Hodges, P W; Kippers, V; Richardson, C A
1997-01-01
Fine-wire electromyography is primarily utilised for the recording of activity of the deep musculature, however, due to the location of these muscles, accurate electrode placement is difficult. Real-time ultrasound imaging (RTUI) of muscle tissue has been used for the guidance of the needle insertion for the placement of electrodes into the muscles of the abdominal wall. The validity of RTUI guidance of needle insertion into the deep muscles has not been determined. A cadaveric study was conducted to evaluate the accuracy with which RTUI can be used to guide fine-wire electrode placement using the posterior fibres of gluteus medius (PGM) as an example. Pilot studies revealed that the ultrasound resolution of cadaveric tissue is markedly reduced making it impossible to directly evaluate the technique, therefore, three studies were conducted. An initial study involved the demarcation of the anatomical boundaries of PGM using RTUI to define a technique based on an anatomical landmark that was consisent with the in vivo RTUI guided needle placement technique. This anatomical landmark was then used as the guide for the cadaveric needle insertion. Once the needle was positioned 0.05 ml of dye was introduced and the specimen dissected. The dye was accurately placed in PGM in 100% of the specimens. Finally, fine-wire electrodes were inserted into the PGM of five volunteers and manoeuvres performed indicating the accuracy of placement. This study supports the use of ultrasound imaging for the accurate guidance of needle insertion for fine-wire and needle EMG electrodes.
Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring
Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun
2016-01-01
A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring. PMID:27322278
Fabrication of a Micro-Needle Array Electrode by Thermal Drawing for Bio-Signals Monitoring.
Ren, Lei; Jiang, Qing; Chen, Keyun; Chen, Zhipeng; Pan, Chengfeng; Jiang, Lelun
2016-06-17
A novel micro-needle array electrode (MAE) fabricated by thermal drawing and coated with Ti/Au film was proposed for bio-signals monitoring. A simple and effective setup was employed to form glassy-state poly (lactic-co-glycolic acid) (PLGA) into a micro-needle array (MA) by the thermal drawing method. The MA was composed of 6 × 6 micro-needles with an average height of about 500 μm. Electrode-skin interface impedance (EII) was recorded as the insertion force was applied on the MAE. The insertion process of the MAE was also simulated by the finite element method. Results showed that MAE could insert into skin with a relatively low compression force and maintain stable contact impedance between the MAE and skin. Bio-signals, including electromyography (EMG), electrocardiography (ECG), and electroencephalograph (EEG) were also collected. Test results showed that the MAE could record EMG, ECG, and EEG signals with good fidelity in shape and amplitude in comparison with the commercial Ag/AgCl electrodes, which proves that MAE is an alternative electrode for bio-signals monitoring.
Coaxial needle insertion assistant with enhanced force feedback.
De Lorenzo, Danilo; Koseki, Yoshihiko; De Momi, Elena; Chinzei, Kiyoyuki; Okamura, Allison M
2013-02-01
Many medical procedures involving needle insertion into soft tissues, such as anesthesia, biopsy, brachytherapy, and placement of electrodes, are performed without image guidance. In such procedures, haptic detection of changing tissue properties at different depths during needle insertion is important for needle localization and detection of subsurface structures. However, changes in tissue mechanical properties deep inside the tissue are difficult for human operators to sense, because the relatively large friction force between the needle shaft and the surrounding tissue masks the smaller tip forces. A novel robotic coaxial needle insertion assistant, which enhances operator force perception, is presented. This one-degree-of-freedom cable-driven robot provides to the operator a scaled version of the force applied by the needle tip to the tissue, using a novel design and sensors that separate the needle tip force from the shaft friction force. The ability of human operators to use the robot to detect membranes embedded in artificial soft tissue was tested under the conditions of 1) tip force and shaft force feedback, and 2) tip force only feedback. The ratio of successful to unsuccessful membrane detections was significantly higher (up to 50%) when only the needle tip force was provided to the user.
Inoue, Motohiro; Katsumi, Yasukazu; Itoi, Megumi; Hojo, Tatsuya; Nakajima, Miwa; Ohashi, Suzuyo; Oi, Yuki; Kitakoji, Hiroshi
2011-06-01
To examine the therapeutic effect of a novel therapeutic method based on electroacupuncture with intermittent direct current (DCEA) and associated adverse events in patients with peripheral nerve damage and a poor clinical prognosis. In seven older patients with peripheral nerve damage (neurapraxia 2, axonotmesis 4, neuromesis 1), an acupuncture needle connected to an anode electrode was inserted proximal to the site of the injury along the route of the nerve, while the cathode electrode was inserted into the innervated muscle, and DCEA was performed (100 Hz for 20 min, weekly). Muscular paralysis was evaluated weekly with manual muscle testing, the active range of motion of joints related to the muscular paralysis and, when necessary, needle electromyography. Adverse events were also recorded during the course of the treatment. Complete functional recovery was observed in the two cases with neurapraxia and two with axonotmesis, while one axonotmesis case achieved improvement and the other showed reinnervation potential without functional recovery. No improvement was observed in the neurotmesis case. Pigmentation of the skin where the anode needle was inserted occurred in three cases. Although there was no definite causal link, one case showed excessive formation and resorption of bone in the area close to the cathode needle site. Accelerated nerve regeneration caused by DCEA may contribute to recovery. The skin pigmentation and callus formation suggest that the shape of the anode electrode, current intensity and other factors should be examined to establish a safer treatment method.
Nickfarjam, Abolfazl; Firoozabadi, S Mohammad P
2014-08-01
Irreversible electroporation (IRE) is a new tumour ablation method used in cancer treatment procedures. In a successful IRE treatment it is crucial to impose minimum thermal damage to the tumour and its surrounding healthy tissue, while subjecting the entire tumour to a strong electric field. Here we present a 3D model of a subcutaneous tumour in a four-layer skin using a geometry-based finite element approach. Four common needle electrode configurations were studied in this paper. The study evaluated six essential factors which are important in the electrical and thermal distributions in tumour and normal tissue. The results revealed that a hexagonal 3 × 3 geometry provides the maximum electrical coverage of the tumour, compared to other electrode configurations. However, in some cases the hexagonal 2 × 2 geometry can ablate the entire tumour with less damage to normal tissue. We found that the deeper insertion of 2- and 4-electrode geometries can lead to more damage to healthy tissue. The results also indicate that the insertion of the electrodes into tumour tissue can increase thermal damage dramatically due to existing large electrical conductivity. These findings suggest that needle electrodes should not be placed within the tumour tissue if the goal is to prevent thermal damage. This method can be used as a trade-off between electric field coverage in tumour tissue and thermal damage to both tumour and normal tissue.
Electroencephalogram measurement using polymer-based dry microneedle electrode
NASA Astrophysics Data System (ADS)
Arai, Miyako; Nishinaka, Yuya; Miki, Norihisa
2015-06-01
In this paper, we report a successful electroencephalogram (EEG) measurement using polymer-based dry microneedle electrodes. The electrodes consist of needle-shaped substrates of SU-8, a silver film, and a nanoporous parylene protective film. Differently from conventional wet electrodes, microneedle electrodes do not require skin preparation and a conductive gel. SU-8 is superior as a structural material to poly(dimethylsiloxane) (PDMS; Dow Corning Toray Sylgard 184) in terms of hardness, which was used in our previous work, and facilitates the penetration of needles through the stratum corneum. SU-8 microneedles can be successfully inserted into the skin without breaking and could maintain a sufficiently low skin-electrode contact impedance for EEG measurement. The electrodes successfully measured EEG from the frontal pole, and the quality of acquired signals was verified to be as high as those obtained using commercially available wet electrodes without any skin preparation or a conductive gel. The electrodes are readily applicable to record brain activities for a long period with little stress involved in skin preparation to the users.
Adeyanju, Oyinlolu O.; Al-Angari, Haitham M.; Sahakian, Alan V.
2012-01-01
Background Irreversible electroporation (IRE) is a novel ablation tool that uses brief high-voltage pulses to treat cancer. The efficacy of the therapy depends upon the distribution of the electric field, which in turn depends upon the configuration of electrodes used. Methods We sought to optimize the electrode configuration in terms of the distance between electrodes, the depth of electrode insertion, and the number of electrodes. We employed a 3D Finite Element Model and systematically varied the distance between the electrodes and the depth of electrode insertion, monitoring the lowest voltage sufficient to ablate the tumor, VIRE. We also measured the amount of normal (non-cancerous) tissue ablated. Measurements were performed for two electrodes, three electrodes, and four electrodes. The optimal electrode configuration was determined to be the one with the lowest VIRE, as that minimized damage to normal tissue. Results The optimal electrode configuration to ablate a 2.5 cm spheroidal tumor used two electrodes with a distance of 2 cm between the electrodes and a depth of insertion of 1 cm below the halfway point in the spherical tumor, as measured from the bottom of the electrode. This produced a VIRE of 3700 V. We found that it was generally best to have a small distance between the electrodes and for the center of the electrodes to be inserted at a depth equal to or deeper than the center of the tumor. We also found the distance between electrodes was far more important in influencing the outcome measures when compared with the depth of electrode insertion. Conclusions Overall, the distribution of electric field is highly dependent upon the electrode configuration, but the optimal configuration can be determined using numerical modeling. Our findings can help guide the clinical application of IRE as well as the selection of the best optimization algorithm to use in finding the optimal electrode configuration. PMID:23077449
Podnar, Simon; Doorduin, Jonne
2016-06-01
Controversy persists as to whether the lung interposes on the needle electrode insertion path during diaphragm electromyography (EMG). Using high-resolution ultrasonography, we measured the distances between the medial recess of the intercostal spaces (ICSs) around the mid-clavicular line (MCL) and the lung margin. We performed measurements bilaterally during quiet breathing in the seated and supine positions. We studied 10 young healthy men and found that, in the first ICS with the medial recess clearly (i.e., several cm) lateral to MCL (usually the eighth ICS), the distance between the recommended insertion site and the lung margin varied from 7.5 to 17 cm. The distance was slightly larger on the right side and in the supine position. This study confirms that properly conducted "trans-intercostal" needle EMG of the diaphragm is generally safe in healthy subjects. Muscle Nerve 54: 54-57, 2016. © 2015 Wiley Periodicals, Inc.
Electrolytic echo enhancement: a novel method to make needles more reflective to ultrasound.
Cockburn, John F; Khosh, Stefan K
2014-04-01
This study examines the effect of augmenting the ultrasound reflectivity of needles using a novel electrolytic echo enhancement method. Needles were connected by a lead to the negative terminal of a 4.5 V direct current source. A grounding pad, connected to the positive terminal, was positioned on the undersurface of an ex vivo ox liver phantom. During needle insertion into the liver, electrolysis was induced creating a layer of gas on the needle electrode. Analysis of images showed a significant increase in needle brightness using electrolytic echo enhancement. Brightness was found to increase by a factor of ×3.6 compared with controls (P < 0.001). Electrolytic echo enhancement has the potential to make ultrasound-guided procedures safer and quicker for patients and increase the confidence of operators in their ability to see the whole needle including its tip. © 2014 The Royal Australian and New Zealand College of Radiologists.
Peris-Celda, Maria; Graziano, Francesca; Russo, Vittorio; Mericle, Robert A; Ulm, Arthur J
2013-11-01
Foramen ovale (FO) puncture allows for trigeminal neuralgia treatment, FO electrode placement, and selected biopsy studies. The goals of this study were to demonstrate the anatomical basis of complications related to FO puncture, and provide anatomical landmarks for improvement of safety, selective lesioning of the trigeminal nerve (TN), and optimal placement of electrodes. Both sides of 50 dry skulls were studied to obtain the distances from the FO to relevant cranial base references. A total of 36 sides from 18 formalin-fixed specimens were dissected for Meckel cave and TN measurements. The best radiographic projection for FO visualization was assessed in 40 skulls, and the optimal trajectory angles, insertion depths, and topographies of the lesions were evaluated in 17 specimens. In addition, the differences in postoperative pain relief after the radiofrequency procedure among different branches of the TN were statistically assessed in 49 patients to determine if there was any TN branch less efficiently targeted. Most severe complications during FO puncture are related to incorrect needle placement intracranially or extracranially. The needle should be inserted 25 mm lateral to the oral commissure, forming an approximately 45° angle with the hard palate in the lateral radiographic view, directed 20° medially in the anteroposterior view. Once the needle reaches the FO, it can be advanced by 20 mm, on average, up to the petrous ridge. If the needle/radiofrequency electrode tip remains more than 18 mm away from the midline, injury to the cavernous carotid artery is minimized. Anatomically there is less potential for complications when the needle/radiofrequency electrode is advanced no more than 2 mm away from the clival line in the lateral view, when the needle pierces the medial part of the FO toward the medial part of the trigeminal impression in the petrous ridge, and no more than 4 mm in the lateral part. The 40°/45° inferior transfacial-20° oblique radiographic projection visualized 96.2% of the FOs in dry skulls, and the remainder were not visualized in any other projection of the radiograph. Patients with V1 involvement experienced postoperative pain more frequently than did patients with V2 or V3 involvement. Anatomical targeting of V1 in specimens was more efficiently achieved by inserting the needle in the medial third of the FO; for V2 targeting, in the middle of the FO; and for V3 targeting, in the lateral third of the FO. Knowledge of the extracranial and intracranial anatomical relationships of the FO is essential to understanding and avoiding complications during FO puncture. These data suggest that better radiographic visualization of the FO can improve lesioning accuracy depending on the part of the FO to be punctured. The angles and safety distances obtained may help the neurosurgeon minimize complications during FO puncture and TN lesioning.
Kaji, Hirokazu; Sekine, Soichiro; Hashimoto, Masahiko; Kawashima, Takeaki; Nishizawa, Matsuhiko
2007-01-01
We report a method for producing patterned cell adhesion inside silicone tubing. A platinum needle microelectrode was inserted through the wall of the tubing and an oxidizing agent electrochemically generated at the inserted electrode. This agent caused local detachment of the anti-biofouling heparin layer from the inner surface of the tubing. The cell-adhesive protein fibronectin selectively adsorbed onto the newly exposed surface, making it possible to initiate a localized cell culture. The electrode could be readily set in place without breaking the tubular structure and, importantly, almost no culture solution leaked from the electrode insertion site after the electrode was removed. Ionic adsorption of poly-L-lysine at the tubular region retaining a heparin coating was used to switch the heparin surface from cell-repellent to cell-adhesive, thereby facilitating the adhesion of a second cell type. The combination of the electrode-based technique with electrostatic deposition enabled the formation of patterned co-cultures within the semi-closed tubular structure. The controlled co-cultures inside the elastic tubing should be of value for cell-cell interaction studies following application of chemical or mechanical stimuli and for tissue engineering-based bioreactors.
Ning, Shaoli; Zhao, Lihua; Xu, Lingjun; Huang, Yu; Pang, Yong; Huang, Dingjian
2016-01-01
To compare the effects between slow twisting needle insertion and tubing needle insertion. With cross-over design, 100 healthy young subjects (half male and half female) aged from 19 to 23 years were randomly divided into two groups by random digital table, 50 cases in each one. At the first stage, subjects in the group A were treated with slow twisting needle insertion while, subjects in,the group B were treated with tubing needle insertion. One week later, the procedure of second stage was performed alternately. The needle was inserted into Neiguan (PC 6) with two methods by one acupuncturist. The needle was retained for 5 min before removal. Five min before needle insertion as well as needle withdrawal and 30 min after needle withdrawal, ZXG-E automatic cardiovascular diagnostic apparatus was used to test cardiovascular function. At the tim of needle withdrawal, slow twisting needle insertion could improve effect work of kinetics (EWK), effective blood volume (BV) and reduce elastic expansion coefficient of blood vessel (FEK) and left ventricular spray blood impedance (VER), which was significantly different from tubing needle insertion (all P < 0.05). Thirty min after needle withdrawal, the differences of the indices of cardiovascular function between the two groups were not significant (all P > 0.05). The slow twisting needle insertion is significantly superior to tubing needle insertion on lowering vascular tension and VER, improving EWK and BV.
Teleoperated master-slave needle insertion.
Abolhassani, Niki; Patel, Rajni V
2009-12-01
Accuracy of needle tip placement and needle tracking in soft tissue are of particular importance in many medical procedures. In recent years, developing autonomous and teleoperated systems for needle insertion has become an active area of research. In this study, needle insertion was performed using a master-slave set-up with multi-degrees of freedom. The effect of force feedback on the accuracy of needle insertion was investigated. In addition, this study compared autonomous, teleoperated and semi-autonomous needle insertion. The results of this study show that incorporation of force feedback can improve teleoperated needle insertion. However, autonomous and semi-autonomous needle insertions, which use feedback from a deflection model, provide significantly better performance. Development of a haptic master-slave needle insertion system, which is capable of performing some autonomous tasks based on feedback from tissue deformation and needle deflection models, can improve the performance of autonomous robotics-based insertions as well as non-autonomous teleoperated manual insertions. Copyright (c) 2009 John Wiley & Sons, Ltd.
Chen, Keyun; Ren, Lei; Chen, Zhipeng; Pan, Chengfeng; Zhou, Wei; Jiang, Lelun
2016-01-01
Micro-needle electrodes (MEs) have attracted more and more attention for monitoring physiological electrical signals, including electrode-skin interface impedance (EII), electromyography (EMG) and electrocardiography (ECG) recording. A magnetization-induced self-assembling method (MSM) was developed to fabricate a microneedle array (MA). A MA coated with Ti/Au film was assembled as a ME. The fracture and insertion properties of ME were tested by experiments. The bio-signal recording performance of the ME was measured and compared with a typical commercial wet electrode (Ag/AgCl electrode). The results show that the MA self-assembled from the magnetic droplet array under the sum of gravitational surface tension and magnetic potential energies. The ME had good toughness and could easily pierce rabbit skin without being broken or buckling. When the compression force applied on the ME was larger than 2 N, ME could stably record EII, which was a lower value than that measured by Ag/AgCl electrodes. EMG signals collected by ME varied along with the contraction of biceps brachii muscle. ME could record static ECG signals with a larger amplitude and dynamic ECG signals with more distinguishable features in comparison with a Ag/AgCl electrode, therefore, ME is an alternative electrode for bio-signal monitoring in some specific situations. PMID:27657072
Effect of vibration frequency on biopsy needle insertion force.
Tan, Lei; Qin, Xuemei; Zhang, Qinhe; Zhang, Hongcai; Dong, Hongjian; Guo, Tuodang; Liu, Guowei
2017-05-01
Needle insertion is critical in many clinical medicine procedures, such as biopsy, brachytherapy, and injection therapy. A platform with two degrees of freedom was set up to study the effect of vibration frequency on needle insertion force. The gel phantom deformation at the needle cutting edge and the Voigt model are utilized to develop a dynamic model to explain the relationship between the insertion force and needle-tip velocity. The accuracy of this model was verified by performing needle insertions into phantom gel. The effect of vibration on insertion force can be explained as the vibration increasing the needle-tip velocity and subsequently increasing the insertion force. In a series of needle insertion experiments with different vibration frequencies, the peak forces were selected for comparison to explore the effect of vibration frequency on needle insertion force. The experimental results indicate that the insertion force at 500Hz increases up to 17.9% compared with the force at 50Hz. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Borot de Battisti, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; Maenhout, M.; Moerland, M. A.
2017-05-01
MR-guided high-dose-rate (HDR) brachytherapy has gained increasing interest as a treatment for patients with localized prostate cancer because of the superior value of MRI for tumor and surrounding tissues localization. To enable needle insertion into the prostate with the patient in the MR bore, a single needle MR-compatible robotic system involving needle-by-needle dose delivery has been developed at our institution. Throughout the intervention, dose delivery may be impaired by: (1) sub-optimal needle positioning caused by e.g. needle bending, (2) intra-operative internal organ motion such as prostate rotations or swelling, or intra-procedural rectum or bladder filling. This may result in failure to reach clinical constraints. To assess the first aforementioned challenge, a recent study from our research group demonstrated that the deposited dose may be greatly improved by real-time adaptive planning with feedback on the actual needle positioning. However, the needle insertion sequence is left to the doctor and therefore, this may result in sub-optimal dose delivery. In this manuscript, a new method is proposed to determine and update automatically the needle insertion sequence. This strategy is based on the determination of the most sensitive needle track. The sensitivity of a needle track is defined as its impact on the dose distribution in case of sub-optimal positioning. A stochastic criterion is thus presented to determine each needle track sensitivity based on needle insertion simulations. To assess the proposed sequencing strategy, HDR prostate brachytherapy was simulated on 11 patients with varying number of needle insertions. Sub-optimal needle positioning was simulated at each insertion (modeled by typical random angulation errors). In 91% of the scenarios, the dose distribution improved when the needle was inserted into the most compared to the least sensitive needle track. The computation time for sequencing was less than 6 s per needle track. The proposed needle insertion sequencing can therefore assist in delivering an optimal dose in HDR prostate brachytherapy.
Bui, Huu Phuoc; Tomar, Satyendra; Courtecuisse, Hadrien; Audette, Michel; Cotin, Stéphane; Bordas, Stéphane P A
2018-05-01
An error-controlled mesh refinement procedure for needle insertion simulations is presented. As an example, the procedure is applied for simulations of electrode implantation for deep brain stimulation. We take into account the brain shift phenomena occurring when a craniotomy is performed. We observe that the error in the computation of the displacement and stress fields is localised around the needle tip and the needle shaft during needle insertion simulation. By suitably and adaptively refining the mesh in this region, our approach enables to control, and thus to reduce, the error whilst maintaining a coarser mesh in other parts of the domain. Through academic and practical examples we demonstrate that our adaptive approach, as compared with a uniform coarse mesh, increases the accuracy of the displacement and stress fields around the needle shaft and, while for a given accuracy, saves computational time with respect to a uniform finer mesh. This facilitates real-time simulations. The proposed methodology has direct implications in increasing the accuracy, and controlling the computational expense of the simulation of percutaneous procedures such as biopsy, brachytherapy, regional anaesthesia, or cryotherapy. Moreover, the proposed approach can be helpful in the development of robotic surgeries because the simulation taking place in the control loop of a robot needs to be accurate, and to occur in real time. Copyright © 2018 John Wiley & Sons, Ltd.
Rossa, Carlos; Sloboda, Ron; Usmani, Nawaid; Tavakoli, Mahdi
2016-07-01
This paper proposes a method to predict the deflection of a flexible needle inserted into soft tissue based on the observation of deflection at a single point along the needle shaft. We model the needle-tissue as a discretized structure composed of several virtual, weightless, rigid links connected by virtual helical springs whose stiffness coefficient is found using a pattern search algorithm that only requires the force applied at the needle tip during insertion and the needle deflection measured at an arbitrary insertion depth. Needle tip deflections can then be predicted for different insertion depths. Verification of the proposed method in synthetic and biological tissue shows a deflection estimation error of [Formula: see text]2 mm for images acquired at 35 % or more of the maximum insertion depth, and decreases to 1 mm for images acquired closer to the final insertion depth. We also demonstrate the utility of the model for prostate brachytherapy, where in vivo needle deflection measurements obtained during early stages of insertion are used to predict the needle deflection further along the insertion process. The method can predict needle deflection based on the observation of deflection at a single point. The ultrasound probe can be maintained at the same position during insertion of the needle, which avoids complications of tissue deformation caused by the motion of the ultrasound probe.
Casanova, Fernando; Carney, Paul R; Sarntinoranont, Malisa
2014-11-30
Convection enhanced delivery (CED) infuses drugs directly into brain tissue. Needle insertion is required and results in tissue damage which can promote flowback along the needle track and improper targeting. The goal of this study was to evaluate friction stress (calculated from needle insertion force) as a measure of tissue contact and damage during needle insertion for varying insertion speeds. Forces and surface dimpling during needle insertion were measured in rat brain in vivo. Needle retraction forces were used to calculate friction stresses. These measures were compared to track damage from a previous study. Differences between brain tissues and soft hydrogels were evaluated for varying insertion speeds: 0.2, 2, and 10mm/s. In brain tissue, average insertion force and surface dimpling increased with increasing insertion speed. Average friction stress along the needle-tissue interface decreased with insertion speed (from 0.58 ± 0.27 to 0.16 ± 0.08 kPa). Friction stress varied between brain regions: cortex (0.227 ± 0.27 kPa), external capsule (0.222 ± 0.19 kPa), and CPu (0.383 ± 0.30 kPa). Hydrogels exhibited opposite trends for dimpling and friction stress with insertion speed. Previously, increasing needle damage with insertion speed has been measured with histological methods. Friction stress appears to decrease with increasing tissue damage and decreasing tissue contact, providing the potential for in vivo and real time evaluation along the needle track. Force derived friction stress decreased with increasing insertion speed and was smaller within white matter regions. Hydrogels exhibited opposite trends to brain tissue. Copyright © 2014 Elsevier B.V. All rights reserved.
The Clinical Uses of Electrocochleography
Gibson, William P.
2017-01-01
The clinical uses of electrocochleography are reviewed with some technical notes on the apparatus needed to get clear recordings under different conditions. Electrocochleography can be used to estimate auditory thresholds in difficult to test children and a golf club electrode is described. The same electrode can be used to obtain electrical auditory brainstem responses (EABR). Diagnostic testing in the clinic can be performed with a transtympanic needle electrode, and a suitable disposable monopolar electrode is described. The use of tone bursts rather than click stimuli gives a better means of diagnosis of the presence of endolymphatic hydrops. Electrocochleography can be used to monitor the cochlear function during surgery and a long coaxial cable, which can be sterilized, is needed to avoid electrical artifacts. Recently electrocochleography has been used to monitor cochlear implant insertion and to record residual hearing using an electrode on the cochlear implant array as the non-inverting (active) electrode. PMID:28634435
The Clinical Uses of Electrocochleography.
Gibson, William P
2017-01-01
The clinical uses of electrocochleography are reviewed with some technical notes on the apparatus needed to get clear recordings under different conditions. Electrocochleography can be used to estimate auditory thresholds in difficult to test children and a golf club electrode is described. The same electrode can be used to obtain electrical auditory brainstem responses (EABR). Diagnostic testing in the clinic can be performed with a transtympanic needle electrode, and a suitable disposable monopolar electrode is described. The use of tone bursts rather than click stimuli gives a better means of diagnosis of the presence of endolymphatic hydrops. Electrocochleography can be used to monitor the cochlear function during surgery and a long coaxial cable, which can be sterilized, is needed to avoid electrical artifacts. Recently electrocochleography has been used to monitor cochlear implant insertion and to record residual hearing using an electrode on the cochlear implant array as the non-inverting (active) electrode.
Effects of insertion speed and trocar stiffness on the accuracy of needle position for brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGill, Carl S.; Schwartz, Jonathon A.; Moore, Jason Z.
2012-04-15
Purpose: In prostate brachytherapy, accurate positioning of the needle tip to place radioactive seeds at its target site is critical for successful radiation treatment. During the procedure, needle deflection leads to seed misplacement and suboptimal radiation dose to cancerous cells. In practice, radiation oncologists commonly use high-speed hand needle insertion to minimize displacement of the prostate as well as the needle deflection. Effects of speed during needle insertion and stiffness of trocar (a solid rod inside the hollow cannula) on needle deflection are studied. Methods: Needle insertion experiments into phantom were performed using a 2{sup 2} factorial design (2 parametersmore » at 2 levels), with each condition having replicates. Analysis of the deflection data included calculating the average, standard deviation, and analysis of variance (ANOVA) to find significant single and two-way interaction factors. Results: The stiffer tungsten carbide trocar is effective in reducing the average and standard deviation of needle deflection. The fast insertion speed together with the stiffer trocar generated the smallest average and standard deviation for needle deflection for almost all cases. Conclusions: The combination of stiff tungsten carbide trocar and fast needle insertion speed are important to decreasing needle deflection. The knowledge gained from this study can be used to improve the accuracy of needle insertion during brachytherapy procedures.« less
Adams, Stephen B; Moore, George E; Elrashidy, Mohammed; Mohamed, Ahmed; Snyder, Paul W
2010-08-01
To assess joint contamination with tissue and hair after arthrocentesis of equine fetlock joints. Experimental. Limb specimens from 8 equine cadavers. Soft tissues including the joint capsule were harvested from the dorsal aspect of the fetlock joints and mounted on a wooden frame. Needles inserted through the joint tissue preparation were flushed into tissue culture plates that were examined for tissue and hair debris. Variables evaluated were gauge and type of needle (16, 18, 20, and 22 G sharp disposable needles and 20 G disposable spinal needles with stylet), number of times each needle was used (1, 2, 3, 4), length of hair (unclipped, clipped, shaved with razor), and needle insertion speed (fast, slow). Descriptive and statistical evaluations were performed. Tissue contamination was identified in 1145 of 1260 wells and hair contamination was identified in 384 of 1260 wells. Twenty gauge needles inserted through unclipped hair resulted in the least amount of hair contamination. Compared with 20 G needles with fast insertion 1 time through unclipped hair the odds ratios for contamination with hair were significantly greater for 16 G sharp disposable needles, 20 G spinal needles, clipped hair, shaved hair, and reuse of the needles. Spinal needles inserted through unclipped hair transferred many long hairs into the joint space. Reuse of needles for arthrocentesis should be avoided. Removal of hair is not indicated for arthrocentesis with sharp injection needles but is recommended when using spinal needles with stylets. Joint contamination with hair and tissue debris will be decreased by specific needle insertion techniques. Decreased contamination of joints may reduce the frequency of joint infections after arthrocentesis.
[Brief introduction of acupuncture needling and teaching keypoint].
Hou, Shu-wei; Guo, Li; Kong, Su-ping
2014-09-01
We summarized our accumulated clinical and teaching experiences and explored the regularity of acupuncture needling and teaching. It is of great importance in pressing hand during inserting needle. Stroking and pressing are two crucial parts which deserve more attention, and seldom useage of pressing hand should be abolished. Operating hand needs practice before inserting needle, while it should fully relaxed during inserting. Blending "touching", "stretch" "gathering" "erupting" and "advancing" in single moment, applying appropriate dynamic mode of inserting needle such as "join 3 forces as one" "3 points in a line" expertly and naturally. In addition, enough attention should be paid on "altering direction" and "shifting point". Inserting deftly and powerfully, no/slight sensation, deqi when inserting needle are the highest reflection as an acupuncturist.
[Needling technique of Professor Li Yan-Fang].
Li, Li-Jun
2014-01-01
Experiences of needling techniques of Professor LI Ya- fang is introduced in this article. Gentle and superficial insertion is adopted by Professor LI in clinic. Emphases are put on the qi regulation function, needling sensation to the affected region and insertion with both hands, especially the function of the left hand as pressing hand. The gentle and superficial insertion should be done as the follows: hold the needle with the right hand, press gently along the running course of meridians with the left hand to promote qi circulation, hard pressing should be applied at acupoints to disperse the local qi and blood, insert the needle gently and quickly into the subcutaneous region with the right hand, and stop the insertion when patient has the needling sensation. While the fast needling is characterized with shallow insertion and swift manipulation: the left hand of the manipulator should press first along the running course of the meridian, and fix the local skin, hold the needle with the right hand and insert the needle quickly into the acupoint. Withdrawal of the needle should be done immediately after the reinforcing and reducing manipulations. Professor LI is accomplished in qi regulation. It is held by him that regulating qi circulation is essence of acupuncture, letting the patient get the needling sensation is the most important task of needling. Lifting, thrusting and rotation manipulations should be applied to do reinforcing or reducing. The tissue around the tip of the needle should not be too contracted or too relaxed, and the resistance should not be too strong or too weak. The feeling of the insertion hand of the practitioner should not be too smooth or too hesitant. Needle should be inserted into the skin quickly at the moment of hard pressing by the left hand. And then, slow rotation and gentle lifting and thrusting can be applied to promote the needling sensation like electric current pass through and to reach the affected region along the running course of meridians.
Liu, Shaoli; Xia, Zeyang; Liu, Jianhua; Xu, Jing; Ren, He; Lu, Tong; Yang, Xiangdong
2016-01-01
The “robotic-assisted liver tumor coagulation therapy” (RALTCT) system is a promising candidate for large liver tumor treatment in terms of accuracy and speed. A prerequisite for effective therapy is accurate surgical planning. However, it is difficult for the surgeon to perform surgical planning manually due to the difficulties associated with robot-assisted large liver tumor therapy. These main difficulties include the following aspects: (1) multiple needles are needed to destroy the entire tumor, (2) the insertion trajectories of the needles should avoid the ribs, blood vessels, and other tissues and organs in the abdominal cavity, (3) the placement of multiple needles should avoid interference with each other, (4) an inserted needle will cause some deformation of liver, which will result in changes in subsequently inserted needles’ operating environment, and (5) the multiple needle-insertion trajectories should be consistent with the needle-driven robot’s movement characteristics. Thus, an effective multiple-needle surgical planning procedure is needed. To overcome these problems, we present an automatic multiple-needle surgical planning of optimal insertion trajectories to the targets, based on a mathematical description of all relevant structure surfaces. The method determines the analytical expression of boundaries of every needle “collision-free reachable workspace” (CFRW), which are the feasible insertion zones based on several constraints. Then, the optimal needle insertion trajectory within the optimization criteria will be chosen in the needle CFRW automatically. Also, the results can be visualized with our navigation system. In the simulation experiment, three needle-insertion trajectories were obtained successfully. In the in vitro experiment, the robot successfully achieved insertion of multiple needles. The proposed automatic multiple-needle surgical planning can improve the efficiency and safety of robot-assisted large liver tumor therapy, significantly reduce the surgeon’s workload, and is especially helpful for an inexperienced surgeon. The methodology should be easy to adapt in other body parts. PMID:26982341
Rossa, Carlos; Lehmann, Thomas; Sloboda, Ronald; Usmani, Nawaid; Tavakoli, Mahdi
2017-08-01
Global modelling has traditionally been the approach taken to estimate needle deflection in soft tissue. In this paper, we propose a new method based on local data-driven modelling of needle deflection. External measurement of needle-tissue interactions is collected from several insertions in ex vivo tissue to form a cloud of data. Inputs to the system are the needle insertion depth, axial rotations, and the forces and torques measured at the needle base by a force sensor. When a new insertion is performed, the just-in-time learning method estimates the model outputs given the current inputs to the needle-tissue system and the historical database. The query is compared to every observation in the database and is given weights according to some similarity criteria. Only a subset of historical data that is most relevant to the query is selected and a local linear model is fit to the selected points to estimate the query output. The model outputs the 3D deflection of the needle tip and the needle insertion force. The proposed approach is validated in ex vivo multilayered biological tissue in different needle insertion scenarios. Experimental results in five different case studies indicate an accuracy in predicting needle deflection of 0.81 and 1.24 mm in the horizontal and vertical lanes, respectively, and an accuracy of 0.5 N in predicting the needle insertion force over 216 needle insertions.
Experimental analysis of robot-assisted needle insertion into porcine liver.
Wang, Wendong; Shi, Yikai; Goldenberg, Andrew A; Yuan, Xiaoqing; Zhang, Peng; He, Lijing; Zou, Yingjie
2015-01-01
How to improve placement accuracy of needle insertion into liver tissue is of paramount interest to physicians. A robot-assisted system was developed to experimentally demonstrate its advantages in needle insertion surgeries. Experiments of needle insertion into porcine liver tissue were performed with conic tip needle (diameter 8 mm) and bevel tip needle (diameter 1.5 mm) in this study. Manual operation was designed to compare the performance of the presented robot-assisted system. The real-time force curves show outstanding advantages of robot-assisted operation in improving the controllability and stability of needle insertion process by comparing manual operation. The statistics of maximum force and average force further demonstrates robot-assisted operation causes less oscillation. The difference of liver deformation created by manual operation and robot-assisted operation is very low, 1 mm for average deformation and 2 mm for maximum deformation. To conclude, the presented robot-assisted system can improve placement accuracy of needle by stably control insertion process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, M; Maenhout, M; Lagendijk, J J W
Purpose: To develop a new method which adaptively determines the optimal needle insertion sequence for HDR prostate brachytherapy involving divergent needle-by-needle dose delivery by e.g. a robotic device. A needle insertion sequence is calculated at the beginning of the intervention and updated after each needle insertion with feedback on needle positioning errors. Methods: Needle positioning errors and anatomy changes may occur during HDR brachytherapy which can lead to errors in the delivered dose. A novel strategy was developed to calculate and update the needle sequence and the dose plan after each needle insertion with feedback on needle positioning errors. Themore » dose plan optimization was performed by numerical simulations. The proposed needle sequence determination optimizes the final dose distribution based on the dose coverage impact of each needle. This impact is predicted stochastically by needle insertion simulations. HDR procedures were simulated with varying number of needle insertions (4 to 12) using 11 patient MR data-sets with PTV, prostate, urethra, bladder and rectum delineated. Needle positioning errors were modeled by random normally distributed angulation errors (standard deviation of 3 mm at the needle’s tip). The final dose parameters were compared in the situations where the needle with the largest vs. the smallest dose coverage impact was selected at each insertion. Results: Over all scenarios, the percentage of clinically acceptable final dose distribution improved when the needle selected had the largest dose coverage impact (91%) compared to the smallest (88%). The differences were larger for few (4 to 6) needle insertions (maximum difference scenario: 79% vs. 60%). The computation time of the needle sequence optimization was below 60s. Conclusion: A new adaptive needle sequence determination for HDR prostate brachytherapy was developed. Coupled to adaptive planning, the selection of the needle with the largest dose coverage impact increases chances of reaching the clinical constraints. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are fulltime employees of Philips Medical Systems Nederland B.V.« less
Precision grid and hand motion for accurate needle insertion in brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGill, Carl S.; Schwartz, Jonathon A.; Moore, Jason Z.
2011-08-15
Purpose: In prostate brachytherapy, a grid is used to guide a needle tip toward a preplanned location within the tissue. During insertion, the needle deflects en route resulting in target misplacement. In this paper, 18-gauge needle insertion experiments into phantom were performed to test effects of three parameters, which include the clearance between the grid hole and needle, the thickness of the grid, and the needle insertion speed. Measurement apparatus that consisted of two datum surfaces and digital depth gauge was developed to quantify needle deflections. Methods: The gauge repeatability and reproducibility (GR and R) test was performed on themore » measurement apparatus, and it proved to be capable of measuring a 2 mm tolerance from the target. Replicated experiments were performed on a 2{sup 3} factorial design (three parameters at two levels) and analysis included averages and standard deviation along with an analysis of variance (ANOVA) to find significant single and two-way interaction factors. Results: Results showed that grid with tight clearance hole and slow needle speed increased precision and accuracy of needle insertion. The tight grid was vital to enhance precision and accuracy of needle insertion for both slow and fast insertion speed; additionally, at slow speed the tight, thick grid improved needle precision and accuracy. Conclusions: In summary, the tight grid is important, regardless of speed. The grid design, which shows the capability to reduce the needle deflection in brachytherapy procedures, can potentially be implemented in the brachytherapy procedure.« less
Ultrasonography in Acupuncture-Uses in Education and Research.
Leow, Mabel Qi He; Cui, Shu Li; Mohamed Shah, Mohammad Taufik Bin; Cao, Taige; Tay, Shian Chao; Tay, Peter Kay Chai; Ooi, Chin Chin
2017-06-01
This study aims to explore the potential use of ultrasound in locating the second posterior sacral foramen acupuncture point, quantifying depth of insertion and describing surrounding anatomical structures. We performed acupuncture needle insertion on a study team member. There were four steps in our experiment. First, the acupuncturist located the acupuncture point by palpation. Second, we used an ultrasound machine to visualize the structures surrounding the location of the acupuncture point and measure the depth required for needle insertion. Third, the acupuncturist inserted the acupuncture needle into the acupuncture point at an angle of 30°. Fourth, we performed another ultrasound scan to ensure that the needle was in the desired location. Results suggested that ultrasound could be used to locate the acupuncture point and estimate the depth of needle insertion. The needle was inserted to a depth of 4.0 cm to reach the surface of the sacral foramen. Based on Pythagoras theorem, taking a needle insertion angle of 30° and a needle insertion depth of 4.0 cm, the estimated perpendicular depth is 1.8 cm. An ultrasound scan corroborated the depth of 1.85 cm. The use of an ultrasound-guided technique for needle insertion in acupuncture practice could help standardize the treatment. Clinicians and students would be able to visualize and measure the depth of the sacral foramen acupuncture point, to guide the depth of needle insertion. This methodological guide could also be used to create a standard treatment protocol for research. A similar mathematical guide could also be created for other acupuncture points in future. Copyright © 2017. Published by Elsevier B.V.
Automated location detection of injection site for preclinical stereotactic neurosurgery procedure
NASA Astrophysics Data System (ADS)
Abbaszadeh, Shiva; Wu, Hemmings C. H.
2017-03-01
Currently, during stereotactic neurosurgery procedures, the manual task of locating the proper area for needle insertion or implantation of electrode/cannula/optic fiber can be time consuming. The requirement of the task is to quickly and accurately find the location for insertion. In this study we investigate an automated method to locate the entry point of region of interest. This method leverages a digital image capture system, pattern recognition, and motorized stages. Template matching of known anatomical identifiable regions is used to find regions of interest (e.g. Bregma) in rodents. For our initial study, we tackle the problem of automatically detecting the entry point.
Behavior of Tip-Steerable Needles in ex vivo and in vivo Tissue
Majewicz, Ann; Marra, Steven P.; van Vledder, Mark G.; Lin, MingDe; Choti, Michael A.; Song, Danny Y.; Okamura, Allison M.
2012-01-01
Robotic needle steering is a promising technique to improve the effectiveness of needle-based clinical procedures, such as biopsies and ablation, by computer-controlled, curved insertions of needles within solid organs. In this paper, we explore the capabilities, challenges, and clinical relevance of asymmetric-tip needle steering though experiments in ex vivo and in vivo tissue. We evaluate the repeatability of needle insertion in inhomogeneous biological tissue and compare ex vivo and in vivo needle curvature and insertion forces. Steerable needles curved more in kidney than in liver and prostate, likely due to differences in tissue properties. Pre-bent needles produced higher insertion forces in liver and more curvature in vivo than ex vivo. When compared to straight stainless steel needles, steerable needles did not cause a measurable increase in tissue damage and did not exert more force during insertion. The minimum radius of curvature achieved by pre-bent needles was 5.23 cm in ex vivo tissue, and 10.4 cm in in vivo tissue. The curvatures achieved by bevel tip needles were negligible for in vivo tissue. The minimum radius of curvature for bevel tip needles in ex vivo tissue was 16.4 cm; however, about half of the bevel tip needles had negligible curvatures. We also demonstrate a potential clinical application of needle steering by targeting and ablating overlapping regions of cadaveric canine liver. PMID:22711767
NASA Astrophysics Data System (ADS)
Pekárek, Stanislav
2014-12-01
For the hollow-needle-to-mesh negative corona discharge in air, we studied the effect of placing the dielectric tube on the needle electrode and the effect of various positions of the end of this tube with respect to the tip of the needle electrode on the concentration of ozone produced by the discharge, the ozone production yield and the discharge V-A characteristics. We found that the placement of the dielectric tube on the needle electrode with a suitable position of this tube end with respect to the tip of the needle electrode for a particular discharge power led to a more than fourfold increase in the concentration of ozone produced by the discharge and also, for a constant airflow, the ozone production yield.
Master-slave robotic system for needle indentation and insertion.
Shin, Jaehyun; Zhong, Yongmin; Gu, Chengfan
2017-12-01
Bilateral control of a master-slave robotic system is a challenging issue in robotic-assisted minimally invasive surgery. It requires the knowledge on contact interaction between a surgical (slave) robot and soft tissues. This paper presents a master-slave robotic system for needle indentation and insertion. This master-slave robotic system is able to characterize the contact interaction between the robotic needle and soft tissues. A bilateral controller is implemented using a linear motor for robotic needle indentation and insertion. A new nonlinear state observer is developed to online monitor the contact interaction with soft tissues. Experimental results demonstrate the efficacy of the proposed master-slave robotic system for robotic needle indentation and needle insertion.
Shutt, L E; Valentine, S J; Wee, M Y; Page, R J; Prosser, A; Thomas, T A
1992-12-01
We have studied 150 women undergoing elective Caesarean section under spinal anaesthesia. They were allocated randomly to have a 22-gauge Whitacre, a 25-gauge Whitacre or a 26-gauge Quincke needle inserted into the lumbar subarachnoid space. The groups were compared for ease of insertion, number of attempted needle insertions before identification of cerebrospinal fluid, quality of subsequent analgesia and incidence of postoperative complications. There were differences between groups, but they did not reach statistical significance. Postdural puncture headache (PDPH) was experienced by one mother in the 22-gauge Whitacre group, none in the 25-gauge Whitacre group and five in the 26-gauge Quincke group. Five of the six PDPH occurred after a single successful needle insertion. Seven of the 15 mothers in whom more than two needle insertions were made experienced backache, compared with 12 of the 129 receiving two or less (P < 0.001). We conclude that the use of 22- and 25-gauge Whitacre needles in elective Caesarean section patients is associated with a low incidence of PDPH and that postoperative backache is more likely when more than two attempts are made to insert a spinal needle.
Does Needle Rotation Improve Lesion Targeting?
Badaan, Shadi; Petrisor, Doru; Kim, Chunwoo; Mozer, Pierre; Mazilu, Dumitru; Gruionu, Lucian; Patriciu, Alex; Cleary, Kevin; Stoianovici, Dan
2011-01-01
Background Image-guided robots are manipulators that operate based on medical images. Perhaps the most common class of image-guided robots are robots for needle interventions. Typically, these robots actively position and/or orient a needle guide, but needle insertion is still done by the physician. While this arrangement may have safety advantages and keep the physician in control of needle insertion, actuated needle drivers can incorporate other useful features. Methods We first present a new needle driver that can actively insert and rotate a needle. With this device we investigate the use of needle rotation in controlled in-vitro experiments performed with a specially developed revolving needle driver. Results These experiments show that needle rotation can improve targeting and may reduce errors by as much as 70%. Conclusion The new needle driver provides a unique kinematic architecture that enables insertion with a compact mechanism. Perhaps the most interesting conclusion of the study is that lesions of soft tissue organs may not be perfectly targeted with a needle without using special techniques, either manually or with a robotic device. The results of this study show that needle rotation may be an effective method of reducing targeting errors. PMID:21360796
The Timing of Acupuncture Stimulation Does Not Influence Anesthetic Requirement
Chernyak, Grigory; Sengupta, Papiya; Lenhardt, Rainer; Liem, Edwin; Doufas, Anthony G.; Sessler, Daniel I.; Akça, Ozan
2005-01-01
Studies suggest that acupuncture is more effective when induced before induction of general anesthesia than afterwards. We tested the hypothesis that electro-acupuncture initiated 30 minutes before induction reduces anesthetic requirement more than acupuncture initiated after induction. Seven volunteers were each anesthetized with desflurane on 3 study days. Needles were inserted percutaneously at 4 acupuncture points thought to produce analgesia in the upper abdominal area and provide generalized sedative and analgesic effects: Zusanli (St36), Sanyinjiao (Sp6), Liangqiu (St34), and Hegu (LI4). Needles were stimulated at 2-Hz and 10-Hz, with frequencies alternating at two-second intervals. On Preinduction day, electro-acupuncture was started 30 minutes before induction of anesthesia and maintained throughout the study. On At-induction day, needles were positioned before induction of anesthesia, but electro-acupuncture stimulation was not initiated until after induction. On Control day, electrodes were positioned near the acupoints, but needles were not inserted. Noxious electrical stimulation was administered via 25-G needles on the upper abdomen (70 mA, 100 Hz, 10 seconds). Desflurane concentration was increased 0.5% when movement occurred and decreased 0.5% when it did not. These up-and-down sequences continued until volunteers crossed from movement to no-movement 4 times. The P50 of logistic regression identified desflurane requirement. Desflurane requirement was similar on the Control (5.2±0.6%, mean±SD), Preinduction (5.0±0.8%), and At-induction (4.7±0.3%, P=0.125) days. This type of acupuncture is thus unlikely to facilitate general anesthesia or decrease the need for anesthetic drugs. PMID:15673863
NASA Astrophysics Data System (ADS)
Yang, De-zheng; Wang, Wen-chun; Jia, Li; Nie, Dong-xia; Shi, Heng-chao
2011-04-01
In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.
In vivo electrode implanting system
NASA Technical Reports Server (NTRS)
Collins, Jr., Earl R. (Inventor)
1989-01-01
A cylindrical intramuscular implantable electrode is provided with a strip of fabric secured around it. The fabric is woven from a polyester fiber having loops of the fiber protruding. The end of the main cylindrical body is provided with a blunt conductive nose, and the opposite end is provided with a smaller diameter rear section with an annular groove to receive tips of fingers extending from a release tube. The fingers are formed to spring outwardly and move the fingertips out of the annular groove in order to release the electrode from the release tube when a sheath over the electrode is drawn back sufficiently. The sheath compresses the fingers of the release tube and the fabric loops until it is drawn back. Muscle tissue grows into the loops to secure the electrode in place after the sheath is drawn back. The entire assembly of electrode, release tube and sheath can be inserted into the patient's muscle to the desired position through a hypodermic needle. The release tube may be used to manipulate the electrode in the patient's muscle to an optimum position before the electrode is released.
Histological observation for needle-tissue interactions.
Nakagawa, Yoshiyuki; Koseki, Yoshihiko
2013-01-01
We histologically investigated tissue fractures and deformations caused by ex vivo needle insertions. The tissue was formalin-fixed while the needle remained in the tissue. Following removal of the needle, the tissue was microtomed, stained, and observed microscopically. This method enabled observations of cellular and tissular conditions where deformations caused by needle insertions were approximately preserved. For this study, our novel method presents preliminary findings related with tissue fractures and the orientation of needle blade relative to muscle fibers. When the needle blade was perpendicular to the muscle fiber, transfiber fractures and relatively large longitudinal deformations occurred. When the needle blade was parallel to the muscle fiber, interfiber fractures and relatively small longitudinal deformations occurred. This made a significant difference in the resistance force of the needle insertions.
Yeo, Caitlin T; Ungi, Tamas; U-Thainual, Paweena; Lasso, Andras; McGraw, Robert C; Fichtinger, Gabor
2011-07-01
The purpose of this study was to determine if augmented reality image overlay and laser guidance systems can assist medical trainees in learning the correct placement of a needle for percutaneous facet joint injection. The Perk Station training suite was used to conduct and record the needle insertion procedures. A total of 40 volunteers were randomized into two groups of 20. 1) The Overlay group received a training session that consisted of four insertions with image and laser guidance, followed by two insertions with laser overlay only. 2) The Control group received a training session of six classical freehand insertions. Both groups then conducted two freehand insertions. The movement of the needle was tracked during the series of insertions. The final insertion procedure was assessed to determine if there was a benefit to the overlay method compared to the freehand insertions. The Overlay group had a better success rate (83.3% versus 68.4%, p=0.002), and potential for less tissue damage as measured by the amount of needle movement inside the phantom (3077.6 mm(2) versus 5607.9 mm(2) , p =0.01). These results suggest that an augmented reality overlay guidance system can assist medical trainees in acquiring technical competence in a percutaneous needle insertion procedure. © 2011 IEEE
Ishizaka, H; Shiraishi, A; Awata, S; Shimizu, A; Hirasawa, S
2011-01-01
Thermal tumour ablation techniques such as radiofrequency (RF) ablation are applied for radical removal of local tumours as an easier, less invasive alternative to surgical resection. A serious drawback of thermal ablation, however, is that the ablation area cannot be accurately assessed during the procedure. To achieve real-time feedback and exact and safe ablation, a superfine thermocouple-needle system (TNS) comprising a 0.25-mm diameter thermocouple embedded in a 22-G, 15-cm-long needle was devised and efficacy was tested in vitro using porcine livers (n = 15) and in vivo using rabbit back muscles (n = 2) and livers (n = 3). A 17-gauge RF electrode with a 2 cm active tip was used for ablation. The TNS was inserted 1 cm from the active tip of the RF electrode and liver temperature around the electrode was measured concurrently. The RF current was cut off when the temperature reached 60°C or after 5 min at ≥50°C. Porcine livers and rabbit back muscles were then cut along a plane passing through the axes of the electrode and the TNS. In rabbit livers, contrast-enhanced CT was performed to evaluate ablation areas. Ablation areas in cut surfaces of porcine livers exhibited well-defined discoloured regions and the TNS tip precisely pinpointed the margin of the ablation area. Contrast-enhanced CT of rabbit livers showed the TNS tip accurately located at the margin of areas without contrast enhancement. These results indicate that the TNS can accurately show ablation margins and that placing the TNS tip at the intended ablation margin permits exact thermal ablation. PMID:21937618
Ishizaka, H; Shiraishi, A; Awata, S; Shimizu, A; Hirasawa, S
2011-12-01
Thermal tumour ablation techniques such as radiofrequency (RF) ablation are applied for radical removal of local tumours as an easier, less invasive alternative to surgical resection. A serious drawback of thermal ablation, however, is that the ablation area cannot be accurately assessed during the procedure. To achieve real-time feedback and exact and safe ablation, a superfine thermocouple-needle system (TNS) comprising a 0.25-mm diameter thermocouple embedded in a 22-G, 15-cm-long needle was devised and efficacy was tested in vitro using porcine livers (n = 15) and in vivo using rabbit back muscles (n = 2) and livers (n = 3). A 17-gauge RF electrode with a 2 cm active tip was used for ablation. The TNS was inserted 1 cm from the active tip of the RF electrode and liver temperature around the electrode was measured concurrently. The RF current was cut off when the temperature reached 60°C or after 5 min at ≥50°C. Porcine livers and rabbit back muscles were then cut along a plane passing through the axes of the electrode and the TNS. In rabbit livers, contrast-enhanced CT was performed to evaluate ablation areas. Ablation areas in cut surfaces of porcine livers exhibited well-defined discoloured regions and the TNS tip precisely pinpointed the margin of the ablation area. Contrast-enhanced CT of rabbit livers showed the TNS tip accurately located at the margin of areas without contrast enhancement. These results indicate that the TNS can accurately show ablation margins and that placing the TNS tip at the intended ablation margin permits exact thermal ablation.
TEM in situ lithiation of tin nanoneedles for battery applications
Janish, Matthew T.; Mackay, David T.; Liu, Yang; ...
2015-08-12
Materials such as tin (Sn) and silicon that alloy with lithium (Li) have attracted renewed interest as anode materials in Li-ion batteries. Although their superior capacity to graphite and other intercalation materials has been known for decades, their mechanical instability due to extreme volume changes during cycling has traditionally limited their commercial viability. This limitation is changing as processes emerge that produce nanostructured electrodes. The nanostructures can accommodate the repeated expansion and contraction as Li is inserted and removed without failing mechanically. Recently, one such nano-manufacturing process, which is capable of depositing coatings of Sn “nanoneedles” at low temperature withmore » no template and at industrial scales, has been described. The present work is concerned with observations of the lithiation and delithiation behavior of these Sn nanoneedles during in situ experiments in the transmission electron microscope, along with a brief review of how in situ TEM experiments have been used to study the lithiation of Li-alloying materials. Individual needles are successfully lithiated and delithiated in solid-state half-cells against a Li-metal counter-electrode. Furthermore the microstructural evolution of the needles is discussed, including the transformation of one needle from single-crystal Sn to polycrystalline Sn–Li and back to single-crystal Sn.« less
Hyper- and viscoelastic modeling of needle and brain tissue interaction.
Lehocky, Craig A; Yixing Shi; Riviere, Cameron N
2014-01-01
Deep needle insertion into brain is important for both diagnostic and therapeutic clinical interventions. We have developed an automated system for robotically steering flexible needles within the brain to improve targeting accuracy. In this work, we have developed a finite element needle-tissue interaction model that allows for the investigation of safe parameters for needle steering. The tissue model implemented contains both hyperelastic and viscoelastic properties to simulate the instantaneous and time-dependent responses of brain tissue. Several needle models were developed with varying parameters to study the effects of the parameters on tissue stress, strain and strain rate during needle insertion and rotation. The parameters varied include needle radius, bevel angle, bevel tip fillet radius, insertion speed, and rotation speed. The results will guide the design of safe needle tips and control systems for intracerebral needle steering.
Drilling electrode for real-time measurement of electrical impedance in bone tissues.
Dai, Yu; Xue, Yuan; Zhang, Jianxun
2014-03-01
In order to prevent possible damages to soft tissues, reliable monitoring methods are required to provide valuable information on the condition of the bone being cut. This paper describes the design of an electrical impedance sensing drill developed to estimate the relative position between the drill and the bone being drilled. The two-electrode method is applied to continuously measure the electrical impedance during a drill feeding movement: two copper wire brushes are used to conduct electricity in the rotating drill and then the drill is one electrode; a needle is inserted into the soft tissues adjacent to the bone being drilled and acts as another electrode. Considering that the recorded electrical impedance is correlated with the insertion depth of the drill, we theoretically calculate the electrode-tissue contact impedance and prove that the rate of impedance change varies considerably when the drill bit crosses the boundary between two different bone tissues. Therefore, the rate of impedance change is used to determine whether the tip of the drill is located in one of cortical bone, cancellous bone, and cortical bone near a boundary with soft tissue. In vitro experiments in porcine thoracic spines were performed to demonstrate the feasibility of the impedance sensing drill. The experimental results indicate that the drill, used with the proposed data-processing method, can provide accurate and reliable breakthrough detection in the bone-drilling process.
Torsional Dynamics of Steerable Needles: Modeling and Fluoroscopic Guidance
Swensen, John P.; Lin, MingDe; Okamura, Allison M.; Cowan, Noah J.
2017-01-01
Needle insertions underlie a diversity of medical interventions. Steerable needles provide a means by which to enhance existing needle-based interventions and facilitate new ones. Tip-steerable needles follow a curved path and can be steered by twisting the needle base during insertion, but this twisting excites torsional dynamics that introduce a discrepancy between the base and tip twist angles. Here, we model the torsional dynamics of a flexible rod—such as a tip-steerable needle—during subsurface insertion and develop a new controller based on the model. The torsional model incorporates time-varying mode shapes to capture the changing boundary conditions inherent during insertion. Numerical simulations and physical experiments using two distinct setups—stereo camera feedback in semi-transparent artificial tissue and feedback control with real-time X-ray imaging in optically opaque artificial tissue— demonstrate the need to account for torsional dynamics in control of the needle tip. PMID:24860026
21 CFR 882.1350 - Needle electrode.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Needle electrode. 882.1350 Section 882.1350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1350 Needle electrode. (a...
21 CFR 882.1350 - Needle electrode.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Needle electrode. 882.1350 Section 882.1350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1350 Needle electrode. (a...
Dynamic soft tissue deformation estimation based on energy analysis
NASA Astrophysics Data System (ADS)
Gao, Dedong; Lei, Yong; Yao, Bin
2016-10-01
The needle placement accuracy of millimeters is required in many needle-based surgeries. The tissue deformation, especially that occurring on the surface of organ tissue, affects the needle-targeting accuracy of both manual and robotic needle insertions. It is necessary to understand the mechanism of tissue deformation during needle insertion into soft tissue. In this paper, soft tissue surface deformation is investigated on the basis of continuum mechanics, where a geometry model is presented to quantitatively approximate the volume of tissue deformation. The energy-based method is presented to the dynamic process of needle insertion into soft tissue based on continuum mechanics, and the volume of the cone is exploited to quantitatively approximate the deformation on the surface of soft tissue. The external work is converted into potential, kinetic, dissipated, and strain energies during the dynamic rigid needle-tissue interactive process. The needle insertion experimental setup, consisting of a linear actuator, force sensor, needle, tissue container, and a light, is constructed while an image-based method for measuring the depth and radius of the soft tissue surface deformations is introduced to obtain the experimental data. The relationship between the changed volume of tissue deformation and the insertion parameters is created based on the law of conservation of energy, with the volume of tissue deformation having been obtained using image-based measurements. The experiments are performed on phantom specimens, and an energy-based analytical fitted model is presented to estimate the volume of tissue deformation. The experimental results show that the energy-based analytical fitted model can predict the volume of soft tissue deformation, and the root mean squared errors of the fitting model and experimental data are 0.61 and 0.25 at the velocities 2.50 mm/s and 5.00 mm/s. The estimating parameters of the soft tissue surface deformations are proven to be useful for compensating the needle-targeting error in the rigid needle insertion procedure, especially for percutaneous needle insertion into organs.
Modeling and Control of Needles with Torsional Friction
Reed, Kyle B.; Okamura, Allison M.; Cowan, Noah J.
2010-01-01
A flexible needle can be accurately steered by robotically controlling the bevel tip orientation as the needle is inserted into tissue. Friction between the long, flexible needle shaft and the tissue can cause a significant discrepancy between the orientation of the needle tip and the orientation of the base where the needle angle is controlled. Our experiments show that several common phantom tissues used in needle steering experiments impart substantial friction forces to the needle shaft, resulting in a lag of over 45° for a 10 cm insertion depth in some phantoms; clinical studies report torques large enough to cause similar errors during needle insertions. Such angle discrepancies will result in poor performance or failure of path planners and image-guided controllers, since the needles used in percutaneous procedures are too small for state-of-the-art imaging to accurately measure the tip angle. To compensate for the angle discrepancy, we develop an estimator using a mechanics-based model of the rotational dynamics of a needle being inserted into tissue. Compared to controllers that assume a rigid needle in a frictionless environment, our estimator-based controller improves the tip angle convergence time by nearly 50% and reduces the path deviation of the needle by 70%. PMID:19695979
NonLinear Optical Spectroscopy of Polymers
1989-01-01
temperature is reduced by a negligible amount, although at higher temperatures, the relaxation occurs more rapidly. 25- 20’ Needle Electrode N =15 Cr .-10C...sample in 23a was poled with a needle electrode , while the sample in 23b was poled by parallel wire electrodes . Mortazavl et al. (104) conducted...when an Inhomogeneous electric field causes a partial breakdown in a gas between the electrodes . Two electrode configurations were tested: a needle
Hiraki, Takao; Kamegawa, Tetsushi; Matsuno, Takayuki; Sakurai, Jun; Kirita, Yasuzo; Matsuura, Ryutaro; Yamaguchi, Takuya; Sasaki, Takanori; Mitsuhashi, Toshiharu; Komaki, Toshiyuki; Masaoka, Yoshihisa; Matsui, Yusuke; Fujiwara, Hiroyasu; Iguchi, Toshihiro; Gobara, Hideo; Kanazawa, Susumu
2017-11-01
Purpose To evaluate the accuracy of the remote-controlled robotic computed tomography (CT)-guided needle insertion in phantom and animal experiments. Materials and Methods In a phantom experiment, 18 robotic and manual insertions each were performed with 19-gauge needles by using CT fluoroscopic guidance for the evaluation of the equivalence of accuracy of insertion between the two groups with a 1.0-mm margin. Needle insertion time, CT fluoroscopy time, and radiation exposure were compared by using the Student t test. The animal experiments were approved by the institutional animal care and use committee. In the animal experiment, five robotic insertions each were attempted toward targets in the liver, kidneys, lungs, and hip muscle of three swine by using 19-gauge or 17-gauge needles and by using conventional CT guidance. The feasibility, safety, and accuracy of robotic insertion were evaluated. Results The mean accuracies of robotic and manual insertion in phantoms were 1.6 and 1.4 mm, respectively. The 95% confidence interval of the mean difference was -0.3 to 0.6 mm. There were no significant differences in needle insertion time, CT fluoroscopy time, or radiation exposure to the phantom between the two methods. Effective dose to the physician during robotic insertion was always 0 μSv, while that during manual insertion was 5.7 μSv on average (P < .001). Robotic insertion was feasible in the animals, with an overall mean accuracy of 3.2 mm and three minor procedure-related complications. Conclusion Robotic insertion exhibited equivalent accuracy as manual insertion in phantoms, without radiation exposure to the physician. It was also found to be accurate in an in vivo procedure in animals. © RSNA, 2017 Online supplemental material is available for this article.
Furusho, Junji; Kobayashi, Hiroshi; Kikuchi, Takehito; Yamamoto, Tatsuro; Tanaka, Hidekazu; Terayama, Motokazu; Monden, Morito
2008-01-01
The purpose of this study is to realize the mechanically-controllable needle-insertion system using the CMTD (Curved Multi-Tube Device) which was developed by Furusho Laboratory. A CMTD, was developed for minimally-invasive surgery and needle insertion. And we use ultrasonograph as a sensing device to detect the position of bible duct or tumor and the orientation and position of the needle which is inserted into liver. This system makes safe minimally-invasive surgery possible, because all complex mechanisms are arranged outside of the body.
Endpoint Accuracy in Manual Control of a Steerable Needle.
van de Berg, Nick J; Dankelman, Jenny; van den Dobbelsteen, John J
2017-02-01
To study the ability of a human operator to manually correct for errors in the needle insertion path without partial withdrawal of the needle by means of an active, tip-articulated steerable needle. The needle is composed of a 1.32-mm outer-diameter cannula, with a flexure joint near the tip, and a retractable stylet. The bending stiffness of the needle resembles that of a 20-gauge hypodermic needle. The needle functionality was evaluated in manual insertions by steering to predefined targets and a lateral displacement of 20 mm from the straight insertion line. Steering tasks were conducted in 5 directions and 2 tissue simulants under image guidance from a camera. The repeatability in instrument actuations was assessed during 100 mm deep automated insertions with a linear motor. In addition to tip position, tip angles were tracked during the insertions. The targeting error (mean absolute error ± standard deviation) during manual steering to 5 different targets in stiff tissue was 0.5 mm ± 1.1. This variability in manual tip placement (1.1 mm) was less than the variability among automated insertions (1.4 mm) in the same tissue type. An increased tissue stiffness resulted in an increased lateral tip displacement. The tip angle was directly controlled by the user interface, and remained unaffected by the tissue stiffness. This study demonstrates the ability to manually steer needles to predefined target locations under image guidance. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.
Tarkkila, P; Huhtala, J; Salminen, U
1994-08-01
The effect of different size (25-, 27- and 29-gauge) Quincke-type spinal needles on the incidence of insertion difficulties and failure rates was investigated in a randomised, prospective study with 300 patients. The needle size was randomised but the insertion procedure was standardised. The time to achieve dural puncture was significantly longer with the 29-gauge spinal needle compared with the larger bore needles and was due to the greater flexibility of the thin needle. However, the difference was less than 1 min and cannot be considered clinically significant. There were no significant differences between groups in the number of insertion attempts or failures and the same sensory level of analgesia was reached with all the needle sizes studied. Postoperatively, no postdural puncture headaches occurred in the 29-gauge spinal needle group, whilst in the 25- and 27-gauge needle groups, the postdural puncture headache rates were 7.4% and 2.1% respectively. The incidence of backache was similar in all study groups. We conclude that dural puncture with a 29-gauge spinal needle is clinically as easy as with larger bore needles and its use is indicated in patients who have a high risk of postdural puncture headache.
In-plane ultrasonic needle tracking using a fiber-optic hydrophone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Wenfeng, E-mail: wenfeng.xia@ucl.ac.uk; Desjardins, Adrien E.; Mari, Jean Martial
Purpose: Accurate and efficient guidance of needles to procedural targets is critically important during percutaneous interventional procedures. Ultrasound imaging is widely used for real-time image guidance in a variety of clinical contexts, but with this modality, uncertainties about the location of the needle tip within the image plane lead to significant complications. Whilst several methods have been proposed to improve the visibility of the needle, achieving accuracy and compatibility with current clinical practice is an ongoing challenge. In this paper, the authors present a method for directly visualizing the needle tip using an integrated fiber-optic ultrasound receiver in conjunction withmore » the imaging probe used to acquire B-mode ultrasound images. Methods: Needle visualization and ultrasound imaging were performed with a clinical ultrasound imaging system. A miniature fiber-optic ultrasound hydrophone was integrated into a 20 gauge injection needle tip to receive transmissions from individual transducer elements of the ultrasound imaging probe. The received signals were reconstructed to create an image of the needle tip. Ultrasound B-mode imaging was interleaved with needle tip imaging. A first set of measurements was acquired in water and tissue ex vivo with a wide range of insertion angles (15°–68°) to study the accuracy and sensitivity of the tracking method. A second set was acquired in an in vivo swine model, with needle insertions to the brachial plexus. A third set was acquired in an in vivo ovine model for fetal interventions, with insertions to different locations within the uterine cavity. Two linear ultrasound imaging probes were used: a 14–5 MHz probe for the first and second sets, and a 9–4 MHz probe for the third. Results: During insertions in tissue ex vivo and in vivo, the imaged needle tip had submillimeter axial and lateral dimensions. The signal-to-noise (SNR) of the needle tip was found to depend on the insertion angle. With the needle tip in water, the SNR of the needle tip varied with insertion angle, attaining values of 284 at 27° and 501 at 68°. In swine tissue ex vivo, the SNR decreased from 80 at 15° to 16 at 61°. In swine tissue in vivo, the SNR varied with depth, from 200 at 17.5 mm to 48 at 26 mm, with a constant insertion angle of 40°. In ovine tissue in vivo, within the uterine cavity, the SNR varied from 46.4 at 25 mm depth to 18.4 at 32 mm depth, with insertion angles in the range of 26°–65°. Conclusions: A fiber-optic ultrasound receiver integrated into the needle cannula in combination with single-element transmissions from the imaging probe allows for direct visualization of the needle tip within the ultrasound imaging plane. Visualization of the needle tip was achieved at depths and insertion angles that are encountered during nerve blocks and fetal interventions. The method presented in this paper has strong potential to improve the safety and efficiency of ultrasound-guided needle insertions.« less
SU-D-213AB-06: Surface Texture and Insertion Speed Effect on Needle Friction.
Abdullah, A; Golecki, C; Barnett, A; Moore, J
2012-06-01
High frictional forces between the needle surface and tissue cause tissue deflection which hinders accurate needle placement for procedures such as brachytherapy and needle biopsy. Accurate needle placement isimportant to maximize procedure efficacy. This work investigates how needle surface roughness and insertion speed affect the frictional forcebetween a needle and tissue. A friction experiment was conducted to measure the force of friction between bovine liver and three 11 gauge needles having Ra surface roughness of 3.43, 1.33, and 0.2 μm. Each of the three needles were mounted on a linear slide and were advanced and retracted through bovine liver at speeds of 50, 100, 150, and 200 mm/s for a total of 12 trials. In each trial the needle was advanced and retracted in 10 cycles producing a steady state insertion force and a steady state retraction force for each cycle. A force sensor connecting the needle to the linear slide recorded the resistance force of the needle sliding through the liver. The liver was mounted in a box with a pneumatic cylinder which compressed the liver sample by 11.65 kPa. The roughest needle (Ra = 3.43 μm) on average produced 68, 73, 74, and 73% lower friction force than the smoothest needle (Ra = 0.2 μm) for the speeds of 50, 100, 150, and 200mm/s, respectively. The second roughest needle (Ra = 1.33 μm) on average produced 25, 45, 60 and 64% lower friction force than the smoothest needle (Ra = 0.2 μm) for the speeds of 50, 100, 150, and 200 mm/s, respectively. Rougher needle surface texture and higher insertion speed reduced frictional forces between the tissue and the needle. Future studies will examine how frictional forces can be modeled and predicted given surface texture and insertion speed. © 2012 American Association of Physicists in Medicine.
2014-01-01
Background The aim of this research project was the realization of an incremental bipolar radiofrequency generator with inline 4-electrode probe for partial renal resection without clamping of the vessels. Methods The experimentation was carried out across two phases: the preliminary realization of a specific generator and an inline multielectrode probe for open surgery (Phase 1); system testing on 27 bench kidneys for a total of 47 partial resection (Phase 2). The parameters evaluated were: power level, generator automatisms, parenchymal coagulation times, needle caliber, thickness of the coagulated tissue “slice”, charring, ergonomy, feasibility of the application of “bolster” stitches. Results The analysis of the results referred to the homogeneity and thickness of coagulation, energy supply times with reference to the power level and caliber of the needles. The optimal results were obtained by using needles of 1.5 mm caliber at power level 5, and with coagulation times of 54 seconds for the first insertion and 30 seconds for the second. Conclusions The experimentation demonstrated that the apparatus, consisting of a generator named “LaparoNewPro” and fitted with a dedicated probe for open surgery, is able to carry out a coagulation of the line of resection of the renal parenchyma in a homogeneous manner, in short times, without tissue charring, and with the possibility of stitching both on coagulated tissue and the caliceal system. The generator automatism based on the flow of the current supplied by each electrode is reliable, and the cessation of energy supply coincides with optimal coagulation. PMID:24410789
2013-01-04
plane electrode setup. The discharge cell had a point- to-plate geometry with the high-voltage electrode being either stain-less steel needle with...influence of the electrode properties were investigated using 2 different electrodes : a stainless steel needle with a 20μm radius of curvature tip, and an...breakdown phenomena developing around a needle -like high voltage electrode , with a typical radius of curvature r0 ~ 0.01- 0.1mm. The volumetric force
Electrodynamic Aerosol Concentrating and Sampling
2006-06-16
flat-plate AC electrode ...................................................................................................9 Figure 4. Corona needle ...Figure 4 shows a fine hypodermic needle used as a corona wire within the first quadrupole. The quadrupole electrodes would serve as the collecting...carefully expanded to better approximate hyperbolas. It is shown here with the inner needle corona electrode in place. Once it was determined that the
Okrainec, A; Farcas, M; Henao, O; Choy, I; Green, J; Fotoohi, M; Leslie, R; Wight, D; Karam, P; Gonzalez, N; Apkarian, J
2009-01-01
The Veress needle is the most commonly used technique for creating the pneumoperitoneum at the start of a laparoscopic surgical procedure. Inserting the Veress needle correctly is crucial since errors can cause significant harm to patients. Unfortunately, this technique can be difficult to teach since surgeons rely heavily on tactile feedback while advancing the needle through the various layers of the abdominal wall. This critical step in laparoscopy, therefore, can be challenging for novice trainees to learn without adequate opportunities to practice in a safe environment with no risk of injury to patients. To address this issue, we have successfully developed a prototype of a virtual reality haptic needle insertion simulator using the tactile feedback of 22 surgeons to set realistic haptic parameters. A survey of these surgeons concluded that our device appeared and felt realistic, and could potentially be a useful tool for teaching the proper technique of Veress needle insertion.
Secure Container For Discarded Hypodermic Needles
NASA Technical Reports Server (NTRS)
Lee, Angelene M.
1992-01-01
Container designed for safe retention of discarded blood-collecting hypodermic needles and similar sharp objects used in life-science experiments aboard spacecraft. Needles inserted through self-closing lid and retained magnetically. They are inserted, sharp end first, through spring-loaded flap. Long needles and needles on syringes cannot turn around in container. Can be emptied, cleaned, and reused. Used on Earth to provide unusually secure containment of sharp objects.
Tokuda, Junichi; Song, Sang-Eun; Fischer, Gregory S; Iordachita, Iulian I; Seifabadi, Reza; Cho, Nathan B; Tuncali, Kemal; Fichtinger, Gabor; Tempany, Clare M; Hata, Nobuhiko
2012-11-01
To evaluate the targeting accuracy of a small profile MRI-compatible pneumatic robot for needle placement that can angulate a needle insertion path into a large accessible target volume. We extended our MRI-compatible pneumatic robot for needle placement to utilize its four degrees-of-freedom (4-DOF) mechanism with two parallel triangular structures and support transperineal prostate biopsies in a closed-bore magnetic resonance imaging (MRI) scanner. The robot is designed to guide a needle toward a lesion so that a radiologist can manually insert it in the bore. The robot is integrated with navigation software that allows an operator to plan angulated needle insertion by selecting a target and an entry point. The targeting error was evaluated while the angle between the needle insertion path and the static magnetic field was between -5.7° and 5.7° horizontally and between -5.7° and 4.3° vertically in the MRI scanner after sterilizing and draping the device. The robot positioned the needle for angulated insertion as specified on the navigation software with overall targeting error of 0.8 ± 0.5mm along the horizontal axis and 0.8 ± 0.8mm along the vertical axis. The two-dimensional root-mean-square targeting error on the axial slices as containing the targets was 1.4mm. Our preclinical evaluation demonstrated that the MRI-compatible pneumatic robot for needle placement with the capability to angulate the needle insertion path provides targeting accuracy feasible for clinical MRI-guided prostate interventions. The clinical feasibility has to be established in a clinical study.
Scaled-Up Nonequilibrium Air Plasmas Generated by DC and Pulsed Discharges
2010-09-08
discharges at atmospheric pressure, the rotational temperature balances with the temperature of the surrounding gas. So if we put a needle electrode ...ohmic heater to 300–973 K with an axial flow with velocity from 2 to 10 m/s. The distance between the stainless steel needle electrodes in point- to...explored 300-1000 K range. TS was operated between stainless steel pointed needle and another stainless needle electrode positioned horizontally in an
[Data Mining-revealed Characteristics of Clinical Application of Scalp Acupuncture].
Wang, Qiong; Xing, Hai-Jiao; Bao, Na; Kong, Ling-Juan; Jia, Ye-Juan; Yang, Ke; Sun, Yan-Hui; Wang, Jian-Ling; Shi, Jing; Li, Xiao-Feng; Xu, Jing; Zhang, Xuan-Ping; Zhang, Xin; Jia, Chun-Sheng; Li, Ren-Ling
2018-03-25
To explore the regularity and characteristics of clinical application of scalp acupuncture therapy for different types of clinical conditions so as to provide a reference for clinical practice. In the present study, "head acupuncture" and"scalp acupuncture" were used as the keywords to search papers and academic dissertations having definite standards for diagnosis and therapeutic effect assessment and published in journals and academic conferences collected in database China National Knowledge Internet(CNKI) from January 1 of 1959 to December 31 of 2016, followed by constructing a database after sorting, screening, recording, extracting, and statistical analysis by using a computer. Then, the data mining was conducted for summarizing the indications of disease categories, involved medical departments, needle-insertion methods, needle manipulation techniques, academic schools, and clinical efficacy of scalp acupuncture therapy. As a result, a total of 587 papers met our including criteria were analyzed. The scalp acupuncture therapy was widely employed in the treatment of various clinical conditions of different departments, with the application frequency being the internal medicine (438 times), surgery (75 times), pediatrics (44 times), etc. Of the indicated 102 types of clinical problems, 55 belong to the internal medicine, constituting of 53.92%, particularly the cerebral apoplexy and its sequelae with the top application frequency being 102 and 115 times, respectively. In terms of needle inserting methods mentioned in partial papers (most papers do not mention), fingernail-pressing-aided needle insertion, needle-twirling insertion, fingers-squeezed-needle insertion, particularly the swiftly rotating needle insertion and rapid needle-propelling insertion were most commonly used.Regarding the needle manipulation method, rapid needle twirling technique was frequently employed, usually at a frequency of approximately 200 times per min. In regard to the academic schools, JIAO Shun-fa's scalp acupuncture system was most frequently used, followed by the international standardized scalp acupuncture. The therapeutic effect of scalp acupuncture is effective in the treatment of different conditions of various departments, especially those of the dermatology and gynecology. Scalp acupuncture has superiority in the treatment disorders of the internal medicine and has been demonstrated to have positive effects for many types of problems, particularly for apoplexy and its sequelae. Rapid needle-propelling insertion and rapid needle-twirling technique are often employed.
Li, Pan; Yang, Zhiyong; Jiang, Shan
2018-06-01
Image-guided robot-assisted minimally invasive surgery is an important medicine procedure used for biopsy or local target therapy. In order to reach the target region not accessible using traditional techniques, long and thin flexible needles are inserted into the soft tissue which has large deformation and nonlinear characteristics. However, the detection results and therapeutic effect are directly influenced by the targeting accuracy of needle steering. For this reason, the needle-tissue interactive mechanism, path planning, and steering control are investigated in this review by searching literatures in the last 10 years, which results in a comprehensive overview of the existing techniques with the main accomplishments, limitations, and recommendations. Through comprehensive analyses, surgical simulation for insertion into multi-layer inhomogeneous tissue is verified as a primary and propositional aspect to be explored, which accurately predicts the nonlinear needle deflection and tissue deformation. Investigation of the path planning of flexible needles is recommended to an anatomical or a deformable environment which has characteristics of the tissue deformation. Nonholonomic modeling combined with duty-cycled spinning for needle steering, which tracks the tip position in real time and compensates for the deviation error, is recommended as a future research focus in the steering control in anatomical and deformable environments. Graphical abstract a Insertion force when the needle is inserted into soft tissue. b Needle deflection model when the needle is inserted into soft tissue [68]. c Path planning in anatomical environments [92]. d Duty-cycled spinning incorporated in nonholonomic needle steering [64].
Comparison of concentric needle versus hooked-wire electrodes in the canine larynx.
Jaffe, D M; Solomon, N P; Robinson, R A; Hoffman, H T; Luschei, E S
1998-05-01
The use of a specific electrode type in laryngeal electromyography has not been standardized. Laryngeal electromyography is usually performed with hooked-wire electrodes or concentric needle electrodes. Hooked-wire electrodes have the advantage of allowing laryngeal movement with ease and comfort, whereas the concentric needle electrodes have benefits from a technical aspect and may be advanced, withdrawn, or redirected during attempts to appropriately place the electrode. This study examines whether hooked-wire electrodes permit more stable recordings than standard concentric needle electrodes at rest and after large-scale movements of the larynx and surrounding structures. A histologic comparison of tissue injury resulting from placement and removal of the two electrode types is also made by evaluation of the vocal folds. Electrodes were percutaneously placed into the thyroarytenoid muscles of 10 adult canines. Amplitude of electromyographic activity was measured and compared during vagal stimulation before and after large-scale laryngeal movements. Signal consistency over time was examined. Animals were killed and vocal fold injury was graded and compared histologically. Waveform morphology did not consistently differ between electrode types. The variability of electromyographic amplitude was greater for the hooked-wire electrode (p < 0.05), whereas the mean amplitude measures before and after large-scale laryngeal movements did not differ (p > 0.05). Inflammatory responses and hematoma formation were also similar. Waveform morphology of electromyographic signals registered from both electrode types show similar complex action potentials. There is no difference between the hooked-wire electrode and the concentric needle electrode in terms of electrode stability or vocal fold injury in the thyroarytenoid muscle after large-scale laryngeal movements.
Hing, James T; Brooks, Ari D; Desai, Jaydev P
2007-02-01
A methodology for modeling the needle and soft-tissue interaction during needle insertion is presented. The approach consists of the measurement of needle and tissue motion using a dual C-arm fluoroscopy system. Our dual C-arm fluoroscopy setup allows real time 3-D extraction of the displacement of implanted fiducials in the soft tissue during needle insertion to obtain the necessary parameters for accurate modeling of needle and soft-tissue interactions. The needle and implanted markers in the tissue are tracked during the insertion and withdrawal of the needle at speeds of 1.016 mm/s, 12.7 mm/s and 25.4 mm/s. Both image and force data are utilized to determine important parameters such as the approximate cutting force, puncture force, the local effective modulus (LEM) during puncture, and the relaxation of tissue. We have also validated the LEM computed from our finite element model with arbitrary needle puncture tasks. Based on these measurements, we developed a model for needle insertion and withdrawal that can be used to generate a 1-DOF force versus position profile that can be experienced by a user operating a haptic device. This profile was implemented on a 7-DOf haptic device designed in our laboratory.
2003-07-20
known, that at atmospheric pressure in oxygen- I" - contained gases a various modes of discharge can be realized in the needle -to-plane electrode geometry... needle -to-plane electrode system was located in the discharge chamber (volume I dmi3) with controlled gas feeding. The gas pressure was an atmospheric...The 3. Experimental results positive DC voltage was applied to the needle electrode . The discharge voltage was varied from 3 to 15kV. The analysis of
Nevler, Avinoam; Har-Zahav, Gil; Rosin, Danny; Gutman, Mordechai
2016-02-01
Laparoscopic surgery is widely practiced surgical technique in the modern surgical toolbox. The Veress needle insertion technique, while faster and easier, is associated with higher rates of iatrogenic complications (injury to internal organs, major blood vessels, etc.), morbidity and even mortality with a reported overall risk of 0.32% during surgical interventions. In order to increase the safety and ease of closed insertion technique, we designed and tested an improved prototype of the Veress needle. The new Veress needle includes a distal expandable portion that allows elevation of the abdominal wall and safe insertion of the first trocar over it. The needle was assessed by measurement of ease of insertion, ease of trocar advancement, associated tissue damage, device integrity and weight-bearing capacity on an ex vivo Gallus domesticus animal model: The prototype was tested over 20 times using different traction forces. The experiment was qualitatively repeated on an ex vivo porcine model. In the G. domesticus model, the improved needle supported forces of up to 5.75 kg F. No damage or mechanical malfunction was seen at any stage of the experiment. Needle penetration, ease of trocar insertion, system anchoring and weight-bearing capacity were rated (1-5) by four raters--mean 4.9 ± 0.31. Inter-rater agreement was high (free marginal κ 0.75). The porcine experiment revealed similar ease of use with neither complication nor damage to the abdominal wall. We believe that the new Veress system is easy to use, requires no additional training, non-inferior in its capabilities compared to the traditional Veress needle, with the advantage of improving the safety of the first trocar insertion phase of the operation.
Method to Reduce Target Motion Through Needle-Tissue Interactions.
Oldfield, Matthew J; Leibinger, Alexander; Seah, Tian En Timothy; Rodriguez Y Baena, Ferdinando
2015-11-01
During minimally invasive surgical procedures, it is often important to deliver needles to particular tissue volumes. Needles, when interacting with a substrate, cause deformation and target motion. To reduce reliance on compensatory intra-operative imaging, a needle design and novel delivery mechanism is proposed. Three-dimensional finite element simulations of a multi-segment needle inserted into a pre-existing crack are presented. The motion profiles of the needle segments are varied to identify methods that reduce target motion. Experiments are then performed by inserting a needle into a gelatine tissue phantom and measuring the internal target motion using digital image correlation. Simulations indicate that target motion is reduced when needle segments are stroked cyclically and utilise a small amount of retraction instead of being held stationary. Results are confirmed experimentally by statistically significant target motion reductions of more than 8% during cyclic strokes and 29% when also incorporating retraction, with the same net insertion speed. By using a multi-segment needle and taking advantage of frictional interactions on the needle surface, it is demonstrated that target motion ahead of an advancing needle can be substantially reduced.
NASA Astrophysics Data System (ADS)
Susanti, Hesty; Suprijanto, Kurniadi, Deddy
2018-02-01
Needle visibility in ultrasound-guided technique has been a crucial factor for successful interventional procedure. It has been affected by several factors, i.e. puncture depth, insertion angle, needle size and material, and imaging technology. The influences of those factors made the needle not always well visible. 20 G needles of 15 cm length (Nano Line, facet) were inserted into water bath with variation of insertion angles and depths. Ultrasound measurements are performed with BK-Medical Flex Focus 800 using 12 MHz linear array and 5 MHz curved array in Ultrasound Guided Regional Anesthesia mode. We propose 3 criteria to evaluate needle visibility, i.e. maximum intensity, mean intensity, and the ratio between minimum and maximum intensity. Those criteria were then depicted into representative maps for practical purpose. The best criterion candidate for representing the needle visibility was criterion 1. Generally, the appearance pattern of the needle from this criterion was relatively consistent, i.e. for linear array, it was relatively poor visibility in the middle part of the shaft, while for curved array, it is relatively better visible toward the end of the shaft. With further investigations, for example with the use of tissue-mimicking phantom, the representative maps can be built for future practical purpose, i.e. as a tool for clinicians to ensure better needle placement in clinical application. It will help them to avoid the "dead" area where the needle is not well visible, so it can reduce the risks of vital structures traversing and the number of required insertion, resulting in less patient morbidity. Those simple criteria and representative maps can be utilized to evaluate general visibility patterns of the needle in vast range of needle types and sizes in different insertion media. This information is also important as an early investigation for future research of needle visibility improvement, i.e. the development of beamforming strategies and ultrasound enhanced (echogenic) needle.
An analysis of the effectiveness of two topical anesthetics.
Rosivack, R. G.; Koenigsberg, S. R.; Maxwell, K. C.
1990-01-01
This study compared the effectiveness of topical benzocaine 20%, lidocaine 5%, and a placebo in reducing the pain caused by needle insertion when the medicament was placed in the mucobuccal fold above the maxillary canine eminence. Both topical anesthetics and the placebo were randomly tested against each other bilaterally. For uniformity the agents were left in place for three minutes before needle insertion. A 27 gauge short needle mounted on an aspirating syringe was then inserted just past the bevel. Each subject rated the degree of pain on a visual analogue scale 100 mm in length. A pulse oximeter was used to record the heart rate. The results indicate that both topical anesthetics are significantly better than the placebo in reducing pain caused by needle insertion, although no statistically significant differences were found between the two topical anesthetics. Statistically significant differences in heart rate were seen, but these differences were not clinically significant. It is concluded that benzocaine 20% and lidocaine 5% significantly reduce the pain during needle insertion. PMID:2097909
Assouad, Jalal; Masmoudi, Hicham; Gonzalez-Bermejo, Jesus; Morélot-Panzini, Capucine; Diop, Moustapha; Grunenwald, Dominique; Similowski, Thomas
2012-08-01
Phrenic nerve stimulation for diaphragm pacing allows patients with central respiratory paralysis to be weaned from mechanical ventilation. Two procedures are available, either intrathoracic (bilateral thoracotomy) or intradiaphragmatic (four ports laparoscopy). The present experimental work assesses the feasibility, safety and efficacy of a trans-mediastinal implantation of intradiaphragmatic phenic nerve stimulation electrodes using a flexible gastroscope through a cervical incision. We operated on nine ewes. After selective bronchial intubation, we dissected the latero-tracheal space and opened both mediastinal pleura. We then introduced a flexible gastroscope into the pleural cavities, in a sequential manner. The phrenic nerves were located and followed up to the diaphragm dome. Electrodes loaded within a long, pliable needle were introduced through the adjacent intercostal space and implanted in each hemidiaphragm, at a 'tendinous' location (as close as possible to the entry of the nerve in the central tendon), and at a more lateral 'muscular' location. Postoperatively, the animals were ventilated using bilateral phrenic nerve stimulation. After euthanasia, abdominal verification of the electrodes position was performed through a laparotomy. The mediastinal and pleural parts of the procedure were uneventful. The insertion of electrodes was associated with transdiaphragmatic puncture and small abdominal haematomas in the first two animals studied. After a slight modification of the insertion technique, this was not observed anymore. Phrenic nerve stimulation produced efficient ventilation, with tidal volumes significantly higher when delivered at the tendinous site than at the muscular site. The trans-mediastinal implantation of intradiaphragmatic phrenic nerve stimulation electrodes is feasible, appears reasonably safe, and allows efficient ventilation.
Kim, Sioh; Kim, Hyun-Jae; Yeo, Jin-Seok; Hong, Sung-Jung; Lee, Ji-Min; Jeon, Younghoon
2011-09-01
The purpose of this study was to investigate whether lavender oil aromatherapy can reduce the bispectral index (BIS) values and stress and decrease the pain of needle insertion in 30 volunteers. Thirty (30) healthy volunteers were randomly allocated to 2 groups: the experimental group received oxygen with a face mask coated with lavender oil for 5 minutes, and the control group received oxygen through a face mask with no lavender oil for 5 minutes. The stress level (0=no stress, 10=maximum stress), BIS value, and pain intensity of needle insertion (0=no pain, 10=worst pain imaginable) were measured. There were no significant differences in age, sex, height, and weight between the two groups. Stress level, BIS value, and pain intensity of needle insertion before aromatherapy were similar between the two groups. However, the stress values (p<0.001) and BIS value (p<0.001) after aromatherapy were significantly reduced compared with the control. In addition, the pain intensity of needle insertion was significantly decreased after aromatherapy compared with the control (p<0.001). Lavender aromatherapy in volunteers provided a significant decrease in the stress levels and in the BIS values. In addition, it significantly reduced the pain intensity of needle insertion.
Dynamics of translational friction in needle-tissue interaction during needle insertion.
Asadian, Ali; Patel, Rajni V; Kermani, Mehrdad R
2014-01-01
In this study, a distributed approach to account for dynamic friction during needle insertion in soft tissue is presented. As is well known, friction is a complex nonlinear phenomenon. It appears that classical or static models are unable to capture some of the observations made in systems subjected to significant frictional effects. In needle insertion, translational friction would be a matter of importance when the needle is very flexible, or a stop-and-rotate motion profile at low insertion velocities is implemented, and thus, the system is repeatedly transitioned from a pre-sliding to a sliding mode and vice versa. In order to characterize friction components, a distributed version of the LuGre model in the state-space representation is adopted. This method also facilitates estimating cutting force in an intra-operative manner. To evaluate the performance of the proposed family of friction models, experiments were conducted on homogeneous artificial phantoms and animal tissue. The results illustrate that our approach enables us to represent the main features of friction which is a major force component in needle-tissue interaction during needle-based interventions.
NASA Astrophysics Data System (ADS)
Hrinivich, W. Thomas; Hoover, Douglas A.; Surry, Kathleen; Edirisinghe, Chandima; Montreuil, Jacques; D'Souza, David; Fenster, Aaron; Wong, Eugene
2016-03-01
Background: High-dose-rate brachytherapy (HDR-BT) is a prostate cancer treatment option involving the insertion of hollow needles into the gland through the perineum to deliver a radioactive source. Conventional needle imaging involves indexing a trans-rectal ultrasound (TRUS) probe in the superior/inferior (S/I) direction, using the axial transducer to produce an image set for organ segmentation. These images have limited resolution in the needle insertion direction (S/I), so the sagittal transducer is used to identify needle tips, requiring a manual registration with the axial view. This registration introduces a source of uncertainty in the final segmentations and subsequent treatment plan. Our lab has developed a device enabling 3D-TRUS guided insertions with high S/I spatial resolution, eliminating the need to align axial and sagittal views. Purpose: To compare HDR-BT needle tip localization accuracy between 2D and 3D-TRUS. Methods: 5 prostate cancer patients underwent conventional 2D TRUS guided HDR-BT, during which 3D images were also acquired for post-operative registration and segmentation. Needle end-length measurements were taken, providing a gold standard for insertion depths. Results: 73 needles were analyzed from all 5 patients. Needle tip position differences between imaging techniques was found to be largest in the S/I direction with mean+/-SD of -2.5+/-4.0 mm. End-length measurements indicated that 3D TRUS provided statistically significantly lower mean+/-SD insertion depth error of -0.2+/-3.4 mm versus 2.3+/-3.7 mm with 2D guidance (p < .001). Conclusions: 3D TRUS may provide more accurate HDR-BT needle localization than conventional 2D TRUS guidance for the majority of HDR-BT needles.
Fusion of electromagnetic trackers to improve needle deflection estimation: simulation study.
Sadjadi, Hossein; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor
2013-10-01
We present a needle deflection estimation method to anticipate needle bending during insertion into deformable tissue. Using limited additional sensory information, our approach reduces the estimation error caused by uncertainties inherent in the conventional needle deflection estimation methods. We use Kalman filters to combine a kinematic needle deflection model with the position measurements of the base and the tip of the needle taken by electromagnetic (EM) trackers. One EM tracker is installed on the needle base and estimates the needle tip position indirectly using the kinematic needle deflection model. Another EM tracker is installed on the needle tip and estimates the needle tip position through direct, but noisy measurements. Kalman filters are then employed to fuse these two estimates in real time and provide a reliable estimate of the needle tip position, with reduced variance in the estimation error. We implemented this method to compensate for needle deflection during simulated needle insertions and performed sensitivity analysis for various conditions. At an insertion depth of 150 mm, we observed needle tip estimation error reductions in the range of 28% (from 1.8 to 1.3 mm) to 74% (from 4.8 to 1.2 mm), which demonstrates the effectiveness of our method, offering a clinically practical solution.
Yamaguchi, Satoshi; Tsutsui, Kihei; Satake, Koji; Morikawa, Shigehiro; Shirai, Yoshiaki; Tanaka, Hiromi T
2014-10-01
Our goal was to develop a three-dimensional finite element model that enables dynamic analysis of needle insertion for soft materials. To demonstrate large deformation and fracture, we used the arbitrary Lagrangian-Eulerian (ALE) method for fluid analysis. We performed ALE-based finite element analysis for 3% agar gel and three types of copper needle with bevel tips. To evaluate simulation results, we compared the needle deflection and insertion force with corresponding experimental results acquired with a uniaxial manipulator. We studied the shear stress distribution of agar gel on various time scales. For 30°, 45°, and 60°, differences in deflections of each needle between both sets of results were 2.424, 2.981, and 3.737mm, respectively. For the insertion force, there was no significant difference for mismatching area error (p<0.05) between simulation and experimental results. Our results have the potential to be a stepping stone to develop pre-operative surgical planning to estimate an optimal needle insertion path for MR image-guided microwave coagulation therapy and for analyzing large deformation and fracture in biological tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sekimoto, K.; Takayama, M.
2010-12-01
The change in the distribution pattern of negative ions HO-, NOx- and COx- observed on arbitrary point-to-plane electrode configuration has been investigated by varying the angle of needle to the plane electrode, under atmospheric pressure corona discharge conditions. The stationary inhomogeneous electric field distributions between the point-to-plane electrodes with arbitrary needle angle were calculated. The experimental and theoretical results obtained suggested that the negative ion evolutions progress along field lines established between the electrodes with arbitrary configurations and the resulting terminal ion formation on a given field line is attributable to the electric field strength on the needle tip surface where the field line arose. The NOx- and COx- ions were dominantly produced on the field lines arising from the needle tip apex region with the highest electric field strength, while the field lines emanating from the tip peripheral regions with lower field strength resulted in the formation of the HO- ion.
Moy, Wesley J; Su, Erica; Chen, Jason J; Oh, Connie; Jing, Joe C; Qu, Yueqiao; He, Youmin; Chen, Zhongping; Wong, Brian J F
2017-12-01
The classic management of burn scars and other injuries to the skin has largely relied on soft-tissue transfer to resurface damaged tissue with local tissue transfer or skin graft placement. In situ generation of electrochemical reactions using needle electrodes and an application of current may be a new approach to treat scars and skin. To examine the changes in optical, mechanical, and acoustic impedance properties in porcine skin after electrochemical therapy. This preclinical pilot study, performed from August 1, 2015, to November 1, 2016, investigated the effects of localized pH-driven electrochemical therapy of ex vivo porcine skin using 24 skin samples. Platinum-plated needle electrodes were inserted into fresh porcine skin samples. A DC power supply provided a voltage of 4 to 5 V with a 3-minute application time. Specimens were analyzed using optical coherence tomography, optical coherence elastography, and ultrasonography. Ultrasonography was performed under 3 conditions (n = 2 per condition), optical coherence tomography was performed under 2 conditions (n = 2 per condition), and optical coherence elastography was performed under 2 conditions (n = 2 per condition). The remaining samples were used for the positive and negative control groups (n = 10). Platinum-plated needle electrodes were inserted into fresh porcine skin samples. A DC power supply provided a voltage of 4 to 5 V with a 3-minute application. Tissue softening was observed at the anode and cathode sites as a result of electrochemical modification. Volumetric changes were noted using each optical and acoustic technique. A total of 24 ex vivo porcine skin samples were used for this pilot study. Optical coherence tomography measured spatial distribution of superficial tissue changes around each electrode site. At 4 V for 3 minutes, a total volumetric effect of 0.47 mm3 was found at the anode site and 0.51 mm3 at the cathode site. For 5 V for 3 minutes, a total volumetric effect of 0.85 mm3 was found at the anode site and 1.05 mm3 at the cathode site. Electrochemical therapy is a low-cost technique that is on par with the costs of suture and scalpel. The use of electrochemical therapy to create mechanical and physiologic changes in tissue has the potential to locally remodel the soft-tissue matrix, which ultimately may lead to an inexpensive scar treatment or skin rejuvenation therapy. NA.
Casanova, Fernando; Carney, Paul R; Sarntinoranont, Malisa
2014-01-01
Flow back along a needle track (backflow) can be a problem during direct infusion, e.g. convection-enhanced delivery (CED), of drugs into soft tissues such as brain. In this study, the effect of needle insertion speed on local tissue injury and backflow was evaluated in vivo in the rat brain. Needles were introduced at three insertion speeds (0.2, 2, and 10 mm/s) followed by CED of Evans blue albumin (EBA) tracer. Holes left in tissue slices were used to reconstruct penetration damage. These measurements were also input into a hyperelastic model to estimate radial stress at the needle-tissue interface (pre-stress) before infusion. Fast insertion speeds were found to produce more tissue bleeding and disruption; average hole area at 10 mm/s was 1.87-fold the area at 0.2 mm/s. Hole measurements also differed at two fixation time points after needle retraction, 10 and 25 min, indicating that pre-stresses are influenced by time-dependent tissue swelling. Calculated pre-stresses were compressive (0 to 485 Pa) and varied along the length of the needle with smaller average values within white matter (116 Pa) than gray matter (301 Pa) regions. Average pre-stress at 0.2 mm/s (351.7 Pa) was calculated to be 1.46-fold the value at 10 mm/s. For CED backflow experiments (0.5, 1, and 2 µL/min), measured EBA backflow increased as much as 2.46-fold between 10 and 0.2 mm/s insertion speeds. Thus, insertion rate-dependent damage and changes in pre-stress were found to directly contribute to the extent of backflow, with slower insertion resulting in less damage and improved targeting.
Simulation of Needle-Type Corona Electrodes by the Finite Element Method
NASA Astrophysics Data System (ADS)
Yang, Shiyou; José Márcio, Machado; Nancy Mieko, Abe; Angelo, Passaro
2007-12-01
This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of self-adaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.
Painless needle insertion in regional anesthesia of the eye.
Vaalamo, M O; Paloheimo, M P; Nikki, P H
1995-04-01
We examined a new technique of applying topical anesthetic with cotton tip sticks to the conjunctiva before needle insertion in regional anesthesia of the eye. Oxybuprocaine 0.4% and lidocaine 4% were compared with balanced salt solution (BSS) as topical anesthetics of the conjunctiva in Study 1. Ninety patients were randomly assigned into three groups (n = 30) to receive one of the three topical anesthetics in a double-blind manner. Pain of the needle insertions was measured with visual analog scale score (VAS) and quantitative surface electromography (qEMG). Both oxybuprocaine and lidocaine reduced pain significantly when compared to BSS. In Study 2, with healthy volunteers, we compared our previous practice of merely applying three consecutive drops of oxybuprocaine on the conjunctiva before needle insertions to the new technique of placing additional cotton tip sticks soaked in oxybuprocaine on the conjunctiva. We found the needle insertion virtually pain free when the cotton tip sticks were added to the topical anesthesia. The use of this simple method of topical anesthesia before the eye block increases patient comfort significantly.
Evaluation of a new pediatric intraosseous needle insertion device for low-resource settings.
Kalechstein, Sara; Permual, Ahiliyia; Cameron, Blair M; Pemberton, Julia; Hollaar, Gwen; Duffy, Deirdre; Cameron, Brian H
2012-05-01
The Near Needle Holder (NNH) (Near Manufacturing, Camrose, Alberta, Canada) is a reusable tool to introduce a standard hollow needle for pediatric intraosseous (IO) infusion. We compared the NNH to the Cook Dieckmann (Cook Critical Care, Bloomington, IN) manual IO needle in a simulation setting. Study subjects were 32 physicians, nurses, and medical students participating in a trauma course in Guyana. After watching a training video and practicing under supervision, subjects were observed inserting each device into a pediatric leg model using a randomized crossover design. Outcome measures were time to successful insertion, technical complications, ease of use, and safety of each device. The mean time for IO insertion (32 ± 13 seconds) was similar for both devices (P = .92). Subjects rated the NNH device equivalent in ease of use to the Cook IO needle but slightly lower in perceived safety to the user. After training, all subjects successfully inserted the NNH IO device in a simulation environment, and most rated it as easy to use and safe. The NNH is a significant advance because IO needles are often not available in emergency departments in developing countries. Further studies are needed to evaluate clinical effectiveness of the NNH. Copyright © 2012 Elsevier Inc. All rights reserved.
Hedén, L; von Essen, L; Ljungman, G
2016-02-01
The primary objective was to determine the levels of and potential relationships between procedure-related fear and pain in children. Secondary objectives were to determine if there are associations between the child's age and sex, diagnostic group, time since diagnosis, time since last needle insertion, cortisol levels and the parent's fear level in relation to fear and pain. The child's level of pain and fear was reported by parents on 0-100 mm visual analogue scales (VAS). One hundred and fifty-one children were included consecutively when undergoing routine needle insertion into a subcutaneously implanted intravenous port. All children were subjected to one needle insertion following topical anaesthesia (EMLA) application. The effect of the child's age and sex, diagnostic group, time since diagnosis, time since last needle insertion, cortisol change levels and the parent's fear level, on fear and pain levels was investigated with multiple regression analysis. The needle-related fear level (VAS mean 28 mm) was higher than the needle-related pain level (VAS mean 17 mm) when topical anaesthesia is used according to parents' reports (n = 151, p < 0.001). With fear as the dependent variable, age and pain were significantly associated and explained 33% of the variance, and with pain as the dependent variable, fear, parents' fear and change in cortisol level were significantly associated and explained 38% of the variance. According to parents, children experienced more fear than pain during needle insertion when topical anaesthesia is used. Therefore, in addition to pain management, an extended focus on fear-reducing interventions is suggested for needle procedures. © 2015 European Pain Federation - EFIC®
MLESAC Based Localization of Needle Insertion Using 2D Ultrasound Images
NASA Astrophysics Data System (ADS)
Xu, Fei; Gao, Dedong; Wang, Shan; Zhanwen, A.
2018-04-01
In the 2D ultrasound image of ultrasound-guided percutaneous needle insertions, it is difficult to determine the positions of needle axis and tip because of the existence of artifacts and other noises. In this work the speckle is regarded as the noise of an ultrasound image, and a novel algorithm is presented to detect the needle in a 2D ultrasound image. Firstly, the wavelet soft thresholding technique based on BayesShrink rule is used to denoise the speckle of ultrasound image. Secondly, we add Otsu’s thresholding method and morphologic operations to pre-process the ultrasound image. Finally, the localization of the needle is identified and positioned in the 2D ultrasound image based on the maximum likelihood estimation sample consensus (MLESAC) algorithm. The experimental results show that it is valid for estimating the position of needle axis and tip in the ultrasound images with the proposed algorithm. The research work is hopeful to be used in the path planning and robot-assisted needle insertion procedures.
Electrode structure for uniform corona discharge
NASA Technical Reports Server (NTRS)
Gange, R. A.; Steinmetz, C. C.
1976-01-01
Single corona-discharge needle is used to apply uniform charge to thermoplastic medium in holograph-storage system. Needle is connected to flat transparent electrode that is parallel to thermoplastic.
Tabedar, S; Maharjan, S K; Shrestha, B R; Shrestha, B M
2003-01-01
The study was designed to compare the insertion characteristics and incidence of PDPH between 25 gauge Quincke needle and 26 gauge Eldor needle for spinal anaesthesia in elective c/s. 60 pregnant women (aged 19-35 yrs and weighing 58 -67 kg) undergoing elective caesarean section were randomized into group A (Quincke spinal needle group) or group B (Eldor spinal needle group). Spinal anaesthesia was performed with 2.9 ml 0.5% heavy bupivacaine using 25 gauge Quincke spinal needle in group A and 26 Gauge Eldor spinal needle in group B. Onset, time of first identification of backflow of CSF, number of attempts, level of sensory and motor blockade, failure of anaesthesia, inadequate anaesthesia and incidence of PDPH were recorded. Quincke spinal needle was found easy at insertion, first attempt was successful in 90% of cases, whereas Eldor spinal needle was successful at first attempt in only 60% of cases. Early identification of CSF was seen in Eldor spinal needle group in 3.5 seconds vs. 5.2 seconds in Quincke spinal needle group. Blood mixed CSF was seen in 8 Quincke spinal needle group vs. none in Eldor spinal needle group. Onset was similar between both groups i.e. in 6 minutes. Failure of anaesthesia was none in Eldor spinal needle group vs. 2 in quincke spinal needle group. Height of sensory block achieved was T4 level in 26 parturients,T6 in 1 ,T8 in 1 and no anaesthesia at all in another 2 parturient as compared to T4 level in 29 and T3 in 1 parturient in Eldor spinal needle group. The degree of motor block with the use of Bromage criteria showed a motor score of 1 or 2 in 26 parturients in Quincke spinal needle group vs. same in all cases in Eldor spinal needle group. The total incidence of PDPH was 8.3 % (5 out of 60 parturient) which occurred all in Quincke spinal needle group. 2 parturient who developed severe PDPH required epidural blood patch. 26 gauge Eldor spinal needle was found to be better than 25 gauge Quincke spinal needle for caesarian sections to decrease the incidence of PDPH, though not all insertion characteristics were in favour of the Eldor needle.
Characteristics of Capacity Coupled Discharge in Atmospheric Pressure Air
NASA Astrophysics Data System (ADS)
Sasaki, Tadahiro; Omukai, Reina; Mukaigawa, Seiji; Takaki, Koichi; Fujiwara, Tamiya; Mase, Hiroshi; Sato, Noriyoshi
This paper describes characteristics of capacity coupled discharge in atmospheric pressure air with focusing influence of gap length of point-to-plane electrode configuration on input power into the discharge. The discharge can be quenched in short time duration by inserting a small capacitance capacitor between the electrode and the ground. We employed a needle electrode and a coaxial cable as the quenching capacitor. The discharge was successfully quenched within 25 ns in duration according to 9.4 pF in a capacitance of the quenching capacitor. The discharge was classified as two modes; a spark mode and a corona mode. At the spark mode, the power consumed in the discharge plasma was almost 10 times as large as that of a conventional dielectric barrier discharge. At the corona mode, the consumed energy was almost same value with that of the dielectric barrier discharge. A velocity of the discharge development was obtained to be 3×105 m/s by an optical measurement.
Impact of needle insertion depth on the removal of hard-tissue debris.
Perez, R; Neves, A A; Belladonna, F G; Silva, E J N L; Souza, E M; Fidel, S; Versiani, M A; Lima, I; Carvalho, C; De-Deus, G
2017-06-01
To evaluate the effect of depth of insertion of an irrigation needle tip on the removal of hard-tissue debris using micro-computed tomographic (micro-CT) imaging. Twenty isthmus-containing mesial roots of mandibular molars were anatomically matched based on similar morphological dimensions using micro-CT evaluation and assigned to two groups (n = 10), according to the depth of the irrigation needle tip during biomechanical preparation: 1 or 5 mm short of the working length (WL). The preparation was performed with Reciproc R25 file (tip size 25, .08 taper) and 5.25% NaOCl as irrigant. The final rinse was 17% EDTA followed by bidistilled water. Then, specimens were scanned again, and the matched images of the canals, before and after preparation, were examined to quantify the amount of hard-tissue debris, expressed as the percentage volume of the initial root canal volume. Data were compared statistically using the Mann-Whitney U-test. None of the tested needle insertion depths yielded root canals completely free from hard-tissue debris. The insertion depth exerted a significant influence on debris removal, with a significant reduction in the percentage volume of hard-tissue debris when the needle was inserted 1 mm short of the WL (P < 0.05). The insertion depth of irrigation needles significantly influenced the removal of hard-tissue debris. A needle tip positioned 1 mm short of the WL resulted in percentage levels of hard-tissue debris removal almost three times higher than when positioned 5 mm from the WL. © 2016 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Okano, Daisuke
2013-02-01
In this study of corona streamer discharges from an impulse generator using a dc power supply, the relationship of the discharge time-lag with the dc bias voltage between the sphere-to-needle electrodes under atmospheric conditions is investigated. Devices utilizing corona discharges have been used to purify air or water, destroy bacteria, and to remove undesirable substances, and in order to achieve fast response times and high power efficiencies in such devices, it is important to minimize the time-lag of the corona discharge. Our experimental results show that (a) the discharge path of a negatively biased needle electrode will be straighter than that of a positively biased needle and (b) the discharge threshold voltage in both the positive and the negative needle electrodes is nearly equal to 33 kV. By expressing the discharge voltage as a power function of time-lag, the extent of corona generation can be quantitatively specified using the exponent of this power function. The observed behavior of a corona streamer discharge between the negative spherical and the positive needle electrodes indicates that the largest power exponent is associated with the shortest time-lag, owing to the reduction in the statistical time-lag in the absence of a formative time-lag.
NASA Astrophysics Data System (ADS)
Okano, Daisuke
2013-02-01
In this study of corona streamer discharges from an impulse generator using a dc power supply, the relationship of the discharge time-lag with the dc bias voltage between the sphere-to-needle electrodes under atmospheric conditions is investigated. Devices utilizing corona discharges have been used to purify air or water, destroy bacteria, and to remove undesirable substances, and in order to achieve fast response times and high power efficiencies in such devices, it is important to minimize the time-lag of the corona discharge. Our experimental results show that (a) the discharge path of a negatively biased needle electrode will be straighter than that of a positively biased needle and (b) the discharge threshold voltage in both the positive and the negative needle electrodes is nearly equal to 33 kV. By expressing the discharge voltage as a power function of time-lag, the extent of corona generation can be quantitatively specified using the exponent of this power function. The observed behavior of a corona streamer discharge between the negative spherical and the positive needle electrodes indicates that the largest power exponent is associated with the shortest time-lag, owing to the reduction in the statistical time-lag in the absence of a formative time-lag.
Does a paresthesia during spinal needle insertion indicate intrathecal needle placement?
Pong, Ryan P; Gmelch, Benjamin S; Bernards, Christopher M
2009-01-01
Paresthesias are relatively common during spinal needle insertion, however, the clinical significance of the paresthesia is unknown. A paresthesia may result from needle-to-nerve contact with a spinal nerve in the epidural space, or, with far lateral needle placement, may result from contact with a spinal nerve within the intervertebral foramen. However, it is also possible and perhaps more likely, that paresthesias occur when the spinal needle contacts a spinal nerve root within the subarachnoid space. This study was designed to test this latter hypothesis. Patients (n = 104) scheduled for surgery under spinal anesthesia were observed during spinal needle insertion. If a paresthesia occurred, the needle was fixed in place and the stylet removed to observe whether cerebrospinal fluid (CSF) flowed from the hub. The presence of CSF was considered proof that the needle had entered the subarachnoid space. Paresthesias occurred in 14/103 (13.6%) of patients; 1 patient experienced a paresthesia twice. All paresthesias were transient. Following a paresthesia, CSF was observed in the needle hub 86.7% (13/15) of the time. Our data suggest that the majority of transient paresthesias occur when the spinal needle enters the subarachnoid space and contacts a spinal nerve root. Therefore, when transient paresthesias occur during spinal needle placement it is appropriate to stop and assess for the presence of CSF in the needle hub, rather than withdraw and redirect the spinal needle away from the side of the paresthesia as some authors have suggested.
Development of Needle Insertion Manipulator for Central Venous Catheterization
NASA Astrophysics Data System (ADS)
Kobayashi, Yo; Hong, Jaesung; Hamano, Ryutaro; Hashizume, Makoto; Okada, Kaoru; Fujie, Masakatsu G.
Central venous catheterization is a procedure, which a doctor insert a catheter into the patient’s vein for transfusion. Since there are risks of bleeding from arterial puncture or pneumothorax from pleural puncture. Physicians are strictly required to make needle reach up into the vein and to stop the needle in the middle of vein. We proposed a robot system for assisting the venous puncture, which can relieve the difficulties in conventional procedure, and the risks of complication. This paper reports the design structuring and experimental results of needle insertion manipulator. First, we investigated the relationship between insertion force and angle into the vein. The results indicated that the judgment of perforation using the reaction force is possible in case where the needling angle is from 10 to 20 degree. The experiment to evaluate accuracy of the robot also revealed that it has beyond 0.5 mm accuracy. We also evaluated the positioning accuracy in the ultrasound images. The results displays that the accuracy is beyond 1.0 mm and it has enough for venous puncture. We also carried out the venous puncture experiment to the phantom and confirm our manipulator realized to make needle reach up into the vein.
Hasan, S T; Shanahan, D A; Pridie, A K; Neal, D E
1996-01-01
A method is described for percutaneous localization of the sacral foramina, for neuromodulation of bladder function. We carried out an anatomical study of 5 male and 5 female human cadaver pelves. Using the described surface markings, needles were placed percutaneously into all sacral foramina from nine different angles. Paths of needle entry were studied by subsequent dissection. We observed that although it was possible to enter any sacral foramen at a wide range of insertion angles, the incidence of nerve root/vascular penetration increased with increasing angle of needle entry. Also, the incidence of nerve root penetration was higher with the medial approach compared with lateral entry. The insertion of a needle into the S1 foramen was associated with a higher incidence of nerve root penetration and presents a potential for arterial haemorrhage. On the other hand the smaller S3 and S4 nerve roots were surrounded by venous plexuses, presenting a potential source of venous haemorrhage during procedures. Our study suggests a new method for identifying the surface markings of sacral foramina and it describes the paths of inserted needles into the respective foramina. In addition, it has highlighted some potential risk factors secondary to needle insertion.
Intra-opeartive OCT imaging and sensing devices for clinical translation (Conference Presentation)
NASA Astrophysics Data System (ADS)
Chen, Yu
2017-02-01
Stereotactic procedures that require insertion of needle-based instruments into the brain serve important roles in a variety of neurosurgical interventions, such as biopsy, catheterization, and electrode placement. A fundamental limitation of these stereotactic procedures is that they are blind procedures in that the operator does not have real-time feedback as to what lies immediately ahead of the advancing needle. Therefore, there is a great clinical need to navigate the instrument safely and accurately to the targets. Towards that end, we developed a forwarding-imaging needle-type optical coherence tomography (OCT) probe for avoiding the hemorrhage and guiding neurosurgical interventions. The needle probe has a thin diameter of 0.7 mm. The feasibility of vessel detection and neurosurgical guidance were demonstrated on sheep brain in vivo and human brain ex vivo. In addition, we further reduced the probe size to 0.3 mm using an optical Doppler sensing (ODS) fiber probe that can integrate with microelectrode recording (MER) to detect the blood vessels lying ahead to improve the safety of this procedure. Furthermore, to overcome the field-of-view limitation of OCT probe, we developed an MRI-compatible OCT imaging probe for neurosurgery. MRI/OCT multi-scale imaging integrates micro-resolution optical imaging with wide-field MRI imaging, and has potential to further improve the targeting accuracy.
Cadaveric and Ultrasonographic Validation of Needling Placement in the Cervical Multifidus Muscle.
Fernández-de-Las-Peñas, César; Mesa-Jiménez, Juan A; Paredes-Mancilla, Jose A; Koppenhaver, Shane L; Fernández-Carnero, Samuel
2017-06-01
The aim of this study was to determine if a needle is able to reach the cervical multifidus during the application of dry needling or acupuncture. Dry needling and ultrasound imaging of cervical multifidi was conducted on 5 patients (age: 32 ± 5 years) with mechanical neck pain and on 2 fresh cadavers (age: 64 ± 1 years). Dry needling was done using a needle of 40 mm in length inserted perpendicular to the skin about 1 cm lateral to the spinous process at C3-C4. The needle was advanced from a posterior to anterior direction into the cervical multifidus with a slight inferior-medial angle (approximately 10°) to reach the vertebra lamina. For the cadaveric study, the multifidus was isolated by carefully resecting the superficial posterior cervical muscles: trapezius, splenius, and semispinalis. For the ultrasonographic study, a convex transducer was placed transversely over C3-C4 after the insertion of the needle into the muscle. The results of both the cadaveric and ultrasonic studies found that the needle does pierce the cervical multifidus muscle during insertion and that the tip of the needle rests properly against the vertebral laminae, thereby guarding the sensitive underlying spinal structures from damage. This anatomical and ultrasound imaging study supports that dry needling of the cervical multifidus could be conducted clinically. Copyright © 2017. Published by Elsevier Inc.
21 CFR 884.2675 - Fetal scalp circular (spiral) electrode and applicator.
Code of Federal Regulations, 2014 CFR
2014-04-01
... Gynecological Monitoring Devices § 884.2675 Fetal scalp circular (spiral) electrode and applicator. (a... monitoring device by a shallow subcutaneous puncture of fetal scalp tissue with a curved needle or needles... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Fetal scalp circular (spiral) electrode and...
21 CFR 884.2675 - Fetal scalp circular (spiral) electrode and applicator.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Gynecological Monitoring Devices § 884.2675 Fetal scalp circular (spiral) electrode and applicator. (a... monitoring device by a shallow subcutaneous puncture of fetal scalp tissue with a curved needle or needles... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Fetal scalp circular (spiral) electrode and...
21 CFR 884.2675 - Fetal scalp circular (spiral) electrode and applicator.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Gynecological Monitoring Devices § 884.2675 Fetal scalp circular (spiral) electrode and applicator. (a... monitoring device by a shallow subcutaneous puncture of fetal scalp tissue with a curved needle or needles... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal scalp circular (spiral) electrode and...
21 CFR 884.2675 - Fetal scalp circular (spiral) electrode and applicator.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Gynecological Monitoring Devices § 884.2675 Fetal scalp circular (spiral) electrode and applicator. (a... monitoring device by a shallow subcutaneous puncture of fetal scalp tissue with a curved needle or needles... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Fetal scalp circular (spiral) electrode and...
21 CFR 884.2675 - Fetal scalp circular (spiral) electrode and applicator.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Gynecological Monitoring Devices § 884.2675 Fetal scalp circular (spiral) electrode and applicator. (a... monitoring device by a shallow subcutaneous puncture of fetal scalp tissue with a curved needle or needles... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Fetal scalp circular (spiral) electrode and...
Lee, S H; Lee, N Y
2013-06-01
Pain control, which is necessary during most dental procedures, is administered by injecting a local anaesthetic. Because the injection itself can be painful, the procedure via which pain is reduced warrants continued investigation. Only a few studies regarding the reaction of children to dental needle insertion without the use of topical anaesthetics have been reported. This study was conducted to evaluate the efficacy of the local anaesthetic procedure without topical application as compared to the conventional insertion technique for alleviating pain in children receiving local anaesthesia injections. For the alternative injection procedure, the dentist quickly and gently pulled or pushed the clean and dried loose tissue at the injection site over the tip of the needle to a depth of 1 to 1.5 mm. When the end of the bevel of the needle tip entered the tissue, a few drops of solution were released, after which the needle was advanced to its proper and intended depth to continue anaesthetic release. There was a significant difference regarding the pain response between the alternative insertion technique (less painful) and the conventional one according to Sound, Eye, and Motor (SEM) scale ratings (P < 0.000). No significant difference was observed in the response between the maxilla and mandible, nor between boys and girls, between the conventional and alternative techniques. This alternative technique can reduce discomfort in paediatric dental patients and allow the clinician to administer a superficial local anaesthesia injection before the needle is advanced into deeper tissue. This technique is simple, quick, devoid of additional costs, and potentially more effective than the conventional needle insertion method.
Learning Ultrasound-Guided Needle Insertion Skills through an Edutainment Game
NASA Astrophysics Data System (ADS)
Chan, Wing-Yin; Ni, Dong; Pang, Wai-Man; Qin, Jing; Chui, Yim-Pan; Yu, Simon Chun-Ho; Heng, Pheng-Ann
Ultrasound-guided needle insertion is essential in many of minimally invasive surgeries or procedures, such as biopsy, drug delivery, spinal anaesthesia, etc. Accurate and safe needle insertion is a difficult task due to the high requirement of hand-eye coordination skills. Many proposed virtual reality (VR) based training systems put their emphasis on realistic simulation instead of pedagogical efficiency. The lack of schematic training scenario leads to boredom of repetitive operations. To solve this, we present our novel training system with the integration of game elements in order to retain the trainees' enthusiasm. Task-oriented scenarios, time attack scenarios and performance evaluation are introduced. Besides, some state-of-art technologies are also presented, including ultrasound simulation, needle haptic rendering as well as a mass-spring-based needle-tissue interaction simulation. These works are shown to be effective to keep the trainees up with learning.
Prospective clinical evaluation of the Polyperf® Safe, a safety Huber needle, in cancer patients.
Goossens, Godelieve A; Moons, Philip; Jérôme, Martine; Stas, Marguerite
2011-01-01
Evaluation of the Polyperf® Safe (PPS) needle on safety and user-friendliness, as experienced by first-time and non-first-time users of the device. A prospective, descriptive study was carried out at the University Hospitals Leuven, Belgium. Five hundred PPS needles were individually evaluated in cancer patients. Different aspects of the PPS were assessed: packaging, needle insertion, and needle removal. Nurses were asked whether they had previously inserted or removed this type of needle. We compared the PPS needle with the standard Gripper® needle in terms of safety, ease of use, and ease of training. Three hundred sixty-six evaluation forms were available for analysis (73.2%). Packaging and access evaluations were scored positively, except for two aspects: (1) needle stability, and (2) ease of dressing. Ease of removal was scored unsatisfactory in up to 22.4% of the registrations. Pain at insertion was reported in about 20% registrations, and blood contact was reported by 2.5% of non-first-time users. Safety was scored as good, although ease of use and ease in training scored 25.4% and 43.8%, respectively, lower than the Gripper®. In general, nurses evaluated the PPS positively, with the exception of needle stability, ease of dressing, and ease of removal. No needlestick accidents were recorded. Aspects of ease of use and ease of training for PPS needles scored less than those for the Gripper® needles in up to one-third of the registrations.
Cadaveric validation of dry needle placement in the lateral pterygoid muscle.
Mesa-Jiménez, Juan A; Sánchez-Gutiérrez, Jesús; de-la-Hoz-Aizpurua, José L; Fernández-de-las-Peñas, César
2015-02-01
The aim of this anatomical study was to determine if a needle is able to reach the lateral pterygoid muscle during the application of dry needling technique. A dry needling approach using 2 needles of 50 to 60 mm in length, one inserted over the zygomatic process posterior at the obituary arch (for the superior head) and other inserted below the zygomatic process between the mandibular condyle and the coronoid process (for the inferior head), was proposed. A progressive dissection into 3 stages was conducted into 2 heads of fresh male cadavers. First, dry needling of the lateral pterygoid muscle was applied on the cadaver. Second, a block dissection containing the lateral pterygoid was harvested. Finally, the ramus of the mandible was sectioned by osteotomy to visualize the lateral pterygoid muscle with the needle placements. With the needles inserted into the cadaver, the block dissection revealed that the superior needle reached the superior (sphenoid) head of the lateral pterygoid muscle and the inferior needle reached the inferior (pterygoid) head of the muscle. At the final stage of the dissection, when the ramus of the mandible was sectioned by osteotomy, it was revealed that the superior needle entered into the belly of the superior head of the lateral pterygoid muscle. This anatomical study supports that dry needling technique for the lateral pterygoid muscle can be properly conducted with the proposed approach. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.
Influence of disposable, concentric needle electrodes on muscle enzyme and lactate serum levels.
Finsterer, Josef; Mittendorfer, Bettina; Neuhuber, Werner; Löscher, Wolfgang N
2002-08-01
Several studies addressed the question whether needle-EMG causes elevation of muscle enzymes [aspartate-aminotransferase, alanine-aminotransferase, lactate-dehydrogenase, creatine-phosphokinase (CPK), isoenzyme-MB, aldolase] and lactate with conflicting results. However, these studies used sterilizable needle electrodes and different protocols and methods to record EMGs and determine muscle enzymes. This study examined if muscle enzymes are elevated immediately after or 24 h following EMGs with disposable, concentric needle-electrodes, and if they are dependent on age, sex, muscle, number of investigated sites and previous CPK-elevation. In 53 subjects, 24 woman, 29 men, aged 17-88 years, muscle enzymes were determined before, immediately after and 24 h following EMG with disposable, concentric needle-electrodes. Muscle enzymes were not different before, immediately after and 24 h following the EMG. Muscle enzymes were not different between patients
Rombouts, Steffi J E; van Dijck, Willemijn P M; Nijkamp, Maarten W; Derksen, Tyche C; Brosens, Lodewijk A A; Hoogwater, Frederik J H; van Leeuwen, Maarten S; Borel Rinkes, Inne H M; van Hillegersberg, Richard; Wittkampf, Fred H; Molenaar, Izaak Q
2017-12-01
Irreversible electroporation (IRE) by inserting needles around the tumor as treatment for locally advanced pancreatic cancer entails several disadvantages, such as incomplete ablation due to field inhomogeneity, technical difficulties in needle placement and a risk of pancreatic fistula development. This experimental study evaluates outcomes of IRE using paddles in a porcine model. Six healthy pigs underwent laparotomy and were treated with 2 separate ablations (in head and tail of the pancreas). Follow-up consisted of clinical and laboratory parameters and contrast-enhanced computed tomography (ceCT) imaging. After 2 weeks, pancreatoduodenectomy was performed for histology and the pigs were terminated. All animals survived 14 days. None of the animals developed signs of infection or significant abdominal distention. Serum amylase and lipase peaked at day 1 postoperatively in all pigs, but normalized without signs of pancreatitis. On ceCT-imaging the ablation zone was visible as an ill-defined, hypodense lesion. No abscesses, cysts or ascites were seen. Histology showed a homogenous fibrotic lesion in all pigs. IRE ablation of healthy porcine pancreatic tissue using two plate electrodes is feasible and safe and creates a homogeneous fibrotic lesion. IRE-paddles should be tested on pancreatic adenocarcinoma to determine the effect in cancer tissue. Copyright © 2017. Published by Elsevier Ltd.
van Dijk, J P; Eiglsperger, U; Hellmann, D; Giannakopoulos, N N; McGill, K C; Schindler, H J; Lapatki, B G
2016-09-01
To study motor unit activity in the medio-lateral extension of the masseter using an adapted scanning EMG technique that allows studying the territories of multiple motor units (MUs) in one scan. We studied the m. masseter of 10 healthy volunteers in whom two scans were performed. A monopolar scanning needle and two pairs of fine-wire electrodes were inserted into the belly of the muscle. The signals of the fine wire electrodes were decomposed into the contribution of single MUs and used as a trigger for the scanning needle. In this manner multiple MU territory scans were obtained simultaneously. We determined 161 MU territories. The maximum number of territories obtained in one scan was 15. The median territory size was 4.0mm. Larger and smaller MU territories were found throughout the muscle. The presented technique showed its feasibility in obtaining multiple MU territories in one scan. MUs were active throughout the depth of the muscle. The distribution of electrical and anatomical size of MUs substantiates the heterogeneous distribution of MUs throughout the muscle volume. This distributed activity may be of functional significance for the stabilization of the muscle during force generation. Copyright © 2016 International Federation of Clinical Neurophysiology. All rights reserved.
Uppal, Vishal; Sondekoppam, Rakesh V; Ganapathy, Sugantha
2014-10-01
During peripheral nerve block procedures, needle visibility decreases as the angle of needle insertion relative to skin increases due to loss of reflective signals. The primary aim of our study was to compare the effect of beam steering on the visibility of echogenic and non-echogenic block needles. PAJUNK non-echogenic and echogenic needles were inserted into pork meat at 20°, 40°, 60°, and 70° angles, and electronic beam steering was applied at three different angles (shallow, medium, and steep) to obtain the best possible needle images. Eleven anesthesiologists blinded to the type of needle or use of beam steering scored the images obtained (0 = needle not visible; 10 = excellent needle shaft and tip visibility). Mean scores were used to classify the needles as poor visibility (mean score 0-3.3), intermediate visibility (mean score 3.4-6.6), or good visibility (mean score 6.7-10). At 20°, the visibility scores were intermediate to good in all groups. At 40°, the mean (SD) visibility score for the non-echogenic needle improved significantly from 3.1 (1.4) to 7.9 (1.8) with application of beam steering (difference = 4.8; 95% confidence interval [CI]: 3.1 to 6.6; P < 0.001). At 60°, the mean (SD) visibility score for the non-echogenic needle was poor 0.6 (0.7) and remained poor 2.4 (1.1) with beam steering. One the other hand, the echogenic needle without beam steering 6.5 (1.8) scored significantly better than the non-echogenic needle with beam steering 2.4 (1.1) (difference = 4.2; 95% CI: 2.7 to 5.6; P < 0.001). At 70°, the mean needle visibility score was poor for the non-echogenic needle with or without beam steering. In contrast, the echogenic needle attained an intermediate visibility score with or without beam steering. Beam steering did not significantly change the visibility scores of either the echogenic or the non-echogenic needle (P = 0.088 and 0.056, respectively) at a 70° angle. The PAJUNK echogenic needle, with or without beam steering, was more visible when compared with the non-echogenic needle at 60° and 70° angles of insertion. In contrast, at a 40° angle of needle insertion, the non-echogenic needle with beam steering was more visible compared with the echogenic needle.
Xie, Yu; Liu, Shuang; Sun, Dong
2018-01-01
Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future. PMID:29439539
Yang, Chongjun; Xie, Yu; Liu, Shuang; Sun, Dong
2018-02-12
Robot-assisted surgery is of growing interest in the surgical and engineering communities. The use of robots allows surgery to be performed with precision using smaller instruments and incisions, resulting in shorter healing times. However, using current technology, an operator cannot directly feel the operation because the surgeon-instrument and instrument-tissue interaction force feedbacks are lost during needle insertion. Advancements in force feedback and control not only help reduce tissue deformation and needle deflection but also provide the surgeon with better control over the surgical instruments. The goal of this review is to summarize the key components surrounding the force feedback and control during robot-assisted needle insertion. The literature search was conducted during the middle months of 2017 using mainstream academic search engines with a combination of keywords relevant to the field. In total, 166 articles with valuable contents were analyzed and grouped into five related topics. This survey systemically summarizes the state-of-the-art force control technologies for robot-assisted needle insertion, such as force modeling, measurement, the factors that influence the interaction force, parameter identification, and force control algorithms. All studies show force control is still at its initial stage. The influence factors, needle deflection or planning remain open for investigation in future.
Ahn, H J; Choi, D H; Kim, C S
2006-07-01
Paraesthesia during regional anaesthesia is an unpleasant sensation for patients and, more importantly, in some cases it is related to neurological injury. Relatively few studies have been conducted on the frequency of paraesthesia during combined spinal epidural anaesthesia. We compared two combined spinal epidural anaesthesia techniques: the needle-through-needle technique and the double segment technique in this respect. We randomly allocated 116 parturients undergoing elective Caesarean section to receive anaesthesia using one of these techniques. Both techniques were performed using a 27G pencil point needle, an 18G Tuohy needle, and a 20G multiport epidural catheter from the same manufacturer. The overall frequency of paraesthesia was higher in the needle-through-needle technique group (56.9% vs. 31.6%, p = 0.011). The frequency of paraesthesia at spinal needle insertion was 20.7% in the needle-through-needle technique group and 8.8% in the double segment technique group; whereas the frequency of paraesthesia at epidural catheter insertion was 46.6% in the needle-through-needle technique group and 24.6% in the double segment technique group.
The new mid-scala electrode array: a radiologic and histologic study in human temporal bones.
Hassepass, Frederike; Bulla, Stefan; Maier, Wolfgang; Laszig, Roland; Arndt, Susan; Beck, Rainer; Traser, Lousia; Aschendorff, Antje
2014-09-01
To analyze the quality of insertion of the newly developed midscala (MS) electrode, which targets a midscalar electrode position to reduce the risk of trauma to the lateral wall and the modiolus. Modern cochlear implant surgery aims for a safe intracochlear placement of electrode arrays with an ongoing debate regarding cochleostomy or round window (RW) insertion and the use of lateral wall or perimodiolar electrode placement. Intracochlear trauma after insertion of different electrodes depends on insertion mode and electrode design and may result in trauma to the delicate structures of the cochlear. We performed a temporal bone (TB) trial with insertion of the MS electrode in n = 20 TB's after a mastoidectomy and posterior tympanotomy. Insertion was performed either via the RW or a cochleostomy. Electrode positioning, length of insertion, and angle of insertion were analyzed with rotational tomography (RT). TBs were histologically analyzed. Results of RT and histology were compared. Scala tympani (ST) insertion could be accomplished reliably by both RW and via a cochleostomy approach. In 20 TBs, 1 scala vestibuli insertion, 1 incomplete (ST), and 1 elevation of basilar membrane were depicted. No trauma was found in 94.7% of all ST insertions. RT allowed determination of the intracochlear electrode position, which was specified by histologic sectioning. The new MS electrode seems to fulfill reliable atraumatic intracochlear placement via RW and cochleostomy approaches. RT is available for evaluation of intracochlear electrode position, serving as a potential quality control instrument in human implantation.
Shahriari, Navid; Hekman, Edsko; Oudkerk, Matthijs; Misra, Sarthak
2015-11-01
Percutaneous needle insertion procedures are commonly used for diagnostic and therapeutic purposes. Although current technology allows accurate localization of lesions, they cannot yet be precisely targeted. Lung cancer is the most common cause of cancer-related death, and early detection reduces the mortality rate. Therefore, suspicious lesions are tested for diagnosis by performing needle biopsy. In this paper, we have presented a novel computed tomography (CT)-compatible needle insertion device (NID). The NID is used to steer a flexible needle (φ0.55 mm) with a bevel at the tip in biological tissue. CT images and an electromagnetic (EM) tracking system are used in two separate scenarios to track the needle tip in three-dimensional space during the procedure. Our system uses a control algorithm to steer the needle through a combination of insertion and minimal number of rotations. Noise analysis of CT images has demonstrated the compatibility of the device. The results for three experimental cases (case 1: open-loop control, case 2: closed-loop control using EM tracking system and case 3: closed-loop control using CT images) are presented. Each experimental case is performed five times, and average targeting errors are 2.86 ± 1.14, 1.11 ± 0.14 and 1.94 ± 0.63 mm for case 1, case 2 and case 3, respectively. The achieved results show that our device is CT-compatible and it is able to steer a bevel-tipped needle toward a target. We are able to use intermittent CT images and EM tracking data to control the needle path in a closed-loop manner. These results are promising and suggest that it is possible to accurately target the lesions in real clinical procedures in the future.
Urrea, Fabián A; Casanova, Fernando; Orozco, Gustavo A; García, José J
2016-03-01
Agarose hydrogels have been extensively used as a phantom material to mimic the mechanical behavior of soft biological tissues, e.g. in studies aimed to analyze needle insertions into the organs producing tissue damage. To better predict the radial stress and damage during needle insertions, this study was aimed to determine the friction coefficient between the material of commercial catheters and hydrogels. The friction coefficient, the tissue damage and the radial stress were evaluated at 0.2, 1.8, and 10mm/s velocities for 28, 30, and 32 gauge needles of outer diameters equal to 0.36, 0.31, and 0.23mm, respectively. Force measurements during needle insertions and retractions on agarose gel samples were used to analyze damage and radial stress. The static friction coefficient (0.295±0.056) was significantly higher than the dynamic (0.255±0.086). The static and dynamic friction coefficients were significantly smaller for the 0.2mm/s velocity compared to those for the other two velocities, and there was no significant difference between the friction coefficients for 1.8 and 10mm/s. Radial stress averages were 131.2±54.1, 248.3±64.2, and 804.9±164.3Pa for the insertion velocity of 0.2, 1.8, and 10mm/s, respectively. The radial stress presented a tendency to increase at higher insertion velocities and needle size, which is consistent with other studies. However, the damage work did not show to be a good predictor of tissue damage, which appears to be due to simplifications in the analytical model. Differently to other approaches, the method proposed here based on radial stress may be extended in future studies to quantity tissue damage in vivo along the entire needle track. Copyright © 2015 Elsevier Ltd. All rights reserved.
SU-F-BRA-04: Prostate HDR Brachytherapy with Multichannel Robotic System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, F Maria; Podder, T; Yu, Y
Purpose: High-dose-rate (HDR) brachytherapy is gradually becoming popular in treating patients with prostate cancers. However, placement of the HDR needles at desired locations into the patient is challenging. Application of robotic system may improve the accuracy of the clinical procedure. This experimental study is to evaluate the feasibility of using a multichannel robotic system for prostate HDR brachytherapy. Methods: In this experimental study, the robotic system employed was a 6-DOF Multichannel Image-guided Robotic Assistant for Brachytherapy (MIRAB), which was designed and fabricated for prostate seed implantation. The MIRAB has the provision of rotating 16 needles while inserting them. Ten prostatemore » HDR brachytherapy needles were simultaneously inserted using MIRAB into a commercially available prostate phantom. After inserting the needles into the prostate phantom at desired locations, 2mm thick CT slices were obtained for dosimetric planning. HDR plan was generated using Oncetra planning system with a total prescription dose of 34Gy in 4 fractions. Plan quality was evaluated considering dose coverage to prostate and planning target volume (PTV), with 3mm margin around prostate, as well as the dose limit to the organs at risk (OARs) following the American Brachytherapy Society (ABS) guidelines. Results: From the CT scan, it is observed that the needles were inserted straight into the desired locations and they were adequately spaced and distributed for a clinically acceptable HDR plan. Coverage to PTV and prostate were about 91% (V100= 91%) and 96% (V100=96%), respectively. Dose to 1cc of urethra, rectum, and bladder were within the ABS specified limits. Conclusion: The MIRAB was able to insert multiple needles simultaneously into the prostate precisely. By controlling the MIRAB to insert all the ten utilized needles into the prostate phantom, we could achieve the robotic HDR brachytherapy successfully. Further study for assessing the system’s performance and reliability is in progress.« less
Irrigation of human prepared root canal – ex vivo based computational fluid dynamics analysis
Šnjarić, Damir; Čarija, Zoran; Braut, Alen; Halaji, Adelaida; Kovačević, Maja; Kuiš, Davor
2012-01-01
Aim To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Methods Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Results Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. Conclusions The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values –irrigant flow pattern, velocity, and pressure – were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate. PMID:23100209
Irrigation of human prepared root canal--ex vivo based computational fluid dynamics analysis.
Snjaric, Damir; Carija, Zoran; Braut, Alen; Halaji, Adelaida; Kovacevic, Maja; Kuis, Davor
2012-10-01
To analyze the influence of the needle type, insertion depth, and irrigant flow rate on irrigant flow pattern, flow velocity, and apical pressure by ex-vivo based endodontic irrigation computational fluid dynamics (CFD) analysis. Human upper canine root canal was prepared using rotary files. Contrast fluid was introduced in the root canal and scanned by computed tomography (CT) providing a three-dimensional object that was exported to the computer-assisted design (CAD) software. Two probe points were established in the apical portion of the root canal model for flow velocity and pressure measurement. Three different CAD models of 27G irrigation needles (closed-end side-vented, notched open-end, and bevel open-end) were created and placed at 25, 50, 75, and 95% of the working length (WL). Flow rates of 0.05, 0.1, 0.2, 0.3, and 0.4 mL/s were simulated. A total of 60 irrigation simulations were performed by CFD fluid flow solver. Closed-end side-vented needle required insertion depth closer to WL, regarding efficient irrigant replacement, compared to open-end irrigation needle types, which besides increased velocity produced increased irrigant apical pressure. For all irrigation needle types and needle insertion depths, the increase of flow rate was followed by an increased irrigant apical pressure. The human root canal shape obtained by CT is applicable in the CFD analysis of endodontic irrigation. All the analyzed values -irrigant flow pattern, velocity, and pressure - were influenced by irrigation needle type, as well as needle insertion depth and irrigant flow rate.
Campagna, Raphael; Pessis, Eric; Guerini, Henri; Feydy, Antoine; Drapé, Jean-Luc
2013-02-01
To evaluate the occurrence of coring after needle insertion through the rubber stopper of prednisolone acetate vials. Two-hundred vials of prednisolone acetate were randomly distributed to two radiologists. Prednisolone acetate was drawn up through the rubber bung of the vials with an 18-gauge cutting bevelled needle and aspirated with a 5-ml syringe. The presence of coring was noted visually. We systematically put each core in a syringe refilled with 3 ml prednisolone acetate, and injected the medication through a 20-gauge spine needle. Computed tomography was performed to measure the size of each coring. Coring occurred in 21 out of 200 samples (10.5 %), and was visually detected in the syringe filled up with prednisolone in 11 of the 21 cases. Ten more occult cores were detected only after the syringes and needles were taken apart and rinsed. The core size ranged from 0.6 to 1.1 mm, and 1 of the 21 (4.7 %) cores was ejected through the 20-gauge needle. Coring can occur after the insertion of a needle through the rubber stopper of a vial of prednisolone acetate, and the resultant core can then be aspirated into the syringe.
Evaluation of the hybrid-L24 electrode using microcomputed tomography.
Driscoll, Colin L W; Carlson, Matthew L; Fama, Anthony F; Lane, John I
2011-07-01
To compare electrode array position, and depth of insertion of the Cochlear Hybrid-L24 electrode array following traditional cochleostomy and round window (RW) insertion. Prospective cadaveric temporal bone study. Ten cadaveric temporal bones were implanted with the Hybrid-L24 electrode array; half were introduced through a RW approach, whereas the other half were inserted through a traditional scala tympani cochleostomy. A micro-CT scanner was then used to evaluate electrode position, intracochlear trauma, and depth of insertion. All electrodes were inserted into the scala tympani without significant resistance. No electrodes demonstrated tip fold-over or through-fracturing of the osseous spiral lamina, basilar membrane, or spiral ligament. The average angular depth of insertion for all 10 electrodes was 252.4°. Compared to cochleostomy insertions, electrodes inserted through the RW more commonly acquired a proximal perimodiolar orientation, followed a more predictable course, and less commonly contacted critical soft tissue structures. The results of this study demonstrate that the Hybrid-L24 electrode can be successfully inserted using a RW or traditional cochleostomy technique with minimal intracochlear trauma. Our data also suggests that with this model, RW insertions may provide particular advantages with respect to hearing preservation over the traditional cochleostomy approach. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.
Kung, Theodore A; Langhals, Nicholas B; Martin, David C; Johnson, Philip J; Cederna, Paul S; Urbanchek, Melanie G
2014-06-01
The regenerative peripheral nerve interface is an internal interface for signal transduction with external electronics of prosthetic limbs; it consists of an electrode and a unit of free muscle that is neurotized by a transected residual peripheral nerve. Adding a conductive polymer coating on electrodes improves electrode conductivity. This study examines regenerative peripheral nerve interface tissue viability and signal fidelity in the presence of an implanted electrode coated or uncoated with a conductive polymer. In a rat model, the extensor digitorum longus muscle was moved as a nonvascularized free tissue transfer and neurotized by the divided peroneal nerve. Either a stainless steel pad electrode (n = 8) or a pad electrode coated with poly(3,4-ethylenedioxythiophene) conductive polymer (PEDOT) (n = 8) was implanted on the muscle transfer and secured with an encircling acellular extracellular matrix. The contralateral muscle served as the control. The free muscle transfers were successfully revascularized and over time reinnervated as evidenced by serial insertional needle electromyography. Compound muscle action potentials were successfully transduced through the regenerative peripheral nerve interface. The conductive polymer coating on the implanted electrode resulted in increased recorded signal amplitude that was observed throughout the course of the study. Histologic examination confirmed axonal sprouting, elongation, and synaptogenesis within regenerative peripheral nerve interface regardless of electrode type. The regenerative peripheral nerve interface remains viable over seven months in the presence of an implanted electrode. Electrodes with and without conductive polymer reliably transduced signals from the regenerative peripheral nerve interface. Electrodes with a conductive polymer coating resulted in recording more of the regenerative peripheral nerve interface signal.
Clinical effectiveness of lidocaine and benzocaine for topical anesthesia.
Rosa, A. L.; Sverzut, C. E.; Xavier, S. P.; Lavrador, M. A.
1999-01-01
The effectiveness of lidocaine and benzocaine in reducing pain produced by needle insertion into the palate was evaluated in a double-blind and placebo-controlled study using a more suitable method. Twenty subjects, 10 men and 10 women, submitted to 4 sessions in which they were randomly treated with 5% lidocaine, a placebo that tasted like lidocaine, 20% benzocaine, and a placebo that tasted like benzocaine. At each session, a 27-gauge needle was inserted into the palate twice, once before (baseline) and once after drug application for 1 minute. Immediately after each insertion, subjects indicated on a visual analog scale the pain intensity perceived. Lidocaine and benzocaine were equally efficient, and both were better than placebo in reducing pain caused by insertion of needles into the palate. PMID:11692349
Accuracy Study of a Robotic System for MRI-guided Prostate Needle Placement
Seifabadi, Reza; Cho, Nathan BJ.; Song, Sang-Eun; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fichtinger, Gabor; Iordachita, Iulian
2013-01-01
Background Accurate needle placement is the first concern in percutaneous MRI-guided prostate interventions. In this phantom study, different sources contributing to the overall needle placement error of a MRI-guided robot for prostate biopsy have been identified, quantified, and minimized to the possible extent. Methods and Materials The overall needle placement error of the system was evaluated in a prostate phantom. This error was broken into two parts: the error associated with the robotic system (called before-insertion error) and the error associated with needle-tissue interaction (called due-to-insertion error). The before-insertion error was measured directly in a soft phantom and different sources contributing into this part were identified and quantified. A calibration methodology was developed to minimize the 4-DOF manipulator’s error. The due-to-insertion error was indirectly approximated by comparing the overall error and the before-insertion error. The effect of sterilization on the manipulator’s accuracy and repeatability was also studied. Results The average overall system error in phantom study was 2.5 mm (STD=1.1mm). The average robotic system error in super soft phantom was 1.3 mm (STD=0.7 mm). Assuming orthogonal error components, the needle-tissue interaction error was approximated to be 2.13 mm thus having larger contribution to the overall error. The average susceptibility artifact shift was 0.2 mm. The manipulator’s targeting accuracy was 0.71 mm (STD=0.21mm) after robot calibration. The robot’s repeatability was 0.13 mm. Sterilization had no noticeable influence on the robot’s accuracy and repeatability. Conclusions The experimental methodology presented in this paper may help researchers to identify, quantify, and minimize different sources contributing into the overall needle placement error of an MRI-guided robotic system for prostate needle placement. In the robotic system analyzed here, the overall error of the studied system remained within the acceptable range. PMID:22678990
Accuracy study of a robotic system for MRI-guided prostate needle placement.
Seifabadi, Reza; Cho, Nathan B J; Song, Sang-Eun; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M; Fichtinger, Gabor; Iordachita, Iulian
2013-09-01
Accurate needle placement is the first concern in percutaneous MRI-guided prostate interventions. In this phantom study, different sources contributing to the overall needle placement error of a MRI-guided robot for prostate biopsy have been identified, quantified and minimized to the possible extent. The overall needle placement error of the system was evaluated in a prostate phantom. This error was broken into two parts: the error associated with the robotic system (called 'before-insertion error') and the error associated with needle-tissue interaction (called 'due-to-insertion error'). Before-insertion error was measured directly in a soft phantom and different sources contributing into this part were identified and quantified. A calibration methodology was developed to minimize the 4-DOF manipulator's error. The due-to-insertion error was indirectly approximated by comparing the overall error and the before-insertion error. The effect of sterilization on the manipulator's accuracy and repeatability was also studied. The average overall system error in the phantom study was 2.5 mm (STD = 1.1 mm). The average robotic system error in the Super Soft plastic phantom was 1.3 mm (STD = 0.7 mm). Assuming orthogonal error components, the needle-tissue interaction error was found to be approximately 2.13 mm, thus making a larger contribution to the overall error. The average susceptibility artifact shift was 0.2 mm. The manipulator's targeting accuracy was 0.71 mm (STD = 0.21 mm) after robot calibration. The robot's repeatability was 0.13 mm. Sterilization had no noticeable influence on the robot's accuracy and repeatability. The experimental methodology presented in this paper may help researchers to identify, quantify and minimize different sources contributing into the overall needle placement error of an MRI-guided robotic system for prostate needle placement. In the robotic system analysed here, the overall error of the studied system remained within the acceptable range. Copyright © 2012 John Wiley & Sons, Ltd.
Sarnthein, Johannes; Lüchinger, Roger; Piccirelli, Marco; Regli, Luca; Bozinov, Oliver
2016-09-01
High-field intraoperative magnetic resonance imaging (ioMRI) is becoming increasingly available in neurosurgery centers, where it has to be combined with intraoperative neurophysiologic monitoring (IONM). IONM needle electrodes remain on the patient during ioMRI and may cause image distortions and burns. We tested magnetic resonance (MR) -heating experimentally and investigated the prevalence of complications. We studied electrodes that are certified for IONM, but not "MR conditional." They consist of copper cables (length, 1.5 m) and needles made of either stainless steel (ferromagnetic) or paramagnetic platinum/iridium alloy. We simulated an ioMRI session with gel and measured the temperature increase with optical fibers. We measured the force that an electrode experiences in the magnetic field. Between 2013 and 2016, we prospectively documented subcutaneous needle electrodes that remained in the patient during intraoperative 3 Tesla ioMRI scans. The in vitro testing of the electrodes produced a maximum heating (ΔT = 3.9°C) and force of 0.026 N. We placed 1237 subcutaneous needles in 57 surgical procedures with combined IONM and ioMRI, where needles remained in place during ioMRI. One patient suffered a skin burn on the shoulder. All other electrodes had no side effects. We have corroborated the history of safe use for electrodes with 1.5 m cable in a 3T MRI scanner and demonstrated their use. Nevertheless, heating cannot be excluded, as it depends on location and cable placement. When leaving electrodes in place during ioMRI, risks and benefits have to be carefully evaluated for each patient. Copyright © 2016 Elsevier Inc. All rights reserved.
Ultrasound-guided three-dimensional needle steering in biological tissue with curved surfaces
Abayazid, Momen; Moreira, Pedro; Shahriari, Navid; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak
2015-01-01
In this paper, we present a system capable of automatically steering a bevel-tipped flexible needle under ultrasound guidance toward a physical target while avoiding a physical obstacle embedded in gelatin phantoms and biological tissue with curved surfaces. An ultrasound pre-operative scan is performed for three-dimensional (3D) target localization and shape reconstruction. A controller based on implicit force control is developed to align the transducer with curved surfaces to assure the maximum contact area, and thus obtain an image of sufficient quality. We experimentally investigate the effect of needle insertion system parameters such as insertion speed, needle diameter and bevel angle on target motion to adjust the parameters that minimize the target motion during insertion. A fast sampling-based path planner is used to compute and periodically update a feasible path to the target that avoids obstacles. We present experimental results for target reconstruction and needle insertion procedures in gelatin-based phantoms and biological tissue. Mean targeting errors of 1.46 ± 0.37 mm, 1.29 ± 0.29 mm and 1.82 ± 0.58 mm are obtained for phantoms with inclined, curved and combined (inclined and curved) surfaces, respectively, for insertion distance of 86–103 mm. The achieved targeting errors suggest that our approach is sufficient for targeting lesions of 3 mm radius that can be detected using clinical ultrasound imaging systems. PMID:25455165
Indentation and needle insertion properties of the human eye
Matthews, A; Hutnik, C; Hill, K; Newson, T; Chan, T; Campbell, G
2014-01-01
Purpose Characterization of the biomechanical properties of the human eye has a number of potential utilities. One novel purpose is to provide the basis for development of suitable tissue-mimicking material. The purpose of this study was to determine the indentation and needle insertion characteristics on human eye globes and tissue strips. Methods An indenter assessed the elastic response of human eye globes and tissue strips under increasing compressive loads. Needle insertion determined the force (N) needed to penetrate various areas of the eye wall. Results The results demonstrated that globes underwent slightly greater indentation at the midline than at the central cornea, and corneal strips indented twofold more than scleral strips, although neither difference was significant (P=0.400 and P=0.100, respectively). Significant differences were observed among various areas of needle insertion (P<0.001). Needle insertion through the anterior sclera (adjacent to the limbus) and posterior sclera (adjacent to the optic nerve) required the greatest amount of force (0.954 and 1.005 N, respectively). The force required to penetrate the central cornea (0.518 N) was significantly lower than all other areas except the midline sclera (0.700 N) Conclusion These data form the basis for further research into the development of a tissue-mimicking human eye construct with potential utility as a model for use in ophthalmology research and surgical teaching. PMID:24810571
Laser Generated Leaky Acoustic Waves for Needle Visualization.
Wu, Kai-Wen; Wang, Yi-An; Li, Pai-Chi
2018-04-01
Ultrasound (US)-guided needle operation is usually used to visualize both tissue and needle position such as tissue biopsy and localized drug delivery. However, the transducer-needle orientation is limited due to reflection of the acoustic waves. We proposed a leaky acoustic wave method to visualize the needle position and orientation. Laser pulses are emitted on top of the needle to generate acoustic waves; then, these acoustic waves propagate along the needle surface. Leaky wave signals are detected by the US array transducer. The needle position can be calculated by phase velocities of two different wave modes and their corresponding emission angles. In our experiments, a series of needles was inserted into a tissue mimicking phantom and porcine tissue to evaluate the accuracy of the proposed method. The results show that the detection depth is up to 51 mm and the insertion angle is up to 40° with needles of different diameters. It is demonstrated that the proposed approach outperforms the conventional B-mode US-guided needle operation in terms of the detection range while achieving similar accuracy. The proposed method reveals the potentials for further clinical applications.
Effectiveness of 20% benzocaine as a topical anesthetic for intraoral injections.
Nusstein, John M.; Beck, Mike
2003-01-01
The use of topical anesthetics has been advocated prior to the administration of various types of anesthetic injections. Reported results have varied between studies. The purpose of this study was to compare the effectiveness of 20% benzocaine in reducing the pain of needle insertion during maxillary posterior and anterior infiltration and inferior alveolar nerve block injections. In this retrospective study, 1080 patients received 2336 injections using a 27-gauge needle. Topical anesthetic was applied prior to 720 of the injections. Patients rated pain of needle insertion using a 0-4 pain scale. Logistic regression analysis showed no differences in pain ratings between topical and no topical groups for the inferior alveolar nerve block and posterior maxillary infiltration injections. The use of topical anesthetic did reduce the pain of needle insertion with the maxillary anterior injections (P = .0041). PMID:14959903
[Sheng's acupuncture manipulation at bone-nearby acupoints and the academic thoughts].
Sheng, Ji-li; Jin, Xiao-qing
2014-11-01
Sheng's acupuncture manipulation at bone-nearby acupoints is a set of needling manipulation of the chief physician of TCM, SHENG Xie-sun, summarized through his over 50 years clinical experiences and on the basis of Internal Classic. Regarding this manipulation, on the premise of acupoint selection based on syndrome differentiation, the acupoints close to bone are possibly selected and punctured, with the needle tip toward bone edge, and followed by the technique to achieve reducing purpose. Clinically, the significant immediate analgesia can be achieved in pain disorders such as headache and toothache. Professor Sheng thought, corresponding to the location of needle insertion and needling depth, the tissue layers of needle tip passing through should be considered specially. The site of needle insertion should be changeable so as to ensure the needle tip reaching the bone. This manipulation for analgesia provides a certain guide for acupuncture study, especially for the mechanism study on acupuncture analgesia.
Li, Hua; Wei, Chang-Yan; Liu, Chun-Xia; Shen, Xian-Hao; Chen, Zhen-Cheng
2014-07-01
A new needle-to-cylinder electrode structure was designed to realize the stable glow discharge in ambient air. The stainless steel needle tip with diameter 56.4 microm and the copper cylinder with diameter 4mm were chosen as the cathode and the anode respectively, which were kept parallel by accurate mechanical structure. In the condition that the distance between the needle and the cylinder is 2 mm, the ballasting resistor is 10 M(omega), the discharge resistor is 10 M(omega), the testing resistor is 1 k(omega), and the discharge voltage is -2 740 V, without air flow in ambient air and at room temperature, the stable glow discharge between the needle and the cylinder was realized. Three different discharge modes can be observed: corona discharge, glow discharge and spark, which were verified by the discharge waveform stored in the oscilloscope, and the discharge pictures were recorded by digital camera. The needle-to-cylinder electrode structure is easy to fabricate by the MEMS technology, which can be used as the ion source of the portable analyzing instruments.
21 CFR 890.1385 - Diagnostic electromyograph needle electrode.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Diagnostic electromyograph needle electrode. 890.1385 Section 890.1385 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890...
21 CFR 890.1385 - Diagnostic electromyograph needle electrode.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Diagnostic electromyograph needle electrode. 890.1385 Section 890.1385 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890...
21 CFR 890.1385 - Diagnostic electromyograph needle electrode.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Diagnostic electromyograph needle electrode. 890.1385 Section 890.1385 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890...
21 CFR 890.1385 - Diagnostic electromyograph needle electrode.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Diagnostic electromyograph needle electrode. 890.1385 Section 890.1385 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890...
21 CFR 890.1385 - Diagnostic electromyograph needle electrode.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Diagnostic electromyograph needle electrode. 890.1385 Section 890.1385 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Diagnostic Devices § 890...
Clement, Ryan S; Unger, Erica L; Ocón-Grove, Olga M; Cronin, Thomas L; Mulvihill, Maureen L
2016-01-01
Blood collection is commonplace in biomedical research. Obtaining sufficient sample while minimizing animal stress requires significant skill and practice. Repeated needle punctures can cause discomfort and lead to variable release of stress hormones, potentially confounding analysis. We designed a handheld device to reduce the force necessary for needle insertion by using low-frequency, axial (forward and backward) micromotions (that is, vibration) delivered to the needle during venipuncture. Tests with cadaver rat-tail segments (n = 18) confirmed that peak insertion forces were reduced by 73% on average with needle vibration. A serial blood-sampling study was then conducted by using Sprague–Dawley rats divided into 2 groups based on needle condition used to cause bleeds: vibration on (n = 10) and vibration off (n = 9). On 3 days (1 wk apart), 3 tail-vein blood collections were performed in each subject at 1-h intervals. To evaluate associated stress levels, plasma corticosterone concentration was quantified by radioimmunoassay and behavior (that is, movement and vocalization) was scored by blinded review of blood-sampling videos. After the initial trial, average corticosterone was lower (46% difference), the mean intrasubject variance trended lower (72%), and behavioral indications of stress were rated lower for the vibration-on group compared with the vibration-off group. Adding controlled vibrations to needles during insertion may decrease the stress associated with blood sampling from rats—an important methodologic advance for investigators studying and assessing stress processes and a refinement over current blood sampling techniques. PMID:27025813
Nozzle insert for mixed mode fuel injector
Lawrence, Keith E [Peoria, IL
2006-11-21
A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set controlled respectively, by first and second needle valve members. The homogeneous charged nozzle outlet set is defined by a nozzle insert that is attached to an injector body, which defines the conventional nozzle outlet set. The nozzle insert is a one piece metallic component with a large diameter segment separated from a small diameter segment by an annular engagement surface. One of the needle valve members is guided on an outer surface of the nozzle insert, and the nozzle insert has an interference fit attachment to the injector body.
Can a virtual reality assessment of fine motor skill predict successful central line insertion?
Mohamadipanah, Hossein; Parthiban, Chembian; Nathwani, Jay; Rutherford, Drew; DiMarco, Shannon; Pugh, Carla
2016-10-01
Due to the increased use of peripherally inserted central catheter lines, central lines are not performed as frequently. The aim of this study is to evaluate whether a virtual reality (VR)-based assessment of fine motor skills can be used as a valid and objective assessment of central line skills. Surgical residents (N = 43) from 7 general surgery programs performed a subclavian central line in a simulated setting. Then, they participated in a force discrimination task in a VR environment. Hand movements from the subclavian central line simulation were tracked by electromagnetic sensors. Gross movements as monitored by the electromagnetic sensors were compared with the fine motor metrics calculated from the force discrimination tasks in the VR environment. Long periods of inactivity (idle time) during needle insertion and lack of smooth movements, as detected by the electromagnetic sensors, showed a significant correlation with poor force discrimination in the VR environment. Also, long periods of needle insertion time correlated to the poor performance in force discrimination in the VR environment. This study shows that force discrimination in a defined VR environment correlates to needle insertion time, idle time, and hand smoothness when performing subclavian central line placement. Fine motor force discrimination may serve as a valid and objective assessment of the skills required for successful needle insertion when placing central lines. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mizeraczyk, J.; Berendt, A.; Podlinski, J.
2016-05-01
In this paper we present images showing the temporal and spatial evolution of the electrohydrodynamic (EHD) flow of dust particles (cigarette smoke) suspended in still air in a needle-to-plate negative DC corona discharge arrangement just after the corona onset, i.e. in the first stage of development of the EHD particle flow. The experimental apparatus for our study of the EHD flow onset consisted of a needle-to-plate electrode arrangement, high voltage power supply and time-resolved EHD imaging system based on 2D time-resolved particle image velocimetry equipment. The time-resolved flow images clearly show the formation of a ball-like flow structure at the needle tip just after the corona discharge onset, and its evolution into a mushroom-like object moving to the collecting electrode. After a certain time, when the mushroom-like object is still present in the interelectrode gap a second mushroom-like object forms near the needle electrode and starts to move towards the collecting electrode. Before the first mushroom-like object reaches the collecting electrode several similar mushroom-like objects can be formed and presented simultaneously in the interelectrode gap. They look like a series of mushroom-like minijets shot from the needle electrode vicinity towards the collecting electrode. The simultaneous presence of mushroom-like minijets in the interelectrode gap in the corona discharge in particle-seeded air resembles the negative-ion-charged ‘clouds’ (induced by the Trichel pulses) traversing simultaneously the interelectrode gap of the corona discharge in air, predicted a long time ago by Loeb, and Lama and Gallo and recently by Dordizadeh et al. Analysing the time behaviours of the mushroom-like minijets and current waveform in the corona discharge in particle-seeded air, we found that the Trichel pulse trains, formed just after the corona onset initiates the mushroom-like minijets. The first stage of development of the EHD particle flow, the area of which is practically limited to the interelectrode duct, ends when the first mushroom-like minijet reaches the collecting electrode.
Schalk, Richard; Schweigkofler, Uwe; Lotz, Gösta; Zacharowski, Kai; Latasch, Leo; Byhahn, Christian
2011-10-26
Intraosseous (IO) access represents a reliable alternative to intravenous vascular access and is explicitly recommended in the current guidelines of the European Resuscitation Council when intravenous access is difficult or impossible. We therefore aimed to study the efficacy of the intraosseous needle driver EZ-IO in the prehospital setting. During a 24-month period, all cases of prehospital IO access using the EZ-IO needle driver within three operational areas of emergency medical services were prospectively recorded by a standardized questionnaire that needed to be filled out by the rescuer immediately after the mission and sent to the primary investigator. We determined the rate of successful insertion of the IO needle, the time required, immediate procedure-related complications, the level of previous experience with IO access, and operator's subjective satisfaction with the device. 77 IO needle insertions were performed in 69 adults and five infants and children by emergency physicians (n = 72 applications) and paramedics (n = 5 applications). Needle placement was successful at the first attempt in all but 2 adults (one patient with unrecognized total knee arthroplasty, one case of needle obstruction after placement). The majority of users (92%) were relative novices with less than five previous IO needle placements. Of 22 responsive patients, 18 reported pain upon fluid administration via the needle. The rescuers' subjective rating regarding handling of the device and ease of needle insertion, as described by means of an analogue scale (0 = entirely unsatisfied, 10 = most satisfied), provided a median score of 10 (range 1-10). The EZ-IO needle driver was an efficient alternative to establish immediate out-of-hospital vascular access. However, significant pain upon intramedullary infusion was observed in the majority of responsive patients.
Grading of severity of postdural puncture headache after 27-gauge Quincke and Whitacre needles.
Corbey, M P; Bach, A B; Lech, K; Frørup, A M
1997-06-01
Small-gauge needles are reported to have a low incidence of complications. Pencil-point needles are associated with a lower frequency of postdural puncture headache (PDPH), but a higher failure rate than Quincke needles. The incidence of PDPH was investigated in 200 patients under the age of 45, undergoing day-care surgery, after spinal anaesthesia with either 27-gauge Quincke or Whitacre needle. The severity of headache was graded as I (mild), II (moderate) or III (severe) using a grading system based on the visual analogue scale (VAS) associated with a functional rating (FG). The frequency of PDPH following the Whitacre needle was 0% and 5.6% after the Quincke needle (P = 0.05). Two PDPHs were assessed as grade III, and three as grade II. All PDPHs occurred when the Quincke needle bevel was withdrawn perpendicular to the dural fibres following parallel insertion. No PDPH occurred when the bevel was inserted and removed parallel to the dural fibres (P < 0.05). There was no statistical difference (P > 0.08) in the incidence of PDPH and postdural puncture-related headaches (PDPR-H) in patients with recurrent headaches or migraine compared to patients with no previous history of headaches. We conclude that the 27-gauge Whitacre needle is the 'needle of choice' in patients with normal body stature. The incidence of PDPH following Quincke needles may not only be affected by the direction of the bevel during insertion but also during removal. Statistically, there was no gender variation in PDPH in this study (P = 0.5). A previous history of recurrent headache or migraine does not predispose to PDPH.
Convolution neural networks for real-time needle detection and localization in 2D ultrasound.
Mwikirize, Cosmas; Nosher, John L; Hacihaliloglu, Ilker
2018-05-01
We propose a framework for automatic and accurate detection of steeply inserted needles in 2D ultrasound data using convolution neural networks. We demonstrate its application in needle trajectory estimation and tip localization. Our approach consists of a unified network, comprising a fully convolutional network (FCN) and a fast region-based convolutional neural network (R-CNN). The FCN proposes candidate regions, which are then fed to a fast R-CNN for finer needle detection. We leverage a transfer learning paradigm, where the network weights are initialized by training with non-medical images, and fine-tuned with ex vivo ultrasound scans collected during insertion of a 17G epidural needle into freshly excised porcine and bovine tissue at depth settings up to 9 cm and [Formula: see text]-[Formula: see text] insertion angles. Needle detection results are used to accurately estimate needle trajectory from intensity invariant needle features and perform needle tip localization from an intensity search along the needle trajectory. Our needle detection model was trained and validated on 2500 ex vivo ultrasound scans. The detection system has a frame rate of 25 fps on a GPU and achieves 99.6% precision, 99.78% recall rate and an [Formula: see text] score of 0.99. Validation for needle localization was performed on 400 scans collected using a different imaging platform, over a bovine/porcine lumbosacral spine phantom. Shaft localization error of [Formula: see text], tip localization error of [Formula: see text] mm, and a total processing time of 0.58 s were achieved. The proposed method is fully automatic and provides robust needle localization results in challenging scanning conditions. The accurate and robust results coupled with real-time detection and sub-second total processing make the proposed method promising in applications for needle detection and localization during challenging minimally invasive ultrasound-guided procedures.
NASA Astrophysics Data System (ADS)
Kumar, Saurabh; Shrikanth, Venkoba; Amrutur, Bharadwaj; Asokan, Sundarrajan; Bobji, Musuvathi S.
2016-12-01
Several medical procedures involve the use of needles. The advent of robotic and robot assisted procedures requires dynamic estimation of the needle tip location during insertion for use in both assistive systems as well as for automatic control. Most prior studies have focused on the maneuvering of solid flexible needles using external force measurements at the base of the needle holder. However, hollow needles are used in several procedures and measurements of forces in proximity of such needles can eliminate the need for estimating frictional forces that have high variations. These measurements are also significant for endoscopic procedures in which measurement of forces at the needle holder base is difficult. Fiber Bragg grating sensors, due to their small size, inert nature, and multiplexing capability, provide a good option for this purpose. Force measurements have been undertaken during needle insertion into tissue mimicking phantoms made of polydimethylsiloxane as well as chicken tissue using an 18-G needle instrumented with FBG sensors. The results obtained show that it is possible to estimate the different stages of needle penetration including partial rupture, which is significant for procedures in which precise estimation of needle tip position inside the organ or tissue is required.
Skliarenko, Julia; Carlone, Marco; Tanderup, Kari; Han, Kathy; Beiki-Ardakani, Akbar; Borg, Jette; Chan, Kitty; Croke, Jennifer; Rink, Alexandra; Simeonov, Anna; Ujaimi, Reem; Xie, Jason; Fyles, Anthony; Milosevic, Michael
MR-guided brachytherapy (MRgBT) with interstitial needles is associated with improved outcomes in cervical cancer patients. However, there are implementation barriers, including magnetic resonance (MR) access, practitioner familiarity/comfort, and efficiency. This study explores a graded MRgBT implementation strategy that included the adaptive use of needles, strategic use of MR imaging/planning, and team learning. Twenty patients with cervical cancer were treated with high-dose-rate MRgBT (28 Gy in four fractions, two insertions, daily MR imaging/planning). A tandem/ring applicator alone was used for the first insertion in most patients. Needles were added for the second insertion based on evaluation of the initial dosimetry. An interdisciplinary expert team reviewed and discussed the MR images and treatment plans. Dosimetry-trigger technique adaptation with the addition of needles for the second insertion improved target coverage in all patients with suboptimal dosimetry initially without compromising organ-at-risk (OAR) sparing. Target and OAR planning objectives were achieved in most patients. There were small or no systematic differences in tumor or OAR dosimetry between imaging/planning once per insertion vs. daily and only small random variations. Peer review and discussion of images, contours, and plans promoted learning and process development. Technique adaptation based on the initial dosimetry is an efficient approach to implementing MRgBT while gaining comfort with the use of needles. MR imaging and planning once per insertion is safe in most patients as long as applicator shifts, and large anatomical changes are excluded. Team learning is essential to building individual and programmatic competencies. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers
Thorbergsson, Palmi Thor; Ekstrand, Joakim; Friberg, Annika; Granmo, Marcus; Pettersson, Lina M. E.; Schouenborg, Jens
2016-01-01
Neural interfaces which allow long-term recordings in deep brain structures in awake freely moving animals have the potential of becoming highly valuable tools in neuroscience. However, the recording quality usually deteriorates over time, probably at least partly due to tissue reactions caused by injuries during implantation, and subsequently micro-forces due to a lack of mechanical compliance between the tissue and neural interface. To address this challenge, we developed a gelatin embedded neural interface comprising highly flexible electrodes and evaluated its long term recording properties. Bundles of ultrathin parylene C coated platinum electrodes (N = 29) were embedded in a hard gelatin based matrix shaped like a needle, and coated with Kollicoat™ to retard dissolution of gelatin during the implantation. The implantation parameters were established in an in vitro model of the brain (0.5% agarose). Following a craniotomy in the anesthetized rat, the gelatin embedded electrodes were stereotactically inserted to a pre-target position, and after gelatin dissolution the electrodes were further advanced and spread out in the area of the subthalamic nucleus (STN). The performance of the implanted electrodes was evaluated under anesthesia, during 8 weeks. Apart from an increase in the median-noise level during the first 4 weeks, the electrode impedance and signal-to-noise ratio of single-units remained stable throughout the experiment. Histological postmortem analysis confirmed implantation in the area of STN in most animals. In conclusion, by combining novel biocompatible implantation techniques and ultra-flexible electrodes, long-term neuronal recordings from deep brain structures with no significant deterioration of electrode function were achieved. PMID:27159159
An augmented reality haptic training simulator for spinal needle procedures.
Sutherland, Colin; Hashtrudi-Zaad, Keyvan; Sellens, Rick; Abolmaesumi, Purang; Mousavi, Parvin
2013-11-01
This paper presents the prototype for an augmented reality haptic simulation system with potential for spinal needle insertion training. The proposed system is composed of a torso mannequin, a MicronTracker2 optical tracking system, a PHANToM haptic device, and a graphical user interface to provide visual feedback. The system allows users to perform simulated needle insertions on a physical mannequin overlaid with an augmented reality cutaway of patient anatomy. A tissue model based on a finite-element model provides force during the insertion. The system allows for training without the need for the presence of a trained clinician or access to live patients or cadavers. A pilot user study demonstrates the potential and functionality of the system.
[Quantitative research on operation behavior of acupuncture manipulation].
Li, Jing; Grierson, Lawrence; Wu, Mary X; Breuer, Ronny; Carnahan, Heather
2014-03-01
To explore a method of quantitative evaluation on operation behavior of acupuncture manipulation and further analyze behavior features of professional acupuncture manipulation. According to acupuncture basic manipulations, Scales for Operation Behavior of Acupuncture Basic Manipulation was made and Delphi method was adopted to test its validity. Two independent estimators utilized this scale to assess operation behavior of acupuncture manipulate among 12 acupuncturists and 12 acupuncture-novices and calculate interrater reliability, also the differences of total score of operation behavior in the two groups as well as single-step score, including sterilization, needle insertion, needle manipulation and needle withdrawal, were compared. The validity of this scale was satisfied. The inter-rater reliability was 0. 768. The total score of operation behavior in acupuncturist group was significantly higher than that in the acupuncture-novice group (13.80 +/- 1.05 vs 11.03 +/- 2.14, P < 0.01). The scores of needle insertion and needle manipulation in the acupuncturist group were significantly higher than those in the acupuncture-novice group (4.28 +/- 0.91 vs 2.54 +/- 1.51, P < 0.01; 2.56 +/- 0.65 vs 1.88 +/- 0.88, P < 0.05); however, the scores of sterilization and needle withdrawal in the acupuncturist group were not different from those in the acupuncture-novice group. This scale is suitable for quantitative evaluation on operation behavior of acupuncture manipulation. The behavior features of professional acupuncture manipulation are mainly presented with needle insertion and needle manipulation which has superior difficulty, high coordination and accuracy.
Evaluation of a new mid-scala cochlear implant electrode using microcomputed tomography.
Frisch, Christopher D; Carlson, Matthew L; Lane, John I; Driscoll, Colin L W
2015-12-01
To investigate electrode position, depth of insertion, and electrode contact using an electrode array with a mid-scala design following round window (RW) and cochleostomy insertion. Eight fresh-frozen cadaveric bones were implanted; half via a RW approach and half through an anteroinferior cochleostomy using a styleted mid-scala electrode design. Microcomputed tomography was used to acquire oblique coronal and oblique axial reformations. Individual electrode positions along each array, insertional depth, and electrode contact were determined using National Institutes of Health Image J software. All electrodes were inserted without significant resistance. The average angular depth of insertion was 436.5° for the RW group and 422.7° for the cochleostomy group. All electrodes acquired a perimodiolar position in the proximal segment and a lateral wall position at the basal turn, regardless of approach. Electrodes distal to the basal turn demonstrated a variable location, with 78% mid scala. One cochleostomy array fractured through the interscalar partition (ISP), acquiring a scala vestibuli position. The odds ratio for either abutting the modiolus, ISP, lateral wall or floor, or fracturing through the ISP were 2.7 times more likely following a cochleostomy insertion (P = .032). The styleted mid-scala electrode design acquires a proximal perimodiolar position, a lateral wall location, as it traverses the basal turn, and most commonly a mid-scala position in the distal array. Interscalar excursion occurred in one of the cochleostomy insertions. Cochleostomy insertion is more likely to result in ultimate final electrode position adjacent to critical intracochlear structures. NA. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
Numerical modelling of needle-grid electrodes for negative surface corona charging system
NASA Astrophysics Data System (ADS)
Zhuang, Y.; Chen, G.; Rotaru, M.
2011-08-01
Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.
Browne, Ingrid M; Birnbach, David J; Stein, Deborah J; O'Gorman, David A; Kuroda, Maxine
2005-08-01
When using the needle-through-needle combined spinal-epidural (CSE) technique for labor analgesia, failure to obtain cerebrospinal fluid (CSF), paresthesias, and intrathecal or intravascular migration of the catheter are of concern. Epidural needles with spinal needle apertures, such as the back-hole Espocan (ES) needles, are available and may reduce these risks. We describe the efficacy and adverse events associated with a modified epidural needle (ES) versus a conventional Tuohy needle for CSE. One-hundred parturients requesting labor analgesia (CSE) were randomized into 2 groups: 50-ES 18-gauge modified epidural needle with 27-gauge Pencan atraumatic spinal needle, 50-conventional 18-gauge Tuohy needle with 27-gauge Gertie Marx atraumatic spinal needle. Information on intrathecal or intravascular catheter placement, paresthesia on introduction of spinal needle, failure to obtain CSF through the spinal needle after placement of epidural needle, unintentional dural puncture, and epidural catheter function was obtained. No intrathecal catheter placement occurred in either group. Rates of intravascular catheter placement and unintentional dural puncture were similar between the groups. Significant differences were noted regarding spinal needle-induced paresthesia (14% ES versus 42% Tuohy needles, P = 0.009) and failure to obtain CSF on first attempt (8% ES versus 28% Tuohy needles, P < 0.02). Use of ES needles for CSE significantly reduces paresthesia associated with the insertion of the spinal needle and is associated with more frequent successful spinal needle placement on the first attempt. The use of modified epidural needles with a back hole for combined spinal-epidural technique significantly reduces paresthesia associated with the insertion of the spinal needle and is associated with more frequent successful spinal needle placement on the first attempt.
Integration of soft tissue model and open haptic device for medical training simulator
NASA Astrophysics Data System (ADS)
Akasum, G. F.; Ramdhania, L. N.; Suprijanto; Widyotriatmo, A.
2016-03-01
Minimally Invasive Surgery (MIS) has been widely used to perform any surgical procedures nowadays. Currently, MIS has been applied in some cases in Indonesia. Needle insertion is one of simple MIS procedure that can be used for some purposes. Before the needle insertion technique used in the real situation, it essential to train this type of medical student skills. The research has developed an open platform of needle insertion simulator with haptic feedback that providing the medical student a realistic feel encountered during the actual procedures. There are three main steps in build the training simulator, which are configure hardware system, develop a program to create soft tissue model and the integration of hardware and software. For evaluating its performance, haptic simulator was tested by 24 volunteers on a scenario of soft tissue model. Each volunteer must insert the needle on simulator until rearch the target point with visual feedback that visualized on the monitor. From the result it can concluded that the soft tissue model can bring the sensation of touch through the perceived force feedback on haptic actuator by looking at the different force in accordance with different stiffness in each layer.
From impedance theory to needle electrode guidance in tissue
NASA Astrophysics Data System (ADS)
Kalvøy, Håvard; Høyum, Per; Grimnes, Sverre; Martinsen, Ørjan G.
2010-04-01
Fast access to blood vessels or other tissues/organs can be crucial in clinical or acute medical treatment. We have developed a method for needle guidance for use in different types of applications. The feasibility of an automatic application for fast access to blood vessels during acute cardiac arrest, based on this method, has been evaluated. Suited electrode setups were found by development of needle electrode models used in simulation and sensitivity analyses. In vitro measurements were done both to determine the fundamental properties of the electrodes for use in the models and to confirm the simulation results. Development of algorithms for tissue characterization and differentiation was based on in vivo impedance measurement in porcine models and confirmed in human tissue in vivo. Feasibility was proven by application prototyping and impedance data presented as invasive Electrical Impedance Tomography (iEIT). Our conclusion is that this method can be utilized in a wide range of clinical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, M; Maenhout, M; Lagendijk, J J W
Purpose: To develop adaptive planning with feedback for MRI-guided focal HDR prostate brachytherapy with a single divergent needle robotic implant device. After each needle insertion, the dwell positions for that needle are calculated and the positioning of remaining needles and dosimetry are both updated based on MR imaging. Methods: Errors in needle positioning may occur due to inaccurate needle insertion (caused by e.g. the needle’s bending) and unpredictable changes in patient anatomy. Consequently, the dose plan quality might dramatically decrease compared to the preplan. In this study, a procedure was developed to re-optimize, after each needle insertion, the remaining needlemore » angulations, source positions and dwell times in order to obtain an optimal coverage (D95% PTV>19 Gy) without exceeding the constraints of the organs at risk (OAR) (D10% urethra<21 Gy, D1cc bladder<12 Gy and D1cc rectum<12 Gy). Complete HDR procedures with 6 needle insertions were simulated for a patient MR-image set with PTV, prostate, urethra, bladder and rectum delineated. Random angulation errors, modeled by a Gaussian distribution (standard deviation of 3 mm at the needle’s tip), were generated for each needle insertion. We compared the final dose parameters for the situations (I) without re-optimization and (II) with the automatic feedback. Results: The computation time of replanning was below 100 seconds on a current desk computer. For the patient tested, a clinically acceptable dose plan was achieved while applying the automatic feedback (median(range) in Gy, D95% PTV: 19.9(19.3–20.3), D10% urethra: 13.4(11.9–18.0), D1cc rectum: 11.0(10.7–11.6), D1cc bladder: 4.9(3.6–6.8)). This was not the case without re-optimization (median(range) in Gy, D95% PTV: 19.4(14.9–21.3), D10% urethra: 12.6(11.0–15.7), D1cc rectum: 10.9(8.9–14.1), D1cc bladder: 4.8(4.4–5.2)). Conclusion: An automatic guidance strategy for HDR prostate brachytherapy was developed to compensate errors in needle positioning and improve the dose distribution. Without re-optimization, target coverage and OAR constraints may not be achieved. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are full-time employees of Philips Medical Systems Nederland B.V.« less
NASA Astrophysics Data System (ADS)
Sang, Chaofeng; Sun, Jizhong; Ren, Chunsheng; Wang, Dezhen
2009-02-01
A model of one dimensional in position and three dimensional in velocity space self-consistent particle in cell with Monte Carlo collision technique was employed to simulate the argon discharge between the needle and plane electrodes at high pressure, in which a nanosecond rectangular pulse was applied to the needle electrode. The work focused on the investigation of the spatiotemporal evolution of the discharge versus the needle tip size and working gas pressure. The simulation results showed that the discharge occurred mainly in the region near the needle tip at atmospheric pressure, and that the small radius of the needle tip led to easy discharge. Reducing the gas pressure gave rise to a transition from a corona discharge to a glowlike discharge along the needle-to-plane direction. The microscopic mechanism for the transition can arguably be attributed to the peak of high-energy electrons occurring before the breakdown; the magnitude of the number of these electrons determined whether the breakdown can take place.
NASA Astrophysics Data System (ADS)
Baghdadchi, Saharnaz; Chao, Cherng; Esener, Sadik; Mattrey, Robert F.; Eghtedari, Mohammad A.
2017-02-01
Image-guided procedures are performed frequently by radiologists to insert a catheter within a target vessel or lumen or to perform biopsy of a lesion. For instance, an interventional radiologist uses fluoroscopy during percutaneous biliary drainage procedure (a procedure during which a catheter is inserted through the skin to drain the bile from liver) to identify the location of the needle tip within liver parenchyma, hepatic blood vessel or bile duct. However, the identification of the target organ under fluoroscopy exposes the patient to x-ray irradiation, which may be significant if the time of procedure is prolonged. We have designed a fiber core needle system that may help the radiologist identify the location of the needle tip in real time without exposing the patient to x-ray. Our needle system transmits a low power modulated light into the tissue through a fiber cable embedded in the needle and detects the backscattered light using another fiber inside the needle. We were able to successfully distinguish the location of our prototype needle tip inside a cow liver phantom to identify if the needle tip was within liver parenchyma, liver vessels, or in the bile duct based on the recorded backscattered light.
Reflexes in the shoulder muscles elicited from the human coracoacromial ligament.
Diederichsen, Louise Pyndt; Nørregaard, Jesper; Krogsgaard, Michael; Fischer-Rasmussen, Torsten; Dyhre-Poulsen, Poul
2004-09-01
Morphological studies have demonstrated mechanoreceptors in the capsuloligamentous structures of the shoulder joint, however knowledge of the role these joint receptors play in the control of shoulder stability is limited. We therefore investigated the effect of electrically induced afferent activity from mechanoreceptors in the coracoacromial ligament (CAL) on the activity of voluntary activated shoulder muscles in healthy humans. In study I, wire electrodes, for electrical stimulation, were inserted into the CAL in eight normal shoulders. In study II, a needle electrode was inserted into the CAL in seven normal shoulders. Electric activity was recorded from eight shoulder muscles by surface and intramuscular electrodes. During isometric contractions, electrical stimulation was applied to the CAL at two different stimulus intensities, a weak stimulus (stim-1) and a stronger stimulus (stim-2). In both experiments, electrical stimulation of the CAL elicited a general inhibition in the voluntary activated shoulder muscles. In study I the average latencies (mean+/-SE) of the muscular inhibition were 66+/-4 ms (stim-1) and 62+/-4 ms (stim-2) during isometric flexion and 73+/-3 ms (stim-1) and 73+/-5 ms (stim-2) during isometric extension. In study II the average latency (mean+/-SE) of the response was 66+/-4 ms (stim-1) during isometric flexion. Our results demonstrated a response, probably of reflex origin, from mechanoreceptors in the CAL to the shoulder muscles. The existence of this synaptic connection between mechanoreceptors in CAL and the shoulder muscles suggest a role of these receptors in muscle coordination and in the functional joint stability.
Intracochlear Pressure Transients During Cochlear Implant Electrode Insertion.
Greene, Nathaniel T; Mattingly, Jameson K; Banakis Hartl, Renee M; Tollin, Daniel J; Cass, Stephen P
2016-12-01
Cochlear implant (CI) electrode insertion into the round window induces pressure transients in the cochlear fluid comparable to high-intensity sound transients. Many patients receiving a CI have some remaining functional hearing at low frequencies; thus, devices and surgical techniques have been developed to use this residual hearing. To maintain functional acoustic hearing, it is important to retain function of any hair cells and auditory nerve fibers innervating the basilar membrane; however, in a subset of patients, residual low-frequency hearing is lost after CI insertion. Here, we test the hypothesis that transient intracochlear pressure spikes are generated during CI electrode insertion, which could cause damage and compromise residual hearing. Human cadaveric temporal bones were prepared with an extended facial recess. Pressures in the scala vestibuli and tympani were measured with fiber-optic pressure sensors inserted into the cochlea near the oval and round windows, whereas CI electrodes (five styles from two manufacturers) were inserted into the cochlea via a round window approach. Pressures in the scala tympani tended to be larger in magnitude than pressures in the scala vestibuli, consistent with electrode insertion into the scala tympani. CI electrode insertion produced a range of pressure transients in the cochlea that could occur alone or as part of a train of spikes with equivalent peak sound pressure levels in excess of 170 dB sound pressure level. Instances of pressure transients varied with electrode styles. Results suggest electrode design, insertion mechanism, and surgical technique affect the magnitude and rate of intracochlear pressure transients during CI electrode insertion. Pressure transients showed intensities similar to those elicited by high-level sounds and thus could cause damage to the basilar membrane and/or hair cells.
Intracochlear pressure transients during cochlear implant electrode insertion
Greene, Nathaniel T.; Mattingly, Jameson K.; Banakis Hartl, Renee M.; Tollin, Daniel J.; Cass, Stephen P.
2016-01-01
Hypothesis Cochlear implant (CI) electrode insertion into the round window induces pressure transients in the cochlear fluid comparable to high intensity sound transients. Background Many patients receiving a CI have some remaining functional hearing at low frequencies, thus devices and surgical techniques have been developed to utilize this residual hearing. To maintain functional acoustic hearing, it is important to retain function of any hair cells and auditory nerve fibers innervating the basilar membrane; however, in a subset of patients, residual low frequency hearing is lost following CI insertion. Here, we test the hypothesis that transient intracochlear pressure spikes are generated during CI electrode insertion, which could cause damage and compromise residual hearing. Methods Human cadaveric temporal bones were prepared with an extended facial recess. Pressures in the scala vestibuli (PSV) and tympani (PST) were measured with fiber-optic pressure sensors inserted into the cochlea near the oval and round windows while CI electrodes (five styles from two manufacturers) were inserted into the cochlea via a round window approach. Results PST tended to be larger in magnitude than PSV, consistent with electrode insertion into the scala tympani. CI electrode insertion produced a range of pressure transients in the cochlea that could occur alone or as part of a train of spikes with equivalent peak sound pressure levels in excess of 170dB SPL. Instances of pressure transients varied with electrode styles. Conclusions Results suggest electrode design, insertion mechanism, and surgical technique affect the magnitude and rate of intracochlear pressure transients during CI electrode insertion. Pressure transients showed intensities similar to those elicited by high level sounds and thus could cause damage to the basilar membrane and/or hair cells. PMID:27753703
Briggs, R J; Tykocinski, M; Saunders, E; Hellier, W; Dahm, M; Pyman, B; Clark, G M
2001-09-01
To review the mechanisms and nature of intracochlear damage associated with cochlear implant electrode array insertion, in particular, the various perimodiolar electrode designs. Make recommendations regarding surgical techniques for the Nucleus Contour electrode to ensure correct position and minimal insertion trauma. The potential advantages of increased modiolar proximity of intracochlear multichannel electrode arrays are a reduction in stimulation thresholds, an increase in dynamic range and more localized neural excitation. This may improve speech perception and reduce power consumption. These advantages may be negated if increased intracochlear damage results from the method used to position the electrodes close to the modiolus. A review of the University of Melbourne Department of Otolaryngology experience with temporal bone safety studies using the Nucleus standard straight electrode array and a variety of perimodiolar electrode array designs; comparison with temporal bone insertion studies from other centres and postmortem histopathology studies reported in the literature. Review of our initial clinical experience using the Nucleus Contour electrode array. The nature of intracochlear damage resulting from electrode insertion trauma ranges from minor, localized, spiral ligament tear to diffuse organ of Corti disruption and osseous spiral lamina fracture. The type of damage depends on the mechanical characteristics of the electrode array, the stiffness, curvature and size of the electrode in relation to the scala, and the surgical technique. The narrow, flexible, straight arrays are the least traumatic. Pre-curved or stiffer arrays are associated with an incidence of basilar membrane perforation. The cochleostomy must be correctly sited in relation to the round window to ensure scala tympani insertion. A cochleostomy anterior to the round window rather than inferior may lead to scala media or scala vestibuli insertion. Proximity of electrodes to the modiolus can be achieved without intracochlear damage provided the electrode array is a free fit within the scala, of appropriate size and shape, and accurate scala tympani insertion is performed.
Nishiwaki, Masako; Takayama, Miho; Yajima, Hiroyoshi; Nasu, Morihiro; Park, Joel; Kong, Jian; Takakura, Nobuari
2018-01-01
To investigate the acupuncture sensations elicited by the Japanese style of acupuncture, penetrating acupuncture and skin-touch placebo needles were randomly administered at various insertion depths (5 and 10 mm for the penetrating needles and 1 and 2 mm for the placebo needles) at LI4 to 50 healthy subjects. Among the 12 acupuncture sensations in the Massachusetts General Hospital Acupuncture Sensation Scale (MASS), "heaviness" was the strongest and most frequently reported sensation with the 10 mm needles, but not with the 5 mm needles. There were no significant differences in number of sensations elicited, MASS index, range of spreading, and intensity of needle pain for 5 mm penetration versus 1 mm skin press and 10 mm penetration versus 2 mm skin press. The MASS index with 2 mm skin-touch needles was significantly larger than that with 1 mm skin-touch and 5 mm penetrating needles. The factor structures in the 12 acupuncture sensations between penetrating and skin-touch needles were different. The acupuncture sensations obtained in this study under satisfactorily performed double-blind (practitioner-patient) conditions suggest that a slight difference in insertion depth and skin press causes significant differences in quantity and quality of acupuncture sensations.
Electromagnetic Tracking Navigation to Guide Radiofrequency Ablation (RFA) of a Lung Tumor
Amalou, Hayet; Wood, Bradford J.
2013-01-01
Radiofrequency ablation (RFA) may be an option for patients with lung tumors who have unresectable disease and are not suitable for available palliative modalities. RFA electrode positioning may take several attempts, necessitating multiple imaging acquisitions or continuous use of CT (Computed Tomography). Electromagnetic tracking utilizes miniature sensors integrated with RFA equipment to guide tools in real-time, while referencing to pre-procedure imaging. This technology was demonstrated successfully during a lung tumor ablation, and was more accurate at targeting the tumor, compared to traditional freehand needle insertion. It is possible, although speculative and anecdotal, that more accuracy could prevent unnecessary repositioning punctures and decrease radiation exposure. Electromagnetic tracking has theoretical potential to benefit minimally invasive interventions. PMID:23207535
NASA Astrophysics Data System (ADS)
Motogi, Jun; Sugiyama, Yukiya; Laakso, Ilkka; Hirata, Akimasa; Inui, Koji; Tamura, Manabu; Muragaki, Yoshihiro
2016-06-01
The in situ electric field in the peripheral nerve of the skin is investigated to discuss the selective stimulation of nerve fibres. Coaxial planar electrodes with and without intra-epidermal needle tip were considered as electrodes of a stimulator. From electromagnetic analysis, the tip depth of the intra-epidermal electrode should be larger than the thickness of the stratum corneum, the electrical conductivity of which is much lower than the remaining tissue. The effect of different radii of the outer ring electrode on the in situ electric field is marginal. The minimum threshold in situ electric field (rheobase) for free nerve endings is estimated to be 6.3 kV m-1. The possible volume for electrostimulation, which can be obtained from the in situ electric field distribution, becomes deeper and narrower with increasing needle depth, suggesting that possible stimulation sites may be controlled by changing the needle depth. The injection current amplitude should be adjusted when changing the needle depth because the peak field strength also changes. This study shows that intra-epidermal electrical stimulation can achieve stimulation of small fibres selectively, because Aβ-, Aδ-, and C-fibre terminals are located at different depths in the skin.
Kratchman, Louis B.; Schurzig, Daniel; McRackan, Theodore R.; Balachandran, Ramya; Noble, Jack H.; Webster, Robert J.; Labadie, Robert F.
2014-01-01
The current technique for cochlear implantation (CI) surgery requires a mastoidectomy to gain access to the cochlea for electrode array insertion. It has been shown that microstereotactic frames can enable an image-guided, minimally invasive approach to CI surgery called percutaneous cochlear implantation (PCI) that uses a single drill hole for electrode array insertion, avoiding a more invasive mastoidectomy. Current clinical methods for electrode array insertion are not compatible with PCI surgery because they require a mastoidectomy to access the cochlea; thus, we have developed a manually operated electrode array insertion tool that can be deployed through a PCI drill hole. The tool can be adjusted using a preoperative CT scan for accurate execution of the advance off-stylet (AOS) insertion technique and requires less skill to operate than is currently required to implant electrode arrays. We performed three cadaver insertion experiments using the AOS technique and determined that all insertions were successful using CT and microdissection. PMID:22851233
Spaulding, Keith; Chamberlin, Kent
2011-02-01
This study investigated the manner in which extremely low-frequency (ELF) electrical energy is transported through biologic tissues, focusing on the differences between an acupuncture meridian and nonmeridian tissues. Using inserted needles as the electrodes, the energy transport properties of the Large Intestine (LI) meridian were compared to a control channel that had the same length as the meridian channel and comprised similar soft tissue. Twenty (20) participants were tested at the University of New Hampshire, Durham, with ages ranging from 22 to 60 years old. A Gaussian pulse with spectral energy extending into the kilohertz range was launched using a low-impedance amplifier at the distal point on either the LI meridian or a nearby control channel. The signal launched was measured at the proximal point using a high-impedance instrumentation amplifier. The ground reference for both the launch and receiver locations was a needle inserted in the lower leg. After taking the Fast Fourier Transform, power spectral measurements were calculated, giving a single value representing power density of the measured potential in the 2-100-Hz range. A paired, two-sided signed rank test was performed. For the data pairs in this study, p = 0.035, indicating that they are dissimilar with a statistical significance. The ELF electric energy is transported somewhat more efficiently through the LI meridian compared to a nonmeridian control. The results were not dramatic, with some participants giving greater values on the control channel, but they were statistically significant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thanos, Loukas; Poulou, Loukia S., E-mail: ploukia@hotmail.co; Ziakas, Panayiotis D.
We evaluated the safety and efficacy of image-guided radiofrequency ablation (RFA) using a triple-spiral-shaped electrode needle for unresectable primary or metastatic hepatic tumors. Thirty-four patients with 46 index tumors were treated. Ablation zone, morbidity, and complications were assessed. The lesions were completely ablated with an ablative margin of about 1 cm. Five patients (14.7%) with a lesion larger than 4.5 cm had local tumor progression after 1 month and were retreated. Hemothorax, as a major complication, occurred in 1 of 34 patients (3.0%) or 1 of 46 lesions ablated (2.2%). RFA using this new electrode needle can be effective inmore » the treatment of large unresectable hepatic tumors.« less
Shoulder-Mounted Robot for MRI-guided arthrography: Accuracy and mounting study.
Monfaredi, R; Wilson, E; Sze, R; Sharma, K; Azizi, B; Iordachita, I; Cleary, K
2015-08-01
A new version of our compact and lightweight patient-mounted MRI-compatible 4 degree-of-freedom (DOF) robot for MRI-guided arthrography procedures is introduced. This robot could convert the traditional two-stage arthrography procedure (fluoroscopy-guided needle insertion followed by a diagnostic MRI scan) to a one-stage procedure, all in the MRI suite. The results of a recent accuracy study are reported. A new mounting technique is proposed and the mounting stability is investigated using optical and electromagnetic tracking on an anthropomorphic phantom. Five volunteer subjects including 2 radiologists were asked to conduct needle insertion in 4 different random positions and orientations within the robot's workspace and the displacement of the base of the robot was investigated during robot motion and needle insertion. Experimental results show that the proposed mounting method is stable and promising for clinical application.
A Novel Actuator for Simulation of Epidural Anesthesia and Other Needle Insertion Procedures
Magill, John C.; Byl, Marten F.; Hinds, Michael F.; Agassounon, William; Pratt, Stephen D.; Hess, Philip E.
2010-01-01
Introduction When navigating a needle from skin to epidural space, a skilled clinician maintains a mental model of the anatomy and uses the various forms of haptic and visual feedback to track the location of the needle tip. Simulating the procedure requires an actuator that can produce the feel of tissue layers even as the needle direction changes from the ideal path. Methods A new actuator and algorithm architecture simulate forces associated with passing a needle through varying tissue layers. The actuator uses a set of cables to suspend a needle holder. The cables are wound onto spools controlled by brushless motors. An electromagnetic tracker is used to monitor the position of the needle tip. Results Novice and expert clinicians simulated epidural insertion with the simulator. Preliminary depth-time curves show that the user responds to changes in tissue properties as the needle is advanced. Some discrepancy in clinician response indicates that the feel of the simulator is sensitive to technique, thus perfect tissue property simulation has not been achieved. Conclusions The new simulator is able to approximately reproduce properties of complex multilayer tissue structures, including fine-scale texture. Methods for improving fidelity of the simulation are identified. PMID:20651481
A novel actuator for simulation of epidural anesthesia and other needle insertion procedures.
Magill, John C; Byl, Marten F; Hinds, Michael F; Agassounon, William; Pratt, Stephen D; Hess, Philip E
2010-06-01
When navigating a needle from skin to epidural space, a skilled clinician maintains a mental model of the anatomy and uses the various forms of haptic and visual feedback to track the location of the needle tip. Simulating the procedure requires an actuator that can produce the feel of tissue layers even as the needle direction changes from the ideal path. A new actuator and algorithm architecture simulate forces associated with passing a needle through varying tissue layers. The actuator uses a set of cables to suspend a needle holder. The cables are wound onto spools controlled by brushless motors. An electromagnetic tracker is used to monitor the position of the needle tip. Novice and expert clinicians simulated epidural insertion with the simulator. Preliminary depth-time curves show that the user responds to changes in tissue properties as the needle is advanced. Some discrepancy in clinician response indicates that the feel of the simulator is sensitive to technique, thus perfect tissue property simulation has not been achieved. The new simulator is able to approximately reproduce properties of complex multilayer tissue structures, including fine-scale texture. Methods for improving fidelity of the simulation are identified.
Surgical motion characterization in simulated needle insertion procedures
NASA Astrophysics Data System (ADS)
Holden, Matthew S.; Ungi, Tamas; Sargent, Derek; McGraw, Robert C.; Fichtinger, Gabor
2012-02-01
PURPOSE: Evaluation of surgical performance in image-guided needle insertions is of emerging interest, to both promote patient safety and improve the efficiency and effectiveness of training. The purpose of this study was to determine if a Markov model-based algorithm can more accurately segment a needle-based surgical procedure into its five constituent tasks than a simple threshold-based algorithm. METHODS: Simulated needle trajectories were generated with known ground truth segmentation by a synthetic procedural data generator, with random noise added to each degree of freedom of motion. The respective learning algorithms were trained, and then tested on different procedures to determine task segmentation accuracy. In the threshold-based algorithm, a change in tasks was detected when the needle crossed a position/velocity threshold. In the Markov model-based algorithm, task segmentation was performed by identifying the sequence of Markov models most likely to have produced the series of observations. RESULTS: For amplitudes of translational noise greater than 0.01mm, the Markov model-based algorithm was significantly more accurate in task segmentation than the threshold-based algorithm (82.3% vs. 49.9%, p<0.001 for amplitude 10.0mm). For amplitudes less than 0.01mm, the two algorithms produced insignificantly different results. CONCLUSION: Task segmentation of simulated needle insertion procedures was improved by using a Markov model-based algorithm as opposed to a threshold-based algorithm for procedures involving translational noise.
Vecht, R J; Fontaine, C J; Bradfield, J W
1976-01-01
A 59-year-old man is described in whom the insertion of an epicardial sutureless "corkscrew" electrode resulted in fatal ventricular perforation. Fatal myocardial perforation can occur with this electrode and the apex of the left ventricle should never be used as the site of insertion. Necropsy also showed that the transvenous right ventricular electrode, inserted one year previously, had penetrated a tricuspid leaflet. This could have accounted for the ensuing pacing failure. Images PMID:1008980
Li, Weiwei; Qi, Hui; Wang, Baogang; Wang, Qiyu; Wei, Shuting; Zhang, Xiaolin; Wang, Ying; Zhang, Lei; Cui, Xiaoqiang
2018-01-24
A disposable needle-type of hybrid electrode was prepared from a core of stainless steel needle whose surface was modified with a 3D nanoporous gold/NiCo 2 O 4 nanowall hybrid structure for electrochemical non-enzymatic glucose detection. This hybrid electrode, best operated at 0.45 V (vs. SCE) in solutions of pH 13 has a linear response in the 0.01 to 21 mM glucose concentration range, a response time of <1 s, and a 1 μM detection limit (at an S/N ratio of 3). The remarkable enhancement compared to the solid gold/NiCo 2 O 4 and stainless steel/NiCo 2 O 4 hybrid electrodes in electrochemical performance is assumed to originate from the good electrical conductivity and large surface area of the hybrid electrode, which enhance the transport of mass and charge during electrochemical reactions. This biosensor was also applied to real sample analysis with little interferences. The electrode is disposable and considered to be a promising tool for non-enzymatic sensing of glucose in a variety of practical situations. Graphical abstract Ultrathin NiCo 2 O 4 nanowalls supported on nanoporous gold that is coated on a stainless steel needle was fabricated for sensitive non-enzymatic amperometric sensing of glucose.
The influence of tip shape on bending force during needle insertion
van de Berg, Nick J.; de Jong, Tonke L.; van Gerwen, Dennis J.; Dankelman, Jenny; van den Dobbelsteen, John J.
2017-01-01
Steering of needles involves the planning and timely modifying of instrument-tissue force interactions to allow for controlled deflections during the insertion in tissue. In this work, the effect of tip shape on these forces was studied using 10 mm diameter needle tips. Six different tips were selected, including beveled and conical versions, with or without pre-bend or pre-curve. A six-degree-of-freedom force/torque sensor measured the loads during indentations in tissue simulants. The increased insertion (axial) and bending (radial) forces with insertion depth — the force-displacement slopes — were analyzed. Results showed that the ratio between radial and axial forces was not always proportional. This means that the tip load does not have a constant orientation, as is often assumed in mechanics-based steering models. For all tip types, the tip-load assumed a more radial orientation with increased axial load. This effect was larger for straight tips than for pre-bent or pre-curved tips. In addition, the force-displacement slopes were consistently higher for (1) increased tip angles, and for (2) beveled tips compared to conical tips. Needles with a bent or curved tip allow for an increased bending force and a decreased variability of the tip load vector orientation. PMID:28074939
Beigi, Parmida; Malenfant, Paul; Rasoulian, Abtin; Rohling, Robert; Dube, Alison; Gunka, Vit
2017-01-01
Current 2-D ultrasound technology is unable to perform a midline neuraxial needle insertion under real-time ultrasound guidance using a standard needle and without an assistant. The aim of the work described here was to determine the feasibility of a new technology providing such capability, starting with a study evaluating the selected puncture site. A novel 3-D ultrasound imaging technique was designed using thick-slice rendering in conjunction with a custom needle guide (3DUS + Epiguide). A clinical feasibility study evaluated the ability of 3DUS + Epiguide to identify the epidural needle puncture site for a midline insertion in the lumbar spine. We hypothesized that (i) the puncture site identified by 3DUS + Epiguide was within a 5-mm radius from the site chosen by standard palpation, and (ii) the difference between the two puncture sites was not correlated to the patient characteristics age, weight, height, body mass index and gestational age. The mean (±standard deviation) distances between puncture sites determined by 3DUS + Epiguide and palpation were 3.1 (±1.7) mm and 2.8 (±1.3) mm, for the L2-3 and L3-4 interspaces of 20 patients, respectively. Distances were comparable to intra-observer variability, indicating the potential for a thick-slice rendering of 3-D ultrasound along the Epiguide trajectory to select the puncture site of a midline neuraxial needle insertion. The long-term potential benefits of this system include increased efficiency and use of anesthesia, and a reduction in the frequency and severity of the complications from incorrect needle insertions. Epidural success in the most difficult cases (e.g., the obese) will be the focus of future work. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Borot de Battisti, M.; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.
2015-10-01
Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm3to 23.3 cm3) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions.
Nanofiber electrode and method of forming same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pintauro, Peter N.; Zhang, Wenjing
In one aspect, a method of forming an electrode for an electrochemical device is disclosed. In one embodiment, the method includes the steps of mixing at least a first amount of a catalyst and a second amount of an ionomer or uncharged polymer to form a solution and delivering the solution into a metallic needle having a needle tip. The method further includes the steps of applying a voltage between the needle tip and a collector substrate positioned at a distance from the needle tip, and extruding the solution from the needle tip at a flow rate such as tomore » generate electrospun fibers and deposit the generated fibers on the collector substrate to form a mat with a porous network of fibers. Each fiber in the porous network of the mat has distributed particles of the catalyst. The method also includes the step of pressing the mat onto a membrane.« less
Removal of NO and SO2 in Corona Discharge Plasma Reactor with Water Film
NASA Astrophysics Data System (ADS)
He, Yuanji; Dong, Liming; Yang, Jiaxiang
2004-04-01
In this paper, a novel type of a corona discharge plasma reactor was designed, which consists of needle-plate-combined electrodes, in which a series of needle electrodes are placed in a glass container filled with flue gas, and a plate electrode is immersed in the water. Based on this model, the removal of NO and SO2 was tested experimentally. In addition, the effect of streamer polarity on the reduction of SO2 and NO was investigated in detail. The experimental results show that the corona wind formed between the high-voltage needle electrode and the water by corona discharge enhances the cleaning efficiency of the flue gas because of the presence of water, and the cleaning efficiency will increase with the increase of applied dc voltage within a definite range. The removal efficiency of SO2 up to 98%, and about 85% of NOx removal under suitable conditions is obtained in our experiments.
Niazi, A U; Chin, K J; Jin, R; Chan, V W
2014-08-01
Real-time ultrasound-guided neuraxial blockade remains a largely experimental technique. SonixGPS® is a new needle tracking system that displays needle tip position on the ultrasound screen. We investigated if this novel technology might aid performance of real-time ultrasound-guided spinal anesthesia. Twenty patients with body mass index < 35 kg/m(2) undergoing elective total joint arthroplasty under spinal anesthesia were recruited. Patients with previous back surgery and spinal abnormalities were excluded. Following a pre-procedural ultrasound scan, a 17G proprietary needle-sensor assembly was inserted in-plane to the transducer in four patients and out-of-plane in 16 patients. In both approaches, the trajectory of insertion was adjusted in real-time until the needle tip lay just superficial to the ligamentum flavum-dura mater complex. At this point, a 25G 120 mm Whitacre spinal needle was inserted through the 17G SonixGPS® needle. Successful dural puncture was confirmed by backflow of cerebrospinal fluid from the spinal needle. An overall success rate of 14/20 (70%) was seen with two failures (50%) and four failures (25%) in the in-plane and out-of-plane groups respectively. Dural puncture was successful on the first skin puncture in 71% of patients and in a single needle pass in 57% of patients. The median total procedure time was 16.4 and 11.1 min in the in-plane and out-of-plane groups respectively. The SonixGPS® system simplifies real-time ultrasound-guided spinal anesthesia to a large extent, especially the out-of-plane approach. Nevertheless, it remains a complex multi-step procedure that requires time, specialized equipment, and a working knowledge of spinal sonoanatomy. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device.
Ambastha, Shikha; Umesh, Sharath; Dabir, Sundaresh; Asokan, Sundarrajan
2016-11-01
A technique for real-time dynamic monitoring of force experienced by a spinal needle during lumbar puncture using a fiber Bragg grating (FBG) sensor is presented. The proposed FBG force device (FBGFD) evaluates the compressive force on the spinal needle during lumbar puncture, particularly avoiding the bending effect on the needle. The working principle of the FBGFD is based on transduction of force experienced by the spinal needle into strain variations monitored by the FBG sensor. FBGFD facilitates external mounting of a spinal needle for its smooth insertion during lumbar puncture without any intervention. The developed FBGFD assists study and analysis of the force required for the spinal needle to penetrate various tissue layers from skin to the epidural space; this force is indicative of the varied resistance offered by different tissue layers for the spinal needle traversal. Calibration of FBGFD is performed on a micro-universal testing machine for 0 to 20 N range with an obtained resolution of 0.021 N. The experimental trials using spinal needles mounted on FBGFD are carried out on a human cadaver specimen with punctures made in the lumbar region from different directions. Distinct forces are recorded when the needle encounters skin, muscle tissue, and a bone in its traversing path. Real-time spinal needle force monitoring using FBGFD may reduce potentially serious complications during the lumbar puncture, such as overpuncturing of tissue regions, by impeding the spinal needle insertion at epidural space.
Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device
NASA Astrophysics Data System (ADS)
Ambastha, Shikha; Umesh, Sharath; Dabir, Sundaresh; Asokan, Sundarrajan
2016-11-01
A technique for real-time dynamic monitoring of force experienced by a spinal needle during lumbar puncture using a fiber Bragg grating (FBG) sensor is presented. The proposed FBG force device (FBGFD) evaluates the compressive force on the spinal needle during lumbar puncture, particularly avoiding the bending effect on the needle. The working principle of the FBGFD is based on transduction of force experienced by the spinal needle into strain variations monitored by the FBG sensor. FBGFD facilitates external mounting of a spinal needle for its smooth insertion during lumbar puncture without any intervention. The developed FBGFD assists study and analysis of the force required for the spinal needle to penetrate various tissue layers from skin to the epidural space; this force is indicative of the varied resistance offered by different tissue layers for the spinal needle traversal. Calibration of FBGFD is performed on a micro-universal testing machine for 0 to 20 N range with an obtained resolution of 0.021 N. The experimental trials using spinal needles mounted on FBGFD are carried out on a human cadaver specimen with punctures made in the lumbar region from different directions. Distinct forces are recorded when the needle encounters skin, muscle tissue, and a bone in its traversing path. Real-time spinal needle force monitoring using FBGFD may reduce potentially serious complications during the lumbar puncture, such as overpuncturing of tissue regions, by impeding the spinal needle insertion at epidural space.
Dry needling: a literature review with implications for clinical practice guidelines1
Dunning, James; Butts, Raymond; Mourad, Firas; Young, Ian; Flannagan, Sean; Perreault, Thomas
2014-01-01
Background: Wet needling uses hollow-bore needles to deliver corticosteroids, anesthetics, sclerosants, botulinum toxins, or other agents. In contrast, dry needling requires the insertion of thin monofilament needles, as used in the practice of acupuncture, without the use of injectate into muscles, ligaments, tendons, subcutaneous fascia, and scar tissue. Dry needles may also be inserted in the vicinity of peripheral nerves and/or neurovascular bundles in order to manage a variety of neuromusculoskeletal pain syndromes. Nevertheless, some position statements by several US State Boards of Physical Therapy have narrowly defined dry needling as an ‘intramuscular’ procedure involving the isolated treatment of ‘myofascial trigger points’ (MTrPs). Objectives: To operationalize an appropriate definition for dry needling based on the existing literature and to further investigate the optimal frequency, duration, and intensity of dry needling for both spinal and extremity neuromusculoskeletal conditions. Major findings: According to recent findings in the literature, the needle tip touches, taps, or pricks tiny nerve endings or neural tissue (i.e. ‘sensitive loci’ or ‘nociceptors’) when it is inserted into a MTrP. To date, there is a paucity of high-quality evidence to underpin the use of direct dry needling into MTrPs for the purpose of short and long-term pain and disability reduction in patients with musculoskeletal pain syndromes. Furthermore, there is a lack of robust evidence validating the clinical diagnostic criteria for trigger point identification or diagnosis. High-quality studies have also demonstrated that manual examination for the identification and localization of a trigger point is neither valid nor reliable between-examiners. Conclusions: Several studies have demonstrated immediate or short-term improvements in pain and/or disability by targeting trigger points (TrPs) using in-and-out techniques such as ‘pistoning’ or ‘sparrow pecking’; however, to date, no high-quality, long-term trials supporting in-and-out needling techniques at exclusively muscular TrPs exist, and the practice should therefore be questioned. The insertion of dry needles into asymptomatic body areas proximal and/or distal to the primary source of pain is supported by the myofascial pain syndrome literature. Physical therapists should not ignore the findings of the Western or biomedical ‘acupuncture’ literature that have used the very same ‘dry needles’ to treat patients with a variety of neuromusculoskeletal conditions in numerous, large scale randomized controlled trials. Although the optimal frequency, duration, and intensity of dry needling has yet to be determined for many neuromusculoskeletal conditions, the vast majority of dry needling randomized controlled trials have manually stimulated the needles and left them in situ for between 10 and 30 minute durations. Position statements and clinical practice guidelines for dry needling should be based on the best available literature, not a single paradigm or school of thought; therefore, physical therapy associations and state boards of physical therapy should consider broadening the definition of dry needling to encompass the stimulation of neural, muscular, and connective tissues, not just ‘TrPs’. PMID:25143704
NASA Astrophysics Data System (ADS)
Rodgers, J.; Tessier, D.; D'Souza, D.; Leung, E.; Hajdok, G.; Fenster, A.
2016-04-01
High-dose-rate (HDR) interstitial brachytherapy is often included in standard-of-care for gynaecological cancers. Needles are currently inserted through a perineal template without any standard real-time imaging modality to assist needle guidance, causing physicians to rely on pre-operative imaging, clinical examination, and experience. While two-dimensional (2D) ultrasound (US) is sometimes used for real-time guidance, visualization of needle placement and depth is difficult and subject to variability and inaccuracy in 2D images. The close proximity to critical organs, in particular the rectum and bladder, can lead to serious complications. We have developed a three-dimensional (3D) transrectal US system and are investigating its use for intra-operative visualization of needle positions used in HDR gynaecological brachytherapy. As a proof-of-concept, four patients were imaged with post-insertion 3D US and x-ray CT. Using software developed in our laboratory, manual rigid registration of the two modalities was performed based on the perineal template's vaginal cylinder. The needle tip and a second point along the needle path were identified for each needle visible in US. The difference between modalities in the needle trajectory and needle tip position was calculated for each identified needle. For the 60 needles placed, the mean trajectory difference was 3.23 +/- 1.65° across the 53 visible needle paths and the mean difference in needle tip position was 3.89 +/- 1.92 mm across the 48 visible needles tips. Based on the preliminary results, 3D transrectal US shows potential for the development of a 3D US-based needle guidance system for interstitial gynaecological brachytherapy.
Dai, Qing; Sheng, Xiesun; Chen, Feng
2017-04-12
The reinforcing and reducing manipulation at different acupoints is a kind of acupuncture manipulations and has satisfactory clinical therapeutic effects, combined with a proper needling techniques. The reinforcing needling method is used in the upper and the reducing one in the lower, the distal acupoints are combined with the nearby acupoints. The local acupoints or adjcant acupoints of the affected area are regarded as the nearby acupoints, e.g. the acupoints in the upper. The distant acupoints and the acupoints on the hand and foot are named as distal acupoints, e.g. the acupoint in the lower. In the reinforcing manipulation, the needle is inserted shallowly along the running direction of meridian. In the reducing manipulation, the needle is inserted deeply and against the running direction of meridian. The yin - yang couple needling technique is used with the combination of the front- mu and back- shu points. In the first option, the reinforcing and reducing needling method with rotating technique is predominated at the front- mu points, while that with lifting and thrusting technique is at the back- shu points. In the second option, when needling the back- shu points, the needling sensation is transmitted along the transverse segment and far to the chest and abdomen. These two kinds of integration of acupoint combination and needling techniques display a certain clinical significance in improving the therapeutic effects of acupuncture.
Li, Hua; Jiang, Linxiu; Guo, Chaoqun; Zhu, Jianmin; Jiang, Yongrong; Chen, Zhencheng
2017-01-01
The injection and ionization of volatile organic compounds (VOA) by an integrated chip is experimentally analyzed in this paper. The integrated chip consists of a needle-to-cylinder electrode mounting on the Polymethyl Methacrylate (PMMA) substrate. The needle-to-cylinder electrode is designed and fabricated by Lithographie, Galvanoformung and Abformung (LIGA) technology. In this paper, the needle is connected to a negative power supply of −5 kV and used as the cathode; the cylinder electrodes are composed of two arrays of cylinders and serve as the anode. The ionic wind is produced based on corona and glow discharges of needle-to-cylinder electrodes. The experimental setup is designed to observe the properties of the needle-to-cylinder discharge and prove its functions as an ion source and air pump. In summary, the main results are as follows: (1) the ionic wind velocity produced by the chip is about 0.79 m/s at an applied voltage of −3300 V; (2) acetic acid and ammonia water can be injected through the chip, which is proved by pH test paper; and (3) the current measured by a Faraday cup is about 10 pA for acetic acid and ammonia with an applied voltage of −3185 V. The integrated chip is promising for portable analytical instruments, such as ion mobility spectrometry (IMS), field asymmetric ion mobility spectrometry (FAIMS), and mass spectrometry (MS). PMID:28054980
Li, Hua; Jiang, Linxiu; Guo, Chaoqun; Zhu, Jianmin; Jiang, Yongrong; Chen, Zhencheng
2017-01-04
The injection and ionization of volatile organic compounds (VOA) by an integrated chip is experimentally analyzed in this paper. The integrated chip consists of a needle-to-cylinder electrode mounting on the Polymethyl Methacrylate (PMMA) substrate. The needle-to-cylinder electrode is designed and fabricated by Lithographie, Galvanoformung and Abformung (LIGA) technology. In this paper, the needle is connected to a negative power supply of -5 kV and used as the cathode; the cylinder electrodes are composed of two arrays of cylinders and serve as the anode. The ionic wind is produced based on corona and glow discharges of needle-to-cylinder electrodes. The experimental setup is designed to observe the properties of the needle-to-cylinder discharge and prove its functions as an ion source and air pump. In summary, the main results are as follows: (1) the ionic wind velocity produced by the chip is about 0.79 m/s at an applied voltage of -3300 V; (2) acetic acid and ammonia water can be injected through the chip, which is proved by pH test paper; and (3) the current measured by a Faraday cup is about 10 pA for acetic acid and ammonia with an applied voltage of -3185 V. The integrated chip is promising for portable analytical instruments, such as ion mobility spectrometry (IMS), field asymmetric ion mobility spectrometry (FAIMS), and mass spectrometry (MS).
Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S.
2014-01-01
This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N. PMID:25126446
Shang, Weijian; Su, Hao; Li, Gang; Fischer, Gregory S
2013-01-01
This paper presents a surgical master-slave tele-operation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. This system consists of a piezoelectrically actuated slave robot for needle placement with integrated fiber optic force sensor utilizing Fabry-Perot interferometry (FPI) sensing principle. The sensor flexure is optimized and embedded to the slave robot for measuring needle insertion force. A novel, compact opto-mechanical FPI sensor interface is integrated into an MRI robot control system. By leveraging the complementary features of pneumatic and piezoelectric actuation, a pneumatically actuated haptic master robot is also developed to render force associated with needle placement interventions to the clinician. An aluminum load cell is implemented and calibrated to close the impedance control loop of the master robot. A force-position control algorithm is developed to control the hybrid actuated system. Teleoperated needle insertion is demonstrated under live MR imaging, where the slave robot resides in the scanner bore and the user manipulates the master beside the patient outside the bore. Force and position tracking results of the master-slave robot are demonstrated to validate the tracking performance of the integrated system. It has a position tracking error of 0.318mm and sine wave force tracking error of 2.227N.
Simulators for training in ultrasound guided procedures.
Farjad Sultan, Syed; Shorten, George; Iohom, Gabrielle
2013-06-01
The four major categories of skill sets associated with proficiency in ultrasound guided regional anaesthesia are 1) understanding device operations, 2) image optimization, 3) image interpretation and 4) visualization of needle insertion and injection of the local anesthetic solution. Of these, visualization of needle insertion and injection of local anaesthetic solution can be practiced using simulators and phantoms. This survey of existing simulators summarizes advantages and disadvantages of each. Current deficits pertain to the validation process.
Li, Yan; Deng, Jianxin; Zhou, Jun; Li, Xueen
2016-11-01
Corresponding to pre-puncture and post-puncture insertion, elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation are investigated, respectively. Elastic mechanical properties in pre-puncture are investigated through pre-puncture needle insertion experiments using whole porcine brains. A linear polynomial and a second order polynomial are fitted to the average insertion force in pre-puncture. The Young's modulus in pre-puncture is calculated from the slope of the two fittings. Viscoelastic mechanical properties of brain tissues in post-puncture insertion are investigated through indentation stress relaxation tests for six interested regions along a planned trajectory. A linear viscoelastic model with a Prony series approximation is fitted to the average load trace of each region using Boltzmann hereditary integral. Shear relaxation moduli of each region are calculated using the parameters of the Prony series approximation. The results show that, in pre-puncture insertion, needle force almost increases linearly with needle displacement. Both fitting lines can perfectly fit the average insertion force. The Young's moduli calculated from the slope of the two fittings are worthy of trust to model linearly or nonlinearly instantaneous elastic responses of brain tissues, respectively. In post-puncture insertion, both region and time significantly affect the viscoelastic behaviors. Six tested regions can be classified into three categories in stiffness. Shear relaxation moduli decay dramatically in short time scales but equilibrium is never truly achieved. The regional and temporal viscoelastic mechanical properties in post-puncture insertion are valuable for guiding probe insertion into each region on the implanting trajectory.
Microwave Ablation With a Triaxial Antenna: Results in ex vivo Bovine Liver
Brace, Christopher L.; Laeseke, Paul F.; van der Weide, Daniel W.; Lee, Fred T.
2007-01-01
We apply a new triaxial antenna for microwave ablation procedures to an ex vivo bovine liver. The antenna consists of a coaxial monopole inserted through a biopsy needle positioned one quarter-wavelength from the antenna base. The insertion needle creates a triaxial structure, which enhances return loss more than 10 dB, maximizing energy transfer to the tissue while minimizing feed cable heating and invasiveness. Numerical electromagnetic and thermal simulations are used to optimize the antenna design and predict heating patterns. Numerical and ex vivo experimental results show that the lesion size depends strongly on ablation time and average input power, but not on peak power. Pulsing algorithms are also explored. We were able to measure a 3.8-cm lesion using 50 W for 7 min, which we believe to be the largest lesion reported thus far using a 17-gauge insertion needle. PMID:18079981
NASA Astrophysics Data System (ADS)
Ueno, Hideki; Kawano, Taichi; Sakamoto, Naoki; Nakayama, Hiroshi
For a needle-plane electrode system with a barrier, which establishes the electric field across the axis of a groove, creeping discharge characteristics in N2 gas under µs pulse voltage applications have been investigated. The distance h between the barrier surface and the needle tip as well as the distance M between the groove center and the needle tip were changed. In the case of h=0.3mm, when the needle tip is located near the far-side groove edge from the plane electrode (M=0.6mm), the flashover voltage has the maximum value. At that time, a growth of a corona is suppressed near the groove edge. These unique characteristics should associate with a field relaxation.
Imarengiaye, C O; Edomwonyi, N P
2002-07-01
To compare the insertion characteristics and rate of complications between 25-gauge Quincke and 24-gauge Gertie Marx needles. Prospective, randomized study. University of Benin Teaching Hospital; a university-affiliated tertiary centre. Parturients (ASA 1 and 2) scheduled for elective caesarean section. They were randomly assigned to receive spinal anaesthesia with either 25-gauge Quincke needle or 24-gauge Gertie Marx needle. The patients with abnormal spaces, coagulopathy, infection, pre-eclampsia/eclampsia or obesity were excluded. The number of attempts at successful identification of the spinal space, intraoperative complications, incidence of postdural puncture headache (PDPH), non-postdural puncture headache (NPDPH) and backache. Sixty women were studied. The 24-gauge Gertie Marx needle resulted in more successful location of the spinal space on the second attempt (P<0.05). Non-postdural puncture headache was seen in 43% of the study population. PDPH was seen in 10% of the Quincke group and none in the Gertie Marx group. There was no difference in the incidence of backache in both groups. The ease of insertion and low incidence of PDPH with the Gertie Marx needle may encourage trainee anaesthetists to use this needle for caesarean section.
Veenendaal, Andreas K J; Hodgkinson, Julie L; Schwarzer, Lynn; Stabat, David; Zenk, Sebastian F; Blocker, Ariel J
2007-03-01
Type III secretion systems (T3SSs) are essential virulence determinants of many Gram-negative bacterial pathogens. The Shigella T3SS consists of a cytoplasmic bulb, a transmembrane region and a hollow 'needle' protruding from the bacterial surface. Physical contact with host cells initiates secretion and leads to assembly of a pore, formed by IpaB and IpaC, in the host cell membrane, through which proteins that facilitate host cell invasion are translocated. As the needle is implicated in host cell sensing and secretion regulation, its tip should contain components that initiate host cell contact. Through biochemical and immunological studies of wild-type and mutant Shigella T3SS needles, we reveal tip complexes of differing compositions and functional states, which appear to represent the molecular events surrounding host cell sensing and pore formation. Our studies indicate that the interaction between IpaB and IpaD at needle tips is key to host cell sensing, orchestration of IpaC secretion and its subsequent assembly at needle tips. This allows insertion into the host cell membrane of a translocation pore that is continuous with the needle.
Kinoshita, Makoto; Kikkawa, Yayoi S; Sakamoto, Takashi; Kondo, Kenji; Ishihara, Kazuhiko; Konno, Tomohiro; Pawsey, Nick; Yamasoba, Tatsuya
2015-04-01
Polymer-coated electrodes can reduce surgically-induced trauma associated with the insertion of a cochlear implant (CI) electrode array. To evaluate if insertion trauma in CI surgery can be reduced by using electrode arrays coated with 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer. We analyzed characteristics of the Contour Advance electrode arrays coated with MPC polymer. To assess surgical trauma during electrode insertion, polymer-coated or uncoated (n = 5 each) animal electrode arrays were implanted in guinea pig cochleae and operability and electrophysiological and histological changes were assessed. Under light and scanning electron microscopy, polymer-coated electrodes did not appear different from uncoated electrodes, and no change was observed after mechanical stressing of the arrays. Electrode insertion was significantly easier when polymer-coated electrodes were used. Auditory brainstem response (ABR) thresholds did not differ between groups, but p1-n1 amplitudes of the coated group were larger compared with the uncoated group at 32 kHz at 28 days after surgery. The survival of outer hair cells and spiral ganglion cells was significantly greater in the polymer-coated group.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippiadis, D., E-mail: dfilippiadis@yahoo.gr; Gkizas, C., E-mail: chgkizas@gmail.com; Kostantos, C., E-mail: drkarpen@yahoo.gr
PurposeTo report our experience with the use of a battery-powered drill in biopsy and radiofrequency ablation of osteoid osteoma with excess reactive new bone formation. The battery-powered drill enables obtaining the sample while drilling.Materials and MethodsDuring the last 18 months, 14 patients suffering from painful osteoid osteoma with excess reactive new bone formation underwent CT-guided biopsy and radiofrequency ablation. In order to assess and sample the nidus of the osteoid osteoma, a battery-powered drill was used. Biopsy was performed in all cases. Then, coaxially, a radiofrequency electrode was inserted and ablation was performed with osteoid osteoma protocol. Procedure time (i.e., drillingmore » including local anesthesia), amount of scans, technical and clinical success, and the results of biopsy are reported.ResultsAccess to the nidus through the excess reactive new bone formation was feasible in all cases. Median procedure time was 50.5 min. Histologic verification of osteoid osteoma was performed in all cases. Radiofrequency electrode was coaxially inserted within the nidus and ablation was successfully performed in all lesions. Median amount CT scans, performed to control correct positioning of the drill and precise electrode placement within the nidus was 11. There were no complications or material failure reported in our study.ConclusionsThe use of battery-powered drill facilitates access to the osteoid osteoma nidus in cases where excess reactive new bone formation is present. Biopsy needle can be used for channel creation during the access offering at the same time the possibility to extract bone samples.« less
Dietz, Aarno; Gazibegovic, Dzemal; Tervaniemi, Jyrki; Vartiainen, Veli-Matti; Löppönen, Heikki
2016-12-01
The aim of this study was to evaluate the insertion results and placement of the new Advanced Bionics HiFocus Mid-Scala (HFms) electrode array, inserted through the round window membrane, in eight fresh human temporal bones using cone beam computed tomography (CBCT). Pre- and post-insertion CBCT scans were registered to create a 3D reconstruction of the cochlea with the array inserted. With an image fusion technique both the bony edges of the cochlea and the electrode array in situ could accurately be determined, thus enabling to identify the exact position of the electrode array within the scala tympani. Vertical and horizontal scalar location was measured at four points along the cochlea base at an angular insertion depth of 90°, 180° and 270° and at electrode 16, the most basal electrode. Smooth insertion through the round window membrane was possible in all temporal bones. The imaging results showed that there were no dislocations from the scala tympani into the scala vestibule. The HFms electrode was positioned in the middle of the scala along the whole electrode array in three out of the eight bones and in 62 % of the individual locations measured along the base of the cochlea. In only one cochlea a close proximity of the electrode with the basilar membrane was observed, indicating possible contact with the basilar membrane. The results and assessments presented in this study appear to be highly accurate. Although a further validation including histopathology is needed, the image fusion technique described in this study represents currently the most accurate method for intracochlear electrode assessment obtainable with CBCT.
Operational Definitions of Labor and Delivery Nursing Activities.
1987-07-01
assess and record fetal heart rate. (S 2406 r) ZO!3 FETAL ELECTRODE INSERTION (RN): position patient, insert fetal electrode, secure monitor leads...to leg plate to patient’s lower extremity, connect, assess and record fetal heart rate. (S2405r) Z014 FETAL ELECTRODE INSERTION/INTRAUTERINE CATHETER...INSERTION, ASSIST: position patient for procedure, secure monitor Teads to patient’s lower extremity, assess and record fetal heart tones. Set up
Reina, M A; López, A; Villanueva, M C; De Andrés, J A; Martín, S
2005-05-01
To assess the possibility of puncturing nerve roots in the cauda equina with spinal needles with different point designs and to quantify the number of axons affected. We performed in vitro punctures of human nerve roots taken from 3 fresh cadavers. Twenty punctures were performed with 25-gauge Whitacre needles and 40 with 25-gauge Quincke needles; half the Quincke needle punctures were carried out with the point perpendicular to the root and the other half with the point parallel to it. The samples were studied by optical and scanning electron microscopy. The possibility of finding the needle orifece inserted inside the nerve was assessed. On a photographic montage, we counted the number of axons during a hypothetical nerve puncture. Nerve roots used in this study were between 1 and 2.3 mm thick, allowing the needle to penetrate the root in the 52 samples studied. The needle orifice was never fully located inside the nerve in any of the samples. The numbers of myelinized axons affected during nerve punctures 0.2 mm deep were 95, 154, and 81 for Whitacre needles, Quincke needles with the point held perpendicular, or the same needle type held parallel, respectively. During punctures 0.5 mm deep, 472, 602, and 279 were affected for each puncture group, respectively. The differences in all cases were statistically significant. It is possible to achieve intraneural puncture with 25-gauge needles. However, full intraneural placement of the orifice of the needle is unlikely. In case of nerve trauma, the damage could be greater if puncture is carried out with a Quincke needle with the point inserted perpendicular to the nerve root.
NASA Astrophysics Data System (ADS)
Beigi, Parmida; Rohling, Robert
2014-03-01
Despite the wide range and long history of ultrasound guided needle insertions, an unresolved issue in many cases is clear needle visibility. A well-known ad hoc technique to detect the needle is to move the stylet and look for changes in the needle appearance. We present a new method to automatically locate a moving stylet/catheter within a stationary cannula using motion detection. We then use this information to detect the needle trajectory and the tip. The differences between the current frame and the previous frame are detected and localized, to minimize the influence of tissue global motions. A polynomial fit based on the detected needle axis determines the estimated stylet shaft trajectory, and the extent of the differences along the needle axis represents the tip. Over a few periodic movements of the stylet including its full insertion into the cannula to the tip, a combination of polynomial fits determines the needle trajectory and the last detected point represents the needle tip. Experiments are conducted in water bath and bovine muscle tissue for several stylet/catheter materials. Results show that a plastic stylet has the best needle shaft and tip localization accuracy in the water bath with RMSE = 0:16 mm and RMSE = 0:51 mm, respectively. In the bovine tissue, the needle tip was best localized with the plastic catheter with RMSE = 0:33 mm. The stylet tip localization was most accurate with the steel stylet, with RMSE = 2:81 mm and the shaft was best localized with the plastic catheter, with RMSE = 0:32 mm.
Bucher, S; Hornung, J; Bonkowsky, V; Iro, H; Zenk, J
2010-04-01
High frequency thermotherapy (HFTT) is an established palliative therapy for hepatic malignancies. An in vivo and in vitro trial examined the preconditions for the application of HFTT with liquid-cooled wet electrodes for minimally invasive palliation of head and neck tumors. HFTT was applied with needle electrodes, cooled with isotonic saline solution, and a high-frequency generator (Elektrotom HiTT 106, Berchtold, Tuttlingen) to porcine tongue and narcotized, juvenile domestic pigs to the tongue and neck, and monitored in realtime by B-mode ultrasound. The direction of spread of the hyperthermic zone is well observed using ultrasound. Determining the direction of spread is not possible with cooled-tip electrode needles. Severe complications were not observed during the application. RFA with liquid-cooled needle applicators is not safely applicable for the therapy of head and neck tumors.
Measurement of bio-impedance with a smart needle to confirm percutaneous kidney access.
Hernandez, D J; Sinkov, V A; Roberts, W W; Allaf, M E; Patriciu, A; Jarrett, T W; Kavoussi, L R; Stoianovici, D
2001-10-01
The traditional method of percutaneous renal access requires freehand needle placement guided by C-arm fluoroscopy, ultrasonography, or computerized tomography. This approach provides limited objective means for verifying successful access. We developed an impedance based percutaneous Smart Needle system and successfully used it to confirm collecting system access in ex vivo porcine kidneys. The Smart Needle consists of a modified 18 gauge percutaneous access needle with the inner stylet electrically insulated from the outer sheath. Impedance is measured between the exposed stylet tip and sheath using Model 4275 LCR meter (Hewlett-Packard, Sunnyvale, California). An ex vivo porcine kidney was distended by continuous gravity infusion of 100 cm. water saline from a catheter passed through the parenchyma into the collecting system. The Smart Needle was gradually inserted into the kidney to measure depth precisely using a robotic needle placement system, while impedance was measured continuously. The Smart Needle was inserted 4 times in each of 4 kidneys. When the needle penetrated the distended collecting system in 11 of 16 attempts, a characteristic sharp drop in resistivity was noted from 1.9 to 1.1 ohm m. Entry into the collecting system was confirmed by removing the stylet and observing fluid flow from the sheath. This characteristic impedance change was observed only at successful entry into the collecting system. A characteristic sharp drop in impedance signifies successful entry into the collecting system. The Smart Needle system may prove useful for percutaneous kidney access.
Dong, Guo-Chung; Chiu, Li-Chen; Ting, Chien-Kun; Hsu, Jia-Ruei; Huang, Chih-Chung; Chang, Yin; Chen, Gin-Shin
2017-09-01
Ultrasound guidance for epidural block has improved clinical blind-trial problems but the design of present ultrasonic probes poses operating difficulty of ultrasound-guided catheterization, increasing the failure rate. The purpose of this study was to develop a novel ultrasonic probe to avoid needle contact with vertebral bone during epidural catheterization. The probe has a central circular passage for needle insertion. Two focused annular transducers are deployed around the passage for on-axis guidance. A 17-gauge insulated Tuohy needle containing the self-developed fiber-optic-modified stylet was inserted into the back of the anesthetized pig, in the lumbar region under the guidance of our ultrasonic probe. The inner transducer of the probe detected the shallow echo signals of the peak-peak amplitude of 2.8 V over L3 at the depth of 2.4 cm, and the amplitude was decreased to 0.8 V directly over the L3 to L4 interspace. The outer transducer could detect the echoes from the deeper bone at the depth of 4.5 cm, which did not appear for the inner transducer. The operator tilted the probe slightly in left-right and cranial-caudal directions until the echoes at the depth of 4.5 cm disappeared, and the epidural needle was inserted through the central passage of the probe. The needle was advanced and stopped when the epidural space was identified by optical technique. The needle passed without bone contact. Designs of the hollow probe for needle pass and dual transducers with different focal lengths for detection of shallow and deep vertebrae may benefit operation, bone/nonbone identification, and cost.
Simulation and experimental studies in needle-tissue interactions.
Konh, Bardia; Honarvar, Mohammad; Darvish, Kurosh; Hutapea, Parsaoran
2017-08-01
This work aims to introduce a new needle insertion simulation to predict the deflection of a bevel-tip needle inside soft tissue. The development of such a model, which predicts the steering behavior of the needle during needle-tissue interactions, could improve the performance of many percutaneous needle-based procedures such as brachytherapy and thermal ablation, by means of the virtual path planning and training systems of the needle toward the target and thus reducing possible incidents of complications in clinical practices. The Arbitrary-Lagrangian-Eulerian (ALE) formulation in LS-DYNA software was used to model the solid-fluid interactions between the needle and tissue. Since both large deformation and fracture of the continuum need to be considered in this model, applying ALE method for fluid analysis was considered a suitable approach. A 150 mm long needle was used to bend within the tissue due to the interacting forces on its asymmetric bevel tip. Three experimental cases of needle steering in a soft phantom were performed to validate the simulation. An error measurement of less than 10 % was found between the predicted deflection by the simulations and the one observed in experiments, validating our approach with reasonable accuracy. The effect of the needle diameter and its bevel tip angle on the final shape of the needle was investigated using this model. To maneuver around the anatomical obstacles of the human body and reach the target location, thin sharp needles are recommended, as they would create a smaller radius of curvature. The insertion model presented in this work is intended to be used as a base structure for path planning and training purposes for future studies.
Hand gesture guided robot-assisted surgery based on a direct augmented reality interface.
Wen, Rong; Tay, Wei-Liang; Nguyen, Binh P; Chng, Chin-Boon; Chui, Chee-Kong
2014-09-01
Radiofrequency (RF) ablation is a good alternative to hepatic resection for treatment of liver tumors. However, accurate needle insertion requires precise hand-eye coordination and is also affected by the difficulty of RF needle navigation. This paper proposes a cooperative surgical robot system, guided by hand gestures and supported by an augmented reality (AR)-based surgical field, for robot-assisted percutaneous treatment. It establishes a robot-assisted natural AR guidance mechanism that incorporates the advantages of the following three aspects: AR visual guidance information, surgeon's experiences and accuracy of robotic surgery. A projector-based AR environment is directly overlaid on a patient to display preoperative and intraoperative information, while a mobile surgical robot system implements specified RF needle insertion plans. Natural hand gestures are used as an intuitive and robust method to interact with both the AR system and surgical robot. The proposed system was evaluated on a mannequin model. Experimental results demonstrated that hand gesture guidance was able to effectively guide the surgical robot, and the robot-assisted implementation was found to improve the accuracy of needle insertion. This human-robot cooperative mechanism is a promising approach for precise transcutaneous ablation therapy. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Brief reports: regional anesthesia needles can introduce ultrasound gel into tissues.
Belavy, David
2010-09-01
Anesthesiologists may insert needles through ultrasound gel when performing ultrasound-guided regional anesthesia. In this study, it was determined whether needles carry gel into tissues. Ultrasound gel dyed blue was applied to pork rashers. Tuohy and short-bevel needles were passed through the gel and pork. The needles were then assessed for the presence of ultrasound gel. All needles, including those with stylets, carried gel and tissue within the lumen. Ultrasound gel may be injected around (and perhaps in) nerves during regional anesthesia procedures. Studies are needed to determine the implications of this practice.
Multicenter surgical experience evaluation on the Mid-Scala electrode and insertion tools.
Gazibegovic, Dzemal; Bero, Eva M
2017-02-01
The HiFocus Mid-Scala electrode is intended to improve hearing for individuals with severe-to-profound hearing loss by providing extended electrical coverage of the cochlea while minimizing trauma related to insertion. The electrode is appropriate for use with a wide range of surgical techniques, including either a cochleostomy or round window insertion, and the use of either a free-hand or tool-assisted approach. The objective of this survey was to evaluate how the HiFocus Mid-Scala electrode and insertion tools was used across a population of cochlear implant recipients of differing ages, audiologic profiles, and anatomical characteristics. The intent was to understand the type and frequency of surgical techniques applicable with the electrode, and to provide guidelines for clinical practice. Two questionnaires were completed by surgeons at implant centres located in the United States, Europe, and Asia. Before any surgeries were conducted, surgeons completed a questionnaire that assessed their overall cochlear implant surgical practice and preferences. Following each HiFocus Mid-Scala electrode insertion, surgeons completed a questionnaire that summarized their experience during that surgical procedure. Questionnaires were completed by 32 surgeons from 16 centres for a total of 143 surgeries (112 adults, 31 children). Most surgeons (62 %) preferred to insert the electrode via the round window or an extended round window compared with a cochleostomy (16 %), whereas the remaining 22 % indicated that they made an insertion choice based on presenting anatomy. Sixty-nine percent preferred a free-hand approach over using insertion tools. In 32 procedures, surgeons elected to deviate from an intended round window insertion to either an extended round window or cochleostomy approach.
Meng, Xianggang; Gu, Wenlong; Ma, Fen; Du, Yuzheng; Zhao, Qi
2015-03-01
Acupuncture therapy for regaining consciousness activates soreness, numbness, distention, heaviness, radiating and moving, electric shock and ant climbing sensations at the specific acupoints in the stroke patients. Radiating and moving sensations are the summary of needling sensations such as soreness, numbness and twitching presenting during lifting and thrusting manipulation. These sensations are the essential factors of the therapeutic effect of regaining consciousness. Radiating sensation refers to the conduction along meridians and radiation of soreness and numbness. Moving sensation refers to the local muscular twitching at acupoints and the involuntary movement of limbs, joints and the distal. Acupuncture at the specific acupoints achieves radiating and moving sensations for promoting the circulation in meridians, regulating qi and mind and balancing yin and yang in stroke patients. This therapy was introduced in the paper in view of acupoint location, needle insertion and manipulation.
NASA Astrophysics Data System (ADS)
Rodgers, Jessica R.; Surry, Kathleen; D'Souza, David; Leung, Eric; Fenster, Aaron
2017-03-01
Treatment for gynaecological cancers often includes brachytherapy; in particular, in high-dose-rate (HDR) interstitial brachytherapy, hollow needles are inserted into the tumour and surrounding area through a template in order to deliver the radiation dose. Currently, there is no standard modality for visualizing needles intra-operatively, despite the need for precise needle placement in order to deliver the optimal dose and avoid nearby organs, including the bladder and rectum. While three-dimensional (3D) transrectal ultrasound (TRUS) imaging has been proposed for 3D intra-operative needle guidance, anterior needles tend to be obscured by shadowing created by the template's vaginal cylinder. We have developed a 360-degree 3D transvaginal ultrasound (TVUS) system that uses a conventional two-dimensional side-fire TRUS probe rotated inside a hollow vaginal cylinder made from a sonolucent plastic (TPX). The system was validated using grid and sphere phantoms in order to test the geometric accuracy of the distance and volumetric measurements in the reconstructed image. To test the potential for visualizing needles, an agar phantom mimicking the geometry of the female pelvis was used. Needles were inserted into the phantom and then imaged using the 3D TVUS system. The needle trajectories and tip positions in the 3D TVUS scan were compared to their expected values and the needle tracks visualized in magnetic resonance images. Based on this initial study, 360-degree 3D TVUS imaging through a sonolucent vaginal cylinder is a feasible technique for intra-operatively visualizing needles during HDR interstitial gynaecological brachytherapy.
Intra-Operative Dosimetry in Prostate Brachytherapy
2008-04-01
labels in the ith la - beled seed-only image. The seed region with label k in ith image is covered by ||Ωik|| seeds where ||Ω i k|| is the cardinal of...using acetol. The phantom consists of twelve slabs with thickness of 5 mm and each slab has at least a hundred holes with 5 mm spacing where seeds can be...fiducial & the needle insertion template can be pre-calibrated using a rigid mount.(a) A CAD model of the FTRAC fiducial mounted on the seed-insertion needle
Use of electromyography for the diagnosis of equine hyperkalemic periodic paresis.
Robinson, J A; Naylor, J M; Crichlow, E C
1990-01-01
The use of electromyography (EMG) as a diagnostic aid for equine hyperkalemic periodic paresis (EHPP) was investigated in seven affected and seven control horses. Affected horses were confirmed positive for EHPP either by elevated serum potassium concentration with clinical signs of myotonia, or by inducing hyperkalemia and clinical signs using oral potassium chloride challenge. All horses were asymptomatic at the time EMG was performed, using bipolar fine wire needle electrodes. The myopotentials were recorded on magnetic tape and displayed on paper charts for analysis. Insertional and resting activity were recorded from the right supraspinatus, triceps, extensor carpi radialis and gluteal muscles in standing horses. Myotonic discharges were seen in six of seven affected horses but not in any of the controls. All seven affected horses and two control horses had prolonged insertional activity. Five out of seven affected horses and one control horse displayed spontaneous motor unit discharges unrelated to recording electrode movement. Myoelectrical potentials containing closely timed muscle potentials, i.e. doublets, were found in all affected horses, with four of seven affected horses also showing triplets. These potentials were not observed in any of the controls. No obvious difference in activity was observed among the four muscle sites tested. It is concluded that EMG is a safe and useful tool for diagnosing EHPP in horses not currently displaying clinical signs. Myotonic discharges and doublets appear to be the most diagnostically significant electromyographic abnormalities in EHPP affected horses. PMID:2249182
Svrakic, Maja; Roland, J Thomas; McMenomey, Sean O; Svirsky, Mario A
2016-12-01
To describe our initial operative experience and hearing preservation results with the Advanced Bionics (AB) Mid Scala Electrode (MSE). Retrospective review. Tertiary referral center. Sixty-three MSE implants in pediatric and adult patients were compared with age- and sex-matched 1j electrode implants from the same manufacturer. All patients were severe to profoundly deaf. Cochlear implantation with either the AB 1j electrode or the AB MSE. The MSE and 1j electrodes were compared in their angular depth of insertion and pre to postoperative change in hearing thresholds. Hearing preservation was analyzed as a function of angular depth of insertion. Secondary outcome measures included operative time, incidence of abnormal intraoperative impedance and telemetry values, and incidence of postsurgical complications. Depth of insertion was similar for both electrodes, but was more consistent for the MSE array and more variable for the 1j array. Patients with MSE electrodes had better hearing preservation. Thresholds shifts at four audiometric frequencies ranging from 250 to 2000 Hz were 10, 7, 2, and 6 dB smaller for the MSE electrode than for the 1j (p < 0.05). Hearing preservation at low frequencies was worse with deeper insertion, regardless of array. Secondary outcome measures were similar for both electrodes. The MSE electrode resulted in more consistent insertion depth and somewhat better hearing preservation than the 1j electrode. Differences in other surgical outcome measures were small or unlikely to have a meaningful effect.
Teleoperation of steerable flexible needles by combining kinesthetic and vibratory feedback.
Pacchierotti, Claudio; Abayazid, Momen; Misra, Sarthak; Prattichizzo, Domenico
2014-01-01
Needle insertion in soft-tissue is a minimally invasive surgical procedure that demands high accuracy. In this respect, robotic systems with autonomous control algorithms have been exploited as the main tool to achieve high accuracy and reliability. However, for reasons of safety and responsibility, autonomous robotic control is often not desirable. Therefore, it is necessary to focus also on techniques enabling clinicians to directly control the motion of the surgical tools. In this work, we address that challenge and present a novel teleoperated robotic system able to steer flexible needles. The proposed system tracks the position of the needle using an ultrasound imaging system and computes needle's ideal position and orientation to reach a given target. The master haptic interface then provides the clinician with mixed kinesthetic-vibratory navigation cues to guide the needle toward the computed ideal position and orientation. Twenty participants carried out an experiment of teleoperated needle insertion into a soft-tissue phantom, considering four different experimental conditions. Participants were provided with either mixed kinesthetic-vibratory feedback or mixed kinesthetic-visual feedback. Moreover, we considered two different ways of computing ideal position and orientation of the needle: with or without set-points. Vibratory feedback was found more effective than visual feedback in conveying navigation cues, with a mean targeting error of 0.72 mm when using set-points, and of 1.10 mm without set-points.
Lee, Chang-Hyung; Derby, Richard; Choi, Hyun-Seok; Lee, Sang-Heon; Kim, Se Hoon; Kang, Yoon Kyu
2010-01-01
One technique in radiofrequency neurotomies uses 2 electrodes that are simultaneously placed to lie parallel to one another. Comparing lesions on cadaveric interspinous ligament tissue and measuring the temperature change in egg white allows us to accurately measure quantitatively the area of the lesion. Fresh cadaver spinal tissue and egg white tissue were used. A series of samples were prepared with the electrodes placed 1 to 7 mm apart. Using radiofrequency, the needle electrodes were heated in sequential or simultaneous order and the distance of the escaped lesion area and temperature were measured. Samples of cadaver interspinous ligament showed sequential heating of the needles limits the placement of the needle electrodes up to 2 mm apart from each other and up to 4 mm apart when heated simultaneously. The temperature at the escaped lesion area decreased according to the distance for egg white. There was a significant difference in temperature at the escaped lesion area up to 6 mm apart and the temperature was above 50 degrees celsius up to 5 mm in simultaneous lesion and 3 mm in the sequential lesion. The limitations of this study include cadaveric experimentation and use of intraspinous ligament rather than medial branch of the dorsal ramus which is difficult to identify. Heating the 2 electrodes simultaneously appears to coagulate a wider area and potentially produce better results in less time.
Modiolus-Hugging Intracochlear Electrode Array with Shape Memory Alloy
Min, Kyou Sik; Lim, Yoon Seob; Park, Se-Ik; Kim, Sung June
2013-01-01
In the cochlear implant system, the distance between spiral ganglia and the electrodes within the volume of the scala tympani cavity significantly affects the efficiency of the electrical stimulation in terms of the threshold current level and spatial selectivity. Because the spiral ganglia are situated inside the modiolus, the central axis of the cochlea, it is desirable that the electrode array hugs the modiolus to minimize the distance between the electrodes and the ganglia. In the present study, we propose a shape-memory-alloy-(SMA-) embedded intracochlear electrode which gives a straight electrode a curved modiolus-hugging shape using the restoration force of the SMA as triggered by resistive heating after insertion into the cochlea. An eight-channel ball-type electrode array is fabricated with an embedded titanium-nickel SMA backbone wire. It is demonstrated that the electrode array changes its shape in a transparent plastic human cochlear model. To verify the safe insertion of the electrode array into the human cochlea, the contact pressures during insertion at the electrode tip and the contact pressures over the electrode length after insertion were calculated using a 3D finite element analysis. The results indicate that the SMA-embedded electrode is functionally and mechanically feasible for clinical applications. PMID:23762181
Storck, Claudio; Gehrer, Raphael; Hofer, Michael; Neumayer, Bernhard; Stollberger, Rudolf; Schumacher, Ralf; Gugatschka, Markus; Friedrich, Gerhard; Wolfensberger, Markus
2012-01-01
Laryngeal electromyography (LEMG) is an important tool for the assessment of laryngeal nerve and muscle functioning. The purpose of the study was to determine electrode insertion angle and insertion depth for the various laryngeal muscles. Twenty-three cadaver larynges were examined with magnetic resonance tomography (MRT) and Materialize Interactive Medical Image Control System (Leuven, Belgium) 3-dimensional (3D) imaging software. Geometrical analysis was used to calculate the electrode insertion angles. All laryngeal muscles could be identified and 3D visualized on MRT scans. Although the insertion angles were the same in male and female larynges, the insertion depth was significantly larger in male than in female larynges (P<0.05). Of particular clinical importance is the fact that the electrode has to be directed lateral and upward for the thyroarytenoid muscle but lateral and downward for the lateral cricoarytenoid muscle (insertion point=midline lower border of the thyroid). This is the first study that analyzes electrode insertion angles and insertion depths for each laryngeal muscle using 3D imaging. We hope that the information gained from this study will help clinicians performing LEMG to localize the individual laryngeal muscles. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
... to the blood vessel as the needle and catheter are inserted Blood clot traveling to the lungs, causing an embolism Excessive bleeding or a blood clot where the catheter is inserted, which can reduce blood flow to ...
Examination of interior surfaces using glow-discharge illumination
Lord, David E.; Petrini, Richard R.; Carter, Gary W.
1978-01-01
Endoscopic examination of the interior of a hollow structure through a light pipe that is inserted into the structure, the interior being illuminated by means of a glow discharge that is established with a high voltage applied between the structure wall as one electrode and a second electrode that is inserted into the structure, or establishing the glow with two electrodes inserted into the structure.
NASA Astrophysics Data System (ADS)
Elfa, Rizan Rizon; Ahmad, Mohd Khairul; Soon, Chin Fhong; Sahdan, Mohd Zainizan; Lias, Jais; Mamat, Mohamad Hafiz; Rusop, Mohamad; Nayan, Nafarizal
2017-09-01
The atmospheric pressure plasma needle jet driven by double sinusoidal waveform of neon transformer is reported in this paper. The commercial neon transformer produces about 5 kV of peak sinusoidal voltages and 35 kHz of frequency. Argon gas has been used as discharge gas for this system since the discharge was easily developed rather than using helium gas. In addition, argon gas is three times cheaper than helium gas. The electrical property of the argon discharge has been analyzed in details by measuring its voltage, current and power during the discharge process. Interestingly, it has been found that the total power on the inner needle electrode was slightly lower than that of outer electrode. This may be due to the polarization charges that occurred at inner needle electrode. Then, further investigation to understand the discharge properties was carried out using optical emission spectroscopy (OES) analysis. During OES measurements, two positions of plasma discharge are measured by aligning the quartz optical lens and spectrometer fiber. The OH emission intensity was found higher than that of N2 at the plasma orifice. However, OH emission intensity was lower at 1.5 cm distance from orifice which may be due to penning ionization effect. These results and understanding are essential for surface modification and biomedical applications of atmospheric pressure plasma needle jet.
Beran, Tanya N; McLaughlin, Kevin; Al Ansari, Ahmed; Kassam, Aliya
2013-10-01
Although the development of collaborative relationships is considered a requirement for medical education, the functioning of these relationships may be impaired by a well-documented social-psychological phenomenon known as group conformity. The authors hypothesized that students would insert a needle into an incorrect location relative to the patella when performing a knee arthrocentesis if they believed that their peers had also inserted a needle in the same incorrect location. This was a randomized controlled study conducted in 2011 with 60 medical students (24 male; 40.0 %) who were randomly assigned to either using a knee model that had a skin with holes left by peers inserting needles in the wrong location, or a knee with no marks in the skin. Each student's aspiration site was measured with a fibreglass ruler to determine whether it was correctly located within the superior third, 1 cm medial to the patella. The researchers determined that students who used the marked skin were more likely to insert the needle in the incorrect location compared to those who used the clean skin (n = 31, 86.11 vs. n = 14, 58.33 %), Fisher's exact test (1) = 5.93, p < 0.05, Cramer's ϕ = 0.31. This study demonstrates incorrect performance of the knee arthrocentesis procedure in simulation when students use a damaged model, which may be due to conformity. It suggests that further research on the impact of conformity in medical education is warranted.
Studies of Low-Current Back-Discharge in Point-Plane Geometry with Dielectric Layer
NASA Astrophysics Data System (ADS)
Jaworek, Anatol; Rajch, Eryk; Krupa, Andrzej; Czech, Tadeusz; Lackowski, Marcin
2006-01-01
The paper presents results of spectroscopic investigations of back-discharges generated in the point-plane electrode geometry in ambient air at atmospheric pressure, with the plane electrode covered with a dielectric layer. Fly ash from an electrostatic precipitator of a coal-fired power plant was used as the dielectric layer in these investigations. The discharges for positive and negative polarities of the needle electrode were studied by measuring optical emission spectra at two regions of the discharge: near the needle electrode and dielectric layer surface. The visual forms of the discharge were recorded and correlated with the current-voltage characteristics and optical emission spectra. The back-arc discharge was of particular interest in these studies due to its detrimental effects it causes in electrostatic precipitators.
Silicon/SU8 multi-electrode micro-needle for in vivo neurochemical monitoring.
Vasylieva, Natalia; Marinesco, Stéphane; Barbier, Daniel; Sabac, Andrei
2015-10-15
Simultaneous monitoring of glucose and lactate is an important challenge for understanding brain energetics in physiological or pathological states. We demonstrate here a versatile method based on a minimally invasive single implantation in the rat brain. A silicon/SU8-polymer multi-sensing needle-shaped biosensor, was fabricated and tested. The multi-electrode array design comprises three platinum planar microelectrodes with a surface area of 40 × 200 µm(2) and a spacing of 200 µm, which were micromachined on a single 3mm long micro-needle having a 100 × 50 µm(2) cross-section for reduced tissue damage during implantation. Platinum micro-electrodes were aligned at the bottom of micro-wells obtained by photolithography on a SU8 photoresist layer. After clean room processing, each micro-electrode was functionalized inside the micro-wells by means of a micro-dispensing device, either with glucose oxidase or with lactate oxidase, which were cross-linked on the platinum electrodes. The third electrode covered with Bovine Serum Albumin (BSA) was used for the control of non-specific currents. The thick SU8 photoresist layer has revealed excellent electrical insulation of the micro-electrodes and between interconnection lines, and ensured a precise localization and packaging of the sensing enzymes on platinum micro-electrodes. During in vitro calibration with concentrations of analytes in the mM range, the micro-wells patterned in the SU8 photoresist proved to be highly effective in eliminating cross-talk signals, caused by H2O2 diffusion from closely spaced micro-electrodes. Moreover, our biosensor was successfully assayed in the rat cortex for simultaneous monitoring of both glucose and lactate during insulin and glucose administration. Copyright © 2015 Elsevier B.V. All rights reserved.
Study on design and cutting parameters of rotating needles for core biopsy.
Giovannini, Marco; Ren, Huaqing; Cao, Jian; Ehmann, Kornel
2018-06-15
Core needle biopsies are widely adopted medical procedures that consist in the removal of biological tissue to better identify a lesion or an abnormality observed through a physical exam or a radiology scan. These procedures can provide significantly more information than most medical tests and they are usually performed on bone lesions, breast masses, lymph nodes and the prostate. The quality of the samples mainly depends on the forces exerted by the needle during the cutting process. The reduction of these forces is critical to extract high-quality tissue samples. The most critical factors that affect the cutting forces are the geometry of the needle tip and its motion while it is penetrating the tissue. However, optimal needle tip configurations and cutting parameters are not well established for rotating insertions. In this paper, the geometry and cutting forces of hollow needles are investigated. The fundamental goal of this study is to provide a series of guidelines for clinicians and surgeons to properly select the optimal tip geometries and speeds. Analytical models related to the cutting angles of several needle tip designs are presented and compared. Several needle tip geometries were manufactured from a 14-gauge cannula, commonly adopted during breast biopsies. The needles were then tested at different speeds and on different phantom tissues. According to these experimental measurements recommendations were formulated for rotating needle insertions. The findings of this study can be applied and extended to several biopsy procedures in which a cannula is used to extract tissue samples. Copyright © 2018 Elsevier Ltd. All rights reserved.
Robotic Needle Guide for Prostate Brachytherapy: Clinical Testing of Feasibility and Performance
Song, Danny Y; Burdette, Everette C; Fiene, Jonathan; Armour, Elwood; Kronreif, Gernot; Deguet, Anton; Zhang, Zhe; Iordachita, Iulian; Fichtinger, Gabor; Kazanzides, Peter
2010-01-01
Purpose Optimization of prostate brachytherapy is constrained by tissue deflection of needles and fixed spacing of template holes. We developed and clinically tested a robotic guide towards the goal of allowing greater freedom of needle placement. Methods and Materials The robot consists of a small tubular needle guide attached to a robotically controlled arm. The apparatus is mounted and calibrated to operate in the same coordinate frame as a standard template. Translation in x and y directions over the perineum ±40mm are possible. Needle insertion is performed manually. Results Five patients were treated in an IRB-approved study. Confirmatory measurements of robotic movements for initial 3 patients using infrared tracking showed mean error of 0.489 mm (SD 0.328 mm). Fine adjustments in needle positioning were possible when tissue deflection was encountered; adjustments were performed in 54/179 (30.2%) needles placed, with 36/179 (20.1%) adjustments of > 2mm. Twenty-seven insertions were intentionally altered to positions between the standard template grid to improve the dosimetric plan or avoid structures such as pubic bone and blood vessels. Conclusions Robotic needle positioning provided a means of compensating for needle deflections as well as the ability to intentionally place needles into areas between the standard template holes. To our knowledge, these results represent the first clinical testing of such a system. Future work will be incorporation of direct control of the robot by the physician, adding software algorithms to help avoid robot collisions with the ultrasound, and testing the angulation capability in the clinical setting. PMID:20729152
Mantokoudis, Georgios; Huth, Markus E; Weisstanner, Christian; Friedrich, Hergen M; Nauer, Claude; Candreia, Claudia; Caversaccio, Marco D; Senn, Pascal
2016-01-01
The preservation of residual hearing in cochlear implantation opens the door for optimal functional results. This atraumatic surgical technique requires training; however, the traditional human cadaveric temporal bones have become less available or unattainable in some institutions. This study investigates the suitability of an alternative model, using cadaveric lamb temporal bone, for surgical training of atraumatic round window electrode insertion. A total of 14 lamb temporal bones were dissected for cochlear implantation by four surgeons. After mastoidectomy, visualization, and drilling of the round window niche, an atraumatic round window insertion of a Medel Flex24 electrode was performed. Electrode insertion depth and position were verified by computed tomography scans. All cochleas were successfully implanted using the atraumatic round window approach; however, surgical access through the mastoid was substantially different when compared human anatomy. The mean number of intracochlear electrode contacts was 6.5 (range, 4-11) and the mean insertion depth 10.4 mm (range, 4-20 mm), which corresponds to a mean angular perimodiolar insertion depth of 229 degrees (range 67-540°). Full insertion of the electrode was not possible because of the smaller size of the lamb cochlea in comparison to that of the human. The lamb temporal bone model is well suited as a training model for atraumatic cochlear implantation at the level of the round window. The minimally pneumatized mastoid as well as the smaller cochlea can help prepare a surgeon for difficult cochlear implantations. Because of substantial differences to human anatomy, it is not an adequate training model for other surgical techniques such as mastoidectomy and posterior tympanotomy as well as full electrode insertion.
[Pneumothorax following dry needling treatment: legal and ethical aspects].
Ronconi, Gianpaolo; De Giorgio, Fabio; Ricci, Eleonora; Maggi, Loredana; Spagnolo, Antonio G; Ferrara, Paola Emilia
2016-01-01
Trigger point "dry needling" is a technique used to treat myofascial pain. It involves using filiform needles which are inserted into muscles to give local pain relief. Few cases of serious adverse events following this treatment have been reported in the literature. In this paper we describe the case of a professional swimmer who developed pneumothorax after dry needling treatment and discuss the medicolegal and ethical aspects related to competencies and responsibilities of medical doctors and physiotherapists performing the procedure.
Yang, Sunhye; Kim, Ick-Jun; Choi, In-Sik; Bae, Mi-Kyeong; Kim, Hyun-Soo
2013-05-01
The structure of needle coke was changed to graphite oxide structure after oxidation treatment with 70 wt.% of nitric acid and sodium chlorate (NaClO3), and the inter-layer distance of the oxidized needle coke was expanded to 6.9 angstroms. The first charge profile of the oxidized needle coke-cell with 1.2 M TEMABF4/acetonitrile solution displayed that the intercalation of electrolyte ions into the inter-layer occurred at 1.0 V, which value is lower than 1.3 V of the oxidized needle coke-cell with 1.2 M TEABF4/acetonitrile solution. After first charge/discharge, the cell using TEMABF4 electrolyte exhibited smaller electrode resistance of 0.05 omega, and larger specific volume capacitance of 25.5 F/ml at the two-electrode system in the potential range 0-2.5 V than those of the cell using TEABF4 electrolyte. Compared to the TEABF4 electrolyte, better electrochemical performance of the TEMABF4 electrolyte in the oxidized needle coke may be caused by the smaller cation (TEMA+) size and better ion mobility in the nanopores between inter-layers.
Intraoperative seizure and cerebrospinal fluid leak during adult cochlear implant surgery.
Musser, Alexander B; Golub, Justin S; Samy, Ravi N; Phero, James C
2016-01-01
To report a rare case of cerebrospinal fluid gusher and subsequent seizure immediately after cochlear implant electrode insertion. After the cochlear implant electrode was inserted, brisk flow of 10 mL of cerebrospinal fluid was seen. The electrode was promptly inserted and the leak was additionally sealed with fascia. Seconds later, the patient had a tonic-clonic seizure lasting 30 seconds. Two additional episodes occurred during the case. Her postoperative course was uneventful with no subsequent seizures. The device has been successfully activated. Intervention & Technique: Postoperative imaging showed correct intracochlear placement of the electrode as well as an incidental enlarged vestibular aqueduct. Neurology consultation including electroencephalogram was unremarkable. To our knowledge, this is the first report of a seizure temporally associated with cochlear implant electrode insertion. The significance and possible casual relationship between these two events is discussed.
In situ emulsification using a non-uniform alternating electric field
NASA Astrophysics Data System (ADS)
Choi, Suhwan; Saveliev, Alexei V.
2014-08-01
We report an electric field based method for in situ emulsification of water droplets immersed in a continuous oil phase. High density water-in-oil emulsions are generated using non-uniform ac electric fields applied between needle and plate electrodes. An initial water droplet is entrained in the area of high electric field near the needle electrode where it is dispersed under the influence of high electric stresses. Breakup mechanisms responsible for a gradual dispersion of the water droplets are investigated. Identified mechanisms involve drop elongation to a cylindrical shape followed by a capillary breakup, ac electrospraying from individual water droplets, and formation and breakup of bead-like structures comprised by the water droplets interconnected by thin water bridges. Water droplets with diameters close to 1 μm and a narrow size distribution are formed at long processing times. The generated emulsion has a well-defined boundary and is confined near the needle electrode in a shape resembling a pendant drop.
... person getting treatment swallows a pill, capsule, or liquid form of chemo medication. By injection. Using a needle or syringe, the drugs are injected into a muscle or under the skin. Intrathecally. A needle is inserted into the fluid-filled space surrounding the spinal cord and the chemo drugs ...
Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor
NASA Astrophysics Data System (ADS)
Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan
2013-03-01
The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.
Does insertion of intramuscular electromyographic electrodes alter motor behavior during locomotion?
Armour Smith, Jo; Kulig, Kornelia
2015-06-01
Intramuscular electromyography (EMG) is commonly used to quantify activity in the trunk musculature. However, it is unclear if the discomfort or fear of pain associated with insertion of intramuscular EMG electrodes results in altered motor behavior. This study examined whether intramuscular EMG affects locomotor speed and trunk motion, and examined the anticipated and actual pain associated with electrode insertion in healthy individuals and individuals with a history of low back pain (LBP). Before and after insertion of intramuscular electrodes into the lumbar and thoracic paraspinals, participants performed multiple repetitions of a walking turn at self-selected and controlled average speed. Low levels of anticipated and actual pain were reported in both groups. Self-selected locomotor speed was significantly increased following insertion of the electrodes. At the controlled speed, the amplitude of sagittal plane lumbo-pelvic motion decreased significantly post-insertion, but the extent of this change was the same in both groups. Lumbo-pelvic motion in the frontal and axial planes and thoraco-lumbar motion in all planes were not affected by the insertions. This study demonstrates that intramuscular EMG is an appropriate methodology to selectively quantify the activation patterns of the individual muscles in the paraspinal group, both in healthy individuals and individuals with a history of LBP. Copyright © 2015 Elsevier Ltd. All rights reserved.
In vitro modifications of the scala tympani environment and the cochlear implant array surface.
Kontorinis, Georgios; Scheper, Verena; Wissel, Kirsten; Stöver, Timo; Lenarz, Thomas; Paasche, Gerrit
2012-09-01
To investigate the influence of alterations of the scala tympani environment and modifications of the surface of cochlear implant electrode arrays on insertion forces in vitro. Research experimental study. Fibroblasts producing neurotrophic factors were cultivated on the surface of Nucleus 24 Contour Advance electrodes. Forces were recorded by an Instron 5542 Force Measurement System as three modified arrays were inserted into an artificial scala tympani model filled with phosphate-buffered saline (PBS). The recorded forces were compared to control groups including three unmodified electrodes inserted into a model filled with PBS (unmodified environment) or Healon (current practice). Fluorescence microscopy was used before and after the insertions to identify any remaining fibroblasts. Additionally, three Contour Advance electrodes were inserted into an artificial model, filled with alginate/barium chloride solution at different concentrations, while insertion forces were recorded. Modification of the scala tympani environment with 50% to 75% alginate gel resulted in a significant decrease in the insertion forces. The fibroblast-coated arrays also led to decreased forces comparable to those recorded with Healon. Fluorescence microscopy revealed fully cell-covered arrays before and partially covered arrays after the insertion; the fibroblasts on the arrays' modiolar surface remained intact. Modifications of the scala tympani's environment with 50% to 75% alginate/barium chloride and of the cochlear implant electrode surface with neurotrophic factor-producing fibroblasts drastically reduce the insertion forces. As both modifications may serve future intracochlear therapies, it is expected that these might additionally reduce possible insertion trauma. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
The scala vestibuli for cochlear implantation. An anatomic study.
Gulya, A J; Steenerson, R L
1996-02-01
Traditionally, cochlear implantation has used the scala tympani (ST) for electrode insertion. When faced with ST ossification, the surgeon may elect to drill out the cochlea to accomplish partial electrode insertion. Theoretically, another option in this situation is to insert the electrode into the scala vestibuli (SV). To determine whether or not the dimensions of the SV are sufficient to accommodate an electrode array so as to assess the feasibility of SV cochlear implantation. The study of 20 normal human temporal bones, comparing the maximum diameter and surface area of the ST with those of the combined SV and scala media. The dimensions of the SV and scala media were comparable to those of the ST and appeared sufficient to accommodate a cochlear implant electrode array. It appears that the combination of SV and scala media is a viable alternative route for electrode insertion, at least on the basis of anatomic dimensions, in those cases in which the ST is obliterated.
Beigi, Parmida; Rohling, Robert; Salcudean, Septimiu E; Ng, Gary C
2017-11-01
This paper presents a new micro-motion-based approach to track a needle in ultrasound images captured by a handheld transducer. We propose a novel learning-based framework to track a handheld needle by detecting microscale variations of motion dynamics over time. The current state of the art on using motion analysis for needle detection uses absolute motion and hence work well only when the transducer is static. We have introduced and evaluated novel spatiotemporal and spectral features, obtained from the phase image, in a self-supervised tracking framework to improve the detection accuracy in the subsequent frames using incremental training. Our proposed tracking method involves volumetric feature selection and differential flow analysis to incorporate the neighboring pixels and mitigate the effects of the subtle tremor motion of a handheld transducer. To evaluate the detection accuracy, the method is tested on porcine tissue in-vivo, during the needle insertion in the biceps femoris muscle. Experimental results show the mean, standard deviation and root-mean-square errors of [Formula: see text], [Formula: see text] and [Formula: see text] in the insertion angle, and 0.82, 1.21, 1.47 mm, in the needle tip, respectively. Compared to the appearance-based detection approaches, the proposed method is especially suitable for needles with ultrasonic characteristics that are imperceptible in the static image and to the naked eye.
Dura-arachnoid lesions produced by 22 gauge Quincke spinal needles during a lumbar puncture
Reina, M; Lopez, A; Badorrey, V; De Andres, J A; Martin, S
2004-01-01
Aims: The dural and arachnoid hole caused by lumbar puncture needles is a determining factor in triggering headaches. The aim of this study is to assess the dimensions and morphological features of the dura mater and arachnoids when they are punctured by a 22 gauge Quincke needle having its bevel either in the parallel or in the transverse position. Methods: Fifty punctures were made with 22 gauge Quincke needles in the dural sac of four fresh cadavers using an "in vitro" model especially designed for this purpose. The punctures were performed by needles with bevels parallel or perpendicular to the spinal axis and studied under scanning electron microscopy. Results: Thirty five of the 50 punctures done by Quincke needles (19 in the external surface and 16 in the internal) were used for evaluation. When the needle was inserted with its bevel parallel to the axis of the dural sac (17 of 35), the size of the dura-arachnoid lesion was 0.032 mm2 in the epidural surface and 0.037 mm2 in the subarachnoid surface of the dural sac. When the needle's bevel was perpendicular to the axis (18 of 35) the measurement of the lesion size was 0.042 mm2 for the external surface and 0.033 mm2 for the internal. There were no statistical significant differences between these results. Conclusions: It is believed that the reported lower frequency of postdural puncture headache when the needle is inserted parallel to the cord axis should be explained by some other factors besides the size of the dura-arachnoid injury. PMID:15146008
Dura-arachnoid lesions produced by 22 gauge Quincke spinal needles during a lumbar puncture.
Reina, M A; López, A; Badorrey, V; De Andrés, J A; Martín, S
2004-06-01
The dural and arachnoid hole caused by lumbar puncture needles is a determining factor in triggering headaches. The aim of this study is to assess the dimensions and morphological features of the dura mater and arachnoids when they are punctured by a 22 gauge Quincke needle having its bevel either in the parallel or in the transverse position. Fifty punctures were made with 22 gauge Quincke needles in the dural sac of four fresh cadavers using an "in vitro" model especially designed for this purpose. The punctures were performed by needles with bevels parallel or perpendicular to the spinal axis and studied under scanning electron microscopy. Thirty five of the 50 punctures done by Quincke needles (19 in the external surface and 16 in the internal) were used for evaluation. When the needle was inserted with its bevel parallel to the axis of the dural sac (17 of 35), the size of the dura-arachnoid lesion was 0.032 mm(2) in the epidural surface and 0.037 mm(2) in the subarachnoid surface of the dural sac. When the needle's bevel was perpendicular to the axis (18 of 35) the measurement of the lesion size was 0.042 mm(2) for the external surface and 0.033 mm(2) for the internal. There were no statistical significant differences between these results. It is believed that the reported lower frequency of postdural puncture headache when the needle is inserted parallel to the cord axis should be explained by some other factors besides the size of the dura-arachnoid injury.
Wong, Simon W; Niazi, Ahtsham U; Chin, Ki J; Chan, Vincent W
2013-01-01
The SonixGPS® is an electromagnetic needle tracking system for ultrasound-guided needle intervention. Both current and predicted needle tip position are displayed on the ultrasound screen in real-time, facilitating needle-beam alignment and guidance to the target. This case report illustrates the use of the SonixGPS system for successful performance of real-time ultrasound-guided spinal anesthesia in a patient with difficult spinal anatomy. A 67-yr-old male was admitted to our hospital to undergo revision of total right hip arthroplasty. His four previous arthroplasties for hip revision were performed under general anesthesia because he had undergone L3-L5 instrumentation for spinal stenosis. The L4-L5 interspace was viewed with the patient in the left lateral decubitus position. A 19G 80-mm proprietary needle (Ultrasonix Medical Corp, Richmond, BC, Canada) was inserted and directed through the paraspinal muscles to the ligamentum flavum in plane to the ultrasound beam. A 120-mm 25G Whitacre spinal needle was then inserted through the introducer needle in a conventional fashion. Successful dural puncture was achieved on the second attempt, as indicated by a flow of clear cerebrospinal fluid. The patient tolerated the procedure well, and the spinal anesthetic was adequate for the duration of the surgery. The SonixGPS is a novel technology that can reduce the technical difficulty of real-time ultrasound-guided neuraxial blockade. It may also have applications in other advanced ultrasound-guided regional anesthesia techniques where needle-beam alignment is critical.
Martin, Charles E; Fontaine, Lucien; Gardner, William H
2014-01-21
An electrochemical cell includes components that are welded from an external source after the components are assembled in a cell canister. The cell canister houses electrode tabs and a core insert. An end cap insert is disposed opposite the core insert. An external weld source, such as a laser beam, is applied to the end cap insert, such that the end cap insert, the electrode tabs, and the core insert are electrically coupled by a weld which extends from the end cap insert to the core insert.
Accuracy of electromyography needle placement in cadavers: non-guided vs. ultrasound guided.
Boon, Andrea J; Oney-Marlow, Theresa M; Murthy, Naveen S; Harper, Charles M; McNamara, Terrence R; Smith, Jay
2011-07-01
Accuracy of needle electromyography is typically ensured by use of anatomical landmarks and auditory feedback related to voluntary activation of the targeted muscle; however, in certain clinical situations, landmarks may not be palpable, auditory feedback may be limited or not present, and targeting a specific muscle may be more critical. In such settings, image guidance might significantly enhance accuracy. Two electromyographers with different levels of experience examined 14 muscles in each of 4 fresh-frozen cadaver lower limbs. Each muscle was tested a total of eight times; four fine wires were inserted without ultrasound (US) guidance and four were inserted under US guidance. Overall accuracy as well as accuracy rates for the individual electromyographers were calculated. Non-guided needle placement was significantly less accurate than US-guided needle placement, particularly in the hands of less experienced electromyographers, supporting the use of real-time US guidance in certain challenging situations in the electromyography laboratory. Copyright © 2011 Wiley Periodicals, Inc.
Phoenix Conductivity Probe Inserted into Martian Soil
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008). The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 while the probe's needles were in the ground. The science team informally named this soil target 'Gandalf.' The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water. The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.van der Jagt, M Annerie; Briaire, Jeroen J; Verbist, Berit M; Frijns, Johan H M
2016-01-01
The HiFocus Mid-Scala (MS) electrode array has recently been introduced onto the market. This precurved design with a targeted mid-scalar intracochlear position pursues an atraumatic insertion and optimal distance for neural stimulation. In this study we prospectively examined the angular insertion depth achieved and speech perception outcomes resulting from the HiFocus MS electrode array for 6 months after implantation, and retrospectively compared these with the HiFocus 1J lateral wall electrode array. The mean angular insertion depth within the MS population (n = 96) was found at 470°. This was 50° shallower but more consistent than the 1J electrode array (n = 110). Audiological evaluation within a subgroup, including only postlingual, unilaterally implanted, adult cochlear implant recipients who were matched on preoperative speech perception scores and the duration of deafness (MS = 32, 1J = 32), showed no difference in speech perception outcomes between the MS and 1J groups. Furthermore, speech perception outcome was not affected by the angular insertion depth or frequency mismatch. © 2016 S. Karger AG, Basel.
APPARATUS AND TECHNIC FOR THE ADMINISTRATION OF INTRACAVITARY RADIOACTIVE ISOTOPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaud, N.J.; Liegner, L.M.
1961-08-01
The method of administration of radioactive isotopes in the treatment of pleural effusions and ascites associated with cancer will vary according to the therapeutic technic. A procedure with a suitable apparatus that utilizes an economical and sterile disposable package is described. The radioactive isotope, whether colloidal chromic phosphate (P/sup 32/) or colloidal gold (Au/sup 198/), can be obtained in th e exact amount prescribed. The entire apparatus is assembled within a few minutes under sterile conditions. Before the hypodermic needles are inserted into the radioactive isotope vial, the air is removed from the tubing by the flow of saline inmore » each segment. Each section is then clamped. The shielded radioactive isotope is then placed on a table or stand and the rubber seal of the vial is swabbed with alcohol or iodine. The inflow needle is inserted just through the rubber stopper and the outflow needle is inserted to the bottom of the vial. This procedure is carried out without removing the vial from the lead container. (auth)« less
Bagheri-Nesami, Masoumeh; Espahbodi, Fatemeh; Nikkhah, Attieh; Shorofi, Seyed Afshin; Charati, Jamshid Yazdani
2014-02-01
This study sought to determine the effects of lavender aromatherapy on pain following needle insertion into a fistula in patients undergoing hemodialysis. This is a randomized controlled clinical trial in which 92 patients undergoing hemodialysis with arteriovenous fistulas were randomly divided into two groups. The experimental-group patients inhaled lavender essence with a concentration of 10% for 5 min during 3 hemodialysis sessions, while the control-group patients received aromatherapy free of lavender essence. The mean VAS pain intensity score in the experimental and control groups before the intervention was 3.78 ± 0.24 and 4.16 ± 0.32, respectively (p = 0.35). The mean VAS pain intensity score in the experimental and control groups after three aromatherapy sessions was 2.36 ± 0.25 and 3.43 ± 0.31, respectively (p = 0.009). Lavender aromatherapy may be an effective technique to reduce pain following needle insertion into a fistula in hemodialysis patients. Copyright © 2013 Elsevier Ltd. All rights reserved.
Automatic needle segmentation in 3D ultrasound images using 3D Hough transform
NASA Astrophysics Data System (ADS)
Zhou, Hua; Qiu, Wu; Ding, Mingyue; Zhang, Songgeng
2007-12-01
3D ultrasound (US) is a new technology that can be used for a variety of diagnostic applications, such as obstetrical, vascular, and urological imaging, and has been explored greatly potential in the applications of image-guided surgery and therapy. Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese woman, and a minimally invasive ablation system using an RF button electrode which is needle-like is being used to destroy tumor cells or stop bleeding currently. Now a 3D US guidance system has been developed to avoid accidents or death of the patient by inaccurate localizations of the electrode and the tumor position during treatment. In this paper, we described two automated techniques, the 3D Hough Transform (3DHT) and the 3D Randomized Hough Transform (3DRHT), which is potentially fast, accurate, and robust to provide needle segmentation in 3D US image for use of 3D US imaging guidance. Based on the representation (Φ , θ , ρ , α ) of straight lines in 3D space, we used the 3DHT algorithm to segment needles successfully assumed that the approximate needle position and orientation are known in priori. The 3DRHT algorithm was developed to detect needles quickly without any information of the 3D US images. The needle segmentation techniques were evaluated using the 3D US images acquired by scanning water phantoms. The experiments demonstrated the feasibility of two 3D needle segmentation algorithms described in this paper.
The rational for a mid-scala electrode array.
Boyle, P J
2016-06-01
Today increasing numbers of cochlear implant candidates have residual hearing that can be aided and hence is worth trying to preserve. This means that surgical technique and electrode array design must be adapted to minimize trauma. Wide opening of the round window is often preferred to reduce drill related trauma and to avoid pressure spikes during electrode array insertion. A recent meta-analysis suggested that there is no significant correlation between hearing preservation and either insertion depth or scala position. However, a slow insertion speed of at least 30seconds was associated with better hearing preservation. An electrode design is proposed that targets the middle of the scala tympani. This minimizes frictional forces from either lateral or medial wall during insertion and imposes less static pressure on cochlear structures following insertion. The flexibility to insert via the round window requires a 0.7-mm maximum dimension at the proximal end of the array. Micro-anatomical analysis by micro-CT indicated that a 420-degree insertion depth was optimal between cochlear coverage and available space within the scala tympani. Physical measurements showed that mean insertion forces remained below 10mN during insertion. A series of 20 human temporal bone insertions found a mean insertion depth of 400 degrees with no scala dislocations. Six clinical series, in total 94 cases, found postoperative hearing in 81% of cases with a mean loss of 12dB compared to preoperative levels. Speech understanding out to one year post-fitting trended better for a mid-scala design group than for a straight electrode array group; although the differences were not statistically significant. A mid-scala array design appears able to be inserted with minimal trauma, to return a predictable insertion depth across various sizes of cochleae and to support reasonable levels of speech understanding without relying on residual hearing. Copyright © 2016. Published by Elsevier Masson SAS.
Development of less invasive neuromuscular electrical stimulation model for motor therapy in rodents
Kanchiku, Tsukasa; Kato, Yoshihiko; Suzuki, Hidenori; Imajo, Yasuaki; Yoshida, Yuichiro; Moriya, Atsushi; Taguchi, Toshihiko; Jung, Ranu
2012-01-01
Background Combination therapy is essential for functional repairs of the spinal cord. Rehabilitative therapy can be considered as the key for reorganizing the nervous system after spinal cord regeneration therapy. Functional electrical stimulation has been used as a neuroprosthesis in quadriplegia and can be used for providing rehabilitative therapy to tap the capability for central nervous system reorganization after spinal cord regeneration therapy. Objective To develop a less invasive muscular electrical stimulation model capable of being combined with spinal cord regeneration therapy especially for motor therapy in the acute stage after spinal cord injury. Methods The tibialis anterior and gastrocnemius motor points were identified in intact anesthetized adult female Fischer rats, and stimulation needle electrodes were percutaneously inserted into these points. Threshold currents for visual twitches were obtained upon stimulation using pulses of 75 or 8 kHz for 200 ms. Biphasic pulse widths of 20, 40, 80, 100, 300, and 500 µs per phase were used to determine strength–duration curves. Using these parameters and previously obtained locomotor electromyogram data, stimulations were performed on bilateral joint muscle pairs to produce reciprocal flexion/extension movements of the ankle for 15 minutes while three-dimensional joint kinematics were assessed. Results Rhythmic muscular electrical stimulation with needle electrodes was successfully done, but decreased range of motion (ROM) over time. High-frequency and high-amplitude stimulation was also shown to be effective in alleviating decreases in ROM due to muscle fatigue. Conclusions This model will be useful for investigating the ability of rhythmic muscular electrical stimulation therapy to promote motor recovery, in addition to the efficacy of combining treatments with spinal cord regeneration therapy after spinal cord injuries. PMID:22507026
Deep electrode insertion and sound coding in cochlear implants.
Hochmair, Ingeborg; Hochmair, Erwin; Nopp, Peter; Waller, Melissa; Jolly, Claude
2015-04-01
Present-day cochlear implants demonstrate remarkable speech understanding performance despite the use of non-optimized coding strategies concerning the transmission of tonal information. Most systems rely on place pitch information despite possibly large deviations from correct tonotopic placement of stimulation sites. Low frequency information is limited as well because of the constant pulse rate stimulation generally used and, being even more restrictive, of the limited insertion depth of the electrodes. This results in a compromised perception of music and tonal languages. Newly available flexible long straight electrodes permit deep insertion reaching the apical region with little or no insertion trauma. This article discusses the potential benefits of deep insertion which are obtained using pitch-locked temporal stimulation patterns. Besides the access to low frequency information, further advantages of deeply inserted long electrodes are the possibility to better approximate the correct tonotopic location of contacts, the coverage of a wider range of cochlear locations, and the somewhat reduced channel interaction due to the wider contact separation for a given number of channels. A newly developed set of strategies has been shown to improve speech understanding in noise and to enhance sound quality by providing a more "natural" impression, which especially becomes obvious when listening to music. The benefits of deep insertion should not, however, be compromised by structural damage during insertion. The small cross section and the high flexibility of the new electrodes can help to ensure less traumatic insertions as demonstrated by patients' hearing preservation rate. This article is part of a Special Issue entitled
Planning of electroporation-based treatments using Web-based treatment-planning software.
Pavliha, Denis; Kos, Bor; Marčan, Marija; Zupanič, Anže; Serša, Gregor; Miklavčič, Damijan
2013-11-01
Electroporation-based treatment combining high-voltage electric pulses and poorly permanent cytotoxic drugs, i.e., electrochemotherapy (ECT), is currently used for treating superficial tumor nodules by following standard operating procedures. Besides ECT, another electroporation-based treatment, nonthermal irreversible electroporation (N-TIRE), is also efficient at ablating deep-seated tumors. To perform ECT or N-TIRE of deep-seated tumors, following standard operating procedures is not sufficient and patient-specific treatment planning is required for successful treatment. Treatment planning is required because of the use of individual long-needle electrodes and the diverse shape, size and location of deep-seated tumors. Many institutions that already perform ECT of superficial metastases could benefit from treatment-planning software that would enable the preparation of patient-specific treatment plans. To this end, we have developed a Web-based treatment-planning software for planning electroporation-based treatments that does not require prior engineering knowledge from the user (e.g., the clinician). The software includes algorithms for automatic tissue segmentation and, after segmentation, generation of a 3D model of the tissue. The procedure allows the user to define how the electrodes will be inserted. Finally, electric field distribution is computed, the position of electrodes and the voltage to be applied are optimized using the 3D model and a downloadable treatment plan is made available to the user.
Syringe-Injectable Electronics with a Plug-and-Play Input/Output Interface.
Schuhmann, Thomas G; Yao, Jun; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M
2017-09-13
Syringe-injectable mesh electronics represent a new paradigm for brain science and neural prosthetics by virtue of the stable seamless integration of the electronics with neural tissues, a consequence of the macroporous mesh electronics structure with all size features similar to or less than individual neurons and tissue-like flexibility. These same properties, however, make input/output (I/O) connection to measurement electronics challenging, and work to-date has required methods that could be difficult to implement by the life sciences community. Here we present a new syringe-injectable mesh electronics design with plug-and-play I/O interfacing that is rapid, scalable, and user-friendly to nonexperts. The basic design tapers the ultraflexible mesh electronics to a narrow stem that routes all of the device/electrode interconnects to I/O pads that are inserted into a standard zero insertion force (ZIF) connector. Studies show that the entire plug-and-play mesh electronics can be delivered through capillary needles with precise targeting using microliter-scale injection volumes similar to the standard mesh electronics design. Electrical characterization of mesh electronics containing platinum (Pt) electrodes and silicon (Si) nanowire field-effect transistors (NW-FETs) demonstrates the ability to interface arbitrary devices with a contact resistance of only 3 Ω. Finally, in vivo injection into mice required only minutes for I/O connection and yielded expected local field potential (LFP) recordings from a compact head-stage compatible with chronic studies. Our results substantially lower barriers for use by new investigators and open the door for increasingly sophisticated and multifunctional mesh electronics designs for both basic and translational studies.
Song, Shi-Lin
2013-04-01
To seek a precise and simple method for localization of acupoint in anatomical experiment teaching. Medical bone needles were inserted into acupoints. Then, self-mode copper probe needles were thrust along the center of the bone needles to open the inner structures of acuppoints. And probe needles were replaced by colored plastic tubes. Finally, bone needles were withdrawn so as to fix the plastic tubes into the acupoints to facilitate the later cutting. This method for acupoint anatomic positioning is of low cost with accurate positioning and simple manipulation, which has advantages in strong experimental and innovative values.
Successful Treatment of Achilles Tendinopathy with Electroacupuncture: Two Cases.
Hawks, Matthew Kendall
2017-06-01
Background: Achilles tendinopathy is a common injury for active patient populations and is challenging to treat. Acupuncture tendon-based therapy was first described in the Yellow Emperor's Classic of Internal Medicine . In modern times, specific techniques have been described poorly in the literature. The aim of this case report is to describe a new technique of acupuncture for the treatment of Achilles tendinopathy and provide 2 illustrative cases. Cases: Treatments for the 2 patients were performed in a deployed military treatment facility. SERIN® 0.25 mm × 40 mm needles placed at BL 60, BL 61, KI 3, and KI 4, with needles directed into the Achilles tendon of each patient. Needles were inserted until a firm catch of the needle entering the tendon was discerned. Energy was placed from KI 3(-) → KI 4(+) and BL61 (-) → BL 60(+) at 30 Hz for 15 minutes. Results: Both patients reported symptomatic reduction in Achilles tendinopathy pain and functional improvement following the described treatments. Conclusions: This case series describes two cases of successful Achilles tendinopathy therapy using direct tendon needle insertion with electrostimulation. This novel technique may provide an effective adjunct to traditional therapies in the treatment of Achilles tendinopathy.
Development of a needle driver with multiple degrees of freedom for neonatal laparoscopic surgery.
Ishimaru, Tetsuya; Takazawa, Shinya; Uchida, Hiroo; Kawashima, Hiroshi; Fujii, Masahiro; Harada, Kanako; Sugita, Naohiko; Mitsuishi, Mamoru; Iwanaka, Tadashi
2013-07-01
The aims of this study were to develop a thin needle driver with multiple degrees of freedom and to evaluate its efficacy in multidirectional suturing compared with a conventional needle driver. The tip (15 mm) of the novel user-friendly needle driver (3.5 mm in diameter) has three degrees of freedom for grasping, rotation, and deflection. Six pediatric surgeons performed two kinds of suturing tasks in a dry box: three stitches in continuous suturing that were perpendicular or parallel to the insertion direction of the instrument, first using the novel instrument, then using a conventional instrument, and finally using the novel instrument again. The accuracy of insertion and exit compared with the target points and the procedure time were measured. In the conventional and novel procedures the mean gaps from the insertion point to the target in perpendicular suturing were 0.8 mm and 0.7 mm, respectively; in parallel suturing they were 0.8 mm and 0.6 mm, respectively. The mean gaps from the exit point to the target in perpendicular suturing were 0.6 mm and 0.6 mm for conventional and novel procedures, respectively; in parallel suturing they were 0.6 mm and 0.8 mm, respectively. The procedure time for perpendicular suturing was 33 seconds and 64 seconds for conventional and novel procedures, respectively (P=.02); for parallel suturing it was 114 seconds and 91 seconds, respectively. Our novel needle driver maintained accuracy of suturing; parallel suturing with the novel driver may be easier than with the conventional one.
Klauser, Andrea; De Zordo, Tobias; Feuchtner, Gudrun; Sögner, Peter; Schirmer, Michael; Gruber, Johann; Sepp, Norbert; Moriggl, Bernhard
2008-11-15
Sacroiliitis is often caused by rheumatic diseases, and besides other therapeutic options, treatment consists of intraarticular injection of corticosteroids. The purpose of this study was to assess the feasibility of ultrasound (US)-guided sacroiliac joint (SI joint) injection at 2 different puncture levels in cadavers and patients when defined sonoanatomic landmarks were considered. After defining sonoanatomic landmarks, US-guided needle insertion was performed in 10 human cadavers (20 SI joints) at 2 different puncture sites. Upper level was defined at the level of the posterior sacral foramen 1 and lower level at the level of the posterior sacral foramen 2. In 10 patients with unilateral sacroiliitis, injection at the most feasible level was attempted. Computed tomography confirmed correct intraarticular needle placement in cadavers by showing the tip of the needle in the joint and intraarticular diffusion of contrast media in 16 (80%) of 20 SI joints (upper level 7 [70%] of 10; lower level 9 [90%] of 10). In all 4 cases in which needle insertion failed, intraarticular SI joint injection at the other level was successful. In patients, 100% of US-guided injections were successful (8 lower level, 2 upper level), with a mean pain relief of 8.6 after 3 months. US guidance of needle insertion into SI joints was feasible at both levels when defined sonoanatomic landmarks were used. If SI joint alterations do not allow for direct visualization of the dorsal joint space of the lower level, which is easier to access, the upper level might offer an appropriate alternative.
[Teaching design of mastering scalp acupuncture fast].
Li, Jie; Niu, Wenmin
2016-05-01
Scalp acupuncture is a method of treating whole-body diseases. The author takes the easy positioning of scalp acupuncture as starting point, covers the positioning of scalp acupuncture and needle insertion points, acupuncture manipulation and the selection of acupoints, so as to introduce the design of teaching the international standardized scalp acupuncture with texts and illustrations. The positions of scalp acupuncture are 4 lines in frontal area, 5 lines in parietal area, 2 lines in temporal area and 3 lines in occipital area. The needle insertion angle is 30° to the skin. Acupoints can be selected crossly and correspondingly in clinic.
Chromophore Poling in Thin Films of Organic Glasses. 2. Two-Electrode Corona Discharge Setup
NASA Astrophysics Data System (ADS)
Vilitis, O.; Muzikante, I.; Rutkis, M.; Vembris, A.
2012-01-01
In Part 1 of the article we provided description of the corona discharge physics and overview of the methods used for corona poling in thin organic films. Subsequent sections describe comparatively simple technical methods for poling the organic nonlinear optical polymers using a two-electrode (point-to-plate or wire-to-plate) technique. The polarization build-up was studied by the DC positive corona method for poling the nonlinear optical (NLO) polymers. The experimental setup provides the corona discharge current from 0.5 μA up to 3 μA by applying 3 kV - 12 kV voltage to the corona electrode and makes possible selection among the types of corona electrodes (needle, multi-needle, wire, etc.). The results of experimental testing of the poling setup show that at fixed optimal operational parameters of poling - the sample orientation temperature and the discharge current - the corona charging of polymeric materials can successfully be performed applying the two-electrode technique. To study the dynamics of both poling and charge transport processes the three-electrode charging system - a corona triode - should be applied.
NASA Astrophysics Data System (ADS)
Yang, Jiaxiang; Chi, Xiaochun; Dong, Limin
2007-05-01
A direct current (dc) corona discharge reactor composed of needle-plate electrodes in a glass container filled with flue gas was designed. To clarify the influence of water on discharge characteristics, water was introduced in the plasma reactor as electrode where plate electrode is immersed, under the application of dc voltage. Experiment results show that (1) corona wind forming between high-voltage needle electrode and water by corona discharge enhances the cleaning efficiency of flue gas due to the existence of water and the cleaning efficiency will increase with the increase of applied dc voltage within definite range and (2) both removal efficiencies of NOx and SO2 increased in the presence of water, which reach up to 98% for SO2, and about 85% for NOx under suitable conditions. These results play an important role in flue gas cleanup research.
Brattebø, G; Wisborg, T; Rodt, S A; Røste, I
1995-05-01
Reports have indicated that there are less postoperative complaints after the use of pencil pointed spinal needles. We compared a 24G Sprotte needle with a 27G Quincke needle in a randomised study of 200 healthy patients (49% females), aged 15-46 years. Four patients (2%) reported postdural puncture headache, three with the 24G Sprotte needle and one with the 27G Quincke needle. Thirteen patients (7%) suffered with nonspecific headache, with no significant difference between the two groups. Of the 57 (29%) who reported backpain, a significantly higher proportion had received spinal anaesthesia with the Sprotte needle (OR = 2.06). There was a significantly higher incidence of insufficient blocks after dural puncture with the Sprotte needle. Ease of needle insertion and number of puncture attempts was the same for both needle types.
Liu, Ming-Sheng; Niu, Jing-Wen; Li, Yi; Guan, Yu-Zhou; Cui, Li-Ying
2016-01-01
Background: Single-fiber electromyography (SFEMG) has been suggested as a quantitative method for supporting chronic partial denervation in amyotrophic lateral sclerosis (ALS) by the revised EI Escorial criteria. Although concentric needle (CN) electrodes have been used to assess jitter in myasthenia gravis patients and healthy controls, there are few reports using CN electrodes to assess motor unit instability and denervation in neurogenic diseases. The aim of this study was to determine whether quantitative changes in jitter and spike number using CN electrodes could be used for ALS studies. Methods: Twenty-seven healthy controls and 23 ALS patients were studied using both CN and single-fiber needle (SFN) electrodes on the extensor digitorum communis muscle with an SFEMG program. The SFN-jitter and SFN-fiber density data were measured using SFN electrodes. The CN-jitter and spike number were measured using CN electrodes. Results: The mean CN-jitter was significantly increased in ALS patients (47.3 ± 17.0 μs) than in healthy controls (27.4 ± 3.3 μs) (P < 0.001). Besides, the mean spike number was significantly increased in ALS patients (2.5 ± 0.5) than in healthy controls (1.7 ± 0.3) (P < 0.001). The sensitivity and specificity in the diagnosis of ALS were 82.6% and 92.6% for CN-jitter (cut-off value: 32 μs), and 91.3% and 96.3% for the spike number (cut-off value: 2.0), respectively. There was no significant difference between the SFN-jitter and CN-jitter in ALS patients; meanwhile, there was no significant difference between the SFN-jitter and CN-jitter in healthy controls. Conclusion: CN-jitter and spike number could be used to quantitatively evaluate changes due to denervation-reinnervation in ALS. PMID:27098787
Azlan, C A; Mohd Nasir, N F; Saifizul, A A; Faizul, M S; Ng, K H; Abdullah, B J J
2007-12-01
Percutaneous image-guided needle biopsy is typically performed in highly vascular organs or in tumours with rich macroscopic and microscopic blood supply. The main risks related to this procedure are haemorrhage and implantation of tumour cells in the needle tract after the biopsy needle is withdrawn. From numerous conducted studies, it was found that heating the needle tract using alternating current in radiofrequency (RF) range has a potential to minimize these effects. However, this solution requires the use of specially designed needles, which would make the procedure relatively expensive and complicated. Thus, we propose a simple solution by using readily available coaxial core biopsy needles connected to a radiofrequency ablation (RFA) generator. In order to do so, we have designed and developed an adapter to interface between these two devices. For evaluation purpose, we used a bovine liver as a sample tissue. The experimental procedure was done to study the effect of different parameter settings on the size of coagulation necrosis caused by the RF current heating on the subject. The delivery of the RF energy was varied by changing the values for delivered power, power delivery duration, and insertion depth. The results showed that the size of the coagulation necrosis is affected by all of the parameters tested. In general, the size of the region is enlarged with higher delivery of RF power, longer duration of power delivery, and shallower needle insertion and become relatively constant after a certain value. We also found that the solution proposed provides a low cost and practical way to minimizes unwanted post-biopsy effects.
Anderson, T. Anthony; Kang, Jeon Woong; Gubin, Tatyana; Dasari, Ramachandra R.; So, Peter T. C.
2016-01-01
BACKGROUND Neuraxial anesthesia and epidural steroid injection techniques require precise anatomical targeting to ensure successful and safe analgesia. Previous studies suggest that only some of the tissues encountered during these procedures can be identified by spectroscopic methods, and no previous study has investigated the use of Raman, diffuse reflectance, and fluorescence spectroscopies. The authors hypothesized that real-time needle-tip spectroscopy may aid epidural needle placement and tested the ability of spectroscopy to distinguish each of the tissues in the path of neuraxial needles. METHODS For comparison of detection methods, the spectra of individual, dissected ex vivo paravertebral and neuraxial porcine tissues were collected using Raman spectroscopy (RS), diffuse reflectance spectroscopy (DRS), and fluorescence spectroscopy (FS). Real-time spectral guidance was tested using a 2 mm inner diameter fiber optic probe-in-needle device. Raman spectra were collected during the needle’s passage through intact paravertebral and neuraxial porcine tissue and analyzed afterward. The RS tissue signatures were verified as mapping to individual tissue layers using histochemical staining and widefield microscopy. RESULTS Raman spectroscopy revealed a unique spectrum for all ex vivo paravertebral and neuraxial tissue layers; DRS and FS spectra were not distinct for all tissues. Moreover, when accounting for the expected order of tissues, real-time Raman spectra recorded during needle insertion also permitted identification of each paravertebral and neuraxial porcine tissue. CONCLUSIONS This study demonstrates Raman spectroscopy can distinguish the tissues encountered during epidural needle insertion. This technology may prove useful during needle placement by providing evidence of its anatomical localization. PMID:27466032
Villard, P F; Vidal, F P; Hunt, C; Bello, F; John, N W; Johnson, S; Gould, D A
2009-11-01
We present here a simulator for interventional radiology focusing on percutaneous transhepatic cholangiography (PTC). This procedure consists of inserting a needle into the biliary tree using fluoroscopy for guidance. The requirements of the simulator have been driven by a task analysis. The three main components have been identified: the respiration, the real-time X-ray display (fluoroscopy) and the haptic rendering (sense of touch). The framework for modelling the respiratory motion is based on kinematics laws and on the Chainmail algorithm. The fluoroscopic simulation is performed on the graphic card and makes use of the Beer-Lambert law to compute the X-ray attenuation. Finally, the haptic rendering is integrated to the virtual environment and takes into account the soft-tissue reaction force feedback and maintenance of the initial direction of the needle during the insertion. Five training scenarios have been created using patient-specific data. Each of these provides the user with variable breathing behaviour, fluoroscopic display tuneable to any device parameters and needle force feedback. A detailed task analysis has been used to design and build the PTC simulator described in this paper. The simulator includes real-time respiratory motion with two independent parameters (rib kinematics and diaphragm action), on-line fluoroscopy implemented on the Graphics Processing Unit and haptic feedback to feel the soft-tissue behaviour of the organs during the needle insertion.
Comparison of carpal tunnel injection techniques: a cadaver study.
Ozturk, Kahraman; Esenyel, Cem Zeki; Sonmez, Mesut; Esenyel, Meltem; Kahraman, Sinan; Senel, Berna
2008-01-01
The purpose of the study was to evaluate the accuracy of injections into the carpal tunnel using three different portals in cadavers, and to define safe guidelines. In this study, 150 wrists of 75 cadavers (54 male, 21 female) were included. To compare three injection sites, 50 wrists of 25 cadavers were used for each technique; we used 23 gauge needles, and acrylic dye. The first injection technique: the needle was inserted 1cm proximal to the wrist crease and directed distally by roughly 45 in an ulnar direction through the flexor carpi radialis tendon. The second injection technique: the needle was inserted into the carpal tunnel from a point just ulnar to the palmaris longus tendon and 1cm proximal to the wrist crease. The third injection technique: the needle was inserted just distal to the distal skin crease of the wrist in line with the fourth ray. The first injection technique gave the highest accuracy rate, and this was also the safest injection site. Median nerve injuries caused by injection was seen mostly with the second technique. Although a steroid injection may provide symptomatic relief in patients with carpal tunnel syndrome, the median nerve and other structures in the carpal tunnel are at risk of injury. Because of that, the injection should be given using the correct technique by physicians skilled in carpal tunnel surgery.
Identification of elemental mercury in the subsurface
Jackson, Dennis G
2015-01-06
An apparatus and process is provided for detecting elemental mercury in soil. A sacrificial electrode of aluminum is inserted below ground to a desired location using direct-push/cone-penetrometer based equipment. The insertion process removes any oxides or previously found mercury from the electrode surface. Any mercury present adjacent the electrode can be detected using a voltmeter which indicates the presence or absence of mercury. Upon repositioning the electrode within the soil, a fresh surface of the aluminum electrode is created allowing additional new measurements.
Acute changes associated with electrode insertion measured with optical coherence microscopy
NASA Astrophysics Data System (ADS)
Hammer, Daniel X.; Lozzi, Andrea; Boretsky, Adam; Agrawal, Anant; Welle, Cristin G.
2016-03-01
Despite advances in functional neural imaging, penetrating microelectrodes provide the most direct interface for the extraction of neural signals from the nervous system and are a critical component of many high degree-of-freedom braincomputer interface devices. Electrode insertion is a traumatic event that elicits a complex neuroinflammatory response. In this investigation we applied optical coherence microscopy (OCM), particularly optical coherence angiography (OCA), to characterize the immediate tissue response during microelectrode insertion. Microelectrodes of varying dimension and footprint (one-, two-, and four-shank) were inserted into mouse motor cortex beneath a window after craniotomy surgery. The microelectrodes were inserted in 3-4 steps at 15-20°, with approximately 250 μm linear insertion distance for each step. Before insertion and between each step, OCM datasets were collected, including for quantitative capillary velocimetry. A cohort of control animals without microelectrode insertion was also imaged over a similar time period (2-3 hours). Mechanical tissue deformation was observed in all the experimental animals. The quantitative angiography results varied across animals, and were not correlated with device dimensions. In some cases, localized flow drop-out was observed in a small region surrounding the electrode, while in other instances a global disruption in flow occurred, perhaps as a result of large vessel compression caused by mechanical pressure. OCM is a tool that can be used in various neurophotonics applications, including quantification of the neuroinflammatory response to penetrating electrode insertion.
Day surgery for vocal fold lesions using a double-bent 60-mm Cathelin needle.
Toyomura, Fumimasa; Tokashiki, Ryoji; Hiramatsu, Hiroyuki; Tsukahara, Kiyoaki; Motohashi, Ray; Sakurai, Eriko; Nomoto, Masaki; Suzuki, Mamoru
2014-11-01
Day surgery for vocal cord lesions overcomes the disadvantages of laryngomicrosurgery under general anesthesia. We present our experience with treatment of vocal fold lesions using a long double-bend Cathelin needle that can access all parts of the vocal cords. A 23G, 60-mm-long Cathelin needle was bent twice by 45(o) at a distance of 1 and 2 cm from the tip, and was attached to a syringe. Under topical anesthesia and nasal endoscopy of the laryngopharynx, the needle was inserted percutaneously perpendicular to the skin, the direction of insertion being altered when the bends in the needle reached the skin surface. This allows the tip of the needle to access all parts of the glottis, allowing the performance of procedures such as biopsies, excision of lesions, and injection into the vocal folds. Between January 2011 and December 2013, we used this technique to perform vocal fold procedures in 566 patients presenting for treatment of spasmodic dysphonia (412 cases, 73 %) and other vocal fold lesions. Only minor complications, such as hematoma (3 patients, 0.5 %) and slight bleeding from the puncture site in the epiglottic vallecula (all patients, 100 %), which ceased spontaneously within 10 min, were seen. Erroneous puncture occurred in three patients (0.5 %) and the puncture had to be repeated in 38 patients (6.7 %). The procedure was completed successfully in all cases (100 %). Surgery for vocal fold lesions under topical anesthesia using our double-bend Cathelin needle technique is simple, safe, and useful.
Percutaneous spinal fixation simulation with virtual reality and haptics.
Luciano, Cristian J; Banerjee, P Pat; Sorenson, Jeffery M; Foley, Kevin T; Ansari, Sameer A; Rizzi, Silvio; Germanwala, Anand V; Kranzler, Leonard; Chittiboina, Prashant; Roitberg, Ben Z
2013-01-01
In this study, we evaluated the use of a part-task simulator with 3-dimensional and haptic feedback as a training tool for percutaneous spinal needle placement. To evaluate the learning effectiveness in terms of entry point/target point accuracy of percutaneous spinal needle placement on a high-performance augmented-reality and haptic technology workstation with the ability to control the duration of computer-simulated fluoroscopic exposure, thereby simulating an actual situation. Sixty-three fellows and residents performed needle placement on the simulator. A virtual needle was percutaneously inserted into a virtual patient's thoracic spine derived from an actual patient computed tomography data set. Ten of 126 needle placement attempts by 63 participants ended in failure for a failure rate of 7.93%. From all 126 needle insertions, the average error (15.69 vs 13.91), average fluoroscopy exposure (4.6 vs 3.92), and average individual performance score (32.39 vs 30.71) improved from the first to the second attempt. Performance accuracy yielded P = .04 from a 2-sample t test in which the rejected null hypothesis assumes no improvement in performance accuracy from the first to second attempt in the test session. The experiments showed evidence (P = .04) of performance accuracy improvement from the first to the second percutaneous needle placement attempt. This result, combined with previous learning retention and/or face validity results of using the simulator for open thoracic pedicle screw placement and ventriculostomy catheter placement, supports the efficacy of augmented reality and haptics simulation as a learning tool.
Atmospheric negative corona discharge using a Taylor cone as liquid electrode
NASA Astrophysics Data System (ADS)
Sekine, Ryuto; Shirai, Naoki; Uchida, Satoshi; Tochikubo, Fumiyoshi
2012-10-01
We examined characteristics of atmospheric negative corona discharge using liquid needle cathode. As a liquid needle cathode, we adopted Taylor cone with conical shape. A nozzle with inner diameter of 10 mm is filled with liquid, and a plate electrode is placed at 10 mm above the nozzle. By applying a dc voltage between electrodes, Taylor cone is formed. To change the liquid property, we added sodium dodecyl sulfate to reduce the surface tension, sodium sulfate to increase the conductivity, and polyvinyl alcohol to increase the viscosity, in distilled water. The liquid, with high surface tension such as pure water could not form a Taylor cone. When we reduced surface tension, a Taylor cone was formed and the stable corona discharge was observed at the tip of the cone. When we increased viscosity, a liquid filament protruded from the solution surface was formed and corona discharge was observed along the filament at position 0.7-1.0 mm above from the tip of the cone. Increasing the conductivity resulted in the higher light intensity of corona and the lower corona onset voltage. When we use the metal needle electrode, the corona discharge depends on the voltage and the gap length. Using Taylor cone, different types of discharges were observed by changing the property of the liquid.
NASA Astrophysics Data System (ADS)
Takami, Norio; Harada, Yasuhiro; Iwasaki, Takuya; Hoshina, Keigo; Yoshida, Yorikazu
2015-01-01
Electrochemical properties of micro-size spherical TiO2(B) secondary particles have been investigated in order to develop TiO2(B) anodes for lithium-ion batteries with high-power and long-life performance. The spherical TiO2(B) electrodes with a small amount of a carbon conductor additive had a high electrode density of 2.2 g cm-3 and a volumetric reversible capacity of 475 mAh cm-3 comparable to that of graphite electrodes. Compared with nano-size needle-like TiO2(B) electrodes, the spherical TiO2(B) electrodes exhibited higher-rate discharge capability and longer-cycle life performance. The impedance of the TiO2(B)/electrolyte interface model indicated that the charge transfer resistance Rc and the passivating film resistance Rf of the spherical TiO2(B) were much smaller than those of the needle-like one. The high-rate discharge and the long-cycle performance of the spherical TiO2(B) electrode are attributed to the superior electronic connective property and Rc and Rf values smaller than those of the needle-like one. Lithium-ion cells using the spherical TiO2(B) anodes and LiNi0.8Co0.1Mn0.1O2 cathode with a capacity of 2.8 Ah exhibited a high energy density of 100 Wh kg-1, a high output power density of 1800 W kg-1 for 10 s pulse, and a long cycle life of more than 3000 cycles.
NASA Astrophysics Data System (ADS)
Ueno, Hideki; Kawahara, Shintaro; Nakayama, Hiroshi
Relationship between barrier discharge characteristics and ozone generation under ac voltage application on triple needles-plane configuration has been investigated for various distances among triple needle-tips (d=0 ∼ 7.0mm) at constant distance between needle tip and plane (g=3.0mm) in dry air. Characteristics of barrier discharge and ozone generation depend on the needle-tips distance. It is considered that the influence is caused by space charge and accumulated charge suggested from discharge image by still camera and CCD camera. And ozone generation efficiency is also estimated by power consumption and ozone concentration. As a result, when the distance among triple needle-tips is narrow, the above-mentioned influence is strengthened. And in this case, ozone generation efficiency is improved.
Development of an MRI-Guided Intra-Prostatic Needle Placement System
2011-07-01
and intra-operative imaging using techniques such as those described by Haker , et al. [18]. Target points for the needle insertion are selected... Haker , S., Fichtinger, G., Tem- pany, C.: Transperineal prostate biopsy under magnetic resonance image guid- ance: A needle placement accuracy study 26...clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 42(3), 507–515 (1998) 9. DiMaio, S.P., Pieper, S., Chinzei, K., Hata, N., Haker , S.J
Wada, Keizo; Hamada, Daisuke; Tamaki, Shunsuke; Higashino, Kosaku; Fukui, Yoshihiro; Sairyo, Koichi
2017-01-01
Previous studies suggested that changes in kinematics in total knee arthroplasty (TKA) affected satisfaction level. The aim of this cadaveric study was to evaluate the effect of medial collateral ligament (MCL) release by multiple needle puncture on knee rotational kinematics in posterior-stabilized TKA. Six fresh, frozen cadaveric knees were included in this study. All TKA procedures were performed with an image-free navigation system using a 10-mm polyethylene insert. Tibial internal rotation was assessed to evaluate intraoperative knee kinematics. Multiple needle puncturing was performed 5, 10, and 15 times for the hard portion of the MCL at 90° knee flexion. Kinematic analysis was performed after every 5 punctures. After performing 15 punctures, a 14-mm polyethylene insert was inserted, and kinematic analysis was performed. The tibial internal rotation angle at maximum knee flexion without multiple needle puncturing was significantly larger (9.42°) than that after 15 punctures (3°). Negative correlation (Pearson r = -0.715, P < .001) between tibial internal rotation angle at maximum knee flexion and frequency of puncture was observed. The tibial internal rotation angle with a 14-mm insert was significantly larger (7.25°) compared with the angle after 15 punctures. Tibial internal rotation during knee flexion was reduced by extensive MCL release using multiple needle puncturing and was recovered by increasing of medial tightness. From the point of view of knee kinematics, medial tightness should be allowed to maintain the internal rotation angle of the tibia during knee flexion which might lead to patient satisfaction. Copyright © 2016 Elsevier Inc. All rights reserved.
Shabandokht-Zarmi, Hosniyeh; Bagheri-Nesami, Masoumeh; Shorofi, Seyed Afshin; Mousavinasab, Seyed Nouraddin
2017-11-01
This study was intended to examine the effect of selective soothing music on fistula puncture-related pain in hemodialysis patients. This is a randomized clinical trial in which 114 participants were selected from two hemodialysis units by means of a non-random, convenience sampling method. The participants were then allocated in three groups of music (N = 38), headphone (N = 38), and control (N = 38). The fistula puncture-related pain was measured 1 min after venipuncture procedure in all three groups. The music group listened to their self-selected and preferred music 6 min before needle insertion into a fistula until the end of procedure. The headphone group wore a headphone alone without listening to music 6 min before needle insertion into a fistula until the end of procedure. The control group did not receive any intervention from the research team during needle insertion into a fistula. The pain intensity was measured immediately after the intervention in all three groups. This study showed a significant difference between the music and control groups, and the music and headphone groups in terms of the mean pain score after the intervention. However, the analysis did not indicate any significant difference between the headphone and control groups with regard to the mean pain score after the intervention. It is concluded that music can be used effectively for pain related to needle insertion into a fistula in hemodialysis patients. Future research should investigate the comparative effects of pharmacological and non-pharmacological interventions on fistula puncture-related pain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gwon, Tae Mok; Min, Kyou Sik; Kim, Jin Ho; Oh, Seung Ha; Lee, Ho Sun; Park, Min-Hyun; Kim, Sung June
2015-04-01
An atraumatic cochlear electrode array has become indispensable to high-performance cochlear implants such as electric acoustic stimulation (EAS), wherein the preservation of residual hearing is significant. For an atraumatic implantation, we propose and demonstrate a new improved design of a cochlear electrode array based on liquid crystal polymer (LCP), which can be fabricated by precise batch processes and a thermal lamination process, in contrast to conventional wire-based cochlear electrode arrays. Using a thin-film process of LCP-film-mounted silicon wafer and thermal press lamination, we devise a multi-layered structure with variable layers of LCP films to achieve a sufficient degree of basal rigidity and a flexible tip. A peripheral blind via and self-aligned silicone elastomer molding process can reduce the width of the array. Measuring the insertion and extraction forces in a human scala tympani model, we investigate five human temporal bone insertion trials and record electrically evoked auditory brainstem responses (EABR) acutely in a guinea pig model. The diameters of the finalized electrode arrays are 0.3 mm (tip) and 0.75 mm (base). The insertion force with a displacement of 8 mm from a round window and the maximum extraction force are 2.4 mN and 34.0 mN, respectively. The electrode arrays can be inserted from 360° to 630° without trauma at the basal turn. The EABR data confirm the efficacy of the array. A new design of LCP-based cochlear electrode array for atraumatic implantation is fabricated. Verification indicates that foretells the development of an atraumatic cochlear electrode array and clinical implant.
NASA Astrophysics Data System (ADS)
Babaeva, Natalia Yu.; Naidis, George V.; Kushner, Mark J.
2016-09-01
Streamer discharges in air intersecting with liquids are being investigated to produce reactivity in the liquid. In this talk, we discuss results from a 2-d computational investigation of streamers in air intersecting an isolated liquid, air filled bubble floating on a liquid surface. The 15 mm diameter bubble is conducting water (ɛ /ɛ0 = 80 , σ = 7 . 5 ×10-4Ω-1cm-1) or transformer oil (ɛ /ɛ0 = 2 . 2 , σ = 1 . 5 ×10-13Ω-1cm-1). A needle electrode is positioned d =0-10 mm from the bubble center. With a water bubble (d =0) the streamer slides along the external surface but does not penetrate the bubble due to electric field screening by the conducting shell. If the electrode is shifted (d =3-10 mm) the streamer deviates from the vertical and adheres to the bubble. If the electrode is inserted inside the bubble, the streamer path depends on how deep the electrode penetrates. For shallow penetration, the streamer propagates along the inner surface of the bubble. For deep penetration the streamer takes the shortest path down through the gas. Due to the low conductivity of the oil bubble shell the electric field penetrates into the interior of the bubble. The streamer can then be re-initiated inside the bubble. Charge accumulation on both sides of the bubble shell and perforation of the shell will be also discussed. NYB, GVN supported by Russian Sci. Found. (14-12-01295). MJK by US Natl. Sci. Found. and Dept. of Energy.
Phoenix Conductivity Probe with Shadow and Toothmark
NASA Technical Reports Server (NTRS)
2008-01-01
NASA's Phoenix Mars Lander inserted the four needles of its thermal and conductivity probe into Martian soil during the 98th Martian day, or sol, of the mission and left it in place until Sol 99 (Sept. 4, 2008). The Robotic Arm Camera on Phoenix took this image on the morning of Sol 99 after the probe was lifted away from the soil. The imprint left by the insertion is visible below the probe, and a shadow showing the probe's four needles is cast on a rock to the left. The thermal and conductivity probe measures how fast heat and electricity move from one needle to an adjacent one through the soil or air between the needles. Conductivity readings can be indicators about water vapor, water ice and liquid water. The probe is part of Phoenix's Microscopy, Electrochemistry and Conductivity suite of instruments. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.Intra-ocular pressure normalization technique and equipment
NASA Technical Reports Server (NTRS)
Mcgannon, W. J. (Inventor)
1980-01-01
A method and apparatus for safely reducing abnormally high intraocular pressure in an eye during a predetermined time interval is presented. This allows maintenance of normal intraocular pressure during glaucoma surgery. According to the invention, a pressure regulator of the spring biased diaphragm type is provided with additional bias by a column of liquid. The height of the column of liquid is selected such that the pressure at a hypodermic needle connected to the output of the pressure regulator is equal to the measured pressure of the eye. The hypodermic needle can then be safely inserted into the anterior chamber of the eye. Liquid is then bled out of the column to reduce the bias on the diaphragm of the pressure regulator and, consequently, the output pressure of the regulator. This lowering pressure of the regulator also occurs in the eye by means of a small second bleed path provided between the pressure regulator and the hypodermic needle. Alternately, a second hypodermic needle may be inserted into the eye to provide a controlled leak off path for excessive pressure and clouded fluid from the anterior chamber.
Deman, P R; Kaiser, T M; Dirckx, J J; Offeciers, F E; Peeters, S A
2003-09-30
A 48 contact cochlear implant electrode has been constructed for electrical stimulation of the auditory nerve. The stimulating contacts of this electrode are organised in two layers: 31 contacts on the upper surface directed towards the habenula perforata and 17 contacts connected together as one longitudinal contact on the underside. The design of the electrode carrier aims to make radial current flow possible in the cochlea. The mechanical structure of the newly designed electrode was optimised to obtain maximal insertion depth. Electrode insertion tests were performed in a transparent acrylic model of the human cochlea.
Robot-Assisted Needle Steering
Reed, Kyle B.; Majewicz, Ann; Kallem, Vinutha; Alterovitz, Ron; Goldberg, Ken; Cowan, Noah J.; Okamura, Allison M.
2012-01-01
Needle insertion is a critical aspect of many medical treatments, diagnostic methods, and scientific studies, and is considered to be one of the simplest and most minimally invasive medical procedures. Robot-assisted needle steering has the potential to improve the effectiveness of existing medical procedures and enable new ones by allowing increased accuracy through more dexterous control of the needle tip path and acquisition of targets not accessible by straight-line trajectories. In this article, we describe a robot-assisted needle steering system that uses three integrated controllers: a motion planner concerned with guiding the needle around obstacles to a target in a desired plane, a planar controller that maintains the needle in the desired plane, and a torsion compensator that controls the needle tip orientation about the axis of the needle shaft. Experimental results from steering an asymmetric-tip needle in artificial tissue demonstrate the effectiveness of the system and its sensitivity to various environmental and control parameters. In addition, we show an example of needle steering in ex vivo biological tissue to accomplish a clinically relevant task, and highlight challenges of practical needle steering implementation. PMID:23028210
Svrakic, Maja; Roland, J. Thomas; McMenomey, Sean O.; Svirsky, Mario A.
2016-01-01
OBJECTIVE To describe our initial operative experience and hearing preservation results with the Advanced Bionics (AB) Mid Scala Electrode (MSE) STUDY DESIGN Retrospective review. SETTING Tertiary referral center. PATIENTS Sixty-three MSE implants in pediatric and adult patients were compared to age- and gender-matched 1j electrode implants from the same manufacturer. All patients were severe to profoundly deaf. INTERVENTION Cochlear implantation with either the AB 1j electrode or the AB MSE. MAIN OUTCOME MEASURES The MSE and 1j electrode were compared in their angular depth of insertion (aDOI) and pre- to post-operative change in hearing thresholds. Hearing preservation was analyzed as a function of aDOI. Secondary outcome measures included operative time, incidence of abnormal intraoperative impedance and telemetry values, and incidence of postsurgical complications. RESULTS Depth of insertion was similar for both electrodes, but was more consistent for the MSE array and more variable for the 1j array. Patients with MSE electrodes had better hearing preservation. Thresholds shifts at four audiometric frequencies ranging from 250 to 2,000 Hz were 10 dB, 7 dB, 2 dB and 6 dB smaller for the MSE electrode than for the 1j (p<0.05). Hearing preservation at low frequencies was worse with deeper insertion, regardless of array. Secondary outcome measures were similar for both electrodes. CONCLUSIONS The MSE electrode resulted in more consistent insertion depth and somewhat better hearing preservation than the 1j electrode. Differences in other surgical outcome measures were small or unlikely to have a meaningful effect. PMID:27755356
Kavrut Ozturk, Nilgun; Kavakli, Ali Sait
2017-08-01
This prospective randomized study compared the coracoid and retroclavicular approaches to ultrasound-guided infraclavicular brachial plexus block (IBPB) in terms of needle tip and shaft visibility and quality of block. We hypothesized that the retroclavicular approach would increase needle tip and shaft visibility and decrease the number of needle passes compared to the coracoid approach. A total of 100 adult patients who received IBPB block for upper limb surgery were randomized into two groups: a coracoid approach group (group C) and a retroclavicular approach group (group R). In group C, the needle was inserted 2 cm medial and 2 cm inferior to the coracoid process and directed from ventral to dorsal. In group R, the needle insertion point was posterior to the clavicle and the needle was advanced from cephalad to caudal. All ultrasound images were digitally stored for analysis. The primary aim of the present study was to compare needle tip and shaft visibility between the coracoid approach and retroclavicular approach in patients undergoing upper limb surgery. The secondary aim was to investigate differences between the two groups in the number of needle passes, sensory and motor block success rates, surgical success rate, block performance time, block performance-related pain, patient satisfaction, use of supplemental local anesthetic and analgesic, and complications. Needle tip visibility and needle shaft visibility were significantly better in group R (p = 0.040, p = 0.032, respectively). Block performance time and anesthesia-related time were significantly shorter in group R (p = 0.022, p = 0.038, respectively). Number of needle passes was significantly lower in group R (p = 0.044). Paresthesia during block performance was significantly higher in group C (p = 0.045). There were no statistically significant differences between the two groups in terms of sensory or motor block success, surgical success, block-related pain, and patient satisfaction. The retroclavicular approach is associated with better needle tip and shaft visibility, reduced performance time and anesthesia-related time, less paresthesia during block performance, and fewer needle passes than the coracoid approach. TRıAL REGISTRY NUMBER: Clinicaltrials.gov (no. NCT02673086).
Buus, Simon; Lizondo, Maria; Hokland, Steffen; Rylander, Susanne; Pedersen, Erik M; Tanderup, Kari; Bentzen, Lise
To quantify needle migration and dosimetric impact in high-dose-rate brachytherapy for prostate cancer and propose a threshold for needle migration. Twenty-four high-risk prostate cancer patients treated with an HDR boost of 2 × 8.5 Gy were included. Patients received an MRI for planning (MRI1), before (MRI2), and after treatment (MRI3). Time from needle insertion to MRI3 was ∼3 hours. Needle migration was evaluated from coregistered images: MRI1-MRI2 and MRI1-MRI3. Dose volume histogram parameters from the treatment plan based on MRI1 were related to parameters based on needle positions in MRI2 or MRI3. Regression was used to model the average needle migration per implant and change in D90 clinical target volume, CTV prostate+3mm . The model fit was used for estimating the dosimetric impact in equivalent dose in 2 Gy fractions for dose levels of 6, 8.5, 10, 15, and 19 Gy. Needle migration was on average 2.2 ± 1.8 mm SD from MRI1-MRI2 and 5.0 ± 3.0 mm SD from MRI1-MRI3. D90 CTV prostate+3mm was robust toward average needle migration ≤3 mm, whereas for migration >3 mm D90 decreased by 4.5% per mm. A 3 mm of needle migration resulted in a decrease of 0.9, 1.7, 2.3, 4.8, and 7.6 equivalent dose in 2 Gy fractions for dose levels of 6, 8.5, 10, 15, and 19 Gy, respectively. Substantial needle migration in high-dose-rate brachytherapy occurs frequently in 1-3 hours following needle insertion. A 3-mm threshold of needle migration is proposed, but 2 mm may be considered for dose levels ≥15 Gy. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Needle segmentation using 3D Hough transform in 3D TRUS guided prostate transperineal therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu Wu; Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario N6A 5K8; Yuchi Ming
Purpose: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200 000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. Methods: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped;more » the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. Results: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 Multiplication-Sign 376 Multiplication-Sign 630 voxels. Conclusions: The proposed needle segmentation algorithm is accurate, robust, and suitable for 3D TRUS guided prostate transperineal therapy.« less
Kim, Jong-Hak; Lee, Jun Seop
2013-01-01
Background Continuous epidural anesthesia is useful for endoscopic urologic surgery, as mostly performed in the elderly patients. In such a case, it is necessary to obtain successful sacral anesthesia, and the insertion of epidural catheter in the caudad direction may be needed. However, continuous epidural catherization has been related to paresthesias. This study aimed to evaluate the effects of the direction of the catheter insertion on the incidence of paresthesias in the elderly patients. Methods Two hundred elderly patients scheduled for endoscopic urologic surgery were enrolled. The epidural catheter was inserted at L2-3, L3-4, and L4-5 using the Tuohy needle. In Group I (n = 100), the Tuohy needle with the bevel directed the cephalad during the catheter insertion. In Group II (n = 100), it directed the caudad. During the catheter insertion, an anesthesiologist evaluated the presence of paresthesias and the ease or difficulty during the catheter insertion. Results In Group I (n = 97), 15.5% of the patients had paresthesias versus 18.4% in Group II (n = 98), and there was no significant difference between the two groups. In paresthesia depending on the insertion site and the ease or difficulty during the catheter insertion, there were no significant differences between the two groups. Conclusions Our results concluded that the direction of epidural catheter insertion did not significantly influence the incidence of paresthesias in the elderly patients. PMID:23741568
Benghalem, Abdelhamid; Gazibegovic, Dzemal; Saadi, Fatima; Tazi-Chaoui, Zakia
2017-01-01
Atraumatic insertion of the HiFocus TM Mid-Scala (HFMS) electrode via the round window was successfully achieved in seven children. Residual hearing 6 months post-operatively was preserved to within 10 dB HL of the pre-operative audiogram at 500 Hz for six children, indicating minimal initial insertion trauma to the cochlea. The objectives were to document the clinical experience and evaluate differences between HFMS and HiFocus TM 1j (HF1j) by means of insertion depth and hearing preservation results. Nineteen children were prospectively recruited and consecutively implanted with the HF1j electrode (n = 12) or the HFMS electrode (n = 7) via the round window. Average median angular insertion depths and the amount of residual hearing preserved at 6 months post-operatively were compared between the two electrode groups. The median angular insertion depth for the HF1j was 439° and for the HFMS 435°. Preservation of residual hearing at 500 Hz was assessed in seven HFMS subjects and 11 HF1j subjects. Based on the Skarzynski formula, three out of seven subjects (42%) in the HFMS group had their residual hearing completely preserved at 500 Hz. In the control group, no subjects had complete hearing preservation and five subjects had a complete loss of residual hearing.
Optical emission spectroscopy of point-plane corona and back-corona discharges in air
NASA Astrophysics Data System (ADS)
Czech, T.; Sobczyk, A. T.; Jaworek, A.
2011-12-01
Results of spectroscopic investigations and current-voltage characteristics of corona discharge and back discharge on fly-ash layer, generated in point-plane electrode geometry in air at atmospheric pressure are presented in the paper. The characteristics of both discharges are similar but differ in the current and voltage ranges of all the discharge forms distinguished during the experiments. Three forms of back discharge, for positive and negative polarity, were investigated: glow, streamer and low-current back-arc. In order to characterize ionisation and excitation processes in back discharge, the emission spectra were measured and compared with those obtained for normal corona discharge generated in the same electrode configuration but with fly ash layer removed. The emission spectra were measured in two discharge zones: near the tip of needle electrode and near the plate. Visual forms of the discharge were recorded with digital camera and referred to current-voltage characteristics and emission spectra. The measurements have shown that spectral lines emitted by back discharge depend on the form of discharge and the discharge current. From the comparison of the spectral lines of back and normal discharges an effect of fly ash layer on the discharge morphology can be determined. The recorded emission spectra formed by ionised gas and plasma near the needle electrode and fly ash layer are different. It should be noted that in back arc emission, spectral lines of fly ash layer components can be distinguished. On the other hand, in needle zone, the emission of high intensity N2 second positive system and NO γ lines can be noticed. Regardless of these gaseous lines, also atomic lines of dust layer were present in the spectrum. The differences in spectra of back discharge for positive and negative polarities of the needle electrode have been explained by considering the kind of ions generated in the crater in fly ash layer. The aim of these studies is to better understand the discharge processes encountered in electrostatic precipitators.
A novel 3D guidance system using augmented reality for percutaneous vertebroplasty: technical note.
Abe, Yuichiro; Sato, Shigenobu; Kato, Koji; Hyakumachi, Takahiko; Yanagibashi, Yasushi; Ito, Manabu; Abumi, Kuniyoshi
2013-10-01
Augmented reality (AR) is an imaging technology by which virtual objects are overlaid onto images of real objects captured in real time by a tracking camera. This study aimed to introduce a novel AR guidance system called virtual protractor with augmented reality (VIPAR) to visualize a needle trajectory in 3D space during percutaneous vertebroplasty (PVP). The AR system used for this study comprised a head-mount display (HMD) with a tracking camera and a marker sheet. An augmented scene was created by overlaying the preoperatively generated needle trajectory path onto a marker detected on the patient using AR software, thereby providing the surgeon with augmented views in real time through the HMD. The accuracy of the system was evaluated by using a computer-generated simulation model in a spine phantom and also evaluated clinically in 5 patients. In the 40 spine phantom trials, the error of the insertion angle (EIA), defined as the difference between the attempted angle and the insertion angle, was evaluated using 3D CT scanning. Computed tomography analysis of the 40 spine phantom trials showed that the EIA in the axial plane significantly improved when VIPAR was used compared with when it was not used (0.96° ± 0.61° vs 4.34° ± 2.36°, respectively). The same held true for EIA in the sagittal plane (0.61° ± 0.70° vs 2.55° ± 1.93°, respectively). In the clinical evaluation of the AR system, 5 patients with osteoporotic vertebral fractures underwent VIPAR-guided PVP from October 2011 to May 2012. The postoperative EIA was evaluated using CT. The clinical results of the 5 patients showed that the EIA in all 10 needle insertions was 2.09° ± 1.3° in the axial plane and 1.98° ± 1.8° in the sagittal plane. There was no pedicle breach or leakage of polymethylmethacrylate. VIPAR was successfully used to assist in needle insertion during PVP by providing the surgeon with an ideal insertion point and needle trajectory through the HMD. The findings indicate that AR guidance technology can become a useful assistive device during spine surgeries requiring percutaneous procedures.
Su, Jiang-tao; Zhou, Qing-hui; Li, Rui; Zhang, Jie; Li, Wei-hong; Wang, Qiong
2010-08-01
To assess the immediate analgesic effect of wrist-ankle acupuncture on acute lumbago and the relationship between the analgesic effect and the expectation of patients. A randomized, single-blind, sham-controlled trial was designed. Sixty cases of acute lumbago were randomly divided into two groups, 30 cases in each one. In observation group, wrist-ankle acupuncture was adopted to the Lower 5 and Lower 6 bilaterally, no requirement of Deqi (arrival of qi). In control group, sham acupuncture was adopted. The treatment was applied once in either group, with the needles retained for 30 min. The Short-form McGill Pain Questionnaire (SF-MPQ) and the Modified-Modified Schober (MMS) test were used to assess the motion related pain and the situation of spinal flexion in 3 min before treatment and 5 min, 10 min, 15 min, during treatment and 30 min (needle removed), respectively. The Expectation and Treatment Credibility Scale (ETCS) was applied to analyze the relationship between the expectation of patients and the analgesic effect. The adverse reaction was recorded. There were no statistically significant differences in SF-MPQ, MMS and ETCS before treatment between two groups (all P>0.05). In 5 min after needles insertion, the scores of the items in SF-MPQ in observation group were lower than those in control group (P<0.05, P<0.01). In 10 min after needles insertion, the scores of SF-MPQ in observation group were lower than those in control group and the scores of MMS were higher than those in control group (P<0.05). In 15 min after needles insertion, except the sensory pain rating index, the scores of the rest items in SF-MPQ in observation group were all lower than those in control group (P<0.05, P<0.01). In 30 min (needles removed), the scores of affective pain rating index of SF-MPQ and Visual Analogue Scale (VAS) in observation group were lower than those in control group (P<0.05, P<0.01). The expectation before treatment was negatively correlated with VAS scores in 5 min, 10 min, 15 min and 30 min after needle insertion separately in observation group (P<0.05), while the correlation was not found in control group (P>0.05). No adverse reaction was reported. Wrist-ankle acupuncture can reduce acute lumbago immediately and significantly. The higher the expectation on the analgesic effect of wrist-ankle acupuncture the patients have, the better the analgesic effect will be. This therapy is highly safe in the treatment.
Successful Treatment of Achilles Tendinopathy with Electroacupuncture: Two Cases
2017-01-01
Abstract Background: Achilles tendinopathy is a common injury for active patient populations and is challenging to treat. Acupuncture tendon–based therapy was first described in the Yellow Emperor's Classic of Internal Medicine. In modern times, specific techniques have been described poorly in the literature. The aim of this case report is to describe a new technique of acupuncture for the treatment of Achilles tendinopathy and provide 2 illustrative cases. Cases: Treatments for the 2 patients were performed in a deployed military treatment facility. SERIN® 0.25 mm × 40 mm needles placed at BL 60, BL 61, KI 3, and KI 4, with needles directed into the Achilles tendon of each patient. Needles were inserted until a firm catch of the needle entering the tendon was discerned. Energy was placed from KI 3(–) → KI 4(+) and BL61 (–) → BL 60(+) at 30 Hz for 15 minutes. Results: Both patients reported symptomatic reduction in Achilles tendinopathy pain and functional improvement following the described treatments. Conclusions: This case series describes two cases of successful Achilles tendinopathy therapy using direct tendon needle insertion with electrostimulation. This novel technique may provide an effective adjunct to traditional therapies in the treatment of Achilles tendinopathy. PMID:28736593
Smartphone-Guided Needle Angle Selection During CT-Guided Procedures.
Xu, Sheng; Krishnasamy, Venkatesh; Levy, Elliot; Li, Ming; Tse, Zion Tsz Ho; Wood, Bradford John
2018-01-01
In CT-guided intervention, translation from a planned needle insertion angle to the actual insertion angle is estimated only with the physician's visuospatial abilities. An iPhone app was developed to reduce reliance on operator ability to estimate and reproduce angles. The iPhone app overlays the planned angle on the smartphone's camera display in real-time based on the smartphone's orientation. The needle's angle is selected by visually comparing the actual needle with the guideline in the display. If the smartphone's screen is perpendicular to the planned path, the smartphone shows the Bull's-Eye View mode, in which the angle is selected after the needle's hub overlaps the tip in the camera. In phantom studies, we evaluated the accuracies of the hardware, the Guideline mode, and the Bull's-Eye View mode and showed the app's clinical efficacy. A proof-of-concept clinical case was also performed. The hardware accuracy was 0.37° ± 0.27° (mean ± SD). The mean error and navigation time were 1.0° ± 0.9° and 8.7 ± 2.3 seconds for a senior radiologist with 25 years' experience and 1.5° ± 1.3° and 8.0 ± 1.6 seconds for a junior radiologist with 4 years' experience. The accuracy of the Bull's-Eye View mode was 2.9° ± 1.1°. Combined CT and smart-phone guidance was significantly more accurate than CT-only guidance for the first needle pass (p = 0.046), which led to a smaller final targeting error (mean distance from needle tip to target, 2.5 vs 7.9 mm). Mobile devices can be useful for guiding needle-based interventions. The hardware is low cost and widely available. The method is accurate, effective, and easy to implement.
PERTINENT DRY NEEDLING CONSIDERATIONS FOR MINIMIZING ADVERSE EFFECTS – PART ONE
Halle, Rob J.
2016-01-01
ABSTRACT Background Dry needling is an evidence-based treatment technique that is accepted and used by physical therapists in the United States. This treatment approach focuses on releasing or inactivating muscular trigger points to decrease pain, reduce muscle tension, and assist patients with an accelerated return to active rehabilitation. Issue While commonly used, the technique has some patient risk and value of the treatment should be based on benefit compared to the potential risk. Adverse effects (AEs) with dry needling can be mild or severe, with overall incidence rates varying from zero to rates of approximately 10 percent. While mild AEs are the rule, any procedure that involves a needle insertion has the potential for an AE, with select regions and the underlying anatomy increasing the risk. Known significant AEs from small diameter needle insertion include pneumothorax, cardiac tamponade, hematoma, infection, central nervous system injury, and other complications. Purpose/Objective Underlying anatomy across individuals has variability, requiring an in-depth knowledge of anatomy prior to any needle placement. This commentary is an overview of pertinent anatomy in the region of the thorax, with a ‘part two’ that addresses the abdomen, pelvis, back, vasovagal response, informed consent and other pertinent issues. The purpose of the commentary is to minimize the risk of a dry needling AE. Conclusions/Implications Dry needling is an effective adjunct treatment procedure that is within the recognized scope of physical therapy practice. Physical therapy education and training provides practitioners with the anatomy, basic sciences, and clinical foundation to use this intervention safely and effectively. A safe and evidenced-based implementation of the procedure is based on a thorough understanding of the underlying anatomy and the potential risks, with risks coordinated with patients via informed consent. Levels of Evidence Level 5 PMID:27525188
Morros-Viñoles, C; Pérez-Cuenca, M D; Cedó-Lluís, E; Colls, C; Bueno, J; Cedó-Vallobá, F
2002-11-01
Post-dural puncture headache and lumbar backache are related to needle gauge and type of point used. We aimed to determine whether the incidence of post-dural puncture headache and lumbar backache could be reduced by using fine gauge pencil-point Sprotte 27G and 29G needles. We also studied increases in technical difficulty with these needles and whether or not reducing needle gauge affected anesthetic quality. Three hundred eighty-nine patients undergoing orthopedic or lower abdominal surgery were randomly assigned to two groups for dural puncture using two Sprotte needles: 27G or 29G. We recorded time to perform puncture, number of re-insertations of the needle, number of times the technique was abandoned and anesthetic efficacy. On the second and seventh days, the patients were interviewed by telephone to check for the presence and severity of post-dural puncture headache or lumbar backache. The technical difficulty was greater with the Sprotte 29G needle, as shown by significant differences in time taken to perform the puncture and the number of re-insertions (p < 0.05). Anesthetic quality was the same in both groups and the percentage of failures was 0.5% for both. Five percent of patients in the 27G group and 3% in the 29G group experienced slight or moderate headache on the second day. No cases of severe cephalea were reported. Lumbar backache was reported on the second day by 26% and 18.5% of the patients in the 27G and 29G groups, respectively, but the rates decreased to 4.5% and 0.5% on the seventh day. The differences were significant, favoring the 29G needle. The use of 29G pencil-point needles can be recommended to reduce the incidence of headache and lumbar backache in the postoperative period, in spite of the greater technical difficulty involved, given that quality of anesthesia is maintained.
Detection of Membrane Puncture with Haptic Feedback using a Tip-Force Sensing Needle.
Elayaperumal, Santhi; Bae, Jung Hwa; Daniel, Bruce L; Cutkosky, Mark R
2014-09-01
This paper presents calibration and user test results of a 3-D tip-force sensing needle with haptic feedback. The needle is a modified MRI-compatible biopsy needle with embedded fiber Bragg grating (FBG) sensors for strain detection. After calibration, the needle is interrogated at 2 kHz, and dynamic forces are displayed remotely with a voice coil actuator. The needle is tested in a single-axis master/slave system, with the voice coil haptic display at the master, and the needle at the slave end. Tissue phantoms with embedded membranes were used to determine the ability of the tip-force sensors to provide real-time haptic feedback as compared to external sensors at the needle base during needle insertion via the master/slave system. Subjects were able to determine the position of the embedded membranes with significantly better accuracy using FBG tip feedback than with base feedback using a commercial force/torque sensor (p = 0.045) or with no added haptic feedback (p = 0.0024).
Detection of Membrane Puncture with Haptic Feedback using a Tip-Force Sensing Needle
Elayaperumal, Santhi; Bae, Jung Hwa; Daniel, Bruce L.; Cutkosky, Mark R.
2015-01-01
This paper presents calibration and user test results of a 3-D tip-force sensing needle with haptic feedback. The needle is a modified MRI-compatible biopsy needle with embedded fiber Bragg grating (FBG) sensors for strain detection. After calibration, the needle is interrogated at 2 kHz, and dynamic forces are displayed remotely with a voice coil actuator. The needle is tested in a single-axis master/slave system, with the voice coil haptic display at the master, and the needle at the slave end. Tissue phantoms with embedded membranes were used to determine the ability of the tip-force sensors to provide real-time haptic feedback as compared to external sensors at the needle base during needle insertion via the master/slave system. Subjects were able to determine the position of the embedded membranes with significantly better accuracy using FBG tip feedback than with base feedback using a commercial force/torque sensor (p = 0.045) or with no added haptic feedback (p = 0.0024). PMID:26509101
Cochlear Implant Electrode Array From Partial to Full Insertion in Non-Human Primate Model.
Manrique-Huarte, Raquel; Calavia, Diego; Gallego, Maria Antonia; Manrique, Manuel
2018-04-01
To determine the feasibility of progressive insertion (two sequential surgeries: partial to full insertion) of an electrode array and to compare functional outcomes. 8 normal-hearing animals (Macaca fascicularis (MF)) were included. A 14 contact electrode array, which is suitably sized for the MF cochlea was partially inserted (PI) in 16 ears. After 3 months of follow-up revision surgery the electrode was advanced to a full insertion (FI) in 8 ears. Radiological examination and auditory testing was performed monthly for 6 months. In order to compare the values a two way repeated measures ANOVA was used. A p-value below 0.05 was considered as statistically significant. IBM SPSS Statistics V20 was used. Surgical procedure was completed in all cases with no complications. Mean auditory threshold shift (ABR click tones) after 6 months follow-up is 19 dB and 27 dB for PI and FI group. For frequencies 4, 6, 8, 12, and 16 kHz in the FI group, tone burst auditory thresholds increased after the revision surgery showing no recovery thereafter. Mean threshold shift at 6 months of follow- up is 19.8 dB ranging from 2 to 36dB for PI group and 33.14dB ranging from 8 to 48dB for FI group. Statistical analysis yields no significant differences between groups. It is feasible to perform a partial insertion of an electrode array and progress on a second surgical time to a full insertion (up to 270º). Hearing preservation is feasible for both procedures. Note that a minimal threshold deterioration is depicted among full insertion group, especially among high frequencies, with no statistical differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borot de Battisti, M; Maenhout, M; Lagendijk, J J W
Purpose: This study assesses the potential of Fiber Bragg Grating (FBG)-based sensing for real-time needle (including catheter or tube) tracking during MR-guided HDR brachytherapy. Methods: The proposed FBG-based sensing tracking approach involves a MR-compatible stylet composed of three optic fibers with nine sets of embedded FBG sensors each. When the stylet is inserted inside the lumen of the needle, the FBG sensing system can measure the needle’s deflection. For localization of the needle in physical space, the position and orientation of the stylet base are mandatory. For this purpose, we propose to fix the stylet base and determine its positionmore » and orientation using a MR-based calibration as follows. First, the deflection of a needle inserted in a phantom in two different configurations is measured during simultaneous MR-imaging. Then, after segmentation of the needle shapes on the MR-images, the position and orientation of the stylet base is determined using a rigid registration of the needle shapes on both MR and FBG-based measurements. The calibration method was assessed by measuring the deflection of a needle in a prostate phantom in five different configurations using FBG-based sensing during simultaneous MR-imaging. Any two needle shapes were employed for the calibration step and the proposed FGB-tracking approach was subsequently evaluated on the other three needles configurations. The tracking accuracy was evaluated by computing the Euclidian distance between the 3D FBG vs. MR-based measurements. Results: Over all needle shapes tested, the average(standard deviation) Euclidian distance between the FBG and MR-based measurements was 0.79mm(0.37mm). The update rate and latency of the FBG-based measurements were 100ms and 300ms respectively. Conclusion: The proposed FBG-based protocol can measure the needle position with an accuracy, precision, update rate and latency eligible for accurate needle steering during MR-guided HDR brachytherapy. M. Borot de Battisti is funded by Philips Medical Systems Nederland B.V.; M. Moerland is principal investigator on a contract funded by Philips Medical Systems Nederland B.V.; G. Hautvast and D. Binnekamp are fulltime employees of Philips Medical Systems Nederland B.V.« less
Dimensions of stabident intraosseous perforators and needles.
Ramlee, R A; Whitworth, J
2001-09-01
Problems can be encountered inserting intraosseous injection needles through perforation sites. This in vitro study examined the variability and size compatibility of Stabident intraosseous injection components. The diameters of 40 needles and perforators from a single Stabident kit were measured in triplicate with a toolmakers microscope. One-way ANOVA revealed that mean needle diameter (0.411 mm) was significantly narrower than mean perforator diameter (0.427 mm) (p < 0.001). A frequency distribution plot revealed that needle diameter followed a normal distribution, indicating tight quality control during manufacture. The diameter of perforators was haphazardly distributed, with a clustering of 15% at the lower limit of the size range. However on no occasion was the diameter of a perforator smaller than that of an injection needle. We conclude that components of the Stabident intraosseous anaesthetic system are size-compatible, but there is greater and more haphazard variability in the diameter of perforators than injection needles.
2013-04-22
ISS035-E-025557(22 April 2013) ---Multi-user Droplet Combustion Apparatus (MDCA) Hardware Replacement: Cassidy accessed the Combustion Integration Rack (CIR) Combustion Chamber and removed the MDCA Chamber Insert Assembly (CIA). He then replaced the MDCA Needle 1 due to a fuel line that was damaged during previous activities when the MDCA CIA was being removed from the Combustion Chamber.
Production of atmospheric-pressure glow discharge in nitrogen using needle-array electrode
NASA Astrophysics Data System (ADS)
Takaki, K.; Hosokawa, M.; Sasaki, T.; Mukaigawa, S.; Fujiwara, T.
2005-04-01
An atmospheric pressure glow discharge was generated using a needle-array electrode in nitrogen, and the voltage-current characteristics of the glow discharge were obtained in a range from 1 mA to 60 A. A pulsed high voltage with short rise time under 10 ns was employed to generate streamer discharges simultaneously at all needle tips. The large number of streamer discharges prevented the glow-to-arc transition caused by inhomogeneous thermalization. Semiconductor opening switch diodes were employed as an opening switch to shorten the rise time. The glow voltage was almost constant until the discharge current became 0.3 A, whereas the voltage increased with the current higher than 0.3 A. Electron density and temperature in a positive column of the glow discharge at 60 A were obtained to 1.4×1012cm-3 and 1.3 eV from calculation based on nitrogen swarm data.
Needle Steering in Biological Tissue using Ultrasound-based Online Curvature Estimation
Moreira, Pedro; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak
2014-01-01
Percutaneous needle insertions are commonly performed for diagnostic and therapeutic purposes. Accurate placement of the needle tip is important to the success of many needle procedures. The current needle steering systems depend on needle-tissue-specific data, such as maximum curvature, that is unavailable prior to an interventional procedure. In this paper, we present a novel three-dimensional adaptive steering method for flexible bevel-tipped needles that is capable of performing accurate tip placement without previous knowledge about needle curvature. The method steers the needle by integrating duty-cycled needle steering, online curvature estimation, ultrasound-based needle tracking, and sampling-based motion planning. The needle curvature estimation is performed online and used to adapt the path and duty cycling. We evaluated the method using experiments in a homogenous gelatin phantom, a two-layer gelatin phantom, and a biological tissue phantom composed of a gelatin layer and in vitro chicken tissue. In all experiments, virtual obstacles and targets move in order to represent the disturbances that might occur due to tissue deformation and physiological processes. The average targeting error using our new adaptive method is 40% lower than using the conventional non-adaptive duty-cycled needle steering method. PMID:26229729
NASA Astrophysics Data System (ADS)
Ng, H. B.; Shearwood, C.
2007-12-01
The successful development of micro-needles can help transport drugs and vaccines both effectively and painlessly across the skin. However, not all micro-needles are strong enough to withstand the insertion forces and viscoelasticity of the skin. The work here focuses on the micro-fabrication of high aspect ratio needles with careful control of needle-profile using dry etching technologies. Silicon micro-needles, 150μm in length with base-diameters ranging from 90 to 240μm have been investigated in this study. A novel, multiple-sacrificial approach has been demonstrated as suited to the fabrication of long micro-needle bodies with positive profiles. The parameters that control the isotropic etching are adjusted to control the ratio of the needle-base diameter to needle length. By careful control of geometry, the needle profile can be engineered to give a suitable tip size for penetration, as well as a broad needle base to facilitate the creation of either single or multiple-through holes. This approach allows the mechanical properties of the otherwise brittle needles to be optimized. Finite element analysis indicates that the micro-needles will fracture prematurely due to buckling, with forces ranging from 10 to 30mN.
Mignon, Paul; Poignet, Philippe; Troccaz, Jocelyne
2018-05-29
Robotic control of needle bending aims at increasing the precision of percutaneous procedures. Ultrasound feedback is preferable for its clinical ease of use, cost and compactness but raises needle detection issues. In this paper, we propose a complete system dedicated to robotized guidance of a flexible needle under 3D ultrasound imaging. This system includes a medical robot dedicated to transperineal needle positioning and insertion, a rapid path planning for needle steering using bevel-tip needle natural curvature in tissue, and an ultrasound-based automatic needle detection algorithm. Since ultrasound-based automatic needle steering is often made difficult by the needle localization in biological tissue, we quantify the benefit of using flexible echogenic needles for robotized guidance under 3D ultrasound. The "echogenic" term refers to the etching of microstructures on the needle shaft. We prove that these structures improve needle visibility and detection robustness in ultrasound images. We finally present promising results when reaching targets using needle steering. The experiments were conducted with various needles in different media (synthetic phantoms and ex vivo biological tissue). For instance, with nitinol needles the mean accuracy is 1.2 mm (respectively 3.8 mm) in phantoms (resp. biological tissue).
High-pressure needle interface for thermoplastic microfluidics.
Chen, C F; Liu, J; Hromada, L P; Tsao, C W; Chang, C C; DeVoe, D L
2009-01-07
A robust and low dead volume world-to-chip interface for thermoplastic microfluidics has been developed. The high pressure fluidic port employs a stainless steel needle inserted into a mating hole aligned to an embedded microchannel, with an interference fit used to increase pressure resistance. Alternately, a self-tapping threaded needle screwed into a mating hole is also demonstrated. In both cases, the flat bottom needle ports seat directly against the microchannel substrate, ensuring low interfacial dead volumes. Low dispersion is observed for dye bands passing the interfaces. The needle ports offer sufficient pull-out forces for applications such as liquid chromatography that require high internal fluid pressures, with the epoxy-free interfaces compatible with internal microchannel pressures above 40 MPa.
3D ultrasound image guidance system used in RF uterine adenoma and uterine bleeding ablation system
NASA Astrophysics Data System (ADS)
Ding, Mingyue; Luo, Xiaoan; Cai, Chao; Zhou, Chengping; Fenster, Aaron
2006-03-01
Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese women. Many women lose their fertility from these diseases. Currently, a minimally invasive ablation system using an RF button electrode is being used in Chinese hospitals to destroy tumor cells or stop bleeding. In this paper, we report on a 3D US guidance system developed to avoid accidents or death of the patient by inaccurate localization of the tumor position during treatment. A 3D US imaging system using a rotational scanning approach of an abdominal probe was built. In order to reduce the distortion produced when the rotational axis is not collinear with the central beam of the probe, a new 3D reconstruction algorithm is used. Then, a fast 3D needle segmentation algorithm is used to find the electrode. Finally, the tip of electrode is determined along the segmented 3D needle and the whole electrode is displayed. Experiments with a water phantom demonstrated the feasibility of our approach.
How Do Health Care Providers Diagnose Phenylketonuria (PKU)?
... born with PKU. To perform this test, a health care provider takes some cells, either through a needle inserted into the abdomen or a small tube inserted into the vagina. A genetic counselor who understands the risks and benefits of genetic testing can help explain the choices available for testing. ...
Micro-Fluidic Device for Drug Delivery
NASA Technical Reports Server (NTRS)
Beebe, David J. (Inventor); Eddington, David T. (Inventor); MacDonald, Michael J. (Inventor); Mensing, Glennys A. (Inventor)
2014-01-01
A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.
Microfluidic device for drug delivery
NASA Technical Reports Server (NTRS)
MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Beebe, David J. (Inventor); Mensing, Glennys A. (Inventor)
2010-01-01
A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.
Simple and fast method for fabrication of endoscopic implantable sensor arrays.
Tahirbegi, I Bogachan; Alvira, Margarita; Mir, Mònica; Samitier, Josep
2014-06-26
Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope.
Asakura, T; Seino, H; Nozaki, S; Abe, R
2001-06-01
Coring is reported to occur because rubber pieces are shaved off from a rubber stopper when a needle is inserted into the rubber stopper of transfusion liquid formulation. We verified whether coring really occurs in insulin vials of self-injecting patients. We collected insulin cartridges from 30 hospitalized patients and used the primary injection (trial injection), the secondary injection and the cartridge remaining preparation as samples. We observed the rubber pieces using a microscope and measured the shape, number of pieces. The occurrence rate of coring was 73% for the primary injection, 47% for the secondary injection and 97% for the cartridge remaining preparation. The rubber pieces in the primary injection and the secondary injection which went through the needle are mostly in aggregate shape and the rubber pieces in the cartridge remaining preparation which did not go through the needle are mostly in needle-like shape. A number of small rubber pieces are found in both the primary injection and the secondary injection, indicating a high possibility that rubber pieces may be injected under subcutaneous tissue. The coring is considered to occur because needles are repeatedly inserted and rotated at the same spot. It is required to improve the structure to mount a needle to the pen-type injector in future. Coring is a very serious problem from the medical and pharmaceutical points of view. Further study should be made on the implication to latex allergy and lipodystrophy.
NASA Astrophysics Data System (ADS)
Li, Jiawen; Quirk, Bryden C.; Noble, Peter B.; Kirk, Rodney W.; Sampson, David D.; McLaughlin, Robert A.
2017-10-01
Transbronchial needle aspiration (TBNA) of small lesions or lymph nodes in the lung may result in nondiagnostic tissue samples. We demonstrate the integration of an optical coherence tomography (OCT) probe into a 19-gauge flexible needle for lung tissue aspiration. This probe allows simultaneous visualization and aspiration of the tissue. By eliminating the need for insertion and withdrawal of a separate imaging probe, this integrated design minimizes the risk of dislodging the needle from the lesion prior to aspiration and may facilitate more accurate placement of the needle. Results from in situ imaging in a sheep lung show clear distinction between solid tissue and two typical constituents of nondiagnostic samples (adipose and lung parenchyma). Clinical translation of this OCT-guided aspiration needle holds promise for improving the diagnostic yield of TBNA.
Semi-empirical master curve concept describing the rate capability of lithium insertion electrodes
NASA Astrophysics Data System (ADS)
Heubner, C.; Seeba, J.; Liebmann, T.; Nickol, A.; Börner, S.; Fritsch, M.; Nikolowski, K.; Wolter, M.; Schneider, M.; Michaelis, A.
2018-03-01
A simple semi-empirical master curve concept, describing the rate capability of porous insertion electrodes for lithium-ion batteries, is proposed. The model is based on the evaluation of the time constants of lithium diffusion in the liquid electrolyte and the solid active material. This theoretical approach is successfully verified by comprehensive experimental investigations of the rate capability of a large number of porous insertion electrodes with various active materials and design parameters. It turns out, that the rate capability of all investigated electrodes follows a simple master curve governed by the time constant of the rate limiting process. We demonstrate that the master curve concept can be used to determine optimum design criteria meeting specific requirements in terms of maximum gravimetric capacity for a desired rate capability. The model further reveals practical limits of the electrode design, attesting the empirically well-known and inevitable tradeoff between energy and power density.
Takazawa, Shinya; Ishimaru, Tetsuya; Fujii, Masahiro; Harada, Kanako; Sugita, Naohiko; Mitsuishi, Mamoru; Iwanaka, Tadashi
2013-11-01
We have developed a thin needle driver with multiple degrees-of-freedom (DOFs) for neonatal laparoscopic surgery. The tip of this needle driver has three DOFs for grasp, deflection and rotation. Our aim was to evaluate the performance of the multi-DOF needle driver in vertical plane suturing. Six pediatric surgeons performed four directional suturing tasks in the vertical plane using the multi-DOF needle driver and a conventional one. Assessed parameters were the accuracy of insertion and exit, the depth of suture, the inclination angle of the needle and the force applied on the model. In left and right direction sutures, the inclination angle of the needle with the multi-DOF needle driver was significantly smaller than that with the conventional one (p = 0.014, 0.042, respectively). In left and right direction sutures, the force for pulling the model with the multi-DOF needle driver was smaller than that with the conventional one (p = 0.036, 0.010, respectively). This study showed that multi-directional suturing on a vertical plane using the multi-DOF needle driver had better needle trajectories and was less invasive as compared to a conventional needle driver.
Greene, Nathaniel T.; Mattingly, Jameson K.; Jenkins, Herman A.; Tollin, Daniel J.; Easter, James R.; Cass, Stephen P.
2015-01-01
Hypothesis Cochlear implants (CI) designed for hearing preservation will not alter mechanical properties of the middle and inner ear as measured by intracochlear pressure (PIC) and stapes velocity (Vstap). Background CIs designed to provide combined electrical and acoustic stimulation (EAS) are now available. To maintain functional acoustic hearing, it is important to know if a CI electrode can alter middle or inner ear mechanics, as any alteration could contribute to elevated low-frequency thresholds in EAS patients. Methods Seven human cadaveric temporal bones were prepared, and pure-tone stimuli from 120Hz–10kHz were presented at a range of intensities up to 110 dB SPL. PIC in the scala vestibuli (PSV) and tympani (PST) were measured with fiber-optic pressure sensors concurrently with VStap using laser Doppler vibrometry. Five CI electrodes from two different manufacturers, with varying dimensions were inserted via a round window approach at six different depths (16–25 mm). Results The responses of PIC and VStap to acoustic stimulation were assessed as a function of stimulus frequency, normalized to SPL in the external auditory canal (EAC), in baseline and electrode inserted conditions. Responses measured with electrodes inserted were generally within ~5 dB of baseline, indicating little effect of cochlear implant electrode insertion on PIC and VStap. Overall, mean differences across conditions were small for all responses, and no substantial differences were consistently visible across electrode types. Conclusions Results suggest that the influence of a CI electrode on middle and inner ear mechanics is minimal, despite variation in electrode lengths and configurations. PMID:26333018
Jiam, Nicole T; Limb, Charles J
2016-09-01
To evaluate incidence of interscalar excursions between round window (RW) and cochleostomy approaches for cochlear implant (CI) insertion. This was a retrospective case-comparison. Flat-panel CT (FPCT) scans for 8 CI users with Med-El standard length electrode arrays were collected. Surgical technique was identified by a combination of operative notes and FPCT imaging. Four cochleae underwent round window insertion and 4 cochleae underwent cochleostomy approaches anterior and inferior to the round window. In our pilot study, cochleostomy approaches were associated with a higher likelihood of interscalar excursion. Within the cochleostomy group, we found 29% of electrode contacts (14 of 48 electrodes) to be outside the scala tympani. On the other hand, 8.5% of the electrode contacts (4 of 47 electrodes) in the round window insertion group were extra-scalar to the scala tympani. These displacements occurred at a mean angle of occurrence of 364° ± 133°, near the apex of the cochlea. Round window electrode displacements tend to localize at angle of occurrences of 400° or greater. Cochleostomy electrodes occurred at an angle of occurrence of 19°-490°. Currently, the optimal surgical approach for standard CI electrode insertion is highly debated, to a certain extent due to a lack of post-operative assessment of intracochlear electrode contact. Based on our preliminary findings, cochleostomy approach is associated with an increased likelihood of interscalar excursions, and these findings should be further evaluated with future prospective studies.
Fuchs, Zeynep; Scaal, Martin; Haverkamp, Heinz; Koerber, Friederike; Persigehl, Thorsten; Eifinger, Frank
2018-06-01
Intraosseous (IO)-access plays an alternative route during resuscitation. Our study was performed to investigate the successful rate of IO-access in preterm and term stillborns using different devices and techniques. The cadavers used were legal donations. 16 stillborns, median: 29.2 weeks (IQR 27.2-38.4) were investigated. Two different needles (a: Butterfly needle, 21G, Venofix ® Fa.Braun; b: Arrow ® EZ-IO ® 15G, Teleflex, Dublin, Ireland) were used. Needles were inserted i: manually, using a Butterfly needle; ii: manually, using EZ-IO ® needle or iii: using a battery-powered semi-automatic drill (Arrow ® EZ-IO ® ). Spectral-CT's were performed. The diameter of the corticalis was determined from the CT-images. Successful hit rates with 95% confidence intervals (CI) and odds ratios between the three methods were estimated using a generalised linear mixed model (GLMM). Estimated success rate was 61.1% (95%CI:39.7%-78.9%) for the Butterfly needle, 43.0% (95%CI:23.4%-65.0%) for hand-twisted EZ-IO ® screwing and 39.7% (95%CI:24.1-57.7%) for the semi-automatic drill (Arrow ® EZ-IO ® ), all referring to an average diameter of the corticalis of 1.2 mm. The odds of a correct position were 2.4 times higher (95%CI:0.8-7.6) when using the Butterfly needle than with the drill. In contrast, the odds of correct positioning when inserting the needle by hand were not significantly different from using the drill (odds ratio 1.1, 95%CI: 0.4-3.3). Neither of these effects nor the diameter of the corticalis with an odds ratio near one were significant in the model. Median diameter of the bone marrow cavity was 4.0 mm [IQR 3.3-4.7]. Intraosseous access for premature and neonatal infants could be best achieved by using a manually twisted Butterfly needle. Copyright © 2018 Elsevier B.V. All rights reserved.
Multichannel cochlear implantation in the scala vestibuli.
Lin, Karen; Marrinan, Michelle S; Waltzman, Susan B; Roland, J Thomas
2006-08-01
Sensorineural hearing loss resulting from otosclerosis, meningitis, chronic otitis media, autoimmune ear disease, and trauma can be associated with partial or total obstruction of the cochlear scalae. Multichannel cochlear implantation may be difficult in a cochlea with an obstructed scala tympani. The purpose of this study is to determine the safety and efficacy of scala tympani electrode insertion. Retrospective chart review. Academic medical center. Eight children and adults with profound sensorineural hearing loss who underwent cochlear implantation with known scala vestibuli electrode array insertion were subjects for this study. Eight study subjects underwent implantation: five with the Nucleus 24RCS (Contour) device and three with the Nucleus 24M device. Imaging findings, operative findings, and age-appropriate speech perception testing. All patients had full electrode insertion. Various obstructive patterns on computed tomography and magnetic resonance imaging were found, and there was a range of speech perception results. All but one patient improved based on age-appropriate monosyllabic word and sentence tests. Scala vestibuli multielectrode insertion is a viable alternative when scala tympani insertion is not possible because of abnormal anatomy or anatomical changes secondary to disease or previous implantation. We will also present an algorithm of options for decision making for implantation when encountering cochlear obstruction and difficult electrode insertion.
Marone, G; Francica, G; D'Angelo, V; Iodice, G; Pastore, P; Altamura, G; Cusati, B; Siani, A
1998-06-01
Radiofrequency hyperthermia using the newly-developed "cooled-tip" needle is one of the latest US-guided percutaneous treatments of hepatocellular carcinoma arising in cirrhosis. The continuous cooling of the needle tip allows tissue heating and necrosis far from the electrode without tissue charring, which was the major drawback of the old monopolar technique. Herein we report our preliminary results on feasibility and effectiveness of the thermoablation of mono- or paucifocal hepatocellular carcinoma with the cooled-tip needle. November, 1996, to January, 1998, we treated thirteen cirrhotic patients (mean age 69.5 yrs, 10 men, 12 HCV-positive; 11 in Child's Class A and 2 in Class B) with 19 hepatocellular carcinoma nodules (mean diameter: 27 mm; range: 10-41 mm; 6 with diameter > 3 cm). None of the patients had portal thrombosis and/or extrahepatic spread. We used a radiofrequency generator (100 W power) connected to an 18 G perfusion electrode needle with an exposed tip of 2-3 cm. The circuit is closed through a dispersive electrode positioned under the patient's thighs. A peristaltic pump infuses a chilled (2-5 degrees C) saline solution to guarantee the continuous cooling of the needle tip. The needle was placed into target lesions under US guidance. The interventional procedure was carried out under general anesthesia using Propofol without intubation. Dynamic CT (more recently with the helical technique) was carried out 15-20 days after thermoablation to assess treatment efficacy. In all, 31 thermal injuries (at 1000-1200 mA for 10-15 minutes) were caused in 21 sessions in the 19 hepatocellular carcinoma nodules (mean: 1.5 lesions per nodule and 1.6 sessions per patient). Complete necrosis as assessed at dynamic CT (no enhancement during the arteriographic phase) was achieved in 16 of 19 nodules (84%). No side-effects occurred. During the follow-up (median: 11 months) no death occurred and five patients had recurrent hepatocellular carcinoma appearing either as single nodule or as multinodular liver involvement. In our experience radiofrequency hyperthermia with the cooled-tip needle permits effective and safe percutaneous ablation of HCC in cirrhosis. In addition, treatment time is short and lesions > 3 cm can be treated. Further experience is needed to better define the role of percutaneous thermoablation in the treatment strategy of hepatocellular carcinoma.
Gravett, Matthew; Cepek, Jeremy; Fenster, Aaron
2017-11-01
The purpose of this study was to develop and validate an image-guided robotic needle delivery system for accurate and repeatable needle targeting procedures in mouse brains inside the 12 cm inner diameter gradient coil insert of a 9.4 T MR scanner. Many preclinical research techniques require the use of accurate needle deliveries to soft tissues, including brain tissue. Soft tissues are optimally visualized in MR images, which offer high-soft tissue contrast, as well as a range of unique imaging techniques, including functional, spectroscopy and thermal imaging, however, there are currently no solutions for delivering needles to small animal brains inside the bore of an ultra-high field MR scanner. This paper describes the mechatronic design, evaluation of MR compatibility, registration technique, mechanical calibration, the quantitative validation of the in-bore image-guided needle targeting accuracy and repeatability, and demonstrated the system's ability to deliver needles in situ. Our six degree-of-freedom, MR compatible, mechatronic system was designed to fit inside the bore of a 9.4 T MR scanner and is actuated using a combination of piezoelectric and hydraulic mechanisms. The MR compatibility and targeting accuracy of the needle delivery system are evaluated to ensure that the system is precisely calibrated to perform the needle targeting procedures. A semi-automated image registration is performed to link the robot coordinates to the MR coordinate system. Soft tissue targets can be accurately localized in MR images, followed by automatic alignment of the needle trajectory to the target. Intra-procedure visualization of the needle target location and the needle were confirmed through MR images after needle insertion. The effects of geometric distortions and signal noise were found to be below threshold that would have an impact on the accuracy of the system. The system was found to have negligible effect on the MR image signal noise and geometric distortion. The system was mechanically calibrated and the mean image-guided needle targeting and needle trajectory accuracies were quantified in an image-guided tissue mimicking phantom experiment to be 178 ± 54 μm and 0.27 ± 0.65°, respectively. An MR image-guided system for in-bore needle deliveries to soft tissue targets in small animal models has been developed. The results of the needle targeting accuracy experiments in phantoms indicate that this system has the potential to deliver needles to the smallest soft tissue structures relevant in preclinical studies, at a wide variety of needle trajectories. Future work in the form of a fully-automated needle driver with precise depth control would benefit this system in terms of its applicability to a wider range of animal models and organ targets. © 2017 American Association of Physicists in Medicine.
Tian, He; Chen, Hong-Yu; Gao, Bin; Yu, Shimeng; Liang, Jiale; Yang, Yi; Xie, Dan; Kang, Jinfeng; Ren, Tian-Ling; Zhang, Yuegang; Wong, H-S Philip
2013-02-13
In this paper, we employed Ramen spectroscopy to monitor oxygen movement at the electrode/oxide interface by inserting single-layer graphene (SLG). Raman area mapping and single-point measurements show noticeable changes in the D-band, G-band, and 2D-band signals of the SLG during consecutive electrical programming repeated for nine cycles. In addition, the inserted SLG enables the reduction of RESET current by 22 times and programming power consumption by 47 times. Collectively, our results show that monitoring the oxygen movement by Raman spectroscopy for a resistive random access memory (RRAM) is made possible by inserting a single-layer graphene at electrode/oxide interface. This may open up an important analysis tool for investigation of switching mechanism of RRAM.
Efficient needle plasma actuators for flow control and surface cooling
NASA Astrophysics Data System (ADS)
Zhao, Pengfei; Portugal, Sherlie; Roy, Subrata
2015-07-01
We introduce a milliwatt class needle actuator suitable for plasma channels, vortex generation, and surface cooling. Electrode configurations tested for a channel configuration show 1400% and 300% increase in energy conversion efficiency as compared to conventional surface and channel corona actuators, respectively, generating up to 3.4 m/s air jet across the channel outlet. The positive polarity of the needle is shown to have a beneficial effect on actuator efficiency. Needle-plate configuration is demonstrated for improving cooling of a flat surface with a 57% increase in convective heat transfer coefficient. Vortex generation by selective input signal manipulation is also demonstrated.
Real-Time Ultrasound-Guided Spinal Anaesthesia: A Prospective Observational Study of a New Approach
Conroy, P. H.; Luyet, C.; McCartney, C. J.; McHardy, P. G.
2013-01-01
Identification of the subarachnoid space has traditionally been achieved by either a blind landmark-guided approach or using prepuncture ultrasound assistance. To assess the feasibility of performing spinal anaesthesia under real-time ultrasound guidance in routine clinical practice we conducted a single center prospective observational study among patients undergoing lower limb orthopaedic surgery. A spinal needle was inserted unassisted within the ultrasound transducer imaging plane using a paramedian approach (i.e., the operator held the transducer in one hand and the spinal needle in the other). The primary outcome measure was the success rate of CSF acquisition under real-time ultrasound guidance with CSF being located in 97 out of 100 consecutive patients within median three needle passes (IQR 1–6). CSF was not acquired in three patients. Subsequent attempts combining landmark palpation and pre-puncture ultrasound scanning resulted in successful spinal anaesthesia in two of these patients with the third patient requiring general anaesthesia. Median time from spinal needle insertion until intrathecal injection completion was 1.2 minutes (IQR 0.83–4.1) demonstrating the feasibility of this technique in routine clinical practice. PMID:23365568
Apparatus tube configuration and mounting for solid oxide fuel cells
Zymboly, G.E.
1993-09-14
A generator apparatus is made containing long, hollow, tubular, fuel cells containing an inner air electrode, an outer fuel electrode, and solid electrolyte there between, placed between a fuel distribution board and a board which separates the combustion chamber from the generating chamber, where each fuel cell has an insertable open end and in insertable, plugged, closed end, the plugged end being inserted into the fuel distribution board and the open end being inserted through the separator board where the plug is completely within the fuel distribution board. 3 figures.
Virtual Reality simulator for dental anesthesia training in the inferior alveolar nerve block.
Corrêa, Cléber Gimenez; Machado, Maria Aparecida de Andrade Moreira; Ranzini, Edith; Tori, Romero; Nunes, Fátima de Lourdes Santos
2017-01-01
This study shows the development and validation of a dental anesthesia-training simulator, specifically for the inferior alveolar nerve block (IANB). The system developed provides the tactile sensation of inserting a real needle in a human patient, using Virtual Reality (VR) techniques and a haptic device that can provide a perceived force feedback in the needle insertion task during the anesthesia procedure. To simulate a realistic anesthesia procedure, a Carpule syringe was coupled to a haptic device. The Volere method was used to elicit requirements from users in the Dentistry area; Repeated Measures Two-Way ANOVA (Analysis of Variance), Tukey post-hoc test and averages for the results' analysis. A questionnaire-based subjective evaluation method was applied to collect information about the simulator, and 26 people participated in the experiments (12 beginners, 12 at intermediate level, and 2 experts). The questionnaire included profile, preferences (number of viewpoints, texture of the objects, and haptic device handler), as well as visual (appearance, scale, and position of objects) and haptic aspects (motion space, tactile sensation, and motion reproduction). The visual aspect was considered appropriate and the haptic feedback must be improved, which the users can do by calibrating the virtual tissues' resistance. The evaluation of visual aspects was influenced by the participants' experience, according to ANOVA test (F=15.6, p=0.0002, with p<0.01). The user preferences were the simulator with two viewpoints, objects with texture based on images and the device with a syringe coupled to it. The simulation was considered thoroughly satisfactory for the anesthesia training, considering the needle insertion task, which includes the correct insertion point and depth, as well as the perception of tissues resistances during the insertion.
Sun, Xue-Yi; Yu, Zhi; Chen, Zhi-Yu; Xu, Bin
2018-02-25
To observe the effect of manual acupuncture stimulation of different layers (skin, muscle, peritoneum, sub-peritoneum) of "Tianshu" (ST 25) region on proximal colonic pressure in normal rats. Forty-eight male SD rats were divided into 6 groups: all layer-needling, brushing, cutaneous needling, muscular needling, peritoneum-needling and sub-peritoneum-needling groups ( n =8 in each group). Manual needling or brushing was applied to "Tianshu" (ST 25) region. The colonic internal pressure was measured by using an amplifier and a pressure transducer-connected balloon which was implanted into the colonic cavity about 6 cm from the ileocecal valve. For rats of the all-layer needling group, an acupuncture needle was inserted into ST 25 about 1 cm deep and rotated for a while, for rats of the brushing group, a Chinese calligraphy brush pen was used to brush the skin hair for 1 min. For rats of the rest 4 groups, an acupuncture needle was inserted into the skin, muscle layer after cutting open the skin (about 0.1 cm), the peritoneum layer after cutting open the skin and muscle layers, and the sub-peritoneum layer after cutting open the skin, muscle and peritoneum layers, respectively, and rotated using the uniform reinforcing-reducing technique for about 1 min at a frequency of 120 twirlings per minute every time. During manual needling stimulation of the full layers, cutaneous layer, muscle layer, peritoneum layer and the sub-peritoneum layer of bilateral "Tianshu" (ST 25), the internal pressure of proximal colon was significantly decreased relevant to pre-stimulation in each group ( P <0.05), and there were no significant differences between bilateral sides needling stimulation in the decreased pressure levels ( P >0.05). During hair brushing of ST 25 region, the colonic pressure was observably increased relevant to pre-needling stimulation ( P <0.05). One min after the acupuncture stimulation, the decreased pressures maintained in needling the all-layer on the left side, needling the skin on the right side, needling the peritoneum layer on both sides, and needling the sub-peritoneum layer on both sides relevant to the brushing group of the same side ( P <0.05). Manual acupuncture stimulation of each layer tissue of ST 25 on both sides may lower internal pressure of proximal colon in normal rats, suggesting their involvement of acupuncture effect in relaxing proximal colonic contraction.
A needle guidance system for biopsy and therapy using two-dimensional ultrasound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluvol, Nathan; Sheikh, Allison; Kornecki, Anat
2008-02-15
Image-guided needle biopsies are currently used to provide a definitive diagnosis of breast cancer; however, difficulties in tumor targeting exist as the ultrasound (United States) scan plane and biopsy needle must remain coplanar throughout the procedure to display the actual needle tip position. The additional time associated with aligning and maintaining this coplanar relationship results in increased patient discomfort. Biopsy procedural efficiency is further hindered since needle pathway interpretation is often difficult, especially for needle insertions at large depths that usually require multiple reinsertions. The authors developed a system that would increase the speed and accuracy of current breast biopsymore » procedures using readily available two-dimensional (2D) US technology. This system is composed of a passive articulated mechanical arm that attaches to a 2D US transducer. The arm is connected to a computer through custom electronics and software, which were developed as an interface for tracking the positioning of the mechanical components in real time. The arm couples to the biopsy needle and provides visual guidance for the physician performing the procedure in the form of a real-time projected needle pathway overlay on an US image of the breast. An agar test phantom, with stainless steel targets interspersed randomly throughout, was used to validate needle trajectory positioning accuracy. The biopsy needle was guided by both the software and hardware components to the targets. The phantom, with the needle inserted and device decoupled, was placed in an x-ray stereotactic mammography (SM) machine. The needle trajectory and bead target locations were determined in three dimensions from the SM images. Results indicated a mean needle trajectory accuracy error of 0.75{+-}0.42 mm. This is adequate to sample lesions that are <2 mm in diameter. Chicken tissue test phantoms were used to compare core needle biopsy procedure times between experienced radiologists and inexperienced resident radiologists using free-hand US and the needle guidance system. Cylindrical polyvinyl alcohol cryogel lesions, colored blue, were embedded in chicken tissue. Radiologists identified the lesions, visible as hypoechoic masses in the US images, and performed biopsy using a 14-gauge needle. Procedure times were compared based on experience and the technique performed. Using a pair-wise t test, lower biopsy procedure times were observed when using the guidance system versus the free-hand technique (t=12.59, p<0.001). The authors believe that with this improved biopsy guidance they will be able to reduce the ''false negative'' rate of biopsies, especially in the hands of less experienced physicians.« less
NASA Astrophysics Data System (ADS)
Beigi, Parmida; Salcudean, Tim; Rohling, Robert; Lessoway, Victoria A.; Ng, Gary C.
2015-03-01
This paper presents a new needle detection technique for ultrasound guided interventions based on the spectral properties of small displacements arising from hand tremour or intentional motion. In a block-based approach, the displacement map is computed for each block of interest versus a reference frame, using an optical flow technique. To compute the flow parameters, the Lucas-Kanade approach is used in a multiresolution and regularized form. A least-squares fit is used to estimate the flow parameters from the overdetermined system of spatial and temporal gradients. Lateral and axial components of the displacement are obtained for each block of interest at consecutive frames. Magnitude-squared spectral coherency is derived between the median displacements of the reference block and each block of interest, to determine the spectral correlation. In vivo images were obtained from the tissue near the abdominal aorta to capture the extreme intrinsic body motion and insertion images were captured from a tissue-mimicking agar phantom. According to the analysis, both the involuntary and intentional movement of the needle produces coherent displacement with respect to a reference window near the insertion site. Intrinsic body motion also produces coherent displacement with respect to a reference window in the tissue; however, the coherency spectra of intrinsic and needle motion are distinguishable spectrally. Blocks with high spectral coherency at high frequencies are selected, estimating a channel for needle trajectory. The needle trajectory is detected from locally thresholded absolute displacement map within the initial estimate. Experimental results show the RMS localization accuracy of 1:0 mm, 0:7 mm, and 0:5 mm for hand tremour, vibrational and rotational needle movements, respectively.
LcrV Mutants That Abolish Yersinia Type III Injectisome Function
Ligtenberg, Katherine Given; Miller, Nathan C.; Mitchell, Anthony; Plano, Gregory V.
2013-01-01
LcrV, the type III needle cap protein of pathogenic Yersinia, has been proposed to function as a tether between YscF, the needle protein, and YopB-YopD to constitute the injectisome, a conduit for the translocation of effector proteins into host cells. Further, insertion of LcrV-capped needles from a calcium-rich environment into host cells may trigger the low-calcium signal for effector translocation. Here, we used a genetic approach to test the hypothesis that the needle cap responds to the low-calcium signal by promoting injectisome assembly. Growth restriction of Yersinia pestis in the absence of calcium (low-calcium response [LCR+] phenotype) was exploited to isolate dominant negative lcrV alleles with missense mutations in its amber stop codon (lcrV*327). The addition of at least four amino acids or the eight-residue Strep tag to the C terminus was sufficient to generate an LCR− phenotype, with variant LcrV capping type III needles that cannot assemble the YopD injectisome component. The C-terminal Strep tag appears buried within the cap structure, blocking effector transport even in Y. pestis yscF variants that are otherwise calcium blind, a constitutive type III secretion phenotype. Thus, LcrV*327 mutants arrest the needle cap in a state in which it cannot respond to the low-calcium signal with either injectisome assembly or the activation of type III secretion. Insertion of the Strep tag at other positions of LcrV produced variants with wild-type LCR+, LCR−, or dominant negative LCR− phenotypes, thereby allowing us to identify discrete sites within LcrV as essential for its attributes as a secretion substrate, needle cap, and injectisome assembly factor. PMID:23222719
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Yukihisa, E-mail: yukky.oct.22@gmail.com; Hamaguchi, Shingo; Nishimaki, Hiroshi
BackgroundEndovascular aortic repair (EVAR) requires further intervention in 20-30 % of cases, often due to type II endoleak (T2EL). Management options for T2EL include transarterial embolization, direct puncture (DP), or transcaval embolization. We report the case of an 80-year-old man with T2EL who successfully underwent DP embolization.MethodsEmbolization by DP was performed with a transpedicular approach using an isocenter puncture (ISOP) method. An isocenter marker (ICM) was placed at a site corresponding to the aneurysm sac on fluoroscopy in two directions (frontal and lateral views). A vertebroplasty needle was inserted tangentially to the ICM under fluoroscopy and advanced to the anterior wallmore » of the vertebral body. A 20 cm-length, 20-G-PTCD needle was inserted through the outer needle of the 13-G needle and advanced to the ICM. Sac embolization using 25 % N-buty-2-cyanoacrylate diluted with Lipiodol was performed. After complete embolization, rotational DA confirmed good filling of the sac with Lipiodol. The outer cannula and 13-G needle were removed and the procedure was completed.ResultsThe patient was discharged the next day. Contrast-enhanced computed tomography 1 and 8 months later showed no Lipiodol washout in the aneurysm sac, no endoleak recurrence, and no expansion of the excluded aneurysm.ConclusionDP with a transpedicular approach using ISOP may be useful when translumbar and transabdominal approaches prove difficult.« less
Yoshida, Kazuya
2018-01-01
To evaluate the effectiveness and safety of botulinum toxin administration into the inferior head of the lateral pterygoid muscle of patients with jaw opening dystonia by using a computer-aided design/computer-assisted manufacture (CAD/CAM)-derived needle guide. A total of 17 patients with jaw opening dystonia were enrolled. After the patient's computed tomography (CT) scan was imported and fused with a scan of a plaster cast model of the maxilla, the optimal needle insertion site over the lateral pterygoid muscle was determined using the NobelClinician software. A total of 13 patients were injected both with and without the guide, and 4 patients underwent guided injection alone. The therapeutic effects of botulinum toxin injection and its associated complications were statistically compared between the guided and unguided procedures using paired t test. Botulinum toxin therapy was performed 42 and 32 times with and without the guides, respectively. The needle was easily inserted without any complications in all procedures. There was a significant difference (P < .001) between the mean comprehensive improvements observed with (66.3%) and without (54.4%) the guides. The findings suggest that the use of needle guides during the injection of botulinum toxin into the inferior head of the lateral pterygoid muscle is very useful for aiding the accurate and safe administration of botulinum toxin therapy for jaw opening dystonia.
Hemlock woolly adelgid (Homoptera: Adelgidae): stylet bundle insertion and feeding sites
Rebecca F. Young; Kathleen S. Shields; Graeme P. Berlyn
1995-01-01
Stylet bundle insertion site, path traveled, and feeding site were examined for the hemlock woolly adelgid, Adelges tsugae Annand, on needles from current and previous years of eastern hemlock, Tsuga canadensis Carriere. The stylet bundle is composed of 4 individual stylets--2 outer mandibular stylets and 2 inner maxillary stylets...
Robust path planning for flexible needle insertion using Markov decision processes.
Tan, Xiaoyu; Yu, Pengqian; Lim, Kah-Bin; Chui, Chee-Kong
2018-05-11
Flexible needle has the potential to accurately navigate to a treatment region in the least invasive manner. We propose a new planning method using Markov decision processes (MDPs) for flexible needle navigation that can perform robust path planning and steering under the circumstance of complex tissue-needle interactions. This method enhances the robustness of flexible needle steering from three different perspectives. First, the method considers the problem caused by soft tissue deformation. The method then resolves the common needle penetration failure caused by patterns of targets, while the last solution addresses the uncertainty issues in flexible needle motion due to complex and unpredictable tissue-needle interaction. Computer simulation and phantom experimental results show that the proposed method can perform robust planning and generate a secure control policy for flexible needle steering. Compared with a traditional method using MDPs, the proposed method achieves higher accuracy and probability of success in avoiding obstacles under complicated and uncertain tissue-needle interactions. Future work will involve experiment with biological tissue in vivo. The proposed robust path planning method can securely steer flexible needle within soft phantom tissues and achieve high adaptability in computer simulation.
Müller, H; Zierski, J
1988-10-03
Huber-point needles, which are thought to be noncoring, are usually recommended for puncture of implanted drug-delivery devices, such as ports and pumps. Nevertheless, we found occlusion by silicone chips deriving from the silicone inlet septum to be a major technical complication. Electron microscopic investigations demonstrated substantial loss of material from the port membrane after repeated puncture with this type of needle. During an in vitro test, multiple puncture with Huber-type cannulas led to a pressure-dependent leakage of a port after only 150 to 750 insertions of a needle. In addition, the forces necessary for puncture or for withdrawal of the needle were increased with Huber-point needles, possibly due to a coring effect. Another disadvantage of the available port needles is the formation of a hook at the tip, which may lead to additional lesion of the port or pump membrane. In our opinion, resterilization of Huber needles, recommended by the manufactures, is not advisable, because it is well known that safe sterilization of small lumina, e.g., the lumen of the needle, is impossible.
Su, Hao; Shang, Weijian; Li, Gang; Patel, Niravkumar; Fischer, Gregory S
2017-08-01
This paper presents a surgical master-slave teleoperation system for percutaneous interventional procedures under continuous magnetic resonance imaging (MRI) guidance. The slave robot consists of a piezoelectrically actuated 6-degree-of-freedom (DOF) robot for needle placement with an integrated fiber optic force sensor (1-DOF axial force measurement) using the Fabry-Perot interferometry (FPI) sensing principle; it is configured to operate inside the bore of the MRI scanner during imaging. By leveraging the advantages of pneumatic and piezoelectric actuation in force and position control respectively, we have designed a pneumatically actuated master robot (haptic device) with strain gauge based force sensing that is configured to operate the slave from within the scanner room during imaging. The slave robot follows the insertion motion of the haptic device while the haptic device displays the needle insertion force as measured by the FPI sensor. Image interference evaluation demonstrates that the telesurgery system presents a signal to noise ratio reduction of less than 17% and less than 1% geometric distortion during simultaneous robot motion and imaging. Teleoperated needle insertion and rotation experiments were performed to reach 10 targets in a soft tissue-mimicking phantom with 0.70 ± 0.35 mm Cartesian space error.
Gao, Peng; Wang, Liping; Zhang, Yu-Yang; Huang, Yuan; Liao, Lei; Sutter, Peter; Liu, Kaihui; Yu, Dapeng; Wang, En-Ge
2016-09-14
In the rechargeable lithium ion batteries, the rate capability and energy efficiency are largely governed by the lithium ion transport dynamics and phase transition pathways in electrodes. Real-time and atomic-scale tracking of fully reversible lithium insertion and extraction processes in electrodes, which would ultimately lead to mechanistic understanding of how the electrodes function and why they fail, is highly desirable but very challenging. Here, we track lithium insertion and extraction in the van der Waals interactions dominated SnS2 by in situ high-resolution TEM method. We find that the lithium insertion occurs via a fast two-phase reaction to form expanded and defective LiSnS2, while the lithium extraction initially involves heterogeneous nucleation of intermediate superstructure Li0.5SnS2 domains with a 1-4 nm size. Density functional theory calculations indicate that the Li0.5SnS2 is kinetically favored and structurally stable. The asymmetric reaction pathways may supply enlightening insights into the mechanistic understanding of the underlying electrochemistry in the layered electrode materials and also suggest possible alternatives to the accepted explanation of the origins of voltage hysteresis in the intercalation electrode materials.
Adam, Ahmed
2017-01-01
Objective To describe a simple, novel method to achieve ureteric access in the Cohen crossed reimplanted ureter, which will allow retrograde working access via the conventional transurethral method. Materials and Methods Under cystoscopic vision, suprapubic needle puncture was performed. The needle was directed (bevel facing) towards the desired ureteric orifice (UO). A guidewire (with a floppy-tip) was then inserted into the suprapubic needle passing into the bladder, and then easily passed into the crossed-reimplanted UO. The distal end of the guidewire was then removed through the urethra with cystoscopic grasping forceps. The straightened ureter then easily facilitated ureteroscopy access, retrograde pyelogram studies, and JJ stent insertion in a conventional transurethral method. Results The UO and ureter were aligned in a more conventional orthotopic course, to allow for conventional transurethral working access. Conclusion A novel method to access the Cohen crossed reimplanted ureter was described. All previously published methods of accessing the crossed ureter were critically appraised. PMID:29463976
Simple and Fast Method for Fabrication of Endoscopic Implantable Sensor Arrays
Tahirbegi, I. Bogachan; Alvira, Margarita; Mir, Mònica; Samitier, Josep
2014-01-01
Here we have developed a simple method for the fabrication of disposable implantable all-solid-state ion-selective electrodes (ISE) in an array format without using complex fabrication equipment or clean room facilities. The electrodes were designed in a needle shape instead of planar electrodes for a full contact with the tissue. The needle-shape platform comprises 12 metallic pins which were functionalized with conductive inks and ISE membranes. The modified microelectrodes were characterized with cyclic voltammetry, scanning electron microscope (SEM), and optical interferometry. The surface area and roughness factor of each microelectrode were determined and reproducible values were obtained for all the microelectrodes on the array. In this work, the microelectrodes were modified with membranes for the detection of pH and nitrate ions to prove the reliability of the fabricated sensor array platform adapted to an endoscope. PMID:24971473
Simulation and training of lumbar punctures using haptic volume rendering and a 6DOF haptic device
NASA Astrophysics Data System (ADS)
Färber, Matthias; Heller, Julika; Handels, Heinz
2007-03-01
The lumbar puncture is performed by inserting a needle into the spinal chord of the patient to inject medicaments or to extract liquor. The training of this procedure is usually done on the patient guided by experienced supervisors. A virtual reality lumbar puncture simulator has been developed in order to minimize the training costs and the patient's risk. We use a haptic device with six degrees of freedom (6DOF) to feedback forces that resist needle insertion and rotation. An improved haptic volume rendering approach is used to calculate the forces. This approach makes use of label data of relevant structures like skin, bone, muscles or fat and original CT data that contributes information about image structures that can not be segmented. A real-time 3D visualization with optional stereo view shows the punctured region. 2D visualizations of orthogonal slices enable a detailed impression of the anatomical context. The input data consisting of CT and label data and surface models of relevant structures is defined in an XML file together with haptic rendering and visualization parameters. In a first evaluation the visible human male data has been used to generate a virtual training body. Several users with different medical experience tested the lumbar puncture trainer. The simulator gives a good haptic and visual impression of the needle insertion and the haptic volume rendering technique enables the feeling of unsegmented structures. Especially, the restriction of transversal needle movement together with rotation constraints enabled by the 6DOF device facilitate a realistic puncture simulation.
Akpinar, Ibrahim; Sayin, Muhammet Rasit; Karabag, Turgut; Dogan, Sait Mesut; Aydin, Mustafa
2012-09-01
A foreign body such as a needle in the heart can be life-threatening. While this may occur accidentally, needles may be inserted into the body by psychiatric patients or in cases involving domestic violence. A needle can migrate through the thorax toward the heart. In drug users, needles may also reach the right ventricle via the peripheral veins. Cardiac injury can occur via the esophagus after swallowing a needle. The clinical outcome may vary from an asymptomatic situation to tamponade or shock, depending on how severely the cardiac structures are affected. In injuries involving the thorax, pneumothorax may cause sudden shortness of breath. Here, we report the case of a 34-year-old male prison inmate who accidentally lodged a pin in his left ventricle while asleep. As he has refused surgery, it was decided to follow the patient carefully. © 2012, Wiley Periodicals, Inc.
Smart surgical needle actuated by shape memory alloys for percutaneous procedures
NASA Astrophysics Data System (ADS)
Konh, Bardia
Background: Majority of cancer interventions today are performed percutaneously using needle-based procedures, i.e. through the skin and soft tissue. Insufficient accuracy using conventional surgical needles motivated researchers to provide actuation forces to the needle's body for compensating the possible errors of surgeons/physicians. Therefore, active needles were proposed recently where actuation forces provided by shape memory alloys (SMAs) are utilized to assist the maneuverability and accuracy of surgical needles. This work also aims to introduce a novel needle insertion simulation to predict the deflection of a bevel tip needle inside the tissue. Methods: In this work first, the actuation capability of a single SMA wire was studied. The complex response of SMAs was investigated via a MATLAB implementation of the Brinson model and verified via experimental tests. The material characteristics of SMAs were simulated by defining multilinear elastic isothermal stress-strain curves. Rigorous experiments with SMA wires were performed to determine the material properties as well as to show the capability of the code to predict a stabilized SMA transformation behavior with sufficient accuracy. The isothermal stress-strain curves of SMAs were simulated and defined as a material model for the Finite Element Analysis of the active needle. In the second part of this work, a three-dimensional finite element (FE) model of the active steerable needle was developed to demonstrate the feasibility of using SMA wires as actuators to bend the surgical needle. In the FE model, birth and death method of defining boundary conditions, available in ANSYS, was used to achieve the pre-strain condition on SMA wire prior to actuation. This numerical model was validated with needle deflection experiments with developed prototypes of the active needle. The third part of this work describes the design optimization of the active using genetic algorithm aiming for its maximum flexibility. Design parameters influencing the steerability include the needle's diameter, wire diameter, pre-strain, and its offset from the needle. A simplified model was developed to decrease the computation time in iterative analyses of the optimization algorithm. In the fourth part of this work a design of an active needling system was proposed where actuation forces of SMAs as well as shape memory polymers (SMPs) were incorporated. SMP elements provide two major additional advantages to the design: (i) recovery of the SMP's plastic deformation by heating the element above its glass transition temperature, and (ii) achieving a higher needle deflection by having a softer stage of SMP at higher temperatures with less amount of actuation force. Finally, in the fifth and last part of this study, an Arbitrary-Lagrangian-Eulerian formulation in LS-DYNA software was used to model the solid-fluid interactions between the needle and tissue. A 150mm long needle was considered to bend within the tissue due to the interacting forces on its asymmetric bevel tip. Some additional assumptions were made to maintain a reasonable computational time, with no need of parallel processing, while having practical accuracies. Three experimental tests of needle steering in a soft phantom were performed to validate the simulation. Results: The finite element model of the active needle was first validated experimentally with developed prototypes. Several design parameters affecting the needle's deflection such as the needle's Young's modulus, the SMA's pre-strain and its offset from the neutral axis of the cannula were studied using the FE model. Then by the integration of the SMA characteristics with the automated optimization schemes an improved design of the active needle was obtained. Real-time experiments with different prototypes showed that the quickest response and the maximum deflection were achieved by the needle with two sections of actuation compared to a single section of actuation. Also the feasibility of providing actuation forces using both SMAs and SMPs for the surgical needle was demonstrated in this study. The needle insertion simulation was validated while observing less than 10% deviation between the estimated amount of needle deflection by the simulation and by the experiments. Using this model the effect of needle diameter and its bevel tip angle on the final shape of the needle was investigated. Conclusion: The numerical and experimental studies of this work showed that a highly maneuverable active needle can be made using the actuation of multiple SMA wires in series. To maneuver around the anatomical obstacles of the human body and reach the target location, thin sharp needles are recommended as they would create a smaller radius of curvature. The insertion model presented in this work is intended to be used as a base structure for path planning and training purposes for future studies. (Abstract shortened by UMI.).
Zhang, Ao; Yan, Xing-Ke; Liu, An-Guo
2016-12-25
In the present paper, the authors introduce a newly-developed "Acupuncture Needle Manipulation Training-evaluation System" based on optical motion capture technique. It is composed of two parts, sensor and software, and overcomes some shortages of mechanical motion capture technique. This device is able to analyze the data of operations of the pressing-hand and needle-insertion hand during acupuncture performance and its software contains personal computer (PC) version, Android version, and Internetwork Operating System (IOS) Apple version. It is competent in recording and analyzing information of any ope-rator's needling manipulations, and is quite helpful for teachers in teaching, training and examining students in clinical practice.
A novel perfusion-based method for cochlear implant electrode insertion.
Kale, Sushrut; Cervantes, Vanessa M; Wu, Mailing R; Pisano, Dominic V; Sheth, Nakul; Olson, Elizabeth S
2014-08-01
A cochlear implant (CI) restores partial hearing to profoundly deaf individuals. CI electrodes are inserted manually in the cochlea and surgeons rely on tactile feedback from the implant to determine when to stop the insertion. This manual insertion method results in a large degree of variability in surgical outcomes and intra-cochlear trauma. Additionally, implants often span only the basal turn. In the present study we report on the development of a new method to assist CI electrode insertion. The design objectives are (1) an automated and standardized insertion technique across patients with (2) more apical insertion than is possible by the contemporary methods, while (3) minimizing insertion trauma. The method relies on a viscous fluid flow through the cochlea to carry the electrode array with it. A small cochleostomy (∼100-150 um in diameter) is made in scala vestibuli (SV) and the round window (RW) membrane is opened. A flow of diluted Sodium Hyaluronate (also known as Hyaluronic Acid, (HA)) is set up from the RW to the SV opening using a perfusion pump that sets up a unidirectional flow. Once the flow is established an implant is dropped into the ongoing flow. Here we present a proof-of-concept study where we used this technique to insert silicone implants all the way to the cochlear apex in rats and gerbils. In light-microscopic histology, the implantation occurred without cochlear trauma. To further assess the ototoxicity of the HA perfusion, we measured compound action potential (CAP) thresholds following the perfusion of HA, and found that the CAP thresholds were substantially elevated. Thus, at this point the method is promising, and requires further development to become clinically viable. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Sisrova, Irena; Janda, Vaclav
2011-06-01
The effects of tungsten material used as a high-voltage needle electrode on the production of hydrogen peroxide and the degradation of dimethylsulfoxide (DMSO) caused by a pulsed corona discharge in water were investigated. A reactor of needle-plate electrode geometry was used. The erosion of the tungsten electrodes by the discharge was evaluated. The yields of H2O2 production and the decomposition of DMSO by the discharge, which were obtained using the tungsten electrodes, were compared with those determined for titanium electrodes. The electrode erosion increased significantly with an increase in the solution conductivity. A large fraction (50-70%) of the eroded tungsten electrode material was released into the solution in dissolved form as tungstate WO_4^{2-} ions. A correlation between the amount of eroded tungsten material released into the solution and the chemical effects induced by the discharge was determined. Lower yields of H2O2 and a higher degradation of DMSO by the discharge were obtained using the tungsten electrodes than were determined using titanium electrodes. Tungstate ions were shown to play a dominant role in the decomposition of H2O2, which was produced by the discharge using a tungsten electrode. The higher degradation of DMSO that was determined for tungsten was attributed to the tungstate-catalyzed oxidation of DMSO by H2O2, in addition to the oxidation of DMSO by OH radicals. Such a mechanism was supported by the detection of degradation by-products of DMSO (methanesulfonate, sulfate and dimethyl sulfone). The catalytic role of tungstate ions in the plasmachemical activity of the discharge generated using a tungsten electrode was also demonstrated on a pH-dependent decomposition of H2O2 and DMSO.
Glove perforations and blood contact associated with manipulation of the fetal scalp electrode.
Rhoton-Vlasak, A; Duff, P
1993-02-01
To assess prospectively the frequency of glove injury associated with insertion of the fetal scalp electrode and subsequent examination of the cervix with the electrode in place. Over a 7-month period, sterile gloves were collected after use for insertion of the fetal scalp electrode or cervical examination with the electrode in place. Attendants indicated their level of training, time, date and purpose of glove use, and cervical examination. They also noted whether they were aware of a glove perforation or observed blood, amniotic fluid, or genital tract secretions on their hand. Glove patency was assessed by filling the glove with water to 1.5-2.0 times its normal volume and observing for leaks. One hundred unused gloves were tested for patency and served as controls. Five hundred one gloves were evaluated, of which 13 (2.6%, 95% confidence interval [Cl] 1-4%) had perforations. Seven of 277 gloves (2.5%) used only for examinations had perforations, compared with six of 244 (2.5%) used only for insertion of the electrode. Two percent (95% CI 0-5%) of the unused control gloves had perforations. These observed differences were not statistically significant. Nineteen attendants (3.8%, 95% CI 2.1-5.5%) noted blood or genital tract secretions on their hand after insertion of the electrode (N = 4) or subsequent cervical examination (N = 15). Only one point of contract resulted from a glove perforation; the other 18 were on the wrist and apparently resulted from leakage of fluid around the open cuff of the glove. The risk of glove perforation during insertion of the fetal scalp electrode or subsequent cervical examination is low if proper technique is observed. Blood or fluid contact is more likely to result from leakage of fluid around the open cuff of the glove during a vaginal examination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanchon, L; INSERM U1101, Brest; Apte, A
2015-06-15
Purpose: PET/CT guidance is used for biopsies of metabolically active lesions, which are not well seen on CT alone or to target the metabolically active tissue in tumor ablations. It has also been shown that PET/CT guided biopsies provide an opportunity to verify the location of the lesion border at the place of needle insertion. However the error in needle placement with respect to the metabolically active region may be affected by motion between the PET/CT scan performed at the start of the procedure and the CT scan performed with the needle in place and this error has not beenmore » previously quantified. Methods: Specimens from 31 PET/CT guided biopsies were investigated and correlated to the intraoperative PET scan under an IRB approved HIPAA compliant protocol. For 4 of the cases in which larger motion was suspected a second PET scan was obtained with the needle in place. The CT and the PET images obtained before and after the needle insertion were used to calculate the displacement of the voxels along the needle path. CTpost was registered to CTpre using a free form deformable registration and then fused with PETpre. The shifts between the PET image contours (42% of SUVmax) for PETpre and PETpost were obtained at the needle position. Results: For these extreme cases the displacement of the CT voxels along the needle path ranged from 2.9 to 8 mm with a mean of 5 mm. The shift of the PET image segmentation contours (42% of SUVmax) at the needle position ranged from 2.3 to 7 mm between the two scans. Conclusion: Evaluation of the mis-registration between the CT with the needle in place and the pre-biopsy PET can be obtained using deformable registration of the respective CT scans and can be used to indicate the need of a second PET in real-time. This work is supported in part by a grant from Biospace Lab, S.A.« less
Apparatus tube configuration and mounting for solid oxide fuel cells
Zymboly, Gregory E.
1993-01-01
A generator apparatus (10) is made containing long, hollow, tubular, fuel cells containing an inner air electrode (64), an outer fuel electrode (56), and solid electrolyte (54) therebetween, placed between a fuel distribution board (29) and a board (32) which separates the combustion chamber (16) from the generating chamber (14), where each fuel cell has an insertable open end and in insertable, plugged, closed end (44), the plugged end being inserted into the fuel distribution board (29) and the open end being inserted through the separator board (32) where the plug (60) is completely within the fuel distribution board (29).
Automatic planning of needle placement for robot-assisted percutaneous procedures.
Belbachir, Esia; Golkar, Ehsan; Bayle, Bernard; Essert, Caroline
2018-04-18
Percutaneous procedures allow interventional radiologists to perform diagnoses or treatments guided by an imaging device, typically a computed tomography (CT) scanner with a high spatial resolution. To reduce exposure to radiations and improve accuracy, robotic assistance to needle insertion is considered in the case of X-ray guided procedures. We introduce a planning algorithm that computes a needle placement compatible with both the patient's anatomy and the accessibility of the robot within the scanner gantry. Our preoperative planning approach is based on inverse kinematics, fast collision detection, and bidirectional rapidly exploring random trees coupled with an efficient strategy of node addition. The algorithm computes the allowed needle entry zones over the patient's skin (accessibility map) from 3D models of the patient's anatomy, the environment (CT, bed), and the robot. The result includes the admissible robot joint path to target the prescribed internal point, through the entry point. A retrospective study was performed on 16 patients datasets in different conditions: without robot (WR) and with the robot on the left or the right side of the bed (RL/RR). We provide an accessibility map ensuring a collision-free path of the robot and allowing for a needle placement compatible with the patient's anatomy. The result is obtained in an average time of about 1 min, even in difficult cases. The accessibility maps of RL and RR covered about a half of the surface of WR map in average, which offers a variety of options to insert the needle with the robot. We also measured the average distance between the needle and major obstacles such as the vessels and found that RL and RR produced needle placements almost as safe as WR. The introduced planning method helped us prove that it is possible to use such a "general purpose" redundant manipulator equipped with a dedicated tool to perform percutaneous interventions in cluttered spaces like a CT gantry.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... and other inputs to form cylinders that are shot through with electricity and baked to produce... electricity into the furnace, heating the furnace and melting scrap steel. 11. Graphite electrodes oxidize and... consumption of graphite electrodes. 12. Petroleum needle coke, relative to other varieties of coke, is...
A high-current rail-type gas switch with preionization by an additional corona discharge
NASA Astrophysics Data System (ADS)
Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G.
2016-12-01
The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10-45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, and the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.
NASA Astrophysics Data System (ADS)
Irisawa, Kaku; Murakoshi, Dai; Hashimoto, Atsushi; Yamamoto, Katsuya; Hayakawa, Toshiro
2017-03-01
Visualization of the tip of medical devices like needles or catheters under ultrasound imaging has been a continuous topic since the early 1980's. In this study, a needle tip visualization system utilizing photoacoustic effects is proposed. In order to visualize the needle tip, an optical fiber was inserted into a needle. The optical fiber tip is placed on the needle bevel and affixed with black glue. The pulsed laser light from laser diode was transferred to the optical fiber and converted to ultrasound due to laser light absorption of the black glue and the subsequent photoacoustic effect. The ultrasound is detected by transducer array and reconstructed into photoacoustic images in the ultrasound unit. The photoacoustic image is displayed with a superposed ultrasound B-mode image. As a system evaluation, the needle is punctured into bovine meat and the needle tip is observed with commercialized conventional linear transducers or convex transducers. The needle tip is visualized clearly at 7 and 12 cm depths with linear and convex probes, respectively, even with a steep needle puncture angle of around 90 degrees. Laser and acoustic outputs, and thermal rise at the needle tip, were measured and were well below the limits of the safety standards. Compared with existing needle tip visualization technologies, the photoacoustic needle tip visualization system has potential distinguishable features for clinical procedures related with needle puncture and injection.
Arched needle technique for inferior alveolar mandibular nerve block.
Chakranarayan, Ashish; Mukherjee, B
2013-03-01
One of the most commonly used local anesthetic techniques in dentistry is the Fischer's technique for the inferior alveolar nerve block. Incidentally this technique also suffers the maximum failure rate of approximately 35-45%. We studied a method of inferior alveolar nerve block by injecting a local anesthetic solution into the pterygomandibular space by arching and changing the approach angle of the conventional technique and estimated its efficacy. The needle after the initial insertion is arched and inserted in a manner that it approaches the medial surface of the ramus at an angle almost perpendicular to it. The technique was applied to 100 patients for mandibular molar extraction and the anesthetic effects were assessed. A success rate of 98% was obtained.
Innervation of the cricothyroid muscle by the recurrent laryngeal nerve.
Masuoka, Hiroo; Miyauchi, Akira; Yabuta, Tomonori; Fukushima, Mitsuhiro; Miya, Akihiro
2016-04-01
The recurrent laryngeal nerve (RLN) and the external branch of the superior laryngeal nerve (SLN) are generally thought to innervate the endolaryngeal muscles and the cricothyroid muscle (CTM), respectively. Meticulous anatomic studies found communication between these nerves (ie, the human communicating nerve). In this study, we report the innervation of the CTM by the RLN. We performed electromyographic studies of 50 patients during thyroidectomy (20 total and 30 hemithyroidectomies). During surgery, the external branch of the SLN, RLN, and vagus nerve were stimulated. Responses were evaluated by visual observation of the CTM and by electromyographies through needle electrodes inserted into the CTM. Seventy CTMs were evaluated. The RLN stimulation yielded both visible contractions and clear electromyographic responses (>300 µV) in 27 (39%), either response in 24 (34%), and neither response in 19 (27%) of the CTMs. The vagus stimulation gave similar results. The RLN innervated the CTM at least in 39% cases. © 2015 Wiley Periodicals, Inc. Head Neck 38: E441-E445, 2016. © 2015 Wiley Periodicals, Inc.
Design of a Teleoperated Needle Steering System for MRI-guided Prostate Interventions
Seifabadi, Reza; Iordachita, Iulian; Fichtinger, Gabor
2013-01-01
Accurate needle placement plays a key role in success of prostate biopsy and brachytherapy. During percutaneous interventions, the prostate gland rotates and deforms which may cause significant target displacement. In these cases straight needle trajectory is not sufficient for precise targeting. Although needle spinning and fast insertion may be helpful, they do not entirely resolve the issue. We propose robot-assisted bevel-tip needle steering under MRI guidance as a potential solution to compensate for the target displacement. MRI is chosen for its superior soft tissue contrast in prostate imaging. Due to the confined workspace of the MRI scanner and the requirement for the clinician to be present inside the MRI room during the procedure, we designed a MRI-compatible 2-DOF haptic device to command the needle steering slave robot which operates inside the scanner. The needle steering slave robot was designed to be integrated with a previously developed pneumatically actuated transperineal robot for MRI-guided prostate needle placement. We describe design challenges and present the conceptual design of the master and slave robots and the associated controller. PMID:24649480
Mahnič-Kalamiza, Samo; Kotnik, Tadej; Miklavčič, Damijan
2012-10-30
Electrochemotherapy is a local treatment that utilizes electric pulses in order to achieve local increase in cytotoxicity of some anticancer drugs. The success of this treatment is highly dependent on parameters such as tissue electrical properties, applied voltages and spatial relations in placement of electrodes that are used to establish a cell-permeabilizing electric field in target tissue. Non-thermal irreversible electroporation techniques for ablation of tissue depend similarly on these parameters. In the treatment planning stage, if oversimplified approximations for evaluation of electric field are used, such as U/d (voltage-to-distance ratio), sufficient field strength may not be reached within the entire target (tumor) area, potentially resulting in treatment failure. In order to provide an aid in education of medical personnel performing electrochemotherapy and non-thermal irreversible electroporation for tissue ablation, assist in visualizing the electric field in needle electrode electroporation and the effects of changes in electrode placement, an application has been developed both as a desktop- and a web-based solution. It enables users to position up to twelve electrodes in a plane of adjustable dimensions representing a two-dimensional slice of tissue. By means of manipulation of electrode placement, i.e. repositioning, and the changes in electrical parameters, the users interact with the system and observe the resulting electrical field strength established by the inserted electrodes in real time. The field strength is calculated and visualized online and instantaneously reflects the desired changes, dramatically improving the user friendliness and educational value, especially compared to approaches utilizing general-purpose numerical modeling software, such as finite element modeling packages. In this paper we outline the need and offer a solution in medical education in the field of electroporation-based treatments, e.g. primarily electrochemotherapy and non-thermal irreversible tissue ablation. We present the background, the means of implementation and the fully functional application, which is the first of its kind. While the initial feedback from students that have evaluated this application as part of an e-learning course is positive, a formal study is planned to thoroughly evaluate the current version and identify possible future improvements and modifications.
An ultrasound needle insertion guide in a porcine phantom model.
Whittaker, S; Lethbridge, G; Kim, C; Keon Cohen, Z; Ng, I
2013-08-01
We compared nerve blockade with and without the Infiniti(TM) needle guide in an ultrasound in-plane porcine simulation. We recruited 30 anaesthetists with varying blockade experience. Using the guide, the needle tip was more visible (for a median (IQR [range]) of 67 (56-100]) % of the time; and invisible for 2 (1-4 [0-19]) s) than when the guide was not used (respectively 23 (13-43 [0-80]) % and 25 (9-52 [1-198]) s; both p < 0.001). The corresponding block times were 8 (6-10 [3-28]) s and 32 (15-67 [5-225]) s, respectively; p < 0.001. The needle guide reduced the block time and the time that the needle was invisible, irrespective of anaesthetist experience. Anaesthesia © 2013 The Association of Anaesthetists of Great Britain and Ireland.
Deacon, A J; Melhuishi, N S; Terblanche, N C S
2014-07-01
Spinal ultrasonography is a promising aid for epidural insertion. We aimed to determine the learning curve of spinal ultrasonography tasks and the number of training scans required to reach competency after undergoing standardised step-wise teaching. Trainees were required to complete a minimum of 60 assessed scans on selected non-pregnant models following attendance at two training sessions, with feedback from an expert after each scan. Learning curves were plotted using the non-risk cumulative summation technique and an acceptable failure rate of 20%. Five trainees completed between 65 and 75 scans each. All trainees were competent at identifying a randomly assigned intervertebral space after a median of five scans (range one to nine) and at measuring the depth from skin to the posterior complex after a median of 10 scans (range 1 to 42). Two trainees were competent at marking an ideal needle insertion point after 55 scans, while three trainees did not attain competency. All trainees were competent after 60 scans if the tolerance was changed from five to eight millimetre for marking the needle insertion point. The average time taken to complete a scan was 163 seconds. Our study showed that after a standardised educational intervention, anaesthetic trainees are able to identify a lumbar interlaminar space easily and can measure the depth to the posterior complex after a reasonable number of additional practice scans, but experienced difficulty accurately marking the needle insertion point whilst using spinal ultrasonography. We confirmed that it was hard to achieve competency in all aspects of spinal ultrasonography, based on assessment using our predefined competency criteria.
Xie, Yi Min; Xu, Shanqing; Zhang, Claire Shuiqing; Xue, Charlie Changli
2014-04-01
The present work examined the surface conditions and various other physical properties of sterilised single-use stainless steel acupuncture needles from two of the most popular brands widely used in many countries. Scanning electron microscope (SEM) images were taken for 10 randomly chosen needles from each brand. Further SEM images were taken after each of these needles underwent a standard manipulation with an acupuncture needling practice gel. A comparison of forces and torques during the needling process was also carried out. The SEM images revealed significant surface irregularities and inconsistencies at the needle tips, especially for needles from one of the two brands. Metallic lumps and small, loosely attached pieces of material were observed on the surfaces of some needles. Some of the lumps and pieces of material seen on the needle surfaces disappeared after the acupuncture manipulation. If these needles had been used on patients, the metallic lumps and small pieces of material could have been deposited in human tissues, which could have caused adverse events such as dermatitis. Malformed needle tips might also cause other adverse effects including bleeding, haematoma/bruising, or strong pain during needling. An off-centre needle tip could result in the needle altering its direction during insertion and consequently failing to reach the intended acupuncture point or damaging adjacent tissues. These findings highlight the need for improved quality control of acupuncture needles, with a view to further enhancing the safety and comfort of acupuncture users.
Development of Repulsive Barrier Discharge from Twin Needles
NASA Astrophysics Data System (ADS)
Ueno, Hideki; Hata, Koji; Nakayama, Hiroshi
2007-03-01
Barrier discharge characteristics have been investigated for a twin needles-to-plane electrode configuration in dry air. The characteristics of barrier discharge under ac voltage application have been investigated for various distances between two needle tips (d=1.0--4.0 mm). We have found that corona discharge behavior strongly depends on needle-tip distance. In the case of a twin-needles configuration with a long needle-tip distance (d=4.0 mm), discharges from the two needle tips develop into a dielectric barrier with almost a straight path. On the contrary, the development of repulsive discharges from two needle tips in the gap between needles and a barrier was obtained for the shortest needle-tip distance investigated here (d=1.0 mm) and it was enhanced by increasing the peak voltage. From detailed time-resolved observations, development of repulsive discharge was observed only during positive polarity upon ac voltage application. Moreover, the degree of repulsion increased with increasing applied voltage of positive polarity. The observed unique discharge behavior can be interpreted as the effect of field relaxation induced not only by charge accumulation on the barrier surface, which is markedly enhanced at a short needle-tip distance, but also by space charge by coronas between two needles.
Semiconductor radiation detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.
A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can bemore » placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.« less
All-fiber Devices Based on Photonic Crystal Fibers with Integrated Electrodes
NASA Astrophysics Data System (ADS)
Chesini, Giancarlo; Cordeiro, Cristiano M. B.; de Matos, Christiano J. S.; Fokine, Michael; Carvalho, Isabel C. S.; Knighf, Jonathan C.
2008-10-01
A special kind of microstructured optical fiber was proposed and manufactured where, as well as the holey region (solid core and silica-air cladding), the fiber has also two large holes for electrode insertion. Bi-Sn and Au-Sn alloys were selectively inserted in those holes forming two parallel, continuous and homogeneous internal electrodes. We demonstrated the production of a monolithic device and its use to externally control some of the guidance properties (e.g. polarization) of the fiber.
LAPAROSCOPY AFTER PREVIOUS LAPAROTOMY
Godinjak, Zulfo; Idrizbegović, Edin; Begić, Kerim
2006-01-01
Following the abdominal surgery, extensive adhesions often occur and they can cause difficulties during laparoscopic operations. However, previous laparotomy is not considered to be a contraindication for lap-aroscopy. The aim of this study is to present that an insertion of Veres needle in the region of umbilicus is a safe method for creating a pneumoperitoneum for laparoscopic operations after previous laparotomy. In the last three years, we have performed 144 laparoscopic operations in patients that previously underwent one or two laparotomies. Pathology of digestive system, genital organs, Cesarean Section or abdominal war injuries were the most common causes of previous laparotomy. During those operations or during entering into abdominal cavity we have not experienced any complications, while in 7 patients we performed conversion to laparotomy following the diagnostic laparoscopy. In all patients an insertion of Veres needle and trocar insertion in the umbilical region was performed, namely a technique of closed laparoscopy. Not even in one patient adhesions in the region of umbilicus were found, and no abdominal organs were injured. PMID:17177649
Design of an actively controlled steerable needle with tendon actuation and FBG-based shape sensing.
van de Berg, Nick J; Dankelman, Jenny; van den Dobbelsteen, John J
2015-06-01
This work presents a new steerable needle to facilitate active steering toward predefined target locations. It focuses on mechanical aspects and design choices in relation to the observed response in a tissue phantom. Tip steering with two rotational degrees of freedom was achieved by a tendon actuated ball joint mechanism. During insertion, the flexible cannula bends as a result of asymmetric tip-tissue interaction forces. The stylet was equipped with fiber Bragg gratings to measure the needle shape and tip position during use. A PI-controller was implemented to facilitate steering to predefined targets. During the validation study, nine targets were defined at a depth of 100 mm below the gelatin surface. One was located below the insertion point, the others at a radial offset of 30 mm in each of the eight principle steering directions. Per location, six repetitions were performed. The targeting accuracy was 6.2 ± 1.4 mm (mean ± std). The steering precision was 2.6 ± 1.1 mm. The ability to steer with this new needle steering approach is presented and the mechanical characteristics are discussed for this representative subset of steering directions. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Teaching pH Measurements with a Student-Assembled Combination Quinhydrone Electrode
ERIC Educational Resources Information Center
Scholz, Fritz; Steinhardt, Tim; Kahlert, Heike; Porksen, Jens R.; Behnert, Jurgen
2005-01-01
A simple combination pH electrode consisting of a solid-state quinhydrone sensor and a solid-state quinhydrone reference electrode is described. Both electrodes are essentially rubber stoppers that are inserted into a special doublewalled holder.
Code of Federal Regulations, 2012 CFR
2012-10-01
... professional and technical components of any diagnostic test or procedure using x-rays, ultrasound...-ray, fluoroscopy, or ultrasound procedures that require the insertion of a needle, catheter, tube, or...
Code of Federal Regulations, 2013 CFR
2013-10-01
... professional and technical components of any diagnostic test or procedure using x-rays, ultrasound...-ray, fluoroscopy, or ultrasound procedures that require the insertion of a needle, catheter, tube, or...
Code of Federal Regulations, 2014 CFR
2014-10-01
... professional and technical components of any diagnostic test or procedure using x-rays, ultrasound...-ray, fluoroscopy, or ultrasound procedures that require the insertion of a needle, catheter, tube, or...
Kesler, Kyle; Dillon, Neal P; Fichera, Loris; Labadie, Robert F
2017-09-01
Objectives Document human motions associated with cochlear implant electrode insertion at different speeds and determine the lower limit of continuous insertion speed by a human. Study Design Observational. Setting Academic medical center. Subjects and Methods Cochlear implant forceps were coupled to a frame containing reflective fiducials, which enabled optical tracking of the forceps' tip position in real time. Otolaryngologists (n = 14) performed mock electrode insertions at different speeds based on recommendations from the literature: "fast" (96 mm/min), "stable" (as slow as possible without stopping), and "slow" (15 mm/min). For each insertion, the following metrics were calculated from the tracked position data: percentage of time at prescribed speed, percentage of time the surgeon stopped moving forward, and number of direction reversals (ie, going from forward to backward motion). Results Fast insertion trials resulted in better adherence to the prescribed speed (45.4% of the overall time), no motion interruptions, and no reversals, as compared with slow insertions (18.6% of time at prescribed speed, 15.7% stopped time, and an average of 18.6 reversals per trial). These differences were statistically significant for all metrics ( P < .01). The metrics for the fast and stable insertions were comparable; however, stable insertions were performed 44% slower on average. The mean stable insertion speed was 52 ± 19.3 mm/min. Conclusion Results indicate that continuous insertion of a cochlear implant electrode at 15 mm/min is not feasible for human operators. The lower limit of continuous forward insertion is 52 mm/min on average. Guidelines on manual insertion kinematics should consider this practical limit of human motion.
Rombouts, Steffi J E; Nijkamp, Maarten W; van Dijck, Willemijn P M; Brosens, Lodewijk A A; Konings, Maurits; van Hillegersberg, R; Borel Rinkes, Inne H M; Hagendoorn, Jeroen; Wittkampf, Fred H; Molenaar, I Quintus
2017-01-01
Irreversible electroporation (IRE) with needle electrodes is being explored as treatment option in locally advanced pancreatic cancer. Several studies have shown promising results with IRE needles, positioned around the tumor to achieve tumor ablation. Disadvantages are the technical difficulties for needle placement, the time needed to achieve tumor ablation, the risk of needle track seeding and most important the possible occurrence of postoperative pancreatic fistula via the needle tracks. The aim of this experimental study was to evaluate the feasibility of a new IRE-technique using two parallel plate electrodes, in a porcine model. Twelve healthy pigs underwent laparotomy. The pancreas was mobilized to enable positioning of the paddles. A standard monophasic external cardiac defibrillator was used to perform an ablation in 3 separate parts of the pancreas; either a single application of 50 or 100J or a serial application of 4x50J. After 6 hours, pancreatectomy was performed for histology and pigs were terminated. Histology showed necrosis of pancreatic parenchyma with neutrophil influx in 5/12, 11/12 and 12/12 of the ablated areas at 50, 100, and 4x50J respectively. The electric current density threshold to achieve necrosis was 4.3, 5.1 and 3.4 A/cm2 respectively. The ablation threshold was significantly lower for the serial compared to the single applications (p = 0.003). The content of the ablated areas differed between the applications: areas treated with a single application of 50 J often contained vital areas without obvious necrosis, whereas half of the sections treated with 100 J showed small islands of normal looking cells surrounded by necrosis, while all sections receiving 4x 50 J showed a homogeneous necrotic lesion. Pancreatic tissue can be successfully ablated using two parallel paddles around the tissue. A serial application of 4x50J was most effective in creating a homogeneous necrotic lesion.
Rodriguez-Falces, Javier; Negro, Francesco; Gonzalez-Izal, Miriam; Farina, Dario
2013-08-01
This study analyses the spatial distribution of individual motor unit potentials (MUPs) over the skin surface and the influence of motor unit depth and recording configuration on this distribution. Multichannel surface (13×5 electrode grid) and intramuscular (wire electrodes inserted with needles of lengths 15 and 25mm) electromyographic (EMG) signals were concurrently recorded with monopolar derivations from the biceps brachii muscle of 10 healthy subjects during 60-s isometric contractions at 20% of the maximum torque. Multichannel monopolar MUPs of the target motor unit were obtained by spike-triggered averaging of the surface EMG. Amplitude and frequency characteristics of monopolar and bipolar MUPs were calculated for locations along the fibers' direction (longitudinal), and along the direction perpendicular (transverse) to the fibers. In the longitudinal direction, monopolar and bipolar MUPs exhibited marked amplitude changes that extended for 16-32mm and 16-24mm over the innervation and tendon zones, respectively. The variation of monopolar and bipolar MUP characteristics was not symmetrical about the innervation zone. Motor unit depth had a considerable influence on the relative longitudinal variation of amplitude for monopolar MUPs, but not for bipolar MUPs. The transverse extension of bipolar MUPs ranged between 24 and 32mm, whereas that of monopolar MUPs ranged between 72 and 96mm. The mean power spectral frequency of surface MUPs was highly dependent on the transverse electrode location but not on depth. This study provides a basis for the interpretation of the contribution of individual motor units to the interference surface EMG signal. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tissue identification during Pneumoperitoneum in laparoscopy
NASA Astrophysics Data System (ADS)
Chang, Yin; Tseng, Chi-Yang
2015-03-01
Pneumoperitoneum is the beginning procedure of laparoscopy to enlarge the abdominal cavity in order to allow the surgical instruments to insert for surgical purpose. However, the insertion of Veress needle is a blind fashion that could cause blood vessels or visceral injury without attention and results in undetectable internal bleeding. Seriously it may cause a life-threatened complication. We have developed a method that can monitor the tissue reflective spectrum, which can be used for tissue discrimination, in real time during the puncture of the Veress needle. The system includes a modified Veress needle which containes an optical bundle, a light spectrum analyzing and control unit. Therefore, the tissue reflective spectrum can be vivid observed and analyzed through the fiber optical technology during the procedure of the Veress needle insertion. In this study, we have measured the reflective spectra of various porcine abdominal tissues. The features of their spectra were analyzed and characterized to build up the data base and create an algorithm for tissue discrimination in laparoscopy. The results showed that the correlation coefficient (r) of the reflective spectrum can be 0.79-0.95 for the wavelength range of 350-1000 nm and 0.85-0.98 for the wavelength range of 350-650 nm in the same tissue of various samples which were obtained from different days. An alternative way for tissue discrimination is achieved through a decision making tree according to the characteristics of tissue spectrum. For single blind test the success rate is nearly 100%. It seems that both the algorithms mentioned above for tissue discrimination are all very promising. Therefore, these algorithms will be applied to in vivo study in animal in the near future.
Stathopoulou, Thaleia-Rengina; Pinelas, Rui; Haar, Gert Ter; Cornelis, Ine; Viscasillas, Jaime
2018-05-01
Otitis externa is a painful condition that may require surgical intervention in dogs. A balanced analgesia protocol should combine systemic analgesic agents and local anaesthesia techniques. The aim of the study was to find anatomical landmarks for the great auricular and the auriculotemporal nerves that transmit nociceptive information from the ear pinna and to develop the optimal technique for a nerve block. The study consisted of two phases. In phase I, one fox cadaver was used for dissection and anatomical localization of the auricular nerves to derive landmarks for needle insertion. Eight fox cadavers were subsequently used to evaluate the accuracy of the technique by injecting methylene blue bilaterally. In phase II findings from phase I were applied in four Beagle canine cadavers. A block was deemed successful if more than 0.6 cm of the nerve's length was stained. Successful great auricular nerve block was achieved by inserting the needle superficially along the wing of the atlas with the needle pointing towards the jugular groove. For the auriculotemporal nerve block the needle was inserted perpendicular to the skin at the caudal lateral border of the zygomatic arch, close to the temporal process. The overall success rate was 24 out of 24 (100%) and 22 out of 24 (91%) for the great auricular and the auriculotemporal nerves, respectively, while the facial nerve was stained on three occasions. Our results suggest that it is feasible to achieve a block of the auricular nerves, based on anatomical landmarks, without concurrently affecting the facial nerve. © 2018 The Authors. Veterinary Medicine and Science Published by John Wiley & Sons Ltd.
Pindrik, Jonathan; Hoang, Nguyen; Tubbs, R Shane; Rocque, Brandon J; Rozzelle, Curtis J
2017-08-01
Phase II monitoring with intracranial electroencephalography (ICEEG) occasionally requires bilateral placement of subdural (SD) strips, grids, and/or depth electrodes. While phase I monitoring often demonstrates a preponderance of unilateral findings, individual studies (video EEG, single photon emission computed tomography [SPECT], and positron emission tomography [PET]) can suggest or fail to exclude a contralateral epileptogenic onset zone. This study describes previously unreported techniques of trans-falcine and sub-frontal insertion of contralateral SD grids and depth electrodes for phase II monitoring in pediatric epilepsy surgery patients when concern about bilateral abnormalities has been elicited during phase I monitoring. Pediatric patients with medically refractory epilepsy undergoing stage I surgery for phase II monitoring involving sub-frontal and/or trans-falcine insertion of SD grids and/or depth electrodes at the senior author's institution were retrospectively reviewed. Intra-operative technical details of sub-frontal and trans-falcine approaches were studied, while intra-operative complications or events were noted. Operative techniques included gentle subfrontal retraction and elevation of the olfactory tracts (while preserving the relationship between the olfactory bulb and cribriform plate) to insert SD grids across the midline for coverage of the contralateral orbito-frontal regions. Trans-falcine approaches involved accessing the inter-hemispheric space, bipolar cauterization of the anterior falx cerebri below the superior sagittal sinus, and sharp dissection using a blunt elevator and small blade scalpel. The falcine window allowed contralateral SD strip, grid, and depth electrodes to be inserted for coverage of the contralateral frontal regions. The study cohort included seven patients undergoing sub-frontal and/or trans-falcine insertion of contralateral SD strip, grid, and/or depth electrodes from February 2012 through June 2015. Five patients (71%) experienced no intra-operative events related to contralateral ICEEG electrode insertion. Intra-operative events of frontal territory venous engorgement (1/7, 14%) due to sacrifice of anterior bridging veins draining into the SSS and avulsion of a contralateral bridging vein (1/7, 14%), probably due to prior anterior corpus callosotomy, each occurred in one patient. There were no intra-operative or peri-operative complications in any of the patients studied. Two patients required additional surgery for supplemental SD strip and/or depth electrodes via burr hole craniectomy to enhance phase II monitoring. All patients proceeded to stage II surgery for resection of ipsilateral epileptogenic onset zones without adverse events. Trans-falcine and sub-frontal insertion of contralateral SD strip, grid, and depth electrodes are previously unreported techniques for achieving bilateral frontal coverage in phase II monitoring in pediatric epilepsy surgery. This technique obviates the need for contralateral craniotomy and parenchymal exposure with limited, remediable risks. Larger case series using the method described herein are now necessary.
Soft Tissue Phantoms for Realistic Needle Insertion: A Comparative Study.
Leibinger, Alexander; Forte, Antonio E; Tan, Zhengchu; Oldfield, Matthew J; Beyrau, Frank; Dini, Daniele; Rodriguez Y Baena, Ferdinando
2016-08-01
Phantoms are common substitutes for soft tissues in biomechanical research and are usually tuned to match tissue properties using standard testing protocols at small strains. However, the response due to complex tool-tissue interactions can differ depending on the phantom and no comprehensive comparative study has been published to date, which could aid researchers to select suitable materials. In this work, gelatin, a common phantom in literature, and a composite hydrogel developed at Imperial College, were matched for mechanical stiffness to porcine brain, and the interactions during needle insertions within them were analyzed. Specifically, we examined insertion forces for brain and the phantoms; we also measured displacements and strains within the phantoms via a laser-based image correlation technique in combination with fluorescent beads. It is shown that the insertion forces for gelatin and brain agree closely, but that the composite hydrogel better mimics the viscous nature of soft tissue. Both materials match different characteristics of brain, but neither of them is a perfect substitute. Thus, when selecting a phantom material, both the soft tissue properties and the complex tool-tissue interactions arising during tissue manipulation should be taken into consideration. These conclusions are presented in tabular form to aid future selection.
Scaled-Up Nonequilibrium Air Plasmas
2009-10-01
surrounding gas. So if we put a needle electrode with DC corona discharge directly into the MW plasma (Figure 7), N2* is produced by electron excitation but...transitions When a high voltage of a few kV is applied to the point electrode , a corona discharge appears on the point, further developing to streamer... electrode tips but with the smaller difference between the field in the middle and near the tips than in corona . This transition to TS pulse probably
NASA Astrophysics Data System (ADS)
Zhang, Haichong K.; Lin, Melissa; Kim, Younsu; Paredes, Mateo; Kannan, Karun; Patel, Nisu; Moghekar, Abhay; Durr, Nicholas J.; Boctor, Emad M.
2017-03-01
Lumbar punctures (LPs) are interventional procedures used to collect cerebrospinal fluid (CSF), a bodily fluid needed to diagnose central nervous system disorders. Most lumbar punctures are performed blindly without imaging guidance. Because the target window is small, physicians can only accurately palpate the appropriate space about 30% of the time and perform a successful procedure after an average of three attempts. Although various forms of imaging based guidance systems have been developed to aid in this procedure, these systems complicate the procedure by including independent image modalities and requiring image-to-needle registration to guide the needle insertion. Here, we propose a simple and direct needle insertion platform utilizing a single ultrasound element within the needle through dynamic sensing and imaging. The needle-shaped ultrasound transducer can not only sense the distance between the tip and a potential obstacle such as bone, but also visually locate structures by combining transducer location tracking and back projection based tracked synthetic aperture beam-forming algorithm. The concept of the system was validated through simulation first, which revealed the tolerance to realistic error. Then, the initial prototype of the single element transducer was built into a 14G needle, and was mounted on a holster equipped with a rotation tracking encoder. We experimentally evaluated the system using a metal wire phantom mimicking high reflection bone structures and an actual spine bone phantom with both the controlled motion and freehand scanning. An ultrasound image corresponding to the model phantom structure was reconstructed using the beam-forming algorithm, and the resolution was improved compared to without beam-forming. These results demonstrated the proposed system has the potential to be used as an ultrasound imaging system for lumbar puncture procedures.
Shepherd, R K; Clark, G M; Xu, S A; Pyman, B C
1995-03-01
The histopathologic consequence of removing and reimplanting intracochlear electrode arrays on residual auditory nerve fibers is an important issue when evaluating the safety of cochlear prostheses. The authors have examined this issue by implanting multichannel intracochlear electrodes in macaque monkeys. Macaques were selected because of the similarity of the surgical technique used to insert electrodes into the cochlea compared to that in humans, in particular the ability to insert the arrays into the upper basal turn. Five macaques were bilaterally implanted with the Melbourne/Cochlear banded electrode array. Following a minimum implant period of 5 months, the electrode array on one side of each animal was removed and another immediately implanted. The animals were sacrificed a minimum of 5 months following the reinsertion procedure, and the cochleas prepared for histopathologic analysis. Long-term implantation of the electrode resulted in a relatively mild tissue response within the cochlea. Results also showed that inner and outer hair cell survival, although significantly reduced adjacent to the array, was normal in 8 of the 10 cochleas apicalward. Moreover, the electrode reinsertion procedure did not appear to adversely affect this apical hair cell population. Significant new bone formation was frequently observed in both control and reimplanted cochleas close to the electrode fenestration site and was associated with trauma to the endosteum and/or the introduction of bone chips into the cochlea at the time of surgery. Electrode insertion trauma, involving the osseous spiral lamina or basilar membrane, was more commonly observed in reimplanted cochleas. This damage was usually restricted to the lower basal turn and resulted in a more extensive ganglion cell loss. Finally, in a number of cochleas part of the electrode array was located within the scala media or scala vestibuli. These electrodes did not appear to evoke a more extensive tissue response or result in more extensive neural degeneration compared with electrodes located within the scala tympani. In conclusion, the present study has shown that the reimplantation of a multichannel scala, tympani electrode array can be achieved with minimal damage to the majority of cochlear structures. Increased insertion trauma, resulting in new bone formation and spiral ganglion cell loss, can occur in the lower basal turn in cases where the electrode entry point is difficult to identify due to proliferation of granulation and fibrous tissue.
NASA Astrophysics Data System (ADS)
Ui, Koichi; Yamamoto, Keigo; Ishikawa, Kohei; Minami, Takuto; Takeuchi, Ken; Itagaki, Masayuki; Watanabe, Kunihiro; Koura, Nobuyuki
The negative electrode performance of the electroplated Al film electrode in the LiCl saturated AlCl 3-1-ethyl-3-methylimizadolium chloride (EMIC) + SOCl 2 melt as the electrolyte for use in non-flammable lithium secondary batteries was evaluated. In the cyclic voltammogram of the electroplated Al film electrode in the melt, the oxidation and reduction waves corresponding to the electrochemical insertion/extraction reactions of the Li + ion were observed at 0-0.80 V vs. Li +/Li, which suggested that the electroplated Al film electrode operated well in the electrolyte. The almost flat potential profiles at about 0.40 V vs. Li +/Li on discharging were shown. The discharge capacity and charge-discharge efficiency was 236 mAh g -1 and 79.2% for the 1st cycle and it maintained 232 mAh g -1 and 77.9% after the 10th cycle. In addition, the initial charge-discharge efficiencies of the electroplated Al film electrode were higher than that of carbon electrodes. The main cathodic polarization reaction was the insertion of Li + ions, and side reactions hardly occurred due to the decomposition reaction of the melt because the Li content corresponding to the electricity was almost totally inserted into the film after charging.
Apparatus for detecting alpha radiation in difficult access areas
Steadman, Peter; MacArthur, Duncan W.
1997-09-02
An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure.
Vrooijink, Gustaaf J.; Abayazid, Momen; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak
2015-01-01
Needle insertion is commonly performed in minimally invasive medical procedures such as biopsy and radiation cancer treatment. During such procedures, accurate needle tip placement is critical for correct diagnosis or successful treatment. Accurate placement of the needle tip inside tissue is challenging, especially when the target moves and anatomical obstacles must be avoided. We develop a needle steering system capable of autonomously and accurately guiding a steerable needle using two-dimensional (2D) ultrasound images. The needle is steered to a moving target while avoiding moving obstacles in a three-dimensional (3D) non-static environment. Using a 2D ultrasound imaging device, our system accurately tracks the needle tip motion in 3D space in order to estimate the tip pose. The needle tip pose is used by a rapidly exploring random tree-based motion planner to compute a feasible needle path to the target. The motion planner is sufficiently fast such that replanning can be performed repeatedly in a closed-loop manner. This enables the system to correct for perturbations in needle motion, and movement in obstacle and target locations. Our needle steering experiments in a soft-tissue phantom achieves maximum targeting errors of 0.86 ± 0.35 mm (without obstacles) and 2.16 ± 0.88 mm (with a moving obstacle). PMID:26279600
COMPARISON OF DRY NEEDLING VS. SHAM ON THE PERFORMANCE OF VERTICAL JUMP.
Bandy, William D; Nelson, Russell; Beamer, Lisa
2017-10-01
Dry needling has been reported to decrease pain in subjects having myofascial trigger points, as well as pain in muscle and connective tissue. The purpose of the study was to compare the effects on the ability to perform a two-legged vertical jump between a group who received one bout of dry needling and a group who received one bout of a sham treatment. Thirty-five healthy students (19 males, 16 females) were recruited to participate in this study (mean age 22.7+/- 2.4 years). The subjects were randomly divided into two groups- dry needling (n=18) vs sham (n=17). The dry needling group received needling to four sites on bilateral gastrocnemius muscles; two at the medial head and two at the lateral head. The sham group had the four areas of the gastrocnemius muscle pressed with the tube housing the needle, but the needle was never inserted into the skin. Two-legged vertical jump was measured with chalk marks on the wall before and after the dry needling and sham treatments. Analysis with a t-test indicated that the dry needling group significantly increased vertical jump height 1.2 inches over the sham group. One bout of dry needling showed an immediate effect at significantly increasing vertical jump height in healthy, young adults. Future research is needed to determine if dry needling has any long-term effects. 2b.
Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions
Park, Yong-Lae; Elayaperumal, Santhi; Daniel, Bruce; Ryu, Seok Chang; Shin, Mihye; Savall, Joan; Black, Richard J.; Moslehi, Behzad; Cutkosky, Mark R.
2015-01-01
We describe a MRI-compatible biopsy needle instrumented with optical fiber Bragg gratings for measuring bending deflections of the needle as it is inserted into tissues. During procedures, such as diagnostic biopsies and localized treatments, it is useful to track any tool deviation from the planned trajectory to minimize positioning errors and procedural complications. The goal is to display tool deflections in real time, with greater bandwidth and accuracy than when viewing the tool in MR images. A standard 18 ga × 15 cm inner needle is prepared using a fixture, and 350-μm-deep grooves are created along its length. Optical fibers are embedded in the grooves. Two sets of sensors, located at different points along the needle, provide an estimate of the bent profile, as well as temperature compensation. Tests of the needle in a water bath showed that it produced no adverse imaging artifacts when used with the MR scanner. PMID:26405428
Scolaro, Loretta; Lorenser, Dirk; Madore, Wendy-Julie; Kirk, Rodney W.; Kramer, Anne S.; Yeoh, George C.; Godbout, Nicolas; Sampson, David D.; Boudoux, Caroline; McLaughlin, Robert A.
2015-01-01
Molecular imaging using optical techniques provides insight into disease at the cellular level. In this paper, we report on a novel dual-modality probe capable of performing molecular imaging by combining simultaneous three-dimensional optical coherence tomography (OCT) and two-dimensional fluorescence imaging in a hypodermic needle. The probe, referred to as a molecular imaging (MI) needle, may be inserted tens of millimeters into tissue. The MI needle utilizes double-clad fiber to carry both imaging modalities, and is interfaced to a 1310-nm OCT system and a fluorescence imaging subsystem using an asymmetrical double-clad fiber coupler customized to achieve high fluorescence collection efficiency. We present, to the best of our knowledge, the first dual-modality OCT and fluorescence needle probe with sufficient sensitivity to image fluorescently labeled antibodies. Such probes enable high-resolution molecular imaging deep within tissue. PMID:26137379
Samosky, Joseph T; Allen, Pete; Boronyak, Steve; Branstetter, Barton; Hein, Steven; Juhas, Mark; Nelson, Douglas A; Orebaugh, Steven; Pinto, Rohan; Smelko, Adam; Thompson, Mitch; Weaver, Robert A
2011-01-01
We are developing a simulator of peripheral nerve block utilizing a mixed-reality approach: the combination of a physical model, an MRI-derived virtual model, mechatronics and spatial tracking. Our design uses tangible (physical) interfaces to simulate surface anatomy, haptic feedback during needle insertion, mechatronic display of muscle twitch corresponding to the specific nerve stimulated, and visual and haptic feedback for the injection syringe. The twitch response is calculated incorporating the sensed output of a real neurostimulator. The virtual model is isomorphic with the physical model and is derived from segmented MRI data. This model provides the subsurface anatomy and, combined with electromagnetic tracking of a sham ultrasound probe and a standard nerve block needle, supports simulated ultrasound display and measurement of needle location and proximity to nerves and vessels. The needle tracking and virtual model also support objective performance metrics of needle targeting technique.
... Sample Required? A blood sample drawn from a vein in your arm Test Preparation Needed? None Looking ... is obtained by inserting a needle into a vein in the arm. Is any test preparation needed ...
Ozone production by a dc corona discharge in air contaminated by n-heptane
NASA Astrophysics Data System (ADS)
Pekárek, S.
2008-01-01
Beneficial purposes of ozone such as elimination of odours, harmful bacteria and mildew can be used for transportation of food, fruits and vegetables with the aim to extend their storage life. To date the main technique used for this purpose in the transportation of these commodities, e.g. by trucks, was cooling. Here a combination of cooling together with the supply of ozone into containers with these commodities is considered. For these purposes we studied the effect of air contamination by n-heptane (part of automotive fuels) and humidity on ozone production by a dc hollow needle to mesh corona discharge. We found that, for both polarities of the needle electrode, addition of n-heptane to air (a) decreases ozone production; (b) causes discharge poisoning to occur at lower current than for air; (c) does not substantially influence the current for which the ozone production reaches the maximum. Finally the maximum ozone production for the discharge in air occurs for the same current as the maximum ozone production for the discharge contaminated by n-heptane. We also found that humidity decreases ozone production from air contaminated by n-heptane irrespective of the polarity of the coronating needle electrode. This dependence is stronger for the discharge with the needle biased positively.
Strategies to improve electrode positioning and safety in cochlear implants.
Rebscher, S J; Heilmann, M; Bruszewski, W; Talbot, N H; Snyder, R L; Merzenich, M M
1999-03-01
An injection-molded internal supporting rib has been produced to control the flexibility of silicone rubber encapsulated electrodes designed to electrically stimulate the auditory nerve in human subjects with severe to profound hearing loss. The rib molding dies, and molds for silicone rubber encapsulation of the electrode, were designed and machined using AutoCad and MasterCam software packages in a PC environment. After molding, the prototype plastic ribs were iteratively modified based on observations of the performance of the rib/silicone composite insert in a clear plastic model of the human scala tympani cavity. The rib-based electrodes were reliably inserted farther into these models, required less insertion force and were positioned closer to the target auditory neural elements than currently available cochlear implant electrodes. With further design improvements the injection-molded rib may also function to accurately support metal stimulating contacts and wire leads during assembly to significantly increase the manufacturing efficiency of these devices. This method to reliably control the mechanical properties of miniature implantable devices with multiple electrical leads may be valuable in other areas of biomedical device design.
Rail-type gas switch with preionization by an additional corona discharge
NASA Astrophysics Data System (ADS)
Belozerov, O. S.; Krastelev, E. G.
2017-05-01
Results of an experimental research of a rail-type gas switch with preionization by an additional negative corona discharge are presented. The most of measurements were performed for an air insulated two-electrode switch assembled of cylindrical electrodes of 22 mm diameter and 100 mm length, arranged parallel to each other, with a spark gap between them varying from 6 to 15 mm. A set of 1 to 5 needles connected to a negative cylindrical electrode and located aside of them were used for corona discharges. The needle positions, allowing an effecient stabilization of the pulsed breakdown voltage and preventing the a transition of the corona discharge in a spark form, were found. It was shown that the gas preionization by the UV-radiation of the parallel corona discharge provides a stable operation of the switch with low variations of the pulsed breakdown voltage, not exceeding 1% for a given voltage rise-time tested within the range from 40 ns to 5 µs.
The Effectiveness of Acupuncture for Chronic Daily Headache: An Outcomes Study
2009-12-01
1107 -t- 3 chan- nel transcutaneous electrical nerve stimulator ( TENS ) units. The negative or black lead was clipped onto the needle in.serted at...arc easily accessible for electrical tonification, especially for acupuncture naive subjects. They can also be used during an acute headache episode...ache, warmth, tingling, pressure, or radiation). Mild electrical tonification was applied to the 2 acu- puncture needles in tbe foot, using an ITO-IC
Lathuillière, Marine; Merklen, Fanny; Piron, Jean-Pierre; Sicard, Marielle; Villemus, Françoise; Menjot de Champfleur, Nicolas; Venail, Frédéric; Uziel, Alain; Mondain, Michel
2017-01-01
To assess the feasibility of using cone-beam computed tomography (CBCT) in young children with cochlear implants (CIs) and study the effect of intracochlear position on electrophysiological and behavioral measurements. A total of 40 children with either unilateral or bilateral cochlear implants were prospectively included in the study. Electrode placement and insertion angles were studied in 55 Cochlear ® implants (16 straight arrays and 39 perimodiolar arrays), using either CBCT or X-ray imaging. CBCT or X-ray imaging were scheduled when the children were leaving the recovery room. We recorded intraoperative and postoperative neural response telemetry threshold (T-NRT) values, intraoperative and postoperative electrode impedance values, as well as behavioral T (threshold) and C (comfort) levels on electrodes 1, 5, 10, 15 and 20. CBCT imaging was feasible without any sedation in 24 children (60%). Accidental scala vestibuli insertion was observed in 3 out of 24 implants as assessed by CBCT. The mean insertion angle was 339.7°±35.8°. The use of a perimodiolar array led to higher angles of insertion, lower postoperative T-NRT, as well as decreased behavioral T and C levels. We found no significant effect of either electrode array position or angle of insertion on electrophysiological data. CBCT appears to be a reliable tool for anatomical assessment of young children with CIs. Intracochlear position had no significant effect on the electrically evoked compound action potential (ECAP) threshold. Our CBCT protocol must be improved to increase the rate of successful investigations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Verberne, Juul; Risi, Frank; Campbell, Luke; Chambers, Scott; O'Leary, Stephen
2017-01-01
Scala tympani morphology influences the insertion dynamics and intra-scalar position of straight electrode arrays. Hearing preservation is the goal of cochlear implantation with current thin straight electrode arrays. These hug the lateral wall, facilitating full, atraumatic insertions. However, most studies still report some postoperative hearing loss. This study explores the influence of scala tympani morphology on array position relative to the basilar membrane and its possible contribution to postoperative hearing loss. Twenty-six fresh-frozen human temporal bones implanted with a straight electrode array were three-dimensionally reconstructed from micro-photographic histological sections. Insertion depth and the proximity between the array and basilar membrane were recorded. Lateral wall shape was quantified as a curvature ratio. Insertion depths ranged from 233 to 470 degrees. The mean first point of contact between the array and basilar membrane was 185 degrees; arrays tended to remain in contact with the membrane after first contacting it. Eighty-nine and 93% of arrays that reached the upper basal (>240-360 degrees) and second (>360-720 degrees) turns respectively contacted the basilar membrane in these regions. Scalar wall curvature ratio decreased significantly (the wall became steeper) from the basal to second turns. This shift correlated with a reduced distance between the array and basilar membrane. Scala tympani morphology influences the insertion dynamics and intra-scalar position of a straight electrode array. In addition to gross trauma of cochlear structures, contact between the array and basilar membrane and how this impacts membrane function should be considered in hearing preservation cases.
Microfluidic Actuation of Carbon Nanotube Fibers for Neural Recordings
NASA Astrophysics Data System (ADS)
Vercosa, Daniel G.
Implantable devices to record and stimulate neural circuits have led to breakthroughs in neuroscience; however, technologies capable of electrical recording at the cellular level typically rely on rigid metals that poorly match the mechanical properties of soft brain tissue. As a result these electrodes often cause extensive acute and chronic injury, leading to short electrode lifetime. Recently, flexible electrodes such as Carbon Nanotube fibers (CNTf) have emerged as an attractive alternative to conventional electrodes and studies have shown that these flexible electrodes reduce neuro-inflammation and increase the quality and longevity of neural recordings. Insertion of these new compliant electrodes, however, remains challenge. The stiffening agents necessary to make the electrodes rigid enough to be inserted increases device footprint, which exacerbates brain damage during implantation. To overcome this challenge we have developed a novel technology to precisely implant and actuate high-performance, flexible carbon nanotube fiber (CNTf) microelectrodes without using a stiffening agents or shuttles. Instead, our technology uses drag forces within a microfluidic device to drive electrodes into tissue while minimizing the amount of fluid that is ejected into the tissue. In vitro experiments in brain phantoms, show that microfluidic actuated CNTf can be implanted at least 4.5 mm depth with 30 microm precision, while keeping the total volume of fluid ejected below 0.1 microL. As proof of concept, we inserted CNTfs in the small cnidarian Hydra littoralis and observed compound action potentials corresponding to contractions and in agreement with the literature. Additionally, brain slices extracted from transgenic mice were used to show that our device can be used to record spontaneous and light evoked activity from the cortex and deep brain regions such as the thalamic reticular nucleus (TRN). Overall our microfluidic actuation technology provides a platform for implanting and actuating flexible electrodes that significantly reduces damage during insertion.
[Morphology determination of multi-needle bipolar corona discharge by OES].
Chen, Hai-Feng; Su, Peng-Hao; Zhu, Yi-Min
2009-01-01
Using the method of OES (optical emission spectrum) for measuring N2 emission spectrum, the spacial distribution of energetic electrons in multi-needle bipolar corona discharge at atmospheric pressure was investigated. According to the distribution of N2 second positive band's intensity ISPB, the outline of ionisation region was drawn accurately. The relationship between ISPB and discharge current I was obtained through the sum of ISPB. There are two ionisation regions in the multi-needle bipolar corona discharge. One is near the HV electrode and the other is near the grounded electrode. The ionisation region exists around the needlepoint within 2-3 mm. The volume of ionisation region becomes big with the applied voltage U increasing. The ionisation region of negative corona is bigger than that of positive corona. Near the HV discharge electrode, the outline of electron avalanche is similar to the configuration of electric field lines in the ionisation region, so the electron avalanche along the axis direction of needle develops farther than that along the radial direction. The electric field in the migration area is weak, and the distribution of space charges is large along the radial direction. The sum of ISPB in each ionisation region is second order linear with I, but the quadratic coefficient is very small. So the sum of ISPB is nearly linear with I, the distribution of ISPB is corresponding to the density distribution of energetic electrons. So the charged particles forming the discharge current in ionisation region are electrons. No emission spectrum of N2 can be measured in migration area, so there is no energetic electron. The energetic electrons only exist in ionisation region and the charged particles in migration area are ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhardwaj, A.; Walker-Kopp, N; Casjens, S
2009-01-01
Bacteriophages of the Podoviridae family use short noncontractile tails to inject their genetic material into Gram-negative bacteria. In phage P22, the tail contains a thin needle, encoded by the phage gene 26, which is essential both for stabilization and for ejection of the packaged viral genome. Bioinformatic analysis of the N-terminal domain of gp26 (residues 1-60) led us to identify a family of genes encoding putative homologues of the tail needle gp26. To validate this idea experimentally and to explore their diversity, we cloned the gp26-like gene from phages HK620, Sf6 and HS1, and characterized these gene products in solution.more » All gp26-like factors contain an elongated {alpha}-helical coiled-coil core consisting of repeating, adjacent trimerization heptads and form trimeric fibers with length ranging between about 240 to 300 {angstrom}. gp26 tail needles display a high level of structural stability in solution, with Tm (temperature of melting) between 85 and 95 C. To determine how the structural stability of these phage fibers correlates with the length of the {alpha}-helical core, we investigated the effect of insertions and deletions in the helical core. In the P22 tail needle, we identified an 85-residue-long helical domain, termed MiCRU (minimal coiled-coil repeat unit), that can be inserted in-frame inside the gp26 helical core, preserving the straight morphology of the fiber. Likewise, we were able to remove three quarters of the helical core of the HS1 tail needle, minimally decreasing the stability of the fiber. We conclude that in the gp26 family of tail needles, structural stability increases nonlinearly with the length of the {alpha}-helical core. Thus, the overall stability of these bacteriophage fibers is not solely dependent on the number of trimerization repeats in the {alpha}-helical core.« less
Asami, Tetsu; Kaneko, Hiroki; Miyake, Kensaku; Ota, Ichiro; Miyake, Goichiro; Kato, Seiichi; Yasuda, Shunsuke; Iwase, Takeshi; Ito, Yasuki; Terasaki, Hiroko
2016-01-01
Purpose We report a newly developed device to fragment thrombi in retinal vein occlusion. Methods The new instrument consists of a 23-gauge (G) pipe and a 37-G needle with an internal wire. A total of 40 porcine eyes were used; 20 eyes for experiments in the branch retinal vein (BRV group) and 20 eyes for experiments in the central retinal vein (CRV group). We placed 25-G 3-port trocars, and core vitrectomy was performed. Another 23-G scleral incision was performed for insertion of the needle. The needle pierced the retinal vein at a distance of three- to four- or one-disc diameters from the optic disc (BRV or CRV group, respectively), and the internal wire was advanced toward the disc. The success rates of needle piercing and cannulation of the internal wire were recorded in each group. In the CRV group, the cannulation was deemed successful when the tip reached inside the optic disc. Real-time optical coherence tomography imaging also was performed using the Zeiss Rescan 700 device in porcine eyes. Histologic examination of the retinal vessel inserted with the internal wire was performed. Results The success rates of needle piercing into the BRV and CRV were 85% and 95%, respectively. The success rates of cannulation of the internal wire into the BRV and CRV were 85% and 0%, respectively. The process of cannulation was recorded successfully with the Rescan 700. Histologic examination showed no damages to the endothelial cell layer. Conclusions The needle and internal wire intended to be used for recanalization of BRV occlusion were successfully pierced and cannulated into the BRV. Translational Relevance This newly developed device could become a treatment modality for retinal vein occlusion to fragment thrombi that present treatment methods cannot reach and remove directly. PMID:27730009
3D optical coherence tomography image registration for guiding cochlear implant insertion
NASA Astrophysics Data System (ADS)
Cheon, Gyeong-Woo; Jeong, Hyun-Woo; Chalasani, Preetham; Chien, Wade W.; Iordachita, Iulian; Taylor, Russell; Niparko, John; Kang, Jin U.
2014-03-01
In cochlear implant surgery, an electrode array is inserted into the cochlear canal to restore hearing to a person who is profoundly deaf or significantly hearing impaired. One critical part of the procedure is the insertion of the electrode array, which looks like a thin wire, into the cochlear canal. Although X-ray or computed tomography (CT) could be used as a reference to evaluate the pathway of the whole electrode array, there is no way to depict the intra-cochlear canal and basal turn intra-operatively to help guide insertion of the electrode array. Optical coherent tomography (OCT) is a highly effective way of visualizing internal structures of cochlea. Swept source OCT (SSOCT) having center wavelength of 1.3 micron and 2D Galvonometer mirrors was used to achieve 7-mm depth 3-D imaging. Graphics processing unit (GPU), OpenGL, C++ and C# were integrated for real-time volumetric rendering simultaneously. The 3D volume images taken by the OCT system were assembled and registered which could be used to guide a cochlear implant. We performed a feasibility study using both dry and wet temporal bones and the result is presented.
Electrocautery skin incision for neurosurgery procedures--technical note.
Nitta, Naoki; Fukami, Tadateru; Nozaki, Kazuhiko
2011-01-01
The reluctance to incise skin with electrocautery is partly attributable to concerns about excessive scarring and poor wound healing. However, recently no difference was reported in wound complications between the cold scalpel and electrocautery scalpel. We assessed the safety and efficacy of electrocautery skin incision in 22 scalp incisions, including 4 cases of reoperation. Electrocautery skin incisions were created using a sharp needle electrode. The generator unit was set on cutting mode, with power of 6 W and 330 kHz sinusoid waveform. Subcutaneous dissections also used the sharp needle electrode, set on coagulating mode, with power of 10 W and 1 MHz pulse-modulated waveform. Galea incisions used a standard blade tip, set on coagulating mode, with power of 20 W and 1 MHz pulse-modulated waveform. Skin incision with the sharp needle electrode caused no charring of the wound. Little bleeding or oozing were observed and skin clips were not necessary. No wound complication such as necrosis or infection occurred. Electrocautery skin incisions for re-operations were also performed safely without complications. Electrocautery skin incision is sufficiently safe procedure not only for first operation but also for re-operation. Electrocautery skin incision is efficacious, especially for extended operation times, because of little blood loss from the edges of skin incision and possible avoidance of skin edge necrosis or alopecia caused by skin clips.
Electrospray of multifunctional microparticles for image-guided drug delivery
NASA Astrophysics Data System (ADS)
Zhang, Leilei; Yan, Yan; Mena, Joshua; Sun, Jingjing; Letson, Alan; Roberts, Cynthia; Zhou, Chuanqing; Chai, Xinyu; Ren, Qiushi; Xu, Ronald
2012-03-01
Anti-VEGF therapies have been widely explored for the management of posterior ocular disease, like neovascular age-related macular degeneration (AMD). Loading anti-VEGF therapies in biodegradable microparticles may enable sustained drug release and improved therapeutic outcome. However, existing microfabrication processes such as double emulsification produce drug-loaded microparticles with low encapsulation rate and poor antibody bioactivity. To overcome these limitations, we fabricate multifunctional microparticles by both single needle and coaxial needle electrospray. The experimental setup for the process includes flat-end syringe needles (both single needle and coaxial needle), high voltage power supplies, and syringe pumps. Microparticles are formed by an electrical field between the needles and the ground electrode. Droplet size and morphology are controlled by multiple process parameters and material properties, such as flow rate and applied voltage. The droplets are collected and freezing dried to obtain multifunctional microparticles. Fluorescent beads encapsulated poly(DL-lactide-co-glycolide) acid (PLGA) microparticles are injected into rabbits eyes through intravitreal injection to test the biodegradable time of microparticles.
Two-dimensional nanosecond electric field mapping based on cell electropermeabilization.
Chen, Meng-Tse; Jiang, Chunqi; Vernier, P Thomas; Wu, Yu-Hsuan; Gundersen, Martin A
2009-11-11
Nanosecond, megavolt-per-meter electric pulses cause permeabilization of cells to small molecules, programmed cell death (apoptosis) in tumor cells, and are under evaluation as a treatment for skin cancer. We use nanoelectroporation and fluorescence imaging to construct two-dimensional maps of the electric field associated with delivery of 15 ns, 10 kV pulses to monolayers of the human prostate cancer cell line PC3 from three different electrode configurations: single-needle, five-needle, and flat-cut coaxial cable. Influx of the normally impermeant fluorescent dye YO-PRO-1 serves as a sensitive indicator of membrane permeabilization. The level of fluorescence emission after pulse exposure is proportional to the applied electric field strength. Spatial electric field distributions were compared in a plane normal to the center axis and 15-20 mum from the tip of the center electrode. Measurement results agree well with models for the three electrode arrangements evaluated in this study. This live-cell method for measuring a nanosecond pulsed electric field distribution provides an operationally meaningful calibration of electrode designs for biological applications and permits visualization of the relative sensitivities of different cell types to nanoelectropulse stimulation. PACS Codes: 87.85.M-
A high-current rail-type gas switch with preionization by an additional corona discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru
The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10–45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, andmore » the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.« less
Latest Research: Genetic Links
... additional genetic risk factors. The network will also explore the relationship between a genetic disease and its ... surgery involves inserting a hollow needle into the space between the eye's retinal layers and transferring genetic ...
Chira, Ciprian; Delouya, Guila; Larrivée, Sandra; Carrier, Jean-Francois; Taussky, Daniel
2013-07-09
To determine prostate volume (Pvol) changes at 3 different time points during the course of I¹²⁵ permanent seed brachytherapy (PB). To assess the impact of these changes on acute urinary retention (AUR) and dosimetric outcome. We analyzed 149 hormone-naïve patients. Measurements of the prostate volume were done using three-dimensional transrectal ultrasound (3D-TRUS) in the operating room before insertion of any needle (V1), after the insertion of 2 fixation needles with a harpoon (V2) and upon completion of the implant (V3). The quality of the implant was analyzed with the D90 (minimum dose in Grays received by 90% of the prostate volume) at day 30. Mean baseline prostate volume (V1) was 37.4 ± 9.6 cc. A volume increase of >5% was seen in 51% between V1-V2 (mean = 2.5 cc, p < 0.01), in 42% between V2-V3 (mean = 1.9 cc, p < 0.01) and in 71% between V1-V3 (mean = 4.5 cc, p < 0.01). Pvol changes caused by insertion of the fixation needles were not statistically different than those caused by the implant itself (p = 0.23).In multivariate linear regression analysis, baseline Pvol is predictive of Pvol changes between V2 and V1 and V3 and V1 but not between V3 and V2. The extent of prostate swelling had an influence on D90. An increase of 10% in prostate volume between V1 and V2 results in an increase of D90 at Day 30 by 11.7%. Baseline Pvol (V1) was the only predictor of the duration of urinary retention in both univariate and multivariate (p = 0.04) regression analysis. A large part of intraoperative swelling occurs already after the insertion of the fixation needles. This early prostate swelling predicts for D90 but not for AUR.
Amorphous Metal Polysulfides: Electrode Materials with Unique Insertion/Extraction Reactions.
Sakuda, Atsushi; Ohara, Koji; Fukuda, Katsutoshi; Nakanishi, Koji; Kawaguchi, Tomoya; Arai, Hajime; Uchimoto, Yoshiharu; Ohta, Toshiaki; Matsubara, Eiichiro; Ogumi, Zempachi; Okumura, Toyoki; Kobayashi, Hironori; Kageyama, Hiroyuki; Shikano, Masahiro; Sakaebe, Hikari; Takeuchi, Tomonari
2017-07-05
A unique charge/discharge mechanism of amorphous TiS 4 is reported. Amorphous transition metal polysulfide electrodes exhibit anomalous charge/discharge performance and should have a unique charge/discharge mechanism: neither the typical intercalation/deintercalation mechanism nor the conversion-type one, but a mixture of the two. Analyzing the mechanism of such electrodes has been a challenge because fewer tools are available to examine the "amorphous" structure. It is revealed that the electrode undergoes two distinct structural changes: (i) the deformation and formation of S-S disulfide bonds and (ii) changes in the coordination number of titanium. These structural changes proceed continuously and concertedly for Li insertion/extraction. The results of this study provide a novel and unique model of amorphous electrode materials with significantly larger capacities.
Method for improving the durability of ion insertion materials
Lee, Se-Hee; Tracy, C. Edwin; Cheong, Hyeonsik M.
2002-01-01
The invention provides a method of protecting an ion insertion material from the degradative effects of a liquid or gel-type electrolyte material by disposing a protective, solid ion conducting, electrically insulating, layer between the ion insertion layer and the liquid or gel-type electrolyte material. The invention further provides liquid or gel-type electrochemical cells having improved durability having a pair of electrodes, a pair of ion insertion layers sandwiched between the pair of electrodes, a pair of solid ion conducting layers sandwiched between the ion insertion layers, and a liquid or gel-type electrolyte material disposed between the solid ion conducting layers, where the solid ion conducting layer minimizes or prevents degradation of the faces of the ion insertion materials facing the liquid or gel-type electrolyte material. Electrochemical cells of this invention having increased durability include secondary lithium batteries and electrochromic devices.
Discharge characteristics of a needle-to-plate electrode at a micro-scale gap
NASA Astrophysics Data System (ADS)
Ronggang, WANG; Qizheng, JI; Tongkai, ZHANG; Qing, XIA; Yu, ZHANG; Jiting, OUYANG
2018-05-01
To understand the discharge characteristics under a gap of micrometers, the breakdown voltage and current–voltage curve are measured experimentally in a needle-to-plate electrode at a micro-scale gap of 3–50 μm in air. The effect of the needle radius and the gas pressure on the discharge characteristics are tested. The results show that when the gap is larger than 10 μm, the relation between the breakdown voltage and the gap looks like the Paschen curve; while below 10 μm, the breakdown voltage is nearly constant in the range of the tested gap. However, at the same gap distance, the breakdown voltage is still affected by the pressure and shows a trend similar to Paschen’s law. The current–voltage characteristic in all the gaps is similar and follows the trend of a typical Townsend-to-glow discharge. A simple model is used to explain the non-normality of breakdown in the micro-gaps. The Townsend mechanism is suggested to control the breakdown process in this configuration before the gap reduces much smaller in air.
NASA Astrophysics Data System (ADS)
Sekimoto, K.; Takayama, M.
2008-12-01
The dependence of negative ion formation on the inhomogeneous electric field strength in atmospheric pressure negative corona discharge with point-to-plane electrodes has been described. The distribution of negative ions HO-, NOx - and COx - and their abundances on the plane electrode was obtained with a mass spectrometer. The ion distribution on the plane was divided into two regions, the center region on the needle axis and peripheral region occurring the dominant NOx - and COx - ions and HO- ion, respectively. The calculated electric field strength in inhomogeneous electric field established on the needle tip surface suggested that the abundant formation of NOx - and COx - ions and HO- ion is attributed to the high field strength at the tip apex region over 108 Vm-1 and the low field strength at the tip peripheral region of the order of 107 Vm-1, respectively. The formation of HO-, NOx - and COx - has been discussed from the standpoint of negative ion evolution based on the thermochemical reaction and the kinetic energy of electron emitted from the needle tip.
High-energy metal air batteries
Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun
2014-07-01
Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.
High-energy metal air batteries
Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun
2013-07-09
Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.
Kalman filter-based EM-optical sensor fusion for needle deflection estimation.
Jiang, Baichuan; Gao, Wenpeng; Kacher, Daniel; Nevo, Erez; Fetics, Barry; Lee, Thomas C; Jayender, Jagadeesan
2018-04-01
In many clinical procedures such as cryoablation that involves needle insertion, accurate placement of the needle's tip at the desired target is the major issue for optimizing the treatment and minimizing damage to the neighboring anatomy. However, due to the interaction force between the needle and tissue, considerable error in intraoperative tracking of the needle tip can be observed as needle deflects. In this paper, measurements data from an optical sensor at the needle base and a magnetic resonance (MR) gradient field-driven electromagnetic (EM) sensor placed 10 cm from the needle tip are used within a model-integrated Kalman filter-based sensor fusion scheme. Bending model-based estimations and EM-based direct estimation are used as the measurement vectors in the Kalman filter, thus establishing an online estimation approach. Static tip bending experiments show that the fusion method can reduce the mean error of the tip position estimation from 29.23 mm of the optical sensor-based approach to 3.15 mm of the fusion-based approach and from 39.96 to 6.90 mm, at the MRI isocenter and the MRI entrance, respectively. This work established a novel sensor fusion scheme that incorporates model information, which enables real-time tracking of needle deflection with MRI compatibility, in a free-hand operating setup.
Manggala, Sidharta K.; Tantri, Aida R.; Satoto, Darto
2016-01-01
Background The patient’s position during spinal anesthesia administration plays a major role in the success of spinal needle insertion into the subarachnoid space. The traditional sitting position (TSP) is the standard position for spinal anesthesia administration, but the success rate for spinal anesthesia administration in the TSP is still quite low. The crossed-leg sitting position (CLSP) is one of the alternative positions for the administration of spinal anesthesia, which can increase the degree of lumbar flexion. Objectives This study aimed to compare successful spinal needle placement to patients in the CLSP and patients in the TSP prior to undergoing urology surgery. Methods This study was a non-blinded, randomized controlled trial in patients undergoing spinal anesthesia for urologic procedures from March-October, 2015 in the central national hospital Dr. Cipto Mangunkusumo, Indonesia. After obtaining approval from the FMUI – RSCM (Faculty of Medicine Universitas Indonesia – Rumah Sakit Dr. Cipto Mangunkusumo) Ethical Committee and informed consent from patients, 211 subjects were allocated into two groups: the CLSP group (n = 105) and the TSP group (n = 106). The proportion of successful spinal needle placement to the subarachnoid space, ease of landmark palpation, and the number of needle-bone contacts in both groups were then assessed and analyzed. Results The rate of first-time successful spinal needle insertion was not significantly different between the CLSP and TSP groups (62.9% versus 55.7%, P > 0.05). Ease of landmark palpation in the CLSP group was not significantly different from that in the TSP group (86.7% versus 76.4%, P > 0.05). The number of needle-bone contacts in both groups were not significantly different (P > 0.05). The complication rates were similar in both groups. Conclusions The rate of successful spinal needle placement in the CLSP group was not significantly different from that in the TSP group in patients undergoing urology surgery. The CLSP can be used as an alternative sitting position for administration of spinal anesthesia. PMID:27843785
Development and validation of a new guidance device for lateral approach stereotactic breast biopsy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, K.; Kornecki, A.; Bax, J.
2009-06-15
Stereotactic breast biopsy (SBB) is the gold standard for minimally invasive breast cancer diagnosis. Current systems rely on one of two methods for needle insertion: A vertical approach (perpendicular to the breast compression plate) or a lateral approach (parallel to the compression plate). While the vertical approach is more frequently used, it is not feasible in patients with thin breasts (<3 cm thick after compression) or with superficial lesions. Further, existing SBB guidance hardware provides at most one degree of rotational freedom in the needle trajectory, and as such requires a separate skin incision for each biopsy target. The authorsmore » present a new design of lateral guidance device for SBB, which addresses the limitations of the vertical approach and provides improvements over the existing lateral guidance hardware. Specifically, the new device provides (1) an adjustable rigid needle support to minimize needle deflection within the breast and (2) an additional degree of rotational freedom in the needle trajectory, allowing the radiologist to sample multiple targets through a single skin incision. This device was compared to a commercial lateral guidance device in a series of phantom experiments. Needle placement error using each device was measured in agar phantoms for needle insertions at lateral depths of 2 and 5 cm. The biopsy success rate for each device was then estimated by performing biopsy procedures in commercial SBB phantoms. SBB performed with the new lateral guidance device provided reduced needle placement error relative to the commercial lateral guidance device (0.89{+-}0.22 vs 1.75{+-}0.35 mm for targets at 2 cm depth; 1.94{+-}0.20 vs 3.21{+-}0.31 mm for targets at 5 cm depth). The new lateral guidance device also provided improved biopsy accuracy in SBB procedures compared to the commercial lateral guidance device (100% vs 58% success rate). Finally, experiments were performed to demonstrate that the new device can accurately sample lesions within thin breast phantoms and multiple lesions through a single incision point. This device can be incorporated directly into the clinical SBB procedural workflow, with no additional electrical hardware, software, postprocessing, or image analysis.« less
The anterior approach for a non-image-guided intra-articular hip injection.
Mei-Dan, Omer; McConkey, Mark O; Petersen, Brian; McCarty, Eric; Moreira, Brett; Young, David A
2013-06-01
The purpose of this study was to investigate and validate the accuracy and safety of a technique using an anterior approach for non-image-guided intra-articular injection of the hip by use of anatomic landmarks. We enrolled 55 patients. Injections were performed before supine hip arthroscopy after landmarking and before application of traction. After the needle insertion, success was confirmed with an air arthrogram and by direct visualization after arthroscope insertion. Accuracy and difficulty achieving correct needle placement were correlated with age, weight, height, body mass index, body type, gender, and surgical indication, as well as femoral and pelvic morphology. Forty-five patients who underwent injection in the office were followed up separately to document injection side effects. Needle placement accuracy was correlated to patients' demographics. All statistical tests with P values were 2 sided, with the level of significance set at P < .05. There were 51 correct needle placements and 4 misses, yielding a 93% success rate. The most common location for needle placement was the upper medial head-neck junction. Female gender was correlated with a more difficult needle placement and misses in relation to group size (P = .06). The reasons for misplacements of the needle were a high-riding trochanter, increased femoral version, thick adipose tissue over the landmarks, and variant of ilium morphology. Of 45 patients in the side effect study arm, 3 reported sensory changes of the lateral femoral cutaneous nerve that resolved within 24 hours. Hip injections by use of the direct anterior approach, from the intersection of the lines drawn from the anterior superior iliac spine and 1 cm distal to the tip of the greater trochanter, are safe and reproducible. Patient characteristics, such as increased subcutaneous adipose tissue or osseous anatomic variants, can lead to difficulty in placing the needle successfully. These characteristics can be predicted with the aid of physical examination and careful study of the pelvic radiographs. Level IV, therapeutic case series. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Robotic Assistance for Ultrasound-Guided Prostate Brachytherapy
Fichtinger, Gabor; Fiene, Jonathan P.; Kennedy, Christopher W.; Kronreif, Gernot; Iordachita, Iulian; Song, Danny Y.; Burdette, Everette C.; Kazanzides, Peter
2016-01-01
We present a robotically assisted prostate brachytherapy system and test results in training phantoms and Phase-I clinical trials. The system consists of a transrectal ultrasound (TRUS) and a spatially co-registered robot, fully integrated with an FDA-approved commercial treatment planning system. The salient feature of the system is a small parallel robot affixed to the mounting posts of the template. The robot replaces the template interchangeably, using the same coordinate system. Established clinical hardware, workflow and calibration remain intact. In all phantom experiments, we recorded the first insertion attempt without adjustment. All clinically relevant locations in the prostate were reached. Non-parallel needle trajectories were achieved. The pre-insertion transverse and rotational errors (measured with a Polaris optical tracker relative to the template’s coordinate frame) were 0.25mm (STD=0.17mm) and 0.75° (STD=0.37°). In phantoms, needle tip placement errors measured in TRUS were 1.04mm (STD=0.50mm). A Phase-I clinical feasibility and safety trial has been successfully completed with the system. We encountered needle tip positioning errors of a magnitude greater than 4mm in only 2 out of 179 robotically guided needles, in contrast to manual template guidance where errors of this magnitude are much more common. Further clinical trials are necessary to determine whether the apparent benefits of the robotic assistant will lead to improvements in clinical efficacy and outcomes. PMID:18650122
Luhmann, Janet; Hurt, Sarah; Shootman, Mario; Kennedy, Robert
2004-03-01
Peripheral intravenous catheter (PIV) insertion is a common, painful experience for many children in the pediatric emergency department. Although local anesthetics such as injected buffered lidocaine have been shown to be effective at reducing pain and anxiety associated with PIV insertion, they are not routinely used. ELA-Max, a topical local anesthetic, has the advantage of needle-free administration but has not been compared with buffered lidocaine for PIV insertion. To compare the reduction of pain and anxiety during PIV insertion provided by subcutaneous buffered 1% lidocaine or topical ELA-Max in children. A randomized trial in children 4 to 17 years old undergoing PIV insertion with 22-gauge catheters was conducted. Children received either buffered lidocaine or ELA-Max. Buffered lidocaine was administered by using 30-gauge needles to inject 0.1 to 0.2 mL subcutaneously just before PIV insertion. ELA-Max was applied to the skin and occluded with Tegaderm 30 minutes before PIV insertion. Self-reported Visual Analog Scale (VAS) questionnaires (rating on a scale of 1-10; 1 = no pain, anxiety) were completed by patients and their parents before PIV insertion to assess baseline perceptions about pain and anxiety associated with PIV insertion and immediately after PIV insertion to assess pain and anxiety associated with the experience. After PIV insertion, the nurse who inserted the PIV also completed a VAS questionnaire assessing technical difficulty and satisfaction with the local anesthesia. A blinded observer also completed a VAS questionnaire to assess pain and anxiety associated with the PIV insertion. Data were analyzed by using chi2 and t tests. Sixty-nine subjects were enrolled, and questionnaires were competed by all (mean age: 12.1 +/- 4.5 years; 61% female). There were no differences for buffered lidocaine and ELA-Max groups in age, gender, race, prior IV experience, or baseline pain and anxiety. There were no significant differences between buffered lidocaine and ELA-Max in mean pain and anxiety after PIV insertion by patient, parent, and blinded observer ratings. Nurse ratings of technical difficulty, number of PIV-insertion attempts, and satisfaction with local anesthesia also were not significantly different for buffered lidocaine and ELA-Max groups. ELA-Max provided similar pain and anxiety reduction during PIV insertion in children compared with injected buffered lidocaine. Technical difficulty and satisfaction by nurses inserting the PIV also were similar.
A review of the benefits and pitfalls of phantoms in ultrasound-guided regional anesthesia.
Hocking, Graham; Hebard, Simon; Mitchell, Christopher H
2011-01-01
With the growth of ultrasound-guided regional anesthesia, so has the requirement for training tools to practice needle guidance skills and evaluate echogenic needles. Ethically, skills in ultrasound-guided needle placement should be gained in a phantom before performance of nerve blocks on patients in clinical practice. However, phantom technology is varied, and critical evaluation of the images is needed to understand their application to clinical use. Needle visibility depends on the echogenicity of the needle relative to the echogenicity of the tissue adjacent the needle. We demonstrate this point using images of echogenic and nonechogenic needles in 5 different phantoms at both shallow angles (20 degrees) and steep angles (45 degrees). The echogenicity of phantoms varies enormously, and this impacts on how needles are visualized. Water is anechoic, making all needles highly visible, but does not fix the needle to allow practice placement. Gelatin phantoms and Blue Phantoms provide tactile feedback but have very low background echogenicity, which greatly exaggerates needle visibility. This makes skill acquisition easier but can lead to false confidence in regard to clinical ability. Fresh-frozen cadavers retain much of the textural feel of live human tissue and are nearly as echogenic. Similar to clinical practice, this makes needles inserted at steep angles practically invisible, unless they are highly echogenic. This review describes the uses and pitfalls of phantoms that have been described or commercially produced. Copyright © 2011 by American Society of Regional Anesthesia and Pain Medicine
COMPARISON OF DRY NEEDLING VS. SHAM ON THE PERFORMANCE OF VERTICAL JUMP
Nelson, Russell; Beamer, Lisa
2017-01-01
Introduction Dry needling has been reported to decrease pain in subjects having myofascial trigger points, as well as pain in muscle and connective tissue. Objective The purpose of the study was to compare the effects on the ability to perform a two-legged vertical jump between a group who received one bout of dry needling and a group who received one bout of a sham treatment. Methods Thirty-five healthy students (19 males, 16 females) were recruited to participate in this study (mean age 22.7+/- 2.4 years). The subjects were randomly divided into two groups- dry needling (n=18) vs sham (n=17). The dry needling group received needling to four sites on bilateral gastrocnemius muscles; two at the medial head and two at the lateral head. The sham group had the four areas of the gastrocnemius muscle pressed with the tube housing the needle, but the needle was never inserted into the skin. Two-legged vertical jump was measured with chalk marks on the wall before and after the dry needling and sham treatments. Results Analysis with a t-test indicated that the dry needling group significantly increased vertical jump height 1.2 inches over the sham group. Conclusion One bout of dry needling showed an immediate effect at significantly increasing vertical jump height in healthy, young adults. Future research is needed to determine if dry needling has any long-term effects. Level of Evidence 2b PMID:29181252
Gas chemical studies using corona discharge reactors
NASA Astrophysics Data System (ADS)
Schulze, P.; Stankiewicz, A.; Aicher, M.; Mattner, M.; Ulrich, A.
2010-12-01
Corona discharges with voltages up to 60 kV (DC) were studied with the aim to induce chemical reactions in flue gases at atmospheric pressure. Various plasma reactors with different geometries of multi-needle arrays were tested. The power input was optimised by studying the electrical parameters of the set-up systematically. Both, solid and liquid electrodes were used in combination with the needle arrays. A precise positioning of the corona needles allowed operation without a ballast resistor. Formation rates for CO and the sum of NO2 and O3 are reported and discussed. Three catalytic anode-coatings were tested for their potential to decompose carbon dioxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Therriault-Proulx, F; Bruno, T; Beddar, S
Purpose: To validate in a water phantom the use of plastic scintillation detectors to measure dose to the urethra and the rectal wall during a clinically realistic low dose rate (LDR) brachytherapy implant. Methods: A template was designed to replicate a clinically realistic LDR brachytherapy prostate implant inside a water phantom. Twenty-two catheters were inserted, including one mimicking the urethra and another the rectal wall. The needles inserted in the remaining 20 catheters were composed of thin-walled nylon tubes in which I-125 radioactive seeds (Air Kerma Strengths of (0.328±0.020)U) were abutted together with plastic spacers to replicate a typical loading.more » A plastic scintillation detector (PSD) with a 5-mm long × 1-mm diameter sensitive element was first placed inside the urethra and 1-second measurements were performed for 60s after each needle implant. Measurements were also performed at multiple positions along the urethra once all the needles were inserted. The procedure was then repeated with the PSD placed at the rectal wall. Results: Individual dose-rates ranging from 0.07µGy/s to 1.5µGy/s were measured after each needle implant. The average absolute relative differences were (6.2±3.6)% and (6.9±6.5)% to the values calculated with the TG-43 formalism, for the urethra and rectal wall respectively. These results are within expectations from the error uncertainty budget once accounting for uncertainties in seeds’ strength and positioning. Interestingly, the PSD allowed for unplanned error detection as the study was performed. Finally, the measured dose after the full implant at different positions along the mimicked organs at risk were in agreement with TG-43 values for all of the positions tested. Conclusion: Plastic scintillation detectors could be used as in vivo detectors for LDR brachytherapy as they would provide accurate dose information after each needle implant as well as along the organs at risk at the end of the implant.« less
Zheng, Yun; Li, Jin-Qing; Chen, Min-Shan; Zhang, Yao-Jun; Zhang, Ya-Qi
2004-11-01
The application and development of traditional percutaneous microwave coagulation therapy (PMCT) has been limited by high shaft temperature. The "air-cooled" PMCT is the newest advancement. This study was to compare shaft temperature related treatment efficacy between "air-cooled" PMCT and traditional PMCT. Two pigs underwent traditional PMCT, and "air-cooled" PMCT at 80 W for 10 min separately. Skin injury, surface temperature of guide-needle, charring tissue sticking to the shaft, and lesion shape in 2 pigs were compared. Five patients with liver tumor received traditional PMCT, and 8 patients with liver tumor received "air-cooled" PMCT. Feeling of pain, skin injury, charring tissue sticking to the shaft, local therapeutic efficacy, and recurrence of these 2 groups of patients were compared. In the pig underwent traditional PMCT, surface temperature of guide-needle reached 119-160 Centigrade; skin burn around puncture points was serious; charring tissue stuck to the front of electrodes; a trail sign was observed in coagulated lesion. In the pig underwent "air-cooled" PMCT, surface temperature of guide-needle was 28.8-39.9 Centigrade; no skin injury was found around puncture points; no charring tissue stuck to the front of electrodes; no obvious trail sign was observed in coagulated lesion. In 5 patients received traditional PMCT, 3 had skin injury; 2 had charring tissue stuck to the front of electrode; all felt moderate or serious epigastric pain lasted for 1-8 weeks; 4 had complete coagulation; 1 had local recurrence. In 8 patients received "air-cooled" PMCT, no one had skin injury, and charring tissue stuck to "air-cooled" electrode; 4 felt slight epigastric pain within 1 week; all had complete coagulation; no local recurrence was found. The technique of "air-cooled" electrode may decrease temperature of shaft safely and reliably, and eliminate side effects arose from high temperature of shaft. Treatment efficacy of "air-cooled" PMCT is better than that of traditional PMCT.
Medi-Port Pilot Randomized Controlled Trial
2017-12-29
Actively Undergoing Cancer Treatment; 4-9 Years of Age; At Least 1 Month From Diagnosis; Able to Speak and Understand English; Presenting to Clinic for at Least a 2nd Subcutaneous Port Needle Insertion
Real-time MRI-guided needle intervention for cryoablation: a phantom study
NASA Astrophysics Data System (ADS)
Gao, Wenpeng; Jiang, Baichuan; Kacher, Dan F.; Fetics, Barry; Nevo, Erez; Lee, Thomas C.; Jayender, Jagadeesan
2017-03-01
MRI-guided needle intervention for cryoablation is a promising way to relieve the pain and treat the cancer. However, the limited size of MRI bore makes it impossible for clinicians to perform the operation in the bore. The patients had to be moved into the bore for scanning to verify the position of the needle's tip and out for adjusting the needle's trajectory. Real-time needle tracking and shown in MR images is of importance for clinicians to perform the operation more efficiently. In this paper, we have instrumented the cryotherapy needle with a MRI-safe electromagnetic (EM) sensor and optical sensor to measure the needle's position and orientation. To overcome the limitation of line-of-sight for optical sensor and the poor dynamic performance of the EM sensor, Kalman filter based data fusion is developed. Further, we developed a navigation system in open-source software, 3D Slicer, to provide accurate visualization of the needle and the surrounding anatomy. Experiment of simulation the needle intervention at the entrance was performed with a realistic spine phantom to quantify the accuracy of the navigation using the retrospective analysis method. Eleven trials of needle insertion were performed independently. The target accuracy with the navigation using only EM sensor, only optical sensor and data fusion are 2.27 +/-1.60 mm, 4.11 +/- 1.77 mm and 1.91 - 1.10 mm, respectively.
Chang, Mun Young; Gwon, Tae Mok; Lee, Ho Sun; Lee, Jun Ho; Oh, Seung Ha; Kim, Sung June; Park, Min-Hyun
2017-03-15
The present study aimed to evaluate the effects of systemic lipoic acid on hearing preservation after cochlear implantation. Twelve Dunkin-Hartley guinea pigs were randomly divided into two groups: the control group and the lipoic acid group. Animals in the lipoic acid group received lipoic acid intraperitoneally for 4 weeks. A sterilised silicone electrode-dummy was inserted through the round window to a depth of approximately 5 mm. The hearing level was measured using auditory brainstem responses (ABRs) prior to electrode-dummy insertion, and at 4 days and 1, 2, 3 and 4 weeks after electrode-dummy insertion. The threshold shift was defined as the difference between the pre-operative threshold and each of the post-operative thresholds. The cochleae were examined histologically 4 weeks after electrode-dummy insertion. Threshold shifts changed with frequency but not time. At 2kHz, ABR threshold shifts were statistically significantly lower in the lipoic acid group than the control group. At 8, 16 and 32kHz, there was no significant difference in the ABR threshold shift between the two groups. Histologic review revealed less intracochlear fibrosis along the electrode-dummy insertion site in the lipoic acid group than in the control group. The spiral ganglion cell densities of the basal, middle and apical turns were significantly higher in the lipoic acid group compared with the control group. Therefore, systemic lipoic acid administration appears to effectively preserve hearing at low frequencies in patients undergoing cochlear implantation. These effects may be attributed to the protection of spiral ganglion cells and prevention of intracochlear fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Rollefson, Janet B.; Levar, Caleb E.; Bond, Daniel R.
2009-01-01
Electron transfer from cells to metals and electrodes by the Fe(III)-reducing anaerobe Geobacter sulfurreducens requires proper expression of redox proteins and attachment mechanisms to interface bacteria with surfaces and neighboring cells. We hypothesized that transposon mutagenesis would complement targeted knockout studies in Geobacter spp. and identify novel genes involved in this process. Escherichia coli mating strains and plasmids were used to develop a conjugation protocol and deliver mini-Himar transposons, creating a library of over 8,000 mutants that was anaerobically arrayed and screened for a range of phenotypes, including auxotrophy for amino acids, inability to reduce Fe(III) citrate, and attachment to surfaces. Following protocol validation, mutants with strong phenotypes were further characterized in a three-electrode system to simultaneously quantify attachment, biofilm development, and respiratory parameters, revealing mutants defective in Fe(III) reduction but unaffected in electron transfer to electrodes (such as an insertion in GSU1330, a putative metal export protein) or defective in electrode reduction but demonstrating wild-type biofilm formation (due to an insertion upstream of the NHL domain protein GSU2505). An insertion in a putative ATP-dependent transporter (GSU1501) eliminated electrode colonization but not Fe(III) citrate reduction. A more complex phenotype was demonstrated by a mutant containing an insertion in a transglutaminase domain protein (GSU3361), which suddenly ceased to respire when biofilms reached approximately 50% of the wild-type levels. As most insertions were not in cytochromes but rather in transporters, two-component signaling proteins, and proteins of unknown function, this collection illustrates how biofilm formation and electron transfer are separate but complementary phenotypes, controlled by multiple loci not commonly studied in Geobacter spp. PMID:19395486
Insertion depth impacts speech perception and hearing preservation for lateral wall electrodes.
O'Connell, Brendan P; Hunter, Jacob B; Haynes, David S; Holder, Jourdan T; Dedmon, Matt M; Noble, Jack H; Dawant, Benoit M; Wanna, George B
2017-10-01
1) Examine angular insertion depths (AID) and scalar location of Med-El (GmbH Innsbruck, Austria) electrodes; and 2) determine the relationship between AID and audiologic outcomes controlling for scalar position. Retrospective review. Postlingually deafened adults undergoing cochlear implantation with Flex 24, Flex 28, and Standard electrode arrays (Med-El) were identified. Patients with preoperative and postoperative computed tomography scans were included so that electrode location and AID could be determined. Outcome measures were 1) speech perception in the cochlear implant (CI)-only condition, and 2) short-term hearing preservation. Forty-eight implants were included; all electrodes (48 of 48) were positioned entirely within the scala tympani. The median AID was 408° (interquartile [IQ] range 373°-449°) for Flex 24, 575° (IQ range 465°-584°) for Flex 28, and 584° (IQ range 368°-643°) for Standard electrodes (Med-El). The mean postoperative CNC score was 43.7% ± 21.9. A positive correlation was observed between greater AID and better CNC performance (r = 0.48, P < 0.001). Excluding patients with postoperative residual hearing, a strong correlation between AID and CNC persisted (r = 0.57, P < 0.001). In patients with preoperative residual hearing, mean low-frequency pure-tone average (PTA) shift was 27 dB ± 14. A correlation between AID and low-frequency PTA shift at activation was noted (r = 0.41, P = 0.04). Favorable rates of scala tympani insertion (100%) were observed. In the CI-only condition, a direct correlation between greater AID and CNC score was noted regardless of postoperative hearing status. Deeper insertions were, however, associated with worse short-term hearing preservation. When patients without postoperative residual hearing were analyzed independently, the relationship between greater insertion depth and better performance was strengthened. 4. Laryngoscope, 127:2352-2357, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Apparatus for detecting alpha radiation in difficult access areas
Steadman, P.; MacArthur, D.W.
1997-09-02
An electrostatic alpha radiation detector for measuring alpha radiation emitted from inside an enclosure comprising an electrically conductive expandable electrode for insertion into the enclosure is disclosed. After insertion, the electrically conductive expandable electrode is insulated from the enclosure and defines a decay cavity between the electrically conductive expandable electrode and the enclosure so that air ions generated in the decay cavity are electrostatically captured by the electrically conductive expandable electrode and the enclosure when an electric potential is applied between the electrically conductive expandable electrode and the enclosure. Indicator means are attached to the electrically conductive expandable electrode for indicating an electrical current produced by generation of the air ions generated in the decay cavity by collisions between air molecules and the alpha particles emitted from the enclosure. A voltage source is connected between the indicator means and the electrically conductive enclosure for creating an electric field between the electrically conductive expandable electrode and the enclosure. 4 figs.
NASA Astrophysics Data System (ADS)
O'Mahony, Conor; Houlihan, Ruth; Grygoryev, Konstantin; Ning, Zhenfei; Williams, John; Moore, Tom
2016-10-01
We analysed the use of microneedle-based electrodes to enhance electroporation of mouse testis with DNA vectors for production of transgenic mice. Different microneedle formats were developed and tested, and we ultimately used electrodes based on arrays of 500 μm tall microneedles. In a series of experiments involving injection of a DNA vector expressing Green Fluorescent Protein (GFP) and electroporation using microneedle electrodes and a commercially available voltage supply, we compared the performance of flat and microneedle electrodes by measuring GFP expression at various timepoints after electroporation. Our main finding, supported by both experimental and simulated data, is that needles significantly enhanced electroporation of testis.
Methods and devices for measuring orbital angular momentum states of electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMorran, Benjamin J.; Harvey, Tyler R.
A device for measuring electron orbital angular momentum states in an electron microscope includes the following components aligned sequentially in the following order along an electron beam axis: a phase unwrapper (U) that is a first electrostatic refractive optical element comprising an electrode and a conductive plate, where the electrode is aligned perpendicular to the conductive plate; a first electron lens system (L1); a phase corrector (C) that is a second electrostatic refractive optical element comprising an array of electrodes with alternating electrostatic bias; and a second electron lens system (L2). The phase unwrapper may be a needle electrode ormore » knife edge electrode.« less
Kuang, Y; Hilgers, A; Sadiq, M; Cochran, S; Corner, G; Huang, Z
2016-07-01
Clear needle visualisation is recognised as an unmet need for ultrasound guided percutaneous needle procedures including regional anaesthesia and tissue biopsy. With inadequate needle visibility, these procedures may result in serious complications or a failed operation. This paper reports analysis of the modal behaviour of a previously proposed ultrasound-actuated needle configuration, which may overcome this problem by improving needle visibility in colour Doppler imaging. It uses a piezoelectric transducer to actuate longitudinal resonant modes in needles (outer diameter 0.8-1.2mm, length>65mm). The factors that affect the needle's vibration mode are identified, including the needle length, the transducer's resonance frequency and the gripping position. Their effects are investigated using finite element modelling, with the conclusions validated experimentally. The actuated needle was inserted into porcine tissue up to 30mm depth and its visibility was observed under colour Doppler imaging. The piezoelectric transducer is able to generate longitudinal vibration with peak-to-peak amplitude up to 4μm at the needle tip with an actuating voltage of 20Vpp. Actuated in longitudinal vibration modes (distal mode at 27.6kHz and transducer mode at 42.2kHz) with a drive amplitude of 12-14Vpp, a 120mm needle is delineated as a coloured line in colour Doppler images, with both needle tip and shaft visualised. The improved needle visibility is maintained while the needle is advanced into the tissue, thus allowing tracking of the needle position in real time. Moreover, the needle tip is highlighted by strong coloured artefacts around the actuated needle generated by its flexural vibration. A limitation of the technique is that the transducer mode requires needles of specific lengths so that the needle's resonance frequency matches the transducer. This may restrict the choice of needle lengths in clinical applications. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
[Strategy for minimally invasive cochlear implantation and residual hearing preservation].
Huang, Y Y; Chen, J Y; Shen, M; Yang, J
2018-01-07
In the past few decades, considerable development was achieved in the cochlear implantation following the emergence of innovative electrode array and advances in minimally invasive surgery. Minimally invasive technique led to a better preservation of residual low-frequency hearing. The loss of residual hearing was caused by complicated factors. According to previous studies, a slower and stable speed of electrode insertion and the use of perioperative steroids were demonstrated to have a positive impact on hearing preservation. The selection of electrode array or its insertion approaches didn't show any distinctive benefits in hearing preservation.
Solid state electrochromic light modulator
Cogan, S.F.; Rauh, R.D.
1990-07-03
An all solid-state variable transmission electrochromic device has a source of charge compensating ions. An inorganic oxide counter electrode film which on reduction with the accompanying insertion of the charge compensating ions increases its transmission of light of predetermined wavelength is separated from a primary electrochromic film which on reduction with the accompanying insertion of the charge compensating ions decreases its transmission of light of predetermined wavelength by an insulating electrolyte film that transports the charge compensating ions. First and second electrodes are contiguous with the inorganic oxide counter electrode film and the primary electrochromic film, respectively, and separated by the three films. 4 figs.
Clinical investigation of the Nucleus Slim Modiolar Electrode.
Aschendorff, Antje; Briggs, Robert; Brademann, Goetz; Helbig, Silke; Hornung, Joachim; Lenarz, Thomas; Marx, Mathieu; Ramos, Angel; Stöver, Timo; Escudé, Bernard; James, Chris J
2017-01-01
The Nucleus CI532 cochlear implant incorporates a new precurved electrode array, i.e., the Slim Modiolar electrode (SME), which is designed to bring electrode contacts close to the medial wall of the cochlea while avoiding trauma due to scalar dislocation or contact with the lateral wall during insertion. The primary aim of this prospective study was to determine the final position of the electrode array in clinical cases as evaluated using flat-panel volume computed tomography. Forty-five adult candidates for unilateral cochlear implantation were recruited from 8 centers. Eleven surgeons attended a temporal bone workshop and received further training with a transparent plastic cochlear model just prior to the first surgery. Feedback on the surgical approach and use of the SME was collected via a questionnaire for each case. Computed tomography of the temporal bone was performed postoperatively using flat-panel digital volume tomography or cone beam systems. The primary measure was the final scalar position of the SME (completely in scala tympani or not). Secondly, medial-lateral position and insertion depth were evaluated. Forty-four subjects received a CI532. The SME was located completely in scala tympani for all subjects. Pure round window (44% of the cases), extended round window (22%), and inferior and/or anterior cochleostomy (34%) approaches were successful across surgeons and cases. The SME was generally positioned close to the modiolus. Overinsertion of the array past the first marker tended to push the basal contacts towards the lateral wall and served only to increase the insertion depth of the first electrode contact without increasing the insertion depth of the most apical electrode. Complications were limited to tip fold-overs encountered in 2 subjects; both were attributed to surgical error, with both reimplanted successfully. The new Nucleus CI532 cochlear implant with SME achieved the design goal of producing little or no trauma as indicated by consistent scala tympani placement. Surgeons should be carefully trained to use the new deployment method such that tip fold-overs and over insertion may be avoided. © 2017 S. Karger AG, Basel.
[Desulphurization with multi-needle-water film electrodes by corona discharge].
Huang, Xu-ran; Li, Guo-feng; Li, Jie; Wu, Yan
2008-09-01
The study of this paper adopted stainless steel multi-needle as a high voltage electrode system, and water film as low voltage electrode. The electrodes were supplied with negative DC high voltage. Polluted gas containing sulfur dioxide (SO2) flowed into the corona discharge field from the center of the high voltage electrode system in an axis direction, then get across the water surface. Under the effect of corona discharge plasma and water absorption, SO2 was removed by converting it into sulfuric acid. The effect of the three factors which were the applied voltage, SO2 inlet concentration and duration of the exposure to the corona discharge on desulphurization efficiency has been studied mostly. Moreover, the concentrations of SO3(2-) and SO4(2-) ions in the water were measured and the mechanism of desulphurization was analyzed. The results showed that there was a synergistic effect on the removal of SO2 when combining corona discharge and water absorption, and both the desulphurization efficiency and the amount of sulfuric acid increased evidently. As the applied voltage and the duration increased, the desulphurization efficiency increased. Also, the SO2 inlet concentration had effect on desulphurization efficiency. When the SO2 inlet concentration was 430 x 10(-6), the voltage was 14.5 kV and the duration was 7.5 s, a desulphurization efficiency of more than 90% could be attained.
Methods for prostate stabilization during transperineal LDR brachytherapy.
Podder, Tarun; Sherman, Jason; Rubens, Deborah; Messing, Edward; Strang, John; Ng, Wan-Sing; Yu, Yan
2008-03-21
In traditional prostate brachytherapy procedures for a low-dose-rate (LDR) radiation seed implant, stabilizing needles are first inserted to provide some rigidity and support to the prostate. Ideally this will provide better seed placement and an overall improved treatment. However, there is much speculation regarding the effectiveness of using regular brachytherapy needles as stabilizers. In this study, we explored the efficacy of two types of needle geometries (regular brachytherapy needle and hooked needle) and several clinically feasible configurations of the stabilization needles. To understand and assess the prostate movement during seed implantation, we collected in vivo data from patients during actual brachytherapy procedures. In vitro experimentation with tissue-equivalent phantoms allowed us to further understand the mechanics behind prostate stabilization. We observed superior stabilization with the hooked needles compared to the regular brachytherapy needles (more than 40% in bilateral parallel needle configuration). Prostate movement was also reduced significantly when regular brachytherapy needles were in an angulated configuration as compared to the parallel configuration (more than 60%). When the hooked needles were angulated for stabilization, further reduction in prostate displacement was observed. In general, for convenience of dosimetric planning and to avoid needle collision, all needles are desired to be in a parallel configuration. In this configuration, hooked needles provide improved stabilization of the prostate. On the other hand, both regular and hooked needles appear to be equally effective in reducing prostate movement when they are in angulated configurations, which will be useful in seed implantation using a robotic system. We have developed nonlinear spring-damper model for the prostate movement which can be used for adapting dosimetric planning during brachytherapy as well as for developing more realistic haptic devices and training simulators.
Ueta, Ikuo; Mizuguchi, Ayako; Fujimura, Koji; Kawakubo, Susumu; Saito, Yoshihiro
2012-10-09
A novel needle-type sample preparation device was developed for the effective preconcentration of volatile organic compounds (VOCs) in indoor air before gas chromatography-mass spectrometry (GC-MS) analysis. To develop a device for extracting a wide range of VOCs typically found in indoor air, several types of particulate sorbents were tested as the extraction medium in the needle-type extraction device. To determine the content of these VOCs, air samples were collected for 30min with the packed sorbent(s) in the extraction needle, and the extracted VOCs were thermally desorbed in a GC injection port by the direct insertion of the needle. A double-bed sorbent consisting of a needle packed with divinylbenzene and activated carbon particles exhibited excellent extraction and desorption performance and adequate extraction capacity for all the investigated VOCs. The results also clearly demonstrated that the proposed sample preparation method is a more rapid, simpler extraction/desorption technique than traditional sample preparation methods. Copyright © 2012 Elsevier B.V. All rights reserved.
Characterization of tissue-simulating phantom materials for ultrasound-guided needle procedures
NASA Astrophysics Data System (ADS)
Buchanan, Susan; Moore, John; Lammers, Deanna; Baxter, John; Peters, Terry
2012-02-01
Needle biopsies are standard protocols that are commonly performed under ultrasound (US) guidance or computed tomography (CT)1. Vascular access such as central line insertions, and many spinal needle therapies also rely on US guidance. Phantoms for these procedures are crucial as both training tools for clinicians and research tools for developing new guidance systems. Realistic imaging properties and material longevity are critical qualities for needle guidance phantoms. However, current commercially available phantoms for use with US guidance have many limitations, the most detrimental of which include harsh needle tracks obfuscating US images and a membrane comparable to human skin that does not allow seepage of inner media. To overcome these difficulties, we tested a variety of readily available media and membranes to evaluate optimal materials to fit our current needs. It was concluded that liquid hand soap was the best medium, as it instantly left no needle tracks, had an acceptable depth of US penetration and portrayed realistic imaging conditions, while because of its low leakage, low cost, acceptable durability and transparency, the optimal membrane was 10 gauge vinyl.
Invasive Electrical Impedance Tomography for Blood Vessel Detection
Martinsen, Ørjan G.; Kalvøy, Håvard; Grimnes, Sverre; Nordbotten, Bernt; Hol, Per Kristian; Fosse, Erik; Myklebust, Helge; Becker, Lance B
2010-01-01
We present a novel method for localization of large blood vessels using a bioimpedance based needle positioning system on an array of ten monopolar needle electrodes. The purpose of the study is to develop a portable, low cost tool for rapid vascular access for cooling and controlled reperfusion of cardiac arrest patients. Preliminary results show that localization of blood vessels is feasible with this method, but larger studies are necessary to improve the technology. PMID:21611140
Pneumatically Operated MRI-Compatible Needle Placement Robot for Prostate Interventions
Fischer, Gregory S.; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Mewes, Philip W.; Tempany, Clare M.; Hata, Nobuhiko; Fichtinger, Gabor
2011-01-01
Magnetic Resonance Imaging (MRI) has potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. The strong magnetic field prevents the use of conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot performs needle insertion under real-time 3T MR image guidance; workspace requirements, MR compatibility, and workflow have been evaluated on phantoms. The paper explains the robot mechanism and controller design and presents results of preliminary evaluation of the system. PMID:21686038
Pneumatically Operated MRI-Compatible Needle Placement Robot for Prostate Interventions.
Fischer, Gregory S; Iordachita, Iulian; Csoma, Csaba; Tokuda, Junichi; Mewes, Philip W; Tempany, Clare M; Hata, Nobuhiko; Fichtinger, Gabor
2008-06-13
Magnetic Resonance Imaging (MRI) has potential to be a superior medical imaging modality for guiding and monitoring prostatic interventions. The strong magnetic field prevents the use of conventional mechatronics and the confined physical space makes it extremely challenging to access the patient. We have designed a robotic assistant system that overcomes these difficulties and promises safe and reliable intra-prostatic needle placement inside closed high-field MRI scanners. The robot performs needle insertion under real-time 3T MR image guidance; workspace requirements, MR compatibility, and workflow have been evaluated on phantoms. The paper explains the robot mechanism and controller design and presents results of preliminary evaluation of the system.
Fujii, Masahiro; Sugita, Naohiko; Ishimaru, Tetsuya; Iwanaka, Tadashi; Mitsuishi, Mamoru
2013-02-01
The objective of our research was to design and develop a novel needle driver with multiple degrees of freedom (DOFs) for pediatric laparoscopic surgery. Pediatric laparoscopic surgery has many advantages for patients, but the difficulty of the operation is increased due to many restrictions. For example, the motion of the needle driver is restricted by the insertion points, and the operation workspace is smaller in children than in adults. A needle driver with 3 DOFs and a 3.5-mm diameter is proposed and implemented in this study. Grasping DOF is achieved using a piston mechanism actuated by a wire. Deflection and rotation DOFs are actuated by gears. Experiments were conducted to evaluate the workspace and ligation force, and the results confirmed that the needle driver meets all the necessary requirements. Finally, a first reaction of a pediatric surgeon on the suturing and ligaturing capabilities of the prototype is reported. A multi-DOF needle driver with a new mechanism was proposed for pediatric laparoscopic surgery and a first prototype was developed. It is expected that further elaboration of the developed first prototype of the needle driver may contribute to the advancement of pediatric laparoscopic surgery.
A portable integrated system to control an active needle
NASA Astrophysics Data System (ADS)
Konh, Bardia; Motalleb, Mahdi; Ashrafiuon, Hashem
2017-04-01
The primary objective of this work is to introduce an integrated portable system to operate a flexible active surgical needle with actuation capabilities. The smart needle uses the robust actuation capabilities of the shape memory alloy wires to drastically improve the accuracy of in medical procedures such as brachytherapy. This, however, requires an integrated system aimed to control the insertion of the needle via a linear motor and its deflection by the SMA wire in real-time. The integrated system includes a flexible needle prototype, a Raspberry Pi computer, a linear stage motor, an SMA wire actuator, a power supply, electromagnetic tracking system, and various communication supplies. The linear stage motor guides the needle into tissue. The power supply provides appropriate current to the SMA actuator. The tracking system measures tip movement for feedback, The Raspberry Pi is the central tool that receives the tip movement feedback and controls the linear stage motor and the SMA actuator via the power supply. The implemented algorithms required for communication and feedback control are also described. This paper demonstrates that the portable integrated system may be a viable solution for more effective procedures requiring surgical needles.
Surgical anatomy of the round window-Implications for cochlear implantation.
Luers, J C; Hüttenbrink, K B; Beutner, D
2018-04-01
The round window is an important portal for the application of active hearing aids and cochlear implants. The anatomical and topographical knowledge about the round window region is a prerequisite for successful insertion for a cochlear implant electrode. To sum up current knowledge about the round window anatomy and to give advice to the cochlear implant surgeon for optimal placement of an electrode. Systematic Medline search. Search term "round window[Title]" with no date restriction. Only publications in the English Language were included. All abstracts were screened for relevance, that is a focus on surgical anatomy of the round window. The search results were supplemented with hand searching of selected reviews and reference lists from included studies. Subjective assessment. There is substantial variability in size and shape of the round window. The round window is regarded as the most reliable surgical landmark to safely locate the scala tympani. Factors affecting the optimal trajectory line for atraumatic electrode insertion are anatomy of the round window, the anatomy of the intracochlear hook region and the variable orientation and size of the cochlea's basal turn. The very close relation to the sensitive inner ear structures necessitates a thorough anatomic knowledge and careful insertion technique, especially when implanting patients with residual hearing. In order to avoid electrode migration between the scalae and to achieve protect the modiolus and the basilar membrane, it is recommended to aim for an electrode insertion vector from postero-superior to antero-inferior. © 2017 John Wiley & Sons Ltd.
Radiofrequency Ablation of Lung Tumors
... the procedure. top of page What does the equipment look like? In this procedure, computed tomography (CT) ... electrical generator and grounding pads are used. Radiofrequency equipment There are two types of needle electrodes: simple ...
Radiofrequency Ablation of Liver Tumors
... the procedure. top of page What does the equipment look like? The equipment used in this procedure ... and grounding pads may also be used. Radiofrequency equipment There are two types of needle electrodes: simple ...
Recirculating electric air filter
Bergman, W.
1985-01-09
An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.
... type I - glucagon test; Hypoglycemia - glucagon test; Low blood sugar - glucagon test ... A blood sample is needed . ... When the needle is inserted to draw blood, some people feel ... Afterward, there may be some throbbing or a slight bruise. This ...
Carcinoembryonic antigen blood test ... A blood sample is needed . ... When the needle is inserted to draw blood, some people feel moderate pain. Others feel only a prick or stinging. Afterward, there may be some throbbing or a slight bruise. This ...
What You Can Expect with a Cortisone Shot
... should avoid before your cortisone shot. What you can expect During the cortisone shot Your doctor might ... ll then be positioned so that your doctor can easily insert the needle. The area around the ...
Percutaneous transhepatic cholangiogram
... to help the health care provider locate your liver and bile ducts. A long, thin, flexible needle is then inserted ... stones. It may also indicate cancer in the bile ducts, liver, pancreas, or region of the gallbladder. Risks There ...
Experimental platform for intra-uterine needle placement procedures
NASA Astrophysics Data System (ADS)
Madjidi, Yashar; Haidegger, Tamás.; Ptacek, Wolfgang; Berger, Daniel; Kirisits, Christian; Kronreif, Gernot; Fichtinger, Gabor
2013-03-01
A framework has been investigated to enable a variety of comparative studies in the context of needle-based gynaecological brachytherapy. Our aim was to create an anthropomorphic phantom-based platform. The three main elements of the platform are the organ model, needle guide, and needle drive. These have been studied and designed to replicate the close environment of brachytherapy treatment for cervical cancer. Key features were created with the help of collaborating interventional radio-oncologists and the observations made in the operating room. A phantom box, representing the uterus model, has been developed considering available surgical analogies and operational limitations, such as organs at risk. A modular phantom-based platform has been designed and prototyped with the capability of providing various boundary conditions for the target organ. By mimicking the female pelvic floor, this framework has been used to compare a variety of needle insertion techniques and configurations for cervical and uterine interventions. The results showed that the proposed methodology is useful for the investigation of quantifiable experiments in the intraabdominal and pelvic regions.
Zhou, Qifa; Xu, Xiaochen; Gottlieb, Emanuel J; Sun, Lei; Cannata, Jonathan M; Ameri, Hossein; Humayun, Mark S; Han, Pengdi; Shung, K Kirk
2007-03-01
High-frequency needle ultrasound transducers with an aperture size of 0.4 mm were fabricated using lead magnesium niobate-lead titanate (PMN-33% PT) as the active piezoelectric material. The active element was bonded to a conductive silver particle matching layer and a conductive epoxy backing through direct contact curing. An outer matching layer of parylene was formed by vapor deposition. The active element was housed within a polyimide tube and a 20-gauge needle housing. The magnitude and phase of the electrical impedance of the transducer were 47 omega and -38 degrees, respectively. The measured center frequency and -6 dB fractional bandwidth of the PMN-PT needle transducer were 44 MHz and 45%, respectively. The two-way insertion loss was approximately 15 dB. In vivo high-frequency, pulsed-wave Doppler patterns of blood flow in the posterior portion and in vitro ultrasonic backscatter microscope (UBM) images of the rabbit eye were obtained with the 44-MHz needle transducer.
Martín-Pintado-Zugasti, Aitor; Rodríguez-Fernández, Ángel Luis; Fernandez-Carnero, Josue
2016-04-27
Postneedling soreness is considered the most frequent secondary effect associated to dry needling. A detailed description of postneedling soreness characteristics has not been previously reported. (1) to assess the intensity and duration of postneedling soreness and tenderness after deep dry needling of a trapezius latent myofascial trigger point (MTrP), (2) to evaluate the possible differences in postneedling soreness between sexes and (3) to analyze the influence on postneedling soreness of factors involved in the dry needling process. Sixty healthy subjects (30 men, 30 women) with latent MTrPs in the upper trapezius muscle received a dry needling intervention in the MTrP. Pain and pressure pain threshold (PPT) were assessed during a 72 hours follow-up period. Repeated measures analysis of covariance showed a significant effect for time in pain and in PPT. An interaction between sex and time in pain was obtained: women exhibited higher intensity in postneedling pain than men. The pain during needling and the number of needle insertions significantly correlated with postneedling soreness. Soreness and hyperalgesia are present in all subjects after dry needling of a latent MTrP in the upper trapezius muscle. Women exhibited higher intensity of postneedling soreness than men.
Watanabe, Masashi; Takayama, Shin; Hirano, Atsushi; Seki, Takashi; Yaegashi, Nobuo
2012-01-01
Acupuncture is commonly performed at acupoints. No comparisons of quantitative physiological alterations in the brachial artery (BA) induced by the stimulation of different acupoints in the lower limbs have been performed in humans. Therefore, we investigated changes in blood flow volume (BFV) in the BA as an indicator of the physiological effects induced by stimulation at 3 points. Seventy-five healthy participants aged 33 ± 9 years (mean ± SD) were enrolled and randomly assigned to 3 groups; they received stimulation at 3 different points located on the lower limbs: ST36, LR3, and a non-acupoint. Stimulation was performed bilaterally with manual rotation of the needles. Using ultrasonography, BFV was measured continuously from rest to 180 seconds after stimulation. LR3 stimulation significantly increased BFV compared to that before needle insertion. Meanwhile, stimulation at ST36 and the non-acupoint significantly decreased BFV compared to that before needle insertion. Stimulation at LR3 elicited a significant increase in BFV compared to that at ST36 and the non-acupoint. The results suggest that the stimulation of different points on the lower limbs causes distinct physiological effects on BFV in the BA.
Mayaud, L; Congedo, M; Van Laghenhove, A; Orlikowski, D; Figère, M; Azabou, E; Cheliout-Heraut, F
2013-10-01
A brain-computer interface aims at restoring communication and control in severely disabled people by identification and classification of EEG features such as event-related potentials (ERPs). The aim of this study is to compare different modalities of EEG recording for extraction of ERPs. The first comparison evaluates the performance of six disc electrodes with that of the EMOTIV headset, while the second evaluates three different electrode types (disc, needle, and large squared electrode). Ten healthy volunteers gave informed consent and were randomized to try the traditional EEG system (six disc electrodes with gel and skin preparation) or the EMOTIV Headset first. Together with the six disc electrodes, a needle and a square electrode of larger surface were simultaneously recording near lead Cz. Each modality was evaluated over three sessions of auditory P300 separated by one hour. No statically significant effect was found for the electrode type, nor was the interaction between electrode type and session number. There was no statistically significant difference of performance between the EMOTIV and the six traditional EEG disc electrodes, although there was a trend showing worse performance of the EMOTIV headset. However, the modality-session interaction was highly significant (P<0.001) showing that, while the performance of the six disc electrodes stay constant over sessions, the performance of the EMOTIV headset drops dramatically between 2 and 3h of use. Finally, the evaluation of comfort by participants revealed an increasing discomfort with the EMOTIV headset starting with the second hour of use. Our study does not recommend the use of one modality over another based on performance but suggests the choice should be made on more practical considerations such as the expected length of use, the availability of skilled labor for system setup and above all, the patient comfort. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Development of an All-Metal Thick Film Cost Effective Metallization System for Solar Cells
NASA Technical Reports Server (NTRS)
Ross, B.
1980-01-01
Materials including copper powders, silver-fluoride, and silicon wafers were procured and copper pastes were prepared. Electrodes made with copper pastes were analyzed and compared with the raw materials. A needle-like structure was observed on the electroded solar cells, and was identified as eutectic copper-silicon by electron probe X-ray spectroscopy. The existence of this phase was thought to benefit electrical and metallurgical properties of the contact. Subsequently electrodes made from new material were also shown to contain this phase while simultaneously having poor adhesion.
Hoskison, Emma; Mitchell, Scott; Coulson, Chris
2017-07-01
Cochlear implantation (CI) has developed from its origins in the 1980s. Initially, CI was for profound bilateral hearing impairment. However, candidacy for CI have become more widespread in recent years with unilateral implantation and an emphasis on hearing preservation. Evidence supports full electrode insertion in an atraumatic fashion into the scala tympani (ST) provides optimal hearing outcomes. The main aim of this systematic review was to elucidate the degree of trauma associated with CI insertion. A systematic literature search was undertaken using PubMed Medline. A grading system described by Eshraghi was used to classify cochlear trauma. Both radiological and histological studies were included. Twenty one papers were identified which were relevant to our search. In total, 653 implants were inserted and 115 (17.6%) showed evidence of trauma. The cochleas with trauma had basilar membrane elevation in 5.2%, ruptured in 5.2%, the electrode passed from the ST to the SV in 84.4% and there was grade 4 trauma in 5.2%. The studies used a variety of histological and radiological methods to assess for evidence of trauma in both cadaveric temporal bones and live recipients. Minimizing cochlear trauma during implant insertion is important to preserve residual hearing and optimize audiological performance. An overall 17.6% trauma rate suggests that CI insertion could be improved with more accurate and consistent electrode insertion such as in the form of robotic guidance. The correlation of cochlea trauma with post-operative hearing has yet to be determined.
Schatzer, Reinhold; Vermeire, Katrien; Visser, Daniel; Krenmayr, Andreas; Kals, Mathias; Voormolen, Maurits; Van de Heyning, Paul; Zierhofer, Clemens
2014-03-01
Eight cochlear implant users with near-normal hearing in their non-implanted ear compared pitch percepts for pulsatile electric and acoustic pure-tone stimuli presented to the two ears. Six subjects were implanted with a 31-mm MED-EL FLEX(SOFT) electrode, and two with a 24-mm medium (M) electrode, with insertion angles of the most apical contacts ranging from 565° to 758°. In the first experiment, frequency-place functions were derived from pure-tone matches to 1500-pps unmodulated pulse trains presented to individual electrodes and compared to Greenwood's frequency position map along the organ of Corti. While the overall median downward shift of the obtained frequency-place functions (-0.16 octaves re. Greenwood) and the mean shifts in the basal (<240°; -0.33 octaves) and middle (-0.35 octaves) regions were statistically significant, the shift in the apical region (>480°; 0.26 octaves) was not. Standard deviations of frequency-place functions were approximately half an octave at electrode insertion angles below 480°, increasing to an octave at higher angular locations while individual functions were gradually leveling off. In a second experiment, subjects matched the rates of unmodulated pulse trains presented to individual electrodes in the apical half of the array to low-frequency pure tones between 100 Hz and 450 Hz. The aim was to investigate the influence of electrode place on the salience of temporal pitch cues, for coding strategies that present temporal fine structure information via rate modulations on select apical channels. Most subjects achieved reliable matches to tone frequencies from 100 Hz to 300 Hz only on electrodes at angular insertion depths beyond 360°, while rate-matches to 450-Hz tones were primarily achieved on electrodes at shallower insertion angles. Only for electrodes in the second turn the average slopes of rate-pitch functions did not differ significantly from the pure-tone references, suggesting their use for the encoding of within-channel fine frequency information via rate modulations in temporal fine structure stimulation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Ick-Jun; Yang, Sunhye; Jeon, Min-Je; Moon, Seong-In; Kim, Hyun-Soo; Lee, Yoon-Pyo; An, Kye-Hyeok; Lee, Young-Hee
The structural features and the electrochemical performances of pyrolized needle cokes from oxidized cokes are examined and compared with those of KOH-activated needle coke. The structure of needle coke is changed to a single phase of graphite oxide after oxidation treatment with an acidic solution having an NaClO 3/needle coke composition ratio of above 7.5, and the inter-layer distance of the oxidized needle coke is expanded to 6.9 Å with increasing oxygen content. After heating at 200 °C, the oxidized needle coke is reduced to a graphite structure with an inter-layer distance of 3.6 Å. By contrast, a change in the inter-layer distance in KOH-activated needle coke is not observed. An intercalation of pyrolized needle coke, observed on first charge, occurs at 1.0 V. This value is lower than that of KOH-activation needle coke. A capacitor using pyrolized needle coke exhibits a lower internal resistance of 0.57 Ω in 1 kHz, and a larger capacitance per weight and volume of 30.3 F g -1 and 26.9 F ml -1, in the two-electrode system over the potential range 0-2.5 V compared with those of a capacitor using KOH-activation of needle coke. This better electrochemical performance is attributed to a distorted graphene layer structure derived from the process of the inter-layer expansion and shrinkage.
Design and optimization of a brachytherapy robot
NASA Astrophysics Data System (ADS)
Meltsner, Michael A.
Trans-rectal ultrasound guided (TRUS) low dose rate (LDR) interstitial brachytherapy has become a popular procedure for the treatment of prostate cancer, the most common type of non-skin cancer among men. The current TRUS technique of LDR implantation may result in less than ideal coverage of the tumor with increased risk of negative response such as rectal toxicity and urinary retention. This technique is limited by the skill of the physician performing the implant, the accuracy of needle localization, and the inherent weaknesses of the procedure itself. The treatment may require 100 or more sources and 25 needles, compounding the inaccuracy of the needle localization procedure. A robot designed for prostate brachytherapy may increase the accuracy of needle placement while minimizing the effect of physician technique in the TRUS procedure. Furthermore, a robot may improve associated toxicities by utilizing angled insertions and freeing implantations from constraints applied by the 0.5 cm-spaced template used in the TRUS method. Within our group, Lin et al. have designed a new type of LDR source. The "directional" source is a seed designed to be partially shielded. Thus, a directional, or anisotropic, source does not emit radiation in all directions. The source can be oriented to irradiate cancerous tissues while sparing normal ones. This type of source necessitates a new, highly accurate method for localization in 6 degrees of freedom. A robot is the best way to accomplish this task accurately. The following presentation of work describes the invention and optimization of a new prostate brachytherapy robot that fulfills these goals. Furthermore, some research has been dedicated to the use of the robot to perform needle insertion tasks (brachytherapy, biopsy, RF ablation, etc.) in nearly any other soft tissue in the body. This can be accomplished with the robot combined with automatic, magnetic tracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, Amy; Watt, Elizabeth; Peacock, Michael
Purpose: This retrospective study aims to quantify the positional accuracy of seed delivery in permanent breast seed implant (PBSI) brachytherapy at the Tom Baker Cancer Centre (TBCC). Methods: Treatment planning and post-implant CT scans for 5 patients were rigidly registered using the MIM Symphony™ software (MIM Software, Cleveland, OH) and used to evaluate differences between planned and implanted seed positions. Total and directional seed displacements were calculated for each patient in a clinically relevant ‘needle coordinate system’, defined relative to the angle of fiducial needle insertion. Results: The overall average total seed displacement was 10±8 mm. Systematic seed displacements weremore » observed in individual patients and the magnitude and direction of these offsets varied among patients. One patient showed a significant directional seed displacement in the shallow-deep direction compared with the other four patients. With the exception of this one patient outlier, no significant systematic directional displacements in the needle coordinate system were observed for this cohort; the average directional displacements were −1±5 mm, 2±3 mm, and −2±4 mm in the shallow-deep, up-down, and right-left directions respectively. Conclusion: With the exception of one patient outlier, the magnitude of seed displacements were relatively consistent among patients. The results indicate that the shallow-deep direction possesses the largest uncertainty for the seed delivery method used at the TBCC. The relatively large uncertainty in seed placement in this direction is expected, as this is the direction of needle insertion. Further work will involve evaluating deflections of delivered needle tracks from their planned positions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siauw, Timmy; Cunha, Adam; Berenson, Dmitry
Purpose: In this study, the authors introduce skew line needle configurations for high dose rate (HDR) brachytherapy and needle planning by integer program (NPIP), a computational method for generating these configurations. NPIP generates needle configurations that are specific to the anatomy of the patient, avoid critical structures near the penile bulb and other healthy structures, and avoid needle collisions inside the body. Methods: NPIP consisted of three major components: a method for generating a set of candidate needles, a needle selection component that chose a candidate needle subset to be inserted, and a dose planner for verifying that the finalmore » needle configuration could meet dose objectives. NPIP was used to compute needle configurations for prostate cancer data sets from patients previously treated at our clinic. NPIP took two user-parameters: a number of candidate needles, and needle coverage radius, {delta}. The candidate needle set consisted of 5000 needles, and a range of {delta} values was used to compute different needle configurations for each patient. Dose plans were computed for each needle configuration. The number of needles generated and dosimetry were analyzed and compared to the physician implant. Results: NPIP computed at least one needle configuration for every patient that met dose objectives, avoided healthy structures and needle collisions, and used as many or fewer needles than standard practice. These needle configurations corresponded to a narrow range of {delta} values, which could be used as default values if this system is used in practice. The average end-to-end runtime for this implementation of NPIP was 286 s, but there was a wide variation from case to case. Conclusions: The authors have shown that NPIP can automatically generate skew line needle configurations with the aforementioned properties, and that given the correct input parameters, NPIP can generate needle configurations which meet dose objectives and use as many or fewer needles than the current HDR brachytherapy workflow. Combined with robot assisted brachytherapy, this system has the potential to reduce side effects associated with treatment. A physical trial should be done to test the implant feasibility of NPIP needle configurations.« less
Jiang, Hua; Lu, Wenke; Zhang, Guoan
2013-07-01
In this paper, we propose a low insertion loss and miniaturization wavelet transform and inverse transform processor using surface acoustic wave (SAW) devices. The new SAW wavelet transform devices (WTDs) use the structure with two electrode-widths-controlled (EWC) single phase unidirectional transducers (SPUDT-SPUDT). This structure consists of the input withdrawal weighting interdigital transducer (IDT) and the output overlap weighting IDT. Three experimental devices for different scales 2(-1), 2(-2), and 2(-3) are designed and measured. The minimum insertion loss of the three devices reaches 5.49dB, 4.81dB, and 5.38dB respectively which are lower than the early results. Both the electrode width and the number of electrode pairs are reduced, thus making the three devices much smaller than the early devices. Therefore, the method described in this paper is suitable for implementing an arbitrary multi-scale low insertion loss and miniaturization wavelet transform and inverse transform processor using SAW devices. Copyright © 2013 Elsevier B.V. All rights reserved.
Morse, J; Terrasini, N; Wehbe, M; Philippona, C; Zaouter, C; Cyr, S; Hemmerling, T M
2014-06-01
This study focuses on a recently developed robotic nerve block system and its impact on learning regional anaesthesia skills. We compared success rates, learning curves, performance times, and inter-subject performance variability of robot-assisted vs manual ultrasound (US)-guided nerve block needle guidance. The hypothesis of this study is that robot assistance will result in faster skill acquisition than manual needle guidance. Five co-authors with different experience with nerve blocks and the robotic system performed both manual and robot-assisted, US-guided nerve blocks on two different nerves of a nerve phantom. Ten trials were performed for each of the four procedures. Time taken to move from a shared starting position till the needle was inserted into the target nerve was defined as the performance time. A successful block was defined as the insertion of the needle into the target nerve. Average performance times were compared using analysis of variance. P<0.05 was considered significant. Data presented as mean (standard deviation). All blocks were successful. There were significant differences in performance times between co-authors to perform the manual blocks, either superficial (P=0.001) or profound (P=0.0001); no statistical difference between co-authors was noted for the robot-assisted blocks. Linear regression indicated that the average decrease in time between consecutive trials for robot-assisted blocks of 1.8 (1.6) s was significantly (P=0.007) greater than the decrease for manual blocks of 0.3 (0.3) s. Robot assistance of nerve blocks allows for faster learning of needle guidance over manual positioning and reduces inter-subject performance variability. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
1976-10-01
and Identify by block number) This report describes an improved, approaching-needle electrostatic sensitivity apparatus as well as the...category. Thus, basic lead styphnate, RD1333 lead azide, dextrinated lead azide and tetracene all ignited. But, as expected, tetryl, PETN, superfine PETN... dextrinated lead azide obtained using the same apparatus and procedure and conducted at the same time. Sample Preparation, Electrode Replacement, and
Design of Polymers with Semiconductor, NLO and Structural Properties.
1991-04-22
polymer thin films. + 14 KV Needle electrod Polymer layer ITO electrode Substrate Heater and temperature control unit The second harmonic coefficients of...the solubily and processability through utilization of derivitization and precursor routes we have been able to form the first optical quality films...ethylene spacer, and therefore 14 possesses a great degree of solubility in organic solvents, necessary for the fabrication of optical quality thin films
Yabuuchi, Naoaki; Komaba, Shinichi
2014-01-01
Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed. PMID:27877694
Yabuuchi, Naoaki; Komaba, Shinichi
2014-08-01
Large-scale high-energy batteries with electrode materials made from the Earth-abundant elements are needed to achieve sustainable energy development. On the basis of material abundance, rechargeable sodium batteries with iron- and manganese-based positive electrode materials are the ideal candidates for large-scale batteries. In this review, iron- and manganese-based electrode materials, oxides, phosphates, fluorides, etc, as positive electrodes for rechargeable sodium batteries are reviewed. Iron and manganese compounds with sodium ions provide high structural flexibility. Two layered polymorphs, O3- and P2-type layered structures, show different electrode performance in Na cells related to the different phase transition and sodium migration processes on sodium extraction/insertion. Similar to layered oxides, iron/manganese phosphates and pyrophosphates also provide the different framework structures, which are used as sodium insertion host materials. Electrode performance and reaction mechanisms of the iron- and manganese-based electrode materials in Na cells are described and the similarities and differences with lithium counterparts are also discussed. Together with these results, the possibility of the high-energy battery system with electrode materials made from only Earth-abundant elements is reviewed.
... can be: taken as a pill, capsule, or liquid that is swallowed given by injection into a muscle or the skin injected into spinal fluid through a needle inserted into a fluid-filled space in the lower spine (below the spinal cord) ...
Benchmarking of state-of-the-art needle detection algorithms in 3D ultrasound data volumes
NASA Astrophysics Data System (ADS)
Pourtaherian, Arash; Zinger, Svitlana; de With, Peter H. N.; Korsten, Hendrikus H. M.; Mihajlovic, Nenad
2015-03-01
Ultrasound-guided needle interventions are widely practiced in medical diagnostics and therapy, i.e. for biopsy guidance, regional anesthesia or for brachytherapy. Needle guidance using 2D ultrasound can be very challenging due to the poor needle visibility and the limited field of view. Since 3D ultrasound transducers are becoming more widely used, needle guidance can be improved and simplified with appropriate computer-aided analyses. In this paper, we compare two state-of-the-art 3D needle detection techniques: a technique based on line filtering from literature and a system employing Gabor transformation. Both algorithms utilize supervised classification to pre-select candidate needle voxels in the volume and then fit a model of the needle on the selected voxels. The major differences between the two approaches are in extracting the feature vectors for classification and selecting the criterion for fitting. We evaluate the performance of the two techniques using manually-annotated ground truth in several ex-vivo situations of different complexities, containing three different needle types with various insertion angles. This extensive evaluation provides better understanding on the limitations and advantages of each technique under different acquisition conditions, which is leading to the development of improved techniques for more reliable and accurate localization. Benchmarking results that the Gabor features are better capable of distinguishing the needle voxels in all datasets. Moreover, it is shown that the complete processing chain of the Gabor-based method outperforms the line filtering in accuracy and stability of the detection results.
Water Treatment Using Plasma Discharge with Variation of Electrode Materials
NASA Astrophysics Data System (ADS)
Chanan, N.; Kusumandari; Saraswati, T. E.
2018-03-01
This research studied water treatment using plasma discharge. Plasma generated in this study produced active species that played a role in organic compound decomposition. The plasma reactor consisted of two needle electrodes made from stainless steel, tungsten, aluminium and grafit. It placed approximately 2 mm above the solution and connected with high-AC voltage. A solution of methylene blue used as an organic solution model. Plasma treatment times were 2, 4, 6, 8 and 10 min. The absorbance, temperature and pH of the solution were measured before and after treatment using various electrodes. The best electrode used in plasma discharging for methylene blue absorbance reduction was the graphite electrode, which provided the highest degradation efficiency of 98% at 6 min of treatment time.
Kim, Y R; Yoo, M H; Lee, J Y; Yang, C J; Park, J W; Kang, B C; Kang, W S; Ahn, J H; Chung, J W; Park, H J
2018-05-29
Incidence of facial nerve stimulation (FNS) was 2.8% (32 out of 1151) and higher in ears with cochlear anomaly (6.4%, 25 out of 391) than without cochlear anomaly (0.9%, 7 out of 760). FNS occurred at various current levels and locations of electrodes by different mechanisms related to incomplete insertion of electrodes, cochleo-facial dehiscence, and types of cochlear anomalies. FNS at apical electrodes related to cochleo-facial dehiscence with low current levels, and FNS at basal electrodes with high current levels and partial insertion of electrodes. FNS at most electrodes with high current levels was the most common type in patients with a common cavity or narrowing of the bony cochlear nerve canal. Understanding the mechanisms of FNS might provide insight for preventing FNS when performing CI surgeries. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
21 CFR 876.1400 - Stomach pH electrode.
Code of Federal Regulations, 2014 CFR
2014-04-01
... ion concentration). The pH electrode is at the end of a flexible lead which may be inserted into the... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Stomach pH electrode. 876.1400 Section 876.1400...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1400 Stomach pH electrode. (a...
21 CFR 876.1400 - Stomach pH electrode.
Code of Federal Regulations, 2012 CFR
2012-04-01
... ion concentration). The pH electrode is at the end of a flexible lead which may be inserted into the... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Stomach pH electrode. 876.1400 Section 876.1400...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1400 Stomach pH electrode. (a...
21 CFR 876.1400 - Stomach pH electrode.
Code of Federal Regulations, 2013 CFR
2013-04-01
... ion concentration). The pH electrode is at the end of a flexible lead which may be inserted into the... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Stomach pH electrode. 876.1400 Section 876.1400...) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Diagnostic Devices § 876.1400 Stomach pH electrode. (a...
NASA Astrophysics Data System (ADS)
Rodrigues, Pedro L.; Rodrigues, Nuno F.; Fonseca, Jaime C.; von Krüger, M. A.; Pereira, W. C. A.; Vilaça, João. L.
2015-03-01
Background: Kidney stone is a major universal health problem, affecting 10% of the population worldwide. Percutaneous nephrolithotomy is a first-line and established procedure for disintegration and removal of renal stones. Its surgical success depends on the precise needle puncture of renal calyces, which remains the most challenging task for surgeons. This work describes and tests a new ultrasound based system to alert the surgeon when undesirable anatomical structures are in between the puncture path defined through a tracked needle. Methods: Two circular ultrasound transducers were built with a single 3.3-MHz piezoelectric ceramic PZT SN8, 25.4 mm of radius and resin-epoxy matching and backing layers. One matching layer was designed with a concave curvature to work as an acoustic lens with long focusing. The A-scan signals were filtered and processed to automatically detect reflected echoes. Results: The transducers were mapped in water tank and tested in a study involving 45 phantoms. Each phantom mimics different needle insertion trajectories with a percutaneous path length between 80 and 150 mm. Results showed that the beam cross-sectional area oscillates around the ceramics radius and it was possible to automatically detect echo signals in phantoms with length higher than 80 mm. Conclusions: This new solution may alert the surgeon about anatomical tissues changes during needle insertion, which may decrease the need of X-Ray radiation exposure and ultrasound image evaluation during percutaneous puncture.
Liu, Quanbing; Ji, Shan; Yang, Juan; Wang, Hui; Pollet, Bruno G; Wang, Rongfang
2017-08-24
An allomorph MnO₂@MnO₂ core-shell nanostructure was developed via a two-step aqueous reaction method. The data analysis of Scanning Electron Microscopy, Transmission Electron Microscopy, X-Ray Diffraction and N₂ adsorption-desorption isotherms experiments indicated that this unique architecture consisted of a porous layer of amorphous-MnO₂ nano-sheets which were well grown onto the surface of α-MnO₂ nano-needles. Cyclic voltammetry experiments revealed that the double-layer charging and Faradaic pseudo -capacity of the MnO₂@MnO₂ capacitor electrode contributed to a specific capacitance of 150.3 F·g -1 at a current density of 0.1 A·g -1 . Long cycle life experiments on the as-prepared MnO₂@MnO₂ sample showed nearly a 99.3% retention after 5000 cycles at a current density of 2 A·g -1 . This retention value was found to be significantly higher than those reported for amorphous MnO₂-based capacitor electrodes. It was also found that the remarkable cycleability of the MnO₂@MnO₂ was due to the supporting role of α-MnO₂ nano-needle core and the outer amorphous MnO₂ layer.
Béquin, Ph; Castor, K; Herzog, Ph; Montembault, V
2007-04-01
This paper deals with the acoustic modeling and measurement of a needle-to-grid plasma loudspeaker using a negative Corona discharge. In the first part, we summarize the model described in previous papers, where the electrode gap is divided into a charged particle production region near the needle and a drift region which occupies most of the inter-electrode gap. In each region, interactions between charged and neutral particles in the ionized gas lead to a perturbation of the surrounding air, and thus generate an acoustic field. In each region, viewed as a separate acoustic source, an acoustical model requiring only a few parameters is proposed. In the second part of the paper, an experimental setup is presented for measuring acoustic pressures and directivities. This setup was developed and used to study the evolution of the parameters with physical properties, such as the geometrical and electrical configuration and the needle material. In the last part of this paper, a study on the electroacoustic efficiency of the plasma loudspeaker is described, and differences with respect to the design parameters are analyzed. Although this work is mainly aimed at understanding transduction phenomena, it may be found useful for the development of an audio loudspeaker.
Studies of corona and back discharges in carbon dioxide
NASA Astrophysics Data System (ADS)
Czech, Tadeusz; Sobczyk, Arkadiusz Tomasz; Jaworek, Anatol; Krupa, Andrzej; Rajch, Eryk
2013-01-01
Results of spectroscopic investigations and current-voltage characteristics of corona and back discharges generated in point-plane electrode geometry in CO2 at atmospheric pressure for positive and negative polarity of the discharge electrode are presented in the paper. Three forms of back discharge, for both polarities, were investigated: glow, streamer and low-current back-arc. To generate the back-discharges for the conditions similar to electrostatic precipitator, the plate electrode was covered with fly ash layer. In order to characterize back discharge processes, the emission spectra were measured and compared with those obtained for normal discharge, generated in the same electrode configuration but without the fly ash layer on the plate electrode. The measurements have shown that optical emission spectral lines of atoms and molecules, excited or ionised in back discharge, depend on the forms of the discharge, the discharge current, and are different in the zones close to needle electrode and fly ash layer. From the comparison of spectral lines of back and normal discharges, an effect of fly ash layer on discharge characteristics and morphology has been determined. In normal corona, the emission spectra are mainly predetermined by the working gas components, but in the case of back discharge, the atomic and molecular lines, resulting from chemical composition of fly ash, are also identified. Differences in the spectra of back discharge for positive and negative polarities of the needle electrode have been explained by considering the kind of ions generated in the crater in fly ash layer. For back arc, the emission of spectral lines of atoms and molecules from fly ash layer can be recorded in the crater zone, but in the needle zone, only the emission lines of CO2 and its decomposition products (CO and C2) can be noticed. The studies of back discharge in CO2, as one of the main components of flue gases, were undertaken because this type of discharge, after unwanted inception, decreases the energy and collection efficiencies of electrostatic precipitator. The second reason behind these studies is that CO2 is the main component of flue gas leaving oxyfuel boiler that re-circulates in the combustion-precipitation cycle. It was shown that discharges in CO2 lead to contamination of discharge electrode with carbonaceous products that can cause severe maintenance problems of electrostatic precipitator. The recognition of the characteristics of electrostatic precipitator operating in the oxyfuel system is, therefore, of crucial importance for exhaust gas cleaning in modern combustion systems.
Li, Jiang; Koinkar, Pankaj; Fuchiwaki, Yusuke; Yasuzawa, Mikito
2016-12-15
A low invasive type glucose sensor, which has a sensing region at the tip of a fine pointed electrode, was developed for continuous glucose monitoring. Platinum-iridium alloy electrode with a surface area of 0.045mm(2) was settled at the middle of pointed PEEK (Polyetheretherketone) tubing and was employed as sensing electrode. Electrodeposition of glucose oxidase in the presence of surfactant, Triton X-100, was performed for high-density enzyme immobilization followed by the electropolymerization of o-phenylenediamine for the formation of functional entrapping and permselective polymer membrane. Ag/AgCl film was coated on the surface of PEEK tubing as reference electrode. Amperometric responses of the prepared sensors to glucose were measured at a potential of 0.60V (vs. Ag/AgCl). The prepared electrode showed the sensitivity of 2.55μA/cm(2) mM with high linearity of 0.9986, within the glucose concentration range up to 21mM. The detection limit (S/N=3) was determined to be 0.11mM. The glucose sensor properties were evaluated in phosphate buffer solution and in vivo monitoring by the implantation of the sensors in rabbit, while conventional needle type sensors as a reference were used. The results showed that change in output current of the proposed sensor fluctuated similar with one in output current of the conventional needle type sensors, which was also in similar accordance with actual blood sugar level measured by commercially glucose meter. One-point calibration method was used to calibrate the sensor output current. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Tomohiro, E-mail: t-matsu@tokai-u.jp; Mine, Takahiko, E-mail: mine@tsc.u-tokai.ac.jp; Hayashi, Toshihiko, E-mail: t.hayashi@tokai.ac.jp
PurposeTo retrospectively describe the feasibility and efficacy of CT fluoroscopy-guided transsacral intervertebral drainage for pyogenic spondylodiscitis at the lumbosacral junction with a combination of two interventional radiological techniques—CT-guided bone biopsy and abscess drainage.Materials and methodsThree patients with pyogenic spondylodiscitis at the lumbosacral junction were enrolled in this study between July 2013 and December 2015. The procedure of CT fluoroscopy-guided transsacral intervertebral drainage for pyogenic spondylodiscitis at the lumbosacral junction was as follows: the sacrum at S1 pedicle was penetrated with an 11-gauge (G) bone biopsy needle to create a path for an 8-French (F) pigtail drainage catheter. The bone biopsymore » needle was withdrawn, and an 18-G needle was inserted into the intervertebral space of the lumbosacral junction. Then, a 0.038-inch guidewire was inserted into the intervertebral space. Finally, the 8-F pigtail drainage catheter was inserted over the guidewire until its tip reached the intervertebral space. All patients received six-week antibiotics treatment.ResultsSuccessful placement of the drainage catheter was achieved for each patient without procedural complications. The duration of drainage was 17–33 days. For two patients, specific organisms were isolated; thus, definitive medical therapy was possible. All patients responded well to the treatment.ConclusionsCT fluoroscopy-guided transsacral intervertebral drainage for pyogenic spondylodiscitis at the lumbosacral junction is feasible and can be effective with a combination of two interventional techniques—CT fluoroscopy-guided bone biopsy and abscess drainage.« less
Emergency cricothyrotomy-a comparative study of different techniques in human cadavers.
Schober, Patrick; Hegemann, Martina C; Schwarte, Lothar A; Loer, Stephan A; Noetges, Peter
2009-02-01
Emergency cricothyrotomy is the final lifesaving option in "cannot intubate-cannot ventilate" situations. Fast, efficient and safe management is indispensable to reestablish oxygenation, thus the quickest, most reliable and safest technique should be used. Several cricothyrotomy techniques exist, which can be grouped into two categories: anatomical-surgical and puncture. We studied success rate, tracheal tube insertion time and complications of different techniques, including a novel cricothyrotomy scissors technique in human cadavers. Sixty-three inexperienced health care providers were randomly assigned to apply either an anatomical-surgical technique (standard surgical technique, n=18; novel cricothyrotomy scissors technique, n=14) or a puncture technique (catheter-over-needle technique, n=17; wire-guided technique, n=14). Airway access was almost always successful with the anatomical-surgical techniques (success rate in standard surgical group 94%, scissors group 100%). In contrast, the success rate was smaller (p<0.05) with the puncture techniques (catheter-over-needle group 82%, wire-guided technique 71%). Tracheal tube insertion time was faster overall (p<0.05) with anatomical-surgical techniques (standard surgical 78s [54-135], novel cricothyrotomy scissors technique 60s [42-82]; median [IQR]) than with puncture techniques (catheter-over-needle technique 74s [48-145], wire-guided technique 135s [116-307]). We observed fewer complications with anatomical-surgical techniques than with puncture techniques (p<0.001). In inexperienced health care personnel, anatomical-surgical techniques showed a higher success rate, a faster tracheal tube insertion time and a lower complication rate compared with puncture techniques, suggesting that they may be the techniques of choice in emergencies.
Lung biopsy with a 12-gauge cutting needle is possible using an insertion sheath in animal models.
Izumi, Yotaro; Oyama, Takahiko; Kawamura, Masafumi; Kobayashi, Koichi
2004-11-01
The volume of lung tumor core biopsy specimens has been restricted because of concerns for complications such as bleeding and air leakage. In this animal experiment, we investigated the possibility of larger bore biopsies through the peripheral lung parenchyma. Lung biopsy was done in male domestic pigs (n= 4) under thoracotomy. A single biopsy using a 12-gauge cutting biopsy needle was done with sheath (sheath group, eight biopsies) or without sheath (nonsheath group, eight biopsies). After biopsy, bleeding time, bleeding amount, and positive airway pressure causing air leakage from the insertion site was compared between groups (Mann-Whitney U test). To observe long-term effects in closed-chest animals, percutaneous lung biopsy with the use of a sheath was carried out percutaneously in male beagles (n = 9). The animals were observed for 3 weeks. In the pigs (sheath group) after biopsy, bleeding flowed through the sheath and formed a sheath-molded fibrin plug that secured the insertion site. Bleeding time and amount decreased significantly in the sheath group compared with the nonsheath group (115 +/- 108 versus 295 +/- 150 seconds, P = .018, and 37 +/- 41 versus 98 +/- 72 grams, P= .027, respectively). Air leakage pressure was significantly higher in the sheath group compared with the nonsheath group (37 +/- 6 versus 18 +/- 5 cmH2O, P = .001). In the beagles, no complications such as pneumothorax, hemothorax, or airway bleeding was apparent. Although we have not evaluated lung tumor biopsy per se, lung tumor biopsy with a 12-gauge cutting needle may be possible with a use of a sheath.
A training phantom for ultrasound-guided needle insertion and suturing.
Nattagh, Khashayar; Siauw, Timmy; Pouliot, Jean; Hsu, I-Chow; Cunha, J Adam
2014-01-01
During gynecologic brachytherapy (BT), suturing and image-guided needle insertions are highly skill-dependent tasks. Medical residents often have to practice these techniques in the operating room; this is sub-optimal for many reasons. We present a fast and low-cost method of building realistic and disposable gynecologic phantoms, which can be used to train physicians new to gynecologic BT. Phantoms comprised a rectal cavity large enough to accommodate a standard transrectal ultrasound (US) probe, a vaginal cavity, a uterus, a uterine canal, and a cervix, all embedded in a gelatin matrix. The uterus was made of gelatin and coated with rubber to mimic the texture of soft tissue and for computed tomography (CT) and US image contrast. The phantom's durability, longevity, construction times, materials costs, CT, and US image quality were recorded. The speed of sound in the gelatin was measured using pulse echo measurements. Anatomic structures were distinguishable using CT and US. For the first phantom, material costs were under $200, curing time was approximately 48 hours, and active participation time was 3 hours. Reusable parts allowed for reduction in time and cost for subsequent phantoms: under $20, 24 hours curing time, and 1 hour active participation time. The speed of sound in the gelatin ranged from 1495 to 1506 m/s. A method for constructing gelatin gynecologic phantoms was developed. It can be used for training in image-guided BT needle insertion, placing a suture on the vaginal wall, and suturing the cervical lip. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
New platform for evaluating ultrasound-guided interventional technologies
NASA Astrophysics Data System (ADS)
Kim, Younsu; Guo, Xiaoyu; Boctor, Emad M.
2016-04-01
Ultrasound-guided needle tracking systems are frequently used in surgical procedures. Various needle tracking technologies have been developed using ultrasound, electromagnetic sensors, and optical sensors. To evaluate these new needle tracking technologies, 3D volume information is often acquired to compute the actual distance from the needle tip to the target object. The image-guidance conditions for comparison are often inconsistent due to the ultrasound beam-thickness. Since 3D volumes are necessary, there is often some time delay between the surgical procedure and the evaluation. These evaluation methods will generally only measure the final needle location because they interrupt the surgical procedure. The main contribution of this work is a new platform for evaluating needle tracking systems in real-time, resolving the problems stated above. We developed new tools to evaluate the precise distance between the needle tip and the target object. A PZT element transmitting unit is designed as needle introducer shape so that it can be inserted in the needle. We have collected time of flight and amplitude information in real-time. We propose two systems to collect ultrasound signals. We demonstrate this platform on an ultrasound DAQ system and a cost-effective FPGA board. The results of a chicken breast experiment show the feasibility of tracking a time series of needle tip distances. We performed validation experiments with a plastisol phantom and have shown that the preliminary data fits a linear regression model with a RMSE of less than 0.6mm. Our platform can be applied to more general needle tracking methods using other forms of guidance.
Navigating conjugated polymer actuated neural probes in a brain phantom
NASA Astrophysics Data System (ADS)
Daneshvar, Eugene D.; Kipke, Daryl; Smela, Elisabeth
2012-04-01
Neural probe insertion methods have a direct impact on the longevity of the device in the brain. Initial tissue and vascular damage caused by the probe entering the brain triggers a chronic tissue response that is known to attenuate neural recordings and ultimately encapsulate the probes. Smaller devices have been found to evoke reduced inflammatory response. One way to record from undamaged neural networks may be to position the electrode sites away from the probe. To investigate this approach, we are developing probes with controllably movable electrode projections, which would move outside of the zone that is damaged by the insertion of the larger probe. The objective of this study was to test the capability of conjugated polymer bilayer actuators to actuate neural electrode projections from a probe shank into a transparent brain phantom. Parylene neural probe devices, having five electrode projections with actuating segments and with varying widths (50 - 250 μm) and lengths (200 - 1000 μm) were fabricated. The electroactive polymer polypyrrole (PPy) was used to bend or flatten the projections. The devices were inserted into the brain phantom using an electronic microdrive while simultaneously activating the actuators. Deflections were quantified based on video images. The electrode projections were successfully controlled to either remain flat or to actuate out-of-plane and into the brain phantom during insertion. The projection width had a significant effect on their ability to deflect within the phantom, with thinner probes deflecting but not the wider ones. Thus, small integrated conjugated polymer actuators may enable multiple neuro-experiments and applications not possible before.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damato, A; Bhagwat, M; Buzurovic, I
Purpose: To investigate image modality selection in an environment with limited access to interventional MRI for image-guided high-dose-rate cervical-cancer brachytherapy. Methods: Records of all cervical-cancer patients treated with brachytherapy between 1/2013 and 8/2014 were analyzed. Insertions were performed under CT guidance (CT group) or with >1 fraction under 3T MR guidance (MRI group; subMRI includes only patients who also had a CT-guided insertion). Differences between groups in clinical target volume (CTV), disease stage (I/II or III/IV), number of patients with or without interstitial needles, and CTV D90 were investigated. Statistical significance was evaluated with the Student T test and Fishermore » test (p <0.05). Results: 46 cervical-cancer patients were included (16 MRI [3 subMRI], 30 CT). CTV: overall, 55±53 cm3; MRI, 81±61 cm3; CT, 42±44 cm3 (p = 0.017). Stage: overall, 24 I/II and 22 III/IV; MRI, 3 I/II and 13 III/IV; CT, 21 I/II and 9 III/IV (p = 0.002). Use of needles: overall, 26 without and 20 with; MRI, 5 without and 11 with; CT, 21 without and 9 with (p = 0.015). CTV D90: overall, 82±5 Gy; MRI, 81±6 Gy; CT, 82±5 Gy (p = 0.78). SubMRI: CTV and D90 (as % of nominal fraction dose) were 23±6 cm3 and 124±3% for MRI-guided insertions and 21±5 cm3 (p = 0.83) and 106±12% (p = 0.15) for CT-guided insertions. Conclusion: Statistically significant differences in patient population indicate preferential use of MRI for patients with high-stage disease and large residual CTVs requiring the use of interstitial needles. CTV D90 was similar between groups, despite the difference in patient selection. For patients who underwent both CT and MRI insertions, a larger MR CTV D90 and similar CTVs between insertions were observed. While MRI is generally preferable to CT, MRI selection can be optimized in environments without a dedicated MRI brachytherapy suite. This work was partially funded by the NIH R21 CA167800 (PI: Viswanathan; aviswanathan@partners.org)« less
Understanding and improving lithium ion batteries through mathematical modeling and experiments
NASA Astrophysics Data System (ADS)
Deshpande, Rutooj D.
There is an intense, worldwide effort to develop durable lithium ion batteries with high energy and power densities for a wide range of applications, including electric and hybrid electric vehicles. For improvement of battery technology understanding the capacity fading mechanism in batteries is of utmost importance. Novel electrode material and improved electrode designs are needed for high energy- high power batteries with less capacity fading. Furthermore, for applications such as automotive applications, precise cycle-life prediction of batteries is necessary. One of the critical challenges in advancing lithium ion battery technologies is fracture and decrepitation of the electrodes as a result of lithium diffusion during charging and discharging operations. When lithium is inserted in either the positive or negative electrode, there is a volume change associated with insertion or de-insertion. Diffusion-induced stresses (DISs) can therefore cause the nucleation and growth of cracks, leading to mechanical degradation of the batteries. With different mathematical models we studied the behavior of diffusion induces stresses and effects of electrode shape, size, concentration dependent material properties, pre-existing cracks, phase transformations, operating conditions etc. on the diffusion induced stresses. Thus we develop tools to guide the design of the electrode material with better mechanical stability for durable batteries. Along with mechanical degradation, chemical degradation of batteries also plays an important role in deciding battery cycle life. The instability of commonly employed electrolytes results in solid electrolyte interphase (SEI) formation. Although SEI formation contributes to irreversible capacity loss, the SEI layer is necessary, as it passivates the electrode-electrolyte interface from further solvent decomposition. SEI layer and diffusion induced stresses are inter-dependent and affect each-other. We study coupled chemical-mechanical degradation of electrode materials to understand the capacity fading of the battery with cycling. With the understanding of chemical and mechanical degradation, we develop a simple phenomenological model to predict battery life. On the experimental part we come up with a novel concept of using liquid metal alloy as a self-healing battery electrode. We develop a method to prepare thin film liquid gallium electrode on a conductive substrate. This enabled us to perform a series of electrochemical and characterization experiments which certify that liquid electrode undergo liquid-solid-liquid transition and thus self-heals the cracks formed during de-insertion. Thus the mechanical degradation can be avoided. We also perform ab-initio calculations to understand the equilibrium potential of various lithium-gallium phases. KEYWORDS: Lithium ion batteries, diffusion induced stresses, self-healing electrode, coupled chemical and mechanical degradation, life-prediction model.
[The essence of Professor Wu Lian-Zhong's acupuncture manipulation].
Liu, Jing; Guo, Yi; Wu, Lian-Zhong
2014-05-01
The painless needle insertion technique, summarized by Professor WU Lian-zhong during his decades of acupuncture clinical practice is introduced in this article, which is characterized as soft, flexible, fast, plucking and activating antipathogenic qi. The Sancai (three layers) lifting and thrusting manipulation technique is adopted by Professor WU for getting the qi sensation. And features of 10 kinds of needling sensation such as soreness, numbness, heaviness, distension, pain, cold, hot, radiation, jumping and contracture are summarized. Finger force, amplitude, speed and time length are also taken as the basis of reinforcing and reducing manipulations. Moreover, examples are also given to explain the needling technique on some specific points which further embodies Professor WU's unique experiences and understandings on acupuncture.
Yun, Joho; Kim, Jinhwan; Lee, Jong-Hyun
2017-11-28
We have introduced a fabrication method for electrical impedance spectroscopy (EIS)-on-a-needle (EoN: EIS-on-a-needle) to locate target tissues in the body by measuring and analyzing differences in the electrical impedance between dissimilar biotissues. This paper describes the fabrication method of fine interdigitated electrodes (IDEs) at the tip of a hypodermic needle using a photoresist spray coating and flexible film photomask in the photolithography process. A polyethylene terephthalate (PET) heat shrink tube (HST) with a wall thickness of 25 µm is employed as the insulation and passivation layer. The PET HST shows a higher mechanical durability compared with poly(p-xylylene) polymers, which have been widely used as a dielectric coating material. Furthermore, the HST shows good chemical resistance to most acids and bases, which is advantageous for limiting chemical damage to the EoN. The use of the EoN is especially preferred for the characterization of chemicals/biomaterials or fabrication using acidic/basic chemicals. The fabricated gap and width of the IDEs are as small as 20 µm, and the overall width and length of the IDEs are 400 µm and 860 µm, respectively. The fabrication margin from the tip (distance between the tip of hypodermic needle and starting point of the IDEs) of the hypodermic needle is as small as 680 µm, which indicates that unnecessarily excessive invasion into biotissues can be avoided during the electrical impedance measurement. The EoN has a high potential for clinical use, such as for thyroid biopsies and anesthesia drug delivery in a spinal space. Further, even in surgery that involves the partial resection of tumors, the EoN can be employed to preserve as much normal tissue as possible by detecting the surgical margin (normal tissue that is removed with the surgical excision of a tumor) between the normal and lesion tissues.
Holder, Jourdan T; Kessler, David M; Noble, Jack H; Gifford, René H; Labadie, Robert F
2018-06-01
To quantify and compare the number of cochlear implant (CI) electrodes found to be extracochlear on postoperative computerized tomography (CT) scans, the number of basal electrodes deactivated during standard CI mapping (without knowledge of the postoperative CT scan), and the extent of electrode insertion noted by the surgeon. Retrospective. Academic Medical Center. Two hundred sixty-two patients underwent standard cochlear implantation and postoperative temporal bone CT scanning. Scans were analyzed to determine the number of extracochlear electrodes. Standard CI programming had been completed without knowledge of the extracochlear electrodes identified on the CT. These standard CI maps were reviewed to record the number of deactivated basal electrodes. Lastly, each operative report was reviewed to record the extent of reported electrode insertion. 13.4% (n = 35) of CIs were found to have at least one electrode outside of the cochlea on the CT scan. Review of CI mapping indicated that audiologists had deactivated extracochlear electrodes in 60% (21) of these cases. Review of operative reports revealed that surgeons correctly indicated the number of extracochlear electrodes in 6% (2) of these cases. Extracochlear electrodes were correctly identified audiologically in 60% of cases and in surgical reports in 6% of cases; however, it is possible that at least a portion of these cases involved postoperative electrode migration. Given these findings, postoperative CT scans can provide information regarding basal electrode location, which could help improve programming accuracy, associated frequency allocation, and audibility with appropriate deactivation of extracochlear electrodes.
Rodgers, Jessica Robin; Surry, Kathleen; Leung, Eric; D'Souza, David; Fenster, Aaron
2017-05-01
Treatment for gynecologic cancers, such as cervical, recurrent endometrial, and vaginal malignancies, commonly includes external-beam radiation and brachytherapy. In high-dose-rate (HDR) interstitial gynecologic brachytherapy, radiation treatment is delivered via hollow needles that are typically inserted through a template on the perineum with a cylinder placed in the vagina for stability. Despite the need for precise needle placement to minimize complications and provide optimal treatment, there is no standard intra-operative image-guidance for this procedure. While some image-guidance techniques have been proposed, including magnetic resonance (MR) imaging, X-ray computed tomography (CT), and two-dimensional (2D) transrectal ultrasound (TRUS), these techniques have not been widely adopted. In order to provide intra-operative needle visualization and localization during interstitial brachytherapy, we have developed a three-dimensional (3D) TRUS system. This study describes the 3D TRUS system and reports on the system validation and results from a proof-of-concept patient study. To obtain a 3D TRUS image, the system rotates a conventional 2D endocavity transducer through 170 degrees in 12 s, reconstructing the 2D frames into a 3D image in real-time. The geometry of the reconstruction was validated using two geometric phantoms to ensure the accuracy of the linear measurements in each of the image coordinate directions and the volumetric accuracy of the system. An agar phantom including vaginal and rectal canals, as well as a model uterus and tumor, was designed and used to test the visualization and localization of the interstitial needles under idealized conditions by comparing the needles' positions between the 3D TRUS scan and a registered MR image. Five patients undergoing HDR interstitial gynecologic brachytherapy were imaged using the 3D TRUS system following the insertion of all needles. This image was manually, rigidly registered to the clinical postinsertion CT scan based on the vaginal cylinder of the needle template. The positions of the tips and the trajectory of the needle paths were compared between the modalities. The observed geometric errors of the system were ≤ 0.3 mm in each of the three coordinate planes of the 3D US image and the mean measured volumetric error was 0.10 cm 3 . In the phantom study, the mean needle tip difference was 1.54 ± 0.71 mm and the mean trajectory difference was 0.94 ± 0.89 degrees (n = 14). In the in vivo study, a total of 73 needles were placed, of which 88% of needles were visible and 79% of tips were identifiable in the 3D TRUS images. Six of the nine needles that were not visible were due to shadowing artifacts created by the presence of the vaginal cylinder of the needle template. The mean distance between corresponding needle tips in the two modalities was 3.82 ± 1.86 mm and the mean trajectory difference was 3.04 ± 1.63 degrees for the five patients. In this proof-of-concept study, the 3D TRUS system allowed for localization of needles not obscured by shadowing artifacts, providing a method for visualizing needles intra-operatively during HDR interstitial brachytherapy of gynecologic cancers and providing the potential for 3D image-guidance. © 2017 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, Kyoung Hui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken
2007-01-01
A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H+(H2O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed.
Siddiqui, EJ; Ali, S; Koneru, S
2006-01-01
INTRODUCTION Transrectal ultrasound guided prostate needle biopsy (TRUS) is the standard procedure to diagnose or exclude prostate cancer. This procedure can be associated with significant discomfort, both on insertion of the ultrasound probe as well as on taking the biopsy. We evaluated a new technique for pain relief during TRUS biopsy. PATIENTS AND METHODS In Group 1 (n = 60), the biopsies were taken without any analgesia. In Group 2 (n = 60), 11 ml of Instillagel (2% lignocaine) was administered rectally prior to probe insertion and 5 ml of 1% lignocaine periprostatic injection was administered before taking the biopsy. The discomfort encountered during the procedure was graded by the patient on a scale ranging from no discomfort to mild, moderate and severe pain. RESULTS In Group 2, there was a marked reduction in the pain experienced during the procedure. The Chi-squared test for trend showed a significant association between the rectal administration of local anaesthetic gel and reduction in pain on probe insertion (P = 0.0001). There was also a significant association between the use of periprostatic lignocaine injection and reduction in pain on taking the biopsy (P < 0.0001). CONCLUSIONS The use of lignocaine gel prior to probe insertion and periprostatic infiltration of lignocaine before taking the needle biopsy significantly reduces the pain experienced by the patient during TRUS-guided prostate biopsy. PMID:16551424
Plasma Discharge with Different Electrode Diameters for Reducing Methylene Blue Concentration
NASA Astrophysics Data System (ADS)
Rasyidah, H.; Kusumandari; Saraswati, T. E.; Anwar, M.
2018-03-01
Recently, plasma technology has gained attention since it overcomes the shortcomings of water treatment. This research studies the effect of electrode diameter of plasma discharge reactors on the concentration reduction of methylene blue as an organic solution. The plasma discharge reactor was built from a pair of stainless needle electrodes connected with high-AC voltage. The electrodes were placed approximately 2 mm above the solution and stirred at 5.5 rpm. The diameters of the electrodes were 2, 3.2 and 4 mm. The times for plasma treatment were set at 2, 4, 6, 8 and 10 min. Absorbance, temperature and pH of the solution were measured to know the effects of electrode diameter of the plasma reactor. Absorbance and pH significantly decreased after plasma treatment. The best of the absorbance reduction were obtained when the sample was treated under plasma discharge using the smallest diameter electrodes for 8-10 min.
Spanos, Stephanie; Booth, Rebekah; Koenig, Heidi; Sikes, Kendra; Gracely, Edward; Kim, In K
2008-08-01
Peripheral intravenous (PIV) catheter insertion is a frequent, painful procedure that is often performed with little or no anesthesia. Current approaches that minimize pain for PIV catheter insertion have several limitations: significant delay for onset of anesthesia, inadequate anesthesia, infectious disease exposure risk from needlestick injuries, and patients' needle phobia. Comparison of the anesthetic effectiveness of J-Tip needle-free jet injection of 1% buffered lidocaine to the anesthetic effectiveness of topical 4% ELA-Max for PIV catheter insertion. A prospective, block-randomized, controlled trial comparing J-Tip jet injection of 1% buffered lidocaine to a 30-minute application of 4% ELA-Max for topical anesthesia in children 8 to 15 years old presenting to a tertiary care pediatric emergency department for PIV catheter insertion. All subjects recorded self-reported visual analog scale (VAS) scores for pain at time of enrollment and pain felt following PIV catheter insertion. Jet injection subjects also recorded pain of jet injection. Subjects were videotaped during jet injection and PIV catheter insertion. Videotapes were reviewed by a single blinded reviewer for observer-reported VAS pain scores for jet injection and PIV catheter insertion. Of the 70 children enrolled, 35 were randomized to the J-Tip jet injection group and 35 to the ELA-Max group. Patient-recorded enrollment VAS scores for pain were similar between groups (P = 0.74). Patient-recorded VAS scores were significantly different between groups immediately after PIV catheter insertion (17.3 for J-Tip jet injection vs 44.6 for ELA-Max, P < 0.001). Blinded reviewer assessed VAS scores for pain after PIV catheter insertion demonstrated a similar trend, but the comparison was not statistically significant (21.7 for J-Tip jet injection vs 31.9 ELA-Max, P = 0.23). J-Tip jet injection of 1% buffered lidocaine provided greater anesthesia than a 30-minute application of ELA-Max according to patient self-assessment of pain for children aged 8 to 15 years undergoing PIV catheter insertion.
Temporally Shaped Current Pulses on a Two-Cavity Linear Transformer Driver System
2011-06-01
essentially at a fraction of the total switch voltage. Non-uniform corona current characteristics of the different corona needles could cause imperfect...withstand twice the capacitor voltage. A pulse applied to the switch trigger electrodes initiate closure of each switch. We have arranged triggering in...internal cavity potential to ground, allows the trigger electrode of the spark gaps to be at ground potential during charging, and eliminates a
Laser-Based Optical System for Reactive Radical Concentration Measurements in Plasmas and Flames
2006-08-01
role of different plasma components in chain propagation support: (1) and (2) - corona plasma generators with high-voltage multiple needle electrodes ; (3...H20 2) and HCN. Measurements in Gliding Arc, Dielectric Barrier Discharge and Pulsed Corona Plasma systems and in flame and flow reactor systems are...discharges operating in air with iron electrodes - 260V.35 Using visual quantification from high speed camera arc images, the approximate thickness of
Recirculating electric air filter
Bergman, Werner
1986-01-01
An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.
A burr hole button to secure the electrode cable in depth electrode placement. Technical note.
Kamiryo, T; Laws, E R
1997-05-01
A simple magnetic resonance imaging-compatible buttonlike device was devised to fix a depth electrode cable securely in the burr hole used for its insertion during surgery for depth electrode placement. The button is tightly fixed in the burr hole and it holds the cable without allowing protrusion or tension on the wound.