Science.gov

Sample records for negative basic helix-loop-helix

  1. PIL5, a Phytochrome-Interacting Basic Helix-Loop-Helix Protein, Is a Key Negative Regulator of Seed Germination in Arabidopsis thalianaW⃞

    PubMed Central

    Oh, Eunkyoo; Kim, Jonghyun; Park, Eunae; Kim, Jeong-Il; Kang, Changwon; Choi, Giltsu

    2004-01-01

    The first decision made by an angiosperm seed, whether to germinate or not, is based on integration of various environmental signals such as water and light. The phytochromes (Phys) act as red and far-red light (Pfr) photoreceptors to mediate light signaling through yet uncharacterized pathways. We report here that the PIF3-like 5 (PIL5) protein, a basic helix-loop-helix transcription factor, is a key negative regulator of phytochrome-mediated seed germination. PIL5 preferentially interacts with the Pfr forms of Phytochrome A (PhyA) and Phytochrome B (PhyB). Analyses of a pil5 mutant in conjunction with phyA and phyB mutants, a pif3 pil5 double mutant, and PIL5 overexpression lines indicate that PIL5 is a negative factor in Phy-mediated promotion of seed germination, inhibition of hypocotyl negative gravitropism, and inhibition of hypocotyl elongation. Our data identify PIL5 as the first Phy-interacting protein that regulates seed germination. PMID:15486102

  2. Basic Helix-Loop-Helix Transcription Factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 Are Negative Regulators of Jasmonate Responses in Arabidopsis1[W][OPEN

    PubMed Central

    Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken

    2013-01-01

    Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2. PMID:23852442

  3. Basic helix-loop-helix transcription factors JASMONATE-ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate responses in Arabidopsis.

    PubMed

    Sasaki-Sekimoto, Yuko; Jikumaru, Yusuke; Obayashi, Takeshi; Saito, Hikaru; Masuda, Shinji; Kamiya, Yuji; Ohta, Hiroyuki; Shirasu, Ken

    2013-09-01

    Jasmonates regulate transcriptional reprogramming during growth, development, and defense responses. Jasmonoyl-isoleucine, an amino acid conjugate of jasmonic acid (JA), is perceived by the protein complex composed of the F-box protein CORONATINE INSENSITIVE1 (COI1) and JASMONATE ZIM DOMAIN (JAZ) proteins, leading to the ubiquitin-dependent degradation of JAZ proteins. This activates basic helix-loop-helix-type MYC transcription factors to regulate JA-responsive genes. Here, we show that the expression of genes encoding other basic helix-loop-helix transcription factors, JASMONATE ASSOCIATED MYC2-LIKE1 (JAM1), JAM2, and JAM3, is positively regulated in a COI1- and MYC2-dependent manner in Arabidopsis (Arabidopsis thaliana). However, contrary to myc2, the jam1jam2jam3 triple mutant exhibited shorter roots when treated with methyl jasmonate (MJ), indicating enhanced responsiveness to JA. Our genome-wide expression analyses revealed that key jasmonate metabolic genes as well as a set of genes encoding transcription factors that regulate the JA-responsive metabolic genes are negatively regulated by JAMs after MJ treatment. Consistently, loss of JAM genes resulted in higher accumulation of anthocyanin in MJ-treated plants as well as higher accumulation of JA and 12-hydroxyjasmonic acid in wounded plants. These results show that JAMs negatively regulate the JA responses in a manner that is mostly antagonistic to MYC2.

  4. A triple helix-loop-helix/basic helix-loop-helix cascade controls cell elongation downstream of multiple hormonal and environmental signaling pathways in Arabidopsis.

    PubMed

    Bai, Ming-Yi; Fan, Min; Oh, Eunkyoo; Wang, Zhi-Yong

    2012-12-01

    Environmental and endogenous signals, including light, temperature, brassinosteroid (BR), and gibberellin (GA), regulate cell elongation largely by influencing the expression of the paclobutrazol-resistant (PRE) family helix-loop-helix (HLH) factors, which promote cell elongation by interacting antagonistically with another HLH factor, IBH1. However, the molecular mechanism by which PREs and IBH1 regulate gene expression has remained unknown. Here, we show that IBH1 interacts with and inhibits a DNA binding basic helix-loop-helix (bHLH) protein, HBI1, in Arabidopsis thaliana. Overexpression of HBI1 increased hypocotyl and petiole elongation, whereas dominant inactivation of HBI1 and its homologs caused a dwarf phenotype, indicating that HBI1 is a positive regulator of cell elongation. In vitro and in vivo experiments showed that HBI1 directly bound to the promoters and activated two EXPANSIN genes encoding cell wall-loosening enzymes; HBI1's DNA binding and transcriptional activities were inhibited by IBH1, but the inhibitory effects of IBH1 were abolished by PRE1. The results indicate that PREs activate the DNA binding bHLH factor HBI1 by sequestering its inhibitor IBH1. Altering each of the three factors affected plant sensitivities to BR, GA, temperature, and light. Our study demonstrates that PREs, IBH1, and HBI1 form a chain of antagonistic switches that regulates cell elongation downstream of multiple external and endogenous signals.

  5. The Basic Helix-Loop-Helix Transcription Factor PIF5 Acts on Ethylene Biosynthesis and Phytochrome Signaling by Distinct Mechanisms

    USDA-ARS?s Scientific Manuscript database

    HYTOCHROME-INTERACTING FACTOR5 (PIF5), a basic helix-loop-helix transcription factor, interacts specifically with the photoactivated form of phytochrome B (phyB). Here, we report that dark-grown Arabidopsis thaliana seedlings overexpressing PIF5 (PIF5-OX) exhibit exaggerated apical hooks and short h...

  6. Modulation of basic helix-loop-helix transcription complex formation by Id proteins during neuronal differentiation.

    PubMed

    Jögi, Annika; Persson, Paula; Grynfeld, Anna; Påhlman, Sven; Axelson, Håkan

    2002-03-15

    It is assumed that the Id helix-loop-helix (HLH) proteins act by associating with ubiquitously expressed basic HLH (bHLH) transcription factors, such as E47 and E2-2, which prevents these factors from forming functional hetero- or homodimeric DNA binding complexes. Several tissue-specific bHLH proteins, including HASH-1, dHAND, and HES-1, are important for development of the nervous system. Neuroblastoma tumors are derived from the sympathetic nervous system and exhibit neural crest features. In differentiating neuroblastoma cells, HASH-1 is down-regulated, and there is coincident up-regulation of the transcriptional repressor HES-1, which is known to bind the HASH-1 promoter. We found that the three Id proteins expressed in neuroblastoma cells (Id1, Id2, and Id3) were down-regulated during induced differentiation, indicating that Id proteins help keep the tumor cells in an undifferentiated state. Studying interactions, we noted that all four Id proteins could dimerize with E47 or E2-2, but not with HASH-1 or dHAND. However, the Id proteins did complex with HES-1, and increased levels of Id2 reduced the DNA binding activity of HES-1. Furthermore, HES-1 interfered with Id2/E2-2 complex formation. The ability of Id proteins to affect HES-1 activity is of particular interest in neuronal cells, where regulation of HES-1 is essential for the timing of neuronal differentiation.

  7. A genome-wide survey on basic helix-loop-helix transcription factors in giant panda.

    PubMed

    Dang, Chunwang; Wang, Yong; Zhang, Debao; Yao, Qin; Chen, Keping

    2011-01-01

    The giant panda (Ailuropoda melanoleuca) is a critically endangered mammalian species. Studies on functions of regulatory proteins involved in developmental processes would facilitate understanding of specific behavior in giant panda. The basic helix-loop-helix (bHLH) proteins play essential roles in a wide range of developmental processes in higher organisms. bHLH family members have been identified in over 20 organisms, including fruit fly, zebrafish, mouse and human. Our present study identified 107 bHLH family members being encoded in giant panda genome. Phylogenetic analyses revealed that they belong to 44 bHLH families with 46, 25, 15, 4, 11 and 3 members in group A, B, C, D, E and F, respectively, while the remaining 3 members were assigned into "orphan". Compared to mouse, the giant panda does not encode seven bHLH proteins namely Beta3a, Mesp2, Sclerax, S-Myc, Hes5 (or Hes6), EBF4 and Orphan 1. These results provide useful background information for future studies on structure and function of bHLH proteins in the regulation of giant panda development.

  8. Phylogenetic analysis of the human basic helix-loop-helix proteins

    PubMed Central

    2002-01-01

    Background The basic helix-loop-helix (bHLH) proteins are a large and complex multigene family of transcription factors with important roles in animal development, including that of fruitflies, nematodes and vertebrates. The identification of orthologous relationships among the bHLH genes from these widely divergent taxa allows reconstruction of the putative complement of bHLH genes present in the genome of their last common ancestor. Results We identified 39 different bHLH genes in the worm Caenorhabditis elegans, 58 in the fly Drosophila melanogaster and 125 in human (Homo sapiens). We defined 44 orthologous families that include most of these bHLH genes. Of these, 43 include both human and fly and/or worm genes, indicating that genes from these families were already present in the last common ancestor of worm, fly and human. Only two families contain both yeast and animal genes, and no family contains both plant and animal bHLH genes. We suggest that the diversification of bHLH genes is directly linked to the acquisition of multicellularity, and that important diversification of the bHLH repertoire occurred independently in animals and plants. Conclusions As the last common ancestor of worm, fly and human is also that of all bilaterian animals, our analysis indicates that this ancient ancestor must have possessed at least 43 different types of bHLH, highlighting its genomic complexity. PMID:12093377

  9. The Basic Helix-Loop-Helix Protein Family: Comparative Genomics and Phylogenetic Analysis

    PubMed Central

    Ledent, Valérie; Vervoort, Michel

    2001-01-01

    The basic Helix-Loop-Helix (bHLH) proteins are transcription factors that play important roles during the development of various metazoans including fly, nematode, and vertebrates. They are also involved in human diseases, particularly in cancerogenesis. We made an extensive search for bHLH sequences in the completely sequenced genomes of Caenorhabditis elegans and of Drosophila melanogaster. We found 35 and 56 different genes, respectively, which may represent the complete set of bHLH of these organisms. A phylogenetic analysis of these genes, together with a large number (>350) of bHLH from other sources, led us to define 44 orthologous families among which 36 include bHLH from animals only, and two have representatives in both yeasts and animals. In addition, we identified two bHLH motifs present only in yeast, and four that are present only in plants; however, the latter number is certainly an underestimate. Most animal families (35/38) comprise fly, nematode, and vertebrate genes, suggesting that their common ancestor, which lived in pre-Cambrian times (600 million years ago) already owned as many as 35 different bHLH genes. PMID:11337472

  10. Challenges in Targeting a Basic Helix-Loop-Helix Transcription Factor with Hydrocarbon-Stapled Peptides.

    PubMed

    Edwards, Amanda L; Meijer, Dimphna H; Guerra, Rachel M; Molenaar, Remco J; Alberta, John A; Bernal, Federico; Bird, Gregory H; Stiles, Charles D; Walensky, Loren D

    2016-11-18

    Basic helix-loop-helix (bHLH) transcription factors play critical roles in organism development and disease by regulating cell proliferation and differentiation. Transcriptional activity, whether by bHLH homo- or heterodimerization, is dependent on protein-protein and protein-DNA interactions mediated by α-helices. Thus, α-helical decoys have been proposed as potential targeted therapies for pathologic bHLH transcription. Here, we developed a library of stabilized α-helices of OLIG2 (SAH-OLIG2) to test the capacity of hydrocarbon-stapled peptides to disrupt OLIG2 homodimerization, which drives the development and chemoresistance of glioblastoma multiforme, one of the deadliest forms of human brain cancer. Although stapling successfully reinforced the α-helical structure of bHLH constructs of varying length, sequence-specific dissociation of OLIG2 dimers from DNA was not achieved. Re-evaluation of the binding determinants for OLIG2 self-association and stability revealed an unanticipated role of the C-terminal domain. These data highlight potential pitfalls in peptide-based targeting of bHLH transcription factors given the liabilities of their positively charged amino acid sequences and multifactorial binding determinants.

  11. The basic helix-loop-helix transcription factor, Mist1, induces maturation of mouse fetal hepatoblasts

    PubMed Central

    Chikada, Hiromi; Ito, Keiichi; Yanagida, Ayaka; Nakauchi, Hiromitsu; Kamiya, Akihide

    2015-01-01

    Hepatic stem/progenitor cells, hepatoblasts, have a high proliferative ability and can differentiate into mature hepatocytes and cholangiocytes. Therefore, these cells are considered to be useful for regenerative medicine and drug screening for liver diseases. However, it is problem that in vitro maturation of hepatoblasts is insufficient in the present culture system. In this study, a novel regulator to induce hepatic differentiation was identified and the molecular function of this factor was examined in embryonic day 13 hepatoblast culture with maturation factor, oncostatin M and extracellular matrices. Overexpression of the basic helix-loop-helix type transcription factor, Mist1, induced expression of mature hepatocytic markers such as carbamoyl-phosphate synthetase1 and several cytochrome P450 (CYP) genes in this culture system. In contrast, Mist1 suppressed expression of cholangiocytic markers such as Sox9, Sox17, Ck19, and Grhl2. CYP3A metabolic activity was significantly induced by Mist1 in this hepatoblast culture. In addition, Mist1 induced liver-enriched transcription factors, CCAAT/enhancer-binding protein α and Hepatocyte nuclear factor 1α, which are known to be involved in liver functions. These results suggest that Mist1 partially induces mature hepatocytic expression and function accompanied by the down-regulation of cholangiocytic markers. PMID:26456005

  12. Possible roles of basic helix-loop-helix transcription factors in adaptation to drought.

    PubMed

    Castilhos, Graciela; Lazzarotto, Fernanda; Spagnolo-Fonini, Leila; Bodanese-Zanettini, Maria Helena; Margis-Pinheiro, Márcia

    2014-06-01

    Water deficiency decreases plant growth and productivity. Several mechanisms are activated in response to dehydration that allows plants to cope with stress, including factors controlling stomatal aperture and ramified root system development. In addition, ABA metabolism is also implicated in the regulation of drought responses. The basic helix-loop-helix (bHLH) proteins, a large family of conserved transcription factors that regulates many cellular processes in eukaryotic organisms, are also involved in several responses that are important for plants to cope with drought stress. This review discusses distinct mechanisms related to drought-adaptive responses, especially the possible involvement of the bHLH transcription factors such as MUTE, implicated in stomatal development; RD22, [corrected] an ABA-responsive gene; EGL3 and GL3, involved in thichome and root hair development; and SPT, which play roles in repressing leaf expansion. Transcription factors are potential targets for new strategies to increase the tolerance of cultivars to drought stress. Recognition of gene regulatory networks in crops is challenging, and the manipulation of bHLH genes as well as components that mediate bHLH transcription factor responses in different pathways could be essential to achieve abiotic stress tolerance in plants through genetic manipulation.

  13. Identification and Bioinformatics Analyses of the Basic Helix-loop-helix Transcription Factors in Xenopus laevis.

    PubMed

    Liu, Wuyi; Li, Fengmei

    2015-04-01

    Xenopus laevis is a long established model organism for developmental, behavioral and neurological studies. Herein, an updated genome-wide survey was conducted using the ongoing genome project of Xenopus laevis and 106 non-redundant Basic Helix-Loop-Helix (bHLH) genes were identified in the Xenopus laevis genome databases. Gene Ontology (GO) enrichment statistics showed 51 significant GO annotations of biological processes and molecular functions and 5 significant KEGG pathways and a number of Xenopus laevis bHLH genes play significant role in specific development or special physiology processes like the development processes of muscle and eye and other organs. Furthermore, each sub-group of the bHLH family has its special gene functions except for the common GO term categories. Molecular phylogenetic analyses revealed that among these identified bHLH proteins, 105 sequences could classified into 39 families with 46, 25, 10, 5, 16 and 3 members in the corresponding high-order groups A, B, C, D, E and F, respectively with an addition bHLH member categorized as an orphan. The present study provides much useful information for further researches on Xenopus laevis.

  14. Basic Helix-Loop-Helix Transcription Factor Gene Family Phylogenetics and Nomenclature

    PubMed Central

    Skinner, Michael K.; Rawls, Alan; Wilson-Rawls, Jeanne; Roalson, Eric H.

    2010-01-01

    A phylogenetic analysis of the basic helix-loop-helix (bHLH) gene superfamily was performed using seven different species (human, mouse, rat, worm, fly, yeast, and plant Arabidopsis) and involving over 600 bHLH genes [1]. All bHLH genes were identified in the genomes of the various species, including expressed sequence tags, and the entire coding sequence was used in the analysis. Nearly 15% of the gene family has been updated or added since the original publication. A super-tree involving six clades and all structural relationships was established and is now presented for four of the species. The wealth of functional data available for members of the bHLH gene superfamily provides us with the opportunity to use this exhaustive phylogenetic tree to predict potential functions of uncharacterized members of the family. This phylogenetic and genomic analysis of the bHLH gene family has revealed unique elements of the evolution and functional relationships of the different genes in the bHLH gene family. PMID:20219281

  15. Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice.

    PubMed

    Sweeney, Megan T; Thomson, Michael J; Pfeil, Bernard E; McCouch, Susan

    2006-02-01

    Rc is a domestication-related gene required for red pericarp in rice (Oryza sativa). The red grain color is ubiquitous among the wild ancestors of O. sativa, in which it is closely associated with seed shattering and dormancy. Rc encodes a basic helix-loop-helix (bHLH) protein that was fine-mapped to an 18.5-kb region on rice chromosome 7 using a cross between Oryza rufipogon (red pericarp) and O. sativa cv Jefferson (white pericarp). Sequencing of the alleles from both mapping parents as well as from two independent genetic stocks of Rc revealed that the dominant red allele differed from the recessive white allele by a 14-bp deletion within exon 6 that knocked out the bHLH domain of the protein. A premature stop codon was identified in the second mutant stock that had a light red pericarp. RT-PCR experiments confirmed that the Rc gene was expressed in both red- and white-grained rice but that a shortened transcript was present in white varieties. Phylogenetic analysis, supported by comparative mapping in rice and maize (Zea mays), showed that Rc, a positive regulator of proanthocyanidin, is orthologous with INTENSIFIER1, a negative regulator of anthocyanin production in maize, and is not in the same clade as rice bHLH anthocyanin regulators.

  16. The basic helix-loop-helix leucine zipper transcription factor Mitf is conserved in Drosophila and functions in eye development.

    PubMed Central

    Hallsson, Jón H; Haflidadóttir, Benedikta S; Stivers, Chad; Odenwald, Ward; Arnheiter, Heinz; Pignoni, Francesca; Steingrímsson, Eiríkur

    2004-01-01

    The MITF protein is a member of the MYC family of basic helix-loop-helix leucine zipper (bHLH-Zip) transcription factors and is most closely related to the TFE3, TFEC, and TFEB proteins. In the mouse, MITF is required for the development of several different cell types, including the retinal pigment epithelial (RPE) cells of the eye. In Mitf mutant mice, the presumptive RPE cells hyperproliferate, abnormally express the retinal transcriptional regulator Pax6, and form an ectopic neural retina. Here we report the structure of the Mitf gene in Drosophila and demonstrate expression during embryonic development and in the eye-antennal imaginal disc. In vitro, transcriptional regulation by Drosophila Mitf, like its mouse counterpart, is modified by the Eyeless (Drosophila Pax6) transcription factor. In vivo, targeted expression of wild-type or dominant-negative Drosophila Mitf results in developmental abnormalities reminiscent of Mitf function in mouse eye development. Our results suggest that the Mitf gene is the original member of the Mitf-Tfe subfamily of bHLH-Zip proteins and that its developmental function is at least partially conserved between vertebrates and invertebrates. These findings further support the common origin of the vertebrate and invertebrate eyes. PMID:15166150

  17. Iron-binding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors.

    PubMed

    Selote, Devarshi; Samira, Rozalynne; Matthiadis, Anna; Gillikin, Jeffrey W; Long, Terri A

    2015-01-01

    Iron uptake and metabolism are tightly regulated in both plants and animals. In Arabidopsis (Arabidopsis thaliana), BRUTUS (BTS), which contains three hemerythrin (HHE) domains and a Really Interesting New Gene (RING) domain, interacts with basic helix-loop-helix transcription factors that are capable of forming heterodimers with POPEYE (PYE), a positive regulator of the iron deficiency response. BTS has been shown to have E3 ligase capacity and to play a role in root growth, rhizosphere acidification, and iron reductase activity in response to iron deprivation. To further characterize the function of this protein, we examined the expression pattern of recombinant ProBTS::β-GLUCURONIDASE and found that it is expressed in developing embryos and other reproductive tissues, corresponding with its apparent role in reproductive growth and development. Our findings also indicate that the interactions between BTS and PYE-like (PYEL) basic helix-loop-helix transcription factors occur within the nucleus and are dependent on the presence of the RING domain. We provide evidence that BTS facilitates 26S proteasome-mediated degradation of PYEL proteins in the absence of iron. We also determined that, upon binding iron at the HHE domains, BTS is destabilized and that this destabilization relies on specific residues within the HHE domains. This study reveals an important and unique mechanism for plant iron homeostasis whereby an E3 ubiquitin ligase may posttranslationally control components of the transcriptional regulatory network involved in the iron deficiency response.

  18. Specific Protein-Protein Interaction between Basic Helix-Loop-Helix Transcription Factors and Homeoproteins of the Pitx Family

    PubMed Central

    Poulin, Gino; Lebel, Mélanie; Chamberland, Michel; Paradis, Francois W.; Drouin, Jacques

    2000-01-01

    Homeoproteins and basic helix-loop-helix (bHLH) transcription factors are known for their critical role in development and cellular differentiation. The pituitary pro-opiomelanocortin (POMC) gene is a target for factors of both families. Indeed, pituitary-specific transcription of POMC depends on the action of the homeodomain-containing transcription factor Pitx1 and of bHLH heterodimers containing NeuroD1. We now show lineage-restricted expression of NeuroD1 in pituitary corticotroph cells and a direct physical interaction between bHLH heterodimers and Pitx1 that results in transcriptional synergism. The interaction between the bHLH and homeodomains is restricted to ubiquitous (class A) bHLH and to the Pitx subfamily. Since bHLH heterodimers interact with Pitx factors through their ubiquitous moiety, this mechanism may be implicated in other developmental processes involving bHLH factors, such as neurogenesis and myogenesis. PMID:10848608

  19. A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia

    USDA-ARS?s Scientific Manuscript database

    The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in regulating multiple biological processes in plants. However, there are few reports about the function of bHLHs in flower senescence. In this study, a bHLH TF, PhFBH4, was found to be dramatically upregulated during...

  20. ETS-Mediated Cooperation between Basic Helix-Loop-Helix Motifs of the Immunoglobulin μ Heavy-Chain Gene Enhancer

    PubMed Central

    Dang, Wei; Sun, Xiao-hong; Sen, Ranjan

    1998-01-01

    The μE motifs of the immunoglobulin μ heavy-chain gene enhancer bind ubiquitously expressed proteins of the basic helix-loop-helix (bHLH) family. These elements work together with other, more tissue-restricted elements to produce B-cell-specific enhancer activity by presently undefined combinatorial mechanisms. We found that μE2 contributed to transcription activation in B cells only when the μE3 site was intact, providing the first evidence for functional interactions between bHLH proteins. In vitro assays showed that bHLH zipper proteins binding to μE3 enhanced Ets-1 binding to μA. One of the consequences of this protein-protein interaction was to facilitate binding of a second bHLH protein, E47, to the μE2 site, thereby generating a three-protein–DNA complex. Furthermore, transcriptional synergy between bHLH and bHLH zipper factors also required an intermediate ETS protein, which may bridge the transcription activation domains of the bHLH factors. Our observations define an unusual form of cooperation between bHLH and ETS proteins and suggest mechanisms by which tissue-restricted and ubiquitous factors combine to generate tissue-specific enhancer activity. PMID:9488464

  1. The Basic Helix-Loop-Helix Transcription Factor NEUROG3 Is Required for Development of the Human Endocrine Pancreas

    PubMed Central

    McGrath, Patrick S.; Watson, Carey L.; Ingram, Cameron; Helmrath, Michael A.

    2015-01-01

    Neurogenin3 (NEUROG3) is a basic helix-loop-helix transcription factor required for development of the endocrine pancreas in mice. In contrast, humans with NEUROG3 mutations are born with endocrine pancreas function, calling into question whether NEUROG3 is required for human endocrine pancreas development. To test this directly, we generated human embryonic stem cell (hESC) lines where both alleles of NEUROG3 were disrupted using CRISPR/Cas9-mediated gene targeting. NEUROG3−/− hESC lines efficiently formed pancreatic progenitors but lacked detectible NEUROG3 protein and did not form endocrine cells in vitro. Moreover, NEUROG3−/− hESC lines were unable to form mature pancreatic endocrine cells after engraftment of PDX1+/NKX6.1+ pancreatic progenitors into mice. In contrast, a 75–90% knockdown of NEUROG3 caused a reduction, but not a loss, of pancreatic endocrine cell development. We conclude that NEUROG3 is essential for endocrine pancreas development in humans and that as little as 10% NEUROG3 is sufficient for formation of pancreatic endocrine cells. PMID:25650326

  2. A genome-wide survey on basic helix-loop-helix transcription factors in rat and mouse.

    PubMed

    Zheng, Xiaodong; Zheng, X; Wang, Yong; Wang, Y; Yao, Qin; Yao, Q; Yang, Zhe; Yang, Z; Chen, Keping; Chen, K

    2009-04-01

    The basic helix-loop-helix (bHLH) proteins play essential roles in a wide range of developmental processes in higher organisms. bHLH family members have been identified in over 20 organisms, including nematode, fruit fly, and human. Our study identified 114 rat and 14 additional mouse bHLH members in rat and mouse genomes, respectively. Phylogenetic analyses revealed that both rat and mouse had 49, 26, 15, 4, 12, and 4 bHLH members in groups A, B, C, D, E, and F, respectively. Only the rat Mxi1 gene has two copies in the genome. All other rat bHLH genes and all mouse bHLH genes are single-copy genes. The chromosomal distribution pattern of mouse, rat, and human bHLH genes suggests the emergence of some bHLH genes through gene duplication, which probably happened at least before the divergence of vertebrates from invertebrates. The present study provides useful information for future studies using rat as a model animal for mammalian development.

  3. Genome-wide features of neuroendocrine regulation in Drosophila by the basic helix-loop-helix transcription factor DIMMED

    PubMed Central

    Hadžić, Tarik; Park, Dongkook; Abruzzi, Katharine C.; Yang, Lin; Trigg, Jennifer S.; Rohs, Remo; Rosbash, Michael; Taghert, Paul H.

    2015-01-01

    Neuroendocrine (NE) cells use large dense core vesicles (LDCVs) to traffic, process, store and secrete neuropeptide hormones through the regulated secretory pathway. The dimmed (DIMM) basic helix-loop-helix transcription factor of Drosophila controls the level of regulated secretory activity in NE cells. To pursue its mechanisms, we have performed two independent genome-wide analyses of DIMM's activities: (i) in vivo chromatin immunoprecipitation (ChIP) to define genomic sites of DIMM occupancy and (ii) deep sequencing of purified DIMM neurons to characterize their transcriptional profile. By this combined approach, we showed that DIMM binds to conserved E-boxes in enhancers of 212 genes whose expression is enriched in DIMM-expressing NE cells. DIMM binds preferentially to certain E-boxes within first introns of specific gene isoforms. Statistical machine learning revealed that flanking regions of putative DIMM binding sites contribute to its DNA binding specificity. DIMM's transcriptional repertoire features at least 20 LDCV constituents. In addition, DIMM notably targets the pro-secretory transcription factor, creb-A, but significantly, DIMM does not target any neuropeptide genes. DIMM therefore prescribes the scale of secretory activity in NE neurons, by a systematic control of both proximal and distal points in the regulated secretory pathway. PMID:25634895

  4. Phylogenetic analysis of basic helix-loop-helix transcription factors in the genome of a typical human-disease vector

    PubMed Central

    Chen, Meng-Yun; Dong, Ying; Chang, Rui-Xue; Ang, Qian-Qian; Zhang, Ran; Wu, Yan-Yan; Xu, Yi-Hui; Lu, Wen-Sheng; Zheng, Xiao-Dong

    2016-01-01

    Ixodes scapularis, the black-legged tick, is one of the most common human-disease vectors and transmits Borrelia species, such as B. burgdorferi, as well as Theileria microti, Anaplasma phagocytophilum, etc. As basic helix-loop-helix (bHLH) transcription factors have been recognized for many years as important regulators of various developmental processes, we performed phylogenetic analysis of the black-legged tick genome in order to identify the number and family of bHLH transcription factors. Because bHLH family members have been identified in many organisms, including silkworm and fruit fly, we were able to conduct this survey and identify 58 putative bHLH transcription factors. Phylogenetic analysis revealed that the black-legged tick has 26, 10, 9, 1, 9, and 1 member in groups A, B, C, D, E, and F, respectively, whereas two were orphan genes. This analysis also revealed that unlike silkworm and fruit fly, the black-legged tick has no Mesp, Mlx, or TF4 family members, but has one more MyoRb family member. The present study provides useful background information for future studies of the black-legged tick as a disease vector with the goal of prevention and treatment. PMID:27904685

  5. Basic helix-loop-helix transcription factor TCF21 is a downstream target of the male sex determining gene SRY.

    PubMed

    Bhandari, Ramji K; Sadler-Riggleman, Ingrid; Clement, Tracy M; Skinner, Michael K

    2011-01-01

    The cascade of molecular events involved in mammalian sex determination has been shown to involve the SRY gene, but specific downstream events have eluded researchers for decades. The current study identifies one of the first direct downstream targets of the male sex determining factor SRY as the basic-helix-loop-helix (bHLH) transcription factor TCF21. SRY was found to bind to the Tcf21 promoter and activate gene expression. Mutagenesis of SRY/SOX9 response elements in the Tcf21 promoter eliminated the actions of SRY. SRY was found to directly associate with the Tcf21 promoter SRY/SOX9 response elements in vivo during fetal rat testis development. TCF21 was found to promote an in vitro sex reversal of embryonic ovarian cells to induce precursor Sertoli cell differentiation. TCF21 and SRY had similar effects on the in vitro sex reversal gonadal cell transcriptomes. Therefore, SRY acts directly on the Tcf21 promoter to in part initiate a cascade of events associated with Sertoli cell differentiation and embryonic testis development.

  6. Neuronal basic helix-loop-helix proteins Neurod2/6 regulate cortical commissure formation before midline interactions.

    PubMed

    Bormuth, Ingo; Yan, Kuo; Yonemasu, Tomoko; Gummert, Maike; Zhang, Mingyue; Wichert, Sven; Grishina, Olga; Pieper, Alexander; Zhang, Weiqi; Goebbels, Sandra; Tarabykin, Victor; Nave, Klaus-Armin; Schwab, Markus H

    2013-01-09

    Establishment of long-range fiber tracts by neocortical projection neurons is fundamental for higher brain functions. The molecular control of axon tract formation, however, is still poorly understood. Here, we have identified basic helix-loop-helix (bHLH) transcription factors Neurod2 and Neurod6 as key regulators of fasciculation and targeted axogenesis in the mouse neocortex. In Neurod2/6 double-mutant mice, callosal axons lack expression of the cell adhesion molecule Contactin2, defasciculate in the subventricular zone, and fail to grow toward the midline without forming Probst bundles. Instead, mutant axons overexpress Robo1 and follow random trajectories into the ipsilateral cortex. In contrast to long-range axogenesis, generation and maintenance of pyramidal neurons and initial axon outgrowth are grossly normal, suggesting that these processes are under distinct transcriptional control. Our findings define a new stage in corpus callosum development and demonstrate that neocortical projection neurons require transcriptional specification by neuronal bHLH proteins to execute an intrinsic program of remote connectivity.

  7. GLABRA2 Directly Suppresses Basic Helix-Loop-Helix Transcription Factor Genes with Diverse Functions in Root Hair Development

    PubMed Central

    Ohashi, Yohei; Kato, Mariko; Tsuge, Tomohiko; Aoyama, Takashi

    2015-01-01

    The Arabidopsis thaliana GLABRA2 (GL2) gene encodes a transcription factor involved in the cell differentiation of various epidermal tissues. During root hair pattern formation, GL2 suppresses root hair development in non-hair cells, acting as a node between the gene regulatory networks for cell fate determination and cell differentiation. Despite the importance of GL2 function, its molecular basis remains obscure because the GL2 target genes leading to the network for cell differentiation are unknown. We identified five basic helix-loop-helix (bHLH) transcription factor genes (ROOT HAIR DEFECTIVE6 [RHD6], RHD6-LIKE1 [RSL1], RSL2, Lj-RHL1-LIKE1 [LRL1], and LRL2) as GL2 direct targets using transcriptional and posttranslational induction systems. Chromatin immunoprecipitation analysis confirmed GL2 binding to upstream regions of these genes in planta. Reporter gene analyses showed that these genes are expressed in various stages of root hair development and are suppressed by GL2 in non-hair cells. GL2 promoter-driven GFP fusions of LRL1 and LRL2, but not those of the other bHLH proteins, conferred root hair development on non-hair cells. These results indicate that GL2 directly suppresses bHLH genes with diverse functions in root hair development. PMID:26486447

  8. Transcriptional synergy between LIM-homeodomain proteins and basic helix-loop-helix proteins: the LIM2 domain determines specificity.

    PubMed Central

    Johnson, J D; Zhang, W; Rudnick, A; Rutter, W J; German, M S

    1997-01-01

    LIM-homeodomain proteins direct cellular differentiation by activating transcription of cell-type-specific genes, but this activation requires cooperation with other nuclear factors. The LIM-homeodomain protein Lmx1 cooperates with the basic helix-loop-helix (bHLH) protein E47/Pan-1 to activate the insulin promoter in transfected fibroblasts. In this study, we show that two proteins originally called Lmx1 are the closely related products of two distinct vertebrate genes, Lmx1.1 and Lmx1.2. We have used yeast genetic systems to delineate the functional domains of the Lmx1 proteins and to characterize the physical interactions between Lmx1 proteins and E47/Pan-1 that produce synergistic transcriptional activation. The LIM domains of the Lmx1 proteins, and particularly the second LIM domain, mediate both specific physical interactions and transcriptional synergy with E47/Pan-1. The LIM domains of the LIM-homeodomain protein Isl-1, which cannot mediate transcriptional synergy with E47/Pan-1, do not interact with E47/Pan-1. In vitro studies demonstrate that the Lmx1.1 LIM2 domain interacts specifically with the bHLH domain of E47/Pan-1. These studies provide the basis for a model of the assembly of LIM-homeodomain-containing complexes on DNA elements that direct cell-type-restricted transcription in differentiated tissues. PMID:9199284

  9. The grape berry-specific basic helix-loop-helix transcription factor VvCEB1 affects cell size.

    PubMed

    Nicolas, Philippe; Lecourieux, David; Gomès, Eric; Delrot, Serge; Lecourieux, Fatma

    2013-02-01

    The development of fleshy fruits involves complex physiological and biochemical changes. After fertilization, fruit growth usually begins with cell division, continues with both cell division and expansion, allowing fruit set to occur, and ends with cell expansion only. In spite of the economical importance of grapevine, the molecular mechanisms controlling berry growth are not fully understood. The present work identified and characterized Vitis vinifera cell elongation bHLH protein (VvCEB1), a basic helix-loop-helix (bHLH) transcription factor controlling cell expansion in grape. VvCEB1 was expressed specifically in berry-expanding tissues with a maximum around veraison. The study of VvCEB1 promoter activity in tomato confirmed its specific fruit expression during the expansion phase. Overexpression of VvCEB1 in grape embryos showed that this protein stimulates cell expansion and affects the expression of genes involved in cell expansion, including genes of auxin metabolism and signalling. Taken together, these data show that VvCEB1 is a fruit-specific bHLH transcription factor involved in grape berry development.

  10. A genome-wide identification and analysis of basic helix-loop-helix transcription factors in cattle.

    PubMed

    Zhang, Debao; Li, Guanying; Wang, Yong

    2017-08-30

    Basic helix-loop-helix (BHLH) transcription factors comprise a large family of regulatory proteins and play critical roles in the developmental processes of higher organisms. Complete lists of BHLH family members have been identified in about 50 organisms, including fruit fly, zebrafish, mouse, giant panda, worm, yeast, rice and apple. Cattle, Bos taurus, is important for agriculture and animal nutrition, and is also a good model organism for health research. In the present study, 116 putative BHLHs were identified in the cattle genome. Phylogenetic analyses revealed that 111 Bos taurus BHLH (BtBHLH: Bos taurus BHLH) members belong to 44 families, with 48, 26, 16, 4, 13 and 4 members in group A, B, C, D, E and F respectively, and the remaining 5 BtBHLHs are orphan members. All of them were named and assigned into the corresponding BHLH families based on acceptable bootstrap values from in-group phylogenetic analyses with orthologous BHLHs from mouse and other mammalian species. A comparison between annotations deposited in the GenBank and KEGG databases with our analyses indicated that the annotations of 2 of the 116 BtBHLH members were inconsistent with our analytical results. Microarray evidence and expressed sequence tags of only 14 BtBHLH genes was now not available. Chromosomal locations of the BtBHLHs showed that the distribution of the BtBHLHs was uneven and some genes, e.g., BtOligo, BtHes and BtMyf6, may arise from gene duplication. The test of positive selection showed episodic positive selection occurs only in 5 families among the studied mammalian BHLHs. These results provide a solid basis for further studies on BHLH protein regulation of key growth and developmental processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Myogenic basic helix-loop-helix proteins regulate the expression of peroxisomal proliferator activated receptor-gamma coactivator-1alpha.

    PubMed

    Chang, Ju Hui; Lin, Kwang Huei; Shih, Chung Hsuan; Chang, Yu Jung; Chi, Hsiang Chung; Chen, Shen Liang

    2006-06-01

    Peroxisomal proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha), a transcriptional coactivator, is selectively expressed in slow-twitch fibers in skeletal muscle. Ectopic expression of the PGC-1alpha gene in either a cell or an animal has been shown to promote fast to slow fiber-type switch. The expression of PGC-1alpha in muscle is regulated by myocyte enhancer factor 2 and Forkhead in rhabdomyosarcoma, two transcription factors implicated in terminal muscle differentiation. In this study we found that PGC-1alpha expression was activated during terminal muscle differentiation in both C2C12 and Sol8 myoblasts. Using retrovirus-mediated MyoD overexpression in C3H10T1/2 cells, we also demonstrated that MyoD, the master regulator of terminal differentiation, could activate PGC-1alpha expression in vivo. Our transient transfection results also show that myogenic basic helix-loop-helix (bHLH) proteins, especially MyoD, can activate PGC-1alpha expression by targeting its promoter. Myogenic bHLH protein target sites on PGC-1alpha promoter were localized to a short region (-49 to approximately +2) adjacent to the transcription start site, which contains two putative E boxes. Mutation of either site significantly reduced MyoD-mediated transactivation in the cells, suggesting that both sites are required for myogenic bHLH protein-mediated activation. However, only one site, the E2 box, was directly bound by glutathione-S-transferase-MyoD protein in EMSAs. Our results indicate that myogenic bHLH proteins not only are involved in lineage determination and terminal differentiation, but also are directly implicated in activation of the key fiber-type and metabolic switch gene, PGC-1alpha.

  12. Molecular cloning of ID4, a novel dominant negative helix-loop-helix human gene on chromosome 6p21.3-p22

    SciTech Connect

    Pagliuca, A.; Bartoli, P.C.; Saccone, S.

    1995-05-01

    Transcription factors containing a basic helix-loop-helix (bHLH) motif regulate the expression of tissue-specific genes in a number of mammalian and insect systems. DNA-binding activity of the bHLH proteins is dependent upon formation of homo- and/or heterodimers. Dominant negative HLH proteins (Id-related genes) also contain the HLH-dimerization domain but lack the DNA-binding basic domain. Consequently, Id proteins inhibit binding to DNA and transcriptional transactivation by heterodimerization with bHLH proteins. The authors report here the cDNA sequence of a novel human HLH gene (HGMW-approved symbol ID4) that lacks the basic domain. ID4 is differentially expressed in adult organs in four mRNA molecules, which are presumably a result of differential splicing and/or alternative usage of the polyadenylation sites. Transfection experiments indicated that enforced expression of Id-4H protein inhibits the trans-activation of the muscle creatine kinase E-box enhancer by MyoD. Finally, the authors localized the ID4 gene to the chromosome 6p21-p22 region. 18 refs., 4 figs.

  13. The Basic/Helix-Loop-Helix Protein Family in Gossypium: Reference Genes and Their Evolution during Tetraploidization

    PubMed Central

    Yan, Qian; Liu, Hou-Sheng; Yao, Dan; Li, Xin; Chen, Han; Dou, Yang; Wang, Yi; Pei, Yan; Xiao, Yue-Hua

    2015-01-01

    Basic/helix-loop-helix (bHLH) proteins comprise one of the largest transcription factor families and play important roles in diverse cellular and molecular processes. Comprehensive analyses of the composition and evolution of the bHLH family in cotton are essential to elucidate their functions and the molecular basis of cotton development. By searching bHLH homologous genes in sequenced diploid cotton genomes (Gossypium raimondii and G. arboreum), a set of cotton bHLH reference genes containing 289 paralogs were identified and named as GobHLH001-289. Based on their phylogenetic relationships, these cotton bHLH proteins were clustered into 27 subfamilies. Compared to those in Arabidopsis and cacao, cotton bHLH proteins generally increased in number, but unevenly in different subfamilies. To further uncover evolutionary changes of bHLH genes during tetraploidization of cotton, all genes of S5a and S5b subfamilies in upland cotton and its diploid progenitors were cloned and compared, and their transcript profiles were determined in upland cotton. A total of 10 genes of S5a and S5b subfamilies (doubled from A- and D-genome progenitors) maintained in tetraploid cottons. The major sequence changes in upland cotton included a 15-bp in-frame deletion in GhbHLH130D and a long terminal repeat retrotransposon inserted in GhbHLH062A, which eliminated GhbHLH062A expression in various tissues. The S5a and S5b bHLH genes of A and D genomes (except GobHLH062) showed similar transcription patterns in various tissues including roots, stems, leaves, petals, ovules, and fibers, while the A- and D-genome genes of GobHLH110 and GobHLH130 displayed clearly different transcript profiles during fiber development. In total, this study represented a genome-wide analysis of cotton bHLH family, and revealed significant changes in sequence and expression of these genes in tetraploid cottons, which paved the way for further functional analyses of bHLH genes in the cotton genus. PMID:25992947

  14. An-1 Encodes a Basic Helix-Loop-Helix Protein That Regulates Awn Development, Grain Size, and Grain Number in Rice[C][W][OPEN

    PubMed Central

    Luo, Jianghong; Liu, Hui; Zhou, Taoying; Gu, Benguo; Huang, Xuehui; Shangguan, Yingying; Zhu, Jingjie; Li, Yan; Zhao, Yan; Wang, Yongchun; Zhao, Qiang; Wang, Ahong; Wang, Ziqun; Sang, Tao; Wang, Zixuan; Han, Bin

    2013-01-01

    Long awns are important for seed dispersal in wild rice (Oryza rufipogon), but are absent in cultivated rice (Oryza sativa). The genetic mechanism involved in loss-of-awn in cultivated rice remains unknown. We report here the molecular cloning of a major quantitative trait locus, An-1, which regulates long awn formation in O. rufipogon. An-1 encodes a basic helix-loop-helix protein, which regulates cell division. The nearly-isogenic line (NIL-An-1) carrying a wild allele An-1 in the genetic background of the awnless indica Guangluai4 produces long awns and longer grains, but significantly fewer grains per panicle compared with Guangluai4. Transgenic studies confirmed that An-1 positively regulates awn elongation, but negatively regulates grain number per panicle. Genetic variations in the An-1 locus were found to be associated with awn loss in cultivated rice. Population genetic analysis of wild and cultivated rice showed a significant reduction in nucleotide diversity of the An-1 locus in rice cultivars, suggesting that the An-1 locus was a major target for artificial selection. Thus, we propose that awn loss was favored and strongly selected by humans, as genetic variations at the An-1 locus that cause awn loss would increase grain numbers and subsequently improve grain yield in cultivated rice. PMID:24076974

  15. Iron-Binding E3 Ligase Mediates Iron Response in Plants by Targeting Basic Helix-Loop-Helix Transcription Factors1[OPEN

    PubMed Central

    Selote, Devarshi; Samira, Rozalynne; Matthiadis, Anna; Gillikin, Jeffrey W.; Long, Terri A.

    2015-01-01

    Iron uptake and metabolism are tightly regulated in both plants and animals. In Arabidopsis (Arabidopsis thaliana), BRUTUS (BTS), which contains three hemerythrin (HHE) domains and a Really Interesting New Gene (RING) domain, interacts with basic helix-loop-helix transcription factors that are capable of forming heterodimers with POPEYE (PYE), a positive regulator of the iron deficiency response. BTS has been shown to have E3 ligase capacity and to play a role in root growth, rhizosphere acidification, and iron reductase activity in response to iron deprivation. To further characterize the function of this protein, we examined the expression pattern of recombinant ProBTS::β-GLUCURONIDASE and found that it is expressed in developing embryos and other reproductive tissues, corresponding with its apparent role in reproductive growth and development. Our findings also indicate that the interactions between BTS and PYE-like (PYEL) basic helix-loop-helix transcription factors occur within the nucleus and are dependent on the presence of the RING domain. We provide evidence that BTS facilitates 26S proteasome-mediated degradation of PYEL proteins in the absence of iron. We also determined that, upon binding iron at the HHE domains, BTS is destabilized and that this destabilization relies on specific residues within the HHE domains. This study reveals an important and unique mechanism for plant iron homeostasis whereby an E3 ubiquitin ligase may posttranslationally control components of the transcriptional regulatory network involved in the iron deficiency response. PMID:25452667

  16. The activation domain of a basic helix-loop-helix protein is masked by repressor interaction with domains distinct from that required for transcription regulation.

    PubMed Central

    Jayaraman, P S; Hirst, K; Goding, C R

    1994-01-01

    While there are many examples of protein-protein interactions modulating the DNA-binding activity of transcription factors, little is known of the molecular mechanisms underlying the regulation of the transcription activation function. Using a two-hybrid system we show here that transcription repression of the basic domain/helix-loop-helix factor PHO4 is mediated by complex formation with the PHO80 repressor. In contrast to other systems, such as inhibition of GAL4 by GAL80 or of p53 by MDM2, where repression is mediated by direct interaction at regions overlapping the transcription activation domain, interaction with PHO80 involves two regions of PHO4 distinct from those involved in transcription activation or DNA-binding and dimerization. The possibility that repression of PHO4 by PHO80 may represent a general mechanism of transcription control, including regulation of the cell-type-specific transcription activation domain of c-Jun, is discussed. Images PMID:8187772

  17. Genome-wide DNA-binding specificity of PIL5, an Arabidopsis basic Helix-Loop-Helix (bHLH) transcription factor.

    PubMed

    Kang, Hyojin; Oh, Eunkyoo; Choi, Giltsu; Lee, Doheon

    2010-01-01

    PIL5 is a member of the basic Helix-Loop-Helix (bHLH) transcription factor superfamily. We previously showed that PIL5 binds to the G-box (CACGTG) motif with high affinity. However, since there are many randomly matched G-box motifs throughout the genome, other factors must account for the in-vivo PIL5 binding specificity. In this study, we investigated if in-vivo PIL5 binding sites can be explained by any other attributes extracted from various sources. Our results showed that PIL5 binding sites can be explained by attributes such as neighbouring motif composition, nucleosome density, DNA methylation and distance from transcription start site in addition to G-box.

  18. The SUMO Pathway Promotes Basic Helix-Loop-Helix Proneural Factor Activity via a Direct Effect on the Zn Finger Protein Senseless

    PubMed Central

    Chen, Angela; Huang, Yan Chang; Wang, Pin Yao; Kemp, Sadie E.

    2012-01-01

    During development, proneural transcription factors of the basic helix-loop-helix (bHLH) family are required to commit cells to a neural fate. In Drosophila neurogenesis, a key mechanism promoting sense organ precursor (SOP) fate is the synergy between proneural factors and their coactivator Senseless in transcriptional activation of target genes. Here we present evidence that posttranslational modification by SUMO enhances this synergy via an effect on Senseless protein. We show that Senseless is a direct target for SUMO modification and that mutagenesis of a predicted SUMOylation motif in Senseless reduces Senseless/proneural synergy both in vivo and in cell culture. We propose that SUMOylation of Senseless via lysine 509 promotes its synergy with proneural proteins during transcriptional activation and hence regulates an important step in neurogenesis leading to the formation and maturation of the SOPs. PMID:22586269

  19. Proprotein convertase PACE4 is down-regulated by the basic helix-loop-helix transcription factor hASH-1 and MASH-1.

    PubMed

    Yoshida, I; Koide, S; Hasegawa, S I; Nakagawara, A; Tsuji, A; Matsuda, Y

    2001-12-15

    PACE4 is a mammalian subtilisin-like proprotein convertase that activates transforming growth factor (TGF)-beta-related proteins such as bone morphogenetic protein 2 (BMP2), BMP4 and Nodal and exhibits a dynamic expression pattern during embryogenesis. We recently determined that the 1 kb 5'-upstream region of the PACE4 gene contains 12 E-box (E1-E12) elements and that an E-box cluster (E4-E9) acts as a negative regulator [Tsuji, Yoshida, Hasegawa, Bando, Yoshida, Koide, Mori and Matsuda (1999) J. Biochem. (Tokyo) 126, 494-502]. It is known that the mammalian achaete-scute homologue 1 (MASH-1) binds specifically to an E-box (CACCTG) sequence in collaboration with E47, a ubiquitously expressed basic helix-loop-helix (bHLH) factor. To identify the roles of the bHLH factor and E-box elements in regulating PACE4 gene expression in neural development, we analysed the effects of human achaete-scute homologue 1 (hASH-1) on PACE4 gene expression with various neuroblastoma cell lines. The expressions of PACE4 and hASH-1 are correlated inversely in these cell lines. The overexpression of hASH-1 or MASH-1 causes a marked decrease in endogenous PACE4 gene expression but has no effect on the expression of other subtilisin-like proprotein convertases such as furin, PC5/6 and PC7/8. In contrast, other neural bHLH factors (MATH-1, MATH-2, neurogenin 1, neurogenin 2, neurogenin 3 and E47) did not affect PACE4 gene expression. Furthermore, an E-box cluster was a negative regulatory element for the promoter activity in NBL-S cells expressing hASH-1 at high level as determined by a luciferase assay. Binding of hASH-1 to the E-box cluster was confirmed by gel mobility-shift assay. In the present study we identified the PACE4 gene as one of the targets of hASH-1, which is a key factor in the initiation of neural differentiation. These results suggest that the alteration of PACE4 gene expression by hASH-1 causes rapid changes in the biological activities of TGF-beta-related proteins via

  20. Dynamic Antagonism between Phytochromes and PIF Family Basic Helix-Loop-Helix Factors Induces Selective Reciprocal Responses to Light and Shade in a Rapidly Responsive Transcriptional Network in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    Plants respond to shade-modulated light signals via phytochrome (phy)-induced adaptive changes, termed shade avoidance. To examine the roles of Phytochrome-Interacting basic helix-loop-helix Factors, PIF1, 3, 4, and 5, in relaying such signals to the transcriptional network, we compared the shade-re...

  1. The basic helix-loop-helix transcription factors dHAND and eHAND exhibit dimerization characteristics that suggest complex regulation of function.

    PubMed

    Firulli, B A; Hadzic, D B; McDaid, J R; Firulli, A B

    2000-10-27

    dHAND and eHAND are basic helix-loop-helix (bHLH) transcription factors expressed during embryogenesis and are required for the proper development of cardiac and extraembryonic tissues. HAND genes, like the myogenic bHLH genes, are classified as class B bHLH genes, which are expressed in a tissue-restricted pattern and function by forming heterodimers with class A bHLH proteins. Myogenic bHLH genes are shown not to form homodimers efficiently, suggesting that their activity is dependent on their E-protein partners. To identify HIPs (HAND-interacting proteins) that regulate the activity of the HAND genes, we screened an 9.5-10.5-day-old mouse embryonic yeast two-hybrid library with eHAND. Several HIPs held high sequence identity to eHAND, indicating that eHAND could form and function as a homodimer. Based on the high degree of amino acid identity between eHAND and dHAND, it is possible that dHAND could also form homodimers and heterodimers with eHAND. We show using yeast and mammalian two-hybrid assays as well as biochemical pull-down assays that eHAND and dHAND are capable of forming both HAND homo- and heterodimers in vivo. To investigate whether HAND genes form heterodimers with other biologically relevant bHLH proteins, we tested and show HAND heterodimerization with the recently identified Hairy-related transcription factors, HRT1-3. This finding is exciting, because both HRT and HAND genes are coexpressed in the developing heart and limb and both have been implicated in establishing tissue boundaries and pattern formation. Moreover, competition gel shift analysis demonstrates that dHAND and eHAND can negatively regulate the DNA binding of MyoD/E12 heterodimers in a manner similar to MISTI and Id proteins, suggesting a possible transcriptional inhibitory role for HAND genes. Taken together, these results show that dHAND and eHAND can form homo- and heterodimer combinations with multiple bHLH partners and that this broad dimerization profile reflects the

  2. Targeted disruption of NeuroD, a proneural basic helix-loop-helix factor, impairs distal lung formation and neuroendocrine morphology in the neonatal lung.

    PubMed

    Neptune, Enid R; Podowski, Megan; Calvi, Carla; Cho, Jang-Hyeon; Garcia, Joe G N; Tuder, Rubin; Linnoila, R Ilona; Tsai, Ming-Jer; Dietz, Harry C

    2008-07-25

    Despite the importance of airspace integrity in vertebrate gas exchange, the molecular pathways that instruct distal lung formation are poorly understood. Recently, we found that fibrillin-1 deficiency in mice impairs alveolar formation and recapitulates the pulmonary features of human Marfan syndrome. To further elucidate effectors involved in distal lung formation, we performed expression profiling analysis comparing the fibrillin-1-deficient and wild-type developing lung. NeuroD, a basic helix-loop-helix transcription factor, fulfilled the expression criteria for a candidate mediator of distal lung development. We investigated its role in murine lung development using genetically targeted NeuroD-deficient mice. We found that NeuroD deficiency results in both impaired alveolar septation and altered morphology of the pulmonary neuroendocrine cells. NeuroD-deficient mice had enlarged alveoli associated with reduced epithelial proliferation in the airway and airspace compartments during development. Additionally, the neuroendocrine compartment in these mice manifested an increased number of neuroepithelial bodies but a reduced number of solitary pulmonary neuroendocrine cells in the neonatal lung. Overexpression of NeuroD in a murine lung epithelial cell line conferred a neuroendocrine phenotype characterized by the induction of neuroendocrine markers as well as increased proliferation. These results support an unanticipated role for NeuroD in the regulation of pulmonary neuroendocrine and alveolar morphogenesis and suggest an intimate connection between the neuroendocrine compartment and distal lung development.

  3. Tracheophytes Contain Conserved Orthologs of a Basic Helix-Loop-Helix Transcription Factor That Modulate ROOT HAIR SPECIFIC Genes[OPEN

    PubMed Central

    Cho, Hyun-Min

    2017-01-01

    ROOT HAIR SPECIFIC (RHS) genes, which contain the root hair-specific cis-element (RHE) in their regulatory regions, function in root hair morphogenesis. Here, we demonstrate that an Arabidopsis thaliana basic helix-loop-helix transcription factor, ROOT HAIR DEFECTVE SIX-LIKE4 (RSL4), directly binds to the RHE in vitro and in vivo, upregulates RHS genes, and stimulates root hair formation in Arabidopsis. Orthologs of RSL4 from a eudicot (poplar [Populus trichocarpa]), a monocot (rice [Oryza sativa]), and a lycophyte (Selaginella moellendorffii) each restored root hair growth in the Arabidopsis rsl4 mutant. In addition, the rice and S. moellendorffii RSL4 orthologs bound to the RHE in in vitro and in vivo assays. The RSL4 orthologous genes contain RHEs in their promoter regions, and RSL4 was able to bind to its own RHEs in vivo and amplify its own expression. This process likely provides a positive feedback loop for sustainable root hair growth. When RSL4 and its orthologs were expressed in cells in non-root-hair positions, they induced ectopic root hair growth, indicating that these genes are sufficient to specify root hair formation. Our results suggest that RSL4 mediates root hair formation by regulating RHS genes and that this mechanism is conserved throughout the tracheophyte (vascular plant) lineage. PMID:28087829

  4. Drosophila CK2 phosphorylates Deadpan, a member of the HES family of basic-helix-loop-helix (bHLH) repressors.

    PubMed

    Karandikar, Umesh C; Shaffer, Jonathan; Bishop, Clifton P; Bidwai, Ashok P

    2005-06-01

    In Drosophila, protein kinase CK2 regulates a diverse array of developmental processes. One of these is cell-fate specification (neurogenesis) wherein CK2 regulates basic-helix-loop-helix (bHLH) repressors encoded by the Enhancer of Split Complex (E(spl)C). Specifically, CK2 phosphorylates and activates repressor functions of E(spl)M8 during eye development. In this study we describe the interaction of CK2 with an E(spl)-related bHLH repressor, Deadpan (Dpn). Unlike E(spl)-repressors which are expressed in cells destined for a non-neural cell fate, Dpn is expressed in the neuronal cells and is thought to control the activity of proneural genes. Dpn also regulates sex-determination by repressing sxl, the primary gene involved in sex differentiation. We demonstrate that Dpn is weakly phosphorylated by monomeric CK2alpha, whereas it is robustly phosphorylated by the embryo-holoenzyme, suggesting a positive role for CK2beta. The weak phosphorylation by CK2alpha is markedly stimulated by the activator polylysine to levels comparable to those with the holoenzyme. In addition, pull down assays indicate a direct interaction between Dpn and CK2. This is the first demonstration that Dpn is a partner and target of CK2, and raises the possibility that its repressor functions might also be regulated by phosphorylation.

  5. A genome-wide identification and classification of basic helix-loop-helix genes in the jewel wasp, Nasonia vitripennis (Hymenoptera: Pteromalidae).

    PubMed

    Liu, Xiao-Ting; Wang, Yong; Wang, Xu-Hua; Tao, Xia-Fang; Yao, Qin; Chen, Ke-Ping

    2014-10-01

    Basic helix-loop-helix (bHLH) proteins are highly conserved DNA-binding transcription factors of a large superfamily. Animal bHLH proteins play important regulatory roles in various developmental processes such as neurogenesis, myogenesis, heart development, and hematopoiesis. The jewel wasp (Nasonia vitripennis) is a good model organism of hymenoptera insects for studies of developmental and evolutionary genetics. In this study, we identified 48 bHLH genes in the genome of N. vitripennis. According to phylogenetic analysis, based on N. vitripennis bHLH (NvbHLH) motif sequences and structural domain distribution in their full-length protein sequences, the identified NvbHLH genes were classified into 36 bHLH families with 19, 12, 9, 1, 6, and 1 member(s) in groups A, B, C, D, E, and F, respectively. Our classification to the identified NvbHLH family members confirms GenBank annotations for 21 of the 48 NvbHLH proteins and provides useful information for further characterization and annotation of the remaining 27 NvbHLH proteins. Compared to other insect species, N. vitripennis has the lowest number of bHLH family members. No NvbHLH members have been found in the families Net, MyoRa, and PTFa, while all other insect species have at least one member in each of the families. These data constitute a solid basis for further investigations into the functions of bHLH proteins in developmental regulation of N. vitripennis.

  6. HEN1 and HEN2: a subgroup of basic helix-loop-helix genes that are coexpressed in a human neuroblastoma.

    PubMed Central

    Brown, L; Espinosa, R; Le Beau, M M; Siciliano, M J; Baer, R

    1992-01-01

    An important family of regulatory molecules is made up of proteins that possess the DNA-binding and dimerization motif known as the basic helix-loop-helix (bHLH) domain. The bHLH family includes subgroups of closely related proteins that share common functional properties and overlapping patterns of expression (e.g., the MyoD1 and achaete-scute subgroups). In this report we describe HEN1 and HEN2, mammalian genes that encode a distinct subgroup of bHLH proteins. The HEN1 gene was identified on the basis of cross-hybridization with TAL1, a known bHLH gene implicated in T-cell acute lymphoblastic leukemia. In situ fluorescence hybridization was used to localize the human HEN1 gene to chromosome band 1q22. HEN1 and HEN2 are coexpressed in the IMR-32 human neuroblastoma cell line, and they encode highly related proteins of 133 and 135 residues, respectively, that share 98% amino acid identity in their hHLH domains. These data imply that the bHLH protein subgroup encoded by HEN1 and HEN2 may serve important regulatory functions in the developing nervous system. Images PMID:1528853

  7. Transcriptome-wide analysis of basic helix-loop-helix transcription factors in Isatis indigotica and their methyl jasmonate responsive expression profiling.

    PubMed

    Zhang, Lei; Chen, Junfeng; Li, Qing; Chen, Wansheng

    2016-01-15

    Jasmonates (JAs) act as conserved elicitors of plant secondary metabolism. JAs perception triggers extensive transcriptional reprogramming leading to activation of the entire metabolic pathways. The family of basic helix-loop-helix (bHLH) transcription factors (TFs) has essential roles in JA signaling; however, little is known about their roles in regulation of secondary metabolites in Isatis indigotica. In this study, we identified 78 putative IibHLH sequences using the annotation of I. indigotica transcriptome. The identified proteins were characterized based on phylogenetic and conserved motif analyses. Using RNA sequencing, 16 IibHLHs showed significant positive response to MeJA (methyl jasmonate) at 1h, indicating their roles as early signaling events of JA-mediated transcriptional reprogramming. Ten IibHLHs presented co-expression pattern with biosynthetic pathway genes, suggesting their regulating role in secondary metabolite synthesis. These gene expression profiling data indicate that bHLHs can be used as candidate genes in molecular breeding programs to improve metabolite production in I. indigotica.

  8. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior.

    PubMed

    Schweizer, Fabian; Fernández-Calvo, Patricia; Zander, Mark; Diez-Diaz, Monica; Fonseca, Sandra; Glauser, Gaétan; Lewsey, Mathew G; Ecker, Joseph R; Solano, Roberto; Reymond, Philippe

    2013-08-01

    Arabidopsis thaliana plants fend off insect attack by constitutive and inducible production of toxic metabolites, such as glucosinolates (GSs). A triple mutant lacking MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that are known to additively control jasmonate-related defense responses, was shown to have a highly reduced expression of GS biosynthesis genes. The myc2 myc3 myc4 (myc234) triple mutant was almost completely devoid of GS and was extremely susceptible to the generalist herbivore Spodoptera littoralis. On the contrary, the specialist Pieris brassicae was unaffected by the presence of GS and preferred to feed on wild-type plants. In addition, lack of GS in myc234 drastically modified S. littoralis feeding behavior. Surprisingly, the expression of MYB factors known to regulate GS biosynthesis genes was not altered in myc234, suggesting that MYC2/MYC3/MYC4 are necessary for direct transcriptional activation of GS biosynthesis genes. To support this, chromatin immunoprecipitation analysis showed that MYC2 binds directly to the promoter of several GS biosynthesis genes in vivo. Furthermore, yeast two-hybrid and pull-down experiments indicated that MYC2/MYC3/MYC4 interact directly with GS-related MYBs. This specific MYC-MYB interaction plays a crucial role in the regulation of defense secondary metabolite production and underlines the importance of GS in shaping plant interactions with adapted and nonadapted herbivores.

  9. Regulatory switch enforced by basic helix-loop-helix and ACT-domain mediated dimerizations of the maize transcription factor R.

    PubMed

    Kong, Que; Pattanaik, Sitakanta; Feller, Antje; Werkman, Joshua R; Chai, Chenglin; Wang, Yongqin; Grotewold, Erich; Yuan, Ling

    2012-07-24

    The maize R2R3-MYB regulator C1 cooperates with the basic helix-loop-helix (bHLH) factor R to activate the expression of anthocyanin biosynthetic genes coordinately. As is the case for other bHLH factors, R harbors several protein-protein interaction domains. Here we show that not the classical but rather a briefly extended R bHLH region forms homodimers that bind canonical G-box DNA motifs. This bHLH DNA-binding activity is abolished if the C-terminal ACT (aspartokinase, chorismate, and TyrA) domain is licensed to homodimerize. Then the bHLH remains in the monomeric form, allowing it to interact with R-interacting factor 1 (RIF1). In this configuration, the R-RIF1 complex is recruited to the promoters of a subset of anthocyanin biosynthetic genes, such as A1, through the interaction with its MYB partner C1. If, however, the ACT domain remains monomeric, the bHLH region dimerizes and binds to G-boxes present in several anthocyanin genes, such as Bz1. Our results provide a mechanism by which a dimerization domain in a bHLH factor behaves as a switch that permits distinct configurations of a regulatory complex to be tethered to different promoters. Such a combinatorial gene regulatory framework provides one mechanism by which genes lacking obviously conserved cis-regulatory elements are regulated coordinately.

  10. A Genome-Wide Identification and Analysis of the Basic Helix-Loop-Helix Transcription Factors in Brown Planthopper, Nilaparvata lugens

    PubMed Central

    Wan, Pin-Jun; Yuan, San-Yue; Wang, Wei-Xia; Chen, Xu; Lai, Feng-Xiang; Fu, Qiang

    2016-01-01

    The basic helix-loop-helix (bHLH) transcription factors in insects play essential roles in multiple developmental processes including neurogenesis, sterol metabolism, circadian rhythms, organogenesis and formation of olfactory sensory neurons. The identification and function analysis of bHLH family members of the most destructive insect pest of rice, Nilaparvata lugens, may provide novel tools for pest management. Here, a genome-wide survey for bHLH sequences identified 60 bHLH sequences (NlbHLHs) encoded in the draft genome of N. lugens. Phylogenetic analysis of the bHLH domains successfully classified these genes into 40 bHLH families in group A (25), B (14), C (10), D (1), E (8) and F (2). The number of NlbHLHs with introns is higher than many other insect species, and the average intron length is shorter than those of Acyrthosiphon pisum. High number of ortholog families of NlbHLHs was found suggesting functional conversation for these proteins. Compared to other insect species studied, N. lugens has the highest number of bHLH members. Furthermore, gene duplication events of SREBP, Kn(col), Tap, Delilah, Sim, Ato and Crp were found in N. lugens. In addition, a putative full set of NlbHLH genes is defined and compared with another insect species. Thus, our classification of these NlbHLH members provides a platform for further investigations of bHLH protein functions in the regulation of N. lugens, and of insects in general. PMID:27869716

  11. Effects of postweaning administration of conjugated linoleic acid on development of obesity in nescient basic helix-loop-helix 2 knockout mice.

    PubMed

    Kim, Yoo; Kim, Daeyoung; Good, Deborah J; Park, Yeonhwa

    2015-06-03

    Conjugated linoleic acid (CLA) has been reported to prevent body weight gain and fat accumulation in part by improving physical activity in mice. However, the effects of postweaning administration of CLA on the development of obesity later in life have not yet been demonstrated. The current study investigated the role of postweaning CLA treatment on skeletal muscle energy metabolism in genetically induced inactive adult-onset obese model, nescient basic helix-loop-helix 2 knockout (N2KO) mice. Four-week-old male N2KO and wild type mice were fed either control or a CLA-containing diet (0.5%) for 4 weeks, and then CLA was withdrawn and control diet provided to all mice for the following 8 weeks. Postweaning CLA supplementation in wild type animals, but not N2KO mice, may activate AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-δ (PPARδ) as well as promote desensitization of phosphatase and tensin homologue (PTEN) and sensitization of protein kinase B (AKT) at threonine 308 in gastrocnemius skeletal muscle, improving voluntary activity and glucose homeostasis. We suggest that postweaning administration of CLA may in part stimulate the underlying molecular targets involved in muscle energy metabolism to reduce weight gain in normal animals, but not in the genetically induced inactive adult-onset animal model.

  12. Molecular characterization of cold-responsive basic helix-loop-helix transcription factors MabHLHs that interact with MaICE1 in banana fruit.

    PubMed

    Peng, Huan-Huan; Shan, Wei; Kuang, Jian-Fei; Lu, Wang-Jin; Chen, Jian-Ye

    2013-11-01

    Basic helix-loop-helix (bHLH) transcription factors (TFs) are ubiquitously involved in the response of higher plants to various abiotic stresses. However, little is known about bHLH TFs involved in the cold stress response in economically important fruits. Here, five novel full-length bHLH genes, designated as MabHLH1-MabHLH5, were isolated and characterized from banana fruit. Gene expression profiles revealed that MabHLH1/2/4 were induced by cold stress and methyl jasmonate (MeJA) treatment. Transient assays in tobacco BY2 protoplasts showed that MabHLH1/2/4 promoters were activated by cold stress and MeJA treatments. Moreover, protein-protein interaction analysis demonstrated that MabHLH1/2/4 not only physically interacted with each other to form hetero-dimers in the nucleus, but also interacted with an important upstream component of cold signaling MaICE1, with different interaction domains at their N-terminus. These results indicate that banana fruit cold-responsive MabHLHs may form a big protein complex in the nucleus with MaICE1. Taken together, our findings advance our understanding of the possible involvement of bHLH TFs in the regulatory network of ICE-CBF cold signaling pathway.

  13. A divalent ion is crucial in the structure and dominant-negative function of ID proteins, a class of helix-loop-helix transcription regulators.

    PubMed

    Wong, Marie Vivian; Jiang, Sizun; Palasingam, Paaventhan; Kolatkar, Prasanna R

    2012-01-01

    Inhibitors of DNA binding and differentiation (ID) proteins, a dominant-negative group of helix-loop-helix (HLH) transcription regulators, are well-characterized key players in cellular fate determination during development in mammals as well as Drosophila. Although not oncogenes themselves, their upregulation by various oncogenic proteins (such as Ras, Myc) and their inhibitory effects on cell cycle proteins (such as pRb) hint at their possible roles in tumorigenesis. Furthermore, their potency as inhibitors of cellular differentiation, through their heterodimerization with subsequent inactivation of the ubiquitous E proteins, suggest possible novel roles in engineering induced pluripotent stem cells (iPSCs). We present the high-resolution 2.1Å crystal structure of ID2 (HLH domain), coupled with novel biochemical insights in the presence of a divalent ion, possibly calcium (Ca2+), in the loop of ID proteins, which appear to be crucial for the structure and activity of ID proteins. These new insights will pave the way for new rational drug designs, in addition to current synthetic peptide options, against this potent player in tumorigenesis as well as more efficient ways for stem cells reprogramming.

  14. Basic helix-loop-helix transcription factor Bmsage is involved in regulation of fibroin H-chain gene via interaction with SGF1 in Bombyx mori.

    PubMed

    Zhao, Xiao-Ming; Liu, Chun; Li, Qiong-Yan; Hu, Wen-Bo; Zhou, Meng-Ting; Nie, Hong-Yi; Zhang, Yin-Xia; Peng, Zhang-Chuan; Zhao, Ping; Xia, Qing-You

    2014-01-01

    Silk glands are specialized in the synthesis of several secretory proteins. Expression of genes encoding the silk proteins in Bombyx mori silk glands with strict territorial and developmental specificities is regulated by many transcription factors. In this study, we have characterized B. mori sage, which is closely related to sage in the fruitfly Drosophila melanogaster. It is termed Bmsage; it encodes transcription factor Bmsage, which belongs to the Mesp subfamily, containing a basic helix-loop-helix motif. Bmsage transcripts were detected specifically in the silk glands of B. mori larvae through RT-PCR analysis. Immunoblotting analysis confirmed the Bmsage protein existed exclusively in B. mori middle and posterior silk gland cells. Bmsage has a low level of expression in the 4th instar molting stages, which increases gradually in the 5th instar feeding stages and then declines from the wandering to the pupation stages. Quantitative PCR analysis suggested the expression level of Bmsage in a high silk strain was higher compared to a lower silk strain on day 3 of the larval 5th instar. Furthermore, far western blotting and co-immunoprecipitation assays showed the Bmsage protein interacted with the fork head transcription factor silk gland factor 1 (SGF1). An electrophoretic mobility shift assay showed the complex of Bmsage and SGF1 proteins bound to the A and B elements in the promoter of fibroin H-chain gene(fib-H), respectively. Luciferase reporter gene assays confirmed the complex of Bmsage and SGF1 proteins increased the expression of fib-H. Together, these results suggest Bmsage is involved in the regulation of the expression of fib-H by being together with SGF1 in B. mori PSG cells.

  15. The poplar basic helix-loop-helix transcription factor BEE3 - Like gene affects biomass production by enhancing proliferation of xylem cells in poplar.

    PubMed

    Noh, Seol Ah; Choi, Young-Im; Cho, Jin-Seong; Lee, Hyoshin

    2015-06-19

    Brassinosteroids (BRs) play important roles in many aspects of plant growth and development, including regulation of vascular cambium activities and cell elongation. BR-induced BEE3 (brassinosteroid enhanced expression 3) is required for a proper BR response. Here, we identified a poplar (Populus alba × Populus glandulosa) BEE3-like gene, PagBEE3L, encoding a putative basic helix-loop-helix (bHLH)-type transcription factor. Expression of PagBEE3L was induced by brassinolide (BL). Transcripts of PagBEE3L were mainly detected in stems, with the internode having a low level of transcription and the node having a relatively higher level. The function of the PagBEE3L gene was investigated through phenotypic analyses with PagBEE3L-overexpressing (ox) transgenic lines. This work particularly focused on a potential role of PagBEE3L in stem growth and development of polar. The PagBEE3L-ox poplar showed thicker and longer stems than wild-type plants. The xylem cells from the stems of PagBEE3L-ox plants revealed remarkably enhanced proliferation, resulting in an earlier thickening growth than wild-type plants. Therefore, this work suggests that xylem development of poplar is accelerated in PagBEE3L-ox plants and PagBEE3L plays a role in stem growth by increasing the proliferation of xylem cells to promote the initial thickening growth of poplar stems.

  16. The poplar basic helix-loop-helix transcription factor BEE3 – Like gene affects biomass production by enhancing proliferation of xylem cells in poplar

    SciTech Connect

    Noh, Seol Ah Choi, Young-Im Cho, Jin-Seong Lee, Hyoshin

    2015-06-19

    Brassinosteroids (BRs) play important roles in many aspects of plant growth and development, including regulation of vascular cambium activities and cell elongation. BR-induced BEE3 (brassinosteroid enhanced expression 3) is required for a proper BR response. Here, we identified a poplar (Populus alba × Populus glandulosa) BEE3-like gene, PagBEE3L, encoding a putative basic helix-loop-helix (bHLH)-type transcription factor. Expression of PagBEE3L was induced by brassinolide (BL). Transcripts of PagBEE3L were mainly detected in stems, with the internode having a low level of transcription and the node having a relatively higher level. The function of the PagBEE3L gene was investigated through phenotypic analyses with PagBEE3L-overexpressing (ox) transgenic lines. This work particularly focused on a potential role of PagBEE3L in stem growth and development of polar. The PagBEE3L-ox poplar showed thicker and longer stems than wild-type plants. The xylem cells from the stems of PagBEE3L-ox plants revealed remarkably enhanced proliferation, resulting in an earlier thickening growth than wild-type plants. Therefore, this work suggests that xylem development of poplar is accelerated in PagBEE3L-ox plants and PagBEE3L plays a role in stem growth by increasing the proliferation of xylem cells to promote the initial thickening growth of poplar stems. - Highlights: • We identify the BEE3-like gene form hybrid poplar (Populus alba × Populus glandulosa). • We examine effects of overexpression of PagBEE3L on growth in poplar. • We found that 35S:BEE3L transgenic plants showed more rapid growth than wild-type plants. • BEE3L protein plays an important role in the development of plant stem.

  17. Transcription enhancer factor 1 interacts with a basic helix-loop-helix zipper protein, Max, for positive regulation of cardiac alpha-myosin heavy-chain gene expression.

    PubMed Central

    Gupta, M P; Amin, C S; Gupta, M; Hay, N; Zak, R

    1997-01-01

    The M-CAT binding factor transcription enhancer factor 1 (TEF-1) has been implicated in the regulation of several cardiac and skeletal muscle genes. Previously, we identified an E-box-M-CAT hybrid (EM) motif that is responsible for the basal and cyclic AMP-inducible expression of the rat cardiac alpha-myosin heavy chain (alpha-MHC) gene in cardiac myocytes. In this study, we report that two factors, TEF-1 and a basic helix-loop-helix leucine zipper protein, Max, bind to the alpha-MHC EM motif. We also found that Max was a part of the cardiac troponin T M-CAT-TEF-1 complex even when the DNA template did not contain an apparent E-box binding site. In the protein-protein interaction assay, a stable association of Max with TEF-1 was observed when glutathione S-transferase (GST)-TEF-1 or GST-Max was used to pull down in vitro-translated Max or TEF-1, respectively. In addition, Max was coimmunoprecipitated with TEF-1, thus documenting an in vivo TEF-1-Max interaction. In the transient transcription assay, overexpression of either Max or TEF-1 resulted a mild activation of the alpha-MHC-chloramphenicol acetyltransferase (CAT) reporter gene at lower concentrations and repression of this gene at higher concentrations. However, when Max and TEF-1 expression plasmids were transfected together, the repression mediated by a single expression plasmid was alleviated and a three- to fourfold transactivation of the alpha-MHC-CAT reporter gene was observed. This effect was abolished once the EM motif in the promoter-reporter construct was mutated, thus suggesting that the synergistic transactivation function of the TEF-1-Max heterotypic complex is mediated through binding of the complex to the EM motif. These results demonstrate a novel association between Max and TEF-1 and indicate a positive cooperation between these two factors in alpha-MHC gene regulation. PMID:9199327

  18. Genome-wide identification, classification, and functional analysis of the basic helix-loop-helix transcription factors in the cattle, Bos Taurus.

    PubMed

    Li, Fengmei; Liu, Wuyi

    2017-06-01

    The basic helix-loop-helix (bHLH) transcription factors (TFs) form a huge superfamily and play crucial roles in many essential developmental, genetic, and physiological-biochemical processes of eukaryotes. In total, 109 putative bHLH TFs were identified and categorized successfully in the genomic databases of cattle, Bos Taurus, after removing redundant sequences and merging genetic isoforms. Through phylogenetic analyses, 105 proteins among these bHLH TFs were classified into 44 families with 46, 25, 14, 3, 13, and 4 members in the high-order groups A, B, C, D, E, and F, respectively. The remaining 4 bHLH proteins were sorted out as 'orphans.' Next, these 109 putative bHLH proteins identified were further characterized as significantly enriched in 524 significant Gene Ontology (GO) annotations (corrected P value ≤ 0.05) and 21 significantly enriched pathways (corrected P value ≤ 0.05) that had been mapped by the web server KOBAS 2.0. Furthermore, 95 bHLH proteins were further screened and analyzed together with two uncharacterized proteins in the STRING online database to reconstruct the protein-protein interaction network of cattle bHLH TFs. Ultimately, 89 bHLH proteins were fully mapped in a network with 67 biological process, 13 molecular functions, 5 KEGG pathways, 12 PFAM protein domains, and 25 INTERPRO classified protein domains and features. These results provide much useful information and a good reference for further functional investigations and updated researches on cattle bHLH TFs.

  19. Clade IVa Basic Helix-Loop-Helix Transcription Factors Form Part of a Conserved Jasmonate Signaling Circuit for the Regulation of Bioactive Plant Terpenoid Biosynthesis.

    PubMed

    Mertens, Jan; Van Moerkercke, Alex; Vanden Bossche, Robin; Pollier, Jacob; Goossens, Alain

    2016-12-01

    Plants produce many bioactive, specialized metabolites to defend themselves when facing various stress situations. Their biosynthesis is directed by a tightly controlled regulatory circuit that is elicited by phytohormones such as jasmonate (JA). The basic helix-loop-helix (bHLH) transcription factors (TFs) bHLH iridoid synthesis 1 (BIS1) and Triterpene Saponin Activating Regulator (TSAR) 1 and 2, from Catharanthus roseus and Medicago truncatula, respectively, all belong to clade IVa of the bHLH protein family and activate distinct terpenoid pathways, thereby mediating monoterpenoid indole alkaloid (MIA) and triterpene saponin (TS) accumulation, respectively, in these two species. In this study, we report that promoters of the genes encoding the enzymes involved in the specific terpenoid pathway of one of these species can be transactivated by the orthologous bHLH factor from the other species through recognition of the same cis-regulatory elements. Accordingly, ectopic expression of CrBIS1 in M. truncatula hairy roots up-regulated the expression of all genes required for soyasaponin production, resulting in strongly increased levels of soyasaponins in the transformed roots. Likewise, transient expression of MtTSAR1 and MtTSAR2 in C. roseus petals led to up-regulation of the genes involved in the iridoid branch of the MIA pathway. Together, our data illustrate the functional similarity of these JA-inducible TFs and indicate that recruitment of defined cis-regulatory elements constitutes an important aspect of the evolution of conserved regulatory modules for the activation of species-specific terpenoid biosynthesis pathways by common signals such as the JA phytohormones.

  20. The grapevine basic helix-loop-helix (bHLH) transcription factor positively modulates CBF-pathway and confers tolerance to cold-stress in Arabidopsis.

    PubMed

    Xu, Weirong; Zhang, Ningbo; Jiao, Yuntong; Li, Ruimin; Xiao, Dongming; Wang, Zhenping

    2014-08-01

    Basic helix-loop-helix (bHLH)-type transcription factors play diverse roles in plant physiological response and stress-adaptive regulation network. Here, we identified one grapevine bHLH transcription factor from a cold-tolerant accession 'Heilongjiang seedling' of Chinese wild Vitis amurensis (VabHLH1) as a transcriptional activator involved in cold stress. We also compared with its counterpart from a cold-sensitive Vitis vinifera cv. Cabernet Sauvignon (VvbHLH1). These two putative proteins are characterized by the presence of the identically conserved regions of 54 amino acid residues of bHLH signature domain, and shared 99.1% amino acid identity, whereas several stress-related cis-regulatory elements located in both promoter regions differed in types and positions. Expressions of two bHLHs in grapevine leaves were induced by cold stress, but evidently differ between two grapevine genotypes upon cold exposure. Two grapevine bHLH proteins were exclusively localized to the nucleus and exhibited strong transcriptional activation activities in yeast cells. Overexpression of either VabHLH1 or VvbHLH1 transcription factor did not affect the growth and development of transgenic Arabidopsis plants, but enhanced tolerance to cold stress. The improved tolerance in VabHLH1- or VvbHLH1-overexpressing Arabidopsis plants is associated with multiple physiological and biochemical changes that occurred during the time-course cold stress. These most common changes include the evaluated levels of proline, decreased amounts of malondialdehyde and reduced membrane injury as reflected by electrolyte leakage. VabHLH1 and VvbHLH1 displayed overlapping, but not identical, roles in activating the corresponding CBF cold signaling pathway, especially in regulating the expression of CBF3 and RD29A. Our findings demonstrated that two grapevine bHLHs act as positive regulators of the cold stress response, modulating the level of COR gene expression, which in turn confer tolerance to cold

  1. Basic helix-loop-helix transcription factor BcbHLHpol functions as a positive regulator of pollen development in non-heading Chinese cabbage.

    PubMed

    Liu, Tongkun; Li, Ying; Zhang, Changwei; Duan, Weike; Huang, Feiyi; Hou, Xilin

    2014-12-01

    Cytoplasmic male sterility (CMS) is a common trait in higher plants, and several transcription factors regulate pollen development. Previously, we obtained a basic helix-loop-helix transcription factor, BcbHLHpol, via suppression subtractive hybridization in non-heading Chinese cabbage. However, the regulatory function of BcbHLHpol during anther and pollen development remains unclear. In this study, BcbHLHpol was cloned, and its tissue-specific expression profile was analyzed. The results of real-time polymerase chain reaction showed that BcbHLHpol was highly expressed in maintainer buds and that the transcripts of BcbHLHpol significantly decreased in the buds of pol CMS. A virus-induced gene silencing vector that targets BcbHLHpol was constructed and transformed into Brassica campestris plants to further explore the function of BcbHLHpol. Male sterility and short stature were observed in BcbHLHpol-silenced plants. The degradation of tapetal cells was inhibited in BcbHLHpol-silenced plants, and nutrients were insufficiently supplied to the microspore. These phenomena resulted in pollen abortion. This result indicates that BcbHLHpol functions as a positive regulator in pollen development. Yeast two-hybrid and bimolecular fluorescence complementation assays revealed that BcbHLHpol interacted with BcSKP1 in the nucleus. This finding suggests that BcbHLHpol and BcSKP1 are positive coordinating regulators of pollen development. Quantitative real-time PCR indicated that BcbHLHpol and BcSKP1 can be induced at low temperatures. Thus, we propose that BcbHLHpol is necessary for meiosis. This study provides insights into the regulatory functions of the BcbHLHpol network during anther development.

  2. The cold-induced basic helix-loop-helix transcription factor gene MdCIbHLH1 encodes an ICE-like protein in apple

    PubMed Central

    2012-01-01

    Background Plant growth is greatly affected by low temperatures, and the expression of a number of genes is induced by cold stress. Although many genes in the cold signaling pathway have been identified in Arabidopsis, little is known about the transcription factors involved in the cold stress response in apple. Results Here, we show that the apple bHLH (basic helix-loop-helix) gene MdCIbHLH1 (Cold-Induced bHLH1), which encodes an ICE-like protein, was noticeably induced in response to cold stress. The MdCIbHLH1 protein specifically bound to the MYC recognition sequences in the AtCBF3 promoter, and MdCIbHLH1 overexpression enhanced cold tolerance in transgenic Arabidopsis. In addition, the MdCIbHLH1 protein bound to the promoters of MdCBF2 and favorably contributed to cold tolerance in transgenic apple plants by upregulating the expression of MdCBF2 through the CBF (C-repeat-binding factor) pathway. Our findings indicate that MdCIbHLH1 functions in stress tolerance in different species. For example, ectopic MdCIbHLH1 expression conferred enhanced chilling tolerance in transgenic tobacco. Finally, we observed that cold induces the degradation of the MdCIbHLH1 protein in apple and that this degradation was potentially mediated by ubiquitination and sumoylation. Conclusions Based on these findings, MdCIbHLH1 encodes a transcription factor that is important for the cold tolerance response in apple. PMID:22336381

  3. The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD.

    PubMed

    Spiller, Michael P; Kambadur, Ravi; Jeanplong, Ferenc; Thomas, Mark; Martyn, Julie K; Bass, John J; Sharma, Mridula

    2002-10-01

    Myostatin is a negative regulator of myogenesis, and inactivation of myostatin leads to heavy muscle growth. Here we have cloned and characterized the bovine myostatin gene promoter. Alignment of the upstream sequences shows that the myostatin promoter is highly conserved during evolution. Sequence analysis of 1.6 kb of the bovine myostatin gene upstream region revealed that it contains 10 E-box motifs (E1 to E10), arranged in three clusters, and a single MEF2 site. Deletion and mutation analysis of the myostatin gene promoter showed that out of three important E boxes (E3, E4, and E6) of the proximal cluster, E6 plays a significant role in the regulation of a reporter gene in C(2)C(12) cells. We also demonstrate by band shift and chromatin immunoprecipitation assay that the E6 E-box motif binds to MyoD in vitro and in vivo. Furthermore, cotransfection experiments indicate that among the myogenic regulatory factors, MyoD preferentially up-regulates myostatin promoter activity. Since MyoD expression varies during the myoblast cell cycle, we analyzed the myostatin promoter activity in synchronized myoblasts and quiescent "reserve" cells. Our results suggest that myostatin promoter activity is relatively higher during the G(1) phase of the cell cycle, when MyoD expression levels are maximal. However, in the reserve cells, which lack MyoD expression, a significant reduction in the myostatin promoter activity is observed. Taken together, these results suggest that the myostatin gene is a downstream target gene of MyoD. Since the myostatin gene is implicated in controlling G(1)-to-S progression of myoblasts, MyoD could be triggering myoblast withdrawal from the cell cycle by regulating myostatin gene expression.

  4. Molecular characterization of the basic helix-loop-helix (bHLH) genes that are differentially expressed and induced by iron deficiency in Populus.

    PubMed

    Huang, Danqiong; Dai, Wenhao

    2015-07-01

    Two Populus bHLH genes ( PtFIT and PtIRO ) were cloned and characterized. The iron deficiency tolerance may be regulated by the PtFIT -dependent response pathway in Populus. Five orthologs of eight Arabidopsis basic helix-loop-helix (bHLH) genes responding to iron deficiency in Populus were analyzed. Open reading frame (ORF) regions of two bHLH genes (PtFIT and PtIRO) were isolated from the iron deficiency tolerant (PtG) and susceptible (PtY) genotypes of Populus tremula 'Erecta'. Gene sequence analyses showed that each of the two genes was identical in PtG and PtY. Phylogenetic analysis revealed that PtFIT was clustered with the bHLH genes regulating iron deficiency responses, while PtIRO was clustered with another group of the bHLH genes regulating iron deficiency responses in a FIT-independent pathway. Tissue-specific expression analysis indicated that PtFIT was only detected in the root among all tested tissues, while PtIRO was rarely detected in all tested tissues. Real-time PCR showed that PtFIT was up-regulated in roots under the iron-deficient condition. A higher level of PtFIT transcripts was detected in PtG than in PtY. Pearson Correlation Coefficient calculations indicated a strong positive correlation (r = 0.94) between PtFIT and PtIRT1 in PtG. It suggests that the iron deficiency tolerance of PtG may be regulated by the PtFIT-dependent response pathway. The PtFIT-transgenic poplar plants had an increased expression level of PtFIT and PtIRT1 responding to iron deficiency. One PtFIT-transgenic line (TL2) showed enhanced iron deficiency tolerance with higher chlorophyll content and Chl a/b ratio under iron deficiency than the control plants, indicating that PtFIT is involved in iron deficiency response in Populus. The results would provide useful information to understand iron deficiency response mechanisms in woody species.

  5. Caught Red-Handed: Rc Encodes a Basic Helix-Loop-Helix Protein Conditioning Red Pericarp in RiceW⃞ 111111111111111111111111 100000000000000000000001 100001111000000001000001 100010000100000010100001 100100000010000010100001 101000000001000100010001 101000000001000100010001 101000000001001111111001 101000000001001000001001 100100000010001000001001 100010000100010000000101 100001111000010000000101 100000000000000000000001 111111111111111111111111

    PubMed Central

    Sweeney, Megan T.; Thomson, Michael J.; Pfeil, Bernard E.; McCouch, Susan

    2006-01-01

    Rc is a domestication-related gene required for red pericarp in rice (Oryza sativa). The red grain color is ubiquitous among the wild ancestors of O. sativa, in which it is closely associated with seed shattering and dormancy. Rc encodes a basic helix-loop-helix (bHLH) protein that was fine-mapped to an 18.5-kb region on rice chromosome 7 using a cross between Oryza rufipogon (red pericarp) and O. sativa cv Jefferson (white pericarp). Sequencing of the alleles from both mapping parents as well as from two independent genetic stocks of Rc revealed that the dominant red allele differed from the recessive white allele by a 14-bp deletion within exon 6 that knocked out the bHLH domain of the protein. A premature stop codon was identified in the second mutant stock that had a light red pericarp. RT-PCR experiments confirmed that the Rc gene was expressed in both red- and white-grained rice but that a shortened transcript was present in white varieties. Phylogenetic analysis, supported by comparative mapping in rice and maize (Zea mays), showed that Rc, a positive regulator of proanthocyanidin, is orthologous with INTENSIFIER1, a negative regulator of anthocyanin production in maize, and is not in the same clade as rice bHLH anthocyanin regulators. PMID:16399804

  6. Antagonistic regulation of growth and immunity by the Arabidopsis basic helix-loop-helix transcription factor homolog of brassinosteroid enhanced expression2 interacting with increased leaf inclination1 binding bHLH1.

    PubMed

    Malinovsky, Frederikke Gro; Batoux, Martine; Schwessinger, Benjamin; Youn, Ji Hyun; Stransfeld, Lena; Win, Joe; Kim, Seong-Ki; Zipfel, Cyril

    2014-03-01

    Plants need to finely balance resources allocated to growth and immunity to achieve optimal fitness. A tradeoff between pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and brassinosteroid (BR)-mediated growth was recently reported, but more information about the underlying mechanisms is needed. Here, we identify the basic helix-loop-helix (bHLH) transcription factor homolog of brassinosteroid enhanced expression2 interacting with IBH1 (HBI1) as a negative regulator of PTI signaling in Arabidopsis (Arabidopsis thaliana). HBI1 expression is down-regulated in response to different PAMPs. HBI1 overexpression leads to reduced PAMP-triggered responses. This inhibition correlates with reduced steady-state expression of immune marker genes, leading to increased susceptibility to the bacterium Pseudomonas syringae. Overexpression of the HBI1-related bHLHs brassinosteroid enhanced expression2 (BEE2) and cryptochrome-interacting bHLH (CIB1) partially inhibits immunity, indicating that BEE2 and CIB1 may act redundantly with HBI1. In contrast to its expression pattern upon PAMP treatment, HBI1 expression is enhanced by BR treatment. Also, HBI1-overexpressing plants are hyperresponsive to BR and more resistant to the BR biosynthetic inhibitor brassinazole. HBI1 is nucleus localized, and a mutation in a conserved leucine residue within the first helix of the protein interaction domain impairs its function in BR signaling. Interestingly, HBI1 interacts with several inhibitory atypical bHLHs, which likely keep HBI1 under negative control. Hence, HBI1 is a positive regulator of BR-triggered responses, and the negative effect of PTI is likely due to the antagonism between BR and PTI signaling. This study identifies a novel component involved in the complex tradeoff between innate immunity and BR-regulated growth.

  7. Inhibitor of differentiation 4 (ID4) acts as an inhibitor of ID-1, -2 and -3 and promotes basic helix loop helix (bHLH) E47 DNA binding and transcriptional activity.

    PubMed

    Sharma, Pankaj; Chinaranagari, Swathi; Chaudhary, Jaideep

    2015-05-01

    The four known ID proteins (ID1-4, Inhibitor of Differentiation) share a homologous helix loop helix (HLH) domain and act as dominant negative regulators of basic-HLH transcription factors. ID proteins also interact with many non-bHLH proteins in complex networks. The expression of ID proteins is increasingly observed in many cancers. Whereas ID-1, ID-2 and ID-3, are generally considered as tumor promoters, ID4 on the contrary has emerged as a tumor suppressor. In this study we demonstrate that ID4 heterodimerizes with ID-1, -2 and -3 and promote bHLH DNA binding, essentially acting as an inhibitor of inhibitors of differentiation proteins. Interaction of ID4 was observed with ID1, ID2 and ID3 that was dependent on intact HLH domain of ID4. Interaction with bHLH protein E47 required almost 3 fold higher concentration of ID4 as compared to ID1. Furthermore, inhibition of E47 DNA binding by ID1 was restored by ID4 in an EMSA binding assay. ID4 and ID1 were also colocalized in prostate cancer cell line LNCaP. The alpha helix forming alanine stretch N-terminal, unique to HLH ID4 domain was required for optimum interaction. Ectopic expression of ID4 in DU145 prostate cancer line promoted E47 dependent expression of CDKNI p21. Thus counteracting the biological activities of ID-1, -2 and -3 by forming inactive heterodimers appears to be a novel mechanism of action of ID4. These results could have far reaching consequences in developing strategies to target ID proteins for cancer therapy and understanding biologically relevant ID-interactions.

  8. The Neurogenic Basic Helix-Loop-Helix Transcription Factor NeuroD6 Enhances Mitochondrial Biogenesis and Bioenergetics to Confer Tolerance of Neuronal PC12-NeuroD6 Cells to the Mitochondrial Stressor Rotenone

    PubMed Central

    Baxter, Kristin Kathleen; Uittenbogaard, Martine; Chiaramello, Anne

    2012-01-01

    The fundamental question of how and which neuronal specific transcription factors tailor mitochondrial bioenergetics to the need of developing neuronal cells has remained largely unexplored. In this study, we report that the neurogenic basic helix-loop-helix transcription factor NeuroD6 possesses mitochondrial biogenic properties by amplifying the mitochondrial DNA content and TFAM expression levels, a key regulator for mitochondrial biogenesis. NeuroD6-mediated increase in mitochondrial biogenesis in the neuronal progenitor-like PC12-NEUROD6 cells is concomitant with enhanced mitochondrial bioenergetic functions, including increased expression levels of specific subunits of respiratory complexes of the electron transport chain, elevated mitochondrial membrane potential and ATP levels produced by oxidative phosphorylation. Thus, NeuroD6 augments the bioenergetic capacity of PC12-NEUROD6 cells to generate an energetic reserve, which confers tolerance to the mitochondrial stressor, rotenone. We found that NeuroD6 induces an adaptive bioenergetic response throughout rotenone treatment involving maintenance of the mitochondrial membrane potential and ATP levels in conjunction with preservation of the actin network. In conclusion, our results support the concept that NeuroD6 plays an integrative role in regulating and coordinating the onset of neuronal differentiation with acquisition of adequate mitochondrial mass and energetic capacity to ensure energy demanding events, such as cytoskeletal remodeling, plasmalemmal expansion, and growth cone formation. PMID:22814253

  9. Ectopic expression of a basic helix-loop-helix gene transactivates parallel pathways of proanthocyanidin biosynthesis. structure, expression analysis, and genetic control of leucoanthocyanidin 4-reductase and anthocyanidin reductase genes in Lotus corniculatus.

    PubMed

    Paolocci, Francesco; Robbins, Mark P; Madeo, Laura; Arcioni, Sergio; Martens, Stefan; Damiani, Francesco

    2007-01-01

    Proanthocyanidins (PAs) are plant secondary metabolites and are composed primarily of catechin and epicatechin units in higher plant species. Due to the ability of PAs to bind reversibly with plant proteins to improve digestion and reduce bloat, engineering this pathway in leaves is a major goal for forage breeders. Here, we report the cloning and expression analysis of anthocyanidin reductase (ANR) and leucoanthocyanidin 4-reductase (LAR), two genes encoding enzymes committed to epicatechin and catechin biosynthesis, respectively, in Lotus corniculatus. We show the presence of two LAR gene families (LAR1 and LAR2) and that the steady-state levels of ANR and LAR1 genes correlate with the levels of PAs in leaves of wild-type and transgenic plants. Interestingly, ANR and LAR1, but not LAR2, genes produced active proteins following heterologous expression in Escherichia coli and are affected by the same basic helix-loop-helix transcription factor that promotes PA accumulation in cells of palisade and spongy mesophyll. This study provides direct evidence that the same subclass of transcription factors can mediate the expression of the structural genes of both branches of PA biosynthesis.

  10. Specificity for the hairy/enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the bHLH domain and suggests two separable modes of transcriptional repression.

    PubMed

    Dawson, S R; Turner, D L; Weintraub, H; Parkhurst, S M

    1995-12-01

    The Hairy/Enhancer of split/Deadpan family of basic helix-loop-helix (bHLH) proteins function as transcriptional repressors. We have examined the mechanisms of repression used by the Hairy and E(SPL) proteins by assaying the antagonism between wild-type or altered Hairy/E(SPL) and Scute bHLH proteins during sex determination in Drosophila melanogaster. Domain swapping and mutagenesis of the Hairy and E(SPL) proteins show that three evolutionarily conserved domains are required for their function: the bHLH, Orange, and WRPW domains. However, the suppression of Scute activity by Hairy does not require the WRPW domain. We show that the Orange domain is an important functional domain that confers specificity among members of the Hairy/E(SPL) family. In addition, we show that a Xenopus Hairy homology conserves not only Hairy's structure but also its biological activity in our assays. We propose that transcriptional repression by the Hairy/E(SPL) family of bHLH proteins involves two separable mechanisms: repression of specific transcriptional activators, such as Scute, through the bHLH and Orange domains and repression of other activators via interaction of the C-terminal WRPW motif with corepressors, such as the Groucho protein.

  11. Ectopic Expression of a Basic Helix-Loop-Helix Gene Transactivates Parallel Pathways of Proanthocyanidin Biosynthesis. Structure, Expression Analysis, and Genetic Control of Leucoanthocyanidin 4-Reductase and Anthocyanidin Reductase Genes in Lotus corniculatus1[W

    PubMed Central

    Paolocci, Francesco; Robbins, Mark P.; Madeo, Laura; Arcioni, Sergio; Martens, Stefan; Damiani, Francesco

    2007-01-01

    Proanthocyanidins (PAs) are plant secondary metabolites and are composed primarily of catechin and epicatechin units in higher plant species. Due to the ability of PAs to bind reversibly with plant proteins to improve digestion and reduce bloat, engineering this pathway in leaves is a major goal for forage breeders. Here, we report the cloning and expression analysis of anthocyanidin reductase (ANR) and leucoanthocyanidin 4-reductase (LAR), two genes encoding enzymes committed to epicatechin and catechin biosynthesis, respectively, in Lotus corniculatus. We show the presence of two LAR gene families (LAR1 and LAR2) and that the steady-state levels of ANR and LAR1 genes correlate with the levels of PAs in leaves of wild-type and transgenic plants. Interestingly, ANR and LAR1, but not LAR2, genes produced active proteins following heterologous expression in Escherichia coli and are affected by the same basic helix-loop-helix transcription factor that promotes PA accumulation in cells of palisade and spongy mesophyll. This study provides direct evidence that the same subclass of transcription factors can mediate the expression of the structural genes of both branches of PA biosynthesis. PMID:17098849

  12. The neurogenic basic helix-loop-helix transcription factor NeuroD6 enhances mitochondrial biogenesis and bioenergetics to confer tolerance of neuronal PC12-NeuroD6 cells to the mitochondrial stressor rotenone

    SciTech Connect

    Baxter, Kristin Kathleen; Uittenbogaard, Martine; Chiaramello, Anne

    2012-10-15

    The fundamental question of how and which neuronal specific transcription factors tailor mitochondrial biogenesis and bioenergetics to the need of developing neuronal cells has remained largely unexplored. In this study, we report that the neurogenic basic helix-loop-helix transcription factor NeuroD6 possesses mitochondrial biogenic properties by amplifying the mitochondrial DNA content and TFAM expression levels, a key regulator for mitochondrial biogenesis. NeuroD6-mediated increase in mitochondrial biogenesis in the neuronal progenitor-like PC12-NEUROD6 cells is concomitant with enhanced mitochondrial bioenergetic functions, including increased expression levels of specific subunits of respiratory complexes of the electron transport chain, elevated mitochondrial membrane potential and ATP levels produced by oxidative phosphorylation. Thus, NeuroD6 augments the bioenergetic capacity of PC12-NEUROD6 cells to generate an energetic reserve, which confers tolerance to the mitochondrial stressor, rotenone. We found that NeuroD6 induces an adaptive bioenergetic response throughout rotenone treatment involving maintenance of the mitochondrial membrane potential and ATP levels in conjunction with preservation of the actin network. In conclusion, our results support the concept that NeuroD6 plays an integrative role in regulating and coordinating the onset of neuronal differentiation with acquisition of adequate mitochondrial mass and energetic capacity to ensure energy demanding events, such as cytoskeletal remodeling, plasmalemmal expansion, and growth cone formation. -- Highlights: Black-Right-Pointing-Pointer NeuroD6 induces mitochondrial biogenesis in neuroprogenitor-like cells. Black-Right-Pointing-Pointer NeuroD6 augments the bioenergetic reserve of the neuronal PC12-NeuroD6 cells. Black-Right-Pointing-Pointer NeuroD6 increases the mitochondrial membrane potential and ATP levels. Black-Right-Pointing-Pointer NeuroD6 confers tolerance to rotenone via an adaptive

  13. Microarray analysis of genes with impaired insulin regulation in the skeletal muscle of type 2 diabetic patients indicates the involvement of basic helix-loop-helix domain-containing, class B, 2 protein (BHLHB2).

    PubMed

    Rome, S; Meugnier, E; Lecomte, V; Berbe, V; Besson, J; Cerutti, C; Pesenti, S; Granjon, A; Disse, E; Clement, K; Lefai, E; Laville, M; Vidal, H

    2009-09-01

    One of the major processes by which insulin exerts its multiple biological actions is through gene expression regulation. Thus, the identification of transcription factors affected by insulin in target tissues represents an important challenge. The aim of the present study was to gain a greater insight into this issue through the identification of transcription factor genes with insulin-regulated expression in human skeletal muscle. Using microarray analysis, we defined the sets of genes modulated during a 3 h hyperinsulinaemic-euglycaemic clamp (2 mU min(-1) kg(-1)) in the skeletal muscle of insulin-sensitive control volunteers and in moderately obese insulin-resistant type 2 diabetic patients. Of the 1,529 and 1,499 genes regulated during the clamp in control and diabetic volunteers, respectively, we identified 30 transcription factors with impaired insulin-regulation in type 2 diabetic patients. Analysis of the promoters of the genes encoding these factors revealed a possible contribution of the transcriptional repressor basic helix-loop-helix domain-containing, class B, 2 protein (BHLHB2), insulin regulation of which is strongly altered in the muscle of diabetic patients. Gene ontology analysis of BHLHB2 target genes, identified after BHLHB2 overexpression in human primary myotubes, demonstrated that about 10% of the genes regulated in vivo during hyperinsulinaemia are potentially under the control of this repressor. The data also suggested that BHLHB2 is situated at the crossroads of a complex transcriptional network that is able to modulate major metabolic and biological pathways in skeletal muscle, including the regulation of a cluster of genes involved in muscle development and contraction. We have identified BHLHB2 as a potential novel mediator of insulin transcriptional action in human skeletal muscle.

  14. Dynamic antagonism between phytochromes and PIF family basic helix-loop-helix factors induces selective reciprocal responses to light and shade in a rapidly responsive transcriptional network in Arabidopsis.

    PubMed

    Leivar, Pablo; Tepperman, James M; Cohn, Megan M; Monte, Elena; Al-Sady, Bassem; Erickson, Erika; Quail, Peter H

    2012-04-01

    Plants respond to shade-modulated light signals via phytochrome (phy)-induced adaptive changes, termed shade avoidance. To examine the roles of Phytochrome-Interacting basic helix-loop-helix Factors, PIF1, 3, 4, and 5, in relaying such signals to the transcriptional network, we compared the shade-responsive transcriptome profiles of wild-type and quadruple pif (pifq) mutants. We identify a subset of genes, enriched in transcription factor-encoding loci, that respond rapidly to shade, in a PIF-dependent manner, and contain promoter G-box motifs, known to bind PIFs. These genes are potential direct targets of phy-PIF signaling that regulate the primary downstream transcriptional circuitry. A second subset of PIF-dependent, early response genes, lacking G-box motifs, are enriched for auxin-responsive loci, and are thus potentially indirect targets of phy-PIF signaling, mediating the rapid cell expansion induced by shade. Comparing deetiolation- and shade-responsive transcriptomes identifies another subset of G-box-containing genes that reciprocally display rapid repression and induction in response to light and shade signals. These data define a core set of transcriptional and hormonal processes that appear to be dynamically poised to react rapidly to light-environment changes via perturbations in the mutually antagonistic actions of the phys and PIFs. Comparing the responsiveness of the pifq and triple pif mutants to light and shade confirms that the PIFs act with overlapping redundancy on seedling morphogenesis and transcriptional regulation but that each PIF contributes differentially to these responses.

  15. A Basic Helix-Loop-Helix Transcription Factor, PtrbHLH, of Poncirus trifoliata Confers Cold Tolerance and Modulates Peroxidase-Mediated Scavenging of Hydrogen Peroxide1[C][W

    PubMed Central

    Huang, Xiao-San; Wang, Wei; Zhang, Qian; Liu, Ji-Hong

    2013-01-01

    The basic helix-loop-helix (bHLH) transcription factors are involved in a variety of physiological processes. However, plant bHLHs functioning in cold tolerance and the underlying mechanisms remain poorly understood. Here, we report the identification and functional characterization of PtrbHLH isolated from trifoliate orange (Poncirus trifoliata). The transcript levels of PtrbHLH were up-regulated under various abiotic stresses, particularly cold. PtrbHLH was localized in the nucleus with transactivation activity. Overexpression of PtrbHLH in tobacco (Nicotiana tabacum) or lemon (Citrus limon) conferred enhanced tolerance to cold under chilling or freezing temperatures, whereas down-regulation of PtrbHLH in trifoliate orange by RNA interference (RNAi) resulted in elevated cold sensitivity. A range of stress-responsive genes was up-regulated or down-regulated in the transgenic lemon. Of special note, several peroxidase (POD) genes were induced after cold treatment. Compared with the wild type, POD activity was increased in the overexpression plants but decreased in the RNAi plants, which was inversely correlated with the hydrogen peroxide (H2O2) levels in the tested lines. Treatment of the transgenic tobacco plants with POD inhibitors elevated the H2O2 levels and greatly compromised their cold tolerance, while exogenous replenishment of POD enhanced cold tolerance of the RNAi line. In addition, transgenic tobacco and lemon plants were more tolerant to oxidative stresses. Yeast one-hybrid assay and transient expression analysis demonstrated that PtrbHLH could bind to the E-box elements in the promoter region of a POD gene. Taken together, these results demonstrate that PtrbHLH plays an important role in cold tolerance, at least in part, by positively regulating POD-mediated reactive oxygen species removal. PMID:23624854

  16. Backbone dynamics of a symmetric calmodulin dimer in complex with the calmodulin-binding domain of the basic-helix-loop-helix transcription factor SEF2-1/E2-2: a highly dynamic complex.

    PubMed

    Larsson, Göran; Schleucher, Jürgen; Onions, Jacqueline; Hermann, Stefan; Grundström, Thomas; Wijmenga, Sybren S

    2005-08-01

    Calmodulin (CaM) interacts specifically as a dimer with some dimeric basic-Helix-Loop-Helix (bHLH) transcription factors via a novel high affinity binding mode. Here we report a study of the backbone dynamics by (15)N-spin relaxation on the CaM dimer in complex with a dimeric peptide that mimics the CaM binding region of the bHLH transcription factor SEF2-1. The relaxation data were measured at multiple magnetic fields, and analyzed in a model-free manner using in-house written software designed to detect nanosecond internal motion. Besides picosecond motions, all residues also experience internal motion with an effective correlation time of approximately 2.5 ns with squared order parameter (S(2)) of approximately 0.75. Hydrodynamic calculations suggest that this can be attributed to motions of the N- and C-terminal domains of the CaM dimer in the complex. Moreover, residues with significant exchange broadening are found. They are clustered in the CaM:SEF2-1mp binding interface, the CaM:CaM dimer interface, and in the flexible helix connecting the CaM N- and C-terminal domains, and have similar exchange times (approximately 50 micros), suggesting a cooperative mechanism probably caused by protein:protein interactions. The dynamic features presented here support the conclusion that the conformationally heterogeneous bHLH mimicking peptide trapped inside the CaM dimer exchanges between different binding sites on both nanosecond and microsecond timescales. Nature has thus found a way to specifically recognize a relatively ill-fitting target. This novel mode of target-specific binding, which neither belongs to lock-and-key nor induced-fit binding, is characterized by dimerization and continuous exchange between multiple flexible binding alternatives.

  17. Salvador-Warts-Hippo pathway in a developmental checkpoint monitoring Helix-Loop-Helix proteins

    PubMed Central

    Wang, Lan-Hsin; Baker, Nicholas E.

    2014-01-01

    The E-proteins and Id-proteins are, respectively, the positive and negative heterodimer partners for the basic-helix-loop-helix protein family, and as such contribute to a remarkably large number of cell fate decisions. E-proteins and Id-proteins also function to inhibit or promote cell proliferation and cancer. Using a genetic modifier screen in Drosophila, we show that the Id-protein Extramacrochaetae enables growth by suppressing activation of the Salvador-Warts-Hippo pathway of tumor suppressors, activation that requires transcriptional activation of the expanded gene by the E-protein Daughterless. Daughterless protein binds to an intronic enhancer in the expanded gene, both activating the SWH pathway independently of the transmembrane protein Crumbs, and bypassing the negative feedback regulation that targets the same expanded enhancer. Thus the Salvador-Warts-Hippo pathway has a cell-autonomous function to prevent inappropriate differentiation due to transcription factor imbalance, and monitors the intrinsic developmental status of progenitor cells, distinct from any responses to cell-cell interactions. PMID:25579975

  18. Myc/Max and other helix-loop-helix/leucine zipper proteins bend DNA toward the minor groove.

    PubMed Central

    Fisher, D E; Parent, L A; Sharp, P A

    1992-01-01

    A distinct family of DNA-binding proteins is characterized by the presence of adjacent "basic," helix-loop-helix, and leucine zipper domains. Members of this family include the Myc oncoproteins, their binding partner Max, and the mammalian transcription factors USF, TFE3, and TFEB. Consistent with their homologous domains, these proteins bind to DNA containing the same core hexanucleotide sequence CACGTG. Analysis of the conformation of DNA in protein-DNA complexes has been undertaken with a circular permutation assay. Large mobility anomalies were detected for all basic/helix-loop-helix/leucine zipper proteins tested, suggesting that each protein induced a similar degree of bending. Phasing analysis revealed that basic/helix-loop-helix/leucine zipper proteins orient the DNA bend toward the minor groove. The presence of in-phase spacing between adjacent binding sites for this family of proteins in the immunoglobulin heavy-chain enhancer suggests the possible formation of an unusual triple-bended structure and may have implications for the activities of Myc. Images PMID:1465398

  19. E-proteins and ID-proteins: Helix-loop-helix partners in development and disease

    PubMed Central

    Wang, Lan-Hsin; Baker, Nicholas E.

    2015-01-01

    The basic Helix-Loop-Helix (bHLH) proteins represent a well-known class of transcriptional regulators. Many bHLH proteins act as heterodimers with members of a class of ubiquitous partners, the E-proteins. A widely-expressed class of inhibitory heterodimer partners- the Inhibitor of DNA-binding (ID) proteins- also exists. Genetic and molecular analyses in humans and in knockout mice implicate E-proteins and ID-proteins in a wide variety of diseases, belying the notion that they are non-specific partner proteins. Here, we explore relationships of E-proteins and ID-proteins to a variety of disease processes and highlight gaps in knowledge of disease mechanisms. PMID:26555048

  20. Overexpression of a citrus basic helix-loop-helix transcription factor (CubHLH1), which is homologous to Arabidopsis activation-tagged bri1 suppressor 1 interacting factor genes, modulates carotenoid metabolism in transgenic tomato.

    PubMed

    Endo, Tomoko; Fujii, Hiroshi; Sugiyama, Aiko; Nakano, Michiharu; Nakajima, Naoko; Ikoma, Yoshinori; Omura, Mitsuo; Shimada, Takehiko

    2016-02-01

    To explore the transcription factors associated with carotenoid metabolism in citrus fruit, one transcription factor (CubHLH1) was selected through microarray screening in Satsuma mandarin (Citrus unshiu Marc.) fruit, which was treated with exogenous ethylene or gibberellin (GA), accelerating or retarding carotenoid accumulation in peel, respectively. The amino acid sequence of CubHLH1 has homology to Arabidopsis activation-tagged bri1 suppressor 1 (ATBS1) interacting factor (AIF), which is functionally characterized as a negative regulator of the brassinolide (BR) signalling pathway. Yeast two-hybrid analysis revealed that protein for CubHLH1 could interact with Arabidopsis and tomato ATBS1. Overexpression of CubHLH1 caused a dwarf phenotype in transgenic tomato (Solanum lycopersicum L.), suggesting that CubHLH1 has a similar function to Arabidopsis AIF. In the transgenic tomato fruit at ripening stage, the lycopene content was reduced along with the changes in carotenoid biosynthetic gene expression. The abscisic acid (ABA) content of all the transgenic tomato fruit was higher than that of the wild type. These results implied that CubHLH1 is considered to have a similar function to Arabidopsis AIFs and might be directly involved in carotenoid metabolism in mature citrus fruit.

  1. The expression of proprotein convertase PACE4 is highly regulated by Hash-2 in placenta: possible role of placenta-specific basic helix-loop-helix transcription factor, human achaete-scute homologue-2.

    PubMed

    Koide, Shizuyo; Yoshida, Ichiro; Tsuji, Akihiko; Matsuda, Yoshiko

    2003-09-01

    PACE4 is a member of the mammalian subtilisin-like proprotein convertase (SPC) family, which contribute to the activation of transforming growth factor (TGF) beta family proteins. We previously reported that PACE4 is highly expressed in syncytiotrophoblasts of human placenta [Tsuji et al. (2003) BIOCHIM: Biophys. Acta 1645, 95-104]. In this study, the regulatory mechanism for PACE4 expression in placenta was analyzed using a human placental choriocarcinoma cell line, BeWo cells. Promoter analysis indicated that an E-box cluster (E4-E9) in the 5'-flanking region of the PACE4 gene acts as a negative regulatory element. The binding of human achaete-scute homologue 2 (Hash-2) to the E-box cluster was shown by gel mobility-shift assay. The overexpression of Hash-2 caused a marked decrease in PACE4 gene expression. When BeWo cells were grown under low oxygen (2%) conditions, the expression of Hash-2 decreased, while that of PACE4 increased. In both cases, other SPCs, such as furin, PC5/6, and PC7/8, were not affected. Further, PACE4 expression was found to be developmentally regulated in rat placenta. By in situ hybridization, Mash-2 (mammalian achaete-scute homologue 2) mRNA was found to be expressed in the spongiotrophoblast layer where PACE4 was not expressed. In contrast, the PACE4 mRNA was expressed mainly in the labyrinthine layer where Mash-2 was not detected. These results suggest that PACE4 expression is down-regulated by Hash-2/Mash-2 in both human and rat placenta and that many bioactive proteins might be regulated by PACE4 activity.

  2. Suppression of mammary epithelial cell differentiation by the helix-loop-helix protein Id-1

    SciTech Connect

    Desprez, P.; Hara, E.; Bissell, M.J.

    1995-06-01

    Cell proliferation and differentiation are precisely coordinated during the development and maturation of the mammary gland, and this balance invariably is disrupted during carcinogenesis. Little is known about the cell-specific transcription factors that regulate these processes in the mammary gland. The mouse mammary epithelial cell line SCp2 grows well under standard culture conditions but arrests growth, forms alveolus-like structures, and expresses {beta}-casein, a differentiation marker, 4 to 5 days after exposure to basement membrane and lactogenic hormones (differentiation signals). The authors show that this differentiation entails a marked decline in the expression of Id-1, a helix-loop-helix (HLH) protein that inactivates basic HLH transcription factors in other cell types. SCp2 cells stably transfected with an Id-1 expression vector grew more rapidly than control cells under standard conditions, but in response to differentiation signals, they lost three-dimensional organization, invaded the basement membrane, and then resumed growth. SCp2 cells expressing an Id-1 antisense vector grew more slowly than controls; in response to differentiation signals, they remained stably growth arrested and fully differentiated, as did control cells. The authors suggest that Id-1 renders cells refractory to differentiation signals and receptive to growth signals by inactivating one or more basic HLH proteins that coordinate growth and differentiation in the mammary epithelium. 53 refs., 6 figs.

  3. The helix-loop-helix Id-1 inhibits PSA expression in prostate cancer cells.

    PubMed

    Zielinski, Anne J; Fong, Sylvia; Allison, Juanita; Kawahara, Misako; Coppe, Jean-Philippe; Feiler, Heidi; Lee, Nancy M; Desprez, Pierre-Yves

    2010-05-15

    The inhibitor of basic helix-loop-helix transcription factors, Id-1, is an important gene whose expression increases during prostate cancer progression and that upregulates proliferation, migration and invasion. We used microarray analysis to identify the downstream genes whose transcriptional expression is modulated by Id-1 protein. We compared gene expression in control LNCaP cells and Id-1-transduced LNCaP cells, which become significantly more aggressive after Id-1 overexpression, thus mimicking the high levels of Id-1 detected in metastatic cell lines. We used the Affy HTA U133A Expression Arrays with 45,000 probe sets representing more than 39,000 transcripts. We found that one of the most significantly downregulated genes on Id-1 expression was kallikrein 3 [also called prostate specific antigen (PSA)], the most commonly used biomarker of prostate cancer. Here, we show that the reduction in PSA mRNA and protein expression associated with high-grade prostate cancers, which generally express high levels of Id-1, could be the consequence of Id-1 overexpression.

  4. Transcriptional regulation of the Sex-lethal gene by helix-loop-helix proteins.

    PubMed

    Hoshijima, K; Kohyama, A; Watakabe, I; Inoue, K; Sakamoto, H; Shimura, Y

    1995-09-11

    Somatic sex determination in Drosophila depends on the expression of Sex-lethal (Sxl), whose level is determined by the relative number of X chromosomes and sets of autosomes (X:A ratio). The first step in regulation of Sxl expression is transcriptional control from its early promoter and several genes encoding transcription factors of the helix-loop-helix (HLH) family such as daughterless (da), sisterless-b (sis-b), deadpan (dpn) and extramacrochaetae (emc) have been implicated. By the use of transfection assays and in vitro binding experiments, here we show that da/sis-b heterodimers bind several sites on the Sxl early promoter with different affinities and consequently tune the level of active transcription from this promoter. Interestingly, our data indicate that repression by the dpn product of da/sis-b dependent activation results from specific binding of dpn protein to a unique site within the promoter. This contrasts with the mode of emc repression, which inhibits the formation of the da/sis-b heterodimers. These results reveal the molecular mechanisms by which Sxl gene transcription is positively or negatively regulated to control somatic sex determination.

  5. Suppression of Chondrogenesis by Id Helix-Loop-Helix Proteins in Murine Embryonic Orofacial Tissue

    PubMed Central

    Mukhopadhyay, Partha; Rezzoug, Francine; Webb, Cynthia L.; Pisano, M. Michele; Greene, Robert M.

    2009-01-01

    Inhibitors of differentiation (Id) proteins are helix-loop-helix (HLH) transcription factors lacking a DNA binding domain. Id proteins modulate cell proliferation, apoptosis, and differentiation in embryonic/fetal tissue. Perturbation of any of these processes in cells of the developing orofacial region results in orofacial anomalies. Chondrogenesis, a process integral to normal orofacial ontogenesis, is known to be modulated, in part, by Id proteins. In the present study, the mRNA and protein expression patterns of Id1, Id2, Id3 and Id4 were examined in developing murine orofacial tissue in vivo, as well as in murine embryonic maxillary mesenchymal cells in vitro. The functional role of Ids during chondrogenesis was also explored in vitro. Results reveal that cells derived from developing murine orofacial tissue: (1) express Id1, Id2, Id3 and Id4 mRNAs and proteins on each of gestational days 12-14, (2) express all four Id proteins in a developmentally regulated manner, (3) undergo chondrogenesis and express genes encoding various chondrogenic marker proteins (e.g. Runx2, Type X collagen, Sox9) when cultured under micromass conditions, and (4) can have their chondrogenic potential regulated via alteration of Id protein function through overexpression of a basic HLH factor. In summary, results from the current report reveal for the first time, the expression of all four Id proteins in cells derived from developing murine orofacial tissue, and demonstrate a functional role for the Ids in regulating the ability of these cells to undergo chondrogenesis. PMID:19349107

  6. Preferred sequences for DNA recognition by the TAL1 helix-loop-helix proteins

    SciTech Connect

    Hai-Ling Hsu; Lan Huang; Julia Tsou Tsan

    1994-02-01

    Tumor-specific activation of the TAL1 gene is the most common genetic alteration seen in patients with T-cell acute lymphoblastic leukemia. The TAL1 gene products contain the basic helix-loop-helix (bHLH) domain, a protein dimerization and DNA-binding motif common to several known transcription factors. A binding-site selection procedure has now been used to evaluate the DNA recognition properties of TAL1. These studies demonstrate that TAL1 polypeptides do not have intrinsic DNA-binding activity, presumably because of their inability to form bHLH homodimers. However, TAL1 readily interacts with any of the known class A bHLH proteins (E12, E47, E2-2, and HEB) to form heterodimers that bind DNA in a sequence-specific manner. The TAL1 heterodimers preferentially recognize a subset of E-box elements (CANNTG) that can be represented by the consensus sequence AACAGATGGT. This consensus is composed of half-sites for recognition by the participating class A bHLH polypeptide (AACAG) and the TAL1 polypeptide (ATGGT). TAL1 heterodimers with DNA-binding activity are readily detected in nuclear extracts of Jurkat, a leukemic cell line derived from a patient with T-cell acute lymphoblastic leukemia. Hence, TAL1 is likely to bind and regulate the transcription of a unique subset of subordinate target genes, some of which may mediate the malignant function of TAL1 during T-cell leukemogenesis. 48 refs., 10 figs.

  7. Characterization of a helix-loop-helix (EF hand) motif of silver hake parvalbumin isoform B.

    PubMed Central

    Revett, S. P.; King, G.; Shabanowitz, J.; Hunt, D. F.; Hartman, K. L.; Laue, T. M.; Nelson, D. J.

    1997-01-01

    Parvalbumins are a class of calcium-binding proteins characterized by the presence of several helix-loop-helix (EF-hand) motifs. It is suspected that these proteins evolved via intragene duplication from a single EF-hand. Silver hake parvalbumin (SHPV) consists of three EF-type helix-loop-helix regions, two of which have the ability to bind calcium. The three helix-loop-helix motifs are designated AB, CD, and EF, respectively. In this study, native silver hake parvalbumin isoform B (SHPV-B) has been sequenced by mass spectrometry. The sequence indicates that this parvalbumin is a beta-lineage parvalbumin. SHPV-B was cleaved into two major fragments, consisting of the ABCD and EF regions of the native protein. The 33-amino acid EF fragment (residues 76-108), containing one of the calcium ion binding sites in native SHPV-B, has been isolated and studied for its structural characteristics, ability to bind divalent and trivalent cations, and for its propensity to undergo metal ion-induced self-association. The presence of Ca2+ does not induce significant secondary structure in the EF fragment. However, NMR and CD results indicate significant secondary structure promotion in the EF fragment in the presence of the higher charge-density trivalent cations. Sedimentation equilibrium analysis results show that the EF fragment exists in a monomer-dimer equilibrium when complexed with La3+. PMID:9385642

  8. Characterization of a helix-loop-helix (EF hand) motif of silver hake parvalbumin isoform B.

    PubMed

    Revett, S P; King, G; Shabanowitz, J; Hunt, D F; Hartman, K L; Laue, T M; Nelson, D J

    1997-11-01

    Parvalbumins are a class of calcium-binding proteins characterized by the presence of several helix-loop-helix (EF-hand) motifs. It is suspected that these proteins evolved via intragene duplication from a single EF-hand. Silver hake parvalbumin (SHPV) consists of three EF-type helix-loop-helix regions, two of which have the ability to bind calcium. The three helix-loop-helix motifs are designated AB, CD, and EF, respectively. In this study, native silver hake parvalbumin isoform B (SHPV-B) has been sequenced by mass spectrometry. The sequence indicates that this parvalbumin is a beta-lineage parvalbumin. SHPV-B was cleaved into two major fragments, consisting of the ABCD and EF regions of the native protein. The 33-amino acid EF fragment (residues 76-108), containing one of the calcium ion binding sites in native SHPV-B, has been isolated and studied for its structural characteristics, ability to bind divalent and trivalent cations, and for its propensity to undergo metal ion-induced self-association. The presence of Ca2+ does not induce significant secondary structure in the EF fragment. However, NMR and CD results indicate significant secondary structure promotion in the EF fragment in the presence of the higher charge-density trivalent cations. Sedimentation equilibrium analysis results show that the EF fragment exists in a monomer-dimer equilibrium when complexed with La3+.

  9. Molecular consequences of Ds insertion into and excision from the helix-loop-helix domain of the maize R gene.

    PubMed Central

    Liu, Y; Wang, L; Kermicle, J L; Wessler, S R

    1998-01-01

    The R and B proteins of maize are required to activate the transcription of several genes in the anthocyanin biosynthetic pathway. To determine the structural requirements for R function in vivo, we are exploiting its sensitive mutant phenotype to identify transposon (Ds) insertions that disrupt critical domains. Here we report that the ability of the r-m1 allele to activate transcription of at least three structural genes is reduced to only 2% of wild-type activity because of a 396-bp Ds element in helix 2 of the basic helix-loop-helix (bHLH) motif. Residual activity likely results from the synthesis of a mutant protein that contains seven additional amino acids in helix 2. This protein is encoded by a transcript where most of the Ds sequence has been spliced from pre-mRNA. Two phenotypic classes of stable derivative alleles, very pale and extremely pale, condition <1% of wild-type activity as a result of the presence of two- and three-amino-acid insertions, respectively, at the site of Ds excision. Localization of these mutant proteins to the nucleus indicates a requirement for an intact bHLH domain after nuclear import. The fact that deletion of the entire bHLH domain has only a minor effect on R protein activity while these small insertions virtually abolish activity suggests that deletion of the bHLH domain may bypass a requirement for bHLH-mediated protein-protein interactions in the activation of the structural genes in the anthocyanin biosynthetic pathway. PMID:9832539

  10. BuD, a helix-loop-helix DNA-binding domain for genome modification.

    PubMed

    Stella, Stefano; Molina, Rafael; López-Méndez, Blanca; Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza; Campos-Olivas, Ramon; Duchateau, Phillippe; Montoya, Guillermo

    2014-07-01

    DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein-DNA interactions in protein scaffolds is key to providing `toolkits' for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix-loop-helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.

  11. Macrocyclization and labeling of helix-loop-helix peptide with intramolecular bis-thioether linkage.

    PubMed

    Nishihara, Toshio; Kitada, Hidekazu; Fujiwara, Daisuke; Fujii, Ikuo

    2016-11-04

    Conformationally constrained peptides have been developed as an inhibitor for protein-protein interactions (PPIs), and we have de novo designed cyclized helix-loop-helix (cHLH) peptide with a disulfide bond consisting of 40 amino acids to generate molecular-targeting peptides. However, synthesis of long peptides has sometimes resulted in low yield according to the respective amino acid sequences. Here we developed a method for efficient synthesis and labeling for cHLH peptides. First, we synthesized two peptide fragments and connected them by the copper-mediated alkyne and azide cycloaddition (CuAAC) reaction. Cyclization was performed by bis-thioether linkage using 1,3-dibromomethyl-5-propargyloxybenzene, and subsequently, the cHLH peptide was labeled with an azide-labeled probe. Finally, we designed and synthesized a peptide inhibitor for the p53-HDM2 interaction using a structure-guided design and successfully labeled it with a fluorescent probe or a functional peptide, respectively, by click chemistry. This macrocyclization and labeling method for cHLH peptide would facilitate the discovery of de novo bioactive ligands and therapeutic leads. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 415-421, 2016. © 2016 Wiley Periodicals, Inc.

  12. Id Helix-Loop-Helix Proteins Antagonize Pax Transcription Factor Activity by Inhibiting DNA Binding

    PubMed Central

    Roberts, E. Claire; Deed, Richard W.; Inoue, Toshiaki; Norton, John D.; Sharrocks, Andrew D.

    2001-01-01

    The Id subfamily of helix-loop-helix (HLH) proteins plays a fundamental role in the regulation of cellular proliferation and differentiation. The major mechanism by which Id proteins are thought to inhibit differentiation is through interaction with other HLH proteins and inhibition of their DNA-binding activity. However, Id proteins have also been shown to interact with other proteins involved in regulating cellular proliferation and differentiation, suggesting a more widespread regulatory function. In this study we demonstrate functional interactions between Id proteins and members of the Pax-2/-5/-8 subfamily of paired-domain transcription factors. Members of the Pax transcription factor family have key functions in regulating several developmental processes exemplified by B lymphopoiesis, in which Pax-5 plays an essential role. Id proteins bind to Pax proteins in vitro and in vivo. Binding occurs through the paired DNA-binding domain of the Pax proteins and results in the disruption of DNA-bound complexes containing Pax-2, Pax-5, and Pax-8. In vivo, Id proteins modulate the transcriptional activity mediated by Pax-5 complexes on the B-cell-specific mb-1 promoter. Our results therefore demonstrate a novel facet of Id function in regulating cellular differentiation by functionally antagonizing the action of members of the Pax transcription factor family. PMID:11134340

  13. Two single nucleotide polymorphisms in the human nescient helix-loop-helix 2 (NHLH2) gene reduce mRNA stability and DNA binding.

    PubMed

    Al Rayyan, Numan; Wankhade, Umesh D; Bush, Korie; Good, Deborah J

    2013-01-01

    Nescient helix-loop-helix-2 (NHLH2) is a basic helix-loop-helix transcription factor, which has been implicated, using mouse knockouts, in adult body weight regulation and fertility. A scan of the known single nucleotide polymorphisms (SNPs) in the NHLH2 gene revealed one in the 3' untranslated region (3'UTR), which lies within an AUUUA RNA stability motif. A second SNP is nonsynonymous within the coding region of NHLH2, and was found in a genome-wide association study for obesity. Both of these SNPs were examined for their effect on NLHL2 by creating mouse mimics and examining mRNA stability, and protein function in mouse hypothalamic cell lines. The 3'UTR SNP causes increased instability and, when the SNP-containing Nhlh2 3'UTR is attached to luciferase mRNA, reduced protein levels in cells. The nonsynonymous SNP at position 83 in the protein changes an alanine residue, conserved in NHLH2 orthologs through the Drosophila sp. to a proline residue. This change affects migration of the protein on an SDS-PAGE gel, and appears to alter secondary structure of the protein, as predicted using in silico methods. These results provide functional information on two rare human SNPs in the NHLH2 gene. One of these has been linked to human obese phenotypes, while the other is present in a relatively high proportion of individuals. Given their effects on NHLH2 protein levels, both SNPs deserve further analysis in whether they are causative and/or additive for human body weight and fertility phenotypes. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Disruption of alpha beta but not of gamma delta T cell development by overexpression of the helix-loop-helix protein Id3 in committed T cell progenitors.

    PubMed Central

    Blom, B; Heemskerk, M H; Verschuren, M C; van Dongen, J J; Stegmann, A P; Bakker, A Q; Couwenberg, F; Res, P C; Spits, H

    1999-01-01

    Enforced expression of Id3, which has the capacity to inhibit many basic helix-loop-helix (bHLH) transcription factors, in human CD34(+) hematopoietic progenitor cells that have not undergone T cell receptor (TCR) gene rearrangements inhibits development of the transduced cells into TCRalpha beta and gamma delta cells in a fetal thymic organ culture (FTOC). Here we document that overexpression of Id3, in progenitors that have initiated TCR gene rearrangements (pre-T cells), inhibits development into TCRalpha beta but not into TCRgamma delta T cells. Furthermore, Id3 impedes expression of recombination activating genes and downregulates pre-Talpha mRNA. These observations suggest possible mechanisms by which Id3 overexpression can differentially affect development of pre-T cells into TCRalpha beta and gamma delta cells. We also observed that cell surface CD4(-)CD8(-)CD3(-) cells with rearranged TCR genes developed from Id3-transduced but not from control-transduced pre-T cells in an FTOC. These cells had properties of both natural killer (NK) and pre-T cells. These findings suggest that bHLH factors are required to control T cell development after the T/NK developmental checkpoint. PMID:10329625

  15. The basic helix-loop-helix transcription factor family in the sacred lotus, Nelumbo nucifera

    USDA-ARS?s Scientific Manuscript database

    Nelumbo nucifera (Sacred Lotus) is a basal eudicot with exceptional physiological and metabolic properties including seed longevity, adaptations for an aquatic habit, and floral thermiogenesis. It also occupies a unique position in the phylogeny of land plants and can be a useful species for studies...

  16. Seven Genes of the Enhancer of Split Complex of Drosophila Melanogaster Encode Helix-Loop-Helix Proteins

    PubMed Central

    Knust, E.; Schrons, H.; Grawe, F.; Campos-Ortega, J. A.

    1992-01-01

    Enhancer of split [E(spl)] is one of the neurogenic loci of Drosophila and, as such, is required for normal segregation of neural and epidermal cell progenitors. Genetic observations indicate that the E(spl) locus is in fact a gene complex comprising a cluster of related genes and that other genes of the region are also required for normal early neurogenesis. Three of the genes of the complex were known to encode helix-loop-helix (HLH) proteins and to be transcribed in nearly identical patterns. Here, we show that four other genes in the vicinity also encode HLH proteins and, during neuroblast segregation, three of them are expressed in the same pattern. We show by germ-line transformation that these three genes are also necessary to allow epidermal development of the neuroectodermal cells. PMID:1427040

  17. Enhanced complexity and catalytic efficiency in the hydrolysis of phosphate diesters by rationally designed helix-loop-helix motifs.

    PubMed

    Razkin, Jesus; Lindgren, Johan; Nilsson, Helena; Baltzer, Lars

    2008-08-11

    HJ1, a 42-residue peptide that folds into a helix-loop-helix motif and dimerizes to form a four-helix bundle, successfully catalyzes the cleavage of "early stage" DNA model substrates in an aqueous solution at pH 7.0, with a rate enhancement in the hydrolysis of heptyl 4-nitrophenyl phosphate of over three orders of magnitude over that of the imidazole-catalyzed reaction, k(2)(HJ1)/k(2)(Im) = 3135. The second-order rate constant, k(2)(HJ1) was determined to be 1.58x10(-4) M(-1) s(-1). The catalyst successfully assembles residues that in a single elementary reaction step are capable of general-acid and general-base catalysis as well as transition state stabilization and proximity effects. The reactivity achieved with the HJ1 polypeptide, rationally designed to catalyze the hydrolysis of phosphodiesters, is based on two histidine residues flanked by four arginines and two adjacent tyrosine residues, all located on the surface of a helix-loop-helix motif. The introduction of Tyr residues close to the catalytic site improves efficiency, in the cleavage of activated aryl alkyl phosphates as well as less activated dialkyl phosphates. HJ1 is also effective in the cleavage of an RNA-mimic substrate, uridine-3'-2,2,2-trichloroethyl phosphate (leaving group pK(a) = 12.3) with a second-order rate constant of 8.23x10(-4) M(-1) s(-1) in aqueous solution at pH 7.0, some 500 times faster than the reaction catalyzed by imidazole, k(2)(HJ1)/k(2)(Im) = 496.

  18. Protein conformational changes studied by diffusion NMR spectroscopy: Application to helix-loop-helix calcium binding proteins

    PubMed Central

    Weljie, Aalim M.; Yamniuk, Aaron P.; Yoshino, Hidenori; Izumi, Yoshinobu; Vogel, Hans J.

    2003-01-01

    Pulsed-field gradient (PFG) diffusion NMR spectroscopy studies were conducted with several helix-loop-helix regulatory Ca2+-binding proteins to characterize the conformational changes associated with Ca2+-saturation and/or binding targets. The calmodulin (CaM) system was used as a basis for evaluation, with similar hydrodynamic radii (Rh) obtained for apo- and Ca2+-CaM, consistent with previously reported Rh data. In addition, conformational changes associated with CaM binding to target peptides from myosin light chain kinase (MLCK), phosphodiesterase (PDE), and simian immunodeficiency virus (SIV) were accurately determined compared with small-angle X-ray scattering results. Both sets of data demonstrate the well-established collapse of the extended Ca2+-CaM molecule into a globular complex upon peptide binding. The Rh of CaM complexes with target peptides from CaM-dependent protein kinase I (CaMKI) and an N-terminal portion of the SIV peptide (SIV-N), as well as the anticancer drug cisplatin were also determined. The CaMKI complex demonstrates a collapse analogous to that observed for MLCK, PDE, and SIV, while the SIV-N shows only a partial collapse. Interestingly, the covalent CaM–cisplatin complex shows a near complete collapse, not expected from previous studies. The method was extended to related calcium binding proteins to show that the Rh of calcium and integrin binding protein (CIB), calbrain, and the calcium-binding region from soybean calcium-dependent protein kinase (CDPK) decrease on Ca2+-binding to various extents. Heteronuclear NMR spectroscopy suggests that for CIB and calbrain this is likely because of shifting the equilibrium from unfolded to folded conformations, with calbrain forming a dimer structure. These results demonstrate the utility of PFG-diffusion NMR to rapidly and accurately screen for molecular size changes on protein–ligand and protein–protein interactions for this class of proteins. PMID:12538886

  19. Functional Isoforms of IκB Kinase α (IKKα) Lacking Leucine Zipper and Helix-Loop-Helix Domains Reveal that IKKα and IKKβ Have Different Activation Requirements

    PubMed Central

    McKenzie, Fergus R.; Connelly, Margery A.; Balzarano, Darlene; Müller, Jurgen R.; Geleziunas, Romas; Marcu, Kenneth B.

    2000-01-01

    The activity of the NF-κB family of transcription factors is regulated principally by phosphorylation and subsequent degradation of their inhibitory IκB subunits. Site-specific serine phosphorylation of IκBs by two IκB kinases (IKKα [also known as CHUK] and IKKβ) targets them for proteolysis. IKKα and -β have a unique structure, with an amino-terminal serine-threonine kinase catalytic domain and carboxy-proximal helix-loop-helix (HLH) and leucine zipper-like (LZip) amphipathic α-helical domains. Here, we describe the properties of two novel cellular isoforms of IKKα: IKKα-ΔH and IKKα-ΔLH. IKKα-ΔH and IKKα-ΔLH are differentially spliced isoforms of the IKKα mRNA lacking its HLH domain and both its LZip and HLH domains, respectively. IKKα is the major RNA species in most murine cells and tissues, except for activated T lymphocytes and the brain, where the alternatively spliced isoforms predominate. Remarkably, IKKα-ΔH and IKKα-ΔLH, like IKKα, respond to tumor necrosis factor alpha stimulation to potentiate NF-κB activation in HEK293 cells. A mutant, catalytically inactive form of IKKα blocked IKKα-, IKKα-ΔH-, and IKKα-ΔLH-mediated NF-κB activation. Akin to IKKα, its carboxy-terminally truncated isoforms associated with the upstream activator NIK (NF-κB-inducing kinase). In contrast to IKKα, IKKα-ΔLH failed to associate with either itself, IKKα, IKKβ, or NEMO-IKKγ-IKKAP1, while IKKα-ΔH complexed with IKKβ and IKKα but not with NEMO. Interestingly, each IKKα isoform rescued HEK293 cells from the inhibitory effects of a dominant-negative NEMO mutant, while IKKα could not. IKKα-ΔCm, a recombinant mutant of IKKα structurally akin to IKKα-ΔLH, was equally functional in these assays, but in sharp contrast, IKKβ-ΔCm, a structurally analogous mutant of IKKβ, was inactive. Our results demonstrate that the functional roles of seemingly analogous domains in IKKα and IKKβ need not be equivalent and can also exhibit

  20. The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer.

    PubMed

    Gregor, P D; Sawadogo, M; Roeder, R G

    1990-10-01

    We isolated full-length cDNAs encoding the 43-kD form of human upstream stimulatory factor (USF), a cellular factor required for efficient transcription of the adenovirus major late (AdML) promoter in vitro. Sequence analysis showed USF to be a member of the c-myc-related family of DNA-binding proteins. Using proteins translated in vitro, we identified a DNA-binding domain near the carboxyl terminus, which includes both a helix-loop-helix motif and a leucine repeat. We show that USF interacts with its target DNA as a dimer. The leucine repeat is required for efficient DNA binding of the intact protein and for interactions between full-length and truncated USF proteins. Interestingly, it is not required for DNA binding of the isolated helix-loop-helix domain. The structure of different cDNA clones indicates that USF RNA is differentially spliced, and alternative exon usage may regulate the levels of functional USF protein.

  1. TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia.

    PubMed Central

    Xia, Y; Brown, L; Yang, C Y; Tsan, J T; Siciliano, M J; Espinosa, R; Le Beau, M M; Baer, R J

    1991-01-01

    Tumor-specific alteration of the TAL1 gene occurs in almost 25% of patients with T-cell acute lymphoblastic leukemia (T-ALL). We now report the identification of TAL2, a distinct gene that was isolated on the basis of its sequence homology with TAL1. The TAL2 gene is located 33 kilobase pairs from the chromosome 9 breakpoint of t(7;9)(q34;q32), a recurring translocation specifically associated with T-ALL. As a consequence of t(7;9)(q34;q32), TAL2 is juxtaposed with sequences from the T-cell receptor beta-chain gene on chromosome 7. TAL2 sequences are actively transcribed in SUP-T3, a T-ALL cell line that harbors the t(7;9)(q34;q32). The TAL2 gene product includes a helix-loop-helix protein dimerization and DNA binding domain that is especially homologous to those encoded by the TAL1 and LYL1 protooncogenes. Hence, TAL2, TAL1, and LYL1 constitute a discrete subgroup of helix-loop-helix proteins, each of which can potentially contribute to the development of T-ALL. Images PMID:1763056

  2. TAL2, a helix-loop-helix gene activated by the (7; 9)(q34; q32) translocation in human T-cell leukemia

    SciTech Connect

    Ying Xia; Brown, L.; Yang, C.Y.; Tsan, J.T.; Baer, R.J. ); Siciliano, M.J. ); Espinosa, R. III; Le Beau, M.M. )

    1991-12-15

    Tumor-specific alteration of the TAL1 gene occurs in almost 25% of patients with T-cell acute lymphoblastic leukemia (T-ALL). The authors now report the identification of TAL2, a distinct gene that was isolated on the basis of its sequence homology with TAL1. The TAL2 gene is located 33 kilobase pairs from the chromosome 9 breakpoint of t(7;9)(q34;q32), a recurring translocation specifically associated with T-ALL. As a consequence of t(7;9)(q34;q32), TAL2 is juxtaposed with sequences from the T-cell receptor {beta}-chain gene on chromosome 7. TAL2 sequences are actively transcribed in SUP-T3, a T-ALL cell line that harbors the t(7;9)(q34;q32). The TAL2 gene product includes a helix-loop-helix protein dimerization and DNA binding domain that is especially homologous to those encoded by the TAL1 and LYL1 protooncogenes. Hence, TAL2, TAL1, and LYL1 constitute a discrete subgroup of helix-loop-helix proteins, each of which can potentially contribute to the development of T-ALL.

  3. Overexpression of OrbHLH001, a putative helix-loop-helix transcription factor, causes increased expression of AKT1 and maintains ionic balance under salt stress in rice.

    PubMed

    Chen, Yuan; Li, Fei; Ma, Yan; Chong, Kang; Xu, Yunyuan

    2013-01-01

    The basic helix-loop-helix family of proteins, which function as transcription factors, have been intensively studied in plants and animals. However, the molecular mechanism of these factors contributing to stress tolerance is unknown. Here, we report on the overexpression of OrbHLH001 from Dongxiang wild rice (Oryza rufipogon) conferring salt tolerance in transgenic rice plants. The expression of OrbHLH001 was tissue specific, mainly in phloem tissues throughout the plant. Ion assay with the scanning ion-selective electrode technique showed that NaCl stress has a greater influence on Na(+) efflux and K(+) influx in OrbHLH001-overexpressed plants than the wild type. OrbHLH001 protein can induce the expression of OsAKT1 to regulate the Na(+)/K(+) ratio in OrbHLH001-overexpressed plants by specifically binding to an E-box motif in the promoter region of OsAKT1. The mechanism may have potential use in rice molecular breeding. Copyright © 2012 Elsevier GmbH. All rights reserved.

  4. deadpan, an essential pan-neural gene in Drosophila, encodes a helix-loop-helix protein similar to the hairy gene product.

    PubMed

    Bier, E; Vaessin, H; Younger-Shepherd, S; Jan, L Y; Jan, Y N

    1992-11-01

    Neural precursor cells in Drosophila acquire their identity early during their formation. In an attempt to determine whether all neural precursors share a set of genetic machinery, perhaps to control properties of differentiation common to all neurons, we used the enhancer-trap method to identify several genes (pan-neural genes) that are expressed in all neurons and/or their precursors. One of the pan-neural genes is deadpan, which encodes a helix-loop-helix protein closely related to the product of the segmentation gene hairy. The function of deadpan is essential for viability and is likely to be involved in the functional rather than the morphological differentiation of neurons.

  5. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response.

    PubMed

    Colangelo, Elizabeth P; Guerinot, Mary Lou

    2004-12-01

    Regulation of iron uptake is critical for plant survival. Although the activities responsible for reduction and transport of iron at the plant root surface have been described, the genes controlling these activities are largely unknown. We report the identification of the essential gene Fe-deficiency Induced Transcription Factor 1 (FIT1), which encodes a putative transcription factor that regulates iron uptake responses in Arabidopsis thaliana. Like the Fe(III) chelate reductase FRO2 and high affinity Fe(II) transporter IRT1, FIT1 mRNA is detected in the outer cell layers of the root and accumulates in response to iron deficiency. fit1 mutant plants are chlorotic and die as seedlings but can be rescued by the addition of supplemental iron, pointing to a defect in iron uptake. fit1 mutant plants accumulate less iron than wild-type plants in root and shoot tissues. Microarray analysis shows that expression of many (72 of 179) iron-regulated genes is dependent on FIT1. We demonstrate that FIT1 regulates FRO2 at the level of mRNA accumulation and IRT1 at the level of protein accumulation. We propose a new model for iron uptake in Arabidopsis where FRO2 and IRT1 are differentially regulated by FIT1.

  6. Helix-loop-helix transcription factors E12 and E47 are not essential for skeletal or cardiac myogenesis, erythropoiesis, chondrogenesis, or neurogenesis.

    PubMed Central

    Zhuang, Y; Kim, C G; Bartelmez, S; Cheng, P; Groudine, M; Weintraub, H

    1992-01-01

    E12 and E47 are two non-tissue-specific helix-loop-helix (HLH) transcription factors encoded by the E2A gene. Previous studies suggested that they are involved in regulation of differentiation in many tissue types including muscle, blood, and nerve through direct heterodimer interactions with tissue-specific HLH proteins. To gain further genetic insight into the functions of E12 and E47 during cell differentiation, we mutated both copies of the E2A gene in mouse embryonic stem (ES) cells and then tested the effect on differentiation in vitro. We find that the ES cells lacking functional E12 and E47 are capable of differentiating into both skeletal and cardiac muscle, erythrocytes, neurons, and cartilage that the same extent as wild-type cells. These results indicate that the E2A gene is not essential for differentiation of these cell types and suggest that redundant genes may control these developmental pathways. Images PMID:1465450

  7. Evidence supporting the existence of a NUPR1-like family of helix-loop-helix chromatin proteins related to, yet distinct from, AT hook-containing HMG proteins.

    PubMed

    Urrutia, Raul; Velez, Gabriel; Lin, Marisa; Lomberk, Gwen; Neira, Jose Luis; Iovanna, Juan

    2014-08-01

    NUPR1, a small chromatin protein, plays a critical role in cancer development, progression, and resistance to therapy. Here, using a combination of structural bioinformatics and molecular modeling methods, we report several novel findings that enhance our understanding of the biochemical function of this protein. We find that NUPR1 has been conserved throughout evolution, and over time it has undergone duplications and transpositions to form other transcriptional regulators. Using threading, homology-based molecular modeling, molecular mechanics calculations, and molecular dynamics simulations, we generated structural models for four of these proteins: NUPR1a, NUPR1b, NUPR2, and the NUPR-like domain of GTF2-I. Comparative analyses of these models combined with extensive linear motif identification reveal that these four proteins, though similar in their propensities for folding, differ in size, surface changes, and sites amenable for posttranslational modification. Lastly, taking NUPR1a as the paradigm for this family, we built models of a NUPR-DNA complex. Additional structural comparisons revealed that NUPR1 defines a new family of small-groove-binding proteins that share structural features with, yet are distinct from, helix-loop-helix AT-hook-containing HMG proteins. These models and inferences should lead to a better understanding of the function of this group of chromatin proteins, which play a critical role in the development of human malignant diseases.

  8. Expression of the helix-loop-helix protein inhibitor of DNA binding-1 (ID-1) is activated by all-trans retinoic acid in normal human keratinocytes

    SciTech Connect

    Villano, C.M.; White, L.A. . E-mail: lawhite@aesop.rutgers.edu

    2006-08-01

    The ID (inhibitor of differentiation or DNA binding) helix-loop-helix proteins are important mediators of cellular differentiation and proliferation in a variety of cell types through regulation of gene expression. Overexpression of the ID proteins in normal human keratinocytes results in extension of culture lifespan, indicating that these proteins are important for epidermal differentiation. Our hypothesis is that the ID proteins are targets of the retinoic acid signaling pathway in keratinocytes. Retinoids, vitamin A analogues, are powerful regulators of cell growth and differentiation and are widely used in the prevention and treatment of a variety of cancers in humans. Furthermore, retinoic acid is necessary for the maintenance of epithelial differentiation and demonstrates an inhibitory action on skin carcinogenesis. We examined the effect of all-trans retinoic acid on expression of ID-1, -2, -3, and -4 in normal human keratinocytes and found that exposure of these cells to all-trans retinoic acid causes an increase in both ID-1 and ID-3 gene expression. Furthermore, our data show that this increase is mediated by increased transcription involving several cis-acting elements in the distal portion of the promoter, including a CREB-binding site, an Egr1 element, and an YY1 site. These data demonstrate that the ID proteins are direct targets of the retinoic acid signaling pathway. Given the importance of the ID proteins to epidermal differentiation, these results suggest that IDs may be mediating some of the effects of all-trans retinoic acid in normal human keratinocytes.

  9. Conservation of Three-Dimensional Helix-Loop-Helix Structure through the Vertebrate Lineage Reopens the Cold Case of Gonadotropin-Releasing Hormone-Associated Peptide.

    PubMed

    Pérez Sirkin, Daniela I; Lafont, Anne-Gaëlle; Kamech, Nédia; Somoza, Gustavo M; Vissio, Paula G; Dufour, Sylvie

    2017-01-01

    GnRH-associated peptide (GAP) is the C-terminal portion of the gonadotropin-releasing hormone (GnRH) preprohormone. Although it was reported in mammals that GAP may act as a prolactin-inhibiting factor and can be co-secreted with GnRH into the hypophyseal portal blood, GAP has been practically out of the research circuit for about 20 years. Comparative studies highlighted the low conservation of GAP primary amino acid sequences among vertebrates, contributing to consider that this peptide only participates in the folding or carrying process of GnRH. Considering that the three-dimensional (3D) structure of a protein may define its function, the aim of this study was to evaluate if GAP sequences and 3D structures are conserved in the vertebrate lineage. GAP sequences from various vertebrates were retrieved from databases. Analysis of primary amino acid sequence identity and similarity, molecular phylogeny, and prediction of 3D structures were performed. Amino acid sequence comparison and phylogeny analyses confirmed the large variation of GAP sequences throughout vertebrate radiation. In contrast, prediction of the 3D structure revealed a striking conservation of the 3D structure of GAP1 (GAP associated with the hypophysiotropic type 1 GnRH), despite low amino acid sequence conservation. This GAP1 peptide presented a typical helix-loop-helix (HLH) structure in all the vertebrate species analyzed. This HLH structure could also be predicted for GAP2 in some but not all vertebrate species and in none of the GAP3 analyzed. These results allowed us to infer that selective pressures have maintained GAP1 HLH structure throughout the vertebrate lineage. The conservation of the HLH motif, known to confer biological activity to various proteins, suggests that GAP1 peptides may exert some hypophysiotropic biological functions across vertebrate radiation.

  10. Reovirus FAST Proteins Drive Pore Formation and Syncytiogenesis Using a Novel Helix-Loop-Helix Fusion-Inducing Lipid Packing Sensor.

    PubMed

    Read, Jolene; Clancy, Eileen K; Sarker, Muzaddid; de Antueno, Roberto; Langelaan, David N; Parmar, Hiren B; Shin, Kyungsoo; Rainey, Jan K; Duncan, Roy

    2015-06-01

    Pore formation is the most energy-demanding step during virus-induced membrane fusion, where high curvature of the fusion pore rim increases the spacing between lipid headgroups, exposing the hydrophobic interior of the membrane to water. How protein fusogens breach this thermodynamic barrier to pore formation is unclear. We identified a novel fusion-inducing lipid packing sensor (FLiPS) in the cytosolic endodomain of the baboon reovirus p15 fusion-associated small transmembrane (FAST) protein that is essential for pore formation during cell-cell fusion and syncytiogenesis. NMR spectroscopy and mutational studies indicate the dependence of this FLiPS on a hydrophobic helix-loop-helix structure. Biochemical and biophysical assays reveal the p15 FLiPS preferentially partitions into membranes with high positive curvature, and this partitioning is impeded by bis-ANS, a small molecule that inserts into hydrophobic defects in membranes. Most notably, the p15 FLiPS can be functionally replaced by heterologous amphipathic lipid packing sensors (ALPS) but not by other membrane-interactive amphipathic helices. Furthermore, a previously unrecognized amphipathic helix in the cytosolic domain of the reptilian reovirus p14 FAST protein can functionally replace the p15 FLiPS, and is itself replaceable by a heterologous ALPS motif. Anchored near the cytoplasmic leaflet by the FAST protein transmembrane domain, the FLiPS is perfectly positioned to insert into hydrophobic defects that begin to appear in the highly curved rim of nascent fusion pores, thereby lowering the energy barrier to stable pore formation.

  11. Involvement of the helix-loop-helix protein Id-1 in the glucocorticoid regulation of tight junctions in mammary epithelial cells.

    PubMed

    Woo, P L; Cercek, A; Desprez, P Y; Firestone, G L

    2000-09-15

    Mammary epithelial cell-cell junctions undergo morphological and structural differentiation during pregnancy and lactation, but little is known about the transcriptional regulators that are involved in this process. In Con8 mammary epithelial tumor cells, we have previously documented that the synthetic glucocorticoid, dexamethasone, induces the reorganization of the tight junction and adherens junction and stimulates the monolayer transepithelial electrical resistance (TER), a reliable in vitro measurement of tight junction sealing. Western blots demonstrated that dexamethasone treatment rapidly and strongly stimulated the level of the Id-1 protein, which is a serum-inducible helix-loop-helix transcriptional repressor. The steroid induction of Id-1 was robust by 4 h of treatment and maintained over a 24-h period. Isopropyl-1-thio-beta-d-galactopyranoside-inducible expression of exogenous Id-1 in Con8 cells was shown to strongly facilitate the dexamethasone induction of TER in the absence of serum without altering the dexamethasone-dependent reorganization of ZO-1, beta-catenin, or F-actin. Ectopic overexpression of Id-1 in the SCp2 nontumorigenic mammary epithelial cells, which does not undergo complete dexamethasone-dependent tight junction reorganization, enhanced the dexamethasone-induced ZO-1 tight junction localization and stimulated the monolayer TER. Moreover, antisense reduction of Id-1 protein in SCp2 cells prevented the apical junction reorganization and dexamethasone-stimulated TER. Our results implicate Id-1 as acting as a critical regulator of mammary epithelial cell-cell interactions at an early step in the glucocorticoid-dependent signaling pathway that controls tight junction integrity.

  12. Reovirus FAST Proteins Drive Pore Formation and Syncytiogenesis Using a Novel Helix-Loop-Helix Fusion-Inducing Lipid Packing Sensor

    PubMed Central

    Sarker, Muzaddid; de Antueno, Roberto; Langelaan, David N.; Parmar, Hiren B.; Shin, Kyungsoo; Rainey, Jan K.; Duncan, Roy

    2015-01-01

    Pore formation is the most energy-demanding step during virus-induced membrane fusion, where high curvature of the fusion pore rim increases the spacing between lipid headgroups, exposing the hydrophobic interior of the membrane to water. How protein fusogens breach this thermodynamic barrier to pore formation is unclear. We identified a novel fusion-inducing lipid packing sensor (FLiPS) in the cytosolic endodomain of the baboon reovirus p15 fusion-associated small transmembrane (FAST) protein that is essential for pore formation during cell-cell fusion and syncytiogenesis. NMR spectroscopy and mutational studies indicate the dependence of this FLiPS on a hydrophobic helix-loop-helix structure. Biochemical and biophysical assays reveal the p15 FLiPS preferentially partitions into membranes with high positive curvature, and this partitioning is impeded by bis-ANS, a small molecule that inserts into hydrophobic defects in membranes. Most notably, the p15 FLiPS can be functionally replaced by heterologous amphipathic lipid packing sensors (ALPS) but not by other membrane-interactive amphipathic helices. Furthermore, a previously unrecognized amphipathic helix in the cytosolic domain of the reptilian reovirus p14 FAST protein can functionally replace the p15 FLiPS, and is itself replaceable by a heterologous ALPS motif. Anchored near the cytoplasmic leaflet by the FAST protein transmembrane domain, the FLiPS is perfectly positioned to insert into hydrophobic defects that begin to appear in the highly curved rim of nascent fusion pores, thereby lowering the energy barrier to stable pore formation. PMID:26061049

  13. A cell-penetrating peptide suppresses the hypoxia inducible factor-1 function by binding to the helix-loop-helix domain of the aryl hydrocarbon receptor nuclear translocator.

    PubMed

    Wang, Yu; Thompson, John D; Chan, William K

    2013-04-25

    The heterodimeric hypoxia inducible factor-1 (HIF-1) complex is composed of the hypoxia inducible factor-1 alpha (HIF-1α) and the aryl hydrocarbon receptor nuclear translocator (ARNT). Activation of the HIF-1 function is essential for tumor growth and metastasis. We previously showed that transfection of a plasmid containing an ARNT-interacting peptide (Ainp1) cDNA suppresses the HIF-1 signaling in Hep3B cells. Here we generated TAT fusion of the Ainp1 peptide (6His-TAT-Ainp1) to determine whether and how the Ainp1 peptide suppresses the HIF-1 function. The bacterially expressed 6His-TAT-Ainp1 was purified under denatured condition and then refolded by limited dialysis. The refolded 6His-TAT-Ainp1 interacts with the helix-loop-helix (HLH) domain of ARNT in a similar fashion as the native 6His-Ainp1. 6His-TAT-Ainp1 colocalizes with ARNT in the nucleus of HeLa and Hep3B cells after protein transduction. The transduced protein reaches the maximum intracellular levels within 2 h while remains detectable up to 96 h in HeLa cells. At 2 μM concentration, 6His-TAT-Ainp1 is not cytotoxic in HeLa cells but suppresses the cobalt chloride-activated, hypoxia responsive enhancer-driven luciferase expression in a dose-dependent manner. In addition, it decreases the cobalt chloride-dependent induction of the HIF-1 target genes at both the message (vascular endothelial growth factor and aldolase C) and protein (carbonic anhydrase IX and glucose transporter 1) levels. The protein levels of HIF-1α and ARNT are not altered in the presence of 6His-TAT-Ainp1. In summary, we provided evidence to support that the Ainp1 peptide directly suppresses the HIF-1 function by interacting with the ARNT HLH domain, and in turn interfering with the heterodimerization of HIF-1α and ARNT. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. GTF2IRD2 is located in the Williams-Beuren syndrome critical region 7q11.23 and encodes a protein with two TFII-I-like helix-loop-helix repeats.

    PubMed

    Makeyev, Aleksandr V; Erdenechimeg, Lkhamsuren; Mungunsukh, Ognoon; Roth, Jutta J; Enkhmandakh, Badam; Ruddle, Frank H; Bayarsaihan, Dashzeveg

    2004-07-27

    Williams-Beuren syndrome (also known as Williams syndrome) is caused by a deletion of a 1.55- to 1.84-megabase region from chromosome band 7q11.23. GTF2IRD1 and GTF2I, located within this critical region, encode proteins of the TFII-I family with multiple helix-loop-helix domains known as I repeats. In the present work, we characterize a third member, GTF2IRD2, which has sequence and structural similarity to the GTF2I and GTF2IRD1 paralogs. The ORF encodes a protein with several features characteristic of regulatory factors, including two I repeats, two leucine zippers, and a single Cys-2/His-2 zinc finger. The genomic organization of human, baboon, rat, and mouse genes is well conserved. Our exon-by-exon comparison has revealed that GTF2IRD2 is more closely related to GTF2I than to GTF2IRD1 and apparently is derived from the GTF2I sequence. The comparison of GTF2I and GTF2IRD2 genes revealed two distinct regions of homology, indicating that the helix-loop-helix domain structure of the GTF2IRD2 gene has been generated by two independent genomic duplications. We speculate that GTF2I is derived from GTF2IRD1 as a result of local duplication and the further evolution of its structure was associated with its functional specialization. Comparison of genomic sequences surrounding GTF2IRD2 genes in mice and humans allows refinement of the centromeric breakpoint position of the primate-specific inversion within the Williams-Beuren syndrome critical region.

  15. Functional characterization of a basic helix-loop-helix (bHLH) transcription factor GhDEL65 from cotton (Gossypium hirsutum).

    PubMed

    Shangguan, Xiao-Xia; Yang, Chang-Qing; Zhang, Xiu-Fang; Wang, Ling-Jian

    2016-10-01

    Cotton fiber is proposed to share some similarity with the Arabidopsis thaliana leaf trichome, which is regulated by the MYB-bHLH-WD40 transcription complex. Although several MYB transcription factors and WD40 family proteins in cotton have been characterized, little is known about the role of bHLH family proteins in cotton. Here, we report that GhDEL65, a bHLH protein from cotton (Gossypium hirsutum), is a functional homologue of Arabidopsis GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) in regulating trichome development. Transcripts of GhDEL65 were detected in 0 ∼ 1 days post-anthesis (DPA) ovules and abundant in 3-DPA fibers, implying that GhDEL65 may act in early fiber development. Ectopic expression of GhDEL65 in Arabidopsis gl3 egl3 double mutant partly rescued the trichome development, and constitutive expression of GhDEL65 in wild-type plants led to increased trichome density on rosette leaves and stems, mainly by activating the transcription of two key positive regulators of trichome development, GLABRA1 (GL1) and GLABRA2 (GL2), and suppressed the expression of a R3 single-repeat MYB factor TRIPTYCHON (TRY). GhDEL65 could interact with cotton R2R3 MYB transcription factors GhMYB2 and GhMYB3, as well as the WD40 protein GhTTG3, suggesting that the MYB-bHLH-WD40 protein complex also exists in cotton fiber cell, though its function in cotton fiber development awaits further investigation.

  16. HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels.

    PubMed

    Flamme, I; Fröhlich, T; von Reutern, M; Kappel, A; Damert, A; Risau, W

    1997-04-01

    Transcription factors of the bHLH-PAS protein family are important regulators of developmental processes such as neurogenesis and tracheal development in invertebrates. Recently a bHLH-PAS protein, named trachealess (trl) was identified as a master regulator of tracheogenesis. Hypoxia-inducible factor, HIF-1 alpha, is a vertebrate relative of trl which is likely to be involved in growth of blood vessels by the induction of vascular endothelial growth factor (VEGF) in response to hypoxia. In the present study we describe mRNA cloning and mRNA expression pattern of mouse HIF-related factor (HRF), a novel close relative of HIF-1 alpha which is expressed most prominently in brain capillary endothelial cells and other blood vessels as well as in bronchial epithelium in the embryo and the adult. In addition, smooth muscle cells of the uterus, neurons, brown adipose tissue and various epithelial tissues express HRF mRNA as well. High expression levels of HRF mRNA in embryonic choroid plexus and kidney glomeruli, places where VEGF is highly expressed, suggest a role of this factor in VEGF gene activation similar to that of HIF-1 alpha. Given the similarity between morphogenesis of the tracheal system and the vertebrate vascular system, the expression pattern of HRF in the vasculature and the bronchial tree raises the possibility that this family of transcription factors may be involved in tubulogenesis.

  17. Human variants in the neuronal basic helix-loop-helix/Per-Arnt-Sim (bHLH/PAS) transcription factor complex NPAS4/ARNT2 disrupt function.

    PubMed

    Bersten, David C; Bruning, John B; Peet, Daniel J; Whitelaw, Murray L

    2014-01-01

    Neuronal Per-Arnt-Sim homology (PAS) Factor 4 (NPAS4) is a neuronal activity-dependent transcription factor which heterodimerises with ARNT2 to regulate genes involved in inhibitory synapse formation. NPAS4 functions to maintain excitatory/inhibitory balance in neurons, while mouse models have shown it to play roles in memory formation, social interaction and neurodegeneration. NPAS4 has therefore been implicated in a number of neuropsychiatric or neurodegenerative diseases which are underpinned by defects in excitatory/inhibitory balance. Here we have explored a broad set of non-synonymous human variants in NPAS4 and ARNT2 for disruption of NPAS4 function. We found two variants in NPAS4 (F147S and E257K) and two variants in ARNT2 (R46W and R107H) which significantly reduced transcriptional activity of the heterodimer on a luciferase reporter gene. Furthermore, we found that NPAS4.F147S was unable to activate expression of the NPAS4 target gene BDNF due to reduced dimerisation with ARNT2. Homology modelling predicts F147 in NPAS4 to lie at the dimer interface, where it appears to directly contribute to protein/protein interaction. We also found that reduced transcriptional activation by ARNT2 R46W was due to disruption of nuclear localisation. These results provide insight into the mechanisms of NPAS4/ARNT dimerisation and transcriptional activation and have potential implications for cognitive phenotypic variation and diseases such as autism, schizophrenia and dementia.

  18. High AN1 variability and interaction with basic helix-loop-helix co-factors related to anthocyanin biosynthesis in potato leaves.

    PubMed

    D'Amelia, Vincenzo; Aversano, Riccardo; Batelli, Giorgia; Caruso, Immacolata; Castellano Moreno, Mar; Castro-Sanz, Ana Beatriz; Chiaiese, Pasquale; Fasano, Carlo; Palomba, Francesca; Carputo, Domenico

    2014-11-01

    AN1 is a regulatory gene that promotes anthocyanin biosynthesis in potato tubers and encodes a R2R3 MYB transcription factor. However, no clear evidence implicates AN1 in anthocyanin production in leaves, where these pigments might enhance environmental stress tolerance. In our study we found that AN1 displays intraspecific sequence variability in both coding/non-coding regions and in the promoter, and that its expression is associated with high anthocyanin content in leaves of commercial potatoes. Expression analysis provided evidence that leaf pigmentation is associated to AN1 expression and that StJAF13 acts as putative AN1 co-regulator for anthocyanin gene expression in leaves of the red leaf variety 'Magenta Love,' while a concomitant expression of StbHLH1 may contribute to anthocyanin accumulation in leaves of 'Double Fun.' Yeast two-hybrid experiments confirmed that AN1 interacts with StbHLH1 and StJAF13 and the latter interaction was verified and localized in the cell nucleus by bimolecular fluorescence complementation assays. In addition, transgenic tobacco (Nicotiana tabacum) overexpressing a combination of either AN1 with StJAF13 or AN1 with StbHLH1 showed deeper purple pigmentation with respect to AN1 alone. This further confirmed AN1/StJAF13 and AN1/StbHLH1 interactions. Our findings demonstrate that the classical loci identified for potato leaf anthocyanin accumulation correspond to AN1 and may represent an important step to expand our knowledge on the molecular mechanisms underlying anthocyanin biosynthesis in different plant tissues.

  19. The avian cardiac alpha-actin promoter is regulated through a pair of complex elements composed of E boxes and serum response elements that bind both positive- and negative-acting factors.

    PubMed

    Moss, J B; McQuinn, T C; Schwartz, R J

    1994-04-29

    The chicken alpha-cardiac actin is one of the earliest contractile protein genes selectively expressed during embryonic skeletal and cardiac muscle differentiation. Cardiac actin promoter elements were examined in these two sarcomeric cell types. A portion of the alpha-cardiac actin promoter responsible for striated muscle specificity has been delineated (1, 2) and shown to contain four serum response elements (SRE). Previously, SRE3 was shown to be part of a complex element in conjunction with a functional E box (2), and we now show that SRE4 is also part of an upstream SRE.E box cis-element complex. The SREs function similarly, but the E boxes have dissimilar properties within and between striated muscle types. The SRE3.E1 box binds myogenic basic helix-loop-helix factors and is required for cardiac actin trans-activation in primary muscle cell cultures but functions as a negative regulatory element in cardiac muscle cells. The SRE4.E2 box, on the other hand, fails to bind basic helix-loop-helix (bHLH) factors, is negative acting in skeletal muscle cells, and is positive acting in cardiac myocytes. A DNA binding factor similar to HF1a (3) was identified that interacts specifically with the SRE4.E2 box. This study shows that the avian cardiac actin promoter elements are differentially used between skeletal and cardiac striated muscle cell lineages.

  20. Brassinosteroid-Induced Transcriptional Repression and Dephosphorylation-Dependent Protein Degradation Negatively Regulate BIN2-Interacting AIF2 (a BR Signaling-Negative Regulator) bHLH Transcription Factor.

    PubMed

    Kim, Yoon; Song, Ji-Hye; Park, Seon-U; Jeong, You-Seung; Kim, Soo-Hwan

    2017-01-09

    Brassinosteroids (BRs) are plant polyhydroxy-steroids that play important roles in plant growth and development via extensive signal integration through direct interactions between regulatory components of different signaling pathways. Recent studies have shown that diverse helix-loop-helix/basic helix-loop-helix (HLH/bHLH) family proteins are actively involved in control of BR signaling pathways and interact with other signaling pathways. In this study, we show that ATBS1-INTERACTING FACTOR 2 (AIF2), a nuclear-localized atypical bHLH transcription factor, specifically interacts with BRASSINOSTEROID-INSENSITIVE 2 (BIN2) among other BR signaling molecules. Overexpression of AIF2 down-regulated transcript expression of growth-promoting genes, thus resulting in retardation of growth. AIF2 renders plants hyposensitive to BR-induced root growth inhibition, but shows little effects on BR-promoted hypocotyl elongation. Notably, AIF2 was dephosphorylated by BR, and the dephosphorylated AIF2 was subject to proteasome-mediated degradation. AIF2 degradation was greatly induced by BR and ABA, but relatively slightly by other hormones such as auxin, gibberellin, cytokinin and ethylene. Moreover, AIF2 transcription was significantly suppressed by a BRI1/BZR1-mediated BR signaling pathway through a direct binding of BRASSINAZOLE RESISTANT 1 (BZR1) to the BR response element (BRRE) region of the AIF2 promoter. In conclusion, our study suggests that BIN2-driven AIF2 phosphorylation could augment the BIN2/AIF2-mediated negative circuit of BR signaling pathways, and the BR-induced transcriptional repression and protein degradation negatively regulate AIF2 transcription factor, reinforcing the BZR1/BES1-mediated positive BR signaling pathway.

  1. Specificity for the Hairy/enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the bHLH domain and suggests two separable modes of transcriptional repression

    SciTech Connect

    Dawson, S.R.; Turner, D.L.; Weintraub, H.; Parkhurst, S.M.

    1995-12-01

    This report investigates transcriptional repressors in Drosophila melanogaster and their function in and effect on developmental processes such as sex determination. Details on the mechanism of function of these transcriptional repressors are also discussed. 50 refs., 3 figs., 4 tabs.

  2. Responses of a triple mutant defective in three iron deficiency-induced Basic Helix-Loop-Helix genes of the subgroup Ib(2) to iron deficiency and salicylic acid.

    PubMed

    Maurer, Felix; Naranjo Arcos, Maria Augusta; Bauer, Petra

    2014-01-01

    Plants are sessile organisms that adapt to external stress by inducing molecular and physiological responses that serve to better cope with the adverse growth condition. Upon low supply of the micronutrient iron, plants actively increase the acquisition of soil iron into the root and its mobilization from internal stores. The subgroup Ib(2) BHLH genes function as regulators in this response, however their concrete functions are not fully understood. Here, we analyzed a triple loss of function mutant of BHLH39, BHLH100 and BHLH101 (3xbhlh mutant). We found that this mutant did not have any iron uptake phenotype if iron was provided. However, under iron deficiency the mutant displayed a more severe leaf chlorosis than the wild type. Microarray-based transcriptome analysis revealed that this mutant phenotype resulted in the mis-regulation of 198 genes, out of which only 15% were associated with iron deficiency regulation itself. A detailed analysis revealed potential targets of the bHLH transcription factors as well as genes reflecting an exaggerated iron deficiency response phenotype. Since the BHLH genes of this subgroup have been brought into the context of the plant hormone salicylic acid, we investigated whether the 3xbhlh mutant might have been affected by this plant signaling molecule. Although a very high number of genes responded to SA, also in a differential manner between mutant and wild type, we did not find any indication for an association of the BHLH gene functions in SA responses upon iron deficiency. In summary, our study indicates that the bHLH subgroup Ib(2) transcription factors do not only act in iron acquisition into roots but in other aspects of the adaptation to iron deficiency in roots and leaves.

  3. Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors

    PubMed Central

    Liu, Yuhui; Lin-Wang, Kui; Espley, Richard V.; Wang, Li; Yang, Hongyu; Yu, Bin; Dare, Andrew; Varkonyi-Gasic, Erika; Wang, Jing; Zhang, Junlian; Wang, Di; Allan, Andrew C.

    2016-01-01

    In potato (Solanum tuberosum L.), R2R3 MYBs are involved in the regulation of anthocyanin biosynthesis. We examined sequences of these MYBs in cultivated potatoes, which are more complex than diploid potato due to ploidy and heterozygosity. We found amino acid variants in the C-terminus of the MYB StAN1, termed R0, R1, and R3, due to the presence of a repeated 10-amino acid motif. These variant MYBs showed some expression in both white and pigmented tubers. We found several new alleles or gene family members of R2R3 MYBs, StMYBA1 and StMYB113, which were also expressed in white potato tubers. From functional analysis in tobacco, we showed that the presence of a C-terminal 10-amino acid motif is optimal for activating anthocyanin accumulation. Engineering a motif back into a MYB lacking this sequence enhanced its activating ability. Versions of StMYBA1 and StMYB113 can also activate anthocyanin accumulation in tobacco leaves, with the exception of StMYB113-3, which has a partial R2R3 domain. We isolated five family members of potato StbHLH1, and one StJAF13, to test their ability to interact with MYB variants. The results showed that two alleles of StbHLH1 from white skin and red skin are non-functional, while three other StbHLH1s have different co-regulating abilities, and need to be activated by StJAF13. Combined with expression analysis in potato tuber, results suggest that StbHLH1 and StJAF13 are key co-regulators of anthocyanin biosynthesis, while the transcripts of MYB variants StAN1, StMYBA1, and StMYB113 are well expressed, even in the absence of pigmentation. PMID:26884602

  4. Functional diversification of the potato R2R3 MYB anthocyanin activators AN1, MYBA1, and MYB113 and their interaction with basic helix-loop-helix cofactors.

    PubMed

    Liu, Yuhui; Lin-Wang, Kui; Espley, Richard V; Wang, Li; Yang, Hongyu; Yu, Bin; Dare, Andrew; Varkonyi-Gasic, Erika; Wang, Jing; Zhang, Junlian; Wang, Di; Allan, Andrew C

    2016-04-01

    In potato (Solanum tuberosum L.), R2R3 MYBs are involved in the regulation of anthocyanin biosynthesis. We examined sequences of these MYBs in cultivated potatoes, which are more complex than diploid potato due to ploidy and heterozygosity. We found amino acid variants in the C-terminus of the MYB StAN1, termed R0, R1, and R3, due to the presence of a repeated 10-amino acid motif. These variant MYBs showed some expression in both white and pigmented tubers. We found several new alleles or gene family members of R2R3 MYBs,StMYBA1 and StMYB113, which were also expressed in white potato tubers. From functional analysis in tobacco, we showed that the presence of a C-terminal 10-amino acid motif is optimal for activating anthocyanin accumulation. Engineering a motif back into a MYB lacking this sequence enhanced its activating ability. Versions of StMYBA1 and StMYB113 can also activate anthocyanin accumulation in tobacco leaves, with the exception of StMYB113-3, which has a partial R2R3 domain. We isolated five family members of potato StbHLH1, and one StJAF13, to test their ability to interact with MYB variants. The results showed that two alleles of StbHLH1 from white skin and red skin are non-functional, while three other StbHLH1s have different co-regulating abilities, and need to be activated by StJAF13. Combined with expression analysis in potato tuber, results suggest that StbHLH1 and StJAF13a re key co-regulators of anthocyanin biosynthesis, while the transcripts of MYB variants StAN1,StMYBA1, and StMYB113 are well expressed, even in the absence of pigmentation.

  5. Ribosomal Protein S14 Negatively Regulates c-Myc Activity*

    PubMed Central

    Zhou, Xiang; Hao, Qian; Liao, Jun-ming; Liao, Peng; Lu, Hua

    2013-01-01

    The ribosomal gene RPS14 is associated with the cancer-prone 5q-syndrome, which is caused by an interstitial deletion of the long arm of human chromosome 5. Previously, we found that ribosomal protein S14 (RPS14) binds to and inactivates MDM2, consequently leading to p53-dependent cell-cycle arrest and growth inhibition. However, it remains elusive whether RPS14 regulates cell proliferation in a p53-independent manner. Here, we show that RPS14 interacts with the Myc homology box II (MBII) and the C-terminal basic helix-loop-helix leucine zipper (bHLH-LZ) domains of the oncoprotein c-Myc. Further, RPS14 inhibited c-Myc transcriptional activity by preventing the recruitment of c-Myc and its cofactor, TRRAP, to the target gene promoters, as thus suppressing c-Myc-induced cell proliferation. Also, siRNA-mediated RPS14 depletion elevated c-Myc transcriptional activity determined by its target gene, Nucleolin, expression. Interestingly, RPS14 depletion also resulted in the induction of c-Myc mRNA and subsequent protein levels. Consistent with this, RPS14 promoted c-Myc mRNA turnover through an Argonaute 2 (Ago2)- and microRNA-mediated pathway. Taken together, our study demonstrates that RPS14 negates c-Myc functions by directly inhibiting its transcriptional activity and mediating its mRNA degradation via miRNA. PMID:23775087

  6. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression

    NASA Astrophysics Data System (ADS)

    Makino, Yuichi; Cao, Renhai; Svensson, Kristian; Bertilsson, Göran; Asman, Mikael; Tanaka, Hirotoshi; Cao, Yihai; Berkenstam, Anders; Poellinger, Lorenz

    2001-11-01

    Alteration of gene expression is a crucial component of adaptive responses to hypoxia. These responses are mediated by hypoxia-inducible transcription factors (HIFs). Here we describe an inhibitory PAS (Per/Arnt/Sim) domain protein, IPAS, which is a basic helix-loop-helix (bHLH)/PAS protein structurally related to HIFs. IPAS contains no endogenous transactivation function but demonstrates dominant negative regulation of HIF-mediated control of gene expression. Ectopic expression of IPAS in hepatoma cells selectively impairs induction of genes involved in adaptation to a hypoxic environment, notably the vascular endothelial growth factor (VEGF) gene, and results in retarded tumour growth and tumour vascular density in vivo. In mice, IPAS was predominantly expressed in Purkinje cells of the cerebellum and in corneal epithelium of the eye. Expression of IPAS in the cornea correlates with low levels of expression of the VEGF gene under hypoxic conditions. Application of an IPAS antisense oligonucleotide to the mouse cornea induced angiogenesis under normal oxygen conditions, and demonstrated hypoxia-dependent induction of VEGF gene expression in hypoxic corneal cells. These results indicate a previously unknown mechanism for negative regulation of angiogenesis and maintenance of an avascular phenotype.

  7. A competitive peptide inhibitor KIDARI negatively regulates HFR1 by forming nonfunctional heterodimers in Arabidopsis photomorphogenesis.

    PubMed

    Hong, Shin-Young; Seo, Pil Joon; Ryu, Jae Yong; Cho, Shin-Hae; Woo, Je-Chang; Park, Chung-Mo

    2013-01-01

    Dynamic dimer formation is an elaborate means of modulating transcription factor activities in diverse cellular processes. The basic helix-loop-helix (bHLH) transcription factor LONG HYPOCOTYL IN FAR-RED 1 (HFR1), for example, plays a role in plant photomorphogenesis by forming non-DNA binding heterodimers with PHYTOCHROMEINTERACTING FACTORS (PIFs). Recent studies have shown that a small HLH protein KIDARI (KDR) negatively regulates the HFR1 activity in the process. However, molecular mechanisms underlying the KDR control of the HFR1 activity are unknown. Here, we demonstrate that KDR attenuates the HFR1 activity by competitively forming nonfunctional heterodimers, causing liberation of PIF4 from the transcriptionally inactive HFR1-PIF4 complex. Accordingly, the photomorphogenic hypocotyl growth of the HFR1-overexpressing plants can be suppressed by KDR coexpression, as observed in the HFR1-deficient hfr1-201 mutant. These results indicate that the PIF4 activity is modulated through a double layer of competitive inhibition by HFR1 and KDR, which could in turn ensure fine-tuning of the PIF4 activity under fluctuating light conditions.

  8. The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling.

    PubMed

    Mara, Chloe D; Huang, Tengbo; Irish, Vivian F

    2010-03-01

    The Arabidopsis thaliana MADS box transcription factors APETALA3 (AP3) and PISTILLATA (PI) heterodimerize and are required to specify petal identity, yet many details of how this regulatory process is effected are unclear. We have identified three related genes, BHLH136/BANQUO1 (BNQ1), BHLH134/BANQUO2 (BNQ2), and BHLH161/BANQUO3 (BNQ3), as being directly and negatively regulated by AP3 and PI in petals. BNQ1, BNQ2, and BNQ3 encode products belonging to a family of atypical non-DNA binding basic helix-loop-helix (bHLH) proteins that heterodimerize with and negatively regulate bHLH transcription factors. We show that bnq3 mutants have pale-green sepals and carpels and decreased chlorophyll levels, suggesting that BNQ3 has a role in regulating light responses. The ap3 bnq3 double mutant displays pale second-whorl organs, supporting the hypothesis that BNQ3 is downstream of AP3. Consistent with a role in light response, we show that the BNQ gene products regulate the function of HFR1 (for LONG HYPOCOTYL IN FAR-RED1), which encodes a bHLH protein that regulates photomorphogenesis through modulating phytochrome and cryptochrome signaling. The BNQ genes also are required for appropriate regulation of flowering time. Our results suggest that petal identity is specified in part through downregulation of BNQ-dependent photomorphogenic and developmental signaling pathways.

  9. A Negative Feedback Loop between PHYTOCHROME INTERACTING FACTORs and HECATE Proteins Fine-Tunes Photomorphogenesis in Arabidopsis

    PubMed Central

    Zhu, Ling; Bu, Qingyun; Shen, Hui; Dang, Jonathan

    2016-01-01

    The phytochrome interacting factors (PIFs), a small group of basic helix-loop-helix transcription factors, repress photomorphogenesis both in the dark and light. Light signals perceived by the phytochrome family of photoreceptors induce rapid degradation of PIFs to promote photomorphogenesis. Here, we show that HECATE (HEC) proteins, another small group of HLH proteins, antagonistically regulate PIFs to promote photomorphogenesis. HEC1 and HEC2 heterodimerize with PIF family members. PIF1, HEC1, and HEC2 genes are spatially and temporally coexpressed, and HEC2 is localized in the nucleus. hec1, hec2, and hec3 single mutants and the hec1 hec2 double mutant showed hyposensitivity to light-induced seed germination and accumulation of chlorophyll and carotenoids, hallmark processes oppositely regulated by PIF1. HEC2 inhibits PIF1 target gene expression by directly heterodimerizing with PIF1 and preventing DNA binding and transcriptional activation activity of PIF1. Conversely, PIFs directly activate the expression of HEC1 and HEC2 in the dark, and light reduces the expression of these HECs possibly by degrading PIFs. HEC2 is partially degraded in the dark through the ubiquitin/26S-proteasome pathway and is stabilized by light. HEC2 overexpression also reduces the light-induced degradation of PIF1. Taken together, these data suggest that PIFs and HECs constitute a negative feedback loop to fine-tune photomorphogenesis in Arabidopsis thaliana. PMID:27073231

  10. Multisite light-induced phosphorylation of the transcription factor PIF3 is necessary for both its rapid degradation and concomitant negative feedback modulation of photoreceptor phyB levels in Arabidopsis.

    PubMed

    Ni, Weimin; Xu, Shou-Ling; Chalkley, Robert J; Pham, Thao Nguyen D; Guan, Shenheng; Maltby, Dave A; Burlingame, Alma L; Wang, Zhi-Yong; Quail, Peter H

    2013-07-01

    Plants constantly monitor informational light signals using sensory photoreceptors, which include the phytochrome (phy) family (phyA to phyE), and adjust their growth and development accordingly. Following light-induced nuclear translocation, photoactivated phy molecules bind to and induce rapid phosphorylation and degradation of phy-interacting basic Helix Loop Helix (bHLH) transcription factors (PIFs), such as PIF3, thereby regulating the expression of target genes. However, the mechanisms underlying the signal-relay process are still not fully understood. Here, using mass spectrometry, we identify multiple, in vivo, light-induced Ser/Thr phosphorylation sites in PIF3. Using transgenic expression of site-directed mutants of PIF3, we provide evidence that a set of these phosphorylation events acts collectively to trigger rapid degradation of the PIF3 protein in response to initial exposure of dark-grown seedlings to light. In addition, we show that phyB-induced PIF3 phosphorylation is also required for the known negative feedback modulation of phyB levels in prolonged light, potentially through codegradation of phyB and PIF3. This mutually regulatory intermolecular transaction thus provides a mechanism with the dual capacity to promote early, graded, or threshold regulation of the primary, PIF3-controlled transcriptional network in response to initial light exposure, and later, to attenuate global sensitivity to the light signal through reductions in photoreceptor levels upon prolonged exposure.

  11. Multisite Light-Induced Phosphorylation of the Transcription Factor PIF3 Is Necessary for Both Its Rapid Degradation and Concomitant Negative Feedback Modulation of Photoreceptor phyB Levels in Arabidopsis[C][W

    PubMed Central

    Ni, Weimin; Xu, Shou-Ling; Chalkley, Robert J.; Pham, Thao Nguyen D.; Guan, Shenheng; Maltby, Dave A.; Burlingame, Alma L.; Wang, Zhi-Yong; Quail, Peter H.

    2013-01-01

    Plants constantly monitor informational light signals using sensory photoreceptors, which include the phytochrome (phy) family (phyA to phyE), and adjust their growth and development accordingly. Following light-induced nuclear translocation, photoactivated phy molecules bind to and induce rapid phosphorylation and degradation of phy-interacting basic Helix Loop Helix (bHLH) transcription factors (PIFs), such as PIF3, thereby regulating the expression of target genes. However, the mechanisms underlying the signal-relay process are still not fully understood. Here, using mass spectrometry, we identify multiple, in vivo, light-induced Ser/Thr phosphorylation sites in PIF3. Using transgenic expression of site-directed mutants of PIF3, we provide evidence that a set of these phosphorylation events acts collectively to trigger rapid degradation of the PIF3 protein in response to initial exposure of dark-grown seedlings to light. In addition, we show that phyB-induced PIF3 phosphorylation is also required for the known negative feedback modulation of phyB levels in prolonged light, potentially through codegradation of phyB and PIF3. This mutually regulatory intermolecular transaction thus provides a mechanism with the dual capacity to promote early, graded, or threshold regulation of the primary, PIF3-controlled transcriptional network in response to initial light exposure, and later, to attenuate global sensitivity to the light signal through reductions in photoreceptor levels upon prolonged exposure. PMID:23903316

  12. Blue light induces degradation of the negative regulator phytochrome interacting factor 1 to promote photomorphogenic development of Arabidopsis seedlings.

    PubMed

    Castillon, Alicia; Shen, Hui; Huq, Enamul

    2009-05-01

    Phytochrome interacting factors (PIFs) are nuclear basic helix-loop-helix (bHLH) transcription factors that negatively regulate photomorphogenesis both in the dark and in the light in Arabidopsis. The phytochrome (phy) family of photoreceptors induces the rapid phosphorylation and degradation of PIFs in response to both red and far-red light conditions to promote photomorphogenesis. Although phys have been shown to function under blue light conditions, the roles of PIFs under blue light have not been investigated in detail. Here we show that PIF1 negatively regulates photomorphogenesis at the seedling stage under blue light conditions. pif1 seedlings displayed more open cotyledons and slightly reduced hypocotyl length compared to wild type under diurnal (12 hr light/12 hr dark) blue light conditions. Double-mutant analyses demonstrated that pif1phyA, pif1phyB, pif1cry1, and pif1cry2 have enhanced cotyledon opening compared to the single photoreceptor mutants under diurnal blue light conditions. Blue light induced the rapid phosphorylation, polyubiquitination, and degradation of PIF1 through the ubi/26S proteasomal pathway. PIF1 interacted with phyA and phyB in a blue light-dependent manner, and the interactions with phys are necessary for the blue light-induced degradation of PIF1. phyA played a dominant role under pulses of blue light, while phyA, phyB, and phyD induced the degradation of PIF1 in an additive manner under prolonged continuous blue light conditions. Interestingly, the absence of cry1 and cry2 enhanced the degradation of PIF1 under blue light conditions. Taken together, these data suggest that PIF1 functions as a negative regulator of photomorphogenesis under blue light conditions and that blue light-activated phys induce the degradation of PIF1 through the ubi/26S proteasomal pathway to promote photomorphogenesis.

  13. SREBP-2 negatively regulates FXR-dependent transcription of FGF19 in human intestinal cells.

    PubMed

    Miyata, Masaaki; Hata, Tatsuya; Yamazoe, Yasushi; Yoshinari, Kouichi

    2014-01-10

    Sterol regulatory element-binding protein-2 (SREBP-2) is a basic helix-loop-helix-leucine zipper transcription factor that positively regulates transcription of target genes involved in cholesterol metabolism. In the present study, we have investigated a possible involvement of SREBP-2 in human intestinal expression of fibroblast growth factor (FGF)19, which is an endocrine hormone involved in the regulation of lipid and glucose metabolism. Overexpression of constitutively active SREBP-2 decreased FGF19 mRNA levels in human colon-derived LS174T cells. In reporter assays, active SREBP-2 overexpression suppressed GW4064/FXR-mediated increase in reporter activities in regions containing the IR-1 motif (+848 to +5200) in the FGF19 gene. The suppressive effect disappeared in reporter activities in the region containing the IR-1 motif when the mutation was introduced into the IR-1 motif. In electrophoretic mobility shift assays, binding of the FXR/retinoid X receptor α heterodimer to the IR-1 motif was attenuated by adding active SREBP-2, but SREBP-2 binding to the IR-1 motif was not observed. In chromatin immunoprecipitation assays, specific binding of FXR to the IR-1-containing region of the FGF19 gene (+3214 to +3404) was increased in LS174T cells by treatment with cholesterol and 25-hydroxycholesterol. Specific binding of SREBP-2 to FXR was observed in glutathione-S-transferase (GST) pull-down assays. These results suggest that SREBP-2 negatively regulates the FXR-mediated transcriptional activation of the FGF19 gene in human intestinal cells.

  14. Identifying Novel Helix-Loop-Helix Genes in "Caenorhabditis elegans" through a Classroom Demonstration of Functional Genomics

    ERIC Educational Resources Information Center

    Griffin, Vernetta; McMiller, Tracee; Jones, Erika; Johnson, Casonya M.

    2003-01-01

    A 14-week, undergraduate-level Genetics and Population Biology course at Morgan State University was modified to include a demonstration of functional genomics in the research laboratory. Students performed a rudimentary sequence analysis of the "Caenorhabditis elegans" genome and further characterized three sequences that were predicted to encode…

  15. Identifying Novel Helix-Loop-Helix Genes in "Caenorhabditis elegans" through a Classroom Demonstration of Functional Genomics

    ERIC Educational Resources Information Center

    Griffin, Vernetta; McMiller, Tracee; Jones, Erika; Johnson, Casonya M.

    2003-01-01

    A 14-week, undergraduate-level Genetics and Population Biology course at Morgan State University was modified to include a demonstration of functional genomics in the research laboratory. Students performed a rudimentary sequence analysis of the "Caenorhabditis elegans" genome and further characterized three sequences that were predicted to encode…

  16. Receptor editing and marginal zone B cell development are regulated by the helix-loop-helix protein, E2A.

    PubMed

    Quong, Melanie W; Martensson, Annica; Langerak, Anton W; Rivera, Richard R; Nemazee, David; Murre, Cornelis

    2004-04-19

    Previous studies have indicated that the E2A gene products are required to initiate B lineage development. Here, we demonstrate that E2A(+/-) B cells that express an autoreactive B cell receptor fail to mature due in part to an inability to activate secondary immunoglobulin (Ig) light chain gene rearrangement. Both RAG1/2 gene expression and RS deletion are severely defective in E2A(+/-) mice. Additionally, we demonstrate that E2A(+/-) mice show an increase in the proportion of marginal zone B cells with a concomitant decrease in the proportion of follicular B cells. In contrast, Id3-deficient splenocytes show a decline in the proportion of marginal zone B cells. Based on these observations, we propose that E-protein activity regulates secondary Ig gene rearrangement at the immature B cell stage and contributes to cell fate determination of marginal zone B cells. Additionally, we propose a model in which E-proteins enforce the developmental checkpoint at the immature B cell stage.

  17. Genetics Home Reference: Pitt-Hopkins syndrome

    MedlinePlus

    ... activities, the TCF4 protein is known as a transcription factor. The TCF4 protein plays a role in ... encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a ...

  18. Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes.

    PubMed

    Marchegiani, Shannon; Davis, Taylor; Tessadori, Federico; van Haaften, Gijs; Brancati, Francesco; Hoischen, Alexander; Huang, Haigen; Valkanas, Elise; Pusey, Barbara; Schanze, Denny; Venselaar, Hanka; Vulto-van Silfhout, Anneke T; Wolfe, Lynne A; Tifft, Cynthia J; Zerfas, Patricia M; Zambruno, Giovanna; Kariminejad, Ariana; Sabbagh-Kermani, Farahnaz; Lee, Janice; Tsokos, Maria G; Lee, Chyi-Chia R; Ferraz, Victor; da Silva, Eduarda Morgana; Stevens, Cathy A; Roche, Nathalie; Bartsch, Oliver; Farndon, Peter; Bermejo-Sanchez, Eva; Brooks, Brian P; Maduro, Valerie; Dallapiccola, Bruno; Ramos, Feliciano J; Chung, Hon-Yin Brian; Le Caignec, Cédric; Martins, Fabiana; Jacyk, Witold K; Mazzanti, Laura; Brunner, Han G; Bakkers, Jeroen; Lin, Shuo; Malicdan, May Christine V; Boerkoel, Cornelius F; Gahl, William A; de Vries, Bert B A; van Haelst, Mieke M; Zenker, Martin; Markello, Thomas C

    2015-07-02

    Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based solely upon the nature of the substituting amino acid: a lysine at TWIST2 residue 75 resulted in AMS, whereas a glutamine or alanine yielded BSS. TWIST2 encodes a basic helix-loop-helix transcription factor that regulates the development of mesenchymal tissues. All identified mutations fell in the basic domain of TWIST2 and altered the DNA-binding pattern of Flag-TWIST2 in HeLa cells. Comparison of wild-type and mutant TWIST2 expressed in zebrafish identified abnormal developmental phenotypes and widespread transcriptome changes. Our results suggest that autosomal-dominant TWIST2 mutations cause AMS or BSS by inducing protean effects on the transcription factor's DNA binding.

  19. Recurrent Mutations in the Basic Domain of TWIST2 Cause Ablepharon Macrostomia and Barber-Say Syndromes

    PubMed Central

    Marchegiani, Shannon; Davis, Taylor; Tessadori, Federico; van Haaften, Gijs; Brancati, Francesco; Hoischen, Alexander; Huang, Haigen; Valkanas, Elise; Pusey, Barbara; Schanze, Denny; Venselaar, Hanka; Vulto-van Silfhout, Anneke T.; Wolfe, Lynne A.; Tifft, Cynthia J.; Zerfas, Patricia M.; Zambruno, Giovanna; Kariminejad, Ariana; Sabbagh-Kermani, Farahnaz; Lee, Janice; Tsokos, Maria G.; Lee, Chyi-Chia R.; Ferraz, Victor; da Silva, Eduarda Morgana; Stevens, Cathy A.; Roche, Nathalie; Bartsch, Oliver; Farndon, Peter; Bermejo-Sanchez, Eva; Brooks, Brian P.; Maduro, Valerie; Dallapiccola, Bruno; Ramos, Feliciano J.; Chung, Hon-Yin Brian; Le Caignec, Cédric; Martins, Fabiana; Jacyk, Witold K.; Mazzanti, Laura; Brunner, Han G.; Bakkers, Jeroen; Lin, Shuo; Malicdan, May Christine V.; Boerkoel, Cornelius F.; Gahl, William A.; de Vries, Bert B.A.; van Haelst, Mieke M.; Zenker, Martin; Markello, Thomas C.

    2015-01-01

    Ablepharon macrostomia syndrome (AMS) and Barber-Say syndrome (BSS) are rare congenital ectodermal dysplasias characterized by similar clinical features. To establish the genetic basis of AMS and BSS, we performed extensive clinical phenotyping, whole exome and candidate gene sequencing, and functional validations. We identified a recurrent de novo mutation in TWIST2 in seven independent AMS-affected families, as well as another recurrent de novo mutation affecting the same amino acid in ten independent BSS-affected families. Moreover, a genotype-phenotype correlation was observed, because the two syndromes differed based solely upon the nature of the substituting amino acid: a lysine at TWIST2 residue 75 resulted in AMS, whereas a glutamine or alanine yielded BSS. TWIST2 encodes a basic helix-loop-helix transcription factor that regulates the development of mesenchymal tissues. All identified mutations fell in the basic domain of TWIST2 and altered the DNA-binding pattern of Flag-TWIST2 in HeLa cells. Comparison of wild-type and mutant TWIST2 expressed in zebrafish identified abnormal developmental phenotypes and widespread transcriptome changes. Our results suggest that autosomal-dominant TWIST2 mutations cause AMS or BSS by inducing protean effects on the transcription factor’s DNA binding. PMID:26119818

  20. When Investment in Basic Skills Gives Negative Returns

    ERIC Educational Resources Information Center

    Billington, Mary Genevieve; Nissinen, Kari; Gabrielsen, Egil

    2017-01-01

    In recent years, the Norwegian government has invested heavily in improving basic skills in the adult population. Initiatives have included legislation, the introduction of work-based adult education programs, and reforms in schooling. In light of this investment, we explore trends in adult literacy and numeracy, by comparing data from two…

  1. The role of a Williams-Beuren syndrome-associated helix-loop-helix domain-containing transcription factor in activin/nodal signaling.

    PubMed

    Ring, Colleen; Ogata, Souichi; Meek, Lauren; Song, Jihwan; Ohta, Tatsuru; Miyazono, Kohei; Cho, Ken W Y

    2002-04-01

    We investigated the regulation of the activin/nodal-inducible distal element (DE) of the Xenopus goosecoid (gsc) promoter. On the basis of its interaction with the DE, we isolated a Xenopus homolog of the human Williams-Beuren syndrome critical region 11 (XWBSCR11), and further, show that it interacts with pathway-specific Smad2 and Smad3 in a ligand-dependent manner. Interestingly, we also find that XWBSCR11 functions cooperatively with FoxH1 (Fast-1) to stimulate DE-dependent transcription. We propose a mechanism in which FoxH1 functions together with Smads as a cofactor for the recruitment of transcription factors like XWBSCR11 in the process of activin/nodal-mediated gsc-specific induction. This mechanism provides considerable opportunities for modulation of transcription across a variety of activin/nodal-inducible genes, increasing diversity in promoter selection, thus leading to the differential induction of activin/nodal target genes.

  2. A smallest 6 kda metalloprotease, mini-matrilysin, in living world: a revolutionary conserved zinc-dependent proteolytic domain- helix-loop-helix catalytic zinc binding domain (ZBD)

    PubMed Central

    2012-01-01

    Background The Aim of this study is to study the minimum zinc dependent metalloprotease catalytic folding motif, helix B Met loop-helix C, with proteolytic catalytic activities in metzincin super family. The metzincin super family share a catalytic domain consisting of a twisted five-stranded β sheet and three long α helices (A, B and C). The catalytic zinc is at the bottom of the cleft and is ligated by three His residues in the consensus sequence motif, HEXXHXXGXXH, which is located in helix B and part of the adjacent Met turn region. An interesting question is - what is the minimum portion of the enzyme that still possesses catalytic and inhibitor recognition?” Methods We have expressed a 60-residue truncated form of matrilysin which retains only the helix B-Met turn-helix C region and deletes helix A and the five-stranded β sheet which form the upper portion of the active cleft. This is only 1/4 of the full catalytic domain. The E. coli derived 6 kDa MMP-7 ZBD fragments were purified and refolded. The proteolytic activities were analyzed by Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 peptide assay and CM-transferrin zymography analysis. SC44463, BB94 and Phosphoramidon were computationally docked into the 3day structure of the human MMP7 ZBD and TAD and thermolysin using the docking program GOLD. Results This minimal 6 kDa matrilysin has been refolded and shown to have proteolytic activity in the Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 peptide assay. Triton X-100 and heparin are important factors in the refolding environment for this mini-enzyme matrilysin. This minienzyme has the proteolytic activity towards peptide substrate, but the hexamer and octamer of the mini MMP-7 complex demonstrates the CM-transferrin proteolytic activities in zymographic analysis. Peptide digestion is inhibited by SC44463, specific MMP7 inhibitors, but not phosphorimadon. Interestingly, the mini MMP-7 can be processed by autolysis and producing ~ 6 ~ 7 kDa fragments. Thus, many of the functions of the enzyme are retained indicating that the helix B-Met loop-helix C is the minimal functional “domain” found to date for the matrixin family. Conclusions The helix B-Met loop-helix C folding conserved in metalloprotease metzincin super family is able to facilitate proteolytic catalysis for specific substrate and inhibitor recognition. The autolysis processing and producing 6 kDa mini MMP-7 is the smallest metalloprotease in living world. PMID:22642296

  3. Rate and Sequence of Positive and Negative Poles in Basic Concept Acquisition.

    ERIC Educational Resources Information Center

    Bracken, Bruce A.

    1988-01-01

    Ninety-eight concepts from the Bracken Basic Concept Scale were paired, polarity (positive or negative) was assigned, and concept pairs were contrasted with 1,109 children ages three through seven to determine rate and sequence of polar concept acquisition. For 70 percent of the pairs the positive-pole concept was acquired before the negative-pole…

  4. The MYB182 Protein Down-Regulates Proanthocyanidin and Anthocyanin Biosynthesis in Poplar by Repressing Both Structural and Regulatory Flavonoid Genes1[OPEN

    PubMed Central

    Yoshida, Kazuko; Ma, Dawei; Constabel, C. Peter

    2015-01-01

    Trees in the genus Populus (poplar) contain phenolic secondary metabolites including the proanthocyanidins (PAs), which help to adapt these widespread trees to diverse environments. The transcriptional activation of PA biosynthesis in response to herbivory and ultraviolet light stress has been documented in poplar leaves, and a regulator of this process, the R2R3-MYB transcription factor MYB134, has been identified. MYB134-overexpressing transgenic plants show a strong high-PA phenotype. Analysis of these transgenic plants suggested the involvement of additional MYB transcription factors, including repressor-like MYB factors. Here, MYB182, a subgroup 4 MYB factor, was found to act as a negative regulator of the flavonoid pathway. Overexpression of MYB182 in hairy root culture and whole poplar plants led to reduced PA and anthocyanin levels as well as a reduction in the expression of key flavonoid genes. Similarly, a reduced accumulation of transcripts of a MYB PA activator and a basic helix-loop-helix cofactor was observed in MYB182-overexpressing hairy roots. Transient promoter activation assays in poplar cell culture demonstrated that MYB182 can disrupt transcriptional activation by MYB134 and that the basic helix-loop-helix-binding motif of MYB182 was essential for repression. Microarray analysis of transgenic plants demonstrated that down-regulated targets of MYB182 also include shikimate pathway genes. This work shows that MYB182 plays an important role in the fine-tuning of MYB134-mediated flavonoid metabolism. PMID:25624398

  5. Cytokinins negatively regulate the root iron uptake machinery in Arabidopsis through a growth-dependent pathway.

    PubMed

    Séguéla, Mathilde; Briat, Jean-François; Vert, Grégory; Curie, Catherine

    2008-07-01

    Plants display a number of biochemical and developmental responses to low iron availability in order to increase iron uptake from the soil. The ferric-chelate reductase FRO2 and the ferrous iron transporter IRT1 control iron entry from the soil into the root epidermis. In Arabidopsis, expression of IRT1 and FRO2 is tightly controlled to maintain iron homeostasis, and involves local and long-distance signals, as well as transcriptional and post-transcriptional events. FIT encodes a putative basic helix-loop-helix (bHLH) transcription factor that regulates iron uptake responses in Arabidopsis. Here, we uncover a new regulation of the root iron uptake genes. We show that IRT1, FRO2 and FIT are repressed by the exogenous addition of cytokinins (CKs), and that this repression acts at the level of transcript accumulation, and depends on the AHK3 and CRE1 CK receptors. The CKs and iron-deficiency signals act through distinct pathways to regulate the soil iron uptake genes, as (i) CK repression is independent of the iron status, (ii) IRT1 and FRO2 downregulation is unchanged in a fit loss-of-function mutant, indicating that FIT does not mediate CK repression, and (iii) the iron-regulated genes AtNRAMP3 and AtNRAMP4 are not downregulated by CKs. We show that root growth-inhibitory conditions, such as abiotic stresses (mannitol, NaCl) and hormonal treatments (auxin, abscissic acid), repress the iron starvation response genes. We propose that CKs control the root iron uptake machinery through a root growth dependent pathway in order to adapt nutrient uptake to the demand of the plant.

  6. Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10.

    PubMed

    Moreno, Javier E; Shyu, Christine; Campos, Marcelo L; Patel, Lalita C; Chung, Hoo Sun; Yao, Jian; He, Sheng Yang; Howe, Gregg A

    2013-06-01

    The plant hormone jasmonate (JA) activates gene expression by promoting ubiquitin-dependent degradation of jasmonate ZIM domain (JAZ) transcriptional repressor proteins. A key feature of all JAZ proteins is the highly conserved Jas motif, which mediates both JAZ degradation and JAZ binding to the transcription factor MYC2. Rapid expression of JAZ genes in response to JA is thought to attenuate JA responses, but little is known about the mechanisms by which newly synthesized JAZ proteins exert repression in the presence of the hormone. Here, we show in Arabidopsis (Arabidopsis thaliana) that desensitization to JA is mediated by an alternative splice variant (JAZ10.4) of JAZ10 that lacks the Jas motif. Unbiased protein-protein interaction screens identified three related basic helix-loop-helix transcription factors (MYC2, MYC3, and MYC4) and the corepressor NINJA as JAZ10.4-binding partners. We show that the amino-terminal region of JAZ10.4 contains a cryptic MYC2-binding site that resembles the Jas motif and that the ZIM motif of JAZ10.4 functions as a transferable repressor domain whose activity is associated with the recruitment of NINJA. Functional studies showed that the expression of JAZ10.4 from the native JAZ10 promoter complemented the JA-hypersensitive phenotype of a jaz10 mutant. Moreover, treatment of these complemented lines with JA resulted in the rapid accumulation of JAZ10.4 protein. Our results provide an explanation for how the unique domain architecture of JAZ10.4 links transcription factors to a corepressor complex and suggest how JA-induced transcription and alternative splicing of JAZ10 premessenger RNA creates a regulatory circuit to attenuate JA responses.

  7. Basic principles of test-negative design in evaluating influenza vaccine effectiveness.

    PubMed

    Fukushima, Wakaba; Hirota, Yoshio

    2017-08-24

    Based on the unique characteristics of influenza, the concept of "monitoring" influenza vaccine effectiveness (VE) across the seasons using the same observational study design has been developed. In recent years, there has been a growing number of influenza VE reports using the test-negative design, which can minimize both misclassification of diseases and confounding by health care-seeking behavior. Although the test-negative designs offer considerable advantages, there are some concerns that widespread use of the test-negative design without knowledge of the basic principles of epidemiology could produce invalid findings. In this article, we briefly review the basic concepts of the test-negative design with respect to classic study design such as cohort studies or case-control studies. We also mention selection bias, which may be of concern in some countries where rapid diagnostic testing is frequently used in routine clinical practices, as in Japan. Copyright © 2017. Published by Elsevier Ltd.

  8. Cdk2-dependent phosphorylation of Id2 modulates activity of E2A-related transcription factors.

    PubMed Central

    Hara, E; Hall, M; Peters, G

    1997-01-01

    The helix-loop-helix (HLH) protein Id2 is thought to affect the balance between cell growth and differentiation by negatively regulating the function of basic-helix-loop-helix (bHLH) transcription factors. Id2 acts by forming heterodimers that are unable to bind to specific (E-box) DNA sequences. Here we show that this activity can be overcome by phosphorylation of a serine residue within a consensus target site for cyclin-dependent kinases (Cdks). In vitro, Id2 can be phosphorylated by either cyclin E-Cdk2 or cyclin A-Cdk2 but not by cyclin D-dependent kinases. Analogous phosphorylation occurs in serum-stimulated human diploid fibroblasts at a time in late G1 consistent with the appearance of active cyclin E-Cdk2. The phosphorylation of Id2 in these cells correlates with the restoration of a distinct E-box-dependent DNA-binding complex, suggesting that the levels of this complex are modulated by both the abundance and phosphorylation status of Id2. These data provide a link between cyclin-dependent kinases and bHLH transcription factors that may be critical for the regulation of cell proliferation and differentiation. PMID:9029153

  9. The bHLH Transcription Factor HBI1 Mediates the Trade-Off between Growth and Pathogen-Associated Molecular Pattern–Triggered Immunity in Arabidopsis[W][OPEN

    PubMed Central

    Fan, Min; Bai, Ming-Yi; Kim, Jung-Gun; Wang, Tina; Oh, Eunkyoo; Chen, Lawrence; Park, Chan Ho; Son, Seung-Hyun; Kim, Seong-Ki; Mudgett, Mary Beth; Wang, Zhi-Yong

    2014-01-01

    The trade-off between growth and immunity is crucial for survival in plants. However, the mechanism underlying growth-immunity balance has remained elusive. The PRE-IBH1-HBI1 tripartite helix-loop-helix/basic helix-loop-helix module is part of a central transcription network that mediates growth regulation by several hormonal and environmental signals. Here, genome-wide analyses of HBI1 target genes show that HBI1 regulates both overlapping and unique targets compared with other DNA binding components of the network in Arabidopsis thaliana, supporting a role in specifying network outputs and fine-tuning feedback regulation. Furthermore, HBI1 negatively regulates a subset of genes involved in immunity, and pathogen-associated molecular pattern (PAMP) signals repress HBI1 transcription. Constitutive overexpression and loss-of-function experiments show that HBI1 inhibits PAMP-induced growth arrest, defense gene expression, reactive oxygen species production, and resistance to pathogen. These results show that HBI1, as a component of the central growth regulation circuit, functions as a major node of crosstalk that mediates a trade-off between growth and immunity in plants. PMID:24550223

  10. Negative Feedback Control of Jasmonate Signaling by an Alternative Splice Variant of JAZ101[C][W][OA

    PubMed Central

    Moreno, Javier E.; Shyu, Christine; Campos, Marcelo L.; Patel, Lalita C.; Chung, Hoo Sun; Yao, Jian; He, Sheng Yang; Howe, Gregg A.

    2013-01-01

    The plant hormone jasmonate (JA) activates gene expression by promoting ubiquitin-dependent degradation of jasmonate ZIM domain (JAZ) transcriptional repressor proteins. A key feature of all JAZ proteins is the highly conserved Jas motif, which mediates both JAZ degradation and JAZ binding to the transcription factor MYC2. Rapid expression of JAZ genes in response to JA is thought to attenuate JA responses, but little is known about the mechanisms by which newly synthesized JAZ proteins exert repression in the presence of the hormone. Here, we show in Arabidopsis (Arabidopsis thaliana) that desensitization to JA is mediated by an alternative splice variant (JAZ10.4) of JAZ10 that lacks the Jas motif. Unbiased protein-protein interaction screens identified three related basic helix-loop-helix transcription factors (MYC2, MYC3, and MYC4) and the corepressor NINJA as JAZ10.4-binding partners. We show that the amino-terminal region of JAZ10.4 contains a cryptic MYC2-binding site that resembles the Jas motif and that the ZIM motif of JAZ10.4 functions as a transferable repressor domain whose activity is associated with the recruitment of NINJA. Functional studies showed that the expression of JAZ10.4 from the native JAZ10 promoter complemented the JA-hypersensitive phenotype of a jaz10 mutant. Moreover, treatment of these complemented lines with JA resulted in the rapid accumulation of JAZ10.4 protein. Our results provide an explanation for how the unique domain architecture of JAZ10.4 links transcription factors to a corepressor complex and suggest how JA-induced transcription and alternative splicing of JAZ10 premessenger RNA creates a regulatory circuit to attenuate JA responses. PMID:23632853

  11. Two Sides of Emotion: Exploring Positivity and Negativity in Six Basic Emotions across Cultures

    PubMed Central

    An, Sieun; Ji, Li-Jun; Marks, Michael; Zhang, Zhiyong

    2017-01-01

    We employ a novel paradigm to test whether six basic emotions (sadness, fear, disgust, anger, surprise, and happiness; Ekman, 1992) contain both negativity and positivity, as opposed to consisting of a single continuum between negative and positive. We examined the perceived negativity and positivity of these emotions in terms of their affective and cognitive components among Korean, Chinese, Canadian, and American students. Assessing each emotion at the cognitive and affective levels cross-culturally provides a fairly comprehensive picture of the positivity and negativity of emotions. Affective components were rated as more divergent than cognitive components. Cross-culturally, Americans and Canadians gave higher valence ratings to the salient valence of each emotion, and lower ratings to the non-salient valence of an emotion, compared to Chinese and Koreans. The results suggest that emotions encompass both positivity and negativity, and there were cross-cultural differences in reported emotions. This paradigm complements existing emotion theories, building on past research and allowing for more parsimonious explanations of cross-cultural research on emotion. PMID:28473791

  12. Two Sides of Emotion: Exploring Positivity and Negativity in Six Basic Emotions across Cultures.

    PubMed

    An, Sieun; Ji, Li-Jun; Marks, Michael; Zhang, Zhiyong

    2017-01-01

    We employ a novel paradigm to test whether six basic emotions (sadness, fear, disgust, anger, surprise, and happiness; Ekman, 1992) contain both negativity and positivity, as opposed to consisting of a single continuum between negative and positive. We examined the perceived negativity and positivity of these emotions in terms of their affective and cognitive components among Korean, Chinese, Canadian, and American students. Assessing each emotion at the cognitive and affective levels cross-culturally provides a fairly comprehensive picture of the positivity and negativity of emotions. Affective components were rated as more divergent than cognitive components. Cross-culturally, Americans and Canadians gave higher valence ratings to the salient valence of each emotion, and lower ratings to the non-salient valence of an emotion, compared to Chinese and Koreans. The results suggest that emotions encompass both positivity and negativity, and there were cross-cultural differences in reported emotions. This paradigm complements existing emotion theories, building on past research and allowing for more parsimonious explanations of cross-cultural research on emotion.

  13. A pilot study examining if satisfaction of basic needs can ameliorate negative effects of shift work

    PubMed Central

    SAKSVIK-LEHOUILLIER, Ingvild; HETLAND, Hilde

    2015-01-01

    The objective of the present study was to investigate if satisfaction of the basic needs of autonomy, competence, and relatedness is related to shift work tolerance, specifically physical and mental fatigue, insomnia, and digestive troubles in a sample of shift workers. This is a cross-sectional pilot questionnaire study, including 252 shift workers employed in a municipality in Norway. Autonomy was negatively related to physical fatigue and digestive troubles, while competence was negatively related to mental fatigue. Relatedness showed significant correlations with insomnia and mental fatigue, but did not reach significance in the regression model controlling for the two other basic needs as well as work scheduling, night work exposure, and sleep medication. Sleep medication was significant in the final regression model for insomnia, but unrelated to fatigue and digestive troubles. The demographic variables, work hours per week, work schedule, and night work exposure were unrelated to all four measures of shift work tolerance. Autonomy and competence may be more important for fatigue and digestive troubles among shift workers than work arrangement variables, night work exposure, and sleep medication use. PMID:26423327

  14. A pilot study examining if satisfaction of basic needs can ameliorate negative effects of shift work.

    PubMed

    Saksvik-Lehouillier, Ingvild; Hetland, Hilde

    2016-01-01

    The objective of the present study was to investigate if satisfaction of the basic needs of autonomy, competence, and relatedness is related to shift work tolerance, specifically physical and mental fatigue, insomnia, and digestive troubles in a sample of shift workers. This is a cross-sectional pilot questionnaire study, including 252 shift workers employed in a municipality in Norway. Autonomy was negatively related to physical fatigue and digestive troubles, while competence was negatively related to mental fatigue. Relatedness showed significant correlations with insomnia and mental fatigue, but did not reach significance in the regression model controlling for the two other basic needs as well as work scheduling, night work exposure, and sleep medication. Sleep medication was significant in the final regression model for insomnia, but unrelated to fatigue and digestive troubles. The demographic variables, work hours per week, work schedule, and night work exposure were unrelated to all four measures of shift work tolerance. Autonomy and competence may be more important for fatigue and digestive troubles among shift workers than work arrangement variables, night work exposure, and sleep medication use.

  15. The NEUROD gene maps to human chromosome 2q32 and mouse chromosome 2

    SciTech Connect

    Tamimi, R.; Dyer-Montgomery, K.; Hernandez, R.; Tapscott, S.J.

    1996-06-15

    The Neurod gene is a basic-helix-loop-helix gene that regulates neurogenesis and is identical to the hamster beta2 gene that was cloned as a regulator of insulin transcription. Here we report the cloning of human NEUROD and mapping of the gene to human chromosome 2q32 and to mouse chromosome 2. 12 refs., 1 fig.

  16. NEUROD2 and NEUROD3 genes map to human chromosomes 17q12 and 5q23-q31 and mouse chromosomes 11 and 13, respectively

    SciTech Connect

    Tamimi, R.M.; Montgomery-Dyer, K.; Tapscott, S.J.

    1997-03-01

    NEUROD2 and NEUROD3 are transcription factors involved in neurogenesis that are related to the basic helix-loop-helix protein NEUROD. NEUROD2 maps to human chromosome 17q12 and mouse chromosome 11. NEUROD3 maps to human chromosome 5q23-q31 and mouse chromosome 13. 16 refs., 2 figs.

  17. Discovery of the porcine NGN3 gene and testing its endocrine function in the pig

    USDA-ARS?s Scientific Manuscript database

    Neurogenin 3 (NGN3) is a member of the basic helix-loop-helix transcription factor family. NGN3 is both necessary and sufficient to drive endocrine differentiation in the developing pancreas in mouse and humans. Until now, the sequence for NGN3 eluded discovery despite completion of the pig genome a...

  18. Functional profiling identifies genes involved in organ specific branches of the PIF3 regulatory network in Arabidopsis

    USDA-ARS?s Scientific Manuscript database

    The phytochrome (phy)-interacting basic helix-loop-helix transcription factors (PIFs) constitutively sustain the etiolated state of dark-germinated seedlings by actively repressing deetiolation in darkness. This action is rapidly reversed upon light exposure by phy-induced proteolytic degradation of...

  19. Phytochrome Induces Rapid PIF5 Phosphorylation and Degradation in Response to Red-Light Activation

    USDA-ARS?s Scientific Manuscript database

    The phytochrome (phy) family of sensory photoreceptors (phyA–phyE in Arabidopsis thaliana) induces changes in target-gene expression upon light-induced translocation to the nucleus, where certain members interact with selected members of the constitutively nuclear basic helix-loop-helix transcriptio...

  20. The Arabidopsis Phytochrome-Interacting Factor PIF7, Together with PIF3 and PIF4, Regulates Responses to Prolonged Red Light by Modulating phyB Levels

    USDA-ARS?s Scientific Manuscript database

    We show that a previously uncharacterized Arabidopsis thaliana basic helix-loop-helix (bHLH) phytochrome interacting factor (PIF), designated PIF7, interacts specifically with the far-red light–absorbing Pfr form of phyB through a conserved domain called the active phyB binding motif. Similar to PIF...

  1. An 'oligarchy' rules neural development.

    PubMed

    Rowitch, David H; Lu, Q Richard; Kessaris, Nicoletta; Richardson, William D

    2002-08-01

    Recent reports show that Olig genes, which encode the basic helix-loop-helix Olig transcription factors, are essential for development of oligodendrocytes. Surprisingly, Olig function is also required for formation of somatic motor neurons. These findings alter our views of how the oligodendrocyte lineage is generated and raise further questions about the underlying developmental relationships between neurons and glia.

  2. Structure-Function Analysis of the v-Myc Oncoprotein

    DTIC Science & Technology

    1997-06-01

    transcription activation domain (TAD) and a carboxy-terminal basic helix-loop-helix/ leucine zipper (bHLH/LZ) motif (Henriksson and Luscher , 1996). Work by...U. (1996). Active repression mechanisms of eukaryotic transcription repressors. Trends in Genetics 12: 229-234. Henriksson, M. and Luscher , B. (1996

  3. Overexpression of Id-1 protein is a marker in colorectal cancer progression.

    PubMed

    Zhao, Zeng-Ren; Zhang, Zhi-Yong; Zhang, Hong; Jiang, Li; Wang, Ming-Wei; Sun, Xiao-Feng

    2008-02-01

    The inhibitor of differentiation/DNA binding 1 (Id-1), a negative regulator of basic helix-loop-helix transcription factors, plays an important role in the regulation of cell proliferation and differentiation. We examined the Id-1 expression by immunohistochemistry in 9 adenomas, 79 primary colorectal adenocarcinomas matched with 40 adjacent normal mucosa specimens and its relationship with clinicopathological factors. The Id-1 expression was increased in the carcinoma compared to the adjacent normal mucosa either in the unmatched and matched samples or to the adenoma. There was no significant difference in the Id-1 expression between normal mucosa and adenoma. The Id-1 expression of carcinoma was increased from Dukes' stages A to B, to C and to D. The cases with lymph node metastasis had a higher rate of a stronger Id-1 expression than those without lymph node metastasis. In conclusion, Id-1 overexpression plays an important role in colorectal cancer progression.

  4. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes.

    PubMed

    Yoshida, Kazuko; Ma, Dawei; Constabel, C Peter

    2015-03-01

    Trees in the genus Populus (poplar) contain phenolic secondary metabolites including the proanthocyanidins (PAs), which help to adapt these widespread trees to diverse environments. The transcriptional activation of PA biosynthesis in response to herbivory and ultraviolet light stress has been documented in poplar leaves, and a regulator of this process, the R2R3-MYB transcription factor MYB134, has been identified. MYB134-overexpressing transgenic plants show a strong high-PA phenotype. Analysis of these transgenic plants suggested the involvement of additional MYB transcription factors, including repressor-like MYB factors. Here, MYB182, a subgroup 4 MYB factor, was found to act as a negative regulator of the flavonoid pathway. Overexpression of MYB182 in hairy root culture and whole poplar plants led to reduced PA and anthocyanin levels as well as a reduction in the expression of key flavonoid genes. Similarly, a reduced accumulation of transcripts of a MYB PA activator and a basic helix-loop-helix cofactor was observed in MYB182-overexpressing hairy roots. Transient promoter activation assays in poplar cell culture demonstrated that MYB182 can disrupt transcriptional activation by MYB134 and that the basic helix-loop-helix-binding motif of MYB182 was essential for repression. Microarray analysis of transgenic plants demonstrated that down-regulated targets of MYB182 also include shikimate pathway genes. This work shows that MYB182 plays an important role in the fine-tuning of MYB134-mediated flavonoid metabolism. © 2015 American Society of Plant Biologists. All Rights Reserved.

  5. Carboxylation of cytosine (5caC) in the CG dinucleotide in the E-box motif (CGCAG|GTG) increases binding of the Tcf3|Ascl1 helix-loop-helix heterodimer 10-fold.

    PubMed

    Golla, Jaya Prakash; Zhao, Jianfei; Mann, Ishminder K; Sayeed, Syed K; Mandal, Ajeet; Rose, Robert B; Vinson, Charles

    2014-06-27

    Three oxidative products of 5-methylcytosine (5mC) occur in mammalian genomes. We evaluated if these cytosine modifications in a CG dinucleotide altered DNA binding of four B-HLH homodimers and three heterodimers to the E-Box motif CGCAG|GTG. We examined 25 DNA probes containing all combinations of cytosine in a CG dinucleotide and none changed binding except for carboxylation of cytosine (5caC) in the strand CGCAG|GTG. 5caC enhanced binding of all examined B-HLH homodimers and heterodimers, particularly the Tcf3|Ascl1 heterodimer which increased binding ~10-fold. These results highlight a potential function of the oxidative products of 5mC, changing the DNA binding of sequence-specific transcription factors.

  6. Improved wound management by regulated negative pressure-assisted wound therapy and regulated, oxygen- enriched negative pressure-assisted wound therapy through basic science research and clinical assessment.

    PubMed

    Topaz, Moris

    2012-05-01

    Regulated negative pressure-assisted wound therapy (RNPT) should be regarded as a state-of-the-art technology in wound treatment and the most important physical, nonpharmaceutical, platform technology developed and applied for wound healing in the last two decades. RNPT systems maintain the treated wound's environment as a semi-closed, semi-isolated system applying external physical stimulations to the wound, leading to biological and biochemical effects, with the potential to substantially influence wound-host interactions, and when properly applied may enhance wound healing. RNPT is a simple, safe, and affordable tool that can be utilized in a wide range of acute and chronic conditions, with reduced need for complicated surgical procedures, and antibiotic treatment. This technology has been shown to be effective and safe, saving limbs and lives on a global scale. Regulated, oxygen-enriched negative pressure-assisted wound therapy (RO-NPT) is an innovative technology, whereby supplemental oxygen is concurrently administered with RNPT for their synergistic effect on treatment and prophylaxis of anaerobic wound infection and promotion of wound healing. Understanding the basic science, modes of operation and the associated risks of these technologies through their fundamental clinical mechanisms is the main objective of this review.

  7. Effect of basic physical parameters to control plasma meniscus and beam halo formation in negative ion sources

    SciTech Connect

    Miyamoto, K.; Okuda, S.; Nishioka, S.; Hatayama, A.

    2013-09-14

    Our previous study shows that the curvature of the plasma meniscus causes the beam halo in the negative ion sources: the negative ions extracted from the periphery of the meniscus are over-focused in the extractor due to the electrostatic lens effect, and consequently become the beam halo. In this article, the detail physics of the plasma meniscus and beam halo formation is investigated with two-dimensional particle-in-cell simulation. It is shown that the basic physical parameters such as the H{sup −} extraction voltage and the effective electron confinement time significantly affect the formation of the plasma meniscus and the resultant beam halo since the penetration of electric field for negative ion extraction depends on these physical parameters. Especially, the electron confinement time depends on the characteristic time of electron escape along the magnetic field as well as the characteristic time of electron diffusion across the magnetic field. The plasma meniscus penetrates deeply into the source plasma region when the effective electron confinement time is short. In this case, the curvature of the plasma meniscus becomes large, and consequently the fraction of the beam halo increases.

  8. Phorbol ester-induced transcription of a fibroblast growth factor-binding protein is modulated by a complex interplay of positive and negative regulatory promoter elements.

    PubMed

    Harris, V K; Liaudet-Coopman, E D; Boyle, B J; Wellstein, A; Riegel, A T

    1998-07-24

    Earlier studies from our laboratory showed that a secreted binding protein for fibroblast growth factors (FGF-BP) is expressed at high levels in squamous cell carcinoma (SCC) cell lines. Overexpression studies or conversely reduced expression of FGF-BP by ribozyme targeting have elucidated a direct role of this protein in angiogenesis during tumor development. We have also observed a significant up-regulation of FGF-BP during TPA (12-O-tetradecanoylphorbol-13-acetate) promotion of skin cancer. Here we investigate the mechanism of TPA induction of FGF-BP gene expression in the human ME-180 SCC cell line. We found that TPA increased FGF-BP mRNA levels in a time- and dose-dependent manner mediated via the protein kinase C signal transduction pathway. Results from actinomycin D and cycloheximide experiments as well as nuclear transcription assays revealed that TPA up-regulated the steady-state levels of FGF-BP mRNA by increasing its rate of gene transcription independently of de novo protein synthesis. We isolated the human FGF-BP promoter and determined by deletion analysis that TPA regulatory elements were all contained in the first 118 base pairs upstream of the transcription start site. Further mutational analysis revealed that full TPA induction required interplay between several regulatory elements with homology to Ets, AP-1, and CAATT/enhancer binding protein C/EBP sites. In addition, deletion or mutation of a 10-base pair region juxtaposed to the AP-1 site dramatically increased TPA induced FGF-BP gene expression. This region represses the extent of the FGF-BP promoter response to TPA and contained sequences recognized by the family of E box helix-loop-helix transcription factors. Gel shift analysis showed specific and TPA-inducible protein binding to the Ets, AP-1, and C/EBP sites. Furthermore, distinct, specific, and TPA-inducible binding to the imperfect E box repressor element was also apparent. Overall, our data indicate that TPA effects on FGF-BP gene

  9. Comparison of chiral separation of basic drugs in capillary electrophoresis and liquid chromatography using neutral and negatively charged cyclodextrins.

    PubMed

    Kwaterczak, Arkadiusz; Duszczyk, Kazimiera; Bielejewska, Anna

    2009-07-10

    Liquid chromatography (LC) and capillary electrophoresis (CE) are very widely used as chiral separation methods. In this publication we try to find if the results obtained in CE and LC with the chiral selector added to the electrolyte and the mobile phase, respectively, can be used as tools for studying weak stereoselective interactions, and how this information can be useful for optimizing chiral separation processes. The manuscript presents a systematic comparison of chiral discrimination of model compounds in HPLC and CE using neutral and negatively charged cyclodextrins. The enantiomeric separation of basic chiral pharmaceuticals such as pheniramine, brompheniramine, metoxyphenamine, cyclopentolate, doxylamine and ketamine was investigated in capillary electrophoresis (CE) and liquid chromatography (HPLC) using negatively charged sulfated-beta-cyclodextrin (S-beta-CD) and neutral cyclodextrins (CDs). The apparent stability constants between the model compounds and cyclodextrins were estimated in both techniques. We discuss the influence of the stability constant and K1/K2 ratio of the investigated complexes on chiral separation obtained in both techniques.

  10. Induction of motor neuron differentiation by transduction of Olig2 protein.

    PubMed

    Mie, Masayasu; Kaneko, Mami; Henmi, Fumiaki; Kobatake, Eiry

    2012-10-26

    Olig2 protein, a member of the basic helix-loop-helix transcription factor family, was introduced into the mouse embryonic carcinoma cell line P19 for induction of motor neuron differentiation. We show that Olig2 protein has the ability to permeate the cell membrane without the addition of a protein transduction domain (PTD), similar to other basic helix-loop-helix transcription factors such as MyoD and NeuroD2. Motor neuron differentiation was evaluated for the elongation of neurites and the expression of choline acetyltransferase (ChAT) mRNA, a differentiation marker of motor neurons. By addition of Olig2 protein, motor neuron differentiation was induced in P19 cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Cloning of the Ah-receptor cDNA reveals a distinctive ligand-activated transcription factor.

    PubMed Central

    Burbach, K M; Poland, A; Bradfield, C A

    1992-01-01

    A cDNA encoding the murine Ah receptor (Ahb-1 allele for aromatic hydrocarbon responsiveness) has been isolated and characterized. Analysis of the deduced protein sequence revealed a region with similarity to the basic region/helix-loop-helix (BR/HLH) motif found in many transcription factors that undergo dimerization for function. In addition to the BR/HLH domain, the N-terminal domain of the Ah receptor has extensive sequence similarity to the human ARNT (aryl hydrocarbon receptor nuclear translocator) protein and two regulatory proteins of Drosophila, Sim and Per. Photoaffinity labeling and peptide mapping studies indicate that the Ah receptor binds agonist at a domain that lies within this conserved N-terminal domain. The Ah receptor appears to be a ligand-activated transcription factor with a helix-loop-helix motif similar to those found in a variety of DNA-binding proteins, including Myc and MyoD. Images PMID:1325649

  12. Arabidopsis bZIP16 Transcription Factor Integrates Light and Hormone Signaling Pathways to Regulate Early Seedling Development[C][W][OA

    PubMed Central

    Hsieh, Wen-Ping; Hsieh, Hsu-Liang; Wu, Shu-Hsing

    2012-01-01

    Transcriptomic adjustment plays an important role in Arabidopsis thaliana seed germination and deetiolation in response to environmental light signals. The G-box cis-element is commonly present in promoters of genes that respond positively or negatively to the light signal. In pursuing additional transcriptional regulators that modulate light-mediated transcriptome changes, we identified bZIP16, a basic region/Leu zipper motif transcription factor, by G-box DNA affinity chromatography. We confirmed that bZIP16 has G-box–specific binding activity. Analysis of bzip16 mutants revealed that bZIP16 is a negative regulator in light-mediated inhibition of cell elongation but a positive regulator in light-regulated seed germination. Transcriptome analysis supported that bZIP16 is primarily a transcriptional repressor regulating light-, gibberellic acid (GA)–, and abscisic acid (ABA)–responsive genes. Chromatin immunoprecipitation analysis revealed that bZIP16 could directly target ABA-responsive genes and RGA-LIKE2, a DELLA gene in the GA signaling pathway. bZIP16 could also indirectly repress the expression of PHYTOCHROME INTERACTING FACTOR3-LIKE5, which encodes a basic helix-loop-helix protein coordinating hormone responses during seed germination. By repressing the expression of these genes, bZIP16 functions to promote seed germination and hypocotyl elongation during the early stages of Arabidopsis seedling development. PMID:23104829

  13. Vsx2 in the zebrafish retina: restricted lineages through derepression

    PubMed Central

    Vitorino, Marta; Jusuf, Patricia R; Maurus, Daniel; Kimura, Yukiko; Higashijima, Shin-ichi; Harris, William A

    2009-01-01

    Background The neurons in the vertebrate retina arise from multipotent retinal progenitor cells (RPCs). It is not clear, however, which progenitors are multipotent or why they are multipotent. Results In this study we show that the homeodomain transcription factor Vsx2 is initially expressed throughout the retinal epithelium, but later it is downregulated in all but a minor population of bipolar cells and all Müller glia. The Vsx2-negative daughters of Vsx2-positive RPCs divide and give rise to all other cell types in the retina. Vsx2 is a repressor whose targets include transcription factors such as Vsx1, which is expressed in the progenitors of distinct non-Vsx2 bipolars, and the basic helix-loop-helix transcription factor Ath5, which restricts the fate of progenitors to retinal ganglion cells, horizontal cells, amacrine cells and photoreceptors fates. Foxn4, expressed in the progenitors of amacrine and horizontal cells, is also negatively regulated by Vsx2. Conclusion Our data thus suggest Vsx2-positive RPCs are fully multipotent retinal progenitors and that when Vsx2 is downregulated, Vsx2-negative progenitors escape Vsx2 repression and so are able to express factors that restrict lineage potential. PMID:19344499

  14. Over-Expressed Twist Associates with Markers of Epithelial Mesenchymal Transition and Predicts Poor Prognosis in Breast Cancers via ERK and Akt Activation

    PubMed Central

    Liang, Yuan-Ke; Chen, Wei-Ling; Zhang, Fan; Bai, Jing-Wen; Qiu, Si-Qi; Du, Cai-Wen; Huang, Wen-He; Zhang, Guo-Jun

    2015-01-01

    Overexpression of Twist, a highly conserved basic helix-loop-helix transcription factor, is associated with epithelial-mesenchymal transition (EMT) and predicts poor prognosis in various kinds of cancers, including breast cancer. In order to further clarify Twist’s role in breast cancer, we detected Twist expression in breast cancer tissues by immunohistochemistry. Twist expression was observed in 54% (220/408) of breast cancer patients and was positively associated with tumor size, Ki67, VEGF-C and HER2 expression. Conversely, Twist was negatively associated with estrogen receptor (ER), progesterone receptor (PgR) and E-cadherin expression. Patients with Twist expression had a poorer prognosis for 30-month disease free survival (DFS) (82.9%) than patients with negative Twist (92.3%). Overexpression of Twist led to dramatic changes in cellular morphology, proliferation, migratory/invasive capability, and expression of EMT-related biomarkers in breast cancer cells. Moreover, we show that Twist serves as a driver of tumorigenesis, as well as an inducer of EMT, at least in part, through activation of the Akt and extracellular signal-regulated protein kinase (ERK) pathways which are critical for Twist-mediated EMT. Our results demonstrate that Twist expression is an important prognostic factor in breast cancer patients. PMID:26295469

  15. PHYTOCHROME INTERACTING FACTOR3 Associates with the Histone Deacetylase HDA15 in Repression of Chlorophyll Biosynthesis and Photosynthesis in Etiolated Arabidopsis Seedlings[W][OA

    PubMed Central

    Liu, Xuncheng; Chen, Chia-Yang; Wang, Ko-Ching; Luo, Ming; Tai, Ready; Yuan, Lianyu; Zhao, Minglei; Yang, Songguang; Tian, Gang; Cui, Yuhai; Hsieh, Hsu-Liang; Wu, Keqiang

    2013-01-01

    PHYTOCHROME INTERACTING FACTOR3 (PIF3) is a key basic helix-loop-helix transcription factor of Arabidopsis thaliana that negatively regulates light responses, repressing chlorophyll biosynthesis, photosynthesis, and photomorphogenesis in the dark. However, the mechanism for the PIF3-mediated transcription regulation remains largely unknown. In this study, we found that the REDUCED POTASSIUM DEPENDENCY3/HISTONE DEACETYLASE1-type histone deacetylase HDA15 directly interacted with PIF3 in vivo and in vitro. Genome-wide transcriptome analysis revealed that HDA15 acts mainly as a transcriptional repressor and negatively regulates chlorophyll biosynthesis and photosynthesis gene expression in etiolated seedlings. HDA15 and PIF3 cotarget to the genes involved in chlorophyll biosynthesis and photosynthesis in the dark and repress gene expression by decreasing the acetylation levels and RNA Polymerase II–associated transcription. The binding of HDA15 to the target genes depends on the presence of PIF3. In addition, PIF3 and HDA15 are dissociated from the target genes upon exposure to red light. Taken together, our results indicate that PIF3 associates with HDA15 to repress chlorophyll biosynthetic and photosynthetic genes in etiolated seedlings. PMID:23548744

  16. MYC2 Differentially Modulates Diverse Jasmonate-Dependent Functions in Arabidopsis[W

    PubMed Central

    Dombrecht, Bruno; Xue, Gang Ping; Sprague, Susan J.; Kirkegaard, John A.; Ross, John J.; Reid, James B.; Fitt, Gary P.; Sewelam, Nasser; Schenk, Peer M.; Manners, John M.; Kazan, Kemal

    2007-01-01

    The Arabidopsis thaliana basic helix-loop-helix Leu zipper transcription factor (TF) MYC2/JIN1 differentially regulates jasmonate (JA)-responsive pathogen defense (e.g., PDF1.2) and wound response (e.g., VSP) genes. In this study, genome-wide transcriptional profiling of wild type and mutant myc2/jin1 plants followed by functional analyses has revealed new roles for MYC2 in the modulation of diverse JA functions. We found that MYC2 negatively regulates Trp and Trp-derived secondary metabolism such as indole glucosinolate biosynthesis during JA signaling. Furthermore, MYC2 positively regulates JA-mediated resistance to insect pests, such as Helicoverpa armigera, and tolerance to oxidative stress, possibly via enhanced ascorbate redox cycling and flavonoid biosynthesis. Analyses of MYC2 cis binding elements and expression of MYC2-regulated genes in T-DNA insertion lines of a subset of MYC2–regulated TFs suggested that MYC2 might modulate JA responses via differential regulation of an intermediate spectrum of TFs with activating or repressing roles in JA signaling. MYC2 also negatively regulates its own expression, and this may be one of the mechanisms used in fine-tuning JA signaling. Overall, these results provide new insights into the function of MYC2 and the transcriptional coordination of the JA signaling pathway. PMID:17616737

  17. RepA negatively autoregulates the transcription of the repABC operon of the Rhizobium etli symbiotic plasmid basic replicon.

    PubMed

    Ramírez-Romero, M A; Téllez-Sosa, J; Barrios, H; Pérez-Oseguera, A; Rosas, V; Cevallos, M A

    2001-10-01

    The basic replicon of Rhizobium etli CE3, like other members of the repABC plasmid family, is constituted by the repABC operon. RepC is essential for replication, and RepA and RepB play a role in plasmid segregation. It has been shown that deletion derivatives lacking the repAB genes have an increased copy number, indicating that these genes participate in the control of plasmid copy number. RepA is also a trans-incompatibility factor. To understand the regulation of the repABC operon, in this paper: (i) the transcription start site of the repABC operon was determined; (ii) the promoter region was identified by site-directed mutagenesis of the putative -35 and -10 hexameric elements; and (iii) RepA was recognized as a negative regulator of the transcription of the repABC operon.

  18. A Light-Regulated Genetic Module Was Recruited to Carpel Development in Arabidopsis following a Structural Change to SPATULA[W

    PubMed Central

    Reymond, Mathieu C.; Brunoud, Géraldine; Chauvet, Aurélie; Martínez-Garcia, Jaime F.; Martin-Magniette, Marie-Laure; Monéger, Françoise; Scutt, Charles P.

    2012-01-01

    A key innovation of flowering plants is the female reproductive organ, the carpel. Here, we show that a mechanism that regulates carpel margin development in the model flowering plant Arabidopsis thaliana was recruited from light-regulated processes. This recruitment followed the loss from the basic helix-loop-helix transcription factor SPATULA (SPT) of a domain previously responsible for its negative regulation by phytochrome. We propose that the loss of this domain was a prerequisite for the light-independent expression in female reproductive tissues of a genetic module that also promotes shade avoidance responses in vegetative organs. Striking evidence for this proposition is provided by the restoration of wild-type carpel development to spt mutants by low red/far-red light ratios, simulating vegetation shade, which we show to occur via phytochrome B, PHYTOCHROME INTERACTING FACTOR4 (PIF4), and PIF5. Our data illustrate the potential of modular evolutionary events to generate rapid morphological change and thereby provide a molecular basis for neo-Darwinian theories that describe this nongradualist phenomenon. Furthermore, the effects shown here of light quality perception on carpel development lead us to speculate on the potential role of light-regulated mechanisms in plant organs that, like the carpel, form within the shade of surrounding tissues. PMID:22851763

  19. FHL family members suppress vascular endothelial growth factor expression through blockade of dimerization of HIF1α and HIF1β.

    PubMed

    Lin, Jing; Qin, Xi; Zhu, Ziman; Mu, Jinsong; Zhu, Lingling; Wu, Kuiwu; Jiao, Huabo; Xu, Xiaojie; Ye, Qinong

    2012-11-01

    Four and a half LIM domain (FHL) proteins belong to a family of LIM-only proteins that have been implicated in the development and progression of various types of cancers. However, the role of FHL proteins in tumor angiogenesis remains to be elucidated. Herein, we demonstrate that FHL1-3 decrease the promoter activity and expression of vascular endothelial growth factor (VEGF), the key regulator of angiogenesis in cancer growth and progression as well as an important target gene of the transcription factor hypoxia-inducible factor 1 (HIF1α/HIF1β). FHL1-3 interacted with HIF1α both in vitro and in vivo. A single LIM domain of FHL1 was sufficient for its interaction with HIF1α. FHL1 interacted with the HIF1α region containing basic helix-loop-helix (bHLH) motif and PER-ARNT-SIM domain, both of which aid in dimerization with HIF1β and DNA binding. FHL1-3 inhibited HIF1 transcriptional activity and HIF1-mediated VEGF expression in a hypoxia-independent manner. Moreover, FHL1 blocked HIF1α-HIF1β heterodimerization and HIF1α recruitment to the VEGF promoter. These data suggest that FHL proteins are involved in negative regulation of VEGF possibly by interfering with the dimerization and DNA binding of HIF1 subunits and may play an important role in tumor angiogenesis. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  20. Achaete-Scute Homolog 1 Expression Controls Cellular Differentiation of Neuroblastoma

    PubMed Central

    Kasim, Mumtaz; Heß, Vicky; Scholz, Holger; Persson, Pontus B.; Fähling, Michael

    2016-01-01

    Neuroblastoma, the major cause of infant cancer deaths, results from fast proliferation of undifferentiated neuroblasts. Treatment of high-risk neuroblastoma includes differentiation with retinoic acid (RA); however, the resistance of many of these tumors to RA-induced differentiation poses a considerable challenge. Human achaete-scute homolog 1 (hASH1) is a proneural basic helix-loop-helix transcription factor essential for neurogenesis and is often upregulated in neuroblastoma. Here, we identified a novel function for hASH1 in regulating the differentiation phenotype of neuroblastoma cells. Global analysis of 986 human neuroblastoma datasets revealed a negative correlation between hASH1 and neuron differentiation that was independent of the N-myc (MYCN) oncogene. Using RA to induce neuron differentiation in two neuroblastoma cell lines displaying high and low levels of hASH1 expression, we confirmed the link between hASH1 expression and the differentiation defective phenotype, which was reversed by silencing hASH1 or by hypoxic preconditioning. We further show that hASH1 suppresses neuronal differentiation by inhibiting transcription at the RA receptor element. Collectively, our data indicate hASH1 to be key for understanding neuroblastoma resistance to differentiation therapy and pave the way for hASH1-targeted therapies for augmenting the response of neuroblastoma to differentiation therapy. PMID:28066180

  1. The semidominant Mi(b) mutation identifies a role for the HLH domain in DNA binding in addition to its role in protein dimerization.

    PubMed Central

    Steingrímsson, E; Nii, A; Fisher, D E; Ferré-D'Amaré, A R; McCormick, R J; Russell, L B; Burley, S K; Ward, J M; Jenkins, N A; Copeland, N G

    1996-01-01

    The mouse microphthalmia (mi) locus encodes a basic helix-loop-helix-leucine zipper (bHLH-Zip) transcription factor called MITF (microphthalmia transcription factor). Mutations at mi affect the development of several different cell types, including melanocytes, mast cells, osteoclasts and pigmented epithelial cells of the eye. Here we describe the phenotypic and molecular characterization of the semidominant Microphthalmia(brwnish) (Mi(b)) mutation. We show that this mutation primarily affects melanocytes and produces retinal degeneration. The mutation is a G to A transition leading to a Gly244Glu substitution in helix 2 of the HLH dimerization domain. This location is surprising since other semidominant mi mutations characterized to date have been shown to affect DNA binding or transcriptional activation domains of MITF and act as dominant negatives, while mutations that affect MITF dimerization are inherited recessively. Gel retardation assays showed that while the mutant MITF(Mi-b) protein retains its dimerization potential, it is defective in its ability to bind DNA. Computer modeling suggested that the Gly244Glu mutation might disrupt DNA binding by interfering with productive docking of the protein dimer onto DNA. The Mi(b) mutation therefore appears to dissociate a DNA recognition function of the HLH domain from its role in protein dimerization. Images PMID:8947051

  2. Dual-mode Modulation of Smad Signaling by Smad-interacting Protein Sip1 is Required for Myelination in the CNS

    PubMed Central

    Weng, Qinjie; Chen, Ying; Wang, Haibo; Xu, Xiaomei; Yang, Bo; He, Qiaojun; Shou, Weinian; Chen, Yan; Higashi, Yujiro; van den Berghe, Veronique; Seuntjens, Eve; Kernie, Steven G.; Bukshpun, Polina; Sherr, Elliott H.; Huylebroeck, Danny; Lu, Q. Richard

    2012-01-01

    Myelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogenetic protein (BMP) and Wnt/β-catenin signaling inhibit myelination. Here we show that these opposing regulators of myelination are functionally linked by the Olig1/2 common target Smad-interacting protein-1 (Sip1). We demonstrate that Sip1 is an essential modulator of CNS myelination. Sip1 represses differentiation inhibitory signals by antagonizing BMP receptor activated-Smad activity while activating crucial oligodendrocyte-promoting factors. Importantly, a key Sip1-activated target, Smad7, is required for oligodendrocyte differentiation, and partially rescues differentiation defects caused by Sip1 loss. Smad7 promotes myelination by blocking the BMP and β-catenin negative regulatory pathways. Thus, our findings reveal that Sip1-mediated antagonism of inhibitory signaling is critical for promoting CNS myelination and point to new mediators for myelin repair. PMID:22365546

  3. Dual-mode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system.

    PubMed

    Weng, Qinjie; Chen, Ying; Wang, Haibo; Xu, Xiaomei; Yang, Bo; He, Qiaojun; Shou, Weinian; Chen, Yan; Higashi, Yujiro; van den Berghe, Veronique; Seuntjens, Eve; Kernie, Steven G; Bukshpun, Polina; Sherr, Elliott H; Huylebroeck, Danny; Lu, Q Richard

    2012-02-23

    Myelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogenetic protein (BMP) and Wnt/β-catenin signaling inhibit myelination. Here we show that these opposing regulators of myelination are functionally linked by the Olig1/2 common target Smad-interacting protein-1 (Sip1). We demonstrate that Sip1 is an essential modulator of CNS myelination. Sip1 represses differentiation inhibitory signals by antagonizing BMP receptor-activated Smad activity while activating crucial oligodendrocyte-promoting factors. Importantly, a key Sip1-activated target, Smad7, is required for oligodendrocyte differentiation and partially rescues differentiation defects caused by Sip1 loss. Smad7 promotes myelination by blocking the BMP- and β-catenin-negative regulatory pathways. Thus, our findings reveal that Sip1-mediated antagonism of inhibitory signaling is critical for promoting CNS myelination and point to new mediators for myelin repair.

  4. HEY1 Leu94Met gene polymorphism dramatically modifies its biological functions

    PubMed Central

    Villaronga, MA; Lavery, DN; Bevan, CL; Llanos, S; Belandia, B

    2012-01-01

    The hairy/enhancer-of-split related with YRPW motif 1 (HEY1) is a member of the basic-helix-loop-helix-Orange (bHLH-O) family of transcriptional repressors that mediate Notch signaling. Several cancer-related pathways also regulate HEY1 expression, and HEY1 itself acts as an indirect positive regulator of the p53 tumor suppressor protein and a negative regulator of androgen receptor activity. In this study we show how a naturally occurring non-synonymous polymorphism at codon 94 of HEY1, which results in a substitution of leucine by methionine (Leu94Met), converts HEY1 from an androgen receptor corepressor to an androgen receptor co-activator without affecting its intrinsic transcriptional repressive domains. The polymorphism Leu94Met also abolishes HEY1-mediated activation of p53 and suppresses the ability of HEY1 to induce p53-dependent cell-cycle arrest and aberrant cell differentiation in human osteosarcoma U2OS cells. Moreover, expression of HEY1, but not of the variant Leu94Met, confers sensitivity to p53-activating chemotherapeutic drugs on U2OS cells. In addition, we have identified motifs in HEY1 that are critical for the regulation of its subcellular localization and analysed how mutations in those motifs affect both HEY1 and HEY1-Leu94Met functions. These findings suggest that the polymorphism Leu94Met in HEY1 radically alters its biological activities and may affect oncogenic processes. PMID:19802006

  5. Fasting and refeeding affect the expression of the Inhibitor of DNA Binding (ID) genes in rainbow trout (Oncorhynchus mykiss) muscle.

    PubMed

    Gahr, Scott A; Weber, Gregory M; Rexroad, Caird E

    2006-08-01

    The Inhibitor of DNA Binding/Differentiation (ID) proteins are a family of dominant negative regulators of the basic helix-loop-helix (bHLH) transcription factors, shown in mammals to delay cell differentiation and prolong proliferation. In the current study we used real-time PCR to investigate the effects of fasting and refeeding on the expression of ID genes in rainbow trout muscle. Fry shortly following yolk-sac absorption (approximately 250 mg) were used in a pair of experiments. In the first experiment, the treatment groups included fish fed or fasted throughout the duration of the experiment, and fish fasted for 14 days followed by feeding for the remainder of the experiment. The second experiment consisted of the same treatment groups; however the fish were only fasted for 7 days prior to refeeding. In both experiments, ID gene expression in the muscle of fasted fish was significantly lower than the fed samples after 7 days. Refeeding for 3 or 7 days returned the ID expression to levels similar to the fed fish. The reduction of ID expression during a fast and the subsequent return to fed levels with refeeding suggests the ID proteins participate in the regulation of muscle growth in the rainbow trout.

  6. The bHLH proteins BEE and BIM positively modulate the shade avoidance syndrome in Arabidopsis seedlings.

    PubMed

    Cifuentes-Esquivel, Nicolás; Bou-Torrent, Jordi; Galstyan, Anahit; Gallemí, Marçal; Sessa, Giovanna; Salla Martret, Mercè; Roig-Villanova, Irma; Ruberti, Ida; Martínez-García, Jaime F

    2013-09-01

    The shade avoidance syndrome (SAS) refers to a set of plant responses initiated after perception by the phytochromes of light with a reduced red to far-red ratio, indicative of vegetation proximity or shade. These responses, including elongation growth, anticipate eventual shading from potential competitor vegetation by overgrowing neighboring plants or flowering to ensure production of viable seeds for the next generation. In Arabidopsis thaliana seedlings, the SAS includes dramatic changes in gene expression, such as induction of PHYTOCHROME RAPIDLY REGULATED 1 (PAR1), encoding an atypical basic helix-loop-helix (bHLH) protein that acts as a transcriptional co-factor to repress hypocotyl elongation. Indeed, PAR1 has been proposed to act fundamentally as a dominant negative antagonist of conventional bHLH transcription factors by forming heterodimers with them to prevent their binding to DNA or other transcription factors. Here we report the identification of PAR1-interacting factors, including the brassinosteroid signaling components BR-ENHANCED EXPRESSION (BEE) and BES1-INTERACTING MYC-LIKE (BIM), and characterize their role as networked positive regulators of SAS hypocotyl responses. We provide genetic evidence that these bHLH transcriptional regulators not only control plant growth and development under shade and non-shade conditions, but are also redundant in the control of plant viability. Our results suggest that SAS responses are initiated as a consequence of a new balance of transcriptional regulators within the pre-existing bHLH network triggered by plant proximity, eventually causing hypocotyls to elongate.

  7. Inhibition of cell proliferation by the Mad1 transcriptional repressor.

    PubMed Central

    Roussel, M F; Ashmun, R A; Sherr, C J; Eisenman, R N; Ayer, D E

    1996-01-01

    Mad1 is a basic helix-loop-helix-leucine zipper protein that is induced upon differentiation of a number of distinct cell types. Mad1 dimerizes with Max and recognizes the same DNA sequences as do Myc:Max dimers. However, Mad1 and Myc appear to have opposing functions. Myc:Max heterodimers activate transcription while Mad:Max heterodimers repress transcription from the same promoter. In addition Mad1 has been shown to block the oncogenic activity of Myc. Here we show that ectopic expression of Mad1 inhibits the proliferative response of 3T3 cells to signaling through the colony-stimulating factor-1 (CSF-1) receptor. The ability of over-expressed Myc and cyclin D1 to complement the mutant CSF-1 receptor Y809F (containing a Y-to-F mutation at position 809) is also inhibited by Mad1. Cell cycle analysis of proliferating 3T3 cells transfected with Mad1 demonstrates a significant decrease in the fraction of cells in the S and G2/M phases and a concomitant increase in the fraction of G1 phase cells, indicating that Mad1 negatively influences cell cycle progression from the G1 to the S phase. Mutations in Mad1 which inhibit its activity as a transcription repressor also result in loss of Mad1 cell cycle inhibitory activity. Thus, the ability of Mad1 to inhibit cell cycle progression is tightly coupled to its function as a transcriptional repressor. PMID:8649388

  8. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract.

    PubMed

    Schmiesing, André; Emonet, Aurélia; Gouhier-Darimont, Caroline; Reymond, Philippe

    2016-04-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. Silencing of the inhibitor of DNA binding protein 4 (ID4) contributes to the pathogenesis of mouse and human CLL

    PubMed Central

    Chen, Shih-Shih; Claus, Rainer; Lucas, David M.; Yu, Lianbo; Qian, Jiang; Ruppert, Amy S.; West, Derek A.; Williams, Katie E.; Johnson, Amy J.; Sablitzky, Fred

    2011-01-01

    Inhibitor of DNA binding protein 4 (ID4) is a member of the dominant-negative basic helix-loop-helix transcription factor family that lacks DNA binding activity and has tumor suppressor function. ID4 promoter methylation has been reported in acute myeloid leukemia and chronic lymphocytic leukemia (CLL), although the expression, function, and clinical relevance of this gene have not been characterized in either disease. We demonstrate that the promoter of ID4 is consistently methylated to various degrees in CLL cells, and increased promoter methylation in a univariable analysis correlates with shortened patient survival. However, ID4 mRNA and protein expression is uniformly silenced in CLL cells irrespective of the degree of promoter methylation. The crossing of ID4+/− mice with Eμ-TCL1 mice triggers a more aggressive murine CLL as measured by lymphocyte count and inferior survival. Hemizygous loss of ID4 in nontransformed TCL1-positive B cells enhances cell proliferation triggered by CpG oligonucleotides and decreases sensitivity to dexamethasone-mediated apoptosis. Collectively, this study confirms the importance of the silencing of ID4 in murine and human CLL pathogenesis. PMID:21098398

  10. Take a deep breath: peptide signalling in stomatal patterning and differentiation.

    PubMed

    Richardson, Lynn G L; Torii, Keiko U

    2013-12-01

    Stomata are pores in the leaf surface that open and close to regulate gas exchange and minimize water loss. In Arabidopsis, a pair of guard cells surrounds each stoma and they are derived from precursors distributed in an organized pattern on the epidermis. Stomatal differentiation follows a well-defined developmental programme, regulated by stomatal lineage-specific basic helix-loop-helix transcription factors, and stomata are consistently separated by at least one epidermal cell (referred to as the 'one-cell-spacing rule') to allow for proper opening and closure of the stomatal aperture. Peptide signalling is involved in regulating stomatal differentiation and in enforcing the one-cell-spacing rule. The cysteine-rich peptides EPIDERMAL PATTERNING FACTOR 1 (EPF1) and EPF2 negatively regulate stomatal differentiation in cells adjacent to stomatal precursors, while STOMAGEN/EPFL9 is expressed in the mesophyll of developing leaves and positively regulates stomatal development. These peptides work co-ordinately with the ERECTA family of leucine-rich repeat (LRR) receptor-like kinases and the LRR receptor-like protein TOO MANY MOUTHS. Recently, specific ligand-receptor pairs were identified that function at two different stages of stomatal development to restrict entry into the stomatal lineage, and later to orient precursor division away from existing stomata. These studies have provided the groundwork to begin to understand the molecular mechanisms involved in cell-cell communication during stomatal development.

  11. Phytochrome Signaling Is Mediated by PHYTOCHROME INTERACTING FACTOR in the Liverwort Marchantia polymorpha

    PubMed Central

    Inoue, Keisuke; Nishihama, Ryuichi; Kataoka, Hideo; Hosaka, Masashi; Manabe, Ryo; Nomoto, Mika; Tada, Yasuomi; Kohchi, Takayuki

    2016-01-01

    Phytochromes are red light (R) and far-red light (FR) receptors that play important roles in many aspects of plant growth and development. Phytochromes mainly function in the nucleus and regulate sets of genes by inhibiting negatively acting basic helix-loop-helix transcription factors named PHYTOCHROME INTERACTING FACTORs (PIFs) in Arabidopsis thaliana. Although R/FR photoreversible responses and phytochrome genes are well documented in diverse lineages of plants, the extent to which phytochrome signaling is mediated by gene regulation beyond angiosperms remains largely unclear. Here, we show that the liverwort Marchantia polymorpha, an emerging model basal land plant, has only one phytochrome gene, Mp-PHY, and only one PIF gene, Mp-PIF. These genes mediate typical low fluence responses, which are reversibly elicited by R and FR, and regulate gene expression. Mp-phy is light-stable and translocates into the nucleus upon irradiation with either R or FR, demonstrating that the single phytochrome Mp-phy exhibits combined biochemical and cell-biological characteristics of type I and type II phytochromes. Mp-phy photoreversibly regulates gemma germination and downstream gene expression by interacting with Mp-PIF and targeting it for degradation in an R-dependent manner. Our findings suggest that the molecular mechanisms for light-dependent transcriptional regulation mediated by PIF transcription factors were established early in land plant evolution. PMID:27252292

  12. Phytochrome Signaling Is Mediated by PHYTOCHROME INTERACTING FACTOR in the Liverwort Marchantia polymorpha.

    PubMed

    Inoue, Keisuke; Nishihama, Ryuichi; Kataoka, Hideo; Hosaka, Masashi; Manabe, Ryo; Nomoto, Mika; Tada, Yasuomi; Ishizaki, Kimitsune; Kohchi, Takayuki

    2016-06-01

    Phytochromes are red light (R) and far-red light (FR) receptors that play important roles in many aspects of plant growth and development. Phytochromes mainly function in the nucleus and regulate sets of genes by inhibiting negatively acting basic helix-loop-helix transcription factors named PHYTOCHROME INTERACTING FACTORs (PIFs) in Arabidopsis thaliana Although R/FR photoreversible responses and phytochrome genes are well documented in diverse lineages of plants, the extent to which phytochrome signaling is mediated by gene regulation beyond angiosperms remains largely unclear. Here, we show that the liverwort Marchantia polymorpha, an emerging model basal land plant, has only one phytochrome gene, Mp-PHY, and only one PIF gene, Mp-PIF These genes mediate typical low fluence responses, which are reversibly elicited by R and FR, and regulate gene expression. Mp-phy is light-stable and translocates into the nucleus upon irradiation with either R or FR, demonstrating that the single phytochrome Mp-phy exhibits combined biochemical and cell-biological characteristics of type I and type II phytochromes. Mp-phy photoreversibly regulates gemma germination and downstream gene expression by interacting with Mp-PIF and targeting it for degradation in an R-dependent manner. Our findings suggest that the molecular mechanisms for light-dependent transcriptional regulation mediated by PIF transcription factors were established early in land plant evolution. © 2016 American Society of Plant Biologists. All rights reserved.

  13. Tubular cell dedifferentiation and peritubular inflammation are coupled by the transcription regulator Id1 in renal fibrogenesis

    PubMed Central

    Li, Yingjian; Wen, Xiaoyan; Liu, Youhua

    2011-01-01

    During renal fibrogenesis, tubular epithelial-mesenchymal transition is closely associated with peritubular inflammation; however, it is not clear whether these two processes are connected. We previously identified the inhibitor of differentiation-1 (Id1), a dominant negative antagonist of basic helix-loop-helix transcription factors, as a major trigger of tubular cell dedifferentiation after injury. Id1 was induced selectively in degenerated proximal tubule and collecting duct epithelia after injury and was present in both the cytoplasm and nucleus, suggesting shuttling between these two compartments. Interestingly, the upregulation of Id1 was associated with peritubular inflammation in mouse and human nephropathies. In vitro, Id1 potentiated NF-κB signaling and augmented RANTES expression in kidney epithelial cells, which led to an enhanced recruitment of inflammatory cells. Id1 also induced Snail1 expression and triggered tubular epithelial dedifferentiation. In vivo, genetic ablation of Id1 in mice reduced peritubular inflammation and decreased tubular expression of RANTES following ureteral obstruction. Mice lacking Id1 were also protected against myofibroblast activation and matrix expression, leading to a reduced total collagen deposition in obstructive nephropathy. Thus, these results indicate that Id1 shuttles between nucleus and cytoplasm and promotes peritubular inflammation and tubular epithelial dedifferentiation, suggesting that these two events are intrinsically coupled during renal fibrogenesis. PMID:22278018

  14. Ubiquitination-Related MdBT Scaffold Proteins Target a bHLH Transcription Factor for Iron Homeostasis1[OPEN

    PubMed Central

    Zhao, Qiang; Wang, Qing-Jie; Wang, Xiao-Fei; You, Chun-Xiang

    2016-01-01

    Iron (Fe) homeostasis is crucial for plant growth and development. A network of basic helix-loop-helix (bHLH) transcription factors positively regulates Fe uptake during iron deficiency. However, their up-regulation or overexpression leads to Fe overload and reactive oxygen species generation, thereby damaging the plants. Here, we found that two BTB/TAZ proteins, MdBT1 and MdBT2, interact with the MbHLH104 protein in apple. In addition, the function of MdBT2 was characterized as a regulator of MdbHLH104 degradation via ubiquitination and the 26S proteasome pathway, thereby controlling the activity of plasma membrane H+-ATPases and the acquisition of iron. Furthermore, MdBT2 interacted with MdCUL3 proteins, which were required for the MdBT2-mediated ubiquitination modification of MdbHLH104 and its degradation. In sum, our findings demonstrate that MdBT proteins interact with MdCUL3 to bridge the formation of the MdBTsMdCUL3 complex, which negatively modulates the degradation of the MdbHLH104 protein in response to changes in Fe status to maintain iron homeostasis in plants. PMID:27660166

  15. SHARP1/DEC2 inhibits adipogenic differentiation by regulating the activity of C/EBP.

    PubMed

    Gulbagci, Neriman Tuba; Li, Li; Ling, Belinda; Gopinadhan, Suma; Walsh, Martin; Rossner, Moritz; Nave, Klaus-Armin; Taneja, Reshma

    2009-01-01

    SHARP1, a basic helix-loop-helix transcription factor, is expressed in many cell types; however, the mechanisms by which it regulates cellular differentiation remain largely unknown. Here, we show that SHARP1 negatively regulates adipogenesis. Although expression of the early marker CCAAT/enhancer binding protein beta (C/EBPbeta) is not altered, its crucial downstream targets C/EBPalpha and peroxisome proliferator-activated receptor gamma (PPARgamma) are downregulated by SHARP1. Protein interaction studies confirm that SHARP1 interacts with and inhibits the transcriptional activity of both C/EBPbeta and C/EBPalpha, and enhances the association of C/EBPbeta with histone deacetylase 1 (HDAC1). Consistently, in SHARP1-expressing cells, HDAC1 and the histone methyltransferase G9a are retained at the C/EBP regulatory sites on the C/EBPalpha and PPARgamma2 promoters during differentiation, resulting in inhibition of their expression. Interestingly, treatment with troglitazone results in displacement of HDAC1 and G9a, and rescues the differentiation defect of SHARP1-overexpressing cells. Our data indicate that SHARP1 inhibits adipogenesis through the regulation of C/EBP activity, which is essential for PPARgamma-ligand-dependent displacement of co-repressors from adipogenic promoters.

  16. PER and TIM inhibit the DNA binding activity of a Drosophila CLOCK-CYC/dBMAL1 heterodimer without disrupting formation of the heterodimer: a basis for circadian transcription.

    PubMed

    Lee, C; Bae, K; Edery, I

    1999-08-01

    The Drosophila CLOCK (dCLOCK) and CYCLE (CYC) (also referred to as dBMAL1) proteins are members of the basic helix-loop-helix PAS (PER-ARNT-SIM) superfamily of transcription factors and are required for high-level expression of the circadian clock genes period (per) and timeless (tim). Several lines of evidence indicate that PER, TIM, or a PER-TIM heterodimer somehow inhibit the transcriptional activity of a putative dCLOCK-CYC complex, generating a negative-feedback loop that is a core element of the Drosophila circadian oscillator. In this report we show that PER and/or TIM inhibits the binding of a dCLOCK-CYC heterodimer to an E-box-containing DNA fragment that is present in the 5' nontranscribed region of per and acts as a circadian enhancer element. Surprisingly, inhibition of this DNA binding activity by PER, TIM, or both is not accompanied by disruption of the association between dCLOCK and CYC. The results suggest that the interaction of PER, TIM, or both with the dCLOCK-CYC heterodimer induces a conformational change or masks protein regions in the heterodimer, leading to a reduction in DNA binding activity. Together with other findings, our results strongly suggest that daily cycles in the association of PER and TIM with the dCLOCK-CYC complex probably contribute to rhythmic expression of per and tim.

  17. The interplay between microRNAs and Twist1 transcription factor: a systematic review.

    PubMed

    Khanbabaei, Hashem; Teimoori, Ali; Mohammadi, Milad

    2016-06-01

    Twist1 (also known as Twist) is a transcription factor that belongs to the family of basic helix-loop-helix (bHLH) proteins. It functions as a negative regulator of epithelial gene expression and a positive regulator of mesenchymal gene expression, thereby leading to induction of the epithelial mesenchymal transition (EMT), a process in which epithelial cells acquire the motile and migratory characteristics of mesenchymal cells. In addition to regulating the expression of protein-coding genes, Twist1 regulates the expression of microRNAs (miRNAs), adding a regulatory layer to EMT induction. Interestingly, the mRNA of Twist1 represents a downstream target of miRNAs, indicating an intricate network between miRNAs and Twist1. This network was shown to play multiple roles in cancer cell migration, invasion, and metastasis. The network can induce angiogenesis, protect cells from oncogene-induced apoptosis and senescence, enhance cancer cell resistance to conventional therapies, and increase cancer stem cell (CSC) populations. Recently, miRNAs have attracted considerable attention as potential promising tools in cancer therapies. Thus, this systematic review was conducted to clarify the reciprocal link between Twist1 and miRNAs in order to provide potential candidate miRNAs for diagnostic and therapeutic approaches in cancer treatment.

  18. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control

    PubMed Central

    Raft, Steven; Groves, Andrew K.

    2014-01-01

    The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained. PMID:24902666

  19. Arabidopsis MYC Transcription Factors Are the Target of Hormonal Salicylic Acid/Jasmonic Acid Cross Talk in Response to Pieris brassicae Egg Extract1[OPEN

    PubMed Central

    Schmiesing, André; Gouhier-Darimont, Caroline

    2016-01-01

    Arabidopsis (Arabidopsis thaliana) plants recognize insect eggs and activate the salicylic acid (SA) pathway. As a consequence, expression of defense genes regulated by the jasmonic acid (JA) pathway is suppressed and larval performance is enhanced. Cross talk between defense signaling pathways is common in plant-pathogen interactions, but the molecular mechanism mediating this phenomenon is poorly understood. Here, we demonstrate that egg-induced SA/JA antagonism works independently of the APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factor ORA59, which controls the ERF branch of the JA pathway. In addition, treatment with egg extract did not enhance expression or stability of JASMONATE ZIM-domain transcriptional repressors, and SA/JA cross talk did not involve JASMONATE ASSOCIATED MYC2-LIKEs, which are negative regulators of the JA pathway. Investigating the stability of MYC2, MYC3, and MYC4, three basic helix-loop-helix transcription factors that additively control jasmonate-related defense responses, we found that egg extract treatment strongly diminished MYC protein levels in an SA-dependent manner. Furthermore, we identified WRKY75 as a novel and essential factor controlling SA/JA cross talk. These data indicate that insect eggs target the MYC branch of the JA pathway and uncover an unexpected modulation of SA/JA antagonism depending on the biological context in which the SA pathway is activated. PMID:26884488

  20. Molecular mechanisms for morphogenesis of the central nervous system in mammals.

    PubMed

    Ishibashi, Makoto

    2004-12-01

    The mammalian central nervous system (CNS) is a highly organized structure. In the beginning of CNS development, neural precursor/stem cells are dividing in the neuroepithelium. After a while, these precursors gradually start to differentiate into neurons and glial cells. Various factors are involved in the proliferation and differentiation of neural precursors. Recent studies have demonstrated that the basic helix-loop-helix (bHLH) transcription factors play important roles in differentiation processes. Hairy and Enhancer of split homolog (HES) 1 and HES5 are bHLH-type repressors and inhibit neural differentiation. Mammalian achaete-scute complex homolog (MASH) 1 and mammalian atonal homolog (MATH) 1 are positive bHLH regulators expressed in neural precursors. A balance between positive and negative regulators may determine whether differentiation proceeds or not. The data suggest that this balance is controlled by Notch signaling. Other extracellular signals also govern CNS morphogenesis. To elaborate the primary shape of the CNS, proliferation of neural precursors should be strictly regulated in a spatial and temporal manner. A recent study suggests that a Sonic hedgehog-dependent signaling relay controls growth of the diencephalon and midbrain. Nutrition is another critical factor for development. Expression analysis of Folate binding protein 1 implied the close association between folate uptake and anterior neural tube closure.

  1. Genetic Factors for Enhancement of Nicotine Levels in Cultivated Tobacco

    PubMed Central

    Wang, Bingwu; Lewis, Ramsey S.; Shi, Junli; Song, Zhongbang; Gao, Yulong; Li, Wenzheng; Chen, Hongxia; Qu, Rongda

    2015-01-01

    Nicotine has practical applications relating to smoking cessation devices and alternative nicotine products. Genetic manipulation for increasing nicotine content in cultivated tobacco (Nicotiana tabacum L.) may be of value for industrial purposes, including the possibility of enhancing the efficiency of nicotine extraction. Biotechnological approaches have been evaluated in connection with this objective, but field-based results are few. Here, we report characterization of two genes encoding basic-helix-loop-helix (bHLH) transcription factors (TFs), NtMYC2a and NtMYC2b from tobacco. Overexpression of NtMYC2a increased leaf nicotine levels in T1 transgenic lines approximately 2.3-fold in greenhouse-grown plants of tobacco cultivar ‘NC 95′. Subsequent field testing of T2 and T3 generations of transgenic NtMYC2a overexpression lines showed nicotine concentrations were 76% and 58% higher than control lines, respectively. These results demonstrated that the increased nicotine trait was stably inherited to the T2 and T3 generations, indicating the important role that NtMYC2a plays in regulating nicotine accumulation in N. tabacum and the great potential of NtMYC2a overexpression in tobacco plants for industrial nicotine production. Collected data in this study also indicated a negative feedback inhibition of nicotine biosynthesis. Further enhancement of nicotine accumulation in tobacco leaf may require modification of the processes of nicotine transport and deposition. PMID:26626731

  2. The oligodendrocyte-specific G protein-coupled receptor GPR17 is a cell-intrinsic timer of myelination.

    PubMed

    Chen, Ying; Wu, Heng; Wang, Shuzong; Koito, Hisami; Li, Jianrong; Ye, Feng; Hoang, Jenny; Escobar, Sabine S; Gow, Alexander; Arnett, Heather A; Trapp, Bruce D; Karandikar, Nitin J; Hsieh, Jenny; Lu, Q Richard

    2009-11-01

    The basic helix-loop-helix transcription factor Olig1 promotes oligodendrocyte maturation and is required for myelin repair. We characterized an Olig1-regulated G protein-coupled receptor, GPR17, whose function is to oppose the action of Olig1. Gpr17 was restricted to oligodendrocyte lineage cells, but was downregulated during the peak period of myelination and in adulthood. Transgenic mice with sustained Gpr17 expression in oligodendrocytes exhibited stereotypic features of myelinating disorders in the CNS. Gpr17 overexpression inhibited oligodendrocyte differentiation and maturation both in vivo and in vitro. Conversely, Gpr17 knockout mice showed early onset of oligodendrocyte myelination. The opposing action of Gpr17 on oligodendrocyte maturation reflects, at least partially, upregulation and nuclear translocation of the potent oligodendrocyte differentiation inhibitors ID2/4. Collectively, these findings suggest that GPR17 orchestrates the transition between immature and myelinating oligodendrocytes via an ID protein-mediated negative regulation and may serve as a potential therapeutic target for CNS myelin repair.

  3. SOHLH1 and SOHLH2 coordinate spermatogonial differentiation.

    PubMed

    Suzuki, Hitomi; Ahn, Hyo Won; Chu, Tianjiao; Bowden, Wayne; Gassei, Kathrin; Orwig, Kyle; Rajkovic, Aleksandar

    2012-01-15

    Spermatogonial self-renewal and differentiation are essential for male fertility and reproduction. We discovered that germ cell specific genes Sohlh1 and Sohlh2, encode basic helix-loop-helix (bHLH) transcriptional regulators that are essential in spermatogonial differentiation. Sohlh1 and Sohlh2 individual mouse knockouts show remarkably similar phenotypes. Here we show that SOHLH1 and SOHLH2 proteins are co-expressed in the entire spermatogonial population except in the GFRA1(+) spermatogonia, which includes spermatogonial stem cells (SSCs). SOHLH1 and SOHLH2 are expressed in both KIT negative and KIT positive spermatogonia, and overlap Ngn3/EGFP and SOX3 expression. SOHLH1 and SOHLH2 heterodimerize with each other in vivo, as well as homodimerize. The Sohlh1/Sohlh2 double mutant phenocopies single mutants, i.e., spermatogonia continue to proliferate but do not differentiate properly. Further analysis revealed that GFRA1(+) population was increased, while meiosis commenced prematurely in both single and double knockouts. Sohlh1 and Sohlh2 double deficiency has a synergistic effect on gene expression patterns as compared to the single knockouts. SOHLH proteins affect spermatogonial development by directly regulating Gfra1, Sox3 and Kit gene expression. SOHLH1 and SOHLH2 suppress genes involved in SSC maintenance, and induce genes important for spermatogonial differentiation. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Inhibitor of differentiation 1 (Id1) expression attenuates the degree of TiO2-induced cytotoxicity in H1299 non-small cell lung cancer cells.

    PubMed

    Lee, Young Sook; Yoon, Seokjoo; Yoon, Hea Jin; Lee, Kyuhong; Yoon, Hyoun Kyoung; Lee, Jeung-Hoon; Song, Chang Woo

    2009-09-28

    The inhibitor of differentiation (Id) family of genes, which encodes negative regulators of basic helix-loop-helix transcription factors, has been implicated in diverse cellular processes such as proliferation, apoptosis, differentiation, and migration. However, the specific role of Id1 in titanium dioxide (TiO2)-induced lung injury has not been investigated. In the present study, we investigated whether TiO2 induces apoptosis in H1299 lung cancer cells and by which pathways. Based on the results of the LDH assay, dual staining with Annexin V-FITC and propidium iodide (PI), and RT-PCR analysis of apoptosis-related gene expression, TiO2 caused a dose- and time-dependent decrease in cell viability and appeared to involve both necrosis and apoptosis. Furthermore, Id1 expression was significantly reduced in TiO2-treated cells compared with control cells. To further investigate the functional role of Id1, cells were transduced with a recombinant adenovirus expressing Id1, and the effects on sensitivity to TiO2 were analyzed. Id1 overexpression led to the enhancement of cellular proliferation and reduced the sensitivity of H1299 cells to TiO2. Our results indicate that Id1 expression attenuates the degree of TiO2-induced cytotoxicity in lung cells.

  5. Opposite roles of MRF4 and MyoD in cell proliferation and myogenic differentiation

    SciTech Connect

    Jin Xun; Kim, Jong-Gun; Oh, Myung-Joo; Oh, Ho-Yeon; Sohn, Young-Woo; Pian, Xumin; Yin, Jin Long; Beck, Samuel; Lee, Namkyung; Son, Jeesoo; Kim, Hyunggee; Yan Changguo; Wang Jihui; Choi, Yun-Jaie; Whang, Kwang Youn

    2007-12-21

    The basic helix-loop-helix myogenic regulatory factors play critical roles in skeletal myogenesis. Among the myogenic regulatory factors (MRFs), MRF4 shows a biphasic expression pattern during the formation of myotomes, although its function remains unclear. In this study, we used BEF (spontaneously immortalized bovine embryonic fibroblast that shows myogenic differentiation by overexpression of MyoD) and C2C12 cells to investigate the function of MRF4. Ectopic expressions of MRF4 did not stimulate myogenic differentiation in the BEF and C2C12 cells, but did show a marked increase of cell proliferation, upregulation of cyclin E, and downregulation of p21{sup WAF1}. Furthermore, MRF4 was found to induce degradation of the MyoD protein, which acts as a transcriptional activator for p21{sup WAF1}, and thus indicates that MRF4 accelerates cell proliferation by suppressing MyoD-dependent p21{sup WAF1} expression. However, forced expression of MyoD in the MRF4-overexpressing cells inhibited cell proliferation and partially induced myogenic differentiation, which suggests that MyoD is a potential negative intercessor of MRF4 in the regulation of the cell cycle. Taken together, these results indicate that MRF4 and MyoD play competitive roles in myogenesis by stimulating cell proliferation and differentiation, respectively.

  6. Plant proximity perception dynamically modulates hormone levels and sensitivity in Arabidopsis.

    PubMed

    Bou-Torrent, Jordi; Galstyan, Anahit; Gallemí, Marçal; Cifuentes-Esquivel, Nicolás; Molina-Contreras, Maria José; Salla-Martret, Mercè; Jikumaru, Yusuke; Yamaguchi, Shinjiro; Kamiya, Yuji; Martínez-García, Jaime F

    2014-06-01

    The shade avoidance syndrome (SAS) refers to a set of plant responses initiated after perception by the phytochromes of light enriched in far-red colour reflected from or filtered by neighbouring plants. These varied responses are aimed at anticipating eventual shading from potential competitor vegetation. In Arabidopsis thaliana, the most obvious SAS response at the seedling stage is the increase in hypocotyl elongation. Here, we describe how plant proximity perception rapidly and temporally alters the levels of not only auxins but also active brassinosteroids and gibberellins. At the same time, shade alters the seedling sensitivity to hormones. Plant proximity perception also involves dramatic changes in gene expression that rapidly result in a new balance between positive and negative factors in a network of interacting basic helix-loop-helix proteins, such as HFR1, PAR1, and BIM and BEE factors. Here, it was shown that several of these factors act as auxin- and BR-responsiveness modulators, which ultimately control the intensity or degree of hypocotyl elongation. It was deduced that, as a consequence of the plant proximity-dependent new, dynamic, and local balance between hormone synthesis and sensitivity (mechanistically resulting from a restructured network of SAS regulators), SAS responses are unleashed and hypocotyls elongate.

  7. Robust specification of sensory neurons by dual functions of charlatan, a Drosophila NRSF/REST-like repressor of extramacrochaetae and hairy.

    PubMed

    Yamasaki, Yasutoyo; Lim, Young-Mi; Niwa, Nao; Hayashi, Shigeo; Tsuda, Leo

    2011-08-01

    Sensory bristle formation in Drosophila is a well-characterized system for studying sensory organ development at the molecular level. The master proneural genes of the achaete-scute (ac-sc) complex, which encode basic-helix-loop-helix (bHLH) transcription factors, are necessary and sufficient for sensory bristle formation. charlatan (chn) was originally identified as a transcriptional activator of ac-sc gene expression through interaction with its enhancer, an activity that promotes sensory bristle development. In contrast, Chn was also identified as a functional homologue of mammalian neuron-restrictive silencing factor or RE1 silencing transcription factor (NRSF/REST), an important transcriptional repressor during vertebrate neurogenesis and stem cell development that acts through epigenetic gene silencing. Here, we report that Chn acts as a repressor of extramacrochaetae (emc) and hairy, molecules that inhibit ac-sc expression. This double-negative mechanism, together with direct activation via the achaete enhancer, increases expression of achaete and ensures robust development of sensory neurons. A mutation in the C-terminal repressor motif of Chn, which causes Chn to lose its repression activity, converted Chn to an activator of emc and hairy, suggesting that Chn is a dual functional regulator of transcription. Because chn-like sequences are found among arthropods, regulation of neuronal development by Chn-like molecules may be widely conserved.

  8. Characterization and functional analysis of the 5' flanking region of Sparus aurata myostatin-1 gene.

    PubMed

    Funkenstein, Bruria; Balas, Viki; Rebhan, Yanai; Pliatner, Anna

    2009-05-01

    Myostatin (MSTN) is a member of the transforming growth factor-beta superfamily that functions as a negative regulator of skeletal muscle development and growth in mammals. Although several MSTN promoters were described in fish, no functional analysis was reported so far. Here, the 5' flanking region (1372 bp) of the MSTN-1 gene of the marine fish Sparus aurata (saMSTN-1) was cloned, sequenced and characterized. It contains two consensus sequences for TATA box (TATAA), a CAAT box, ten putative E-boxes known as binding sites to myogenic basic helix-loop-helix transcription factors (TFs) and two putative binding sites to TF Myocyte enhancing factor-2 (MEF2). In addition, it has several putative binding sites to TF Pit-1a and several response elements to nuclear receptors (GRE, ERE, PRE, ARE, TRE, RARE and PPARRE) and cAMP-response elements. Transcriptional activity of five genomic fragments (truncated at their upstream region) of 372, 941, 972, 1113 and 1355 bp was studied in vitro, using transient transfection in A204 cells. All constructs directed luciferase activity, with the highest activity obtained by the 1113 bp fragment. These experiments show that all five genomic fragments are functional MSTN promoters and differences in promoter activity might be due to presence of enhancers and/or repressor sequences, regulating MSTN promoter activity.

  9. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control.

    PubMed

    Raft, Steven; Groves, Andrew K

    2015-01-01

    The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity, or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt, and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained.

  10. Cloning and characterization of DELLA genes in Artemisia annua.

    PubMed

    Shen, Q; Cui, J; Fu, X Q; Yan, T X; Tang, K X

    2015-08-21

    Gibberellins (GA) are some of the most important phytohormones involved in plant development. DELLA proteins are negative regulators of GA signaling in many plants. In this study, the full-length cDNA sequences of three DELLA genes were cloned from Artemisia annua. Phylogenetic analysis revealed that AaDELLA1 and AaDELLA2 were located in the same cluster, but AaDELLA3 was not. Subcellular localization analysis suggested that AaDELLAs can be targeted to the nucleus and/or cytoplasm. Real-time PCR indicated that all three AaDELLA genes exhibited the highest expression in seeds. Expression of all AaDELLA genes was enhanced by exogenous MeJA treatment but inhibited by GA3 treatment. Yeast two-hybrid assay showed that AaDELLAs could interact with basic helix-loop-helix transcription factor AaMYC2, suggesting that GA and JA signaling may be involved in cross-talk via DELLA and MYC2 interaction in A. annua.

  11. Identification of a human achaete-scute homolog highly expressed in neuroendocrine tumors.

    PubMed Central

    Ball, D W; Azzoli, C G; Baylin, S B; Chi, D; Dou, S; Donis-Keller, H; Cumaraswamy, A; Borges, M; Nelkin, B D

    1993-01-01

    Basic helix-loop-helix transcription factors of the achaete-scute family are instrumental in Drosophila neurosensory development and are candidate regulators of development in the mammalian central nervous system and neural crest. We report the isolation and initial characterization of a human achaete-scute homolog that is highly expressed in two neuroendocrine cancers, medullary thyroid cancer (MTC) and small cell lung cancer (SCLC). The human gene, which we have termed human achaete-scute homology 1 (hASH1), was cloned from a human MTC cDNA library. It encodes a predicted protein of 238 aa that is 95% homologous to mammalian achaete-scute homolog (MASH) 1, a rodent basic helix-loop-helix factor. The 57-residue basic helix-loop-helix domain is identical to that in the rodent gene, and the basic and helical regions, excluding the loop, are 72-80% identical to Drosophila achaete-scute family members. The proximal coding region of the hASH1 cDNA contains a striking 14-copy repeat of the triplet CAG that exhibits polymorphism in human genomic DNA. Thus, hASH1 is a candidate locus for disease-causing mutations via triplet repeat amplification. Analysis of rodent-human somatic cell hybrids permitted assignment of hASH1 to human chromosome 12. Northern blots revealed hASH1 transcripts in RNA from a human MTC cell line, two fresh MTC tumors, fetal brain, and three lines of human SCLC. In contrast, cultured lines of non-SCLC lung cancers and a panel of normal adult human tissues showed no detectable hASH1 transcripts. Expression of hASH1 may provide a useful marker for cancers with neuroendocrine features and may contribute to the differentiation and growth regulation of these cells. Images Fig. 3 Fig. 4 Fig. 5 PMID:8390674

  12. Myomaker is essential for muscle regeneration.

    PubMed

    Millay, Douglas P; Sutherland, Lillian B; Bassel-Duby, Rhonda; Olson, Eric N

    2014-08-01

    Regeneration of injured adult skeletal muscle involves fusion of activated satellite cells to form new myofibers. Myomaker is a muscle-specific membrane protein required for fusion of embryonic myoblasts, but its potential involvement in adult muscle regeneration has not been explored. We show that myogenic basic helix-loop-helix (bHLH) transcription factors induce myomaker expression in satellite cells during acute and chronic muscle regeneration. Moreover, genetic deletion of myomaker in adult satellite cells completely abolishes muscle regeneration, resulting in severe muscle destruction after injury. Myomaker is the only muscle-specific protein known to be absolutely essential for fusion of embryonic and adult myoblasts.

  13. Reducing Negative Behaviors of Elementary School Students through a Program Which Honors Values Discussions, the Arts, and Satisfies Children's Basic Needs.

    ERIC Educational Resources Information Center

    Kimball, Kathleen A.

    This practicum project implemented and evaluated an 8-month program designed to reduce negative behaviors among first- through fifth-grade students. Counseling referrals, student interviews, and faculty surveys indicated that the negative behaviors of gossip, name calling, and exclusion of fellow students from class and play activities were…

  14. Inhibition of the hTERT promoter by the proto-oncogenic protein TAL1.

    PubMed

    Terme, J-M; Mocquet, V; Kuhlmann, A-S; Zane, L; Mortreux, F; Wattel, E; Duc Dodon, M; Jalinot, P

    2009-11-01

    Telomerase activity, which has fundamental roles in development and carcinogenesis, strongly depends on the expression of human telomerase reverse transcriptase (hTERT), its catalytic subunit. In this report, we show that the basic helix-loop-helix factor, TAL1 (T-cell acute lymphoblastic leukemia 1), is a negative regulator of the hTERT promoter. Indeed, TAL1 overexpression leads to a decrease in hTERT mRNA abundance and hence to reduced telomerase activity. Conversely, suppression of TAL1 by RNA interference in Jurkat cells increases hTERT expression. Analysis by chromatin immunoprecipitation assays showed that TAL1 binds to the hTERT proximal promoter and recruits HDAC1. Considering the relationship recently established between TAL1 and the human T-cell leukemia virus type 1 (HTLV-1) Tax protein, which was confirmed in T lymphocyte clones derived from adult T-cell leukemia patients, we analyzed the effect of TAL1 with respect to the earlier characterized effects of Tax and HBZ (HTLV-1 basic leucine zipper) on hTERT expression. TAL1 was observed to reinforce the negative effect of Tax, whereas hTERT transactivation by the HBZ-JunD complex was repressed by TAL1 overexpression. Moreover, HBZ was found to induce proteasome-mediated degradation of TAL1. These observations support a model in which Tax and TAL1 by repressing hTERT would initially favor genomic instability, whereas expression of factors such as HBZ allows at a later stage an increase in hTERT production and consequently in telomerase activity.

  15. Poplar MYB115 and MYB134 Transcription Factors Regulate Proanthocyanidin Synthesis and Structure1[OPEN

    PubMed Central

    Ma, Dawei; Mellway, Robin; Yoshida, Kazuko; Tran, Lan; Stewart, Don; Reichelt, Michael; Salminen, Juha-Pekka; Séguin, Armand

    2017-01-01

    The accumulation of proanthocyanidins is regulated by a complex of transcription factors composed of R2R3 MYB, basic helix-loop-helix, and WD40 proteins that activate the promoters of biosynthetic genes. In poplar (genus Populus), MYB134 is known to regulate proanthocyanidin biosynthesis by activating key flavonoid genes. Here, we characterize a second MYB regulator of proanthocyanidins, MYB115. Transgenic poplar overexpressing MYB115 showed a high-proanthocyanidin phenotype and reduced salicinoid accumulation, similar to the effects of MYB134 overexpression. Transcriptomic analysis of MYB115- and MYB134-overexpressing poplar plants identified a set of common up-regulated genes encoding proanthocyanidin biosynthetic enzymes and several novel uncharacterized MYB transcriptional repressors. Transient expression experiments demonstrated the capacity of both MYB134 and MYB115 to activate flavonoid promoters, but only in the presence of a basic helix-loop-helix cofactor. Yeast two-hybrid experiments confirmed the direct interaction of these transcription factors. The unexpected identification of dihydromyricetin in leaf extracts of both MYB115- and MYB134-overexpressing poplar led to the discovery of enhanced flavonoid B-ring hydroxylation and an increased proportion of prodelphinidins in proanthocyanidin of the transgenics. The dramatic hydroxylation phenotype of MYB115 overexpressors is likely due to the up-regulation of both flavonoid 3′,5′-hydroxylases and cytochrome b5. Overall, this work provides new insight into the complexity of the gene regulatory network for proanthocyanidin synthesis in poplar. PMID:28348066

  16. Poplar MYB115 and MYB134 Transcription Factors Regulate Proanthocyanidin Synthesis and Structure.

    PubMed

    James, Amy Midori; Ma, Dawei; Mellway, Robin; Gesell, Andreas; Yoshida, Kazuko; Walker, Vincent; Tran, Lan; Stewart, Don; Reichelt, Michael; Suvanto, Jussi; Salminen, Juha-Pekka; Gershenzon, Jonathan; Séguin, Armand; Constabel, C Peter

    2017-05-01

    The accumulation of proanthocyanidins is regulated by a complex of transcription factors composed of R2R3 MYB, basic helix-loop-helix, and WD40 proteins that activate the promoters of biosynthetic genes. In poplar (genus Populus), MYB134 is known to regulate proanthocyanidin biosynthesis by activating key flavonoid genes. Here, we characterize a second MYB regulator of proanthocyanidins, MYB115. Transgenic poplar overexpressing MYB115 showed a high-proanthocyanidin phenotype and reduced salicinoid accumulation, similar to the effects of MYB134 overexpression. Transcriptomic analysis of MYB115- and MYB134-overexpressing poplar plants identified a set of common up-regulated genes encoding proanthocyanidin biosynthetic enzymes and several novel uncharacterized MYB transcriptional repressors. Transient expression experiments demonstrated the capacity of both MYB134 and MYB115 to activate flavonoid promoters, but only in the presence of a basic helix-loop-helix cofactor. Yeast two-hybrid experiments confirmed the direct interaction of these transcription factors. The unexpected identification of dihydromyricetin in leaf extracts of both MYB115- and MYB134-overexpressing poplar led to the discovery of enhanced flavonoid B-ring hydroxylation and an increased proportion of prodelphinidins in proanthocyanidin of the transgenics. The dramatic hydroxylation phenotype of MYB115 overexpressors is likely due to the up-regulation of both flavonoid 3',5'-hydroxylases and cytochrome b5 Overall, this work provides new insight into the complexity of the gene regulatory network for proanthocyanidin synthesis in poplar. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. Experimental determination of the evolvability of a transcription factor.

    PubMed

    Maerkl, Sebastian J; Quake, Stephen R

    2009-11-03

    Sequence-specific binding of a transcription factor to DNA is the central event in any transcriptional regulatory network. However, relatively little is known about the evolutionary plasticity of transcription factors. For example, the exact functional consequence of an amino acid substitution on the DNA-binding specificity of most transcription factors is currently not predictable. Furthermore, although the major structural families of transcription factors have been identified, the detailed DNA-binding repertoires within most families have not been characterized. We studied the sequence recognition code and evolvability of the basic helix-loop-helix transcription factor family by creating all possible 95 single-point mutations of five DNA-contacting residues of Max, a human helix-loop-helix transcription factor and measured the detailed DNA-binding repertoire of each mutant. Our results show that the sequence-specific repertoire of Max accessible through single-point mutations is extremely limited, and we are able to predict 92% of the naturally occurring diversity at these positions. All naturally occurring basic regions were also found to be accessible through functional intermediates. Finally, we observed a set of amino acids that are functional in vitro but are not found to be used naturally, indicating that functionality alone is not sufficient for selection.

  18. PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) regulates auxin biosynthesis at high temperature

    PubMed Central

    Franklin, Keara A.; Lee, Sang Ho; Patel, Dhaval; Kumar, S. Vinod; Spartz, Angela K.; Gu, Chen; Ye, Songqing; Yu, Peng; Breen, Gordon; Cohen, Jerry D.; Wigge, Philip A.; Gray, William M.

    2011-01-01

    At high ambient temperature, plants display dramatic stem elongation in an adaptive response to heat. This response is mediated by elevated levels of the phytohormone auxin and requires auxin biosynthesis, signaling, and transport pathways. The mechanisms by which higher temperature results in greater auxin accumulation are unknown, however. A basic helix-loop-helix transcription factor, PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), is also required for hypocotyl elongation in response to high temperature. PIF4 also acts redundantly with its homolog, PIF5, to regulate diurnal growth rhythms and elongation responses to the threat of vegetative shade. PIF4 activity is reportedly limited in part by binding to both the basic helix-loop-helix protein LONG HYPOCOTYL IN FAR RED 1 and the DELLA family of growth-repressing proteins. Despite the importance of PIF4 in integrating multiple environmental signals, the mechanisms by which PIF4 controls growth are unknown. Here we demonstrate that PIF4 regulates levels of auxin and the expression of key auxin biosynthesis genes at high temperature. We also identify a family of SMALL AUXIN UP RNA (SAUR) genes that are expressed at high temperature in a PIF4-dependent manner and promote elongation growth. Taken together, our results demonstrate direct molecular links among PIF4, auxin, and elongation growth at high temperature. PMID:22123947

  19. ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12) Interacts with FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) Linking Iron Deficiency and Oxidative Stress Responses.

    PubMed

    Le, Cham Thi Tuyet; Brumbarova, Tzvetina; Ivanov, Rumen; Stoof, Claudia; Weber, Eva; Mohrbacher, Julia; Fink-Straube, Claudia; Bauer, Petra

    2016-01-01

    Plants grown under iron (Fe)-deficient conditions induce a set of genes that enhance the efficiency of Fe uptake by the roots. In Arabidopsis (Arabidopsis thaliana), the central regulator of this response is the basic helix-loop-helix transcription factor FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT). FIT activity is regulated by protein-protein interactions, which also serve to integrate external signals that stimulate and possibly inhibit Fe uptake. In the search of signaling components regulating FIT function, we identified ZINC FINGER OF ARABIDOPSIS THALIANA12 (ZAT12), an abiotic stress-induced transcription factor. ZAT12 interacted with FIT, dependent on the presence of the ethylene-responsive element-binding factor-associated amphiphilic repression motif. ZAT12 protein was found expressed in the root early differentiation zone, where its abundance was modulated in a root layer-specific manner. In the absence of ZAT12, FIT expression was upregulated, suggesting a negative effect of ZAT12 on Fe uptake. Consistently, zat12 loss-of-function mutants had higher Fe content than the wild type at sufficient Fe. We found that under Fe deficiency, hydrogen peroxide (H2O2) levels were enhanced in a FIT-dependent manner. FIT protein, in turn, was stabilized by H2O2 but only in the presence of ZAT12, showing that H2O2 serves as a signal for Fe deficiency responses. We propose that oxidative stress-induced ZAT12 functions as a negative regulator of Fe acquisition. A model where H2O2 mediates the negative regulation of plant responses to prolonged stress might be applicable to a variety of stress conditions.

  20. Inhibitor of DNA Binding 4 (ID4) Regulation of Adipocyte Differentiation and Adipose Tissue Formation in Mice*

    PubMed Central

    Murad, Joana M.; Place, Chelsea S.; Ran, Cong; Hekmatyar, Shahryar K. N.; Watson, Nathan P.; Kauppinen, Risto A.; Israel, Mark A.

    2010-01-01

    Inhibitor of DNA binding 4 (ID4) is a helix-loop-helix protein that heterodimerizes with basic helix-loop-helix transcription factors inhibiting their function. ID4 expression is important for adipogenic differentiation of the 3T3-L1 cell line, and inhibition of ID4 is associated with a concomitant decrease in CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ mRNA and protein expression. Mice with a homozygous deletion of Id4 (Id4−/−) have reduced body fat and gain much less weight compared with wild-type littermates when placed on diets with high fat content. Mouse embryonic fibroblasts (MEFs) isolated from Id4−/− mice have reduced adipogenic potential when compared with wild-type MEFs. In agreement with changes in morphological differentiation, the levels of CCAAT/enhancer-binding protein α and peroxisome proliferator-activated receptor γ were also reduced in MEFs from Id4−/− mice. Our results demonstrate the importance of ID4 in adipocyte differentiation and the implications of this regulation for adipose tissue formation. PMID:20460371

  1. Cellular and developmental adaptations to hypoxia: a Drosophila perspective.

    PubMed

    Romero, Nuria Magdalena; Dekanty, Andrés; Wappner, Pablo

    2007-01-01

    The fruit fly Drosophila melanogaster, a widely utilized genetic model, is highly resistant to oxygen starvation and is beginning to be used for studying physiological, developmental, and cellular adaptations to hypoxia. The Drosophila respiratory (tracheal) system has features in common with the mammalian circulatory system so that an angiogenesis-like response occurs upon exposure of Drosophila larvae to hypoxia. A hypoxia-responsive system homologous to mammalian hypoxia-inducible factor (HIF) has been described in the fruit fly, where Fatiga is a Drosophila oxygen-dependent HIF prolyl hydroxylase, and the basic helix-loop-helix Per/ARNT/Sim (bHLH-PAS) proteins Sima and Tango are, respectively, the Drosophila homologues of mammalian HIF-alpha (alpha) and HIF-beta (beta). Tango is constitutively expressed regardless of oxygen tension and, like in mammalian cells, Sima is controlled at the level of protein degradation and subcellular localization. Sima is critically required for development in hypoxia, but, unlike mammalian model systems, it is dispensable for development in normoxia. In contrast, fatiga mutant alleles are all lethal; however, strikingly, viability to adulthood is restored in fatiga sima double mutants, although these double mutants are not entirely normal, suggesting that Fatiga has Sima-independent functions in fly development. Studies in cell culture and in vivo have revealed that Sima is activated by the insulin receptor (InR) and target-of-rapamycin (TOR) pathways. Paradoxically, Sima is a negative regulator of growth. This suggests that Sima is engaged in a negative feedback loop that limits growth upon stimulation of InR/TOR pathways.

  2. The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine1

    PubMed Central

    Cavallini, Erika; Matus, José Tomás; Finezzo, Laura; Zenoni, Sara; Loyola, Rodrigo; Guzzo, Flavia; Schlechter, Rudolf; Ageorges, Agnès; Arce-Johnson, Patricio

    2015-01-01

    Because of the vast range of functions that phenylpropanoids possess, their synthesis requires precise spatiotemporal coordination throughout plant development and in response to the environment. The accumulation of these secondary metabolites is transcriptionally controlled by positive and negative regulators from the MYB and basic helix-loop-helix protein families. We characterized four grapevine (Vitis vinifera) R2R3-MYB proteins from the C2 repressor motif clade, all of which harbor the ethylene response factor-associated amphiphilic repression domain but differ in the presence of an additional TLLLFR repression motif found in the strong flavonoid repressor Arabidopsis (Arabidopsis thaliana) AtMYBL2. Constitutive expression of VvMYB4a and VvMYB4b in petunia (Petunia hybrida) repressed general phenylpropanoid biosynthetic genes and selectively reduced the amount of small-weight phenolic compounds. Conversely, transgenic petunia lines expressing VvMYBC2-L1 and VvMYBC2-L3 showed a severe reduction in petal anthocyanins and seed proanthocyanidins together with a higher pH of crude petal extracts. The distinct function of these regulators was further confirmed by transient expression in tobacco (Nicotiana benthamiana) leaves and grapevine plantlets. Finally, VvMYBC2-L3 was ectopically expressed in grapevine hairy roots, showing a reduction in proanthocyanidin content together with the down-regulation of structural and regulatory genes of the flavonoid pathway as revealed by a transcriptomic analysis. The physiological role of these repressors was inferred by combining the results of the functional analyses and their expression patterns in grapevine during development and in response to ultraviolet B radiation. Our results indicate that VvMYB4a and VvMYB4b may play a key role in negatively regulating the synthesis of small-weight phenolic compounds, whereas VvMYBC2-L1 and VvMYBC2-L3 may additionally fine tune flavonoid levels, balancing the inductive effects of

  3. Transcription Factor SCL Is Required for c-kit Expression and c-Kit Function in Hemopoietic Cells

    PubMed Central

    Krosl, Gorazd; He, Gang; Lefrancois, Martin; Charron, Frédéric; Roméo, Paul-Henri; Jolicoeur, Paul; Kirsch, Ilan R.; Nemer, Mona; Hoang, Trang

    1998-01-01

    In normal hemopoietic cells that are dependent on specific growth factors for cell survival, the expression of the basic helix-loop-helix transcription factor SCL/Tal1 correlates with that of c-Kit, the receptor for Steel factor (SF) or stem cell factor. To address the possibility that SCL may function upstream of c-kit, we sought to modulate endogenous SCL function in the CD34+ hemopoietic cell line TF-1, which requires SF, granulocyte/macrophage colony–stimulating factor, or interleukin 3 for survival. Ectopic expression of an antisense SCL cDNA (as-SCL) or a dominant negative SCL (dn-SCL) in these cells impaired SCL DNA binding activity, and prevented the suppression of apoptosis by SF only, indicating that SCL is required for c-Kit–dependent cell survival. Consistent with the lack of response to SF, the level of c-kit mRNA and c-Kit protein was significantly and specifically reduced in as-SCL– or dn-SCL– expressing cells. c-kit mRNA, c-kit promoter activity, and the response to SF were rescued by SCL overexpression in the antisense or dn-SCL transfectants. Furthermore, ectopic c-kit expression in as-SCL transfectants is sufficient to restore cell survival in response to SF. Finally, enforced SCL in the pro–B cell line Ba/F3, which is both SCL and c-kit negative is sufficient to induce c-Kit and SF responsiveness. Together, these results indicate that c-kit, a gene that is essential for the survival of primitive hemopoietic cells, is a downstream target of the transcription factor SCL. PMID:9687522

  4. Id4 Promotes Senescence and Sensitivity to Doxorubicin-induced Apoptosis in DU145 Prostate Cancer Cells

    PubMed Central

    Carey, Jason P.; Knowell, Ashley Evans; Chinaranagari, Swathi; Chaudhary, Jaideep

    2014-01-01

    Inhibitor of differentiation proteins (Id1, 2, 3 and 4) are dominant negative regulators of basic helix loop helix transcription factors and play dominant roles in cancer cells, spanning several molecular pathways including senescence, invasion, metastasis, proliferation and apoptosis. In contrast to high Id1, Id2 and Id3 expression, the expression of Id4 is epigenetically silenced in prostate cancer. In the present study we demonstrated a novel role of Id4, that of promotion of cellular senescence in prostate cancer cells. Materials and Methods: Id4 was ectopically expressed in DU145 cells (DU145+Id4). The cells treated with Doxorubicin (0–500 nm) or vehicle control were analyzed for apoptosis, senescence (SA-beta Galactosidase), and expression of CDKN1A (p21), CDKN1B(p27), CDKN2A (p16), E2F1, vimentin and E-cadherin by immuno-histochemistry and/or Western blot. Results: In the present study we demonstrated that Id4 promotes cellular senescence in prostate cancer cell line DU145. Ectopic overexpression of Id4 in androgen receptor-negative DU145 prostate cancer cells resulted in increased expression of p16, p21, p27, E-cadherin and vimentin but down-regulated E2F1 expression. Id4 also potentiated the effect of doxorubicin induced senescence and apoptosis. Conclusion: The absence of functional p16, pRB and p53 in DU145 suggests that Id4 could alter additional molecular pathways such as those involving E2F1 to promote senescence and increased sensitivity to doxorubicin-induced apoptosis. The results of the present study support the role of Id4 as a tumor suppressor in prostate cancer. PMID:24122992

  5. The Freud-1/CC2D1A family: transcriptional regulators implicated in mental retardation.

    PubMed

    Rogaeva, Anastasia; Galaraga, Kimberly; Albert, Paul R

    2007-10-01

    The CC2D1A gene family consists of two homologous genes, Freud-1/CC2D1A and Freud-2/CC2D1B, that share conserved domains, including several DM14 domains that are specific to this protein family, a C-terminal helix-loop-helix domain, and a C2 calcium-dependent phospholipid binding domain. Although the function of Freud-2 is unknown, Freud-1 has been shown to function as a transcriptional repressor of the serotonin-1A receptor gene that binds to a novel DNA element (FRE, 5'-repressor element). The DNA binding and repressor activities of Freud-1 are inhibited by calcium-calmodulin-dependent protein kinase. Recently, a deletion in the CC2D1A gene has been linked to nonsyndromic mental retardation. This deletion results in the truncation of the helix-loop-helix DNA binding and the C2 domains, crucial for Freud-1 repressor activity, and hence is predicted to generate an inactive or weakly dominant negative protein. The possible mechanisms by which inactivation of Freud-1 could lead to abnormal cortical development and cognitive impairment and the potential roles of Freud-1 gene targets are discussed.

  6. A systematic review of the mismatch negativity as an index for auditory sensory memory: From basic research to clinical and developmental perspectives.

    PubMed

    Bartha-Doering, Lisa; Deuster, Dirk; Giordano, Vito; am Zehnhoff-Dinnesen, Antoinette; Dobel, Christian

    2015-09-01

    Auditory sensory memory is an important ability for successful language acquisition and processing. The mismatch negativity (MMN) in response to auditory stimuli has been proposed as an objective tool to measure the existence of auditory sensory memory traces. By increasing interstimulus intervals, attenuation of MMN peak amplitude and increased MMN peak latency have been suggested to reflect duration and decay of sensory memory traces. The aim of the present study is to conduct a systematic review of studies investigating sensory memory duration with MMN. Searches of electronic databases yielded 743 articles. Of these, 37 studies met final eligibility criteria. Results point to maturational changes in the time span of auditory sensory memory from birth on with a peak in young adulthood, as well as to a decrease of sensory memory duration in healthy aging. Furthermore, this review suggests that sensory memory decline is related to diverse neurological, psychiatric, and pediatric diseases, including Alzheimer's disease, alcohol abuse, schizophrenia, and language disorders. This review underlines that the MMN provides a unique window to the cognitive processes of auditory sensory memory. However, further studies combining electrophysiological and behavioral data, and further studies in clinical populations are needed, also on individual levels, to validate the MMN as a clinical tool for the assessment of sensory memory duration.

  7. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism

    PubMed Central

    Payyavula, Raja S.; Navarre, Duroy A.

    2013-01-01

    Much remains unknown about how transcription factors and sugars regulate phenylpropanoid metabolism in tuber crops like potato (Solanum tuberosum). Based on phylogeny and protein similarity to known regulators of phenylpropanoid metabolism, 15 transcription factors were selected and their expression was compared in white, yellow, red, and purple genotypes with contrasting phenolic and anthocyanin profiles. Red and purple genotypes had increased phenylalanine ammonia lyase (PAL) enzyme activity, markedly higher levels of phenylpropanoids, and elevated expression of most phenylpropanoid structural genes, including a novel anthocyanin O-methyltransferase. The transcription factors Anthocyanin1 (StAN1), basic Helix Loop Helix1 (StbHLH1), and StWD40 were more strongly expressed in red and purple potatoes. Expression of 12 other transcription factors was not associated with phenylpropanoid content, except for StMYB12B, which showed a negative relationship. Increased expression of AN1, bHLH1, and WD40 was also associated with environmentally mediated increases in tuber phenylpropanoids. Treatment of potato plantlets with sucrose induced hydroxycinnamic acids, flavonols, anthocyanins, structural genes, AN1, bHLH1, WD40, and genes encoding the sucrose-hydrolysing enzymes SUSY1, SUSY4, and INV2. Transient expression of StAN1 in tobacco leaves induced bHLH1, structural genes, SUSY1, SUSY4, and INV1, and increased phenylpropanoid amounts. StAN1 infiltration into tobacco leaves decreased sucrose and glucose concentrations. In silico promoter analysis revealed the presence of MYB and bHLH regulatory elements on sucrolytic gene promoters and sucrose-responsive elements on the AN1 promoter. These findings reveal an interesting dynamic between AN1, sucrose, and sucrose metabolic genes in modulating potato phenylpropanoids. PMID:24098049

  8. The Genetic Causes of Nonsyndromic Congenital Retinal Detachment: A Genetic and Phenotypic Study of Pakistani Families

    PubMed Central

    Keser, Vafa; Khan, Ayesha; Siddiqui, Sorath; Lopez, Irma; Ren, Huanan; Qamar, Raheel; Nadaf, Javad; Majewski, Jacek; Chen, Rui; Koenekoop, Robert K.

    2017-01-01

    Purpose To evaluate consanguineous pedigrees from Pakistan with a clinical diagnosis of nonsyndromic congenital retinal nonattachment (NCRNA) and identify genes responsible for the disease as currently only one NCRNA gene is known (atonal basic helix-loop-helix transcription factor 7: ATOH7). Methods We implemented a three-step genotyping platform: single nucleotide polymorphism genotyping to identify loss of heterozygosity regions in patients, Retinal Information Network panel screening for mutations in currently known retinal genes. Negative patients were then subjected to whole exome sequencing. Results We evaluated 21 consanguineous NCRNA pedigrees and identified the causal mutations in known retinal genes in 13 out of our 21 families. We found mutations in ATOH7 in three families. Surprisingly, we then found mutations in familial exudative vitreoretinopathy (FEVR) genes; low-density lipoprotein receptor-related protein 5 mutations (six families), tetraspanin 12 mutations (two families), and NDP mutations (two families). Thus, 62% of the patients were successfully genotyped in our study with seven novel and six previously reported mutations in known retinal genes. Conclusions Although the clinical diagnosis of all children was NCRNA with severe congenital fibrotic retinal detachments, the molecular diagnosis determined that the disease process was in fact a very severe form of FEVR in 10 families. Because severe congenital retinal detachment has not been previously associated with all the FEVR genes, we have thus expanded the phenotypic spectrum of FEVR, a highly variable retinal detachment phenotype that has clinical overlap with NCRNA. We identified seven novel mutations. We also established for the first time genetic overlap between the Iranian and Pakistani populations. We identified eight NCRNA families that do not harbor mutations in any known retinal genes, suggesting novel causal genes in these families. PMID:28192794

  9. bHLH05 Is an Interaction Partner of MYB51 and a Novel Regulator of Glucosinolate Biosynthesis in Arabidopsis1[W][OPEN

    PubMed Central

    Gigolashvili, Tamara

    2014-01-01

    By means of yeast (Saccharomyces cerevisiae) two-hybrid screening, we identified basic helix-loop-helix transcription factor05 (bHLH05) as an interacting partner of MYB51, the key regulator of indolic glucosinolates (GSLs) in Arabidopsis (Arabidopsis thaliana). Furthermore, we show that bHLH04, bHLH05, and bHLH06/MYC2 also interact with other R2R3-MYBs regulating GSL biosynthesis. Analysis of bhlh loss-of-function mutants revealed that the single bhlh mutants retained GSL levels that were similar to those in wild-type plants, whereas the triple bhlh04/05/06 mutant was depleted in the production of GSL. Unlike bhlh04/06 and bhlh05/06 mutants, the double bhlh04/05 mutant was strongly affected in the production of GSL, pointing to a special role of bHLH04 and bHLH05 in the control of GSL levels in the absence of jasmonic acid. The combination of two specific gain-of-function alleles of MYB and bHLH proteins had an additive effect on GSL levels, as demonstrated by the analysis of the double MYB34-1D bHLH05D94N mutant, which produces 20-fold more indolic GSLs than bHLH05D94N and ecotype Columbia-0 of Arabidopsis. The amino acid substitution D94N in bHLH05D94N negatively affects the interaction with JASMONATE-ZIM DOMAIN protein, thereby resulting in constitutive activation of bHLH05 and mimicking jasmonic acid treatment. Our study revealed the bHLH04, bHLH05, and bHLH06/MYC2 factors as novel regulators of GSL biosynthesis in Arabidopsis. PMID:25049362

  10. Arabidopsis thaliana G2-LIKE FLAVONOID REGULATOR and BRASSINOSTEROID ENHANCED EXPRESSION1 are low-temperature regulators of flavonoid accumulation.

    PubMed

    Petridis, Antonios; Döll, Stefanie; Nichelmann, Lars; Bilger, Wolfgang; Mock, Hans-Peter

    2016-08-01

    Flavonoid synthesis is predominantly regulated at the transcriptional level through the MYB-basic helix-loop-helix (bHLH)-WD40 (MBW) (MYB: transcription factor of the myeloblastosis protein family, WD40: tanscription factor with a short structural motif of 40 amino acids which terminates in an aspartic acid-tryptophan dipeptide) complex, and responds to both environmental and developmental stimuli. Although the developmental regulation of flavonoid accumulation in Arabidopsis thaliana has been examined in great detail, the response of the flavonoid synthesis pathway to abiotic stress (particularly low temperature) remains unclear. A screen of a Dissociation element (Ds) transposon-induced mutation collection identified two lines which exhibited an altered profile of phenylpropanoid accumulation following exposure to low-temperature stress. One of the mutated genes (BRASSINOSTEROID ENHANCED EXPRESSION1 (BEE1)) encoded a brassinosteroid enhanced expression transcription factor, while the other (G2-LIKE FLAVONOID REGULATOR (GFR)) encoded a G2-like flavonoid regulator. Phenylpropanoid-targeted analysis was performed using high-performance LC-MS, and gene expression analysis using quantitative reverse transcription-PCR. In both mutants, the accumulation of quercetins and scopolin was reduced under low-temperature growing conditions, whereas that of anthocyanin was increased. BEE1 and GFR were both shown to negatively regulate anthocyanin accumulation by inhibiting anthocyanin synthesis genes via the suppression of the bHLH (TRANSPARENT TESTA8 (TT8) and GLABROUS3 (GL3)) and/or the MYB (PRODUCTION OF ANTHOCYANIN PIGMENTS2 (PAP2)) components of the MBW complex. Our results provide new insight into the regulatory control of phenylpropanoid metabolism at low temperatures, and reveal that BEE1 and GFR act as important components of the signal transduction chain. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Identification of Stage-Specific Gene Modulation during Early Thymocyte Development by Whole-Genome Profiling Analysis after Aryl Hydrocarbon Receptor Activation

    PubMed Central

    Mills, Jeffrey H.; Lai, Zhi-Wei; Singh, Kameshwar P.; Middleton, Frank A.; Gasiewicz, Thomas A.; Silverstone, Allen E.

    2010-01-01

    The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor, implicated as an important modulator of the immune system and of early thymocyte development. We have shown previously that AHR activation by the environmental contaminant and potent AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to a significant decline in the percentage of S-phase cells in the CD3−CD4−CD8− triple-negative stage (TN) 3 and TN4 T-cell committed thymocytes 9 to 12 h after exposure. In the more immature TN1- or TN2-stage cells, no effect on cell cycle was observed. To identify early molecular targets, which could provide insight into how the AHR acts as a modulator of thymocyte development and cell cycle regulation, we performed gene-profiling experiments using RNA isolated from four intrathymic progenitor populations in which the AHR was activated for 6 or 12 h. This microarray analysis of AHR activation identified 108 distinct gene probes that were significantly modulated in the TN1–4 thymocyte progenitor stages. Although most of the genes identified have specific AHR recognition sequences, only seven genes were altered exclusively in the two T-cell committed stages of early thymocyte development (TN3 and TN4) in which the decline of S-phase cells is seen. Moreover, all seven of these genes were reduced in expression, and five of the seven are associated with cell cycle regulatory processes. These seven genes are novel targets for modulation by the TCDD-activated AHR and may be involved in the observed cell-cycle arrest and suppression of early thymocyte development. PMID:20159946

  12. Identification of stage-specific gene modulation during early thymocyte development by whole-genome profiling analysis after aryl hydrocarbon receptor activation.

    PubMed

    Laiosa, Michael D; Mills, Jeffrey H; Lai, Zhi-Wei; Singh, Kameshwar P; Middleton, Frank A; Gasiewicz, Thomas A; Silverstone, Allen E

    2010-05-01

    The aryl hydrocarbon receptor (AHR) is a basic helix-loop-helix transcription factor, implicated as an important modulator of the immune system and of early thymocyte development. We have shown previously that AHR activation by the environmental contaminant and potent AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) leads to a significant decline in the percentage of S-phase cells in the CD3(-)CD4(-)CD8(-) triple-negative stage (TN) 3 and TN4 T-cell committed thymocytes 9 to 12 h after exposure. In the more immature TN1- or TN2-stage cells, no effect on cell cycle was observed. To identify early molecular targets, which could provide insight into how the AHR acts as a modulator of thymocyte development and cell cycle regulation, we performed gene-profiling experiments using RNA isolated from four intrathymic progenitor populations in which the AHR was activated for 6 or 12 h. This microarray analysis of AHR activation identified 108 distinct gene probes that were significantly modulated in the TN1-4 thymocyte progenitor stages. Although most of the genes identified have specific AHR recognition sequences, only seven genes were altered exclusively in the two T-cell committed stages of early thymocyte development (TN3 and TN4) in which the decline of S-phase cells is seen. Moreover, all seven of these genes were reduced in expression, and five of the seven are associated with cell cycle regulatory processes. These seven genes are novel targets for modulation by the TCDD-activated AHR and may be involved in the observed cell-cycle arrest and suppression of early thymocyte development.

  13. Id1 Deficiency Protects against Tumor Formation in Apc(Min/+) Mice but Not in a Mouse Model of Colitis-Associated Colon Cancer.

    PubMed

    Zhang, Ning; Subbaramaiah, Kotha; Yantiss, Rhonda K; Zhou, Xi Kathy; Chin, Yvette; Benezra, Robert; Dannenberg, Andrew J

    2015-04-01

    Different mechanisms contribute to the development of sporadic, hereditary and colitis-associated colorectal cancer. Inhibitor of DNA binding/differentiation (Id) proteins act as dominant-negative antagonists of basic helix-loop-helix transcription factors. Id1 is a promising target for cancer therapy, but little is known about its role in the development of colon cancer. We used immunohistochemistry to demonstrate that Id1 is overexpressed in human colorectal adenomas and carcinomas, whether sporadic or syndromic. Furthermore, elevated Id1 levels were found in dysplasia and colon cancer arising in patients with inflammatory bowel disease. Because levels of PGE2 are also elevated in both colitis and colorectal neoplasia, we determined whether PGE2 could induce Id1. PGE2 via EP4 stimulated protein kinase A activity resulting in enhanced pCREB-mediated Id1 transcription in human colonocytes. To determine the role of Id1 in carcinogenesis, two mouse models were used. Consistent with the findings in humans, Id1 was overexpressed in tumors arising in both Apc(Min) (/+) mice, a model of familial adenomatous polyposis, and in experimental colitis-associated colorectal neoplasia. Id1 deficiency led to significant decrease in the number of intestinal tumors in Apc(Min) (/+) mice and prolonged survival. In contrast, Id1 deficiency did not affect the number or size of tumors in the model of colitis-associated colorectal neoplasia, likely due to exacerbation of colitis associated with Id1 loss. Collectively, these results suggest that Id1 plays a role in gastrointestinal carcinogenesis. Our findings also highlight the need for different strategies to reduce the risk of colitis-associated colorectal cancer compared with sporadic or hereditary colorectal cancer.

  14. NLR-Associating Transcription Factor bHLH84 and Its Paralogs Function Redundantly in Plant Immunity

    PubMed Central

    Xu, Fang; Kapos, Paul; Cheng, Yu Ti; Li, Meng; Zhang, Yuelin; Li, Xin

    2014-01-01

    In plants and animals, nucleotide-binding and leucine-rich repeat domain containing (NLR) immune receptors are utilized to detect the presence or activities of pathogen-derived molecules. However, the mechanisms by which NLR proteins induce defense responses remain unclear. Here, we report the characterization of one basic Helix-loop-Helix (bHLH) type transcription factor (TF), bHLH84, identified from a reverse genetic screen. It functions as a transcriptional activator that enhances the autoimmunity of NLR mutant snc1 (suppressor of npr1-1, constitutive 1) and confers enhanced immunity in wild-type backgrounds when overexpressed. Simultaneously knocking out three closely related bHLH paralogs attenuates RPS4-mediated immunity and partially suppresses the autoimmune phenotypes of snc1, while overexpression of the other two close paralogs also renders strong autoimmunity, suggesting functional redundancy in the gene family. Intriguingly, the autoimmunity conferred by bHLH84 overexpression can be largely suppressed by the loss-of-function snc1-r1 mutation, suggesting that SNC1 is required for its proper function. In planta co-immunoprecipitation revealed interactions between not only bHLH84 and SNC1, but also bHLH84 and RPS4, indicating that bHLH84 associates with these NLRs. Together with previous finding that SNC1 associates with repressor TPR1 to repress negative regulators, we hypothesize that nuclear NLR proteins may interact with both transcriptional repressors and activators during immune responses, enabling potentially faster and more robust transcriptional reprogramming upon pathogen recognition. PMID:25144198

  15. Silencing of the Epstein-Barr Virus Latent Membrane Protein 1 Gene by the Max-Mad1-mSin3A Modulator of Chromatin Structure

    PubMed Central

    Sjöblom-Hallén, Anna; Yang, Weiwen; Jansson, Ann; Rymo, Lars

    1999-01-01

    The tumor-associated latent membrane protein 1 (LMP1) gene in the Epstein-Barr virus (EBV) genome is activated by EBV-encoded proteins and cellular factors that are part of general signal transduction pathways. As previously demonstrated, the proximal region of the LMP1 promoter regulatory sequence (LRS) contains a negative cis element with a major role in EBNA2-mediated regulation of LMP1 gene expression in B cells. Here, we show that this silencing activity overlaps with a transcriptional enhancer in an LRS sequence that contains an E-box-homologous motif. Mutation of the putative repressor binding site relieved the repression both in a promoter-proximal context and in a complete LRS context, indicating a functional role of the repressor. Gel retardation assays showed that members of the basic helix-loop-helix transcription factor family, including Max, Mad1, USF, E12, and E47, and the corepressor mSin3A bound to the E-box-containing sequence. The enhancer activity correlated with the binding of USF. Moreover, the activity of the LMP1 promoter in reporter constructs was upregulated by overexpression of USF1 and USF2a, and the transactivation was inhibited by the concurrent expression of Max and Mad1. This suggests that Max-Mad1-mediated anchorage of a multiprotein complex including mSin3A and histone deacetylases to the E-box site constitutes the basis for the repression. Removal of acetyl moieties from histones H3 and H4 should result in a chromatin structure that is inaccessible to transcription factors. Accordingly, inhibition of deacetylase activity with trichostatin A induced expression of the endogenous LMP1 gene in EBV-transformed cells. PMID:10074148

  16. Neurodevelopmental models of transcription factor 4 deficiency converge on a common ion channel as a potential therapeutic target for Pitt Hopkins syndrome.

    PubMed

    Rannals, Matthew D; Page, Stephanie Cerceo; Campbell, Morganne N; Gallo, Ryan A; Mayfield, Brent; Maher, Brady J

    2016-01-01

    The clinically pleiotropic gene, Transcription Factor 4 (TCF4), is a broadly expressed basic helix-loop-helix (bHLH) transcription factor linked to multiple neurodevelopmental disorders, including schizophrenia, 18q deletion syndrome, and Pitt Hopkins syndrome (PTHS). In vivo suppression of Tcf4 by shRNA or mutation by CRISPR/Cas9 in the developing rat prefrontal cortex resulted in attenuated action potential output. To explain this intrinsic excitability deficit, we demonstrated that haploinsufficiency of TCF4 lead to the ectopic expression of two ion channels, Scn10a and Kcnq1. These targets of TCF4 regulation were identified through molecular profiling experiments that used translating ribosome affinity purification to enrich mRNA from genetically manipulated neurons. Using a mouse model of PTHS (Tcf4(+/tr)), we observed a similar intrinsic excitability deficit, however the underlying mechanism appeared slightly different than our rat model - as Scn10a expression was similarly increased but Kcnq1 expression was decreased. Here, we show that the truncated TCF4 protein expressed in our PTHS mouse model binds to wild-type TCF4 protein, and we suggest the difference in Kcnq1 expression levels between these two rodent models appears to be explained by a dominant-negative function of the truncated TCF4 protein. Despite the differences in the underlying molecular mechanisms, we observed common underlying intrinsic excitability deficits that are consistent with ectopic expression of Scn10a. The converging molecular function of TCF4 across two independent rodent models indicates SCN10a is a potential therapeutic target for Pitt-Hopkins syndrome.

  17. Introducing Pitt-Hopkins syndrome-associated mutations of TCF4 to Drosophila daughterless

    PubMed Central

    Tamberg, Laura; Sepp, Mari; Timmusk, Tõnis; Palgi, Mari

    2015-01-01

    ABSTRACT Pitt-Hopkins syndrome (PTHS) is caused by haploinsufficiency of Transcription factor 4 (TCF4), one of the three human class I basic helix-loop-helix transcription factors called E-proteins. Drosophila has a single E-protein, Daughterless (Da), homologous to all three mammalian counterparts. Here we show that human TCF4 can rescue Da deficiency during fruit fly nervous system development. Overexpression of Da or TCF4 specifically in adult flies significantly decreases their survival rates, indicating that these factors are crucial even after development has been completed. We generated da transgenic fruit fly strains with corresponding missense mutations R578H, R580W, R582P and A614V found in TCF4 of PTHS patients and studied the impact of these mutations in vivo. Overexpression of wild type Da as well as human TCF4 in progenitor tissues induced ectopic sensory bristles and the rough eye phenotype. By contrast, overexpression of DaR580W and DaR582P that disrupt DNA binding reduced the number of bristles and induced the rough eye phenotype with partial lack of pigmentation, indicating that these act dominant negatively. Compared to the wild type, DaR578H and DaA614V were less potent in induction of ectopic bristles and the rough eye phenotype, respectively, suggesting that these are hypomorphic. All studied PTHS-associated mutations that we introduced into Da led to similar effects in vivo as the same mutations in TCF4 in vitro. Consequently, our Drosophila models of PTHS are applicable for further studies aiming to unravel the molecular mechanisms of this disorder. PMID:26621827

  18. Downregulation of Dlx5 and Dlx6 expression by Hand2 is essential for initiation of tongue morphogenesis

    PubMed Central

    Barron, Francie; Woods, Crystal; Kuhn, Katherine; Bishop, Jonathan; Howard, Marthe J.; Clouthier, David E.

    2011-01-01

    Lower jaw development is a complex process in which multiple signaling cascades establish a proximal-distal organization. These cascades are regulated both spatially and temporally and are constantly refined through both induction of normal signals and inhibition of inappropriate signals. The connective tissue of the tongue arises from cranial neural crest cell-derived ectomesenchyme within the mandibular portion of the first pharyngeal arch and is likely to be impacted by this signaling. Although the developmental mechanisms behind later aspects of tongue development, including innervation and taste acquisition, have been elucidated, the early patterning signals driving ectomesenchyme into a tongue lineage are largely unknown. We show here that the basic helix-loop-helix transcription factor Hand2 plays key roles in establishing the proximal-distal patterning of the mouse lower jaw, in part through establishing a negative-feedback loop in which Hand2 represses Dlx5 and Dlx6 expression in the distal arch ectomesenchyme following Dlx5- and Dlx6-mediated induction of Hand2 expression in the same region. Failure to repress distal Dlx5 and Dlx6 expression results in upregulation of Runx2 expression in the mandibular arch and the subsequent formation of aberrant bone in the lower jaw along with proximal-distal duplications. In addition, there is an absence of lateral lingual swelling expansion, from which the tongue arises, resulting in aglossia. Hand2 thus appears to establish a distal mandibular arch domain that is conducive for lower jaw development, including the initiation of tongue mesenchyme morphogenesis. PMID:21558373

  19. Far-Red Light-Mediated Seedling Development in Arabidopsis Involves FAR-RED INSENSITIVE 219/JASMONATE RESISTANT 1-Dependent and -Independent Pathways

    PubMed Central

    Chen, Huai-Ju; Chen, Cheng-Ling; Hsieh, Hsu-Liang

    2015-01-01

    Plant growth and development is often regulated by the interaction of environmental factors such as light and various phytohormones. Arabidopsis FAR-RED INSENSITIVE 219 (FIN219)/JASMONATE RESISTANT 1 (JAR1) participates in phytochrome A-mediated far-red (FR) light signaling and interacts with different light signaling regulators. FIN219/JAR1 is a jasmonic acid (JA)-conjugating enzyme responsible for the formation of JA-isoleucine. However, how FIN219/JAR1 integrates FR light and JA signaling remains largely unknown. We used a microarray approach to dissect the effect of fin219 mutation on the interaction of FR light and JA signaling. The fin219-2 mutant was less sensitive than the wild type to various concentrations of methyl jasmonate (MeJA) under low and high FR light. High FR light reduced the sensitivity of Arabidopsis seedlings to MeJA likely through FIN219. Intriguingly, in response to MeJA, FIN219 levels showed a negative feedback regulation. Further microarray assay revealed that FR light could regulate gene expression by FIN219-dependent or -independent pathways. The expression profiles affected in fin219-2 indicated that FIN219/JAR1 plays a critical role in the integration of multiple hormone-related signaling. In particular, FIN219 regulates a number of transcription factors (TFs), including 94 basic helix-loop-helix (bHLH) TFs, in response to FR light and MeJA. Loss-of-function mutants of some bHLH TFs affected by FIN219 showed altered responses to MeJA in the regulation of hypocotyl and root elongation. Thus, FIN219/JAR1 is tightly regulated in response to exogenous MeJA. It also interacts with multiple plant hormones to modulate hypocotyl and root elongation of Arabidopsis seedlings likely by regulating a group of TFs. PMID:26176841

  20. Targeting the bHLH transcriptional networks by mutated E proteins in experimental glioma.

    PubMed

    Beyeler, Sarah; Joly, Sandrine; Fries, Michel; Obermair, Franz-Josef; Burn, Felice; Mehmood, Rashid; Tabatabai, Ghazaleh; Raineteau, Olivier

    2014-10-01

    Glioblastomas (GB) are aggressive primary brain tumors. Helix-loop-helix (HLH, ID proteins) and basic HLH (bHLH, e.g., Olig2) proteins are transcription factors that regulate stem cell proliferation and differentiation throughout development and into adulthood. Their convergence on many oncogenic signaling pathways combined with the observation that their overexpression in GB correlates with poor clinical outcome identifies these transcription factors as promising therapeutic targets. Important dimerization partners of HLH/bHLH proteins are E proteins that are necessary for nuclear translocation and DNA binding. Here, we overexpressed a wild type or a dominant negative form of E47 (dnE47) that lacks its nuclear localization signal thus preventing nuclear translocation of bHLH proteins in long-term glioma cell lines and in glioma-initiating cell lines and analyzed the effects in vitro and in vivo. While overexpression of E47 was sufficient to induce apoptosis in absence of bHLH proteins, dnE47 was necessary to prevent nuclear translocation of Olig2 and to achieve similar proapoptotic responses. Transcriptional analyses revealed downregulation of the antiapoptotic gene BCL2L1 and the proproliferative gene CDC25A as underlying mechanisms. Overexpression of dnE47 in glioma-initiating cell lines with high HLH and bHLH protein levels reduced sphere formation capacities and expression levels of Nestin, BCL2L1, and CDC25A. Finally, the in vivo induction of dnE47 expression in established xenografts prolonged survival. In conclusion, our data introduce a novel approach to jointly neutralize HLH and bHLH transcriptional networks activities, and identify these transcription factors as potential targets in glioma.

  1. Inhibitor of differentiation 4 (ID4): From development to cancer.

    PubMed

    Patel, Divya; Morton, Derrick J; Carey, Jason; Havrda, Mathew C; Chaudhary, Jaideep

    2015-01-01

    Highly conserved Inhibitors of DNA-Binding (ID1-ID4) genes encode multi-functional proteins whose transcriptional activity is based on dominant negative inhibition of basic helix-loop-helix (bHLH) transcription factors. Initial animal models indicated a degree of compensatory overlap between ID genes such that deletion of multiple ID genes was required to generate easily recognizable phenotypes. More recently, new model systems have revealed alterations in mice harboring deletions in single ID genes suggesting complex gene and tissue specific functions for members of the ID gene family. Because ID genes are highly expressed during development and their function is associated with a primitive, proliferative cellular phenotype there has been significant interest in understanding their potential roles in neoplasia. Indeed, numerous studies indicate an oncogenic function for ID1, ID2 and ID3. In contrast, the inhibitor of differentiation 4 (ID4) presents a paradigm shift in context of well-established role of ID1, ID2 and ID3 in development and cancer. Apart from some degree of functional redundancy such as HLH dependent interactions with bHLH protein E2A, many of the functions of ID4 are distinct from ID1, ID2 and ID3: ID4 proteins a) regulate distinct developmental processes and tissue expression in the adult, b) promote stem cell survival, differentiation and/or timing of differentiation, c) epigenetic inactivation/loss of expression in several advanced stage cancers and d) increased expression in some cancers such as those arising in the breast and ovary. Thus, in spite of sharing the conserved HLH domain, ID4 defies the established model of ID protein function and expression. The underlying molecular mechanism responsible for the unique role of ID4 as compared to other ID proteins still remains largely un-explored. This review will focus on the current understanding of ID4 in context of development and cancer.

  2. A GATA-dependent right ventricular enhancer controls dHAND transcription in the developing heart.

    PubMed

    McFadden, D G; Charité, J; Richardson, J A; Srivastava, D; Firulli, A B; Olson, E N

    2000-12-01

    Heart formation in vertebrates is believed to occur in a segmental fashion, with discreet populations of cardiac progenitors giving rise to different chambers of the heart. However, the mechanisms involved in specification of different chamber lineages are unclear. The basic helix-loop-helix transcription factor dHAND is expressed in cardiac precursors throughout the cardiac crescent and the linear heart tube, before becoming restricted to the right ventricular chamber at the onset of looping morphogenesis. dHAND is also expressed in the branchial arch neural crest, which contributes to craniofacial structures and the aortic arch arteries. Using a series of dHAND-lacZ reporter genes in transgenic mice, we show that cardiac and neural crest expression of dHAND are controlled by separate upstream enhancers and we describe a composite cardiac-specific enhancer that directs lacZ expression in a pattern that mimics that of the endogenous dHAND gene throughout heart development. Deletion analysis reduced this enhancer to a 1.5 kb region and identified subregions responsible for expression in the right ventricle and cardiac outflow tract. Comparison of mouse regulatory elements required for right ventricular expression to the human dHAND upstream sequence revealed two conserved consensus sites for binding of GATA transcription factors. Mutation of these sites abolished transgene expression in the right ventricle, identifying dHAND as a direct transcriptional target of GATA factors during right ventricle development. Since GATA factors are not chamber-restricted, these findings suggest the existence of positive and/or negative coregulators that cooperate with GATA factors to control right ventricular-specific gene expression in the developing heart.

  3. Increased expression of bHLH Transcription Factor E2A (TCF3) in prostate cancer promotes proliferation and confers resistance to doxorubicin induced apoptosis

    PubMed Central

    Patel, Divya; Chaudhary, Jaideep

    2012-01-01

    E2A (TCF3) is a multifunctional basic helix loop helix (bHLH), transcription factor. E2A regulates transcription of target genes by homo- or heterodimerization with cell specific bHLH proteins. In general, E2A promotes cell differentiation, acts as a negative regulator of cell proliferation in normal cells and cancer cell lines and is required for normal B-cell development. Given the diverse biological pathways regulated/ influenced by E2A little is known about its expression in cancer. In this study we investigated the expression of E2A in prostate cancer. Unexpectedly, E2A immuno-histochemistry demonstrated increased E2A expression in prostate cancer as compared to normal prostate. Silencing of E2A in prostate cancer cells DU145 and PC3 led to a significant reduction in proliferation due to G1 arrest that was in part mediated by increased CDKN1A(p21) and decreased Id1, Id3 and c-myc. E2A silencing in prostate cancer cell lines also resulted in increased apoptosis due to increased mitochondrial permeability and caspase 3/7 activation. Moreover, silencing of E2A increased sensitivity to doxorubicin induced apoptosis. Based on our results, we propose that E2A could be an upstream regulator of Id1 and c-Myc which are highly expressed in prostate cancer. These results for the first time demonstrate that E2A could in fact acts as a tumor promoter at least in prostate cancer. PMID:22564737

  4. The Small C-terminal Domain Phosphatase 1 Inhibits Cancer Cell Migration and Invasion by Dephosphorylating Ser(P)68-Twist1 to Accelerate Twist1 Protein Degradation*

    PubMed Central

    Sun, Tong; Fu, Junjiang; Shen, Tao; Lin, Xia; Liao, Lan; Feng, Xin-Hua; Xu, Jianming

    2016-01-01

    Twist1 is a basic helix-loop-helix transcription factor that strongly promotes epithelial-to-mesenchymal transition, migration, invasion, and metastasis of cancer cells. The MAPK-phosphorylated Twist1 on its serine 68 (Ser(P)68-Twist1) has a significantly enhanced stability and function to drive cancer cell invasion and metastasis. However, the phosphatase that dephosphorylates Ser(P)68-Twist1 and destabilizes Twist1 has not been identified and characterized. In this study, we screened a serine/threonine phosphatase cDNA expression library in HEK293T cells with ectopically coexpressed Twist1. We found that the small C-terminal domain phosphatase 1 (SCP1) specifically dephosphorylates Ser(P)68-Twist1 in both cell-free reactions and living cells. SCP1 uses its amino acid residues 43–63 to interact with the N terminus of Twist1. Increased SCP1 expression in cells decreased Ser(P)68-Twist1 and total Twist1 proteins, whereas knockdown of SCP1 increased Ser(P)68-Twist1 and total Twist1 proteins. Furthermore, the levels of SCP1 are negatively correlated with Twist1 protein levels in several cancer cell lines. SCP1-dephosphorylated Twist1 undergoes fast degradation via the ubiquitin-proteasome pathway. Importantly, an increase in SCP1 expression in breast cancer cells with either endogenous or ectopically expressed Twist1 largely inhibits the Twist1-induced epithelial-to-mesenchymal transition phenotype and the migration and invasion capabilities of these cells. These results indicate that SCP1 is the phosphatase that counterregulates the MAPK-mediated phosphorylation of Ser68-Twist1. Thus, an increase in SCP1 expression and activity may be a useful strategy for eliminating the detrimental roles of Twist1 in cancer cells. PMID:26975371

  5. Cloning and functional characterisation of avian transcription factor E2A.

    PubMed

    Conlon, Thomas M; Meyer, Kerstin B

    2004-06-14

    During B lymphocyte development the E2A gene is a critical regulator of cell proliferation and differentiation. With regards to the immunoglobulin genes the E2A proteins contribute to the regulation of gene rearrangement, expression and class switch recombination. We are now using the chicken cell line DT40 as a model system to further analyse the function of E2A. Here we report the cloning and functional analysis of the transcription factor E2A from chicken. Using RACE PCR on the chicken lymphoma cell line DT40 we have isolated full-length clones for the two E2A splice variants E12 and E47. Sequence conservation between the human and chicken proteins is extensive: the basic-helix-loop-helix DNA binding domain of human and chicken E47 and E12 are 93% and 92% identical, respectively. In addition high levels of conservation are seen in activation domain I, the potential NLS and the ubiquitin ligase interaction domain. E2A is expressed in a variety of tissues in chicken, with higher levels of expression in organs rich in immune cells. We demonstrate that chicken E12 and E47 proteins are strong transcriptional activators whose function depends on the presence of activation domain I. As in mammals, the dominant negative proteins Id1 and Id3 can inhibit the function of chicken E47. The potential for homologous recombination in DT40 allows the genetic dissection of biochemical pathways in somatic cells. With the cloning of avian E2A and the recent description of an in vitro somatic hypermutation assay in this cell line, it should now be possible to dissect the potential role of E2A in the regulation of somatic hypermutation and gene conversion.

  6. The Small C-terminal Domain Phosphatase 1 Inhibits Cancer Cell Migration and Invasion by Dephosphorylating Ser(P)68-Twist1 to Accelerate Twist1 Protein Degradation.

    PubMed

    Sun, Tong; Fu, Junjiang; Shen, Tao; Lin, Xia; Liao, Lan; Feng, Xin-Hua; Xu, Jianming

    2016-05-27

    Twist1 is a basic helix-loop-helix transcription factor that strongly promotes epithelial-to-mesenchymal transition, migration, invasion, and metastasis of cancer cells. The MAPK-phosphorylated Twist1 on its serine 68 (Ser(P)(68)-Twist1) has a significantly enhanced stability and function to drive cancer cell invasion and metastasis. However, the phosphatase that dephosphorylates Ser(P)(68)-Twist1 and destabilizes Twist1 has not been identified and characterized. In this study, we screened a serine/threonine phosphatase cDNA expression library in HEK293T cells with ectopically coexpressed Twist1. We found that the small C-terminal domain phosphatase 1 (SCP1) specifically dephosphorylates Ser(P)(68)-Twist1 in both cell-free reactions and living cells. SCP1 uses its amino acid residues 43-63 to interact with the N terminus of Twist1. Increased SCP1 expression in cells decreased Ser(P)(68)-Twist1 and total Twist1 proteins, whereas knockdown of SCP1 increased Ser(P)(68)-Twist1 and total Twist1 proteins. Furthermore, the levels of SCP1 are negatively correlated with Twist1 protein levels in several cancer cell lines. SCP1-dephosphorylated Twist1 undergoes fast degradation via the ubiquitin-proteasome pathway. Importantly, an increase in SCP1 expression in breast cancer cells with either endogenous or ectopically expressed Twist1 largely inhibits the Twist1-induced epithelial-to-mesenchymal transition phenotype and the migration and invasion capabilities of these cells. These results indicate that SCP1 is the phosphatase that counterregulates the MAPK-mediated phosphorylation of Ser(68)-Twist1. Thus, an increase in SCP1 expression and activity may be a useful strategy for eliminating the detrimental roles of Twist1 in cancer cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Analyses of loss-of-function mutations of the MITF gene suggest that haploinsufficiency is a cause of Waardenburg syndrome type 2A

    SciTech Connect

    Nobukuni, Yoshitaka; Watanabe, A.; Takeda, Kazushisa; Skarka, Hana; Tachibana, Masayoshi

    1996-07-01

    Waardenburg syndrome type 2 (WS2) is a dominantly inherited disorder characterized by a pigmentation anomaly and hearing impairment due to lack of melanocyte. Previous work has linked a subset of families with WS2 (WS2A) to the MITF gene that encodes a transcription factor with a basic-helix-loop-helix-leucine zipper (bHLH-Zip) motif and that is involved in melanocyte differentiation. Several splice-site and missense mutations have been reported in individuals affected with WS2A. In this report, we have identified two novel point mutations in the MITF gene in affected individuals from two different families with WS2A. The two mutations (C760{r_arrow}T and C895{r_arrow}T) create stop codons in exons 7 and 8, respectively. Corresponding mutant alleles predict the truncated proteins lacking HLH-Zip or Zip structure. To understand how these mutations cause WS2 in heterozygotes, we generated mutant MITF cDNAs and used them for DNA-binding and luciferase reporter assays. The mutated MITF proteins lose the DNA-binding activity and fail to transactivate the promoter of tyrosinase, a melanocyte-specific enzyme. However, these mutated proteins do not appear to interfere with the activity of wild-type MITF protein in these assays, indicating that they do not show a dominant-negative effect. These findings suggest that the phenotypes of the two families with WS2A in the present study are caused by loss-of-function mutations in one of the two alleles of the MITF gene, resulting in haploinsufficiency of the MITF protein, the protein necessary for normal development of melanocytes. 37 refs., 4 figs.

  8. Cloning, tissue expression pattern and daily rhythms of Period1, Period2, and Clock transcripts in the flatfish Senegalese sole, Solea senegalensis.

    PubMed

    Martín-Robles, Águeda J; Whitmore, David; Sánchez-Vázquez, Francisco Javier; Pendón, Carlos; Muñoz-Cueto, José A

    2012-07-01

    An extensive network of endogenous oscillators governs vertebrate circadian rhythmicity. At the molecular level, they are composed of a set of clock genes that participate in transcriptional-translational feedback loops to control their own expression and that of downstream output genes. These clocks are synchronized with the environment, although entrainment by external periodic cues remains little explored in fish. In this work, partial cDNA sequences of clock genes representing both positive (Clock) and negative (Period1, Period2) elements of the molecular feedback loops were obtained from the nocturnal flatfish Senegalese sole, a relevant species for aquaculture and chronobiology. All of the above genes exhibited high identities with their respective teleost clock genes, and Per-Arnt-Sim or basic helix-loop-helix binding domains were recognized in their primary structure. They showed a widespread distribution through the animal body and some of them displayed daily mRNA rhythms in central (retina, optic tectum, diencephalon, and cerebellum) and peripheral (liver) tissues. These rhythms were most robust in retina and liver, exhibiting marked Period1 and Clock daily oscillations in transcript levels as revealed by ANOVA and cosinor analysis. Interestingly, expression profiles were inverted in retina and optic tectum compared to liver. Such differences suggest the existence of tissue-dependent zeitgebers for clock gene expression in this species (i.e., light for retina and optic tectum and feeding time for liver). This study provides novel insight into the location of the molecular clocks (central vs. peripheral) and their different phasing and synchronization pathways, which contributes to better understand the teleost circadian systems and its plasticity.

  9. DNA-dependent protein kinase is a context dependent regulator of Lmx1a and midbrain specification.

    PubMed

    Hunt, Cameron P; Fabb, Stewart A; Pouton, Colin W; Haynes, John M

    2013-01-01

    The identification of small molecules capable of directing pluripotent cell differentiation towards specific lineages is highly desirable to both reduce cost, and increase efficiency. Within neural progenitors, LIM homeobox transcription factor 1 alpha (Lmx1a) is required for proper development of roof plate and cortical hem structures of the forebrain, as well as the development of floor plate and midbrain dopaminergic neurons. In this study we generated homologous recombinant cell lines expressing either luciferase or β-lactamase under the control of the Lmx1a promoter, and used these cell lines to investigate kinase-mediated regulation of Lmx1a activity during neuronal differentiation. A screen of 143 small molecule tyrosine kinase inhibitors yielded 16 compounds that positively or negatively modulated Lmx1a activity. Inhibition of EGF, VEGF and DNA-dependent protein kinase (DNA-PK) signaling significantly upregulated Lmx1a activity whereas MEK inhibition strongly downregulated its activity. Quantitative FACS analysis revealed that the DNA-PK inhibitor significantly increased the number of Lmx1a+ progenitors while subsequent qPCR showed an upregulation of Notch effectors, the basic helix-loop-helix genes, Hes5 and Hey1. FACS further revealed that DNA-PK-mediated regulation of Lmx1a+ cells is dependent on the rapamycin-sensitive complex, mTORC1. Interestingly, this DNA-PK inhibitor effect was preserved in a co-culture differentiation protocol. Terminal differentiation assays showed that DNA-PK inhibition shifted development of neurons from forebrain toward midbrain character as assessed by Pitx3/TH immunolabeling and corresponding upregulation of midbrain (En1), but not forebrain (FoxG1) transcripts. These studies show that Lmx1a signaling in mouse embryonic stem cells contributes to a molecular cascade establishing neuronal specification. The data presented here identifies a novel regulatory pathway where signaling from DNA-PK appears to suppress midbrain

  10. Id1, Id2 and Id3 are induced in rat melanotrophs of the pituitary gland by dopamine suppression under continuous stress.

    PubMed

    Konishi, H; Ogawa, T; Nakagomi, S; Inoue, K; Tohyama, M; Kiyama, H

    2010-09-15

    In rats under continuous stress (CS) there is decreased hypothalamic dopaminergic innervation to the intermediate lobe (IL) of the pituitary gland, which causes hyperactivation and subsequent degeneration of melanotrophs in the IL. In this study, we investigated the molecular basis for the changes that occur in melanotrophs during CS. Using microarray analysis, we identified several genes differentially expressed in the IL under CS conditions. Among the genes up-regulated under CS conditions, we focused on the inhibitor of DNA binding/differentiation (Id) family of dominant negative basic helix-loop-helix (bHLH) transcription factors. RT-PCR, Western blotting and in situ hybridization confirmed the significant inductions of Id1, Id2 and Id3 in the IL of CS rats. Administration of the dopamine D2 receptor agonist bromocriptine prevented the inductions of Id1-3 in the IL of CS rats, whereas application of the dopamine D2 antagonist sulpiride induced significant expressions of Id1-3 in the IL of normal rats. Moreover, an in vitro study using primary cultured melanotrophs demonstrated a direct effect on Id1-3 inductions by dopamine suppression. These results suggest that the decreased dopamine levels in the IL during CS induce Id1-3 expressions in melanotrophs. Because Id family members inhibit various bHLH transcription factors, it is conceivable that the induced Id1-3 would cooperatively modulate gene expressions in melanotrophs under CS conditions to induce hormone secretion. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Functional analysis of the nuclear LIM domain interactor NLI.

    PubMed Central

    Jurata, L W; Gill, G N

    1997-01-01

    LIM homeodomain and LIM-only (LMO) transcription factors contain two tandemly arranged Zn2+-binding LIM domains capable of mediating protein-protein interactions. These factors have restricted patterns of expression, are found in invertebrates as well as vertebrates, and are required for cell type specification in a variety of developing tissues. A recently identified, widely expressed protein, NLI, binds with high affinity to the LIM domains of LIM homeodomain and LMO proteins in vitro and in vivo. In this study, a 38-amino-acid fragment of NLI was found to be sufficient for the association of NLI with nuclear LIM domains. In addition, NLI was shown to form high affinity homodimers through the amino-terminal 200 amino acids, but dimerization of NLI was not required for association with the LIM homeodomain protein Lmxl. Chemical cross-linking analysis revealed higher-order complexes containing multiple NLI molecules bound to Lmx1, indicating that dimerization of NLI does not interfere with LIM domain interactions. Additionally, NLI formed complexes with Lmx1 on the rat insulin I promoter and inhibited the LIM domain-dependent synergistic transcriptional activation by Lmx1 and the basic helix-loop-helix protein E47 from the rat insulin I minienhancer. These studies indicate that NLI contains at least two functionally independent domains and may serve as a negative regulator of synergistic transcriptional responses which require direct interaction via LIM domains. Thus, NLI may regulate the transcriptional activity of LIM homeodomain proteins by determining specific partner interactions. PMID:9315627

  12. Signaling through mitogen-activated protein kinase and Rac/Rho does not duplicate the effects of activated Ras on skeletal myogenesis.

    PubMed Central

    Ramocki, M B; Johnson, S E; White, M A; Ashendel, C L; Konieczny, S F; Taparowsky, E J

    1997-01-01

    The ability of basic helix-loop-helix muscle regulatory factors (MRFs), such as MyoD, to convert nonmuscle cells to a myogenic lineage is regulated by numerous growth factor and oncoprotein signaling pathways. Previous studies have shown that H-Ras 12V inhibits differentiation to a skeletal muscle lineage by disrupting MRF function via a mechanism that is independent of the dimerization, DNA binding, and inherent transcriptional activation properties of the proteins. To investigate the intracellular signaling pathway(s) that mediates the inhibition of MRF-induced myogenesis by oncogenic Ras, we tested two transformation-defective H-Ras 12V effector domain variants for their ability to alter terminal differentiation. H-Ras 12V,35S retains the ability to activate the Raf/MEK/mitogen-activated protein (MAP) kinase cascade, whereas H-Ras 12V,40C is unable to interact directly with Raf-1 yet still influences other signaling intermediates, including Rac and Rho. Expression of each H-Ras 12V variant in C3H10T1/2 cells abrogates MyoD-induced activation of the complete myogenic program, suggesting that MAP kinase-dependent and -independent Ras signaling pathways individually block myogenesis in this model system. However, additional studies with constitutively activated Rac1 and RhoA proteins revealed no negative effects on MyoD-induced myogenesis. Similarly, treatment of Ras-inhibited myoblasts with the MEK1 inhibitor PD98059 revealed that elevated MAP kinase activity is not a significant contributor to the H-Ras 12V effect. These data suggest that an additional Ras pathway, distinct from the well-characterized MAP kinase and Rac/Rho pathways known to be important for the transforming function of activated Ras, is primarily responsible for the inhibition of myogenesis by H-Ras 12V. PMID:9199290

  13. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa.

    PubMed

    Shi, Rui; Wang, Jack P; Lin, Ying-Chung; Li, Quanzi; Sun, Ying-Hsuan; Chen, Hao; Sederoff, Ronald R; Chiang, Vincent L

    2017-05-01

    Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.

  14. Interaction of MTG family proteins with NEUROG2 and ASCL1 in the developing nervous system.

    PubMed

    Aaker, Joshua D; Patineau, Andrea L; Yang, Hyun-Jin; Ewart, David T; Nakagawa, Yasushi; McLoon, Steven C; Koyano-Nakagawa, Naoko

    2010-04-19

    During neural development, members of MTG family of transcriptional repressors are induced by proneural basic helix-loop-helix (bHLH) transcription factors and in turn inhibit the activity of the bHLH proteins, forming a negative feedback loop that regulates the normal progression of neurogenesis. Three MTG genes, MTG8, MTG16 and MTGR1, are expressed in distinct patterns in the developing nervous system. Various bHLH proteins are also expressed in distinct patterns. We asked whether there is a functional relationship between specific MTG and bHLH proteins in developing chick spinal cord. First, we examined if each MTG gene is induced by specific bHLH proteins. Although expression of NEUROG2, ASCL1 and MTG genes overlapped, the boundaries of gene expression did not match. Ectopic expression analysis showed that MTGR1 and NEUROD4, which show similar expression patterns, are regulated differently by NEUROG2 and ASCL1. Thus, our results show that expression of MTG genes is not regulated by a single upstream bHLH protein, but represents an integration of the activity of multiple regulators. Next, we asked if each MTG protein inhibits specific bHLH proteins. Transcription assay showed that NEUROG2 and ASCL1 are inhibited by MTGR1 and MTG16, and less efficiently by MTG8. Deletion mapping of MTGR1 showed that MTGR1 binds NEUROG2 and ASCL1 using multiple interaction surfaces, and all conserved domains are required for its repressor activity. These results support the model that MTG proteins form a higher-order repressor complex and modulate transcriptional activity of bHLH proteins during neurogenesis.

  15. Interaction of MTG family proteins with NEUROG2 and ASCL1 in the developing nervous system

    PubMed Central

    Aaker, Joshua D.; Patineau, Andrea L.; Yang, Hyun-jin; Ewart, David T.; Nakagawa, Yasushi; McLoon, Steven C.; Koyano-Nakagawa, Naoko

    2010-01-01

    During neural development, members of MTG family of transcriptional repressors are induced by proneural basic helix-loop-helix (bHLH) transcription factors and in turn inhibit the activity of the bHLH proteins, forming a negative feedback loop that regulates the normal progression of neurogenesis. Three MTG genes, MTG8, MTG16 and MTGR1, are expressed in distinct patterns in the developing nervous system. Various bHLH proteins are also expressed in distinct patterns. We asked whether there is a functional relationship between specific MTG and bHLH proteins in developing chick spinal cord. First, we examined if each MTG gene is induced by specific bHLH proteins. Although expression of NEUROG2, ASCL1 and MTG genes overlapped, the boundaries of gene expression did not match. Ectopic expression analysis showed that MTGR1 and NEUROD4, which show similar expression patterns, are regulated differently by NEUROG2 and ASCL1. Thus, our results show that expression of MTG genes is not regulated by a single upstream bHLH protein, but represents an integration of the activity of multiple regulators. Next, we asked if each MTG protein inhibits specific bHLH proteins. Transcription assay showed that NEUROG2 and ASCL1 are inhibited by MTGR1 and MTG16, and less efficiently by MTG8. Deletion mapping of MTGR1 showed that MTGR1 binds NEUROG2 and ASCL1 using multiple interaction surfaces, and all conserved domains are required for its repressor activity. These results support the model that MTG proteins form a higher-order repressor complex and modulate transcriptional activity of bHLH proteins during neurogenesis. PMID:20214951

  16. Asthma Basics

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Asthma Basics KidsHealth > For Parents > Asthma Basics Print A ... Asthma Categories en español Asma: aspectos fundamentales About Asthma Asthma is a common lung condition in kids ...

  17. BASIC Programming.

    ERIC Educational Resources Information Center

    Jennings, Carol Ann

    Designed for use by both secondary- and postsecondary-level business teachers, this curriculum guide consists of 10 units of instructional materials dealing with Beginners All-Purpose Symbol Instruction Code (BASIC) programing. Topics of the individual lessons are numbering BASIC programs and using the PRINT, END, and REM statements; system…

  18. Insulin Basics

    MedlinePlus

    ... Text Size: A A A Listen En Español Insulin Basics There are different types of insulin depending ... you may be experiencing a reaction. Types of Insulin Rapid-acting insulin , begins to work about 15 ...

  19. Basic Finance

    NASA Technical Reports Server (NTRS)

    Vittek, J. F.

    1972-01-01

    A discussion of the basic measures of corporate financial strength, and the sources of the information is reported. Considered are: balance sheet, income statement, funds and cash flow, and financial ratios.

  20. The Basics

    ERIC Educational Resources Information Center

    Indrisano, Roselmina; And Others

    1976-01-01

    These articles are presented as an aide in teaching basic subjects. This issue examines reading diagnosis, food preservation, prime numbers, electromagnets, acting out in language arts, self-directed spelling activities, and resources for environmental education. (Editor/RK)

  1. The Basics

    ERIC Educational Resources Information Center

    Indrisano, Roselmina; And Others

    1976-01-01

    These articles are presented as an aide in teaching basic subjects. This issue examines reading diagnosis, food preservation, prime numbers, electromagnets, acting out in language arts, self-directed spelling activities, and resources for environmental education. (Editor/RK)

  2. Fluoridation Basics

    MedlinePlus

    ... Water Fluoridation Journal Articles for Community Water Fluoridation Water Fluoridation Basics Recommend on Facebook Tweet Share Compartir ... because of tooth decay. History of Fluoride in Water In the 1930s, scientists examined the relationship between ...

  3. Simultaneous determination of banned acid orange dyes and basic orange dyes in foodstuffs by liquid chromatography-tandem electrospray ionization mass spectrometry via negative/positive ion switching mode.

    PubMed

    Fang, Guozhen; Wu, Yu; Dong, Xiaomeng; Liu, Cuicui; He, Shaoyuan; Wang, Shuo

    2013-04-24

    Simultaneous detection of two classes of dyes possessing different chemical properties is difficult. In this study, through negative/positive ion switching mode, simultaneous determination of four typical acid orange dyes and three typical basic orange dyes was achieved by a single high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, and the analytical efficiency of multiresidues identification was greatly improved. To enhance detection sensitivity, the sample pretreatment conditions and HPLC-MS/MS determining conditions were carefully optimized. Under optimal conditions, good linearity was obtained over the range of 5-500 μg L(-1) with a correlation coefficient (R(2)) >0.9998. Limits of detection (LODs) and limits of quantification (LOQs) of the seven dyes were 0.5-3.0 and 2.0-6.0 μg kg(-1), respectively. The recoveries of the seven dyes in soybean products and marinated eggs were 74-126% with relative standard deviations (RSDs) of 2.22-25.4%, suggesting the developed method is promising for the accurate quantification of the seven dyes at trace levels in foods.

  4. Basic Science.

    ERIC Educational Resources Information Center

    Mercer County Community Coll., Trenton, NJ.

    Instructional materials are provided for a course that covers basic concepts of physics and chemistry. Designed for use in a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, the course describes applications of these concepts to real-life situations, with an emphasis on applications of…

  5. Ethanol Basics

    SciTech Connect

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  6. Basic Horticulture.

    ERIC Educational Resources Information Center

    Geer, Barbra Farabough

    This learning packet contains teaching suggestions and student learning materials for a course in basic horticulture aimed at preparing students for employment in a number of horticulture areas. The packet includes nine sections and twenty instructional units. Following the standard format established for Oklahoma vocational education materials in…

  7. Basic Skills.

    ERIC Educational Resources Information Center

    Addison-Rutland Supervisory Union, Fair Haven, VT.

    This publication lists basic skills curriculum objectives for kindergarten through eighth grade in the schools of the Addison-Rutland Supervisory Union in Fair Haven, Vermont. Objectives concern language arts, reading, mathematics, science, and social studies instruction. Kindergarten objectives for general skills, physical growth, motor skills,…

  8. Basic Education.

    ERIC Educational Resources Information Center

    Robinson, Virginia, Ed.

    1984-01-01

    This issue of "Basic Education" is devoted to the arts in education as a concern that should be addressed in a time of new priorities for the curriculum. Five articles and a book review are included. The opening article, "The State of the Arts in Education: Envisioning Active Participation By All" (Virginia Robinson),…

  9. Basic Backwardness.

    ERIC Educational Resources Information Center

    Weingartner, Charles

    This paper argues that the "back to basics" movement is regressive and that regression is the characteristic mode of fear-ridden personalities. It is argued that many people in American society today have lost their ability to laugh and do not have the sense of humor which is crucial to a healthy mental state. Such topics as necrophilia, mental…

  10. Body Basics

    MedlinePlus

    ... more about how the body works, what basic human anatomy is, and what happens when parts of the body don't function properly. Blood Bones, Muscles, and Joints Brain and Nervous System Digestive System Endocrine System Eyes Female Reproductive System ...

  11. Basic Horticulture.

    ERIC Educational Resources Information Center

    Geer, Barbra Farabough

    This learning packet contains teaching suggestions and student learning materials for a course in basic horticulture aimed at preparing students for employment in a number of horticulture areas. The packet includes nine sections and twenty instructional units. Following the standard format established for Oklahoma vocational education materials in…

  12. Education: The Basics. The Basics

    ERIC Educational Resources Information Center

    Wood, Kay

    2011-01-01

    Everyone knows that education is important, we are confronted daily by discussion of it in the media and by politicians, but how much do we really know about education? "Education: The Basics" is a lively and engaging introduction to education as an academic subject, taking into account both theory and practice. Covering the schooling system, the…

  13. Direct Detection of Transcription Factors in Cotyledons during Seedling Development Using Sensitive Silicon-Substrate Photonic Crystal Protein Arrays1[OPEN

    PubMed Central

    Jones, Sarah I.; Tan, Yafang; Shamimuzzaman, Md; George, Sherine; Cunningham, Brian T.; Vodkin, Lila

    2015-01-01

    Transcription factors control important gene networks, altering the expression of a wide variety of genes, including those of agronomic importance, despite often being expressed at low levels. Detecting transcription factor proteins is difficult, because current high-throughput methods may not be sensitive enough. One-dimensional, silicon-substrate photonic crystal (PC) arrays provide an alternative substrate for printing multiplexed protein microarrays that have greater sensitivity through an increased signal-to-noise ratio of the fluorescent signal compared with performing the same assay upon a traditional aminosilanized glass surface. As a model system to test proof of concept of the silicon-substrate PC arrays to directly detect rare proteins in crude plant extracts, we selected representatives of four different transcription factor families (zinc finger GATA, basic helix-loop-helix, BTF3/NAC [for basic transcription factor of the NAC family], and YABBY) that have increasing transcript levels during the stages of seedling cotyledon development. Antibodies to synthetic peptides representing the transcription factors were printed on both glass slides and silicon-substrate PC slides along with antibodies to abundant cotyledon proteins, seed lectin, and Kunitz trypsin inhibitor. The silicon-substrate PC arrays proved more sensitive than those performed on glass slides, detecting rare proteins that were below background on the glass slides. The zinc finger transcription factor was detected on the PC arrays in crude extracts of all stages of the seedling cotyledons, whereas YABBY seemed to be at the lower limit of their sensitivity. Interestingly, the basic helix-loop-helix and NAC proteins showed developmental profiles consistent with their transcript patterns, indicating proof of concept for detecting these low-abundance proteins in crude extracts. PMID:25635113

  14. Direct detection of transcription factors in cotyledons during seedling development using sensitive silicon-substrate photonic crystal protein arrays.

    PubMed

    Jones, Sarah I; Tan, Yafang; Shamimuzzaman, Md; George, Sherine; Cunningham, Brian T; Vodkin, Lila

    2015-03-01

    Transcription factors control important gene networks, altering the expression of a wide variety of genes, including those of agronomic importance, despite often being expressed at low levels. Detecting transcription factor proteins is difficult, because current high-throughput methods may not be sensitive enough. One-dimensional, silicon-substrate photonic crystal (PC) arrays provide an alternative substrate for printing multiplexed protein microarrays that have greater sensitivity through an increased signal-to-noise ratio of the fluorescent signal compared with performing the same assay upon a traditional aminosilanized glass surface. As a model system to test proof of concept of the silicon-substrate PC arrays to directly detect rare proteins in crude plant extracts, we selected representatives of four different transcription factor families (zinc finger GATA, basic helix-loop-helix, BTF3/NAC [for basic transcription factor of the NAC family], and YABBY) that have increasing transcript levels during the stages of seedling cotyledon development. Antibodies to synthetic peptides representing the transcription factors were printed on both glass slides and silicon-substrate PC slides along with antibodies to abundant cotyledon proteins, seed lectin, and Kunitz trypsin inhibitor. The silicon-substrate PC arrays proved more sensitive than those performed on glass slides, detecting rare proteins that were below background on the glass slides. The zinc finger transcription factor was detected on the PC arrays in crude extracts of all stages of the seedling cotyledons, whereas YABBY seemed to be at the lower limit of their sensitivity. Interestingly, the basic helix-loop-helix and NAC proteins showed developmental profiles consistent with their transcript patterns, indicating proof of concept for detecting these low-abundance proteins in crude extracts.

  15. FAMA: A Molecular Link between Stomata and Myrosin Cells.

    PubMed

    Shirakawa, Makoto; Ueda, Haruko; Shimada, Tomoo; Hara-Nishimura, Ikuko

    2016-10-01

    Plants use sophisticated defense strategies against herbivores, including the myrosinase-glucosinolate system in Brassicales plants. This system sequesters myrosinase in myrosin cells, which are idioblasts in inner leaf tissues, and produces a toxic compound when cells are damaged by herbivores. Although the molecular mechanisms underlying myrosin cell development are largely unknown, recent studies have revealed that two key components, a basic helix-loop-helix (bHLH) transcription factor (FAMA) and vesicle trafficking factors (such as SYNTAXIN OF PLANTS 22), regulate the differentiation and fate determination of myrosin cells. FAMA also functions as a master regulator of guard cell (GC) differentiation. In this review, we discuss how FAMA operates two distinct genetic programs: the generation of myrosin cells in inner plant tissue and GCs in the epidermis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Genetic regulation of vertebrate eye development.

    PubMed

    Zagozewski, J L; Zhang, Q; Eisenstat, D D

    2014-11-01

    Eye development is a complex and highly regulated process that consists of several overlapping stages: (i) specification then splitting of the eye field from the developing forebrain; (ii) genesis and patterning of the optic vesicle; (iii) regionalization of the optic cup into neural retina and retina pigment epithelium; and (iv) specification and differentiation of all seven retinal cell types that develop from a pool of retinal progenitor cells in a precise temporal and spatial manner: retinal ganglion cells, horizontal cells, cone photoreceptors, amacrine cells, bipolar cells, rod photoreceptors and Müller glia. Genetic regulation of the stages of eye development includes both extrinsic (such as morphogens, growth factors) and intrinsic factors (primarily transcription factors of the homeobox and basic helix-loop helix families). In the following review, we will provide an overview of the stages of eye development highlighting the role of several important transcription factors in both normal developmental processes and in inherited human eye diseases.

  17. Transcriptional Control of Early T and B Cell Developmental Choices

    PubMed Central

    Rothenberg, Ellen V.

    2014-01-01

    T and B cells share a common somatic gene rearrangement mechanism for assembling the genes that code for their antigen receptors and developmental pathways with many parallels. Shared usage of basic helix-loop-helix E proteins as transcriptional drivers underlies these common features. However, the transcription factor networks in which these E proteins are embedded are different both in membership and in architecture for T and B cell gene regulatory programs. These differences permit lineage commitment decisions to be made in different hierarchical orders. Furthermore, in a contrast to B-cell gene networks, the T-cell gene network architecture for effector differentiation is sufficiently modular so that E protein inputs can be removed. Complete “T-cell-like” effector differentiation can proceed without T-cell receptor rearrangement or selection when E proteins are neutralized, yielding natural killer and other innate lymphoid cells. PMID:24471430

  18. Expression of ARNT, ARNT2, HIF1 alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse.

    PubMed

    Jain, S; Maltepe, E; Lu, M M; Simon, C; Bradfield, C A

    1998-04-01

    The basic helix-loop-helix-PAS (bHLH-PAS) protein ARNT is a dimeric partner of the Ah receptor (AHR) and hypoxia inducible factor 1 alpha(HIF1 alpha). These dimers mediate biological responses to xenobiotic exposure and low oxygen tension. The recent cloning of ARNT and HIF1(homologues (ARNT2 and HIF2 alpha) indicates that at least six distinct bHLH-PAS heterodimeric combinations can occur in response to a number of environmental stimuli. In an effort to understand the biological relevance of this combinatorial complexity, we characterized their relative expression at a number of developmental time points by parallel in situ hybridization of adjacent tissue sections. Our results reveal that in general there is limited redundancy in the expression of these six transcription factors and that each of these bHLH-PAS members displays a unique pattern of developmental expression emerging as early as embryonic day 9.5.

  19. Molecular mechanisms of epithelial–mesenchymal transition

    PubMed Central

    Lamouille, Samy; Xu, Jian; Derynck, Rik

    2014-01-01

    The transdifferentiation of epithelial cells into motile mesenchymal cells, a process known as epithelial–mesenchymal transition (EMT), is integral in development, wound healing and stem cell behaviour, and contributes pathologically to fibrosis and cancer progression. This switch in cell differentiation and behaviour is mediated by key transcription factors, including SNAIL, zinc-finger E-box-binding (ZEB) and basic helix-loop-helix transcription factors, the functions of which are finely regulated at the transcriptional, translational and post-translational levels. The reprogramming of gene expression during EMT, as well as non-transcriptional changes, are initiated and controlled by signalling pathways that respond to extracellular cues. Among these, transforming growth factor-β (TGFβ) family signalling has a predominant role; however, the convergence of signalling pathways is essential for EMT. PMID:24556840

  20. TWIST and ovarian cancer stem cells: implications for chemoresistance and metastasis

    PubMed Central

    Nuti, Sudhakar V.; Mor, Gil; Li, Peiyao; Yin, Gang

    2014-01-01

    The transcription factor TWIST1 is a highly evolutionally conserved basic Helix-Loop-Helix (bHLH) transcription factor that functions as a master regulator of gastrulation and mesodermal development. Although TWIST1 was initially associated with embryo development, an increasing number of studies have shown TWIST1 role in the regulation of tissue homeostasis, primarily as a regulator of inflammation. More recently, TWIST1 has been found to be involved in the process of tumor metastasis through the regulation of Epithelial Mesenchymal Transition (EMT). The objective of this review is to examine the normal functions of TWIST1 and its role in tumor development, with a particular focus on ovarian cancer. We discuss the potential role of TWIST1 in the context of ovarian cancer stem cells and its influence in the process of tumor formation. PMID:25238494

  1. Sense organ identity in the Drosophila antenna is specified by the expression of the proneural gene atonal.

    PubMed

    Jhaveri, D; Sen, A; Reddy, G V; Rodrigues, V

    2000-12-01

    We have shown that the basic helix-loop-helix transcription factor Atonal is sufficient for specification of one of the three subsets of olfactory sense organs on the Drosophila antenna. Misexpression of Atonal in all sensory precursors in the antennal disc results in their conversion to coeloconic sensilla. The mechanism by which specific sense organ fate is triggered remains unclear. We have shown that the homeodomain transcription factor Cut which acts in the chordotonal-external sense organ choice does not play a role in olfactory sense organ development. The expression of atonal in specific domains of the antennal disc is regulated by an interplay of the patterning genes, Hedgehog and Wingless, and Drosophila epidermal growth factor receptor pathway.

  2. Flavonoids: biosynthesis, biological functions, and biotechnological applications

    PubMed Central

    Falcone Ferreyra, María L.; Rius, Sebastián P.; Casati, Paula

    2012-01-01

    Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds. PMID:23060891

  3. Relationship between brassinosteroids and genes controlling stomatal production in the Arabidopsis hypocotyl.

    PubMed

    Fuentes, Sonia; Cañamero, Roberto C; Serna, Laura

    2012-01-01

    Stomata are excellent model systems for examining the mechanisms that regulate cell fate determination and pattern formation. It has recently been demonstrated that brassinosteroids control stomatal development by regulating both the MAPK kinase kinase YODA and the basic helix-loop-helix transcriptional factor SPEECHLESS. Here, we show that these plant regulators positively regulate stomatal formation in the hypocotyl and also accelerate their development. Hormone tests, reporter gene studies and mutant analyses revealed that brassinosteroids act upstream of the transcriptional factors CAPRICE and GLABRA2. These plant regulators control an earlier stage of stomatal production than those regulated by the membrane receptor TOO MANY MOUTHS. This work highlights differences in the genetic control of stomatal development between cotyledons or leaves and hypocotyls.

  4. Groucho is required for Drosophila neurogenesis, segmentation, and sex determination and interacts directly with hairy-related bHLH proteins.

    PubMed

    Paroush, Z; Finley, R L; Kidd, T; Wainwright, S M; Ingham, P W; Brent, R; Ish-Horowicz, D

    1994-12-02

    We have used the interaction trap, a yeast two-hybrid system, to identify proteins interacting with hairy, a basic-helix-loop-helix (bHLH) protein that represses transcription during Drosophila embryonic segmentation. We find that the groucho (gro) protein binds specifically to hairy and also to hairy-related bHLH proteins encoded by deadpan and the Enhancer of split complex. The C-terminal WRPW motif present in all these bHLH proteins is essential for this interaction. We demonstrate that these associations reflect in vivo maternal requirements for gro during neurogenesis, segmentation, and sex determination, three processes regulated by the above bHLH proteins, and we propose that gro is a transcriptional corepressor recruited to specific target promoters by hairy-related bHLH proteins.

  5. Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth.

    PubMed Central

    Friedrichsen, Danielle M; Nemhauser, Jennifer; Muramitsu, Takamichi; Maloof, Julin N; Alonso, José; Ecker, Joseph R; Furuya, Masaki; Chory, Joanne

    2002-01-01

    Brassinosteroids (BRs) are a class of polyhydroxylated steroids that are important regulators of plant growth and development. We have identified three closely related basic helix-loop-helix (bHLH) transcription factors, BEE1, BEE2, and BEE3, as products of early response genes required for full BR response. Comparison of the phenotypes of plants that overexpress BEE1 with bee1 bee2 bee3 triple-knockout mutant plants suggests that BEE1, BEE2, and BEE3 are functionally redundant positive regulators of BR signaling. Expression of BEE1, BEE2, and BEE3 is also regulated by other hormones, notably abscisic acid (ABA), a known antagonist of BR signaling. Reduced ABA response in plants overexpressing BEE1 suggests that BEE proteins may function as signaling intermediates in multiple pathways. PMID:12454087

  6. Lineage-specific stem cells, signals and asymmetries during stomatal development.

    PubMed

    Han, Soon-Ki; Torii, Keiko U

    2016-04-15

    Stomata are dispersed pores found in the epidermis of land plants that facilitate gas exchange for photosynthesis while minimizing water loss. Stomata are formed from progenitor cells, which execute a series of differentiation events and stereotypical cell divisions. The sequential activation of master regulatory basic-helix-loop-helix (bHLH) transcription factors controls the initiation, proliferation and differentiation of stomatal cells. Cell-cell communication mediated by secreted peptides, receptor kinases, and downstream mitogen-activated kinase cascades enforces proper stomatal patterning, and an intrinsic polarity mechanism ensures asymmetric cell divisions. As we review here, recent studies have provided insights into the intrinsic and extrinsic factors that control stomatal development. These findings have also highlighted striking similarities between plants and animals with regards to their mechanisms of specialized cell differentiation. © 2016. Published by The Company of Biologists Ltd.

  7. Dlx1&2 and Mash1 Transcription Factors Control MGE and CGE Patterning and Differentiation through Parallel and Overlapping Pathways

    PubMed Central

    Long, Jason E.; Cobos, Inma; Potter, Greg B.

    2009-01-01

    Here we define the expression of ∼100 transcription factors (TFs) in progenitors and neurons of the developing mouse medial and caudal ganglionic eminences, anlage of the basal ganglia and pallial interneurons. We have begun to elucidate the transcriptional hierarchy of these genes with respect to the Dlx homeodomain genes, which are essential for differentiation of most γ-aminobutyric acidergic projection neurons of the basal ganglia. This analysis identified Dlx-dependent and Dlx-independent pathways. The Dlx-independent pathway depends in part on the function of the Mash1 basic helix-loop-helix (b-HLH) TF. These analyses define core transcriptional components that differentially specify the identity and differentiation of the globus pallidus, basal telencephalon, and pallial interneurons. PMID:19386638

  8. Biophysical properties of regions flanking the bHLH-Zip motif in the p22 Max protein.

    PubMed

    Pursglove, Sharon E; Fladvad, Malin; Bellanda, Massimo; Moshref, Ahmad; Henriksson, Marie; Carey, Jannette; Sunnerhagen, Maria

    2004-10-22

    The Max protein is the central dimerization partner in the Myc-Max-Mad network of transcriptional regulators, and a founding structural member of the family of basic-helix-loop-helix (bHLH)-leucine zipper (Zip) proteins. Biologically important regions flanking its bHLH-Zip motif have been disordered or absent in crystal structures. The present study shows that these regions are resistant to proteolysis in both the presence and absence of DNA, and that Max dimers containing both flanking regions have significantly higher helix content as measured by circular dichroism than that predicted from the crystal structures. Nuclear magnetic resonance measurements in the absence of DNA also support the inferred structural order. Deletion of both flanking regions is required to achieve maximal DNA affinity as measured by EMSA. Thus, the previously observed functionalities of these Max regions in DNA binding, phosphorylation, and apoptosis are suggested to be linked to structural properties.

  9. Time to pump iron: iron-deficiency-signaling mechanisms of higher plants.

    PubMed

    Walker, Elsbeth L; Connolly, Erin L

    2008-10-01

    Iron is an essential nutrient for plants, yet it often limits plant growth. On the contrary, overaccumulation of iron within plant cells leads to oxidative stress. As a consequence, iron-uptake systems are carefully regulated to ensure that iron homeostasis is maintained. In response to iron limitation, plants induce expression of sets of activities that function at the root-soil interface to solubilize iron and subsequently transfer it across the plasma membrane of root cells. Recent advances have revealed key players in the signaling pathways that function to induce these iron-uptake responses. Transcription factors belonging to the basic helix-loop-helix, ABI3/VP1(B3), and NAC families appear to function either directly or indirectly in the upregulation of iron deficiency responses.

  10. Unique CCT repeats mediate transcription of the TWIST1 gene in mesenchymal cell lines

    SciTech Connect

    Ohkuma, Mizue; Funato, Noriko; Higashihori, Norihisa; Murakami, Masanori; Ohyama, Kimie; Nakamura, Masataka . E-mail: naka.gene@cmn.tmd.ac.jp

    2007-01-26

    TWIST1, a basic helix-loop-helix transcription factor, plays critical roles in embryo development, cancer metastasis and mesenchymal progenitor differentiation. Little is known about transcriptional regulation of TWIST1 expression. Here we identified DNA sequences responsible for TWIST1 expression in mesenchymal lineage cell lines. Reporter assays with TWIST1 promoter mutants defined the -102 to -74 sequences that are essential for TWIST1 expression in human and mouse mesenchymal cell lines. Tandem repeats of CCT, but not putative CREB and NF-{kappa}B sites in the sequences substantially supported activity of the TWIST1 promoter. Electrophoretic mobility shift assay demonstrated that the DNA sequences with the CCT repeats formed complexes with nuclear factors, containing, at least, Sp1 and Sp3. These results suggest critical implication of the CCT repeats in association with Sp1 and Sp3 factors in sustaining expression of the TWIST1 gene in mesenchymal cells.

  11. Proprioceptor pathway development is dependent on Math1

    NASA Technical Reports Server (NTRS)

    Bermingham, N. A.; Hassan, B. A.; Wang, V. Y.; Fernandez, M.; Banfi, S.; Bellen, H. J.; Fritzsch, B.; Zoghbi, H. Y.

    2001-01-01

    The proprioceptive system provides continuous positional information on the limbs and body to the thalamus, cortex, pontine nucleus, and cerebellum. We showed previously that the basic helix-loop-helix transcription factor Math1 is essential for the development of certain components of the proprioceptive pathway, including inner-ear hair cells, cerebellar granule neurons, and the pontine nuclei. Here, we demonstrate that Math1 null embryos lack the D1 interneurons and that these interneurons give rise to a subset of proprioceptor interneurons and the spinocerebellar and cuneocerebellar tracts. We also identify three downstream genes of Math1 (Lh2A, Lh2B, and Barhl1) and establish that Math1 governs the development of multiple components of the proprioceptive pathway.

  12. Genome Wide Identification and Characterization of Apple bHLH Transcription Factors and Expression Analysis in Response to Drought and Salt Stress

    PubMed Central

    Mao, Ke; Dong, Qinglong; Li, Chao; Liu, Changhai; Ma, Fengwang

    2017-01-01

    The bHLH (basic helix-loop-helix) transcription factor family is the second largest in plants. It occurs in all three eukaryotic kingdoms, and plays important roles in regulating growth and development. However, family members have not previously been studied in apple. Here, we identified 188 MdbHLH proteins in apple “Golden Delicious” (Malus × domestica Borkh.), which could be classified into 18 groups. We also investigated the gene structures and 12 conserved motifs in these MdbHLHs. Coupled with expression analysis and protein interaction network prediction, we identified several genes that might be responsible for abiotic stress responses. This study provides insight and rich resources for subsequent investigations of such proteins in apple. PMID:28443104

  13. Impaired cued and contextual memory in NPAS2-deficient mice.

    PubMed

    Garcia, J A; Zhang, D; Estill, S J; Michnoff, C; Rutter, J; Reick, M; Scott, K; Diaz-Arrastia, R; McKnight, S L

    2000-06-23

    Neuronal PAS domain protein 2 (NPAS2) is a basic helix-loop-helix (bHLH) PAS domain transcription factor expressed in multiple regions of the vertebrate brain. Targeted insertion of a beta-galactosidase reporter gene (lacZ) resulted in the production of an NPAS2-lacZ fusion protein and an altered form of NPAS2 lacking the bHLH domain. The neuroanatomical expression pattern of NPAS2-lacZ was temporally and spatially coincident with formation of the mature frontal association/limbic forebrain pathway. NPAS2-deficient mice were subjected to a series of behavioral tests and were found to exhibit deficits in the long-term memory arm of the cued and contextual fear task. Thus, NPAS2 may serve a dedicated regulatory role in the acquisition of specific types of memory.

  14. Dynamic expression and essential functions of Hes7 in somite segmentation.

    PubMed

    Bessho, Y; Sakata, R; Komatsu, S; Shiota, K; Yamada, S; Kageyama, R

    2001-10-15

    The basic helix-loop-helix (bHLH) gene Hes7, a putative Notch effector, encodes a transcriptional repressor. Here, we found that Hes7 expression oscillates in 2-h cycles in the presomitic mesoderm (PSM). In Hes7-null mice, somites are not properly segmented and their anterior-posterior polarity is disrupted. As a result, the somite derivatives such as vertebrae and ribs are severely disorganized. Although expression of Notch and its ligands is not affected significantly, the oscillator and Notch modulator lunatic fringe is expressed continuously throughout the mutant PSM. These results indicate that Hes7 controls the cyclic expression of lunatic fringe and is essential for coordinated somite segmentation.

  15. A genomewide survey of bHLH transcription factors in the coral Acropora digitifera identifies three novel orthologous families, pearl, amber, and peridot.

    PubMed

    Gyoja, Fuki; Kawashima, Takeshi; Satoh, Nori

    2012-04-01

    Decoding the genome of the coral, Acropora digitifera, enabled us to characterize a nearly full set of 70 basic helix-loop-helix (bHLH) transcription factors in this organism. This number is comparable to 68 bHLH genes in the sea anemone, Nematostella vectensis, and larger than those in most other invertebrate metazoans. The 70 bHLH genes were assigned to 29 orthologous families previously reported. In addition, we identified three novel HLH orthologous families, which we designated pearl, amber, and peridot, increasing the number of orthologous families to 32. Pearl and amber orthologues were found in genomes and expressed sequenced tags (ESTs) of Mollusca and Annelida in addition to Cnidaria. Peridot orthologues were found in genomes and ESTs of Cephalochordata and Hemichordata in addition to Cnidaria. These three genes were likely lost in the clades of Drosophila melanogaster, Caenorhabditis elegans, and Homo sapiens during animal evolution.

  16. Network theory inspired analysis of time-resolved expression data reveals key players guiding P. patens stem cell development.

    PubMed

    Busch, Hauke; Boerries, Melanie; Bao, Jie; Hanke, Sebastian T; Hiss, Manuel; Tiko, Theodhor; Rensing, Stefan A

    2013-01-01

    Transcription factors (TFs) often trigger developmental decisions, yet, their transcripts are often only moderately regulated and thus not easily detected by conventional statistics on expression data. Here we present a method that allows to determine such genes based on trajectory analysis of time-resolved transcriptome data. As a proof of principle, we have analysed apical stem cells of filamentous moss (P. patens) protonemata that develop from leaflets upon their detachment from the plant. By our novel correlation analysis of the post detachment transcriptome kinetics we predict five out of 1,058 TFs to be involved in the signaling leading to the establishment of pluripotency. Among the predicted regulators is the basic helix loop helix TF PpRSL1, which we show to be involved in the establishment of apical stem cells in P. patens. Our methodology is expected to aid analysis of key players of developmental decisions in complex plant and animal systems.

  17. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina

    NASA Astrophysics Data System (ADS)

    Ooto, Sotaro; Akagi, Tadamichi; Kageyama, Ryoichiro; Akita, Joe; Mandai, Michiko; Honda, Yoshihito; Takahashi, Masayo

    2004-09-01

    It has long been believed that the retina of mature mammals is incapable of regeneration. In this study, using the N-methyl-D-aspartate neurotoxicity model of adult rat retina, we observed that some Müller glial cells were stimulated to proliferate in response to a toxic injury and produce bipolar cells and rod photoreceptors. Although these newly produced neurons were limited in number, retinoic acid treatment promoted the number of regenerated bipolar cells. Moreover, misexpression of basic helix-loop-helix and homeobox genes promoted the induction of amacrine, horizontal, and rod photoreceptor specific phenotypes. These findings demonstrated that retinal neurons regenerated even in adult mammalian retina after toxic injury. Furthermore, we could partially control the fate of the regenerated neurons with extrinsic factors or intrinsic genes. The Müller glial cells constitute a potential source for the regeneration of adult mammalian retina and can be a target for drug delivery and gene therapy in retinal degenerative diseases.

  18. Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity.

    PubMed

    Raissig, Michael T; Abrash, Emily; Bettadapur, Akhila; Vogel, John P; Bergmann, Dominique C

    2016-07-19

    Stomata, epidermal valves facilitating plant-atmosphere gas exchange, represent a powerful model for understanding cell fate and pattern in plants. Core basic helix-loop-helix (bHLH) transcription factors regulating stomatal development were identified in Arabidopsis, but this dicot's developmental pattern and stomatal morphology represent only one of many possibilities in nature. Here, using unbiased forward genetic screens, followed by analysis of reporters and engineered mutants, we show that stomatal initiation in the grass Brachypodium distachyon uses orthologs of stomatal regulators known from Arabidopsis but that the function and behavior of individual genes, the relationships among genes, and the regulation of their protein products have diverged. Our results highlight ways in which a kernel of conserved genes may be alternatively wired to produce diversity in patterning and morphology and suggest that the stomatal transcription factor module is a prime target for breeding or genome modification to improve plant productivity.

  19. Circadian transcription factor BMAL1 regulates innate immunity against select RNA viruses.

    PubMed

    Majumdar, Tanmay; Dhar, Jayeeta; Patel, Sonal; Kondratov, Roman; Barik, Sailen

    2017-02-01

    BMAL1 (brain and muscle ARNT-like protein 1, also known as MOP3 or ARNT3) belongs to the family of the basic helix-loop-helix (bHLH)-PAS domain-containing transcription factors, and is a key component of the molecular oscillator that generates circadian rhythms. Here, we report that BMAL1-deficient cells are significantly more susceptible to infection by two major respiratory viruses of the Paramyxoviridae family, namely RSV and PIV3. Embryonic fibroblasts from Bmal1(-/-) mice produced nearly 10-fold more progeny virus than their wild type controls. These results were supported by animal studies whereby pulmonary infection of RSV produced a more severe disease and morbidity in Bmal1(-/-)mice. These results show that BMAL1 can regulate cellular innate immunity against specific RNA viruses.

  20. The Stepwise Increase in the Number of Transcription Factor Families in the Precambrian Predated the Diversification of Plants On Land.

    PubMed

    Catarino, Bruno; Hetherington, Alexander J; Emms, David M; Kelly, Steven; Dolan, Liam

    2016-11-01

    The colonization of the land by streptophytes and their subsequent radiation is a major event in Earth history. We report a stepwise increase in the number of transcription factor (TF) families and subfamilies in Archaeplastida before the colonization of the land. The subsequent increase in TF number on land was through duplication within existing TF families and subfamilies. Almost all subfamilies of the Homeodomain (HD) and basic Helix-Loop-Helix (bHLH) had evolved before the radiation of extant land plant lineages from a common ancestor. We demonstrate that the evolution of these TF families independently followed similar trends in both plants and metazoans; almost all extant HD and bHLH subfamilies were present in the first land plants and in the last common ancestor of bilaterians. These findings reveal that the majority of innovation in plant and metazoan TF families occurred in the Precambrian before the Phanerozoic radiation of land plants and metazoans.

  1. Iron assimilation and transcription factor controlled synthesis of riboflavin in plants.

    PubMed

    Vorwieger, A; Gryczka, C; Czihal, A; Douchkov, D; Tiedemann, J; Mock, H-P; Jakoby, M; Weisshaar, B; Saalbach, I; Bäumlein, H

    2007-06-01

    Iron homeostasis is vital for many cellular processes and requires a precise regulation. Several iron efficient plants respond to iron starvation with the excretion of riboflavin and other flavins. Basic helix-loop-helix transcription factors (TF) are involved in the regulation of many developmental processes, including iron assimilation. Here we describe the isolation and characterisation of two Arabidopsis bHLH TF genes, which are strongly induced under iron starvation. Their heterologous ectopic expression causes constitutive, iron starvation independent excretion of riboflavin. The results show that both bHLH TFs represent an essential component of the regulatory pathway connecting iron deficiency perception and riboflavin excretion and might act as integrators of various stress reactions.

  2. Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA Genes in Arabidopsis Trichome Development.

    PubMed Central

    Larkin, J. C.; Oppenheimer, D. G.; Lloyd, A. M.; Paparozzi, E. T.; Marks, M. D.

    1994-01-01

    Arabidopsis trichomes are branched, single-celled epidermal hairs. These specialized cells provide a convenient model for investigating the specification of cell fate in plants. Two key genes regulating the initiation of trichome development are GLABROUS1 (GL1) and TRANSPARENT TESTA GLABRA (TTG). GL1 is a member of the myb gene family. The maize R gene, which can functionally complement the Arabidopsis ttg mutation, encodes a basic helix-loop-helix protein. We used constitutively expressed copies of the GL1 and R genes to test hypotheses about the roles of GL1 and TTG in trichome development. The results support the hypothesis that TTG and GL1 cooperate at the same point in the trichome developmental pathway. Furthermore, the constitutive expression of both GL1 and R in the same plant caused trichomes to develop on all shoot epidermal surfaces. Results were also obtained indicating that TTG plays an additional role in inhibiting neighboring cells from becoming trichomes. PMID:12244266

  3. The Transcriptional Coregulator LEUNIG_HOMOLOG Inhibits Light-Dependent Seed Germination in Arabidopsis

    PubMed Central

    Lee, Nayoung; Park, Jeongmoo; Kim, Keunhwa; Choi, Giltsu

    2015-01-01

    PHYTOCHROME-INTERACTING FACTOR1 (PIF1) is a basic helix-loop-helix transcription factor that inhibits light-dependent seed germination in Arabidopsis thaliana. However, it remains unclear whether PIF1 requires other factors to regulate its direct targets. Here, we demonstrate that LEUNIG_HOMOLOG (LUH), a Groucho family transcriptional corepressor, binds to PIF1 and coregulates its targets. Not only are the transcriptional profiles of the luh and pif1 mutants remarkably similar, more than 80% of the seeds of both genotypes germinate in the dark. We show by chromatin immunoprecipitation that LUH binds a subset of PIF1 targets in a partially PIF1-dependent manner. Unexpectedly, we found LUH binds and coregulates not only PIF1-activated targets but also PIF1-repressed targets. Together, our results indicate LUH functions with PIF1 as a transcriptional coregulator to inhibit seed germination. PMID:26276832

  4. Formation of the Embryonic Head in the Mouse: Attributes of a Gene Regulatory Network.

    PubMed

    Tam, Patrick P L; Fossat, Nicolas; Wilkie, Emilie; Loebel, David A F; Ip, Chi Kin; Ramialison, Mirana

    2016-01-01

    The embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors. These factors constitute the central nodes of a gene regulatory network (GRN) which encompasses and intersects with signaling pathways involved with head formation. It is predicted that the functional output of this "head GRN" impacts on cellular function and cell-cell interactions that are essential for lineage differentiation and tissue modeling, which are key processes underpinning the formation of the head. © 2016 Elsevier Inc. All rights reserved.

  5. Nuclear localized protein-1 (Nulp1) increases cell death of human osteosarcoma cells and binds the X-linked inhibitor of apoptosis protein

    SciTech Connect

    Steen, Hakan; Lindholm, Dan

    2008-02-08

    Nuclear localized protein-1 (Nulp1) is a recently identified gene expressed in mouse and human tissues particularly during embryonic development. Nulp1 belongs to the family of basic helix-loop-helix (bHLH) proteins that are important in development. The precise function of Nulp1 in cells is however not known. We observed that overexpression of Nulp1 induces a large increase in cell death of human osteosarcoma Saos2 cells with DNA fragmentation. In mouse N2A neuroblastoma cells Nulp1 affected cell proliferation and sensitized cells towards death induced by staurosporine. Staining using a novel antibody localized Nulp1 mainly to the cell nucleus and to some extent to the cytoplasm. Nulp1 binds the X-linked inhibitor of apoptosis protein (XIAP) and this interaction was increased during cell death. These results indicate that Nulp1 plays a role in cell death control and may influence tumor growth.

  6. Proprioceptor pathway development is dependent on Math1

    NASA Technical Reports Server (NTRS)

    Bermingham, N. A.; Hassan, B. A.; Wang, V. Y.; Fernandez, M.; Banfi, S.; Bellen, H. J.; Fritzsch, B.; Zoghbi, H. Y.

    2001-01-01

    The proprioceptive system provides continuous positional information on the limbs and body to the thalamus, cortex, pontine nucleus, and cerebellum. We showed previously that the basic helix-loop-helix transcription factor Math1 is essential for the development of certain components of the proprioceptive pathway, including inner-ear hair cells, cerebellar granule neurons, and the pontine nuclei. Here, we demonstrate that Math1 null embryos lack the D1 interneurons and that these interneurons give rise to a subset of proprioceptor interneurons and the spinocerebellar and cuneocerebellar tracts. We also identify three downstream genes of Math1 (Lh2A, Lh2B, and Barhl1) and establish that Math1 governs the development of multiple components of the proprioceptive pathway.

  7. Distinct DNA binding preferences for the c-Myc/Max and Max/Max dimers.

    PubMed Central

    Solomon, D L; Amati, B; Land, H

    1993-01-01

    The transcription factor c-Myc and its dimerisation partner Max are members of the basic/helix-loop-helix/leucine-zipper (bHLH-Z) family and bind to the DNA core sequence CACGTG. Using a site-selection protocol, we determined the complete 12 base pair consensus binding sites of c-Myc/Max (RACCACGTGGTY) and Max/Max (RANCACGTGNTY) dimers. We find that the c-Myc/Max dimer fails to bind the core when it is flanked by a 5'T or a 3'A, while the Max/Max dimer readily binds such sequences. Furthermore we show that inappropriate flanking sequences preclude transactivation by c-Myc in vivo. In conclusion, Max/Max dimers are less discriminatory than c-Myc/Max and may regulate other genes in addition to c-Myc/Max targets. PMID:8265351

  8. Contiguous gene deletion neighboring TWIST1 identified in a patient with Saethre-Chotzen syndrome associated with neurodevelopmental delay: Possible contribution of HDAC9.

    PubMed

    Shimbo, Hiroko; Oyoshi, Tatsuki; Kurosawa, Kenji

    2017-02-21

    Saethre-Chotzen syndrome (SCS) is an autosomal dominant craniosynostotic disorder characterized by coronal synostosis, facial asymmetry, ptosis, and limb abnormalities. Haploinsufficiency of TWIST1, a basic helix-loop-helix transcription factor is responsible for SCS. Here, we report a 15-month-old male patient with typical clinical features of SCS in addition to developmental delay, which is a rare complication in SCS. He showed a de novo 0.9-Mb microdeletion in 7p21, in which TWIST1, NPMIP13, FERD3L, TWISTNB, and HDAC9 were included. In comparison with previously reported patients, HDAC9 was suggested to contribute to developmental delay in SCS patients with 7p21 mirodeletions. © 2017 Japanese Teratology Society.

  9. The emerging role of Twist proteins in hematopoietic cells and hematological malignancies

    PubMed Central

    Merindol, N; Riquet, A; Szablewski, V; Eliaou, J-F; Puisieux, A; Bonnefoy, N

    2014-01-01

    Twist1 and Twist2 (Twist1–2) are two transcription factors, members of the basic helix-loop-helix family, that have been well established as master transcriptional regulators of embryogenesis and developmental programs of mesenchymal cell lineages. Their role in oncogenesis in epithelium-derived cancer and in epithelial-to-mesenchymal transition has also been thoroughly characterized. Recently, emerging evidence also suggests a key role for Twist1–2 in the function and development of hematopoietic cells, as well as in survival and development of numerous hematological malignancies. In this review, we summarize the latest data that depict the role of Twist1–2 in monocytes, T cells and B lymphocyte activation, and in associated hematological malignancies. PMID:24769647

  10. Feedback regulation of NEUROG2 activity by MTGR1 is required for progression of neurogenesis.

    PubMed

    Aaker, Joshua D; Patineau, Andrea L; Yang, Hyun-Jin; Ewart, David T; Gong, Wuming; Li, Tongbin; Nakagawa, Yasushi; McLoon, Steven C; Koyano-Nakagawa, Naoko

    2009-12-01

    The sequential steps of neurogenesis are characterized by highly choreographed changes in transcription factor activity. In contrast to the well-studied mechanisms of transcription factor activation during neurogenesis, much less is understood regarding how such activity is terminated. We previously showed that MTGR1, a member of the MTG family of transcriptional repressors, is strongly induced by a proneural basic helix-loop-helix transcription factor, NEUROG2 in developing nervous system. In this study, we describe a novel feedback regulation of NEUROG2 activity by MTGR1. We show that MTGR1 physically interacts with NEUROG2 and represses transcriptional activity of NEUROG2. MTGR1 also prevents DNA binding of the NEUROG2/E47 complex. In addition, we provide evidence that proper termination of NEUROG2 activity by MTGR1 is necessary for normal progression of neurogenesis in the developing spinal cord. These results highlight the importance of feedback regulation of proneural gene activity in neurodevelopment.

  11. Feedback regulation of NEUROG2 activity by MTGR1 is required for progression of neurogenesis

    PubMed Central

    Aaker, Joshua D.; Patineau, Andrea L.; Yang, Hyun-jin; Ewart, David T.; Gong, Wuming; Li, Tongbin; Nakagawa, Yasushi; McLoon, Steven C.; Koyano-Nakagawa, Naoko

    2009-01-01

    The sequential steps of neurogenesis are characterized by highly choreographed changes in transcription factor activity. In contrast to the well-studied mechanisms of transcription factor activation during neurogenesis, much less is understood regarding how such activity is terminated. We previously showed that MTGR1, a member of the MTG family of transcriptional repressors, is strongly induced by a proneural basic helix-loop-helix transcription factor, NEUROG2 in developing nervous system. In this study, we describe a novel feedback regulation of NEUROG2 activity by MTGR1. We show that MTGR1 physically interacts with NEUROG2 and represses transcriptional activity of NEUROG2. MTGR1 also prevents DNA binding of the NEUROG2/E47 complex. In addition, we provide evidence that proper termination of NEUROG2 activity by MTGR1 is necessary for normal progression of neurogenesis in the developing spinal cord. These results highlight the importance of feedback regulation of proneural gene activity in neurodevelopment. PMID:19646530

  12. Npas4 Is Activated by Melatonin, and Drives the Clock Gene Cry1 in the Ovine Pars Tuberalis

    PubMed Central

    West, A.; Dupré, S.M.; Yu, L.; Paton, I.R.; Miedzinska, K.; McNeilly, A.S.; Davis, J.R.E.

    2013-01-01

    Seasonal mammals integrate changes in the duration of nocturnal melatonin secretion to drive annual physiologic cycles. Melatonin receptors within the proximal pituitary region, the pars tuberalis (PT), are essential in regulating seasonal neuroendocrine responses. In the ovine PT, melatonin is known to influence acute changes in transcriptional dynamics coupled to the onset (dusk) and offset (dawn) of melatonin secretion, leading to a potential interval-timing mechanism capable of decoding changes in day length (photoperiod). Melatonin offset at dawn is linked to cAMP accumulation, which directly induces transcription of the clock gene Per1. The rise of melatonin at dusk induces a separate and distinct cohort, including the clock-regulated genes Cry1 and Nampt, but little is known of the up-stream mechanisms involved. Here, we used next-generation sequencing of the ovine PT transcriptome at melatonin onset and identified Npas4 as a rapidly induced basic helix-loop-helix Per-Arnt-Sim domain transcription factor. In vivo we show nuclear localization of NPAS4 protein in presumptive melatonin target cells of the PT (α-glycoprotein hormone-expressing cells), whereas in situ hybridization studies identified acute and transient expression in the PT of Npas4 in response to melatonin. In vitro, NPAS4 forms functional dimers with basic helix loop helix-PAS domain cofactors aryl hydrocarbon receptor nuclear translocator (ARNT), ARNT2, and ARNTL, transactivating both Cry1 and Nampt ovine promoter reporters. Using a combination of 5′-deletions and site-directed mutagenesis, we show NPAS4-ARNT transactivation to be codependent upon two conserved central midline elements within the Cry1 promoter. Our data thus reveal NPAS4 as a candidate immediate early-response gene in the ovine PT, driving molecular responses to melatonin. PMID:23598442

  13. Characterization of msim, a murine homologue of the Drosophila sim transcription factor

    SciTech Connect

    Moffett, P.; Reece, M.; Pelletier, J.

    1996-07-01

    Mutations in the Drosophila single-minded (sim) gene result in loss of precursor cells that give rise to midline cells of the embryonic central nervous system. During the course of an exon-trapping strategy aimed at identifying transcripts that contribute to the etiology and pathophysiology of Down syndrome, we identified a human exon from the Down syndrome, we identified a human exon from the Down syndrome critical region showing significantly homology to the Drosophila sim gene. Using a cross-hybridization approach, we have isolated a murine homolog of Drosophila sim gene, which we designated msim. Nucleotide and predicted amino acid sequence analyses of msim cDNA clones indicate the this gene encodes a member of the basic-helix-loop-helix class of transcription factors. The murine and Drosophila proteins share 88% residues within the basic-helix-loop helix domain, with an overall homology of 92%. In addition, the N-terminal domain of MSIM contains two PAS dimerization motifs also featured in the Drosophila sim gene product, as well as a small number of other transcription factors. Northern blot analysis of adult murine tissues revealed that the msim gene produces a single mRNA species of {approximately}4 kb expressed in a small number of tissues, with the highest levels in the kidneys and lower levels present in skeletal muscle, lung, testis, brain, and heart. In situ hybridization experiments demonstrate that msim is also expressed in early fetal development in the central nervous system and in cartilage primordia. The characteristics of the msim gene are consistent with its putative function as a transcriptional regulator. 51 refs., 6 figs., 1 tab.

  14. Achaete-scute complex homologue-1 promotes development of laryngocarcinoma via facilitating the epithelial-mesenchymal transformation.

    PubMed

    Ma, Huaci; Du, Xiaodong; Zhang, Shu; Wang, Qiang; Yin, Yong; Qiu, Xiaoxia; Da, Peng; Yue, Huijun; Wu, Hao; Xu, Fenglei

    2017-06-01

    Laryngeal cancer is one of the most common fatal cancers among head and neck carcinomas, whose mechanism, however, remains unclear. The proneural basic-helix-loop-helix protein achaete-scute complex homologue-1, a member of the basic helix-loop-helix family, plays a very important role in many cancers. This study aims to explore the clinical value and mechanism of achaete-scute complex homologue-1 in laryngeal cancer. Methods including Cell Counting Kit-8, flow cytometry, Transwell invasion assays, and scratch assay were adopted to further explore the bio-function of achaete-scute complex homologue-1, whose expression was examined in fresh and paraffin chip of laryngeal carcinoma tissues by means of western blot and immunohistochemistry, after the interference of achaete-scute complex homologue-1; achaete-scute complex homologue-1, an overexpression in laryngeal carcinoma whose carcinogenicity potential was confirmed via western blot, was correlative with T classification (p = 0.002), histological differentiation (p = 0.000), lymph node metastasis (p = 0.000), and poor survival (p = 0.000). Multivariate analysis shows that achaete-scute complex homologue-1 overexpression is an independent prognostic factor unfavorable to laryngeal carcinoma patients (p = 0.000). Moreover, knocking down achaete-scute complex homologue-1 expression could significantly suppress the proliferation, migration, and invasion of laryngeal carcinoma cell in vitro and disorder epithelial-mesenchymal transformation-associated protein expression. Achaete-scute complex homologue-1 plays an important role in the genesis and progression of laryngeal carcinoma and may act as a potential biomarker for therapeutic target and prognostic prediction.

  15. Reciprocal interaction of the circadian clock with the iron homeostasis network in Arabidopsis.

    PubMed

    Hong, Sunghyun; Kim, Sun A; Guerinot, Mary Lou; McClung, C Robertson

    2013-02-01

    In plants, iron (Fe) uptake and homeostasis are critical for survival, and these processes are tightly regulated at the transcriptional and posttranscriptional levels. Circadian clocks are endogenous oscillating mechanisms that allow an organism to anticipate environmental changes to coordinate biological processes both with one another and with the environmental day/night cycle. The plant circadian clock controls many physiological processes through rhythmic expression of transcripts. In this study, we examined the expression of three Fe homeostasis genes (IRON REGULATED TRANSPORTER1 [IRT1], BASIC HELIX LOOP HELIX39, and FERRITIN1) in Arabidopsis (Arabidopsis thaliana) using promoter:LUCIFERASE transgenic lines. Each of these promoters showed circadian regulation of transcription. The circadian clock monitors a number of clock outputs and uses these outputs as inputs to modulate clock function. We show that this is also true for Fe status. Fe deficiency results in a lengthened circadian period. We interrogated mutants impaired in the Fe homeostasis response, including irt1-1, which lacks the major high-affinity Fe transporter, and fit-2, which lacks Fe deficiency-induced TRANSCRIPTION FACTOR1, a basic helix-loop-helix transcription factor necessary for induction of the Fe deficiency response. Both mutants exhibit symptoms of Fe deficiency, including lengthened circadian period. To determine which components are involved in this cross talk between the circadian and Fe homeostasis networks, we tested clock- or Fe homeostasis-related mutants. Mutants defective in specific clock gene components were resistant to the change in period length under different Fe conditions observed in the wild type, suggesting that these mutants are impaired in cross talk between Fe homeostasis and the circadian clock.

  16. Inflation Basics

    SciTech Connect

    Green, Dan

    2014-03-01

    inflation since metrical fluctuations, both scalar and tensor, are also produced in inflationary models. Thus, the time appears to be appropriate for a very basic and simple exposition of the inflationary model written from a particle physics perspective. Only the simplest scalar model will be explored because it is easy to understand and contains all the basic elements of the inflationary model.

  17. The Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT/HIF-1β) is influenced by hypoxia and hypoxia-mimetics.

    PubMed

    Wolff, Matthias; Jelkmann, Wolfgang; Dunst, Jürgen; Depping, Reinhard

    2013-01-01

    The Aryl Hydrocarbon Receptor Nuclear Translocator (ARNT, HIF-1β) is a member of the basic-Helix-Loop-Helix PER/ARNT/SIM (bHLH/PAS) protein family and a vital transcriptional regulator regarding development and physiological adaptation processes. ARNT is discussed to be linked with cancer, and other diseases. ARNT is known to be translocated into the cell nucleus, where accumulation of the protein takes place. ARNT is a heterodimerisation partner of the xenobiotic ligand activated Aryl Hydrocarbon Receptor (AhR), the Single Minded proteins (SIM), the cardiovascular helix-loop-helix factor 1 and the Hypoxia Inducible Factor proteins (HIF-α). ARNT is obligatory for HIF-1, HIF-2 and HIF-3 binding to DNA. Whereas degradation of the HIF-α subunits is suppressed by hypoxia, ARNT is generally regarded as constitutively expressed in excess within the cell, and stabilisation is commonly thought to be oxygen-independent. However, we provide evidence that the regulation of ARNT is far more complex. The aim of our study was to reevaluate the regulation of ARNT expression. We examined cell lines of different origin like MCF-7 and T47D (human breast cancer), HeLa (human cervix carcinoma), Hep3B and HepG2 (human hepatoma), Kelly (human neuroblastoma), REPC (human kidney) and Cos7 (primary primate kidney) cells. We used immunoblot analysis, densitometry, RT-PCR and transient transfection. Our results show that ARNT protein levels are influenced by hypoxia and hypoxia mimetics such as cobalt(II)-chloride (CoCl2) and dimethyloxalylglycine (DMOG) in a cell line specific manner. We demonstrate that this effect might be triggered by HIF-1α which plays an important role in the process of stabilizing ARNT in hypoxia. © 2013 S. Karger AG, Basel

  18. Mutations affecting the BHLHA9 DNA-binding domain cause MSSD, mesoaxial synostotic syndactyly with phalangeal reduction, Malik-Percin type.

    PubMed

    Malik, Sajid; Percin, Ferda E; Bornholdt, Dorothea; Albrecht, Beate; Percesepe, Antonio; Koch, Manuela C; Landi, Antonio; Fritz, Barbara; Khan, Rizwan; Mumtaz, Sara; Akarsu, Nurten A; Grzeschik, Karl-Heinz

    2014-12-04

    Mesoaxial synostotic syndactyly, Malik-Percin type (MSSD) (syndactyly type IX) is a rare autosomal-recessive nonsyndromic digit anomaly with only two affected families reported so far. We previously showed that the trait is genetically distinct from other syndactyly types, and through autozygosity mapping we had identified a locus on chromosome 17p13.3 for this unique limb malformation. Here, we extend the number of independent pedigrees from various geographic regions segregating MSSD to a total of six. We demonstrate that three neighboring missense mutations affecting the highly conserved DNA-binding region of the basic helix-loop-helix A9 transcription factor (BHLHA9) are associated with this phenotype. Recombinant BHLHA9 generated by transient gene expression is shown to be located in the cytoplasm and the cell nucleus. Transcription factors 3, 4, and 12, members of the E protein (class I) family of helix-loop-helix transcription factors, are highlighted in yeast two-hybrid analysis as potential dimerization partners for BHLHA9. In the presence of BHLHA9, the potential of these three proteins to activate expression of an E-box-regulated target gene is reduced considerably. BHLHA9 harboring one of the three substitutions detected in MSSD-affected individuals eliminates entirely the transcription activation by these class I bHLH proteins. We conclude that by dimerizing with other bHLH protein monomers, BHLHA9 could fine tune the expression of regulatory factors governing determination of central limb mesenchyme cells, a function made impossible by altering critical amino acids in the DNA binding domain. These findings identify BHLHA9 as an essential player in the regulatory network governing limb morphogenesis in humans.

  19. Processing of lysozyme at distinct loops by pepsin: a novel action for generating multiple antimicrobial peptide motifs in the newborn stomach.

    PubMed

    Ibrahim, Hisham R; Inazaki, Daisuke; Abdou, Adham; Aoki, Takayoshi; Kim, Mujo

    2005-10-30

    C-type lysozyme (cLZ) is an antimicrobial enzyme that plays a major defense role in many human secretions. Recently, we have identified a helix-loop-helix antimicrobial peptide fragment of cLZ. This finding suggests that processing by coexisting proteases might be a relevant physiological process for generating peptides that contribute to the in vivo mucosal defense role of cLZ. In this study, we found that pepsin, under condition relevant to the newborn stomach (pH 4.0), generated various peptides from cLZ with potent bactericidal activity against several strains of Gram-negative and Gram-positive bacteria. Microsequencing and mass spectral analysis revealed that pepsin cleavage occurred at conserved loops within the alpha-domain of cLZ. We found that the bactericidal domain, which was isolated by gel filtration and reversed-phase HPLC, contains two cationic alpha-helical peptides generated from a helix-loop-helix domain (residues 1-38 of cLZ) by nicking at leucine17. A third peptide consisting of an alpha-helix (residues 18-38) and a two-stranded beta-sheet (residues 39-56) structure was also identified. These peptides share structural motifs commonly found in different innate immune defenses. Functional cellular studies with outer membrane-, cytoplasmic membrane vitality- and redox-specific fluorescence dyes revealed that the lethal effect of the isolated antimicrobial peptides is due to membrane permeabilization and inhibition of redox-driven bacterial respiration. The results provide the first demonstration that pepsin can fine-tune the antimicrobial potency of cLZ by generating multiple antimicrobial peptide motifs, delineating a new molecular switch of cLZ in the mucosal defense systems. Finally, this finding offers a new strategy for the design of antibiotic peptide drugs with potential use in the treatment of infectious diseases.

  20. Negative ions of polyatomic molecules.

    PubMed

    Christophorou, L G

    1980-06-01

    In this paper general concepts relating to, and recent advances in, the study of negative ions of polyatomic molecules area discussed with emphasis on halocarbons. The topics dealt with in the paper are as follows: basic electron attachment processes, modes of electron capture by molecules, short-lived transient negative ions, dissociative electron attachment to ground-state molecules and to "hot" molecules (effects of temperature on electron attachment), parent negative ions, effect of density, nature, and state of the medium on electron attachment, electron attachment to electronically excited molecules, the binding of attached electrons to molecules ("electron affinity"), and the basic and the applied significance of negative-ion studies.

  1. Thai Negation.

    ERIC Educational Resources Information Center

    Alam, Samsul

    A study analyzed the structure of negative sentences in the Thai language, based on data gathered from two native speakers. It is shown that the Thai negative marker generally occurs between the noun phrase (subject) and the verb phrase in simple active sentences and in passive sentences. Negation of noun phrases is also allowed in Thai, with a…

  2. The Drosophila Transcription Factor Dimmed Affects Neuronal Growth and Differentiation in Multiple Ways Depending on Neuron Type and Developmental Stage

    PubMed Central

    Liu, Yiting; Luo, Jiangnan; Nässel, Dick R.

    2016-01-01

    Growth of postmitotic neurons occurs during different stages of development, including metamorphosis, and may also be part of neuronal plasticity and regeneration. Recently we showed that growth of post-mitotic neuroendocrine cells expressing the basic helix loop helix (bHLH) transcription factor Dimmed (Dimm) in Drosophila could be regulated by insulin/IGF signaling and the insulin receptor (dInR). Dimm is also known to confer a secretory phenotype to neuroendocrine cells and can be part of a combinatorial code specifying terminal differentiation in peptidergic neurons. To further understand the mechanisms of Dimm function we ectopically expressed Dimm or Dimm together with dInR in a wide range of Dimm positive and Dimm negative peptidergic neurons, sensory neurons, interneurons, motor neurons, and gut endocrine cells. We provide further evidence that dInR mediated cell growth occurs in a Dimm dependent manner and that one source of insulin-like peptide (DILP) for dInR mediated cell growth in the CNS is DILP6 from glial cells. Expressing both Dimm and dInR in Dimm negative neurons induced growth of cell bodies, whereas dInR alone did not. We also found that Dimm alone can regulate cell growth depending on specific cell type. This may be explained by the finding that the dInR is a direct target of Dimm. Conditional gene targeting experiments showed that Dimm alone could affect cell growth in certain neuron types during metamorphosis or in the adult stage. Another important finding was that ectopic Dimm inhibits apoptosis of several types of neurons normally destined for programmed cell death (PCD). Taken together our results suggest that Dimm plays multiple transcriptional roles at different developmental stages in a cell type-specific manner. In some cell types ectopic Dimm may act together with resident combinatorial code transcription factors and affect terminal differentiation, as well as act in transcriptional networks that participate in long term maintenance

  3. The phenylpropanoid pathway is controlled at different branches by a set of R2R3-MYB C2 repressors in grapevine.

    PubMed

    Cavallini, Erika; Matus, José Tomás; Finezzo, Laura; Zenoni, Sara; Loyola, Rodrigo; Guzzo, Flavia; Schlechter, Rudolf; Ageorges, Agnès; Arce-Johnson, Patricio; Tornielli, Giovanni Battista

    2015-04-01

    Because of the vast range of functions that phenylpropanoids possess, their synthesis requires precise spatiotemporal coordination throughout plant development and in response to the environment. The accumulation of these secondary metabolites is transcriptionally controlled by positive and negative regulators from the MYB and basic helix-loop-helix protein families. We characterized four grapevine (Vitis vinifera) R2R3-MYB proteins from the C2 repressor motif clade, all of which harbor the ethylene response factor-associated amphiphilic repression domain but differ in the presence of an additional TLLLFR repression motif found in the strong flavonoid repressor Arabidopsis (Arabidopsis thaliana) AtMYBL2. Constitutive expression of VvMYB4a and VvMYB4b in petunia (Petunia hybrida) repressed general phenylpropanoid biosynthetic genes and selectively reduced the amount of small-weight phenolic compounds. Conversely, transgenic petunia lines expressing VvMYBC2-L1 and VvMYBC2-L3 showed a severe reduction in petal anthocyanins and seed proanthocyanidins together with a higher pH of crude petal extracts. The distinct function of these regulators was further confirmed by transient expression in tobacco (Nicotiana benthamiana) leaves and grapevine plantlets. Finally, VvMYBC2-L3 was ectopically expressed in grapevine hairy roots, showing a reduction in proanthocyanidin content together with the down-regulation of structural and regulatory genes of the flavonoid pathway as revealed by a transcriptomic analysis. The physiological role of these repressors was inferred by combining the results of the functional analyses and their expression patterns in grapevine during development and in response to ultraviolet B radiation. Our results indicate that VvMYB4a and VvMYB4b may play a key role in negatively regulating the synthesis of small-weight phenolic compounds, whereas VvMYBC2-L1 and VvMYBC2-L3 may additionally fine tune flavonoid levels, balancing the inductive effects of

  4. Epstein-Barr virus latent membrane protein 1 induces synthesis of hypoxia-inducible factor 1 alpha.

    PubMed

    Wakisaka, Naohiro; Kondo, Satoru; Yoshizaki, Tomokazu; Murono, Shigeyuki; Furukawa, Mitsuru; Pagano, Joseph S

    2004-06-01

    Hypoxia-inducible factor 1 (HIF-1) is a heterodimeric basic helix-loop-helix transcription factor composed of HIF-1 alpha and HIF-1 beta that is the central regulator of responses to hypoxia. The specific binding of HIF-1 to the hypoxia-responsive element (HRE) induces the transcription of genes that respond to hypoxic conditions, including vascular endothelial growth factor (VEGF). Here we report that expression of HIF-1 alpha is increased in diverse Epstein-Barr virus (EBV)-infected type II and III cell lines, which express EBV latent membrane protein 1 (LMP1), the principal EBV oncoprotein, as well as other latency proteins, but not in the parental EBV-negative cell lines. We show first that transfection of an LMP1 expression plasmid into Ad-AH cells, an EBV-negative nasopharyngeal epithelial cell line, induces synthesis of HIF-1 alpha protein without increasing its stability or mRNA level. The mitogen-activated protein kinase (MAPK) kinase inhibitor PD98059 markedly reduces induction of HIF-1 alpha by LMP1. Catalase, an H(2)O(2) scavenger, strongly suppresses LMP1-induced production of H(2)O(2), which results in a decrease in the expression of HIF-1 alpha induced by LMP1. Inhibition of the NF-kappa B, c-jun N-terminal kinase, p38 MAPK, and phosphatidylinositol 3-kinase pathways did not affect HIF-1 alpha expression. Moreover, LMP1 induces HIF-1 DNA binding activity and upregulates HRE and VEGF promoter transcriptional activity. Finally, LMP1 increases the appearance of VEGF protein in extracellular fluids; induction of VEGF is suppressed by PD98059 or catalase. These results suggest that LMP1 increases HIF-1 activity through induction of HIF-1 alpha protein expression, which is controlled by p42/p44 MAPK activity and H(2)O(2). The ability of EBV, and specifically its major oncoprotein, LMP1, to induce HIF-1 alpha along with other invasiveness and angiogenic factors reported previously discloses additional oncogenic properties of this tumor virus.

  5. Analysis of interactions between heterologously produced bHLH and MYB proteins that regulate anthocyanin biosynthesis: quantitative interaction kinetics by Microscale Thermophoresis.

    PubMed

    Nemie-Feyissa, Dugassa; Heidari, Behzad; Blaise, Mickael; Lillo, Cathrine

    2015-03-01

    The two Arabidopsis basic-helix-loop-helix transcription factors GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) are positive regulators of anthocyanin biosynthesis, and form protein complexes (MBW complexes) with various R2R3 MYB transcription factors and a WD40 repeat protein TRANSPARENT TESTA GLABROUS1 (TTG1). In earlier studies, GL3, in contrast to EGL3, was shown to be essential for accumulation of anthocyanins in response to nitrogen depletion. This could not be fully explained by the strong induction of GL3 in response to nitrogen depletion because the EGL3 transcripts were constitutively at a relatively high level and transcripts levels of the two genes were similar under nitrogen depletion. Here the GL3 and EGL3 proteins were characterized with respect to their affinities for PRODUCTION OF ANTHOCYANIN PIGMENT2 (PAP2), a R2R3-MYB which is induced by nitrogen depletion and is part of MBW complexes promoting anthocyanin synthesis. GL3 and EGL3 were also tested for their binding to MYBL2, a negative regulator of anthocyanin synthesis and MBW complexes. Using heterologously expressed proteins and Microscale Thermophoresis, GL3 showed binding constants (Kd) of 3.5±1.7 and 22.7±3.7 μM, whereas EGL3 showed binding constants of 7.5±2.3 and 8.9±1.4 μM for PAP2 and MYBL2, respectively. This implies that MYBL2 will not inhibit a MBW complex containing GL3 as easily as for a complex containing EGL3. In transgenic plants where EGL3 reaches high concentrations compared with MYBL2 the equilibrium is shifted and MYBL2 is not likely to be an efficient competitor, hence anthocyanin formation could be restored by either EGL3 or GL3 genes when overexpressed by help of the 35S promoter. The present work underpins that GL3 is essential for anthocyanin accumulation under nitrogen depletion not only due to transcriptional activation, but also because of binding properties to proteins promoting or inhibiting the activity of the MBW complex.

  6. Increased expression of bHLH transcription factor E2A (TCF3) in prostate cancer promotes proliferation and confers resistance to doxorubicin induced apoptosis

    SciTech Connect

    Patel, Divya; Chaudhary, Jaideep

    2012-05-25

    Highlights: Black-Right-Pointing-Pointer E2A, considered as a tumor suppressor is highly expressed in prostate cancer. Black-Right-Pointing-Pointer Silencing of E2A attenuates cell proliferation and promotes apoptosis. Black-Right-Pointing-Pointer E2A regulates c-myc, Id1, Id3 and CDKN1A expression. Black-Right-Pointing-Pointer Loss of E2A promotes doxorubicin dependent apoptosis in prostate cancer cells. Black-Right-Pointing-Pointer Results suggest that E2A acts as a tumor promoter at least in prostate cancer. -- Abstract: E2A (TCF3) is a multifunctional basic helix loop helix (bHLH), transcription factor. E2A regulates transcription of target genes by homo- or heterodimerization with cell specific bHLH proteins. In general, E2A promotes cell differentiation, acts as a negative regulator of cell proliferation in normal cells and cancer cell lines and is required for normal B-cell development. Given the diverse biological pathways regulated/influenced by E2A little is known about its expression in cancer. In this study we investigated the expression of E2A in prostate cancer. Unexpectedly, E2A immuno-histochemistry demonstrated increased E2A expression in prostate cancer as compared to normal prostate. Silencing of E2A in prostate cancer cells DU145 and PC3 led to a significant reduction in proliferation due to G1 arrest that was in part mediated by increased CDKN1A(p21) and decreased Id1, Id3 and c-myc. E2A silencing in prostate cancer cell lines also resulted in increased apoptosis due to increased mitochondrial permeability and caspase 3/7 activation. Moreover, silencing of E2A increased sensitivity to doxorubicin induced apoptosis. Based on our results, we propose that E2A could be an upstream regulator of Id1 and c-Myc which are highly expressed in prostate cancer. These results for the first time demonstrate that E2A could in fact acts as a tumor promoter at least in prostate cancer.

  7. Regulation of the human cardiac/slow-twitch troponin C gene by multiple, cooperative, cell-type-specific, and MyoD-responsive elements.

    PubMed Central

    Christensen, T H; Prentice, H; Gahlmann, R; Kedes, L

    1993-01-01

    The cardiac troponin C (cTnC) gene produces identical transcripts in slow-twitch skeletal muscle and in heart muscle (R. Gahlmann, R. Wade, P. Gunning, and L. Kedes, J. Mol. Biol. 201:379-391, 1988). A separate gene encodes the fast-twitch skeletal muscle troponin C and is not expressed in heart muscle. We have used transient transfection to characterize the regulatory elements responsible for skeletal and cardiac cell-type-specific expression of the human cTnC (HcTnC) gene. At least four separate elements cooperate to confer tissue-specific expression of this gene in differentiated myotubes; a basal promoter (between -61 and -13) augments transcription 9-fold, upstream major regulatory sequences (between -68 and -142 and between -1319 and -4500) augment transcription as much as 39-fold, and at least two enhancer-like elements in the first intron (between +58 and +1028 and between +1029 and +1523) independently augment transcription 4- to 5-fold. These enhancers in the first intron increase myotube-specific chloramphenicol acetyltransferase activity when linked to their own promoter elements or to the heterologous simian virus 40 promoter, and the effects are multiplicative rather than additive. Each of the major myotube regulatory regions is capable of responding directly or indirectly to the myogenic determination factor, MyoD.A MyoD expression vector in 10T1/2 cells induced constructs carrying either the upstream HcTnC promoter elements or the first intron of the gene 300- to 500-fold. Expression was inhibited by cotransfection with Id, a negative regulator of basic helix-loop-helix transcription factors. The basal promoter contains five tandem TGGGC repeats that interact with Sp1 or an Sp1-like factor in nuclear extracts. Mutational analysis of this element demonstrated that two of the five repeat sequences were sufficient to support basal level muscle cell-specific transcription. Whereas the basal promoter is also critical for expression in cardiac myocytes

  8. Inhibitor of DNA binding 1 (Id1) induces differentiation and proliferation of mouse embryonic carcinoma P19CL6 cells

    SciTech Connect

    Meng, Qingzhen; Jia, Zhuqing; Wang, Weiping; Li, Binhong; Ma, Kangtao; Zhou, Chunyan

    2011-08-26

    Highlights: {yields} Id1 was upregulated during the cardiac differentiation process of P19CL6 cells. {yields} Id1 upregulated expression of cardiac specific genes Gata4, {alpha}-MHC and ISL1. {yields} Id1 promoted proliferation of P19CL6 cells. {yields} Overexpression of Id1 increased activity of TOP flash. {yields} Wnt3a or LiCl treatment promoted Id1 expression in P19CL6 cells. -- Abstract: The inhibitor of DNA binding (Id) family of genes encodes negative regulators of basic helix-loop-helix transcription factors and has been implicated in such diverse cellular processes as differentiation, proliferation, apoptosis and migration. Id knockout mouse embryos display multiple cardiac defects but the specific role of Id1 in cardiac differentiation is unclear. In the present study, we investigated the function of Id1 in DMSO-induced P19CL6 cells, a widely-accepted cell model of cardiac differentiation. We found that Id1 was upregulated during the cardiac differentiation of P19CL6 cells. The expression of cardiac specific marker genes, Gata4, {alpha}-MHC and ISL1, was upregulated in P19CL6 cells stably transfected with Id1 (P19CL6-Id1) during cardiac differentiation. The overexpression of Id1 reduced the number of cells in G1 phase and increased the cell population in G2, M and S phases, while knockdown of Id1 increased the number of cells in G1 phase from 48.6 {+-} 2.51% to 62.2 {+-} 1.52% at day 0 of cardiac induction, and from 52.5 {+-} 3.41% to 63.7 {+-} 1.02% at day 3 after cardiac induction, indicating that Id1 promoted proliferation of P19CL6 cells. Luciferase assays showed that the activity of TOP flash was higher in P19CL6-Id1 cells than wildtype P19CL6 cells, while Id1 expression was also upregulated in P19CL6 cells treated with Wnt3a or LiCl. This indicates that there may be positive feedback between Id1 and Wnt signaling which plays an important role in cardiac differentiation.

  9. Structure activity relationships of peptidic analogs of MyoD for the development of Id1 inhibitors as antiproliferative agents.

    PubMed

    Hsiao, Yu-Cheng; Yang, De-Len; Hung, Hui-Ling; Lung, Feng-Di T

    2013-11-01

    Id proteins, inhibitors of DNA binding proteins, have highly conserved dimerization motif known as the helix-loop-helix (HLH) domain that acts as a negative regulator of basic HLH (bHLH) transcription factors. In signaling pathways, Id proteins play an important role in cellular development, proliferation, and differentiation. The mechanism of Id proteins is to antagonize bHLH proteins, thereby preventing them from binding to DNA and inhibiting transcription of cellular differentiation-associated genes in cancer. Recently, we reported an inhibitor of Id1, peptide 3C, which showed good affinity to Id1 protein and exhibited inhibitory effects in cancer cells. In this study, Ala (A)-substituted analogs of peptide 3C were synthesized by SPPS, purified by RP-HPLC, and characterized by MALDI-TOF MS. Binding of each peptide to Id1 or Id1-HLH (the HLH domain of Id1) was monitored by surface plasmon resonance (SPR)-based biosensor. Biological effect of each peptide in MCF-7 breast cancer cells was analyzed by MTT cell viability assay. The secondary structure of substituted analogs of peptide 3C was investigated by circular dichroism (CD) spectroscopy. SPR results revealed that A-substituted analogs of peptide 3C showed weaker binding to Id1 than that of peptide 3C, indicating that the six amino acid residues in the N-terminal of peptide 3C were all essential for binding to Id1 and the importance of amino acid residue was I(2)  > Q(6)  > Y(1)  > G(4)  > L(5)  > E(3). In addition, substitution of E(3) in peptide 3C with D, Q, and R did not improve the binding potency of peptide 3C. MTT assay demonstrated that neither A-substituted nor position 3-substituted analogs of peptide 3C showed increased antiproliferative effect in MCF-7 cancer cells. CD results indicated that peptide 3C exhibited the highest content of α-helical structure (39.37%), suggesting that the α-helical structure may contribute to its binding potency for Id1 and Id1-HLH. SAR results

  10. Proteomic identification of MYC2-dependent jasmonate-regulated proteins in Arabidopsis thaliana

    PubMed Central

    2012-01-01

    Background MYC2, a basic helix-loop-helix (bHLH) domain-containing transcription factor, participates in the jasmonate (JA) signaling pathway and is involved in the modulation of diverse JA functions. However, a comprehensive list of MYC2-dependent JA-responsive proteins has yet to be defined. Results In this paper, we report the comparative proteomics of wild-type (WT) plants and jin1-9, a MYC2 mutant plant, in response to methyl jasmonate (MeJA) treatment. Proteins from mock/MeJA-treated jin1-9 and WT samples were extracted and separated by two-dimensional gel electrophoresis. Twenty-seven JA-mediated proteins demonstrated differential expression modulated by MYC2. We observed that MYC2 negatively regulates the accumulation of JA-dependent indolic glucosinolate-related proteins and exhibits opposite effects on the biosynthetic enzymes involved aliphatic glucosinolate pathways. In addition, proteins involved in the tricarboxylic acid cycle and a majority of the MeJA-inducible proteins that are involved in multiple protective systems against oxidative stress were reduced in jin1-9/myc2 sample compared to the WT sample. These results support a positive role for MYC2 in regulating JA-mediated carbohydrate metabolism and oxidative stress tolerance. Conclusions We have identified MYC2-dependent jasmonate-regulated proteins in Arabidopsis thaliana by performing two-dimensional gel electrophoresis and MALDI-TOF/TOF MS analysis. The observed pattern of protein expression suggests that MYC2 has opposite effects on the biosynthetic enzymes of indolic and aliphatic glucosinolate pathways and positively regulates JA-mediated carbohydrate metabolism and oxidative stress tolerance-related proteins. Furthermore, it is very interesting to note that MYC2 plays opposite roles in the modulation of a subset of JA-regulated photosynthetic proteins during short-term and long-term JA signaling. This study will enhance our understanding of the function of MYC2 in JA signaling in

  11. Adult Basic Education Basic Computer Literacy Handbook.

    ERIC Educational Resources Information Center

    Manini, Catalina M.; Cervantes, Juan

    This handbook, in both English and Spanish versions, is intended for use with adult basic education (ABE) students. It contains five sections of basic computer literacy activities and information about the ABE computer literacy course offered at Dona Ana Community College (DACC) in New Mexico. The handbook begins with forewords by the handbook's…

  12. Negative Certainty

    ERIC Educational Resources Information Center

    Ariso, José María

    2017-01-01

    The definitions of "negative knowledge" and the studies in this regard published to date have not considered the categorial distinction Wittgenstein established between knowledge and certainty. Hence, the important role that certainty, despite its omission, should have in these definitions and studies has not yet been shown. In this…

  13. Negative Certainty

    ERIC Educational Resources Information Center

    Ariso, José María

    2017-01-01

    The definitions of "negative knowledge" and the studies in this regard published to date have not considered the categorial distinction Wittgenstein established between knowledge and certainty. Hence, the important role that certainty, despite its omission, should have in these definitions and studies has not yet been shown. In this…

  14. Negative Numbers

    ERIC Educational Resources Information Center

    Galbraith, Mary J.

    1974-01-01

    Examination of models for representing integers demonstrates that formal operational thought is required for establishing the operations on integers. Advocated is the use of many models for introducing negative numbers but, apart from addition, it is recommended that operations on integers be delayed until the formal operations stage. (JP)

  15. BASIC Tools: Structured Programming Techniques in BASIC.

    ERIC Educational Resources Information Center

    Moyer, Patrick C.

    1985-01-01

    Structured programing is an attempt to formalize the logic and structure of computer programs. Examples of structured programing techniques in BASIC are provided. Two major disadvantages of this style of programing for the personal user are noted. (JN)

  16. Adjective Metaphors Evoke Negative Meanings

    PubMed Central

    Sakamoto, Maki; Utsumi, Akira

    2014-01-01

    Previous metaphor studies have paid much attention to nominal metaphors and predicative metaphors, but little attention has been given to adjective metaphors. Although some studies have focused on adjective metaphors, they only examined differences in the acceptability of various types of adjective metaphors. This paper explores the cognitive effects evoked by adjective metaphors. Three psychological experiments revealed that (1) adjective metaphors, especially those modified by color adjectives, tend to evoke negative effect; (2) although the meanings of metaphors are basically affected by the meanings of their vehicles, when a vehicle has a neutral meaning, negative meanings are evoked most frequently for adjective metaphors compared to nominal and predicative metaphors; (3) negative meanings evoked by adjective metaphors are related to poeticness, and poetic metaphors evoke negative meanings more easily than less poetic metaphors. Our research sheds new light on studies of the use of metaphor, which is one of the most basic human cognitive abilities. PMID:24586480

  17. Basics of cytology

    PubMed Central

    Al-Abbadi, Mousa A.

    2011-01-01

    This overview is intended to give a general outline about the basics of Cytopathology. This is a field that is gaining tremendous momentum all over the world due to its speed, accuracy and cost effectiveness. This review will include a brief description about the history of cytology from its inception followed by recent developments. Discussion about the different types of specimens, whether exfoliative or aspiration will be presented with explanation of its rule as a screening and diagnostic test. A brief description of the indications, utilization, sensitivity, specificity, cost effectiveness, speed and accuracy will be carried out. The role that cytopathology plays in early detection of cancer will be emphasized. The ability to provide all types of ancillary studies necessary to make specific diagnosis that will dictate treatment protocols will be demonstrated. A brief description of the general rules of cytomorphology differentiating benign from malignant will be presented. Emphasis on communication between clinicians and pathologist will be underscored. The limitations and potential problems in the form of false positive and false negative will be briefly discussed. Few representative examples will be shown. A brief description of the different techniques in performing fine needle aspirations will be presented. General recommendation for the safest methods and hints to enhance the sensitivity of different sample procurement will be given. It is hoped that this review will benefit all practicing clinicians that may face certain diagnostic challenges requiring the use of cytological material. PMID:23210005

  18. PASCAL vs BASIC

    ERIC Educational Resources Information Center

    Mundie, David A.

    1978-01-01

    A comparison between PASCAL and BASIC as general purpose microprocessor languages rates PASCAL above BASIC in such points as program structure, data types, structuring methods, control structures, procedures and functions, and ease in learning. (CMV)

  19. Health Insurance Basics

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Health Insurance Basics KidsHealth > For Teens > Health Insurance Basics A ... thought advanced calculus was confusing. What Exactly Is Health Insurance? Health insurance is a plan that people buy ...

  20. PASCAL vs BASIC

    ERIC Educational Resources Information Center

    Mundie, David A.

    1978-01-01

    A comparison between PASCAL and BASIC as general purpose microprocessor languages rates PASCAL above BASIC in such points as program structure, data types, structuring methods, control structures, procedures and functions, and ease in learning. (CMV)

  1. Health Insurance Basics

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Health Insurance Basics KidsHealth > For Teens > Health Insurance Basics Print ... thought advanced calculus was confusing. What Exactly Is Health Insurance? Health insurance is a plan that people buy ...

  2. Relocating Basic Writing

    ERIC Educational Resources Information Center

    Horner, Bruce

    2011-01-01

    I frame the continuing value of basic writing as part of a long tradition in composition studies challenging dominant beliefs about literacy and language abilities, and I link basic writing to emerging--e.g."translingual"--approaches to language. I identify basic writing as vital to the field of composition in its rejection of simplistic notions…

  3. Basic Cake Decorating Workbook.

    ERIC Educational Resources Information Center

    Bogdany, Mel

    Included in this student workbook for basic cake decorating are the following: (1) Drawings of steps in a basic way to ice a layer cake, how to make a paper cone, various sizes of flower nails, various sizes and types of tin pastry tubes, and special rose tubes; (2) recipes for basic decorating icings (buttercream, rose paste, and royal icing);…

  4. Basic Cake Decorating Workbook.

    ERIC Educational Resources Information Center

    Bogdany, Mel

    Included in this student workbook for basic cake decorating are the following: (1) Drawings of steps in a basic way to ice a layer cake, how to make a paper cone, various sizes of flower nails, various sizes and types of tin pastry tubes, and special rose tubes; (2) recipes for basic decorating icings (buttercream, rose paste, and royal icing);…

  5. [Validity of assessment of schizophrenic basic symptoms].

    PubMed

    Mass, R; Hitschfeld, K; Wall, E; Wagner, H B

    1997-03-01

    A study on the concept and measurement of the basic disorders of schizophrenia is presented. A total of 151 male adult psychiatric inpatients (51 with a dual diagnosis of schizophrenia and alcoholism, 50 schizophrenics and 50 alcoholics) were included. The aims of this study were: (1) the replication of the previous finding that the Frankfurt Complaint Questionnaire (FBF) contains items that discriminate between schizophrenia and alcoholism; (2) an empirical comparison between FBF and the Bonn Scale for the Assessment of Basic Symptoms (BSABS); (3) testing the relationship between basic and negative versus positive symptoms, as measured by the Positive and Negative Syndrome Scale (PANSS). Regarding (1), the former result was replicated. Regarding (2), FBF subscales and BSABS categories were shown to be significantly but weakly related, even if identical symptoms were included in the inquiry. Regarding (3), FBF and BSABS were found to be more closely related to negative than to positive PANSS items. Theoretical implications and consequences for further research are discussed.

  6. "Back to Basics" or "Forward to Basics"?

    ERIC Educational Resources Information Center

    Perso, Thelma

    2007-01-01

    Politicians have used the promise of "back to basics in our schools" as an educational platform for some time now, possibly in recognition that this is something the general population perceives as an issue they might just vote for. In the various positions the author has held, both professional and in community service, she has been…

  7. The Basic and Semi-Basic

    ERIC Educational Resources Information Center

    Spitler, Gail

    1978-01-01

    Presented is a paradigm for teaching basic and semibasic arithmetic facts to children with arithmetic difficulties, in which the student progresses from the use of concrete materials such as blocks, to the use of diagrams such as tally marks, to a reasoning process, to responding in an automatic manner. (DLS)

  8. Physics of negative absolute temperatures

    NASA Astrophysics Data System (ADS)

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  9. Climate Change: Basic Information

    MedlinePlus

    ... EPA United States Environmental Protection Agency Search Search Climate Change Share Facebook Twitter Google+ Pinterest Contact Us Climate Change: Basic Information On This Page Climate change is ...

  10. Romanian Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    The "Romanian Basic Course," consisting of 89 lesson units in eight volumes, is designed to train native English language speakers to Level 3 proficiency in comprehension, speaking, reading, and writing Romanian (based on a 1-5 scale in which Level 5 is native speaker proficiency). Volume 1, which introduces basic sentences in dialog form with…

  11. BASIC Beats PASCAL.

    ERIC Educational Resources Information Center

    Ever, Jacob

    1981-01-01

    Features of two versions of the BASIC programing language are compared with the features of the PASCAL programing language. The application chosen for comparison was a word processor. The conclusion was that PASCAL had the best language features, but BASIC had better systems capabilities. (MP)

  12. Basic Science Training Program.

    ERIC Educational Resources Information Center

    Brummel, Clete

    These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…

  13. Fluency with Basic Addition

    ERIC Educational Resources Information Center

    Garza-Kling, Gina

    2011-01-01

    Traditionally, learning basic facts has focused on rote memorization of isolated facts, typically through the use of flash cards, repeated drilling, and timed testing. However, as many experienced teachers have seen, "drill alone does not develop mastery of single-digit combinations." In contrast, a fluency approach to learning basic addition…

  14. TOOLS AND BASIC MACHINES.

    ERIC Educational Resources Information Center

    George Washington Univ., Washington, DC. School of Education.

    THIS BASIC READER IS A PART OF AN EXPERIMENTAL CURRICULUM DEVELOPMENT PROJECT DESCRIBED IN VT 004 454, TO DEVELOP AND EVALUATE SPECIAL NEW TRAINING MATERIALS TO TEACH BASIC VOCATIONAL TALENT SKILLS TO DISADVANTAGED STUDENTS WHICH WERE TESTED ON APPROXIMATELY 2,500 EIGHTH AND NINTH GRADERS IN EIGHT SCHOOL SYSTEMS ACROSS THE NATION. THIS READER WAS…

  15. Basic Electronics I.

    ERIC Educational Resources Information Center

    Robertson, L. Paul

    Designed for use in basic electronics programs, this curriculum guide is comprised of twenty-nine units of instruction in five major content areas: Orientation, Basic Principles of Electricity/Electronics, Fundamentals of Direct Current, Fundamentals of Alternating Current, and Applying for a Job. Each instructional unit includes some or all of…

  16. Construction & Basic Skills.

    ERIC Educational Resources Information Center

    BCEL Newsletter for the Business and Literacy Communities, 1991

    1991-01-01

    Basic skills education has become a pressing need in the construction industry as jobs become more complex and fewer workers have needed skills. However, the construction industry lags in spending on training for entry-level workers. The Home Builders Institute (HBI) is testing a pilot basic skills program that it hopes will prove useful to the…

  17. Basic Science Training Program.

    ERIC Educational Resources Information Center

    Brummel, Clete

    These six learning modules were developed for Lake Michigan College's Basic Science Training Program, a workshop to develop good study skills while reviewing basic science. The first module, which was designed to provide students with the necessary skills to study efficiently, covers the following topics: time management; an overview of a study…

  18. Exponentiation: A New Basic?

    ERIC Educational Resources Information Center

    Davis, Brent

    2015-01-01

    For centuries, the basic operations of school mathematics have been identified as addition, subtraction, multiplication, and division. Notably, these operations are "basic," not because they are foundational to mathematics knowledge, but because they were vital to a newly industrialized and market-driven economy several hundred years…

  19. Fluency with Basic Addition

    ERIC Educational Resources Information Center

    Garza-Kling, Gina

    2011-01-01

    Traditionally, learning basic facts has focused on rote memorization of isolated facts, typically through the use of flash cards, repeated drilling, and timed testing. However, as many experienced teachers have seen, "drill alone does not develop mastery of single-digit combinations." In contrast, a fluency approach to learning basic addition…

  20. Exponentiation: A New Basic?

    ERIC Educational Resources Information Center

    Davis, Brent

    2015-01-01

    For centuries, the basic operations of school mathematics have been identified as addition, subtraction, multiplication, and division. Notably, these operations are "basic," not because they are foundational to mathematics knowledge, but because they were vital to a newly industrialized and market-driven economy several hundred years…

  1. BASIC: Updating a Familiar Language.

    ERIC Educational Resources Information Center

    Eyman, David H.

    1988-01-01

    Discusses reasons for learning to program in BASIC, various versions of BASIC, BASIC compilers, and adherence to proposed standards. Brief reviews of six BASIC software packages are included. (12 references) (MES)

  2. Plasma neutralizers for H negative or D negative beams

    NASA Astrophysics Data System (ADS)

    Berkner, K. H.; Pyle, R. V.; Savas, S. E.; Stalder, K. R.

    1980-10-01

    Plasma neutralizers can produce higher conversion efficiencies than are obtainable with gas neutralizers for the production of high-energy neutral beams from negative hydrogen ions. Little attention has been paid to experimental neutralizer studies because of the more critical problems connected with the development of negative-ion sources. With the prospect of accelerating ampere dc beams from extrapolatable ion sources some time next year, plasma neutralizers are being re-examined. Some basic considerations, two introductory experiments, and a next-step experiment are described.

  3. HIV Treatment: The Basics

    MedlinePlus

    HIV Treatment HIV Treatment: The Basics (Last updated 2/24/2017; last reviewed 2/24/2017) Key Points Antiretroviral therapy (ART) ... reduces the risk of HIV transmission . How do HIV medicines work? HIV attacks and destroys the infection- ...

  4. Opioid Basics: Fentanyl

    MedlinePlus

    ... Basics Understanding the Epidemic Overdose Prevention Prescription Opioids Heroin Fentanyl Data Opioid Data Analysis Drug Overdose Death Data Prescribing Data Prescription Opioid Overdose Data Heroin Overdose Data Synthetic Opioid Data Fentanyl Encounters Data ...

  5. Video Screen Capture Basics

    ERIC Educational Resources Information Center

    Dunbar, Laura

    2014-01-01

    This article is an introduction to video screen capture. Basic information of two software programs, QuickTime for Mac and BlueBerry Flashback Express for PC, are also discussed. Practical applications for video screen capture are given.

  6. Video Screen Capture Basics

    ERIC Educational Resources Information Center

    Dunbar, Laura

    2014-01-01

    This article is an introduction to video screen capture. Basic information of two software programs, QuickTime for Mac and BlueBerry Flashback Express for PC, are also discussed. Practical applications for video screen capture are given.

  7. Vaccine Basics (Smallpox)

    MedlinePlus

    ... Smallpox Website NIH Smallpox Research CDC Poxvirus and Rabies Branch Poxvirus Diseases Vaccine Basics Recommend on Facebook ... Smallpox Website NIH Smallpox Research CDC Poxvirus and Rabies Branch Poxvirus Diseases File Formats Help: How do ...

  8. Brain Basics: Understanding Sleep

    MedlinePlus

    ... Home » Disorders » Patient & Caregiver Education Brain Basics: Understanding Sleep Do you ever feel sleepy or "zone out" ... The Future Tips for a Good Night's Sleep Sleep: A Dynamic Activity Until the 1950s, most people ...

  9. The Basics of Braces

    MedlinePlus

    ... Guide to Getting Involved Teaching Kids to Be Smart About Social Media The Basics of Braces KidsHealth > ... child's teeth by pressing a tray of gooey material into the top and bottom teeth. When the ...

  10. Health Literacy Basics

    MedlinePlus

    ... to which individuals have the capacity to obtain, process, and understand basic health information and services needed to make appropriate health decisions. 1 Health literacy is dependent on individual and ...

  11. Basics of Weight Control

    MedlinePlus

    ... energy and nutrients. The basic required nutrients are water, carbohydrates, proteins, fats, dietary fibers, vitamins, and minerals. Carbohydrates, proteins, and fats provide energy in the form of calories. Alcohol (beer, wine, ...

  12. Basics of Weight Control

    MedlinePlus

    ... energy and nutrients. The basic required nutrients are water, carbohydrates, proteins, fats, dietary fibers, vitamins, and minerals. Carbohydrates, proteins, and fats provide energy in the form of calories. Alcohol (beer, wine, ...

  13. Getting back to basics.

    PubMed

    Maricich, Stephen M; Zoghbi, Huda Y

    2006-07-14

    Advances in understanding basic developmental and physiological processes often have direct relevance to human disease. They provide insights into pathogenic mechanisms and reveal new pathways that can be exploited in diagnosis and the development of therapeutics.

  14. Are there basic emotions?

    PubMed

    Ekman, P

    1992-07-01

    Ortony and Turner's (1990) arguments against those who adopt the view that there are basic emotions are challenged. The evidence on universals in expression and in physiology strongly suggests that there is a biological basis to the emotions that have been studied. Ortony and Turner's reviews of this literature are faulted, and their alternative theoretical explanations do not fit the evidence. The utility of the basic emotions approach is also shown in terms of the research it has generated.

  15. Heterogeneous basic catalysis

    SciTech Connect

    Hattori, Hideshi

    1995-05-01

    Heterogeneous acid catalysis attracted much attention primarily because heterogeneous acidic catalysts act as catalysts in petroleum refinery and are known as a main catalyst in the cracking process which is the largest process among the industrial chemical processes. In contrast to these extensive studies of heterogeneous acidic catalysts, fewer efforts have been given to the study of heterogeneous basic catalysts. The types of heterogeneous basic catalysts are listed in Table 1. Except for non-oxide catalysts, the basic sites are believed to be surface O atoms. The studies of heterogeneous catalysis have been continuous and progressed steadily. They have never been reviewed in the chemical Reviews before. It is more useful and informative to describe the studies of heterogeneous basic catalysis performed for a long period. In the present article, therefore, the cited papers are not restricted to those published recently, but include those published for the last 25 years. The paper first describes the generation of basic sites before describing methods used in the characterization of basic surfaces. These are indicator methods, temperature programmed desorption (TPD) of CO{sub 2}, UV absorption and luminescence spectroscopies, TPD of H{sub 2}, XPS, IR of CO{sub 2}, IR of pyrrole, and oxygen exchange between CO{sub 2} and the surface. The paper then discusses studies on the catalysis by heterogeneous basic catalysts. Some of these reactions are dehydration, dehydrogenation, hydrogenation, amination, alkylation, ring transformation, and reactions of organosilanes. Catalysts discussed are single component metal oxides, zeolites, non-oxide types, and superbasic catalysts. 141 refs.

  16. Basic research championed

    NASA Astrophysics Data System (ADS)

    Friebele, Elaine

    In April, the Office of National Science and Technology Policy released its biennial report to Congress. Science and Technology: Shaping the Twenty-First Century addresses the President's policy for maintaining U.S. leadership in science and technology, significant developments, and important national issues in science, and opportunities to use science and technology in federal programs and national goals. The administration strongly supports basic research as a sound investment and an inspiration to society. As corporate laboratories increasingly favor applied R&D projects, the federal government is becoming the dominant sponsor of long-term, basic research.

  17. Basic Writing: Progressive Proofreading.

    ERIC Educational Resources Information Center

    Black, Lynette C.

    Writing problems in the basic college freshman writing course result from the students' misconception that once they get the required number of words down on paper their compositions are unalterable, and teachers' misconception that serving as an editor, correcting errors and rewriting sentences, is an effective teaching tool. Students'…

  18. Basic Internet Software Toolkit.

    ERIC Educational Resources Information Center

    Buchanan, Larry

    1998-01-01

    Once schools are connected to the Internet, the next step is getting network workstations configured for Internet access. This article describes a basic toolkit comprising software currently available on the Internet for free or modest cost. Lists URLs for Web browser, Telnet, FTP, file decompression, portable document format (PDF) reader,…

  19. Focus on Basics, 1998.

    ERIC Educational Resources Information Center

    Focus on Basics, 1998

    1998-01-01

    This volume contains the four 1998 quarterly issues of this newsletter that present best practices, current research on adult learning and literacy, and information on how research is used by adult basic education teachers, counselors, program administrators, and policy makers. The following are among the major articles included: "Power,…

  20. Basic Electricity. Part 1.

    ERIC Educational Resources Information Center

    Kilmer, Donald C.

    A primarily illustrated introduction to the basics of electricity is presented in this guide, the first of a set of four designed for the student interested in a vocation in electrical work. This guide is intended for the first-year student and provides mostly diagrams with accompanying defintions/information in three units, each covering one of…

  1. Swahili Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This basic audiolingual course in standard Swahili appears in six volumes, Lesson Units 1-56. Units consist of a "blueprint" prefatory page outlining the phonological, morphological, and syntactic structures and new vocabulary to be presented; perception drills; Swahili dialog with cartoon guides and English translation; pattern and recombination…

  2. Basic Electronics II.

    ERIC Educational Resources Information Center

    Willison, Neal A.; Shelton, James K.

    Designed for use in basic electronics programs, this curriculum guide is comprised of 15 units of instruction. Unit titles are Review of the Nature of Matter and the P-N Junction, Rectifiers, Filters, Special Semiconductor Diodes, Bipolar-Junction Diodes, Bipolar Transistor Circuits, Transistor Amplifiers, Operational Amplifiers, Logic Devices,…

  3. Reading for Basic Understanding.

    ERIC Educational Resources Information Center

    Mercer County Community Coll., Trenton, NJ.

    This document offers materials for a year-long course on general basic reading skills that was part of a workplace literacy project developed by Mercer County Community College (New Jersey), and its partners. The document contains the following: (1) outlines (each of which contains objectives, a topical outline, and list of textbooks) for two…

  4. Hindi Basic Reader.

    ERIC Educational Resources Information Center

    Harter, J. Martin; And Others

    This reader is intended to accompany the Basic Course in Spoken Hindi. Following an outline of the Devanagari script, 20 lessons are presented. Each consists of a reading selection, several illustrative sentences in English and Hindi, and a series of questions. Most of the reading selections were adapted from the magazine "Bal-Bharati."…

  5. Basic Nuclear Physics.

    ERIC Educational Resources Information Center

    Bureau of Naval Personnel, Washington, DC.

    Basic concepts of nuclear structures, radiation, nuclear reactions, and health physics are presented in this text, prepared for naval officers. Applications to the area of nuclear power are described in connection with pressurized water reactors, experimental boiling water reactors, homogeneous reactor experiments, and experimental breeder…

  6. Basics of Online Searching.

    ERIC Educational Resources Information Center

    Meadow, Charles T.; Cochrane, Pauline (Atherton)

    Intended to teach the principles of interactive bibliographic searching to those with little or no prior experience, this textbook explains the basic elements of online information retrieval and compares the major database search systems. Its chapters address (1) relevant definitions and vocabulary; (2) the conceptual facets of database searching,…

  7. Canadian Adult Basic Education.

    ERIC Educational Resources Information Center

    Brooke, W. Michael, Comp.

    "Trends," a publication of the Canadian Association for Adult Education, is a collection of abstracts on selected subjects affecting adult education; this issue is on adult basic education (ABE). It covers teachers and teacher training, psychological factors relating to the ABE teacher and students, manuals for teachers, instructional…

  8. Basic Blueprint Reading.

    ERIC Educational Resources Information Center

    Deieso, Angie; Meier, Jean

    This workbook, designed for workplace literacy courses, contains materials for a basic course in blueprint reading. The course provides a review of mathematics, information about using measuring tools to read blueprints, an explanation of the principles of blueprint drawing, and instructions on interpreting blueprint specifications. Introductory…

  9. Basic Math I.

    ERIC Educational Resources Information Center

    Mercer County Community Coll., Trenton, NJ.

    This document offers instructional materials for a 60-hour course on basic math operations involving decimals, fractions, and proportions as applied in the workplace. The course, part of a workplace literacy project developed by Mercer County Community College (New Jersey) and its partners, contains the following: course outline; 17 lesson…

  10. Basic Structure Content Scaling.

    ERIC Educational Resources Information Center

    Jackson, Douglas N.; Helmes, Edward

    1979-01-01

    A basic structure approach is proposed for obtaining multidimensional scale values for attitude, achievement, or personality items from response data. The technique permits the unconfounding of scale values due to response bias and content and partitions item indices of popularity or difficulty among a number of relevant dimensions. (Author/BH)

  11. Internet Training: The Basics.

    ERIC Educational Resources Information Center

    Gallo, Gail; Wichowski, Chester P.

    This paper outlines the basic information teachers need to know to use the World Wide Web for research and communication, using Netscape 3.04. Topics covered include the following: what is the World Wide Web?; what is a browser?; accessing the Web; moving around a web document; the Uniform Resource Locator (URL); Bookmarks; saving and printing a…

  12. Basic Engineer Equipment Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by basic engineer equipment mechanics. Addressed in the four individual units of the course are the following topics: mechanics and their tools (mechanics, hand tools, and power…

  13. Basic Publication Fundamentals.

    ERIC Educational Resources Information Center

    Savedge, Charles E., Ed.

    Designed for students who produce newspapers and newsmagazines in junior high, middle, and elementary schools, this booklet is both a scorebook and a fundamentals text. The scorebook provides realistic criteria for judging publication excellence at these educational levels. All the basics for good publications are included in the text of the…

  14. Basic Structure of Swahili.

    ERIC Educational Resources Information Center

    Brain, James L.

    This text in basic Swahili structure was originally written in East Africa as a teacher's guide and student's reference and was used as a basis for a course taught largely orally (with the teacher using drills he had prepared himself). The author suggests that although it is not a "linguist's book," it should prove useful to those who are teaching…

  15. Computer Programming: BASIC.

    ERIC Educational Resources Information Center

    Fisher, Patience; And Others

    This guide was prepared to help teachers of the Lincoln Public School's introductory computer programming course in BASIC to make the necessary adjustments for changes made in the course since the purchase of microcomputers and such peripheral devices as television monitors and disk drives, and the addition of graphics. Intended to teach a…

  16. Back to Basics.

    ERIC Educational Resources Information Center

    Burk, James M.

    1979-01-01

    The back-to-basics movement alone cannot solve many of our pressing educational difficulties. Absenteeism and discipline problems point out the need for schooling that fosters human relationships and individual interests. This speech was presented at the American Association of School Administrators Convention, New Orleans, Louisiana, February 16,…

  17. FULA BASIC COURSE.

    ERIC Educational Resources Information Center

    SWIFT, LLOYD B.; AND OTHERS

    THIS BEGINNING COURSE IS AN INTRODUCTION TO FULA (KNOWN VARIOUSLY AS FULANI, FUL, PEUL, OR PHEUL), A NIGER-CONGO LANGUAGE SPOKEN THROUGHOUT THE GRASSLAND AREAS OF WEST AFRICA FROM THE ATLANTIC TO CAMEROUN. THE TEXT IS ONE OF A SERIES OF SHORT BASIC COURSES IN SELECTED AFRICAN LANGUAGES BEING PREPARED BY THE FOREIGN SERVICE INSTITUTE. IT IS…

  18. Basic Soils. Revision.

    ERIC Educational Resources Information Center

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…

  19. Developing Basic Electronics Aptitudes.

    ERIC Educational Resources Information Center

    Lakeshore Technical Coll., Cleveland, WI.

    This curriculum guide provides materials for basic training in electrical and electronic theory to enable participants to analyze circuits and use test equipment to verify electrical operations and to succeed in the beginning electrical and electronic courses in the Lakeshore Technical College (Wisconsin) electronics programs. The course includes…

  20. Basic Experiments in Telecommunications.

    ERIC Educational Resources Information Center

    Andresen, S. G.

    Presented is a set of laboratory experiments developed to provide students with demonstrations and hands-on experiences with a variety of basic communications methods. These experiments may be used with students who have training in engineering, as well as those with social sciences who have no engineering background. Detailed exercises dealing…

  1. Reflections on basic science.

    PubMed

    Piatigorsky, Joram

    2010-01-01

    After almost 50 years in science, I believe that there is an acceptable, often advantageous chasm between open-ended basic research-free exploration without a practical destination and in which the original ideas may fade into new concepts-and translational research or clinical research. My basic research on crystalline (proteins conferring the optical properties of the eye lens) led me down paths I never would have considered if I were conducting translational research. My investigations ranged from jellyfish to mice and resulted in the gene-sharing concept, which showed that the same protein can have distinct molecular functions depending upon its expression pattern and, conversely, that different proteins can serve similar functional roles. This essay portrays basic science as a creative narrative, comparable to literary and artistic endeavors. Preserving the autonomy of open-ended basic research and recognizing its artistic, narrative qualities will accelerate the development of innovative concepts, create a rich resource of information feeding translational research, and have a positive impact by attracting creative individuals to science.

  2. Lippincott Basic Reading Program.

    ERIC Educational Resources Information Center

    Monterey Peninsula Unified School District, Monterey, CA.

    This program, included in "Effective Reading Programs...," serves 459 students in grades 1-3 at 15 elementary schools. The program employs a diagnostic-prescriptive approach to instruction in a nongraded setting through the use of the Lippincott Basic Reading program. When a child enters the program, he is introduced to a decoding…

  3. Basic Pneumatics. Instructor's Guide.

    ERIC Educational Resources Information Center

    Fessehaye, Michael

    This instructor's guide is designed for use by industrial vocational teachers in teaching a course on basic pneumatics. Covered in the individual units are the following topics: an introduction to pneumatics (including the operation of a service station hoist); fundamentals and physical laws; air compressors (positive displacement compressors;…

  4. Focus on Basics, 1997.

    ERIC Educational Resources Information Center

    Focus on Basics, 1997

    1997-01-01

    Together, these four newsletters contain 36 articles devoted to adult literacy research and practice and the relationship between them. The following articles are included: "A Productive Partnership" (Richard J. Murnane, Bob Bickerton); "Welcome to 'Focus on Basics'" (Barbara Garner); "Applying Research on the Last Frontier" (Karen Backlund, Kathy…

  5. Korean Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    These 11 volumes of the Korean Basic Course comprise 112 lesson units designed to train native English language speakers to Level 3 proficiency in comprehension and speaking and Level 2 proficiency in reading and writing Korean. (Level 5 on this scale is native-speaker level.) Intended for classroom use in the Defense Language Institute intensive…

  6. Networks: The Basics.

    ERIC Educational Resources Information Center

    Lomarcan, Diana L.

    1995-01-01

    Introduces the information superhighway (the Internet), and presents a guide to navigating it. Offers basic instruction on obtaining and learning to use network accounts; locating addresses using Archie and Wide Area Information Server; retrieving information using file transfer protocol; utilizing Gopher to find and retrieve; browsing the World…

  7. Baby Bath Basics

    MedlinePlus

    ... feel more comfortable at bath time. Start by learning baby bath basics. There's no need to give your newborn a bath every day. Three times a week might be enough until your baby becomes more mobile. Bathing your baby too much can dry out ...

  8. FULA BASIC COURSE.

    ERIC Educational Resources Information Center

    SWIFT, LLOYD B.; AND OTHERS

    THIS BEGINNING COURSE IS AN INTRODUCTION TO FULA (KNOWN VARIOUSLY AS FULANI, FUL, PEUL, OR PHEUL), A NIGER-CONGO LANGUAGE SPOKEN THROUGHOUT THE GRASSLAND AREAS OF WEST AFRICA FROM THE ATLANTIC TO CAMEROUN. THE TEXT IS ONE OF A SERIES OF SHORT BASIC COURSES IN SELECTED AFRICAN LANGUAGES BEING PREPARED BY THE FOREIGN SERVICE INSTITUTE. IT IS…

  9. Projectable Basic Electronics Kit.

    ERIC Educational Resources Information Center

    H'ng, John; And Others

    1982-01-01

    Outlines advantages derived from constructing and using a Projectable Basic Electronics Kit and provides: (1) list of components; (2) diagrams of 10 finished components (resistor; capacitor; diode; switch; bulb; transistor; meter; variable capacitor; coil; connecting terminal); and (3) diode and transistor activities. (JN)

  10. Basic Pneumatics. Instructor's Guide.

    ERIC Educational Resources Information Center

    Fessehaye, Michael

    This instructor's guide is designed for use by industrial vocational teachers in teaching a course on basic pneumatics. Covered in the individual units are the following topics: an introduction to pneumatics (including the operation of a service station hoist); fundamentals and physical laws; air compressors (positive displacement compressors;…

  11. Basic confocal microscopy.

    PubMed

    Smith, Carolyn L

    2011-07-01

    This unit introduces the reader to the basic principles of confocal microscopy and the design and capabilities of current confocal microscopes. The advantages and disadvantages of confocal microscopy compared to other techniques for fluorescence imaging are described. There are also practical guidelines for sample preparation and optimization of imaging parameters, as well as examples of some of the applications of confocal microscopy.

  12. Czech Basic Course: Folklore.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This booklet is designed for use in the advanced phase of the Defense Language Institute's "Basic Course" in Czech. It is used in the advanced phase as a part of cultural background information. Reading selections, with vocabulary lists, include: (1) ethnography; (2) incantations and spells; (3) proverbs, sayings, and weather lore; (4) fairy tales…

  13. Adult Basic Education Curriculum.

    ERIC Educational Resources Information Center

    Massachusetts Career Development Inst., Springfield.

    This booklet, aimed at adult basic education students, pinpoints and summarizes a few common spelling rules to help make spelling easier, and includes a component on using the dictionary. In the text, each rule is presented with many examples. Exercises follow each spelling rule, allowing students the opportunity to apply the rule to specific…

  14. Turkish Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    These 14 volumes of the Defense Language Institute's basic course in Turkish consist of 112 lesson units designed to train native English language speakers to Level 3 proficiency in comprehending, speaking, reading, and writing Turkish. (Native-speaker fluency is Level 5.) An introduction to the sound system, vowel harmony, and syllable division…

  15. Swahili Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    This basic audiolingual course in standard Swahili appears in six volumes, Lesson Units 1-56. Units consist of a "blueprint" prefatory page outlining the phonological, morphological, and syntactic structures and new vocabulary to be presented; perception drills; Swahili dialog with cartoon guides and English translation; pattern and recombination…

  16. Basic Media in Education.

    ERIC Educational Resources Information Center

    Harrell, John

    Intended as a guide to the use of different media for use in the classroom, this document demonstrates alternative approaches that may be taken to depicting and communicating images and concepts to others. Some basic tools and materials--including a ruler, matte knife, rubber cement, stapler, felt-tip pens, paint brushes, and lettering pens--are…

  17. Flattening basic blocks.

    SciTech Connect

    Utke, J.; Mathematics and Computer Science

    2006-01-01

    The application of cross country elimination strategies requires access to the computational graph or at least subgraphs for certain scopes, e.g. a basic block. Under the presence of aliased variables the construction of these (sub)graphs encounters ambiguities. We propose an algorithm to construct ambiguity free subgraphs.

  18. Basic Skills Assessment

    ERIC Educational Resources Information Center

    Yin, Alexander C.; Volkwein, J. Fredericks

    2010-01-01

    After surveying 1,827 students in their final year at eighty randomly selected two-year and four-year public and private institutions, American Institutes for Research (2006) reported that approximately 30 percent of students in two-year institutions and nearly 20 percent of students in four-year institutions have only basic quantitative…

  19. Basic Writing: Progressive Proofreading.

    ERIC Educational Resources Information Center

    Black, Lynette C.

    Writing problems in the basic college freshman writing course result from the students' misconception that once they get the required number of words down on paper their compositions are unalterable, and teachers' misconception that serving as an editor, correcting errors and rewriting sentences, is an effective teaching tool. Students'…

  20. Sara Basic Course.

    ERIC Educational Resources Information Center

    Thayer, James E.; Maraby, Julien

    The basic plan of this course in Sara is modeled after "An Experimental Course in Hausa" (FSI 1965). The course uses short cycles consisting of mimicry followed by conversations built on the same vocabulary and syntactic pattern. The format has been condensed and altered. The course contains 95 cycles and would require approximately 50 hours to…

  1. Projectable Basic Electronics Kit.

    ERIC Educational Resources Information Center

    H'ng, John; And Others

    1982-01-01

    Outlines advantages derived from constructing and using a Projectable Basic Electronics Kit and provides: (1) list of components; (2) diagrams of 10 finished components (resistor; capacitor; diode; switch; bulb; transistor; meter; variable capacitor; coil; connecting terminal); and (3) diode and transistor activities. (JN)

  2. Basic Drafting: Book One.

    ERIC Educational Resources Information Center

    Davis, Ronald; And Others

    The first of a two-book course in drafting, this manual consists of 13 topics in the following units: introduction to drafting, general safety, basic tools and lines, major equipment, applying for a job, media, lettering, reproduction, drawing sheet layout, architect's scale usage, civil engineer's scale usage, mechanical engineer's scale usage,…

  3. Ethanol Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  4. Turkish Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    These 14 volumes of the Defense Language Institute's basic course in Turkish consist of 112 lesson units designed to train native English language speakers to Level 3 proficiency in comprehending, speaking, reading, and writing Turkish. (Native-speaker fluency is Level 5.) An introduction to the sound system, vowel harmony, and syllable division…

  5. Assessing Basic Fact Fluency

    ERIC Educational Resources Information Center

    Kling, Gina; Bay-Williams, Jennifer M.

    2014-01-01

    In this article, the authors share a variety of ways to formatively assess basic fact fluency. The define fluency, raise some issues related to timed testing, and then share a collection of classroom-tested ideas for authentic fact fluency assessment. This article encourages teachers to try a variety of alternative assessments from this sampling,…

  6. Basic Internet Software Toolkit.

    ERIC Educational Resources Information Center

    Buchanan, Larry

    1998-01-01

    Once schools are connected to the Internet, the next step is getting network workstations configured for Internet access. This article describes a basic toolkit comprising software currently available on the Internet for free or modest cost. Lists URLs for Web browser, Telnet, FTP, file decompression, portable document format (PDF) reader,…

  7. Navajo Adult Basic Education.

    ERIC Educational Resources Information Center

    Navajo Community Coll., Tsaile, AZ.

    The objectives of this Special Experimental Demonstration Project in Adult Basic Education for the Navajo were: (1) to raise the educational and social level of Navajo adult students who are unable to read, write, and speak English; (2) to assist the Navajo adult students to take advantage of occupational and vocational training programs; (3) to…

  8. Precompound Reactions: Basic Concepts

    SciTech Connect

    Weidenmueller, H. A.

    2008-04-17

    Because of the non-zero nuclear equilibration time, the compound-nucleus scattering model fails when the incident energy exceeds 10 or 20 MeV, and precompound reactions become important. Basic ideas used in the quantum-statistical approaches to these reactions are described.

  9. Basic Electricity. Part 1.

    ERIC Educational Resources Information Center

    Kilmer, Donald C.

    A primarily illustrated introduction to the basics of electricity is presented in this guide, the first of a set of four designed for the student interested in a vocation in electrical work. This guide is intended for the first-year student and provides mostly diagrams with accompanying defintions/information in three units, each covering one of…

  10. Korean Basic Course.

    ERIC Educational Resources Information Center

    Defense Language Inst., Washington, DC.

    These 11 volumes of the Korean Basic Course comprise 112 lesson units designed to train native English language speakers to Level 3 proficiency in comprehension and speaking and Level 2 proficiency in reading and writing Korean. (Level 5 on this scale is native-speaker level.) Intended for classroom use in the Defense Language Institute intensive…

  11. Expression dynamics and functions of Hes factors in development and diseases.

    PubMed

    Kobayashi, Taeko; Kageyama, Ryoichiro

    2014-01-01

    Hes genes, encoding basic helix-loop-helix (HLH) transcriptional repressors, are mammalian homologues of Drosophila hairy and Enhancer of split genes, both of which are required for normal neurogenesis in Drosophila. There are seven members in the human Hes family, Hes1-7, which are expressed in many tissues and play various roles mainly in development. All Hes proteins have three conserved domains: basic HLH (bHLH), Orange, and WRPW domains. The basic region binds to target DNA sequences, while the HLH region forms homo- and heterodimers with other bHLH proteins, the Orange domain is responsible for the selection of partners during heterodimer formation, and the WRPW domain recruits corepressors. Hes1, Hes5, and Hes7 are known as downstream effectors of canonical Notch signaling, which regulates cell differentiation via cell-cell interaction. Hes factors regulate many events in development by repressing the expression of target genes, many of which encode transcriptional activators that promote cell differentiation. For example, Hes1, Hes3, and Hes5 are highly expressed by neural stem cells, and inactivation of these genes results in insufficient maintenance of stem cell proliferation and prematurely promotes neuronal differentiation. Recently, it was shown that the expression dynamics of Hes1 plays crucial roles in proper developmental timings and fate-determination steps of embryonic stem cells and neural progenitor cells. Here, we discuss some key features of Hes factors in development and diseases.

  12. Basic lubrication equations

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Lubricants, usually Newtonian fluids, are assumed to experience laminar flow. The basic equations used to describe the flow are the Navier-Stokes equation of motion. The study of hydrodynamic lubrication is, from a mathematical standpoint, the application of a reduced form of these Navier-Stokes equations in association with the continuity equation. The Reynolds equation can also be derived from first principles, provided of course that the same basic assumptions are adopted in each case. Both methods are used in deriving the Reynolds equation, and the assumptions inherent in reducing the Navier-Stokes equations are specified. Because the Reynolds equation contains viscosity and density terms and these properties depend on temperature and pressure, it is often necessary to couple the Reynolds with energy equation. The lubricant properties and the energy equation are presented. Film thickness, a parameter of the Reynolds equation, is a function of the elastic behavior of the bearing surface. The governing elasticity equation is therefore presented.

  13. Basic Emotions: A Reconstruction

    PubMed Central

    Mason, William A.; Capitanio, John P.

    2016-01-01

    Emotionality is a basic feature of behavior. The argument over whether the expression of emotions is based primarily on culture (constructivism, nurture) or biology (natural forms, nature) will never be resolved because both alternatives are untenable. The evidence is overwhelming that at all ages and all levels of organization, the development of emotionality is epigenetic: The organism is an active participant in its own development. To ascribe these effects to “experience” was the best that could be done for many years. With the rapid acceleration of information on how changes in organization are actually brought about, it is a good time to review, update, and revitalize our views of experience in relation to the concept of basic emotion. PMID:27110280

  14. Basics of Biosafety

    NASA Technical Reports Server (NTRS)

    Wong, Willy

    2009-01-01

    This slide presentation reviews the basics of biosafety and the importance of assuring proper biosafety practices. The objectives of the presentation are to review regulations about biosafety, and the different biosafety levels; the biosafety facilities at Johnson Space Center; the usage and maintenance of the biosafety cabinet, the proper methods to handle biologically hazardous materials upon exposure, and the methods of cleanup in the event of a spill, and the training requirements that are mandated for personnel handling biologically hazardous materials.

  15. Risk communication basics

    SciTech Connect

    Corrado, P.G.

    1995-12-31

    In low-trust, high-concern situations, 50% of your credibility comes from perceived empathy and caring, demonstrated in the first 30 s you come in contact with someone. There is no second chance for a first impression. These and other principles contained in this paper provide you with a basic level of understanding of risk communication. The principles identified are time-tested caveats and will assist you in effectively communicating technical information.

  16. Basic Research Plan.

    DTIC Science & Technology

    1996-05-01

    funded by the Defense Advanced Research Projects Agency (DARPA) more than twenty years ago led to the evolution of the Internet. Likewise, molecular...for detection/classification Acoustic imaging in shallow water Ray chaos models Acoustic holography 4 -6 4.2 Chemistry Chemistry research directly...strength, high-ductility structural materials. 4 -38 Table 4.8.1. Basic Research Funding for Terrestrial Sciences ($ Mllions ) Program Element Service

  17. Basic confocal microscopy.

    PubMed

    Smith, Carolyn L

    2008-01-01

    This unit introduces the reader to the basic principles of confocal microscopy and the design and capabilities of current confocal microscopes. The advantages and disadvantages of confocal microscopy compared to other techniques for fluorescence imaging are described. There are also practical guidelines for sample preparation and optimization of imaging parameters, as well as examples of some of the applications of confocal microscopy. (c) 2008 by John Wiley & Sons, Inc.

  18. The Basic Anaesthesia Machine

    PubMed Central

    Gurudatt, CL

    2013-01-01

    After WTG Morton's first public demonstration in 1846 of use of ether as an anaesthetic agent, for many years anaesthesiologists did not require a machine to deliver anaesthesia to the patients. After the introduction of oxygen and nitrous oxide in the form of compressed gases in cylinders, there was a necessity for mounting these cylinders on a metal frame. This stimulated many people to attempt to construct the anaesthesia machine. HEG Boyle in the year 1917 modified the Gwathmey's machine and this became popular as Boyle anaesthesia machine. Though a lot of changes have been made for the original Boyle machine still the basic structure remains the same. All the subsequent changes which have been brought are mainly to improve the safety of the patients. Knowing the details of the basic machine will make the trainee to understand the additional improvements. It is also important for every practicing anaesthesiologist to have a thorough knowledge of the basic anaesthesia machine for safe conduct of anaesthesia. PMID:24249876

  19. The basic anaesthesia machine.

    PubMed

    Gurudatt, Cl

    2013-09-01

    After WTG Morton's first public demonstration in 1846 of use of ether as an anaesthetic agent, for many years anaesthesiologists did not require a machine to deliver anaesthesia to the patients. After the introduction of oxygen and nitrous oxide in the form of compressed gases in cylinders, there was a necessity for mounting these cylinders on a metal frame. This stimulated many people to attempt to construct the anaesthesia machine. HEG Boyle in the year 1917 modified the Gwathmey's machine and this became popular as Boyle anaesthesia machine. Though a lot of changes have been made for the original Boyle machine still the basic structure remains the same. All the subsequent changes which have been brought are mainly to improve the safety of the patients. Knowing the details of the basic machine will make the trainee to understand the additional improvements. It is also important for every practicing anaesthesiologist to have a thorough knowledge of the basic anaesthesia machine for safe conduct of anaesthesia.

  20. Depersonalization and basic symptoms in schizophrenia.

    PubMed

    Maggini, Carlo; Raballo, Andrea; Salvatore, Paola

    2002-01-01

    The purpose of this study is to examine the classic psychopathologic notion of depersonalization in the light of the Basic Symptom paradigm. A sample of 57 chronic schizophrenics was cross-sectionally assessed with the Bonn Scale for the Assessment of Basic Symptoms (BSABS) and contextually with specific scales testing positive, negative, depressive and alexithymic dimensions. In order to categorize depersonalized vs. nondepersonalized patients three specific BSABS items explicitly identifying the allo-/auto-/somatopsychic domains of depersonalization were used, according to the wernickian threefold definition. Depersonalized schizophrenics showed a semiological profile that was distinct from that of nondepersonalized schizophrenics (as regards basic, positive, depressive symptoms and alexithymia); patients with multiple co-occurring forms of depersonalization revealed higher levels of cognitive disturbance, lowering of stress threshold and greater alexithymia. Clinical and research implications are discussed.

  1. On Multiplying Negative Numbers.

    ERIC Educational Resources Information Center

    Crowley, Mary L.; Dunn, Kenneth A.

    1985-01-01

    Comments on the history of negative numbers, some methods that can be used to introduce the multiplication of negative numbers to students, and an explanation of why the product of two negative numbers is a positive number are included. (MNS)

  2. Crystal Structure of the Minimalist Max-E47 Protein Chimera

    SciTech Connect

    Ahmadpour, Faraz; Ghirlando, Rodolfo; De Jong, Antonia T.; Gloyd, Melanie; Shin, Jumi A.; Guarné, Alba

    2012-02-28

    Max-E47 is a protein chimera generated from the fusion of the DNA-binding basic region of Max and the dimerization region of E47, both members of the basic region/helix-loop-helix (bHLH) superfamily of transcription factors. Like native Max, Max-E47 binds with high affinity and specificity to the E-box site, 5'-CACGTG, both in vivo and in vitro. We have determined the crystal structure of Max-E47 at 1.7 Å resolution, and found that it associates to form a well-structured dimer even in the absence of its cognate DNA. Analytical ultracentrifugation confirms that Max-E47 is dimeric even at low micromolar concentrations, indicating that the Max-E47 dimer is stable in the absence of DNA. Circular dichroism analysis demonstrates that both non-specific DNA and the E-box site induce similar levels of helical secondary structure in Max-E47. These results suggest that Max-E47 may bind to the E-box following the two-step mechanism proposed for other bHLH proteins. In this mechanism, a rapid step where protein binds to DNA without sequence specificity is followed by a slow step where specific protein:DNA interactions are fine-tuned, leading to sequence-specific recognition. Collectively, these results show that the designed Max-E47 protein chimera behaves both structurally and functionally like its native counterparts.

  3. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    SciTech Connect

    Kewley, Robyn J. . E-mail: rkewley@csu.edu.au; Whitelaw, Murray L.

    2005-12-09

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer.

  4. Developmental expression of COE across the Metazoa supports a conserved role in neuronal cell-type specification and mesodermal development.

    PubMed

    Jackson, Daniel J; Meyer, Néva P; Seaver, Elaine; Pang, Kevin; McDougall, Carmel; Moy, Vanessa N; Gordon, Kacy; Degnan, Bernard M; Martindale, Mark Q; Burke, Robert D; Peterson, Kevin J

    2010-12-01

    The transcription factor COE (collier/olfactory-1/early B cell factor) is an unusual basic helix-loop-helix transcription factor as it lacks a basic domain and is maintained as a single copy gene in the genomes of all currently analysed non-vertebrate Metazoan genomes. Given the unique features of the COE gene, its proposed ancestral role in the specification of chemosensory neurons and the wealth of functional data from vertebrates and Drosophila, the evolutionary history of the COE gene can be readily investigated. We have examined the ways in which COE expression has diversified among the Metazoa by analysing its expression from representatives of four disparate invertebrate phyla: Ctenophora (Mnemiopsis leidyi); Mollusca (Haliotis asinina); Annelida (Capitella teleta and Chaetopterus) and Echinodermata (Strongylocentrotus purpuratus). In addition, we have studied COE function with knockdown experiments in S. purpuratus, which indicate that COE is likely to be involved in repressing serotonergic cell fate in the apical ganglion of dipleurula larvae. These analyses suggest that COE has played an important role in the evolution of ectodermally derived tissues (likely primarily nervous tissues) and mesodermally derived tissues. Our results provide a broad evolutionary foundation from which further studies aimed at the functional characterisation and evolution of COE can be investigated.

  5. Association Between Seed Dormancy and Pericarp Color Is Controlled by a Pleiotropic Gene That Regulates Abscisic Acid and Flavonoid Synthesis in Weedy Red Rice

    PubMed Central

    Gu, Xing-You; Foley, Michael E.; Horvath, David P.; Anderson, James V.; Feng, Jiuhuan; Zhang, Lihua; Mowry, Chase R.; Ye, Heng; Suttle, Jeffrey C.; Kadowaki, Koh-ichi; Chen, Zongxiang

    2011-01-01

    Seed dormancy has been associated with red grain color in cereal crops for a century. The association was linked to qSD7-1/qPC7, a cluster of quantitative trait loci for seed dormancy/pericarp color in weedy red rice. This research delimited qSD7-1/qPC7 to the Os07g11020 or Rc locus encoding a basic helix-loop-helix family transcription factor by intragenic recombinants and provided unambiguous evidence that the association arises from pleiotropy. The pleiotropic gene expressed in early developing seeds promoted expression of key genes for biosynthesis of abscisic acid (ABA), resulting in an increase in accumulation of the dormancy-inducing hormone; activated a conserved network of eight genes for flavonoid biosynthesis to produce the pigments in the lower epidermal cells of the pericarp tissue; and enhanced seed weight. Thus, the pleiotropic locus most likely controls the dormancy and pigment traits by regulating ABA and flavonoid biosynthetic pathways, respectively. The dormancy effect could be eliminated by a heat treatment, but could not be completely overcome by gibberellic acid or physical removal of the seed maternal tissues. The dormancy-enhancing alleles differentiated into two groups basically associated with tropical and temperate ecotypes of weedy rice. Of the pleiotropic effects, seed dormancy could contribute most to the weed adaptation. Pleiotropy prevents the use of the dormancy gene to improve resistance of white pericarp cultivars against pre-harvest sprouting through conventional breeding approaches. PMID:21954164

  6. The mouse Kreisler (Krml1/MafB) segmentation gene is required for differentiation of glomerular visceral epithelial cells.

    PubMed

    Sadl, Virginia; Jin, Fuzi; Yu, Joanna; Cui, Shiying; Holmyard, Douglas; Quaggin, Susan; Barsh, Greg; Cordes, Sabine

    2002-09-01

    Molecular components of the glomerular filtration mechanism play critical roles in renal diseases. Many of these components are produced during the final stages of differentiation of glomerular visceral epithelial cells, also known as podocytes. While basic domain leucine zipper (bZip) transcription factors of the Maf subfamily have been implicated in cellular differentiation processes, Kreisler (Krml1/MafB), the gene affected in the mouse kreisler (kr) mutation, is known for its role in hindbrain patterning. Here we show that mice homozygous for the kr(enu) mutation develop renal disease and that Kreisler is essential for cellular differentiation of podocytes. Consistent with abnormal podocyte differentiation, kr(enu) homozygotes show proteinuria, and fusion and effacement of podocyte foot processes, which are also observed in the nephrotic syndrome. Kreisler acts during the final stages of glomerular development-the transition between the capillary loop and mature stages-and downstream of the Pod1 basic domain helix-loop-helix transcription factor. The levels of Podocin, the gene mutated in autosomal recessive steroid-resistant nephrotic syndrome (NPHS2), and Nephrin, the gene mutated in congenital nephrotic syndrome of the Finnish type (NPHS1), are slightly reduced in kr(enu)/kr(enu) podocytes. However, these observations alone are unlikely to account for the aberrant podocyte foot process formation. Thus, Kreisler must regulate other unknown genes required for podocyte function and with possible roles in kidney disease.

  7. Mbh 1: a novel gelsolin/severin-related protein which binds actin in vitro and exhibits nuclear localization in vivo.

    PubMed Central

    Prendergast, G C; Ziff, E B

    1991-01-01

    We describe the characterization of a novel cDNA, mbh1 (myc basic motif homolog-1), which was found during a search for candidate factors which might interact with the c-Myc oncoprotein. Embedded within the amino acid sequence encoded by mbh1 is a region distantly related to the basic/helix-loop-helix (B/HLH) DNA-binding motif and a potential nuclear localization signal. Mbh1 encodes a polypeptide structurally similar to the actin-severing proteins gelsolin and severin. Translation of mbh1 RNA in rabbit reticulocyte extracts produces an approximately 45 kd protein capable of binding actin-coupled agarose beads in vitro in a Ca2(+)-dependent manner. Antiserum raised to a trpE/mbh1 bacterial fusion protein recognizes an approximately 45 kb protein in murine 3T3 fibroblasts, suggesting that the cDNA encodes the complete Mbh1 protein. Examination of Mbh1 localization in 3T3 fibroblasts by indirect immunofluorescence reveals a larger cell population showing diffuse staining, and a smaller population exhibiting a distinct nuclear stain. Western analysis corroborates this intracellular localization and indicates that total cellular levels and localization of Mbh1 are not affected by the cell growth state. The data suggest that Mbh1 may play a role in regulating cytoplasmic and/or nuclear architecture through potential interactions with actin. Images PMID:1849072

  8. DNA binding and transcriptional regulatory activity of mammalian achaete-scute homologous (MASH) proteins revealed by interaction with a muscle-specific enhancer.

    PubMed

    Johnson, J E; Birren, S J; Saito, T; Anderson, D J

    1992-04-15

    The MASH genes are vertebrate homologues of achaete-scute, genes required for neuronal determination in Drosophila. The sequence of MASH1 and MASH2 contains a basic helix-loop-helix (bHLH) motif that is present in other transcriptional regulators such as MyoD and E12. In the absence of an authentic target for the MASH proteins, we examined their DNA binding and transcriptional regulatory activity by using a binding site (the E box) from the muscle creatine kinase (MCK) gene, a target of MyoD. Like myogenic bHLH proteins, the MASH proteins form heterooligomers with E12 that bind the MCK E box with high affinity in vitro. Unexpectedly, however, MASH1 and MASH2 also activate transcription of both exogenous and endogenous MCK in transfected C3H/10T1/2 fibroblasts. However, they do not induce myogenesis. Myogenic activity is not exclusively a property of the MyoD basic region, as substitution of this domain fails to confer myogenic activity on MASH1. These data suggest that different bHLH proteins may activate overlapping but distinct sets of target genes in the same cell type.

  9. Twist-ing cell fate: mechanistic insights into the role of twist in lineage specification/differentiation and tumorigenesis.

    PubMed

    Cakouros, D; Raices, R M; Gronthos, S; Glackin, C A

    2010-08-15

    Bone marrow-derived mesenchymal stem cells (MSC), are multipotent cells that give rise to multiple lineages including osteoblasts, adipocytes, muscle, and fibroblasts. MSCs are useful for clinical applications such as cell therapy because they can be isolated from an individual and expanded for use in tissue repair, as well as other therapeutic applications, without immune rejection. However, one of the key problems in the use of MSCs for these applications is the efficiency of these cells to engraft and fully regenerate damaged tissues. Therefore, to optimize this process, a comprehensive understanding of the key regulators of MSCs self-renewal and maintenance are critical to the success of future cell therapy as well as other clinical applications. The basic helix loop helix transcription factor, Twist, plays a master regulatory role in all of these processes and, therefore, a thorough understanding of the mechanistic insights in the role of Twist in lineage specification/differentiation and tumorigenesis is vital to the success of future clinical applications for the therapeutic use of MSCs. In this article, we highlight the basic mechanisms and signaling pathways that are important to MSC fate, maintenance, and differentiation, as well as the critical role that Twist plays in these processes. In addition, we review the known literature suggesting a critical role for Twist in the generation of cancer stem cells, as this information may contribute to a broader understanding of stem cell biology and stem-cell-based therapeutics.

  10. Basic Hitchhiker Payload Requirements

    NASA Technical Reports Server (NTRS)

    Horan, Stephen

    1999-01-01

    This document lists the requirements for the NMSU Hitchhiker experiment payload that were developed as part of the EE 498/499 Capstone Design class during the 1999-2000 academic year. This document is used to describe the system needs as described in the mission document. The requirements listed here are those primarily used to generate the basic electronic and data processing requirements developed in the class design document. The needs of the experiment components are more fully described in the draft NASA hitchhiker customer requirements document. Many of the details for the overall payload are given in full detail in the NASA hitchhiker documentation.

  11. Study design: the basics.

    PubMed

    Lim, Hyun Ja; Hoffmann, Raymond G

    2007-01-01

    In biomedical research, meaningful conclusions can only be drawn based on data collected from a valid scientific design using appropriate statistical methods. Therefore, the selection of an appropriate study design is important in order to provide an unbiased and scientific evaluation of the research questions. In this chapter, the different kinds of experimental studies commonly used in biology and medicine are introduced. A brief survey of basic experimental study designs, randomization, blinding, possible biases, issues in data analysis, and interpretation of the study results are mainly provided.

  12. Basic and clinical immunology

    NASA Technical Reports Server (NTRS)

    Chinen, Javier; Shearer, William T.

    2003-01-01

    Progress in immunology continues to grow exponentially every year. New applications of this knowledge are being developed for a broad range of clinical conditions. Conversely, the study of primary and secondary immunodeficiencies is helping to elucidate the intricate mechanisms of the immune system. We have selected a few of the most significant contributions to the fields of basic and clinical immunology published between October 2001 and October 2002. Our choice of topics in basic immunology included the description of T-bet as a determinant factor for T(H)1 differentiation, the role of the activation-induced cytosine deaminase gene in B-cell development, the characterization of CD4(+)CD25(+) regulatory T cells, and the use of dynamic imaging to study MHC class II transport and T-cell and dendritic cell membrane interactions. Articles related to clinical immunology that were selected for review include the description of immunodeficiency caused by caspase 8 deficiency; a case series report on X-linked agammaglobulinemia; the mechanism of action, efficacy, and complications of intravenous immunoglobulin; mechanisms of autoimmunity diseases; and advances in HIV pathogenesis and vaccine development. We also reviewed two articles that explore the possible alterations of the immune system caused by spaceflights, a new field with increasing importance as human space expeditions become a reality in the 21st century.

  13. Basic and clinical immunology

    NASA Technical Reports Server (NTRS)

    Chinen, Javier; Shearer, William T.

    2003-01-01

    Progress in immunology continues to grow exponentially every year. New applications of this knowledge are being developed for a broad range of clinical conditions. Conversely, the study of primary and secondary immunodeficiencies is helping to elucidate the intricate mechanisms of the immune system. We have selected a few of the most significant contributions to the fields of basic and clinical immunology published between October 2001 and October 2002. Our choice of topics in basic immunology included the description of T-bet as a determinant factor for T(H)1 differentiation, the role of the activation-induced cytosine deaminase gene in B-cell development, the characterization of CD4(+)CD25(+) regulatory T cells, and the use of dynamic imaging to study MHC class II transport and T-cell and dendritic cell membrane interactions. Articles related to clinical immunology that were selected for review include the description of immunodeficiency caused by caspase 8 deficiency; a case series report on X-linked agammaglobulinemia; the mechanism of action, efficacy, and complications of intravenous immunoglobulin; mechanisms of autoimmunity diseases; and advances in HIV pathogenesis and vaccine development. We also reviewed two articles that explore the possible alterations of the immune system caused by spaceflights, a new field with increasing importance as human space expeditions become a reality in the 21st century.

  14. Basic space payload fastener

    NASA Technical Reports Server (NTRS)

    Vranish, J. M.; Gorevan, Stephen

    1995-01-01

    A new basic space fastener has been developed and tested by the GSFC. The purposes of this fastener are to permit assembly and servicing in space by astronauts and/or robots and to facilitate qualification of payloads on Earth prior to launch by saving time and money during the systems integration and component testing and qualification processes. The space fastener is a rework of the basic machine screw such that crossthreading is impossible; it is self-locking and will not work its way out during launch (vibration proof); it will not wear out despite repeated use; it occupies a small foot print which is comparable to its machine screw equivalent, and it provides force and exhibits strength comparable to its machine screw equivalent. Construction is ultra-simple and cost effective and the principle is applicable across the full range of screw sizes ranging from a #10 screw to 2.5 cm (1 in) or more. In this paper, the fastener principles of operation will be discussed along with test results and construction details. The new fastener also has considerable potential in the commercial sector. A few promising applications will be presented.

  15. Atomic Basic Blocks

    NASA Astrophysics Data System (ADS)

    Scheler, Fabian; Mitzlaff, Martin; Schröder-Preikschat, Wolfgang

    Die Entscheidung, einen zeit- bzw. ereignisgesteuerten Ansatz für ein Echtzeitsystem zu verwenden, ist schwierig und sehr weitreichend. Weitreichend vor allem deshalb, weil diese beiden Ansätze mit äußerst unterschiedlichen Kontrollflussabstraktionen verknüpft sind, die eine spätere Migration zum anderen Paradigma sehr schwer oder gar unmöglich machen. Wir schlagen daher die Verwendung einer Zwischendarstellung vor, die unabhängig von der jeweils verwendeten Kontrollflussabstraktion ist. Für diesen Zweck verwenden wir auf Basisblöcken basierende Atomic Basic Blocks (ABB) und bauen darauf ein Werkzeug, den Real-Time Systems Compiler (RTSC) auf, der die Migration zwischen zeit- und ereignisgesteuerten Systemen unterstützt.

  16. Basic memory module

    NASA Technical Reports Server (NTRS)

    Tietze, F. C.

    1974-01-01

    Construction and electrical characterization of the 4096 x 2-bit Basic Memory Module (BMM) are reported for the Space Ultrareliable Modular Computer (SUMC) program. The module uses four 2K x 1-bit N-channel FET, random access memory chips, called array chips, and two sense amplifier chips, mounted and interconnected on a ceramic substrate. Four 5% tolerance power supplies are required. At the Module, the address, chip select, and array select lines require a 0-8.5 V MOS signal level. The data output, read-strobe, and write-enable lines operate at TTl levels. Although the module is organized as 4096 x 2 bits, it can be used in a 8196 x 1-bit application with appropriate external connections. A 4096 x 1-bit organization can be obtained by depopulating chips.

  17. Basic properties and variability

    NASA Technical Reports Server (NTRS)

    Querci, Francois R.

    1987-01-01

    Giant and supergiant M, S, and C stars are discussed in this survey of research. Basic properties as determined by spectra, chemical composition, photometry, or variability type are discussed. Space motions and space distributions of cool giants are described. Distribution of these stars in our galaxy and those nearby is discussed. Mira variables in particular are surveyed with emphasis on the following topics: (1) phase lag phenomenon; (2) Mira light curves; (3) variations in color indices; (4) determination of multiple periods; (5) correlations between quantities such as period length, light-curve shape, infrared (IR) excess, and visible and IR color diagram; (6) semiregular (SR) variables and different time scales in SR light variations; (7) irregular variable Lb and Lc stars; (8) different time-scale light variations; (9) hydrogen-deficient carbon (HdC) stars, in particular RCB stars; and (10) irreversible changes and rapid evolution in red variable stars.

  18. Basic control systems engineering

    SciTech Connect

    Lewis, P.H.; Yang, C.

    1997-12-31

    This book is one of the latest at the basic or introductory level, which is addressed to undergraduate juniors and seniors across several engineering disciplines such as mechanical, chemical, aerospace, and electrical. In fact, the background of the authors include electrical and aerospace engineering, respectively. The book contains the standard material presented at the undergraduate level. However, there appears to have been a serious attempt by the authors to address several practical implementation issues such as actuator saturation and other nonlinearities, bandwidth limitations, etc. In addition, there is an elementary consideration of the control of discrete event dynamical systems, a subject that has not traditionally been considered in elementary texts, but which nevertheless is increasingly important in industrial applications.

  19. Basic Blood Tests (For Parents)

    MedlinePlus

    ... Child Adjust to Preschool School Lunches Kids and Food: 10 Tips for Parents Healthy Habits for TV, Video Games, and the Internet Basic Blood Chemistry Tests KidsHealth > For Parents > Basic Blood Chemistry Tests ...

  20. Molecular Characterisation, Evolution and Expression of Hypoxia-Inducible Factor in Aurelia sp.1

    PubMed Central

    Wang, Guoshan; Yu, Zhigang; Zhen, Yu; Mi, Tiezhu; Shi, Yan; Wang, Jianyan; Wang, Minxiao; Sun, Song

    2014-01-01

    The maintenance of physiological oxygen homeostasis is mediated by hypoxia-inducible factor (HIF), a key transcriptional factor of the PHD-HIF system in all metazoans. However, the molecular evolutionary origin of this central physiological regulatory system is not well characterized. As the earliest eumetazoans, Cnidarians can be served as an interesting model for exploring the HIF system from an evolutionary perspective. We identified the complete cDNA sequence of HIF-1α (ASHIF) from the Aurelia sp.1, and the predicted HIF-1α protein (pASHIF) was comprised of 674 amino acids originating from 2,025 bp nucleotides. A Pairwise comparison revealed that pASHIF not only possessed conserved basic helix-loop-helix (bHLH) and Per-Arnt-Sim (PAS) domains but also contained the oxygen dependent degradation (ODD) and the C-terminal transactivation domains (C-TAD), the key domains for hypoxia regulation. As indicated by sequence analysis, the ASHIF gene contains 8 exons interrupted by 7 introns. Western blot analysis indicated that pASHIF that existed in the polyps and medusa of Aurelia. sp.1 was more stable for a hypoxic response than normoxia. PMID:24926666

  1. NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in Arabidopsis.

    PubMed

    Chen, Liang; Guan, Liping; Qian, Pingping; Xu, Fan; Wu, Zhongliang; Wu, Yujun; He, Kai; Gou, Xiaoping; Li, Jia; Hou, Suiwen

    2016-05-01

    Stomata are highly specialized epidermal structures that control transpiration and gas exchange between plants and the environment. Signal networks underlying stomatal development have been previously uncovered but much less is known about how signals involved in stomatal development are transmitted to RNA polymerase II (Pol II or RPB), which plays a central role in the transcription of mRNA coding genes. Here, we identify a partial loss-of-function mutation of the third largest subunit of nuclear DNA-dependent Pol II (NRPB3) that exhibits an increased number of stomatal lineage cells and paired stomata. Phenotypic and genetic analyses indicated that NRPB3 is not only required for correct stomatal patterning, but is also essential for stomatal differentiation. Protein-protein interaction assays showed that NRPB3 directly interacts with two basic helix-loop-helix (bHLH) transcription factors, FAMA and INDUCER OF CBF EXPRESSION1 (ICE1), indicating that NRPB3 serves as an acceptor for signals from transcription factors involved in stomatal development. Our findings highlight the surprisingly conserved activating mechanisms mediated by the third largest subunit of Pol II in eukaryotes. © 2016. Published by The Company of Biologists Ltd.

  2. Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit.

    PubMed

    Pugh, C W; O'Rourke, J F; Nagao, M; Gleadle, J M; Ratcliffe, P J

    1997-04-25

    Hypoxia-inducible factor-1 (HIF-1), a heterodimeric DNA binding complex composed of two basic-helix-loop-helix Per-AHR-ARNT-Sim proteins (HIF-1alpha and -1beta), is a key component of a widely operative transcriptional response activated by hypoxia, cobaltous ions, and iron chelation. To identify regions of HIF-1 subunits responsible for oxygen-regulated activity, we constructed chimeric genes in which portions of coding sequence from HIF-1 genes were either linked to a heterologous DNA binding domain or encoded between such a DNA binding domain and a constitutive activation domain. Sequences from HIF-1alpha but not HIF-1beta conferred oxygen-regulated activity. Two minimal domains within HIF-1alpha (amino acids 549-582 and amino acids 775-826) were defined by deletional analysis, each of which could act independently to convey inducible responses. Both these regions confer transcriptional activation, and in both cases adjacent sequences appeared functionally repressive in transactivation assays. The inducible operation of the first domain, but not the second, involved major changes in the level of the activator fusion protein in transfected cells, inclusion of this sequence being associated with a marked reduction of expressed protein level in normoxic cells, which was relieved by stimulation with hypoxia, cobaltous ions, or iron chelation. These results lead us to propose a dual mechanism of activation in which the operation of an inducible activation domain is amplified by regulation of transcription factor abundance, most likely occurring through changes in protein stability.

  3. Overexpression of a bHLH1 Transcription Factor of Pyrus ussuriensis Confers Enhanced Cold Tolerance and Increases Expression of Stress-Responsive Genes

    PubMed Central

    Jin, Cong; Huang, Xiao-San; Li, Kong-Qing; Yin, Hao; Li, Lei-Ting; Yao, Zheng-Hong; Zhang, Shao-Ling

    2016-01-01

    The basic helix-loop-helix (bHLH) transcription factors are involved in arrays of physiological and biochemical processes. However, knowledge concerning the functions of bHLHs in cold tolerance remains poorly understood. In this study, a PubHLH1 gene isolated from Pyrus ussuriensis was characterized for its function in cold tolerance. PubHLH1 was upregulated by cold, salt, and dehydration, with the greatest induction under cold conditions. PubHLH1 had the transactivational activity and localized in the nucleus. Ectopic expression of PubHLH1 in transgenic tobacco conferred enhanced tolerance to cold stress. The transgenic lines had higher survival rates, higher chlorophyll, higher proline contents, lower electrolyte leakages and MDA when compared with wild type (WT). In addition, transcript levels of eight genes associated with ROS scavenging, regulation, and stress defense were higher in the transgenic plants relative to the WT under the chilling stress. Taken together, these results demonstrated that PubHLH1 played a key role in cold tolerance and, at least in part, contributed to activation of stress-responsive genes. PMID:27092159

  4. Fragment-Based NMR Study of the Conformational Dynamics in the bHLH Transcription Factor Ascl1.

    PubMed

    Baronti, Lorenzo; Hošek, Tomáš; Gil-Caballero, Sergio; Raveh-Amit, Hadas; Calçada, Eduardo O; Ayala, Isabel; Dinnyés, András; Felli, Isabella C; Pierattelli, Roberta; Brutscher, Bernhard

    2017-04-11

    The Achaete-scute homolog 1 (Ascl1) protein regulates a large subset of genes that leads neuronal progenitor cells to distinctive differentiation pathways during human brain development. Although it is well known that Ascl1 binds DNA as a homo- or heterodimer via its basic helix-loop-helix (bHLH) motif, little is known about the conformational sampling properties of the DNA-free full-length protein, and in particular about the bHLH domain-flanking N- and C-terminal segments, which are predicted to be highly disordered in solution. The structural heterogeneity, low solubility, and high aggregation propensity of Ascl1 in aqueous buffer solutions make high-resolution studies of this protein a challenging task. Here, we have adopted a fragment-based strategy that allowed us to obtain high-quality NMR data providing, to our knowledge, the first comprehensive high-resolution information on the structural propensities and conformational dynamics of Ascl1. The emerging picture is that of an overall extended and highly dynamic polypeptide chain comprising three helical segments and lacking persistent long-range interactions. We also show that the C-terminal helix of the bHLH domain is involved in intermolecular interactions, even in the absence of DNA. Our results contribute to a better understanding of the mechanisms of action that govern the regulation of proneural transcription factors. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Conditional deletion of neurogenin-3 using Nkx2.1iCre results in a mouse model for the central control of feeding, activity and obesity

    PubMed Central

    Anthwal, Neal; Pelling, Michelle; Claxton, Suzanne; Mellitzer, Georg; Collin, Caitlin; Kessaris, Nicoletta; Richardson, William D.; Gradwohl, Gérard; Ang, Siew-Lan

    2013-01-01

    SUMMARY The ventral hypothalamus acts to integrate visceral and systemic information to control energy balance. The basic helix-loop-helix transcription factor neurogenin-3 (Ngn3) is required for pancreatic β-cell development and has been implicated in neuronal development in the hypothalamus. Here, we demonstrate that early embryonic hypothalamic inactivation of Ngn3 (also known as Neurog3) in mice results in rapid post-weaning obesity that is associated with hyperphagia and reduced energy expenditure. This obesity is caused by loss of expression of Pomc in Pomc- and Cart-expressing (Pomc/Cart) neurons in the arcuate nucleus, indicating an incomplete specification of anorexigenic first order neurons. Furthermore, following the onset of obesity, both the arcuate and ventromedial hypothalamic nuclei become insensitive to peripheral leptin treatment. This conditional mouse mutant therefore represents a novel model system for obesity that is associated with hyperphagia and underactivity, and sheds new light upon the roles of Ngn3 in the specification of hypothalamic neurons controlling energy balance. PMID:23649822

  6. Conditional deletion of neurogenin-3 using Nkx2.1iCre results in a mouse model for the central control of feeding, activity and obesity.

    PubMed

    Anthwal, Neal; Pelling, Michelle; Claxton, Suzanne; Mellitzer, Georg; Collin, Caitlin; Kessaris, Nicoletta; Richardson, William D; Gradwohl, Gérard; Ang, Siew-Lan

    2013-09-01

    The ventral hypothalamus acts to integrate visceral and systemic information to control energy balance. The basic helix-loop-helix transcription factor neurogenin-3 (Ngn3) is required for pancreatic β-cell development and has been implicated in neuronal development in the hypothalamus. Here, we demonstrate that early embryonic hypothalamic inactivation of Ngn3 (also known as Neurog3) in mice results in rapid post-weaning obesity that is associated with hyperphagia and reduced energy expenditure. This obesity is caused by loss of expression of Pomc in Pomc- and Cart-expressing (Pomc/Cart) neurons in the arcuate nucleus, indicating an incomplete specification of anorexigenic first order neurons. Furthermore, following the onset of obesity, both the arcuate and ventromedial hypothalamic nuclei become insensitive to peripheral leptin treatment. This conditional mouse mutant therefore represents a novel model system for obesity that is associated with hyperphagia and underactivity, and sheds new light upon the roles of Ngn3 in the specification of hypothalamic neurons controlling energy balance.

  7. ABA Suppresses Root Hair Growth via the OBP4 Transcriptional Regulator1[OPEN

    PubMed Central

    Kawamura, Ayako; Schäfer, Sabine; Breuer, Christian; Shibata, Michitaro; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Matsui, Minami

    2017-01-01

    Plants modify organ growth and tune morphogenesis in response to various endogenous and environmental cues. At the cellular level, organ growth is often adjusted by alterations in cell growth, but the molecular mechanisms underlying this control remain poorly understood. In this study, we identify the DNA BINDING WITH ONE FINGER (DOF)-type transcription regulator OBF BINDING PROTEIN4 (OBP4) as a repressor of cell growth. Ectopic expression of OBP4 in Arabidopsis (Arabidopsis thaliana) inhibits cell growth, resulting in severe dwarfism and the repression of genes involved in the regulation of water transport, root hair development, and stress responses. Among the basic helix-loop-helix transcription factors known to control root hair growth, OBP4 binds the ROOT HAIR DEFECTIVE6-LIKE2 (RSL2) promoter to repress its expression. The accumulation of OBP4 proteins is detected in expanding root epidermal cells, and its expression level is increased by the application of abscisic acid (ABA) at concentrations sufficient to inhibit root hair growth. ABA-dependent induction of OBP4 is associated with the reduced expression of RSL2. Furthermore, ectopic expression of OBP4 or loss of RSL2 function results in ABA-insensitive root hair growth. Taken together, our results suggest that OBP4-mediated transcriptional repression of RSL2 contributes to the ABA-dependent inhibition of root hair growth in Arabidopsis. PMID:28167701

  8. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene.

    PubMed Central

    Robb, L; Lyons, I; Li, R; Hartley, L; Köntgen, F; Harvey, R P; Metcalf, D; Begley, C G

    1995-01-01

    The scl gene encodes a basic-helix-loop-helix transcription factor which was identified through its involvement in chromosomal translocations in T-cell leukemia. To elucidate its physiological role, scl was targeted in embryonic stem cells. Mice heterozygous for the scl null mutation were intercrossed and their offspring were genotyped. Homozygous mutant (scl-/-) pups were not detected in newborn litters, and analysis at earlier time points demonstrated that scl-/- embryos were dying around embryonic day 9.5. The scl-/- embryos were pale, edematous, and markedly growth retarded after embryonic day 8.75. Histological studies showed complete absence of recognizable hematopoiesis in the yolk sac of these embryos. Early organogenesis appeared to be otherwise normal. Culture of yolk sac cells of wild-type, heterozygous, and homozygous littermates confirmed the absence of hematopoietic cells in scl-/- yolk sacs. Reverse transcription PCR was used to examine the transcripts of several genes implicated in early hematopoiesis. Transcripts of GATA-1 and PU.1 transcription factors were absent from RNA from scl-/- yolk sacs and embryos. These results implicate scl as a crucial regulator of early hematopoiesis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7624372

  9. Induction of galanin after chronic sertraline treatment in mouse ventral dentate gyrus.

    PubMed

    Yamada, Misa; Makino, Yuya; Hashimoto, Tomio; Sugiyama, Azusa; Oka, Jun-Ichiro; Inagaki, Masatoshi; Yamada, Mitsuhiko; Saitoh, Akiyoshi

    2013-06-21

    A number of studies implicate neuroplasticity in the therapeutic mechanisms of antidepressants, specifically neuroplasticity in the dentate gyrus of the hippocampal formation. The dorsal hippocampal region in rodents is preferentially involved in spatial learning and memory, while the ventral hippocampal region plays a more important role in stress, emotion, and affective behaviors. These findings led us to investigate behavioral changes and gene expression changes in the ventral and dorsal dentate gyrus differentially after chronic treatment in mice with the antidepressant sertraline. Four-week treatment with sertraline significantly decreased immobility in the modified forced swim test, a behavioral test for assessing antidepressant-like effects in rodents. In the novelty-suppressed feeding test, performance of which is affected by functional changes in the dentate gyrus, sertraline treatment significantly decreased latency to feed. Next, we examined the expression of several neuroplasticity-related genes (those for Notch receptors, basic helix-loop-helix transcription factors and related factors, SoxC transcription factors, and glial-related genes) by real-time RT-PCR in the ventral and dorsal dentate gyrus of mice after the sertraline treatment. The gene encoding the neuropeptide galanin was significantly induced in only ventral dentate gyrus, not in dorsal dentate gyrus. These results suggest that sertraline-related galanin induction in ventral dentate gyrus may play an important role in therapeutic mechanisms for depression. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Expression of a MyoD family member prefigures muscle pattern in Drosophila embryos.

    PubMed

    Michelson, A M; Abmayr, S M; Bate, M; Arias, A M; Maniatis, T

    1990-12-01

    We have isolated a Drosophila gene that is expressed in a temporal and spatial pattern during embryogenesis, strongly suggesting an important role for this gene in the early development of muscle. This gene, which we have named nautilus (nau), encodes basic and helix-loop-helix domains that display striking sequence similarity to those of the vertebrate myogenic regulatory gene family. nau transcripts are initially localized to segmentally repeated clusters of mesodermal cells, a pattern that is reminiscent of the expression of the achaete-scute genes in the Drosophila peripheral nervous system. These early nau-positive cells are detected just prior to the first morphological evidence of muscle cell fusion and occupy similar positions as the later-appearing muscle precursors. Subsequently, nau transcripts are present in at least a subset of growing muscle precursors and mature muscle fibers that exhibit distinct segmental differences. These observations establish nau as the earliest known marker of myogenesis in Drosophila and indicate that this gene may be a key determinant of pattern formation in the embryonic mesoderm.

  11. Hypoxia-inducible aryl hydrocarbon receptor nuclear translocator (ARNT) (HIF-1β): is it a rare exception?

    PubMed

    Mandl, Markus; Depping, Reinhard

    2014-05-27

    The aryl hydrocarbon receptor nuclear translocator (ARNT), also designated as hypoxia-inducible factor (HIF)-1β, plays a pivotal role in the adaptive responses to (micro-)environmental stresses such as dioxin exposure and oxygen deprivation (hypoxia). ARNT belongs to the group of basic helix-loop-helix (bHLH)-Per-ARNT-Sim (PAS) transcription factors, which act as heterodimers. ARNT serves as a common binding partner for the aryl hydrocarbon receptor (AhR) as well as HIF-α subunits. HIF-α proteins are regulated in an oxygen-dependent manner, whereas ARNT is generally regarded as constitutively expressed, meaning that neither the arnt mRNA nor the protein level is influenced by hypoxia (despite the name HIF-1β). However, there is emerging evidence that tumor cells derived from different entities are able to upregulate ARNT, especially under low oxygen tension in a cell-specific manner. The objective of this review is therefore to highlight and summarize current knowledge regarding the hypoxia-dependent upregulation of ARNT, which is in sharp contrast to the general point of view described in the literature. Elucidating the mechanism behind this rare cellular attribute will help us to gain new insights into HIF biology and might provide new strategies for anti-cancer therapeutics. In conclusion, putative treatment effects on ARNT should be taken into account while studying the HIF pathway. This step is of great importance when ARNT is intended to serve as a loading control or as a reference.

  12. Artificial ligand binding within the HIF2[alpha] PAS-B domain of the HIF2 transcription factor

    SciTech Connect

    Scheuermann, Thomas H.; Tomchick, Diana R.; Machius, Mischa; Guo, Yan; Bruick, Richard K.; Gardner, Kevin H.

    2009-05-12

    The hypoxia-inducible factor (HIF) basic helix-loop-helix Per-aryl hydrocarbon receptor nuclear translocator (ARNT)-Sim (bHLH-PAS) transcription factors are master regulators of the conserved molecular mechanism by which metazoans sense and respond to reductions in local oxygen concentrations. In humans, HIF is critically important for the sustained growth and metastasis of solid tumors. Here, we describe crystal structures of the heterodimer formed by the C-terminal PAS domains from the HIF2{alpha} and ARNT subunits of the HIF2 transcription factor, both in the absence and presence of an artificial ligand. Unexpectedly, the HIF2{alpha} PAS-B domain contains a large internal cavity that accommodates ligands identified from a small-molecule screen. Binding one of these ligands to HIF2{alpha} PAS-B modulates the affinity of the HIF2{alpha}:ARNT PAS-B heterodimer in vitro. Given the essential role of PAS domains in forming active HIF heterodimers, these results suggest a presently uncharacterized ligand-mediated mechanism for regulating HIF2 activity in endogenous and clinical settings.

  13. The aryl hydrocarbon receptor nuclear translocator (ARNT) family of proteins: transcriptional modifiers with multi-functional protein interfaces.

    PubMed

    Labrecque, M P; Prefontaine, G G; Beischlag, T V

    2013-08-01

    The basic Helix-Loop-Helix/PER-ARNT-SIM (bHLH-PAS) domain family of transcription factors mediates cellular responses to a variety of internal and external stimuli. As functional transcription factors, these proteins act as bHLH-PAS heterodimers and can be further sub-classified into sensory/activated subunits and regulatory or ARNT-like proteins. This class of proteins act as master regulators of the bHLH-PAS superfamily of transcription factors that mediate circadian rhythm gene programs, innate and adaptive immune responses, oxygen-sensing mechanisms and compensate for deleterious environmental exposures. Some contribute to the etiology of human pathologies including cancer because of their effects on cell growth and metabolism. We will review the canonical roles of ARNT and ARNT-like proteins with an emphasis on coactivator selectivity and recruitment. We will also discuss recent advances in our understanding of noncanonical DNA-binding independent or off-target roles of ARNT that are uncoupled from its classic heterodimeric bHLH-PAS binding partners. Understanding the DNA binding-independent functions of ARNT may identify novel therapeutic options for the treatment of a large spectrum of disease states.

  14. [Mutation screening of MITF gene in patients with Waardenburg syndrome type 2].

    PubMed

    Chen, Jing; Yang, Shu-Zhi; Liu, Jun; Han, Bing; Wang, Guo-Jian; Zhang, Xin; Kang, Dong-Yang; Dai, Pu; Young, Wie-Yen; Yuan, Hui-Jun

    2008-04-01

    Warrgenburg syndrome type 2 (WS2) is the most common autosomal dominantly-inherited syndrome with hearing loss. MITF (microphthalmia associated transcription factor)is a basic-helix-loop-helix-luecine zipper (bHLHZip) factor which regulates expression of tyrosinase, and is involved in melanocyte differentiation. Mutations in MITF associated with WS2 have been identified in some but not all affected families. Here, we report a three-generation Chinese family with a point mutation in the MITF gene causing WS2. The proband exhibits congenital severe sensorineural hearing loss, heterochromia iridis and facial freckles. One of family members manifests sensorineural deafness, and the other patients show premature greying or/and freckles. This mutation, heterozygous deletion c.639delA, creates a stop codon in exon 7 and is predicted to result in a truncated protein lacking normal interaction with its target DNA motif. This mutation is a novel mutation and the third case identified in exon 7 of MITF in WS2. Though there is only one base pair distance between this novel mutation and the other two documented cases and similar amino acids change, significant difference is seen in clinical phenotype, which suggests genetic background may play an important role.

  15. SCREAM/ICE1 and SCREAM2 Specify Three Cell-State Transitional Steps Leading to Arabidopsis Stomatal Differentiation[W][OA

    PubMed Central

    Kanaoka, Masahiro M.; Pillitteri, Lynn Jo; Fujii, Hiroaki; Yoshida, Yuki; Bogenschutz, Naomi L.; Takabayashi, Junji; Zhu, Jian-Kang; Torii, Keiko U.

    2008-01-01

    Differentiation of specialized cell types in multicellular organisms requires orchestrated actions of cell fate determinants. Stomata, valves on the plant epidermis, are formed through a series of differentiation events mediated by three closely related basic-helix-loop-helix proteins: SPEECHLESS (SPCH), MUTE, and FAMA. However, it is not known what mechanism coordinates their actions. Here, we identify two paralogous proteins, SCREAM (SCRM) and SCRM2, which directly interact with and specify the sequential actions of SPCH, MUTE, and FAMA. The gain-of-function mutation in SCRM exhibited constitutive stomatal differentiation in the epidermis. Conversely, successive loss of SCRM and SCRM2 recapitulated the phenotypes of fama, mute, and spch, indicating that SCRM and SCRM2 together determined successive initiation, proliferation, and terminal differentiation of stomatal cell lineages. Our findings identify the core regulatory units of stomatal differentiation and suggest a model strikingly similar to cell-type differentiation in animals. Surprisingly, map-based cloning revealed that SCRM is INDUCER OF CBF EXPRESSION1, a master regulator of freezing tolerance, thus implicating a potential link between the transcriptional regulation of environmental adaptation and development in plants. PMID:18641265

  16. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation.

    PubMed

    Kanaoka, Masahiro M; Pillitteri, Lynn Jo; Fujii, Hiroaki; Yoshida, Yuki; Bogenschutz, Naomi L; Takabayashi, Junji; Zhu, Jian-Kang; Torii, Keiko U

    2008-07-01

    Differentiation of specialized cell types in multicellular organisms requires orchestrated actions of cell fate determinants. Stomata, valves on the plant epidermis, are formed through a series of differentiation events mediated by three closely related basic-helix-loop-helix proteins: SPEECHLESS (SPCH), MUTE, and FAMA. However, it is not known what mechanism coordinates their actions. Here, we identify two paralogous proteins, SCREAM (SCRM) and SCRM2, which directly interact with and specify the sequential actions of SPCH, MUTE, and FAMA. The gain-of-function mutation in SCRM exhibited constitutive stomatal differentiation in the epidermis. Conversely, successive loss of SCRM and SCRM2 recapitulated the phenotypes of fama, mute, and spch, indicating that SCRM and SCRM2 together determined successive initiation, proliferation, and terminal differentiation of stomatal cell lineages. Our findings identify the core regulatory units of stomatal differentiation and suggest a model strikingly similar to cell-type differentiation in animals. Surprisingly, map-based cloning revealed that SCRM is INDUCER OF CBF EXPRESSION1, a master regulator of freezing tolerance, thus implicating a potential link between the transcriptional regulation of environmental adaptation and development in plants.

  17. FAMA Is an Essential Component for the Differentiation of Two Distinct Cell Types, Myrosin Cells and Guard Cells, in Arabidopsis[W

    PubMed Central

    Shirakawa, Makoto; Ueda, Haruko; Nagano, Atsushi J.; Shimada, Tomoo; Kohchi, Takayuki; Hara-Nishimura, Ikuko

    2014-01-01

    Brassicales plants, including Arabidopsis thaliana, have an ingenious two-compartment defense system, which sequesters myrosinase from the substrate glucosinolate and produces a toxic compound when cells are damaged by herbivores. Myrosinase is stored in vacuoles of idioblast myrosin cells. The molecular mechanism that regulates myrosin cell development remains elusive. Here, we identify the basic helix-loop-helix transcription factor FAMA as an essential component for myrosin cell development along Arabidopsis leaf veins. FAMA is known as a regulator of stomatal development. We detected FAMA expression in myrosin cell precursors in leaf primordia in addition to stomatal lineage cells. FAMA deficiency caused defects in myrosin cell development and in the biosynthesis of myrosinases THIOGLUCOSIDE GLUCOHYDROLASE1 (TGG1) and TGG2. Conversely, ectopic FAMA expression conferred myrosin cell characteristics to hypocotyl and root cells, both of which normally lack myrosin cells. The FAMA interactors ICE1/SCREAM and its closest paralog SCREAM2/ICE2 were essential for myrosin cell development. DNA microarray analysis identified 32 candidate genes involved in myrosin cell development under the control of FAMA. This study provides a common regulatory pathway that determines two distinct cell types in leaves: epidermal guard cells and inner-tissue myrosin cells. PMID:25304202

  18. Ccndbp1 is a new positive regulator of skeletal myogenesis.

    PubMed

    Huang, Yan; Chen, Bohong; Ye, Miaoman; Liang, Puping; Zhangfang, Yingnan; Huang, Junjiu; Liu, Mingyao; Songyang, Zhou; Ma, Wenbin

    2016-07-15

    Skeletal myogenesis is a multistep process in which basic helix-loop-helix (bHLH) transcription factors, such as MyoD (also known as MyoD1), bind to E-boxes and activate downstream genes. Ccndbp1 is a HLH protein that lacks a DNA-binding region, and its function in skeletal myogenesis is currently unknown. We generated Ccndbp1-null mice by using CRISPR-Cas9. Notably, in Ccndbp1-null mice, the cross sectional area of the skeletal tibialis anterior muscle was smaller, and muscle regeneration ability and grip strength were impaired, compared with those of wild type. This phenotype resembled that of myofiber hypotrophy in some human myopathies or amyoplasia. Ccndbp1 expression was upregulated during C2C12 myogenesis. Ccndbp1 overexpression promoted myogenesis, whereas knockdown of Ccndbp1 inhibited myogenic differentiation. Co-transfection of Ccndbp1 with MyoD and/or E47 (encoded by TCF3) significantly enhanced E-box-dependent transcription. Furthermore, Ccndbp1 physically associated with MyoD but not E47. These data suggest that Ccndbp1 regulates muscle differentiation by interacting with MyoD and enhancing its binding to target genes. Our study newly identifies Ccndbp1 as a positive modulator of skeletal myogenic differentiation in vivo and in vitro, providing new insights in order to decipher the complex network involved in skeletal myogenic development and related diseases. © 2016. Published by The Company of Biologists Ltd.

  19. R-twist gene expression during rat palatogenesis.

    PubMed

    Bloch-Zupan, A; Hunter, N; Manthey, A; Gibbins, J

    2001-04-01

    Palatal clefting is often associated with premature fusion of cranial sutures in human craniosynostosis syndromes, many of which are characterised by mutations affecting the fibroblast growth factor receptor (FGFR) gene family. In palatal fusion, epithelio-mesenchymal transition (EMT) contributes to the dispersion of the midline epithelial seam. EMT has also been observed in neoplastic epithelial cells in relation to the acquisition of malignant characteristics where morphological changes are accompanied by rapid switching in the expression of fgfr2 from the epithelial type (kgfr) to the mesenchymal type (bek). The twist gene codes for a basic helix-loop-helix transcription factor putatively involved in regulation of transcription of fgfr2. Mutations in the TWIST gene have been described as being responsible for the Saethre-Chotzen syndrome, an autosomal dominant craniosynostosis associated with cleft palate as well as other disturbances of the facial skeleton. In this study we have analysed the distribution of twist transcripts during rat palatogenesis in vivo from 14.5 to 17.5 days post coitum by in situ hybridisation with digoxygenin-labelled ssDNA probes. twist transcripts were found to be concentrated in mesenchymal cells beneath the epithelium at the tip of the palatal shelves immediately prior to, and during fusion as well as in a localised epithelial area at the tip of the shelves prior to fusion, thereby implicating twist gene expression in the process of palatogenesis. This pattern of expression illuminates the disturbances of maxillary growth that occur in human craniosynostotic syndromes.

  20. Differential use of SCL/TAL-1 DNA-binding domain in developmental hematopoiesis.

    PubMed

    Kassouf, Mira T; Chagraoui, Hedia; Vyas, Paresh; Porcher, Catherine

    2008-08-15

    Dissecting the molecular mechanisms used by developmental regulators is essential to understand tissue specification/differentiation. SCL/TAL-1 is a basic helix-loop-helix transcription factor absolutely critical for hematopoietic stem/progenitor cell specification and lineage maturation. Using in vitro and forced expression experimental systems, we previously suggested that SCL might have DNA-binding-independent functions. Here, to assess the requirements for SCL DNA-binding activity in vivo, we examined hematopoietic development in mice carrying a germline DNA-binding mutation. Remarkably, in contrast to complete absence of hematopoiesis and early lethality in scl-null embryos, specification of hematopoietic cells occurred in homozygous mutant embryos, indicating that direct DNA binding is dispensable for this process. Lethality was forestalled to later in development, although some mice survived to adulthood. Anemia was documented throughout development and in adulthood. Cellular and molecular studies showed requirements for SCL direct DNA binding in red cell maturation and indicated that scl expression is positively autoregulated in terminally differentiating erythroid cells. Thus, different mechanisms of SCL's action predominate depending on the developmental/cellular context: indirect DNA binding activities and/or sequestration of other nuclear regulators are sufficient in specification processes, whereas direct DNA binding functions with transcriptional autoregulation are critically required in terminal maturation processes.

  1. Structural Basis for LMO2-Driven Recruitment of the SCL:E47bHLH Heterodimer to Hematopoietic-Specific Transcriptional Targets

    PubMed Central

    El Omari, Kamel; Hoosdally, Sarah J.; Tuladhar, Kapil; Karia, Dimple; Hall-Ponselé, Elisa; Platonova, Olga; Vyas, Paresh; Patient, Roger; Porcher, Catherine; Mancini, Erika J.

    2013-01-01

    Summary Cell fate is governed by combinatorial actions of transcriptional regulators assembling into multiprotein complexes. However, the molecular details of how these complexes form are poorly understood. One such complex, which contains the basic-helix-loop-helix heterodimer SCL:E47 and bridging proteins LMO2:LDB1, critically regulates hematopoiesis and induces T cell leukemia. Here, we report the crystal structure of (SCL:E47)bHLH:LMO2:LDB1LID bound to DNA, providing a molecular account of the network of interactions assembling this complex. This reveals an unexpected role for LMO2. Upon binding to SCL, LMO2 induces new hydrogen bonds in SCL:E47, thereby strengthening heterodimer formation. This imposes a rotation movement onto E47 that weakens the heterodimer:DNA interaction, shifting the main DNA-binding activity onto additional protein partners. Along with biochemical analyses, this illustrates, at an atomic level, how hematopoietic-specific SCL sequesters ubiquitous E47 and associated cofactors and supports SCL’s reported DNA-binding-independent functions. Importantly, this work will drive the design of small molecules inhibiting leukemogenic processes. PMID:23831025

  2. Genome-wide identification of TAL1's functional targets: insights into its mechanisms of action in primary erythroid cells.

    PubMed

    Kassouf, Mira T; Hughes, Jim R; Taylor, Stephen; McGowan, Simon J; Soneji, Shamit; Green, Angela L; Vyas, Paresh; Porcher, Catherine

    2010-08-01

    Coordination of cellular processes through the establishment of tissue-specific gene expression programs is essential for lineage maturation. The basic helix-loop-helix hemopoietic transcriptional regulator TAL1 (formerly SCL) is required for terminal differentiation of red blood cells. To gain insight into TAL1 function and mechanisms of action in erythropoiesis, we performed ChIP-sequencing and gene expression analyses from primary fetal liver erythroid cells. We show that TAL1 coordinates expression of genes in most known red cell-specific processes. The majority of TAL1's genomic targets require direct DNA-binding activity. However, one-fifth of TAL1's target sequences, mainly among those showing high affinity for TAL1, can recruit the factor independently of its DNA binding activity. An unbiased DNA motif search of sequences bound by TAL1 identified CAGNTG as TAL1-preferred E-box motif in erythroid cells. Novel motifs were also characterized that may help distinguish activated from repressed genes and suggest a new mechanism by which TAL1 may be recruited to DNA. Finally, analysis of recruitment of GATA1, a protein partner of TAL1, to sequences occupied by TAL1 suggests that TAL1's binding is necessary prior or simultaneous to that of GATA1. This work provides the framework to study regulatory networks leading to erythroid terminal maturation and to model mechanisms of action of tissue-specific transcription factors.

  3. Out of the Mouths of Plants: The Molecular Basis of the Evolution and Diversity of Stomatal Development[W

    PubMed Central

    Peterson, Kylee M.; Rychel, Amanda L.; Torii, Keiko U.

    2010-01-01

    Stomata are microscopic valves on the plant epidermis that played a critical role in the evolution of land plants. Studies in the model dicot Arabidopsis thaliana have identified key transcription factors and signaling pathways controlling stomatal patterning and differentiation. Three paralogous Arabidopsis basic helix-loop-helix proteins, SPEECHLESS (SPCH), MUTE, and FAMA, mediate sequential steps of cell-state transitions together with their heterodimeric partners SCREAM (SCRM) and SCRM2. Cell–cell signaling components, including putative ligands, putative receptors, and mitogen-activated protein kinase cascades, orient asymmetric cell divisions and prevent overproduction and clustering of stomata. The recent availability of genome sequence and reverse genetics tools for model monocots and basal land plants allows for the examination of the conservation of genes important in stomatal patterning and differentiation. Studies in grasses have revealed that divergence of SPCH-MUTE-FAMA predates the evolutionary split of monocots and dicots and that these proteins show conserved and novel roles in stomatal differentiation. By contrast, specific asymmetric cell divisions in Arabidopsis and grasses require unique molecular components. Molecular phylogenetic analysis implies potential conservation of signaling pathways and prototypical functions of the transcription factors specifying stomatal differentiation. PMID:20179138

  4. Two novel HAND1 mutations in Chinese patients with ventricular septal defect.

    PubMed

    Cheng, Zhi; Lib, Lin; Li, Zhongzhi; Liu, Mugen; Yan, Jinting; Wang, Binbin; Ma, Xu

    2012-04-11

    The HAND1 gene encodes a basic helix-loop-helix (bHLH) transcription factor which plays an essential role in the development of heart. Mutations in HAND1 have been identified in congenital heart disease (CHD) patients with hypoplastic hearts and septal defects. The spectrum of CHD relating to HAND1 mutations needs further study. We screened HAND1 coding regions for mutations in 498 Chinese patients with CHD and 250 control subjects. We identified two novel non-synonymous mutations, c.217G>A (p.Gly73Ser) and c.456G>T (p.Lys152Asn), in the patients with ventricular septal defect (VSD). The two mutations were located in HAND1 evolutionarily conserved residues and enhanced the capability of HAND1 to form homodimers. This is the first report of mutations in the HAND1 gene in Chinese patients with VSD and provides new insight into the etiology of VSD. Copyright © 2011. Published by Elsevier B.V.

  5. NPAS1-ARNT and NPAS3-ARNT crystal structures implicate the bHLH-PAS family as multi-ligand binding transcription factors

    PubMed Central

    Wu, Dalei; Su, Xiaoyu; Potluri, Nalini; Kim, Youngchang; Rastinejad, Fraydoon

    2016-01-01

    The neuronal PAS domain proteins NPAS1 and NPAS3 are members of the basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) family, and their genetic deficiencies are linked to a variety of human psychiatric disorders including schizophrenia, autism spectrum disorders and bipolar disease. NPAS1 and NPAS3 must each heterodimerize with the aryl hydrocarbon receptor nuclear translocator (ARNT), to form functional transcription complexes capable of DNA binding and gene regulation. Here we examined the crystal structures of multi-domain NPAS1-ARNT and NPAS3-ARNT-DNA complexes, discovering each to contain four putative ligand-binding pockets. Through expanded architectural comparisons between these complexes and HIF-1α-ARNT, HIF-2α-ARNT and CLOCK-BMAL1, we show the wider mammalian bHLH-PAS family is capable of multi-ligand-binding and presents as an ideal class of transcription factors for direct targeting by small-molecule drugs. DOI: http://dx.doi.org/10.7554/eLife.18790.001 PMID:27782878

  6. Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation.

    PubMed

    Maves, Lisa; Waskiewicz, Andrew Jan; Paul, Biswajit; Cao, Yi; Tyler, Ashlee; Moens, Cecilia B; Tapscott, Stephen J

    2007-09-01

    The basic helix-loop-helix (bHLH) transcription factor Myod directly regulates gene expression throughout the program of skeletal muscle differentiation. It is not known how a Myod-driven myogenic program is modulated to achieve muscle fiber-type-specific gene expression. Pbx homeodomain proteins mark promoters of a subset of Myod target genes, including myogenin (Myog); thus, Pbx proteins might modulate the program of myogenesis driven by Myod. By inhibiting Pbx function in zebrafish embryos, we show that Pbx proteins are required in order for Myod to induce the expression of a subset of muscle genes in the somites. In the absence of Pbx function, expression of myog and of fast-muscle genes is inhibited, whereas slow-muscle gene expression appears normal. By knocking down Pbx or Myod function in combination with another bHLH myogenic factor, Myf5, we show that Pbx is required for Myod to regulate fast-muscle, but not slow-muscle, development. Furthermore, we show that Sonic hedgehog requires Myod in order to induce both fast- and slow-muscle markers but requires Pbx only to induce fast-muscle markers. Our results reveal that Pbx proteins modulate Myod activity to drive fast-muscle gene expression, thus showing that homeodomain proteins can direct bHLH proteins to establish a specific cell-type identity.

  7. Pbx acts with Hand2 in early myocardial differentiation.

    PubMed

    Maves, Lisa; Tyler, Ashlee; Moens, Cecilia B; Tapscott, Stephen J

    2009-09-15

    Transcription factors of the basic helix-loop-helix (bHLH) family are critical regulators of muscle cell differentiation. For example, Myod drives skeletal muscle differentiation, and Hand2 potentiates cardiac muscle differentiation. Understanding how these bHLH factors regulate distinct transcriptional targets in a temporally and spatially controlled manner is critical for understanding their activity in cellular differentiation. We previously showed that Pbx homeodomain proteins modulate the activity of Myod to promote the differentiation of fast-twitch skeletal muscle. Here, we test the hypothesis that Pbx proteins are also necessary for cardiac muscle differentiation through interacting with Hand2. We show that Pbx proteins are required for the activation of cardiac muscle differentiation in zebrafish embryos. Loss of Pbx activity leads to delay of myocardial differentiation and subsequent defective cardiac morphogenesis, similar to reduced Hand2 activity. Genetic interaction experiments support the hypothesis that Pbx proteins modulate the activity of Hand2 in myocardial differentiation. Furthermore, we show that Pbx proteins directly bind the promoter of the myocardial differentiation gene myl7 in vitro, supporting a direct role for Pbx proteins in promoting cardiac muscle differentiation. Our findings demonstrate new roles for Pbx proteins in vertebrate cardiac development and also provide new insight into connections between the transcriptional regulation of skeletal and cardiac muscle differentiation programs.

  8. Pbx acts with Hand2 in early myocardial differentiation

    PubMed Central

    Maves, Lisa; Tyler, Ashlee; Moens, Cecilia B.; Tapscott, Stephen J.

    2009-01-01

    Transcription factors of the basic helix-loop-helix (bHLH) family are critical regulators of muscle cell differentiation. For example, Myod drives skeletal muscle differentiation, and Hand2 potentiates cardiac muscle differentiation. Understanding how these bHLH factors regulate distinct transcriptional targets in a temporally and spatially controlled manner is critical for understanding their activity in cellular differentiation. We previously showed that Pbx homeodomain proteins modulate the activity of Myod to promote the differentiation of fast-twitch skeletal muscle. Here, we test the hypothesis that Pbx proteins are also necessary for cardiac muscle differentiation through interacting with Hand2. We show that Pbx proteins are required for the activation of cardiac muscle differentiation in zebrafish embryos. Loss of Pbx activity leads to delay of myocardial differentiation and subsequent defective cardiac morphogenesis, similar to reduced Hand2 activity. Genetic interaction experiments support the hypothesis that Pbx proteins modulate the activity of Hand2 in myocardial differentiation. Furthermore, we show that Pbx proteins directly bind the promoter of the myocardial differentiation gene myl7 in vitro, supporting a direct role for Pbx proteins in promoting cardiac muscle differentiation. Our findings demonstrate new roles for Pbx proteins in vertebrate cardiac development and also provide new insight into connections between the transcriptional regulation of skeletal and cardiac muscle differentiation programs. PMID:19607825

  9. Genome-wide identification, classification and functional analyses of the bHLH transcription factor family in the pig, Sus scrofa.

    PubMed

    Liu, Wuyi

    2015-08-01

    The basic helix-loop-helix (bHLH) transcription factors are one of the largest families of gene regulatory proteins and play crucial roles in genetic, developmental and physiological processes in eukaryotes. Here, we conducted a survey of the Sus scrofa genome and identified 109 putative bHLH transcription factor members belonging to super-groups A, B, C, D, E, and F, respectively, while four members were orphan genes. We identified 6 most significantly enriched KEGG pathways and 116 most significant GO annotation categories. Further comprehensive surveys in human genome and other 12 medical databases identified 72 significantly enriched biological pathways with these 113 pig bHLH transcription factors. From the functional protein association network analysis 93 hub proteins were identified and 55 hub proteins created a tight network or a functional module within their protein families. Especially, there were 20 hub proteins found highly connected in the functional interaction network. The present study deepens our understanding and provided insights into the evolution and functional aspects of animal bHLH proteins and should serve as a solid foundation for further for analyses of specific bHLH transcription factors in the pig and other mammals.

  10. Evolution of a genomic regulatory domain: The role of gene co-option and gene duplication in the Enhancer of split complex

    PubMed Central

    Duncan, Elizabeth J.; Dearden, Peter K.

    2010-01-01

    The Drosophila Enhancer of split complex [E(spl)-C] is a remarkable complex of genes many of which are effectors or modulators of Notch signaling. The complex contains different classes of genes including four bearded genes and seven basic helix-loop-helix (bHLH) genes. We examined the evolution of this unusual complex by identifying bearded and bHLH genes in the genome sequences of Arthropods. We find that a four-gene E(spl)-C, containing three bHLH genes and one bearded gene, is an ancient component of the genomes of Crustacea and Insects. The complex is well conserved in insects but is highly modified in Drosophila, where two of the ancestral genes of the complex are missing, and the remaining two have been duplicated multiple times. Through examining the expression of E(spl)-C genes in honeybees, aphids, and Drosophila, we determined that the complex ancestrally had a role in Notch signaling. The expression patterns of genes found inserted into the complex in some insects, or that of ancestral E(spl)-C genes that have moved out of the complex, imply that the E(spl)-C is a genomic domain regulated as a whole by Notch signaling. We hypothesize that the E(spl)-C is a Notch-regulated genomic domain conserved in Arthropod genomes for around 420 million years. We discuss the consequence of this conserved domain for the recruitment of novel genes into the Notch signaling cascade. PMID:20458100

  11. The transcription factor, the Cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal.

    PubMed Central

    Hirst, K; Fisher, F; McAndrew, P C; Goding, C R

    1994-01-01

    The Pho80-Pho85 cyclin-cdk complex prevents transcription of PHO5 by inhibiting the ability of the basic-helix-loop-helix transcription factor Pho4 to activate transcription in response to high phosphate conditions. In low phosphate the Pho80-Pho85 complex is inactivated and Pho4 is then able to activate the acid phosphatase gene PHO5. We show here that Pho4 and the homeobox protein Pho2 interact in vivo and act cooperatively to activate the PHO5 UAS, with interaction being regulated by the phosphate switch. In addition, we also demonstrate that an additional factor, Pho81, interacts in high phosphate with both the Pho80 cyclin and with Pho4. In low phosphate, Pho80 and Pho81 dissociate from Pho4, but retain the ability to interact with each other. The evidence presented here supports the idea that Pho81 acts as a phosphate-sensitive trigger that regulates the ability of the Pho80-Pho85 cyclin-cdk complex to bind Pho4, while DNA binding by Pho4 is dependent on the phosphate-sensitive interaction with Pho2. Images PMID:7957107

  12. MyoD stimulates delta-1 transcription and triggers notch signaling in the Xenopus gastrula.

    PubMed Central

    Wittenberger, T; Steinbach, O C; Authaler, A; Kopan, R; Rupp, R A

    1999-01-01

    The Notch signaling cascade is involved in many developmental decisions, a paradigm of which has been the selection between epidermal and neural cell fates in both invertebrates and vertebrates. Notch has also been implicated as a regulator of myogenesis, although its precise function there has remained controversial. Here we show that the muscle-determining factor MyoD is a direct, positive regulator of the Notch ligand Delta-1 in prospective myoblasts of the pre-involuted mesoderm in Xenopus gastrulae. Injection of a dominant MyoD repressor variant ablates mesodermal Delta-1 expression in vivo. Furthermore, MyoD-dependent Delta-1 induction is sufficient to activate transcription from promoters of E(spl)-related genes in a Notch-dependent manner. These results indicate that a hallmark of neural cell fate determination, i.e. the feedback loop between differentiation promoting basic helix-loop-helix proteins and the Notch regulatory circuitry, is conserved in myogenesis, supporting a direct involvement of Notch in muscle determination. PMID:10202155

  13. Unique defense strategy by the endoplasmic reticulum body in plants.

    PubMed

    Yamada, Kenji; Hara-Nishimura, Ikuko; Nishimura, Mikio

    2011-12-01

    The endoplasmic reticulum (ER) is a site for the production of secretory proteins. Plants have developed ER subdomains for protein storage. The ER body is one such structure, which is observed in Brassicaceae plants. ER bodies accumulate in seedlings and roots or in wounded leaves in Arabidopsis. ER bodies contain high amounts of the β-glucosidases PYK10/BGLU23 in seedlings and roots or BGLU18 in wounded tissues. These results suggest that ER bodies are involved in the metabolism of glycoside molecules, presumably to produce repellents against pests and fungi. When Arabidopsis roots are homogenized, PYK10 formed large protein aggregates that include other β-glucosidases (BGLU21 and BGLU22), GDSL lipase-like proteins (GLL22) and cytosolic jacalin-related lectins (PBP1/JAL30, JAL31, JAL33, JAL34 and JAL35). Glucosidase activity increases by the aggregate formation. NAI1, a basic helix-loop-helix transcription factor, regulates the expression of the ER body proteins PYK10 and NAI2. Reduced expression of NAI2, PYK10 and BGLU21 resulted in abnormal ER body formation, indicating that these components regulate ER body formation. PYK10, BGLU21 and BGLU22 possess hydrolytic activity for scopolin, a coumaroyl glucoside that accumulates in the roots of Arabidopsis, and nai1 and pyk10 mutants are more susceptible to the symbiotic fungus Piriformospora indica. Therefore, it appears that the ER body is a unique organelle of Brassicaceae plants that is important for defense against pests and fungi.

  14. MYC2 Orchestrates a Hierarchical Transcriptional Cascade That Regulates Jasmonate-Mediated Plant Immunity in Tomato[OPEN

    PubMed Central

    Liu, Yuanyuan; Deng, Lei; Wu, Fangming; Huang, Zhuo; Zhou, Ming; Chen, Qian; Zhong, Silin

    2017-01-01

    The hormone jasmonate (JA), which functions in plant immunity, regulates resistance to pathogen infection and insect attack through triggering genome-wide transcriptional reprogramming in plants. We show that the basic helix-loop-helix transcription factor (TF) MYC2 in tomato (Solanum lycopersicum) acts downstream of the JA receptor to orchestrate JA-mediated activation of both the wounding and pathogen responses. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 655 MYC2-targeted JA-responsive genes. These genes are highly enriched in Gene Ontology categories related to TFs and the early response to JA, indicating that MYC2 functions at a high hierarchical level to regulate JA-mediated gene transcription. We also identified a group of MYC2-targeted TFs (MTFs) that may directly regulate the JA-induced transcription of late defense genes. Our findings suggest that MYC2 and its downstream MTFs form a hierarchical transcriptional cascade during JA-mediated plant immunity that initiates and amplifies transcriptional output. As proof of concept, we showed that during plant resistance to the necrotrophic pathogen Botrytis cinerea, MYC2 and the MTF JA2-Like form a transcription module that preferentially regulates wounding-responsive genes, whereas MYC2 and the MTF ETHYLENE RESPONSE FACTOR.C3 form a transcription module that preferentially regulates pathogen-responsive genes. PMID:28733419

  15. CD26-mediated regulation of periostin expression contributes to migration and invasion of malignant pleural mesothelioma cells

    SciTech Connect

    Komiya, Eriko; Ohnuma, Kei; Yamazaki, Hiroto; Hatano, Ryo; Iwata, Satoshi; Okamoto, Toshihiro; Dang, Nam H.; Morimoto, Chikao

    2014-05-16

    Highlights: • CD26-expressing MPM cells upregulate production of periostin. • The intracytoplasmic region of CD26 mediates the upregulation of periostin. • CD26 expression leads to nuclear translocation of Twist1 via phosphorylation of Src. • Secreted periostin enhances migration and invasion of MPM cells. - Abstract: Malignant pleural mesothelioma (MPM) is an aggressive malignancy arising from mesothelial lining of pleura. It is generally associated with a history of asbestos exposure and has a very poor prognosis, partly due to the lack of a precise understanding of the molecular mechanisms associated with its malignant behavior. In the present study, we expanded on our previous studies on the enhanced motility and increased CD26 expression in MPM cells, with a particular focus on integrin adhesion molecules. We found that expression of CD26 upregulates periostin secretion by MPM cells, leading to enhanced MPM cell migratory and invasive activity. Moreover, we showed that upregulation of periostin expression results from the nuclear translocation of the basic helix-loop-helix transcription factor Twist1, a process that is mediated by CD26-associated activation of Src phosphorylation. While providing new and profound insights into the molecular mechanisms involved in MPM biology, these findings may also lead to the development of novel therapeutic strategies for MPM.

  16. Auto-regulation of the Sohlh1 gene by the SOHLH2/SOHLH1/SP1 complex: implications for early spermatogenesis and oogenesis.

    PubMed

    Toyoda, Shuichi; Yoshimura, Takuji; Mizuta, Junya; Miyazaki, Jun-ichi

    2014-01-01

    Tissue-specific basic helix-loop-helix (bHLH) transcription factor proteins often play essential roles in cellular differentiation. The bHLH proteins SOHLH2 and SOHLH1 are expressed specifically in spermatogonia and oocytes and are required for early spermatogonial and oocyte differentiation. We previously reported that knocking out Sohlh2 causes defects in spermatogenesis and oogenesis similar to those in Sohlh1-null mice, and that Sohlh1 is downregulated in the gonads of Sohlh2-null mice. We also demonstrated that SOHLH2 and SOHLH1 can form a heterodimer. These observations led us to hypothesize that the SOHLH2/SOHLH1 heterodimer regulates the Sohlh1 promoter. Here, we show that SOHLH2 and SOHLH1 synergistically upregulate the Sohlh1 gene through E-boxes upstream of the Sohlh1 promoter. Interestingly, we identified an SP1-binding sequence, called a GC-box, adjacent to these E-boxes, and found that SOHLH1 could bind to SP1. Furthermore, chromatin-immunoprecipitation analysis using testes from mice on postnatal day 8 showed that SOHLH1 and SP1 bind to the Sohlh1 promoter region in vivo. Our findings suggest that an SOHLH2/SOHLH1/SP1 ternary complex autonomously and cooperatively regulates Sohlh1 gene transcription through juxtaposed E- and GC-boxes during early spermatogenesis and oogenesis.

  17. Hes1 Is Expressed in the Second Heart Field and Is Required for Outflow Tract Development

    PubMed Central

    Mesbah, Karim; Jarry, Thérèse; Mattei, Marie-Geneviève; Kelly, Robert G.

    2009-01-01

    Background Rapid growth of the embryonic heart occurs by addition of progenitor cells of the second heart field to the poles of the elongating heart tube. Failure or perturbation of this process leads to congenital heart defects. In order to provide further insight into second heart field development we characterized the insertion site of a transgene expressed in the second heart field and outflow tract as the result of an integration site position effect. Results Here we show that the integration site of the A17-Myf5-nlacZ-T55 transgene lies upstream of Hes1, encoding a basic helix-loop-helix containing transcriptional repressor required for the maintenance of diverse progenitor cell populations during embryonic development. Transgene expression in a subset of Hes1 expression sites, including the CNS, pharyngeal epithelia, pericardium, limb bud and lung endoderm suggests that Hes1 is the endogenous target of regulatory elements trapped by the transgene. Hes1 is expressed in pharyngeal endoderm and mesoderm including the second heart field. Analysis of Hes1 mutant hearts at embryonic day 15.5 reveals outflow tract alignment defects including ventricular septal defects and overriding aorta. At earlier developmental stages, Hes1 mutant embryos display defects in second heart field proliferation, a reduction in cardiac neural crest cells and failure to completely extend the outflow tract. Conclusions Hes1 is expressed in cardiac progenitor cells in the early embryo and is required for development of the arterial pole of the heart. PMID:19609448

  18. Hand2 Function in Second Heart Field Progenitors is Essential for Cardiogenesis

    PubMed Central

    Tsuchihashi, Takatoshi; Maeda, Jun; Shin, Chong; Ivey, Kathryn N.; Black, Brian; Olson, Eric N.; Yamagishi, Hiroyuki; Srivastava, Deepak

    2011-01-01

    Cardiogenesis involves the contributions of multiple progenitor pools, including mesoderm-derived cardiac progenitors known as the first and second heart fields. Disruption of genetic pathways regulating individual subsets of cardiac progenitors likely underlies many forms of human cardiac malformations. Hand2 is a member of the basic helix loop helix (bHLH) family of transcription factors and is expressed in numerous cell lineages that contribute to the developing heart. However, the early embryonic lethality of Hand2-null mice has precluded lineage-specific study of its function in myocardial progenitors. Here, we generated and used a floxed allele of Hand2 to ablate its expression in specific cardiac cell populations at defined developmental points. We found that Hand2 expression within the mesoderm-derived second heart field progenitors was required for their survival and deletion in this domain recapitulated the complete Hand2-null phenotype. Loss of Hand2 at later stages of development and in restricted domains of the second heart field revealed a spectrum of cardiac anomalies resembling forms of human congenital heart disease. Molecular analyses of Hand2 mutant cells revealed several genes by which Hand2 may influence expansion of the cardiac progenitors. These findings demonstrate that Hand2 is essential for survival of second heart field progenitors and that the graded loss of Hand2 function in this cardiac progenitor pool can cause a spectrum of congenital heart malformation. PMID:21185281

  19. A proteomic study showing differential regulation of stress, redox regulation and peroxidase proteins by iron supply and the transcription factor FER.

    PubMed

    Brumbarova, Tzvetina; Matros, Andrea; Mock, Hans-Peter; Bauer, Petra

    2008-04-01

    Plants need to mobilize iron in the soil, and the basic helix-loop-helix transcription factor FER is a central regulator of iron acquisition in tomato roots. FER activity is controlled by iron supply. To analyse to what extent FER influences Fe-regulated protein expression, we investigated the root proteome of wild-type tomato, the fer mutant and a transgenic FER overexpression line under low-iron conditions versus sufficient and generous iron supply. The root proteomes were analysed by two-dimensional gel electrophoresis with three technical and three biological replicates. Statistical analysis identified 39 protein spots that were differentially regulated in selected pairwise comparisons of experimental conditions. Of these, 24 were correlated with expression clusters revealed by principal component analysis. The 39 protein spots were analysed by MALDI-TOF and nanoLC-MS/MS to deduce their possible functions. We investigated the functional representation in the identified expression clusters, and found that loss of FER function in iron-cultured plants mimicked an iron-deficiency status. The largest identified protein expression cluster was upregulated by iron deficiency and in the fer mutant. Two iron-regulated proteins required FER activity for induction by iron deficiency. Few proteins were suppressed by iron deficiency. The differentially expressed proteins belonged predominantly to the functional categories 'stress', 'redox regulation' and 'miscellaneous peroxidases'. Hence, we were able to identify distinct expression clusters of proteins with distinct functions.

  20. C. elegans SoxB genes are dispensable for embryonic neurogenesis but required for terminal differentiation of specific neuron types

    PubMed Central

    Vidal, Berta; Santella, Anthony; Serrano-Saiz, Esther; Bao, Zhirong; Chuang, Chiou-Fen; Hobert, Oliver

    2015-01-01

    Neurogenesis involves deeply conserved patterning molecules, such as the proneural basic helix-loop-helix transcription factors. Sox proteins and specifically members of the SoxB and SoxC groups are another class of conserved transcription factors with an important role in neuronal fate commitment and differentiation in various species. In this study, we examine the expression of all five Sox genes of the nematode C. elegans and analyze the effect of null mutant alleles of all members of the SoxB and SoxC groups on nervous system development. Surprisingly, we find that, unlike in other systems, neither of the two C. elegans SoxB genes sox-2 (SoxB1) and sox-3 (SoxB2), nor the sole C. elegans SoxC gene sem-2, is broadly expressed throughout the embryonic or adult nervous system and that all three genes are mostly dispensable for embryonic neurogenesis. Instead, sox-2 is required to maintain the developmental potential of blast cells that are generated in the embryo but divide only postembryonically to give rise to differentiated neuronal cell types. Moreover, sox-2 and sox-3 have selective roles in the terminal differentiation of specific neuronal cell types. Our findings suggest that the common themes of SoxB gene function across phylogeny lie in specifying developmental potential and, later on, in selectively controlling terminal differentiation programs of specific neuron types, but not in broadly controlling neurogenesis. PMID:26153233