched by respiration at non-negligible O2 concentrations. These results suggest that oxygenic photosynthesis arose shortly before the rise of oxygen, not hundreds of millions of years before it.

  19. Oxygen analyzer

    DOEpatents

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  20. Oxygen Therapy

    MedlinePlus

    ... stored as a gas or liquid in special tanks. These tanks can be delivered to your home and contain ... they won’t run out of oxygen. Portable tanks and oxygen concentrators may make it easier for ...

  1. Nebular spectra and abundance tomography of the Type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core

    NASA Astrophysics Data System (ADS)

    Mazzali, P. A.; Sullivan, M.; Filippenko, A. V.; Garnavich, P. M.; Clubb, K. I.; Maguire, K.; Pan, Y.-C.; Shappee, B.; Silverman, J. M.; Benetti, S.; Hachinger, S.; Nomoto, K.; Pian, E.

    2015-07-01

    A series of optical and one near-infrared nebular spectra covering the first year of the Type Ia supernova SN 2011fe are presented and modelled. The density profile that proved best for the early optical/ultraviolet spectra, `ρ-11fe', was extended to lower velocities to include the regions that emit at nebular epochs. Model ρ-11fe is intermediate between the fast deflagration model W7 and a low-energy delayed-detonation. Good fits to the nebular spectra are obtained if the innermost ejecta are dominated by neutron-rich, stable Fe-group species, which contribute to cooling but not to heating. The correct thermal balance can thus be reached for the strongest [Fe II] and [Fe III] lines to be reproduced with the observed ratio. The 56Ni mass thus obtained is ˜0.47 ± 0.05 M⊙. The bulk of 56Ni has an outermost velocity of ˜8500 km s-1. The mass of stable iron is ˜0.23 ± 0.03 M⊙. Stable Ni has low abundance, ˜10-2 M⊙. This is sufficient to reproduce an observed emission line near 7400 Å. A sub-Chandrasekhar explosion model with mass 1.02 M⊙ and no central stable Fe does not reproduce the observed line ratios. A mock model where neutron-rich Fe-group species are located above 56Ni following recent suggestions is also shown to yield spectra that are less compatible with the observations. The densities and abundances in the inner layers obtained from the nebular analysis, combined with those of the outer layers previously obtained, are used to compute a synthetic bolometric light curve, which compares favourably with the light curve of SN 2011fe.

  2. MEASURING NEBULAR TEMPERATURES: THE EFFECT OF NEW COLLISION STRENGTHS WITH EQUILIBRIUM AND {kappa}-DISTRIBUTED ELECTRON ENERGIES

    SciTech Connect

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Kewley, Lisa J.; Palay, Ethan

    2013-08-15

    In this paper we develop tools for observers to use when analyzing nebular spectra for temperatures and metallicities, with two goals: to present a new, simple method to calculate equilibrium electron temperatures for collisionally excited line flux ratios, using the latest atomic data; and to adapt current methods to include the effects of possible non-equilibrium ''{kappa}'' electron energy distributions. Adopting recent collision strength data for [O III], [S III], [O II], [S II], and [N II], we find that existing methods based on older atomic data seriously overestimate the electron temperatures, even when considering purely Maxwellian statistics. If {kappa} distributions exist in H II regions and planetary nebulae as they do in solar system plasmas, it is important to investigate the observational consequences. This paper continues our previous work on the {kappa} distribution. We present simple formulaic methods that allow observers to (1) measure equilibrium electron temperatures and atomic abundances using the latest atomic data, and (2) to apply simple corrections to existing equilibrium analysis techniques to allow for possible non-equilibrium effects. These tools should lead to better consistency in temperature and abundance measurements, and a clearer understanding of the physics of H II regions and planetary nebulae.

  3. Origin of opaque assemblages in C3V meteorites: Implications for nebular and planetary processes

    SciTech Connect

    Blum, J.D.; Wasserburg, G.J.; Hutcheon, I.D.; Beckett, J.R.; Stolper, E.M. )

    1989-02-01

    Mineral phases from opaque assemblages (OAs) in Ca, Al-rich refractory inclusions (CAIs), chondrules and matrix in C3V meteorites were chemically analyzed and compared with experimentally determined phase equilibria and partitioning data in the Ni-Fe-Ru, Ni-Fe-S and Ni-Fe-O systems to estimate the temperature, sulfur fugacity ({line integral}{sub S{sub 2}}) and oxygen fugacity ({line integral}{sub O{sub 2}}) of OA formation. The kinetics of dissolution and exsolution of metallic phases in the Ni-Fe-Ru system were used to constrain the thermal history of OAs that occur in CAIs. Based on this work, the authors suggest that OAs formed after the crystallization of host CAIs by exsolution, sulfidation and oxidation of precursor alloys at low temperatures ({approximately}770 K) and higher than solar gas {line integral}{sub S{sub 2}} and {line integral}{sub O{sub 2}}. Their model contrasts with previous models that call upon the formation of CAI OAs by aggregation of previously formed phases in the solar nebula prior to the crystallization of CAIs. Opaque assemblages in CAIs and chondrules probably originated as homogeneous alloys during melting of the silicate portions of CAIs and chondrules. The compositions of these precursor alloys reflect high-temperature and low-{line integral}{sub O{sub 2}} conditions in the early solar nebula. The similarities in the temperature, {line integral}{sub S{sub 2}} and {line integral}{sub O{sub 2}} of equilibration for OAs that occur in CAIs, chondrules and matrix suggest tht these three components of C3V meteorites share a common, late low-temperature history.

  4. Glovebox oxygen monitoring system

    SciTech Connect

    Haggard, R.

    1993-08-01

    This system is located in the Replacement Tritium Facility (RTF) at the Savannah River Site of the US Department of Energy. The basic system consists of an oxygen sensor module located inside the glovebox and a wall mounted panel located outside the glovebox that contains an electronics package that displays the oxygen level, displays alarms, and sends signals to a facility Distributed Control System (DCS). RTF is a new facility that will be used primarily to load and unload tritium reservoirs, and recycle the tritium for use in existing or new reservoirs. Tritium, an oderless, colorless, gas is a radioactive isotope of hydrogen that is used in modern thermonuclear weapons. Once on-line, RTF will replace other tritium facilities that have been in existence since the 1950`s. Since the entire process at RTF is contained in nitrogen blanketed gloveboxes and features have been provided to recapture fugitive tritium, environmental releases and worker exposure to tritium will be reduced compared to the old facilities.

  5. Environmental Characteristics of Reservoir Systems in the Czech Republic

    DTIC Science & Technology

    2003-07-01

    highest parts, at the watershed border, there are also granitic rocks (mostly Cadomian). The geological age is Lower Paleozoic – Proterozoic . Fifteen...are included. Stratification of temperature, dissolved oxygen , pH, and alkalinity has been measured at the dam station (St. 16) in three-week...because of relatively imprecise measurement of water surface level of the reservoir pool. Stratification of temperature, dissolved oxygen , pH, and

  6. [Apneic oxygenation].

    PubMed

    Alekseev, A V; Vyzhigina, M A; Parshin, V D; Fedorov, D S

    2013-01-01

    Recent technological advances in thoracic and tracheal surgery make the anaesthesiologist use different respiratory techniques during the operation. Apneic oxygenation is a one of alternative techniques. This method is relatively easy in use, does not require special expensive equipment and is the only possible technique in several clinical situations when other respiratory methods are undesirable or cannot be used. However there is no enough information about apneic oxygenation in Russian. This article reviews publications about apneic oxygenation. The review deals with experiments on diffusion respiration in animals, physiological changes during apneic oxygenation in man and defines clinical cases when apneic oxygenation can be used.

  7. Oxygen analyzer

    DOEpatents

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  8. Optoelectronic Reservoir Computing

    PubMed Central

    Paquot, Y.; Duport, F.; Smerieri, A.; Dambre, J.; Schrauwen, B.; Haelterman, M.; Massar, S.

    2012-01-01

    Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an optoelectronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations. PMID:22371825

  9. Manicouagin Reservoir of Canada

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Recorded by the Space Shuttle Atlantis STS-110 mission, this is a photograph of the ice- covered Manicouagin Reservoir located in the Canadian Shield of Quebec Province in Eastern Canada, partially obscured by low clouds. This reservoir marks the site of an impact crater, 60 miles (100 kilometers) wide, which according to geologists was formed 212 million years ago when a meteorite crashed into this area. Over millions of years, the crater has been worn down by glaciers and other erosional processes. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  10. Oxygen Isotopic Compositions of Fulgurites

    NASA Astrophysics Data System (ADS)

    Robert, F.; Javoy, M.

    1992-07-01

    Two occurrences of vitreous rocks (fulgurites) that have resulted from the fusion of Etnean lavas, have been ascribed to the result of lightning striking the basalts and melting fresh volcanic rocks [1]. Rapidly quenched melts appear as tubular cavities that preserve the path of the discharge. Glass droplets (D <= 500 micrometers) are always dispersed around the fused lava tube and show several petrographic similarities with chondrules found in ordinary chondrites (presence of melilite, radiating skeletal fassaite, etc). In this process, high temperatures (T>1800 K) have probably been reached during timescales <=10 sec. Because it has been suggested that lightning discharges may have played an important role in the formation of chondrules [2], we have analyzed the oxygen isotope compositions of these fulgurites (our experimental protocol is described elsewhere [3]). The glass (free from any contamination from the unmelted basalt) is 1.5o/oo depleted in ^18O relative to its measured initial isotopic composition (delta^18O = +5.6o/oo); most of the data define a mass-dependent fractionation relationship (i.e. delta^17O = 0.52 x delta^18O). Therefore the data clearly do not reproduce the oxygen isotope anomaly defined for meteorites, which has a slope of 1 in the diagram delta^17O versus delta^18O (i.e. delta^17O = 1.0 x delta^18O). Nevertheless, it should be noted that some glass samples scatter around this canonical value of 0.52 with minor departures from a purely mass-dependent fractionation. If these results are confirmed by additional determinations (now in progress) on the separated glassy droplets, the following conclusions can be proposed: 1) lightning discharges do not yield oxygen isotope anomalies similar to those measured in chondrules and 2) an isotope exchange between hot chondrules and their parent nebular gas--presumably "anomalous" in its oxygen isotopes-- seems difficult to achieve within the duration of the rapid cooling of the melt. This last point

  11. Using photo-ionisation models to derive carbon and oxygen gas-phase abundances in the rest UV

    NASA Astrophysics Data System (ADS)

    Pérez-Montero, Enrique; Amorín, Ricardo

    2017-01-01

    We present a new method to derive oxygen and carbon abundances using the ultraviolet (UV) lines emitted by the gas-phase ionised by massive stars. The method is based on the comparison of the nebular emission-line ratios with those predicted by a large grid of photo-ionisation models. Given the large dispersion in the O/H - C/O plane, our method firstly fixes C/O using ratios of appropriate emission lines and, in a second step, calculates O/H and the ionisation parameter from carbon lines in the UV. We find abundances totally consistent with those provided by the direct method when we apply this method to a sample of objects with an empirical determination of the electron temperature using optical emission lines. The proposed methodology appears as a powerful tool for systematic studies of nebular abundances in star-forming galaxies at high redshift.

  12. Limnological data for 12 reservoirs in Valley County, Montana

    USGS Publications Warehouse

    Ferreira, Rodger F.

    1980-01-01

    Water samples were collected from 12 reservoirs in northeastern Montana during the late winter, spring, summer, and early fall of 1978. The resulting physical and chemical water-quality data will be useful in managing the reservoirs for use of stock watering, waterfowl propagation, fish production, and recreation. The surface areas of the reservoirs range for 0.4 to 28.1 hectares with water depths ranging from 0.25 to 6.9 meters. The chemical composition of water varied among reservoirs and with season. Specific conductance ranged from 446 to 4,020 micromhos per centimeter during the winter sampling period and from 62 to 999 micromhos per centimeter during the spring sampling period. Although a pH of 6.9 was measured at one reservoir during the winter, pH values generally ranged from 7.7 to 9.8. Under ice cover, which averaged 1.0 meter thick in late February, three reservoirs attained dissolved-oxygen concentrations above saturation. Each reservoir can be classified as having one of the following three water types: sodium bicarbonate, sodium sulfate, or calcium sodium bicarbonate. (USGS)

  13. Reservoir stability studies

    SciTech Connect

    Doherty, T.J.

    1981-07-01

    The objective of the reservoir stability studies project is to develop stability criteria for large underground reservoirs in salt domes, hard rock caverns, and porous rock structures for air storage in utility applications. Because reservoir stability was deemed crucial to commercialization of compressed air energy storage (CAES) systems this project has received major emphasis in the early phases of the overall CAES program. A long term plan, including state-of-the-art assessment, numerical model development and experimental studies culminating in field research, as necessary, was formulated. This plan, initiated in 1977, has been completed during FY-1981 to the stage of specific experimental studies and field research. Activities within this project during FY-1981 have included completion of site specific geotechnical design evaluations using methodologies developed to assess hard rock cavern stability, implementation of in-mine research to evaluate numerical and laboratory study conclusions on the response of domal salt, and preparation of integrated laboratory and field study facilities to assess developed predictive methods and determine in situ response of a porous media reservoir to air injection. The major activity in the project has been the field study component of the porous media studies. Accomplishments there have included completion of exploration, permitting and leasing, operation contractor selection and negotiation, and initiation of procurement and construction for an FY-1982 test initiation. A major program milestone, drilling of the injection withdrawal well for this test, was completed ahead of schedule.

  14. Applying reservoir characterization technology

    SciTech Connect

    Lake, L.W.

    1994-12-31

    While reservoir characterization is an old discipline, only within the last 10 years have engineers and scientists been able to make quantitative descriptions, due mostly to improvements in high-resolution computational power, sophisticated graphics, and geostatistics. This paper summarizes what has been learned during the past decade by using these technologies.

  15. Reinjection into geothermal reservoirs

    SciTech Connect

    Bodvarsson, G.S.; Stefansson, V.

    1987-08-01

    Reinjection of geothermal wastewater is practiced as a means of disposal and for reservoir pressure support. Various aspects of reinjection are discussed, both in terms of theoretical studies as well as specific field examples. The discussion focuses on the major effects of reinjection, including pressure maintenance and chemical and thermal effects. (ACR)

  16. Perchlorate reduction by microbes inhabiting oil reservoirs

    NASA Astrophysics Data System (ADS)

    Liebensteiner, Martin; Stams, Alfons; Lomans, Bart

    2014-05-01

    Microbial perchlorate and chlorate reduction is a unique type of anaerobic respiration as during reduction of (per)chlorate chlorite is formed, which is then split into chloride and molecular oxygen. In recent years it was demonstrated that (per)chlorate-reducing bacteria may employ oxygenase-dependent pathways for the degradation of aromatic and aliphatic hydrocarbons. These findings suggested that (per)chlorate may be used as oxygen-releasing compound in anoxic environments that contain hydrocarbons, such as polluted soil sites and oil reservoirs. We started to study perchlorate reduction by microbes possibly inhabiting oil reservoirs. One of the organisms studied was Archaeoglobus fulgidus. This extremely thermophilic archaeon is known as a major contributor to souring in hot oil reservoirs. A. fulgidus turned out to be able to use perchlorate as terminal electron acceptor for growth with lactate (Liebensteiner et al 2013). Genome based physiological experiments indicated that A. fulgidus possesses a novel perchlorate reduction pathway. Perchlorate is first reduced to chlorite, but chlorite is not split into chloride and molecular oxygen as occurs in bacteria. Rather, chlorite reacts chemically with sulfide, forming oxidized sulfur compounds, which are reduced to sulfide in the electron transport chain by the archaeon. The dependence of perchlorate reduction on sulfur compounds could be shown. The implications of our findings as novel strategy for microbiological enhanced oil recovery and for souring mitigation are discussed. Liebensteiner MG, Pinkse MWH, Schaap PJ, Stams AJM and Lomans BP (2013) Archaeal (per)chlorate reduction at high temperature, a matter of abiotic-biotic reactions. Science 340: 85-87

  17. HIGH-TEMPERATURE PROCESSING OF SOLIDS THROUGH SOLAR NEBULAR BOW SHOCKS: 3D RADIATION HYDRODYNAMICS SIMULATIONS WITH PARTICLES

    SciTech Connect

    Boley, A. C.; Morris, M. A.; Desch, S. J.

    2013-10-20

    A fundamental, unsolved problem in solar system formation is explaining the melting and crystallization of chondrules found in chondritic meteorites. Theoretical models of chondrule melting in nebular shocks have been shown to be consistent with many aspects of thermal histories inferred for chondrules from laboratory experiments; but, the mechanism driving these shocks is unknown. Planetesimals and planetary embryos on eccentric orbits can produce bow shocks as they move supersonically through the disk gas, and are one possible source of chondrule-melting shocks. We investigate chondrule formation in bow shocks around planetoids through three-dimensional radiation hydrodynamics simulations. A new radiation transport algorithm that combines elements of flux-limited diffusion and Monte Carlo methods is used to capture the complexity of radiative transport around bow shocks. An equation of state that includes the rotational, vibrational, and dissociation modes of H{sub 2} is also used. Solids are followed directly in the simulations and their thermal histories are recorded. Adiabatic expansion creates rapid cooling of the gas, and tail shocks behind the embryo can cause secondary heating events. Radiative transport is efficient, and bow shocks around planetoids can have luminosities ∼few× 10{sup –8} L{sub ☉}. While barred and radial chondrule textures could be produced in the radiative shocks explored here, porphyritic chondrules may only be possible in the adiabatic limit. We present a series of predicted cooling curves that merit investigation in laboratory experiments to determine whether the solids produced by bow shocks are represented in the meteoritic record by chondrules or other solids.

  18. CONTAMINATION OF BROADBAND PHOTOMETRY BY NEBULAR EMISSION IN HIGH-REDSHIFT GALAXIES: INVESTIGATIONS WITH KECK'S MOSFIRE NEAR-INFRARED SPECTROGRAPH

    SciTech Connect

    Schenker, Matthew A; Ellis, Richard S; Konidaris, Nick P; Stark, Daniel P

    2013-11-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ≅ 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground-based facilities, we examine the near-infrared spectra of a representative sample of 28 3.0 < z < 3.8 Lyman break galaxies using the newly commissioned MOSFIRE near-infrared spectrograph at the Keck I telescope. We use these data to derive the rest-frame equivalent widths (EWs) of [O III] emission and show that these are comparable with estimates derived using the spectral energy distribution (SED) fitting technique introduced for sources of known redshift by Stark et al. Although our current sample is modest, its [O III] EW distribution is consistent with that inferred for Hα based on SED fitting of Stark et al.'s larger sample of 3.8 < z < 5 galaxies. For a subset of survey galaxies, we use the combination of optical and near-infrared spectroscopy to quantify kinematics of outflows in z ≅ 3.5 star-forming galaxies and discuss the implications for reionization measurements. The trends we uncover underline the dangers of relying purely on broadband photometry to estimate the physical properties of high-redshift galaxies and emphasize the important role of diagnostic spectroscopy.

  19. Contamination of Broadband Photometry by Nebular Emission in High-redshift Galaxies: Investigations with Keck's MOSFIRE Near-infrared Spectrograph

    NASA Astrophysics Data System (ADS)

    Schenker, Matthew A.; Ellis, Richard S.; Konidaris, Nick P.; Stark, Daniel P.

    2013-11-01

    Earlier work has raised the potential importance of nebular emission in the derivation of the physical characteristics of high-redshift Lyman break galaxies. Within certain redshift ranges, and especially at z ~= 6-7, such lines may be strong enough to reduce estimates of the stellar masses and ages of galaxies compared with those derived assuming the broadband photometry represents stellar light alone. To test this hypothesis at the highest redshifts where such lines can be probed with ground-based facilities, we examine the near-infrared spectra of a representative sample of 28 3.0 < z < 3.8 Lyman break galaxies using the newly commissioned MOSFIRE near-infrared spectrograph at the Keck I telescope. We use these data to derive the rest-frame equivalent widths (EWs) of [O III] emission and show that these are comparable with estimates derived using the spectral energy distribution (SED) fitting technique introduced for sources of known redshift by Stark et al. Although our current sample is modest, its [O III] EW distribution is consistent with that inferred for Hα based on SED fitting of Stark et al.'s larger sample of 3.8 < z < 5 galaxies. For a subset of survey galaxies, we use the combination of optical and near-infrared spectroscopy to quantify kinematics of outflows in z ~= 3.5 star-forming galaxies and discuss the implications for reionization measurements. The trends we uncover underline the dangers of relying purely on broadband photometry to estimate the physical properties of high-redshift galaxies and emphasize the important role of diagnostic spectroscopy.

  20. Dynamic-reservoir lubricating device

    NASA Technical Reports Server (NTRS)

    Ficken, W. H.; Schulien, H. E.

    1968-01-01

    Dynamic-reservoir lubricating device supplies controlled amounts of lubricating oil to ball bearings during operation of the bearings. The dynamic reservoir lubricating device includes a rotating reservoir nut, a hollow cylinder filled with lubricating oil, flow restrictors and a ball bearing retainer.

  1. An Analysis of the Effectiveness of Various Management Strategies of Small Urban Reservoirs for Improving Water Quality

    NASA Astrophysics Data System (ADS)

    Rademacher, L. K.; Faul, K. L.

    2015-12-01

    Small urban reservoirs, some more than 100 years old, are scattered throughout the San Francisco Bay (SFB) area. Because of the small size of these reservoirs, many of them are locally managed and provide an opportunity to investigate various management strategies on in-lake and downstream water quality. We studied three small, urban reservoir-watershed systems in the SFB subjected to differing water quality impairments to determine which management strategies might be most effective for improving water quality. The three study reservoir-watershed systems were monitored biweekly for water quality at the reservoir inlets and outlets and in the lakes through surface to bottom depth profiles. Measurements included pH, conductivity, dissolved oxygen, temperature, nutrients, and metal concentrations. In addition, sediment cores were collected and analyzed for metal and nutrient concentrations, with chronologies assigned based on Pb-210 and Cs-137 data. One watershed-reservoir system is managed with the reservoir cyclically empty (during winter months) and full (during summer months), whereas the other two watershed-reservoir systems are managed with the reservoir always full, albeit to varying levels. Results indicate the ideal management strategy depends upon the primary pollutant of interest and may not be the same in all urban reservoir-watershed systems. However, overall water quality may generally be improved with continuously full reservoirs with occasional, controlled drawdown. Continuing experiments are investigating the role of microbes in pollutant cycling in these reservoirs it their relation to reservoir full versus reservoir cyclically empty management strategies.

  2. Appreciating Oxygen

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2008-01-01

    Photosynthetic flora and microfauna utilize light from the sun to convert carbon dioxide and water into carbohydrates and oxygen. While these carbohydrates and their derivative hydrocarbons are generally considered to be fuels, it is the thermodynamically energetic oxygen molecule that traps, stores, and provides almost all of the energy that…

  3. Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1985 Annual Report.

    SciTech Connect

    Chisholm, Ian

    1985-01-01

    The goal was to quantify seasonal water levels needed to maintain or enhance the reservoir fishery in Libby. This report summarizes data collected from July 1984 through July 1985, and, where appropriate, presents data collected since 1983. The Canada, Rexford, and Tenmile areas of the reservoir are differentially affected by drawdown. Relative changes in water volume and surface area are greatest in the Canada area and smallest in the Tenmile area. Reservoir morphology and hydraulics probably play a major role in fish distribution through their influence on water temperature. Greatest areas of habitat with optimum water temperature for Salmo spp. and kokanee occurred during the spring and fall months. Dissolved oxygen, pH and conductivity levels were not limiting during any sampling period. Habitat enhancement work was largely unsuccessful. Littoral zone vegetation plantings did not survive well, primarily the result of extreme water level fluctuations. Relative abundances of fish species varied seasonally within and between the three areas. Water temperature is thought to be the major influence in fish distribution patterns. Other factors, such as food availability and turbidity, may mitigate its influence. Sampling since 1975 illustrates a continued increase in kokanee numbers and a dramatic decline in redside shiners. Salmo spp., bull trout, and burbot abundances are relatively low while peamouth and coarsescale sucker numbers remain high. A thermal dynamics model and a trophic level components model will be used to quantify the impact of reservoir operation on the reservoir habitat, primary production, secondary production and fish populations. Particulate carbon will be used to track energy flow through trophic levels. A growth-driven population dynamics simulation model that will estimate the impacts of reservoir operation on fish population dynamics is also being considered.

  4. Status of Blue Ridge Reservoir

    SciTech Connect

    Not Available

    1990-09-01

    This is one in a series of reports prepared by the Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overview of Blue Ridge Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports and data available, as well as interview with water resource professionals in various federal, state, and local agencies. Blue Ridge Reservoir is a single-purpose hydropower generating project. When consistent with this primary objective, the reservoir is also operated to benefit secondary objectives including water quality, recreation, fish and aquatic habitat, development of shoreline, aesthetic quality, and other public and private uses that support overall regional economic growth and development. 8 refs., 1 fig.

  5. Interactive reservoir simulation

    SciTech Connect

    Regtien, J.M.M. Por, G.J.A.; Stiphout, M.T. van; Vlugt, F.F. van der

    1995-12-31

    Shell`s new Modular Reservoir Simulator (MoReS) has been equipped with a comprehensive and versatile user interface called FrontEnd. Apart from providing a user-friendly environment for interactive reservoir simulation, FrontEnd serves a software platform for other dynamic simulation and reservoir-engineering applications. It offers to all supported applications a common user interface, enables the re-use of code and reduces overall maintenance and support costs associated with the embedded applications. Because of its features, FrontEnd facilitates the transfer of research results in the form of operational software to end users. When coupled with MoReS, FrontEnd can be used for pre- and post-processing and interactive simulation. The pre-processing options allow data to be inputted by means of various OSF/Motif widgets containing a spreadsheet, text editors, dialogues and graphical input. The display of the input data as well as the post-processing of all simulation results is made possible by a variety of user-defined plot of tabular (e.g. timestep summary) and array (simulation grid) data. During a simulation user-defined plots can be displayed and edited, allowing a close inspection of the results as they are being calculated. FrontEnd has been equipped with a powerful input command language, which gives the batch user as much flexibility and control over the input as the interactive user.

  6. Carbon and Oxygen Abundances in Low Metallicity Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Berg, Danielle A.; Skillman, Evan D.; Henry, Richard B. C.; Erb, Dawn K.; Carigi, Leticia

    2016-08-01

    The study of carbon and oxygen abundances yields information on the time evolution and nucleosynthetic origins of these elements, yet they remain relatively unexplored. At low metallicities, (12+log(O/H) < 8.0), nebular carbon measurements are limited to rest-frame UV collisionally excited emission lines. Therefore, we present the UV spectrophotometry of 12 nearby low-metallicity high-ionization H ii regions in dwarf galaxies obtained using the Cosmic Origins Spectrograph on the Hubble Space Telescope. We present the first analysis of the C/O ratio in local galaxies based solely on simultaneous significant detections of the UV {{{O}}}+2 and {{{C}}}+2 collisionally excited lines in seven of our targets and five objects from the literature to create a final sample of 12 significant detections. Our sample is complemented by optical SDSS spectra, from which we measured the nebular physical conditions and oxygen abundances using the direct method. At low metallicity, (12+log(O/H) < 8.0), no clear trend is evident in C/O versus O/H for the present sample given the large dispersion observed. When combined with recombination line observations at higher values of O/H, a general trend of increasing C/O with increasing O/H is also viable but with some significant outliers. Additionally, we find the C/N ratio appears to be constant (but with significant scatter) over a large range in oxygen abundance, indicating that carbon is predominantly produced by similar nucleosynthetic mechanisms as nitrogen. If true, and our current understanding of nitrogen production is correct, this would indicate that primary production of carbon (a flat trend) dominates at low metallicity, but quasi-secondary production (an increasing trend) becomes prominent at higher metallicities. A larger sample will be needed to determine the true nature and dispersion of the relation.

  7. The Oxygen Isotope Composition of Dark Inclusions in HEDs, Ordinary and Carbonaceous Chondrites

    NASA Technical Reports Server (NTRS)

    Greenwood, R. C.; Zolensky, M. E.; Buchanan, P. C.; Franchi, I. A.

    2015-01-01

    Dark inclusions (DIs) are lithic fragments that form a volumetrically small, but important, component in carbonaceous chondrites. Carbonaceous clasts similar to DIs are also found in some ordinary chondrites and HEDs. DIs are of particular interest because they provide a record of nebular and planetary processes distinct from that of their host meteorite. DIs may be representative of the material that delivered water and other volatiles to early Earth as a late veneer. Here we focus on the oxygen isotopic composition of DIs in a variety of settings with the aim of understanding their formational history and relationship to the enclosing host meteorite.

  8. OT1_rrubin_1: Herschel's Opportunity to Solve the Nebular Abundance Problem While Creating a Legacy Planetary Nebulae Dataset

    NASA Astrophysics Data System (ADS)

    Rubin, R.

    2010-07-01

    Abundance surveys of a large sample of Galactic planetary nebulae (PNe) have led to the discovery of a group of super-metal-rich nebulae whose spectra show prominent optical recombination lines (ORLs) from C, N, O, and Ne ions. The heavy element abundances derived from ORLs for several PNe are a factor >10 higher than those derived from the traditional method based on collisionally excited lines (CELs). This ratio is called the abundance discrepancy factor (adf). A promising proposition to explain the nebular abundance problem posits that these nebulae contain (at least) two distinct regions - one of "normal" electron temperature, Te (~10000 K) and chemical composition (~solar) and another of very low Te (< 1000) that is H-deficient, thus having high metal abundances relative to H. The latter component emits strong heavy element ORLs and IR fine-structure (FS) CELs but essentially no optical/UV CELs. Efforts to directly detect these inclusions in PNe have been unsuccessful to date. However, there is mounting circumstantial evidence for their existence, such as presented in our recent paper that modeled the high-adf PN NGC 6153 using a 3-D photoionization code. The models that included the low Te, H-deficient knots fit most observations far better than did those models without the clumps. With the launch of Herschel, there is finally the capability to perform a test we've been dreaming of. Measurements have shown that the adf varies with position in a PN and is highest close to the central star. The very low Te inclusions must be cooled via FS IR lines. We propose to use Herschel to map the FS IR lines in 5 bright PNe on the largest adf list, to find if these lines peak where the adf peaks. These spectra will also provide a feast for our other team expertise/interests: a legacy dataset of molecular lines to explore PDRs, how the central star interacts with the AGB ejecta and shapes the PN, how the shocks are produced, what comprises the chemistry of the molecular

  9. Oxygen safety

    MedlinePlus

    ... with electric motors Electric baseboard or space heaters Wood stoves, fireplaces, candles Electric blankets Hairdryers, electric razors, ... Therapy.aspx . Accessed February 9, 2016. National Fire Protection Association. Medical oxygen. Updated July 2013. www.nfpa. ...

  10. The Quality of Water and Bottom Material in Lunga Reservoir, Virginia, September 2004 through August 2005

    USGS Publications Warehouse

    Lotspeich, R. Russell

    2007-01-01

    Lunga Reservoir is on the U.S. Marine Corps Base in Quantico, which is in the Potomac River basin and the Piedmont Physiographic Province of northern Virginia. Because of the potential use of the reservoir for scuba-diver training and public water supply in addition to current recreational activities, the U.S. Marine Corps wanted to know more about the water quality of Lunga Reservoir and how it compared to Virginia Department of Environmental Quality and Virginia State Water Control Board ambient water-quality standards. Water samples and physical properties were collected by the U.S. Geological Survey at 6 locations throughout Lunga Reservoir, and physical properties were collected at 11 additional locations in the reservoir from September 2004 through August 2005. Water samples for analysis of pesticides and bottom-material trace elements were collected once during the study at four of the sampling locations. Water temperature, dissolved-oxygen concentration, specific conductance, pH, and total chlorophyll concentration in Lunga Reservoir all had similar seasonal and spatial variations as in other lakes and reservoirs in this geographic region - thermal gradient in the summer and fall and isothermal conditions in the winter and early spring. Concentrations of water-quality indicators in Lunga Reservoir were within comparable levels of those in other reservoirs and did not violate the Virginia State Water Control Board standards for public water supplies. Water temperatures throughout Lunga Reservoir during the study period ranged from 4.4 to 30.1 degrees Celsius, well below the State Water Control Board maximum water temperature criteria of 32 degrees Celsius. Dissolved-oxygen concentrations ranged from 0.05 to 14.1 milligrams per liter throughout the reservoir during the study period, but never fell below the State Water Control Board minimum dissolved-oxygen criterion of 4.0 milligrams per liter at the surface of Lunga Reservoir. Specific conductance

  11. Fractured petroleum reservoirs

    SciTech Connect

    Firoozabadi, A.; Chang, E.; Tang, G.Q.

    2000-01-10

    Total compressibility in a fractured reservoir is estimated using the pressure response due to gravitational potential variations. Both the moon and the sun gravitational potentials are accounted for using the full expression by inclusion of longer-period components. The semi-diurnal and diurnal pressure data show substantial long-term variations. The gravitational potential also contains the same variation trend; the ratio between the potential and pressure has a fairly uniform value over successive cycles. The computed total compressibility is also fairly constant and independent of the cycle. Results show the effects of the time interval over which the pressure measurements are performed as well as the location.

  12. Calderas and magma reservoirs

    NASA Astrophysics Data System (ADS)

    Cashman, Katharine V.; Giordano, Guido

    2014-11-01

    Large caldera-forming eruptions have long been a focus of both petrological and volcanological studies; petrologists have used the eruptive products to probe conditions of magma storage (and thus processes that drive magma evolution), while volcanologists have used them to study the conditions under which large volumes of magma are transported to, and emplaced on, the Earth's surface. Traditionally, both groups have worked on the assumption that eruptible magma is stored within a single long-lived melt body. Over the past decade, however, advances in analytical techniques have provided new views of magma storage regions, many of which provide evidence of multiple melt lenses feeding a single eruption, and/or rapid pre-eruptive assembly of large volumes of melt. These new petrological views of magmatic systems have not yet been fully integrated into volcanological perspectives of caldera-forming eruptions. Here we explore the implications of complex magma reservoir configurations for eruption dynamics and caldera formation. We first examine mafic systems, where stacked-sill models have long been invoked but which rarely produce explosive eruptions. An exception is the 2010 eruption of Eyjafjallajökull volcano, Iceland, where seismic and petrologic data show that multiple sills at different depths fed a multi-phase (explosive and effusive) eruption. Extension of this concept to larger mafic caldera-forming systems suggests a mechanism to explain many of their unusual features, including their protracted explosivity, spatially variable compositions and pronounced intra-eruptive pauses. We then review studies of more common intermediate and silicic caldera-forming systems to examine inferred conditions of magma storage, time scales of melt accumulation, eruption triggers, eruption dynamics and caldera collapse. By compiling data from large and small, and crystal-rich and crystal-poor, events, we compare eruptions that are well explained by simple evacuation of a zoned

  13. Encapsulated microsensors for reservoir interrogation

    DOEpatents

    Scott, Eddie Elmer; Aines, Roger D.; Spadaccini, Christopher M.

    2016-03-08

    In one general embodiment, a system includes at least one microsensor configured to detect one or more conditions of a fluidic medium of a reservoir; and a receptacle, wherein the receptacle encapsulates the at least one microsensor. In another general embodiment, a method include injecting the encapsulated at least one microsensor as recited above into a fluidic medium of a reservoir; and detecting one or more conditions of the fluidic medium of the reservoir.

  14. Reservoir management cost-cutting

    SciTech Connect

    Gulati, M.S.

    1996-12-31

    This article by Mohinder S. Gulati, Chief Engineer, Unocal Geothermal Operations, discusses cost cutting in geothermal reservoir management. The reservoir engineer or geoscientist can make a big difference in the economical outcome of a project by improving well performance and thus making geothermal energy more competitive in the energy marketplace. Bringing plants online in less time and proving resources to reduce the cycle time are some of the ways to reduce reservoir management costs discussed in this article.

  15. OXYGEN ISOTOPIC COMPOSITIONS OF SOLAR CORUNDUM GRAINS

    SciTech Connect

    Makide, Kentaro; Nagashima, Kazuhide; Huss, Gary R.; Krot, Alexander N.

    2009-11-20

    Oxygen is one of the major rock-forming elements in the solar system and the third most abundant element of the Sun. Oxygen isotopic composition of the Sun, however, is not known due to a poor resolution of astronomical spectroscopic measurements. Several DELTA{sup 17}O values have been proposed for the composition of the Sun based on (1) the oxygen isotopic measurements of the solar wind implanted into metallic particles in lunar soil (< -20 per mille by Hashizume and Chaussidon and approx +26 per mille by Ireland et al.), (2) the solar wind returned by the Genesis spacecraft (-27 per mille +- 6 per mille by McKeegan et al.), and (3) the mineralogically pristine calcium-aluminum-rich inclusions (CAIs) (-23.3 per mille +- 1.9 per mille by Makide et al. and -35 per mille by Gounelle et al.). CAIs are the oldest solar system solids, and are believed to have formed by evaporation, condensation, and melting processes in hot nebular region(s) when the Sun was infalling (Class 0) or evolved (Class 1) protostar. Corundum (Al{sub 2}O{sub 3}) is thermodynamically the first condensate from a cooling gas of solar composition. Corundum-bearing CAIs, however, are exceptionally rare, suggesting either continuous reaction of the corundum condensates with a cooling nebular gas and their replacement by hibonite (CaAl{sub 12}O{sub 19}) or their destruction by melting together with less refractory condensates during formation of igneous CAIs. In contrast to the corundum-bearing CAIs, isolated micrometer-sized corundum grains are common in the acid-resistant residues from unmetamorphosed chondrites. These grains could have avoided multistage reprocessing during CAI formation and, therefore, can potentially provide constraints on the initial oxygen isotopic composition of the solar nebula, and, hence, of the Sun. Here we report oxygen isotopic compositions of approx60 micrometer-sized corundum grains in the acid-resistant residues from unequilibrated ordinary chondrites (Semarkona (LL3

  16. All-optical reservoir computing.

    PubMed

    Duport, François; Schneider, Bendix; Smerieri, Anteo; Haelterman, Marc; Massar, Serge

    2012-09-24

    Reservoir Computing is a novel computing paradigm that uses a nonlinear recurrent dynamical system to carry out information processing. Recent electronic and optoelectronic Reservoir Computers based on an architecture with a single nonlinear node and a delay loop have shown performance on standardized tasks comparable to state-of-the-art digital implementations. Here we report an all-optical implementation of a Reservoir Computer, made of off-the-shelf components for optical telecommunications. It uses the saturation of a semiconductor optical amplifier as nonlinearity. The present work shows that, within the Reservoir Computing paradigm, all-optical computing with state-of-the-art performance is possible.

  17. Existence of an 16O-rich gaseous reservoir in the solar nebula.

    PubMed

    Krot, Alexander N; McKeegan, Kevin D; Leshin, Laurie A; MacPherson, Glenn J; Scott, Edward R D

    2002-02-08

    Carbonaceous chondrite condensate olivine grains from two distinct petrographic settings, calcium-aluminum-rich inclusion (CAI) accretionary rims and amoeboid olivine aggregates (AOAs), are oxygen-16 (16O) enriched at the level previously observed inside CAIs. This requires that the gas in the nebular region where these grains condensed was 16O-rich. This contrasts with an 16O-poor gas present during the formation of chondrules, suggesting that CAIs and AOAs formed in a spatially restricted region of the solar nebula containing 16O-rich gas. The 16O-rich gas composition may have resulted either from mass-independent isotopic chemistry or from evaporation of regions with enhanced dust/gas ratios, possibly in an X-wind environment near the young Sun.

  18. Modeling white sturgeon movement in a reservoir: The effect of water quality and sturgeon density

    USGS Publications Warehouse

    Sullivan, A.B.; Jager, H.I.; Myers, R.

    2003-01-01

    We developed a movement model to examine the distribution and survival of white sturgeon (Acipenser transmontanus) in a reservoir subject to large spatial and temporal variation in dissolved oxygen and temperature. Temperature and dissolved oxygen were simulated by a CE-QUAL-W2 model of Brownlee Reservoir, Idaho for a typical wet, normal, and dry hydrologic year. We compared current water quality conditions to scenarios with reduced nutrient inputs to the reservoir. White sturgeon habitat quality was modeled as a function of temperature, dissolved oxygen and, in some cases, suitability for foraging and depth. We assigned a quality index to each cell along the bottom of the reservoir. The model simulated two aspects of daily movement. Advective movement simulated the tendency for animals to move toward areas with high habitat quality, and diffusion simulated density dependent movement away from areas with high sturgeon density in areas with non-lethal habitat conditions. Mortality resulted when sturgeon were unable to leave areas with lethal temperature or dissolved oxygen conditions. Water quality was highest in winter and early spring and lowest in mid to late summer. Limiting nutrient inputs reduced the area of Brownlee Reservoir with lethal conditions for sturgeon and raised the average habitat suitability throughout the reservoir. Without movement, simulated white sturgeon survival ranged between 45 and 89%. Allowing movement raised the predicted survival of sturgeon under all conditions to above 90% as sturgeon avoided areas with low habitat quality. ?? 2003 Elsevier B.V. All rights reserved.

  19. Reconnaissance of water quality of Pueblo Reservoir, Colorado: May through December 1985

    USGS Publications Warehouse

    Edelmann, Patrick

    1989-01-01

    Pueblo Reservoir is the farthest upstream, main-stream reservoir constructed on the Arkansas River and is located in Pueblo County approximately 6 miles upstream from the city of Pueblo, Colorado. During the 1985 sampling period, the reservoir was stratified, and underflow from the Arkansas River occurred that resulted in stratification with respect to specific conductance. Concentrations of dissolved solids decreased markedly below the thermocline during June. Later in the summer, dissolved-solids concentrations increased substantially below the thermocline. Substantial depletion of dissolved oxygen occurred near the bottom of the reservoir. The dissolved oxygen minimum of 0.1 mg/L occurred during August near the reservoir bottom at transect 7 (near the dam). The average total-inorganic-nitrogen concentration near the reservoir surface was about 0.2 mg/L; near the reservoir bottom, the average concentration was about 0.3 mg/L. Concentrations of total phosphorus ranged from less than 0.01 to 0.05 mg/L near the reservoir surface, and from less than 0.01 to 0.22 mg/L near the reservoir bottom. At transect 2 (about 7 miles upstream from the dam) near the bottom of the reservoir, concentrations of total iron exceeded aquatic-life standards, and dissolved-manganese concentrations exceeded standards for public water supply. Diatoms, green algae, blue-green algae, and cryptomonads comprised the majority of phytoplankton in Pueblo Reservoir in 1985. The maximum average of 41,000 cells/ml occurred in July. Blue-green algae dominated from June to September; diatoms were the dominant group of algae in October. The average concentrations of phytoplankton decreased from July to October. (USGS)

  20. Reservoir Modeling for Production Management

    SciTech Connect

    Brown, Donald W.

    1989-03-21

    For both petroleum and geothermal resources, many of the reservoirs are fracture dominated--rather than matrix-permeability controlled. For such reservoirs, a knowledge of the pressure-dependent permeability of the interconnected system of natural joints (i.e., pre-existing fractures) is critical to the efficient exploitation of the resource through proper pressure management. Our experience and that reported by others indicates that a reduction in the reservoir pressure sometimes leads to an overall reduction in production rate due to the ''pinching off'' of the joint network, rather than the anticipated increase in production rate. This effect occurs not just in the vicinity of the wellbore, where proppants are sometimes employed, but throughout much of the reservoir region. This follows from the fact that under certain circumstances, the decline in fracture permeability (or conductivity) with decreasing reservoir pressure exceeds the far-field reservoir ''drainage'' flow rate increase due to the increased pressure gradient. Further, a knowledge of the pressure-dependent joint permeability could aid in designing more appropriate secondary recovery strategies in petroleum reservoirs or reinjection procedures for geothermal reservoirs.

  1. HEC Activities in Reservoir Analysis.

    DTIC Science & Technology

    1980-06-01

    June 1979. Now, HEC-5, "Simulation of Flood Con- trol and Conservation Systems," (9) is our primary reservoir simulation program. Since its June release...are being incorporated into the reservoir simulation model HEC-5. The objective is to provide a computer program and methodology for total water

  2. Quality of water and bottom material in Breckenridge Reservoir, Virginia, September 2008 through August 2009

    USGS Publications Warehouse

    Lotspeich, Russell

    2012-01-01

    Breckenridge Reservoir is located within the U.S. Marine Corps Base in Quantico, which is in the Potomac River basin and the Piedmont Physiographic Province of northern Virginia. Because it serves as the principal water supply for the U.S. Marine Corps Base in Quantico, an assessment of the water-quality of Breckenridge Reservoir was initiated. Water samples were collected and physical properties were measured by the U.S. Geological Survey at three sites in Breckenridge Reservoir, and physical properties were measured at six additional reservoir sites from September 2008 through August 2009. Water samples were also collected and physical properties were measured in each of the three major tributaries to Breckenridge Reservoir: North Branch Chopawamsic Creek, Middle Branch Chopawamsic Creek, and South Branch Chopawamsic Creek. One site on each tributary was sampled at least five times during the study. Monthly profiles were conducted for water temperature, dissolved-oxygen concentrations, specific conductance, pH, and turbidity measured at 2-foot intervals throughout the water column of the reservoir. These profiles were conducted at nine sites in the reservoir, and data values were measured at these sites from the water surface to the bottom of the reservoir. These profiles were conducted along three cross sections and were used to define the characteristics of the entire water column of the reservoir. The analytical results of reservoir and tributary samples collected and physical properties measured during this study were compared to ambient water-quality standards of the Virginia Department of Environmental Quality and Virginia State Water Control Board. Water temperature, dissolved-oxygen concentration, specific conductance, pH, and turbidity measured in Breckenridge Reservoir generally indicated a lack of stratification in the water column of the reservoir throughout the study period. This is unlike most other reservoirs in the region and may be influenced by

  3. Tertiary carbonate reservoirs in Indonesia

    SciTech Connect

    Nayoan, G.A.S.; Arpandi; Siregar, M.

    1981-01-01

    Hydrocarbon production from Tertiary carbonate reservoirs accounted for ca. 10% of daily Indonesian production at the beginning of 1978. Environmentally, the reservoirs appear as parts of reef complexes and high-energy carbonate deposits within basinal areas situated mainly in the back arc of the archipelago. Good porosities of the reservoirs are represented by vugular/moldic and intergranular porosity types. The reservoirs are capable of producing prolific amounts of hydrocarbons: production tests in Salawati-Irian Jaya reaches maximum values of 32,000 bpd, and in Arun-North Sumatra tests recorded 200 MMCF gas/day. Significant hydrocarbon accumulations are related to good reservoir rocks in carbonates deposited as patch reefs, pinnacle reefs, and platform complexes. Exploration efforts expand continuously within carbonate formations which are extensive horizontally as well as vertically in the Tertiary stratigraphic column.

  4. Stochastic thermodynamics with information reservoirs

    NASA Astrophysics Data System (ADS)

    Barato, Andre C.; Seifert, Udo

    2014-10-01

    We generalize stochastic thermodynamics to include information reservoirs. Such information reservoirs, which can be modeled as a sequence of bits, modify the second law. For example, work extraction from a system in contact with a single heat bath becomes possible if the system also interacts with an information reservoir. We obtain an inequality, and the corresponding fluctuation theorem, generalizing the standard entropy production of stochastic thermodynamics. From this inequality we can derive an information processing entropy production, which gives the second law in the presence of information reservoirs. We also develop a systematic linear response theory for information processing machines. For a unicyclic machine powered by an information reservoir, the efficiency at maximum power can deviate from the standard value of 1 /2 . For the case where energy is consumed to erase the tape, the efficiency at maximum erasure rate is found to be 1 /2 .

  5. FRACTURED PETROLEUM RESERVOIRS

    SciTech Connect

    Abbas Firoozabadi

    1999-06-11

    The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly

  6. Meandering stream reservoirs

    SciTech Connect

    Richardson, J.G.; Sangree, J.B.; Sneider, R.M.

    1987-12-01

    Braided stream deposits, described in a previous article in this series, and meandering stream deposits commonly are excellent reservoirs. Meandering high-sinuousity channels are found on flat alluvial plains with slopes less than 1 1/2/sup 0/ (0.026 rad). These rivers have wide ranges of discharges from low-water flow to flood stage. Two main processes are responsible for development of sand bodies. These are point-bar deposits left by channel migration, and oxbow-lake deposits left in loops of the river course abandoned when the stream cuts a new course during flooding. Extremely high floods spill over the banks and deposit sheets of very fine sand, silt, and clay onto the flood plain.

  7. Spatially pooled depth-dependent reservoir storage, elevation, and water-quality data for selected reservoirs in Texas, January 1965-January 2010

    USGS Publications Warehouse

    Burley, Thomas E.; Asquith, William H.; Brooks, Donald L.

    2011-01-01

    temperature, reservoir storage, reservoir elevation, specific conductance, dissolved oxygen, pH, unfiltered salinity, unfiltered total nitrogen, filtered total nitrogen, unfiltered nitrate plus nitrite, unfiltered phosphorus, filtered phosphorus, unfiltered carbon, carbon in suspended sediment, total hardness, unfiltered noncarbonate hardness, filtered noncarbonate hardness, unfiltered calcium, filtered calcium, unfiltered magnesium, filtered magnesium, unfiltered sodium, filtered sodium, unfiltered potassium, filtered potassium, filtered chloride, filtered sulfate, unfiltered fluoride, and filtered fluoride. When possible, USGS and Texas Commission on Environmental Quality water-quality properties and constituents were matched using the database parameter codes for individual physical properties and constituents, descriptions of each physical property or constituent, and their reporting units. This report presents a collection of delimited text files of source-aggregated, spatially pooled, depth-dependent, instantaneous water-quality data as well as instantaneous, daily, and monthly storage and elevation reservoir data.

  8. Water resources review: Ocoee reservoirs, 1990

    SciTech Connect

    Cox, J.P.

    1990-08-01

    Tennessee Valley Authority (TVA) is preparing a series of reports to make technical information on individual TVA reservoirs readily accessible. These reports provide a summary of reservoir purpose and operation; physical characteristics of the reservoir and watershed; water quality conditions; aquatic biological conditions; and designated, actual and potential uses of the reservoir and impairments of those use. This reservoir status report addressed the three Ocoee Reservoirs in Polk County, Tennessee.

  9. Collapsible sheath fluid reservoirs for flow cytometers

    DOEpatents

    Mark, Graham A.

    2000-01-01

    The present invention is a container in the form of a single housing for holding fluid, including a first collapsible reservoir having a first valve. The first reservoir initially contains a volume of fluid. The container also includes a second reservoir, initially empty (or substantially empty), expandable to a second volume. The second reservoir has a second valve. As the volume of said first reservoir decreases, the volume of the second reservoir proportionally increases.

  10. Isotopic insights into microbial sulfur cycling in oil reservoirs.

    PubMed

    Hubbard, Christopher G; Cheng, Yiwei; Engelbrekston, Anna; Druhan, Jennifer L; Li, Li; Ajo-Franklin, Jonathan B; Coates, John D; Conrad, Mark E

    2014-01-01

    Microbial sulfate reduction in oil reservoirs (biosouring) is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM) is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of -30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters (FW) containing elevated concentrations of volatile fatty acids (VFAs) and injection water (IW) containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures.

  11. Crude-oil biodegradation via methanogenesis in subsurface petroleum reservoirs.

    PubMed

    Jones, D M; Head, I M; Gray, N D; Adams, J J; Rowan, A K; Aitken, C M; Bennett, B; Huang, H; Brown, A; Bowler, B F J; Oldenburg, T; Erdmann, M; Larter, S R

    2008-01-10

    Biodegradation of crude oil in subsurface petroleum reservoirs has adversely affected the majority of the world's oil, making recovery and refining of that oil more costly. The prevalent occurrence of biodegradation in shallow subsurface petroleum reservoirs has been attributed to aerobic bacterial hydrocarbon degradation stimulated by surface recharge of oxygen-bearing meteoric waters. This hypothesis is empirically supported by the likelihood of encountering biodegraded oils at higher levels of degradation in reservoirs near the surface. More recent findings, however, suggest that anaerobic degradation processes dominate subsurface sedimentary environments, despite slow reaction kinetics and uncertainty as to the actual degradation pathways occurring in oil reservoirs. Here we use laboratory experiments in microcosms monitoring the hydrocarbon composition of degraded oils and generated gases, together with the carbon isotopic compositions of gas and oil samples taken at wellheads and a Rayleigh isotope fractionation box model, to elucidate the probable mechanisms of hydrocarbon degradation in reservoirs. We find that crude-oil hydrocarbon degradation under methanogenic conditions in the laboratory mimics the characteristic sequential removal of compound classes seen in reservoir-degraded petroleum. The initial preferential removal of n-alkanes generates close to stoichiometric amounts of methane, principally by hydrogenotrophic methanogenesis. Our data imply a common methanogenic biodegradation mechanism in subsurface degraded oil reservoirs, resulting in consistent patterns of hydrocarbon alteration, and the common association of dry gas with severely degraded oils observed worldwide. Energy recovery from oilfields in the form of methane, based on accelerating natural methanogenic biodegradation, may offer a route to economic production of difficult-to-recover energy from oilfields.

  12. Isotopic insights into microbial sulfur cycling in oil reservoirs

    PubMed Central

    Hubbard, Christopher G.; Cheng, Yiwei; Engelbrekston, Anna; Druhan, Jennifer L.; Li, Li; Ajo-Franklin, Jonathan B.; Coates, John D.; Conrad, Mark E.

    2014-01-01

    Microbial sulfate reduction in oil reservoirs (biosouring) is often associated with secondary oil production where seawater containing high sulfate concentrations (~28 mM) is injected into a reservoir to maintain pressure and displace oil. The sulfide generated from biosouring can cause corrosion of infrastructure, health exposure risks, and higher production costs. Isotope monitoring is a promising approach for understanding microbial sulfur cycling in reservoirs, enabling early detection of biosouring, and understanding the impact of souring. Microbial sulfate reduction is known to result in large shifts in the sulfur and oxygen isotope compositions of the residual sulfate, which can be distinguished from other processes that may be occurring in oil reservoirs, such as precipitation of sulfate and sulfide minerals. Key to the success of this method is using the appropriate isotopic fractionation factors for the conditions and processes being monitored. For a set of batch incubation experiments using a mixed microbial culture with crude oil as the electron donor, we measured a sulfur fractionation factor for sulfate reduction of −30‰. We have incorporated this result into a simplified 1D reservoir reactive transport model to highlight how isotopes can help discriminate between biotic and abiotic processes affecting sulfate and sulfide concentrations. Modeling results suggest that monitoring sulfate isotopes can provide an early indication of souring for reservoirs with reactive iron minerals that can remove the produced sulfide, especially when sulfate reduction occurs in the mixing zone between formation waters (FW) containing elevated concentrations of volatile fatty acids (VFAs) and injection water (IW) containing elevated sulfate. In addition, we examine the role of reservoir thermal, geochemical, hydrological, operational and microbiological conditions in determining microbial souring dynamics and hence the anticipated isotopic signatures. PMID:25285094

  13. Climate-water quality relationships in Texas reservoirs

    USGS Publications Warehouse

    Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo

    2015-01-01

    Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.

  14. Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.

    SciTech Connect

    Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim; Gilbert, Bob; Lake, Larry W.; Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett; Thomas, Sunil G.; Rightley, Michael J.; Rodriguez, Adolfo; Klie, Hector; Banchs, Rafael; Nunez, Emilio J.; Jablonowski, Chris

    2006-11-01

    The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging

  15. Data requirements and acquisition for reservoir characterization

    SciTech Connect

    Jackson, S.; Chang, Ming Ming; Tham, Min.

    1993-03-01

    This report outlines the types of data, data sources and measurement tools required for effective reservoir characterization, the data required for specific enhanced oil recovery (EOR) processes, and a discussion on the determination of the optimum data density for reservoir characterization and reservoir modeling. The two basic sources of data for reservoir characterization are data from the specific reservoir and data from analog reservoirs, outcrops, and modern environments. Reservoir data can be divided into three broad categories: (1) rock properties (the container) and (2) fluid properties (the contents) and (3)interaction between reservoir rock and fluid. Both static and dynamic measurements are required.

  16. Diverse Anhydrous Silicates in a Fine-Grained Rim in the Weakly Altered CM2 Chondrite Queen Elizabeth Range 97990: Evidence for the Localized Preservation of Pristine Nebular Dust in CM Chondrites.

    NASA Astrophysics Data System (ADS)

    Brearley, A. J.

    2016-08-01

    A fine-grained rim the QUE 97990 CM2 chondrite contains diverse submicron crystalline anhydrous silicates, including olivines, low-Ca and high Ca pyroxenes and represents a more pristine sample of nebular dust than is present in most CM chondrites.

  17. Hydrogen Abundances in Metal Grains from the Hammadah Al Hamra (HaH) 237 Metal-rich Chondrite: A Test of the Nebular-Formation Theory

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.; Guan, Y.; Leshin, L. A.

    2005-01-01

    The Bencubbin-like (CB) chondrites are metal-rich, primitive meteorites [1,2]. Some of these chondrites (HaH 237, QUE 94411) contain compositionally zoned metal grains with near-chondritic bulk compositions. Thermodynamic modeling of the zoning patterns in these grains suggests that they were formed by condensation in a region of the solar nebula with enhanced dust/gas ratios and a total pressure of 10(exp -4) bars at temperatures between 1400 - 1500 K [3]. If these predictions are correct than the metal grains would have been exposed to abundant H2 gas, which comprises the bulk of nebular systems. Since Fe-based alloys can absorb significant quantities of H, metal grains formed in the solar nebula should contain measurable abundances of H.

  18. Role of fish distribution on estimates of standing crop in a cooling reservoir

    USGS Publications Warehouse

    Barwick, D. Hugh

    1984-01-01

    Estimates of fish standing crop from coves in Keowee Reservoir, South Carolina, were obtained in May and August for 3 consecutive years. Estimates were significantly higher in May than in August for most of the major species of fish collected, suggesting that considerable numbers of fish had migrated from the coves by August. This change in fish distribution may have resulted from the operation of a 2,580-megawatt nuclear power plant which altered reservoir stratification. Because fish distribution is sensitive to conditions of reservoir stratification, and because power plants often alter reservoir stratification, annual cove sampling in August may not be sufficient to produce comparable estimates of fish standing crop on which to assess the impact of power plant operations on fish populations. Comparable estimates of fish standing crop can probably be obtained from cooling reservoirs by collecting annual samples at similar water temperatures and concentrations of dissolved oxygen.

  19. Method for determining minimum pool requirements to maintain and enhance salmonid fisheries in small Wyoming reservoirs

    NASA Astrophysics Data System (ADS)

    Guenther, Paula M.; Hubert, Wayne A.

    1993-09-01

    Methods for determination of minimum pool levels in reservoirs that consider sport fishery values are being sought by managers. We developed a technique for assessing the effects of incremental changes in minimum pool levels on potential salmonid abundance in small (<100 surface hectares at full pool) reservoirs in Wyoming managed for irrigation and municipal water supplies. The method has two components. One component is used to determine the minimum pool level needed to eliminate the risk of overwinter loss of salmonids due to low dissolved oxygen concentrations. The other component predicts the potential biomass of salmonids in reservoirs as a function of water depth and total dissolved solids concentration of the reservoir water. Application of the method is demonstrated for two reservoirs in Wyoming.

  20. The influence of a severe reservoir drawdown on springtime zooplankton and larval fish assemblages in Red Willow Reservoir, Nebraska

    USGS Publications Warehouse

    DeBoer, Jason A.; Webber, Christa M.; Dixon, Taylor A.; Pope, Kevin L.

    2016-01-01

    Reservoirs can be dynamic systems, often prone to unpredictable and extreme water-level fluctuations, and can be environments where survival is difficult for zooplankton and larval fish. Although numerous studies have examined the effects of extreme reservoir drawdown on water quality, few have examined extreme drawdown on both abiotic and biotic characteristics. A fissure in the dam at Red Willow Reservoir in southwest Nebraska necessitated an extreme drawdown; the water level was lowered more than 6 m during a two-month period, reducing reservoir volume by 76%. During the subsequent low-water period (i.e., post-drawdown), spring sampling (April–June) showed dissolved oxygen concentration was lower, while turbidity and chlorophyll-a concentration were greater, relative to pre-drawdown conditions. Additionally, there was an overall increase in zooplankton density, although there were differences among taxa, and changes in mean size among taxa, relative to pre-drawdown conditions. Zooplankton assemblage composition had an average dissimilarity of 19.3% from pre-drawdown to post-drawdown. The ratio of zero to non-zero catches was greater post-drawdown for larval common carp and for all larval fishes combined, whereas we observed no difference for larval gizzard shad. Larval fish assemblage composition had an average dissimilarity of 39.7% from pre-drawdown to post-drawdown. Given the likelihood that other dams will need repair or replacement in the near future, it is imperative for effective reservoir management that we anticipate the likely abiotic and biotic responses of reservoir ecosystems as these management actions will continue to alter environmental conditions in reservoirs.

  1. Benefits of oxygen incorporation in atomic laminates

    NASA Astrophysics Data System (ADS)

    Dahlqvist, Martin

    2016-04-01

    Atomic laminates such as MAX phases benefit from the addition of oxygen in many ways, from the formation of a protective oxide surface layer with self-healing capabilities when cracks form to the tuning of anisotropic conductivity. In this paper oxygen incorporation and vacancy formation in M 2AlC (M  =  Ti, V, Cr) MAX phases have been studied using first-principles calculations where the focus is on phase stability and electronic structure for different oxygen and/or vacancy configurations. Oxygen prefers different lattice sites depending on M-element and this can be correlated to the number of available non-bonding M d-electrons. In Ti2AlC, oxygen substitutes carbon while in Cr2AlC it is located interstitially within the Al-layer. I predict that oxygen incorporation in Ti2AlC stabilizes the material, which explains the experimentally observed 12.5 at% oxygen (x  =  0.5) in Ti2Al(C1-x O x ). In addition, it is also possible to use oxygen to stabilize the hypothetical Zr2AlC and Hf2AlC. Hence, oxygen incorporation may be beneficial in many ways. Not only can it make a material more stable, but it also can act as a reservoir for internal self-healing with shorter diffusion paths.

  2. Ca-Fe and Alkali-Halide Alteration of an Allende Type B CAI: Aqueous Alteration in Nebular or Asteroidal Settings

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Simon, J. I.; Simon, S. B.; Grossman, L.

    2012-01-01

    Ca-Fe and alkali-halide alteration of CAIs is often attributed to aqueous alteration by fluids circulating on asteroidal parent bodies after the various chondritic components have been assembled, although debate continues about the roles of asteroidal vs. nebular modification processes [1-7]. Here we report de-tailed observations of alteration products in a large Type B2 CAI, TS4 from Allende, one of the oxidized subgroup of CV3s, and propose a speculative model for aqueous alteration of CAIs in a nebular setting. Ca-Fe alteration in this CAI consists predominantly of end-member hedenbergite, end-member andradite, and compositionally variable, magnesian high-Ca pyroxene. These phases are strongly concentrated in an unusual "nodule" enclosed within the interior of the CAI (Fig. 1). The Ca, Fe-rich nodule superficially resembles a clast that pre-dated and was engulfed by the CAI, but closer inspection shows that relic spinel grains are enclosed in the nodule, and corroded CAI primary phases interfinger with the Fe-rich phases at the nodule s margins. This CAI also contains abundant sodalite and nepheline (alkali-halide) alteration that occurs around the rims of the CAI, but also penetrates more deeply into the CAI. The two types of alteration (Ca-Fe and alkali-halide) are adjacent, and very fine-grained Fe-rich phases are associated with sodalite-rich regions. Both types of alteration appear to be replacive; if that is true, it would require substantial introduction of Fe, and transport of elements (Ti, Al and Mg) out of the nodule, and introduction of Na and Cl into alkali-halide rich zones. Parts of the CAI have been extensively metasomatized.

  3. THE ABUNDANCES OF LIGHT NEUTRON-CAPTURE ELEMENTS IN PLANETARY NEBULAE. III. THE IMPACT OF NEW ATOMIC DATA ON NEBULAR SELENIUM AND KRYPTON ABUNDANCE DETERMINATIONS

    SciTech Connect

    Sterling, N. C.; Porter, R. L.; Dinerstein, Harriet L. E-mail: ryanlporter@gmail.com

    2015-06-22

    The detection of neutron(n)-capture elements in several planetary nebulae (PNe) has provided a new means of investigating s-process nucleosynthesis in low-mass stars. However, a lack of atomic data has inhibited accurate trans-iron element abundance determinations in astrophysical nebulae. Recently, photoionization (PI) and recombination data were determined for Se and Kr, the two most widely detected n-capture elements in nebular spectra. We have incorporated these new data into the photoionization code Cloudy. To test the atomic data, numerical models were computed for 15 PNe that exhibit emission lines from multiple Kr ions. We found systematic discrepancies between the predicted and observed emission lines that are most likely caused by inaccurate PI and recombination data. These discrepancies were removed by adjusting the Kr{sup +}–Kr{sup 3+} PI cross sections within their cited uncertainties and the dielectronic recombination rate coefficients by slightly larger amounts. From grids of models spanning the physical conditions encountered in PNe, we derive new, broadly applicable ionization correction factor (ICF) formulae for calculating Se and Kr elemental abundances. The ICFs were applied to our previous survey of near-infrared [Kr iii] and [Se iv] emission lines in 120 PNe. The revised Se and Kr abundances are 0.1–0.3 dex lower than former estimates, with average values of [Se/(O, Ar)] = 0.12 ± 0.27 and [Kr/(O, Ar)] = 0.82 ± 0.29, but correlations previously found between their abundances and other nebular and stellar properties are unaffected. We also find a tendency for high-velocity PNe that can be associated with the Galactic thick disk to exhibit larger s-process enrichments than low-velocity PNe belonging to the thin-disk population.

  4. Effects of Reservoirs on O2 and N Dynamics in the Grand River

    NASA Astrophysics Data System (ADS)

    de Baets, B.; Taylor, W.; Schiff, S.

    2009-05-01

    The Grand River watershed, located in southern Ontario, is currently home to 925,000 people. It is an area of increasing population, expected to reach over 1,000,000 within the next decade. There are over 100 dams located on the river either municipally or privately owned; and an additional 32 which are owned and operated specifically by the Grand River Conservation Authority (GRCA). The GRCA-run dams are currently used for flood control, low-flow augmentation and hydro-electricity production. Though dams in the watershed are necessary, questions of river impacts arise. Some dams are bottom draw, which release cold and potentially low oxygenated water into the downstream systems. Also of potential concern is nitrogen loading into the reservoirs from upstream sources. Three of the GRCA-run dams and their associated reservoirs were part of a preliminary study that took place in the late summer and early fall of 2008. Samples were taken at locations above and in the reservoirs as well as below the dams and downstream of the dams. A drop in oxygen concentration was observed below bottom- draw dams. Preliminary work indicates downstream oxygen recovery is slow. NO3- concentrations were generally distinct between upstream, downstream and reservoir sites, indicating unique N cycling in reservoirs. The reservoir with the largest agricultural influence had the highest NO3- concentrations.

  5. Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature

    DOEpatents

    Kamath, Krishna

    1984-08-14

    The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7.degree. F. at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88.degree. F. it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products.

  6. Reversible Oxygenation of Oxygen Transport Proteins.

    ERIC Educational Resources Information Center

    Drain, C. M.; Corden, Barry B.

    1987-01-01

    Describes a lecture demonstration which illustrates changes in the visible spectra of oxygen transport proteins upon reversible oxygen binding. Provides a comparison of the physical characteristics of oxygen storage and transport proteins. Reviews essentials for preparation of the materials. (ML)

  7. Cascade Reservoirs Floodwater Resources Utilization

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    A reasonable floodwater resources utilization method is put forward by dynamic controlling of cascade reservoirs flood control limited level in this paper. According to the probability distribution of the beginning time of the first flood and the ending time of the final flood from July to September, the Fuzzy Statistic Analysis was used to divide the main flood season. By fitting the flood season membership functions of each period, the cascade reservoirs flood control limited water level for each period were computed according to the characteristic data of reservoirs. In terms of the benefit maximization and risk minimum principle, the reasonable combination of flood control limited water level of cascade reservoirs was put forward.

  8. Fully analogue photonic reservoir computer.

    PubMed

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-03-03

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers.

  9. Reservoir evaporation in Texas, USA

    NASA Astrophysics Data System (ADS)

    Wurbs, Ralph A.; Ayala, Rolando A.

    2014-03-01

    The role of reservoir surface evaporation in river/reservoir water budgets and water management is explored using a modeling system that combines historical natural hydrology with current conditions of water resources development and management. The long-term mean evaporation from the 3415 reservoirs in the Texas water rights permit system is estimated to be 7.53 billion m3/year, which is equivalent to 61% of total agricultural or 126% of total municipal water use in the state during the year 2010. Evaporation varies with the hydrologic conditions governing reservoir surface areas and evaporation rates. Annual statewide total evaporation volumes associated with exceedance probabilities of 75%, 50%, and 25% are 7.07, 7.47, and 7.95 billion m3/year, respectively. Impacts of evaporation are greatest during extended severe droughts that govern water supply capabilities.

  10. Fully analogue photonic reservoir computer

    PubMed Central

    Duport, François; Smerieri, Anteo; Akrout, Akram; Haelterman, Marc; Massar, Serge

    2016-01-01

    Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers. PMID:26935166

  11. Functional wettability in carbonate reservoirs

    DOE PAGES

    Brady, Patrick V.; Thyne, Geoffrey

    2016-10-11

    Oil adsorbs to carbonate reservoirs indirectly through a relatively thick separating water layer, and directly to the surface through a relatively thin intervening water layer. Whereas directly sorbed oil desorbs slowly and incompletely in response to changes in reservoir conditions, indirectly sorbed oil can be rapidly desorbed by changing the chemistry of the separating water layer. The additional recovery might be as much as 30% original oil in place (OOIP) above the ~30% OOIP recovered from carbonates through reservoir depressurization (primary production) and viscous displacement (waterflooding). Electrostatic adhesive forces are the dominant control over carbonate reservoir wettability. A surface complexationmore » model that quantifies electrostatic adhesion accurately predicts oil recovery trends for carbonates. Furthermore, the approach should therefore be useful for estimating initial wettability and designing fluids that improve oil recovery.« less

  12. Functional wettability in carbonate reservoirs

    SciTech Connect

    Brady, Patrick V.; Thyne, Geoffrey

    2016-10-11

    Oil adsorbs to carbonate reservoirs indirectly through a relatively thick separating water layer, and directly to the surface through a relatively thin intervening water layer. Whereas directly sorbed oil desorbs slowly and incompletely in response to changes in reservoir conditions, indirectly sorbed oil can be rapidly desorbed by changing the chemistry of the separating water layer. The additional recovery might be as much as 30% original oil in place (OOIP) above the ~30% OOIP recovered from carbonates through reservoir depressurization (primary production) and viscous displacement (waterflooding). Electrostatic adhesive forces are the dominant control over carbonate reservoir wettability. A surface complexation model that quantifies electrostatic adhesion accurately predicts oil recovery trends for carbonates. Furthermore, the approach should therefore be useful for estimating initial wettability and designing fluids that improve oil recovery.

  13. Partitioning of rare earth elements between hibonite and melt and implications for nebular condensation of the rare earth elements

    NASA Technical Reports Server (NTRS)

    Drake, Michael J.; Boynton, William V.

    1988-01-01

    The effect of oxygen fugacity on the partitioning of REEs between hibonite and silicate melt is investigated in hibonite-growth experiments at 1470 C. The experimental procedures and apparatus are described, and the results are presented in extensive tables and graphs and characterized in detail. The absolute activity coefficients in hibonite are estimated as 330 for La, 1200 for Eu(3+), and 24,000 for Yb. It is inferred that ideal solution behavior cannot be assumed when calculating REE condensation temperatures for (Ca, Al)-rich inclusions in carbonaceous chondrites.

  14. 33 CFR 211.81 - Reservoir areas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... McClellan-Kerr Navigation Project in Oklahoma, to Former Owners Authority: Secs. 211.101 to 211.111... to: (a) Fort Gibson Reservoir Area, Oklahoma. (b) Lake Texoma and the Denison Reservoir Area..., Nebraska. (e) Fort Randall Reservoir Area, South Dakota. (f) Garrison Reservoir Area, North Dakota....

  15. 33 CFR 211.81 - Reservoir areas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... McClellan-Kerr Navigation Project in Oklahoma, to Former Owners Authority: Secs. 211.101 to 211.111... to: (a) Fort Gibson Reservoir Area, Oklahoma. (b) Lake Texoma and the Denison Reservoir Area..., Nebraska. (e) Fort Randall Reservoir Area, South Dakota. (f) Garrison Reservoir Area, North Dakota....

  16. 33 CFR 211.81 - Reservoir areas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... McClellan-Kerr Navigation Project in Oklahoma, to Former Owners Authority: Secs. 211.101 to 211.111... to: (a) Fort Gibson Reservoir Area, Oklahoma. (b) Lake Texoma and the Denison Reservoir Area..., Nebraska. (e) Fort Randall Reservoir Area, South Dakota. (f) Garrison Reservoir Area, North Dakota....

  17. 33 CFR 211.81 - Reservoir areas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... McClellan-Kerr Navigation Project in Oklahoma, to Former Owners Authority: Secs. 211.101 to 211.111... to: (a) Fort Gibson Reservoir Area, Oklahoma. (b) Lake Texoma and the Denison Reservoir Area..., Nebraska. (e) Fort Randall Reservoir Area, South Dakota. (f) Garrison Reservoir Area, North Dakota....

  18. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Reservoirs required. 393.50 Section 393.50... NECESSARY FOR SAFE OPERATION Brakes § 393.50 Reservoirs required. (a) Reservoir capacity for air-braked... trailers manufactured on or after January 1, 1975, must meet the reservoir requirements of FMVSS No....

  19. SMALL, GEOLOGICALLY COMPLEX RESERVOIRS CAN BENEFIT FROM RESERVOIR SIMULATION

    SciTech Connect

    Richard E. Bennett

    2002-06-24

    The Cascade Sand zone of the Mission-Visco Lease in the Cascade Oil field of Los Angeles County, California, has been under water flood since 1970. Increasing water injection to increase oil production rates was being considered as an opportunity to improve oil recovery. However, a secondary gas cap had formed in the up-dip portion of the reservoir with very low gas cap pressures, creating concern that oil could be displaced into the gas cap resulting in the loss of recoverable oil. Therefore, injecting gas into the gas cap to keep the gas cap pressurized and restrict the influx of oil during water injection was also being considered. Further, it was recognized that the reservoir geology in the gas cap area is very complex with numerous folding and faulting and thus there are potential pressure barriers in several locations throughout the reservoir. With these conditions in mind, there were concerns regarding well to well continuity in the gas cap, which could interfere with the intended repressurization impact. Concerns about the pattern of gas flow from well to well, the possibilities of cycling gas without the desired increased pressure, and the possible loss of oil displaced into the gas cap resulted in the decision to conduct a gas tracer survey in an attempt to better define inter-well communication. Following the gas tracer survey, a reservoir model would be developed to integrate the findings of the gas tracer survey, known geologic and reservoir data, and historic production data. The reservoir model would be used to better define the reservoir characteristics and provide information that could help optimize the waterflood-gas injection project under consideration for efficient water and gas injection management to increase oil production. However, due to inadequate gas sampling procedures in the field and insufficiently developed laboratory analytical techniques, the laboratory was unable to detect the tracer in the gas samples taken. At that point, focus

  20. The abundance of interstellar oxygen toward Orion: Evidence for recent infall?

    NASA Technical Reports Server (NTRS)

    Meyer, David M.; Jura, M.; Hawkins, Isabel; Cardelli, Jason A.

    1994-01-01

    We present high S/N (greater than 800) Goddard High-Resolution Spectrograph (GHRS) observations of the weak interstellar O I lambda 1356 absorption in the low-density sight lines toward iota Ori and kappa Ori. By comparing these data with observations toward more reddened stars, we find no evidence of density-dependent depletion from the gas phase for oxygen. The derived total oxygen abundance (gas plus grains) towards iota Ori and kappa Ori is consistent with stellar and nebular determinations in Orion at a level that is one-half the solar value. We speculate that the O/H abundance ratio is lower in Orion compared to the Sun because the local Milky Way has suffered a recent infall of metal-poor material, perhaps from the Magellanic Stream.

  1. Petroleum reservoir data for testing simulation models

    SciTech Connect

    Lloyd, J.M.; Harrison, W.

    1980-09-01

    This report consists of reservoir pressure and production data for 25 petroleum reservoirs. Included are 5 data sets for single-phase (liquid) reservoirs, 1 data set for a single-phase (liquid) reservoir with pressure maintenance, 13 data sets for two-phase (liquid/gas) reservoirs and 6 for two-phase reservoirs with pressure maintenance. Also given are ancillary data for each reservoir that could be of value in the development and validation of simulation models. A bibliography is included that lists the publications from which the data were obtained.

  2. Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report

    SciTech Connect

    Kelkar, M.

    1992-09-01

    This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.

  3. Water quality of Calero Reservoir, Santa Clara County, California, 1981-83

    USGS Publications Warehouse

    Clifton, D.G.; Gloege, I.S.

    1987-01-01

    Data were collected from December 1980 to September 1983 to describe water quality conditions of Calero Reservoir and the Almaden-Calero canal, Santa Clara County, California. Results show that water in Calero Reservoir and the canal generally met water quality criteria, as identified by the California Regional Water Quality Control Board San Francisco Bay Region, for municipal and domestic supply, water contact and non-contact recreation, warm water fish habitat, wildlife habitat, and fish spawning. Water temperature profiles show that Calero Reservoir can be classified as a warm monomictic reservoir. Water transparency profiles showed rapid attenuation of light with depth in the water column. The depth of the euphotic zone ranged from .5 m to 5.0 m. In winter and spring, light-extinction values generally were high throughout the water column; in summer and fall, values generally were high near the reservoir bottom. Dissolved oxygen concentrations were < 5.0 mg/L in about 22% of the measurements. Median pH values were 7.9 in the reservoir and 8.4 in the canal. Mean specific conductance values were 299 microsiemens/cm at 25 C in the reservoir and 326 in the canal. Calcium and magnesium were the dominant cations and bicarbonate the dominant anion in Calero Reservoir. Concentrations of total recoverable mercury in the bottom sediments in Calero Reservoir ranged from 0.06 to 0.85 mg/kg, but concentrations in the water column were was generally < 1 mg/L. Mean total nitrogen concentration in the Reservoir was 1.00 mg/L, much of it in dissolved form (mean concentration was 0.85 mg/L). Mean total organic nitrogen concentration in Calero Reservoir was 0.65 mg/L, and mean total nitrate concentration was 0.21 mg/L. Mean total phosphorus and dissolved orthophosphorous concentrations were 0.05 and 0.019 mg/L, respectively. Net primary productivity in the euphotic zone ranged from -2,000 to 10,000 mg of oxygen/sq m/day; the median value was 930. Carlson 's trophic-state index

  4. Abiotic factors affecting summer distribution and movement of male paddlefish, Polyodon spathula, in a prairie reservoir

    USGS Publications Warehouse

    Paukert, C.P.; Fisher, W.L.

    2000-01-01

    Six male paddlefish, Polyodon spathula, were implanted with ultrasonic temperature-sensing transmitters and tracked during June through August 1997 to quantify effects of physicochemical conditions on their distribution and movement in Keystone Reservoir, Oklahoma. Paddlefish moved about twice as much during night than day. Movement rate of paddlefish was related to reservoir water level, inflow, and discharge from the reservoir at night; however, none of these variables was significant during the day. Location in the reservoir (distance from the dam) was negatively related to water level and positively related to inflow during day and night periods. Location in the reservoir was negatively related to discharge during the day. Paddlefish avoided the highest available water temperatures, but did not always avoid low dissolved oxygen concentrations. Paddlefish avoided the Cimarron River arm of the reservoir in summer, possibly because of high salinity. Our study demonstrates that distribution of paddlefish during summer and movement in Keystone Reservoir was influenced by physicochemical and hydrologic conditions in the system. However, biotic factors (e.g., food availability) not measured in this study may have been influenced by abiotic conditions in the reservoir.

  5. Significance of water quality to fish propagation, waterfowl habitat, livestock watering, and recreation use for 24 lakes and reservoirs in Valley and Phillips Counties, Montana

    USGS Publications Warehouse

    Ferreira, R.F.

    1983-01-01

    Twenty-four reservoirs were sampled for water quality to determine their suitability for fish propagation, waterfowl habitat, livestock watering, and recreation. Reservoir-surface areas ranged from 0.2 to 146 hectares and depths ranged from 0.01 to 6.0 meters. Of the reservoirs studied, six generally had water quality that would not be detrimental to fish propagation. Most of the reservoirs were enriched with nutrients and supported large concentrations of phytoplankton and dense growth of aquatic plants. In late winter and late summer, enrichment of shallow reservoirs often resulted in dissolved-oxygen concentrations less than 5.0 milligrams per liter, which is detrimental to fish. Three reservoirs lacked aquatic plants for water fowl habitat. Four reservoirs had small dissolved-oxygen concentration in the bottom water that might be critical to the protection of waterfowl if botulism were to occur. Specific conductance of water samples from three reservoirs was sufficiently close to the criterion of 4,800 microsiemens per centimeter at 25 degrees celsius to be regarded as potentially hazardous to livestock. However, most of the reservoirs generally would not be conducive to recreational swimming. Visibility was limited in most of the reservoirs. In addition, leech populations and growth of submersed aquatic plants in most of the reservoirs would be a nuisance to swimmers. (USGS)

  6. The Ogden Valley artesian reservoir

    USGS Publications Warehouse

    Thomas, H.E.

    1945-01-01

    Ogden Valley, in Weber County, Utah, contains an artesian reservoir from which the city of Ogden obtains all except a small part of its municipal water supply. A detailed investigation of the ground-water resources of Ogden Valley, and particularly of this artesian reservoir, was made by the Geological Survey, United States Department of the Interior, in cooperation with the city of Ogden between 1932 and 1934, and the results of this investigation have been reported by Leggette and Taylor.1 The present paper, which might be termed a sequel to that report, is based on data collected during those years, augmented by records that have been obtained (1935-1940) by the Geological Survey as part of a State-wide project in cooperation with the Utah State Engineer. The conclusions drawn from the study of these records and presented in detail in the following pages are as follows: (1) The artesian reservoir is filled to capacity nearly every year during the spring run-off from melting snow; (2) after the annual freshet, the recharge to the reservoir is insufficient to balance the discharge from artesian wells, which ordinarily is at a maximum during the summer; the reservoir is depleted and is not filled again until the following spring; (3) during the periods when the artesian reservoir is not full the rate of recharge is more or less proportional to the inflow to the valley by streams, except that rain on the recharge area may be of sufficient intensity to contribute some water by infiltration and deep penetration; and (4) the artesian reservoir thus serves to store water that would otherwise be lost to Great Salt Lake in the excess spring overflow, and available records indicate that water used by increased draft from wells would be replenished in normal years by increased recharge during the spring freshet.

  7. Water-quality variability in four reservoirs in Phillips and Valley Counties, Montana; May through August 1981

    USGS Publications Warehouse

    Ferreira, R.F.; Lambing, J.H.

    1986-01-01

    Four reservoirs in Phillips and Valley Counties were studied from May to August, 1981 (1) to describe the variation in water quality that occurs from late spring (May) to late summer (August) and during 24-hrs in late summer and (2) to describe possible causes for the variation. All the reservoirs had distinct thermal gradients but lacked true stratification as a result of circulation induced by wind. Such mixing helps prevent oxygen depletion in bottom waters during the summer. The smallest dissolved-oxygen concentrations occurred in the near-bottom water of the reservoirs and during the night. Nighttime dissolved-oxygen concentrations in reservoirs 19 and 24 were much less than in reservoirs 1 and 9. Similar trends occurred with pH. Most chemical constituents in the water generally became more concentrated from May to August because of continuous water losses from evapotranspiration. This was noted by increase in the concentration of major dissolved constituents and by increase in specific conductance. All the reservoirs contained similar types of planktonic organisms, but in different proportions. Most of the fecal bacteria existing in the reservoirs presumably originated from livestock and waterfowl waste. (USGS)

  8. Visualization of oxygen transfer across the air-water interface using a fluorescence oxygen visualization method.

    PubMed

    Lee, Minhee

    2002-04-01

    Oxygen concentration fields in a water body were visualized by the fluorescence oxygen visualization (FOV) method. Pyrenebutyric acid (PBA) was used as a fluorescent indicator of oxygen, and an intensive charge coupled-device (ICCD) camera as an image detector. Sequential images (over 2000 images) of the oxygen concentration field around the surface water of the tank (1 x 1 x 0.75 m3) were produced during the 3 h experiment. From image processing, the accurate pathway of oxygen-rich, cold water at the water surface was also visualized. The amount of oxygen transferred through the air-water interface during the experiment was measured and the oxygen transfer coefficient (K(L)) was determined as 0.22 m/d, which was much higher than that is expected in molecular diffusion. Results suggest that vertical penetration of cold water was the main pathway of oxygen in the water body in the tank. The average velocity of cold water penetrating downward in water body was also measured from consecutive images and the value was 0.3-0.6 mm/s. The FOV method used in this research should have wide application in experimental fluid mechanics and can also provide a phenomenological description of oxygen transfer under physically realizable natural conditions in lakes and reservoirs.

  9. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect

    1998-01-01

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  10. Application of Integrated Reservoir management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect

    B. Pregger; D. Davies; D. Moore; G. Freeman; J. Callard; J.W. Nevans; L. Doublet; R. Vessell; T. Blasingame

    1997-08-31

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  11. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect

    1998-03-12

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  12. Intrinsic W nucleosynthetic isotope variations in carbonaceous chondrites: Implications for W nucleosynthesis and nebular vs. parent body processing of presolar materials

    NASA Astrophysics Data System (ADS)

    Burkhardt, Christoph; Schönbächler, Maria

    2015-09-01

    not the sole cause for creating the different pattern. Small-scale nebular redistribution of anomalous W may have played a role as well. Similar nebular processes possibly acted differently on specific carrier phases and elements, resulting in the diverse nucleosynthetic signatures observed in planetary materials today.

  13. Deciphering the nebular and asteroidal record of silicates and organic material in the matrix of the reduced CV3 chondrite Vigarano

    NASA Astrophysics Data System (ADS)

    Abreu, Neyda M.; Brearley, Adrian J.

    2011-02-01

    We have conducted scanning electron microscope (SEM) and transmission electron microscope (TEM) studies of a variety of occurrences of matrix in the reduced CV3 chondrite breccia Vigarano. Matrix, which occurs as clastic interchondrule material and finer-grained rims, is dominated by morphologically variable olivines that host submicron, hercynitic spinel, and carbonaceous inclusions. Clastic matrix and fine-grained rims show significant differences in their olivine morphologies, abundance, and composition of olivine inclusions, and characteristics of the carbonaceous matter. We suggest that these differences are the result of different degrees of alteration of clastic matrix and rims and are not due to variability in their precursor materials. Textural and compositional characteristics of olivine in the matrix are consistent with formation by growth, possibly from an amorphous precursor material during asteroidal metamorphism, in the presence of limited quantities of aqueous fluids. Spinel inclusions in olivine may be nebular condensates that acted as seeds for nucleation of olivine or may have formed during metamorphism and were subsequently overgrown by olivine. Carbonaceous material occurs as nanometer-sized inclusions within olivine in both fine-grained rims and clastic matrix, but is most abundant as 100-200 nm grains, interstitial to matrix olivines. Most carbonaceous material is amorphous, but poorly graphitized carbon (PGC) also occurs as a minor component in both olivine inclusions and interstitial C. The widespread occurrence of fine-grained amorphous carbon grains in the interstitial regions between olivine grains may preserve the distribution and grain size of nebular organic material. No clear textural relationships exist between carbonaceous grains and the other mineralogical components of Vigarano matrix that could help constrain the origin of the organic grains (i.e., evidence for Fischer-Tropsch-type reactions). Finally, there are considerable

  14. Thulium anomalies and rare earth element patterns in meteorites and Earth: Nebular fractionation and the nugget effect

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Pourmand, Ali

    2015-08-01

    This study reports the bulk rare earth element (REEs, La-Lu) compositions of 41 chondrites, including 32 falls and 9 finds from carbonaceous (CI, CM, CO and CV), enstatite (EH and EL) and ordinary (H, L and LL) groups, as well as 2 enstatite achondrites (aubrite). The measurements were done in dynamic mode using multi-collector inductively coupled plasma mass spectrometers (MC-ICPMS), allowing precise quantification of mono-isotopic REEs (Pr, Tb, Ho and Tm). The CI-chondrite-normalized REE patterns (LaN/LuN; a proxy for fractionation of light vs. heavy REEs) and Eu anomalies in ordinary and enstatite chondrites show more scatter in more metamorphosed (petrologic types 4-6) than in unequilibrated (types 1-3) chondrites. This is due to parent-body redistribution of the REEs in various carrier phases during metamorphism. A model is presented that predicts the dispersion of elemental and isotopic ratios due to the nugget effect when the analyzed sample mass is limited and elements are concentrated in minor grains. The dispersion in REE patterns of equilibrated ordinary chondrites is reproduced well by this model, considering that REEs are concentrated in 200 μm-size phosphates, which have high LaN/LuN ratios and negative Eu anomalies. Terrestrial rocks and samples from ordinary and enstatite chondrites display negative Tm anomalies of ∼-4.5% relative to CI chondrites. In contrast, CM, CO and CV (except Allende) show no significant Tm anomalies. Allende CV chondrite shows large excess Tm (∼+10%). These anomalies are similar to those found in group II refractory inclusions in meteorites but of much smaller magnitude. The presence of Tm anomalies in meteorites and terrestrial rocks suggests that either (i) the material in the inner part of the solar system was formed from a gas reservoir that had been depleted in refractory dust and carried positive Tm anomalies or (ii) CI chondrites are enriched in refractory dust and are not representative of solar composition for

  15. External ecological niche for Candida albicans within reducing, oxygen-limited zones of wetlands.

    PubMed

    Stone, Wendy; Jones, Barbara-Lee; Wilsenach, Jac; Botha, Alfred

    2012-04-01

    Candida albicans within the human host is well studied; however, identifying environmental reservoirs of pathogens is epidemiologically valuable for disease management. Oxygen-limited, carbohydrate-rich zones of wetlands, to which sewage-borne C. albicans is often exposed, are characteristically similar to the gastrointestinal reservoir. Consequently, using quantitative real-time PCR (qRT-PCR) and gas chromatography-mass spectrometry (GC-MS), we demonstrated that oxygen-limited zones in polluted wetlands may act as potential reservoirs of C. albicans.

  16. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect

    P. K. Pande

    1998-10-29

    Initial drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, must become a process of the past. Such efforts do not optimize reservoir development as they fail to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. These reservoirs are typically characterized by: o Large, discontinuous pay intervals o Vertical and lateral changes in reservoir properties o Low reservoir energy o High residual oil saturation o Low recovery efficiency

  17. [O I] λλ6300, 6364 in the Nebular Spectrum of a Subluminous Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Taubenberger, S.; Kromer, M.; Pakmor, R.; Pignata, G.; Maeda, K.; Hachinger, S.; Leibundgut, B.; Hillebrandt, W.

    2013-10-01

    In this Letter, a late-phase spectrum of SN 2010lp, a subluminous Type Ia supernova (SN Ia), is presented and analyzed. As in 1991bg-like SNe Ia at comparable epochs, the spectrum is characterized by relatively broad [Fe II] and [Ca II] emission lines. However, instead of narrow [Fe III] and [Co III] lines that dominate the emission from the innermost regions of 1991bg-like supernovae (SNe), SN 2010lp shows [O I] λλ6300, 6364 emission, usually associated with core-collapse SNe and never previously observed in a subluminous thermonuclear explosion. The [O I] feature has a complex profile with two strong, narrow emission peaks. This suggests that oxygen is distributed in a non-spherical region close to the center of the ejecta, severely challenging most thermonuclear explosion models discussed in the literature. We conclude that, given these constraints, violent mergers are presently the most promising scenario to explain SN 2010lp. Based on observations at ESO Paranal under program ID 088.D-0184.

  18. Recycling irrigation reservoir stratification and implications for crop health and production.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stratification is often assumed to only take place in deep water bodies. Recycling irrigation reservoirs often are shallow; however, they receive agricultural runoff containing elevated concentrations of nutrients and sediments. This study investigated the temperature, dissolved oxygen and pH charac...

  19. Quantification of geologic descriptions for reservoir characterization in carbonate reservoirs

    SciTech Connect

    Lucia, F.J.; Vander Stoep, G.W. )

    1990-05-01

    Recognition that a large volume of oil remains in carbonate reservoirs at the end of primary depletion and waterflooding has prompted the reevaluation of the reserve-growth potential of many existing carbonate reservoirs. Types of numerical data required include porosity, absolute permeability, relative permeability, fluid saturation, and capillary pressure, all of which are related to the size and distribution of pore space. Rock fabrics control the size and distribution of pore space and define facies that best characterize carbonate reservoirs. Thus, the link between facies descriptions and numerical engineering data is the relationship between pore-size distribution and present carbonate rock fabric. The most effective way to convert facies descriptions into engineering parameters is by considering three basic rock-fabric categories. The first category is interparticle pore space (both intergranular and intercrystalline pore types) with pore-size distribution controlled primarily by the size and shape of grains or crystals. Grain or crystal size is the key geologic measurement and, along with porosity, provides the basis for converting geologic descriptions into values for permeability, saturation, and capillarity. The second category is separate-vug pore space, such as moldic or intraparticle pore space. Separate-vug pore space adds porosity but little permeability to the reservoir rock. The contribution to saturation and capillarity depends upon the size of the separate-vug pore space. For example, moldic separate vugs will be saturated with oil, whereas microporous grains will be saturated with water. The third category is touching-vug pore space, which is vuggy pore space that is interconnected on a reservoir scale. The engineering parameters for this category are related to three diagenetic and tectonic factors.

  20. Chemical and physical studies of chondrites: 10. Cathodoluminescence and phase composition studies of metamorphism and nebular processes in chondrules of type 3 ordinary chondrites

    SciTech Connect

    DeHart, J.M.; Lu Jie; Benoit, P.H.; Sears, D.W.G. ); Lofgren, G.E. )

    1992-10-01

    The cathodoluminescence (CL) properties of eight type 3 ordinary chondrites and one L5 chondrite have been determined, and phenocryst and mesostasis compositions have been analyzed in the chondrules of four of them (Semarkona, type 3.0; Krymka, 3.1; Allan Hills A77214, 3.5; and Dhajala, 3.8) in order to investigate their origins and metamorphic history. In the present study, the authors discuss the CL properties of nine ordinary chondrites of a variety of petrologic types with particular emphasis on detailed studies of the compositions of the relevant phases in four of these: Semarkona (3.0), Krymka (3.1), Allan Hills A77214 (3.5), and Dhajala (3.8). They describe a means of classifying chondrules that is based on the composition of their two major components, the mesostasis and phenocrysts. The system is applicable to > 90-95% off the chondrules in a given meteorite and it describes the range of material produced by nebular material and of the effect of metamorphism on the chondrules. They also discuss the relevance of the results for the origin of the nine chondrite classes.

  1. Constraints on nebular dynamics and chemistry based on observations of annealed magnesium silicate grains in comets and in disks surrounding Herbig Ae/Be stars

    PubMed Central

    Hill, Hugh G. M.; Grady, Carol A.; Nuth, Joseph A.; Hallenbeck, Susan L.; Sitko, Michael L.

    2001-01-01

    Understanding dynamic conditions in the Solar Nebula is the key to prediction of the material to be found in comets. We suggest that a dynamic, large-scale circulation pattern brings processed dust and gas from the inner nebula back out into the region of cometesimal formation—extending possibly hundreds of astronomical units (AU) from the sun—and that the composition of comets is determined by a chemical reaction network closely coupled to the dynamic transport of dust and gas in the system. This scenario is supported by laboratory studies of Mg silicates and the astronomical data for comets and for protoplanetary disks associated with young stars, which demonstrate that annealing of nebular silicates must occur in conjunction with a large-scale circulation. Mass recycling of dust should have a significant effect on the chemical kinetics of the outer nebula by introducing reduced, gas-phase species produced in the higher temperature and pressure environment of the inner nebula, along with freshly processed grains with “clean” catalytic surfaces to the region of cometesimal formation. Because comets probably form throughout the lifetime of the Solar Nebula and processed (crystalline) grains are not immediately available for incorporation into the first generation of comets, an increasing fraction of dust incorporated into a growing comet should be crystalline olivine and this fraction can serve as a crude chronometer of the relative ages of comets. The formation and evolution of key organic and biogenic molecules in comets are potentially of great consequence to astrobiology. PMID:11226213

  2. Cold fronts and reservoir limnology: an integrated approach towards the ecological dynamics of freshwater ecosystems.

    PubMed

    Tundisi, J G; Matsumura-Tundisi, T; Pereira, K C; Luzia, A P; Passerini, M D; Chiba, W A C; Morais, M A; Sebastien, N Y

    2010-10-01

    In this paper the authors discuss the effects of cold fronts on the dynamics of freshwater ecosystems of southeast South America. Cold fronts originating from the Antarctic show a monthly frequency that promotes turbulence and vertical mixing in reservoirs with a consequence to homogenize nutrient distribution, dissolved oxygen and temperature. Weak thermoclines and the athelomixis process immediately before, during and after the passage of cold fronts interfere with phytoplankton succession in reservoirs. Cyanobacteria blooms in eutrophic reservoirs are frequently connected with periods of stratification and stability of the water column. Cold fronts in the Amazon and Pantanal lakes may produce fish killings during the process of "friagem" associated mixing events. Further studies will try to implement a model to predict the impact of cold fronts and prepare management procedures in order to cope with cyanobacteria blooms during warm and stable water column periods. Changes in water quality of reservoirs are expected during circulation periods caused by cold fronts.

  3. Isotopic changes in the fluids of the Cerro Prieto {Beta} Reservoir

    SciTech Connect

    Verma, Mahendra; Quijano, Luis; Gutierrez, Hector; Iglesias, Eduardo; Truesdell, Alfred

    1996-01-24

    Monitoring changes with time of the isotopes of water (18O and D) in wellhead fluids is an effective way of indicating reservoir changes and processes. Because 18O concentrations in water are altered by high-temperature exchange with rock oxygen and because both 18O and D are fractionated in vapor-liquid separation processes at the surface (separators and cooling towers), these isotopes are excellent indicators of inflow and distribution of fluids from outside the reservoir, either natural or injected. Studies of the isotopic compositions of fluids from the Cerro Prieto field in Baja California, Mexico show that pressure drawdown in the major β (beta) reservoir has caused intense boiling followed by inflow of water from outside the reservoir. A method of field exploitation based on this behavior is discussed.

  4. Unconventional Reservoirs: Ideas to Commercialization

    NASA Astrophysics Data System (ADS)

    Tinker, S. W.

    2015-12-01

    There is no shortage of coal, oil, and natural gas in the world. What are sometimes in short supply are fresh ideas. Scientific innovation combined with continued advances in drilling and completion technology revitalized the natural gas industry in North America by making production from shale economic. Similar advances are now happening in shale oil. The convergence of ideas and technology has created a commercial environment in which unconventional reservoirs could supply natural gas to the North American consumer for 50 years or more. And, although not as far along in terms of resource development, oil from the Eagle Ford and Bakken Shales and the oil sands in Alberta could have a similar impact. Without advanced horizontal drilling, geosteering, staged hydraulic-fracture stimulation, synthetic and natural proppants, evolution of hydraulic fluid chemistry, and high-end monitoring and simulation, many of these plays would not exist. Yet drilling and completion technology cannot stand alone. Also required for success are creative thinking, favorable economics, and a tolerance for risk by operators. Current understanding and completion practices will leave upwards of 80% of oil and natural gas in the shale reservoirs. The opportunity to enhance recovery through advanced reservoir understanding and imaging, as well as through recompletions and infill drilling, is considerable. The path from ideas to commercialization will continue to provide economic results in unconventional reservoirs.

  5. Assessing threshold values for eutrophication management using Bayesian method in Yuqiao Reservoir, North China.

    PubMed

    Li, Xue; Xu, Yuan; Zhao, Gang; Shi, Chunli; Wang, Zhong-Liang; Wang, Yuqiu

    2015-04-01

    The eutrophication problem of drinking water source is directly related to the security of urban water supplication, and phosphorus has been proved as an important element to the water quality of the most northern hemisphere lakes and reservoirs. In the paper, 15-year monitoring records (1990∼2004) of Yuqiao Reservoir were used to model the changing trend of the total phosphorus (TP), analyze the uncertainty of nutrient parameters, and estimate the threshold of eutrophication management at a specific water quality goal by the application of Bayesian method through chemical material balance (CMB) model. The results revealed that Yuqiao Reservoir was a P-controlled water ecosystem, and the inner concentration of TP in the reservoir was significantly correlated with TP loading concentration, hydraulic retention coefficient, and bottom water dissolved oxygen concentration. In the case, the goal of water quality for TP in the reservoir was set to be 0.05 mg L(-1) (the third level of national surface water standard for reservoirs according to GB3838-2002), management measures could be taken to improve water quality in reservoir through controlling the highest inflow phosphorus concentration (0.15∼0.21 mg L(-1)) and the lowest DO concentration (3.76∼5.59 mg L(-1)) to the threshold. Inverse method was applied to evaluate the joint manage measures, and the results revealed that it was a valuable measure to avoid eutrophication by controlling lowest dissolved oxygen concentration and adjusting the inflow and outflow of reservoir.

  6. Home Oxygen Therapy

    MedlinePlus

    ... oxygen is rarely delivered in the older large, steel gas cylinders any longer since frequent and costly ... just like the compressed oxygen in the older steel cylinders. An important advantage of liquid oxygen is ...

  7. ERTS-1 study of reservoirs in Kansas.

    NASA Technical Reports Server (NTRS)

    Yarger, H. L.; James, G. W.; Magnuson, L. M.; Coiner, J. C.; Mccauley, J. R.; Marzolf, G. R.

    1973-01-01

    Single pass coverage over Cedar Bluff, Webster, Tuttle Creek, Milford, and Council Groves reservoirs is analyzed. The long-range goal of the study is to test the feasibility of monitoring reservoirs by satellite. It is hoped that results may eventually help to optimize reservoir management for use in flood control, agriculture, urban areas, and recreation. ERTS-1 imagery promises to be a very useful tool for studying reservoir turbidity patterns. Initial coverage indicates a strong qualitative correlation between film density and turbidity.

  8. Reservoir System Analysis for Water Quality.

    DTIC Science & Technology

    1984-08-01

    reservoirs on flows and damages in the system. The program should also be useful In selecting the 2 PHASE Z- 1979 SINGLE RESERVOIR SIMULATION FOR WATER...TEMPERATURE PHASE H- 1980 TWO RESERVOIR SIMULATION FOR WATER TEMPERATURE AND SEVEN CONSTITUENTS 1981 FIELD TESTING AND MINOR MODIFICATIONS PHASE M- 1982...TEN RESERVOIR SIMULATION FOR WATER TEMPERATURE AND . TAB SEVEN CONSTITUENTS 1P.IX Ot1Oun4 ___ ___ __ __ ___ __ ___ __ ___ _ .zt ltl@a’tlo@ . 113

  9. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    SciTech Connect

    Nurhandoko, Bagus Endar B. E-mail: bagusnur@rock-fluid.com; Susilowati E-mail: bagusnur@rock-fluid.com

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  10. Tenth workshop on geothermal reservoir engineering: proceedings

    SciTech Connect

    Not Available

    1985-01-22

    The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

  11. Reservoir System Regulation for Water Quality Control.

    DTIC Science & Technology

    1983-03-01

    Davis, California 95616. [PHASE I!- 1979 SINGLE RESERVOIR SIMULATION FOR WATER TEMPERATURE PHASE 31- 1980 TWO RESERVOIR SIMULATION FOR WATER TEMPERATURE...AND SEVEN CONSTITUENTS 1981 FIELD TESTING AND MINOR MODIFICATIONS ’IFI PHASE 3nm- 1982 TEN RESERVOIR SIMULATION FOR WATER TEMPERATURE AND SEVEN

  12. 49 CFR 236.792 - Reservoir, equalizing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Reservoir, equalizing. 236.792 Section 236.792 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Reservoir, equalizing. An air reservoir connected with and adding volume to the top portion of...

  13. 49 CFR 236.792 - Reservoir, equalizing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Reservoir, equalizing. 236.792 Section 236.792 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Reservoir, equalizing. An air reservoir connected with and adding volume to the top portion of...

  14. 49 CFR 236.792 - Reservoir, equalizing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Reservoir, equalizing. 236.792 Section 236.792 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Reservoir, equalizing. An air reservoir connected with and adding volume to the top portion of...

  15. 49 CFR 236.792 - Reservoir, equalizing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Reservoir, equalizing. 236.792 Section 236.792 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Reservoir, equalizing. An air reservoir connected with and adding volume to the top portion of...

  16. 49 CFR 236.792 - Reservoir, equalizing.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Reservoir, equalizing. 236.792 Section 236.792 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Reservoir, equalizing. An air reservoir connected with and adding volume to the top portion of...

  17. Ekofisk reservoir voidage and seabed subsidence

    SciTech Connect

    Mes, M.J. )

    1990-11-01

    Field data describing the time lag between Ekofisk subsidence and reservoir voidage are given. A method to discriminate between real subsidence variations and random-data errors and a procedure to derive a contemporary relationship between reservoir voidage and seabed subsidence are presented. At Ekofisk, most subsidence lags reservoir voidage by 2 to 3 months.

  18. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... using air or vacuum braking must have either reserve capacity, or a reservoir, that would enable the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or vacuum due to a failure or leakage in the system between the service reservoir and the source of...

  19. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... using air or vacuum braking must have either reserve capacity, or a reservoir, that would enable the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or vacuum due to a failure or leakage in the system between the service reservoir and the source of...

  20. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... using air or vacuum braking must have either reserve capacity, or a reservoir, that would enable the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or vacuum due to a failure or leakage in the system between the service reservoir and the source of...

  1. 49 CFR 393.50 - Reservoirs required.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... using air or vacuum braking must have either reserve capacity, or a reservoir, that would enable the.... Each service reservoir system on a motor vehicle shall be protected against a loss of air pressure or vacuum due to a failure or leakage in the system between the service reservoir and the source of...

  2. Different pressure grids for reservoir simulation in heterogeneous reservoirs

    SciTech Connect

    Guerillot, D.R.; Verdiere, S.

    1995-12-31

    Petroleum reservoirs are made of highly heterogeneous rocks. These reservoirs could be described by geostatistical models composed of millions of cells. Currently, fluid flow simulations performed within these media need upscaling (or averaging) techniques. Hence, their results are given by averaging on cells which are much larger than the geological model cells. To overcome this problem, the Dual Mesh Method is proposed here, whose purpose is to solve the pressure equation on a low resolution grid, and then to interpolate pressure over the fine mesh by taking into account small scale heterogeneities of the mediums. The aim of this paper is the interpolation step; its implementation is presented and illustrated in a five-spot pattern for three different rock characteristics.

  3. Physical and chemical characteristics of Terrace Reservoir, Conejos County, Colorado, May 1994 through May 1995

    USGS Publications Warehouse

    Stogner, Robert W.; Edelmann, Patrick; Walton-Day, Katherine

    1997-01-01

    Terrace Reservoir receives drainage of low-pH, metal-enriched water from mineralized areas, including the Summitville Mine, within the AlamosaRiver Basin. Drainage from the Summitville Mine has contributed a substantial part of the metal load to Terrace Reservoir. From May 1994 through May 1995, a study was done by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to evaluate the physical and chemical characteristics of Terrace Reservoir.Terrace Reservoir was thermally stratified from about mid-May through August 1994. Thermal stratification was absent from September\\x111994through March 1995. During periods of stratification, underflow of the Alamosa River was predominant, and residence times of the underflow were shortened by 40 to 75\\x11percent of the theoretical residence times for a well-mixed reservoir. Transport and deposition of suspended solids in Terrace Reservoir varied spatially and temporally. Most of the suspended solids were deposited in Terrace Reservoir. The concentration of dissolved oxygen in the reservoir varied little spatially or temporally and generally was within a few tenths of the dissolved-oxygen concentration of the inflow. The pH of water in the reservoir generally ranged from about 4.0 to about 7.0, depending on date, depth, and location. The largest pH values were measured during May. A markeddecrease of about 1.5\\x11pH units occurred at site T5 in the reservoir about mid-June. The pH of the reservoir remained at or below 5.5 from mid-June through November. Dissolved-metal concentrations varied spatially and temporally in response to several factors, which included inflow characteristics, reservoir stratification and mixing, inflow-routing and flow-through patterns, residence times, sedimentation, dissolved oxygen, and pH.Inflow chemistry is the dominant controlling factor of metal chemistry within Terrace Reservoir.During periods of stratification, large vertical variations in metal

  4. 49 CFR 229.31 - Main reservoir tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Main reservoir tests. 229.31 Section 229.31... reservoir tests. (a) Before it is placed in service, each main reservoir other than an aluminum reservoir... intervals that do not exceed 736 calendar days, each main reservoir other than an aluminum reservoir...

  5. 49 CFR 229.31 - Main reservoir tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Main reservoir tests. 229.31 Section 229.31... reservoir tests. (a) Before it is placed in service, each main reservoir other than an aluminum reservoir... intervals that do not exceed 736 calendar days, each main reservoir other than an aluminum reservoir...

  6. 49 CFR 229.31 - Main reservoir tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Main reservoir tests. 229.31 Section 229.31... reservoir tests. (a) Before it is placed in service, each main reservoir other than an aluminum reservoir... intervals that do not exceed 736 calendar days, each main reservoir other than an aluminum reservoir...

  7. 49 CFR 229.31 - Main reservoir tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Main reservoir tests. 229.31 Section 229.31... reservoir tests. (a) Before it is placed in service, each main reservoir other than an aluminum reservoir... intervals that do not exceed 736 calendar days, each main reservoir other than an aluminum reservoir...

  8. 49 CFR 229.31 - Main reservoir tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Main reservoir tests. 229.31 Section 229.31... reservoir tests. (a) Before it is placed in service, each main reservoir other than an aluminum reservoir... intervals that do not exceed 736 calendar days, each main reservoir other than an aluminum reservoir...

  9. The evolution of the marine phosphate reservoir.

    PubMed

    Planavsky, Noah J; Rouxel, Olivier J; Bekker, Andrey; Lalonde, Stefan V; Konhauser, Kurt O; Reinhard, Christopher T; Lyons, Timothy W

    2010-10-28

    Phosphorus is a biolimiting nutrient that has an important role in regulating the burial of organic matter and the redox state of the ocean-atmosphere system. The ratio of phosphorus to iron in iron-oxide-rich sedimentary rocks can be used to track dissolved phosphate concentrations if the dissolved silica concentration of sea water is estimated. Here we present iron and phosphorus concentration ratios from distal hydrothermal sediments and iron formations through time to study the evolution of the marine phosphate reservoir. The data suggest that phosphate concentrations have been relatively constant over the Phanerozoic eon, the past 542 million years (Myr) of Earth's history. In contrast, phosphate concentrations seem to have been elevated in Precambrian oceans. Specifically, there is a peak in phosphorus-to-iron ratios in Neoproterozoic iron formations dating from ∼750 to ∼635 Myr ago, indicating unusually high dissolved phosphate concentrations in the aftermath of widespread, low-latitude 'snowball Earth' glaciations. An enhanced postglacial phosphate flux would have caused high rates of primary productivity and organic carbon burial and a transition to more oxidizing conditions in the ocean and atmosphere. The snowball Earth glaciations and Neoproterozoic oxidation are both suggested as triggers for the evolution and radiation of metazoans. We propose that these two factors are intimately linked; a glacially induced nutrient surplus could have led to an increase in atmospheric oxygen, paving the way for the rise of metazoan life.

  10. 4. International reservoir characterization technical conference

    SciTech Connect

    1997-04-01

    This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

  11. Reservoir microseismicity at the Ekofisk Oil Field

    SciTech Connect

    Rutledge, J.T.; Fairbanks, T.D.; Albright, J.N.; Boade, R.R.; Dangerfield, J.; Landa, G.H.

    1994-07-01

    A triaxial, downhole geophone was deployed within the Ekofisk oil reservoir for monitoring ambient microseismicity as a test to determine if microearthquake signals generated from discrete shear failure of the reservoir rock could be detected. The results of the test were positive. During 104 hours of monitoring, 572 discrete events were recorded which have been identified as shear-failure microearthquakes. Reservoir microseismicity was detected at large distances (1000 m) from the monitor borehole and at rates (> 5 events per hour) which may allow practical characterization of the reservoir rock and overburden deformation induced by reservoir pressure changes.

  12. Nitrate contamination of groundwater in the catchment of Goczałkowice reservoir

    NASA Astrophysics Data System (ADS)

    Czekaj, Joanna; Witkowski, Andrzej J.

    2014-05-01

    Goczałkowice dammed reservoir (area - 26 km2 , volume - 100 million m3 at a typical water level) is a very important source of drinking water for Upper Silesian agglomeration. At the catchment of the reservoir there are many potential sources of groundwater pollution (agriculture, bad practices in wastewater management, intensive fish farming). Thus local groundwater contamination, mainly by nitrogen compounds. The paper presents groundwater monitoring system and preliminary results of the research carried on at Goczałkowice reservoir and its catchment in 2010 - 2014 within the project "Integrated system supporting management and protection of dammed reservoir (ZiZoZap)'. The main objective for hydrogeologists in the project is to assess the role of groundwater in total water balance of the reservoir and the influence of groundwater on its water quality. During research temporal variability of groundwater - surface water exchange has been observed. Monitoring Network of groundwater quality consists of 22 observation wells (nested piezometers included) located around the reservoir - 13 piezometers is placed in two transects on northern and southern shore of reservoir. Sampling of groundwater from piezometers was conducted twice - in autumn 2011 and spring 2012. Maximum observed concentrations of nitrate, nitrite and ammonium were 255 mg/L, 0,16 mg/L and 3,48 mg/L, respectively. Surface water in reservoir (8 points) has also been sampled. Concentrations of nitrate in groundwater are higher than in surface water. Nitrate and ammonium concentrations exceeding standards for drinking water were reported in 18% and 50% of monitored piezometers, respectively. High concentration of nitrate (exceeding more than 5 times maximal admissible concentration) have been a significant groundwater contamination problem in the catchment of the reservoir. Periodically decrease of surface water quality is possible. Results of hydrogeological research indicate substantial spatial

  13. The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)

    SciTech Connect

    Fowler, M.L.; Young, M.A.; Madden, M.P.

    1997-08-01

    Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

  14. Nutrient dynamics in five off-stream reservoirs in the lower South Platte River basin, March-September 1995

    USGS Publications Warehouse

    Sprague, Lori A.

    2002-01-01

    In 1995, the U.S. Geological Survey conducted a study to characterize nutrient concentrations in five off-stream reservoirs in the lower South Platte River Basin?Riverside, Jackson, Prewitt, North Sterling, and Julesburg. These reservoirs are critical sources of irrigation water for agricultural areas, and several also are used for fishing, boating, swimming, hunting, and camping. Data collected for this study include depth profiles of water temperature, dissolved oxygen, pH, and specific conductance; nutrient species concentrations in the water column, bottom sediment, and inflow and outflow canals; and chlorophyll-a concentrations in the water column. Data were collected during the irrigation season from March through September 1995 at five sites each in Riverside, Jackson, Prewitt, and Julesburg Reservoirs and at six sites in North Sterling Reservoir. The five reservoirs studied are located in similar geographic, climatic, and land-use areas and, as a result, have a number of similarities in their internal nutrient dynamics. Nitrogen concentrations in the reservoirs were highest in March and decreased through September as a result of dilution from river inflows and biological activity. From March through June, decreases in nitrogen concentrations in the river and biological activity contributed to decreases in reservoir concentrations. From July through September, inflows from the river were cut off, and biological activity in the reservoirs led to further decreases in nitrate concentrations, which fell to near or below detectable levels. Phosphorus concentrations in the reservoirs did not show the same consistent decrease from March through September. Phosphorus likely was recycled continuously back to algae during the study period through processes such as excretion from fish, decay of aquatic plants and animals, and release of orthophosphate from bottom sediment during periods of low oxygen. With the exception of phosphorus in Jackson Reservoir, the

  15. Reservoir floodplains support distinct fish assemblages

    USGS Publications Warehouse

    Miranda, Leandro E.; Wigen, S. L.; Dagel, Jonah D.

    2014-01-01

    Reservoirs constructed on floodplain rivers are unique because the upper reaches of the impoundment may include extensive floodplain environments. Moreover, reservoirs that experience large periodic water level fluctuations as part of their operational objectives seasonally inundate and dewater floodplains in their upper reaches, partly mimicking natural inundations of river floodplains. In four flood control reservoirs in Mississippi, USA, we explored the dynamics of connectivity between reservoirs and adjacent floodplains and the characteristics of fish assemblages that develop in reservoir floodplains relative to those that develop in reservoir bays. Although fish species richness in floodplains and bays were similar, species composition differed. Floodplains emphasized fish species largely associated with backwater shallow environments, often resistant to harsh environmental conditions. Conversely, dominant species in bays represented mainly generalists that benefit from the continuous connectivity between the bay and the main reservoir. Floodplains in the study reservoirs provided desirable vegetated habitats at lower water level elevations, earlier in the year, and more frequently than in bays. Inundating dense vegetation in bays requires raising reservoir water levels above the levels required to reach floodplains. Therefore, aside from promoting distinct fish assemblages within reservoirs and helping promote diversity in regulated rivers, reservoir floodplains are valued because they can provide suitable vegetated habitats for fish species at elevations below the normal pool, precluding the need to annually flood upland vegetation that would inevitably be impaired by regular flooding. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  16. The Expanding Nebular Remnant of the Recurrent Nova RS Ophiuchi (2006). II. Modeling of Combined Hubble Space Telescope Imaging and Ground-based Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ribeiro, V. A. R. M.; Bode, M. F.; Darnley, M. J.; Harman, D. J.; Newsam, A. M.; O'Brien, T. J.; Bohigas, J.; Echevarría, J. M.; Bond, H. E.; Chavushyan, V. H.; Costero, R.; Coziol, R.; Evans, A.; Eyres, S. P. S.; León-Tavares, J.; Richer, M. G.; Tovmassian, G.; Starrfield, S.; Zharikov, S. V.

    2009-10-01

    We report Hubble Space Telescope (HST) imaging, obtained 155 and 449 days after the 2006 outburst of the recurrent nova RS Ophiuchi, together with ground-based spectroscopic observations, obtained from the Observatorio Astronómico Nacional en San Pedro Mártir, Baja California, México and at the Observatorio Astrofísico Guillermo Haro, at Cananea, Sonora, México. The observations at the first epoch were used as inputs to model the geometry and kinematic structure of the evolving RS Oph nebular remnant. We find that the modeled remnant comprises two distinct co-aligned bipolar components; a low-velocity, high-density innermost (hour glass) region and a more extended, high-velocity (dumbbell) structure. This overall structure is in agreement with that deduced from radio observations and optical interferometry at earlier epochs. We find that the asymmetry observed in the west lobe is an instrumental effect caused by the profile of the HST filter and hence demonstrate that this lobe is approaching the observer. We then conclude that the system has an inclination to the line of sight of 39+1°-10. This is in agreement with the inclination of the binary orbit and lends support to the proposal that this morphology is due to the interaction of the outburst ejecta with either an accretion disk around the central white dwarf and/or a pre-existing red giant wind that is significantly denser in the equatorial regions of the binary than at the poles. The second epoch HST observation was also modeled. However, as no spectra were taken at this epoch, it is more difficult to constrain any model. Nevertheless, we demonstrate that between the two HST epochs the outer dumbbell structure seems to have expanded linearly. For the central (hour glass) region, there may be evidence of deceleration, but it is harder to draw firm conclusions in this case.

  17. Geostatistics applied to gas reservoirs

    SciTech Connect

    Meunier, G.; Coulomb, C.; Laille, J.P. )

    1989-09-01

    The spatial distribution of many of the physical parameters connected with a gas reservoir is of primary interest to both engineers and geologists throughout the study, development, and operation of a field. It is therefore desirable for the distribution to be capable of statistical interpretation, to have a simple graphical representation, and to allow data to be entered from either two- or three-dimensional grids. To satisfy these needs while dealing with the geographical variables, new methods have been developed under the name geostatistics. This paper describes briefly the theory of geostatistics and its most recent improvements for the specific problem of subsurface description. The external-drift technique has been emphasized in particular, and in addition, four case studies related to gas reservoirs are presented.

  18. Artificial oxygen transport protein

    DOEpatents

    Dutton, P. Leslie

    2014-09-30

    This invention provides heme-containing peptides capable of binding molecular oxygen at room temperature. These compounds may be useful in the absorption of molecular oxygen from molecular oxygen-containing atmospheres. Also included in the invention are methods for treating an oxygen transport deficiency in a mammal.

  19. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Naum Derzhi; Gary Mavko; Jack Dvorkin

    2003-12-01

    We have developed and tested technology for a new type of direct hydrocarbon detection. The method uses inelastic rock properties to greatly enhance the sensitivity of surface seismic methods to the presence of oil and gas saturation. These methods include use of energy absorption, dispersion, and attenuation (Q) along with traditional seismic attributes like velocity, impedance, and AVO. Our approach is to combine three elements: (1) a synthesis of the latest rock physics understanding of how rock inelasticity is related to rock type, pore fluid types, and pore microstructure, (2) synthetic seismic modeling that will help identify the relative contributions of scattering and intrinsic inelasticity to apparent Q attributes, and (3) robust algorithms that extract relative wave attenuation attributes from seismic data. This project provides: (1) Additional petrophysical insight from acquired data; (2) Increased understanding of rock and fluid properties; (3) New techniques to measure reservoir properties that are not currently available; and (4) Provide tools to more accurately describe the reservoir and predict oil location and volumes. These methodologies will improve the industry's ability to predict and quantify oil and gas saturation distribution, and to apply this information through geologic models to enhance reservoir simulation. We have applied for two separate patents relating to work that was completed as part of this project.

  20. Modeling the thermostability of surface functionalisation by oxygen, hydroxyl, and water on nanodiamonds.

    PubMed

    Lai, Lin; Barnard, Amanda S

    2011-06-01

    Understanding nanodiamond functionalisation is of great importance for biological and medical applications. Here we examine the stabilities of oxygen, hydroxyl, and water functionalisation of the nanodiamonds using the self-consistent charge density functional tight-binding simulations. We find that the oxygen and hydroxyl termination are thermodynamically favourable and form strong C–O covalent bonds on the nanodiamond surface in an O2 and H2 gas reservoir, which confirms previous experiments. Yet, the thermodynamic stabilities of oxygen and hydroxyl functionalisation decrease dramatically in a water vapour reservoir. In contrast, H2O molecules are found to be physically adsorbed on the nanodiamond surface, and forced chemical adsorption results in decomposition of H2O. Moreover, the functionalisation efficiency is found to be facet dependent. The oxygen functionalisation prefers the {100} facets as opposed to alternative facets in an O2 and H2 gas reservoir. The hydroxyl functionalisation favors the {111} surfaces in an O2 and H2 reservoir and the {100} facets in a water vapour reservoir, respectively. This facet selectivity is found to be largely dependent upon the environmental temperature, chemical reservoir, and morphology of the nanodiamonds.

  1. Oxygen sensing and signaling.

    PubMed

    van Dongen, Joost T; Licausi, Francesco

    2015-01-01

    Oxygen is an indispensable substrate for many biochemical reactions in plants, including energy metabolism (respiration). Despite its importance, plants lack an active transport mechanism to distribute oxygen to all cells. Therefore, steep oxygen gradients occur within most plant tissues, which can be exacerbated by environmental perturbations that further reduce oxygen availability. Plants possess various responses to cope with spatial and temporal variations in oxygen availability, many of which involve metabolic adaptations to deal with energy crises induced by low oxygen. Responses are induced gradually when oxygen concentrations decrease and are rapidly reversed upon reoxygenation. A direct effect of the oxygen level can be observed in the stability, and thus activity, of various transcription factors that control the expression of hypoxia-induced genes. Additional signaling pathways are activated by the impact of oxygen deficiency on mitochondrial and chloroplast functioning. Here, we describe the molecular components of the oxygen-sensing pathway.

  2. OXYGEN DEPLETION IN THE INTERSTELLAR MEDIUM: IMPLICATIONS FOR GRAIN MODELS AND THE DISTRIBUTION OF ELEMENTAL OXYGEN

    SciTech Connect

    Whittet, D. C. B.

    2010-02-20

    This paper assesses the implications of a recent discovery that atomic oxygen is being depleted from diffuse interstellar gas at a rate that cannot be accounted for by its presence in silicate and metallic oxide particles. To place this discovery in context, the uptake of elemental O into dust is considered over a wide range of environments, from the tenuous intercloud gas and diffuse clouds sampled by the depletion observations to dense clouds where ice mantles and gaseous CO become important reservoirs of O. The distribution of O in these contrasting regions is quantified in terms of a common parameter, the mean number density of hydrogen (n{sub H}). At the interface between diffuse and dense phases (just before the onset of ice-mantle growth) as much as {approx}160 ppm of the O abundance is unaccounted for. If this reservoir of depleted oxygen persists to higher densities it has implications for the oxygen budget in molecular clouds, where a shortfall of the same order is observed. Of various potential carriers, the most plausible appears to be a form of O-bearing carbonaceous matter similar to the organics found in cometary particles returned by the Stardust mission. The 'organic refractory' model for interstellar dust is re-examined in the light of these findings, and it is concluded that further observations and laboratory work are needed to determine whether this class of material is present in quantities sufficient to account for a significant fraction of the unidentified depleted oxygen.

  3. Oxygen Sensing and Homeostasis

    PubMed Central

    Semenza, Gregg L.

    2015-01-01

    The discovery of carotid bodies as sensory receptors for detecting arterial blood oxygen levels, and the identification and elucidation of the roles of hypoxia-inducible factors (HIFs) in oxygen homeostasis have propelled the field of oxygen biology. This review highlights the gas-messenger signaling mechanisms associated with oxygen sensing, as well as transcriptional and non-transcriptional mechanisms underlying the maintenance of oxygen homeostasis by HIFs and their relevance to physiology and pathology. PMID:26328879

  4. Seasonal occurrence of anoxygenic photosynthesis in Tillari and Selaulim reservoirs, Western India

    NASA Astrophysics Data System (ADS)

    Kurian, S.; Roy, R.; Repeta, D. J.; Gauns, M.; Shenoy, D. M.; Suresh, T.; Sarkar, A.; Narvenkar, G.; Johnson, C. G.; Naqvi, S. W. A.

    2011-12-01

    Phytoplankton and bacterial pigment compositions were determined by high performance liquid chromatography (HPLC) and liquid chromatography- mass spectrometry (LCMS) in two freshwater reservoirs (Tillari Dam and Selaulim Dam), which are located at the foothills of the Western Ghats in India. These reservoirs experience anoxia in the hypolimnion during summer. Water samples were collected from both reservoirs during anoxic periods while one of them (Tillari Reservoir) was also sampled in winter, when convective mixing results in well-oxygenated conditions throughout the water column. During the periods of anoxia (summer), bacteriochlorophyll (BChl) e isomers and isoreneiratene, characteristic of brown sulfur bacteria, were dominant in the anoxic (sulfidic) layer of the Tillari Reservoir under low light intensities. The winter observations showed the dominance of small cells of Chlorophyll-b containing green algae and cyanobacteria, with minor presence of fucoxanthin-containing diatoms and peridinin-containing dinoflagellates. Using total BChl-e concentration observed in June, the standing stock of brown sulfur bacteria carbon in the Tillari Reservoir was computed to be 2.4 gC m-2, which is much higher than the similar estimate for carbon derived from oxygenic photosynthesis (0.82 gC m-2). These results highlight the importance of anoxygenic photosynthetic biomass in tropical freshwater systems. The Selaulim Reservoir also displayed similar characteristics with the presence of BChl-e isomers and isorenieratene in the anoxic hypolimnion during summer. Although sulfidic conditions prevailed in the water column below the thermocline, the occurrence of photoautotrophic bacteria was restricted only to mid-depths (maximal concentration of BChl-e isomers was noted at 0.2 % of the surface incident light). This shows that the vertical distribution of photoautotrophic sulfur bacteria is primarily controlled by light penetration in the water column where the presence of H2S

  5. Biogenic Methane and the Rise of Oxygen

    NASA Technical Reports Server (NTRS)

    Catling, David; McKay, Christopher

    2001-01-01

    Oxygenic photosynthesis does not make the rise of oxygen inevitable. What is required is that reductant and oxygen be separated and permanently segregated. The usual picture for Earth is that oxygenic photosynthesis split CO2 into carbon and oxygen, with the carbon buried in sediments and the oxygen mostly taken up by oxides of iron and sulfur. The relatively small atmospheric reservoir of O2 is regulated by the carbon burial rate, reaction with volcanic and metamorphic gases, and oxidation of reduced carbon released as old sediments weather. Absent from this picture is a distinction between the Archean and modern times: on average, carbon burial fluxes would have been matched by oxygen losses then as now. Separation of reductant from oxidant is only provisional. No net oxidation of the continents occurs, and so no change of diagenetic, metamorphic, or volcanic gases is expected. Nor would any change in oxidative weathering be expected. Something more than carbon burial is required to make the Archean different. The escape of hydrogen to space permanently separates the reductant from the oxidant. Hydrogen escape is widely believed to have led to the present highly oxidized states of Mars and Venus. Hydrogen escape has usually been thought small for Archaean Earth, because water vapor is cold-trapped at the troposphere and thus held to levels of a few ppmv in the stratosphere. This cold trapping renders hydrogen escape negligible. However, methane is not cold trapped, and its expected abundance in the Archaean, given low oxygen levels and a biogenic source, would have been high, probably more than 100 times present. At such levels methane would have driven geologically significant levels of hydrogen escape. Additional information is contained in the original extended abstract.

  6. Simulation of Hydrodynamics and Water Quality in Pueblo Reservoir, Southeastern Colorado, for 1985 through 1987 and 1999 through 2002

    USGS Publications Warehouse

    Galloway, Joel M.; Ortiz, Roderick F.; Bales, Jerad D.; Mau, David P.

    2008-01-01

    Pueblo Reservoir is west of Pueblo, Colorado, and is an important water resource for southeastern Colorado. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. In anticipation of increased population growth, the cities of Colorado Springs, Fountain, Security, and Pueblo West have proposed building a pipeline that would be capable of conveying 78 million gallons of raw water per day (240 acre-feet) from Pueblo Reservoir. The U.S. Geological Survey, in cooperation with Colorado Springs Utilities and the Bureau of Reclamation, developed, calibrated, and verified a hydrodynamic and water-quality model of Pueblo Reservoir to describe the hydrologic, chemical, and biological processes in Pueblo Reservoir that can be used to assess environmental effects in the reservoir. Hydrodynamics and water-quality characteristics in Pueblo Reservoir were simulated using a laterally averaged, two-dimensional model that was calibrated using data collected from October 1985 through September 1987. The Pueblo Reservoir model was calibrated based on vertical profiles of water temperature and dissolved-oxygen concentration, and water-quality constituent concentrations collected in the epilimnion and hypolimnion at four sites in the reservoir. The calibrated model was verified with data from October 1999 through September 2002, which included a relatively wet year (water year 2000), an average year (water year 2001), and a dry year (water year 2002). Simulated water temperatures compared well to measured water temperatures in Pueblo Reservoir from October 1985 through September 1987. Spatially, simulated water temperatures compared better to measured water temperatures in the downstream part of the reservoir than in the upstream part of the reservoir. Differences between simulated and measured water temperatures also varied through time. Simulated water temperatures were slightly less than measured water temperatures from March to

  7. Workshop on Oxygen in the Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This volume contains abstracts that have been accepted for presentation at the Workshop on Oxygen in the Terrestrial Planets, July 20-23,2004, Santa Fe, New Mexico. The contents include: 1) Experimental Constraints on Oxygen and Other Light Element Partitioning During Planetary Core Formation; 2) In Situ Determination of Fe(3+)/SigmaFe of Spinels by Electron Microprobe: An Evaluation of the Flank Method; 3) The Effect of Oxygen Fugacity on Large-Strain Deformation and Recrystallization of Olivine; 4) Plagioclase-Liquid Trace Element Oxygen Barometry and Oxygen Behaviour in Closed and Open System Magmatic Processes; 5) Core Formation in the Earth: Constraints from Ni and Co; 6) Oxygen Isotopic Compositions of the Terrestrial Planets; 7) The Effect of Oxygen Fugacity on Electrical Conduction of Olivine and Implications for Earth s Mantle; 8) Redox Chemical Diffusion in Silicate Melts: The Impact of the Semiconductor Condition; 9) Ultra-High Temperature Effects in Earth s Magma Ocean: Pt and W Partitioning; 10) Terrestrial Oxygen and Hydrogen Isotope Variations: Primordial Values, Systematics, Subsolidus Effects, Planetary Comparisons, and the Role of Water; 11) Redox State of the Moon s Interior; 12) How did the Terrestrial Planets Acquire Their Water?; 13) Molecular Oxygen Mixing Ratio and Its Seasonal Variability in the Martian Atmosphere; 14) Exchange Between the Atmosphere and the Regolith of Mars: Discussion of Oxygen and Sulfur Isotope Evidence; 15) Oxygen and Hydrogen Isotope Systematics of Atmospheric Water Vapor and Meteoric Waters: Evidence from North Texas; 16) Implications of Isotopic and Redox Heterogeneities in Silicate Reservoirs on Mars; 17) Oxygen Isotopic Variation of the Terrestrial Planets; 18) Redox Exchanges in Hydrous Magma; 19) Hydrothermal Systems on Terrestrial Planets: Lessons from Earth; 20) Oxygen in Martian Meteorites: A Review of Results from Mineral Equilibria Oxybarometers; 21) Non-Linear Fractionation of Oxygen Isotopes Implanted in

  8. Compressed air energy storage in depleted natural gas reservoirs: effects of porous media and gas mixing

    NASA Astrophysics Data System (ADS)

    Oldenburg, C. M.; Pan, L.

    2015-12-01

    Although large opportunities exist for compressed air energy storage (CAES) in aquifers and depleted natural gas reservoirs, only two grid-scale CAES facilities exist worldwide, both in salt caverns. As such, experience with CAES in porous media, what we call PM-CAES, is lacking and we have relied on modeling to elucidate PM-CAES processes. PM-CAES operates similarly to cavern CAES. Specifically, working gas (air) is injected through well(s) into the reservoir compressing the cushion gas (existing air in the reservoir). During energy recovery, high-pressure air from the reservoir flows first into a recuperator, then into an expander, and subsequently is mixed with fuel in a combustion turbine to produce electricity, thereby reducing compression costs. Energy storage in porous media is complicated by the solid matrix grains which provide resistance to flow (via permeability in Darcy's law); in the cap rock, low-permeability matrix provides the seal to the reservoir. The solid grains also provide storage capacity for heat that might arise from compression, viscous flow effects, or chemical reactions. The storage of energy in PM-CAES occurs variably across pressure gradients in the formation, while the solid grains of the matrix can release/store heat. Residual liquid (i.e., formation fluids) affects flow and can cause watering out at the production well(s). PG&E is researching a potential 300 MW (for ten hours) PM-CAES facility in a depleted gas reservoir near Lodi, California. Special considerations exist for depleted natural gas reservoirs because of mixing effects which can lead to undesirable residual methane (CH4) entrainment and reactions of oxygen and CH4. One strategy for avoiding extensive mixing of working gas (air) with reservoir CH4 is to inject an initial cushion gas with reduced oxygen concentration providing a buffer between the working gas (air) and the residual CH4 gas. This reduces the potential mixing of the working air with the residual CH4

  9. Hydrocarbon-water-rock interaction: Redox reaction as a mechanism for sandstone reservoir porosity enhancement

    SciTech Connect

    Shebl, M.A.; Surdam, R.C.

    1995-06-01

    Experiments evaluated the potential for and extent of oil-water-rock reactions in hydrocarbon reservoirs. Results indicate not only that significant potential exists for redox reactions between oxidized mineral phases and crude oil, but that such reactions can significantly alter porosity and permeability characteristics of an elastic hydrocarbon reservoir. The red (oxidized) sandstones used in the redox experiment initially contained 10 to 25% carbonate, anhydrite, and intergranular clay cements. Porosity ranged from 6 to 15%. The sandstones were gray or white after experimentation, and porosity increased 12 to 20% over original values, primarily due to carbonate dissolution. It is suggested that during the redox experiments, the iron oxides ({+-} sulphate) were reduced and hydrocarbon was oxidized to produce oxygenated organic compounds (e.g., organic acid anions, CO{sub 2}). These redox reaction products destabilized the carbonate cements and enhanced sandstone porosity. It is concluded that redox reactions involving crude oil and the mineral matrix of these reservoir rocks in the presence of H{sub 2}O do occur and may result in significantly enhanced porosity. Hydrocarbon emplacement and the resultant redox reactions can cause bleaching and changes in porosity and permeability. This relationship is well documented in the Wingate, White Rim, and Tensleep sandstones. The hydrocarbon reservoir units are white to gray and have good porosity and permeability. The adjacent non-reservoir units are red (due to hematite staining), and have good carbonate cementation and poor porosity and permeability, confining hydrocarbon flow to the nearby reservoir units or associated fractures.

  10. Role of riparian shade on the fish assemblage of a reservoir littoral

    USGS Publications Warehouse

    Raines, C. D.; Miranda, Leandro E.

    2016-01-01

    Research into the effects of shade on reservoir fish assemblages is lacking, with most investigations focused on streams. Unlike many streams, the canopy in a reservoir shades only a narrow fringe of water adjacent to the shoreline, and may not have the influential effect on the aquatic environment reported in streams. We compared fish assemblages between shaded and unshaded sites in a shallow reservoir. Overall species richness (gamma diversity) was higher in shaded sites, and fish assemblage composition differed between shaded and unshaded sites. Average light intensity was 66 % lower in shaded sites, and differences in average temperature and dissolved oxygen were small. Unlike streams where shade can have large effects on water physicochemistry, in reservoirs shade-related differences in fish assemblages seemed to be linked principally to differences in light intensity. Diversity in light intensity in shaded and unshaded sites in reservoirs can create various mosaics of light-based habitats that enable diversity of species assemblages. Managing to promote the habitat diversity provided by shade may require coping with the artificial nature of reservoir riparian zones and water level fluctuations.

  11. Water quality of the Lexington Reservoir, Santa Clara County, California, 1978-80

    USGS Publications Warehouse

    Iwatsubo, R.T.; Sylvester, M.A.; Gloege, I.S.

    1988-01-01

    Analysis of water samples from Lexington Reservoir and Los Gatos Creek upstream from the reservoir from June 1978 through September 1980 showed that water generally met water-quality objectives identified by California Regional Water Quality Control Board, San Francisco Bay Region. Water-temperature profiles show that Lexington Reservoir is a warm monomictic lake. During summer, dissolved-oxygen concentrations generally were not reduced below 5.0 mg/L in the hyplimnion; only once during the study did bottom waters become anoxic. Water transparency decreased with depth. The euphotic zone ranged from 1.0 to 5.4 m, depending on suspended solids and algae, and was greater in summer than in spring. Calcium and bicarbonate were dominant ions at all stations except during spring, following the rainy season, when waters were a mixed cation bicarbonate type. Nitrogen concentrations were greater in samples from reservoir stations than in those from Los Gatos Creek, with most of the nitrogen in ammonia and organic forms. The amount of dissolved nitrate appeared to be related to phytoplankton abundance. Phosphorus and trace-element concentrations were low at all stations. Estimates of net primary productivity and Carlson 's trophic-state index, based on chlorophyll-a concentrations, indicated that reservoir classification ranges from oligotrophic to mesotrophic. Blue-green algae generally were predominant in reservoir samples. (USGS)

  12. Modern Reservoir Sedimentation Management Techniques with Examples

    NASA Astrophysics Data System (ADS)

    Annandale, G. W.

    2014-12-01

    Implementation of reservoir sedimentation management approaches results in a win-win scenario, it assists in enhancing the environment by preserving river function downstream of dams while concurrently providing opportunities to sustainably manage water resource infrastructure. This paper summarizes the most often used reservoir sedimentation management techniques with examples of where they have been implemented. Three categories can be used to classify these technologies, i.e. catchment management, sediment routing and sediment removal. The objective of catchment management techniques is to minimize the amount of sediment that may discharge into a reservoir, thereby reducing the loss of storage space due to sedimentation. Reservoir routing is a set of techniques that aim at minimizing the amount of sediment that may deposit in a reservoir, thereby maximizing the amount of sediment that may be passed downstream. The third group consists of techniques that may be used to remove previously deposited sediment from reservoirs. The selection of reservoir sedimentation management approaches is site specific and depends on various factors, including dam height, reservoir volume, reservoir length, valley shape, valley slope, sediment type and hydrology. Description of the different reservoir sedimentation management techniques that are used in practice will be accompanied by case studies, including video, illustrating criteria that may be used to determine the potential success of implementing the techniques.

  13. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  14. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  15. Effects of nitrate addition on water column methylmercury in Occoquan Reservoir, Virginia, USA.

    PubMed

    Beutel, Marc W; Duvil, Ricardi; Cubas, Francisco J; Grizzard, Thomas J

    2017-03-01

    Mercury bioaccumulation in aquatic biota poses a widespread threat to human and environmental health. Methylmercury (MeHg), the toxic form of mercury, tends to build up under anaerobic conditions in the profundal zones of lakes. In this study we performed a two-year assessment of spatial and temporal patterns of dissolved oxygen, nitrate, MeHg, manganese (Mn) and iron (Fe) in Occoquan Reservoir, a large run-of-the-river drinking water reservoir in Virginia, USA. A tributary to the reservoir receives input of nitrate-rich tertiary-treated wastewater that enhances the oxidant capacity of bottom water. Multiple lines of evidence supported the hypothesis that the presences of nitrate and/or oxygen in bottom water correlated with low MeHg in bottom water. Bottom water MeHg was significantly lower in a nitrate-rich tributary (annual mean of 0.05 ng/L in both 2012 and 2013) compared to a nitrate-poor tributary (annual mean of 0.58 ng/L in 2012 and 0.21 ng/L in 2013). The presence of nitrate and oxygen in bottom water corresponded with significantly lower bottom water MeHg at an upstream station in the main reservoir (0.05 versus 0.11 ng/L in 2013). In 2012 the reservoir exhibited a longitudinal gradient with nitrate and oxygen decreasing and MeHg and Mn increasing downstream. In both study years, there was a clear threshold of oxygen equivalent (3-5 mg/L), a metric that combines the oxidant capacity of nitrate and oxygen, above which MeHg (<0.05 ng/L), Mn (<0.3 mg/L) and Fe (<0.5 mg/L) were low. Results indicated that the addition of nitrate-rich tertiary-treated wastewater to the bottom of anaerobic reservoirs can reduce MeHg concentrations, and potentially decrease mercury bioaccumulation, while increasing the safe water yield for potable use.

  16. Aortic reservoir function, estimated myocardial demand and coronary perfusion pressure following steady-state and interval exercise.

    PubMed

    Lane, A D; Heffernan, K S; Rossow, L M; Fahs, C A; Ranadive, S M; Yan, H; Baynard, T; Wilund, K; Fernhall, B

    2012-09-01

    Aortic reservoir function is a measure of the aorta's ability to distribute blood during diastole, attenuating the pulsatility of blood flow, and is important in balancing cardiac flow. Effects of acute high versus moderate exercise intensity on reservoir function and cardiac energetics is unknown. Eighteen athletes completed a interval (INT) and steady-state (SS) cycling bout at 60% of VO(2) peak. Reservoir function was calculated as the ratio of diastolic run-off to stroke volume and expressed as a percentage. Coronary perfusion pressure was derived from tissue Doppler imaging and echocardiography. Systolic tension-time integral (TTI) from the aortic pressure waveform served as a measure of myocardial oxygen consumption. All measures were made at rest, 30-min postexercise and 60-min postexercise. Average reservoir function before SS was 76%, which was reduced to 62% 30-min post-SS and 67% 60-min post-SS (P<0.05). Significantly greater reductions in reservoir function were seen following INT (from 71% pre-INT to 45% 30-min post-INT and 53% 60-min INT, P<0.05). Estimated coronary perfusion pressure was reduced 30 min following INT but not SS; both bouts reduced coronary perfusion pressure at 60-min postexercise (P<0.05). TTI increased following both INT and SS at 30- and 60-min postexercise with greater increases following INT (P<0.05). Following exercise, reservoir function was associated with TTI (P<0.05), but not coronary perfusion pressure (P>0.05). We conclude that reservoir function is attenuated following acute SS and INT, but these reductions were greater post-INT, suggesting that exercise intensity affects reservoir function. Reduction of reservoir function following exercise is related to TTI, a reflection of myocardial oxygen consumption but apparently not associated with coronary perfusion pressure.

  17. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Chung, B.W.; Raistrick, I.D.; Brosha, E.L.

    1996-08-06

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer. 4 figs.

  18. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Chung, Brandon W.; Raistrick, Ian D.; Brosha, Eric L.

    1996-01-01

    Solid state oxygen sensors are provided with a yttria-doped zirconia as an electrolyte and use the electrochemical oxygen pumping of the zirconia electrolyte. A linear relationship between oxygen concentration and the voltage arising at a current plateau occurs when oxygen accessing the electrolyte is limited by a diffusion barrier. A diffusion barrier is formed herein with a mixed electronic and oxygen ion-conducting membrane of lanthanum-containing perovskite or zirconia-containing fluorite. A heater may be used to maintain an adequate oxygen diffusion coefficient in the mixed conducting layer.

  19. Uncertainty analysis for water supply reservoir yields

    NASA Astrophysics Data System (ADS)

    Kuria, Faith; Vogel, Richard

    2015-10-01

    Understanding the variability of water supply reservoir yields is central for planning purposes. The basis of this study is an empirical global relationship between reservoir storage capacity, water supply yield and reliability based on a global database of 729 rivers. Monte Carlo simulations reveal that the coefficient of variation of estimates of water supply reservoir yields depend only on the length of streamflows record and the coefficient of variation of the streamflows used to estimate the yield. We compare the results of those Monte Carlo experiments with an analytical uncertainty method First Order Variance Approximation (FOVA). FOVA is shown to produce a general, accurate and useful expression for estimating the coefficient of variation of water supply reservoir yield estimates. We also document how the FOVA analytical model can be used to determine the minimum length of streamflow record required during the design of water supply reservoirs so as to ensure that the yield delivered from reservoir falls within a prespecified margin of error.

  20. Mineralogy and Oxygen Isotope Compositions of Two C-Rich Hydrated Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Snead, C. J.; McKeegan, K. D.; Messenger, S.; Nakamura-Messenger, K.

    2012-01-01

    Oxygen isotopic compositions of chondrites reflect mixing between a O-16-rich reservoir and a O-17,O-18-rich reservoir produced via mass-independent fractionation. The composition of the O-16-rich reservoir is reasonably well constrained, but material representing the O-17,O-18-rich end-member is rare. Self-shielding models predict that cometary water, presumed to represent this reservoir, should be enriched in O-17 and O-18 18O by > 200%. Hydrated interplanetary dust particles (IDPs) rich in carbonaceous matter may be derived from comets; such particles likely contain the products of reaction between O-16-poor water and anhydrous silicates that formed in the inner solar system. Here we present mineralogy and oxygen isotope compositions of two C-rich hydrated IDPs, L2083E47 and L2071E35.

  1. Skimming' a reservoir for trash

    SciTech Connect

    Shenman, L.E. )

    1993-02-01

    Several hydropower facilities are using a new technology for removing floating trash in reservoirs. Representatives from the facilities say the boat, called a trashskimmer, is efficient, easy to maneuver, and transportable. Designed by United Marine International, Inc., the pontoon boat features an operators cab that straddles an open hull between the skis of the pontoon, and uses dual propellers to maneuver through the water. The Marineskimmer allows the operator to approach the trash from the water side upstream of the plant. The Tennessee Valley Authority has used the boat since 1990.

  2. A virtual company concept for reservoir management

    SciTech Connect

    Martin, F.D.; Kendall, R.P.; Whitney, E.M.

    1998-12-31

    This paper describes how reservoir management problems were pursued with a virtual company concept via the Internet and World Wide Web. The focus of the paper is on the implementation of virtual asset management teams that were assembled with small independent oil companies. The paper highlights the mechanics of how the virtual team transferred data and interpretations, evaluated geological models of complex reservoirs, and used results of simulation studies to analyze various reservoir management strategies.

  3. Factors controlling oxygen utilization.

    PubMed

    Biaglow, John; Dewhirst, Mark; Leeper, Dennis; Burd, Randy; Tuttle, Steve

    2005-01-01

    We demonstrate, theoretically, that oxygen diffusion distance is related to the metabolic rate of tumors (QO2) as well as the oxygen tension. The difference in QO2 rate between tumors can vary by as much as 80-fold. Inhibition of oxygen utilization by glucose or chemical inhibitors can improve the diffusion distance. Combining respiratory inhibitors with increased availability of oxygen will further improve the oxygen diffusion distance for all tumors. A simple means for inhibiting oxygen consumption is the use of glucose (the Crabtree effect). The inhibition of tumor oxygen utilization by glucose occurs in R323OAc mammary carcinoma and 9L glioma cells. However, stimulation of oxygen consumption is observed with glucose in the Q7 hepatoma cell line. MIBG, a known inhibitor of oxygen utilization, blocks oxygen consumption in 9L, but is weakly inhibitory with the Q7. Q7 tumor cells demonstrate an anomalous behavior of glucose and MIBG on oxygen consumption. Our results clearly demonstrate the necessity for comparing effects of different agents on different tumor cells. Generalizations cannot be made with respect to the choice of inhibitor for in vivo use. Our work shows that oxygen consumption also can be inhibited with malonate and chlorosuccinate. These substrates may be effective in vivo, where glucose is low and glutamine is the major substrate. Our results indicate that information about individual tumor substrate-linked metabolic controls may be necessary before attempting to inhibit oxygen utilization in vivo for therapeutic benefit.

  4. Decline of the Black Sea oxygen inventory

    NASA Astrophysics Data System (ADS)

    Capet, Arthur; Stanev, Emil V.; Beckers, Jean-Marie; Murray, James W.; Grégoire, Marilaure

    2016-03-01

    We show that from 1955 to 2015, the inventory of oxygen in the Black Sea has decreased by 44 % and the basin-averaged oxygen penetration depth has decreased from 140 m in 1955 to 90 m in 2015, which is the shallowest annual value recorded during that period. The oxygenated Black Sea surface layer separates the world's largest reservoir of toxic hydrogen sulfide from the atmosphere. The threat of chemocline excursion events led to hot debates in the past decades arguing on the vertical stability of the Black Sea oxic/suboxic interface. In the 1970s and 1980s, when the Black Sea faced severe eutrophication, enhanced respiration rates reduced the thickness of the oxygenated layer. Re-increasing oxygen inventory in 1985-1995 supported arguments in favor of the stability of the oxic layer. Concomitant with a reduction of nutrient loads, it also supported the perception of a Black Sea recovering from eutrophication. More recently, atmospheric warming was shown to reduce the ventilation of the lower oxic layer by lowering cold intermediate layer (CIL) formation rates. The debate on the vertical migration of the oxic interface also addressed the natural spatial variability affecting Black Sea properties when expressed in terms of depth. Here we show that using isopycnal coordinates does not overcome the significant spatial variability of oxygen penetration depth. By considering this spatial variability, the analysis of a composite historical set of oxygen profiles evidenced a significant shoaling of the oxic layer, and showed that the transient "recovery" of the 1990s was mainly a result of increased CIL formation rates during that period. As both atmospheric warming and eutrophication are expected to increase in the near future, monitoring the dynamics of the Black Sea oxic layer is urgently required to assess the threat of further shoaling.

  5. Storage capacity in hot dry rock reservoirs

    DOEpatents

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  6. Geothermal reservoirs in hydrothermal convection systems

    SciTech Connect

    Sorey, M.L.

    1982-01-01

    Geothermal reservoirs commonly exist in hydrothermal convection systems involving fluid circulation downward in areas of recharge and upwards in areas of discharge. Because such reservoirs are not isolated from their surroundings, the nature of thermal and hydrologic connections with the rest of the system may have significant effects on the natural state of the reservoir and on its response to development. Conditions observed at numerous developed and undeveloped geothermal fields are discussed with respect to a basic model of the discharge portion of an active hydrothermal convection system. Effects of reservoir development on surficial discharge of thermal fluid are also delineated.

  7. Flow Characterization in Naturally Fractured Reservoirs

    NASA Astrophysics Data System (ADS)

    Alajmi, A.; Gharbi, R.

    2008-12-01

    Most hydrocarbon reservoirs are fractured in nature with various degrees of fracture intensities. With the current oil prices and growing demand for oil, a great interest is built in the petroleum industry to characterize partially fractured reservoirs and to develop an increased understanding of the physics of fluid flow in these types of reservoirs. This is due to the fact that fractured reservoirs have different performance behavior and high potential for oil recovery than conventional reservoirs. Therefore, prediction and understanding of fluid displacement in these reservoirs is very much critical in the decision on the applicability of oil recovery methods. Using a finite difference numerical simulator, this study investigated the effect of reservoir fracture intensities on the displacement behavior. Several heterogeneous permeable media, each with different probability of fracture intensity, were generated stochastically. The fracture intensity covers reservoirs with no fracture (zero fracture intensity) to fully fractured reservoirs (fracture intensity of 1). In order to better describe and model fractured reservoirs, a dual porosity-dual permeability model was built. Extensive simulations of water displacing oil were then performed in each of the generated fractured models for different well configurations. The objective was to determine the functional relationships between the displacement performance, fracture intensities, and well configurations. The study has resulted in significant new insights into the flow characterization in naturally fractured reservoirs. Results show that the reservoir fracture intensity has considerable effects on the efficiency of fluid displacement in naturally fractured reservoirs. A critical value of reservoir fracture intensity appears to sort favorable from unfavorable displacement, causing the displacement to be either fracture-dominated or matrix-dominated. The conditions under which fluid displacement may yield better

  8. Chondrule Destruction in Nebular Shocks

    NASA Astrophysics Data System (ADS)

    Jacquet, Emmanuel; Thompson, Christopher

    2014-12-01

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios epsilon >~ 0.1, and possibly even for solar abundances because of "sandblasting" by finer dust. A flow with epsilon >~ 10 requires much smaller shock velocities (~2 versus 8 km s-1) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  9. Hyperbaric oxygen therapy

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002375.htm Hyperbaric oxygen therapy To use the sharing features on this page, please enable JavaScript. Hyperbaric oxygen therapy uses a special pressure chamber to increase ...

  10. Oxygen control with microfluidics.

    PubMed

    Brennan, Martin D; Rexius-Hall, Megan L; Elgass, Laura Jane; Eddington, David T

    2014-11-21

    Cellular function and behavior are affected by the partial pressure of O2, or oxygen tension, in the microenvironment. The level of oxygenation is important, as it is a balance of oxygen availability and oxygen consumption that is necessary to maintain normoxia. Changes in oxygen tension, from above physiological oxygen tension (hyperoxia) to below physiological levels (hypoxia) or even complete absence of oxygen (anoxia), trigger potent biological responses. For instance, hypoxia has been shown to support the maintenance and promote proliferation of regenerative stem and progenitor cells. Paradoxically, hypoxia also contributes to the development of pathological conditions including systemic inflammatory response, tumorigenesis, and cardiovascular disease, such as ischemic heart disease and pulmonary hypertension. Current methods to study cellular behavior in low levels of oxygen tension include hypoxia workstations and hypoxia chambers. These culture systems do not provide oxygen gradients that are found in vivo or precise control at the microscale. Microfluidic platforms have been developed to overcome the inherent limits of these current methods, including lack of spatial control, slow equilibration, and unachievable or difficult coupling to live-cell microscopy. The various applications made possible by microfluidic systems are the topic of this review. In order to understand how the microscale can be leveraged for oxygen control of cells and tissues within microfluidic systems, some background understanding of diffusion, solubility, and transport at the microscale will be presented in addition to a discussion on the methods for measuring the oxygen tension in microfluidic channels. Finally the various methods for oxygen control within microfluidic platforms will be discussed including devices that rely on diffusion from liquid or gas, utilizing on-or-off-chip mixers, leveraging cellular oxygen uptake to deplete the oxygen, relying on chemical reactions in

  11. Solid state oxygen sensor

    DOEpatents

    Garzon, Fernando H.; Brosha, Eric L.

    1997-01-01

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures.

  12. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  13. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Main reservoir system. 229.49 Section 229.49... Main reservoir system. (a)(1) The main reservoir system of each locomotive shall be equipped with at... reservoir of air under pressure to be used for operating those power controls. The reservoir shall...

  14. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Main reservoir system. 229.49 Section 229.49... Main reservoir system. (a)(1) The main reservoir system of each locomotive shall be equipped with at... reservoir of air under pressure to be used for operating those power controls. The reservoir shall...

  15. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Main reservoir system. 229.49 Section 229.49... Main reservoir system. (a)(1) The main reservoir system of each locomotive shall be equipped with at... reservoir of air under pressure to be used for operating those power controls. The reservoir shall...

  16. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Main reservoir system. 229.49 Section 229.49... Main reservoir system. (a)(1) The main reservoir system of each locomotive shall be equipped with at... reservoir of air under pressure to be used for operating those power controls. The reservoir shall...

  17. 49 CFR 229.49 - Main reservoir system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Main reservoir system. 229.49 Section 229.49... Main reservoir system. (a)(1) The main reservoir system of each locomotive shall be equipped with at... reservoir of air under pressure to be used for operating those power controls. The reservoir shall...

  18. Oxygen boost pump study

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An oxygen boost pump is described which can be used to charge the high pressure oxygen tank in the extravehicular activity equipment from spacecraft supply. The only interface with the spacecraft is the +06 6.205 Pa supply line. The breadboard study results and oxygen tank survey are summarized and the results of the flight-type prototype design and analysis are presented.

  19. Oxygen sensitive microwells.

    PubMed

    Sinkala, Elly; Eddington, David T

    2010-12-07

    Oxygen tension is critical in a number of cell pathways but is often overlooked in cell culture. One reason for this is the difficulty in modulating and assessing oxygen tensions without disturbing the culture conditions. Toward this end, a simple method to generate oxygen-sensitive microwells was developed through embossing polystyrene (PS) and platinum(ii) octaethylporphyrin ketone (PtOEPK) thin films. In addition to monitoring the oxygen tension, microwells were employed in order to isolate uniform clusters of cells in microwells. The depth and width of the microwells can be adapted to different experimental parameters easily by altering the thin film processing or embossing stamp geometries. The thin oxygen sensitive microwell substrate is also compatible with high magnification modalities such as confocal imaging. The incorporation of the oxygen sensor into the microwells produces measurements of the oxygen tension near the cell surface. The oxygen sensitive microwells were calibrated and used to monitor oxygen tensions of Madin-Darby Canine Kidney Cells (MDCKs) cultured at high and low densities as a proof of concept. Wells 500 µm in diameter seeded with an average of 330 cells exhibited an oxygen level of 12.6% whereas wells seeded with an average of 20 cells per well exhibited an oxygen level of 19.5%, a 35.7% difference. This platform represents a new tool for culturing cells in microwells in a format amenable to high magnification imaging while monitoring the oxygen state of the culture media.

  20. Indicators: Dissolved Oxygen

    EPA Pesticide Factsheets

    Dissolved oxygen (DO) is the amount of oxygen that is present in water. It is an important measure of water quality as it indicates a water body's ability to support aquatic life. Water bodies receive oxygen from the atmosphere and from aquatic plants.

  1. Hypoxemia (Low Blood Oxygen)

    MedlinePlus

    Symptoms Hypoxemia (low blood oxygen) By Mayo Clinic Staff Hypoxemia is a below-normal level of oxygen in your blood, specifically in the arteries. Hypoxemia ... of breath. Hypoxemia is determined by measuring the oxygen level in a blood sample taken from an ...

  2. Movement of reservoir-stocked riverine fish between tailwaters and rivers

    USGS Publications Warehouse

    Spoelstra, J.A.; Stein, R.A.; Royle, J. Andrew; Marschall, E.A.

    2008-01-01

    The movement of fish from onstream impoundments into connected streams and rivers has traditionally been overlooked in fish stocking decisions but is critical to the ultimate impact of stocking riverine species into reservoirs. Hybrid saugeyes (female walleye Sander vitreus x male sauger S. canadensis) stocked into Deer Creek Reservoir, Ohio, readily move from the reservoir to the tailwater below. Downstream movement of these saugeyes from the tailwater may have consequences for native prey species and parental stocks downstream. We used fixed-station radiotelemetry to quantify the temporal movement patterns of 203 reservoir-stocked saugeyes from the tailwater of the reservoir, the stream flowing from the tailwater, and the river into which the stream flowed. From October 1998 through July 2000, most (75%) saugeyes never left the tailwater, and those that left returned 75% of the time. Overall, saugeyes spent 90% of their time in the tailwater, 7-8% of their time downstream in small streams, and 2-3% of their time farther downstream in the Scioto River (45 km downstream). No radio-tagged saugeyes moved to the Ohio River (155 km downstream). The probability of downstream movement generally increased with increasing flow and when dissolved oxygen dropped to lethal levels in summer. The probability of movement was highest in winter and spring, when it was probably related to spawning, and low in summer (except when dissolved oxygen was low) and fall. The patterns of movement seemed to reflect the relative suitability of tailwater over stream habitat. The predominant use of and return to tailwater habitat after downstream movement limited overall stream and river residence time. Although the daily movement probability for an individual was low, when we apply these rates to all of the stocked saugeyes in the Ohio River drainage, we cannot safely conclude that only small numbers move from reservoir tailwaters to downstream river systems. We recommend that managers

  3. What factors control the percentage of nitrogen that gets exported downstream from man-made reservoirs?

    NASA Astrophysics Data System (ADS)

    Buonpane, J. M.; Wollheim, W. M.; Whitney, C. T.

    2015-12-01

    Man-made dams influence more than just the flow of water in a river. The build up of sediments and organic matter, increased residence times, and elevated nutrient inputs from upstream can result in increased algal growth and blooms, altered DO patterns, and can also influence the flux of nutrients from watersheds. Many of the effects of dams vary in intensity based on the geomorphology of their resulting reservoirs. In this study, we examined eight reservoirs located in four different coastal watersheds in New England, USA, to analyze the role that characteristics such as depth, width, volume, and residence time play in regards to metabolism (GPP and Respiration) and nutrient retention. At the inflows and outflow of each reservoir, we measured conductivity, dissolved oxygen, total suspended solids, nitrate, phosphate, chlorophyll, and dissolved organic carbon. Using conductivity, which is conservative, and watershed area, we created a mass balance for each watershed. In most cases the conductivity mass balance indicated that water inputs and outputs were at equilibrium during sampling, allowing us to assess the alteration of non-conservative material fluxes. Dissolved oxygen and TSS were not balanced, indicating that the reservoirs acted as both a source and a sink for DO and sediments depending upon the time of day and amount of algal activity. Similar analyses will be conducted for nutrients. The net change of each variable across the reservoirs will be related to geomorphological characteristics of the reservoirs. With nutrient loading from anthropogenic sources, and increased push for small dam removal, this study provides useful information regarding the consequences of dam removal to downstream aquatic ecosystems.

  4. Sediment deposition and trends and transport of phosphorus and other chemical constituents, Cheney Reservoir watershed, south-central Kansas

    USGS Publications Warehouse

    Mau, D.P.

    2001-01-01

    Sediment deposition, water-quality trends, and mass transport of phosphorus, nitrogen, selected trace elements, and selected pesticides within the Cheney Reservoir watershed in south-central Kansas were investigated using bathymetric survey data and reservoir bottom-sediment cores. Sediment loads in the reservoir were investigated by comparing 1964 topographic data to 1998 bathymetric survey data. Approximately 7,100 acre-feet of sediment deposition occurred in Cheney Reservoir from 1965 through 1998. As of 1998, sediment had filled 27 percent of the reservoir's inactive conservation storage pool, which is less than the design estimate of 34 percent. Mean annual sediment deposition was 209 acre-feet per year, or 0.22 acre-feet per year per square mile, and the mean annual sediment load was 453 million pounds per year. During the 3-year period from 1997 through 1999, 23 sediment cores were collected from the reservoir, and subsamples were analyzed for nutrients (phosphorus and nitrogen species), selected trace elements, and selected organic pesticides. Mean concentrations of total phosphorus in reservoir bottom sediment ranged from 94 milligrams per kilogram at the upstream end of the reservoir to 710 milligrams per kilogram farther downstream near the reservoir dam. The mean concentration for all sites was 480 milligrams per kilogram. Total phosphorus concentrations were greatest when more silt- and clay-sized particles were present. The implications are that if anoxic conditions (inadequate oxygen) occur near the dam, phosphorus could be released from the sediment and affect the drinking-water supply. Analysis of selected cores also indicates that total phosphorus concentrations in the reservoir sediment increased over time and were probably the result of nonpoint-source activities in the watershed, such as increased fertilizer use and livestock production. Mean annual phosphorus loading to Cheney Reservoir was estimated to be 226,000 pounds per year on the basis

  5. Duck Valley Reservoirs Fish Stocking and O&M, Annual Progress Report 2007-2008.

    SciTech Connect

    Sellman, Jake; Perugini, Carol

    2009-02-20

    issues including dissolved oxygen and/or turbidity. Regardless, angler fishing experience was the highest at Lake Billy Shaw. Trout in Mountain View Reservoir were in the best condition of the three reservoirs and anglers reported very good fishing there. Water quality (specifically dissolved oxygen and temperature) remain the main limiting factors in the fisheries, particularly in late August to early September.

  6. CO-SPATIAL LONG-SLIT UV/OPTICAL SPECTRA OF TEN GALACTIC PLANETARY NEBULAE WITH HST/STIS. II. NEBULAR MODELS, CENTRAL STAR PROPERTIES, AND He+CNO SYNTHESIS

    SciTech Connect

    Henry, R. B. C.; Miller, T. R.; Balick, B.; Dufour, R. J.; Kwitter, K. B.; Shaw, R. A.; Buell, J. F.; Corradi, R. L. M.

    2015-11-10

    The goal of the present study is twofold. First, we employ new HST/STIS spectra and photoionization modeling techniques to determine the progenitor masses of eight planetary nebulae (IC 2165, IC 3568, NGC 2440, NGC 3242, NGC 5315, NGC 5882, NGC 7662, and PB 6). Second, for the first time we are able to compare each object’s observed nebular abundances of helium, carbon, and nitrogen with abundance predictions of these same elements by a stellar model that is consistent with each object’s progenitor mass. Important results include the following: (1) the mass range of our objects’ central stars matches well with the mass distribution of other central stars of planetary nebulae and white dwarfs; (2) He/H is above solar in all of our objects, in most cases likely due to the predicted effects of first dredge-up; (3) most of our objects show negligible C enrichment, probably because their low masses preclude third dredge-up; (4) C/O versus O/H for our objects appears to be inversely correlated, which is perhaps consistent with the conclusion of theorists that the extent of atmospheric carbon enrichment from first dredge-up is sensitive to a parameter whose value increases as metallicity declines; (5) stellar model predictions of nebular C and N enrichment are consistent with observed abundances for progenitor star masses ≤1.5 M{sub ⊙}. Finally, we present the first published photoionization models of NGC 5315 and NGC 5882.

  7. Do physicochemical variables regulate the distribution of zooplankton communities in reservoirs dominated by filter-feeding carp?

    NASA Astrophysics Data System (ADS)

    Hu, Menghong; Yang, Lili; Liu, Qigen

    2014-03-01

    The temporal and spatial distributions of zooplankton communities in the upper, middle, and lower reaches of the Xin'anjiang Reservoir, Zhejiang, China, were investigated monthly, between 2009 and 2010. Silver carp ( Hypophthalmichthys molitrix) and bighead carp ( Aristichthys nobilis) dominated the pelagic fish community of this large, deep reservoir. Cladocerans were distributed evenly throughout the reservoir. Rotifers were mainly found in the upper reaches, while copepods tended to assemble in the lower reaches. The Pearson correlation analysis and stepwise multiple regression were used to identify the major physicochemical gradients influencing community variations. Zooplankton community distributions were influenced by water temperature, dissolved oxygen, phosphorus, nitrogen, and silicon. Excess nutrients, in particular silicon, stimulated rotifer growth. Based on these findings, it is possible to use rotifer density as a bioindicator of eutrophic status in deep reservoir ecosystems.

  8. Effects of water stratification and mixing on microbial community structure in a subtropical deep reservoir

    PubMed Central

    Yu, Zheng; Yang, Jun; Amalfitano, Stefano; Yu, Xiaoqing; Liu, Lemian

    2014-01-01

    Microorganisms play pivotal roles within aquatic ecosystems, affecting their structure, functioning and services. However, little is known about the effects of water stratification and mixing on the aquatic microbial community dynamics in subtropical reservoirs. In this study, we explored vertical and seasonal patterns of microbial diversity in the Dongzhen Reservoir (southeast China). Quantitative PCR, quantitative RT-PCR, and 454 pyrosequencing were used for an in-depth characterization of the bacterial community across time (every three months for one year) and space (five different water depths). Our results indicated that thermal and oxygen stratification shaped the phylogenetic composition of microbial communities in the reservoir. There were significant differences in physical, chemical and microbiological parameters between epilimnion and hypolimnion (P < 0.05). The RNA: DNA ratios were significantly lower in epilimnion and metalimnion but rapidly increased in hypolimnion (P < 0.05), suggesting that microorganisms were more active at low temperatures, low dissolved oxygen concentrations and high TN/TP ratios. Redundancy analysis and pathway analysis revealed a complex interplay of various environmental and biological factors by explaining the spatiotemporal variations in bacterial communities. Adaptive reservoir management strategies should consider carefully the effects of water stratification and mixing, together with the distribution patterns of aquatic microorganisms. PMID:25059241

  9. Bubble generation and venous air filtration by hard-shell venous reservoirs: a comparative study.

    PubMed

    Mitchell, S J; Willcox, T; Gorman, D F

    1997-09-01

    We have previously shown significant bubble formation in Medtronic Maxima hard-shell venous reservoirs (HSVRs). In the present study, we not only investigated the mechanism of this bubble formation, but also the extent of bubble clearance by membrane oxygenators and arterial line filters. In addition, we also compared the performance of five HSVRs with respect to bubble formation and venous air filtration. Salvaged clinical CPB circuits containing different HSVRs were studied by downstream Doppler monitoring under fixed flow-decreasing volume, fixed volume-increasing flow, and entrained venous air conditions. Bubbles formed in the Medtronic Maxima top entry HSVR at volumes below 800 ml and flows above 3.5 l min-1, and were incompletely removed by a membrane oxygenator and arterial line filter. Decreased bubbling was seen when the reservoir atmosphere was flushed with CO2, suggesting that these bubbles formed in a fountain at the venous inflow. The Medtronic Maxima Forte HSVR formed significantly fewer bubbles at low volumes, and filtered venous air effectively. Negligible bubble formation occurred in the Sorin, Terumo, or Baxter reservoirs. The minimum recommended operating volume for the Medtronic Maxima top entry reservoir should be reset at 600 ml and this device should always be used with an arterial filter. Bubble formation is substantially reduced in the new Medtronic Maxima Forte HSVR and this device is a good filter for venous air.

  10. An index of reservoir habitat impairment

    USGS Publications Warehouse

    Miranda, L.E.; Hunt, K.M.

    2011-01-01

    Fish habitat impairment resulting from natural and anthropogenic watershed and in-lake processes has in many cases reduced the ability of reservoirs to sustain native fish assemblages and fisheries quality. Rehabilitation of impaired reservoirs is hindered by the lack of a method suitable for scoring impairment status. To address this limitation, an index of reservoir habitat impairment (IRHI) was developed by merging 14 metrics descriptive of common impairment sources, with each metric scored from 0 (no impairment) to 5 (high impairment) by fisheries scientists with local knowledge. With a plausible range of 5 to 25, distribution of the IRHI scores ranged from 5 to 23 over 482 randomly selected reservoirs dispersed throughout the USA. The IRHI reflected five impairment factors including siltation, structural habitat, eutrophication, water regime, and aquatic plants. The factors were weakly related to key reservoir characteristics including reservoir area, depth, age, and usetype, suggesting that common reservoir descriptors are poor predictors of fish habitat impairment. The IRHI is rapid and inexpensive to calculate, provides an easily understood measure of the overall habitat impairment, allows comparison of reservoirs and therefore prioritization of restoration activities, and may be used to track restoration progress. The major limitation of the IRHI is its reliance on unstandardized professional judgment rather than standardized empirical measurements. ?? 2010 US Government.

  11. Water resources review: Wheeler Reservoir, 1990

    SciTech Connect

    Wallus, R.; Cox, J.P.

    1990-09-01

    Protection and enhancement of water quality is essential for attaining the full complement of beneficial uses of TVA reservoirs. The responsibility for improving and protecting TVA reservoir water quality is shared by various federal, state, and local agencies, as well as the thousands of corporations and property owners whose individual decisions affect water quality. TVA's role in this shared responsibility includes collecting and evaluating water resources data, disseminating water resources information, and acting as a catalyst to bring together agencies and individuals that have a responsibility or vested interest in correcting problems that have been identified. This report is one in a series of status reports that will be prepared for each of TVA's reservoirs. The purpose of this status report is to provide an up-to-date overview of the characteristics and conditions of Wheeler Reservoir, including: reservoir purposes and operation; physical characteristics of the reservoir and the watershed; water quality conditions: aquatic biological conditions: designated, actual, and potential uses of the reservoir and impairments of those uses; ongoing or planned reservoir management activities. Information and data presented here are form the most recent reports, publications, and original data available. 21 refs., 8 figs., 29 tabs.

  12. European Rabbits as Reservoir for Coxiella burnetii

    PubMed Central

    González-Barrio, David; Maio, Elisa; Vieira-Pinto, Madalena

    2015-01-01

    We studied the role of European rabbits (Oryctolagus cuniculus) as a reservoir for Coxiella burnetii in the Iberian region. High individual and population seroprevalences observed in wild and farmed rabbits, evidence of systemic infections, and vaginal shedding support the reservoir role of the European rabbit for C. burnetii. PMID:25988670

  13. Carbon emission from global hydroelectric reservoirs revisited.

    PubMed

    Li, Siyue; Zhang, Quanfa

    2014-12-01

    Substantial greenhouse gas (GHG) emissions from hydropower reservoirs have been of great concerns recently, yet the significant carbon emitters of drawdown area and reservoir downstream (including spillways and turbines as well as river reaches below dams) have not been included in global carbon budget. Here, we revisit GHG emission from hydropower reservoirs by considering reservoir surface area, drawdown zone and reservoir downstream. Our estimates demonstrate around 301.3 Tg carbon dioxide (CO2)/year and 18.7 Tg methane (CH4)/year from global hydroelectric reservoirs, which are much higher than recent observations. The sum of drawdown and downstream emission, which is generally overlooked, represents 42 % CO2 and 67 % CH4 of the total emissions from hydropower reservoirs. Accordingly, the global average emissions from hydropower are estimated to be 92 g CO2/kWh and 5.7 g CH4/kWh. Nonetheless, global hydroelectricity could currently reduce approximate 2,351 Tg CO2eq/year with respect to fuel fossil plant alternative. The new findings show a substantial revision of carbon emission from the global hydropower reservoirs.

  14. Mycobacterium bovis: characteristics of wildlife reservoir hosts.

    PubMed

    Palmer, M V

    2013-11-01

    Mycobacterium bovis is the cause of tuberculosis in animals and sometimes humans. Many developed nations have long-standing programmes to eradicate tuberculosis in livestock, principally cattle. As disease prevalence in cattle decreases these efforts are sometimes impeded by passage of M. bovis from wildlife to cattle. In epidemiological terms, disease can persist in some wildlife species, creating disease reservoirs, if the basic reproduction rate (R0) and critical community size (CCS) thresholds are achieved. Recognized wildlife reservoir hosts of M. bovis include the brushtail possum (Trichosurus vulpecula) in New Zealand, European badger (Meles meles) in Great Britain and Ireland, African buffalo (Syncerus caffer) in South Africa, wild boar (Sus scrofa) in the Iberian Peninsula and white-tailed deer (Odocoileus virginianus) in Michigan, USA. The epidemiological concepts of R0 and CCS are related to more tangible disease/pathogen characteristics such as prevalence, pathogen-induced pathology, host behaviour and ecology. An understanding of both epidemiological and disease/pathogen characteristics is necessary to identify wildlife reservoirs of M. bovis. In some cases, there is a single wildlife reservoir host involved in transmission of M. bovis to cattle. Complexity increases, however, in multihost systems where multiple potential reservoir hosts exist. Bovine tuberculosis eradication efforts require elimination of M. bovis transmission between wildlife reservoirs and cattle. For successful eradication identification of true wildlife reservoirs is critical, as disease control efforts are most effective when directed towards true reservoirs.

  15. Prestack seismic inversion and reservoir property prediction

    NASA Astrophysics Data System (ADS)

    Chi, Xingang

    In this dissertation, I have applied the method of prestack seismic inversion with uncertainty analysis. Also, I have developed the methods of the rock physics template analysis, the fluid modulus inversion and the reservoir property inversion from AVO attributes with and without constraint to improve the technique of reservoir characterization. I use the prestack seismic inversion to invert the elastic properties and use the statistical method to derive the posterior probability of the inverted elastic properties for the uncertainty analysis. I use the rock physics template drawn in the cross-plot of the inverted elastic properties to analyze the lithology and fluid property in the target reservoir. I develop the fluid modulus inversion method based on the simplified Gassmann's equation and the empirical rock physics relationship. Using the inverted fluid modulus, I estimate the gas saturation of the target reservoir before drilling. The reservoir property inversion is to predict the porosity, shale volume and water saturation of the reservoir from AVO attributes to enhance the reservoir interpretation and characterization. I apply this method with the statistical analysis together to execute the uncertainty analysis for the inversion results. Two methods of reservoir property inversion from AVO attributes are attempted in this dissertation: one is performed without constraint and the other is performed with the constrained relationship of the porosity and shale volume.

  16. Carbon content of sediments of small reservoirs

    SciTech Connect

    Ritchie, J.C. )

    1989-04-01

    Carbon content was measured in sediments deposited in 58 small reservoirs across the US. Reservoirs varied from 0.2 to 4,000 km{sup 2} in surface area. The carbon content of sediment ranged from 0.3 to 5.6 percent, with a mean of 1.9 {plus minus} 1.1 percent. No significant differences between the soil and sediment carbon content were found using a paired t-test or ANOVA. The carbon content of sediments in reservoirs was similar to the carbon content of surface soils in the watershed, except in watersheds with shrub or steppe (desert) vegetation. Based on the sediment accumulation rates measured in each reservoir, the calculated organic carbon accumulation rates among reservoirs ranged from 26 to 3,700 gC m{sup {minus}2} yr{sup {minus}1}, with a mean of 675 {plus minus} 739 gC m{sup {minus}2} yr{sup {minus}1}. The carbon content and accumulation rates were highest in sediments from grassland watersheds. High variability was found in carbon content, carbon accumulation, and sediment accumulation rates due to individual watershed and reservoir characteristics rather than to any broad physiographic patterns. The carbon accumulation rates in these reservoir sediments indicate that reservoir sediments could be a significant sink of organic carbon.

  17. Economics of Developing Hot Stratigraphic Reservoirs

    SciTech Connect

    Greg Mines; Hillary Hanson; Rick Allis; Joseph Moore

    2014-09-01

    Stratigraphic geothermal reservoirs at 3 – 4 km depth in high heat-flow basins are capable of sustaining 100 MW-scale power plants at about 10 c/kWh. This paper examines the impacts on the levelized cost of electricity (LCOE) of reservoir depth and temperature, reservoir productivity, and drillhole/casing options. For a reservoir at 3 km depth with a moderate productivity index by hydrothermal reservoir standards (about 50 L/s/MPa, 5.6 gpm/psi), an LCOE of 10c/kWh requires the reservoir to be at about 200°C. This is the upper temperature limit for pumps. The calculations assume standard hydrothermal drilling costs, with the production interval completed with a 7 inch liner in an 8.5 inch hole. If a reservoir at 4 km depth has excellent permeability characteristics with a productivity index of 100 L/s/MPa (11.3 gpm/psi), then the LCOE is about 11 c/kWh assuming the temperature decline rate with development is not excessive (< 1%/y, with first thermal breakthrough delayed by about 10 years). Completing wells with modest horizontal legs (e.g. several hundred meters) may be important for improving well productivity because of the naturally high, sub-horizontal permeability in this type of reservoir. Reducing the injector/producer well ratio may also be cost-effective if the injectors are drilled as larger holes.

  18. Climate variations, soil conservation and reservoir sedimentation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The integrated effects of soil conservation and a wetter climate on reservoir sedimentation were investigated for the Fort Cobb Reservoir watershed in west-central Oklahoma. A 12% wetter climate since the mid-1980s led to an increase in soil erosion and downstream sediment yield that offset the redu...

  19. Seismic determination of saturation in fractured reservoirs

    USGS Publications Warehouse

    Brown, R.L.; Wiggins, M.L.; Gupta, A.

    2002-01-01

    Detecting the saturation of a fractured reservoir using shear waves is possible when the fractures have a geometry that induces a component of movement perpendicular to the fractures. When such geometry is present, vertically traveling shear waves can be used to examine the saturation of the fractured reservoir. Tilted, corrugated, and saw-tooth fracture models are potential examples.

  20. Electromagnetic Heating Methods for Heavy Oil Reservoirs

    SciTech Connect

    Sahni, A.; Kumar, M.; Knapp, R.B.

    2000-05-01

    The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations.

  1. Development of Reservoir Characterization Techniques and Production Models for Exploiting Naturally Fractured Reservoirs

    SciTech Connect

    Wiggins, Michael L.; Brown, Raymon L.; Civan, Faruk; Hughes, Richard G.

    2003-02-11

    This research was directed toward developing a systematic reservoir characterization methodology which can be used by the petroleum industry to implement infill drilling programs and/or enhanced oil recovery projects in naturally fractured reservoir systems in an environmentally safe and cost effective manner. It was anticipated that the results of this research program will provide geoscientists and engineers with a systematic procedure for properly characterizing a fractured reservoir system and a reservoir/horizontal wellbore simulator model which can be used to select well locations and an effective EOR process to optimize the recovery of the oil and gas reserves from such complex reservoir systems.

  2. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    NASA Astrophysics Data System (ADS)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  3. Singlet oxygen in photosensitization.

    PubMed

    Moan, Johan; Juzenas, Petras

    2006-01-01

    Oxygen is a ubiquitous element and a vitally important substance for life on the Earth, and especially for human life. Living organisms need oxygen for most, if not all, of their cellular functions. On the other hand, oxygen can produce metabolites that are toxic and potentially lethal to the same cells. Being reactive and chemically unstable reactive oxygen species (ROS) are the most important metabolites that initiate reduction and oxidation (redox) reactions under physiological conditions. Oxygen in its excited singlet state (1O2) is probably the most important intermediate in such reactions. Since the discovery of oxygen by Joseph Priestley in 1775 it has been recognized that oxygen can be both beneficial and harmful to life.

  4. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  5. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  6. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect

    Sharma, G.D.

    1992-01-01

    The ultimate objective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization-determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis-source rock identification; and the study of asphaltene precipitation for Alaskan crude oils. Results are discussed.

  7. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect

    Sharma, G.D.

    1992-01-01

    The ultimate objective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization -- determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis -- source rock identification; and the study of asphaltene precipitation for Alaskan crude oils.

  8. Rodent reservoirs of future zoonotic diseases.

    PubMed

    Han, Barbara A; Schmidt, John Paul; Bowden, Sarah E; Drake, John M

    2015-06-02

    The increasing frequency of zoonotic disease events underscores a need to develop forecasting tools toward a more preemptive approach to outbreak investigation. We apply machine learning to data describing the traits and zoonotic pathogen diversity of the most speciose group of mammals, the rodents, which also comprise a disproportionate number of zoonotic disease reservoirs. Our models predict reservoir status in this group with over 90% accuracy, identifying species with high probabilities of harboring undiscovered zoonotic pathogens based on trait profiles that may serve as rules of thumb to distinguish reservoirs from nonreservoir species. Key predictors of zoonotic reservoirs include biogeographical properties, such as range size, as well as intrinsic host traits associated with lifetime reproductive output. Predicted hotspots of novel rodent reservoir diversity occur in the Middle East and Central Asia and the Midwestern United States.

  9. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect

    Sharma, G.D.

    1992-01-01

    The ultimate oojective of this cooperative research project is to characterize Alaskan petroleum reservoirs in terms of their reserves, physical and chemical properties, geologic configuration in relation to lithofacies and structure, and development potential. The project has two tasks: Task 1 is a geological description of the reservoirs including petrophysical properties, i.e., porosity, permeability, permeability variation, formation depth, temperature, and net pay, facies changes and reservoir structures as drawn from cores, well logs, and other geological data. Task 2 is reservoir fluid characterization--determination of physical properties of reservoir fluids including density, viscosity, phase distributions and composition as well as petrogenesis--source rock identification; and the study of asphaltene precipitation for Alaskan crude oils. This report presents a summary of technical progress of the well log analysis of Kuparuk Field, Northslope, Alaska.

  10. Next generation oil reservoir simulations

    SciTech Connect

    Joubert, W.

    1996-04-01

    This paper describes a collaborative effort between Amoco Production Company, Los Alamos National Laboratory and Cray Research Inc. to develop a next-generation massively parallel oil reservoir simulation code. The simulator, code-named Falcon, enables highly detailed simulations to be performed on a range of platforms such as the Cray T3D and T3E. The code is currently being used by Amoco to perform a sophisticated field study using multiple geostatistical realizations on a scale of 2-5 million grid blocks and 1000-2000 wells. In this paper we discuss the nature of this collaborative effort, the software design and engineering aspects of the code, parallelization experiences, and performance studies. The code will be marketed to the oil industry by a third-party independent software vendor in mid-1996.

  11. 13. VIEW OF PORTLAND RESERVOIR NO. 2, LOOKING EAST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF PORTLAND RESERVOIR NO. 2, LOOKING EAST FROM NORTHWEST CORNER OF RESERVOIR. POST OF ORIGINAL FENCE IS IN FOREGROUND - Portland Reservoir No. 2, 6007 Southeast Division Street, Portland, Multnomah County, OR

  12. 9. VIEW OF PORTLAND RESERVOIR NO. 2, LOOKING SOUTHWEST, SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF PORTLAND RESERVOIR NO. 2, LOOKING SOUTHWEST, SHOWING CHAIN-LINK FENCE IN FOREGROUND AND FOUNDATION STRUCTURE IN THE MIDDLE OF RESERVOIR BASIN - Portland Reservoir No. 2, 6007 Southeast Division Street, Portland, Multnomah County, OR

  13. 10. 'Y' CONNECTOR TO PICACHO RESERVOIR ON MAIN CANAL. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. 'Y' CONNECTOR TO PICACHO RESERVOIR ON MAIN CANAL. VIEW LOOKING EAST FROM PICACHO RESERVOIR INLET CHANNEL - San Carlos Irrigation Project, Marin Canal, Amhurst-Hayden Dam to Picacho Reservoir, Coolidge, Pinal County, AZ

  14. The Obtaining of Oil from an Oil Reservoir.

    ERIC Educational Resources Information Center

    Dawe, R. A.

    1979-01-01

    Discusses the mechanics of how an actual oil reservoir works and provides some technical background in physics. An experiment which simulates an oil reservoir and demonstrates quantitatively all the basic concepts of oil reservoir rock properties is also presented. (HM)

  15. The Potosi Reservoir Model 2013

    SciTech Connect

    Adushita, Yasmin; Smith, Valerie; Leetaru, Hannes

    2014-09-30

    As a part of a larger project co-funded by the United States Department of Energy (US DOE) to evaluate the potential of formations within the Cambro-Ordovician strata above the Mt. Simon as potential targets for carbon sequestration in the Illinois and Michigan Basins, the Illinois Clean Coal Institute (ICCI) requested Schlumberger to evaluate the potential injectivity and carbon dioxide (CO2) plume size of the Cambrian Potosi Formation. The evaluation of this formation was accomplished using wireline data, core data, pressure data, and seismic data from the US DOE-funded Illinois Basin–Decatur Project (IBDP) being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois. In 2010, technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. In the preceding, the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this topical report) was re-run using a new injection scenario; 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles (48.3km x48.3km), while preserving all property modeling workflows and layering. This model was retained as the base case of Potosi Dynamic Model 2013a. The Potosi reservoir model was updated to take into account the new data from the verification well VW2 which was drilled in 2012. The new porosity and permeability modeling was

  16. In-situ generation of oxygen-releasing metal peroxides

    DOEpatents

    Looney, Brian B.; Denham, Miles E.

    2007-01-09

    A method for remediation of contaminants in soil and groundwater is disclosed. The method generates oxygen releasing solids in groundwater or soil by injecting an aqueous energetic oxidant solution containing free radicals, oxidative conditions can be created within or ahead of a contaminant plume. Some contaminants may be remediated directly by reaction with the free radicals. Additionally and more importantly, the free radicals create an oxidative condition whereby native or injected materials, especially metals, are converted to peroxides. These peroxides provide a long-term oxygen reservoir, releasing oxygen relatively slowly over time. The oxygen can enhance microbial metabolism to remediate contaminants, can react with contaminant metals either to form immobile precipitants or to mobilize other metals to permit remediation through leaching techniques. Various injection strategies for injecting the energetic oxidant solution are also disclosed.

  17. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 3 2012-10-01 2012-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly...

  18. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 3 2011-10-01 2011-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule...

  19. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 3 2013-10-01 2013-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly...

  20. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 3 2014-10-01 2014-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Durable Medical Equipment, Prosthetic and Orthotic Devices, and Surgical Dressings § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is...

  1. 42 CFR 414.226 - Oxygen and oxygen equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 3 2010-10-01 2010-10-01 false Oxygen and oxygen equipment. 414.226 Section 414... Equipment and Prosthetic and Orthotic Devices § 414.226 Oxygen and oxygen equipment. (a) Payment rules—(1) Oxygen equipment. Payment for rental of oxygen equipment is made based on a monthly fee schedule...

  2. Water-quality data for Arvada Reservoir, Denver metropolitan area, Colorado

    USGS Publications Warehouse

    Britton, L.J.; Gaggiani, N.G.

    1986-01-01

    Physical, chemical, and biological water quality data were collected and compiled for five sites in Arvada Reservoir, one site in Ralston Creek, and two sites in Croke Canal, in the Denver metropolitan area, Colorado. The purpose of the data collection was to determine the water quality of Arvada Reservoir, evaluate the effect of source waters on the reservoir , and determine the trophic state of the reservoir. Data collected include reservoir profile measurements with depth and inflow measurements of water temperature, specific conductance, dissolved oxygen, and pH. Secchi disk depth measurements also are reported. In addition, water samples were analyzed periodically for concentrations of major chemical constituents, nutrients, trace elements, and selected radiochemicals; for densities and relative abundance of phytoplankton and zooplankton; and for concentrations of chlorophyll alpha. Results of algal growth potential determinations are included. This report describes sampling site locations and methods of data collection and analyses and presents qualitative and quantitative results of water quality data collected during the study. Sampling began during June 1983 and continued through September 1985. (USGS)

  3. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions

    PubMed Central

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N.; Stern, Richard A.; D’Abzac, Francois-Xavier; Schaltegger, Urs

    2015-01-01

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 103 to 104 years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption. PMID:26356304

  4. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions.

    PubMed

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N; Stern, Richard A; D'Abzac, Francois-Xavier; Schaltegger, Urs

    2015-09-10

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 10(3) to 10(4) years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption.

  5. Duck Valley Reservoirs Fish Stocking and Operation and Maintenance, 2006-2007 Annual Progress Report.

    SciTech Connect

    Sellman, Jake; Dykstra, Tim

    2009-05-11

    The Duck Valley Reservoirs Fish Stocking and Operations and Maintenance (DV Fisheries) project is an ongoing resident fish program that serves to partially mitigate the loss of anadromous fish that resulted from downstream construction of the hydropower system. The project's goals are to enhance subsistence fishing and educational opportunities for Tribal members of the Shoshone-Paiute Tribes and provide resident fishing opportunities for non-Tribal members. In addition to stocking rainbow trout (Oncorhynchus mykiss) in Mountain View, Lake Billy Shaw, and Sheep Creek Reservoirs, the program is also designed to maintain healthy aquatic conditions for fish growth and survival, to provide superior facilities with wilderness qualities to attract non-Tribal angler use, and to offer clear, consistent communication with the Tribal community about this project as well as outreach and education within the region and the local community. Tasks for this performance period are divided into operations and maintenance plus monitoring and evaluation. Operation and maintenance of the three reservoirs include fences, roads, dams and all reservoir structures, feeder canals, water troughs and stock ponds, educational signs, vehicles and equipment, and outhouses. Monitoring and evaluation activities included creel, gillnet, wildlife, and bird surveys, water quality and reservoir structures monitoring, native vegetation planting, photo point documentation, control of encroaching exotic vegetation, and community outreach and education. The three reservoirs are monitored in terms of water quality and fishery success. Sheep Creek Reservoir was very unproductive this year as a fishery. Fish morphometric and water quality data indicate that the turbidity is severely impacting trout survival. Lake Billy Shaw was very productive as a fishery and received good ratings from anglers. Mountain View was also productive and anglers reported a high number of quality sized fish. Water quality

  6. IMPACT OF FOREST HARVESTING ON RESERVOIRS AND LAKES: CARBON DYNAMICS AND MICROBIAL CYCLING

    NASA Astrophysics Data System (ADS)

    Ouellet, A.; Tremblay, L.; Lucotte, M. M.; Gelinas, Y.

    2009-12-01

    Boreal lakes and reservoirs are net heterotrophic systems. Differences in dissolved CO2 concentrations between man-made reservoirs and natural lakes suggest higher CO2 fluxes to the atmosphere from reservoirs than from lakes; human-induced perturbations such as deforestation also induce changes to the carbon cycle in aquatic systems. We used bulk analytical techniques to better characterize the impact of reservoir formation and deforestation on the processes controlling the cycling of organic carbon in boreal aquatic systems. The water column of natural and deforested lakes and reservoirs was analyzed for dissolved and particulate organic matter (DOM and POM, respectively), dissolved inorganic carbon (DIC), oxygen saturation and CO2. Atomic C:N ratios, δ13Corg, δ15Ntot and amino acids biomarkers analyses were also carried out on DOM and POM. Differences in carbon concentration, atomic C/N ratios and δ13Corg reflect the impact of deforestation on the quality and quantity of OM found in lakes and reservoirs. Water-column profiles of δ13C-DIC and δ13C-POM show large variability with perturbation indicating that there are differences in the biogeochemical processes that control carbon cycling in the different environments. These findings along with amino acids analyses show that inputs of terrestrial dissolved organic nitrogen and carbon better stimulates bacterial growth than algal activities, which results in increased aqueous CO2 concentrations and fluxes to the atmosphere. A statistical analysis of the biomarkers suggests contrasting DOM/POM sources and degradation pathways with wood harvesting and reservoir operation. Human-induced land use and hydrological modifications drive the carbon cycle of fresh water systems, which in turn modulates green house gas emissions to the atmosphere.

  7. Vertical Distribution of Bacterial Community Diversity and Water Quality during the Reservoir Thermal Stratification.

    PubMed

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Ma, Wei-Xing; Xu, Jin-Lan; Sun, Xin

    2015-06-17

    Reservoir thermal stratification drives the water temperature and dissolved oxygen gradient, however, the characteristic of vertical water microbial community during thermal stratification is so far poorly understood. In this work, water bacterial community diversity was determined using the Illumina Miseq sequencing technique. The results showed that epilimnion, metalimnion and hypolimnion were formed steadily in the JINPEN drinking water reservoir. Water temperature decreased steadily from the surface (23.11 °C) to the bottom (9.17 °C). Total nitrogen ranged from 1.07 to 2.06 mg/L and nitrate nitrogen ranged from 0.8 to 1.84 mg/L. The dissolved oxygen concentration decreased sharply below 50 m, and reached zero at 65 m. The Miseq sequencing revealed a total of 4127 operational taxonomic units (OTUs) with 97% similarity, which were affiliated with 15 phyla including Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Caldiserica, Chlamydiae, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, and Verrucomicrobia. The highest Shannon diversity was 4.41 in 45 m, and the highest Chao 1 diversity was 506 in 5 m. Rhodobacter dominated in 55 m (23.24%) and 65 m (12.58%). Prosthecobacter dominated from 0.5 to 50 m. The heat map profile and redundancy analysis (RDA) indicated significant difference in vertical water bacterial community composition in the reservoir. Meanwhile, water quality properties including dissolved oxygen, conductivity, nitrate nitrogen and total nitrogen have a dramatic influence on vertical distribution of bacterial communities.

  8. Potential impacts of climate change on water quality in a shallow reservoir in China.

    PubMed

    Zhang, Chen; Lai, Shiyu; Gao, Xueping; Xu, Liping

    2015-10-01

    To study the potential effects of climate change on water quality in a shallow reservoir in China, the field data analysis method is applied to data collected over a given monitoring period. Nine water quality parameters (water temperature, ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, total nitrogen, total phosphorus, chemical oxygen demand, biochemical oxygen demand and dissolved oxygen) and three climate indicators for 20 years (1992-2011) are considered. The annual trends exhibit significant trends with respect to certain water quality and climate parameters. Five parameters exhibit significant seasonality differences in the monthly means between the two decades (1992-2001 and 2002-2011) of the monitoring period. Non-parametric regression of the statistical analyses is performed to explore potential key climate drivers of water quality in the reservoir. The results indicate that seasonal changes in temperature and rainfall may have positive impacts on water quality. However, an extremely cold spring and high wind speed are likely to affect the self-stabilising equilibrium states of the reservoir, which requires attention in the future. The results suggest that land use changes have important impact on nitrogen load. This study provides useful information regarding the potential effects of climate change on water quality in developing countries.

  9. Vertical Distribution of Bacterial Community Diversity and Water Quality during the Reservoir Thermal Stratification

    PubMed Central

    Zhang, Hai-Han; Chen, Sheng-Nan; Huang, Ting-Lin; Ma, Wei-Xing; Xu, Jin-Lan; Sun, Xin

    2015-01-01

    Reservoir thermal stratification drives the water temperature and dissolved oxygen gradient, however, the characteristic of vertical water microbial community during thermal stratification is so far poorly understood. In this work, water bacterial community diversity was determined using the Illumina Miseq sequencing technique. The results showed that epilimnion, metalimnion and hypolimnion were formed steadily in the JINPEN drinking water reservoir. Water temperature decreased steadily from the surface (23.11 °C) to the bottom (9.17 °C). Total nitrogen ranged from 1.07 to 2.06 mg/L and nitrate nitrogen ranged from 0.8 to 1.84 mg/L. The dissolved oxygen concentration decreased sharply below 50 m, and reached zero at 65 m. The Miseq sequencing revealed a total of 4127 operational taxonomic units (OTUs) with 97% similarity, which were affiliated with 15 phyla including Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Caldiserica, Chlamydiae, Chlorobi, Chloroflexi, Cyanobacteria, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, and Verrucomicrobia. The highest Shannon diversity was 4.41 in 45 m, and the highest Chao 1 diversity was 506 in 5 m. Rhodobacter dominated in 55 m (23.24%) and 65 m (12.58%). Prosthecobacter dominated from 0.5 to 50 m. The heat map profile and redundancy analysis (RDA) indicated significant difference in vertical water bacterial community composition in the reservoir. Meanwhile, water quality properties including dissolved oxygen, conductivity, nitrate nitrogen and total nitrogen have a dramatic influence on vertical distribution of bacterial communities. PMID:26090607

  10. Singlet oxygen kinetics in a double microwave discharge

    NASA Astrophysics Data System (ADS)

    Pitz, Greg A.; Lange, Matthew A.; Perram, Glen P.

    2004-09-01

    Chemical lasers offer the highest powers necessary for many weapons applications, but require significant logistical support in the delivery of specialized fuels to the battlefield. In the Chemical Oxygen-Iodine Laser (COIL), which is the weapon aboard the Airborne Laser (ABL), gaseous chlorine and liquid basic hydrogen peroxide are used to generate the singlet oxygen energy reservoir. The goal of the current multi-university research program is to demonstrate an oxygen-iodine laser with electrical discharge production of singlet oxygen. Typically, oxygen discharges are limited to about 15% yield for singlet oxygen. The electron excitation cross-sections as a function of E/N are well established. However, the kinetics for electron and singlet oxygen interactions is considerably more difficult to study. Optical diagnostics for O2(a, b), and O, have been applied to a double microwave discharge flow tube. By examining the difference in singlet oxygen kinetics between the two discharges in series, considerable information regarding the excited-state, excited-state interactions is obtained. Under certain discharge conditions, the O2(a) concentration significantly increases outside of the discharge, even after thermal effects are accounted.

  11. 5. EASTSIDE RESERVOIR, LOOKING WEST. WEST DAM UNDER CONSTRUCTION, QUARRIES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EASTSIDE RESERVOIR, LOOKING WEST. WEST DAM UNDER CONSTRUCTION, QUARRIES TO LEFT MIDDLE GROUND OF PICTURE. - Eastside Reservoir, Diamond & Domenigoni Valleys, southwest of Hemet, Hemet, Riverside County, CA

  12. Effects of storm runoff on the thermal regime and water quality of a deep, stratified reservoir in a temperate monsoon zone, in Northwest China.

    PubMed

    Huang, Tinglin; Li, Xuan; Rijnaarts, Huub; Grotenhuis, Tim; Ma, Weixing; Sun, Xin; Xu, Jinlan

    2014-07-01

    Jinpen Reservoir is a deep, stratified reservoir in Shaanxi province, located in a warm temperate zone of Northwest China. Influenced by a temperate monsoon climate, more than 60% of the annual precipitation is concentrated from late summer to autumn (July-September). In recent years, extreme rainfall events occurred more frequently and strongly affected the thermal structure, mixing layer depth and evolution of stratification of Jinpen Reservoir. The reservoir's inflow volume increased sharply after heavy rainfall during the flooding season. Large volumes of inflow induced mixing of stratified water zones in early autumn and disturbed the stratification significantly. A temporary positive effect of such disturbance was the oxygenation of the water close to the bottom of the reservoir, leading to inhibition of the release of nutrients from sediments, especially phosphate. However, the massive inflow induced by storm runoff with increased oxygen-consuming substances led to an increase of the oxygen consumption rate. After the bottom water became anaerobic again, the bottom water quality would deteriorate due to the release of pollutants from sediments. Heavy rainfall events could lead to very high nutrient input into the reservoir due to massive erosion from the surrounding uninhabited steep mountains, and the particulate matter contributed to most nutrient inputs. Reasonably releasing density flow is an effective way to reduce the amounts of particulate associated pollutants entering the reservoir. Significant turbid density flow always followed high rainfall events in Jinpen Reservoir, which not only affected the reservoir water quality but also increased costs of the drinking water treatment plant. Understanding the effects of the storm runoff on the vertical distributions of water quality indicators could help water managers to select the proper position of the intake for the water plant in order to avoid high turbidity outflow.

  13. Modeling the Transport and Fate of Fecal Pollution and Nutrients of Miyun Reservoir

    NASA Astrophysics Data System (ADS)

    Liu, L.; Fu, X.; Wang, G.

    2009-12-01

    Miyun Reservoir, a mountain valley reservoir, is located 100 km northeast of Beijing City. Besides the functions of flood control, irrigation and fishery for Beijing area, Miyun Reservoir is the main drinking water storage for Beijing city. The water quality is therefore of great importance. Recently, the concentration of fecal pollution and nutrients in the reservoir are constantly rising to arrest the attention of Beijing municipality. Fecal pollution from sewage is a significant public health concern due to the known presence of human viruses and parasites in these discharges. To investigate the transport and fate of the fecal pollution and nutrients at Miyun reservoir and the health risks associated with drinking and fishery, the reservoir and two tributaries, Chaohe river and Baihe river discharging into it are being examined for bacterial, nutrients and other routine pollution. To understand the relative importance of different processes influencing pollution transport and inactivation, a finite-element model of surf-zone hydrodynamics (coupled with models for temperature, fecal pollution, nutrients and other routine contaminants) is used. The developed models are being verified by the observed water quality data including water temperature, conductivities and dissolved oxygen from the reservoir and its tributaries. Different factors impacting the inactivation of fecal pollution and the transport of nutrients such as water temperature, sedimentation, sunlight insolation are evaluated for Miyun reservoir by a sensitivity analysis analogized from the previous research of Lake Michigan (figure 1, indicating that solar insolation dominates the inactivation of E. Coli, an indicator of fecal pollution, Liu et al. 2006). The calibrated modeling system can be used to temporally and spatially simulate and predict the variation of the concentration of fecal pollution and nutrients of Miyun reservoir. Therefore this research can provide a forecasting tool for the

  14. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2005-07-12

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  15. Oxygen ion conducting materials

    DOEpatents

    Carter, J. David; Wang, Xiaoping; Vaughey, John; Krumpelt, Michael

    2004-11-23

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  16. Integrated turbomachine oxygen plant

    SciTech Connect

    Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan

    2014-06-17

    An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.

  17. Oxygen, a paradoxical element?

    PubMed

    Greabu, Maria; Battino, M; Mohora, Maria; Olinescu, R; Totan, Alexandra; Didilescu, Andreea

    2008-01-01

    Oxygen is an essential element for life on earth. No life may exist without oxygen. But in the last forty years, conclusive evidence demonstrated the double-edge sword of this element. In certain conditions, oxygen may produce reactive species, even free radicals. More, the production of reactive oxygen species (ROS) takes place everywhere: in air, nature or inside human bodies. The paradox of oxygen atom is entirely due to its peculiar electronic structure. But life began on earth, only when nature found efficient weapons against ROS, these antioxidants, which all creatures are extensibly endowed with. The consequences of oxygen activation in human bodies are only partly known, in spite of extensive scientific research on theoretical, experimental and clinical domains.

  18. Oxygen ion conducting materials

    DOEpatents

    Vaughey, John; Krumpelt, Michael; Wang, Xiaoping; Carter, J. David

    2003-01-01

    An oxygen ion conducting ceramic oxide that has applications in industry including fuel cells, oxygen pumps, oxygen sensors, and separation membranes. The material is based on the idea that substituting a dopant into the host perovskite lattice of (La,Sr)MnO.sub.3 that prefers a coordination number lower than 6 will induce oxygen ion vacancies to form in the lattice. Because the oxygen ion conductivity of (La,Sr)MnO.sub.3 is low over a very large temperature range, the material exhibits a high overpotential when used. The inclusion of oxygen vacancies into the lattice by doping the material has been found to maintain the desirable properties of (La,Sr)MnO.sub.3, while significantly decreasing the experimentally observed overpotential.

  19. Continuous home oxygen therapy.

    PubMed

    Ortega Ruiz, Francisco; Díaz Lobato, Salvador; Galdiz Iturri, Juan Bautista; García Rio, Francisco; Güell Rous, Rosa; Morante Velez, Fátima; Puente Maestu, Luis; Tàrrega Camarasa, Julia

    2014-05-01

    Oxygen therapy is defined as the therapeutic use of oxygen and consists of administering oxygen at higher concentrations than those found in room air, with the aim of treating or preventing hypoxia. This therapeutic intervention has been shown to increase survival in patients with chronic obstructive pulmonary disease (COPD) and respiratory failure. Although this concept has been extended by analogy to chronic respiratory failure caused by respiratory and non-respiratory diseases, continuous oxygen therapy has not been shown to be effective in other disorders. Oxygen therapy has not been shown to improve survival in patients with COPD and moderate hypoxaemia, nor is there consensus regarding its use during nocturnal desaturations in COPD or desaturations caused by effort. The choice of the oxygen source must be made on the basis of criteria such as technical issues, patient comfort and adaptability and cost. Flow must be adjusted to achieve appropriate transcutaneous oxyhaemoglobin saturation correction.

  20. An experimental unification of reservoir computing methods.

    PubMed

    Verstraeten, D; Schrauwen, B; D'Haene, M; Stroobandt, D

    2007-04-01

    Three different uses of a recurrent neural network (RNN) as a reservoir that is not trained but instead read out by a simple external classification layer have been described in the literature: Liquid State Machines (LSMs), Echo State Networks (ESNs) and the Backpropagation Decorrelation (BPDC) learning rule. Individual descriptions of these techniques exist, but a overview is still lacking. Here, we present a series of experimental results that compares all three implementations, and draw conclusions about the relation between a broad range of reservoir parameters and network dynamics, memory, node complexity and performance on a variety of benchmark tests with different characteristics. Next, we introduce a new measure for the reservoir dynamics based on Lyapunov exponents. Unlike previous measures in the literature, this measure is dependent on the dynamics of the reservoir in response to the inputs, and in the cases we tried, it indicates an optimal value for the global scaling of the weight matrix, irrespective of the standard measures. We also describe the Reservoir Computing Toolbox that was used for these experiments, which implements all the types of Reservoir Computing and allows the easy simulation of a wide range of reservoir topologies for a number of benchmarks.

  1. Atomic Oxygen Effects

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.

    2014-01-01

    Atomic oxygen, which is the most predominant species in low Earth orbit, is highly reactive and can break chemical bonds on the surface of a wide variety of materials leading to volatilization or surface oxidation which can result in failure of spacecraft materials and components. This presentation will give an overview of how atomic oxygen reacts with spacecraft materials, results of space exposure testing of a variety of materials, and examples of failures caused by atomic oxygen.

  2. Potential impacts of a proposed reservoir on hydrologic and water-quality conditions in Little Rush Creek watershed, Fairfield County, Ohio

    USGS Publications Warehouse

    Hren, Janet; Jones, R.L.

    1982-01-01

    Water-quality and discharge measurements were made at three sites on Indian Run and one site on Little Rush Creek between February and December, 1979. Indian Run was observed above and below the U.S. Soil Conservation Service Reservoir, VI-D. Little Rush Creek was observed 1.1 miles downstream from the proposed U.S. Soil Conservation Reservoir, VI-A, site. Data from the Indian Run sites were used to predict the potential water-quality conditions in and downstream from the proposed Little Rush Creek Reservoir. Temperatures measured in Indian Run at the reservoir outflow were as much as 4oc greater than those at the inflow. Dissolved-oxygen saturation ranged from 62 to 110 percent in the inflow and from 57 to 120 percent in the outflow. Indian Run and Little Push Creek are characterized by moderately hard to very hard calcium bicarbonate water. The concentration of dieldrin in water samples from both Little Rush Creek and the outflow from the reservoir on Indian Run was 0.01 micrograms per liter, and in reservoir-surface samples it was 0.02 micrograms per liter. Chlordane concentration in a bottom material sample from the reservoir was 26 micrograms per kilogram. Catfish taken from the reservoir contained 190 micrograms per kilogram chlordane. All sites showed a good diversity in benthic invertebrate communities. Blue-green algal blooms occurred in the reservoir, indicating nutrient-enriched conditions. Because of similarities in land use and watershed characteristics, water in the proposed reservoir VI-A is expected to be similar in quality to that of reservoir VI-D. The new reservoir will not significantly affect downstream water quality.

  3. Physical and chemical characteristics of Terrace Reservoir, Conejos County, Colorado, May 1994 through May 1995; interim report

    USGS Publications Warehouse

    Stogner, Robert W.; Edelmann, Patrick; Walton-Day, Katherine

    1996-01-01

    Terrace Reservoir receives drainage of low-pH, metal-enriched water from mineralized areas, including the Summitville Mine, within the AlamosaRiver Basin. Drainage from the Summitville Mine has contributed a substantial part of the metal load to Terrace Reservoir. From May 1994 through May 1995, a study was done by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency, to evaluate the physical and chemical characteristics of Terrace Reservoir.Terrace Reservoir was thermally stratified from about mid-May through August 1994. Thermal stratification was absent from September\\x111994through March 1995. During periods of stratification, underflow of the Alamosa River was predominant, and residence times of the underflow were shortened by 40 to 75\\x11percent of the theoretical residence times for a well-mixed reservoir. Transport and deposition of suspended solids in Terrace Reservoir varied spatially and temporally. Most of the suspended solids were deposited in Terrace Reservoir. The concentration of dissolved oxygen in the reservoir varied little spatially or temporally and generally was within a few tenths of the dissolved-oxygen concentration of the inflow. The pH of water in the reservoir generally ranged from about 4.0 to about 7.0, depending on date, depth, and location. The largest pH values were measured during May. A markeddecrease of about 1.5\\x11pH units occurred at site T5 in the reservoir about mid-June. The pH of the reservoir remained at or below 5.5 from mid-June through November. Dissolved-metal concentrations varied spatially and temporally in response to several factors, which included inflow characteristics, reservoir stratification and mixing, inflow-routing and flow-through patterns, residence times, sedimentation, dissolved oxygen, and pH.Inflow chemistry is the dominant controlling factor of metal chemistry within Terrace Reservoir.During periods of stratification, large vertical variations in metal

  4. Elastomer Compatible With Oxygen

    NASA Technical Reports Server (NTRS)

    Martin, Jon W.

    1987-01-01

    Artificial rubber resists ignition on impact and seals at low temperatures. Filled fluoroelastomer called "Katiflex" developed for use in seals of vessels holding cold liquid and gaseous oxygen. New material more compatible with liquid oxygen than polytetrafluoroethylene. Provides dynamic seal at -196 degrees C with only 4 times seal stress required at room temperature. In contrast, conventional rubber seals burn or explode on impact in high-pressure oxygen, and turn hard or even brittle at liquid-oxygen temperatures, do not seal reliably, also see (MFS-28124).

  5. Solid state oxygen sensor

    DOEpatents

    Garzon, F.H.; Brosha, E.L.

    1997-12-09

    A potentiometric oxygen sensor is formed having a logarithmic response to a differential oxygen concentration while operating as a Nernstian-type sensor. Very thin films of mixed conducting oxide materials form electrode services while permitting diffusional oxygen access to the interface between the zirconia electrolyte and the electrode. Diffusion of oxygen through the mixed oxide is not rate-limiting. Metal electrodes are not used so that morphological changes in the electrode structure do not occur during extended operation at elevated temperatures. 6 figs.

  6. Monitoring Oxygen Status.

    PubMed

    Toffaletti, J G; Rackley, C R

    Although part of a common "blood gas" test panel with pH and pCO2, the pO2, %O2Hb, and related parameters are independently used to detect and monitor oxygen deficits from a variety of causes. Measurement of blood gases and cooximetry may be done by laboratory analyzers, point of care testing, noninvasive pulse oximetry, and transcutaneous blood gases. The specimen type and mode of monitoring oxygenation that are chosen may be based on a combination of urgency, practicality, clinical need, and therapeutic objectives. Because oxygen concentrations in blood are extremely labile, there are several highly important preanalytical practices necessary to prevent errors in oxygen and cooximetry results. Effective utilization of oxygen requires binding by hemoglobin in the lungs, transport in the blood, and release to tissues, where cellular respiration occurs. Hydrogen ion (pH), CO2, temperature, and 2,3-DPG all play important roles in these processes. Additional measurements and calculations are often used to interpret and locate the cause and source of an oxygen deficit. These include the Hb concentration, Alveolar-arterial pO2 gradient, pO2:FIO2 ratio, oxygenation index, O2 content and O2 delivery, and pulmonary dead space and intrapulmonary shunting. The causes of hypoxemia will be covered and, to illustrate how the oxygen parameters are used clinically in the diagnosis and management of patients with abnormal oxygenation, two clinical cases will be presented and described.

  7. Measuring tissue oxygenation

    NASA Technical Reports Server (NTRS)

    Soyemi, Olusola O. (Inventor); Soller, Babs R. (Inventor); Yang, Ye (Inventor)

    2009-01-01

    Methods and systems for calculating tissue oxygenation, e.g., oxygen saturation, in a target tissue are disclosed. In some embodiments, the methods include: (a) directing incident radiation to a target tissue and determining reflectance spectra of the target tissue by measuring intensities of reflected radiation from the target tissue at a plurality of radiation wavelengths; (b) correcting the measured intensities of the reflectance spectra to reduce contributions thereto from skin and fat layers through which the incident radiation propagates; (c) determining oxygen saturation in the target tissue based on the corrected reflectance spectra; and (d) outputting the determined value of oxygen saturation.

  8. Basic gas storage reservoir operations and analysis

    SciTech Connect

    Nowaczewski, S.F. )

    1994-08-01

    Operation and performance analysis of gas storage reservoirs is described in very basic and general terms. Reservoir selection criteria (capacity, deliverability, location, field type, trap type) are reviewed. Well construction considerations and practices (casing sizing, placement, and cementing) are highlighted with regard to the need for long-lived safe operation. Deliverability estimation and prediction and gas inventory methodologies are described. The benefits of high density, high quality data on gas pressure and composition, production rates and volumes, and geologic information to reservoir performance evaluation and prediction are demonstrated.

  9. Production-induced changes in reservoir geomechanics

    NASA Astrophysics Data System (ADS)

    Amoyedo, Sunday O.

    Sand production remains a source of concern in both conventional and heavy oil production. Porosity increase and changes in local stress magnitude, which often enhance permeability, have been associated with severe sanding. On the other hand, sand production has been linked to a large number of field incidences involving loss of well integrity, casing collapse and corrosion of down-hole systems. It also poses problems for separators and transport facilities. Numerous factors such as reservoir consolidation, well deviation angle through the reservoir, perforation size, grain size, capillary forces associated with water cut, flow rate and most importantly reservoir strain resulting from pore pressure depletion contribute to reservoir sanding. Understanding field-specific sand production patterns in mature fields and poorly consolidated reservoirs is vital in identifying sand-prone wells and guiding remedial activities. Reservoir strain analysis of Forties Field, located in the UK sector of the North Sea, shows that the magnitude of the production-induced strain, part of which is propagated to the base of the reservoir, is of the order of 0.2 %, which is significant enough to impact the geomechanical properties of the reservoir. Sand production analysis in the field shows that in addition to poor reservoir consolidation, a combined effect of repeated perforation, high well deviation, reservoir strain and high fluid flow rate have contributed significantly to reservoir sanding. Knowledge of reservoir saturation variation is vital for in-fill well drilling, while information on reservoir stress variation provides a useful guide for sand production management, casing design, injector placement and production management. Interpreting time-lapse difference is enhanced by decomposing time-lapse difference into saturation, pressure effects and changes in rock properties (e.g. porosity) especially in highly compacting reservoirs. Analyzing the stress and saturation

  10. Adsorption of water vapor on reservoir rocks

    SciTech Connect

    Not Available

    1993-07-01

    Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

  11. Dispersivity as an oil reservoir rock characteristic

    SciTech Connect

    Menzie, D.E.; Dutta, S.

    1989-12-01

    The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

  12. Safety drain system for fluid reservoir

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)

    2012-01-01

    A safety drain system includes a plurality of drain sections, each of which defines distinct fluid flow paths. At least a portion of the fluid flow paths commence at a side of the drain section that is in fluid communication with a reservoir's fluid. Each fluid flow path at the side communicating with the reservoir's fluid defines an opening having a smallest dimension not to exceed approximately one centimeter. The drain sections are distributed over at least one surface of the reservoir. A manifold is coupled to the drain sections.

  13. Atlas of major Texas gas reservoirs

    SciTech Connect

    Kosters, E.C.; Bebout, D.G.; Seni, S.J.; Garret, C.M.; Brown, L.F.; Hamlin, H.S.; Dutton, S.P.; Ruppel, S.C.; Finley, R.J.; Tyler, N.

    1990-01-01

    This volume contains information on more than 1,828 reservoirs, with emphasis on 868 reservoirs that have cumulative gas production of greater than 30 billion cubic feet of natural gas. Texas gas reservoirs are classified into 73 plays, each of which is described in terms of its principal geologic and engineering production characteristics. This assessment of the similarities of gas occurrence within each play will assist in defining controls on gas accumulation, in identifying resources affected by new technology, and in expanding technology to maximize recovery through improved field development and production practices.

  14. Outer boundary effects in a petroleum reservoir

    NASA Astrophysics Data System (ADS)

    Nelson, Rhodri; Crowdy, Darren; Kropf, Everett; Zuo, Lihua; Weijermars, Ruud

    2016-11-01

    A new toolkit for potential theory based on the Schottky-Klein prime function is first introduced. This potential theory toolkit is then applied to study the fluid flow structures in bounded 2D petroleum reservoirs. In the model, reservoirs are assumed to be heterogeneous and isotropic porous medium and can thus be modelled using Darcy's equation. First, computations of flow contours are carried out on some 'test' domains and benchmarked against results from the ECLIPSE reservoir simulator. Following this, a case study of the Quitman oil field in Texas is presented.

  15. BOND: Bayesian Oxygen and Nitrogen abundance Determinations in giant H II regions using strong and semistrong lines

    NASA Astrophysics Data System (ADS)

    Vale Asari, N.; Stasińska, G.; Morisset, C.; Cid Fernandes, R.

    2016-08-01

    We present the Bayesian oxygen and nitrogen abundance determinations (BOND) method. BOND is a Bayesian code (available at: http://bond.ufsc.br) to simultaneously derive oxygen and nitrogen abundances in giant H II regions. It compares observed emission lines to a grid of photoionization models without assuming any relation between O/H and N/O. Our grid spans a wide range in O/H, N/O and ionization parameter U, and covers different starburst ages and nebular geometries. Varying starburst ages accounts for variations in the ionizing radiation field hardness, which arise due to the ageing of H II regions or the stochastic sampling of the initial mass function. All previous approaches assume a strict relation between the ionizing field and metallicity. The other novelty is extracting information on the nebular physics from semistrong emission lines. While strong lines ratios alone ([O III]/Hβ, [O II]/Hβ and [N II]/Hβ) lead to multiple O/H solutions, the simultaneous use of [Ar III]/[Ne III] allows one to decide whether an H II region is of high or low metallicity. Adding He I/Hβ pins down the hardness of the radiation field. We apply our method to H II regions and blue compact dwarf galaxies, and find that the resulting N/O versus O/H relation is as scattered as the one obtained from the temperature-based method. As in previous strong-line methods calibrated on photoionization models, the BOND O/H values are generally higher than temperature-based ones, which might indicate the presence of temperature fluctuations or kappa distributions in real nebulae, or a too soft ionizing radiation field in the models.

  16. Effects of rainfall patterns on water quality in a stratified reservoir subject to eutrophication: Implications for management.

    PubMed

    Li, Xuan; Huang, Tinglin; Ma, Weixing; Sun, Xin; Zhang, Haihan

    2015-07-15

    The seasonal variation of hydrological conditions caused by shifting rainfall patterns observed in recent years has significant effects on water quality. High-volume inflows following heavy rainfall events that significantly disturb stratification lead to increased dissolved oxygen (DO) at the bottom of the reservoir, inhibiting the release of nutrients from sediments and causing a rapid reduction of algal biomass in the reservoir. However, the duration and extent of these effects depend not only on the frequency and intensity of heavy rainfall events but also on the period of thermal stratification in the reservoir. The effects of heavy rainfall events on water quality during three typical stratification periods of the reservoir were systematically investigated using extensive field data. The continuous heavy rainfall that occurred in September 2011 (stratification began to diminish) completely mixed the reservoir and produced a high concentration of DO along with a low phytoplankton concentration throughout the reservoir until stratification occurred the following year. Conversely, several days were required for anoxic conditions (in the hypolimnion) and cyanobacterial blooms to reappear after the storm runoff that occurred during the stable period of stratification (August 2012). In addition, the heavy rainfall that occurred in May 2013 accelerated the formation of an anoxic zone at the bottom of the reservoir and promoted cyanobacterial blooms due to the high nutrient input and the increased water temperature after the storm runoff ended. Water-lifting aerators (WLAs) were employed in the Shibianyu Reservoir to inhibit algal growth and to control the release of nutrients. Based on our field observations and theoretical analyses, optimized management strategies are recommended to improve water quality in the reservoir under different rainfall patterns at a reduced cost.

  17. Water quality of Livingston Reservoir on the Trinity River, southeastern Texas

    USGS Publications Warehouse

    Rawson, Jack

    1979-01-01

    The concentrations of dissolved solids, chloride, and sulfate in Livingston Reservoir on the Trinity River in southeastern Texas usually average less than 250 mg/l (milligrams per liter), 40 mg/l, and 50 mg/l, respectively. The water is usually hard or moderately hard (61 to 180 mg/l as calcium carbonate). The concentrations of principal dissolved constituents in the reservoir are usually maximum during summer and fall when evaporation is high and inflow is low. Thermal stratification of the reservoir usually begins in March and persists until September or October. Neither the seasonal variation of dissolved constituents in inflow to the reservoir nor thermal stratification has resulted in significant stratification of the principal dissolved constituents. However, thermal stratification has resulted in significant seasonal and areal variations of dissolved oxygen, which results in higher concentration of dissolved iron, dissolved manganese, total phosphorus, and total inorganic nitrogen. Oxygen utilized in the stabilization of unoxidized material from upstream sources, decaying algae, and pre-existing organic material along the bottom of the reservoir is not replaced during periods of summer stagnation; and water below depths of 25 to 35 feet (8 to 11 meters) usually contains less than 1.0 mg/l dissolved oxygen. During periods of summer stagnation, reducing conditions often result in the solution of iron and manganese from bottom sediments in the deep parts of the reservoir. At site AC, a deep site near Livingston Dam, dissolved-iron concentrations in water near the bottom of the reservoir during summer have ranged from 80 to 2,300 μg/l (micrograms per liter) and have averaged about 750 μg/l. The concentrations of dissolved manganese in water near the bottom of the reservoir at this site during summer have ranged from 230 to 4,700 μg/l and have averaged about 2,600 μg/l. Water near the surface of the reservoir throughout the year and water near the bottom

  18. Optomechanical entanglement via reservoir engineering

    NASA Astrophysics Data System (ADS)

    Wang, Yingdan

    2014-03-01

    A mechanical resonator could serve as an ideal system for transferring quantum states and mediating interactions between very different kinds of photons. To this end, recent experiments have realized three-mode optomechanical systems, where a single mechanical resonator simultaneously interacts with both an optical and a microwave cavity. In this talk I will discuss different strategies which use reservoir engineering in such a system as a powerful tool to generate robust, stationary entanglement between the two cavity fields. By manipulating the mechanical resonator to effectively cool delocalized Bogoliubov modes, we find that large intracavity entanglement can be achieved, at a level which is well above the maximum achievable via a coherent two-mode interaction. We have also analyzed the entanglement of the output fields of the two cavities. While there are significant differences from the intra-cavity fields, we again find that with proper parameter choices, large amounts of entanglement can be achieved. While the emphasis is on optomechanics, our results can also be applied directly to other 3-mode bosonic systems (e.g., as could be realized with superconducting microwave circuits).

  19. SEISMIC ATTENUATION FOR RESERVOIR CHARACTERIZATION

    SciTech Connect

    Joel Walls; M.T. Taner; Gary Mavko; Jack Dvorkin

    2002-07-01

    In fully-saturated rock and at ultrasonic frequencies, the microscopic squirt flow induced between the stiff and soft parts of the pore space by an elastic wave is responsible for velocity-frequency dispersion and attenuation. In the seismic frequency range, it is the macroscopic cross-flow between the stiffer and softer parts of the rock. We use the latter hypothesis to introduce simple approximate equations for velocity-frequency dispersion and attenuation in a fully water saturated reservoir. The equations are based on the assumption that in heterogeneous rock and at a very low frequency, the effective elastic modulus of the fully-saturated rock can be estimated by applying a fluid substitution procedure to the averaged (upscaled) dry frame whose effective porosity is the mean porosity and the effective elastic modulus is the Backus-average (geometric mean) of the individual dry-frame elastic moduli of parts of the rock. At a higher frequency, the effective elastic modulus of the saturated rock is the Backus-average of the individual fully-saturated-rock elastic moduli of parts of the rock. The difference between the effective elastic modulus calculated separately by these two methods determines the velocity-frequency dispersion. The corresponding attenuation is calculated from this dispersion by using (e.g.) the standard linear solid attenuation model.

  20. Volume 4: Characterization of representative reservoirs -- Gulf of Mexico field, U-8 reservoir

    SciTech Connect

    Koperna, G.J. Jr.; Johnson, H.R.; Salamy, S.P.; Reeves, T.K.; Sawyer, W.K.; Kimbrell, W.C.; Schenewerk, P.A.

    1998-07-01

    A reservoir study was performed using a publicly available black oil simulator to history match and predict the performance of a Gulf of Mexico reservoir. The first objective of this simulation study was to validate the Black Oil Applied Simulation Tool version three for personal computers (BOAST3-PC) model to ensure the integrity of the simulation runs. Once validation was completed, a field history match for the Gulf of Mexico U-8 oil reservoir was attempted. A verbal agreement was reached with the operator of this reservoir to blindcode the name and location of the reservoir. In return, the operator supplied data and assistance in regards to the technical aspects of the research. On the basis of the best history match, different secondary recovery techniques were simulated as a predictive study for enhancing the reservoir productivity.

  1. Overview of the Hijiori shallow reservoir circulation tests and reservoir fluid storage analysis

    SciTech Connect

    Takahiro Shiga; Masami Hyodo; Shinji Takasugi; Wright, C.A.; Conant, R.A.

    1996-01-24

    Since 1985, NEDO has advanced a]Hot Dry Rock project in Hijiori, Japan. Circulation tests have been performed in FY1991 (in a shallow reservoir), and in FY1995 (in both shallow and deep reservoirs). In 1991 circulation test, the result was that 78% fluid recovery at an injection rate of 60 tons/hour and production temperatures of 150 °C - 190 °C . However no detailed analysis of flow conditions was given. Therefore, a simplified HDR model has been proposed to understand the Hijion HDR reservoir. We have analyzed the 1991 circulation test using the model. This study is very important for analyzing the circulation test in both of shallow and deep reservoir which was conducted in 1995. This paper summarizes the 1991 circulation test at the Hijiori HDR test site, and estimation of the reservoir fluid storage by using "unrecovered" flow from the new conceptual idea of HDR reservoir model.

  2. Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements

    SciTech Connect

    Locke, C.D.; Salamy, S.P.

    1991-09-01

    In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

  3. Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements. Final report

    SciTech Connect

    Locke, C.D.; Salamy, S.P.

    1991-09-01

    In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

  4. Analyzing a hydrocarbon reservoir by determining the response of that reservoir to tidal forces

    SciTech Connect

    Graebner, P.

    1991-08-20

    This patent describes a method for determining a component of the response of a hydrocarbons reservoir to tidal forces. It comprises measuring a variable responsive to tidal forces within the reservoir over a measurement time period; determining a theoretical earth-tide for the reservoir over the measurement time period; and determining the component of the response to tidal forces by comparing the variable measurements and the theoretical earth-tide determinations.

  5. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    SciTech Connect

    Not Available

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  6. Development of heavy-oil reservoirs

    SciTech Connect

    Briggs, P.J.; Baron, R.P.; Fulleylove, R.J.; Wright, M.S.

    1988-02-01

    Although complex categorizations are in vogue, ''heavy oils'' can be defined simply in terms of their flow properties in the reservoir-e.g., a 100-cp (100-mPa.s) or greater viscosity. Such heavy oils are major world hydrocarbon resource that is exploited where indigenous demand exists. Efficient methods of production require enthalpy input to the reservoir by hot-fluid injection or by creation of heat in the reservoir. Heat losses must be minimized to achieve maximum production efficiency. The widely used cyclic-steam-injection process is examined analytically to indicate which parameters govern successful exploitation. Steamflood and in-situ combustion techniques are discussed with reference to recent developments. Heavy-oil recovery from the more difficult carbonate reservoirs, such as those of the Middle East, is reviewed and potential production mechanism are examined. Production techniques are described together with export handling schemes.

  7. Assembling evidence for identifying reservoirs of infection.

    PubMed

    Viana, Mafalda; Mancy, Rebecca; Biek, Roman; Cleaveland, Sarah; Cross, Paul C; Lloyd-Smith, James O; Haydon, Daniel T

    2014-05-01

    Many pathogens persist in multihost systems, making the identification of infection reservoirs crucial for devising effective interventions. Here, we present a conceptual framework for classifying patterns of incidence and prevalence, and review recent scientific advances that allow us to study and manage reservoirs simultaneously. We argue that interventions can have a crucial role in enriching our mechanistic understanding of how reservoirs function and should be embedded as quasi-experimental studies in adaptive management frameworks. Single approaches to the study of reservoirs are unlikely to generate conclusive insights whereas the formal integration of data and methodologies, involving interventions, pathogen genetics, and contemporary surveillance techniques, promises to open up new opportunities to advance understanding of complex multihost systems.

  8. Improved energy recovery from geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Boedvarsson, G. S.; Pruess, K.; Lippmann, M.; Bjoernsson, S.

    1981-06-01

    Numerical simulation methods are used to study how the exploitation of different horizons affects the behavior of a liquid-dominated geothermal reservoir. The reservoir model is a schematic representation of the Olkaria field in Kenya. The model consists of a two phase vapor dominated zone overlying the main liquid dominated reservoir. Four different cases were studied, with fluid produced from: (1) the vapor zone only, (2) the liquid zone only, (3) both zones and (4) both zones, but assuming lower values for vertical permeability and porosity. The results indicate that production from the shallow two phase zone, although resulting in higher enthalpy fluids, may not be advantageous in the long run. Shallow production gives rise to a rather localized depletion of the reservoir, whereas production from deeper horizons may yield a more uniform depletion process, if vertical permeability is sufficiently large.

  9. 21 CFR 868.5320 - Reservoir bag.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... device, usually made of conductive rubber, intended for use in a breathing circuit as a reservoir for breathing gas and to assist, control, or monitor a patient's ventilation. (b) Classification. Class...

  10. 21 CFR 868.5320 - Reservoir bag.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... device, usually made of conductive rubber, intended for use in a breathing circuit as a reservoir for breathing gas and to assist, control, or monitor a patient's ventilation. (b) Classification. Class...

  11. 21 CFR 868.5320 - Reservoir bag.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... device, usually made of conductive rubber, intended for use in a breathing circuit as a reservoir for breathing gas and to assist, control, or monitor a patient's ventilation. (b) Classification. Class...

  12. 21 CFR 868.5320 - Reservoir bag.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... device, usually made of conductive rubber, intended for use in a breathing circuit as a reservoir for breathing gas and to assist, control, or monitor a patient's ventilation. (b) Classification. Class...

  13. 21 CFR 868.5320 - Reservoir bag.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... device, usually made of conductive rubber, intended for use in a breathing circuit as a reservoir for breathing gas and to assist, control, or monitor a patient's ventilation. (b) Classification. Class...

  14. Modeling the Entrepeñas Reservoir.

    PubMed

    Wiese, Bernd U; Palancar, María C; Aragón, José M; Sánchez, Fernando; Gil, Roberto

    2006-08-01

    The Entrepeñas Reservoir is a monomictic reservoir located in River Tagus (Spain). The aim of this work is to establish a feasible model to predict the depth of the thermocline that is developed in the reservoir during the period of natural thermal stratification. Entrainment, eddy diffusion, inflow of external energy, and other factors are considered to calibrate the parameters of the model. The methodology involves the measure of actual temperature and electrical conductivity profiles, use of meteorological data and reservoir parameters, and selection and application of several models from the literature. The calculations and predictions are integrated to a software packet that is able to predict thermocline depth and water temperature profile during a 1-year period on a day-by-day basis. In the thermocline depth, the prediction error, on the basis of real data, is less than 6% and, in the water temperature, it is 2 degrees C.

  15. Heat deliverability of homogeneous geothermal reservoirs

    SciTech Connect

    Iglesias, Eduardo R.; Moya, Sara L.

    1991-01-01

    For the last two decades, the petroleum industry has been successfully using simple inflow performance relationships (IPR's) to predict oil deliverability. In contrast, the geothermal industry lacked a simple and reliable method to estimate geothermal wells' heat deliverability. To address this gap in the standard geothermal-reservoir-assessment arsenal, we developed generalized dimensionless geothermal inflow performance relationships (GIPR's). These ''reference curves'' may be regarded as an approximate general solution of the equations describing the practically important case of radial 2-phase inflow. Based on this approximate solution, we outline a straightforward approach to estimate the reservoir contribution to geothermal wells heat and mass deliverability for 2-phase reservoirs. This approach is far less costly and in most cases as reliable as numerically modeling the reservoir, which is the alternative for 2-phase inflow.

  16. Reservoir Greenhouse Gas Emissions at Russian HPP

    SciTech Connect

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V.; Savvichev, A. S.; Zinchenko, A. V.

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  17. Assembling evidence for identifying reservoirs of infection

    PubMed Central

    Viana, Mafalda; Mancy, Rebecca; Biek, Roman; Cleaveland, Sarah; Cross, Paul C.; Lloyd-Smith, James O.; Haydon, Daniel T.

    2014-01-01

    Many pathogens persist in multihost systems, making the identification of infection reservoirs crucial for devising effective interventions. Here, we present a conceptual framework for classifying patterns of incidence and prevalence, and review recent scientific advances that allow us to study and manage reservoirs simultaneously. We argue that interventions can have a crucial role in enriching our mechanistic understanding of how reservoirs function and should be embedded as quasi-experimental studies in adaptive management frameworks. Single approaches to the study of reservoirs are unlikely to generate conclusive insights whereas the formal integration of data and methodologies, involving interventions, pathogen genetics, and contemporary surveillance techniques, promises to open up new opportunities to advance understanding of complex multihost systems. PMID:24726345

  18. Reservoir response to tidal and barometric effects

    SciTech Connect

    Hanson, J.M.

    1980-05-29

    Solid earth tidal strain and surface loading due to fluctuations in barometric pressure have the effect, although extremely minute, of dilating or contracting the effective pore volume in a porous reservoir. If a well intersects the formation, the change in pore pressure can be measured with sensitive quartz pressure gauges. Mathematical models of the relevant fluid dynamics of the well-reservoir system have been generated and tested against conventional well pumping results or core data at the Salton Sea Geothermal Field (SSGF), California and at the Raft River, Geothermal Field (RRGF), Idaho. Porosity-total compressibility product evaluation based on tidal strain response compares favorably with results based on conventional pumping techniques. Analysis of reservoir response to barometric loading using Auto Regressive Integrated Moving Average (ARIMA) stochastic modeling appears also to have potential use for the evaluation of reservoir parameters.

  19. Ecological assessment of a southeastern Brazil reservoir

    EPA Science Inventory

    Abstract: Reservoirs are artificial ecosystems with multiple functions having direct and indirect benefits to humans; however, they also cause ecological changes and influence the composition and structure of aquatic biota. Our objectives were to: (1) assess the environmen...

  20. Assembling evidence for identifying reservoirs of infection

    USGS Publications Warehouse

    Mafalda, Viana; Rebecca, Mancy; Roman, Biek; Sarah, Cleaveland; Cross, Paul C.; James O, Lloyd-Smith; Daniel T, Haydon

    2014-01-01

    Many pathogens persist in multihost systems, making the identification of infection reservoirs crucial for devising effective interventions. Here, we present a conceptual framework for classifying patterns of incidence and prevalence, and review recent scientific advances that allow us to study and manage reservoirs simultaneously. We argue that interventions can have a crucial role in enriching our mechanistic understanding of how reservoirs function and should be embedded as quasi-experimental studies in adaptive management frameworks. Single approaches to the study of reservoirs are unlikely to generate conclusive insights whereas the formal integration of data and methodologies, involving interventions, pathogen genetics, and contemporary surveillance techniques, promises to open up new opportunities to advance understanding of complex multihost systems.

  1. Models for naturally fractured, carbonate reservoir simulations

    SciTech Connect

    Tuncay, K.; Park, A.; Ozkan, G.; Zhan, X.; Ortoleva, P.; Hoak, T.; Sundberg, K.

    1998-12-31

    This report outlines the need for new tools for the simulation of fractured carbonate reservoirs. Several problems are identified that call for the development of new reservoir simulation physical models and numerical techniques. These include: karst and vuggy media wherein Darcy`s and traditional multi-phase flow laws do not apply; the need for predicting the preproduction state of fracturing and stress so that the later response of effective stress-dependent reservoirs can be predicted; and methods for predicting the fracturing and collapse of vuggy and karst reservoirs in response to draw-down pressure created during production. Specific research directions for addressing each problem are outlined and preliminary results are noted.

  2. Oxygen sensitive paper

    NASA Technical Reports Server (NTRS)

    Whidby, J. F.

    1973-01-01

    Paper is impregnated with mixture of methylene blue and ethylenediaminetetraacetic acid. Methylene blue is photo-reduced to leuco-form. Paper is kept isolated from oxygen until ready for use. Paper can be reused by photo-reduction after oxygen exposure.

  3. Durability of oxygen sensors

    NASA Astrophysics Data System (ADS)

    Snapp, L.

    1985-03-01

    This report describes the results of dynamometer and vehicle durability testing from a variety of sources, as well as common causes of failure for oxygen sensors. The data indicates that oxygen sensors show low failure rates, even at mileages of 80,000 miles and beyond.

  4. Integration of reservoir simulation and geomechanics

    NASA Astrophysics Data System (ADS)

    Zhao, Nan

    Fluid production from tight and shale gas formations has increased significantly, and this unconventional portfolio of low-permeability reservoirs accounts for more than half of the gas produced in the United States. Stimulation and hydraulic fracturing are critical in making these systems productive, and hence it is important to understand the mechanics of the reservoir. When modeling fractured reservoirs using discrete-fracture network representation, the geomechanical effects are expected to have a significant impact on important reservoir characteristics. It has become more accepted that fracture growth, particularly in naturally fractured reservoirs with extremely low permeability, cannot be reliably represented by conventional planar representations. Characterizing the evolution of multiple, nonplanar, interconnected and possibly nonvertical hydraulic fractures requires hydraulic and mechanical characterization of the matrix, as well as existing latent or healed fracture networks. To solve these challenging problems, a reservoir simulator (Advanced Reactive Transport Simulator (ARTS)) capable of performing unconventional reservoir simulation is developed in this research work. A geomechanical model has been incorporated into the simulation framework with various coupling schemes and this model is used to understand the geomechanical effects in unconventional oil and gas recovery. This development allows ARTS to accept geomechanical information from external geomechanical simulators (soft coupling) or the solution of the geomechanical coupled problem (hard coupling). An iterative solution method of the flow and geomechanical equations has been used in implementing the hard coupling scheme. The hard coupling schemes were verified using one-dimensional and two-dimensional analytical solutions. The new reservoir simulator is applied to learn the influence of geomechanical impact on unconventional oil and gas production in a number of practical recovery scenarios

  5. Oil reservoir properties estimation using neural networks

    SciTech Connect

    Toomarian, N.B.; Barhen, J.; Glover, C.W.; Aminzadeh, F.

    1997-02-01

    This paper investigates the applicability as well as the accuracy of artificial neural networks for estimating specific parameters that describe reservoir properties based on seismic data. This approach relies on JPL`s adjoint operators general purpose neural network code to determine the best suited architecture. The authors believe that results presented in this work demonstrate that artificial neural networks produce surprisingly accurate estimates of the reservoir parameters.

  6. Geophysical monitoring in a hydrocarbon reservoir

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  7. Results of the geothermal reservoir insurance study

    SciTech Connect

    Roth, D.M.

    1982-10-01

    On June 30, 1980, Public Law 96-294, referred to as the Energy Security Act, was enacted by the Congress of the United States. Subtitle B of Title VI (Geothermal Energy) of the Act required that a reservoir insurance program study be conducted. The objective of the study was to provide an analysis of the need for and feasibility of a geothermal reservoir insurance program. In conjunction with the analysis, the appropriate level of federal support, if any, was to be determined.

  8. Origins of acid fluids in geothermal reservoirs

    USGS Publications Warehouse

    Truesdell, Alfred

    1991-01-01

    Acid fluids in geothermal reservoirs are rare. Their occurrence in geothermal systems associated with recent volcanism (Tatun, Sumikawa, Miravalles) probably indicates that the geothermal reservoir fluid was derived from volcanic fluid incompletely neutralized by reaction with feldspars and micas. Superheated steam containing HCl (Larderello, The Geysers) forms acid where it condenses or mixes with liquid at moderate temperatures (325??C). Cryptoacidity occurs at Los Humeros where HCl acidity is formed and neutralized without reaching the surface.

  9. Reservoir engineering of Wairakei geothermal field

    SciTech Connect

    Grant, Malcom A.

    1988-01-01

    Wairakei was the first liquid dominated geothermal field exploited for major power production. As such many decisions were taken on an ad-hoc or experimental basis. In retrospect the choice of Wairakei was fortunate : with extensive shallow high permeability and major recharge it is an easy field to exploit. This lecture describes the history of the field and the contribution of reservoir engineering to field management, and describes the reservoir as it is now understood.

  10. Integrated management of multiple reservoir field developments

    SciTech Connect

    Lyons, S.L.; Chan, H.M.; Harper, J.L.; Boyett, B.A.; Dowson, P.R.; Bette, S.

    1995-10-01

    This paper consists of two sections. The authors first describe the coupling of a pipeline network model to a reservoir simulator and then the application of this new simulator to optimize the production strategy of two Mobil field developments. Mobil`s PEGASUS simulator is an integrated all purpose reservoir simulator that handles black-oil, compositional, faulted and naturally fractured reservoirs. The authors have extended the simulator to simultaneously model multiple reservoirs coupled with surface pipeline networks and processes. This allows them to account for the effects of geology, well placement, and surface production facilities on well deliverability in a fully integrated fashion. They have also developed a gas contract allocation system that takes the user-specified constraints, target rates and swing factors and automatically assigns rates to the individual wells of each reservoir. This algorithm calculates the overall deliverability and automatically reduces the user-specified target rates to meet the deliverability constraints. The algorithm and solution technique are described. This enhanced simulator has been applied to model a Mobil field development in the Southern Gas Basin, offshore United Kingdom, which consists of three separate gas reservoirs connected via a pipeline network. The simulator allowed the authors to accurately determine the impact on individual reservoir and total field performance by varying the development timing of these reservoirs. Several development scenarios are shown to illustrate the capabilities of PEGASUS. Another application of this technology is in the field developments in North Sumatra, Indonesia. Here the objective is to economically optimize the development of multiple fields to feed the PT Arun LNG facility. Consideration of a range of gas compositions, well productivity`s, and facilities constraints in an integrated fashion results in improved management of these assets. Model specifics are discussed.

  11. 13. Symposium on reservoir simulation: Proceedings

    SciTech Connect

    1995-12-31

    This is a conference proceedings which deals with the latest developments and trends in reservoir simulation techniques and modeling. It includes papers dealing with multiphase flow in oil and gas wells; flow calculation methods in deviated and horizontal wells; fluid flow in fractured reservoirs; and simulation techniques for enhanced recovery and well stimulation processes. Most papers provide case studies using the various computer models or computer systems, including numerous studies on parallel processing equipment.

  12. Horizontal sidetrack taps reservoir sweet spots''

    SciTech Connect

    Wible, J.R. )

    1994-02-21

    Cutting a window at 85[degree] deviation allowed a sidetrack to pass through the high-resistivity sections in a Gulf of Mexico reservoir. Results from logging-while-drilling (LWD) tools indicated the original horizontal bore dropped too low in the reservoir, possibly leading to a low productivity well. The subsequent sidetrack successfully delivered the desired well bore, and the increased productivity justified the efforts in cutting a window in the horizontal section.

  13. Oxygen stress reduces zoospore survival of Phytophthora species in a simulated aquatic system

    PubMed Central

    2014-01-01

    Background The genus Phytophthora includes a group of agriculturally important pathogens and they are commonly regarded as water molds. They produce motile zoospores that can move via water currents and on their own locomotion in aquatic environments. However, zoosporic response to dissolved oxygen, an important water quality parameter, is not known. Like other water quality parameters, dissolved oxygen concentration in irrigation reservoirs fluctuates dramatically over time. The aim of this study was to determine whether and how zoospore survival may be affected by elevated and low concentrations of dissolved oxygen in water to better understand the aquatic biology of these pathogens in irrigation reservoirs. Results Zoospores of P. megasperma, P. nicotianae, P. pini and P. tropicalis were assessed for survival in 10% Hoagland’s solution at a range of dissolved concentrations from 0.9 to 20.1 mg L-1 for up to seven exposure times from 0 to 72 h. Zoospore survival was measured by resultant colony counts per ml. Zoospores of these species survived the best in control Hoagland’s solution at dissolved oxygen concentrations of 5.3 to 5.6 mg L-1. Zoospore survival rates decreased with increasing and decreasing concentration of dissolved oxygen, depending upon Phytophthora species and exposure time. Overall, P. megasperma and P. pini are less sensitive than P. nicotianae and P. tropicalis to hyperoxia and hypoxia conditions. Conclusion Zoospores in the control solution declined over time and this natural decline process was enhanced under hyperoxia and hypoxia conditions. These findings suggest that dramatic fluctuations of dissolved oxygen in irrigation reservoirs contribute to the population decline of Phytophthora species along the water path in the same reservoirs. These findings advanced our understanding of the aquatic ecology of these pathogens in irrigation reservoirs. They also provided a basis for pathogen risk mitigation by prolonging the turnover

  14. Application of integrated reservoir management and reservoir characterization to optimize infill drilling

    SciTech Connect

    1997-04-01

    This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities were identified and tested. The geologically targeted infill drilling program currently being implemented is a result of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

  15. Atomic Oxygen Textured Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Hunt, Jason D.; Drobotij, Erin; Cales, Michael R.; Cantrell, Gidget

    1995-01-01

    Atomic oxygen can be used to microscopically alter the surface morphology of polymeric materials in space or in ground laboratory facilities. For polymeric materials whose sole oxidation products are volatile species, directed atomic oxygen reactions produce surfaces of microscopic cones. However, isotropic atomic oxygen exposure results in polymer surfaces covered with lower aspect ratio sharp-edged craters. Isotropic atomic oxygen plasma exposure of polymers typically causes a significant decrease in water contact angle as well as altered coefficient of static friction. Such surface alterations may be of benefit for industrial and biomedical applications. The results of atomic oxygen plasma exposure of thirty-three (33) different polymers are presented, including typical morphology changes, effects on water contact angle, and coefficient of static friction.

  16. Massachusetts reservoir simulation tool—User’s manual

    USGS Publications Warehouse

    Levin, Sara B.

    2016-10-06

    IntroductionThe U.S. Geological Survey developed the Massachusetts Reservoir Simulation Tool to examine the effects of reservoirs on natural streamflows in Massachusetts by simulating the daily water balance of reservoirs. The simulation tool was developed to assist environmental managers to better manage water withdrawals in reservoirs and to preserve downstream aquatic habitats.

  17. 21 CFR 870.4400 - Cardiopulmonary bypass blood reservoir.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cardiopulmonary bypass blood reservoir. 870.4400... bypass blood reservoir. (a) Identification. A cardiopulmonary bypass blood reservoir is a device used in... circulation. (b) Classification. Class II (performance standards), except that a reservoir that contains...

  18. 21 CFR 870.4400 - Cardiopulmonary bypass blood reservoir.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cardiopulmonary bypass blood reservoir. 870.4400... bypass blood reservoir. (a) Identification. A cardiopulmonary bypass blood reservoir is a device used in... circulation. (b) Classification. Class II (performance standards), except that a reservoir that contains...

  19. 21 CFR 870.4400 - Cardiopulmonary bypass blood reservoir.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cardiopulmonary bypass blood reservoir. 870.4400... bypass blood reservoir. (a) Identification. A cardiopulmonary bypass blood reservoir is a device used in... circulation. (b) Classification. Class II (performance standards), except that a reservoir that contains...

  20. 21 CFR 870.4400 - Cardiopulmonary bypass blood reservoir.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cardiopulmonary bypass blood reservoir. 870.4400... bypass blood reservoir. (a) Identification. A cardiopulmonary bypass blood reservoir is a device used in... circulation. (b) Classification. Class II (performance standards), except that a reservoir that contains...

  1. Greenhouse gas (CO2 and CH4) emissions from a high altitude hydroelectric reservoir in the tropics (Riogrande II, Colombia)

    NASA Astrophysics Data System (ADS)

    Guérin, Frédéric; Leon, Juan

    2015-04-01

    Tropical hydroelectric reservoirs are considered as very significant source of methane (CH4) and carbon dioxide (CO2), especially when flooding dense forest. We report emissions from the Rio Grande II Reservoir located at 2000 m.a.s.l. in the Colombian Andes. The dam was built at the confluence of the Rio Grande and Rio Chico in 1990. The reservoir has a surface of 12 km2, a maximum depth of 40m and a residence time of 2.5 month. Water quality (temperature, oxygen, pH, conductivity), nitrate, ammonium, dissolved and particulate organic carbon (DOC and POC), CO2 and CH4 were monitored bi-monthly during 1.5 year at 9 stations in the reservoir. Diffusive fluxes of CO2 and CH4 and CH4 ebullition were measured at 5 stations. The Rio grande II Reservoir is weakly stratified thermally with surface temperature ranging from 20 to 24°C and a constant bottom temperature of 18°C. The reservoir water column is well oxygenated at the surface and usually anoxic below 10m depth. At the stations close to the tributaries water inputs, the water column is well mixed and oxygenated from the surface to the bottom. As reported for other reservoirs located in "clear water" watersheds, the concentrations of nutrients are low (NO3-<0.1ppm, NH4+<0.2ppm), the concentrations of DOC are high (2-8 mg L-1) and POC concentrations are low (< 3 mg L-1). Surface CH4 concentrations at the central stations of the reservoirs are 0.5 μmol L-1 (0.07-2.14 μmol L-1) and 3 times higher at the stations close to the tributaries inputs (up to 7 μmol L-1). In the hypolimnion, CH4 concentration is <100 μmol L-1 in the wet season and can reach up to 400 μmol L-1 in the dry season. The spatial and temporal variability are lower for CO2. Surface CO2 concentration was on average 72 μmol L-1 (up to 300) and hypolimnic concentration ranged between 250 and 1000 μmol L-1. The CO2 diffusive flux is 517±331 mmol m-2 d-1 with little seasonal and spatial variations. At the center of the reservoir, the median

  2. Parallel reservoir computing using optical amplifiers.

    PubMed

    Vandoorne, Kristof; Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Bienstman, Peter

    2011-09-01

    Reservoir computing (RC), a computational paradigm inspired on neural systems, has become increasingly popular in recent years for solving a variety of complex recognition and classification problems. Thus far, most implementations have been software-based, limiting their speed and power efficiency. Integrated photonics offers the potential for a fast, power efficient and massively parallel hardware implementation. We have previously proposed a network of coupled semiconductor optical amplifiers as an interesting test case for such a hardware implementation. In this paper, we investigate the important design parameters and the consequences of process variations through simulations. We use an isolated word recognition task with babble noise to evaluate the performance of the photonic reservoirs with respect to traditional software reservoir implementations, which are based on leaky hyperbolic tangent functions. Our results show that the use of coherent light in a well-tuned reservoir architecture offers significant performance benefits. The most important design parameters are the delay and the phase shift in the system's physical connections. With optimized values for these parameters, coherent semiconductor optical amplifier (SOA) reservoirs can achieve better results than traditional simulated reservoirs. We also show that process variations hardly degrade the performance, but amplifier noise can be detrimental. This effect must therefore be taken into account when designing SOA-based RC implementations.

  3. Reservoir assessment of The Geysers Geothermal field

    SciTech Connect

    Thomas, R.P.; Chapman, R.H.; Dykstra, H.

    1981-01-01

    Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

  4. Assessment of reservoir system variable forecasts

    NASA Astrophysics Data System (ADS)

    Kistenmacher, Martin; Georgakakos, Aris P.

    2015-05-01

    Forecast ensembles are a convenient means to model water resources uncertainties and to inform planning and management processes. For multipurpose reservoir systems, forecast types include (i) forecasts of upcoming inflows and (ii) forecasts of system variables and outputs such as reservoir levels, releases, flood damage risks, hydropower production, water supply withdrawals, water quality conditions, navigation opportunities, and environmental flows, among others. Forecasts of system variables and outputs are conditional on forecasted inflows as well as on specific management policies and can provide useful information for decision-making processes. Unlike inflow forecasts (in ensemble or other forms), which have been the subject of many previous studies, reservoir system variable and output forecasts are not formally assessed in water resources management theory or practice. This article addresses this gap and develops methods to rectify potential reservoir system forecast inconsistencies and improve the quality of management-relevant information provided to stakeholders and managers. The overarching conclusion is that system variable and output forecast consistency is critical for robust reservoir management and needs to be routinely assessed for any management model used to inform planning and management processes. The above are demonstrated through an application from the Sacramento-American-San Joaquin reservoir system in northern California.

  5. Bathymetric contours of Breckenridge Reservoir, Quantico, Virginia

    USGS Publications Warehouse

    Wicklein, S.M.; Lotspeich, R.R.; Banks, R.B.

    2012-01-01

    Breckenridge Reservoir, built in 1938, is fed by Chopawamsic Creek and South Branch Chopawamsic Creek. The Reservoir is a main source of drinking water for the U.S. Marine Corps (USMC) Base in Quantico, Virginia. The U.S. Geological Survey (USGS), in cooperation with the USMC, conducted a bathymetric survey of Breckenridge Reservoir in March 2009. The survey was conducted to provide the USMC Natural Resources and Environmental Affairs (NREA) with information regarding reservoir storage capacity and general bathymetric properties. The bathymetric survey can provide a baseline for future work on sediment loads and deposition rates for the reservoir. Bathymetric data were collected using a boat-mounted Wide Area Augmentation System (WAAS) differential global positioning system (DGPS), echo depth-sounding equipment, and computer software. Data were exported into a geographic information system (GIS) for mapping and calculating area and volume. Reservoir storage volume at the time of the survey was about 22,500,000 cubic feet (517 acre-feet) with a surface area of about 1,820,000 square feet (41.9 acres).

  6. Comparisons of Simulated Hydrodynamics and Water Quality for Projected Demands in 2046, Pueblo Reservoir, Southeastern Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.; Galloway, Joel M.; Miller, Lisa D.; Mau, David P.

    2008-01-01

    2002) were compared to the No Action scenario (projected demands in 2046) to assess changes in water quality over time. All scenario modeling used an external nutrient-decay model to simulate degradation and assimilation of nutrients along the riverine reach upstream from Pueblo Reservoir. Reservoir modeling was conducted using the U.S. Army Corps of Engineers CE-QUAL-W2 two-dimensional water-quality model. Lake hydrodynamics, water temperature, dissolved oxygen, dissolved solids, dissolved ammonia, dissolved nitrate, total phosphorus, algal biomass, and total iron were simulated. Two reservoir site locations were selected for comparison. Results of simulations at site 3B were characteristic of a riverine environment in the reservoir while results at site 7B (near the dam) were characteristic of the main body of the reservoir. Simulation results for the epilimnion and hypolimnion at these two sites also were evaluated and compared. The simulation results in the hypolimnion at site 7B were indicative of the water quality leaving the reservoir. Comparisons of the different scenario results were conducted to assess if substantial differences were observed between selected scenarios. Each of the scenarios was simulated for three contiguous years representing a wet, average, and dry annual hydrologic cycle (water years 2000 through 2002). Additionally, each selected simulation scenario was evaluated for differences in direct- and cumulative-effects on a particular scenario. Direct effects are intended to isolate the future effects of the scenarios. Cumulative effects are intended to evaluate the effects of the scenarios in conjunction with all reasonably foreseeable future activities in the study area. Comparisons between the direct- and cumulative-effects analyses indicated that there were not large differences in the results between most of the simulation scenarios and, as such, the focus of this report was on results for the direct-effects analysis. Addi

  7. Potential methane reservoirs beneath Antarctica.

    PubMed

    Wadham, J L; Arndt, S; Tulaczyk, S; Stibal, M; Tranter, M; Telling, J; Lis, G P; Lawson, E; Ridgwell, A; Dubnick, A; Sharp, M J; Anesio, A M; Butler, C E H

    2012-08-30

    Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14 kilometres thick and an estimated 21,000 petagrams (1 Pg equals 10(15) g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other subglacial environments that demonstrate the potential for overridden organic matter beneath glacial systems to produce methane. We also numerically simulate the accumulation of methane in Antarctic sedimentary basins using an established one-dimensional hydrate model and show that pressure/temperature conditions favour methane hydrate formation down to sediment depths of about 300 metres in West Antarctica and 700 metres in East Antarctica. Our results demonstrate the potential for methane hydrate accumulation in Antarctic sedimentary basins, where the total inventory depends on rates of organic carbon degradation and conditions at the ice-sheet bed. We calculate that the sub-Antarctic hydrate inventory could be of the same order of magnitude as that of recent estimates made for Arctic permafrost. Our findings suggest that the Antarctic Ice Sheet may be a neglected but important component of the global methane budget, with the potential to act as a positive feedback on climate warming during ice-sheet wastage.

  8. Atomic Oxygen Fluence Monitor

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2011-01-01

    This innovation enables a means for actively measuring atomic oxygen fluence (accumulated atoms of atomic oxygen per area) that has impinged upon spacecraft surfaces. Telemetered data from the device provides spacecraft designers, researchers, and mission managers with real-time measurement of atomic oxygen fluence, which is useful for prediction of the durability of spacecraft materials and components. The innovation is a compact fluence measuring device that allows in-space measurement and transmittance of measured atomic oxygen fluence as a function of time based on atomic oxygen erosion yields (the erosion yield of a material is the volume of material that is oxidized per incident oxygen atom) of materials that have been measured in low Earth orbit. It has a linear electrical response to atomic oxygen fluence, and is capable of measuring high atomic oxygen fluences (up to >10(exp 22) atoms/sq cm), which are representative of multi-year low-Earth orbital missions (such as the International Space Station). The durability or remaining structural lifetime of solar arrays that consist of polymer blankets on which the solar cells are attached can be predicted if one knows the atomic oxygen fluence that the solar array blanket has been exposed to. In addition, numerous organizations that launch space experiments into low-Earth orbit want to know the accumulated atomic oxygen fluence that their materials or components have been exposed to. The device is based on the erosion yield of pyrolytic graphite. It uses two 12deg inclined wedges of graphite that are over a grit-blasted fused silica window covering a photodiode. As the wedges erode, a greater area of solar illumination reaches the photodiode. A reference photodiode is also used that receives unobstructed solar illumination and is oriented in the same direction as the pyrolytic graphite covered photodiode. The short-circuit current from the photodiodes is measured and either sent to an onboard data logger, or

  9. Spatial and Temporal Correlates of Greenhouse Gas Diffusion from a Hydropower Reservoir in the Southern United States

    DOE PAGES

    Mosher, Jennifer; Fortner, Allison M.; Phillips, Jana Randolph; ...

    2015-10-29

    Emissions of CO2 and CH4 from freshwater reservoirs constitute a globally significant source of atmospheric greenhouse gases (GHGs), but knowledge gaps remain with regard to spatiotemporal drivers of emissions. We document the spatial and seasonal variation in surface diffusion of CO2 and CH4 from Douglas Lake, a hydropower reservoir in Tennessee, USA. Monthly estimates across 13 reservoir sites from January to November 2010 indicated that surface diffusions ranged from 236 to 18,806 mg m-2 day-1 for CO2 and 0 to 0.95 mg m-2 day-1 for CH4. Next, we developed statistical models using spatial and physicochemical variables to predict surface diffusionsmore » of CO2 and CH4. Models explained 22.7 and 20.9% of the variation in CO2 and CH4 diffusions, respectively, and identified pH, temperature, dissolved oxygen, and Julian day as the most informative important predictors. These findings provide baseline estimates of GHG emissions from a reservoir in eastern temperate North America a region for which estimates of reservoir GHGs emissions are limited. Our statistical models effectively characterized non-linear and threshold relationships between physicochemical predictors and GHG emissions. Further refinement of such models will aid in predicting current GHG emissions in unsampled reservoirs and forecasting future GHG emissions.« less

  10. Reservoir stratification affects methylmercury levels in river water, plankton, and fish downstream from Balbina hydroelectric dam, Amazonas, Brazil.

    PubMed

    Kasper, Daniele; Forsberg, Bruce R; Amaral, João H F; Leitão, Rafael P; Py-Daniel, Sarah S; Bastos, Wanderley R; Malm, Olaf

    2014-01-21

    The river downstream from a dam can be more contaminated by mercury than the reservoir itself. However, it is not clear how far the contamination occurs downstream. We investigated the seasonal variation of methylmercury levels in the Balbina reservoir and how they correlated with the levels encountered downstream from the dam. Water, plankton, and fishes were collected upstream and at sites between 0.5 and 250 km downstream from the dam during four expeditions in 2011 and 2012. Variations in thermal stratification of the reservoir influenced the methylmercury levels in the reservoir and in the river downstream. Uniform depth distributions of methylmercury and oxygen encountered in the poorly stratified reservoir during the rainy season collections coincided with uniformly low methylmercury levels along the river downstream from the dam. During dry season collections, the reservoir was strongly stratified, and anoxic hypolimnion water with high methylmercury levels was exported downstream. Methylmercury levels declined gradually to 200 km downstream. In general, the methylmercury levels in plankton and fishes downstream from the dam were higher than those upstream. Higher methylmercury levels observed 200-250 km downstream from the dam during flooding season campaigns may reflect the greater inflow from tributaries and flooding of natural wetlands that occurred at this time.

  11. Dynamics of cyanobacteria and cyanobacterial toxins and their correlation with environmental parameters in Tri An Reservoir, Vietnam.

    PubMed

    Dao, Thanh-Son; Nimptsch, Jorge; Wiegand, Claudia

    2016-08-01

    This study evaluates the water quality from Tri An Reservoir, a drinking water supply for several million people in southern Vietnam, in terms of cyanobacterial biomass and their potent toxins, microcystins (MCs). Cyanobacteria, their toxins and environmental parameters were monitored monthly for 1 year (April 2008-March 2009) at six stations covering a transect through the reservoir. Dynamics of cyanobacterial abundance in relation to cyanobacterial biomass, toxins and environmental factors were investigated. Environmental variables from Tri An Reservoir favored algal and cyanobacterial development. However, cyanobacterial biomass and proportion varied widely, influenced by physical conditions, available nutrients and nutrient competition among the phytoplankton groups. Cyanobacterial biomass correlated slightly positively to temperature, pH and biochemical oxygen demand (BOD5), but negatively to total inorganic nitrogen concentrations. During most of the sampling times, MC concentrations in the reservoir were quite low (≤0.07 μg L(-1) MC-LR equivalent), and presented a slight positive correlation to BOD5, total nitrogen:total phosphorus ratio and cyanobacterial biomass. However, in cyanobacterial scum samples, which now and then occurred in the reservoir, MC concentrations reached up to 640 μg g(-1) DW(-1). The occurrence of MC in the reservoir poses a risk to local residents who use the water daily for domestic purposes.

  12. Tailoring dam structures to water quality predictions in new reservoir projects: assisting decision-making using numerical modeling.

    PubMed

    Marcé, Rafael; Moreno-Ostos, Enrique; García-Barcina, José Ma; Armengol, Joan

    2010-06-01

    Selection of reservoir location, the floodable basin forest handling, and the design of dam structures devoted to water supply (e.g. water outlets) constitute relevant features which strongly determine water quality and frequently demand management strategies to be adopted. Although these crucial aspects should be carefully examined during dam design before construction, currently the development of ad hoc limnological studies tailoring dam location and dam structures to the water quality characteristics expected in the future reservoir is not typical practice. In this study, we use numerical simulation to assist on the design of a new dam project in Spain with the aim of maximizing the quality of the water supplied by the future reservoir. First, we ran a well-known coupled hydrodynamic and biogeochemical dynamic numerical model (DYRESM-CAEDYM) to simulate the potential development of anoxic layers in the future reservoir. Then, we generated several scenarios corresponding to different potential hydraulic conditions and outlet configurations. Second, we built a simplified numerical model to simulate the development of the hypolimnetic oxygen content during the maturation stage after the first reservoir filling, taking into consideration the degradation of the terrestrial organic matter flooded and the adoption of different forest handling scenarios. Results are discussed in terms of reservoir design and water quality management. The combination of hypolimnetic withdrawal from two deep outlets and the removal of all the valuable terrestrial vegetal biomass before flooding resulted in the best water quality scenario.

  13. Seasonal Evolution of Thermal Stratification of Two High Mountain Tropical Reservoirs

    NASA Astrophysics Data System (ADS)

    Arbelaez, A. C.; Román-Botero, R.; Gómez-Giraldo, A.; Toro, M.

    2014-12-01

    A research was conducted to identify the dominant basin scale and season evolution of the physical processes in Riogrande II and La Fe, two high mountain Andean tropical reservoirs (>2000 masl), of different size and form, located in the northwestern of Colombia, Southamerica. Eight field campaigns were conducted in each reservoir between 2010 and 2012. Temperature, conductivity and turbidity profiles were measured along the longitudinal axes with a CTD and inflow temperature was recorded continuously with thermistors. In addition, thermistor chains were deployed on the deepest zone of each reservoir, in 2011 in La Fe and in 2013 in Riogrande II. The heat surface fluxes were calculated based on weather measurements, using heat bulk-formulations. It was found that the seasonal variability of the thermal structure in both reservoirs was dominated mainly by changes in the inflows temperature, related to the hydrological cycle, and not by the solar radiation variability. The atmospheric net heat flux revealed low seasonal changes, with the larger variability due to cloud cover and wind speed variability associated to the passage of the Intertropical Convergence Zone. The effect of the net atmospheric flux was confined to the surface mixed layer, which thickness varied between 2 and 4 m by the effect of short wave radiation heating during the day and strong heat loss starting at mid afternoon and remaining through the night. The inflow temperature was inversely correlated to the discharge, so large inflows are also colder and denser than small inflows. The plumes from small inflows are intrusive and create an intermediate layer of young water while those of large inflows remain attached to the bottom and fill the reservoir from the bottom. This resulted in the thermal structure of both reservoirs developing a bimodal annual cycle that follows the bimodal distribution of the rainfall and river discharge. Due to the discharge related changing level of the intrusion of the

  14. Hydroeconomic optimization of reservoir management under downstream water quality constraints

    NASA Astrophysics Data System (ADS)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Holm, Peter E.; Trapp, Stefan; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2015-10-01

    A hydroeconomic optimization approach is used to guide water management in a Chinese river basin with the objectives of meeting water quantity and water quality constraints, in line with the China 2011 No. 1 Policy Document and 2015 Ten-point Water Plan. The proposed modeling framework couples water quantity and water quality management and minimizes the total costs over a planning period assuming stochastic future runoff. The outcome includes cost-optimal reservoir releases, groundwater pumping, water allocation, wastewater treatments and water curtailments. The optimization model uses a variant of stochastic dynamic programming known as the water value method. Nonlinearity arising from the water quality constraints is handled with an effective hybrid method combining genetic algorithms and linear programming. Untreated pollutant loads are represented by biochemical oxygen demand (BOD), and the resulting minimum dissolved oxygen (DO) concentration is computed with the Streeter-Phelps equation and constrained to match Chinese water quality targets. The baseline water scarcity and operational costs are estimated to 15.6 billion CNY/year. Compliance to water quality grade III causes a relatively low increase to 16.4 billion CNY/year. Dilution plays an important role and increases the share of surface water allocations to users situated furthest downstream in the system. The modeling framework generates decision rules that result in the economically efficient strategy for complying with both water quantity and water quality constraints.

  15. Online interactive U.S. Reservoir Sedimentation Survey Database

    USGS Publications Warehouse

    Gray, J.B.; Bernard, J.M.; Schwarz, G.E.; Stewart, D.W.; Ray, K.T.

    2009-01-01

    In April 2009, the U.S. Geological Survey and the Natural Resources Conservation Service (prior to 1994, the Soil Conservation Service) created the Reservoir Sedimentation Survey Database (RESSED) and Web site, the most comprehensive compilation of data from reservoir bathymetric and dry basin surveys in the United States. RESSED data can be useful for a number of purposes, including calculating changes in reservoir storage characteristics, quantifying rates of sediment delivery to reservoirs, and estimating erosion rates in a reservoir's watershed.

  16. Synthetic carriers of oxygen.

    PubMed

    Dellacherie, E; Labrude, P; Vigneron, C; Riess, J G

    1987-01-01

    During the last decade, construction of artificial carriers of oxygen for transfusion purposes has evolved in three main directions, which can be reviewed as follows. The first approach consists of modifying hemoglobin (Hb), the natural oxygen carrier, in order to lower its oxygen affinity and increase its intravascular persistence. To achieve this aim, two basic procedures have been used: molecular and environmental modification. In the first case, Hb is modified with chemical reagents; the second requires encapsulation of Hb to obtain artificial erythrocytes. The second approach is based on the use of synthetic oxygen-carrying chelates that mimic the oxygenation function of Hb. The main products in this class are metalloporphyrins, whose chemical environment is designed to render them efficient as reversible carriers of oxygen in vivo. Finally, the third approach deals with the perfluorochemicals used in emulsified form. Perfluorochemical liquids are excellent gas solvents, but some problems remain unsolved with regard to their development as oxygen carriers in vivo: low O2 dissolving capacity, toxicity, and excretion.

  17. Oxygen Isotopic Analyses of Water Extracted from Lunar Samples

    NASA Astrophysics Data System (ADS)

    Nunn Martinez, M.; Thiemens, M. H.

    2014-12-01

    Oxygen exists in lunar materials in distinct phases having unique sources and equilibration histories. The oxygen isotopic composition (δ17O, δ18O) of various components of lunar materials has been studied extensively, but analyses of water in these samples are relatively sparse [1-3]. Samples collected on the lunar surface reflect not only the composition of their source reservoirs but also contributions from asteroidal and cometary impacts, interactions with solar wind and cosmic radiation, among other surface processes. Isotopic characterization of oxygen in lunar water could help resolve the major source of water in the Earth-Moon system by revealing if lunar water is primordial, asteroidal, or cometary in origin [1]. Methods: A lunar rock/soil sample is pumped to high vacuum to remove physisorbed water before heating step-wise to 50, 150, and 1000°C to extract extraterrestrial water without terrestrial contamination. The temperature at which water is evolved is proportional to the strength with which the water is bound in the sample and the relative difficulty of exchanging oxygen atoms in that water. This allows for the isolated extraction of water bound in different phases, which could have different source reservoirs and/or histories, as evidenced by the mass (in)dependence of oxygen compositions. A low blank procedure was developed to accommodate the low water content of lunar material [4]. Results: Oxygen isotopic analyses of lunar water extracted by stepwise heating lunar basalts and breccias with a range of compositions, petrologic types, and surface exposure ages will be presented. The cosmic ray exposure age of these samples varies by two orders of magnitude, and we will consider this in discussing the effects of solar wind and cosmic radiation on the oxygen isotopic composition (Δ17O). I will examine the implications of our water analyses for the composition of the oxygen-bearing reservoir from which that water formed, the effects of surface

  18. Electrochemical oxygen concentrator as an oxygen compressor

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A solid polymer electrolyte (SPE) oxygen compressor is described which generates pressures of 3000 psi. The SPE is a cation exchange membrane with chemical compatibility, and has the capability of withstanding 5000 psi. Other features of the compressor described include: gasketless sealing, porus plate cell supports, and conductive cooling. Results are presented of a computer program which defines the power of the system as a function of density, temperature, pressure, membrane thickness, and water content.

  19. [Analysis on the variation characteristics of iron and manganese concentration and its genesis in Changtan Reservoir in Taizhou, Zhejiang Province].

    PubMed

    Liu, Shu-Yuan; Zheng, Chen; Yuan, Qi; Wang, Xian-Bing; Wang, Zi-Yan

    2014-10-01

    Changtan Reservoir in Taizhou City Zhejiang Province and its inflow rivers were surveyed in January and from April to December in 2013. Based on those data and the water quality monitoring data in Changtan Reservoir collected in previous years, the change characteristics of iron and manganese concentrations in source water reservoir were investigated. Furthermore, the causes of water pollution by iron and manganese were discussed based on the variation of water temperature, dissolved oxygen (DO) in reservoir with water depth. The results showed that the seasonal variation characteristics of iron and the manganese concentrations in reservoir were much in evidence. Their concentrations were high from June to August and the highest values over the years at the outlet of Changtan Reservoir were 2.38 mg · L(-1) and 1.24 mg · L(-1), respectively. The iron and the manganese concentrations exceeded the Surface Water Environment Quality Standard (GB 383822002) of 0.3 mg · L(-1) and 0.1 mg · L(-1) from May to October. And in 2013, their highest values in the reservoir outlet exceeded the standard by 5. 6 times and 12. 4 times, respectively. The maxima of iron and manganese concentrations in the major rivers were 0.89 mg · L(-1) and 0.56 mg · L(-1), which were lower than those in the reservoir outlet. The comprehensive analysis result indicated that the exogenous pollution was not the major source of iron and manganese in the reservoir. The iron and manganese concentration at the bottom of the reservoir reached the maximum in July, 2.42 mg · L(-1) and 1.20 mg · L(-1), respectively. The typical vertical distribution of temperature, DO and iron and manganese concentrations in the reservoir in summer showed that seasonal anoxic environment caused by the thermal stratification led to the release of iron manganese from the deposits. The endogenous pollution caused by thermal stratification effect was the direct cause for the high iron and manganese concentrations in water

  20. Geologic aspects of horizontal drilling in self-sourcing reservoirs

    SciTech Connect

    Illich, H.A. )

    1991-03-01

    Horizontal drilling techniques provide a way to exploit hydrocarbon reserves that are either noneconomic or only marginally economic using vertical drilling techniques. A significant fraction of these reserves is contained in reservoirs that are self-sourcing or in reservoirs that are closely associated with their resources. Most formations drilled as horizontal targets are self-sourcing. The Austin Chalk, Niobrara, Mesaverde, and Bakken are examples of horizontally drilled, self-sourcing reservoir systems. In formations like the Bakken or Austin Chalk, the close relationship between reservoir and source makes risks associated with migration and accumulation less important. Reservoirs of this kind can contain oil or gas and often have little or no associated water. They can be matrix-dominated reservoirs, dual-porosity reservoirs (Mesaverde), or fractured reservoirs (Austin Chalk, Bakken, and Niobrara). Fractured, self-sourcing reservoirs also can possess matrix characteristics that contribute increased recovery efficiency. Most reservoirs drilled horizontally possess matrix characteristics that contribute increased recovery efficiency. Most reservoirs drilled horizontally possess highly heterogeneous reservoir systems. Characterization of the style of reservoir heterogeneity in self-sourcing systems is important if the favorable properties of horizontally oriented bore holes are to be realized. Production data and rock mechanics considerations are important in horizontal drilling ventures. Examples of the use of these data for the purpose of defining reservoir characteristics are discussed. Knowledge of lateral changes in reservoir properties is essential if we are to recover known reserves efficiently.