NASA Astrophysics Data System (ADS)
Pawar, S. D.; Kamra, A. K.
2002-12-01
Surface observations of the electric field recovery curves of the lightning discharges occurring between the positive charge pocket and negative main charge centre in an overhead thundercloud are reported. Such recovery curves are observed to have an additional step of very slow field-change observed at an after-discharge value of electric field equal to 5-6 kV m-1. The behavior of recovery curves is explained in terms of the coronae charge and the relative efficiencies of the charge generating processes responsible for growth of positive charge pocket and main negative charge centre in the thundercloud. The charging currents responsible for the growth of charge in positive charge pockets is computed to be 2-4 times larger than that for the growth of the main negative charge. However, the charge destroyed in such a discharge is found to be comparable to that in a discharge between the main charge centres of the thundercloud.
Electrical structure in two thunderstorm anvil clouds
NASA Technical Reports Server (NTRS)
Marshall, Thomas C.; Rust, W. David; Winn, William P.; Gilbert, Kenneth E.
1989-01-01
Electrical structures in two thunderstorm anvil clouds (or 'anvils'), one in New Mexico, the other in Oklahoma, were investigated, using measurements of electric field by balloon-carried instruments and a one-dimensional model to calculate the time and spatial variations of electrical parameters in the clear air below the anvil. The electric field soundings through the two thunderstorm anvils showed similar charge structures; namely, negatively charged screening layers on the top and the bottom surfaces, a layer of positive charge in the interior, and one or two layers of zero charge. It is suggested that the positive charge originated in the main positive charge region normally found at high altitudes in the core of thunderclouds, and the negatively charged layers probably formed as screening layers, resulting from the discontinuity in the electrical conductivity at the cloud boundaries.
NASA Technical Reports Server (NTRS)
Byrne, G. J.; Few, A. A.; Stewart, M. F.; Conrad, A. C.; Torczon, R. L.
1987-01-01
Electric field measurements made inside a multicell severe storm in Oklahoma in 1983 with a balloon-borne instrument are presented. The properties of the electric charge regions, such as altitude, thickness, and charge concentrations, are studied. These measurements are analzyed with meteorological measurements of temperature and humidity, and balloon tracking and radar observations. The relation between the electric charge structure and the precipitation and kinematic features of the storm is examined. The data reveal that the cell exhibits a bipolar charge structure with negative charge below positive charge. The average charge concentrations of the two regions are estimated as -1.2 and 0.15 nC/cu m, respectively; the upper positive charge is about 6 km in vertical extent, and the lower negative charge is less than 1 km in vertical extent.
The Origins of Positive and Negative in Electricity
ERIC Educational Resources Information Center
Jensen, William B.
2005-01-01
Benjamin Franklin first introduced the terms positive and negative into electrical theory in the year 1747. The positive and negative terms originally had nothing to do with inherent electrical charge, but rather indicated which object had an excess of electrical fluid indicating positive, and which had a deficiency, indicating negative.
Controlling Two-dimensional Tethered Vesicle Motion Using an Electric Field
Yoshina-Ishii, Chiaki; Boxer, Steven G.
2008-01-01
We recently introduced methods to tether phospholipid vesicles or proteoliposomes onto a fluid supported lipid bilayer using DNA hybridization. These intact tethered vesicles diffuse in two dimensions parallel to the supporting membrane surface. In this paper, we report the dynamic response of individual tethered vesicles to an electric field applied parallel to the bilayer surface. Vesicles respond to the field by moving in the direction of electro-osmotic flow, and this can be used to reversibly concentrate tethered vesicles against a barrier. By adding increasing amounts of negatively charged phosphatidylserine to the supporting bilayer to increase electro-osmosis, the electrophoretic mobility of the tethered vesicles can be increased. The electro-osmotic contribution can be modeled well by a sphere connected to a cylindrical anchor in a viscous membrane with charged head groups. The electrophoretic force on the negatively charged tethered vesicles opposes the electro-osmotic force. By increasing the amount of negative charge on the tethered vesicle, drift in the direction of electro-osmotic flow can be slowed; at high negative charge on the tethered vesicle, motion can be forced in the direction of electrophoresis. The balance between these forces can be visualized on a patterned supporting bilayer containing negatively charged lipids which themselves reorganize in an externally applied electric field to create a gradient of charge within a corralled region. The charge gradient at the surface creates a gradient of electro-osmotic flow, and vesicles carrying similar amounts of negative charge can be focused to a region perpendicular to the applied field where electrophoresis is balanced by electro-osmosis, away from the corral boundary. Electric fields are effective tools to direct tethered vesicles, concentrate them and to measure the tethered vesicle’s electrostatic properties. PMID:16489833
Retrieval of charge mobility from apparent charge packet movements in LDPE thin films
NASA Astrophysics Data System (ADS)
Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian
2017-03-01
The charge packet phenomenon observed in polyethylene materials has been reported extensively during the last decades. To explain its movement, Negative Differential Mobility (NDM) theory is a competitive model among several proposed mechanisms. However, as a key concept of this theory, a sufficiently acute relationship between charge mobility and electric field has never been reported until now, which makes it hard to precisely describe the migration of charge packets with this theory. Based on the substantial negative-charge packet observations with a sufficiently by wide electric field range from 15 kV/mm to 50 kV/mm, the present contribution successfully retrieved the negative-charge mobility from the apparent charge packet movements, which reveals a much closer relationship between the NDM theory and charge packet migrations. Back simulations of charge packets with the retrieved charge mobility offer a good agreement with the experimental data.
NASA Astrophysics Data System (ADS)
Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H.
2015-10-01
An electric field screen is a physical device used to exclude pest insects from greenhouses and warehouses to protect crop production and storage. The screen consists of iron insulated conductor wires (ICWs) arrayed in parallel and linked to each other, an electrostatic DC voltage generator used to supply a negative charge to the ICWs, and an earthed stainless net placed on one side of the ICW layer. The ICW was negatively charged to polarize the earthed net to create a positive charge on the ICW side surface, and an electric field formed between the opposite charges of the ICW and earthed net. The current study focused on the ability of the screen to repel insects reaching the screen net. This repulsion was a result of the insect's behaviour, i.e., the insects were deterred from entering the electric field of the screen. In fact, when the screen was negatively charged with the appropriate voltages, the insects placed their antennae inside the screen and then flew away without entering. Obviously, the insects recognized the electric field using their antennae and thereby avoided entering. Using a wide range of insects and spiders belonging to different taxonomic groups, we confirmed that the avoidance response to the electric field was common in these animals.
NASA Astrophysics Data System (ADS)
Devine, R. A. B.
2002-09-01
The electrical characteristics of hydrogen silsesquioxane based flowable oxide (FOxregistered) films proposed for interconnect isolation applications have been studied. It is demonstrated that negative and positive charges exist in the as-made, cured films with densities of 0.95 x1012 and 1.5 x1012 cm-2, respectively for thicknesses of 114 nm. The negative charges can be removed from the films by application of modest electric fields (positive or negative, approx1.75 MV cm-1). The positive charge can be similarly displaced but not removed from the film; this results in time dependent relaxation and redistribution of the positive charge if the films are left unbiased. Time dependent irreversible evolution of the leakage current under positive and negative bias (approx3 MV cm-1) shows a slow breakdown phenomena. An unusual self-healing effect is evidenced in these films.
An oppositely charged insect exclusion screen with gap-free multiple electric fields
NASA Astrophysics Data System (ADS)
Matsuda, Yoshinori; Kakutani, Koji; Nonomura, Teruo; Kimbara, Junji; Kusakari, Shin-ichi; Osamura, Kazumi; Toyoda, Hideyoshi
2012-12-01
An electric field screen was constructed to examine insect attraction mechanisms in multiple electric fields generated inside the screen. The screen consisted of two parallel insulated conductor wires (ICWs) charged with equal but opposite voltages and two separate grounded nets connected to each other and placed on each side of the ICW layer. Insects released inside the fields were charged either positively or negatively as a result of electricity flow from or to the insect, respectively. The force generated between the charged insects and opposite ICW charges was sufficient to capture all insects.
NASA Astrophysics Data System (ADS)
Sato, A.; Omiya, S.
2011-12-01
It is known that the average atmospheric electric field is +100V/m in fair weather (positive electric field vector points downward). An increase of atmospheric electric field is reported when the blowing snow occurred. This phenomenon is mainly explained by the fact that the blowing snow particles have negative charge in average. It is suggested that an electrostatic force, given by the product of the electric field and the charge of the particle, may influence the particle trajectory and change those movements, saltation and suspension. The purpose of this experiment is to clarify the characteristics of the electric field during blowing snow event. Experiments were carried out in the cryogenic wind tunnel of Snow and Ice Research Center, NIED. A non-contact voltmeter was used to measure the electric field. An artificial blowing snow was generated by a snow particle supply machine. The rolling brushes of the machine scratch the snow surface and supply snow particles into the airflow. This machine made it possible to supply the snow particles at an arbitrary rate. This experiment was conducted in the following experimental conditions; wind speed of 5 to 7 m/s (3 patterns), supply snow quantity of 8.7 to 34.9 g/m/s (4 patterns), air temperature of -10 degree Celsius, fetch of 10 m and hard snow surface. Measured electric field was all negative, which is opposite direction to the previous measurements. This means that the blowing snow particles had positive charges. The negative electric field tended to increase with increase of the wind speed and the mass flux. These results can be explained from the previous experiment by Omiya and Sato (2010). The snow particles gain positive charges by the friction with the rolling brush which is made from polypropylene, however the particles accumulate negative charges gradually with increase of the collisions to the snow surface. Probably, the positive charges might have remained on the snow particles that had passed over the measurement point. Moreover, it is thought that because the saltation length is longer when the wind speed is higher, fewer collision frequencies left the particles more positive charges. REFERENCE:Omiya and Sato(2010): Measurement of electrostatic charge of blowing snow particles in a wind tunnel focusing on collision frequency to the snow surface. Hokkaido University Collection of Scholarly and Academic Papers
Is the ;Earth-ionosphere capacitor; a valid component in the atmospheric global electric circuit?
NASA Astrophysics Data System (ADS)
Haldoupis, Christos; Rycroft, Michael; Williams, Earle; Price, Colin
2017-11-01
This paper examines whether the Earth-ionosphere capacitor (EIC) model is correct, by comparing observed atmospheric electrical properties with those expected for a spherical capacitor, as defined in electrostatics. The comparisons suggest that the EIC concept cannot be reconciled with, and hence cannot account for, the observations, particularly the rapid reduction of the atmospheric electric field with height that is measured. This means that the spherical EIC concept is incorrect by being too simplistic; it is thus misleading. The reason for this flawed concept is simple: the model disregards the non-uniform conductivity of the atmosphere which requires the presence of a net positive charge in the lower atmosphere that equals in magnitude the Earth's negative charge. This positive charge shields the action of the Earth's negative charge from polarizing the ionosphere positively. Thus, the lower D region ionosphere remains electrically neutral, which makes the EIC concept inappropriate.
NASA Astrophysics Data System (ADS)
Bhowal, Ashim Chandra; Kundu, Sarathi
2018-04-01
PEDOT:PSS is a water soluble conducting polymer consists of positively charged PEDOT and negatively charged PSS. However, this polymer suffers low conductivity problem which restrict its use. In this paper, electrical conductivity of PEDOT:PSS thin films is improved by using charged gold nanoparticles. The nanoparticles used are synthesized using lysozyme protein. The nanoparticles coated with lysozyme protein possess positive zeta potential. In the presence of gold nanoparticles due to electrostatic interaction between positively charged nanoparticles and negatively charged PSS chains, modification takes place in the surface morphology and electrical behaviors of PEDOT:PSS thin films. The changes in the polymer matrix conformations in the presence of nanoparticles are studied by Fourier transformed Infra-red (FTIR) spectroscopy, whereas the surface morphology of prepared thin films before and after interaction with nanoparticles is investigated through atomic force microscopy (AFM). Four probe method is used to measure the variation of electrical conductivity from I-V characteristics curves.
NASA Astrophysics Data System (ADS)
Dzhioev, R. I.; Korenev, V. L.; Lazarev, M. V.; Sapega, V. F.; Gammon, D.; Bracker, A. S.
2007-01-01
We report electric field induced increase of spin orientation of negatively charged excitons (trions) localized in n -type GaAs/AlGaAs quantum well. Under resonant excitation of free neutral heavy-hole excitons, the polarization of trions increases dramatically with electrical injection of electrons. The polarization enhancement correlates strongly with trion/exciton luminescence intensity ratio. This effect results from a very efficient trapping of free neutral excitons by the quantum well interfacial fluctuations (“natural” quantum dots) containing resident electrons.
Static Electricity-Responsive Supramolecular Assembly.
Jintoku, Hirokuni; Ihara, Hirotaka; Matsuzawa, Yoko; Kihara, Hideyuki
2017-12-01
Stimuli-responsive materials can convert between molecular scale and macroscopic scale phenomena. Two macroscopic static electricity-responsive phenomena based on nanoscale supramolecular assemblies of a zinc porphyrin derivative are presented. One example involves the movement of supramolecular assemblies in response to static electricity. The assembly of a pyridine (Py) complex of the above-mentioned derivative in cyclohexane is drawn to a positively charged material, whereas the assembly of a 3,5-dimethylpyridine complex is drawn to a negatively charged material. The second phenomenon involves the movement of a non-polar solvent in response to static electrical stimulation. A cyclohexane solution containing a small quantity of the Py-complexed assembly exhibited a strong movement response towards negatively charged materials. Based on spectroscopic measurements and electron microscope observations, it was revealed that the assembled formation generates the observed response to static electricity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
An Instrumental Method to Identify Electric Charge Types with a Simple Device
ERIC Educational Resources Information Center
Isik, Hakan
2015-01-01
In this study, an easy and enjoyable activity to determine the type of electric charge is presented, using a readymade electronic test screw. A four-way usage of the tester is explained with an electroscope. In the activity, ebonite and glass rods are negatively and positively charged by rubbing with paper sheets, respectively.
Evaluating stratiform cloud base charge remotely
NASA Astrophysics Data System (ADS)
Harrison, R. Giles; Nicoll, Keri A.; Aplin, Karen L.
2017-06-01
Stratiform clouds acquire charge at their upper and lower horizontal boundaries due to vertical current flow in the global electric circuit. Cloud charge is expected to influence microphysical processes, but understanding is restricted by the infrequent in situ measurements available. For stratiform cloud bases below 1 km in altitude, the cloud base charge modifies the surface electric field beneath, allowing a new method of remote determination. Combining continuous cloud height data during 2015-2016 from a laser ceilometer with electric field mill data, cloud base charge is derived using a horizontal charged disk model. The median daily cloud base charge density found was -0.86 nC m-2 from 43 days' data. This is consistent with a uniformly charged region 40 m thick at the cloud base, now confirming that negative cloud base charge is a common feature of terrestrial layer clouds. This technique can also be applied to planetary atmospheres and volcanic plumes.
A Unified Model of Cloud-to-Ground Lightning Stroke
NASA Astrophysics Data System (ADS)
Nag, A.; Rakov, V. A.
2014-12-01
The first stroke in a cloud-to-ground lightning discharge is thought to follow (or be initiated by) the preliminary breakdown process which often produces a train of relatively large microsecond-scale electric field pulses. This process is poorly understood and rarely modeled. Each lightning stroke is composed of a downward leader process and an upward return-stroke process, which are usually modeled separately. We present a unified engineering model for computing the electric field produced by a sequence of preliminary breakdown, stepped leader, and return stroke processes, serving to transport negative charge to ground. We assume that a negatively-charged channel extends downward in a stepped fashion through the relatively-high-field region between the main negative and lower positive charge centers and then through the relatively-low-field region below the lower positive charge center. A relatively-high-field region is also assumed to exist near ground. The preliminary breakdown pulse train is assumed to be generated when the negatively-charged channel interacts with the lower positive charge region. At each step, an equivalent current source is activated at the lower extremity of the channel, resulting in a step current wave that propagates upward along the channel. The leader deposits net negative charge onto the channel. Once the stepped leader attaches to ground (upward connecting leader is presently neglected), an upward-propagating return stroke is initiated, which neutralizes the charge deposited by the leader along the channel. We examine the effect of various model parameters, such as step length and current propagation speed, on model-predicted electric fields. We also compare the computed fields with pertinent measurements available in the literature.
NOVA SCIENCE UNIT 15, FUNDAMENTAL PARTICLES 4.
ERIC Educational Resources Information Center
1964
THE PRINCIPLES OF ATOMIC STRUCTURE WHICH ARE STRESSED ARE THAT ATOMS ARE MADE UP OF A NUCLEUS WITH A POSITIVE CHARGE, SURROUNDED BY ELECTRONS WITH A NEGATIVE CHARGE, AND THAT THERE IS NO CHANGE IN THE ATOM WHEN THE POSITIVE AND NEGATIVE CHARGES ARE EQUAL. EXPERIMENTS ILLUSTRATE THAT CURRENT ELECTRICITY IS ACTUALLY ELECTRONS IN MOTION, THAT THERE…
A thundercloud electric field sounding - Charge distribution and lightning
NASA Technical Reports Server (NTRS)
Weber, M. E.; Few, A. A.; Stewart, M. F.; Christian, H. J.
1982-01-01
An instrumented free balloon measured electric fields and field changes as it rose through a thundercloud above Langmuir Laboratory, New Mexico. The variation of the electric field with altitude implied that the cloud contained negative space charge of density -0.6 to -4 nC/cu m between 5.5 and 8.0 km MSL. The environmental temperature at these levels ranged from -5 to -20 C. The measurements imply that the areal extent of this negative charge center was significantly greater than that of the cloud's intense precipitation shafts. At altitudes greater than 8 km, the instrument ascended past net positive charge. In addition, positive space charge adjacent to the earth's surface (concentration 0.6 nC/cu m and in the lowest portion of the cloud (1.0 nC/cu m) is inferred from the measurements. Electric field changes from intracloud lightning were interpreted by using a simple model for the developing streamer of the initial phase. Thunder source reconstructions provided estimates for the orientation of lightning channels. Seven 'streamers' so analyzed propagated on the average, at 50,000 m/s and carried a current of 390 A. The mean charge dissipated during a flash was 30 C.
A unified engineering model of the first stroke in downward negative lightning
NASA Astrophysics Data System (ADS)
Nag, Amitabh; Rakov, Vladimir A.
2016-03-01
Each stroke in a negative cloud-to-ground lightning flash is composed of downward leader and upward return stroke processes, which are usually modeled individually. The first stroke leader is stepped and starts with preliminary breakdown (PB) which is often viewed as a separate process. We present the first unified engineering model for computing the electric field produced by a sequence of PB, stepped leader, and return stroke processes, serving to transport negative charge to ground. We assume that a negatively charged channel extends downward in a stepped fashion during both the PB and leader stages. Each step involves a current wave that propagates upward along the newly formed channel section. Once the leader attaches to ground, an upward propagating return stroke neutralizes the charge deposited along the channel. Model-predicted electric fields are in reasonably good agreement with simultaneous measurements at both near (hundreds of meters, electrostatic field component is dominant) and far (tens of kilometers, radiation field component is dominant) distances from the lightning channel. Relations between the features of computed electric field waveforms and model input parameters are examined. It appears that peak currents associated with PB pulses are similar to return stroke peak currents, and the observed variation of electric radiation field peaks produced by leader steps at different heights above ground is influenced by the ground corona space charge.
Is the negative glow plasma of a direct current glow discharge negatively charged?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanov, E. A.; Saifutdinov, A. I.; Demidov, V. I., E-mail: Vladimir.Demidov@mail.wvu.edu
A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculationmore » of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge.« less
NASA Astrophysics Data System (ADS)
Hager, William W.; Feng, Wei
2013-09-01
An intracloud flash near Langmuir Laboratory is analyzed to determine the net rearrangement of charge. The analysis employed data from a balloon borne electric field sensor, or Esonde, that was within a few hundred meters of the lightning channel, data from a similar Esonde on a mountain about 6.4 km from the balloon, and data from the New Mexico Institute of Mining and Technology Lightning Mapping Array (LMA). The recovery of the charge transport required the solution of Poisson's equation over the mountainous terrain surrounding Langmuir Laboratory and the solution of a vastly under‒determined system of equations. The charge movement is analyzed using a new smooth charge transport model that incorporates constraints in the least squares fitting process through the use of penalty terms to smooth the charge movement and prevent data overfitting. The electric field measurements were consistent with about 26% of the negative charge being transported to the end of the channel, 36% deposited along the channel in the positive region, 8% deposited near the start of the channel in the positive region, and 30% deposited in another positive region several kilometers beneath the main channel. The transport of negative charge to a lower positive region occurred during the K‒processes when some negative charge was also deposited along the main channel in the upper positive region. Hence, the charge transport process during the K‒processes amounted to a tripolar charge rearrangement where the charge from the negative region was transported to two distinct positive regions, the positive region along the main channel and a lower positive region beneath the main channel. High altitude, widely scattered LMA sources beyond the end of the main channel could indicate the existence of streamers which transported the end‒of‒channel charge into the surrounding volume. Although the LMA showed the development of two upper channels, the charge transport analysis showed that measurable charge transport only occurred on one of the channels. The channel that did not transport charge was missing the high altitude, widely scattered LMA sources seen at the end of the channel that carried charge.
NASA Astrophysics Data System (ADS)
Ignjatovic, Milan; Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Djuric, Radivoje
2014-11-01
A model of corona sheath that surrounds the thin core of the lightning channel has been investigated by using a generalized traveling current source return stroke model. The lightning channel is modeled by a charged corona sheath that stretches around a highly conductive central core through which the main current flows. The channel core with the negatively charged outer channel sheath forms a strong electric field, with an overall radial orientation. The return stroke process is modeled as the negative leader charge in the corona sheath being discharged by the positive charge coming from the channel core. Expressions that describe how the corona sheath radius evolves during the return stroke are obtained from the corona sheath model, which predicts charge motion within the sheath. The corona sheath model, set forth by Maslowski and Rakov (2006), Tausanovic et al. (2010), Marjanovic and Cvetic (2009), Cvetic et al. (2011) and Cvetic et al. (2012), divides the sheath onto three zones: zone 1 (surrounding the channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (the outer zone, representing uncharged virgin air). In the present study, we have assumed a constant electric field inside zone 1, as suggested by experimental research of corona discharges in coaxial geometry conducted by Cooray (2000). The present investigation builds upon previous studies by Tausanovic et al. (2010) and Cvetic et al. (2012) in several ways. The value of the breakdown electric field has been varied for probing its effect on channel charge distribution prior and during the return stroke. With the aim of investigating initial space charge distribution along the channel, total electric field at the outer surface of the channel corona sheath, just before the return stroke, is calculated and compared for various return stroke models. A self-consistent algorithm is applied to the generalized traveling current source return stroke model, so that the boundary condition for total electric field is fulfilled. The new density of space charge and the new radius of channel corona envelope, immediately before the return stroke stage, are calculated. The obtained results indicate a strong dependence of channel charge distribution on the breakdown electric field value. Among the compared return stroke models, transmission-line-type models have exhibited a good agreement with the predictions of the Gauss' law regarding total breakdown electric field on the corona sheath's outer surface. The generalized lightning traveling current source return stroke model gives similar results if the adjustment of the space charge density inside the corona sheath is performed.
Important parameters affecting the cell voltage of aqueous electrical double-layer capacitors
NASA Astrophysics Data System (ADS)
Wu, Tzu-Ho; Hsu, Chun-Tsung; Hu, Chi-Chang; Hardwick, Laurence J.
2013-11-01
This study discusses and demonstrates how the open-circuit potential and charges stored in the working potential window on positive and negative electrodes affect the cell voltage of carbon-based electrical double-layer capacitors (EDLCs) in aqueous electrolytes. An EDLC consisting of two activated carbon electrodes is employed as the model system for identifying these key parameters although the potential window of water decomposition can be simply determined by voltammetric methods. First, the capacitive performances of an EDLC with the same charge on positive and negative electrodes are evaluated by cyclic voltammetric, charge-discharge, electrochemical impedance spectroscopic (EIS) analyses, and inductance-capacitance-resistance meter (LCR meter). The principles for obtaining the highest acceptable cell voltage of such symmetric ECs with excellent reversibility and capacitor-like behaviour are proposed. Aqueous charge-balanced EDLCs can be operated as high as 2.0 V with high energy efficiency (about 90%) and only 4% capacitance loss after the 600-cycle stability checking. The necessity of charge balance (but not capacitance balance) for positive and negative electrodes is substantiated from the lower acceptable cell voltage of charge-unbalanced EDLCs.
NASA Technical Reports Server (NTRS)
Kramer, Leonard; Kerslake, Thomas W.; Galofaro, Joel T.
2010-01-01
The International Space Station (ISS) undergoes electrical charging in low Earth orbit (LEO) due to positively biased, exposed conductors on solar arrays that collect electrical charges from the space plasma. Exposed solar array conductors predominately collect negatively charged electrons and thus drive the metal ISS structure electrical ground to a negative floating potential (FP) relative to plasma. This FP is variable in location and time as a result of local ionospheric conditions. ISS motion through Earth s magnetic field creates an addition inductive voltage up to 20 positive and negative volts across ISS structure depending on its attitude and location in orbit. ISS Visiting Vehicles (VVs), such as the planned Orion crew exploration vehicle, contribute to the ISS plasma charging processes. Upon physical contact with ISS, the current collection properties of VVs combine with ISS. This is an ISS integration concern as FP must be controlled to minimize arcing of ISS surfaces and ensure proper management of extra vehicular activity crewman shock hazards. This report is an assessment of ISS induced charging from docked Orion vehicles employing negatively grounded, 130 volt class, UltraFlex (ATK Space Systems) solar arrays. To assess plasma electron current collection characteristics, Orion solar cell test coupons were constructed and subjected to plasma chamber current collection measurements. During these tests, coupon solar cells were biased between 0 and 120 V while immersed in a simulated LEO plasma. Tests were performed using several different simulated LEO plasma densities and temperatures. These data and associated theoretical scaling of plasma properties, were combined in a numerical model which was integrated into the Boeing Plasma Interaction Model. It was found that the solar array design for Orion will not affect the ISS FP by more than about 2 V during worst case charging conditions. This assessment also motivated a trade study to determine acceptable plasma electron current levels that can be collected by a single or combined fleet of ISS-docked VVs.
NASA Astrophysics Data System (ADS)
Zainudin, W. N. R. A.; Ramli, N. A.
2017-09-01
In 2010, Energy Commission (EC) had introduced Incentive Based Regulation (IBR) to ensure sustainable Malaysian Electricity Supply Industry (MESI), promotes transparent and fair returns, encourage maximum efficiency and maintains policy driven end user tariff. To cater such revolutionary transformation, a sophisticated system to generate policy driven electricity tariff structure is in great need. Hence, this study presents a data analytics framework that generates altered revenue function based on varying power consumption distribution and tariff charge function. For the purpose of this study, the power consumption distribution is being proxy using proportion of household consumption and electricity consumed in KwH and the tariff charge function is being proxy using three-tiered increasing block tariff (IBT). The altered revenue function is useful to give an indication on whether any changes in the power consumption distribution and tariff charges will give positive or negative impact to the economy. The methodology used for this framework begins by defining the revenue to be a function of power consumption distribution and tariff charge function. Then, the proportion of household consumption and tariff charge function is derived within certain interval of electricity power. Any changes in those proportion are conjectured to contribute towards changes in revenue function. Thus, these changes can potentially give an indication on whether the changes in power consumption distribution and tariff charge function are giving positive or negative impact on TNB revenue. Based on the finding of this study, major changes on tariff charge function seems to affect altered revenue function more than power consumption distribution. However, the paper concludes that power consumption distribution and tariff charge function can influence TNB revenue to some great extent.
Effect of electrical polarization of hydroxyapatite ceramics on new bone formation.
Itoh, S; Nakamura, S; Kobayashi, T; Shinomiya, K; Yamashita, K; Itoh, S
2006-03-01
Large surface charges can be induced on hydroxyapatite (HAp) ceramics by proton transport polarization, but this does not affect beta-tricalcium phosphate (TCP) because of its low polarizability. We wished to examine differences in osteogenic cell activity and new bone growth between positively or negatively surface-charged HAp and HAp/TCP plates using a calvarial bone defect model. In the first group of rats, test pieces were placed with their positively charged surfaces face down on the dura mater. In the second group, test pieces were placed with their negatively charged surfaces face down on the dura mater. A third group received noncharged test pieces. Histological examination, including enzymatic staining for osteoblasts and osteoclasts, was carried out. While no bone formation was observed at the pericranium, direct bone formation on the cranial bone debris and new bone growth expanded from the margins of the sites of injury to bridge across both the positively and negatively charged surfaces of HAp and HAp/TCP plates occurred. Electrical polarization of implanted plates, including positive charge, led to enhanced osteoblast activity, though decreased osteoclast activity was seen on the positively charged plate surface. Thus, polarization of HAp ceramics may modulate new bone formation and resorption.
Modeling Proton Irradiation in AlGaN/GaN HEMTs: Understanding the Increase of Critical Voltage
NASA Astrophysics Data System (ADS)
Patrick, Erin; Law, Mark E.; Liu, Lu; Cuervo, Camilo Velez; Xi, Yuyin; Ren, Fan; Pearton, Stephen J.
2013-12-01
A combination of TRIM and FLOODS models the effect of radiation damage on AlGaN/GaN HEMTs. While excellent fits are obtained for threshold voltage shift, the models do not fully explain the increased reliability observed experimentally. In short, the addition of negatively-charged traps in the GaN buffer layer does not significantly change the electric field at the gate edges at radiation fluence levels seen in this study. We propose that negative trapped charge at the nitride/AlGaN interface actually produces the virtual-gate effect that results in decreasing the magnitude of the electric field at the gate edges and thus the increase in critical voltage. Simulation results including nitride interface charge show significant changes in electric field profiles while the I-V device characteristics do not change.
Effect of electric charge on the adhesion of human blood platelets.
Lowkis, B; Szymonowicz, M
1993-01-01
The paper presents the results of research into the effect of the size and depth of the implanted electric charge on the adhesion of human blood platelets. The experiments were carried out on polyethylene terephthalate PET foil of 36 microns thickness. The electret formation process was carried out in an electron-beam device. The electrization conditions were such that electrets with the excess electric charge accumulated at various depths were obtained. The selection of conditions was verified by investigating the space charge distribution with the use of the virtual electrode method. The microscopic observation of non-electrified foils and electrets as well as the quantitative examination of the adhesion of human blood platelets has explicitly confirmed the positive influence of the electret effect on the thrombogenesis of PET foil. This made it possible to define the optimum electrization conditions. The research has additionally indicated that the relationship between the amount of adherent blood platelets and the size of the electric charge is not a simple relation of the kind: the larger negative charge, the more thrombogenic material. The decisive and positive effect of the space charge has been confirmed by analysing the effectiveness of the surface and space charge.
Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress
NASA Astrophysics Data System (ADS)
Boukhari, Hamed; Rogti, Fatiha
2016-10-01
The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.
Three Inexpensive Static-Electricity Demonstrations.
ERIC Educational Resources Information Center
Gore, Gordon R.; Gregg, William R.
1992-01-01
Describes demonstrations to (1) construct an inexpensive static electricity detector; (2) obtain an abundant supply of either negative or positive charge using household items; and (3) create static electricity using a Tesla coil or Van de Graaff generator. (MDH)
NASA Astrophysics Data System (ADS)
Maus, Stefan
2017-08-01
Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric field, compensated by a secondary electric field of induced electrical charges. For the geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global corotation electric field inside and outside of the corotation region is provided here, in both inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. Outside of the Earth's core, the induced charge is immediately accessible from the spherical harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high northern and southern latitudes, negative at midlatitudes, and increases strongly toward the Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap are caused by the corotation charges located in the ionosphere above and the Earth below. The corotation charges also flow outward into the region of closed magnetic field lines, forcing the plasmasphere to corotate. The electric field of the corotation charges further extends outside of the corotating regions, contributing radial outward electric fields of about 10 mV/m in the northern and southern polar caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a net electric charge.
Assessment and Control of Spacecraft Charging Risks on the International Space Station
NASA Technical Reports Server (NTRS)
Koontz, Steve; Edeen, Marybeth; Spetch, William; Dalton, Penni; Keening, Thomas
2003-01-01
Electrical interactions between the F2 region ionospheric plasma and the 160V photovoltaic (PV) electrical power system on the International Space Station (ISS) can produce floating potentials (FP) on the ISS conducting structure of greater magnitude than are usually observed on spacecraft in low-Earth orbit. Flight through the geomagnetic field also causes magnetic induction charging of ISS conducting structure. Charging processes resulting from interaction of ISS with auroral electrons may also contribute to charging albeit rarely. The magnitude and frequency of occurrence of possibly hazardous charging events depends on the ISS assembly stage (six more 160V PV arrays will be added to ISS), ISS flight configuration, ISS position (latitude and longitude), and the natural variability in the ionospheric flight environment. At present, ISS is equipped with two plasma contactors designed to control ISS FP to within 40 volts of the ambient F2 plasma. The negative-polarity grounding scheme utilized in the ISS 160V power system leads, naturally, to negative values of ISS FP. A negative ISS structural FP leads to application of electrostatic fields across the dielectrics that separate conducting structure from the ambient F2 plasma, thereby enabling dielectric breakdown and arcing. Degradation of some thermal control coatings and noise in electrical systems can result. Continued review and evaluation of the putative charging hazards, as required by the ISS Program Office, revealed that ISS charging could produce a risk of electric shock to the ISS crew during extra vehicular activity. ISS charging risks are being evaluated in ongoing ISS charging measurements and analysis campaigns. The results of ISS charging measurements are combined with a recently developed detailed model of the ISS charging process and an extensive analysis of historical ionospheric variability data, to assess ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA analysis (estimated frequency of occurrence and severity of the charging hazards) are then used to select the hazard control strategy that provides the best overall safety and mission success environment for ISS and the ISS crew. This paper presents: 1) a summary of ISS spacecraft charging analysis, measurements, observations made to date, 2) plans for future ISS spacecraft charging measurement campaigns, and 3) a detailed discussion of the PRA strategy used to assess ISS spacecraft charging risks and select charging hazard control strategies
Assessment and Control of International Space Station Spacecraft Charging Risks
NASA Astrophysics Data System (ADS)
Koontz, S.; Edeen, M.; Spetch, W.; Dalton, P.; Keeping, T.; Minow, J.
2003-12-01
Electrical interactions between the F2 region ionospheric plasma and the 160V photovoltaic (PV) electrical power system on the International Space Station (ISS) can produce floating potentials (FP) on ISS conducting structure of greater magnitude than are usually observed on spacecraft in low-Earth orbit. Flight through the geomagnetic field also causes magnetic induction charging of ISS conducting structure. Charging processes resulting from interaction of ISS with auroral electrons may also contribute to charging, albeit rarely. The magnitude and frequency of occurrence of possibly hazardous charging events depends on the ISS assembly stage (six more 160V PV arrays will be added to ISS), ISS flight configuration, ISS position (latitude and longitude), and the natural variability in the ionospheric flight environment. At present, ISS is equipped with two plasma contactors designed to control ISS FP to within 40 volts of the ambient F2 plasma. The negative-polarity grounding scheme utilized in the ISS 160V power system leads, naturally, to negative values of ISS FP. A negative ISS structural FP leads to application of electrostatic fields across the dielectrics that separate conducting structure from the ambient F2 plasma, thereby enabling dielectric breakdown and arcing. Degradation of some thermal control coatings and noise in electrical systems can result. Continued review and evaluation of the putative charging hazards, as required by the ISS Program Office, revealed that ISS charging could produce a risk of electric shock to the ISS crew during extra vehicular activity. ISS charging risks are being evaluated in ongoing ISS charging measurements and analysis campaigns. The results of ISS charging measurements are combined with a recently developed detailed model of the ISS charging process and an extensive analysis of historical ionospheric variability data, to assess ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA analysis (estimated frequency of occurrence and severity of the charging hazards) are then used to select the hazard control strategy that provides the best overall safety and mission success environment for ISS and the ISS crew. This paper presents: 1) a summary of ISS spacecraft charging analysis, measurements, observations made to date, 2) plans for future ISS spacecraft charging measurement campaigns, and 3) a detailed discussion of the PRA strategy used to assess ISS spacecraft charging risks and select charging hazard control strategies.
Electron kinetics at the plasma interface
NASA Astrophysics Data System (ADS)
Bronold, Franz Xaver; Fehske, Holger; Pamperin, Mathias; Thiessen, Elena
2018-05-01
The most fundamental response of an ionized gas to a macroscopic object is the formation of the plasma sheath. It is an electron depleted space charge region, adjacent to the object, which screens the object's negative charge arising from the accumulation of electrons from the plasma. The plasma sheath is thus the positively charged part of an electric double layer whose negatively charged part is inside the wall. In the course of the Transregional Collaborative Research Center SFB/TRR24 we investigated, from a microscopic point of view, the elementary charge transfer processes responsible for the electric double layer at a floating plasma-wall interface and made first steps towards a description of the negative part of the layer inside the wall. Below we review our work in a colloquial manner, describe possible extensions, and identify key issues which need to be resolved to make further progress in the understanding of the electron kinetics across plasma-wall interfaces. Contribution to the Topical Issue "Fundamentals of Complex Plasmas", edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.
Price Incentivised Electric Vehicle Charge Control for Community Voltage Regulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Damian; Baroncelli, Fabio; Fowler, Christopher
2014-11-03
With the growing availability of Electric Vehicles, there is a significant opportunity to use battery 'smart-charging' for voltage regulation. This work designs and experimentally evaluates a system for price-incentivised electric vehicle charging. The system is designed to eliminate negative impacts to the user while minimising the cost of charging and achieving a more favourable voltage behaviour throughout the local grid over time. The practical issues associated with a real-life deployment are identified and resolved. The efficacy of the system is evaluated in the challenging scenario in which EVs are deployed in six closely distributed homes, serviced by the same lowmore » voltage residential distribution feeder.« less
Numerical modelling of needle-grid electrodes for negative surface corona charging system
NASA Astrophysics Data System (ADS)
Zhuang, Y.; Chen, G.; Rotaru, M.
2011-08-01
Surface potential decay measurement is a simple and low cost tool to examine electrical properties of insulation materials. During the corona charging stage, a needle-grid electrodes system is often used to achieve uniform charge distribution on the surface of the sample. In this paper, a model using COMSOL Multiphysics has been developed to simulate the gas discharge. A well-known hydrodynamic drift-diffusion model was used. The model consists of a set of continuity equations accounting for the movement, generation and loss of charge carriers (electrons, positive and negative ions) coupled with Poisson's equation to take into account the effect of space and surface charges on the electric field. Four models with the grid electrode in different positions and several mesh sizes are compared with a model that only has the needle electrode. The results for impulse current and surface charge density on the sample clearly show the effect of the extra grid electrode with various positions.
Forbes, Thomas P; Dixon, R Brent; Muddiman, David C; Degertekin, F Levent; Fedorov, Andrei G
2009-09-01
An initial investigation into the effects of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source is reported to gain understanding of ionization mechanisms and to improve analyte ionization efficiency and operation stability. In RF-only mode, AMUSE ejects, on average, an equal number of slightly positive and slightly negative charged droplets due to random charge fluctuations, providing inefficient analyte ionization. Charge separation at the nozzle orifice is achieved by the application of an external electric field. By bringing the counter electrode close to the nozzle array, strong electric fields can be applied at relatively low DC potentials. It has been demonstrated, through a number of electrode/electrical potential configurations, that increasing charge separation leads to improvement in signal abundance, signal-to-noise ratio, and signal stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Qingtao; Li, Liyu; Nie, Zimin
We will show a new method to differentiate the vanadium transport from concentration gradient and that from electric field. Flow batteries with vanadium and iron redox couples as the electro-active species were employed to investigate the transport behavior of vanadium ions in the presence of electric field. It was shown that electric field accelerated the positive-to-negative and reduced the negative-to-positive vanadium ions transport in charge process and affected the vanadium ions transport in an opposite way in discharge process. In addition, a method was designed to differentiate the concentration gradient-driven vanadium ions diffusion and electric field-driven vanadium ions migration. Simplifiedmore » mathematical model was established to simulate the vanadium ions transport in real charge-discharge operation of flow battery. The concentration gradient diffusion coefficients and electric-migration coefficients of V2+, V3+, VO2+, and VO2+ across Nafion membrane were obtained by fitting the experimental data.« less
Simple Pencil-and-Paper Notation for Representing Electrical Charge States
NASA Astrophysics Data System (ADS)
Morse, Robert A.
2017-11-01
In Benjamin Franklin's one fluid theory of electrification, ordinary unelectrified matter consisted of a matrix of matter suffused with a certain amount of "electrical fluid." Electrical effects were due to an excess or deficit of electrical fluid, hence the terms positive and negative. Before the development of a modern view of the atom, diagrams showing charged objects would simply have "+" or "-" signs to indicate the charged state. As physicists we know how to interpret these diagrams and understand what they are telling us about the underlying atomic model of charging. However, novice students may not readily make the connection between the atomic model, in which a charged solid object either gains or loses electrons but does not gain or lose positive charges. Furthermore, when isolated objects become charged, the total number of electrons must be accounted for as charge is a conserved quantity. To really understand the changes that occur in charging by contact, conduction, or induction, it is useful for students to visually represent the processes in a way that emphasizes the atomicity of the processes, including the induced polarization of objects, and the requirement that charge be conserved.
Polarization-induced surface charges in hydroxyapatite ceramics
NASA Astrophysics Data System (ADS)
Horiuchi, N.; Nakaguki, S.; Wada, N.; Nozaki, K.; Nakamura, M.; Nagai, A.; Katayama, K.; Yamashita, K.
2014-07-01
Calcium hydroxyapatite (HAp; Ca10(PO4)6(OH)2) is a well-known biomaterial that is the main inorganic component of bones and teeth. Control over the surface charge on HAp would be a key advance in the development of the material for tissue engineering. We demonstrate here that surface charge can be induced by an electrical poling process using the Kelvin method. Positive and negative charges were induced on the HAp surface in response to the applied electric field in the poling process. The surface charging is attributed to dipole polarization that is homogeneously distributed in HAp. Additionally, the surface charging is considered to originate from the organization of OH- ions into a polar phase in the structure.
NASA Technical Reports Server (NTRS)
Herr, Joel L.
1993-01-01
The steady state interaction of two electrically biased parallel plates immersed in a flowing plasma characteristic of low earth orbit is studied numerically. Fluid equations are developed to describe the motion of the cold positively charged plasma ions, and are solved using finite-differences in two dimensions on a Cartesian grid. The behavior of the plasma electrons is assumed to be described by the Maxwell-Boltzmann distribution. Results are compared to an analytical and a particle simulation technique for a simplified flow geometry consisting of a single semi-infinite negatively biased plate. Comparison of the extent of the electrical disturbance into the flowing plasma and the magnitude of the current collected by the plate is very good. The interaction of two equally biased parallel plates is studied as a function of applied potential. The separation distance at which the current collected by either plate decreases by five and twenty percent is determined as a function of applied potential. The percent decreases were based on a non-interacting case. The decrease in overall current is caused by a decrease in ionic density in the region between the plates. As the separation between the plates decreases, the plates collect the ions at a faster rate than they are supplied to the middle region by the oncoming plasma flow. The docking of spacecraft in orbit is simulated by moving two plates of unequal potential toward one another in a quasi-static manner. One plate is held at a large negative potential while the other floats electrically in the resulting potential field. It is found that the floating plate does not charge continuously negative as it approaches the other more negatively biased plate. Instead, it charges more and then less negative as ionic current decreases and then increases respectively upon approach. When the two plates come into contact, it is expected that the electrically floating plate will charge rapidly negative to a potential near that of the other plate.
Hypothesis on the Origin of Chaotic Pulse Train in Dart Leader
NASA Astrophysics Data System (ADS)
Pu, Y.; Qie, X.; Sun, Z.; Jiang, R.; Liu, M.; Zhang, H.
2017-12-01
The origin of chaotic pulse train (CPT) during the dart leader propagation remains debatable. Based on previous observations, the `chaotic' dart leader is featured by chaotic electric fields, large charge transfer and high energetic radiation. In some cases, the cause of CPT was attributed to the concurrent branches or upward connecting leader. In this presentation, after carefully examining the simultaneous optical, electrical and VHF location data of triggered lightning in SHATLE and some results in other literature, we found the close relationship between the upper luminous leader segment and CPT. It is hypothesized that the CPT originates from the luminous corona zone around the upper leader channel beyond the leader tip. The fast, sufficient supply of negative charge from the cloud can result in a net negative charge layer around the ionized channel surface. Then new diffuse discharge can make a corona zone outside the channel and radiates in a chaotic way. The cloud charge reservoir and the speed of charge transfer, which can be indicated by the speed of the leader, are determinative to the generation of CPT. Using VHF location technique, we also estimated the speed evolution of the leader and link it with electric field change.
A Brief 30-Year Review: Research Highlights from Lightning Mapping Systems 1970-2000
NASA Astrophysics Data System (ADS)
MacGorman, D. R.
2016-12-01
Modern lightning mapping began in the 1970s, the decade in which VHF mapping systems, acoustic mapping systems, and ground strike locating systems were introduced. Adding GPS synchronization of VHF systems in the late 1990s enabled real-time VHF mapping systems to be deployed more extensively. Data these systems provided by 2000 revolutionized our understanding of how storms produce lightning. Among key results: Electrostatics, not electrodynamics, governs where lightning is initiated and where it propagates, contrary to early expectations. Lightning is initiated in a region of large electric field magnitude, typically between a positive charge region and a negative charge region. The geometry of a storm's charge regions governs the spatial extent of each end of the flash. The flash initially propagates bidirectionally toward the two charge regions that initiated it, and once it reaches the charge regions and maximizes the ambient potential difference spanned by the flash structure, it extends through each charge region's ambient electric potential well until the total electric field magnitude at the ends of the flash drops below the threshold for continued propagation. The typical charge distribution producing a cloud-to-ground flash is a region of charge of the polarity being lowered to ground, above a lesser amount of charge of the opposite polarity; the lower region has too little charge to capture the downward propagating channel. Contrary to previous understanding, naturally occurring cloud-to-ground lightning often lowers positive charge to ground, instead of the usual negative charge, in several situations, including winter storms, stratiform precipitation regions, some severe storms, and storms on the High Plains of the United States. The reason cloud-to-ground activity in some storms is dominated by flashes that lower positive charge to ground is that the polarity of the main charge regions in those storms is inverted from the usual polarity, with the main mid-level charge being positive and the main upper-level charge being negative. This strongly implies that the dominant non-inductive electrification mechanism is inverted in those storms, probably because the liquid water content in the mixed phase region is larger than in most storms.
Trajectories of Moving Charges in Static Electric Fields.
ERIC Educational Resources Information Center
Kirkup, L.
1986-01-01
Describes the implementation of a trajectory-plotting program for a microcomputer; shows how it may be used to demonstrate the focusing effect of a simple electrostatic lens. The computer program is listed and diagrams are included that show comparisons of trajectories of negative charges in the vicinity of positive charges. (TW)
Forbes, Thomas P.; Dixon, R. Brent; Muddiman, David C.; Degertekin, F. Levent; Fedorov, Andrei G.
2009-01-01
An initial investigation into the effects of charge separation in the Array of Micromachined UltraSonic Electrospray (AMUSE) ion source is reported in order to gain understanding of ionization mechanisms and to improve analyte ionization efficiency and operation stability. In RF-only mode, AMUSE ejects on average, an equal number of slightly positive and slightly negative charged droplets due to random charge fluctuations, providing inefficient analyte ionization. Charge separation at the nozzle orifice is achieved by the application of an external electric field. By bringing the counter electrode close to the nozzle array, strong electric fields can be applied at relatively low DC potentials. It has been demonstrated, through a number of electrode/electrical potential configurations that increasing charge separation leads to improvement in signal abundance, signal-to-noise ratio, and signal stability. PMID:19525123
Granhen, Ewerton Ramos; Reis, Marcos Allan Leite; Souza, Fabrício M; Del Nero, Jordan
2010-12-01
We investigate theoretically the charge accumulated Q in a three-terminal molecular device in the presence of an external electric field. Our approach is based on ab initio Hartree-Fock and density functional theory methodology contained in Gaussian package. Our main finding is a negative differential resistance (NDR) in the charge Q as a function of an external electric field. To explain this NDR effect we apply a phenomenological capacitive model based on a quite general system composed of many localized levels (that can be LUMOs of a molecule) coupled to source and drain. The capacitance accounts for charging effects that can result in Coulomb blockade (CB) in the transport. We show that this CB effect gives rise to a NDR for a suitable set of phenomenological parameters, like tunneling rates and charging energies. The NDR profile obtained in both ab initio and phenomenological methodologies are in close agreement.
Investigation of Dusts Effect and Negative Ion in DC Plasmas by Electric Probes
NASA Astrophysics Data System (ADS)
Oh, Hye Taek; Kang, Inje; Bae, Min-Keun; Park, Insun; Lee, Seunghwa; Jeong, Seojin; Chung, Kyu-Sun
2017-10-01
Dust is typically negatively charged by electron attachment whose thermal velocities are fast compared to that of the heavier ions. The negatively charged particles can play a role of negative ions which affect the quasi-neutrality of background plasma. To investigate effect of metal dusts and negative ion on plasma and materials, metal dusts are injected into background Ar plasma which is generated by tungsten filament using dust dispenser on Cubical Plasma Device (CPD). The CPD has following conditions: size =24x24x24cm3, plasma source =DC filament plasma (ne 1x10x1010, Te 2eV), background gas =Ar, dusts =tungsten powder (diameter 1.89micron). The dust dispenser is developed to quantitate of metal dust by ultrasonic transducer. Electronegative plasmas are generated by adding O2 + Ar plasma to compare negative ion and dust effect. A few grams of micron-sized dusts are placed in the dust dispenser which is located at the upper side of the Cubical Plasma Device. The falling particles by dust dispenser are mainly charged up by the collection of the background plasma. The change in parameters due to negative ion production are characterized by measuring the floating and plasma potential, electron temperature and negative ion density using electric probes.
Simple Pencil-and-Paper Notation for Representing Electrical Charge States
ERIC Educational Resources Information Center
Morse, Robert A.
2017-01-01
In Benjamin Franklin's one fluid theory of electrification, ordinary unelectrified matter consisted of a matrix of matter suffused with a certain amount of "electrical fluid." Electrical effects were due to an excess or deficit of electrical fluid, hence the terms positive and negative. Before the development of a modern view of the…
Kubiak-Ossowska, Karina; Mulheran, Paul A; Nowak, Wieslaw
2014-08-21
The mechanism of human fibronectin adhesion synergy region (known as integrin binding region) in repeat 9 (FN(III)9) domain adsorption at pH 7 onto various and contrasting model surfaces has been studied using atomistic molecular dynamics simulations. We use an ionic model to mimic mica surface charge density but without a long-range electric field above the surface, a silica model with a long-range electric field similar to that found experimentally, and an Au {111} model with no partial charges or electric field. A detailed description of the adsorption processes and the contrasts between the various model surfaces is provided. In the case of our model silica surface with a long-range electrostatic field, the adsorption is rapid and primarily driven by electrostatics. Because it is negatively charged (-1e), FN(III)9 readily adsorbs to a positively charged surface. However, due to its partial charge distribution, FN(III)9 can also adsorb to the negatively charged mica model because of the absence of a long-range repulsive electric field. The protein dipole moment dictates its contrasting orientation at these surfaces, and the anchoring residues have opposite charges to the surface. Adsorption on the model Au {111} surface is possible, but less specific, and various protein regions might be involved in the interactions with the surface. Despite strongly influencing the protein mobility, adsorption at these model surfaces does not require wholesale FN(III)9 conformational changes, which suggests that the biological activity of the adsorbed protein might be preserved.
Charge-Dependent Directed Flow in Cu +Au Collisions at √{sN N } =200 GeV
NASA Astrophysics Data System (ADS)
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, B.; Huang, X.; Huang, H. Z.; Huang, T.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Y.; Li, C.; Li, W.; Li, X.; Li, X.; Lin, T.; Lisa, M. A.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, G. L.; Ma, R.; Ma, Y. G.; Ma, L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Sharma, B.; Shen, W. Q.; Shi, S. S.; Shi, Z.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Z.; Sun, Y.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, F.; Wang, J. S.; Wang, Y.; Wang, H.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xin, K.; Xu, Q. H.; Xu, Y. F.; Xu, H.; Xu, Z.; Xu, N.; Xu, J.; Yang, C.; Yang, Y.; Yang, S.; Yang, Y.; Yang, Q.; Yang, Y.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J.; Zhang, X. P.; Zhang, S.; Zhang, Y.; Zhang, J. B.; Zhang, Z.; Zhang, S.; Zhang, J.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2017-01-01
We present the first measurement of charge-dependent directed flow in Cu +Au collisions at √{sN N }=200 GeV . The results are presented as a function of the particle transverse momentum and pseudorapidity for different centralities. A finite difference between the directed flow of positive and negative charged particles is observed that qualitatively agrees with the expectations from the effects of the initial strong electric field between two colliding ions with different nuclear charges. The measured difference in directed flow is much smaller than that obtained from the parton-hadron-string-dynamics model, which suggests that most of the electric charges, i.e., quarks and antiquarks, have not yet been created during the lifetime of the strong electric field, which is of the order of, or less than, 1 fm /c .
Mahmoud, Akrama; Olivier, Jérémy; Vaxelaire, Jean; Hoadley, Andrew F A
2010-04-01
Electric field-assisted dewatering, also called electro-dewatering, is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. Electro-dewatering is not a new idea, but the practical industrial applications have been limited to niche areas in soil mechanics, civil engineering, and the ceramics industry. Recently, it has received great attention, specially, in the fields of fine-particle sludge, gelatinous sludge, sewage sludge, pharmaceutical industries, food waste and bull kelp, which could not be successfully dewatered with conventional mechanical methods. This review focuses on the scientific and practical aspects of the application of an electrical field in laboratory/industrial dewatering, and discusses this in relation to conventional dewatering techniques. A comprehensive bibliography of research in the electro-dewatering of wastewater sludges is included. As the fine-particle suspensions possess a surface charge, usually negative, they are surrounded by a layer with a higher density of positive charges, the electric double layer. When an electric field is applied, the usually negative charged particles move towards the electrode of the opposite charge. The water, commonly with cations, is driven towards the negative electrode. Electro-dewatering thus involves the well-known phenomena of electrophoresis, electro-osmosis, and electromigration. Following a detailed outline of the role of the electric double layer and electrokinetic phenomena, an analysis of the components of applied voltage and their significance is presented from an electrochemical viewpoint. The aim of this elementary analysis is to provide a fundamental understanding of the different process variables and configurations in order to identify potential improvements. Also discussed herein is the investigation of the electrical behaviour of a porous medium, with particular emphasis on porous medium conductivity determination. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Power loss for high-voltage solar-cell arrays
NASA Technical Reports Server (NTRS)
Parker, L. W.
1979-01-01
Electric field particle collection and power loss are calculated in program written in FORTRAN IV for use on UNIVAC 1100/40 computer. Program incorporates positive and negative and negative charge flows and balance between positive and negative flows is performed by iteration.
Negative space charge effects in photon-enhanced thermionic emission solar converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segev, G.; Weisman, D.; Rosenwaks, Y.
2015-07-06
In thermionic energy converters, electrons in the gap between electrodes form a negative space charge and inhibit the emission of additional electrons, causing a significant reduction in conversion efficiency. However, in Photon Enhanced Thermionic Emission (PETE) solar energy converters, electrons that are reflected by the electric field in the gap return to the cathode with energy above the conduction band minimum. These electrons first occupy the conduction band from which they can be reemitted. This form of electron recycling makes PETE converters less susceptible to negative space charge loss. While the negative space charge effect was studied extensively in thermionicmore » converters, modeling its effect in PETE converters does not account for important issues such as this form of electron recycling, nor the cathode thermal energy balance. Here, we investigate the space charge effect in PETE solar converters accounting for electron recycling, with full coupling of the cathode and gap models, and addressing conservation of both electric and thermal energy. The analysis shows that the negative space charge loss is lower than previously reported, allowing somewhat larger gaps compared to previous predictions. For a converter with a specific gap, there is an optimal solar flux concentration. The optimal solar flux concentration, the cathode temperature, and the efficiency all increase with smaller gaps. For example, for a gap of 3 μm the maximum efficiency is 38% and the optimal flux concentration is 628, while for a gap of 5 μm the maximum efficiency is 31% and optimal flux concentration is 163.« less
Protein separation using an electrically tunable membrane
NASA Astrophysics Data System (ADS)
Jou, Ining; Melnikov, Dmitriy; Gracheva, Maria
Separation of small proteins by charge with a solid-state porous membrane requires control over the protein's movement. Semiconductor membrane has this ability due to the electrically tunable electric potential profile inside the nanopore. In this work we investigate the possibility to separate the solution of two similar sized proteins by charge. As an example, we consider two small globular proteins abundant in humans: insulin (negatively charged) and ubiquitin (neutral). We find that the localized electric field inside the pore either attracts or repels the charged protein to or from the pore wall which affects the delay time before a successful translocation of the protein through the nanopore. However, the motion of the uncharged ubiquitin is unaffected. The difference in the delay time (and hence the separation) can be further increased by the application of the electrolyte bias which induces an electroosmotic flow in the pore. NSF DMR and CBET Grant No. 1352218.
NASA Astrophysics Data System (ADS)
Tully, Katherine C.; Whitacre, Jay F.; Litster, Shawn
2014-02-01
This paper presents in-situ spatiotemporal measurements of the electrolyte phase potential within an electric double layer capacitor (EDLC) negative electrode as envisaged for use in an aqueous hybrid battery for grid-scale energy storage. The ultra-thick electrodes used in these batteries to reduce non-functional material costs require sufficiently fast through-plane mass and charge transport to attain suitable charging and discharging rates. To better evaluate the through-plane transport, we have developed an electrode scaffold (ES) for making in situ electrolyte potential distribution measurements at discrete known distances across the thickness of an uninterrupted EDLC negative electrode. Using finite difference methods, we calculate local current, volumetric charging current and charge storage distributions from the spatiotemporal electrolyte potential measurements. These potential distributions provide insight into complex phenomena that cannot be directly observed using other existing methods. Herein, we use the distributions to identify areas of the electrode that are underutilized, assess the effects of various parameters on the cumulative charge storage distribution, and evaluate an effectiveness factor for charge storage in EDLC electrodes.
Kireeff Covo, Michel
2013-07-09
A device is described, which is sensitive to electric fields, but is insensitive to stray electrons/ions and unlike a bare, exposed conductor, it measures capacitively coupled current while rejecting currents due to charged particle collected or emitted. A charged particle beam establishes an electric field inside the beam pipe. A grounded metallic box with an aperture is placed in a drift region near the beam tube radius. The produced electric field that crosses the aperture generates a fringe field that terminates in the back surface of the front of the box and induces an image charge. An electrode is placed inside the grounded box and near the aperture, where the fringe fields terminate, in order to couple with the beam. The electrode is negatively biased to suppress collection of electrons and is protected behind the front of the box, so the beam halo cannot directly hit the electrode and produce electrons. The measured signal shows the net potential (positive ion beam plus negative electrons) variation with time, as it shall be observed from the beam pipe wall.
Weis, Allison; Michalek, Jeremy J; Jaramillo, Paulina; Lueken, Roger
2015-05-05
We develop a unit commitment and economic dispatch model to estimate the operation costs and the air emissions externality costs attributable to new electric vehicle electricity demand under controlled vs uncontrolled charging schemes. We focus our analysis on the PJM Interconnection and use scenarios that characterize (1) the most recent power plant fleet for which sufficient data are available, (2) a hypothetical 2018 power plant fleet that reflects upcoming plant retirements, and (3) the 2018 fleet with increased wind capacity. We find that controlled electric vehicle charging can reduce associated generation costs by 23%-34% in part by shifting loads to lower-cost, higher-emitting coal plants. This shift results in increased externality costs of health and environmental damages from increased air pollution. On balance, we find that controlled charging of electric vehicles produces negative net social benefits in the recent PJM grid but could have positive net social benefits in a future grid with sufficient coal retirements and wind penetration.
Charge control experiments on a CH-53E helicopter in a dusty environment
NASA Technical Reports Server (NTRS)
Moore, C. B.; Jones, J. J.; Hunyady, S. J.
1991-01-01
Charge control tests were carried out on a ground based, Marine Corps helicopter to determine if control of the electric fields acting on the engine exhaust gases could be used to reduce the electrification of the helicopter when it operated in a dusty atmosphere. The test aircraft was flown to a dusty, unpaved area and was then isolated electrically from the earth. When the helicopter engines were operated at ground idle with the rotor locked, the isolated aircraft charged positively, as had been observed previously. However, when the rotor brake was released and the turning rotor created a downdraft that raised dust clouds, the aircraft always became charged more positively, to potentials ranging form +30 to +45 kV. The dust clouds raised by the rotor downwash invariably carried negative space charges with concentrations of up to -100 nC/cu m and caused surface electric fields with strengths of up to 10 kV/m immediately down wind of the aircraft. The natural charging of the helicopter operating in these dust clouds was successfully opposed by control of the electric fields acting on the hot, electrically conductive exhaust gases. The control was achieved by placing electrostatic shield around the exhausts.
NASA Astrophysics Data System (ADS)
Li, Yajun; Zhang, Guangshu; Wang, Yanhui; Wu, Bin; Li, Jing
2017-09-01
A comprehensive observation on thunderstorms was conducted in the Qinghai area by using a very high frequency three-dimensional lightning mapping system and Doppler radar. The spatio-temporal evolution of the charge structure of the isolated thunderstorm was analyzed according to the developing process of thunderstorm, and the reasons for the change in charge structure diversity were studied. During the initial developing and mature stages of the thunderstorm, the charge structure was a steady negative dipole polarity, i.e., the negative charge region was above the positive charge region. Furthermore, the total number of flashes was lower during these two stages. During the thunderstorm's dissipation stage, the charge structure was varied and complicated, with a positive dipole, negative dipole, and a tripole charge structure changing and coexisting during this stage. This charge structure diversity was primarily caused by the collision and merging of two local thunderstorm cells, leading to a charge rearrangement and distribution and the formation of a new charge structure. The frequency of the negative cloud-to-ground and intracloud flashes increased sharply in the dissipation stage, reaching a maximum value. The increase in frequency of negative cloud-to-ground was mainly caused by the lower positive charge weakening during the dissipation stage. In addition, the relationship between charging regions and temperature layers was analyzed by combining sounding temperature data with the theory of a non-inductive charging mechanism.
Investigation of Electrobiological Properties of Bioaerosols
NASA Astrophysics Data System (ADS)
Mainelis, G.; Yao, M.; An, H. R.
2004-05-01
Exposure to bioaerosols, especially to pathogenic or allergenic microorganisms, may cause a wide range of respiratory and other health disorders in occupational and general populations. One of bioaerosol characteristics - electric charge - can greatly influence their deposition in sampling lines and collection devices. The magnitude of electric charge carried by inhaled particles can have a significant effect on their deposition in the lung. In addition, electric charge may affect role of bioaerosols as ice and cloud condensation nuclei; charge (or electrical mobility) can control bioaerosol movement in electrical fields, such as created by power lines. Electrical charge is also important for the development of bioaerosol samplers that utilize electrostatics for particle collection - this technique has been shown to be more "gentle" collection method than traditionally used impactors and impingers. Our previous studies have shown that airborne environmental bacteria, such as Pseudomonas fluorescens and B. subtilis var. niger, have a net negative charge, with individual cells carrying as many as 10,000 elementary charge units, which sharply contrasted with low electrical charges carried by non-biological test particles. We have also found that magnitude and polarity of electrical charge can significantly affect viability of sensitive bacteria, such as P. fluorescens. In our continuing exploration of electrobiological properties of bioaerosols, we investigated application of electrostatic collection method for concurrent determination of total and viable bioaerosols, and also analyzed the effect of electrical fields on microbial viability. In our new bioaerosol collector, the biological particles are drawn into the sampler's electrical field and are concurrently deposited on an agar plate for determining viable microorganisms, and into a ELISA plate for determining total collected microorganisms. Experiments with B. subtilis var. niger and P. fluorescens vegetative cells have shown that on average 80 percent of airborne bacteria entering the sampler were removed from the air onto the plates when the sampler operated at 8 L/min and used collection voltage of -1,500V. From 15 to 25 percent of all bacteria entering the sampler were enumerated by the culture technique. Use of electrostatic analysis techniques may require application of strong electrical fields which could be damaging to biological particles. In our experiments, the airborne P. fluorescens bacteria were exposed to electric fields of 10kV/cm for 30 seconds, which did not result in viability reduction. In contrast, more than 90 percent of the P. fluorescens cells have been killed when the microorganisms were first deposited on filters and then exposed to positive electrical field of 15 kV/cm for at least 15 minutes. Electrical fields of 5 and 10 kV/cm also achieved similar effect when bacteria were exposed for 120 min. The exposure of bacteria to negative electrical fields resulted in even higher rates of inactivation. The B. subtilis var. niger bacteria proved to be hardier and 10 percent viability reduction was achieved with the use of 15kV/min for 2 hours. The obtained results demonstrate the importance of electrical charges and fields in behavior, collection and control of bioaerosols. The field studies will have to be performed to confirm laboratory findings.
The effects of electric current on bacteria colonising intravenous catheters.
Liu, W K; Tebbs, S E; Byrne, P O; Elliott, T S
1993-11-01
The effect of a direct electric current (10 microA) on the growth of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis was investigated. When the ends of negatively-charged intravascular catheters were placed in nutrient agar seeded with bacteria, circular zones of inhibition of bacterial growth were observed around the catheters. The zones ranged from 6 to 16 mm in diameter according to the organism under test. Zones of inhibition were not produced around positively-charged catheters. Bacteria colonising the surfaces of catheters were similarly affected by the application of a 10 microA electric current. A negative electric current applied to colonised catheters for 4 to 24 h significantly reduced the number of adherent viable organisms as compared to controls. The results demonstrated that a constant electric current of low amperage might be used to reduce bacterial colonisation of intravascular catheters. This may offer a novel means of protecting catheters and other prosthetic devices from associated sepsis in vivo.
NASA Technical Reports Server (NTRS)
Reeves, R. D.; Balmain, K. G.
1981-01-01
A two dimensional model was developed to describe the charging of thin polymer films exposed to a uniform mon-energetic electron beam. The study was motivated by observed anomalous behavior of geosynchronous satellites which was attributed to electrical discharges associated with the differential charging of satellite surfaces of magnetospheric electrons. Electric fields both internal and external to the irradiated specimen were calculated at steady state in order to identify regions of high electrical stress. Particular emphasis was placed on evaluating the charging characteristics near the material's edge. The model was used to identify and quantify the effects of some of the experimental parameters notably: beam energy; beam angle of incidence; beam current density; material thickness; and material width. Simulations of the following situations were also conducted: positive or negative precharging over part of the surface; a central gap in the material; and a discontinuity in the material's thickness.
Charge-Dependent Directed Flow in Cu + Au Collisions at s N N = 200 GeV
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...
2017-01-05
Here we present the first measurement of charge-dependent directed flow in Cu + Au collisions atmore » $$\\sqrt{s}$$$_ {NN}$$ = 200 GeV . The results are presented as a function of the particle transverse momentum and pseudorapidity for different centralities. A finite difference between the directed flow of positive and negative charged particles is observed that qualitatively agrees with the expectations from the effects of the initial strong electric field between two colliding ions with different nuclear charges. The measured difference in directed flow is much smaller than that obtained from the parton-hadron-string-dynamics model, which suggests that most of the electric charges, i.e., quarks and antiquarks, have not yet been created during the lifetime of the strong electric field, which is of the order of, or less than, 1fm / c .« less
METHOD AND APPARATUS FOR EXAMINING FUEL ELEMENTS FOR LEAKAGE
Smith, R.R.; Echo, M.W.; Doe, C.B.
1963-12-31
A process and a device for the continuous monitoring of fuel elements while in use in a liquid-metal-cooled, argonblanketed nuclear reactor are presented. A fraction of the argon gas is withdrawn, contacted with a negative electrical charge for attraction of any alkali metal formed from argon by neutron reaction, and recycled into the reactor. The electrical charge is introduced into water, and the water is examined for radioactive alkali metals. (AEC)
ELECTROSTATIC FORCES IN WIND-POLLINATION: PART 1: MEASUREMENT OF THE ELECTROSTATIC CHARGE ON POLLEN
Under fair weather conditions, a weak electric field exists between negative charge induced on the surface of plants and positive charge in the air. This field is magnified around points (e.g. stigmas) and can reach values up to 3x106 V m-1. If wind-disperse...
Enhanced Fair-Weather Electric Fields Soon After Sunrise
NASA Technical Reports Server (NTRS)
Marshall, T. C.; Rust, W. D.; Stolzenburg, M.; Roeder, W.; Krehbiel, P. R.
1999-01-01
The typical fair weather electric field at the ground is between -100 and -300 V/m. At the NASA Kennedy Space Center and US Air Force Cape Canaveral Air Station (KSC) the electric field at the ground sometimes reaches -400 to -1200 V/m within an hour or two after sunrise on days that otherwise seem to be fair weather. We refer to the enhanced negative electric fields as the "sunrise enhancement." To investigate the sunrise enhancement at KSC we measured the electric field (E) in the first few hundred meters above the ground before and during several sunrise enhancements. From these E soundings we can infer the presence of charge layers and determine their thickness and charge density.
Postfact phenomena of the wet-steam flow electrization in turbines
NASA Astrophysics Data System (ADS)
Tarelin, A. A.
2017-11-01
Physical processes occurring in a turbine with natural electrization of a humidity-steam flow and their effect on efficiency and reliability of the turbine operation has been considered. Causes of the electrical potential occurrence on a rotor shaft are analyzed. The wet steam's electrization exposure on the electrical potential that is one of the major factors of bearings' electroerosion has been demonstrated on the full-scale installation. Hydrogen formation in wheelspace of the turbine as a result of electrochemical processes and electric field exposure of the space charge has been considered. Hydrogen concentration dependence on a volume charge density in the steam flow has been determined. It is stated that the processes occurring behind the final stage of wet-steam turbines are similar to the ones in elaerosol ectrostatic generators. It has been demonstrated that this phenomenon causes the flow's temporal inhibition and starts pulsations. These factors' impact on power loss of the turbine has been evaluated and recommendations for their elimination have been offered. It has been determined that motions of charged drops can cause self-maintained discharges inside of the flow and between the flow and grounded surfaces that are accompanied by electromagnetic radiation of the wide spectrum. The integrated studies have shown that physical phenomena occurring due to natural electrization negatively affect efficiency and reliability of the turbine operation. Practical recommendations allowing one to minimize the negative effects of the flow natural electrization process have been offered.
Characteristics of M-component in rocket-triggered lightning and a discussion on its mechanism
NASA Astrophysics Data System (ADS)
Jiang, Rubin; Qie, Xiushu; Yang, Jing; Wang, Caixia; Zhao, Yang
2013-09-01
The current and electric field pulses associated with M-component following dart leader-return stroke sequences in negative rocket-triggered lightning flashes were analyzed in detail by using the data from Shandong Artificially Triggering Lightning Experiment, conducted from 2005 to 2010. For 63 M-components with current waveforms superimposed on the relatively steady continuing current, the geometric mean values of the peak current, duration, and charge transfer were 276 A, 1.21 ms, and 101 mC, respectively. The behaviors of the channel base current versus close electric field changes and the observation facts by different authors were carefully examined for investigation on mechanism of the M-component. A modified model based on Rakov's "two-wave" theory is proposed and confirms that the evolution of M-component through the lightning channel involves a downward wave transferring negative charge from the upper to the lower channel and an upward wave draining the charge transported by the downward wave. The upward wave serves to deplete the negative charge by the downward wave at its interface and makes the charge density of the channel beneath the interface layer to be roughly zero. Such modified concept is recognized to be reasonable by the simulated results showing a good agreement between the calculated and the measured E-field waveforms.
Electrokinetic motion of a spherical micro particle at an oil-water interface in microchannel.
Wang, Chengfa; Li, Mengqi; Song, Yongxin; Pan, Xinxiang; Li, Dongqing
2018-03-01
The electrokinetic motion of a negatively charged spherical particle at an oil-water interface in a microchannel is numerically investigated and analyzed in this paper. A three-dimensional (3D) transient numerical model is developed to simulate the particle electrokinetic motion. The channel wall, the surface of the particle and the oil-water interface are all considered negatively charged. The effects of the direct current (DC) electric field, the zeta potentials of the particle-water interface and the oil-water interface, and the dynamic viscosity ratio of oil to water on the velocity of the particle are studied in this paper. In addition, the influences of the particle size are also discussed. The simulation results show that the micro-particle with a small value of negative zeta potential moves in the same direction of the external electric field. However, if the zeta potential value of the particle-water interface is large enough, the moving direction of the particle is opposite to that of the electric field. The velocity of the particle at the interface increases with the increase in the electric field strength and the particle size, but decreases with the increase in the dynamic viscosity ratio of oil to water, and the absolute value of the negative zeta potentials of both the particle-water interface and the oil-water interface. This work is the first numerical study of the electrokinetic motion of a charged particle at an oil-water interface in a microchannel. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Griffin, John M.; Forse, Alexander C.; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P.
2015-08-01
Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.
Reversed Hall effect and plasma conductivity in the presence of charged impurities
NASA Astrophysics Data System (ADS)
Yaroshenko, V. V.; Lühr, H.
2018-01-01
The Hall conductivity of magnetized plasma can be strongly suppressed by the contribution of negatively charged particulates (referred further as "dust"). Once the charge density accumulated by the dust exceeds a certain threshold, the Hall component becomes negative, providing a reversal in the Hall current. Such an effect is unique for dust-loaded plasmas, and it can hardly be achieved in electronegative plasmas. Further growth of the dust density leads to an increase in both the absolute value of the Hall and Pedersen conductivities, while the field-aligned component is decreased. These modifications enhance the role of transverse electric currents and reduce the anisotropy of a magnetized plasma when loaded with charged impurities. The findings provide an important basis for studying the generation of electric currents and transport phenomena in magnetized plasma systems containing small charged particulates. They can be relevant for a wide range of applications from naturally occurring space plasmas in planetary magnetospheres and astrophysical objects to laboratory dusty plasmas (Magnetized Dusty Plasma Experiment) and to technological and fusion plasmas.
Electric Charge Accumulation in Polar and Non-Polar Polymers under Electron Beam Irradiation
NASA Astrophysics Data System (ADS)
Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro
The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula.
Positive zeta potential of a negatively charged semi-permeable plasma membrane
NASA Astrophysics Data System (ADS)
Sinha, Shayandev; Jing, Haoyuan; Das, Siddhartha
2017-08-01
The negative charge of the plasma membrane (PM) severely affects the nature of moieties that may enter or leave the cells and controls a large number of ion-interaction-mediated intracellular and extracellular events. In this letter, we report our discovery of a most fascinating scenario, where one interface (e.g., membrane-cytosol interface) of the negatively charged PM shows a positive surface (or ζ) potential, while the other interface (e.g., membrane-electrolyte interface) still shows a negative ζ potential. Therefore, we encounter a completely unexpected situation where an interface (e.g., membrane-cytosol interface) that has a negative surface charge density demonstrates a positive ζ potential. We establish that the attainment of such a property by the membrane can be ascribed to an interplay of the nature of the membrane semi-permeability and the electrostatics of the electric double layer established on either side of the charged membrane. We anticipate that such a membrane property can lead to such capabilities of the cell (in terms of accepting or releasing certain kinds of moieties as well regulating cellular signaling) that was hitherto inconceivable.
Optimization of microelectrophoresis to select highly negatively charged sperm.
Simon, Luke; Murphy, Kristin; Aston, Kenneth I; Emery, Benjamin R; Hotaling, James M; Carrell, Douglas T
2016-06-01
The sperm membrane undergoes extensive surface remodeling as it matures in the epididymis. During this process, the sperm is encapsulated in an extensive glycocalyx layer, which provides the membrane with its characteristic negative electrostatic charge. In this study, we develop a method of microelectrophoresis and standardize the protocol to isolate sperm with high negative membrane charge. Under an electric field, the percentage of positively charged sperm (PCS), negatively charged sperm (NCS), and neutrally charged sperm was determined for each ejaculate prior to and following density gradient centrifugation (DGC), and evaluated for sperm DNA damage, and histone retention. Subsequently, PCS, NCS, and neutrally charged sperm were selected using an ICSI needle and directly analyzed for DNA damage. When raw semen was analyzed using microelectrophoresis, 94 % were NCS. In contrast, DGC completely or partially stripped the negative membrane charge from sperm resulting PCS and neutrally charged sperm, while the charged sperm populations are increased with an increase in electrophoretic current. Following DGC, high sperm DNA damage and abnormal histone retention were inversely correlated with percentage NCS and directly correlated with percentage PCS. NCS exhibited significantly lower DNA damage when compared with control (P < 0.05) and PCS (P < 0.05). When the charged sperm population was corrected for neutrally charged sperm, sperm DNA damage was strongly associated with NCS at a lower electrophoretic current. The results suggest that selection of NCS at lower current may be an important biomarker to select healthy sperm for assisted reproductive treatment.
Park, Jongkwan; Cho, Kyung Hwa; Lee, Eunkyung; Lee, Sungyun; Cho, Jaeweon
2018-09-01
There is a growing interest in the removal of pharmaceuticals from wastewater because pharmaceuticals have potential ecotoxicological effects. Among several removal mechanisms, the sorption of pharmaceuticals to sediment organic matter is an important mechanism related to the mobility of pharmaceuticals. This study investigated the sorption of pharmaceuticals to soil organic matter (SOM) by electrostatic interactions. SOM located on the surface of soil/sediment generally has a negative charge because of the functional groups present (i.e., carboxylic and phenolic groups). Thus, the electrical characteristics of SOM can induce electrical attraction with positively charged chemical compounds. In this study, SOM was extracted from soils under different aquatic plants (Acorus and Typha) in a constructed wetland in Korea. Experiments were carried out with the following three pharmaceuticals with different electrical characteristics at pH 7: atenolol (positive charge; pKa 9.5), carbamazepine (neutral; no pKa), and ibuprofen (negative charge; pKa 4.9). The SOM in the Acorus pond had a higher hydrophobicity and electrical charge density than that in the Typha pond. Regarding the sorption efficiency between SOM and charged pharmaceuticals, atenolol showed highest sorption efficiency (~60%), followed by carbamazepine (~40%) and ibuprofen (<~30%). In addition, the removal efficiency of the targeted pharmaceuticals in the constructed wetland was estimated by comparing the concentrations of the pharmaceuticals at sampling points with flowing water. The results showed that the removal efficiency of atenolol and carbamazepine was almost 50%, whereas that of ibuprofen was only ~10%. A comparison of the results of lab-scale and field experiments showed that electrostatic interaction is one of the major pharmaceutical removal mechanisms in a constructed wetland. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xie, Yun; Pan, Yufang; Zhang, Rong; Liang, Ying; Li, Zhanchao
2015-01-01
Molecular dynamics simulations were employed to investigate the modulation of protein behaviors on the electrically responsive zwitterionic phosphorylcholine self-assembled monolayers (PC-SAMs). Results show that PC-SAMs could sensitively respond to the applied electric fields and exhibit three states with different charge distributions, namely both the negatively charged phosphate groups and the positively charged choline groups are exposed to the solution in the absence of electric fields (state 1), phosphate groups exposed in the presence of positive electric fields (state 2), and choline groups exposed in the presence of negative electric fields (state 3). Under state 1, the adsorption of Cyt c on the PC-SAM is reversible and the orientations of Cyt c are randomly distributed. Under state 2, the adsorption of Cyt c is enhanced due to the electrostatic attractions between the exposed phosphate groups and the positively charged protein; when adsorbed on the PC-SAMs, Cyt c tends to adopt the orientation with the heme plane perpendicular to the surface plane, and the percentage of this orientation increases as the field strength rises up. Under state 3, the adsorption of Cyt c is retarded because of the electrostatic repulsions between the exposed choline groups and the protein; however, if the gaps between PC chains are large enough, Cyt c could insert into the PC-SAM and access the phosphate groups after overcoming a slight energy barrier. Under three states, the basic backbone structures of Cyt c are well kept within the simulation time since the conformation of Cyt c is mainly affected by the surface-generated electric fields, whose strengths are modulated by the external electric fields and are not strong enough to deform protein. The results indicate the possibility of regulating protein behaviors, including promoting or retarding protein adsorption and regulating protein orientations, on responsive surfaces by applying electric fields on the surfaces without worrying protein deformation, which may be helpful in the applications of protein separation and controlled drug delivery.
ELECTROSTATIC FORCES IN WIND-POLLINATION: PART 2: SIMULATIONS OF POLLEN CAPTURE
During fair-weather conditions, a 100 V m-1 electric field exists between positive charge suspended in the air and negative charge distributed on the surfaces of plants and on the ground. The fields surrounding plants are highly complex reaching magnitudes up to 3x106 ...
1990-09-01
accuracy by Carl F. Austin, NWC; James Moore, California Energy Co.; and Robert 0. Fournier, Unites States Geological Survey. Approved by Under authority...protons, electrons , and neutrons. The electrical charge of protons is positive, and that of electrons is negative. Neutrons have no electrical charge...The number of protons determines what element an atom is and gives it its atomic number. In a neutral or nonionized atom the number of electrons
Runaway breakdown and hydrometeors in lightning initiation.
Gurevich, A V; Karashtin, A N
2013-05-03
The particular electric pulse discharges are observed in thunderclouds during the initiation stage of negative cloud-to-ground lightning. The discharges are quite different from conventional streamers or leaders. A detailed analysis reveals that the shape of the pulses is determined by the runaway breakdown of air in the thundercloud electric field initiated by extensive atmospheric showers (RB-EAS). The high amplitude of the pulse electric current is due to the multiple microdischarges at hydrometeors stimulated and synchronized by the low-energy electrons generated in the RB-EAS process. The series of specific pulse discharges leads to charge reset from hydrometeors to the free ions and creates numerous stretched ion clusters, both positive and negative. As a result, a wide region in the thundercloud with a sufficiently high fractal ion conductivity is formed. The charge transport by ions plays a decisive role in the lightning leader preconditioning.
NASA Astrophysics Data System (ADS)
Khomenko, V.; Raymundo-Piñero, E.; Béguin, F.
A new type of low cost and high energy asymmetric capacitor based on only activated carbons for both electrodes has been developed in a safe and environment friendly aqueous electrolyte. In such electrolyte, the charges are stored in the electrical double-layer and through fast faradaic charge transfer processes. By taking profit of different redox reactions occurring in the positive and negative ranges of potential, it is possible to optimize the capacitor either by balancing the mass of the electrodes or by using different optimized carbons for the positive and negative electrodes. The best results are obtained in the latter case, by utilizing different pseudo-faradaic properties of carbons in order to increase the capacitance and to shift the potentials of water decomposition and destructive oxidation of activated carbon to more negative and positive values, respectively. After an additional adjustment of potentials by mass-balancing the two electrodes, the electrochemical capacitor can be reversibly charged/discharged at 1.6 V in aqueous medium, with energy densities close to the values obtained with electrical double-layer capacitors working in organic electrolytes, while avoiding their disadvantages.
On charging of snow particles in blizzard
NASA Technical Reports Server (NTRS)
Shio, Hisashi
1991-01-01
The causes of the charge polarity on the blizzard, which consisted of fractured snow crystals and ice particles, were investigated. As a result, the charging phenomena showed that the characteristics of the blizzard are as follows: (1) In the case of the blizzard with snowfall, the fractured snow particles drifting near the surface of snow field (lower area: height 0.3 m) had positive charge, while those drifting at higher area (height 2 m) from the surface of snow field had negative charge. However, during the series of blizzards two kinds of particles positively and negatively charged were collected in equal amounts in a Faraday Cage. It may be considered that snow crystals with electrically neutral properties were separated into two kinds of snow flakes (charged positively and negatively) by destruction of the snow crystals. (2) In the case of the blizzard which consisted of irregularly formed ice drops (generated by peeling off the hardened snow field), the charge polarity of these ice drops salting over the snow field was particularly controlled by the crystallographic characteristics of the surface of the snow field hardened by the powerful wind pressure.
Aerosols and seismo-ionosphere coupling: A review
NASA Astrophysics Data System (ADS)
Namgaladze, Aleksandr; Karpov, Mikhail; Knyazeva, Maria
2018-06-01
The role of atmosphere aerosols in the global electric circuit, particularly during earthquakes preparation periods, is discussed in this review paper. Aerosols participate in production and transport of electric charges as well as in clouds formation. Satellite imagery shows increased aerosol optical depth over the tectonic faults and formation of the anomalous clouds aligned with the faults shortly before the earthquake shocks. At the same time variations of the ionospheric electric field and total electron content (TEC) are observed. We assume that the vertical electric current is generated over the fault due to the separation and vertical transport of charges with different masses and polarities. This charges the ionosphere positively relative to the Earth in the same way as the thunderstorm currents do. The resulting electric field in the ionosphere drives F2-layer plasma via the electromagnetic [E→ ×B→ ] drift and decreases or increases electron density depending on the configuration of the electric field, thus, creating observed negative or positive TEC disturbances. The important role of the electric dynamo effect in these processes is underlined.
NASA Astrophysics Data System (ADS)
Cvetic, Jovan; Heidler, Fridolin; Markovic, Slavoljub; Radosavljevic, Radovan; Osmokrovic, Predrag
2012-11-01
A generalized lightning traveling current source return stroke model has been used to examine the characteristics of the lightning channel corona sheath surrounding a thin channel core. A model of the lightning channel consisting of a charged corona sheath and a narrow, highly conducting central core that conducts the main current flow is assumed. Strong electric field, with a predominant radial direction, has been created during the return stroke between the channel core and the outer channel sheath containing the negative charge. The return stroke process is modeled with the positive charge coming from the channel core discharging the negative leader charge in the corona sheath. The corona sheath model that predicts the charge motion in the sheath is used to derive the expressions of the sheath radius vs. time during the return stroke. According to the corona sheath model proposed earlier by Maslowski and Rakov (2006) and Maslowski et al. (2009), it consists of three zones, zone 1 (surrounding channel core with net positive charge), zone 2 (surrounding zone 1 with negative charge) and zone 3 (outer zone representing the virgin air without charges). We adopted the assumption of a constant electric field inside zone 1 of the corona sheath observed in the experimental research of corona discharges in a coaxial geometry by Cooray (2000). This assumption seems to be more realistic than the assumption of a uniform corona space charge density used previously in the study of Maslowski and Rakov (2006), Marjanovic and Cvetic (2009), and Tausanovic et al. (2010). Applying the Gauss' law on the infinitesimally small cylindrical section of the channel the expressions for time-dependence of the radii of zones 1 and 2 during the return stroke are derived. The calculations have shown that the overall channel dynamics concerning electrical discharge is roughly 50% slower and the maximum radius of zone 1 is about 33% smaller compared to the corresponding values calculated in the study of Tausanovic et al. (2010).
NASA Astrophysics Data System (ADS)
Nechitailo, G.; Gordeev, A.
The key role in increasing the resistance of plants to unfavorable space flight factors is assigned to biomembranes of root cells. It is these biomembranes on which numerous biochemical and biophysical processes determining the adaptive capacity of plant organisms occur. In the initial period of exposure to unfavorable space flight factors the adaptational reactions of the plant organism undoubtedly increase its resistance. But the intensification of removal of H+ ions through the plasmalemma with an increase of the external influence sharply raises the quantity of cations leaving the cell, which leads to the accumu lation of a considerable quantity of intracellular negative charges. These charges together with negative charges built in the membrane force protons to concentrate on the external surface of the membrane. Since protons have a very strong electric field, they form such a charge of which the electric field is about from several to hundreds of V/cm. The concentration of positive charges of protons entails the formation of a double electric field which extremely impedes the diffusion of other ions. Thus, a proton barrier is formed. Its length can be very considerable due to which the whole process of transmembrane energy and mass-transfer is disturbed. The proton barrier is easily destroyed by a weak electric field created in the root zone. In experiment on electrostimulation of different plants under space flight conditions at the orbital station MIR the absorption of nutrient elements by the root system increased to the optimal level, the ratio of physiologically active substances in the rhizosphere was normalized, the content of chlorophyll, carotin, and ascorbic acid in leaves corresponded to the ground-based control. Understanding of the mechanism of formation of a proton barrier on the plasmalemma of root cells as a result of the response of plants to the negative action of external factors (microgravity) is of great importance. It allows the possibility of life support of the vegetable kingdom in extreme conditions to be estimated in a new way.
NASA Astrophysics Data System (ADS)
Nechitailo, G.; Gordeev, A.
2004-01-01
The key role in increasing the resistance of plants to unfavorable space flight factors is assigned to biomembranes of root cells. It is these biomembranes in which numerous biochemical and biophysical processes determining the adaptive capacity of plant organisms occur. In the initial period of exposure to unfavorable space flight factors the adaptation reactions of the plant organism undoubtedly increase its resistance. But the intensification of removal of H + ions through the plasmalemma with an increase of the external influence sharply raises the quantity of cations leaving the cell, which leads to the accumulation of a considerable quantity of intracellular negative charges. These charges together with negative charges built in the membrane force protons to concentrate on the external surface of the membrane. Since protons have a very strong electric field, they form such a charge of which the electric field is about from several to hundreds of V/cm. The concentration of positive charges of protons entails the formation of a double electric field which extremely impedes the diffusion of other ions. Thus, a proton barrier is formed. Its length can be very considerable due to which the whole process of transmembrane energy and mass-transfer is disturbed. The proton barrier is easily destroyed by a weak electric field created in the root zone. In experiments on electrostimulation of different plants under space flight conditions at the orbital station MIR the absorption of nutrient elements by the root system increased to the optimal level, the ratio of physiologically active substances in the rhizosphere was normalized, the content of chlorophyll, carotin, and ascorbic acid in leaves corresponded to the ground-based control. Understanding of the mechanism of formation of a proton barrier on the plasmalemma of root cells as a result of the response of plants to the negative action of external factors (microgravity) is of great importance. It allows the possibility of life support of the vegetable kingdom in extreme conditions to be estimated in a new way.
Electric field soundings through thunderstorms
NASA Technical Reports Server (NTRS)
Marshall, Thomas C.; Rust, W. D.
1991-01-01
Twelve balloon soundings of the electric field in thunderstorms are reported. The maximum magnitude of E in the storms averaged 96 +/-28 kV/m, with the largest being 146 kV/m. The maximum was usually observed between vertically adjacent regions of opposite charge. Using a 1D approximation to Gauss' law, four to ten charge regions in the storms are inferred. The magnitude of the density in the charge regions varied between 0.2 and 13 nC/cu m. The vertical extent of the charge regions ranged from 130 to 2100 m. None of the present 12 storms had charge distributions that fit the long-accepted model of Simpson et al. (1937, 1941) of a lower positive charge, a main negative charge, and an upper positive charge. In addition to regions similar to the Simpson model, the present storms had screening layers at the upper and lower cloud boundaries and extra charge regions, usually in the lower part of the cloud.
PULSE ENERGIZATION IN THE TUFT CORONA REGIME OF NEGATIVE CORONA
The paper discusses pulse energization in the tuft corona regime of negative corona. Fabric filtration, with integral particle charging and collection in a combined electric and flow field, is sensitive to maldistribution of current among bags energized by one power source, espec...
Electricity. Physical Science in Action[TM]. Schlessinger Science Library. [Videotape].
ERIC Educational Resources Information Center
2000
Most people know that the flip of a switch will power up toys, appliances and lights with electricity and enable them to work. But why? What is it about electricity that makes it so powerful and so dangerous? Students will learn the basic concepts of positive and negative charges, current flow and open/closed circuits, and discover why getting a…
Modeling carbonaceous particle formation in an argon graphite cathode dc discharge
NASA Astrophysics Data System (ADS)
Michau, A.; Lombardi, G.; Colina Delacqua, L.; Redolfi, M.; Arnas, C.; Bonnin, X.; Hassouni, K.
2010-12-01
We develop a model for the nucleation, growth and transport of carbonaceous dust particles in a non-reactive gas dc discharge where the carbon source is provided by cathode sputtering. We consider only the initial phase of the discharge when the dust charge density remains small with respect to the electron density. We find that an electric field reversal at the entrance of the negative glow region promotes trapping of negatively charged clusters and dust particles, confining them for long times in the plasma and favoring molecular growth. An essential ingredient for this process is electron attachment, which negatively charges the initially neutral clusters. We perform sensitivity studies on several number parameters: size of the largest molecular edifice, sticking coefficient, etc.
EHD Approach to Tornadic Thunderstorms and Methods of Their Destruction
NASA Astrophysics Data System (ADS)
Kikuchi, H.
2005-05-01
In many cases, tornadoes are accompanied or involved by lightning discharges and are thought to be com- posed of uncharged and charged components different from each other in terms of velocity, vorticity, heli- city, and appearance (shape and luminosity). Their visible dark portion may correspond to uncharged tor- nadoes, while luminous or bright part may involve charged tornadoes with return strokes. Usually, un- charged tornadoes have been considered to be ascending hot streams of thermohydrodynamic origin. This is the conventional theory of tornadoes, based on hydrodynamics (HD) or thermohydrodynamics (THD) but does not consider electrical effects that are really significant in tornadic thunderstorms..It has been shown, however, that a new electrohydrodynamics (EHD) established and developed over the last more than a decade is applicable to tornadic thunderstorms with lightning. This paper summarizes such an EHD approach and proposes the methods of tornado destruction based on EHD. Space charge and electric field configurations in tornadic thunderstorms are considered to be quadrupole-like, taking into account the cloud-charge images onto the ground. Accordingly, dynamics of particles and EHD flows in an electric quadrupole forming an electric cusp and mirror can straightly apply to those circumstances. When the gas pressure is below the breakdown threshold, there occur helical motion of particles, not only charged but also even uncharged, and/or vortex generation. While for gases whose pressure is beyond the breakdown threshold, the following basic processes succeed one after another. When the grain is uncharged, a dis- charge channel is formed towards each pole as a result of X-type reconnection. For a negatively or posi- tively charged grain, I-type reconnection occurs between the grain and positive or negative poles, respect- ively. For uncharged two grains, O-type reconnection between both grains could be involved in addition to X-type between each pole, while for oppositely charged two grains, F-type reconnection could be in- volved between grains in addition to I-type between each grain and a pole with opposite polarity. Thus one can say that the uncharged component of tornadic thunderstorms is composed of conventional ascending hot streams of thermohydrodynamic origin and particle flows of new EHD origin produced by a quadru- pole-like cloud-base, funnel-top charge distributions, while the charged component is a bunch of return strokes including charged flows due to dust-related electric reconnection and EHD vortices in large-scale generated by EHD helical turbulence where there may occur self-organization to coalescence of fluid vor- tex and electric displacement field lines at least in an initial stage of return stroke (rise time of some ms), since earth's magnetic field could be ignored. This also indicates that fluid vortex breakdown points also tend to merge electric cusps, X-type and O-type. Then the principle of dust-related electric reconnection could be replaced by dust cluster injection into electric cusps (X-type and O-type) in several ways just mentioned above. Thus a variety of such dust cluster injection could cause additional cloud-to-dust cluster discharges, expending electrostatic energy accumulated in thunderclouds considerably and destructing tornadoes consequently.
First results of the Colombia Lightning Mapping Array
NASA Astrophysics Data System (ADS)
López, Jesus; Montanyà, Joan; van der Velde, Oscar; Romero, David; Fabró, Ferran; Taborda, John; Aranguren, Daniel; Torres, Horacio
2016-04-01
In April 2015 the 3D Lightning Mapping Array (COLMA) network was installed on Santa Marta area (north of Colombia). The COLMA maps VHF radio emissions of lightning leaders in three dimensions by the time-of-arrival technique (Rison et al., 1999). This array has six sensors with base lines between 5 km to 20 km. The COLMA is the first VHF 3D network operating in the tropics and it has been installed in the frame of ASIM (Atmosphere-Space Interactions Monitor) ESA's mission in order to investigate the electrical characteristics of tropical thunderstorms favorable for the production of Terrestrial Gamma ray Flashes (TGF). In this paper we present COLMA data of several storms. We discuss lightning activity, lightning leader altitudes and thunderstorm charge structures compared to data form our ELMA (Ebro Lightning Mapping Array) at the north-east coast of Spain. The data confirm what we expected, lightning leaders can propagate at higher altitudes compared to mid latitude thunderstorms because the higher vertical development of tropical thunderstorms. A simple inspection of a ten minute period of the 16th of November of 2015 storm shows a tripolar electric charge structure. In that case, the midlevel negative charge region was located between 7 to 9 km. The structure presented a lower positive charge below the midlevel negative and centred at 6.5 km and an upper positive charge region extending from 9 km to slightly more than 15 km. This vertical extension of the upper positive charge where negative leaders evolve is significantly larger compared to the storms at the ELMA area in Spain. COLMA has shown frequent activity of negative leaders reaching altitudes of more than 15 km.
Modeling the Electric Potential and Surface Charge Density Near Charged Thunderclouds
NASA Astrophysics Data System (ADS)
Neel, Matthew Stephen
2018-03-01
Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and cloud-to-ground lightning. We wish to examine the latter form, in which upward leaders from Earth connect with downward leaders from the cloud to form a plasma channel and produce lightning. Much of the literature indicates that the lower part of a thundercloud becomes negatively charged while the upper part becomes positively charged via convective charging, although the opposite polarity can certainly exist along with various, complex intra-cloud currents. It is estimated that >90% of cloud-to-ground lightning is "negative lightning," or the flow of charges from the bottom of the cloud, while the remaining <10% of lightning strikes is "positive lightning," or the flow of charges from the top of the cloud. We wish to understand the electric potential surrounding charged thunderclouds as well as the resulting charge density on the surface of Earth below them. In this paper we construct a simple and adaptable model that captures the very basic features of the cloud/ground system and that exhibits conditions favorable for both forms of lightning. In this way, we provide a practical application of electrostatic dipole physics as well as the method of images that can serve as a starting point for further modeling and analysis by students.
Electro-Osmotic Pulse Technology for Control of Water Seepage in Various Civil Works Structures
2006-10-01
where: re temperatu constantBoltzman system theof field electric theofstrength ion (negative) positive a of mass charge electric elementary...water molecules, forming acid at the anode surface. This acid , in turn, attacks the mixed metal oxide coating on the anode eroding it, creating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sima, Wenxia, E-mail: cqsmwx@cqu.edu.cn; Song, He; Yang, Qing
2015-12-15
Addition of nanoparticles of the ferromagnetic material Fe{sub 3}O{sub 4} can increase the positive impulse breakdown voltage of propylene carbonate by 11.65%. To further investigate the effect of ferromagnetic nanoparticles on the space charge distribution in the discharge process, the present work set up a Kerr electro-optic field mapping measurement system using an array photodetector to carry out time-continuous measurement of the electric field and space charge distribution in propylene carbonate before and after modification. Test results show that fast electrons can be captured by Fe{sub 3}O{sub 4} nanoparticles and converted into relatively slow, negatively charged particles, inhibiting the generationmore » and transportation of the space charge, especially the negative space charge.« less
Nanoparticle assembly on patterned "plus/minus" surfaces from electrospray of colloidal dispersion.
Lenggoro, I Wuled; Lee, Hye Moon; Okuyama, Kikuo
2006-11-01
Selective deposition of metal (Au) and oxide (SiO2) nanoparticles with a size range of 10-30 nm on patterned silicon-silicon oxide substrate was performed using the electrospray method. Electrical charging characteristics of particles produced by the electrospray and patterned area created by contact charging of the electrical conductor with non- or semi-conductors were investigated. Colloidal droplets were electrosprayed and subsequently dried as individual nanoparticles which then were deposited on substrates, and observed using field emission-scanning electron microscopy. The number of elementary charge units on particles generated by the electrospray was 0.4-148, and patterned area created by contact charging contained sufficient negative charges to attract multiple charged particles. Locations where nanoparticles were (reversibly) deposited depended on voltage polarity applied to the spraying colloidal droplet and the substrate, and the existence of additional ions such as those from a stabilizer.
Fermionic Schwinger effect and induced current in de Sitter space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashinaka, Takahiro; Department of Physics, Graduate School of Science, The University of Tokyo,Bunkyo-ku, Tokyo, 113-0033; Fujita, Tomohiro
We explore Schwinger effect of spin 1/2 charged particles with static electric field in 1+3 dimensional de Sitter spacetime. We analytically calculate the vacuum expectation value of the spinor current which is induced by the produced particles in the electric field. The renormalization is performed with the adiabatic subtraction scheme. We find that the current becomes negative, namely it flows in the direction opposite to the electric field, if the electric field is weaker than a certain threshold value depending on the fermion mass, which is also known to happen in the case of scalar charged particles in 1+3 demore » Sitter spacetime. Contrary to the scalar case, however, the IR hyperconductivity is absent in the spinor case.« less
Presence of negative charge on the basal planes of New York talc.
Burdukova, E; Becker, M; Bradshaw, D J; Laskowski, J S
2007-11-01
Potentiometric titration measurements as well as rheological measurements of talc aqueous suspensions indicate that the behavior of the New York talc particles is consistent with the presence of a negative charge on their basal planes. The possibility of the presence of a negative electrical charge on the basal planes of talc particles is analyzed in this paper. Samples of New York talc were studied using electron microprobe analysis and dehydration techniques and the exact chemical formula of New York talc was determined. It was found that there exists a deficiency of protons in the tetrahedral layers of talc, resulting from substitution of Si(4+) ions with Al(3+) and Ti(3+) ions. The comparison of the level of substitution of Si(4+) ions with ions of a lower valency was found to be of a similar order of magnitude as that found in other talc deposits. This strongly points to the presence of a negative charge on the talc basal planes.
Five years of full-scale utility demonstration of pulsed energization of electric precipitators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz, S.A.; Jacobus, P.L.; Casey, P.J.
1996-11-01
In a conventional electrostatic precipitator (ESP) the applied dc voltage fulfills three functions: (1) generation of negative ions, (2) charging of particles, and (3) transport of the charged particles to the collecting plates. In the case of high resistivity fly-ash (often associated with the burning of low sulfur coal) the dc voltage is limited by repeated electrical discharges and in extreme cases by back-corona. Lowering the applied dc voltage reduces sparking and back-corona, but also reduces the field on the discharge wires and leads to poorly distributed ion generation as well as reduced charging and particle transport forces. Pulsed energization,more » which consists of superimposing high voltage pulses of short duration onto the existing base dc voltage, offers an attractive way to improve the collection efficiency of ESPs suffering from poor energization. The superimposed pulses become responsible for uniform ion generation while the underlying dc field continues to fulfill the function of particle charging and transport. This paper describes the five-year test of the ESP at Madison Gas and Electric`s Blount Station.« less
An investigation of the generation and properties of laboratory-produced ball lightning
NASA Astrophysics Data System (ADS)
Oreshko, A. G.
2015-06-01
The experiments revealed that ball lightning is a self-confining quasi-neutral in a whole plasma system that rotates around its axis. Ball lightning has a structure of a spherical electric domain, consisting of a kernel with excess negative charge and an external spherical layer with excess positive charge. The excess of charges of one sort and the lack of charges of the other sort in the kernel or in the external spherical layer significantly reduces the possibility of electron capture by means of an electric field, created by the nearest ions and leads to a drastic slowdown of recombination process. Direct proof has been obtained that inside of ball lightning - in an external spherical layer that rotates around the axis - there is a circular current of sub-relativistic particles. This current creates and maintains its own poloidal magnetic field of ball lightning, i.e. it carries out the function of magnetic dynamo. The kernel of ball lightning is situated in a region with minimum values of induction of the magnetic field. The inequality of positive and negative charges in elements of ball lightning also significantly reduces losses of the charged plasma on bremsstrahlung. Ball lightning generation occurs in a plasmic vortex. The ball lightning energy in the region of its generation significantly differs from the ball lightning energy, which is drifting in space. The axial component of kinetic energy of particles slightly exceeds 100 keV and the rotational component of the ions energy is a bit greater than 1 MeV. Ball lightning is `embedded' in atmosphere autonomous accelerator of charged particles of a cyclotron type due to self-generation of strong crossed electric and magnetic fields. A discussion of the conditions of stability and long-term existence of ball lightning is given.
An investigation into vascular prosthesis modified with an electron beam.
Lowkis, B; Szymonowicz, M; Rutkowski, J
1997-01-01
The present paper shows the results of an investigation into the effect of implanted electric charge on blood platelet adhesion to woven surfaces of "Dallon" polyester vascular prosthesis. The electrets were formed using the electron beam method. The assessment of the electret effect on blood platelet adhesion was performed on the basis of microscopic studies. It was shown that an implanted negative electric charge remarkably suppresses thrombocyte adhesion to the prosthesis surface. The electret effect was found to play a significant role in the process of preparing nonthrombogenic surfaces.
Hall effect in the presence of rotation
NASA Astrophysics Data System (ADS)
Zubkov, M. A.
2018-02-01
A rotating relativistic fermion system is considered. The consideration is based on the Dirac equation written in the laboratory (non-rotating) reference frame. Rotation in this approach gives rise to the effective magnetic and electric fields that act in the same way both on positive and negative electric charges. In the presence of external electric field in the given system the electric current appears orthogonal to both the electric field and the axis of rotation. The possible applications to the physics of quark-gluon plasma are discussed.
Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.
Weis, Martin; Gmucová, Katarína; Nádazdy, Vojtech; Capek, Ignác; Satka, Alexander; Kopáni, Martin; Cirák, Július; Majková, Eva
2008-11-01
Sequential single-electron charging of iron oxide nanoparticles encapsulated in oleic acid/oleyl amine envelope and deposited by the Langmuir-Blodgett technique onto Pt electrode covered with undoped hydrogenated amorphous silicon film is reported. Single-electron charging (so-called quantized double-layer charging) of nanoparticles is detected by cyclic voltammetry as current peaks and the charging effect can be switched on/off by the electric field in the surface region induced by the excess of negative/positive charged defect states in the amorphous silicon layer. The particular charge states in amorphous silicon are created by the simultaneous application of a suitable bias voltage and illumination before the measurement. The influence of charged states on the electric field in the surface region is evaluated by the finite element method. The single-electron charging is analyzed by the standard quantized double layer model as well as two weak-link junctions model. Both approaches are in accordance with experiment and confirm single-electron charging by tunnelling process at room temperature. This experiment illustrates the possibility of the creation of a voltage-controlled capacitor for nanotechnology.
Charge Effects on the Efflorescence in Single Levitated Droplets.
Hermann, Gunter; Zhang, Yan; Wassermann, Bernhard; Fischer, Henry; Quennet, Marcel; Rühl, Eckart
2017-09-14
The influence of electrical excess charges on the crystallization from supersaturated aqueous sodium chloride solutions is reported. This is accomplished by efflorescence studies on single levitated microdroplets using optical and electrodynamic levitation. Specifically, a strong increase in efflorescence humidity is observed as a function of the droplet's negative excess charge, ranging up to -2.1 pC, with a distinct threshold behavior, increasing the relative efflorescence humidity, at which spontaneous nucleation occurs, from 44% for the neutral microparticle to 60%. These findings are interpreted by using molecular dynamics simulations for determining plausible structural patterns located near the particle surface that could serve as suitable precursors for the formation of critical clusters overcoming the nucleation barrier. These results, facilitating heterogeneous nucleation in the case of negatively charged microparticles, are compared to recent work on charge-induced nucleation of neat supercooled water, where a distinctly different nucleation behavior as a function of droplet charge has been observed.
Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces.
Burgo, Thiago A L; Ducati, Telma R D; Francisco, Kelly R; Clinckspoor, Karl J; Galembeck, Fernando; Galembeck, Sergio E
2012-05-15
Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.
Electromagnetic dipole moments of charged baryons with bent crystals at the LHC
NASA Astrophysics Data System (ADS)
Bagli, E.; Bandiera, L.; Cavoto, G.; Guidi, V.; Henry, L.; Marangotto, D.; Martinez Vidal, F.; Mazzolari, A.; Merli, A.; Neri, N.; Ruiz Vidal, J.
2017-12-01
We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector.
Analyte concentration at the tip of a nanopipette.
Calander, Nils
2009-10-15
Concentration of molecules within the tips of nanopipettes when applying a DC voltage is herein investigated using finite-element simulations. The ion concentrations and fluxes due to diffusion, electro-migration, and electro-osmotic flow, and the electric potential are determined by the simultaneous solution of the Nernst-Planck, Poisson, and Navier-Stokes equations within the water solution containing sodium and chloride ions and negatively charged molecules. The electric potential within the pipette glass wall is at the same time determined by the Poisson equation together with appropriate boundary conditions and accounts for a field effect through the wall. Fixed negative surface charge on both the internal and external glass surfaces of the nanopipette is included together with the field effect through the glass wall to account for the electric double layer and the electro-osmosis. The inclusion of the field effect through the pipette wall is new compared to previous modeling of similar structures and is shown to be crucial for the behavior at the tip. It is demonstrated that the concentration of molecules is a consequence of ionic charge accumulation at the tip screening the electric field, thereby slowing down the electrophoretic motion of the molecules, which is further slowed down or stopped by the oppositely directed electro-osmosis. It is also shown that the trapping is very sensitive to the properties of the molecule, that is, its electrophoretic mobility and diffusion coefficient, the properties of the pipette, the ionic strength of the solution, and the applied electric field.
Structure of an electric double layer containing a 2:2 valency dimer electrolyte
Silvestre-Alcantara, Whasington; Henderson, Douglas; Wu, Jianzhong; ...
2014-12-05
In this study, the structure of a planar electric double layer formed by a 2:2 valency dimer electrolyte in the vicinity of a uniformly charged planar hard electrode is investigated using density functional theory and Monte Carlo simulations. The dimer electrolyte consists of a mixture of charged divalent dimers and charged divalent monomers in a dielectric continuum. A dimer is constructed by two tangentially tethered rigid spheres, one of which is divalent and positively charged and the other neutral, whereas the monomer is a divalent and negatively charged rigid sphere. The density functional theory reproduces well the simulation results formore » (i) the singlet distributions of the various ion species with respect to the electrode, and (ii) the mean electrostatic potential. Lastly, comparison with earlier results for a 2:1/1:2 dimer electrolyte shows that the double layer structure is similar when the counterion has the same valency.« less
Nontraditional, Safe, High Voltage Rechargeable Cells of Long Cycle Life.
Braga, Maria Helena; M Subramaniyam, Chandrasekar; Murchison, Andrew J; Goodenough, John B
2018-05-23
A room-temperature all-solid-state rechargeable battery cell containing a tandem electrolyte consisting of a Li + -glass electrolyte in contact with a lithium anode and a plasticizer in contact with a conventional, low cost oxide host cathode was charged to 5 V versus lithium with a charge/discharge cycle life of over 23,000 cycles at a rate of 153 mA·g -1 of active material. A larger positive electrode cell with 329 cycles had a capacity of 585 mAh·g -1 at a cutoff of 2.5 V and a current of 23 mA·g -1 of the active material; the capacity rose with cycle number over the 329 cycles tested during 13 consecutive months. Another cell had a discharge voltage from 4.5 to 3.7 V over 316 cycles at a rate of 46 mA·g -1 of active material. Both the Li + -glass electrolyte and the plasticizer contain electric dipoles that respond to the internal electric fields generated during charge by a redistribution of mobile cations in the glass and by extraction of Li + from the active cathode host particles. The electric dipoles remain oriented during discharge to retain an internal electric field after a discharge. The plasticizer accommodates to the volume changes in the active cathode particles during charge/discharge cycling and retains during charge the Li + extracted from the cathode particles at the plasticizer/cathode-particle interface; return of these Li + to the active cathode particles during discharge only involves a displacement back across the plasticizer/cathode interface and transport within the cathode particle. A slow motion at room temperature of the electric dipoles in the Li + -glass electrolyte increases with time the electric field across the EDLC of the anode/Li + -glass interface to where Li + from the glass electrolyte is plated on the anode without being replenished from the cathode, which charges the Li + -glass electrolyte negative and consequently the glass side of the Li + -glass/plasticizer EDLC. Stripping back the Li + to the Li + -glass during discharge is enhanced by the negative charge in the Li + -glass. Since the Li + -glass is not reduced on contact with metallic lithium, no passivating interface layer contributes to a capacity fade; instead, the discharge capacity increases with cycle number as a result of dipole polarization in the Li + -glass electrolyte leading to a capacity increase of the Li + -glass/plasticizer EDLC. The storage of electric power by both faradaic electrochemical extraction/insertion of Li + in the cathode and electrostatic stored energy in the EDLCs provides a safe and fast charge and discharge with a long cycle life and a greater capacity than can be provided by the cathode host extraction/insertion reaction. The cell can be charged to a high voltage versus a lithium anode because of the added charge of the EDLCs.
Electric field measurements in nanosecond pulse discharges in air over liquid water surface
NASA Astrophysics Data System (ADS)
Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.
2018-01-01
Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.
Ion-source modeling and improved performance of the CAMS high-intensity Cs-sputter ion source
NASA Astrophysics Data System (ADS)
Brown, T. A.; Roberts, M. L.; Southon, J. R.
2000-10-01
The interior of the high-intensity Cs-sputter source used in routine operations at the Center for Accelerator Mass Spectrometry (CAMS) has been computer modeled using the program NEDLab, with the aim of improving negative ion output. Space charge effects on ion trajectories within the source were modeled through a successive iteration process involving the calculation of ion trajectories through Poisson-equation-determined electric fields, followed by calculation of modified electric fields incorporating the charge distribution from the previously calculated ion trajectories. The program has several additional features that are useful in ion source modeling: (1) averaging of space charge distributions over successive iterations to suppress instabilities, (2) Child's Law modeling of space charge limited ion emission from surfaces, and (3) emission of particular ion groups with a thermal energy distribution and at randomized angles. The results of the modeling effort indicated that significant modification of the interior geometry of the source would double Cs + ion production from our spherical ionizer and produce a significant increase in negative ion output from the source. The results of the implementation of the new geometry were found to be consistent with the model results.
Shankla, Manish; Aksimentiev, Aleksei
2014-01-01
Control over interactions with biomolecules holds the key to applications of graphene in biotechnology. One such application is nanopore sequencing, where a DNA molecule is electrophoretically driven through a graphene nanopore. Here, we investigate how interactions of single-stranded DNA and a graphene membrane can be controlled by electrically biasing the membrane. The results of our molecular dynamics simulations suggest that electric charge on graphene can force a DNA homopolymer to adopt a range of strikingly different conformations. The conformational response is sensitive to even very subtle nucleotide modifications, such as DNA methylation. The speed of DNA motion through a graphene nanopore is strongly affected by the graphene charge: a positive charge accelerates the motion whereas a negative charge arrests it. As a possible application of the effect, we demonstrate stop-and-go transport of DNA controlled by the charge of graphene. Such on-demand transport of DNA is essential for realizing nanopore sequencing. PMID:25296960
Dust Particle Dynamics in The Presence of Highly Magnetized Plasmas
NASA Astrophysics Data System (ADS)
Lynch, Brian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene
2016-10-01
Complex plasmas are four component plasmas that contain, in addition to the usual electrons, ions, and neutral atoms, macroscopic electrically charged (nanometer to micrometer) sized ``dust'' particles. These macroscopic particles typically obtain a net negative charge due to the higher mobility of electrons compared to that of ions. Because the electrons, ions, and dust particles are charged, their dynamics may be significantly modified by the presence of electric and magnetic fields. Possible consequences of this modification may be the charging rate and the equilibrium charge. For example, in the presence of a strong horizontal magnetic field (B >1 Tesla), it may be possible to observe dust particle gx B deflection and, from that deflection, determine the dust grain charge. In this poster, we present recent data from performing multiple particle dropping experiments to characterize the g x B deflection in the Magnetized Dusty Plasma Experiment (MDPX). This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.
NASA Astrophysics Data System (ADS)
Shankla, Manish; Aksimentiev, Aleksei
2014-10-01
Control over interactions with biomolecules holds the key to applications of graphene in biotechnology. One such application is nanopore sequencing, where a DNA molecule is electrophoretically driven through a graphene nanopore. Here we investigate how interactions of single-stranded DNA and a graphene membrane can be controlled by electrically biasing the membrane. The results of our molecular dynamics simulations suggest that electric charge on graphene can force a DNA homopolymer to adopt a range of strikingly different conformations. The conformational response is sensitive to even very subtle nucleotide modifications, such as DNA methylation. The speed of DNA motion through a graphene nanopore is strongly affected by the graphene charge: a positive charge accelerates the motion, whereas a negative charge arrests it. As a possible application of the effect, we demonstrate stop-and-go transport of DNA controlled by the charge of graphene. Such on-demand transport of DNA is essential for realizing nanopore sequencing.
Dusty-Plasma Particle Accelerator
NASA Technical Reports Server (NTRS)
Foster, John E.
2005-01-01
A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the initiation of a low-current, high-voltage cathode spot. Plasma pressure associated with the cathode spot as well as the large voltage drop at the cathode spot accelerates the charged particles toward the substrate. The ultimate kinetic energy attained by particles exiting the particle holder depends in part on the magnitude of the cathode spot sheath potential difference, which is proportional to the magnitude of the voltage pulse, and the on the electric charge on the dust. The magnitude of the voltage pulse can be controlled directly, whereas the particle s electric charge can be controlled indirectly by controlling the operating parameters of the plasma apparatus.
NASA Astrophysics Data System (ADS)
Connell, P. H.
2017-12-01
The University of Valencia has developed a software simulator LEPTRACK to simulate lepton and photon scattering in any kind of media with a variable density, and permeated by electric/magnetic fields of any geometry, and which can handle an exponential runaway avalanche. Here we show results of simulating the interaction of electrons/positrons/photons in an incoming TeV cosmic ray shower with the kind of electric fields expected in a stormcloud after a CG discharge which removes much of the positive charge build up at the centre of the cloud. The point is to show not just a Relativistic Runaway Electron Avalanche (RREA) above the upper negative shielding layer at 12 km but other gamma ray emission due to electron/positron interaction in the remaining positive charge around 9km and the lower negative charge at 6km altitude. We present here images, lightcurves, altitude profiles, spectra and videos showing the different ionization, excitation and photon density fields produced, their time evolution, and how they depend critically on where the cosmic ray shower beam intercepts the electric field geometry. We also show a new effect of incoming positrons, which make up a significant fraction of the shower, where they appear to "orbit" within the high altitude negative shielding layer, and which has been conjectured to produce significant microwave emission, as well as a short range 511 keV annihilation line. The interesting question is if this conjectured emission can be observed and correlated with TGF orbital observations to prove that a TGF originates in the macro-fields of stormclouds or the micro-fields of light leaders and streamers where this "positron orbiting" is not likely to occur.
The voltage-dependent anion channel as a biological transistor: theoretical considerations.
Lemeshko, V V; Lemeshko, S V
2004-07-01
The voltage-dependent anion channel (VDAC) is a porin of the mitochondrial outer membrane with a bell-shaped permeability-voltage characteristic. This porin restricts the flow of negatively charged metabolites at certain non-zero voltages, and thus might regulate their flux across the mitochondrial outer membrane. Here, we have developed a mathematical model illustrating the possibility of interaction between two steady-state fluxes of negatively charged metabolites circulating across the VDAC in a membrane. The fluxes interact by contributing to generation of the membrane electrical potential with subsequent closure of the VDAC. The model predicts that the VDAC might function as a single-molecule biological transistor and amplifier, because according to the obtained calculations a small change in the flux of one pair of different negatively charged metabolites causes a significant modulation of a more powerful flux of another pair of negatively charged metabolites circulating across the same membrane with the VDAC. Such transistor-like behavior of the VDAC in the mitochondrial outer membrane might be an important principle of the cell energy metabolism regulation under some physiological conditions.
Meschke, S; Smith, B D; Yost, M; Miksch, R R; Gefter, P; Gehlke, S; Halpin, H A
2009-04-01
A series of experiments were conducted to evaluate the effect of surface charge and air ionization on the deposition of airborne bacteria. The interaction between surface electrostatic potential and the deposition of airborne bacteria in an indoor environment was investigated using settle plates charged with electric potentials of 0, +/-2.5kV and +/-5kV. Results showed that bacterial deposition on the plates increased proportionally with increased potential to over twice the gravitational sedimentation rate at +5kV. Experiments were repeated under similar conditions in the presence of either negative or bipolar air ionization. Bipolar air ionization resulted in reduction of bacterial deposition onto the charged surfaces to levels nearly equal to gravitational sedimentation. In contrast, diffusion charging appears to have occurred during negative air ionization, resulting in an even greater deposition onto the oppositely charged surface than observed without ionization. Static charges on fomitic surfaces may attract bacteria resulting in deposition in excess of that expected by gravitational sedimentation or simple diffusion. Implementation of bipolar ionization may result in reduction of bacterial deposition. Fomitic surfaces are important vehicles for the transmission of infectious organisms. This study has demonstrated a simple strategy for minimizing charge related deposition of bacteria on surfaces.
Control and Signal Conditioning Circuits for E.I.R.M.A (Energetic Ion Retarding Mass Analyzer),
1984-10-01
electrically isolated segment of the vehicle with respect to the main body of the vehicle containing the mass analyzer and other instruments. The...ambient plasma. The vehicle was to be charged positive by the ejection of electrons and negative by the positive ion ejection. Also, the operation of...ambient ions and the ener- getic ions emitted and created during the vehicle charging and dis- charging experiments. It also was intended to survey the
Electrokinetic Response of Charge-Selective Nanostructured Polymeric Membranes
NASA Astrophysics Data System (ADS)
Schiffbauer, Jarrod; Li, Diya; Gao, Feng; Phillip, William; Chang, Hsueh-Chia
2017-11-01
Nanostructured polymeric membranes, with a tunable pore size and ease of surface molecular functionalization, are a promising material for separations, filtration, and sensing applications. Recently, such membranes have been fabricated wherein the ion selectivity is imparted by self-assembled functional groups through a two-step process. Amine groups are used to provide a positive surface charge and acid groups are used to yield a negative charge. The membranes can be fabricated as either singly-charged or patterned/mosaic membranes, where there are alternating regions of amine- lined or acid-lined pores. We demonstrate that such membranes, in addition to having many features in common with other charge selective membranes (i.e. AMX or Nafion), display a unique single-membrane rectification behavior. This is due to the asymmetric distribution of charged functional groups during the fabrication process. We demonstrate this rectification effect using both dc current-voltage characteristics as well as dc-biased electrical impedance spectroscopy. Furthermore, surface charge changes due to dc concentration polarization and generation of localized pH shifts are monitored using electrical impedance spectroscopy. (formerly at University of Notre Dame).
On the Control of the Fixed Charge Densities in Al2O3-Based Silicon Surface Passivation Schemes.
Simon, Daniel K; Jordan, Paul M; Mikolajick, Thomas; Dirnstorfer, Ingo
2015-12-30
A controlled field-effect passivation by a well-defined density of fixed charges is crucial for modern solar cell surface passivation schemes. Al2O3 nanolayers grown by atomic layer deposition contain negative fixed charges. Electrical measurements on slant-etched layers reveal that these charges are located within a 1 nm distance to the interface with the Si substrate. When inserting additional interface layers, the fixed charge density can be continuously adjusted from 3.5 × 10(12) cm(-2) (negative polarity) to 0.0 and up to 4.0 × 10(12) cm(-2) (positive polarity). A HfO2 interface layer of one or more monolayers reduces the negative fixed charges in Al2O3 to zero. The role of HfO2 is described as an inert spacer controlling the distance between Al2O3 and the Si substrate. It is suggested that this spacer alters the nonstoichiometric initial Al2O3 growth regime, which is responsible for the charge formation. On the basis of this charge-free HfO2/Al2O3 stack, negative or positive fixed charges can be formed by introducing additional thin Al2O3 or SiO2 layers between the Si substrate and this HfO2/Al2O3 capping layer. All stacks provide very good passivation of the silicon surface. The measured effective carrier lifetimes are between 1 and 30 ms. This charge control in Al2O3 nanolayers allows the construction of zero-fixed-charge passivation layers as well as layers with tailored fixed charge densities for future solar cell concepts and other field-effect based devices.
NASA Astrophysics Data System (ADS)
Qi, Bo; Gao, Chunjia; Sun, Zelai; Li, Chengrong
2017-11-01
Surface charge accumulation can incur changes in electric field distribution, involved in the electron propagation process, and result in a significant decrease in the surface flashover voltage. The existing 2D surface charge measurement fails to meet the actual needs in real engineering applications that usually adopt the 45° conical frustum insulators. The present research developed a novel 3D measurement platform to capture surface charge distribution on solid insulation under nanosecond pulse in a vacuum. The results indicate that all surface charges are positive under a positive pulse and negative under a negative pulse. Surface charges tend to accumulate more near the upper electrode. Surface charge density increases significantly with the increase in pulse counts and amplitudes. Accumulation of surface charge results in a certain decrease of flashover voltage. Taking consideration of the secondary electron emission for the surface charge accumulation, four materials were obtained to demonstrate the effects on surface charge. Combining the effect incurred by secondary electron emission and the weighty action taken by surface charge accumulation on the flashover phenomena, the discharge mechanism along the insulator surface under nanosecond pulse voltage was proposed.
Yin, Shengyong; Chen, Xinhua; Xie, Haiyang; Zhou, Lin; Guo, Danjing; Xu, Yuning; Wu, Liming; Zheng, Shusen
2016-08-15
Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatin for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge. Copyright © 2016 Elsevier Inc. All rights reserved.
Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates
NASA Technical Reports Server (NTRS)
Walton, Otis R.; Johnson, Scott M.
2010-01-01
The charge-spot technique for modeling the static electric forces acting between charged fine particles entails treating electric charges on individual particles as small sets of discrete point charges, located near their surfaces. This is in contrast to existing models, which assume a single charge per particle. The charge-spot technique more accurately describes the forces, torques, and moments that act on triboelectrically charged particles, especially image-charge forces acting near conducting surfaces. The discrete element method (DEM) simulation uses a truncation range to limit the number of near-neighbor charge spots via a shifted and truncated potential Coulomb interaction. The model can be readily adapted to account for induced dipoles in uncharged particles (and thus dielectrophoretic forces) by allowing two charge spots of opposite signs to be created in response to an external electric field. To account for virtual overlap during contacts, the model can be set to automatically scale down the effective charge in proportion to the amount of virtual overlap of the charge spots. This can be accomplished by mimicking the behavior of two real overlapping spherical charge clouds, or with other approximate forms. The charge-spot method much more closely resembles real non-uniform surface charge distributions that result from tribocharging than simpler approaches, which just assign a single total charge to a particle. With the charge-spot model, a single particle may have a zero net charge, but still have both positive and negative charge spots, which could produce substantial forces on the particle when it is close to other charges, when it is in an external electric field, or when near a conducting surface. Since the charge-spot model can contain any number of charges per particle, can be used with only one or two charge spots per particle for simulating charging from solar wind bombardment, or with several charge spots for simulating triboelectric charging. Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.
A new scanning electron microscopy approach to image aerogels at the nanoscale
NASA Astrophysics Data System (ADS)
Solá, F.; Hurwitz, F.; Yang, J.
2011-04-01
A new scanning electron microscopy (SEM) technique to image poor electrically conductive aerogels is presented. The process can be performed by non-expert SEM users. We showed that negative charging effects on aerogels can be minimized significantly by inserting dry nitrogen gas close to the region of interest. The process involves the local recombination of accumulated negative charges with positive ions generated from ionization processes. This new technique made possible the acquisition of images of aerogels with pores down to approximately 3 nm in diameter using a positively biased Everhart-Thornley (ET) detector.
The structure of K3C60 and the mechanism of superconductivity.
Pauling, L
1991-01-01
Analysis of the interatomic distances in the superconducting substance K3C60 indicates that each of the K atoms in tetrahedral interstices between C60 spheres accepts three electrons from C60, thus becoming quadricovalent; its four bonds resonate among the 24 adjacent carbon atoms to give a strong framework in which the negative charges are localized on these K atoms. The electric current is carried by the motion of positive charges (holes) through the network of C60 spheres and the K atoms in octahedral holes. Superconductivity is favored by the localization of the negative charges on the tetrahedral K atoms and their noninvolvement in valence-bond resonance, decreasing the rate of mutual extinction of electrons and holes. PMID:11607222
NASA Astrophysics Data System (ADS)
Vlaeva, I.; Petkov, K.; Tasseva, J.; Todorov, R.; Yovcheva, T.; Sainov, S.
2010-12-01
We report the results of electric field influence on holographic recording in very thin chalcogenide glass films. The total internal reflection prism recording technique (Stetson's scheme) is applied for holographic recording. The main advantage of this scheme is the possibility of holographic recording in micro- and nanometer thick photosensitive materials. In the present work, 30 nm, 50 nm and 1.0 µm thick films are used. In the 1.0 µm thick film two slanted gratings are simultaneously recorded. In this recording geometry only one reconstructed beam is observed. The corona charging influence on the diffraction efficiency of the recorded gratings is investigated. A negative voltage of 5 kV is applied to the corona electrode (needle) prior to the holographic recording. The observed diffraction efficiency of charged samples is always higher in comparison with uncharged samples. The reconstructed beam intensity is monitored with a red (635 nm) semiconductor laser. The possible reason is an additional refractive index modulation due to the increase in polarization, caused by the electric charging.
Ion selection of charge-modified large nanopores in a graphene sheet
NASA Astrophysics Data System (ADS)
Zhao, Shijun; Xue, Jianming; Kang, Wei
2013-09-01
Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl- while enhance the transport of K+, which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl- can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity.
NASA Technical Reports Server (NTRS)
Kuntz, Kip; Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.
2011-01-01
Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lnnar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however. the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.
2011-01-01
Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lunar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however, the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.
NASA Technical Reports Server (NTRS)
Gallagher, D. L.
2015-01-01
The Earth's plasmasphere is an inner part of the magneteosphere. It is located just outside the upper ionosphere located in Earth's atmosphere. It is a region of dense, cold plasma that surrounds the Earth. Although plasma is found throughout the magnetosphere, the plasmasphere usually contains the coldest plasma. Here's how it works: The upper reaches of our planet's atmosphere are exposed to ultraviolet light from the Sun, and they are ionized with electrons that are freed from neutral atmospheric particles. The results are electrically charged negative and positive particles. The negative particles are electrons, and the positive particles are now called ions (formerly atoms and molecules). If the density of these particles is low enough, this electrically charged gas behaves differently than it would if it were neutral. Now this gas is called plasma. The atmospheric gas density becomes low enough to support the conditions for a plasma around earth at about 90 kilometers above Earth's surface. The electrons in plasma gain more energy, and they are very low in mass. They move along Earth's magnetic field lines and their increased energy is enough to escape Earth's gravity. Because electrons are very light, they don't have to gain too much kinetic energy from the Sun's ultraviolet light before gravity loses its grip on them. Gravity is not all that holds them back, however. As more and more electrons begin to escape outward, they leave behind a growing net positive electric charge in the ionosphere and create a growing net negative electric charge above the ionosphere; an electric field begins to develop (the Pannekoek-Rosseland E-field). Thus, these different interacting charges result in a positively charged ionosphere and negatively charged region of space above it. Very quickly this resulting electric field opposed upward movement of the electrons out of the ionosphere. The electrons still have this increased energy, however, so the electric field doesn't just go away. Instead the ions react to the electric field and are attracted to it. They begin to move upward out of the ionosphere too. Since all this happens on a small scale, it simply looks like the electrons and ions move out of the ionosphere together. Ultimately the effect is that the lighter ions of hydrogen, helium and oxygen are able to escape from the ionosphere. For a planet like Earth with a strong planetary magnetic field, these outward moving particles remain trapped near the planet unless other processes further draw them away and into interplanetary space. As is always the case with nature, there is much more story to tell about this "upwardly mobile" plasma and these other processes. Over only a short time period of hours and days this escaping plasma can, in some places, build up in concentration until an equilibrium is reached where as much plasma flows inward into the ionosphere as flows outward. This "donut shaped" region of cold (about 1 electron volt in energy) plasma encircling the planet is called the plasmasphere. Because of space weather storms (kind of a generic phrase for those other processes) this cold and dense plasmaspheric plasma can actually end up all over the place. Generally, that region of space where plasma from the ionosphere has the time to build up to become identified as the plasmasphere rotates or nearly rotates with the Earth. That region shrinks in size with increased space weather activity and expands or refills during times of inactivity. As it shrinks with increasing activity, some of the plasmasphere is drawn away from its main body (plasmaspheric erosion) in the sunward direction toward the boundary in space between that region dominated by Earth's magnetic field and the much larger region dominated by the Sun's magnetic field. The region dominated by Earth's magnetic field is called the magnetosphere. The larger Sun dominated region is called the heliosphere.
NASA Astrophysics Data System (ADS)
Zhang, X.; Zahn, M.
2013-10-01
The smart use of charge injection to improve breakdown strength in transformer oil is demonstrated in this paper. Hypothetically, bipolar homo-charge injection with reduced electric field at both electrodes may allow higher voltage operation without insulation failure, since electrical breakdown usually initiates at the electrode-dielectric interfaces. To find experimental evidence, the applicability and limitation of the hypothesis is first analyzed. Impulse breakdown tests and Kerr electro-optic field mapping measurements are then conducted with different combinations of parallel-plate aluminum and brass electrodes stressed by millisecond duration impulse. It is found that the breakdown voltage of brass anode and aluminum cathode is ˜50% higher than that of aluminum anode and brass cathode. This can be explained by charge injection patterns from Kerr measurements under a lower voltage, where aluminum and brass electrodes inject negative and positive charges, respectively. This work provides a feasible approach to investigating the effect of electrode material on breakdown strength.
NASA Technical Reports Server (NTRS)
Scales, W. A.; Bernhardt, P. A.; Ganguli, G.
1994-01-01
Two-dimensional electrostatic particle-in-cell simulations are used to study the early time evolution of electron depletions and negative ion clouds produced during electron attachment chemical releases in the ionosphere. The simulation model considers the evolution in the plane perpendicular to the magnetic field and a three-species plasma that contains electrons, positive ions, and also heavy negative ions that result as a by-product of the electron attachment reaction. The early time evolution (less than the negative ion cyclotron period) of the system shows that a negative charge surplus initially develops outside of the depletion boundary as the heavy negative ions move across the boundary. The electrons are initially restricted from moving into the depletion due to the magnetic field. An inhomogenous electric field develops across the boundary layer due to this charge separation. A highly sheared electron flow velocity develops in the depletion boundary due to E x B and Delta-N x B drifts that result from electron density gradients and this inhomogenous electric field. Structure eventually develops in the depletion boundary layer due to low-frequency electrostatic waves that have growth times shorter than the negative ion cyclotron period. It is proposed that these waves are most likely produced by the electron-ion hybrid instability that results from sufficiently large shears in the electron flow velocity.
NASA Technical Reports Server (NTRS)
Zimmerman, Michael I.; Farrell, W. M.; Snubbs, T. J.; Halekas, J. S.
2011-01-01
Anticipating the plasma and electrical environments in permanently shadowed regions (PSRs) of the moon is critical in understanding local processes of space weathering, surface charging, surface chemistry, volatile production and trapping, exo-ion sputtering, and charged dust transport. In the present study, we have employed the open-source XOOPIC code [I] to investigate the effects of solar wind conditions and plasma-surface interactions on the electrical environment in PSRs through fully two-dimensional pattic1e-in-cell simulations. By direct analogy with current understanding of the global lunar wake (e.g., references) deep, near-terminator, shadowed craters are expected to produce plasma "mini-wakes" just leeward of the crater wall. The present results (e.g., Figure I) are in agreement with previous claims that hot electrons rush into the crater void ahead of the heavier ions, fanning a negative cloud of charge. Charge separation along the initial plasma-vacuum interface gives rise to an ambipolar electric field that subsequently accelerates ions into the void. However, the situation is complicated by the presence of the dynamic lunar surface, which develops an electric potential in response to local plasma currents (e.g., Figure Ia). In some regimes, wake structure is clearly affected by the presence of the charged crater floor as it seeks to achieve current balance (i.e. zero net current to the surface).
Microphysical growth state of ice particles and large-scale electrical structure of clouds
NASA Technical Reports Server (NTRS)
Williams, Earle; Zhang, Renyi; Boccippio, Dennis
1994-01-01
Cloud temperature, liquid water content, and vertical air velocity are all considered in evaluating the microphysical growth state of ice phase precipitation particles in the atmosphere. The large-scale observations taken together with in situ measurements indicated that the most prevalent growth condition for large ice particles in active convection is sublimation during riming, whereas the most prevalent growth condition in stratiform precipitation is vapor deposition. The large-scale electrical observations lend further support to the idea that particles warmed by riming into sublimation charge negatively and particles in vapor deposition charge positively in collisions with small ice particles.
NASA Technical Reports Server (NTRS)
Marshall, J.; Weislogel, M.; Jacobson, T.
1999-01-01
The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single grain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three-dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction.
Role of Ions in the Regulation of Light-Harvesting
Kaňa, Radek; Govindjee
2016-01-01
Regulation of photosynthetic light harvesting in the thylakoids is one of the major key factors affecting the efficiency of photosynthesis. Thylakoid membrane is negatively charged and influences both the structure and the function of the primarily photosynthetic reactions through its electrical double layer (EDL). Further, there is a heterogeneous organization of soluble ions (K+, Mg2+, Cl−) attached to the thylakoid membrane that, together with fixed charges (negatively charged amino acids, lipids), provides an electrical field. The EDL is affected by the valence of the ions and interferes with the regulation of “state transitions,” protein interactions, and excitation energy “spillover” from Photosystem II to Photosystem I. These effects are reflected in changes in the intensity of chlorophyll a fluorescence, which is also a measure of photoprotective non-photochemical quenching (NPQ) of the excited state of chlorophyll a. A triggering of NPQ proceeds via lumen acidification that is coupled to the export of positive counter-ions (Mg2+, K+) to the stroma or/and negative ions (e.g., Cl−) into the lumen. The effect of protons and anions in the lumen and of the cations (Mg2+, K+) in the stroma are, thus, functionally tightly interconnected. In this review, we discuss the consequences of the model of EDL, proposed by Barber (1980b) Biochim Biophys Acta 594:253–308) in light of light-harvesting regulation. Further, we explain differences between electrostatic screening and neutralization, and we emphasize the opposite effect of monovalent (K+) and divalent (Mg2+) ions on light-harvesting and on “screening” of the negative charges on the thylakoid membrane; this effect needs to be incorporated in all future models of photosynthetic regulation by ion channels and transporters. PMID:28018387
Grounding electrode and method of reducing the electrical resistance of soils
Koehmstedt, Paul L.
1980-01-01
A first solution of an electrolyte is injected underground into a volume of soil having negative surface charges on its particles. A cationic surfactant suspended in this solution neutralizes these surface charges of the soil particles within the volume. Following the first solution, a cationic asphalt emulsion suspended in a second solution is injected into the volume. The asphalt emulsion diffuses through the volume and electrostatically bonds with additional soil surrounding the volume such that an electrically conductive water repellant shell enclosing the volume is formed. This shell prevents the leaching of electrolyte from the volume into the additional soil. The second solution also contains a dissolved deliquescent salt which draws water into the volume prior to the formation of the shell. When electrically connected to an electrical installation such as a power line tower, the volume constitutes a grounding electrode for the tower.
Electrostatic Power Generation from Negatively Charged, Simulated Lunar Regolith
NASA Technical Reports Server (NTRS)
Choi, Sang H.; King, Glen C.; Kim, Hyun-Jung; Park, Yeonjoon
2010-01-01
Research was conducted to develop an electrostatic power generator for future lunar missions that facilitate the utilization of lunar resources. The lunar surface is known to be negatively charged from the constant bombardment of electrons and protons from the solar wind. The resulting negative electrostatic charge on the dust particles, in the lunar vacuum, causes them to repel each other minimizing the potential. The result is a layer of suspended dust about one meter above the lunar surface. This phenomenon was observed by both Clementine and Surveyor spacecrafts. During the Apollo 17 lunar landing, the charged dust was a major hindrance, as it was attracted to the astronauts' spacesuits, equipment, and the lunar buggies. The dust accumulated on the spacesuits caused reduced visibility for the astronauts, and was unavoidably transported inside the spacecraft where it caused breathing irritation [1]. In the lunar vacuum, the maximum charge on the particles can be extremely high. An article in the journal "Nature", titled "Moon too static for astronauts?" (Feb 2, 2007) estimates that the lunar surface is charged with up to several thousand volts [2]. The electrostatic power generator was devised to alleviate the hazardous effects of negatively charged lunar soil by neutralizing the charged particles through capacitive coupling and thereby simultaneously harnessing power through electric charging [3]. The amount of power generated or collected is dependent on the areal coverage of the device and hovering speed over the lunar soil surface. A thin-film array of capacitors can be continuously charged and sequentially discharged using a time-differentiated trigger discharge process to produce a pulse train of discharge for DC mode output. By controlling the pulse interval, the DC mode power can be modulated for powering devices and equipment. In conjunction with a power storage system, the electrostatic power generator can be a power source for a lunar rover or other systems. The negatively charged lunar soil would also be neutralized mitigating some of the adverse effects resulting from lunar dust.
Influence of electric field on the behavior of Si nanoparticles generated by laser ablation
NASA Astrophysics Data System (ADS)
Muramoto, Junichi; Sakamoto, Ippei; Nakata, Yoshiki; Okada, Tatsuo; Maeda, Mitsuo
1999-08-01
The influence of an electric field on particle behavior was investigated to control the transport of Si nanoparticles in a laser ablation plume by an ultraviolet Rayleigh scattering (UV-RS) technique. The majority of the nanoparticles, which could be observed by the UV-RS technique, were transported to the negatively biased electrode, indicating that they were positively charged. The deposition efficiency of nanoparticles onto a substrate was also improved by applying an electric field.
Study of the Charge Transfer Process of LaNi5 Type Electrodes in Ni-MH Batteries
NASA Astrophysics Data System (ADS)
Le, Xuan Que; Nguyen, Phu Thuy
2002-12-01
As a result of the charge process of LaNi5 type electrode, hydrogen is reversibly absorbed on the electrode surface. The process consists two principal steps. During the both processes, the first reaction step occurs in the interface solid/liquid, negatively charged, with high static electric field, where the double layer structure became more compact. The transfer of charge under high electric field depends on many factors, principally on compositions of the electrode materials. Effects on that of Co, Fe, Mn substitutes, with different concentrations, have been comparatively studied using electrochemical technique. The analyse of interface C -.V study results has been realised, respecting Mott-Schottky relation. Optimal contents of some additives have been discussed. Some advantages of the applied electrochemical methods have been confirmed. The mechanism of the charges transfer and of the hydrogen reversible storage in the crystal structure in the batteries has been discussed. With the proposed mechanism, one can more explicitly understand the difference of the magnetic effect of the electrode materials before and after charge-discharge process can be explained.
A Monte Carlo modeling on charging effect for structures with arbitrary geometries
NASA Astrophysics Data System (ADS)
Li, C.; Mao, S. F.; Zou, Y. B.; Li, Yong Gang; Zhang, P.; Li, H. M.; Ding, Z. J.
2018-04-01
Insulating materials usually suffer charging effects when irradiated by charged particles. In this paper, we present a Monte Carlo study on the charging effect caused by electron beam irradiation for sample structures with any complex geometry. When transporting in an insulating solid, electrons encounter elastic and inelastic scattering events; the Mott cross section and a Lorentz-type dielectric function are respectively employed to describe such scatterings. In addition, the band gap and the electron–long optical phonon interaction are taken into account. The electronic excitation in inelastic scattering causes generation of electron–hole pairs; these negative and positive charges establish an inner electric field, which in turn induces the drift of charges to be trapped by impurities, defects, vacancies etc in the solid, where the distributions of trapping sites are assumed to have uniform density. Under charging conditions, the inner electric field distorts electron trajectories, and the surface electric potential dynamically alters secondary electron emission. We present, in this work, an iterative modeling method for a self-consistent calculation of electric potential; the method has advantages in treating any structure with arbitrary complex geometry, in comparison with the image charge method—which is limited to a quite simple boundary geometry. Our modeling is based on: the combination of the finite triangle mesh method for an arbitrary geometry construction; a self-consistent method for the spatial potential calculation; and a full dynamic description for the motion of deposited charges. Example calculations have been done to simulate secondary electron yield of SiO2 for a semi-infinite solid, the charging for a heterostructure of SiO2 film grown on an Au substrate, and SEM imaging of a SiO2 line structure with rough surfaces and SiO2 nanoparticles with irregular shapes. The simulations have explored interesting interlaced charge layer distribution underneath the nanoparticle surface and the mechanism by which it is produced.
Charging of moving surfaces by corona discharges sustained in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun-Chieh, E-mail: junchwan@umich.edu; Kushner, Mark J., E-mail: mjkush@umich.edu; Zhang, Daihua, E-mail: dhzhang@tju.edu.cn
Atmospheric pressure corona discharges are used in electrophotographic (EP) printing technologies for charging imaging surfaces such as photoconductors. A typical corona discharge consists of a wire (or wire array) biased with a few hundred volts of dc plus a few kV of ac voltage. An electric discharge is produced around the corona wire from which electrons drift towards and charge the underlying dielectric surface. The surface charging reduces the voltage drop across the gap between the corona wire and the dielectric surface, which then terminates the discharge, as in a dielectric barrier discharge. In printing applications, this underlying surface ismore » continuously moving throughout the charging process. For example, previously charged surfaces, which had reduced the local electric field and terminated the local discharge, are translated out of the field of view and are replaced with uncharged surface. The uncharged surface produces a rebound in the electric field in the vicinity of the corona wire which in turn results in re-ignition of the discharge. The discharge, so reignited, is then asymmetric. We found that in the idealized corona charging system we investigated, a negatively dc biased corona blade with a dielectric covered ground electrode, the discharge is initially sustained by electron impact ionization from the bulk plasma and then dominated by ionization from sheath accelerated secondary electrons. Depending on the speed of the underlying surface, the periodic re-ignition of the discharge can produce an oscillatory charging pattern on the moving surface.« less
NASA Astrophysics Data System (ADS)
Mao, Zirui; Liu, G. R.
2018-02-01
The behavior of lunar dust on the Moon surface is quite complicated compared to that on the Earth surface due to the small lunar gravity and the significant influence of the complicated electrostatic filed in the Universe. Understanding such behavior is critical for the exploration of the Moon. This work develops a smoothed particle hydrodynamics (SPH) model with the elastic-perfectly plastic constitutive equation and Drucker-Prager yield criterion to simulate the electrostatic transporting of multiple charged lunar dust particles. The initial electric field is generated based on the particle-in-cell method and then is superposed with the additional electric field from the charged dust particles to obtain the resultant electric field in the following process. Simulations of cohesive soil's natural failure and electrostatic transport of charged soil under the given electric force and gravity were carried out using the SPH model. Results obtained in this paper show that the negatively charged dust particles levitate and transport to the shadow area with a higher potential from the light area with a lower potential. The motion of soil particles finally comes to a stable state. The numerical result for final distribution of soil particles and potential profile above planar surface by the SPH method matches well with the experimental result, and the SPH solution looks sound in the maximum levitation height prediction of lunar dust under an uniform electric field compared to theoretical solution, which prove that SPH is a reliable method in describing the behavior of soil particles under a complicated electric field and small gravity field with the consideration of interactions among soil particles.
Physical Origin of Transient Negative Capacitance in a Ferroelectric Capacitor
NASA Astrophysics Data System (ADS)
Chang, Sou-Chi; Avci, Uygar E.; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.
2018-01-01
Transient negative differential capacitance, the dynamic reversal of transient capacitance in an electrical circuit, is of highly technological and scientific interest since it probes the foundation of ferroelectricity. We study a resistor-ferroelectric capacitor (R -FEC) network through a series of coupled equations based on Kirchhoff's law, electrostatics, and Landau theory. We show that transient negative capacitance (NC) in a R -FEC circuit originates from the mismatch in switching rate between the free charge on the metal plate and the bound charge in a ferroelectric (FE) capacitor during the polarization switching. This transient free charge-polarization mismatch is driven by the negative curvature of the FE free-energy landscape, and it is also analytically shown that a free-energy profile with a negative curvature is the only physical system that can describe transient NC in a R -FEC circuit. Furthermore, transient NC induced by the free charge-polarization mismatch is justified by its dependence on both external resistance and the intrinsic FE viscosity coefficient. The depolarization effect on FE capacitors emphasizes the importance of negative curvature to transient NC and also implies that transient and steady-state NC cannot be observed in a FE capacitor simultaneously. Finally, using the transient NC measurements, a procedure to experimentally determine the viscosity coefficient is presented to provide more insight into the relation between transient NC and the FE free-energy profile.
Observation of the thunderstorm-related ground cosmic ray flux variations by ARGO-YBJ
NASA Astrophysics Data System (ADS)
Bartoli, B.; Bernardini, P.; Bi, X. J.; Cao, Z.; Catalanotti, S.; Chen, S. Z.; Chen, T. L.; Cui, S. W.; Dai, B. Z.; D'Amone, A.; Danzengluobu; De Mitri, I.; D'Ettorre Piazzoli, B.; Di Girolamo, T.; Di Sciascio, G.; Feng, C. F.; Feng, Zhaoyang; Feng, Zhenyong; Gao, W.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, Haibing; Hu, Hongbo; Iacovacci, M.; Iuppa, R.; Jia, H. Y.; Labaciren; Li, H. J.; Liu, C.; Liu, J.; Liu, M. Y.; Lu, H.; Ma, L. L.; Ma, X. H.; Mancarella, G.; Mari, S. M.; Marsella, G.; Mastroianni, S.; Montini, P.; Ning, C. C.; Perrone, L.; Pistilli, P.; Salvini, P.; Santonico, R.; Shen, P. R.; Sheng, X. D.; Shi, F.; Surdo, A.; Tan, Y. H.; Vallania, P.; Vernetto, S.; Vigorito, C.; Wang, H.; Wu, C. Y.; Wu, H. R.; Xue, L.; Yang, Q. Y.; Yang, X. C.; Yao, Z. G.; Yuan, A. F.; Zha, M.; Zhang, H. M.; Zhang, L.; Zhang, X. Y.; Zhang, Y.; Zhao, J.; Zhaxiciren; Zhaxisangzhu; Zhou, X. X.; Zhu, F. R.; Zhu, Q. Q.; D'Alessandro, F.; ARGO-YBJ Collaboration
2018-02-01
A correlation between the secondary cosmic ray flux and the near-earth electric field intensity, measured during thunderstorms, has been found by analyzing the data of the ARGO-YBJ experiment, a full coverage air shower array located at the Yangbajing Cosmic Ray Laboratory (4300 m a. s. l., Tibet, China). The counting rates of showers with different particle multiplicities (m =1 , 2, 3, and ≥4 ) have been found to be strongly dependent upon the intensity and polarity of the electric field measured during the course of 15 thunderstorms. In negative electric fields (i.e., accelerating negative charges downwards), the counting rates increase with increasing electric field strength. In positive fields, the rates decrease with field intensity until a certain value of the field EFmin (whose value depends on the event multiplicity), above which the rates begin increasing. By using Monte Carlo simulations, we found that this peculiar behavior can be well described by the presence of an electric field in a layer of thickness of a few hundred meters in the atmosphere above the detector, which accelerates/decelerates the secondary shower particles of opposite charge, modifying the number of particles with energy exceeding the detector threshold. These results, for the first time to our knowledge, give a consistent explanation for the origin of the variation of the electron/positron flux observed for decades by high altitude cosmic ray detectors during thunderstorms.
Apparent electric charge of protein molecules. Human thyroxine - binding proteins.
Hocman, G; Sadlon, J
1977-01-01
1. By comparison of electrophoretic mobilities of two different charged particles under the same conditions the net elementary electrostatic charge of one particle could be calculated when the charge of the other is known. 2. The electrophoretic mobility of human thyroxine - binding globulin does not depend upon the concentration of Tris - HCl buffer in the range 0.05 to 0.20 molar. The value of this mobility is 0.078 and 0.083 cm2 vol(-1) hour(-1) at pH 7.0 and 8.6, respectively. 3. The net elementary electrostatic charge of the human thyroxine - binding globulin appears to be approximately 22 negative elementary electrostatic units in mild alkaline solutions.
Insight into the split and asymmetry of charge distribution in biased M-structure superlattice
NASA Astrophysics Data System (ADS)
Liu, Lu; Bi, Han; Zhao, Yunhao; Zhao, Xuebing; Han, Xi; Wang, Guowei; Xu, Yingqiang; Li, Yuesheng; Che, Renchao
2017-07-01
The charge distribution in real space of an insertion variant based on an InAs/GaSb superlattice for an infrared detector is illustrated by in situ electron microscopy. The localization split of positive charge can be directly observed in the InAs/GaSb/AlSb/GaSb superlattice (M-structure) rather than in the InAs/GaSb superlattice. With the applied bias increasing from 0 to 4.5 V, the double peaks of positive charge density become asymmetrical gradually, with the peak integral ratio ranging from 1.13 to 2.54. Simultaneously, the negative charges move along the direction of the negative electric field. Without inserting the AlSb layer, the charge inversion occurs in both the hole wells and the electron wells of the InAs/GaSb superlattice under high bias. Such a discrepancy between the M-structure superlattice and the traditional superlattice suggests an effective reduction of tunneling probability of the M-structure design. Our result is of great help to understand the carrier immigration mechanism of the superlattice-based infrared detector.
Yashchenok, Alexey M; Gorin, Dmitry A; Badylevich, Mikhail; Serdobintsev, Alexey A; Bedard, Matthieu; Fedorenko, Yanina G; Khomutov, Gennady B; Grigoriev, Dmitri O; Möhwald, Helmuth
2010-09-21
Optical and electrical properties of polyelectrolyte/iron oxide nanocomposite planar films on silicon substrates were investigated for different amount of iron oxide nanoparticles incorporated in the films. The nanocomposite assemblies prepared by the layer-by-layer assembly technique were characterized by ellipsometry, atomic force microscopy, and secondary ion mass-spectrometry. Absorption spectra of the films reveal a shift of the optical absorption edge to higher energy when the number of deposited layers decreases. Capacitance-voltage and current-voltage measurements were applied to study the electrical properties of metal-oxide-semiconductor structures prepared by thermal evaporation of gold electrodes on nanocomposite films. The capacitance-voltage measurements show that the dielectric constant of the film increases with the number of deposited layers and the fixed charge and the trapped charge densities have a negative sign.
Evolution of lightning in an isolated hailstorm of moderate size in the tropics
NASA Astrophysics Data System (ADS)
Kamra, A. K.; Pawar, S. D.
2007-10-01
Evolution of lightning activity in a tropical hailstorm of moderate size that developed in the premonsoon season at Pune (18°32'N, 73°51'E, 559 m above sea level) is studied from the measurements of surface electric field, the Maxwell current and thunder. Total flash rate is counted from the electric field record, and the cloud-to-ground (CG) flash rate is estimated from the visual observations. Precise timings of their occurrence were confirmed from the observations of overshoot in the Maxwell current records. The storm exhibited an almost constant rate of one CG flash every 1 to 2 min over the whole life time of the storm. The ratio of intracloud (IC) to CG flashes (IC/CG) increased with the increase in total flash rate. In the convective stage of the storm, field changes from consecutive flashes were generally found to alternate in polarity. Moreover, in this stage, field changes occur in pairs, the first field change of each pair being of negative polarity and the second one of positive polarity. The two field changes in a pair occur with an average time difference of 14.3 ± 8.4 s while two consecutive pairs appear after 29.3 ± 9.1 s. In between the convective and mature stages, our observations suggest the occurrence of the phenomenon of rain gush and the field excursion associated with falling precipitation. Development of the mature stage was marked with rapid transitions in the surface electric field and the Maxwell current polarities from negative to positive. Further, total flash rate and IC/CG ratio sharply increase, and the lightning-induced electric field changes become almost exclusively of negative polarity. Observations suggest possibly a lifting up of the charging region in mature stage of the storm. The dissipating stage of the storm witnessed hail and rain showers, sharp transition of electric field and the Maxwell current from positive to negative polarity and occurrence of a few positive CG discharges. Our observations are consistent with the general belief that that some lightning flashes, by neutralizing and depositing charge in the region of opposite polarity, change the charge distribution so as to trigger another discharge in the storm.
NASA Astrophysics Data System (ADS)
Biggerstaff, Michael I.; Zounes, Zackery; Addison Alford, A.; Carrie, Gordon D.; Pilkey, John T.; Uman, Martin A.; Jordan, Douglas M.
2017-08-01
A series of vertical cross sections taken through a small mesoscale convective system observed over Florida by the dual-polarimetric SMART radar were combined with VHF radiation source locations from a lightning mapping array (LMA) to examine the lightning channel propagation paths relative to the radar-observed ice alignment signatures associated with regions of negative specific differential phase (
Kitagawa, Shinya; Tsuda, Takao
2003-05-02
The behavior of neutral sample solutes in pressurized flow driven electrochromatography using a mixed stationary phase, which consisted of ODS and anion-exchange (ODS-SAX), was studied. Applications of both positive and negative voltage on a column induced increases in retention factors of sample solutes. The direction of an electroosmotic flow under applications of positive and negative voltage were the same, therefore, the sign of the surface charge density under positive and negative voltage was opposite. We proposed a new equation for the relationship between applied voltage and surface charge density, and the practical electroosmotic flow conformed to this equation. Studying the electroosmotic flow using our proposed equation revealed that the applied negative voltage accelerates the protonation of the quaternary ammonium group and dissociation of the silanol group on packing materials. The retention behavior of a neutral solute was affected by the existence of the charged functional groups. We propose that this phenomenon is applicable to the control of the retention behavior of a sample solute using an electric field.
Reduced voltage sensitivity in a K+-channel voltage sensor by electric field remodeling
González-Pérez, Vivian; Stack, Katherine; Boric, Katica; Naranjo, David
2010-01-01
Propagation of the nerve impulse relies on the extreme voltage sensitivity of Na+ and K+ channels. The transmembrane movement of four arginine residues, located at the fourth transmembrane segment (S4), in each of their four voltage-sensing domains is mostly responsible for the translocation of 12 to 13 eo across the transmembrane electric field. Inserting additional positively charged residues between the voltage-sensing arginines in S4 would, in principle, increase voltage sensitivity. Here we show that either positively or negatively charged residues added between the two most external sensing arginines of S4 decreased voltage sensitivity of a Shaker voltage-gated K+-channel by up to ≈50%. The replacement of Val363 with a charged residue displaced inwardly the external boundaries of the electric field by at least 6 Å, leaving the most external arginine of S4 constitutively exposed to the extracellular space and permanently excluded from the electric field. Both the physical trajectory of S4 and its electromechanical coupling to open the pore gate seemed unchanged. We propose that the separation between the first two sensing charges at resting is comparable to the thickness of the low dielectric transmembrane barrier they must cross. Thus, at most a single sensing arginine side chain could be found within the field. The conserved hydrophobic nature of the residues located between the voltage-sensing arginines in S4 may shape the electric field geometry for optimal voltage sensitivity in voltage-gated ion channels. PMID:20194763
Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids
Jiménez-Rojo, Noemi; Sot, Jesús; Viguera, Ana R.; Collado, M. Isabel; Torrecillas, Alejandro; Gómez-Fernández, J.C.; Goñi, Félix M.; Alonso, Alicia
2014-01-01
Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease. PMID:24940775
Kagami, Yoshitoyo; Uchiyama, Susumu; Kato, Harumi; Okada, Yasutaka; Seto, Masao; Kinoshita, Tomohiro
2017-07-05
Growing adult T-cell leukemia/lymphoma (ATLL) cells in vitro is difficult. Here, we examined the effects of static electricity in the culture medium on the proliferation of ATLL cells. Six out of 10 ATLL cells did not proliferate in vitro and thus had to be cultured in a medium containing negatively charged polymers. In the presence of poly-γ-glutamic acid (PGA) or chondroitin sulfate (CDR), cell lines (HKOX3-PGA, HKOX3-CDR) were established from the same single ATLL case using interleukin (IL)-2, IL-4, and feeder cells expressing OX40L (OX40L + HK). Dextran sulfate inhibited growth in both HKOX3 cell lines. Both PGA and OX40L + HK were indispensable for HKOX3-PGA growth, but HKOX3-CDR could proliferate in the presence of CDR or OX40L + HK alone. Thus, the specific action of each negatively charged polymer promoted the growth of specific ATLL cells in vitro.
NASA Astrophysics Data System (ADS)
Li, Jian; Zhang, Zhao-Tao; Zou, Ping; Du, Bin; Liao, Rui-Jin
2012-06-01
Insulating vegetable oils are considered environment-friendly and fire-resistant substitutes for insulating mineral oils. This paper presents the lightning impulse breakdown characteristic of insulating vegetable oil and insulating vegetable oil-based nanofluids. It indicates that Fe3O4 nanoparticles can increase the negative lightning impulse breakdown voltages of insulating vegetable oil by 11.8% and positive lightning impulse breakdown voltages by 37.4%. The propagation velocity of streamer is reduced by the presence of nanoparticles. The propagation velocities of streamer to positive and negative lightning impulse breakdown in the insulating vegetable oil-based nanofluids are 21.2% and 14.4% lesser than those in insulating vegetable oils, respectively. The higher electrical breakdown strength and lower streamer velocity is explained by the charging dynamics of nanoparticles in insulating vegetable oil. Space charge build-up and space charge distorted filed in point-sphere gap is also described. The field strength is reduced at the streamer tip due to the low mobility of negative nanoparticles.
Measuring particle charge in an rf dusty plasma
NASA Astrophysics Data System (ADS)
Fung, Jerome; Liu, Bin; Goree, John; Nosenko, Vladimir
2004-11-01
A dusty plasma is an ionized gas containing micron-size particles of solid matter. A particle gains a large negative charge by collecting electrons and ions from the plasma. In a gas discharge, particles can be levitated by the sheath electric field above a horizontal planar electrode. Most dusty plasma experiments require a knowledge of the particle charge, which is a key parameter for all interactions with other particles and the plasma electric field. Several methods have been developed in the literature to measure the charge. The vertical resonance method uses Langmuir probe measurements of the ion density and video camera measurements of the amplitude of vertical particle oscillations, which are excited by modulating the rf voltage. Here, we report a new method that is a variation of the vertical resonance method. It uses the plasma potential and particle height, which can be measured more accurately than the ion density. We tested this method and compared the resulting charge to values obtained using the original resonance method as well as sound speed methods. Work supported by an NSF REU grant, NASA and DOE.
Wu, Fei; Sioshansi, Ramteen
2017-05-25
Electric vehicles (EVs) hold promise to improve the energy efficiency and environmental impacts of transportation. However, widespread EV use can impose significant stress on electricity-distribution systems due to their added charging loads. This paper proposes a centralized EV charging-control model, which schedules the charging of EVs that have flexibility. This flexibility stems from EVs that are parked at the charging station for a longer duration of time than is needed to fully recharge the battery. The model is formulated as a two-stage stochastic optimization problem. The model captures the use of distributed energy resources and uncertainties around EV arrival timesmore » and charging demands upon arrival, non-EV loads on the distribution system, energy prices, and availability of energy from the distributed energy resources. We use a Monte Carlo-based sample-average approximation technique and an L-shaped method to solve the resulting optimization problem efficiently. We also apply a sequential sampling technique to dynamically determine the optimal size of the randomly sampled scenario tree to give a solution with a desired quality at minimal computational cost. Here, we demonstrate the use of our model on a Central-Ohio-based case study. We show the benefits of the model in reducing charging costs, negative impacts on the distribution system, and unserved EV-charging demand compared to simpler heuristics. Lastly, we also conduct sensitivity analyses, to show how the model performs and the resulting costs and load profiles when the design of the station or EV-usage parameters are changed.« less
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Mills, H. E.; Orange, L.
1981-01-01
A possible explanation for environmentally-induced discharges on geosynchronous satellites exists in the electric fields formed in the cavities between solar cells - the small gaps formed by the cover slides, solar cells, metallic interconnects and insulating substrate. When exposed to a substorm environment, the cover slides become less negatively charged than the spacecraft ground. If the resultant electric field becomes large enough, then the interconnect could emit electrons (probably by field emission) which could be accelerated to space by the positive voltage on the covers. An experimental study was conducted using a small solar array segment in which the interconnect potential was controlled by a power supply while the cover slides were irradiated by monoenergetic electrons. It was found that discharges could be triggered when the interconnect potential became at least 500 volts negative with respect to the cover slides. Analytical modeling of satellites exposed to substorm environments indicates that such gradients are possible. Therefore, it appears that this trigger mechanism for discharges is possible.
NASA Technical Reports Server (NTRS)
1974-01-01
The standard plate cells exhibited higher average end-of-charge (EOC) voltages than the cells with teflonated negative plates; they also delivered a higher capacity output in ampere hours following these charges. All the cells reached a pressure of 20 psia before reaching the voltage limit of 1.550 volts during the pressure versus capacity test. The average ampere hours in and voltages at this pressure were 33.6 and 1.505 volts respectively for the teflonated negative plate cells and 35.5 and 1.523 volts for the standard plate cells. All cells exhibited pressure decay in the range of 1 to 7 psia during the last 30 minutes of the 1-hour open circuit stand. Average capacity out for the teflonated and standard negative plate cells was 29.4 and 29.9 ampere hours respectively.
Guo, Cecilia Yan; Hong Tang, Alexander Tin; Hon Tsoi, James Kit; Matinlinna, Jukka Pekka
2014-04-01
It has been reported that sandblasting titanium with alumina (Al2O3) powder could generate a negative electric charge on titanium surface. This has been proven to promote osteoblast activities and possibly osseointegration. The purpose of this pilot study was to investigate the effects of different blasting materials, in terms of the grit sizes and electro-negativity, on the generation of a negative charge on the titanium surface. The aim was also to make use of these results to deduct the underlying mechanism of charge generation by sandblasting. Together 60 c.p. 2 titanium plates were machine-cut and polished for sandblasting, and divided into 6 groups with 10 plates in each. Every plate in the study groups was sandblasted with one of the following 6 powder materials: 110µm Al2O3 grits, 50µm Al2O3 grits, 150-300µm glass beads, 45-75µm glass beads, 250µm Al powder and 44µm Al powder. The static voltage on the surface of every titanium plate was measured immediately after sandblasting. The static voltages of the titanium plates were recorded and processed using statistical analysis. The results suggested that only sandblasting with 45-75µm glass beads generated a positive charge on titanium, while using all other blasting materials lead to a negative charge. Furthermore, blasting grits of the same powder material but of different sizes might lead to different amount and polarity of the charges. This triboelectric effect is likely to be the main mechanism for charge generation through sandblasting. Copyright © 2014 Elsevier Ltd. All rights reserved.
An Analytical Model of Tribocharging in Regolith
NASA Astrophysics Data System (ADS)
Carter, D. P.; Hartzell, C. M.
2015-12-01
Nongravitational forces, including electrostatic forces and cohesion, can drive the behavior of regolith in low gravity environments such as the Moon and asteroids. Regolith is the 'skin' of solid planetary bodies: it is the outer coating that is observed by orbiters and the first material contacted by landers. Triboelectric charging, the phenomenon by which electrical charge accumulates during the collision or rubbing of two surfaces, has been found to occur in initially electrically neutral granular mixtures. Although charge transfer is often attributed to chemical differences between the different materials, charge separation has also been found to occur in mixtures containing grains of a single material, but with a variety of grain sizes. In such cases, the charge always separates according to grain size; typically the smaller grains acquire a more negative charge than the larger grains. Triboelectric charging may occur in a variety of planetary phenomena (including mass wasting and dust storms) as well as during spacecraft-surface interactions (including sample collection and wheel motion). Interactions between charged grains or with the solar wind plasma could produce regolith motion. However, a validated, predictive model of triboelectric charging between dielectric grains has not yet been developed. A model for such size-dependent charge separation will be presented, demonstrating how random collisions between initially electrically neutral grains lead to net migration of electrons toward the smaller grains. The model is applicable to a wide range of single-material granular mixtures, including those with unusual or wildly varying size distributions, and suggests a possible mechanism for the reversal of the usual size-dependent charge polarity described above. This is a significant improvement over existing charge exchange models, which are restricted to two discrete grains sizes and provide severely limited estimates for charge magnitude. We will also discuss the design of an experiment planned to test the charging estimates provided by the model presented and the potential implications for our understanding of regolith behavior.
Catalyst surfaces for the chromous/chromic redox couple
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K. J. (Inventor)
1981-01-01
An electricity producing cell of the reduction-oxidation (REDOX) type divided into two compartments by a membrane is disclosed. A ferrous/ferric couple in a chloride solution serves as a cathode fluid to produce a positive electric potential. A chromic/chromous couple in a chloride solution serves as an anode fluid to produce a negative potential. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which has been added to the anode fluid. If the REDOX cell is then discharged, the lead deplates from the negative electrode and the metal coating on the electrode acts as a catalyst to increase current density.
Ballistic and resonant negative photocurrents in semiconducting carbon nanotubes
NASA Astrophysics Data System (ADS)
Karnetzky, Christoph; Sponfeldner, Lukas; Engl, Max; Holleitner, Alexander W.
2017-04-01
Ultrafast photocurrent experiments are performed on semiconducting, single-walled carbon nanotubes under a resonant optical excitation of their subbands. The photogenerated excitons are dissociated at large electric fields and the resulting transport of the charge carriers turns out to be ballistic. Thermionic emission processes to the contacts dominate the photocurrent amplitude. The charge current without laser excitation is well described by a Fowler-Nordheim tunneling. The time-averaged photocurrent changes polarity as soon as sufficient charge carriers are injected from the contacts, which can be explained by an effective population inversion in the optically pumped subbands.
Liu, Zhao-Dong; Wang, Hai-Cui; Li, Jiu-Yu; Xu, Ren-Kou
2017-10-01
The interaction between rice roots and Fe/Al oxide-coated quartz was investigated through zeta potential measurements and column leaching experiments in present study. The zeta potentials of rice roots, Fe/Al oxide-coated quartz, and the binary systems containing rice roots and Fe/Al oxide-coated quartz were measured by a specially constructed streaming potential apparatus. The interactions between rice roots and Fe/Al oxide-coated quartz particles were evaluated/deduced based on the differences of zeta potentials between the binary systems and the single system of rice roots. The zeta potentials of the binary systems moved in positive directions compared with that of rice roots, suggesting that there were overlapping of diffuse layers of electric double layers on positively charged Fe/Al oxide-coated quartz and negatively charged rice roots and neutralization of positive charge on Fe/Al oxide-coated quartz with negative charge on rice roots. The greater amount of positive charges on Al oxide led to the stronger interaction of Al oxide-coated quartz with rice roots and the more shift of zeta potential compared with Fe oxide. The overlapping of diffuse layers on Fe/Al oxide-coated quartz and rice roots was confirmed by column leaching experiments. The greater overlapping of diffuse layers on Al oxide and rice roots led to more simultaneous adsorptions of K + and NO 3 - and greater reduction in leachate electric conductivity when the column containing Al oxide-coated quartz and rice roots was leached with KNO 3 solution, compared with the columns containing rice roots and Fe oxide-coated quartz or quartz. When the KNO 3 solution was replaced with deionized water to flush the columns, more K + and NO 3 - were desorbed from the binary system containing Al oxide-coated quartz and rice roots than from other two binary systems, suggesting that the stronger electrostatic interaction between Al oxide and rice roots promoted the desorption of K + and NO 3 - from the binary system and enhanced overlapping of diffuse layers on these oppositely charged surfaces compared with other two binary systems. In conclusion, the overlapping of diffuse layers occurred between positively charged Fe/Al oxides and rice roots, which led to neutralization of opposite charge and affected adsorption and desorption of ions onto and from the charged surfaces of Fe/Al oxides and rice roots.
Electrokinetic motion of a rectangular nanoparticle in a nanochannel
NASA Astrophysics Data System (ADS)
Movahed, Saeid; Li, Dongqing
2012-08-01
This article presents a theoretical study of electrokinetic motion of a negatively charged cubic nanoparticle in a three-dimensional nanochannel with a circular cross-section. Effects of the electrophoretic and the hydrodynamic forces on the nanoparticle motion are examined. Because of the large applied electric field over the nanochannel, the impact of the Brownian force is negligible in comparison with the electrophoretic and the hydrodynamic forces. The conventional theories of electrokinetics such as the Poisson-Boltzmann equation and the Helmholtz-Smoluchowski slip velocity approach are no longer applicable in the small nanochannels. In this study, and at each time step, first, a set of highly coupled partial differential equations including the Poisson-Nernst-Plank equation, the Navier-Stokes equations, and the continuity equation was solved to find the electric potential, ionic concentration field, and the flow field around the nanoparticle. Then, the electrophoretic and hydrodynamic forces acting on the negatively charged nanoparticle were determined. Following that, the Newton second law was utilized to find the velocity of the nanoparticle. Using this model, effects of surface electric charge of the nanochannel, bulk ionic concentration, the size of the nanoparticle, and the radius of the nanochannel on the nanoparticle motion were investigated. Increasing the bulk ionic concentration or the surface charge of the nanochannel will increase the electroosmotic flow, and hence affect the particle's motion. It was also shown that, unlike microchannels with thin EDL, the change in nanochannel size will change the EDL field and the ionic concentration field in the nanochannel, affecting the particle's motion. If the nanochannel size is fixed, a larger particle will move faster than a smaller particle under the same conditions.
Shim, Youngseon; Kim, Hyung J; Jung, Younjoon
2012-01-01
Supercapacitors with two single-sheet graphene electrodes in the parallel plate geometry are studied via molecular dynamics (MD) computer simulations. Pure 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) and a 1.1 M solution of EMI+BF4- in acetonitrile are considered as prototypes of room-temperature ionic liquids (RTILs) and organic electrolytes. Electrolyte structure, charge density and associated electric potential are investigated by varying the charges and separation of the two electrodes. Multiple charge layers formed in the electrolytes in the vicinity of the electrodes are found to screen the electrode surface charge almost completely. As a result, the supercapacitors show nearly an ideal electric double layer behavior, i.e., the electric potential exhibits essentially a plateau behavior in the entire electrolyte region except for sharp changes in screening zones very close to the electrodes. Due to its small size and large charge separation, BF4- is considerably more efficient in shielding electrode charges than EMI+. In the case of the acetonitrile solution, acetonitrile also plays an important role by aligning its dipoles near the electrodes; however, the overall screening mainly arises from ions. Because of the disparity of shielding efficiency between cations and anions, the capacitance of the positively-charged anode is significantly larger than that of the negatively-charged cathode. Therefore, the total cell capacitance in the parallel plate configuration is primarily governed by the cathode. Ion conductivity obtained via the Green-Kubo (GK) method is found to be largely independent of the electrode surface charge. Interestingly, EMI+BF4- shows higher GK ion conductivity than the 1.1 M acetonitrile solution between two parallel plate electrodes.
New Approach to Image Aerogels by Scanning Electron Microscopy
NASA Astrophysics Data System (ADS)
Solá, Francisco; Hurwitz, Frances; Yang, Jijing
2011-03-01
A new scanning electron microscopy (SEM) technique to image poor electrically conductive aerogels is presented. The process can be performed by non-expert SEM users. We showed that negative charging effects on aerogels can be minimized significantly by inserting dry nitrogen gas close to the region of interest. The process involves the local recombination of accumulated negative charges with positive ions generated from ionization processes. This new technique made possible the acquisition of images of aerogels with pores down to approximately 3nm in diameter using a positively biased Everhart-Thornley (E-T) detector. Well-founded concepts based on known models will also be presented with the aim to explain the results qualitatively.
NASA Astrophysics Data System (ADS)
Xiang, Jiayuan; Hu, Chen; Chen, Liying; Zhang, Dong; Ding, Ping; Chen, Dong; Liu, Hao; Chen, Jian; Wu, Xianzhang; Lai, Xiaokang
2016-10-01
The effect and mechanism of Zn(II) on improving the performances of lead-acid cell with electrochemical active carbon (EAC) in negative mass is investigated. The hydrogen evolution of the cell is significantly reduced due to the deposition of Zn on carbon surface and the increased porosity of negative mass. Zn(II) additives can also improve the low-temperature and high-rate capacities of the cell with EAC in negative mass, which ascribes to the formation of Zn on lead and carbon surface that constructs a conductive bridge among the active mass. Under the co-contribution of EAC and Zn(II), the partial-state-of-charge cycle life is greatly prolonged. EAC optimizes the NAM structure and porosity to enhance the charge acceptance and retard the lead sulfate accumulation. Zn(II) additive reduces the hydrogen evolution during charge process and improves the electric conductivity of the negative electrode. The cell with 0.6 wt% EAC and 0.006 wt% ZnO in negative mass exhibits 90% reversible capacity of the initial capacity after 2100 cycles. In contrast, the cell with 0.6 wt% EAC exhibits 84% reversible capacity after 2100 cycles and the control cell with no EAC and Zn(II) exhibits less than 80% reversible capacity after 1350 cycles.
Identification of potential locations of electric vehicle supply equipment
NASA Astrophysics Data System (ADS)
Brooker, R. Paul; Qin, Nan
2015-12-01
Proper placement of electric vehicle supply equipment (charging stations) requires an understanding of vehicle usage patterns. Using data from the National Household Travel Survey on vehicle mileage and destination patterns, analyses were performed to determine electric vehicles' charging needs, as a function of battery size and state of charge. This paper compares electric vehicle charging needs with Department of Energy electric vehicle charging data from real-world charging infrastructure. By combining the electric vehicles charging needs with charging data from real-world applications, locations with high electric vehicle charging likelihood are identified.
Dust motions in quasi-statically charged binary asteroid systems
NASA Astrophysics Data System (ADS)
Maruskin, Jared M.; Bellerose, Julie; Wong, Macken; Mitchell, Lara; Richardson, David; Mathews, Douglas; Nguyen, Tri; Ganeshalingam, Usha; Ma, Gina
2013-03-01
In this paper, we discuss dust motion and investigate possible mass transfer of charged particles in a binary asteroid system, in which the asteroids are electrically charged due to solar radiation. The surface potential of the asteroids is assumed to be a piecewise function, with positive potential on the sunlit half and negative potential on the shadow half. We derive the nonautonomous equations of motion for charged particles and an analytic representation for their lofting conditions. Particle trajectories and temporary relative equilibria are examined in relation to their moving forbidden regions, a concept we define and discuss. Finally, we use a Monte Carlo simulation for a case study on mass transfer and loss rates between the asteroids.
Partial breaking of the Coulombic ordering of ionic liquids confined in carbon nanopores
Futamura, Ryusuke; Iiyama, Taku; Takasaki, Yuma; Gogotsi, Yury; Biggs, Mark J.; Salanne, Mathieu; Ségalini, Julie; Simon, Patrice; Kaneko, Katsumi
2017-01-01
Ionic liquids are composed of equal quantities of positive and negative ions. In the bulk, electrical neutrality occurs in these liquids due to Coulombic ordering, in which ion shells of alternating charge form around a central ion. Their structure under confinement is far less well understood. This hinders the widespread application of ionic liquids in technological applications. Here we use scattering experiments to resolve the structure of the widely used ionic liquid (EMI-TFSI) when it is confined inside nanoporous carbons. We show that Coulombic ordering reduces when the pores can only accommodate a single layer of ions. Instead, equally-charged ion pairs are formed due to the induction of an electric potential of opposite sign in the carbon pore walls. This non-Coulombic ordering is further enhanced in the presence of an applied external electric potential. This finding opens the door for the design of better materials for electrochemical applications. PMID:28920938
Improving the efficiency of phytoremediation using electrically charged plant and chelating agents.
Tahmasbian, Iman; Safari Sinegani, Ali Akbar
2016-02-01
The low efficiency of phytoremediation is a considerable problem that limits the application of this environmentally friendly method on heavy metal-polluted soils. The combination of chelate-assisted phytoextraction and electrokinetic remediation could offer new opportunities to improve the effectiveness of phytoextraction. The current experiment aims to investigate the effects of electrical fields and chelating agents on phytoremediation efficiency. In a pot experiment using mine soil, poultry manure extract (PME), cow manure extract (CME), and ethylenediaminetetraacetic acid (EDTA) were applied to soil as chelating agents (2 g kg(-1)) at the beginning of the flowering stage. A week later, Helianthus annuus (sunflower) was negatively charged by inserting a stainless steel needle with 10 and 30 V DC electricity in the lowest part of the stems for 1 h each day for a 14-day period. At the end of the experiment, the shoot and root dry weight, lead (Pb) concentration in plant organs, translocation factor (TF), metal uptake index (UI), and soil available Pb (diethylene triamine pentaacetic acid (DTPA) extractable) were detected. Results indicated that the application of electrical fields had no significant impact on the shoot and root dry weights, while Pb concentration and UI increased in the 10-V EDTA treatment by 500 % compared to control. There was no significant difference between UI in 30- and 10-V EDTA treatments. Soil available Pb significantly increased in the 30-V treated soil. A positive correlation was observed between the available Pb in soil near the root and Pb concentration in shoot, its TF, and UI. In conclusion, a negatively charged plant along with the application of EDTA significantly increased the phytoremediation efficiency.
Analysis of Static Spacecraft Floating Potential at Low Earth Orbit (LEO)
NASA Technical Reports Server (NTRS)
Herr, Joel L.; Hwang, K. S.; Wu, S. T.
1995-01-01
Spacecraft floating potential is the charge on the external surfaces of orbiting spacecraft relative to the space. Charging is caused by unequal negative and positive currents to spacecraft surfaces. The charging process continues until the accelerated particles can be collected rapidly enough to balance the currents at which point the spacecraft has reached its equilibrium or floating potential. In low inclination. Low Earth Orbit (LEO), the collection of positive ion and negative electrons. in a particular direction. are typically not equal. The level of charging required for equilibrium to be established is influenced by the characteristics of the ambient plasma environment. by the spacecraft motion, and by the geometry of the spacecraft. Using the kinetic theory, a statistical approach for studying the interaction is developed. The approach used to study the spacecraft floating potential depends on which phenomena are being applied. and on the properties of the plasma. especially the density and temperature. The results from kinetic theory derivation are applied to determine the charging level and the electric potential distribution at an infinite flat plate perpendicular to a streaming plasma using finite-difference scheme.
Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener
Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi
2014-01-01
Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame. PMID:24763213
Development of a sweetness sensor for aspartame, a positively charged high-potency sweetener.
Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi
2014-04-23
Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.
Plasma source for spacecraft potential control
NASA Technical Reports Server (NTRS)
Olsen, R. C.
1983-01-01
A stable electrical ground which enables the particle spectrometers to measure the low energy particle populations was investigated and the current required to neutralize the spacecraft was measured. In addition, the plasma source for potential control (PSPO C) prevents high charging events which could affect the spacecraft electrical integrity. The plasma source must be able to emit a plasma current large enough to balance the sum of all other currents to the spacecraft. In ion thrusters, hollow cathodes provide several amperes of electron current to the discharge chamber. The PSPO C is capable of balancing the net negative currents found in eclipse charging events producing 10 to 100 microamps of electron current. The largest current required is the ion current necessary to balance the total photoelectric current.
Chen, Xiaoyun; Wang, Jie; Paszti, Zoltan; Wang, Fulin; Schrauben, Joel N; Tarabara, Volodymyr V; Schmaier, Alvin H; Chen, Zhan
2007-05-01
Electrostatic interactions between negatively charged polymer surfaces and factor XII (FXII), a blood coagulation factor, were investigated by sum frequency generation (SFG) vibrational spectroscopy, supplemented by several analytical techniques including attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), quartz crystal microbalance (QCM), zeta-potential measurement, and chromogenic assay. A series of sulfonated polystyrenes (sPS) with different sulfonation levels were synthesized as model surfaces with different surface charge densities. SFG spectra collected from FXII adsorbed onto PS and sPS surfaces with different surface charge densities showed remarkable differences in spectral features and especially in spectral intensity. Chromogenic assay experiments showed that highly charged sPS surfaces induced FXII autoactivation. ATR-FTIR and QCM results indicated that adsorption amounts on the PS and sPS surfaces were similar even though the surface charge densities were different. No significant conformational change was observed from FXII adsorbed onto surfaces studied. Using theoretical calculations, the possible contribution from the third-order nonlinear optical effect induced by the surface electric field was evaluated, and it was found to be unable to yield the SFG signal enhancement observed. Therefore it was concluded that the adsorbed FXII orientation and ordering were the main reasons for the remarkable SFG amide I signal increase on sPS surfaces. These investigations indicate that negatively charged surfaces facilitate or induce FXII autoactivation on the molecular level by imposing specific orientation and ordering on the adsorbed protein molecules.
Electrically active induced energy levels and metastability of B and N vacancy-complexes in 4H–SiC
NASA Astrophysics Data System (ADS)
Igumbor, E.; Olaniyan, O.; Mapasha, R. E.; Danga, H. T.; Omotoso, E.; Meyer, W. E.
2018-05-01
Electrically active induced energy levels in semiconductor devices could be beneficial to the discovery of an enhanced p or n-type semiconductor. Nitrogen (N) implanted into 4H–SiC is a high energy process that produced high defect concentrations which could be removed during dopant activation annealing. On the other hand, boron (B) substituted for silicon in SiC causes a reduction in the number of defects. This scenario leads to a decrease in the dielectric properties and induced deep donor and shallow acceptor levels. Complexes formed by the N, such as the nitrogen-vacancy centre, have been reported to play a significant role in the application of quantum bits. In this paper, results of charge states thermodynamic transition level of the N and B vacancy-complexes in 4H–SiC are presented. We explore complexes where substitutional N/N or B/B sits near a Si (V) or C (V) vacancy to form vacancy-complexes (NV, NV, NV, NV, BV, BV, BV and BV). The energies of formation of the N related vacancy-complexes showed the NV to be energetically stable close to the valence band maximum in its double positive charge state. The NV is more energetically stable in the double negative charge state close to the conduction band minimum. The NV on the other hand, induced double donor level and the NV induced a double acceptor level. For B related complexes, the BV and BV were energetically stable in their single positive charge state close to the valence band maximum. As the Fermi energy is varied across the band gap, the neutral and single negative charge states of the BV become more stable at different energy levels. B and N related complexes exhibited charge state controlled metastability behaviour.
NREL Bolsters Batteries with Nanotubes | News | NREL
has a busy collection of plastic containers. Enlarge image NREL Scientist Chunmei Ban assembles a rapidly charging and discharging. NREL's most recent contribution toward much-improved batteries are high electricity from the positive to the negative poles and back again. High-energy materials, such as metal
Composition of Plasma Formed from Hypervelocity Dust Impacts
NASA Astrophysics Data System (ADS)
Lee, N.; Close, S.; Rymer, A. M.; Mocker, A.
2012-12-01
Dust impacts can occur on all solar system bodies but are especially prevalent in the case of the Saturnian moons that are near or within the dust torus produced by Enceladus's plumes. Depending on the mass and charge on these plume particles, they will be influenced by both gravitational and electrodynamic forces, resulting in a range of possible impact speeds on the moons. The plasma formed upon impact can have very different characteristics depending on impact speed and on the electric field due to surface charging at the impact point. Through recent tests conducted at the Max Planck Institute for Nuclear Physics using a Van de Graaff dust accelerator, iron dust particles were electrostatically accelerated to speeds of 3-65 km/s and impacted on a variety of target materials including metallic and glassy surfaces. The target surfaces were connected to a biasing supply to represent surface charging effects. Because of the high specific kinetic energy of the dust particles, upon impact they vaporize along with part of the target surface and a fraction of this material is ionized forming a dense plasma. The impacts produced both positive and negative ions. We made measurements of the net current imparted by this expanding plasma at a distance of several centimeters from the impact point. By setting the bias of the target, we impose an electric field on the charge population, allowing a measurement of plasma composition through time of flight analysis. The figure shows representative measurements of the net current measured by a retarding potential analyzer (RPA) from separate 18 and 19 km/s impacts of 7 fg particles on a glassy surface that was negatively and positively biased, respectively. This target was an optical solar reflector donated by J. Likar of Lockheed Martin for these experiments. These results show that ions of both positive and negative charge can be formed through the mechanism of dust impacts, and has implications on the surface plasma environment at Enceladus and other airless bodies in the solar system. Measurements of net current from impact plasmas. The horizontal axis is normalized to particle mass based on time of flight. The red trace is from an impact on a positively biased surface, ejecting positive ions toward the sensor. The blue trace is from an impact on a negatively biased surface, ejecting electrons and negative ions toward the sensor. The first positive peak is from electrons causing secondary emission off the sensor. The subsequent negative peaks are from negative ions.
The influence of Mg doping on the formation of Ga vacancies and negative ions in GaN bulk crystals
NASA Astrophysics Data System (ADS)
Saarinen, K.; Nissilä, J.; Hautojärvi, P.; Likonen, J.; Suski, T.; Grzegory, I.; Lucznik, B.; Porowski, S.
1999-10-01
Gallium vacancies and negative ions are observed in GaN bulk crystals by applying positron lifetime spectroscopy. The concentration of Ga vacancies decreases with increasing Mg doping, as expected from the behavior of the VGa formation energy as a function of the Fermi level. The concentration of negative ions correlates with that of Mg impurities determined by secondary ion mass spectrometry. We thus attribute the negative ions to MgGa-. The negative charge of Mg suggests that Mg doping converts n-type GaN to semi-insulating mainly due to the electrical compensation of ON+ donors by MgGa- acceptors.
Cell design for lithium alloy/metal sulfide battery
Kaun, Thomas D.
1985-01-01
The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.
Improved cell design for lithium alloy/metal sulfide battery
Kaun, T.D.
1984-03-30
The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.
Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization
Niu, Liyong; Zhang, Di
2015-01-01
Electric taxis are playing an important role in the application of electric vehicles. The actual operational data of electric taxis in Shenzhen, China, is analyzed, and, in allusion to the unbalanced time availability of the charging station equipment, the electric taxis charging guidance system is proposed basing on the charging station information and vehicle information. An electric taxis charging guidance model is established and guides the charging based on the positions of taxis and charging stations with adaptive mutation particle swarm optimization. The simulation is based on the actual data of Shenzhen charging stations, and the results show that electric taxis can be evenly distributed to the appropriate charging stations according to the charging pile numbers in charging stations after the charging guidance. The even distribution among the charging stations in the area will be achieved and the utilization of charging equipment will be improved, so the proposed charging guidance method is verified to be feasible. The improved utilization of charging equipment can save public charging infrastructure resources greatly. PMID:26236770
Charging Guidance of Electric Taxis Based on Adaptive Particle Swarm Optimization.
Niu, Liyong; Zhang, Di
2015-01-01
Electric taxis are playing an important role in the application of electric vehicles. The actual operational data of electric taxis in Shenzhen, China, is analyzed, and, in allusion to the unbalanced time availability of the charging station equipment, the electric taxis charging guidance system is proposed basing on the charging station information and vehicle information. An electric taxis charging guidance model is established and guides the charging based on the positions of taxis and charging stations with adaptive mutation particle swarm optimization. The simulation is based on the actual data of Shenzhen charging stations, and the results show that electric taxis can be evenly distributed to the appropriate charging stations according to the charging pile numbers in charging stations after the charging guidance. The even distribution among the charging stations in the area will be achieved and the utilization of charging equipment will be improved, so the proposed charging guidance method is verified to be feasible. The improved utilization of charging equipment can save public charging infrastructure resources greatly.
Band-like temperature dependence of mobility in a solution-processed organic semiconductor
NASA Astrophysics Data System (ADS)
Sakanoue, Tomo; Sirringhaus, Henning
2010-09-01
The mobility μ of solution-processed organic semiconductorshas improved markedly to room-temperature values of 1-5cm2V-1s-1. In spite of their growing technological importance, the fundamental open question remains whether charges are localized onto individual molecules or exhibit extended-state band conduction like those in inorganic semiconductors. The high bulk mobility of 100cm2V-1s-1 at 10K of some molecular single crystals provides clear evidence that extended-state conduction is possible in van-der-Waals-bonded solids at low temperatures. However, the nature of conduction at room temperature with mobilities close to the Ioffe-Regel limit remains controversial. Here we investigate the origin of an apparent `band-like', negative temperature coefficient of the mobility (dμ/dT<0) in spin-coated films of 6,13-bis(triisopropylsilylethynyl)-pentacene. We use optical spectroscopy of gate-induced charge carriers to show that, at low temperature and small lateral electric field, charges become localized onto individual molecules in shallow trap states, but that a moderate lateral electric field is able to detrap them resulting in highly nonlinear, low-temperature transport. The negative temperature coefficient of the mobility at high fields is not due to extended-state conduction but to localized transport limited by thermal lattice fluctuations.
Band-like temperature dependence of mobility in a solution-processed organic semiconductor.
Sakanoue, Tomo; Sirringhaus, Henning
2010-09-01
The mobility mu of solution-processed organic semiconductors has improved markedly to room-temperature values of 1-5 cm(2) V(-1) s(-1). In spite of their growing technological importance, the fundamental open question remains whether charges are localized onto individual molecules or exhibit extended-state band conduction like those in inorganic semiconductors. The high bulk mobility of 100 cm(2) V(-1) s(-1) at 10 K of some molecular single crystals provides clear evidence that extended-state conduction is possible in van-der-Waals-bonded solids at low temperatures. However, the nature of conduction at room temperature with mobilities close to the Ioffe-Regel limit remains controversial. Here we investigate the origin of an apparent 'band-like', negative temperature coefficient of the mobility (dmu/dT<0) in spin-coated films of 6,13-bis(triisopropylsilylethynyl)-pentacene. We use optical spectroscopy of gate-induced charge carriers to show that, at low temperature and small lateral electric field, charges become localized onto individual molecules in shallow trap states, but that a moderate lateral electric field is able to detrap them resulting in highly nonlinear, low-temperature transport. The negative temperature coefficient of the mobility at high fields is not due to extended-state conduction but to localized transport limited by thermal lattice fluctuations.
Luo, Long; Holden, Deric A; White, Henry S
2014-03-25
A solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore. A switch from a high-conductivity state to a low-conductivity state occurs over a very narrow voltage window (<2 mV) that depends on the nanopore geometry, electrolyte concentration, and nanopore surface charge density. Finite element simulations based on a simultaneous solution of the Navier-Stokes, Poisson, and Nernst-Planck equations demonstrate that NDR results from a positive feedback mechanism between the ion distributions and electroosmotic flow, yielding a true bistability in fluid flow and electrical current at a critical applied voltage, i.e., the NDR "switching potential". Solution pH and Ca2+ were separately employed as chemical stimuli to investigate the dependence of the NDR on the surface charge density. The NDR switching potential is remarkably sensitive to the surface charge density, and thus to pH and the presence of Ca2+, suggesting possible applications in chemical sensing.
Lunar Electric Fields: Observations and Implications
NASA Astrophysics Data System (ADS)
Halekas, J. S.; Delory, G. T.; Stubbs, T. J.; Farrell, W. M.; Vondrak, R. R.
2006-12-01
Alhough the Moon is typically thought of as having a relatively dormant environment, it is in fact very electrically active. The lunar surface, not protected by any substantial atmosphere, is directly exposed to solar UV and X-rays as well as solar wind plasma and energetic particles. This creates a complex electrodynamic environment, with the surface typically charging positive in sunlight and negative in shadow, and surface potentials varying over orders of magnitude in response to changing solar illumination and plasma conditions. Observations from the Apollo era and theoretical considerations strongly suggest that surface charging also drives dust electrification and horizontal and vertical dust transport. We present a survey of the lunar electric field environment, utilizing both newly interpreted Lunar Prospector (LP) orbital observations and older Apollo surface observations, and comparing to theoretical predictions. We focus in particular on time periods when the most significant surface charging was observed by LP - namely plasmasheet crossings (when the Moon is in the Earth's magnetosphere) and space weather events. During these time periods, kV-scale potentials are observed, and enhanced surface electric fields can be expected to drive significant horizontal and vertical dust transport. Both dust and electric fields can have serious effects on habitability and operation of machinery, so understanding the coupled dust-plasma-electric field system around the Moon is critically important for planning exploration efforts, in situ resource utilization, and scientific observations on the lunar surface. Furthermore, from a pure science perspective, this represents an excellent opportunity to study fundamental surface-plasma interactions.
Metal nanoparticles triggered persistent negative photoconductivity in silk protein hydrogels
NASA Astrophysics Data System (ADS)
Gogurla, Narendar; Sinha, Arun K.; Naskar, Deboki; Kundu, Subhas C.; Ray, Samit K.
2016-03-01
Silk protein is a natural biopolymer with intriguing properties, which are attractive for next generation bio-integrated electronic and photonic devices. Here, we demonstrate the negative photoconductive response of Bombyx mori silk protein fibroin hydrogels, triggered by Au nanoparticles. The room temperature electrical conductivity of Au-silk hydrogels is found to be enhanced with the incorporation of Au nanoparticles over the control sample, due to the increased charge transporting networks within the hydrogel. Au-silk lateral photoconductor devices show a unique negative photoconductive response under an illumination of 325 nm, with excitation energy higher than the characteristic metal plasmon resonance band. The enhanced photoconductance yield in the hydrogels over the silk protein is attributed to the photo-oxidation of amino groups in the β-pleated sheets of the silk around the Au nanoparticles followed by the breaking of charge transport networks. The Au-silk nanocomposite does not show any photoresponse under visible illumination because of the localization of excited charges in Au nanoparticles. The negative photoconductive response of hybrid Au-silk under UV illumination may pave the way towards the utilization of silk for future bio-photonic devices using metal nanoparticle platforms.
Monitoring state-of-charge of Ni-MH and Ni-Cd batteries using impedance spectroscopy
NASA Astrophysics Data System (ADS)
Hammouche, Abderrezak; Karden, Eckhard; De Doncker, Rik W.
This paper reports on laboratory studies into the ac impedance spectra of nickel-metal hydride and nickel-cadmium batteries, aiming at finding out possible correlation between electrical parameters, extracted directly from the high frequency region, and the battery state-of-charge (SoC). Impedance diagrams were recorded immediately after interrupting the dc charge, or discharge, current. The study revealed that the series resonance frequency, at which the dynamic cell behavior switches from an inductive character ( Z″>0) to a capacitive one ( Z″<0), varied monotonously as a function of state-of-charge. This behavior was reproducible after intermittent charge and discharge. Half-cell measurements were also conducted to associate the cell impedance with either processes occurring at the positive or negative plates.
NASA Astrophysics Data System (ADS)
Matsuda, Y.; Kakutani, K.; Nonomura, T.; Kimbara, J.; Osamura, K.; Kusakar, S.; Toyoda, H.
2015-10-01
An electric field screen can be used to keep mosquitoes out of houses with open windows. In this study, doubly charged dipolar electric field screens (DD-screens) were used to capture mosquitoes entering through a window. The screen had two components: three layers of insulated conductor iron wires (ICWs) in parallel arrays and two electrostatic direct current (DC) voltage generators that supplied negative or positive voltages to the ICWs. Within each layer, the ICWs were parallel at 5-mm intervals, and connected to each other and to a negative or positive voltage generator. The negatively and positively charged ICWs are represented as ICW(-) and ICW(+), respectively. The screen consisted of one ICW(+) layer with an ICW(-) layer on either side. The Asian tiger mosquito (Aedes albopictus) and house mosquito (Culex pipiens) were used as models of vectors carrying viral pathogens. Adult mosquitoes were blown into the space between the ICWs by sending compressed air through the tip of an insect aspirator to determine the voltage range that captured all of the test insects. Wind speed was measured at the surface of the ICW using a sensitive anemometer. The result showed that at ≥ 1.2 kV, the force was strong enough that the ICWs captured all of the mosquitoes, despite a wind speed of 7 m/s. Therefore, the DD-screen could serve as a physical barrier to prevent noxious mosquitoes from entering houses with good air penetration.
Spatiotemporal dynamics of charged species in the afterglow of plasmas containing negative ions.
Kaganovich, I D; Ramamurthi, B N; Economou, D J
2001-09-01
The spatiotemporal evolution of charged species densities and wall fluxes during the afterglow of an electronegative discharge has been investigated. The decay of a plasma with negative ions consists of two stages. During the first stage of the afterglow, electrons dominate plasma diffusion and negative ions are trapped inside the vessel by the static electric field; the flux of negative ions to the walls is nearly zero. During this stage, the electron escape frequency increases considerably in the presence of negative ions, and can eventually approach free electron diffusion. During the second stage of the afterglow, electrons have disappeared, and positive and negative ions diffuse to the walls with the ion-ion ambipolar diffusion coefficient. Theories for plasma decay have been developed for equal and strongly different ion (T(i)) and electron (T(e)) temperatures. In the case T(i)=T(e), the species spatial profiles are similar and an analytic solution exists. When detachment is important in the afterglow (weakly electronegative gases, e.g., oxygen) the plasma decay crucially depends on the product of negative ion detachment frequency (gamma(d)) and diffusion time (tau(d)). If gamma(d)tau(d)>2, negative ions convert to electrons during their diffusion towards the walls. The presence of detached electrons results in "self-trapping" of the negative ions, due to emerging electric fields, and the negative ion flux to the walls is extremely small. In the case T(i)
NASA Astrophysics Data System (ADS)
Bartczak, Witold M.; Kroh, Jerzy
The simulation of the transient d.c. conductivity in a quasi one-dimensional system of charges produced by a pulse of ionizing radiation in a solid sample has been performed. The simulation is based on the macroscopic conductivity equations and can provide physical insight into d.c. conductivity measurements, particularly for the case of transient currents in samples with internal space charge. We consider the system of mobile (negative) and immobile (positive) charges produced by a pulse of ionizing radiation in the sample under a fixed external voltage V0. The presence of space charge results in an electric field which is a function of both the spatial and the time variable: E( z, t). Given the space charge density, the electric field can be calculated from the Poisson equation. However, for an arbitrary space charge distribution, the corresponding equations can only be solved numerically. The two non-trivial cases for which approximate analytical solutions can be provided are: (i) The density of the current carriers n( z, t) is negligible in comparison with the density of immobile space charge N( z). A general analytical solution has been found for this case using Green's functions. The solutions for two cases, viz. the homogeneous distribution of space charge N( z) = N, and the non-homogeneous exponential distribution N( z) = A exp(- Bz), have been separately discussed. (ii) The space charge created in the pulse without any space charge present prior to the irradiation.
Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate
NASA Technical Reports Server (NTRS)
Mackerras, D.; Darvenzia, M.; Orville, R. E.; Williams, E. R.; Goodman, S. J.
1999-01-01
A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approx. = 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approx. = 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves in Universal time (UT) could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels.
Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA
2012-05-22
Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.
Pouran, Behdad; Arbabi, Vahid; Zadpoor, Amir A; Weinans, Harrie
2016-12-01
The metabolic function of cartilage primarily depends on transport of solutes through diffusion mechanism. In the current study, we use contrast enhanced micro-computed tomography to determine equilibrium concentration of solutes through different cartilage zones and solute flux in the cartilage, using osteochondral plugs from equine femoral condyles. Diffusion experiments were performed with two solutes of different charge and approximately equal molecular weight, namely iodixanol (neutral) and ioxaglate (charge=-1) in order to isolate the effects of solute's charge on diffusion. Furthermore, solute concentrations as well as bath osmolality were changed to isolate the effects of steric hindrance on diffusion. Bath concentration and bath osmolality only had minor effects on the diffusion of the neutral solute through cartilage at the surface, middle and deep zones, indicating that the diffusion of the neutral solute was mainly Fickian. The negatively charged solute diffused considerably slower through cartilage than the neutral solute, indicating a large non-Fickian contribution in the diffusion of charged molecules. The numerical models determined maximum solute flux in the superficial zone up to a factor of 2.5 lower for the negatively charged solutes (charge=-1) as compared to the neutral solutes confirming the importance of charge-matrix interaction in diffusion of molecules across cartilage. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Tong; Sun, Hao; Wang, Fengdi; Zhang, Wanqiao; Ma, Junmei; Tang, Shuwei; Gong, Hongwei; Zhang, Jingping
2018-01-01
Phosgene, one of the common chemicals in many industry areas, is extremely harmful to human and the environment. Thus, it is necessary to design the advanced materials to detect or remove phosgene effectively. In fact, detection or adsorption of some small gas molecules are not the most difficult to actualize. Whereas, one of the primary challenges is the gas molecules desorption from the adsorbent for the purpose of recycling of substrate materials since the small gas molecules interacts strongly with the substrates. In this work, the interaction between the phosgene molecule and pristine or Mn-doped graphene sheets with different electric field and charge state are investigated by using first-principles simulations. Our results show that the adsorption energy of phosgene on Mn-doped graphene is dramatically weakened by applying an external negative electric field but is obviously enhanced by introducing a positive electric field. These processes can be easily controlled by transform the direction of the electric field. Thus, introducing an external electric field or charge in the system may be an excellent method to control the phosgene molecule adsorption and desorption on Mn-doped graphene sheet. All energy needed is just a small quantity of electricity, which satisfies well the requirement of green chemistry and sustainable development. The mechanism and reason of reversible adsorption/desorption is also revealed in terms of energy, charge distribution and orbital analysis. Such spontaneous adsorption or desorption makes Mn-doped graphene to be used as an excellent reusable scavenger of phosgene.
Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C
2015-11-01
Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Moraila-Martínez, Carmen Lucía; Guerrero-García, Guillermo Iván; Chávez-Páez, Martín; González-Tovar, Enrique
2018-04-01
The capacitive compactness has been introduced very recently [G. I. Guerrero-García et al., Phys. Chem. Chem. Phys. 20, 262-275 (2018)] as a robust and accurate measure to quantify the thickness, or spatial extension, of the electrical double layer next to either an infinite charged electrode or a spherical macroion. We propose here an experimental/theoretical scheme to determine the capacitive compactness of a spherical electrical double layer that relies on the calculation of the electrokinetic charge and the associated mean electrostatic potential at the macroparticle's surface. This is achieved by numerically solving the non-linear Poisson-Boltzmann equation of point ions around a colloidal sphere and matching the corresponding theoretical mobility, predicted by the O'Brien and White theory [J. Chem. Soc., Faraday Trans. 2 74, 1607-1626 (1978)], with experimental measurements of the electrophoretic mobility under the same conditions. This novel method is used to calculate the capacitive compactness of NaCl and CaCl2 electrolytes surrounding a negatively charged polystyrene particle as a function of the salt concentration.
The formation of ozone and UV radiation from high-power pulsed electric discharges
NASA Astrophysics Data System (ADS)
Piskarev, I. M.; Ushkanov, V. A.; Selemir, V. D.; Spirov, G. M.; Malevannaya Pikar', I. A.; Zuimach, E. A.
2008-09-01
High-power electric discharges with pulse energies of from 0.15 J to 4 kJ were studied. The yields of UV photons and ozone were found to be approximately equal, which led us to conclude that discharge conditions under which UV radiation and ozone fully destroyed each other were possible. If ozone formation was suppressed, as when a negative volume charge was created in the spark gap region, the flux of UV photons reached 3 × 1023 photons/(cm2 s).
Method of preparing an electrochemical cell in uncharged state
Shimotake, Hiroshi; Bartholme, Louis G.; Arntzen, John D.
1977-02-01
A secondary electrochemical cell is assembled in an uncharged state for the preparation of a lithium alloy-transition metal sulfide cell. The negative electrode includes a material such as aluminum or silicon for alloying with lithium as the cell is charged. The positive electrode is prepared by blending particulate lithium sulfide, transition metal powder and electrolytic salt in solid phase. The mixture is simultaneously heated to a temperature in excess of the melting point of the electrolyte and pressed onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within the cell. During the first charge cycle lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode.
Groome, James R; Winston, Vern
2013-05-01
The movement of positively charged S4 segments through the electric field drives the voltage-dependent gating of ion channels. Studies of prokaryotic sodium channels provide a mechanistic view of activation facilitated by electrostatic interactions of negatively charged residues in S1 and S2 segments, with positive counterparts in the S4 segment. In mammalian sodium channels, S4 segments promote domain-specific functions that include activation and several forms of inactivation. We tested the idea that S1-S3 countercharges regulate eukaryotic sodium channel functions, including fast inactivation. Using structural data provided by bacterial channels, we constructed homology models of the S1-S4 voltage sensor module (VSM) for each domain of the mammalian skeletal muscle sodium channel hNaV1.4. These show that side chains of putative countercharges in hNaV1.4 are oriented toward the positive charge complement of S4. We used mutagenesis to define the roles of conserved residues in the extracellular negative charge cluster (ENC), hydrophobic charge region (HCR), and intracellular negative charge cluster (INC). Activation was inhibited with charge-reversing VSM mutations in domains I-III. Charge reversal of ENC residues in domains III (E1051R, D1069K) and IV (E1373K, N1389K) destabilized fast inactivation by decreasing its probability, slowing entry, and accelerating recovery. Several INC mutations increased inactivation from closed states and slowed recovery. Our results extend the functional characterization of VSM countercharges to fast inactivation, and support the premise that these residues play a critical role in domain-specific gating transitions for a mammalian sodium channel.
Alternative Fuels Data Center: Electric Vehicle Charging Stations
Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center : Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on
Song, Jinsuk; Kim, Mahn Won
2010-03-11
Understanding the differential adsorption of ions at the interface of an electrolyte solution is very important because it is closely related, not only to the fundamental aspects of biological systems, but also to many industrial applications. We have measured the excess interfacial negative charge density at air-electrolyte solution interfaces by using resonant second harmonic generation of oppositely charged probe molecules. The excess charge density increased with the square root of the bulk electrolyte concentration. A new adsorption model that includes the electrostatic interaction between adsorbed molecules is proposed to explain the measured adsorption isotherm, and it is in good agreement with the experimental results.
Wall charging of a helicon antenna wrapped plasma filled dielectric tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barada, Kshitish K., E-mail: kbarada@physics.ucla.edu; Chattopadhyay, P. K., E-mail: pkchatto@ipr.res.in; Ghosh, J.
2015-01-15
Dielectric wall charging of a cylindrical glass wall surrounded by a helicon antenna of 18 cm length is measured in a linear helicon plasma device with a diverging magnetic field. The ions because of their lesser mobility do not respond to the high frequency electric field and the electrons charge the wall to a negative DC potential also known as the DC self-bias. The wall potential in this device is characterized for different neutral pressure, magnetic field, and radio frequency (RF) power. Axial variation of wall potential shows higher self-bias potentials near the antenna rings. Ion magnetization in the source chambermore » increases both wall charging and plasma potential of the source due to confinement.« less
Prediction on the charging demand for electric vehicles in Chengdu
NASA Astrophysics Data System (ADS)
yun, Cai; wanquan, Zhang; wei, You; pan, Mao
2018-03-01
The development of the electric vehicle charging station facilities speed directly affect the development of electric vehicle speed. And the charging demand of electric vehicles is one of the main factors influencing the electric vehicle charging facilities. The paper collected and collated car ownership in recent years, the use of elastic coefficient to predict Chengdu electric vehicle ownership, further modeling to give electric vehicle charging demand.
Understanding Trap Effects on Electrical Treeing Phenomena in EPDM/POSS Composites.
Du, Boxue; Su, Jingang; Tian, Meng; Han, Tao; Li, Jin
2018-05-31
POSS (polyhedral oligomeric silsesquioxane) provides an interesting alternative nano-silica and has the potential of superior dielectric properties to restrain electrical degradation. By incorporating POSS into EPDM to suppress electrical tree, one of precursors to dielectric failure, is promising to improve the lifetime of insulation materials. This paper focuses on the electrical treeing phenomena in EPDM/OVPOSS (ethylene propylene diene monomer/octavinyl-POSS) composites based on their physicochemical properties and trap distributions. ATR-IR and SEM characteristics are investigated to observe the chemical structure and physical dispersion of EPDM/OVPOSS composites. Electrical treeing characteristics are studied by the needle-plane electrode, and the trap level distributions are characterized by surface potential decay (SPD) tests. The results show that the 3 wt% EPDM/OVPOSS is more effective to restrain the electrical tree growth than the neat EPDM in this paper. It is indicated that the EPDM/OVPOSS with a filler content of 3 wt% introduces the largest energy level and trap density of deep trapped charges, which suppress the transportation of charge carriers injected from the needle tip and further prevent the degradation of polymer molecules. The polarity effects are obvious during the electrical treeing process, which is dependent on the trap level differences between positive and negative voltage.
Lightning Mapping Observations of Volume-Filling Small Discharges in Thunderstorms
NASA Astrophysics Data System (ADS)
Rison, W.; Krehbiel, P. R.; Thomas, R. J.; Rodeheffer, D.
2013-12-01
Lightning is usually considered to be a large-scale electrical discharge in the atmosphere. For example, the American Meteorological Society's Glossary of Meteorology defines lightning as "a transient, high-current electric discharge with pathlengths measured in kilometers" (http://glossary.ametsoc.org/wiki/Lightning). There have been several reported examples of short-duration discharges in thunderstorms, which have a duration of a few microseconds to less than a millisecond, and have a small spatial extent These short-duration discharges were located at high altitudes (> 14 km), altitudes consistent with being located between the upper positive charge and the negative screening layer. At these altitudes, the electric field needed to initiate an electrical discharge is much lower than it is at the altitudes of initiation for IC (~8 km) or CG (~5 km) flashes. We have recently reported on short-duration "precursor" discharges with durations of a few microseconds to a few milliseconds, which occur in the high-fields between the mid-level negative and upper positive charge regions. These "precursor" discharges are discrete in both time and space, being separated in time by hundreds of milliseconds to several seconds, and localized in space, usually very close to the initiation location of a subsequent IC discharge. We have recently observed nearly continuous, volume filling short-duration discharges in several thunderstorms. These discharges have durations of much less than a millisecond, spatial extents of less than a few hundred meters, and occur randomly in the volume between the mid-level negative and upper positive charge regions. During an active period, these discharges occur every few milliseconds. The rates of these discharges decreases dramatically to a few per second following an IC discharge, then increases to several hundred per second until the next discharge. In a storm just off the Florida coast, one cell was producing a large number of these small discharges, while a contemporaneous cell a few kilometers west produced no detectable small discharges. Short-duration discharges occur at altitudes between 10 km and 14 km in the intervals between lightning discharges. The rates of short-duration discharges decreases dramatically after a lightning discharge.
Asymmetric injection and distribution of space charges in propylene carbonate under impulse voltage
NASA Astrophysics Data System (ADS)
Sima, Wenxia; Chen, Qiulin; Sun, Potao; Yang, Ming; Guo, Hongda; Ye, Lian
2018-05-01
Space charge can distort the electric field in high voltage stressed liquid dielectrics and lead to breakdown. Observing the evolution of space charge in real time and determining the influencing factors are of considerable significance. The spatio-temporal evolution of space charge in propylene carbonate, which is very complex under impulse voltage, was measured in this study through the time-continuous Kerr electro-optic field mapping measurement. We found that the injection charge from a brass electrode displayed an asymmetric effect; that is, the negative charge injection near the cathode lags behind the positive charge injection near the anode. Physical mechanisms, including charge generation and drift, are analyzed, and a voltage-dependent saturated drift rectification model was established to explain the interesting phenomena. Mutual validation of models and our measurement data indicated that a barrier layer, which is similar to metal-semiconductor contact, was formed in the contact interface between the electrode and propylene carbonate and played an important role in the space charge injection.
Samandoulgou, Idrissa; Fliss, Ismaïl; Jean, Julie
2015-09-01
Although the spread of human norovirus reportedly depends on its ability to bind to food materials, the mechanism of the phenomenon remains unknown. Since protein size and electrical charge are reportedly important parameters in their adsorption, the current work is focused on determining human noroviruses isoelectric point (IEP), electrical charge and aggregate size at different pH, ionic strength (IS), and temperature. Using the baculovirus expression vector system, we produced and purified virus-like particles (VLPs) of GI.1 and GII.4 noroviruses and feline calicivirus, determined their IEP, and examined their size and electrical charge using a Zetasizer Nano ZS apparatus. Shape and size were also visualized using transmission electron microscopy. IEPs were found close to pH 4. Net charge increased as the pH deviated from the IEP. VLPs were negatively charged at all IS tested and showed a gradual decrease in charge with increasing IS. At low temperature, VLPs were 20-45 nm in diameter at pH far from their IEP and under almost all IS conditions, while aggregates appeared at or near the IEP. At increased temperatures, aggregates appeared at or near the IEP and at high IS. Aggregation at the IEP was also confirmed by microscopy. This suggests that electrostatic interactions would be the predominant factor in VLPs adhesion at pH far from 4 and at low ionic strength. In contrast, non-electrostatic interactions would prevail at around pH 4 and would be reinforced by aggregates, since size generally favors multiple bonding with sorbents.
theoretically. Negative ions are produced by a corona discharge from a needle placed along the axis of a nozzle. A dense air-vapor mixture is...interaction with the gas molecules to an electrode of high potential. The effectiveness of the viscous coupling depends on the charge mobility being
NASA Astrophysics Data System (ADS)
DiGangi, E.; MacGorman, D. R.; Ziegler, C.; Betten, D.; Biggerstaff, M. I.
2017-12-01
Lightning initiation in thunderstorms requires that the local electric field magnitude exceed breakdown values somewhere, and this tends to occur between regions of positive and negative charge, where the largest electric field magnitudes tend to occur. Past studies have demonstrated that, near updrafts, storms with very strong updrafts tend to elevate regions of charge and of flash initiations higher, as well as to have more flashes initiated by small pockets of charge, than in storms with much weaker updrafts. In all thunderstorms, the source of these charge regions is generally thought to be microscopic charge separation via the relative growth rate noninductive mechanism, followed by macroscopic charge separation via sedimentation, although other charge generation mechanisms can contribute to charge in some regions. Charge generation and lightning initiation are therefore inherently dependent on the microphysical and kinematic characteristics of a given storm. This study compares the results of a hydrometeor classification algorithm applied to C-band mobile radar data with mixing ratios calculated by a diabatic Lagrangian analysis retrieval from the dual-Doppler wind fields for two storms, the 29-30 May 2012 supercell storm and the 21 June 2012 multicell storm, observed during the Deep Convective Clouds and Chemistry experiment. Using these data, we then compare the inferred microphysical and kinematic characteristics of regions in which the Oklahoma Lightning Mapping Array indicated that flashes were initiated in these two very different storms.
The Generation of Lighting in the Solar Nebula
NASA Technical Reports Server (NTRS)
Cuzzi, Jeffrey; Desch, S. J.; DeVincenzi, Donald (Technical Monitor)
1998-01-01
The process that melted and formed the chondrules, mm-sized glassy beads within meteorites, has not been conclusively identified. Origin by lightning in the solar nebula is consistent with many features of chondrules, but no viable model of lightning has yet been advanced. We present a model demonstrating how lightning could be generated in the solar nebula which differs from previous models in three important aspects. First, we identify a new', powerful charging mechanism that is based on the differences in contact potentials between particles of different composition, a form of triboelectric charging. In the presence of fine silicate grains and fine iron metal grains, large silicate particles (the chondrules) can acquire charges of +10(exp 5) e. Second, we assume that the chondrule precursor particles are selectively concentrated in clumps 1 - 100 km in size by the turbulent concentration mechanism described by Cuzzi et al. (1996). The concentration of these highly charged particles into clumps, in a background of negatively charged metal grains, is what generates the strong electric fields. Third, we make refinements in the estimates of the breakdown electric field and the ionization rate. We calculate that electric fields large enough to trigger breakdown easily could have existed over regions large enough (approx. 100km) to generate very large discharges of electrical energy (approx. 10(exp 16)erg). The discharges would have been sufficiently energetic and frequent to have formed the chondrules. We place constraints on the generation of lightning and conclude that it could not be generated if the abundance of Al-26 in chondrules was as high as the level in the CAls. This conclusion is consistent with isotopic analyses of chondrules. This possibly implies that Al-26 was non-uniformly distributed in the solar nebula or that the chondrules formed several Myr after the CAIs.
NASA Astrophysics Data System (ADS)
Zhang, Yongqin; Iman, Kory
2018-05-01
Fuel-based transportation is one of the major contributors to poor air quality in the United States. Electric Vehicle (EV) is potentially the cleanest transportation technology to our environment. This research developed a spatial suitability model to identify optimal geographic locations for installing EV charging stations for travelling public. The model takes into account a variety of positive and negative factors to identify prime locations for installing EV charging stations in Wasatch Front, Utah, where automobile emission causes severe air pollution due to atmospheric inversion condition near the valley floor. A walkable factor grid was created to store index scores from input factor layers to determine prime locations. 27 input factors including land use, demographics, employment centers etc. were analyzed. Each factor layer was analyzed to produce a summary statistic table to determine the site suitability. Potential locations that exhibit high EV charging usage were identified and scored. A hot spot map was created to demonstrate high, moderate, and low suitability areas for installing EV charging stations. A spatially well distributed EV charging system was then developed, aiming to reduce "range anxiety" from traveling public. This spatial methodology addresses the complex problem of locating and establishing a robust EV charging station infrastructure for decision makers to build a clean transportation infrastructure, and eventually improve environment pollution.
NASA Astrophysics Data System (ADS)
Emersic, C.; Macgorman, D.; Schuur, T.; Lund, N.; Payne, C.; Bruning, E.
2007-12-01
We have examined lightning activity relative to the microphysical and kinematic structure of a winter thunderstorm complex (a thunder-snow episode) observed east of Norman, Oklahoma during the evening of 29-30 November 2006. Polarimetric radar provided information about the type of particles present in various regions of the storms. The Lightning Mapping Array (LMA) recorded VHF signals produced by developing lightning channels. The times of arrival of these lightning signals across the array were then used to reconstruct the location and structure of lightning, and these reconstructions were overlaid with radar data to examine the relationship between lightning properties and storm particle types. Four storms in this winter complex have been examined. It was inferred from lightning structure that, in their mature stage, all cells we examined had a positive tripole electrical structure (an upper positive charge center, a midlevel negative charge center, and a lower positive charge center). The storms began with lightning activity in the lower dipole (lower positive and midlevel negative regions), but this evolved into lightning activity throughout the tripole structure within approximately 15-20 minutes. In the longer lived storms, the mature stage lasted for approximately 1.5-2 hours. During this stage, the lower positive charge region was situated less than 5 km above ground, the midlevel negative charge region was typically above 5 km, and the upper positive charge region was located at an altitude of less than 10 km in all the storm cells analyzed. The charge regions descended over approximately the last 30 minutes of lightning activity, the lower charge regions eventually reaching ground. This resulted in the loss of the lower positive charge center and the subsequent diminishment of the lower negative charge center. Lightning initiation usually coincided with the edges of regions of high reflectivity and was coincident with the presence of graupel and ice crystals in the lower dipole. Radar data suggest that ice crystals were the dominant charge carriers in the upper positive region.
Active spacecraft potential control system selection for the Jupiter orbiter with probe mission
NASA Technical Reports Server (NTRS)
Beattie, J. R.; Goldstein, R.
1977-01-01
It is shown that the high flux of energetic plasma electrons and the reduced photoemission rate in the Jovian environment can result in the spacecraft developing a large negative potential. The effects of the electric fields produced by this charging phenomenon are discussed in terms of spacecraft integrity as well as charged particle and fields measurements. The primary area of concern is shown to be the interaction of the electric fields with the measuring devices on the spacecraft. The need for controlling the potential of the spacecraft is identified, and a system capable of active control of the spacecraft potential in the Jupiter environment is proposed. The desirability of using this system to vary the spacecraft potential relative to the ambient plasma potential is also discussed. Various charged particle release devices are identified as potential candidates for use with the spacecraft potential control system. These devices are evaluated and compared on the basis of system mass, power consumption, and system complexity and reliability.
Kulkarni, Mukta; Mazare, Anca; Park, Jung; Gongadze, Ekaterina; Killian, Manuela Sonja; Kralj, Slavko; von der Mark, Klaus; Iglič, Aleš; Schmuki, Patrik
2016-11-01
In the present work we investigate the key factors involved in the interaction of small-sized charged proteins with TiO 2 nanostructures, i.e. albumin (negatively charged), histone (positively charged). We examine anodic nanotubes with specific morphology (simultaneous control over diameter and length, e.g. diameter - 15, 50 or 100nm, length - 250nm up to 10μm) and nanopores. The nanostructures surface area has a direct influence on the amount of bound protein, nonetheless the protein physical properties as electric charge and size (in relation to nanotopography and biomaterial's electric charge) are crucial too. The highest quantity of adsorbed protein is registered for histone, for 100nm diameter nanotubes (10μm length) while higher values are registered for 15nm diameter nanotubes when normalizing protein adsorption to nanostructures' surface unit area (evaluated from dye desorption measurements) - consistent with theoretical considerations. The proteins presence on the nanostructures is evaluated by XPS and ToF-SIMS; additionally, we qualitatively assess their presence along the nanostructures length by ToF-SIMS depth profiles, with decreasing concentration towards the bottom. Surface nanostructuring of titanium biomedical devices with TiO 2 nanotubes was shown to significantly influence the adhesion, proliferation and differentiation of mesenchymal stem cells (and other cells too). A high level of control over the nanoscale topography and over the surface area of such 1D nanostructures enables a direct influence on protein adhesion. Herein, we investigate and show how the nanostructure morphology (nanotube diameter and length) influences the interactions with small-sized charged proteins, using as model proteins bovine serum albumin (negatively charged) and histone (positively charged). We show that the protein charge strongly influences their adhesion to the TiO 2 nanostructures. Protein adhesion is quantified by ELISA measurements and determination of the nanostructures' total surface area. We use a quantitative surface charge model to describe charge interactions and obtain an increased magnitude of the surface charge density at the top edges of the nanotubes. In addition, we track the proteins presence on and inside the nanostructures. We believe that these aspects are crucial for applications where the incorporation of active molecules such as proteins, drugs, growth factors, etc., into nanotubes is desired. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Effect of enhanced ionizing radiation on the cloud electricity after the Fukushima nuclear accident
NASA Astrophysics Data System (ADS)
Yamauchi, Masatoshi; Takeda, Masahiko; Nagamachi, Shingo
2018-03-01
The vertical downward component of the DC atmospheric electric field, or potential gradient (PG), at Kakioka 150 km southwest of the Fukushima Dai-ichi Nuclear Power Plant (FNPP1) was analyzed before and after the FNPP1 accident to examine possible influence of floating radioactive particles on the PG under the highly electrified clouds. Using 1-min PG data from March 13 to April 30 (late April 2011 corresponding to the time when floating radioactive materials decreased significantly) from 2006 to 2015, time profiles to/from the PG peaks (<- 100 or >+ 100 V/m) for 2011 are compared with other years. The PG developed toward and decays from its negative peaks faster in the first 50 days after the FNPP1 accident than for the same period in other years, making the 10-min averaged PG values for the same negative PG peak higher (smaller in terms of absolute value) during the first 50 days after the FNPP1 accident than those in other years in the study period, while the distribution of peak PG values is similar between 2011 and the other years. The observed shortening of the timescale is symmetric between the rise and decay and is the most clear when the negative PG peak is about - 200 to - 400 V/m. For positive peaks, the change of the baseline resulting from the radioactive contamination on the ground in 2011 caused superficial difference on such time profiles. Otherwise, there are no significant difference between 2011 and the other years. Possible explanations based on increased ionizing radiation from floating radioactive particles, which are found to be concentrated at low altitudes (< 500 m according to radiosonde in-situ observations of gamma rays) where negative cloud charges normally exceed positive charges, are discussed. The scenarios discussed include enhanced electrostatic shielding and electric conductivity-led decay rate of cloud charges. The result opens up a new possibility of using PG as an independent monitor of radioactivity at some altitudes in case of nuclear accidents.
Dipolar response of hydrated proteins
NASA Astrophysics Data System (ADS)
Matyushov, Dmitry V.
2012-02-01
The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins in solution. We calculate the effective dielectric constant representing the average dipole moment induced at the protein by a uniform external field. The dielectric constant shows a remarkable variation among the proteins, changing from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility, that is a dia-electric dipolar response and negative dielectrophoresis. It means that ubiquitin, carrying an average dipole of ≃240 D, is expected to repel from the region of a stronger electric field. This outcome is the result of a negative cross-correlation between the protein and water dipoles, compensating for the positive variance of the intrinsic protein dipole in the overall dipolar susceptibility. In contrast to the neutral ubiquitin, charged proteins studied here show para-electric dipolar response and positive dielectrophoresis. The study suggests that the dipolar response of proteins in solution is strongly affected by the coupling of the protein surface charge to the hydration water. The protein-water dipolar cross-correlations are long-ranged, extending ˜2 nm from the protein surface into the bulk. A similar correlation length of about 1 nm is seen for the electrostatic potential produced by the hydration water inside the protein. The analysis of numerical simulations suggests that the polarization of the protein-water interface is highly heterogeneous and does not follow the standard dielectric results for cavities carved in dielectrics. The polarization of the water shell gains in importance, relative to the intrinsic protein dipole, at high frequencies, above the protein Debye peak. The induced interfacial dipole can be either parallel or antiparallel to the protein dipole, depending on the distribution of the protein surface charge. As a result, the high-frequency absorption of the protein solution can be either higher or lower than the absorption of water. Both scenarios have been experimentally observed in the THz window of radiation.
Dipolar response of hydrated proteins.
Matyushov, Dmitry V
2012-02-28
The paper presents an analytical theory and numerical simulations of the dipolar response of hydrated proteins in solution. We calculate the effective dielectric constant representing the average dipole moment induced at the protein by a uniform external field. The dielectric constant shows a remarkable variation among the proteins, changing from 0.5 for ubiquitin to 640 for cytochrome c. The former value implies a negative dipolar susceptibility, that is a dia-electric dipolar response and negative dielectrophoresis. It means that ubiquitin, carrying an average dipole of ≃240 D, is expected to repel from the region of a stronger electric field. This outcome is the result of a negative cross-correlation between the protein and water dipoles, compensating for the positive variance of the intrinsic protein dipole in the overall dipolar susceptibility. In contrast to the neutral ubiquitin, charged proteins studied here show para-electric dipolar response and positive dielectrophoresis. The study suggests that the dipolar response of proteins in solution is strongly affected by the coupling of the protein surface charge to the hydration water. The protein-water dipolar cross-correlations are long-ranged, extending ~2 nm from the protein surface into the bulk. A similar correlation length of about 1 nm is seen for the electrostatic potential produced by the hydration water inside the protein. The analysis of numerical simulations suggests that the polarization of the protein-water interface is highly heterogeneous and does not follow the standard dielectric results for cavities carved in dielectrics. The polarization of the water shell gains in importance, relative to the intrinsic protein dipole, at high frequencies, above the protein Debye peak. The induced interfacial dipole can be either parallel or antiparallel to the protein dipole, depending on the distribution of the protein surface charge. As a result, the high-frequency absorption of the protein solution can be either higher or lower than the absorption of water. Both scenarios have been experimentally observed in the THz window of radiation.
On the generation of double layers from ion- and electron-acoustic instabilities
NASA Astrophysics Data System (ADS)
Fu, Xiangrong; Cowee, Misa M.; Gary, S. Peter; Winske, Dan
2016-03-01
A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.
Physicochemical Properties of Cartilage in the Light of Ion Exchange Theory
Maroudas, Alice
1968-01-01
Ion exchange theory has been applied to articular cartilage. Relationships were derived between permeability, diffusivity, electrical conductivity, and streaming potential. Systematic measurements were undertaken on these properties. Experimental techniques are described and data tabulated. Theoretical correlations were found to hold within the experimental error. The concentration of fixed negatively-charged groups in cartilage was shown to be the most important parameter. Fixed charge density was found to increase with distance from the articular surface and this variation was reflected in the other properties. PMID:5699797
NASA Astrophysics Data System (ADS)
Yasumoto, M.; Ohta, M.; Kawamura, Y.; Hatayama, A.
2014-02-01
Numerical simulations become useful for the developing RF-ICP (Radio Frequency Inductively Coupled Plasma) negative ion sources. We are developing and parallelizing a two-dimensional three velocity electromagnetic Particle-In-Cell code. The result shows rapid increase in the electron density during the density ramp-up phase. A radial electric field due to the space charge is produced with increase in the electron density and the electron transport in the radial direction is suppressed. As a result, electrons stay for a long period in the region where the inductive electric field is strong, and this leads efficient electron acceleration and a rapid increasing of the electron density.
NASA Astrophysics Data System (ADS)
Zykov, V. M.; Neiman, D. A.
2018-04-01
A physico-mathematical model of the processes of radiation-induced charging of dielectric materials with open surfaces, irradiated with monoenergetic electrons in the energy range 10-30 keV, is described. The model takes into account the relationship between the processes of surface and bulk charging for the given conditions of the experimental design, which accounts for the effect of anomalously long charging of dielectrics after the incident energy of primary electrons during charging is reduced to below the second critical energy for the secondary electronic emission coefficient. The initial fast phase of charging a high-resistivity dielectric material (Al2O3) is investigated. It is shown that as the incident electron energy is approaching the second critical energy during charging, the secondary electronic emission is partially suppressed due to negative charging of the open surface of the dielectric and formation of a near-surface inversion electrical field retarding the electronic emission yield.
Electrochemical cell assembled in discharged state
Yao, Neng-Ping; Walsh, William J.
1976-01-01
A secondary, electrochemical cell is assembled in a completely discharged state within a sealed containment. As assembled, the cell includes a positive electrode separated from a negative electrode by a molten salt electrolyte. The positive electrode is contained within a porous structure, permitting passage of molten electrolyte, and includes one or more layers of a metallic mesh, e.g. iron, impregnated with an intimate mixture of lithium sulfide and the electrolyte. The negative electrode is a porous plaque of aluminum metal. Prior to using the cell, an electrical charge forms lithium-aluminum alloy within the negative electrode and metal sulfide within the positive electrode.
NASA Astrophysics Data System (ADS)
Mallios, Sotirios A.
The Global Electric Circuit (GEC) is a circuit that is formed between the Earth's surface, which is a good conductor of electricity, and the ionosphere, a weakly-ionized plasma at ˜80 km altitude. Thunderstorms are believed to be the major charging sources of this circuit. In this dissertation, we present our studies on the contribution of thunderstorms to the Global electric Circuit. We examine the current that is driven to the ionosphere and to the ground before, during and after single negative cloud-to-ground (CG) and intra-cloud (IC) lightning discharges. A numerical model has been developed, that calculates the quasi-electrostatic field before the lightning, due to the slow accumulation of the charge in the thunder-cloud, and after the lightning by taking into account the Maxwellian relaxation of the charges in the conducting atmosphere and accounting for the dissipation stage of the thunderstorm development. From these results, the charges that are transferred to the ionosphere and to the ground are calculated. We demonstrate the significance of considering the pre-lightning and the dissipation stages and accounting for realistic distribution of the conductivity inside of the thundercloud for the accurate calculation of the charge flow to the ionosphere and to the ground. We show that the charge transfer to the ionosphere depends mainly on the altitudes of the charges inside the thundercloud and their spatial separation. The amount of charge that is transferred to the ground, due to currents flowing in the vicinity of the thundercloud during a transient time period following a lightning discharge, is significantly affected by the conductivity distribution in the thundercloud and can be several times smaller than the amount of charge that is transferred to the ionosphere during the same time period. Moreover, we show that the duration of each of the thunderstorm life cycle stages affects the results. Furthermore, we show the influence of the corona currents on the overall current system. We extend the model to include the whole domain of the GEC. We investigate different types of boundary conditions for the proper modeling of the global current flow in the presence of a single storm and the resulting potential difference that is created. We compare this model in the steady state limit with a static model that has been developed in previous published studies. We apply the model to a case of an experimentally measured thunderstorm. We investigate the Wilson current that flows from its top towards the ionosphere as a function of a sequence of different types of lightning discharges, the flash rate and the conductivity distribution. We compare the results with the measurements and we make conclusions regarding the validity of the modeling concept. We develop a time-dependent fluid model that is able to calculate self consistently the time dynamics of the conductivity distribution along with the time dynamics of the thunderstorm electrical properties. This model takes into account several atmospheric processes such as the ionization due to the galactic cosmic rays radiation, the ion-ion recombination, and the attachment of ions to cloud particles. We study the regimes at which the previous models that assume constant conductivity over time are valid and we quantify the similarities and differences between these two models. Finally, we model the lightning discharge channel using a three-dimensional cartesian fractal model. The purpose of this model is to simulate several types of lightning discharges that occur in realistic thunderstorms and calculate the amount of charge that is removed or neutralized from each thunderstorm. At the same time we used this model to quantify the potential differences produced in a developing IC lightning discharge for given thunderstorm electric configurations. We present a case of a +IC lightning discharge in a realistic thunderstorm configuration that leads to a very high (˜300 MV) potential difference, and show how a delay in the development of the negative leader with respect to the positive one in a bidirectional leader system can facilitate a high potential difference in the negative leader head region, which favors the production of terrestrial gamma ray flashes. Terrestrial gamma ray flashes are high energy (up to 100 MeV) photon bursts originating from the Earth's atmosphere in association with IC lightning discharges.
The induced electric field due to a current transient
NASA Astrophysics Data System (ADS)
Beck, Y.; Braunstein, A.; Frankental, S.
2007-05-01
Calculations and measurements of the electric fields, induced by a lightning strike, are important for understanding the phenomenon and developing effective protection systems. In this paper, a novel approach to the calculation of the electric fields due to lightning strikes, using a relativistic approach, is presented. This approach is based on a known current wave-pair model, representing the lightning current wave. The model presented is one that describes the lightning current wave, either at the first stage of the descending charge wave from the cloud or at the later stage of the return stroke. The electric fields computed are cylindrically symmetric. A simplified method for the calculation of the electric field is achieved by using special relativity theory and relativistic considerations. The proposed approach, described in this paper, is based on simple expressions (by applying Coulomb's law) compared with much more complicated partial differential equations based on Maxwell's equations. A straight forward method of calculating the electric field due to a lightning strike, modelled as a negative-positive (NP) wave-pair, is determined by using the special relativity theory in order to calculate the 'velocity field' and relativistic concepts for calculating the 'acceleration field'. These fields are the basic elements required for calculating the total field resulting from the current wave-pair model. Moreover, a modified simpler method using sub models is represented. The sub-models are filaments of either static charges or charges at constant velocity only. Combining these simple sub-models yields the total wave-pair model. The results fully agree with that obtained by solving Maxwell's equations for the discussed problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castello, Charles C
This research presents a comparison of two control systems for peak load shaving using local solar power generation (i.e., photovoltaic array) and local energy storage (i.e., battery bank). The purpose is to minimize load demand of electric vehicle supply equipment (EVSE) on the electric grid. A static and dynamic control system is compared to decrease demand from EVSE. Static control of the battery bank is based on charging and discharging to the electric grid at fixed times. Dynamic control, with 15-minute resolution, forecasts EVSE load based on data analysis of collected data. In the proposed dynamic control system, the sigmoidmore » function is used to shave peak loads while limiting scenarios that can quickly drain the battery bank. These control systems are applied to Oak Ridge National Laboratory s (ORNL) solar-assisted electric vehicle (EV) charging stations. This installation is composed of three independently grid-tied sub-systems: (1) 25 EVSE; (2) 47 kW photovoltaic (PV) array; and (3) 60 kWh battery bank. The dynamic control system achieved the greatest peak load shaving, up to 34% on a cloudy day and 38% on a sunny day. The static control system was not ideal; peak load shaving was 14.6% on a cloudy day and 12.7% on a sunny day. Simulations based on ORNL data shows solar-assisted EV charging stations combined with the proposed dynamic battery control system can negate up to 89% of EVSE load demand on sunny days.« less
Network based management for multiplexed electric vehicle charging
Gadh, Rajit; Chung, Ching Yen; Qui, Li
2017-04-11
A system for multiplexing charging of electric vehicles, comprising a server coupled to a plurality of charging control modules over a network. Each of said charging modules being connected to a voltage source such that each charging control module is configured to regulate distribution of voltage from the voltage source to an electric vehicle coupled to the charging control module. Data collection and control software is provided on the server for identifying a plurality of electric vehicles coupled to the plurality of charging control modules and selectively distributing charging of the plurality of charging control modules to multiplex distribution of voltage to the plurality of electric vehicles.
Probing the radio emission from air showers with polarization measurements
NASA Astrophysics Data System (ADS)
Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration
2014-03-01
The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.
NASCAP modelling of high-voltage power system interactions with space charged-particle environments
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.; Mandell, M. J.
1979-01-01
A simple space power system operating in geosynchronous orbit was analyzed. This system consisted of two solar array wings and a central body. Each solar array wing was considered to be divided into three regions operating at 2000 volts. The center body was considered to be an electrical ground with the array voltages both positive and negative relative to ground. The system was analyzed for both a normal environment and a moderate geomagnetic substorm environment. Initial results indicate a high probability of arcing at the interconnects on the negative operating voltage wing. The dielectric strength of the substrate may be exceeded giving rise to breakdown in the bulk of the material. The geomagnetic substorm did not seem to increase the electrical gradients at the interconnects on the negative operating voltage wing but did increase the gradients on the positive operating voltage wing which could result in increased coupling current losses.
Alternative Fuels Data Center: Electric Vehicle Charging Station Locations
Electric Vehicle Charging Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center : Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric
Self-healing liquid/solid state battery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Paul J.; Chung, Brice H.V.; Phadke, Satyajit R.
A battery system that exchanges energy with an external device is provided. The battery system includes a positive electrode having a first metal or alloy, a negative electrode having a second metal or alloy, and an electrolyte including a salt of the second metal or alloy. The positive electrode, the negative electrode, and the electrolyte are in a liquid phase at an operating temperature during at least one portion of operation. The positive electrode is entirely in a liquid phase in one charged state and includes a solid phase in another charged state. The solid phase of the positive electrodemore » includes a solid intermetallic formed by the first and the second metals or alloys. Methods of storing electrical energy from an external circuit using such a battery system are also provided.« less
3D modeling of electric fields in the LUX detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akerib, D. S.; Alsum, S.; Araújo, H. M.
This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generatedmore » on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m 2. Here, from our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.« less
3D modeling of electric fields in the LUX detector
Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...
2017-11-24
This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generatedmore » on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m 2. Here, from our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.« less
3D modeling of electric fields in the LUX detector
NASA Astrophysics Data System (ADS)
Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.
2017-11-01
This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generated on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m2. From our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.
A Fieldmill for Measuring Atmospheric Electricity
ERIC Educational Resources Information Center
Thompson, Frank
2018-01-01
It is a well known fact that the Earth carries a net negative charge that produces a downward electrostatic field. The present experiment shows how this field can be measured with a Field Mill which has been constructed from components readily available in the Laboratory. In fine weather conditions a value of 120 (±10) V m[superscript -1] was…
NASA Astrophysics Data System (ADS)
Bhowmik, R. N.; Vijayasri, G.
2015-06-01
We have studied current-voltage (I-V) characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (˜500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.
Electric breakdowns of the "plasma capacitors" occurs on insulation coating of the ISS surface
NASA Astrophysics Data System (ADS)
Homin, Taras; Korsun, Anatolii
High electric fields and currents are occurred in the spacecrafts plasma environment by onboard electric generators. Thus the high voltage solar array (SA) of the American segment of International Space Station (ISS) generates potential 160 V. Its negative pole is shorted to the frames of all the ISS segments. There is electric current between the SA and the frame through the plasma environment, i.e. electric discharge occurs. As a result a potential drop exists between the frames of all the ISS segments and the environmental plasma [1], which is cathode drop potential varphi _{c} defined. When ISS orbiting, the φc varies greatly in the range 0-100 V. A large area of the ISS frames and SA surface is coated with a thin dielectric film. Because of cathode drop potential the frame surfaces accumulate ion charges and the SA surfaces accumulate electron charges. These surfaces become plasma capacitors, which accumulate much charge and energy. Micrometeorite impacts or buildup of potential drop in excess of breakdown threshold varphi_{b} (varphi _{c} > varphi _{b} = 60 V) may cause breakdowns of these capacitors. Following a breakdown, the charge collected at the surfaces disperses and transforms into a layer of dense plasma [2]. This plasma environment of the spacecraft produces great pulsed electric fields E at the frame surfaces as well as heavy currents between construction elements which in turn induce great magnetic fields H. Therefore the conductive frame and the environmental plasma is plasma inductors. We have calculated that the densities of these pulsing and high-frequency fields E and H generated in the plasma environment of the spacecraft may exceed values hazardous to human. Besides, these fields must induce large electromagnetic impulses in the space-suit and in the power supply and control circuits of onboard systems. During astronaut’s space-suit activity, these fields will penetrate the space-suit and the human body with possible hazardous effects. These effects need to be studied, and appropriate remedies are to be developed. References 1. Mikatarian, R., et al., «Electrical Charging of the International Space Station», AIAA Paper No. 2003-1079, 41th. Aerospace Sciences Meeting and Exhibit, January 2003. 2. A.G. Korsun, «Electric discharge processes intensification mechanisms on International Space Station surface». Astronautics and rocket production, 1, 2011 (in Russian).
Polarization of gold in nanopores leads to ion current rectification
Yang, Crystal; Hinkle, Preston; Menestrina, Justin; ...
2016-10-03
Biomimetic nanopores with rectifying properties are relevant components of ionic switches, ionic circuits, and biological sensors. Rectification indicates that currents for voltages of one polarity are higher than currents for voltages of the opposite polarity. Ion current rectification requires the presence of surface charges on the pore walls, achieved either by the attachment of charged groups or in multielectrode systems by applying voltage to integrated gate electrodes. Here we present a simpler concept for introducing surface charges via polarization of a thin layer of Au present at one entrance of a silicon nitride nanopore. In an electric field applied bymore » two electrodes placed in bulk solution on both sides of the membrane, the Au layer polarizes such that excess positive charge locally concentrates at one end and negative charge concentrates at the other end. Consequently, a junction is formed between zones with enhanced anion and cation concentrations in the solution adjacent to the Au layer. This bipolar double layer together with enhanced cation concentration in a negatively charged silicon nitride nanopore leads to voltage-controlled surface-charge patterns and ion current rectification. The experimental findings are supported by numerical modeling that confirm modulation of ionic concentrations by the Au layer and ion current rectification even in low-aspect ratio nanopores. Lastly, our findings enable a new strategy for creating ionic circuits with diodes and transistors.« less
System and method for charging a plug-in electric vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bassham, Marjorie A.; Spigno, Jr., Ciro A.; Muller, Brett T.
2017-05-02
A charging system and method that may be used to automatically apply customized charging settings to a plug-in electric vehicle, where application of the settings is based on the vehicle's location. According to an exemplary embodiment, a user may establish and save a separate charging profile with certain customized charging settings for each geographic location where they plan to charge their plug-in electric vehicle. Whenever the plug-in electric vehicle enters a new geographic area, the charging method may automatically apply the charging profile that corresponds to that area. Thus, the user does not have to manually change or manipulate themore » charging settings every time they charge the plug-in electric vehicle in a new location.« less
NASA Astrophysics Data System (ADS)
Krehbiel, P. R.; Hyland, P. T.; Edens, H. E.; Rison, W.
2013-12-01
Observations being made at Langmuir Laboratory with the NM Tech Lightning Mapping Array (LMA) and the University of Oklahoma ARRC PX-1000 dual polarization X-band radar strongly confirm and expand upon the normal polarity tripolar electrical structure of central New Mexico storms. This is in sharp contrast with the anomalously electrified storm structures observed in northern Colorado during and subsequent to the 2012 DC3 field campaign, as seen with North Colorado LMA and CSU CHILL dual-polarization radar observations. In this presentation we focus on the New Mexico observations, and several modes in which the tripolar structure appears initially to develop and evolve with time. Central New Mexico storms are often prolific producers of negative cloud-to-ground (CG) flashes, but rarely produce positive CGs. By contrast, many or most north Colorado storms are CG-deficient, with the relatively few CG discharges being of predominantly positive polarity. In addition, NM storms commonly produce bolt-from-the-blue (BFB) negative CGs, whereas anomalously electrified Colorado storms produce none. The occurrence of BFBs is indicative of a relatively weak lower positive charge region, while the occurrence of normal downward -CGs is indicative of a somewhat stronger lower positive charge. The lack of -CGs in Colorado storms results from lower positive charge being a dominant storm charge that is elevated in altitude. These and other basic features of the electrically activity of storms, coupled with dual polarization and Doppler radar observations of hydrometeor types and motions, are leading to a better understanding of the storm electrification processes.
Puncture discharges in surface dielectrics as contaminant sources in spacecraft environments
NASA Technical Reports Server (NTRS)
Yadlowsky, E. J.; Hazelton, R. C.; Churchill, R. J.
1978-01-01
Spacecraft in geosynchronous orbits are known to become charged to large negative potentials during the local midnight region of the satellite orbit. Such discharges have been studied by the electron beam irradiation of dielectric samples in a vacuum environment. In addition to static measurements and photographic examination of the puncture discharges in Teflon samples, the transient characteristics of the electrical discharges are determined from oscillographs of voltage and current and by charged particle measurements employing a biased Faraday cup and a retarding potential analyzer. Using these latter techniques, studies of angular and energy distributions of charged particles have indicated an initial burst of high energy electrons (5 x 10 to the 13th power per discharge at energies greater than 300 eV) followed by a less intense burst of lower energy negative particles. Positive ions are emitted from the discharge site in an initial high velocity burst followed by a lower velocity burst tentatively identified as carbon.
Gap state charge induced spin-dependent negative differential resistance in tunnel junctions
NASA Astrophysics Data System (ADS)
Jiang, Jun; Zhang, X.-G.; Han, X. F.
2016-04-01
We propose and demonstrate through first-principles calculation a new spin-dependent negative differential resistance (NDR) mechanism in magnetic tunnel junctions (MTJ) with cubic cation disordered crystals (CCDC) AlO x or Mg1-x Al x O as barrier materials. The CCDC is a class of insulators whose band gap can be changed by cation doping. The gap becomes arched in an ultrathin layer due to the space charge formed from metal-induced gap states. With an appropriate combination of an arched gap and a bias voltage, NDR can be produced in either spin channel. This mechanism is applicable to 2D and 3D ultrathin junctions with a sufficiently small band gap that forms a large space charge. It provides a new way of controlling the spin-dependent transport in spintronic devices by an electric field. A generalized Simmons formula for tunneling current through junction with an arched gap is derived to show the general conditions under which ultrathin junctions may exhibit NDR.
Two-electron states of a group-V donor in silicon from atomistic full configuration interactions
NASA Astrophysics Data System (ADS)
Tankasala, Archana; Salfi, Joseph; Bocquel, Juanita; Voisin, Benoit; Usman, Muhammad; Klimeck, Gerhard; Simmons, Michelle Y.; Hollenberg, Lloyd C. L.; Rogge, Sven; Rahman, Rajib
2018-05-01
Two-electron states bound to donors in silicon are important for both two-qubit gates and spin readout. We present a full configuration interaction technique in the atomistic tight-binding basis to capture multielectron exchange and correlation effects taking into account the full band structure of silicon and the atomic-scale granularity of a nanoscale device. Excited s -like states of A1 symmetry are found to strongly influence the charging energy of a negative donor center. We apply the technique on subsurface dopants subjected to gate electric fields and show that bound triplet states appear in the spectrum as a result of decreased charging energy. The exchange energy, obtained for the two-electron states in various confinement regimes, may enable engineering electrical control of spins in donor-dot hybrid qubits.
Size effect in Quincke rotation: a numerical study.
Peters, F; Lobry, L; Khayari, A; Lemaire, E
2009-05-21
This paper deals with the Quincke rotation of small insulating particles. This dc electrorotation of insulating objects immersed in a slightly conducting liquid is usually explained by looking at the action of the free charges present in the liquid. Under the effect of the dc electric field, the charges accumulate at the surface of the insulating particle which, in turn, acquires a dipole moment in the direction opposite to that of the field and begins to rotate in order to flip its dipole moment. In the classical Quincke model, the charge distribution around the rotor is supposed to be purely superficial. A consequence of this assumption is that the angular velocity does not depend on the rotor size. Nevertheless, this hypothesis holds only if the rotor size is much larger than the characteristic ion layer thickness around the particle. In the opposite case, we show thanks to numerical calculations that the bulk charge distribution has to be accounted for to predict the electromechanical behavior of the rotor. We consider the case of an infinite insulating cylinder whose axis is perpendicular to the dc electric field. We use the finite element method to solve the conservation equations for the positive and the negative ions coupled with Navier-Stokes and Poisson equations. Doing so, we compute the bulk charge distribution and the velocity field in the liquid surrounding the cylinder. For sufficiently small cylinders, we show that the smaller the cylinder is, the smaller its angular velocity is when submitted to a dc electric field. This size effect is shown to originate both in ion diffusion and electromigration in the charge layer. At last, we propose a simple analytical model which allows calculating the angular velocity of the rotor when electromigration is present but weak and diffusion can be neglected.
Size effect in Quincke rotation: A numerical study
NASA Astrophysics Data System (ADS)
Peters, F.; Lobry, L.; Khayari, A.; Lemaire, E.
2009-05-01
This paper deals with the Quincke rotation of small insulating particles. This dc electrorotation of insulating objects immersed in a slightly conducting liquid is usually explained by looking at the action of the free charges present in the liquid. Under the effect of the dc electric field, the charges accumulate at the surface of the insulating particle which, in turn, acquires a dipole moment in the direction opposite to that of the field and begins to rotate in order to flip its dipole moment. In the classical Quincke model, the charge distribution around the rotor is supposed to be purely superficial. A consequence of this assumption is that the angular velocity does not depend on the rotor size. Nevertheless, this hypothesis holds only if the rotor size is much larger than the characteristic ion layer thickness around the particle. In the opposite case, we show thanks to numerical calculations that the bulk charge distribution has to be accounted for to predict the electromechanical behavior of the rotor. We consider the case of an infinite insulating cylinder whose axis is perpendicular to the dc electric field. We use the finite element method to solve the conservation equations for the positive and the negative ions coupled with Navier-Stokes and Poisson equations. Doing so, we compute the bulk charge distribution and the velocity field in the liquid surrounding the cylinder. For sufficiently small cylinders, we show that the smaller the cylinder is, the smaller its angular velocity is when submitted to a dc electric field. This size effect is shown to originate both in ion diffusion and electromigration in the charge layer. At last, we propose a simple analytical model which allows calculating the angular velocity of the rotor when electromigration is present but weak and diffusion can be neglected.
The physics of charge separation preceding lightning strokes in thunderclouds
NASA Technical Reports Server (NTRS)
Kyrala, Ali
1987-01-01
The physics of charge separation preceding lightning strokes in thunderclouds is presented by three types of arguments: An explanation is given for the aggregation of electrical charges of like sign overcoming Coulomb repulsion by attraction due to exchange interaction. The latter is well known in quantum mechanics from the theories of the nuclear bond and the covalent bond. A classical electrostatic model of charge balls of segregated positive and negative charges in the thundercloud is presented. These charge balls can only be maintained in temporarily stable locations by a containing vortex. Because they will be of different sizes and masses, they will stabilize at different altitudes when drag forces are included with the given electrostatic force. The question of how the charges become concentrated again after lightning discharges is approached by means of the collisional Boltzmann transport equation to explain quasi-periodic recharging. It is shown that solutions cannot be separable in both position and time if they are to represent aggregation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaren, Joyce; Miller, John; O'Shaughnessy, Eric
With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for fourmore » charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.« less
Electrostatic charge characteristics of jet nebulized aerosols.
Kwok, Philip Chi Lip; Trietsch, Sebastiaan J; Kumon, Michiko; Chan, Hak-Kim
2010-06-01
Liquid droplets can be spontaneously charged in the absence of applied electric fields by spraying. It has been shown by computational simulation that charges may influence particle deposition in the airways. The electrostatic properties of jet nebulized aerosols and their potential effects on lung deposition have hardly been studied. A modified electrical low pressure impactor (ELPI) was employed to characterize the aerosol charges generated from jet nebulized commercial products. The charge and size measurements were conducted at 50% RH and 22 degrees C with a modified ELPI. Ventolin, Bricanyl, and Atrovent were nebulized using PARI LC Plus jet nebulizers coupled to a DeVilbiss Pulmo-Aide compressor. The aerosols were sampled in 30-sec durations. The drug deposits on the impactor stages were assayed chemically using high-performance liquid chromatography (HPLC). The charges of nebulized deionized water, isotonic saline, and the three commercial products diluted with saline were also measured to analyze the contributions of the major nebule ingredients on charging. No mass assays were performed on these runs. All three commercial nebules generated net negative charges. The magnitude of the charges reduced over the period of nebulization. Ventolin and Bricanyl yielded similar charge profiles. Highly variable charges were produced from deionized water. On the other hand, nebulized saline reproducibly generated net positive charges. Diluted commercial nebules showed charge polarity inversion. The charge profiles of diluted salbutamol and terbutaline solutions resembled those of saline, while the charges from diluted ipratropium solutions fluctuated near neutrality. The charge profiles were shown to be influenced by the concentration and physicochemical properties of the drugs, as well as the history of nebulization. The drugs may have unique isoelectric concentrations in saline at which the nebulized droplets would carry near-zero charges. According to results from computational simulation models in the literature, the numbers of elementary charges per droplet estimated from the data were not high enough to potentially affect lung deposition.
Results From Mars Show Electrostatic Charging of the Mars Pathfinder Sojourner Rover
NASA Technical Reports Server (NTRS)
Kolecki, Joseph C.; Siebert, Mark W.
1998-01-01
Indirect evidence (dust accumulation) has been obtained indicating that the Mars Pathfinder rover, Sojourner, experienced electrostatic charging on Mars. Lander camera images of the Sojourner rover provide distinctive evidence of dust accumulation on rover wheels during traverses, turns, and crabbing maneuvers. The sol 22 (22nd Martian "day" after Pathfinder landed) end-of-day image clearly shows fine red dust concentrated around the wheel edges with additional accumulation in the wheel hubs. A sol 41 image of the rover near the rock "Wedge" (see the next image) shows a more uniform coating of dust on the wheel drive surfaces with accumulation in the hubs similar to that in the previous image. In the sol 41 image, note particularly the loss of black-white contrast on the Wheel Abrasion Experiment strips (center wheel). This loss of contrast was also seen when dust accumulated on test wheels in the laboratory. We believe that this accumulation occurred because the Martian surface dust consists of clay-sized particles, similar to those detected by Viking, which have become electrically charged. By adhering to the wheels, the charged dust carries a net nonzero charge to the rover, raising its electrical potential relative to its surroundings. Similar charging behavior was routinely observed in an experimental facility at the NASA Lewis Research Center, where a Sojourner wheel was driven in a simulated Martian surface environment. There, as the wheel moved and accumulated dust (see the following image), electrical potentials in excess of 100 V (relative to the chamber ground) were detected by a capacitively coupled electrostatic probe located 4 mm from the wheel surface. The measured wheel capacitance was approximately 80 picofarads (pF), and the calculated charge, 8 x 10(exp -9) coulombs (C). Voltage differences of 100 V and greater are believed sufficient to produce Paschen electrical discharge in the Martian atmosphere. With an accumulated net charge of 8 x 10(exp -9) C, and average arc time of 1 msec, arcs can also occur with estimated arc currents approaching 10 milliamperes (mA). Discharges of this magnitude could interfere with the operation of sensitive electrical or electronic elements and logic circuits. Sojourner rover wheel tested in laboratory before launch to Mars. Before launch, we believed that the dust would become triboelectrically charged as it was moved about and compacted by the rover wheels. In all cases observed in the laboratory, the test wheel charged positively, and the wheel tracks charged negatively. Dust samples removed from the laboratory wheel averaged a few ones to tens of micrometers in size (clay size). Coarser grains were left behind in the wheel track. On Mars, grain size estimates of 2 to 10 mm were derived for the Martian surface materials from the Viking Gas Exchange Experiment. These size estimates approximately match the laboratory samples. Our tentative conclusion for the Sojourner observations is that fine clay-sized particles acquired an electrostatic charge during rover traverses and adhered to the rover wheels, carrying electrical charge to the rover. Since the Sojourner rover carried no instruments to measure this mission's onboard electrical charge, confirmatory measurements from future rover missions on Mars are desirable so that the physical and electrical properties of the Martian surface dust can be characterized. Sojourner was protected by discharge points, and Faraday cages were placed around sensitive electronics. But larger systems than Sojourner are being contemplated for missions to the Martian surface in the foreseeable future. The design of such systems will require a detailed knowledge of how they will interact with their environment. Validated environmental interaction models and guidelines for the Martian surface must be developed so that design engineers can test new ideas prior to cutting hardware. These models and guidelines cannot be validated without actual flighata. Electrical charging of vehicles and, one day, astronauts moving across the Martian surface may have moderate to severe consequences if large potential differences develop. The observations from Sojourner point to just such a possibility. It is desirable to quantify these results. The various lander/rover missions being planned for the upcoming decade provide the means for doing so. They should, therefore, carry instruments that will not only measure vehicle charging but characterize all the natural and induced electrical phenomena occurring in the environment and assess their impact on future missions.
Solar Wind Access to Lunar Polar Craters: Feedback Between Surface Charging and Plasma Expansion
NASA Technical Reports Server (NTRS)
Zimmerman, M. I.; Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Jackson, T. L.
2011-01-01
Determining the plasma environment within permanently shadowed lunar craters is critical to understanding local processes such as surface charging, electrostatic dust transport, volatile sequestration, and space weathering. In order to investigate the nature of this plasma environment, the first two-dimensional kinetic simulations of solar wind expansion into a lunar crater with a self-consistent plasma-surface interaction have been undertaken. The present results reveal how the plasma expansion into a crater couples with the electrically-charged lunar surface to produce a quasi-steady wake structure. In particular, there is a negative feedback between surface charging and ambipolar wake potential that allows an equilibrium to be achieved, with secondary electron emission strongly moderating the process. A range of secondary electron yields is explored, and two distinct limits are highlighted in which either surface charging or ambipoiar expansion is responsible for determining the overall wake structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Shengyong; Chen, Xinhua; Xie, Haiyang
Previous studies showed nanosecond pulsed electric field (nsPEF) can ablate solid tumors including hepatocellular carcinoma (HCC) but its effect on cell membrane is not fully understood. We hypothesized nsPEF disrupt the microdomains on outer-cellular membrane with direct mechanical force and as a result the plasma membrane permeability increases to facilitate the small molecule intake. Three HCC cells were pulsed one pulse per minute, an interval longer than nanopore resealing time. The cationized ferritin was used to mark up the electronegative microdomains, propidium iodide (PI) for membrane permeabilization, energy dispersive X-ray spectroscopy (EDS) for the negative cell surface charge and cisplatinmore » for inner-cellular cytotoxicity. We demonstrated that the ferritin marked-microdomain and negative cell surface charge were disrupted by nsPEF caused-mechanical force. The cell uptake of propidium and cytotoxicity of DNA-targeted cisplatin increased with a dose effect. Cisplatin gains its maximum inner-cellular cytotoxicity when combining with nsPEF stimulation. We conclude that nsPEF disrupt the microdomains on the outer cellular membrane directly and increase the membrane permeabilization for PI and cisplatin. The microdomain disruption and membrane infiltration changes are caused by the mechanical force from the changes of negative cell surface charge.« less
Design and Preliminary Testing Plan of Electronegative Ion Thruster
NASA Technical Reports Server (NTRS)
Schloeder, Natalie R.; Liu, Thomas M.; Walker, Mitchell L. R.; Polzin, Kurt A.; Dankanich, John W.; Aanesland, Ane
2014-01-01
Electronegative ion thrusters are a new iteration of existing gridded ion thruster technology differentiated by their ability to produce and accelerate both positive and negative ions. The primary motivations for electronegative ion thruster development include the elimination of lifetime-limiting cathodes from a thruster system and the ability to generate appreciable thrust through the acceleration of both positive or negative-charged ions. Proof-of-concept testing of the PEGASES (Plasma Propulsion with Electronegative GASES) thruster demonstrated the production of positively and negatively-charged ions (argon and sulfur hexafluoride, respectively) in an RF discharge and the subsequent acceleration of each charge species through the application of a time-varying electric field to a pair of metallic grids similar to those found in gridded ion thrusters. Leveraging the knowledge gained through experiments with the PEGASES I and II prototypes, the MINT (Marshall's Ion-ioN Thruster) is being developed to provide a platform for additional electronegative thruster proof-of-concept validation testing including direct thrust measurements. The design criteria used in designing the MINT are outlined and the planned tests that will be used to characterize the performance of the prototype are described.
NASA Astrophysics Data System (ADS)
Qin, Jianqi; Celestin, Sebastien; Pasko, Victor P.
2013-05-01
Carrot sprites, exhibiting both upward and downward propagating streamers, and columniform sprites, characterized by predominantly vertical downward streamers, represent two distinct morphological classes of lightning-driven transient luminous events in the upper atmosphere. It is found that positive cloud-to-ground lightning discharges (+CGs) associated with large charge moment changes (QhQ) tend to produce carrot sprites with the presence of a mesospheric region where the electric field exceeds the value 0.8Ek and persists for
Chen, Yang; Young, Paul M; Fletcher, David F; Chan, Hak Kim; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela
2014-05-01
To investigate the influence of different actuator materials and nozzle designs on the electrostatic charge properties of a series of solution metered dose inhaler (pMDI) aerosols. Actuators were manufactured with flat and cone nozzle designs using five different materials from the triboelectric series (Nylon, Polyethylene terephthalate, Polyethylene-High density, Polypropylene copolymer and Polytetrafluoroethylene). The electrostatic charge profiles of pMDI containing beclomethasone dipropionate (BDP) as model drug in HFA-134a propellant, with different concentrations of ethanol were studied. Electrostatic measurements were taken using a modified electrical low-pressure impactor (ELPI) and the deposited drug mass assayed chemically using HPLC. The charge profiles of HFA 134a alone have shown strong electronegativity with all actuator materials and nozzle designs, at an average of -1531.34 pC ± 377.34. The presence of co-solvent ethanol significantly reduced the negative charge magnitude. BDP reduced the suppressing effect of ethanol on the negative charging of the propellant. For all tested formulations, the flat nozzle design showed no significant differences in net charge between different actuator materials, whereas the charge profiles of cone designs followed the triboelectric series. The electrostatic charging profiles from a solution pMDI containing BDP and ethanol can be significantly influenced by the actuator material, nozzle design and formulation components. Ethanol concentration appears to have the most significant impact. Furthermore, BDP interactions with ethanol and HFA have an influence on the electrostatic charge of aerosols. By choosing different combinations of actuator materials and orifice design, the fine particle fractions of formulations can be altered.
Single charging events on colloidal particles in a nonpolar liquid with surfactant
NASA Astrophysics Data System (ADS)
Schreuer, Caspar; Vandewiele, Stijn; Brans, Toon; Strubbe, Filip; Neyts, Kristiaan; Beunis, Filip
2018-01-01
Electrical charging of colloidal particles in nonpolar liquids due to surfactant additives is investigated intensively, motivated by its importance in a variety of applications. Most methods rely on average electrophoretic mobility measurements of many particles, which provide only indirect information on the charging mechanism. In the present work, we present a method that allows us to obtain direct information on the charging mechanism, by measuring the charge fluctuations on individual particles with a precision higher than the elementary charge using optical trapping electrophoresis. We demonstrate the capabilities of the method by studying the influence of added surfactant OLOA 11000 on the charging of single colloidal PMMA particles in dodecane. The particle charge and the frequency of charging events are investigated both below and above the critical micelle concentration (CMC) and with or without applying a DC offset voltage. It is found that at least two separate charging mechanisms are present below the critical micelle concentration. One mechanism is a process where the particle is stripped from negatively charged ionic molecules. An increase in the charging frequency with increased surfactant concentration suggests a second mechanism that involves single surfactant molecules. Above the CMC, neutral inverse micelles can also be involved in the charging process.
Microtubules as mechanical force sensors.
Karafyllidis, Ioannis G; Lagoudas, Dimitris C
2007-03-01
Microtubules are polymers of tubulin subunits (dimers) arranged on a hexagonal lattice. Each tubulin dimer comprises two monomers, the alpha-tubulin and beta-tubulin, and can be found in two states. In the first state a mobile negative charge is located into the alpha-tubulin monomer and in the second into the beta-tubulin monomer. Each tubulin dimer is modeled as an electrical dipole coupled to its neighbors by electrostatic forces. The location of the mobile charge in each dimer depends on the location of the charges in the dimer's neighborhood. Mechanical forces that act on the microtubule affect the distances between the dimers and alter the electrostatic potential. Changes in this potential affect the mobile negative charge location in each dimer and the charge distribution in the microtubule. The net effect is that mechanical forces affect the charge distribution in microtubules. We propose to exploit this effect and use microtubules as mechanical force sensors. We model each dimer as a two-state quantum system and, following the quantum computation paradigm, we use discrete quantum random walk on the hexagonal microtubule lattice to determine the charge distribution. Different forces applied on the microtubule are modeled as different coin biases leading to different probability distributions of the quantum walker location, which are directly connected to different charge distributions. Simulation results show that there is a strong indication that microtubules can be used as mechanical force sensors and that they can also detect the force directions and magnitudes.
NASA Astrophysics Data System (ADS)
Buhl, Margaret Linn
The electronic properties of trinuclear iron, tetranuclear iron butterfly, iron-cobalt, and iron-copper clusters have been studied experimentally at 78K by the Mossbauer effect and theoretically by Fenske-Hall molecular orbital calculations. The Mossbauer effect isomer shift is very sensitive to the differences in the iron s-electron densities in these clusters and, as expected, decreases as the sum of the iron 4s Mulliken population and the Clementi and Raimondi effective nuclear charge increases. The molecular orbital wave functions and the Mulliken atomic charges are used to calculate the electric field gradient at the metal nuclei and the iron Mossbauer effect quadrupole splittings. The valence contribution was found to be the major component of the electric field gradient in all the clusters studied. In general the calculated value of Delta E_ {Q} is larger than the observed value, as a result of neglect of the valence Sternheimer factor, R. The metal charge depends upon its electronegativity and upon the nature of its Lewis base ligands. The carbonyl ligand carbon charge becomes more positive as the metal electronegativity increases. The oxygen charge becomes more negative as the anionic cluster charge increases, and in so doing, yields the maximum anionic charge separation. The electronic properties of the terminal carbonyl ligands are similar to those of carbon monoxide, whereas the electronic properties of the bridging carbonyl ligands are similar to those of the carbonyl group found in aldehydes and ketones.
NASA Astrophysics Data System (ADS)
Cheng, Chin-Lung; Horng, Jeng-Haur; Chang-Liao, Kuei-Shu; Jeng, Jin-Tsong; Tsai, Hung-Yang
2010-10-01
Charge trapping and related current-conduction mechanisms in metal-oxide-semiconductor (MOS) capacitors with La xTa y dual-doped HfON dielectrics have been investigated under various post-deposition annealing (PDA). The results indicate that by La xTa y incorporation into HfON dielectric enhances electrical and reliability characteristics, including equivalent-oxide-thickness (EOT), stress-induced leakage current (SILC), and trap energy level. The mechanisms related to larger positive charge generation in the gate dielectric bulk can be attributed to La xTa y dual-doped HfON dielectric. The results of C- V measurement indicate that more negative charges are induced with increasing PDA temperature for the La xTa y dual-doped HfON dielectric. The charge current transport mechanisms through various dielectrics have been analyzed with current-voltage ( I- V) measurements under various temperatures. The current-conduction mechanisms of HfLaTaON dielectric at the low-, medium-, and high-electrical fields were dominated by Schottky emission (SE), Frenkel-Poole emission (F-P), and Fowler-Nordheim (F-N), respectively. A low trap energy level ( Φ trap) involved in Frenkel-Pool conduction in an HfLaTaON dielectric was estimated to be around 0.142 eV. Although a larger amount of positive charges generated in the HfLaTaON dielectric was obtained, the Φ trap of these positive charges in the HfLaTaON dielectric are shallow compared with HfON dielectric.
NASA Astrophysics Data System (ADS)
Schuster, Arthur
2015-10-01
Introduction; 1. Scope of lectures. State of physics in 1875. Science of energy. Theory of gases. Elastic solid theory of light. Maxwell's theory of electricity. Training of students. Maxwell's view. Accurate measurement and discovery of Argon. German methods. Kirchhoff's laboratory. Wilhelm Weber's laboratory. The two laboratories of Berlin. Laboratory instruction at Manchester. Position of physics in mathematical tripos at Cambridge. Todhunter's views. The Cavendish laboratory. Spectrum analysis. The radiometer. Theory of vortex atom; 2. Action at a distance. Elastic solid of theory of light. Maxwell's theory of electrical action. Electro-magnetic theory. Verification of electromagnetic theory by Hertz. Electro-magnetic waves. Wireless telegraphy. First suggestion of molecular structure of electricity. Early experiments in the electric discharge through gases. Kathode rays. Works of Goldstein and Crookes. Hittorf's investigations. Own work on the discharge through gases. Ionization of gases. Magnetic deflexion of kathode rays. J. J. Thomson's experiments. Measurement of atomic charge; 3. Roentgen's discovery. Theories of Roentgen rays. Ionizing power of Roentgen rays. Conduction of electricity through ionized gases. Discovery of radio-activity. Discovery of radium. Magnetic deflexion of rays emitted by radio-active bodies. Discovery of emanations. Theory of radio-active change. Decay of the atom. Connexion between helium and the a ray. Helium produced by radium. Strutt's researches on helium accumulated in rocks. Electric inertia. Constitution of atom. J. J. Thomson's theory of Roentgen radiation. The Michelson-Morley experiment. Principle of relativity. The Zeeman effect. Other consequences of electron theory. Contrast between old and modern school of physics; 4. Observational sciences. Judgment affected by scale. Terrestrial magnetism. Existence of potential. Separation of internal and external causes. Diurnal variation. Magnetic storms. Their causes. Solar influence. Theories of secular variation. Atmospheric electricity. Negative charge of Earth. Ionization of air. Origin of atmospheric electricity. Electric charge of rain. Ebert's theory. Cause of thunderstorms. The age of the Earth. Rigidity of Earth. Displacement of axis. Gravitation. Identity of molecules of the same kind; Index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knosp, B.; Jordy, C.; Blanchard, P.
1998-05-01
Laves phase alloys of compositions (Zr, Ti)(Ni, Mn, M){sub x} where M = Cr, V, Co, Al, and 1.9 < x < 2.1 with hexagonal C14 or cubic C15 structure have been studied in order to select the most suitable AB{sub 2} alloys as an active material for nickel-metal hydride (Ni-MH) batteries. With the selected alloy, feasibility of MH negative electrodes using industrial technology and containing more than 97% of the alloy powder has been demonstrated. 22 Ah Ni-MH batteries for electric vehicle application have been assembled, and 600 cycles have been achieved at steady C/3 charge and discharge ratesmore » and 80% depth of discharge.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ettisserry, D. P., E-mail: deva@umd.edu, E-mail: neil@umd.edu; Goldsman, N., E-mail: deva@umd.edu, E-mail: neil@umd.edu; Akturk, A.
We use hybrid-functional density functional theory-based Charge Transition Levels (CTLs) to study the electrical activity of near-interfacial oxygen vacancies located in the oxide side of 4H-Silicon Carbide (4H-SiC) power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs). Based on the “amorphousness” of their local atomic environment, oxygen vacancies are shown to introduce their CTLs either within (permanently electrically active) or outside of (electrically inactive) the 4H-SiC bandgap. The “permanently electrically active” centers are likely to cause threshold voltage (V{sub th}) instability at room temperature. On the other hand, we show that the “electrically inactive” defects could be transformed into various “electrically active” configurations undermore » simultaneous application of negative bias and high temperature stresses. Based on this observation, we present a model for plausible oxygen vacancy defects that could be responsible for the recently observed excessive worsening of V{sub th} instability in 4H-SiC power MOSFETs under high temperature-and-gate bias stress. This model could also explain the recent electrically detected magnetic resonance observations in 4H-SiC MOSFETs.« less
NASA Astrophysics Data System (ADS)
Kong, Lingyu; Han, Jiming; Xiong, Wenting; Wang, Hao; Shen, Yaqi; Li, Ying
2017-05-01
Large scale access of electric vehicles will bring huge challenges to the safe operation of the power grid, and it’s important to control the charging and discharging of the electric vehicle. First of all, from the electric quality and network loss, this paper points out the influence on the grid caused by electric vehicle charging behaviour. Besides, control strategy of electric vehicle charging and discharging has carried on the induction and the summary from the direct and indirect control. Direct control strategy means control the electric charging behaviour by controlling its electric vehicle charging and discharging power while the indirect control strategy by means of controlling the price of charging and discharging. Finally, for the convenience of the reader, this paper also proposed a complete idea of the research methods about how to study the control strategy, taking the adaptability and possibility of failure of electric vehicle control strategy into consideration. Finally, suggestions on the key areas for future research are put up.
Tool Helps Utilities Assess Readiness for Electric Vehicle Charging (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
NREL research helps answer a fundamental question regarding electric vehicles: Is the grid ready to handle them? Environmental, economic and security concerns regarding oil consumption make electrifying the transportation sector a high national priority. NREL's Center for Transportation Technologies & Systems (CTTS) has developed a framework for utilities to evaluate the plug-in vehicle (PEV) readiness of distribution transformers. Combining a wealth of vehicle performance statistics with load data from partner utilities including the Hawaiian Electric Company and Xcel Energy, NREL analyzed the thermal loading characteristics of distribution transformers due to vehicle charging. After running millions of simulations replicating varying climatesmore » and conditions, NREL is now able to predict aging rates for transformers when PEVs are added to existing building loads. With the NREL tool, users define simulation parameters by inputting vehicle trip and weather data; transformer load profiles and ratings; PEV penetration, charging rates and battery sizes; utility rates; the number of houses on each transformer; and public charging availability. Transformer load profiles, drive cycles, and ambient temperature data are then run through the thermal model to produce a one-year timeseries of the hotspot temperature. Annual temperature durations are calculated to help determine the annual aging rate. Annual aging rate results are grouped by independent variables. The most useful measure is transformer mileage, a measure of how many electrically-driven miles must be supplied by the transformer. Once the spectrum analysis has been conducted for an area or utility, the outputs can be used to help determine if more detailed evaluation is necessary, or if transformer replacement is required. In the majority of scenarios, transformers have enough excess capacity to charge PEVs. Only in extreme cases does vehicle charging have negative long-term impact on transformers. In those cases, upgrades to larger transformers would be recommended. NREL analysis also showed opportunity for newly-installed smart grids to offset distribution demands by time-shifting the charging loads. Most importantly, the model demonstrated synergies between PEVs and distributed renewables, not only providing clean renewable energy for vehicles, but also reducing demand on the entire distribution infrastructure by supplying loads at the point of consumption.« less
Cost-Effective and Ecofriendly Plug-In Hybrid Electric Vehicle Charging Management
Kontou, Eleftheria; Yin, Yafeng; Ge, Ying-en
2017-01-01
In this study we explore two charging management schemes for plug-in hybrid electric vehicles (PHEVs). The PHEV drivers and the government were stakeholders who might have preferred different charging control strategies. For the former, a proposed controlled charging scheme minimized the operational cost during PHEV charge-depleting and sustaining modes. For the latter, the research minimized monetized carbon dioxide emissions from electricity generation for the PHEVs charging, as well as tailpipe emissions for the portion of PHEV trips fueled by gasoline. Hourly driving patterns and electricity data were leveraged. Both were representative of each of the eight North American Electric Reliabilitymore » Corporation regions to examine the results of the proposed schemes. The model accounted for drivers' activity patterns and charging availability spatial and temporal heterogeneity. The optimal charging profiles confirmed the differing nature of the objectives of PHEV drivers and the government; cost-effective charge should occur early in the morning, while ecofriendly charge should be late in the afternoon. Each control's trade-offs between operation cost and emission savings are discussed for each North American Electric Reliability Corporation region. The availability of workplace and public charging was found to affect the optimal charging profiles greatly. Charging control is more efficient for drivers and government when PHEVs have greater electric range.« less
Cost-Effective and Ecofriendly Plug-In Hybrid Electric Vehicle Charging Management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontou, Eleftheria; Yin, Yafeng; Ge, Ying-en
In this study we explore two charging management schemes for plug-in hybrid electric vehicles (PHEVs). The PHEV drivers and the government were stakeholders who might have preferred different charging control strategies. For the former, a proposed controlled charging scheme minimized the operational cost during PHEV charge-depleting and sustaining modes. For the latter, the research minimized monetized carbon dioxide emissions from electricity generation for the PHEVs charging, as well as tailpipe emissions for the portion of PHEV trips fueled by gasoline. Hourly driving patterns and electricity data were leveraged. Both were representative of each of the eight North American Electric Reliabilitymore » Corporation regions to examine the results of the proposed schemes. The model accounted for drivers' activity patterns and charging availability spatial and temporal heterogeneity. The optimal charging profiles confirmed the differing nature of the objectives of PHEV drivers and the government; cost-effective charge should occur early in the morning, while ecofriendly charge should be late in the afternoon. Each control's trade-offs between operation cost and emission savings are discussed for each North American Electric Reliability Corporation region. The availability of workplace and public charging was found to affect the optimal charging profiles greatly. Charging control is more efficient for drivers and government when PHEVs have greater electric range.« less
Study on Impact of Electric Vehicles Charging Models on Power Load
NASA Astrophysics Data System (ADS)
Cheng, Chen; Hui-mei, Yuan
2017-05-01
With the rapid increase in the number of electric vehicles, which will lead the power load on grid increased and have an adversely affect. This paper gives a detailed analysis of the following factors, such as scale of the electric cars, charging mode, initial charging time, initial state of charge, charging power and other factors. Monte Carlo simulation method is used to compare the two charging modes, which are conventional charging and fast charging, and MATLAB is used to model and simulate the electric vehicle charging load. The results show that compared with the conventional charging mode, fast charging mode can meet the requirements of fast charging, but also bring great load to the distribution network which will affect the reliability of power grid.
Relativistic Coulomb Problem for Z Larger than 137
NASA Astrophysics Data System (ADS)
Alhaidari, A. D.
We propose a relativistic one-parameter Hermitian theory for the Coulomb problem with an electric charge greater than 137. In the nonrelativistic limit, the theory becomes identical to the Schrödinger-Coulomb problem for all Z. Moreover, it agrees with the Dirac-Coulomb problem to order (αZ)2, where α is the fine structure constant. The vacuum in the theory is stable and does not suffer from the "charged vacuum" problem for all Z. Moreover, transition between positive and negative energy states could be eliminated. The relativistic bound states energy spectrum and corresponding spinor wave functions are obtained.
Fixed charge in the cell membrane
Elul, R.
1967-01-01
1. Focal electric field was generated by passing a current of 5 × 10-7 to 1 × 10-5 A from a micropipette into the culture medium. Movement of cells at a distance of 5-50 μ from the electrode tip was observed. In case of cells embedded in the culture only local deformation of the membrane was observed. 2. The cell species explored included neurones, glia, muscle fibres, connective cells, malignant cells and erythrocytes. All cells responded in a similar manner to the electric field, and the current required was in the same range. 3. Cells were attracted to a positive micropipette and repelled from a negative one: the only exception was observed in certain malignant cells which moved in the opposite direction. 4. Movement and membrane deformation could be obtained with electrodes filled with various concentrated and isotonic solutions. The composition of the culture medium also had no qualitative influence on these effects. 5. Metabolic poisons or rupture of the cell membrane had no effect on the movement. Isolated membrane fragments showed movement similar to that of intact cells. 6. The possibility of artifacts due to proximity of the focal electrode is considered. It is shown that electro-osmosis cannot account for the present observations. Some other artifacts are also excluded. 7. It is proposed that the most satisfactory way to account for the present observations is by a membrane carrying negative fixed charge of the order of 2·5 × 103 e.s.u./cm2. Some physiological consequences of presence of negative charge in the membrane are briefly discussed. ImagesFig. 1Fig. 2Fig. 3 PMID:6040152
Simulation of the Universal-Time Diurnal Variation of the Global Electric Circuit Charging Rate
NASA Technical Reports Server (NTRS)
Mackerras, David; Darveniza, Mat; Orville, Richard E.; Williams, Earle R.; Goodman, Steven J.
1999-01-01
A global lightning model that includes diurnal and annual lightning variation, and total flash density versus latitude for each major land and ocean, has been used as the basis for simulating the global electric circuit charging rate. A particular objective has been to reconcile the difference in amplitude ratios [AR=(max-min)/mean] between global lightning diurnal variation (AR approximately equals 0.8) and the diurnal variation of typical atmospheric potential gradient curves (AR approximately equals 0.35). A constraint on the simulation is that the annual mean charging current should be about 1000 A. The global lightning model shows that negative ground flashes can contribute, at most, about 10-15% of the required current. For the purpose of the charging rate simulation, it was assumed that each ground flash contributes 5 C to the charging process. It was necessary to assume that all electrified clouds contribute to charging by means other than lightning, that the total flash rate can serve as an indirect indicator of the rate of charge transfer, and that oceanic electrified clouds contribute to charging even though they are relatively inefficient in producing lightning. It was also found necessary to add a diurnally invariant charging current component. By trial and error it was found that charging rate diurnal variation curves could be produced with amplitude ratios and general shapes similar to those of the potential gradient diurnal variation curves measured over ocean and arctic regions during voyages of the Carnegie Institute research vessels. The comparisons were made for the northern winter (Nov.-Feb.), the equinox (Mar., Apr., Sept., Oct.), the northern summer (May-Aug.), and the whole year.
Heterogeneous surface charge enhanced micromixing for electrokinetic flows.
Biddiss, Elaine; Erickson, David; Li, Dongqing
2004-06-01
Enhancing the species mixing in microfluidic applications is key to reducing analysis time and increasing device portability. The mixing in electroosmotic flow is usually diffusion-dominated. Recent numerical studies have indicated that the introduction of electrically charged surface heterogeneities may augment mixing efficiencies by creating localized regions of flow circulation. In this study, we experimentally visualized the effects of surface charge patterning and developed an optimized electrokinetic micromixer applicable to the low Reynolds number regime. Using the optimized micromixer, mixing efficiencies were improved between 22 and 68% for the applied potentials ranging from 70 to 555 V/cm when compared with the negatively charged homogeneous case. For producing a 95% mixture, this equates to a potential decrease in the required mixing channel length of up to 88% for flows with Péclet numbers between 190 and 1500.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Meng-Lin; Peng, J. S.; Lee, Sanboh, E-mail: sblee@mx.nthu.edu.tw
We studied the digestive ripening of thiol-capped gold nanoparticles under simultaneous action of electric field and reflux heating in a silicone oil bath at 130 °C, using transmission electron microscopy. Observation revealed that a polydispersed gold nanoparticle system reached the state of nearly monodispersity under the action of an electric field and the thiol-capped gold nanoparticles carried negative charges. The electric field caused the increase of the particle size for the nearly monodispersed gold nanoparticle system. The self-assembly of the nearly monodisperse gold nanoparticles under the action of an electric field of a high field intensity was observed. The gold nanoparticlesmore » tended to form self-assembled nanostructures of six-fold symmetry. This study provides a new route for system engineering to control the particle size of metallic nanoparticles by electric field and digestive ripening.« less
Polar semiconductor heterojunction structure energy band diagram considerations
NASA Astrophysics Data System (ADS)
Lin, Shuxun; Wen, Cheng P.; Wang, Maojun; Hao, Yilong
2016-03-01
The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.
ac aging and space-charge characteristics in low-density polyethylene polymeric insulation
NASA Astrophysics Data System (ADS)
Chen, G.; Fu, M.; Liu, X. Z.; Zhong, L. S.
2005-04-01
In the present work efforts have been made to investigate the influence of ac aging on space-charge dynamics in low-density polyethylene (LDPE). LDPE films with 200 μm were aged under various electric stress levels at 50 Hz for various times at ambient temperature. Space-charge dynamics in the samples after aging were monitored using the pulsed electroacoustic technique. It has been revealed that the space charge under ac aging conditions is related to the level of the applied field, duration of the voltage application, as well as the electrode materials. By comparing with the results of unaged sample the results from aged sample provide a direct evidence of changing trapping characteristics after ac aging. Negative space charge is present in the bulk of the material and the total amount of charge increases with the aging time. The amount of charge increases with the applied field. Charge decay test indicates that the charges are captured in deep traps. These deep traps are believed to form during the aging and related to change caused by injected charge. By using different electrode materials such as gold, brass alloy, and polyethylene loaded with carbon black, it was found that the electrode has an important role in the formation of charge, hence subsequent changes caused by charge. The charge dynamics of the aged samples under dc bias differ from the sample without ac aging, indicating changes brought in by ac aging. Chemical analysis by Fourier transform infrared spectroscope and Raman microscope reveals no detectable chemical changes taken place in the bulk of the material after ac aging. Finally, the consequence of the accumulation of space charge under ac conditions on the lifetime of the material has been discussed. The presence of deeply trapped space charge leads to an electric stress enhancement which may shorten the lifetime of the insulation system.
Current rectification for transport of room-temperature ionic liquids through conical nanopores
Jiang, Xikai; Liu, Ying; Qiao, Rui
2016-02-09
Here, we studied the transport of room-temperature ionic liquids (RTILs) through charged conical nanopores using a Landau-Ginzburg-type continuum model that takes steric effect and strong ion-ion correlations into account. When the surface charge is uniform on the pore wall, weak current rectification is observed. When the charge density near the pore base is removed, the ionic current is greatly suppressed under negative bias voltage while nearly unchanged under positive bias voltage, thereby leading to enhanced current rectification. These predictions agree qualitatively with prior experimental observations, and we elucidated them by analyzing the different components of the ionic current and themore » structural changes of electrical double layers (EDLs) at the pore tip under different bias voltages and surface charge patterns. These analyses reveal that the different modifications of the EDL structure near the pore tip by the positive and negative bias voltages cause the current rectification and the observed dependence on the distribution of surface charge on the pore wall. The fact that the current rectification phenomena are captured qualitatively by the simple model originally developed for describing EDLs at equilibrium conditions suggests that this model may be promising for understanding the ionic transport under nonequilibrium conditions when the EDL structure is strongly perturbed by external fields.« less
On the generation of double layers from ion- and electron-acoustic instabilities
Fu, Xiangrong; Cowee, Misa M.; Gary, Stephen Peter; ...
2016-03-17
A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric fields traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs – electron acoustic DLs – generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e.more » the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. We find that linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric fields that propagate at the electron thermal speed, suggesting another potential explanation for the observations.« less
On the generation of double layers from ion- and electron-acoustic instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Xiangrong, E-mail: xrfu@lanl.gov; Cowee, Misa M.; Winske, Dan
2016-03-15
A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electronmore » acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.« less
Drift of charge carriers in crystalline organic semiconductors
NASA Astrophysics Data System (ADS)
Dong, Jingjuan; Si, Wei; Wu, Chang-Qin
2016-04-01
We investigate the direct-current response of crystalline organic semiconductors in the presence of finite external electric fields by the quantum-classical Ehrenfest dynamics complemented with instantaneous decoherence corrections (IDC). The IDC is carried out in the real-space representation with the energy-dependent reweighing factors to account for both intermolecular decoherence and energy relaxation by which conduction occurs. In this way, both the diffusion and drift motion of charge carriers are described in a unified framework. Based on an off-diagonal electron-phonon coupling model for pentacene, we find that the drift velocity initially increases with the electric field and then decreases at higher fields due to the Wannier-Stark localization, and a negative electric-field dependence of mobility is observed. The Einstein relation, which is a manifestation of the fluctuation-dissipation theorem, is found to be restored in electric fields up to ˜105 V/cm for a wide temperature region studied. Furthermore, we show that the incorporated decoherence and energy relaxation could explain the large discrepancy between the mobilities calculated by the Ehrenfest dynamics and the full quantum methods, which proves the effectiveness of our approach to take back these missing processes.
Drift of charge carriers in crystalline organic semiconductors.
Dong, Jingjuan; Si, Wei; Wu, Chang-Qin
2016-04-14
We investigate the direct-current response of crystalline organic semiconductors in the presence of finite external electric fields by the quantum-classical Ehrenfest dynamics complemented with instantaneous decoherence corrections (IDC). The IDC is carried out in the real-space representation with the energy-dependent reweighing factors to account for both intermolecular decoherence and energy relaxation by which conduction occurs. In this way, both the diffusion and drift motion of charge carriers are described in a unified framework. Based on an off-diagonal electron-phonon coupling model for pentacene, we find that the drift velocity initially increases with the electric field and then decreases at higher fields due to the Wannier-Stark localization, and a negative electric-field dependence of mobility is observed. The Einstein relation, which is a manifestation of the fluctuation-dissipation theorem, is found to be restored in electric fields up to ∼10(5) V/cm for a wide temperature region studied. Furthermore, we show that the incorporated decoherence and energy relaxation could explain the large discrepancy between the mobilities calculated by the Ehrenfest dynamics and the full quantum methods, which proves the effectiveness of our approach to take back these missing processes.
The bee, the flower, and the electric field: electric ecology and aerial electroreception.
Clarke, Dominic; Morley, Erica; Robert, Daniel
2017-09-01
Bees and flowering plants have a long-standing and remarkable co-evolutionary history. Flowers and bees evolved traits that enable pollination, a process that is as important to plants as it is for pollinating insects. From the sensory ecological viewpoint, bee-flower interactions rely on senses such as vision, olfaction, humidity sensing, and touch. Recently, another sensory modality has been unveiled; the detection of the weak electrostatic field that arises between a flower and a bee. Here, we present our latest understanding of how these electric interactions arise and how they contribute to pollination and electroreception. Finite-element modelling and experimental evidence offer new insights into how these interactions are organised and how they can be further studied. Focussing on pollen transfer, we deconstruct some of the salient features of the three ingredients that enable electrostatic interactions, namely the atmospheric electric field, the capacity of bees to accumulate positive charge, and the propensity of plants to be relatively negatively charged. This article also aims at highlighting areas in need of further investigation, where more research is required to better understand the mechanisms of electrostatic interactions and aerial electroreception.
Alternative Fuels Data Center: Electric Vehicle Charging Network Expands at
National Parks Electric Vehicle Charging Network Expands at National Parks to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Network Expands at National Parks on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Network Expands at National
Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit
Dwellings Electric Vehicle Charging for Multi-Unit Dwellings to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging for Multi-Unit Dwellings on Twitter Bookmark
Alternative Fuels Data Center: Idaho Surges Ahead with Electric Vehicle
Charging Idaho Surges Ahead with Electric Vehicle Charging to someone by E-mail Share Alternative Fuels Data Center: Idaho Surges Ahead with Electric Vehicle Charging on Facebook Tweet about Alternative Fuels Data Center: Idaho Surges Ahead with Electric Vehicle Charging on Twitter Bookmark
Interaction between electrically charged droplets in microgravity
NASA Astrophysics Data System (ADS)
Brandenbourger, Martin; Caps, Herve; Hardouin, Jerome; Vitry, Youen; Boigelot, Bernard; Dorbolo, Stephane; Grasp Team; Beams Collaboration
2015-11-01
The past ten years, electrically charged droplets have been studied tremendously for their applications in industry (electrospray, electrowetting,...). However, charged droplets are also present in nature. Indeed, it has been shown that the droplets falling from thunderclouds possess an excess of electric charges. Moreover, some research groups try to use the electrical interaction between drops in order to control the coalescence between cloud droplets and control rain generation. The common way to study this kind of system is to make hypothesis on the interaction between two charged drops. Then, these hypothesis are extended to a system of thousands of charged droplets. Thanks to microgravity conditions, we were able to study the interaction between two electrically charged droplets. In practice, the charged droplets were propelled one in front of the other at low speed (less than 1 m/s). The droplets trajectory is studied for various charges and volumes. The repulsion between two charged drops is correctly fitted by a simple Coulomb repulsion law. In the case of attractive interactions, we discuss the collisions observed as a function of the droplets speed, volume and electric charges. Thanks to FNRS for financial support.
Why does negative CG lightning have subsequent return strokes?
NASA Astrophysics Data System (ADS)
Wilkes, R. A.; Kotovsky, D. A.; Uman, M. A.; Carvalho, F. L.; Jordan, D.
2017-12-01
It is not understood why cloud-to-ground (CG) lightning flashes lowering negative charge often produce discrete dart-leader/return-stroke sequences rather than having the first stroke drain the available cloud charge, as is almost always the case for CG lightning lowering positive charge. Triggered lightning data obtained at the International Center for Lightning Research and Testing (ICLRT) in north-central Florida have been analyzed to clarify the subsequent return-stroke process. In summers 2013 through 2016 at the ICLRT, 53% of the rocket launches did not initiate any part of a lightning flash, 13% of the rocket launches created an initial stage only (ISO) and failed to produce a following dart-leader/return-stroke sequences, and 34% of rocket launches produced an initial stage (IS) followed by return strokes. The IS of the triggered lightning consists of the upward positive leader and a following initial continuing current, both being responsible for transporting negative charge from the cloud to ground. Our ISO events may well have some commonality with the roughly 20 percent of natural CG flashes that fail to produce a dart-leader/return-stroke. We have analyzed the IS of 41 triggered lightning flashes with (19 cases) and without (22 cases) following return strokes and compared areas and heights of the flash using data collected by a Lightning Mapping Array (LMA). In our preliminary analysis, we can find no geometrical feature of the lightning channel during the IS that will predict the occurrence or lack of occurrence of following return strokes. We also have compared the triggered-lightning electrical current and charge transfer observed at the ground. We found that the average current, duration, and charge transfer during the IS for ISO events is each about half that of ISs analyzed which are followed by dart-leader/return-stroke sequences, contrary to the results presented from the GCOELD in China. Summarizing, there appear to be no differences in the channel geometry between initial stages that do or do not yield dart-leader/return-stroke sequences. In contrast, we find that particular electrical characteristics of the initial stage may indicate whether or not a dart-leader/return-stroke sequence may follow, potentially shedding light on the physical processes necessary for dart-leader initiation.
NASA Technical Reports Server (NTRS)
Kern, J. W.
1961-01-01
This paper describes a mechanism for charge separation in the geomagnetically trapped radiation which may account for some observed phenomena associated with the polar aurora and the electrojet current systems. The following development is proposed: given that there exist eastward or westward longitudinal gradients in the geomagnetic field resulting from distortion of the geomagnetic field by solar streams, if the trapped radiation is adiabatic in character, radial drift separation of positive and negative charged particles must occur. It follows that, for bounded or irregular distributions of plasma number density in such an adiabatic - drift region, electric fields will arise. The origin of such electric fields will not arrest the drift separation of the charged particles, but will contribute to exponential growth of irregularities in the trapped plasma density. An adiabatic acceleration mechanism is described, which is based on incorporating the electrostatic energy of the particle in the energy function for the particle. Direct consequences of polarization of the geomagnetically trapped radiation will be the polar electrojet current systems and the polar aurora.
Solid state cloaking for electrical charge carrier mobility control
Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang
2015-07-07
An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.
Effects of perfluorinated amphiphiles on backward swimming in Paramecium caudatum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsubara, Eriko; Harada, Kouji; Research Fellow of the Japan Society for the Promotion of Science, Tokyo 1028472
2006-01-13
PFOS and PFOA are ubiquitous contaminants in the environment. We investigated the effects of fluorochemicals on calcium currents in Paramecium caudatum using its behavioral changes. Negatively charged amphiphiles prolonged backward swimming (BWS) of Paramecium. PFOS significantly prolonged BWS, while PFOA was less potent (EC{sub 5}: 29.8 {+-} 4.1 and 424.1 {+-} 124.0 {mu}M, respectively). The BWS prolongation was blocked by cadmium, indicating that the cellular calcium conductance had been modified. The positively charged amphiphile FOSAPrTMA shortened BWS (EC{sub 5}: 19.1 {+-} 17.3). Nonionic amphiphiles did not affect BWS. The longer-chain perfluorinated carboxylates PFNA and PFDA were more potent than PFOAmore » (EC{sub 5}: 98.7 {+-} 20.1 and 60.4 {+-} 10.1 {mu}M, respectively). However, 1,8-perfluorooctanedioic acid and 1,10-perfluorodecanedioic acid did not prolong BWS. The critical micelle concentration (CMC) and BWS prolongation for negatively charged amphiphiles showed a clear correlation (r {sup 2} = 0.8008, p < 0.001). In summary, several perfluorochemicals and PFOS and PFOA had similar effects in Paramecium, while chain length, CMC, and electric charge were major determinants of BWS duration.« less
Numerical study of the characteristics of a dielectric barrier discharge plasma actuator
NASA Astrophysics Data System (ADS)
Shi, C. A.; Adamiak, K.; Castle, G. S. P.
2018-03-01
A dielectric barrier discharge actuator to control airflow along a flat dielectric plate has been numerically investigated in this paper. In order to avoid large computing times, streamers, Trichel pulses and the ionic reactions involving photons and electrons are neglected. The numerical model assumes two types of generic ions, one positive and one negative, whose drift in the electric field produces the electrohydrodynamic flow. This study provides detailed insights into the physical mechanisms of DBD that include the electric field, space charge transport, surface charge accumulation and air flow motion. The results show the V-I characteristics, velocity profiles and drag force estimates. In addition, the effects of the voltage level, frequency and inlet air velocity on the actuator performance are presented and interpreted. The simulation results show a good agreement with theoretical expectations and experimental data available in literature.
Electrically charged black hole on AdS3 : Scale invariance and the Smarr formula
NASA Astrophysics Data System (ADS)
Erices, Cristián; Fuentealba, Oscar; Riquelme, Miguel
2018-01-01
The Einstein-Maxwell theory with negative cosmological constant in three spacetime dimensions is considered. It is shown that the Smarr relation for the electrically charged Bañados-Teitelboim-Zanelli (BTZ) black hole emerges from two different approaches based on the scaling symmetry of the asymptotic behavior of the fields at infinity. In the first approach, we prove that the conservation law associated to the scale invariance of the action for a class of stationary and circularly symmetric configurations, allows to obtain the Smarr formula as long as a special set of holographic boundary conditions is satisfied. This particular set is singled out making the integrability conditions for the energy compatible with the scale invariance of the reduced action. In the second approach, it is explicitly shown that the Smarr formula is recovered through the Euler theorem for homogeneous functions, provided the same set of holographic boundary conditions is fulfilled.
Catalyst surfaces for the chromous/chromic redox couple
NASA Technical Reports Server (NTRS)
Giner, J. D.; Cahill, K. J. (Inventor)
1980-01-01
An electricity producing cell of the reduction-oxidation (REDOX) type is described. The cell is divided into two compartments by a membrane, each compartment containing a solid inert electrode. A ferrous/ferric couple in a chloride solution serves as a cathode fluid which is circulated through one of the compartments to produce a positive electric potential disposed therein. A chromic/chromous couple in a chloride solution serves as an anode fluid which is circulated through the second compartment to produce a negative potential on an electrode disposed therein. The electrode is an electrically conductive, inert material plated with copper, silver or gold. A thin layer of lead plates onto the copper, silver or gold layer when the cell is being charged, the lead ions being available from lead chloride which was added to the anode fluid. If the REDOX cell is then discharged, the current flows between the electrodes causing the lead to deplate from the negative electrode and the metal coating on the electrode will act as a catalyst to cause increased current density.
Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging
NASA Technical Reports Server (NTRS)
Dennison, J. R.; Swaminathan, Prasanna; Frederickson, A. R.
2004-01-01
Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal de-trapping, mobility and recombination. Conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator, rather than by flow of current across two electrodes around the sample. We have found that conductivity determined from charge storage decay methods is 102 to 104 smaller than values obtained from classical ASTM and IEC methods for a variety of thin film insulating samples. For typical spacecraft charging conditions, classical conductivity predicts decay times on the order of minutes to hours (less than typical orbit periods); however, the higher charge storage conductivities predict decay times on the order of weeks to months leading to accumulation of charge with subsequent orbits. We found experimental evidence that penetration profiles of radiation and light are exceedingly important, and that internal electric fields due to charge profiles and high-field conduction by trapped electrons must be considered for space applications. We have also studied whether the decay constants depend on incident voltage and flux or on internal charge distributions and electric fields; light-activated discharge of surface charge to distinguish among differing charge trapping centers; and radiation-induced conductivity. Our experiments also show that "Malter" electron emission occurs for hours after turning off the electron beam. This Malter emission similar to emission due to negative electron affinity in semiconductors is a result of the prior radiation or optical excitations of valence electrons and their slow drift among traps towards the surface where they are subsequently emitted. This work is supported through funding from the NASA Space Environments and Effects Program.
Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public
in Public to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in
Alternative Fuels Data Center: New York Broadens Network for Electric
Vehicle Charging New York Broadens Network for Electric Vehicle Charging to someone by E-mail Share Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Facebook Tweet about Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on
2015-12-01
The research resulted in a composite material that holds a quasi-permanent electric charge and rapidly discharges the electric charge upon X-ray...quasi-permanent electric charge and rapidly discharge the electric charge upon X-ray exposure. The composite material combined the properties of an...9 7. Schematic of Circuit for Recording Sample’s Capacitor Discharge ............... 12 8. Schematic of Circuit for
Charge sniffer for electrostatics demonstrations
NASA Astrophysics Data System (ADS)
Dinca, Mihai P.
2011-02-01
An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.
NASA Astrophysics Data System (ADS)
Edwardson, C. J.; Coleman, P. G.; Paez, D. J.; Doylend, J. K.; Knights, A. P.
2013-03-01
Electron capture during forward bias and reemission at zero bias by divacancies in the depletion region of a silicon diode structure at room temperature have been studied for the first time using monoenergetic positrons. The positron response increases essentially linearly with electron current, as a result of increased positron trapping by negatively charged divacancies. The measurements indicate that ≤1% of the divacancies become negatively charged in the steady state at a forward bias of 1 V. Changes in the mean positron response when applying a square wave bias to the sample (1 V forward bias and 0 V, duty cycle 1∶4, times at 0 V in the range 0.1-100μs), were consistent with a rapid conversion of doubly to singly charged divacancies (in ˜101ns), followed by slower defilling of the singly charged divacancies with a time constant of ˜101μs. These ac measurements allow determination of the relative populations of singly and doubly charged divacancies. The results provide confirmation of consistency between the positron’s response to the silicon divacancy and previously extracted capture and emission kinetics determined through charge transient measurements and assigned to the same defect. The possibility of combining these two, orthogonal techniques suggest a promising new and powerful approach to defect spectroscopy in which the structure and electrical properties of a defect may be determined in a single measurement.
Andreev, Victor P.
2013-01-01
The objective of the paper is to show that electroosmotic flow might play an important role in the intracellular transport of biomolecules. The paper presents two mathematical models describing the role of electroosmosis in the transport of the negatively charged messenger proteins to the negatively charged nucleus and in the recovery of the fluorescence after photobleaching. The parameters of the models were derived from the extensive review of the literature data. Computer simulations were performed within the COMSOL 4.2a software environment. The first model demonstrated that the presence of electroosmosis might intensify the flux of messenger proteins to the nucleus and allow the efficient transport of the negatively charged phosphorylated messenger proteins against the electrostatic repulsion of the negatively charged nucleus. The second model revealed that the presence of the electroosmotic flow made the time of fluorescence recovery dependent on the position of the bleaching spot relative to cellular membrane. The magnitude of the electroosmotic flow effect was shown to be quite substantial, i.e. increasing the flux of the messengers onto the nucleus up to 4-fold relative to pure diffusion and resulting in the up to 3-fold change in the values of fluorescence recovery time, and therefore the apparent diffusion coefficient determined from the fluorescence recovery after photobleaching experiments. Based on the results of the modeling and on the universal nature of the electroosmotic flow, the potential wider implications of electroosmotic flow in the intracellular and extracellular biological processes are discussed. Both models are available for download at ModelDB. PMID:23613967
Andreev, Victor P
2013-01-01
The objective of the paper is to show that electroosmotic flow might play an important role in the intracellular transport of biomolecules. The paper presents two mathematical models describing the role of electroosmosis in the transport of the negatively charged messenger proteins to the negatively charged nucleus and in the recovery of the fluorescence after photobleaching. The parameters of the models were derived from the extensive review of the literature data. Computer simulations were performed within the COMSOL 4.2a software environment. The first model demonstrated that the presence of electroosmosis might intensify the flux of messenger proteins to the nucleus and allow the efficient transport of the negatively charged phosphorylated messenger proteins against the electrostatic repulsion of the negatively charged nucleus. The second model revealed that the presence of the electroosmotic flow made the time of fluorescence recovery dependent on the position of the bleaching spot relative to cellular membrane. The magnitude of the electroosmotic flow effect was shown to be quite substantial, i.e. increasing the flux of the messengers onto the nucleus up to 4-fold relative to pure diffusion and resulting in the up to 3-fold change in the values of fluorescence recovery time, and therefore the apparent diffusion coefficient determined from the fluorescence recovery after photobleaching experiments. Based on the results of the modeling and on the universal nature of the electroosmotic flow, the potential wider implications of electroosmotic flow in the intracellular and extracellular biological processes are discussed. Both models are available for download at ModelDB.
Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G
2011-01-01
Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing.
Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.
2011-01-01
Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing. PMID:21301636
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhowmik, R. N., E-mail: rnbhowmik.phy@pondiuni.edu.in; Vijayasri, G.
2015-06-15
We have studied current-voltage (I-V) characteristics of α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3}, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling.more » The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔV{sub P}) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.« less
Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles
NASA Astrophysics Data System (ADS)
Smith, Kandler; Wang, Chao-Yang
A 1D electrochemical, lumped thermal model is used to explore pulse power limitations and thermal behavior of a 6 Ah, 72 cell, 276 V nominal Li-ion hybrid-electric vehicle (HEV) battery pack. Depleted/saturated active material Li surface concentrations in the negative/positive electrodes consistently cause end of high-rate (∼25 C) pulse discharge at the 2.7 V cell -1 minimum limit, indicating solid-state diffusion is the limiting mechanism. The 3.9 V cell -1 maximum limit, meant to protect the negative electrode from lithium deposition side reaction during charge, is overly conservative for high-rate (∼15 C) pulse charges initiated from states-of-charge (SOCs) less than 100%. Two-second maximum pulse charge rate from the 50% SOC initial condition can be increased by as much as 50% without risk of lithium deposition. Controlled to minimum/maximum voltage limits, the pack meets partnership for next generation vehicles (PNGV) power assist mode pulse power goals (at operating temperatures >16 °C), but falls short of the available energy goal. In a vehicle simulation, the pack generates heat at a 320 W rate on a US06 driving cycle at 25 °C, with more heat generated at lower temperatures. Less aggressive FUDS and HWFET cycles generate 6-12 times less heat. Contact resistance ohmic heating dominates all other mechanisms, followed by electrolyte phase ohmic heating. Reaction and electronic phase ohmic heats are negligible. A convective heat transfer coefficient of h = 10.1 W m -2 K -1 maintains cell temperature at or below the 52 °C PNGV operating limit under aggressive US06 driving.
[Effect of self-microemulsifying system on cell tight junctions].
Sha, Xian-Yi; Fang, Xiao-Ling
2006-01-01
To study the effect of negatively charged and positively charged self-microemulsifying systems (SMES) on the cellular tight junction complex was to be investigated at molecular cell level. Human intestinal epithelial Caco-2 cell model was established. Effect of formulations on the transepithelial electrical resistance (TEER) and permeability of the paracellular transport marker mannitol were measured to evaluate the cell integrity. Changes in subcellular localization of the tight junction protein zona occludens 1 (ZO-1) and cytoskeleton protein actin by immunofluorescence were also assessed after treatment of two SMESs in different dilutions. The TEER of cell monolayers was not markedly affected by negatively charged SMES in different dilutions. The positively charged SMES could significantly decrease the TEER (P < 0.05) in three dilutions. The full recovery of TEER was found after the treatment of lower dilution for 2 h, then cultured for 48 h, while the recovery of TEER was 81.3% of control in 1 : 50 dilution. Two SMESs could enhance the apparent permeability coefficient of mannitol (2.9 - 64.6 folds), which depended on the dilution times. The immunofluorescent results indicated that the distribution of ZO-1 and actin were discrete in cell membrane after the treatment of formulation. Since the positively charged microemulsion could bind to the epithelial cell membrane by electrostatic interaction, the actin of the cells undergone some kind of stress stimulated by the higher concentration of microemulsion was more markedly affected than the negatively charged SMES. Effect of formulations on ZO-1 and actin relied on the dilution. SMES is able to enhance the paracellular transport marker mannitol. The mechanism of opening of tight junctions by SMES might be the change of distribution of ZO-1 and actin.
Ivanov, Yuri D; Pleshakova, Tatyana; Malsagova, Krystina; Kozlov, Andrey; Kaysheva, Anna; Kopylov, Arthur; Izotov, Alexander; Andreeva, Elena; Kanashenko, Sergey; Usanov, Sergey; Archakov, Alexander
2014-10-01
An approach combining atomic force microscopy (AFM) fishing and mass spectrometry (MS) analysis to detect proteins at ultra-low concentrations is proposed. Fishing out protein molecules onto a highly oriented pyrolytic graphite surface coated with polytetrafluoroethylene film was carried out with and without application of an external electric field. After that they were visualized by AFM and identified by MS. It was found that injection of solution leads to charge generation in the solution, and an electric potential within the measuring cell is induced. It was demonstrated that without an external electric field in the rapid injection input of diluted protein solution the fishing is efficient, as opposed to slow fluid input. The high sensitivity of this method was demonstrated by detection of human serum albumin and human cytochrome b5 in 10(-17) -10(-18) m water solutions. It was shown that an external negative voltage applied to highly oriented pyrolytic graphite hinders the protein fishing. The efficiency of fishing with an external positive voltage was similar to that obtained without applying any voltage. © 2014 FEBS.
X-ray Study of the Electric Double Layer at the n-Hexane/Nanocolloidal Silica Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tikhonov,A.
The spatial structure of the transition region between an insulator and an electrolyte solution was studied with x-ray scattering. The electron-density profile across the n-hexane/silica sol interface (solutions with 5, 7, and 12 nm colloidal particles) agrees with the theory of the electrical double layer and shows separation of positive and negative charges. The interface consists of three layers, i.e., a compact layer of Na{sup +}, a loose monolayer of nanocolloidal particles as part of a thick diffuse layer, and a low-density layer sandwiched between them. Its structure is described by a model in which the potential gradient at themore » interface reflects the difference in the potentials of 'image forces' between the cationic Na{sup +} and anionic nanoparticles and the specific adsorption of surface charge. The density of water in the large electric field ({approx}10{sup 9}-10{sup 10} V/m) of the transition region and the layering of silica in the diffuse layer is discussed.« less
Rapid fluid disruption: A source for self-potential anomalies on volcanoes
Johnston, M.J.S.; Byerlee, J.D.; Lockner, D.
2001-01-01
Self-potential (SP) anomalies observed above suspected magma reservoirs, dikes, etc., on various volcanoes (Kilauea, Hawaii; Mount Unzen, Japan; Piton de la Fournaise, Reunion Island, Miyake Jima, Japan) result from transient surface electric fields of tens of millivolts per kilometer and generally have a positive polarity. These SP anomalies are usually attributed to electrokinetic effects where properties controlling this process are poorly constrained. We propose an alternate explanation that contributions to electric fields of correct polarity should be expected from charge generation by fluid vaporization/disruption. As liquids are vaporized or removed as droplets by gas transport away from hot dike intrusions, both charge generation and local increase in electrical resistivity by removal of fluids should occur. We report laboratory observations of electric fields in hot rock samples generated by pulses of fluid (water) through the rock at atmospheric pressure. These indicate the relative amplitudes of rapid fluid disruption (RFD) potentials and electrokinetic potentials to be dramatically different and the signals are opposite in sign. Above vaporization temperatures, RFD effects of positive sign in the direction of gas flow dominate, whereas below these temperatures, effects of negative sign dominate. This suggests that the primary contribution to observed self-potential anomalies arises from gas-related charge transport processes at temperatures high enough to produce vigorous boiling and vapor transport. At lower temperatures, the primary contribution is from electrokinetic effects modulated perhaps by changing electrical resistivity and RFD effects from high-pressure but low-temperature CO2 and SO2 gas flow ripping water molecules from saturated crustal rocks. If charge generation is continuous, as could well occur above a newly emplaced dike, positive static potentials will be set up that could be sustained for many years, and the simplest method for identifying these hot, active regions would be to identify the SP anomalies they generate.
Lead-acid batteries in micro-hybrid applications. Part I. Selected key parameters
NASA Astrophysics Data System (ADS)
Schaeck, S.; Stoermer, A. O.; Kaiser, F.; Koehler, L.; Albers, J.; Kabza, H.
Micro-hybrid electric vehicles were launched by BMW in March 2007. These are equipped with brake energy regeneration (BER) and the automatic start and stop function (ASSF) of the internal combustion engine. These functions are based on common 14 V series components and lead-acid (LA) batteries. The novelty is given by the intelligent onboard energy management, which upgrades the conventional electric system to the micro-hybrid power system (MHPS). In part I of this publication the key factors for the operation of LA batteries in the MHPS are discussed. Especially for BER one is high dynamic charge acceptance (DCA) for effective boost charging. Vehicle rest time is identified as a particular negative parameter for DCA. It can be refreshed by regular fully charging at elevated charge voltage. Thus, the batteries have to be outstandingly robust against overcharge and water loss. This can be accomplished for valve-regulated lead-acid (VRLA) batteries at least if they are mounted in the trunk. ASSF goes along with frequent high-rate loads for warm cranking. The internal resistance determines the drop of the power net voltage during cranking and is preferably low for reasons of power net stability even after years of operation. Investigations have to be done with aged 90 Ah VRLA-absorbent glass mat (AGM) batteries. Battery operation at partial state-of-charge gives a higher risk of deep discharging (overdischarging). Subsequent re-charging then is likely to lead to the formation of micro-short circuits in the absorbent glass mat separator.
DC conductivity and magnetic properties of piezoelectric-piezomagnetic composite system
NASA Astrophysics Data System (ADS)
Hemeda, O. M.; Tawfik, A.; A-Al-Sharif; Amer, M. A.; Kamal, B. M.; El Refaay, D. E.; Bououdina, M.
2012-11-01
A series of composites (1-x) (Ni0.8Zn0.2Fe2O4)+x (BaTiO3), where x=0%, 20%, 40%, 60%, 80% and 100% BT content, have been prepared by the standard ceramic technique, then sintered at 1200 °C for 8 h. X-ray diffraction analysis shows that the prepared composites consist of two phases, ferrimagnetic and ferroelectric. DC electrical resistivity, thermoelectric power, charge carriers concentration and charge carrier mobility have been studied at different temperatures. It was found that the DC electrical conductivity increases with increasing BT content. The values of the thermoelectric power were positive and negative for the composites indicating that there are two conduction mechanisms, hopping and band conduction, respectively. Using the values of DC electrical conductivity and thermoelectric power, the values of charge carrier mobility and the charge carrier concentration were calculated. Magnetic measurements (hysteresis loop and magnetic permeability) show that the magnetization decreases by increasing BT content. M-H loop of pure Ni0.6 Zn0.4 Fe2O4 composite indicates that it is paramagnetic at room temperature and that the magnetization is diluted by increasing the BT content in the composite system. The value of magnetoelectric coefficient for the composites decreases by increasing BT content for all the compositions except for 40% BT content, which may be due to the low resistivity of magnetic phase compared with the BT phase that causes a leakage of induced charges on the piezoelectric phase. Since both ferroelectric and magnetic phases preserve their basic properties in the bulk composite, the present BT-NZF composite are potential candidates for applications as pollution sensors and electromagnetic waves.
Charge-Dissipative Electrical Cables
NASA Technical Reports Server (NTRS)
Kolasinski, John R.; Wollack, Edward J.
2004-01-01
Electrical cables that dissipate spurious static electric charges, in addition to performing their main functions of conducting signals, have been developed. These cables are intended for use in trapped-ion or ionizing-radiation environments, in which electric charges tend to accumulate within, and on the surfaces of, dielectric layers of cables. If the charging rate exceeds the dissipation rate, charges can accumulate in excessive amounts, giving rise to high-current discharges that can damage electronic circuitry and/or systems connected to it. The basic idea of design and operation of charge-dissipative electrical cables is to drain spurious charges to ground by use of lossy (slightly electrically conductive) dielectric layers, possibly in conjunction with drain wires and/or drain shields (see figure). In typical cases, the drain wires and/or drain shields could be electrically grounded via the connector assemblies at the ends of the cables, in any of the conventional techniques for grounding signal conductors and signal shields. In some cases, signal shields could double as drain shields.
Electric vehicle system for charging and supplying electrical power
Su, Gui Jia
2010-06-08
A power system that provides power between an energy storage device, an external charging-source/load, an onboard electrical power generator, and a vehicle drive shaft. The power system has at least one energy storage device electrically connected across a dc bus, at least one filter capacitor leg having at least one filter capacitor electrically connected across the dc bus, at least one power inverter/converter electrically connected across the dc bus, and at least one multiphase motor/generator having stator windings electrically connected at one end to form a neutral point and electrically connected on the other end to one of the power inverter/converters. A charging-sourcing selection socket is electrically connected to the neutral points and the external charging-source/load. At least one electronics controller is electrically connected to the charging-sourcing selection socket and at least one power inverter/converter. The switch legs in each of the inverter/converters selected by the charging-source/load socket collectively function as a single switch leg. The motor/generators function as an inductor.
Battery Electric Vehicle Driving and Charging Behavior Observed Early in The EV Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Smart; Stephen Schey
2012-04-01
As concern about society's dependence on petroleum-based transportation fuels increases, many see plug-in electric vehicles (PEV) as enablers to diversifying transportation energy sources. These vehicles, which include plug-in hybrid electric vehicles (PHEV), range-extended electric vehicles (EREV), and battery electric vehicles (BEV), draw some or all of their power from electricity stored in batteries, which are charged by the electric grid. In order for PEVs to be accepted by the mass market, electric charging infrastructure must also be deployed. Charging infrastructure must be safe, convenient, and financially sustainable. Additionally, electric utilities must be able to manage PEV charging demand on themore » electric grid. In the Fall of 2009, a large scale PEV infrastructure demonstration was launched to deploy an unprecedented number of PEVs and charging infrastructure. This demonstration, called The EV Project, is led by Electric Transportation Engineering Corporation (eTec) and funded by the U.S. Department of Energy. eTec is partnering with Nissan North America to deploy up to 4,700 Nissan Leaf BEVs and 11,210 charging units in five market areas in Arizona, California, Oregon, Tennessee, and Washington. With the assistance of the Idaho National Laboratory, eTec will collect and analyze data to characterize vehicle consumer driving and charging behavior, evaluate the effectiveness of charging infrastructure, and understand the impact of PEV charging on the electric grid. Trials of various revenue systems for commercial and public charging infrastructure will also be conducted. The ultimate goal of The EV Project is to capture lessons learned to enable the mass deployment of PEVs. This paper is the first in a series of papers documenting the progress and findings of The EV Project. This paper describes key research objectives of The EV Project and establishes the project background, including lessons learned from previous infrastructure deployment and PEV demonstrations. One such previous study was a PHEV demonstration conducted by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA), led by the Idaho National Laboratory (INL). AVTA's PHEV demonstration involved over 250 vehicles in the United States, Canada, and Finland. This paper summarizes driving and charging behavior observed in that demonstration, including the distribution of distance driven between charging events, charging frequency, and resulting proportion of operation charge depleting mode. Charging demand relative to time of day and day of the week will also be shown. Conclusions from the PHEV demonstration will be given which highlight the need for expanded analysis in The EV Project. For example, the AVTA PHEV demonstration showed that in the absence of controlled charging by the vehicle owner or electric utility, the majority of vehicles were charged in the evening hours, coincident with typical utility peak demand. Given this baseline, The EV Project will demonstrate the effects of consumer charge control and grid-side charge management on electricity demand. This paper will outline further analyses which will be performed by eTec and INL to documenting driving and charging behavior of vehicles operated in a infrastructure-rich environment.« less
Electric vehicle utilization for ancillary grid services
NASA Astrophysics Data System (ADS)
Aziz, Muhammad
2018-02-01
Electric vehicle has been developed through several decades as transportation mean, without paying sufficient attention of its utilization for other purposes. Recently, the utilization of electric vehicle to support the grid electricity has been proposed and studied intensively. This utilization covers several possible services including electricity storage, spinning reserve, frequency and voltage regulation, and emergency energy supply. This study focuses on theoretical and experimental analysis of utilization of electric vehicles and their used batteries to support a small-scale energy management system. Charging rate of electric vehicle under different ambient temperature (seasonal condition) is initially analyzed to measure the correlation of charging rate, charging time, and state-of-charge. It is confirmed that charging under warmer condition (such as in summer or warmer region) shows higher charging rate than one in colder condition, therefore, shorter charging time can be achieved. In addition, in the demonstration test, each five electric vehicles and used batteries from the same electric vehicles are employed and controlled to support the electricity of the office building. The performance of the system is evaluated throughout a year to measure the load leveling effect during peak-load time. The results show that the targeted peak-load can be shaved well under certain calculated peak-shaving threshold. The finding confirms that the utilization of electric vehicle for supporting the electricity of grid or certain energy management system is feasible and deployable in the future.
The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells
Philippa, Bronson; Stolterfoht, Martin; Burn, Paul L.; Juška, Gytis; Meredith, Paul; White, Ronald D.; Pivrikas, Almantas
2014-01-01
A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot charge carriers that reduces as excess energy is lost during relaxation in the density of states. In contrast, we show via photon energy, electric field and film thickness independence of carrier mobilities that the dispersive photocurrent in organic solar cells originates not from the loss of excess energy during hot carrier thermalization, but rather from the loss of carrier density to trap states during transport. Our results emphasize that further efforts should be directed to minimizing the density of trap states, rather than controlling energetic relaxation of hot carriers within the density of states. PMID:25047086
NASA Astrophysics Data System (ADS)
Liu, Ning; Gan, Lu; Liu, Yu; Gui, Weijun; Li, Wei; Zhang, Xiaohang
2017-10-01
Electrical manipulation of charged ions in electrolyte-gated transistors is crucial for enhancing the electric-double-layer (EDL) gating effect, thereby improving their sensing abilities. Here, indium-zinc-oxide (IZO) based thin-film-transistors (TFTs) are fabricated on flexible plastic substrate. Acid doped chitosan-based biopolymer electrolyte is used as the gate dielectric, exhibiting an extremely high EDL capacitance. By regulating the dynamic EDL charging process with special gate potential profiles, the EDL gating effect of the chitosan-gated TFT is enhanced, and then resulting in higher pH sensitivities. An extremely high sensitivity of ∼57.8 mV/pH close to Nernst limit is achieved when the gate bias of the TFT sensor sweeps at a rate of 10 mV/s. Additionally, an enhanced sensitivity of 2630% in terms of current variation with pH range from 11 to 3 is realized when the device is operated in the ion depletion mode with a negative gate bias of -0.7 V. Robust ionic modulation is demonstrated in such chitosan-gated sensors. Efficiently driving the charged ions in the chitosan-gated IZO-TFT provides a new route for ultrasensitive, low voltage, and low-cost biochemical sensing technologies.
Electromagnetic theory of the nuclear interaction. Application to the deuteron {sup 2}H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaeffer, Bernard
2012-06-20
Bieler of the Rutherford laboratory imagined in 1924 a magnetic attraction equilibrating an electrostatic repulsion between the protons. Since the discovery of the neutron and the magnetic moments of the nucleons proving that the neutron contains electric charges, nobody, as far as I know, has tried to apply electromagnetism to the nuclear interaction. The electrostatic and magnetic interactions are completely neglected except for a mean Coulomb repulsion. As it is well known, there is an attraction between an electric charge and a neutral conductor. In the neutron, the positive charges are repelled and the negative charges attracted by a nearbymore » proton. There is a net attraction explaining quantitatively the so-called strong force as it is shown in this paper. In the deuteron, the magnetic repulsion equilibrates the electrostatically induced neutron-proton attraction. The experimental value (- 2.2 MeV) is surrounded by - 1.6 MeV and - 2.5 MeV, depending on the calculation method. No arbitrary fitting parameter is used, only physical constants: it is a true ab initio calculation. The theoretical ratio between nuclear and chemical energies has been found to be (m{sub p}/m{sub e}{alpha}), proving that the usual assumption that the electromagnetic interaction is too feeble to predict the nuclear interaction is incorrect.« less
Electric field imaging of single atoms
Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi
2017-01-01
In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629
Biomechanical energy harvesting: generating electricity during walking with minimal user effort.
Donelan, J M; Li, Q; Naing, V; Hoffer, J A; Weber, D J; Kuo, A D
2008-02-08
We have developed a biomechanical energy harvester that generates electricity during human walking with little extra effort. Unlike conventional human-powered generators that use positive muscle work, our technology assists muscles in performing negative work, analogous to regenerative braking in hybrid cars, where energy normally dissipated during braking drives a generator instead. The energy harvester mounts at the knee and selectively engages power generation at the end of the swing phase, thus assisting deceleration of the joint. Test subjects walking with one device on each leg produced an average of 5 watts of electricity, which is about 10 times that of shoe-mounted devices. The cost of harvesting-the additional metabolic power required to produce 1 watt of electricity-is less than one-eighth of that for conventional human power generation. Producing substantial electricity with little extra effort makes this method well-suited for charging powered prosthetic limbs and other portable medical devices.
Interactions of hydrogen with amorphous hafnium oxide
NASA Astrophysics Data System (ADS)
Kaviani, Moloud; Afanas'ev, Valeri V.; Shluger, Alexander L.
2017-02-01
We used density functional theory (DFT) calculations to study the interaction of hydrogen with amorphous hafnia (a -HfO2 ) using a hybrid exchange-correlation functional. Injection of atomic hydrogen, its diffusion towards electrodes, and ionization can be seen as key processes underlying charge instability of high-permittivity amorphous hafnia layers in many applications. Hydrogen in many wide band gap crystalline oxides exhibits negative-U behavior (+1 and -1 charged states are thermodynamically more stable than the neutral state) . Our results show that in a -HfO2 hydrogen is also negative-U, with charged states being the most thermodynamically stable at all Fermi level positions. However, metastable atomic hydrogen can share an electron with intrinsic electron trapping precursor sites [Phys. Rev. B 94, 020103 (2016)., 10.1103/PhysRevB.94.020103] forming a [etr -+O -H ] center, which is lower in energy on average by about 0.2 eV. These electron trapping sites can affect both the dynamics and thermodynamics of the interaction of hydrogen with a -HfO2 and the electrical behavior of amorphous hafnia films in CMOS devices.
ELECTROPHORESIS EXPERIMENTS WITH THE VIRUS AND PROTECTIVE BODIES OF YELLOW FEVER
Frobisher, Martin
1931-01-01
1. When suspended in slightly alkaline (pH 7.4 to 7.8) saline dilutions of clear, hemoglobin-free normal monkey serum, the virus of yellow fever from infected monkeys and from infected, but blood-free, mosquitoes, usually acts as if it were possessed of a positive electrical charge. 2. The virus tends to assume a negative charge in fluids having a slightly acid reaction. 3. The isoelectric point of the virus seems to be in the neighborhood of pH 7.0, possibly ranging from pH 7.3 to pH 6.9. 4. Exposure to fluid having a reaction of pH 5.0 for 3 hours appeared to inactivate the virus. 5. In experiments in which the suspending fluid was prepared with normal serum diluted with distilled water and containing a good quantity of partly hemolyzed erythrocytes, the virus tended to migrate to the anode. 6. The protective bodies in yellow fever immune serum appear to carry a negative charge in slightly alkaline saline dilutions of serum. PMID:19869954
Meighan, Michelle M; Vasquez, Jared; Dziubcynski, Luke; Hews, Sarah; Hayes, Mark A
2011-01-01
This work presents a technique termed as "electrophoretic exclusion" that is capable of differentiation and concentration of proteins in bulk solution. In this method, a hydrodynamic flow is countered by the electrophoretic velocity to prevent a species from entering into a channel. The separation can be controlled by changing the flow rate or applied electric potential in order to exclude a certain species selectively while allowing others to pass through the capillary. The exclusion of various proteins is investigated using a flow-injection regime of the method. Concentration of myoglobin of up to 1200 times the background concentration in 60 s was demonstrated. Additionally, negatively charged myoglobin was separated from a solution containing negatively charged allophycocyanin. Cationic cytochrome c was also differentiated from a solution with allophycocyanin. The ability to differentially transport species in bulk solution enables parallel and serial separation modes not available with other separations schemes.
NASA Astrophysics Data System (ADS)
Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.; Lomaev, M. I.
2017-11-01
The formation of a diffuse discharge plasma at a subnanosecond breakdown of a "cone-plane" gap filled with air, nitrogen, methane, hydrogen, argon, neon, and helium at various pressures has been studied. Nanosecond negative and positive voltage pulses have been applied to the conical electrode. The experimental data on the dynamics of plasma glow at the stage of formation and propagation of a streamer have been obtained with intensified charge-coupled device and streak cameras. It has been found that the formation of ball streamers is observed in all gases and at both polarities. A supershort avalanche electron beam has been detected behind the flat foil electrode in a wide range of pressures in the case of a negatively charged conical electrode. A mechanism of the formation of streamers at breakdown of various gases at high overvoltages has been discussed.
Abo, Toru; Watanabe, Mayumi; Tomiyama, Chikako; Kanda, Yasuhiro
2014-07-01
Capillary vessel flow in the base of the fingernail can be observed by microscopy. This flow is switched off under some conditions, such as coldness, surprise, and anger and is switched on again under other conditions, such as warming, relaxation, and mild exercise. In other words, capillary vessels perform two functions: switching flow on and off. It is speculated that the switch-off function is necessary to direct energy production to the glycolysis pathway, while the switch-on function is necessary for the mitochondrial pathway. This is because glycolysis takes place under anaerobic conditions, while oxidative phosphorylation in the mitochondria proceeds under aerobic conditions in the body. To switch off circulation, the negative electric charges on the surface of erythrocytes and the capillary wall may be decreased by stimulation of the sympathetic nerves and secretion of steroid hormones. Negative charge usually acts as repulsive force between erythrocytes and between erythrocytes and the capillary wall. By decreasing the negative charge, erythrocytes can aggregate and also adhere to the capillary wall. These behaviors may be related to the capillary flow switch-off function. Here, it is emphasized that the capillary vessels possess not only a switch-on function but also a switch-off function for circulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Chaudhry, Hina
2013-01-01
This study is a part of the smart grid initiative providing electric vehicle charging infrastructure. It is a refueling structure, an energy generating photovoltaic system and charge point electric vehicle charging station. The system will utilize advanced design and technology allowing electricity to flow from the site's normal electric service…
Distributed charging of electrical assets
Ghosh, Soumyadip; Phan, Dung; Sharma, Mayank; Wu, Chai Wah; Xiong, Jinjun
2016-02-16
The present disclosure relates generally to the field of distributed charging of electrical assets. In various examples, distributed charging of electrical assets may be implemented in the form of systems, methods and/or algorithms.
Design and development of electric vehicle charging station equipped with RFID
NASA Astrophysics Data System (ADS)
Panatarani, C.; Murtaddo, D.; Maulana, D. W.; Irawan, S.; Joni, I. M.
2016-02-01
This paper reports the development of electric charging station from distributed renewable for electric vehicle (EV). This designed refer to the input voltage standard of IEC 61851, plugs features of IEC 62196 and standard communication of ISO 15118. The developed electric charging station used microcontroller ATMEGA8535 and RFID as controller and identifier of the EV users, respectively. The charging station successfully developed as desired features for electric vehicle from renewable energy resources grid with solar panel, wind power and batteries storage.
Analysis of Lunar Surface Charging for a Candidate Spacecraft Using NASCAP-2K
NASA Technical Reports Server (NTRS)
Parker, Linda; Minow, Joseph; Blackwell, William, Jr.
2007-01-01
The characterization of the electromagnetic interaction for a spacecraft in the lunar environment, and identification of viable charging mitigation strategies, is a critical lunar mission design task, as spacecraft charging has important implications both for science applications and for astronaut safety. To that end, we have performed surface charging calculations of a candidate lunar spacecraft for lunar orbiting and lunar landing missions. We construct a model of the spacecraft with candidate materials having appropriate electrical properties using Object Toolkit and perform the spacecraft charging analysis using Nascap-2k, the NASA/AFRL sponsored spacecraft charging analysis tool. We use nominal and atypical lunar environments appropriate for lunar orbiting and lunar landing missions to establish current collection of lunar ions and electrons. In addition, we include a geostationary orbit case to demonstrate a bounding example of extreme (negative) charging of a lunar spacecraft in the geostationary orbit environment. Results from the charging analysis demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as expected. We compare charging results to data taken during previous lunar orbiting or lunar flyby spacecraft missions.
Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging
NASA Astrophysics Data System (ADS)
Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.
2016-07-01
One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells.
Spacecraft surface charging within geosynchronous orbit observed by the Van Allen Probes
Sarno-Smith, Lois K.; Larsen, Brian A.; Skoug, Ruth M.; ...
2016-02-27
Using the Helium Oxygen Proton Electron (HOPE) and Electric Field and Waves (EFW) instruments from the Van Allen Probes, we explored the relationship between electron energy fluxes in the eV and keV ranges and spacecraft surface charging. We present statistical results on spacecraft charging within geosynchronous orbit by L and MLT. An algorithm to extract the H+ charging line in the HOPE instrument data was developed to better explore intense charging events. Also, this study explored how spacecraft potential relates to electron number density, electron pressure, electron temperature, thermal electron current, and low-energy ion density between 1 and 210 eV.more » It is demonstrated that it is imperative to use both EFW potential measurements and the HOPE instrument ion charging line for examining times of extreme spacecraft charging of the Van Allen Probes. The results of this study show that elevated electron energy fluxes and high-electron pressures are present during times of spacecraft charging but these same conditions may also occur during noncharging times. Furthermore, we also show noneclipse significant negative charging events on the Van Allen Probes.« less
Electrostatic Charging of the Pathfinder Rover
NASA Technical Reports Server (NTRS)
Siebert, Mark W.; Kolecki, Joseph C.
1996-01-01
The Mars Pathfinder mission will send a lander and a rover to the martian surface. Because of the extremely dry conditions on Mars, electrostatic charging of the rover is expected to occur as it moves about. Charge accumulation may result in high electrical potentials and discharge through the martian atmosphere. Such discharge could interfere with the operation of electrical elements on the rover. A strategy was sought to mitigate this charge accumulation as a precautionary measure. Ground tests were performed to demonstrate charging in laboratory conditions simulating the surface conditions expected at Mars. Tests showed that a rover wheel, driven at typical rover speeds, will accumulate electrical charge and develop significant electrical potentials (average observed, 110 volts). Measurements were made of wheel electrical potential, and wheel capacitance. From these quantities, the amount of absolute charge was estimated. An engineering solution was developed and recommended to mitigate charge accumulation. That solution has been implemented on the actual rover.
Static Electric Fields and Lightning Over Land and Ocean in Florida Thunderstorms
NASA Technical Reports Server (NTRS)
Wilson, J. G.; Cummins, K. L.; Simpson, A. A.; Hinckley, A.
2017-01-01
Natural cloud-to-ground (CG) lightning and the charge structure of the associated clouds behave differently over land and ocean. Existing literature has raised questions over the years on the behavior of thunderstorms and lightning over oceans, and there are still open scientific questions. We expand on the observational datasets by obtaining identical electric field observations over coastal land, near-shore, and deep ocean regions during both clear air and thunderstorm periods. Oceanic observations were obtained using two 3-meter NOAA buoys that were instrumented with Campbell Scientific electric field mills to measure the static electric fields. These data were compared to selected electric field records from the existing on-shore electric field mill suite of 31 sensors at Kennedy Space Center (KSC). CG lightning occurrence times, locations and peak current values for both on-shore and ocean were provided by the U.S. National Lightning Detection Network. The buoy instruments were first evaluated on-shore at the Florida coast, to calibrate field enhancements and to confirm proper behavior of the system in elevated-field environments. The buoys were then moored 20NM and 120NM off the coast of KSC in February (20NM) and August (120NM) 2014. Statistically larger CG peak currents were reported over the deep ocean for first strokes and for subsequent strokes with new contacts points. Storm-related static fields were significantly larger at both oceanic sites, likely due to decreased screening by nearby space charge. Time-evolution of the static field during storm development and propagation indicated weak or missing lower positive charge regions in most storms that initiated over the deep ocean, supporting one mechanism for the observed high peak currents in negative first strokes over the deep ocean. This project also demonstrated the practicality of off-shore electric field measurements for safety-related decision making at KSC.
Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In
Electric Vehicles Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E -mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In
Saharan dust plume charging observed over the UK
NASA Astrophysics Data System (ADS)
Harrison, R. Giles; Nicoll, Keri A.; Marlton, Graeme J.; Ryder, Claire L.; Bennett, Alec J.
2018-05-01
A plume of Saharan dust and Iberian smoke was carried across the southern UK on 16th October 2017, entrained into an Atlantic cyclone which had originated as Hurricane Ophelia. The dust plume aloft was widely noticed as it was sufficiently dense to redden the visual appearance of the sun. Time series of backscatter from ceilometers at Reading and Chilbolton show two plumes: one carried upwards to 2.5 km, and another below 800 m into the boundary layer, with a clear slot between. Steady descent of particles at about 50 cm s‑1 continued throughout the morning, and coarse mode particles reached the surface. Plumes containing dust are frequently observed to be strongly charged, often through frictional effects. This plume passed over atmospheric electric field sensors at Bristol, Chilbolton and Reading. Consistent measurements at these three sites indicated negative plume charge. The lower edge plume charge density was (‑8.0 ± 3.3) nC m‑2, which is several times greater than that typical for stratiform water clouds, implying an active in situ charge generation mechanism such as turbulent triboelectrification. A meteorological radiosonde measuring temperature and humidity was launched into the plume at 1412 UTC, specially instrumented with charge and turbulence sensors. This detected charge in the boundary layer and in the upper plume region, and strong turbulent mixing was observed throughout the atmosphere’s lowest 4 km. The clear slot region, through which particles sedimented, was anomalously dry compared with modelled values, with water clouds forming intermittently in the air beneath. Electrical aspects of dust should be included in numerical models, particularly the charge-related effects on cloud microphysical properties, to accurately represent particle behaviour and transport.
Sugimoto, Yu; Kitazumi, Yuki; Tsujimura, Seiya; Shirai, Osamu; Yamamoto, Masahiro; Kano, Kenji
2015-01-15
Effects of the electrode poential on the activity of an adsorbed enzyme has been examined by using copper efflux oxidase (CueO) as a model enzyme and by monitoring direct electron transfer (DET)-type bioelectrocatalysis of oxygen reduction. CueO adsorbed on bare Au electrodes at around the point of zero charge (E(pzc)) shows the highest DET activity, and the activity decreases as the adsorption potential (E(ad); at which the enzyme adsorbs) is far from E(pzc). We propose a model to explain the phenomena in which the electrostatic interaction between the enzyme and electrodes in the electric double layer affects the orientation and the stability of the adsorbed enzyme. The self-assembled monolayer of butanethiol on Au electrodes decreases the electric field in the outside of the inner Helmholtz plane and drastically diminishes the E(ad) dependence of the DET activity of CueO. When CueO is adsorbed on bare Au electrodes under open circuit potential and then is held at hold potentials (E(ho)) more positive than E(pzc), the DET activity of the CueO rapidly decreases with the hold time. The strong electric field with positive surface charge density on the metallic electrode (σ(M)) leads to fatal denaturation of the adsorbed CueO. Such denaturation effect is not so serious at E(ho)
Shepherd, Simon J; Beggs, Clive B; Smith, Caroline F; Kerr, Kevin G; Noakes, Catherine J; Sleigh, P Andrew
2010-04-12
In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units. A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter. The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V) in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene acrylonitrile), did however develop a positive charge in the presence of the ionizer. The findings of the study suggest that the action of negative air ionizers significantly alters the electrostatic landscape of the clinical environment, and that this has the potential to cause any Acinetobacter-bearing particles in the air to be strongly repelled from some plastic surfaces and attracted to others. In so doing, this may prevent critical items of equipment from becoming contaminated with the bacterium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Jason; Dobrzynski, Daniel S.
A smart charging system for charging a plug-in electric vehicle (PEV) includes an electric vehicle supply equipment (EVSE) configured to supply electrical power to the PEV through a smart charging module coupled to the EVSE. The smart charging module comprises an electronic circuitry which includes a processor. The electronic circuitry includes electronic components structured to receive electrical power from the EVSE, and supply the electrical power to the PEV. The electronic circuitry is configured to measure a charging parameter of the PEV. The electronic circuitry is further structured to emulate a pulse width modulated signal generated by the EVSE. Themore » smart charging module can also include a first coupler structured to be removably couple to the EVSE and a second coupler structured to be removably coupled to the PEV.« less
Pinto, Bernardo I; García, Isaac E; Pupo, Amaury; Retamal, Mauricio A; Martínez, Agustín D; Latorre, Ramón; González, Carlos
2016-07-22
Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Pinto, Bernardo I.; García, Isaac E.; Pupo, Amaury; Retamal, Mauricio A.; Martínez, Agustín D.; Latorre, Ramón; González, Carlos
2016-01-01
Connexins (Cxs) are a family of membrane-spanning proteins that form gap junction channels and hemichannels. Connexin-based channels exhibit two distinct voltage-dependent gating mechanisms termed slow and fast gating. Residues located at the C terminus of the first transmembrane segment (TM-1) are important structural components of the slow gate. Here, we determined the role of the charged residues at the end of TM-1 in voltage sensing in Cx26, Cx46, and Cx50. Conductance/voltage curves obtained from tail currents together with kinetics analysis reveal that the fast and slow gates of Cx26 involves the movement of two and four charges across the electric field, respectively. Primary sequence alignment of different Cxs shows the presence of well conserved glutamate residues in the C terminus of TM-1; only Cx26 contains a lysine in that position (lysine 41). Neutralization of lysine 41 in Cx26 increases the voltage dependence of the slow gate. Swapping of lysine 41 with glutamate 42 maintains the voltage dependence. In Cx46, neutralization of negative charges or addition of a positive charge in the Cx26 equivalent region reduced the slow gate voltage dependence. In Cx50, the addition of a glutamate in the same region decreased the voltage dependence, and the neutralization of a negative charge increased it. These results indicate that the charges at the end of TM-1 are part of the slow gate voltage sensor in Cxs. The fact that Cx42, which has no charge in this region, still presents voltage-dependent slow gating suggests that charges still unidentified also contribute to the slow gate voltage sensitivity. PMID:27143357
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2013-01-01
The dust charging by electron impact is an important dust charging process in Astrophysical, Planetary, and the Lunar environments. Low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available theoretical models for the calculation of SEE yield applicable for neutral, planar or bulk surfaces are generally based on Sternglass Equation. However, viable models for charging of individual dust grains do not exist at the present time. Therefore, the SEE yields have to be obtained by some experimental methods at the present time. We have conducted experimental studies on charging of individual micron size dust grains in simulated space environments using an electrodynamic balance (EDB) facility at NASA-MSFC. The results of our extensive laboratory study of charging of individual micron-size dust grains by low energy electron impact indicate that the SEE by electron impact is a very complex process expected to be substantially different from the bulk materials. It was found that the incident electrons may lead to positive or negative charging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration. In this paper we give a more elaborate discussion about the possible effects of the AC field in the EDB on dust charging measurements by comparing the secondary electron emission time-period (tau (sub em) (s/e)) with the time-period (tau (sub ac) (ms)) of the AC field cycle in the EDB that we have briefly addressed in our previous publication.
"Squishy capacitor" model for electrical double layers and the stability of charged interfaces.
Partenskii, Michael B; Jordan, Peter C
2009-07-01
Negative capacitance (NC), predicted by various electrical double layer (EDL) theories, is critically reviewed. Physically possible for individual components of the EDL, the compact or diffuse layer, it is strictly prohibited for the whole EDL or for an electrochemical cell with two electrodes. However, NC is allowed for the artificial conditions of sigma control, where an EDL is described by the equilibrium electric response of electrolyte to a field of fixed, and typically uniform, surface charge-density distributions, sigma. The contradiction is only apparent; in fact local sigma cannot be set independently, but is established by the equilibrium response to physically controllable variables, i.e., applied voltage phi (phi control) or total surface charge q (q control). NC predictions in studies based on sigma control signify potential instabilities and phase transitions for physically realizable conditions. Building on our previous study of phi control [M. B. Partenskii and P. C. Jordan, Phys. Rev. E 77, 061117 (2008)], here we analyze critical behavior under q control, clarifying the basic picture using an exactly solvable "squishy capacitor" toy model. We find that phi can change discontinuously in the presence of a lateral transition, specify stability conditions for an electrochemical cell, analyze the origin of the EDL's critical point in terms of compact and diffuse serial contributions, and discuss perspectives and challenges for theoretical studies not limited by sigma control.
NASA Astrophysics Data System (ADS)
Serozhkin, Yu.
2008-09-01
Introduction The structure and the physical parameters of an early Earth atmosphere [1], most likely, played a determining role in formation of conditions for origin of life. The estimation of thunderstorm activity in atmosphere of the early Earth is important for understanding of the real role of electrical discharges during formation of biochemical compounds. The terrestrial lightning a long time are considered as one of components determining a physical state and chemical structure of an atmosphere. Liebig in 1827 has considered a capability of nitrogen fixation at discharges of lightning [2]. Recent investigations (Lamarque et al. 1996) have achieved that production rate of NOx due to lightning at 3·106 ton/year [3]. The efficiency of electric discharges as energy source for synthesis of low molecular weight organic compounds is explained by the several factors. To them concern effect of optical radiation, high temperature, shock waves and that is especially important, pulse character of these effects. The impulse impact is essentially reduced the probability of destruction of the formed compounds. However, for some reasons is not clear the real role of electric discharges in synthesis of biochemical compounds. The discharges used in experiments on synthesis of organic substances, do not remind the discharges observable in a nature. One more aspect of a problem about a role of electric discharges in forming pre-biotic conditions on the Earth is connected with the thunderstorm activity in a modern atmosphere. This activity is connected with the presence in an atmosphere of ice crystals and existing gradient of temperature. To tell something about a degree of thunderstorm activity during the early Earth, i.e. that period, when formed pre-biotic conditions were is very difficult. Astrobiological potential of various discharges First of all the diversity of electric discharges in terrestrial atmosphere (usual lightning, lightning at eruption of volcanoes, discharges in mesosphere - sprites, elves and jets) puts a question about comparison of the potential efficiency of various discharges for the synthesis of biochemical compounds. The efficiency of lightning's discharges and coronal discharge is compared by Chyba and Sagan [4]. Authors do a conclusion about greater efficiency of lightning discharge for synthesis of organic substances. How to estimate efficiency of various types of discharges at synthesis of chemical compounds? It seems that in the absence of full understanding of mechanism of synthesis under effect of discharges it is necessary to begin from an estimation of quantity of substance located in the field of discharge and energy of discharge. However by viewing a role of energy it is necessary to remember, that at discharge of the usual lightning its main part is spent for a heating of the channel up to high temperatures, at which the organic compounds can not be preserved. We are compared the usual lightning, electrical discharges in mesosphere (sprites etc.) and lightning at eruption of volcanoes. In the Table are shown the following data about the basic types of the terrestrial lightning: - quantity of flashes in one year; - volume occupied by discharge (for usual lightning product of cross section of the channel on length of lightning); - quantity of air in this volume; - product quantity of air on number of flashes in one year. From these dates follows that: - the frequency and energy (≈ 5·102 MJ) of usual lightings make their basic candidate for a role of an energy source for synthesis in atmosphere. Terrestrial lightning is played important role at transformation of low-molecular compounds (NOx). - the huge volume and amount of substance in area of sprites give a reason to speak about their large possibilities for synthesis. As to energy, in sprites (≈ 10 MJ) are absent the losses on heating of substance. The efficiency of its using for synthesis will be more, than in usual lightning. At last time numerous theoretical and experimental researches of gas-grain chemistry show that the chemical reactions on boundary gas - ice play a considerable role in changes of evolution of molecular composition of gas-grains mediums [5,6]. Electric discharges in such gas-grain mediums can be not only energy source for synthesis of biochemical compounds. For prebiotic chemistry will have the important consequences that plasma of these discharges will have properties of dusty plasma. First, it is the presence of the charged micron-size particles (0,1…10 μm). These grains can be charged up to values 103-105 elementary charges at sticking of high-energy electrons and ions (≥1eV), which are produced at lightning discharge. In this connection it is expedient at an estimation of efficiency of the electrical discharges to take into account conditions, in which they occur. In the area of the lightning at eruption of volcanoes there is a plenty of ashes, and aerosols. In the area of the usual lightnings there are snowflakes, drops of water and ice crystals. The electrical discharges in mesosphere cannot be considered without an estimation of influence on biochemical processes the submicron ice crystals and aerosols. What is possible to tell about the degree and nature of thunderstorm activity in the early Earth? We can to formulate some questions: - from what moment of time there were conditions for various types of electrical discharges in an atmosphere; - up to what time, and how we can trace existence of lightning. The modern thunderstorm activity is determined by presence of water in an atmosphere and on a surface of the Earth, and also physical properties of the atmosphere (pressure, temperature, gradient of temperature). The chemical structure of an atmosphere plays a role through influence on temperature and gradient of temperatures. For example, the increase of concentration CO2 gives to global warming. On some estimation in modern conditions the climate warms by 3.8 degrees will increase quantity of lightning at 50 % [7]. The examinations of processes of separation of charges in clouds result in a very narrow diapason of temperature and pressure of an atmosphere, at which the separation of charges is possible. It is necessary to tell that the electrostatic charging of thunderstorm clouds not received a satisfactory explanation. One of not explained properties is the formation at the altitude 6 … 8 km at temperature about -15o the negatively charged layer by thickness some hundreds meters. At this altitude at such pressure the water can exist in three phases. In this layer because of interaction of the ice crystals with snow pellets there is a separation of charges. Above this layer there is a so-called charge reverse - a not explained phenomenon causing that the ice crystals are lower this layer are charged positively, and above negatively. The snow pellets are higher this layer is charged positively, and below negatively. Thus negatively charged layer consists of negatively charged ice crystals and snow pellets. Positively charged snow pellets form a charge at the top of a cloud, and positively charged ice crystals form positive charge in the bottom of a cloud. It follows that the dependence of the electrostatic charging of thunderstorm clouds from parameters of atmosphere is extremely difficult to estimate. About influence of pressure it is possible to tell the general words. It is possible to tell that at pressure corresponding to the point of charge reverse (about 250 Torr at the altitude 8 km) usual thunderstorm activity will decrease. It means that if the atmospheric pressure during formation pre-biotic conditions was less than 100 Torr, it is necessary to discuss a role of electrical discharges, which are connected with accumulation of charges on particles (sand storms, tornado) or ashes at eruption of volcano. What tracks of thunderstorm activity it is possible to search in the past? It is know that the cloud - ground lightning frequently tracks in ground, so-called fulgurites, the alloyed fragments of surface, in which has struck the lightning. There are two classes of fulgurites: sand fulgurites and rock fulgurites. Since fulgurites are real glasses, they are very resistant to weathering and are usually well preserved for a long period of time. For this reason they are used as paleoindicator. It would be interesting to study the opportunity of definition of the lightning stroke date. Conclusion First, we must to orient on such conditions in Earth's early atmosphere in which are possible the existence a so-called charge reverse layer. Next, it would be interesting to study the opportunity of definition of the lightning stroke date by fulgurites. At last, our estimations of the role of electrical discharges for synthesis in atmosphere of early Earth we must to do taking into account the presence in atmosphere of dust grains, ice crystals and aerosols. References [1] Kasting James F. Earth's Early Atmosphere. Science, (1993), Vol. 259, 12 February, pp. 920-926 [2] von Liebig, J. Am. Chem. Phys. 38, pp.329-333 (1827) [3] Lamarque et al. 1996 J. Geophys. Res.101, 22955-68 [4] Chyba C., Sagan C. Electrical energy sources for organic synthesis on the early Earth. Orig Life Evol Biosph. 1991;Vol. 21:pp3-17. [5] Allamandola, L.J. and Hudgins, D.M. (2003) From Interstellar Polycyclic Aromatic Hydrocarbons and Ice to Astrobiology. Proceedings of the NATO ASI entitled "Solid State Astrochemistry", V. Pirronello and J. Krelowski (eds.), Kluwer: Dordrecht. [6] Hugh G.M. Hill; Joseph A. Nuth, (2003), The Catalytic Potential of Cosmic Dust: Implications for Prebiotic Chemistry in the Solar Nebula and Other Protoplanetary Systems, Astrobiology, Vol. 3, No. 2, pp.291-304 [7] Colin Price, NATO Advanced Study Institute on Sprites, Elves and Intense Lightning Discharges, Corte in Corsica, July 24-31, 2004
Nitrogen-doped partially reduced graphene oxide rewritable nonvolatile memory.
Seo, Sohyeon; Yoon, Yeoheung; Lee, Junghyun; Park, Younghun; Lee, Hyoyoung
2013-04-23
As memory materials, two-dimensional (2D) carbon materials such as graphene oxide (GO)-based materials have attracted attention due to a variety of advantageous attributes, including their solution-processability and their potential for highly scalable device fabrication for transistor-based memory and cross-bar memory arrays. In spite of this, the use of GO-based materials has been limited, primarily due to uncontrollable oxygen functional groups. To induce the stable memory effect by ionic charges of a negatively charged carboxylic acid group of partially reduced graphene oxide (PrGO), a positively charged pyridinium N that served as a counterion to the negatively charged carboxylic acid was carefully introduced on the PrGO framework. Partially reduced N-doped graphene oxide (PrGODMF) in dimethylformamide (DMF) behaved as a semiconducting nonvolatile memory material. Its optical energy band gap was 1.7-2.1 eV and contained a sp2 C═C framework with 45-50% oxygen-functionalized carbon density and 3% doped nitrogen atoms. In particular, rewritable nonvolatile memory characteristics were dependent on the proportion of pyridinum N, and as the proportion of pyridinium N atom decreased, the PrGODMF film lost memory behavior. Polarization of charged PrGODMF containing pyridinium N and carboxylic acid under an electric field produced N-doped PrGODMF memory effects that followed voltage-driven rewrite-read-erase-read processes.
Langkjaer, L; Brange, J; Grodsky, G M; Guy, R H
1998-01-23
The aim of this study was to investigate the influence of association state and net charge of human insulin analogues on the rate of iontophoretic transport across hairless mouse skin, and the effect of different skin pretreatments on said transport. No insulin flux was observed with anodal delivery probably because of degradation at the Ag/AgCl anode. The flux during cathodal iontophoresis through intact skin was insignificant for human hexameric insulin, and only low and variable fluxes were observed for monomeric insulins. Using stripped skin on the other hand, the fluxes of monomeric insulins with two extra negative charges were 50-100 times higher than that of hexameric human insulin. Introducing three additional charges led to a further 2-3-fold increase in flux. Wiping the skin gently with absolute alcohol prior to iontophoresis resulted in a 1000-fold increase in transdermal transport of insulin relative to that across untreated skin, i.e. to almost the same level as stripping the skin. The alcohol pretreatment reduced the electrical resistance of the skin, presumably by lipid extraction. In conclusion, monomeric insulin analogues with at least two extra negative charges can be iontophoretically delivered across hairless mouse skin, whereas insignificant flux is observed with human, hexameric insulin. Wiping the skin with absolute alcohol prior to iontophoresis gave substantially improved transdermal transport of monomeric insulins resulting in clinically relevant delivery rates for basal treatment.
NASA Astrophysics Data System (ADS)
Matsuoka, Satoshi; Tsutsumi, Jun'ya; Kamata, Toshihide; Hasegawa, Tatsuo
2018-04-01
In this work, a high-resolution microscopic gate-modulation imaging (μ-GMI) technique is successfully developed to visualize inhomogeneous charge and electric field distributions in operating organic thin-film transistors (TFTs). We conduct highly sensitive and diffraction-limit gate-modulation sensing for acquiring difference images of semiconducting channels between at gate-on and gate-off states that are biased at an alternate frequency of 15 Hz. As a result, we observe unexpectedly inhomogeneous distribution of positive and negative local gate-modulation (GM) signals at a probe photon energy of 1.85 eV in polycrystalline pentacene TFTs. Spectroscopic analyses based on a series of μ-GMI at various photon energies reveal that two distinct effects appear, simultaneously, within the polycrystalline pentacene channel layers: Negative GM signals at 1.85 eV originate from the second-derivative-like GM spectrum which is caused by the effect of charge accumulation, whereas positive GM signals originate from the first-derivative-like GM spectrum caused by the effect of leaked gate fields. Comparisons with polycrystalline morphologies indicate that grain centers are predominated by areas with high leaked gate fields due to the low charge density, whereas grain edges are predominantly high-charge-density areas with a certain spatial extension as associated with the concentrated carrier traps. Consequently, it is reasonably understood that larger grains lead to higher device mobility, but with greater inhomogeneity in charge distribution. These findings provide a clue to understand and improve device characteristics of polycrystalline TFTs.
An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles
NASA Astrophysics Data System (ADS)
Lemoine, D. M.; Kammen, D. M.; Farrell, A. E.
2008-01-01
Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity and liquid fuels. We show that under recent conditions, millions of PHEVs could have charged economically in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity pricing. Special electricity rate tariffs already in place for electric vehicles could successfully render on-peak charging uneconomical and off-peak charging very attractive. However, unless battery prices fall by at least a factor of two, or gasoline prices double, the present value of fuel savings is smaller than the marginal vehicle costs, likely slowing PHEV market penetration in California. We also find that assumptions about how PHEVs are charged strongly influence the number of PHEVs that can be charged before the electric power system must be expanded. If most PHEVs are charged after the workday, and thus after the time of peak electricity demand, our forecasts suggest that several million PHEVs could be deployed in California without requiring new generation capacity, and we also find that the state's PHEV fleet is unlikely to reach into the millions within the current electricity sector planning cycle. To ensure desirable outcomes, appropriate technologies and incentives for PHEV charging will be needed if PHEV adoption becomes mainstream.
1986-10-01
developed by the AEH Group has the advantages: of compactness which makes it easily transportable; computer controlled acquisi- tion, signal processing...be available to a negatively charged aircraft. The experimental arrangement attempts to simulate the streamer propagation and growth in a quasi ...separate foam configurations: the operational configuration of non - conductive foam and a second configuration which contained an experimental
Dissimilar viscosity induced sample pre-concentration in elecrokinetic nanofluidic channels
NASA Astrophysics Data System (ADS)
Wink, Dean; Shelton, Elijah; Pennathur, Sumita; Storey, Brian
2013-11-01
Nanofluidic analysis systems boast many advantages: portability, small sample handling, short processing times, and potential for integration with mobile electronics. However, such systems face the challenge of detecting increasingly small volumes of sample at low concentrations. In this work, we demonstrate a unique pre-concentration technique in electrokinetic nanofluidic systems based on a viscosity mismatch between two fluids. In nanofluidic electrokinetic systems, finite electric double layers (EDL) lead to non-uniform electric potentials and transverse concentration distributions. Therefore, when the EDL is comparable in size to the channel height, negatively charged ions are repelled from negatively charged walls and preferentially populate the channel centerline. Furthermore, an axial piecewise viscosity distribution induces internal pressure gradients within the channel. These force the ions to move at a different average velocities based on the pressure gradient being favorable or adverse, leading to focusing. To experimentally probe this phenomenon, we electrokinetically inject solutions of borate buffer with and without glycerol (to change the viscosity) and use a fluorescent tracer dye to visualize the flow. We perform the injections in cross-geometry channels of 20 micron, 1 micron, and 250 nanometer depths. We measure fluorescence at 5, 10 and 15 mm distances from junction. Enhancement is characterized by comparing intensities to control measurements for systems with uniform viscosity.
Non-neutral plasma diode in the presence of a transverse magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pramanik, Sourav; Chakrabarti, Nikhil; Kuznetsov, V. I.
An analytical study of the plasma states in non-neutral plasma diodes in the presence of an external transverse magnetic field is presented for an arbitrary neutralization parameter γ. Considerations are restricted to the regime where no electrons are turned around by the magnetic field. The emitter electric field strength E{sub 0} is used as a characteristic function to investigate the existence of solutions depending on the diode length, the applied voltage, the neutralization parameter, and the magnetic field strength. The potential distribution has a wave form for small magnitudes of the external magnetic field, as well as for the casemore » when magnetic field is absent. A new family of solutions appears along with the Bursian ones. On the other hand, as the Larmor radius becomes comparable with the beam Debye length, oscillations in the potential disappear, and only the Bursian branches remain. Unlike the vacuum diode, there are steady state solutions for the negative values of the emitter field strength. As the neutralization parameter (γ) increases, the emitter field strength relating to the SCL (space charge limit) bifurcation point diminishes, and at γ > 1, the value of the emitter's electric field strength at the space charge limit (E{sub 0,SCL}) turns out to be negative.« less
Singh, Rajesh; Maurya, Ajeet K; Chanrion, Olivier; Neubert, Torsten; Cummer, Steven A; Mlynarczyk, Janusz; Cohen, Morris B; Siingh, Devendraa; Kumar, Sushil
2017-11-27
Gigantic Jets are electric discharges from thunderstorm cloud tops to the bottom of ionosphere at ~90 km altitude and electrically connect the troposphere and lower ionosphere. Since their first report in 2002, sporadic observations have been reported from ground and space based observations. Here we report first observations of Gigantic Jets in Indian subcontinent over the Indo-Gangetic plains during the monsoon season. Two storms each produced two jets with characteristics not documented so far. Jets propagated ~37 km up remarkably in ~5 ms with velocity of ~7.4 × 10 6 ms -1 and disappeared within ~40-80 ms, which is faster compared to jets reported earlier. The electromagnetic signatures show that they are of negative polarity, transporting net negative charge of ~17-23 C to the lower ionosphere. One jet had an unusual form observed for the first time, which emerged from the leading edge of a slowly drifting complex convective cloud close to the highest regions at ~17 km altitude. A horizontal displacement of ~10 km developed at ~50 km altitude before connecting to the lower ionosphere. Modeling of these Gigantic jets suggests that Gigantic Jets may bend when initiated at the edge of clouds with misaligned vertical charge distribution.
Wu, Guangfu; Dai, Ziwen; Tang, Xin; Lin, Zihong; Lo, Pik Kwan; Meyyappan, M; Lai, King Wai Chiu
2017-10-01
This study reports biosensing using graphene field-effect transistors with the aid of pyrene-tagged DNA aptamers, which exhibit excellent selectivity, affinity, and stability for Escherichia coli (E. coli) detection. The aptamer is employed as the sensing probe due to its advantages such as high stability and high affinity toward small molecules and even whole cells. The change of the carrier density in the probe-modified graphene due to the attachment of E. coli is discussed theoretically for the first time and also verified experimentally. The conformational change of the aptamer due to the binding of E. coli brings the negatively charged E. coli close to the graphene surface, increasing the hole carrier density efficiently in graphene and achieving electrical detection. The binding of negatively charged E. coli induces holes in graphene, which are pumped into the graphene channel from the contact electrodes. The carrier mobility, which correlates the gate voltage to the electrical signal of the APG-FETs, is analyzed and optimized here. The excellent sensing performance such as low detection limit, high sensitivity, outstanding selectivity and stability of the graphene biosensor for E. coli detection paves the way to develop graphene biosensors for bacterial detection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electrostatic Charging and Particle Interactions in Microscopic Insulating Grains
NASA Astrophysics Data System (ADS)
Lee, Victor
In this thesis, we experimentally investigate the electrostatic charging as well as the particle interactions in microscopic insulating grains. First, by tracking individual grains accelerated in an electric field, we quantitatively demonstrate that tribocharging of same-material grains depends on particle size. Large grains tend to charge positively, and small ones tend to charge negatively. Theories based on the transfer of trapped electrons can explain this tendency but have not been validated. Here we show that the number of trapped electrons, measured independently by a thermoluminescence technique, is orders of magnitude too small to be responsible for the amount of charge transferred. This result reveals that trapped electrons are not responsible for same-material tribocharging of dielectric particles. Second, same-material tribocharging in grains can result in important long-range electrostatic interactions. However, how these electrostatic interactions contribute to particle clustering remains elusive, primarily due to the lack of direct, detailed observations. Using a high-speed camera that falls with a stream charged grains, we observe for the first time how charged grains can undergo attractive as well as repulsive Kepler-like orbits. Charged particles can be captured in their mutual electrostatic potential and form clusters via multiple bounces. Dielectric polarization effects are directly observed, which lead to additional attractive forces and stabilize "molecule-like" arrangements of charged particles. Third, we have developed a new method to study the charge transfer of microscopic particles based on acoustic levitation techniques. This method allows us to narrow the complex problem of many-particle charging down to precise charge measurements of a single sub-millimeter particle colliding with a target plate. By simply attaching nonpolar groups onto glass surfaces, we show that the contact charging of a particle is highly dependent on hydrophobicity. Charging between a hydrophilic and a hydrophobic surface is enhanced in a basic atmosphere and suppressed in an acidic one. Moreover, hydrophobicity is also found to play a key role in particle charging driven by an external electric field. These results strongly support the idea that aqueous-ion transfer is responsible for the particle contact charging phenomenon.
Ball lightning dynamics and stability at moderate ion densities
NASA Astrophysics Data System (ADS)
Morrow, R.
2017-10-01
A general mechanism is presented for the dynamics and structure of ball lightning and for the maintenance of the ball lightning structure for several seconds. Results are obtained using a spherical geometry for air at atmospheric pressure, by solving the continuity equations for electrons, positive ions and negative ions coupled with Poisson’s equation. A lightning strike can generate conditions in the lightning channel with a majority of positive nitrogen ions, and a minority of negative oxygen ions and electrons. The calculations are initiated with electrons included; however, at the moderate ion densities chosen the electrons are rapidly lost to form negative ions, and after 1 µs their influence on the ion dynamics is negligible. Further development after 1 µs is followed using a simpler set of equations involving only positive ions and negative ions, but including ion diffusion. The space-charge electric field generated by the majority positive ions drives them from the centre of the distribution and drives the minority negative ions and electrons towards the centre of the distribution. In the central region the positive and negative ion distributions eventually overlap exactly and their space-charge fields cancel resulting in zero electric field, and the plasma ball formed is quite stable for a number of seconds. The formation of such plasma balls is not critically dependent on the initial diameter of the ion distributions, or the initial density of minority negative ions. The ion densities decrease relatively slowly due to mutual neutralization of positive and negative ions. The radiation from this neutralization process involving positive nitrogen ions and negative oxygen ions is not sufficient to account for the reported luminosity of ball lightning and some other source of luminosity is shown to be required; the plasma ball model used could readily incorporate other ions in order to account for the luminosity and range of colours reported for ball lightning. Additionally, ‘phantom plasma balls’ may well be generated and go unnoticed due to very low luminosity; luminous ball lightning may be the exception. Finally, the mechanism described here may also be active in the dynamics of bead lightning.
Dielectrics for long term space exposure and spacecraft charging: A briefing
NASA Technical Reports Server (NTRS)
Frederickson, A. R.
1989-01-01
Charging of dielectrics is a bulk, not a surface property. Radiation driven charge stops within the bulk and is not quickly conducted to the surface. Very large electric fields develop in the bulk due to this stopped charge. At space radiation levels, it typically requires hours or days for the internal electric fields to reach steady state. The resulting electric fields are large enough to produce electrical failure within the insulator. This type failure is thought to produce nearly all electric discharge anomalies. Radiation also induces bond breakage, creates reactive radicals, displaces atoms and, in general, severely changes the chemistry of the solid state material. Electric fields can alter this process by reacting with charged species, driving them through the solid. Irradiated polymers often lose as much as a percent of their mass, or more, at exposures typical in space. Very different aging or contaminant emission can be induced by the stopped charge electric fields. These radiation effects are detailed.
Boggs, Joan M; Rangaraj, Godha; Gao, Wen; Heng, Yew-Meng
2006-01-17
Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is most likely responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also polymerize actin, bundle F-actin filaments, and bind actin filaments to lipid bilayers through electrostatic interactions. MBP consists of a number of posttranslationally modified isomers of varying charge, some resulting from phosphorylation at several sites by different kinases, including mitogen-activated protein kinase (MAPK). Phosphorylation of MBP in oligodendrocytes occurs in response to various extracellular stimuli. Phosphorylation/dephosphorylation of MBP also occurs in the myelin sheath in response to electrical activity in the brain. Here we investigate the effect of phosphorylation of MBP on its interaction with actin in vitro by phosphorylating the most highly charged unmodified isomer, C1, at two sites with MAPK. Phosphorylation decreased the ability of MBP to polymerize actin and to bundle actin filaments but had no effect on the dissociation constant of the MBP-actin complex or on the ability of Ca2+-calmodulin to dissociate the complex. The most significant effect of phosphorylation on the MBP-actin complex was a dramatic reduction in its ability to bind to negatively charged lipid bilayers. The effect was much greater than that reported earlier for another charge isomer of MBP, C8, in which six arginines were deiminated to citrulline, resulting in a reduction of net positive charge of 6. These results indicate that although average electrostatic forces are the primary determinant of the interaction of MBP with actin, phosphorylation may have an additional effect due to a site-specific electrostatic effect or to a conformational change. Thus, phosphorylation of MBP, which occurs in response to various extracellular signals in both myelin and oligodendrocytes, attenuates the ability of MBP to polymerize and bundle actin and to bind it to a negatively charged membrane.
Direct electrical control of IgG conformation and functional activity at surfaces
NASA Astrophysics Data System (ADS)
Ghisellini, Paola; Caiazzo, Marialuisa; Alessandrini, Andrea; Eggenhöffner, Roberto; Vassalli, Massimo; Facci, Paolo
2016-11-01
We have devised a supramolecular edifice involving His-tagged protein A and antibodies to yield surface immobilized, uniformly oriented, IgG-type, antibody layers with Fab fragments exposed off an electrode surface. We demonstrate here that we can affect the conformation of IgGs, likely pushing/pulling electrostatically Fab fragments towards/from the electrode surface. A potential difference between electrode and solution acts on IgGs’ charged aminoacids modulating the accessibility of the specific recognition regions of Fab fragments by antigens in solution. Consequently, antibody-antigen affinity is affected by the sign of the applied potential: a positive potential enables an effective capture of antigens; a negative one pulls the fragments towards the electrode, where steric hindrance caused by neighboring molecules largely hampers the capture of antigens. Different experimental techniques (electrochemical quartz crystal microbalance, electrochemical impedance spectroscopy, fluorescence confocal microscopy and electrochemical atomic force spectroscopy) were used to evaluate binding kinetics, surface coverage, effect of the applied electric field on IgGs, and role of charged residues on the phenomenon described. These findings expand the concept of electrical control of biological reactions and can be used to gate electrically specific recognition reactions with impact in biosensors, bioactuators, smart biodevices, nanomedicine, and fundamental studies related to chemical reaction kinetics.
Nomura, Kouji; Nakaji-Hirabayashi, Tadashi; Gemmei-Ide, Makoto; Kitano, Hiromi; Noguchi, Hidenori; Uosaki, Kohei
2014-09-01
Surfaces of both a cover glass and the flat plane of a semi-cylindrical quartz prism were modified with a mixture of positively and negatively charged silane coupling reagents (3-aminopropyltriethoxysilane (APTES) and 3-(trihydroxysilyl)propylmethylphosphonate (THPMP), respectively). The glass surface modified with a self-assembled monolayer (SAM) prepared at a mixing ratio of APTES:THPMP=4:6 was electrically almost neutral and was resistant to non-specific adsorption of proteins, whereas fibroblasts gradually adhered to an amphoteric (mixed) SAM surface probably due to its stiffness, though the number of adhered cells was relatively small. Sum frequency generation (SFG) spectra indicated that total intensity of the OH stretching region (3000-3600cm(-1)) for the amphoteric SAM-modified quartz immersed in liquid water was smaller than those for the positively and negatively charged SAM-modified quartz prisms and a bare quartz prism in contact with liquid water. These results suggested that water molecules at the interface of water and an amphoteric SAM-modified quartz prism are not strongly oriented in comparison with those at the interface of a lopsidedly charged SAM-modified quartz prism and bare quartz. The importance of charge neutralization for the anti-biofouling properties of solid materials was strongly suggested. Copyright © 2014 Elsevier B.V. All rights reserved.
A stepped leader model for lightning including charge distribution in branched channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Wei; Zhang, Li; Li, Qingmin, E-mail: lqmeee@ncepu.edu.cn
2014-09-14
The stepped leader process in negative cloud-to-ground lightning plays a vital role in lightning protection analysis. As lightning discharge usually presents significant branched or tortuous channels, the charge distribution along the branched channels and the stochastic feature of stepped leader propagation were investigated in this paper. The charge density along the leader channel and the charge in the leader tip for each lightning branch were approximated by introducing branch correlation coefficients. In combination with geometric characteristics of natural lightning discharge, a stochastic stepped leader propagation model was presented based on the fractal theory. By comparing simulation results with the statisticsmore » of natural lightning discharges, it was found that the fractal dimension of lightning trajectory in simulation was in the range of that observed in nature and the calculation results of electric field at ground level were in good agreement with the measurements of a negative flash, which shows the validity of this proposed model. Furthermore, a new equation to estimate the lightning striking distance to flat ground was suggested based on the present model. The striking distance obtained by this new equation is smaller than the value estimated by previous equations, which indicates that the traditional equations may somewhat overestimate the attractive effect of the ground.« less
Electrostatic wire for stabilizing a charged particle beam
Prono, Daniel S.; Caporaso, George J.; Briggs, Richard J.
1985-01-01
In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.
Electrostatic wire stabilizing a charged particle beam
Prono, D.S.; Caporaso, G.J.; Briggs, R.J.
1983-03-21
In combination with a charged particle beam generator and accelerator, apparatus and method are provided for stabilizing a beam of electrically charged particles. A guiding means, disposed within the particle beam, has an electric charge induced upon it by the charged particle beam. Because the sign of the electric charge on the guiding means and the sign of the particle beam are opposite, the particles are attracted toward and cluster around the guiding means to thereby stabilize the particle beam as it travels.
NASA Astrophysics Data System (ADS)
Kallinger, Peter; Szymanski, Wladyslaw W.
2015-04-01
Three bipolar aerosol chargers, an AC-corona (Electrical Ionizer 1090, MSP Corp.), a soft X-ray (Advanced Aerosol Neutralizer 3087, TSI Inc.), and an α-radiation-based 241Am charger (tapcon & analysesysteme), were investigated on their charging performance of airborne nanoparticles. The charging probabilities for negatively and positively charged particles and the particle size conservation were measured in the diameter range of 5-40 nm using sucrose nanoparticles. Chargers were operated under various flow conditions in the range of 0.6-5.0 liters per minute. For particular experimental conditions, some deviations from the chosen theoretical model were found for all chargers. For very small particle sizes, the AC-corona charger showed particle losses at low flow rates and did not reach steady-state charge equilibrium at high flow rates. However, for all chargers, operating conditions were identified where the bipolar charge equilibrium was achieved. Practically, excellent particle size conservation was found for all three chargers.
Numerical simulation of an oxygen-fed wire-to-cylinder negative corona discharge in the glow regime
NASA Astrophysics Data System (ADS)
Yanallah, K.; Pontiga, F.; Castellanos, A.
2011-02-01
Negative glow corona discharge in flowing oxygen has been numerically simulated for a wire-to-cylinder electrode geometry. The corona discharge is modelled using a fluid approximation. The radial and axial distributions of charged and neutral species are obtained by solving the corresponding continuity equations, which include the relevant plasma-chemical kinetics. Continuity equations are coupled with Poisson's equation and the energy conservation equation, since the reaction rate constants may depend on the electric field and temperature. The experimental values of the current-voltage characteristic are used as input data into the numerical calculations. The role played by different reactions and chemical species is analysed, and the effect of electrical and geometrical parameters on ozone generation is investigated. The reliability of the numerical model is verified by the reasonable agreement between the numerical predictions of ozone concentration and the experimental measurements.
Delmore, James E.
1987-01-01
A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.
Synthesis and properties of Li3VO4 - Carbon composite as negative electrode for lithium-ion battery
NASA Astrophysics Data System (ADS)
Narumi, Kengo; Mori, Tomoya; Kumasaka, Rei; Tojo, Tomohiro; Inada, Ryoji; Sakurai, Yoji
2017-07-01
Lithium vanadate Li3VO4 (LVO) is known to be as one of the attractive candidates for negative electrode of lithium-ion battery (LIB) with high safety. Although theoretical capacity of LVO attains to 400 mAh g-1, the actual charge and discharge capacities are far below due to its low electrical and ionic conductivity. In this study, we synthesized carbon-coated LVO (C-LVO) via one-step solid state reaction method and examined its properties as a negative electrode for LIB. From XRD measurements and SEM observation, crystal structure of C-LVO was nearly identical with non-coated one but grain size of former was much smaller than latter with same annealing temperature, suggesting that introduction of carbon source in starting materials effectively helps to suppress LVO grain growth during annealing. TEM observation of C-LVO also shows that amorphous carbon layer with its thickness of several ten nm was formed on the surface of LVO grain. In electrochemical testing, C-LVO shows much higher charge and discharge capacities than non-coated LVO.
Electrical Behavior of Copper Mine Tailings During EKR with Modified Electric Fields.
Rojo, Adrian; Hansen, Henrik K; Monárdez, Omara; Jorquera, Carlos; Santis, Paulina; Inostroza, Paula
2017-03-01
Electro-kinetic remediation (EKR) with sinusoidal electric field obtained simultaneously with DC/AC voltage reduce the polarization of the EKR with DC voltage. The DC voltage value defines the presence of a periodic polarity reversal of the cell and the electrical charge for electro-kinetic transport. In this case, the AC frequency favors the breaking of polarization conditions resulting from the EKR with DC voltage. However, with high frequencies a negative effect occurs where the tailings behave as a filter circuit, discriminating frequencies of an electric signal. The goal of this work is to analyse the electrical behaviour of tailings in EKR experiments. The conditions selected were: DC/AC voltages: 10/15 and 20/25 V (peak values), and AC voltage frequencies 50-2000 Hz. When the AC frequency reaches 2000 Hz, the copper removal tends to zero, indicating that the tailing behaves as a high-pass filter in which the DC voltage was filtered out.
Nagata, Yuki; Lennartz, Christian
2008-07-21
The atomistic simulation of charge transfer process for an amorphous Alq(3) system is reported. By employing electrostatic potential charges, we calculate site energies and find that the standard deviation of site energy distribution is about twice as large as predicted in previous research. The charge mobility is calculated via the Miller-Abrahams formalism and the master equation approach. We find that the wide site energy distribution governs Poole-Frenkel-type behavior of charge mobility against electric field, while the spatially correlated site energy is not a dominant mechanism of Poole-Frenkel behavior in the range from 2x10(5) to 1.4x10(6) V/cm. Also we reveal that randomly meshed connectivities are, in principle, required to account for the Poole-Frenkel mechanism. Charge carriers find a zigzag pathway at low electric field, while they find a straight pathway along electric field when a high electric field is applied. In the space-charge-limited current scheme, the charge-carrier density increases with electric field strength so that the nonlinear behavior of charge mobility is enhanced through the strong charge-carrier density dependence of charge mobility.
Alternative Fuels Data Center: Electric Vehicles Charge up at State Parks
with free electric vehicle charging. For information about this project, contact State of West Virginia Vehicle Charging Aug. 4, 2017 Photo of a car Johnson Space Center Explores Alternative Fuel Vehicles May 19, 2017 Photo of a car. Electric Vehicle Charging Network Expands at National Parks May 11, 2017
NASA Astrophysics Data System (ADS)
Cecily mary glory, D.; Sambathkumar, K.; Madivanane, R.; Rajkamal, N.; Venkatachalapathy, M.
2017-12-01
Systematic interactions of hydrogenated & fluorinated tribromobenzene on Ag and Cu surfaces. First bromine dehalogenation takes place right upon adsorption due to catalytic properties of Ag. Different adsorption geometries of monomers and dimmers of 1,3,5-tribromo-2,4,6-trifluoro-benzene(TBFB) and 1,3,5-tribromobenzene(TBB). DFT calculations of the Csbnd Br binding energy dependent on the amount of remaining bromine atoms for both TBFB and TBB were performed. The experiments were performed at low temperature of 80 K.STM measurements where performed for of TBFB and TBB. STM show adsorbed molecules in a loose arrangement of molecules. NBO analysis the stability of the molecule arising within hyper-conjugative interactions. The HOMO and LUMO energies and electronic charge transfer (ECT) confirms that electronic transition. High field indicates that this molecule exhibit considerable electrical conductivity in atomic charges. The ESP map is found to be positive within the molecule. The negative charges have a tendency to drift from left to right. The computed thermodynamic parameters like heat capacities (Cºp,m), entropies (Sºm) and enthalpies changes (Hºm) are used for various electrical field.
Study of electric field distorted by space charges under positive lightning impulse voltage
NASA Astrophysics Data System (ADS)
Wang, Zezhong; Geng, Yinan
2018-03-01
Actually, many insulation problems are related to electric fields. And measuring electric fields is an important research topic of high-voltage engineering. In particular, the electric field distortion caused by space charge is the basis of streamer theory, and thus quantitatively measuring the Poisson electric field caused by space charge is significant to researching the mechanism of air gap discharge. In this paper, we used our photoelectric integrated sensor to measure the electric field distribution in a 1-m rod-plane gap under positive lightning impulse voltage. To verify the reliability of this quantitative measurement, we compared the measured results with calculated results from a numerical simulation. The electric-field time domain waveforms on the axis of the 1-m rod-plane out of the space charge zone were measured with various electrodes. The Poisson electric fields generated by space charge were separated from the Laplace electric field generated by applied voltages, and the amplitudes and variations were measured for various applied voltages and at various locations. This work also supplies the feasible basis for directly measuring strong electric field under high voltage.
Electrostatic Levitation of Lunar Dust: Preliminary Experimental Observations
NASA Astrophysics Data System (ADS)
Marshall, J.; Davis, S.; Laub, J.
2007-12-01
A lunar dust laboratory has been established in the Space Science Division at NASA Ames to evaluate fundamental electrostatic processes at the Moon's surface. Photoelectric charging, triboelectric charging, and interactions of these processes are investigated for dust-size materials. An electric field simulating the solar- plasma induced E-field of the lunar surface has been created with parallel charged capacitance plates. The field is linear, but field-shaping to create lunar-like exponentially decaying E-fields will be conducted in the near future. Preliminary tests of dust tribocharging have been conducted using a vibrating base plate within the electric field and have produced electrostatic levitation of 1.6 micron diameter silicate particles. We were able to achieve levitation in a modest vacuum environment (1.7 Torr) with the particles charged to approximately 15 percent of the Gaussian limit (defined as 2.64 E-5 C/m-2 for atmospheric air) at a threshold field strength of 2250 V/m. This charging corresponds to only a few hundred (negative) charges per particle; the field strength drops to 375 V/m when gravitationally scaled for the Moon, while dust tribocharging to greater than 100 percent of the Gaussian limit would be possible in the ultra high vacuum environment on the Moon and result in even lower threshold field strengths. We conclude therefore, that anthropogenic disturbance of lunar dust (as a result of NASA's proposed base construction, mining, vehicle motion, etc) could potentially pollute the lunar environment with levitated dust and severely impair scientific experiments requiring a pristine lunar exosphere.
Smart electric vehicle (EV) charging and grid integration apparatus and methods
Gadh, Rajit; Mal, Siddhartha; Prabhu, Shivanand; Chu, Chi-Cheng; Sheikh, Omar; Chung, Ching-Yen; He, Lei; Xiao, Bingjun; Shi, Yiyu
2015-05-05
An expert system manages a power grid wherein charging stations are connected to the power grid, with electric vehicles connected to the charging stations, whereby the expert system selectively backfills power from connected electric vehicles to the power grid through a grid tie inverter (if present) within the charging stations. In more traditional usage, the expert system allows for electric vehicle charging, coupled with user preferences as to charge time, charge cost, and charging station capabilities, without exceeding the power grid capacity at any point. A robust yet accurate state of charge (SOC) calculation method is also presented, whereby initially an open circuit voltage (OCV) based on sampled battery voltages and currents is calculated, and then the SOC is obtained based on a mapping between a previously measured reference OCV (ROCV) and SOC. The OCV-SOC calculation method accommodates likely any battery type with any current profile.
3. LOOKING WEST INSIDE ELECTRIC FURNACE BUILDING ON CHARGING FLOOR. ...
3. LOOKING WEST INSIDE ELECTRIC FURNACE BUILDING ON CHARGING FLOOR. VIEW OF 7 1/2 TON CAPACITY ALLIANCE SIDE DOOR CHARGING MACHINE. - U.S. Steel Duquesne Works, Electric Furnace Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA
A general theory for ball lightning structure and light output
NASA Astrophysics Data System (ADS)
Morrow, R.
2018-03-01
A general theory for free-floating ball lightning is presented which unifies the phantom plasma ball theory involving the production of very little light, with theories for ball lightning involving light output produced by burning particles from the soil. The mechanism for the formation of plasma balls is shown to be quite general, producing very similar plasma balls independent of initial ion densities over four orders of magnitude. All that is required is an excess of positive ions in the initial ball of ions. The central plasma density after 1 s is shown to be the reciprocal of the ion neutralization coefficient for all cases, both analytically and computationally. Further, the plasma region has zero electric field in all cases. Surrounding the plasma ball is a sphere of positive ions moving away from the centre via their own space-charge field; this space-charge field, which is the same in all cases near the plasma ball, drives negative ions and negative particles towards the plasma centre. The connection with burning particle theories is the proposition that the burning particles are highly-charged which is very likely after a lightning strike. Burning negatively charged particles would be driven into the plasma ball region and trapped while any positively charged particles would be driven away. The plasma ball structure is shown to last more than 10 s and the ‘burnout time’ for a typical coal particle (as an example) has been measured at 5-10 s this is comparable with the lifetimes observed for ball lightning. The light output from a few hundred particles is estimated to be ~1 W, a typical output for ball lightning. Finally, suggestions are made for the generation of ball lightning in the laboratory.
Development of Functional Thin Polymer Films Using a Layer-by-Layer Deposition Technique.
Yoshida, Kentaro
2017-01-01
Functional thin films containing insulin were prepared using layer-by-layer (LbL) deposition of insulin and negatively- or positively-charged polymers on the surface of solid substrates. LbL films composed of insulin and negatively-charged polymers such as poly(acrylic acid) (PAA), poly(vinylsulfate) (PVS), and dextran sulfate (DS) were prepared through electrostatic affinity between the materials. The insulin/PAA, insulin/PVS, and insulin/DS films were stable in acidic solutions, whereas they decomposed under physiological conditions as a result of a change in the net electric charge of insulin from positive to negative. Interestingly, the insulin-containing LbL films were stable even in the presence of a digestive-enzyme (pepcin) at pH 1.4 (stomach pH). In contrast, LbL films consisting of insulin and positively-charged polymers such as poly(allylamine hydrochloride) (PAH) decomposed in acidic solutions due to the positive charges of insulin generated in acidic media. The insulin-containing LbL films can be prepared not only on the surface of flat substrates, such as quartz slides, but also on the surface of microparticles, such as poly(lactic acid) (PLA) microbeads. Thus, insulin-containing LbL film-coated PLA microbeads can be handled as a powder. In addition, insulin-containing microcapsules were prepared by coating LbL films on the surface of insulin-doped calcium carbonate (CaCO 3 ) microparticles, followed by dissolution of the CaCO 3 core. The release of insulin from the microcapsules was accelerated at pH 7.4, whereas it was suppressed in acidic solutions. These results suggest the potential use of insulin-containing microcapsules in the development of oral formulations of insulin.
High-detail snapshots of rare gigantic jet lightning
NASA Astrophysics Data System (ADS)
Schultz, Colin
2011-08-01
In the ionosphere, more than 80 kilometers above Earth's surface, incoming radiation reacts with the thin air to produce highly charged ions, inducing an electric potential between the ionosphere and the surface. This charge difference is dissipated by a slow leak from the ionosphere during calm weather and reinvigorated by a charge built up near the surface during a thunderstorm. In 2001, however, researchers discovered gigantic jets (GJs), powerful lightning that arcs from tropospheric clouds up to the ionosphere, suggesting there may be an alternate path by which charge is redistributed. GJs are transient species, and little is known about how much charge they can carry, how they form, or how common they are. In a step toward answering these questions, Lu et al. report on two GJs that occurred near very high frequency (VHF) lightning detection systems, which track the development of lightning in three spatial dimensions, giving an indication of the generation mechanism. The researchers also measured the charge transfer in the two GJs through remote sensing of magnetic fields. They found that both jets originated from the development of otherwise normal intracloud lightning. The dissipation of the cloud's positively charged upper layer allowed the negative lightning channel to break through and travel up out of the top of the cloud to the ionosphere. The first jet, which occurred off the coast of Florida, leapt up to 80 kilometers, depositing 110 coulombs of negative charge in 370 milliseconds. The second jet, observed in Oklahoma, traveled up to 90 kilometers, raising only 10-20 coulombs in 300 milliseconds. Each new observation of gigantic jets such as these can provide valuable information toward understanding this novel atmospheric behavior. (Geophysical Research Letters, doi:10.1029/2011GL047662, 2011)
Manipulation of nano-entities in suspension by electric fields
NASA Astrophysics Data System (ADS)
Fan, Donglei
Nanoscale entities, including nanospheres, nanodisks, nanorings, nanowires and nanotubes are potential building blocks for nanoscale devices. Among them, nanowires is an important type of nanoparticles, due to the potential application in microelectronics and bio-diagnosis. Manipulation of nanowires in suspension has been a formidable problem. As described in this thesis, using AC electric fields applied to strategically designed microelectrodes, nanowires in suspension can be driven to align, to chain, to accelerate in directions parallel and perpendicular to its orientation, to concentrate onto designated places, and to disperse in a controlled manner with high efficiency despite an extremely low Reynolds number at the level of 10-5. Randomly oriented nanowires in suspension can be rapidly assembled into extended nonlinear structures within seconds. We show that both the electric field and its gradient play the essential roles of aligning and transporting the nanowires into scaffolds according to the electric field distributions inherent to the geometry of the microelectrodes. The assembling efficiency depends strongly on the frequency of the applied AC voltages and varies as square of the voltage. Furthermore, nanowires have been rotated by AC electric fields applied to strategically designed electrodes. The rotation of the nanowires can be instantly switched on or off with precisely controlled rotation speed (to at least 25000 rpm), definite chirality, and total angle of rotation. This new method has been used to controllably rotate magnetic and non-magnetic nanowires as well as multi-wall carbon nanotubes. We have also produced a micromotor using a rotating nanowire that can drive particles into circular motion. This has application to microfluidic devices, micro-stirrers, and micro electromechanical systems (MEMS). To move and place nanowires onto designated locations with high precision, electrophoretic force has been combined with dielectrophoretic force to transport charged Au nanowires with length longer than 4 mum. The surface of Au nanowires has been chemical functionalized by either positive or negative charges. High frequency AC electric field has been applied to align and fix the orientation of the charged nanowires, though not to induce any motions, whereas a small DC voltage causes linear motion. The velocity of nanowires increases linearly with the DC electric field. The moving direction can be either parallel or perpendicular to the orientation of nanowires. Nanowires modified with different charges behave differently due to the electroosmosis flow induced by the DC electric field on the negatively charged quartz substrate. The zeta potential of quartz surface and the ratio of Stokes coefficients for longitudinal nano-entities suspended in a low Reynolds number regime (< 10-5) has been determined. Due to the small size of the nanowires, the nanowires suspended in liquids such as DI water are in extremely low Reynolds number regime (< 10-5). Manipulation due to DEP and EP forces are versatile and precise. Nanowires have been set into motion with prescribed tracks, such as squares and zigzags. The manipulation is also so precise that oppositely charged nanowires with radius of 150 nm have been moved to contact and connected end to end. A nanowire clipper have been assembled by this technique and set into oscillation. This method is not only applicable to nanowires, it has been successfully applied to multiwall carbon nanotubes as well. To demonstrate the complete control and flexibility of manipulating nanoparticles by E field, we have programmed nanowires to dance with music by Mozart with regard to clearly demonstrating the versatility of manipulating small entities of metallic, semiconductor, and biological materials. This work has been conducted under the guidance of the author's thesis advisors, Prof. Robert C. Cammarata, chair of the Department of Materials Science and Engineering of the Johns Hopkins University, and Prof. Chia-Ling Chien in the Department of Physics and Astronomy, and the director of Materials Research Science and Engineering Center of the Johns Hopkins University.
NASA Astrophysics Data System (ADS)
Thiemann, Edward M. B.
Lightning detection and geolocation networks have found widespread use by the utility, air traffic control and forestry industries as a means of locating strikes and predicting imminent recurrence. Accurate lightning geolocation requires detecting VLF radio emissions at multiple sites using a distributed sensor network with typical baselines exceeding 150 km, along with precision time of arrival estimation to triangulate the origin of a strike. The trend has been towards increasing network accuracy without increasing sensor density by incorporating precision GPS synchronized clocks and faster front-end signal processing. Because lightning radio waveforms evolve as they propagate over a finitely conducting earth, and that measurements for a given strike may have disparate propagation path lengths, accurate models are required to determine waveform fiducials for precise strike location. The transition between the leader phase and return stroke phase may offer such a fiducial and warrants quantitative modeling to improve strike location accuracy. The VLF spectrum of the ubiquitous downward negative lightning strike is able to be modeled by the transfer of several Coulombs of negative charge from cloud to ground in a two-step process. The lightning stepped leader ionizes a plasma channel downward from the cloud at a velocity of approximately 0.05c, leaving a column of charge in its path. Upon connection with a streamer, the subsequent return stroke initiates at or near ground level and travels upward at an average but variable velocity of 0.3c. The return stroke neutralizes any negative charge along its path. Subsequent dart leader and return strokes often travel smoothly down the heated channel left by a preceding stroke, lacking the halting motion of the preceding initial stepped leader and initial return stroke. Existing lightning models often neglect the leader current and rely on approximations when solving for the return stroke. In this thesis, I present an analytic solution to Maxwell's Equations for the lightning leader followed by a novel return stroke model. I model the leader as a downward propagating boxcar function of uniform charge density and constant velocity, and the subsequent return stroke is modeled as an upward propagating boxcar with a time dependent velocity. Charge conservation is applied to ensure self-consistency of the driving current and charge sources, and physical observations are used to support model development. The resulting transient electric and magnetic fields are presented at various distances and delay times and compared with measured waveforms and previously published models.
ERIC Educational Resources Information Center
Kilmer, Donald C.
This guide, the second (part 2) in a set of four guides, is designed for the student interested in a vocation in electrical work, and includes two units: Unit IV--Electrical Theory, covering thirteen lessons (matter, the atom, electrical charges in the atom, rules of electric charges, electricity, atoms in an electrical conductor, electrical…
Charged particle mobility refrigerant analyzer
Allman, S.L.; Chunghsuan Chen; Chen, F.C.
1993-02-02
A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.
Charged particle mobility refrigerant analyzer
Allman, Steve L.; Chen, Chung-Hsuan; Chen, Fang C.
1993-01-01
A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.
NASA Astrophysics Data System (ADS)
Procházka, Václav; Cifra, Michal; Kulha, Pavel; Ižák, Tibor; Rezek, Bohuslav; Kromka, Alexander
2017-02-01
Diamond thin films provide unique features as substrates for cell cultures and as bio-electronic sensors. Here we employ solution-gated field effect transistors (SGFET) based on nanocrystalline diamond thin films with H-terminated surface which exhibits the sub-surface p-type conductive channel. We study an influence of yeast cells (Saccharomyces cerevisiae) on electrical characteristics of the diamond SGFETs. Two different cell culture solutions (sucrose and yeast peptone dextrose-YPD) are used, with and without the cells. We have found that transfer characteristics of the SGFETs exhibit a negative shift of the gate voltage by -26 mV and -42 mV for sucrose and YPD with cells in comparison to blank solutions without the cells. This effect is attributed to a local pH change in close vicinity of the H-terminated diamond surface due to metabolic processes of the yeast cells. The pH sensitivity of the diamond-based SGFETs, the role of cell and protein adhesion on the gate surface and the role of negative surface charge of yeast cells on the SGFETs electrical characteristics are discussed as well.
Negative differential photoconductance in gold nanoparticle arrays in the Coulomb blockade regime.
Mangold, Markus A; Calame, Michel; Mayor, Marcel; Holleitner, Alexander W
2012-05-22
We investigate the photoconductance of gold nanoparticle arrays in the Coulomb blockade regime. Two-dimensional, hexagonal crystals of nanoparticles are produced by self-assembly. The nanoparticles are weakly coupled to their neighbors by a tunneling conductance. At low temperatures, the single electron charging energy of the nanoparticles dominates the conductance properties of the array. The Coulomb blockade of the nanoparticles can be lifted by optical excitation with a laser beam. The optical excitation leads to a localized heating of the arrays, which in turn gives rise to a local change in conductance and a redistribution of the overall electrical potential in the arrays. We introduce a dual-beam optical excitation technique to probe the distribution of the electrical potential in the nanoparticle array. A negative differential photoconductance is the direct consequence of the redistribution of the electrical potential upon lifting of the Coulomb blockade. On the basis of our model, we calculate the optically induced current from the dark current-voltage characteristics of the nanoparticle array. The calculations closely reproduce the experimental observations.
NASA Technical Reports Server (NTRS)
Divine, N.
1975-01-01
The design of space vehicles for operation in interplanetary space is given, based on descriptions of solar wind, solar particle events, and galactic cosmic rays. A state-of-the-art review is presented and design criteria are developed from experiment findings aboard interplanetary and high-altitude earth-orbiting spacecraft. Solar cells were found to be particularly sensitive. Solar protons may also impact the reliability of electric propulsion systems and spacecraft surfaces, as well as causing interference, detector saturation, and spurious signals. Galactic cosmic-ray impact can lead to similar electronic failure and interference and may register in photographic films and other emulsions. It was concluded that solar wind electron measurements might result from differential charging when shadowed portions of the spacecraft acquired a negative charge from electron impact.
Optimization of BEV Charging Strategy
NASA Astrophysics Data System (ADS)
Ji, Wei
This paper presents different approaches to optimize fast charging and workplace charging strategy of battery electric vehicle (BEV) drivers. For the fast charging analysis, a rule-based model was built to simulate BEV charging behavior. Monte Carlo analysis was performed to explore to the potential range of congestion at fast charging stations which could be more than four hours at the most crowded stations. Genetic algorithm was performed to explore the theoretical minimum waiting time at fast charging stations, and it can decrease the waiting time at the most crowded stations to be shorter than one hour. A deterministic approach was proposed as a feasible suggestion that people should consider to take fast charging when the state of charge is approaching 40 miles. This suggestion is hoped to help to minimize potential congestion at fast charging stations. For the workplace charging analysis, scenario analysis was performed to simulate temporal distribution of charging demand under different workplace charging strategies. It was found that if BEV drivers charge as much as possible and as late as possible at workplace, it could increase the utility of solar-generated electricity while relieve grid stress of extra intensive electricity demand at night caused by charging electric vehicles at home.
Rates of Charged Clocks in an Electric Field.
NASA Astrophysics Data System (ADS)
Ozer, Murat
2008-04-01
The gravitational arguments leading to time dilation, redshift, and spacetime curvature are adapted to electric fields. The energy levels of two identical positively charged atoms at different potentials in a static electric field are shown to undergo blueshift. Secondly, the period of a charged simple pendulum (clock) in the electric field of a metallic sphere is shown to vary with the electric potential. The spacetime diagram for the world lines of two photons emitted and absorbed by two pendulums at different potentials at different times and the world lines of the pendulums, as in Schild's argument, is shown to be not a parallelogram in Minkowski spacetime, concluding that spacetime must be curved. A Pound-Rebka-Snider experiment in an electric field is proposed to confirm that photons undergo a frequency shift in an electric field and hence the spacetime manifold is curved. Next, Torretti's gravitational argument that spacetime around a mass distribution concentrated at a point is curved is extended to electric charge distributions to conclude that the nonuniform electric fields of such charge distributions too curve spacetime. Finally, the local equivalence of a uniform electric field times the charge to mass ratio to a uniform acceleration is shown through spacetime transformations and the electrical redshift is obtained in a uniformly accelerated frame by using this principle. These arguments lead to the conclusion that special relativistic electromagnetism is an approximation to a general relativistic multi-metric theory.
Positive Voltage Hazard to EMU Crewman from Currents through Plasma
NASA Astrophysics Data System (ADS)
Kramer, Leonard; Hamilton, Doug; Mikatarian, Ronald; Thomas, Joseph; Koontz, Steven
2010-09-01
The International Space Station(ISS) in its transit through the ionosphere experiences a variable electrical potential between its bonded structure and the overlying ionospheric plasma. The 160 volt solar arrays on ISS are grounded negative and drive structure to negative floating potential(FP) relative to plasma. This potential is a result of the asymmetric collection properties of currents from ions and electrons moderated by geomagnetic; so called v Å~ B induction distributing an additional 20 volts both positive and negative across ISS’s main structural truss element. Since the space suit or extravehicular mobility unit(EMU) does not protect the crewperson from electrical shock, during extra vehicular activity(EVA) the person is exposed to a hazard from the potential when any of the several metallic suit penetrations come in direct contact with ISS structure. The moisture soaked garment worn by the crewperson and the large interior metal contact areas facilitate currents through the crewperson’s body. There are two hazards; Negative and Positive FP. The Negative hazard is the better known risk created by a shock hazard from arcing of anodized material on the EMU. Negative hazard has been controlled by plasma contactor units(PCU) containing a reserve of Xenon gas which is expelled from ISS. The PCU provide a ground path for the negative charge from the structure to flow to exterior plasma bringing ISS FP closer to zero. The understanding has now emerged that the operation of PCUs to protect the crewmen from negative voltage exposes him to low to moderate positive voltage(≤15V). Positive voltage is also a hazard as it focuses electrons onto exposed metal EMU penetrations completing a circuit from plasma through interior contact with the moist crewman’s body and on to ISS ground through any of several secondary isolated metal penetrations. The resulting direct current from positive voltage exposure is now identified as an electrical shock hazard. This paper describes the model of the EMU with a human body in the circuit that has been used by NASA to evaluate the low positive voltage hazard. The model utilizes the electron collection characterization from on orbit Langmuir probe data as representative of electron collection to a positive charged surface with a wide range of on orbit plasma temperature and density conditions. The data has been unified according to nonlinear theoretical temperature and density variation of the electron saturated probe current collection theory and used as a model for the electron collection at EMU surfaces. Vulnerable paths through the EMU connecting through the crewman’s body have been identified along with electrical impedance of the exposed body parts. The body impedance information is merged with the electron collection characteristics in circuit simulation software known as SPICE. The assessment shows that currents can be on the order of 20 mA for a 15 V exposure and of order 4 mA at 3V. These currents formally violate NASA protocol for electric current exposures. However the human factors associated with subjective consequences of noxious stimuli from low voltage exposure during the stressful conditions of EVA are an area of active inquiry.
Kim, Si Joon; Jung, Joohye; Lee, Keun Woo; Yoon, Doo Hyun; Jung, Tae Soo; Dugasani, Sreekantha Reddy; Park, Sung Ha; Kim, Hyun Jae
2013-11-13
A high-sensitivity, label-free method for detecting deoxyribonucleic acid (DNA) using solution-processed oxide thin-film transistors (TFTs) was developed. Double-crossover (DX) DNA nanostructures with different concentrations of divalent Cu ion (Cu(2+)) were immobilized on an In-Ga-Zn-O (IGZO) back-channel surface, which changed the electrical performance of the IGZO TFTs. The detection mechanism of the IGZO TFT-based DNA biosensor is attributed to electron trapping and electrostatic interactions caused by negatively charged phosphate groups on the DNA backbone. Furthermore, Cu(2+) in DX DNA nanostructures generates a current path when a gate bias is applied. The direct effect on the electrical response implies that solution-processed IGZO TFTs could be used to realize low-cost and high-sensitivity DNA biosensors.
Lux in obscuro II: photon orbits of extremal AdS black holes revisited
NASA Astrophysics Data System (ADS)
Tang, Zi-Yu; Ong, Yen Chin; Wang, Bin
2017-12-01
A large class of spherically symmetric static extremal black hole spacetimes possesses a stable null photon sphere on their horizons. For the extremal Kerr-Newman family, the photon sphere only really coincides with the horizon in the sense clarified by Doran. The condition under which a photon orbit is stable on an asymptotically flat extremal Kerr-Newman black hole horizon has recently been clarified; it is found that a sufficiently large angular momentum destabilizes the photon orbit, whereas an electrical charge tends to stabilize it. We investigated the effect of a negative cosmological constant on this observation, and found the same behavior in the case of extremal asymptotically Kerr-Newman-AdS black holes in (3+1) -dimensions. In (2+1) -dimensions, in the presence of an electrical charge, the angular momentum never becomes large enough to destabilize the photon orbit. We comment on the instabilities of black hole spacetimes with a stable photon orbit.
The efficacy of pulsed ultrahigh current for the stunning of cattle prior to slaughter.
Robins, A; Pleiter, H; Latter, M; Phillips, C J C
2014-03-01
We present results from the development of a new system of reversible electrical stunning of cattle. A single-pulse ultra-high current (SPUC) was generated from a capacitance discharge current spike of at least 5000 V at 70 A, for approximately 50 ms. Ninety-seven cattle were stunned in three experimental protocols. With improvements made to the design of the stun box and charge delivered, 38 cattle were either stunned and immediately jugulated or monitored for signs of reappearance of brain stem reflexes at which point a concussion stun was administered. This use of the SPUC charge, provided as a biphasic-pulse waveform, resulted in a high level of stunning efficacy, with unconsciousness lasting for up to 4 min. These results were supported by EEG data taken from a subsequent cohort of stunned cattle. The SPUC stun also apparently eliminated post-stun grand mal seizures that can occur following short-acting conventional electrical stun, with its associated negative consequences on operator safety and meat quality. © 2013.
Forces on a current-carrying wire in a magnetic field: the macro-micro connection
NASA Astrophysics Data System (ADS)
Karam, R.; Kneubil, F. B.; Robilotta, M. R.
2017-09-01
The classic problem of determining the force on a current-carrying wire in a magnetic field is critically analysed. A common explanation found in many introductory textbooks is to represent the force on the wire as the sum of the forces on charge carriers. In this approach neither the nature of the forces involved nor their application points are fully discussed. In this paper we provide an alternative microscopic explanation that is suitable for introductory electromagnetism courses at university level. By considering the wire as a superposition of a positive and a negative cylindrical charge distributions, we show that the electrons are subject to both magnetic and electric forces, whereas the ionic lattice of the metal is dragged by an electric force. Furthermore, an analysis of the orders of magnitude involved in the problem gives counterintuitive results with valuable educational potential. We argue that this approach allows one to discuss different aspects of the physical knowledge, which are relevant in physics education.
NASA Astrophysics Data System (ADS)
Kwon, Dae Woong; Kim, Jang Hyun; Chang, Ji Soo; Kim, Sang Wan; Sun, Min-Chul; Kim, Garam; Kim, Hyun Woo; Park, Jae Chul; Song, Ihun; Kim, Chang Jung; Jung, U. In; Park, Byung-Gook
2010-11-01
A comprehensive study is done regarding stabilities under simultaneous stress of light and dc-bias in amorphous hafnium-indium-zinc-oxide thin film transistors. The positive threshold voltage (Vth) shift is observed after negative gate bias and light stress, and it is completely different from widely accepted phenomenon which explains that negative-bias stress results in Vth shift in the left direction by bias-induced hole-trapping. Gate current measurement is performed to explain the unusual positive Vth shift under simultaneous application of light and negative gate bias. As a result, it is clearly found that the positive Vth shift is derived from electron injection from gate electrode to gate insulator.
Hypervelocity gun. [using both electric and chemical energy for projectile propulsion
NASA Technical Reports Server (NTRS)
Ford, F. C.; Biehl, A. J. (Inventor)
1965-01-01
A velocity amplifier system which uses both electric and chemical energy for projectile propulsion is provided in a compact hypervelocity gun suitable for laboratory use. A relatively heavy layer of a tamping material such as concrete encloses a loop of an electrically conductive material. An explosive charge at least partially surrounding the loop is adapted to collapse the loop upon detonation of the charge. A source of electricity charges the loop through two leads, and an electric switch which is activated by the charge explosive charge, disconnects the leads from the source of electricity and short circuits them. An opening in the tamping material extends to the loop and forms a barrel. The loop, necked down in the opening, forms the sabot on which the projectile is located. When the loop is electrically charged and the explosive detonated, the loop is short circuited and collapsed thus building up a magnetic field which acts as a sabot catcher. The sabot is detached from the loop and the sabot and projectile are accelerated to hypervelocity.
NASA Astrophysics Data System (ADS)
Sohbatzadeh, F.; Soltani, H.
2018-04-01
The results of time-dependent one-dimensional modelling of a dielectric barrier discharge (DBD) in a nitrogen-oxygen-water vapor mixture at atmospheric pressure are presented. The voltage-current characteristics curves and the production of active species are studied. The discharge is driven by a sinusoidal alternating high voltage-power supply at 30 kV with frequency of 27 kHz. The electrodes and the dielectric are assumed to be copper and quartz, respectively. The current discharge consists of an electrical breakdown that occurs in each half-period. A detailed description of the electron attachment and detachment processes, surface charge accumulation, charged species recombination, conversion of negative and positive ions, ion production and losses, excitations and dissociations of molecules are taken into account. Time-dependent one-dimensional electron density, electric field, electric potential, electron temperature, densities of reactive oxygen species (ROS) and reactive nitrogen species (RNS) such as: O, O-, O+, {O}2^{ - } , {O}2^{ + } , O3, {N}, {N}2^{ + } , N2s and {N}2^{ - } are simulated versus time across the gas gap. The results of this work could be used in plasma-based pollutant degradation devices.
Characterization of an Autonomous Non-Volatile Ferroelectric Memory Latch
NASA Technical Reports Server (NTRS)
John, Caroline S.; MacLeod, Todd C.; Evans, Joe; Ho, Fat D.
2011-01-01
We present the electrical characterization of an autonomous non-volatile ferroelectric memory latch using the principle that when an electric field is applied to a ferroelectriccapacitor,the positive and negative remnant polarization charge states of the capacitor are denoted as either data 0 or data 1. The properties of the ferroelectric material to store an electric polarization in the absence of an electric field make the device non-volatile. Further the memory latch is autonomous as it operates with the ground, power and output node connections, without any externally clocked control line. The unique quality of this latch circuit is that it can be written when powered off. The advantages of this latch over flash memories are: a) It offers unlimited reads/writes b) works on symmetrical read/write cycles. c) The latch is asynchronous. The circuit was initially developed by Radiant Technologies Inc., Albuquerque, New Mexico.
Space Charge Modulated Electrical Breakdown
Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George
2016-01-01
Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20th century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577
Electro-osmotic flow of semidilute polyelectrolyte solutions.
Uematsu, Yuki; Araki, Takeaki
2013-09-07
We investigate electro-osmosis in aqueous solutions of polyelectrolytes using mean-field equations. A solution of positively charged polyelectrolytes is confined between two negatively charged planar surfaces, and an electric field is applied parallel to the surfaces. When electrostatic attraction between the polymer and the surface is strong, the polymers adhere to the surface, forming a highly viscous adsorption layer that greatly suppresses the electro-osmosis. Conversely, electro-osmosis is enhanced by depleting the polymers from the surfaces. We also found that the electro-osmotic flow is invertible when the electrostatic potential decays to its bulk value with the opposite sign. These behaviors are well explained by a simple mathematical form of the electro-osmotic coefficient.
Large space system: Charged particle environment interaction technology
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.; Grier, N. T.
1979-01-01
Large, high voltage space power systems are proposed for future space missions. These systems must operate in the charged-particle environment of space and interactions between this environment and the high voltage surfaces are possible. Ground simulation testing indicated that dielectric surfaces that usually surround biased conductors can influence these interactions. For positive voltages greater than 100 volts, it has been found that the dielectrics contribute to the current collection area. For negative voltages greater than-500 volts, the data indicates that the dielectrics contribute to discharges. A large, high-voltage power system operating in geosynchronous orbit was analyzed. Results of this analysis indicate that very strong electric fields exist in these power systems.
A fieldmill for measuring atmospheric electricity
NASA Astrophysics Data System (ADS)
Thompson, Frank
2018-03-01
It is a well known fact that the Earth carries a net negative charge that produces a downward electrostatic field. The present experiment shows how this field can be measured with a Field Mill which has been constructed from components readily available in the Laboratory. In fine weather conditions a value of 120 (±10) V m-1 was obtained which agrees with data in the literature. However, when a thunder storm was approaching preliminary measurements showed that the field varied between +400 V m-1 and -1000 V m-1 thus indicating complex charge states of the approaching clouds. Suggestions are made for improving the sensitivity of the apparatus so that experiments can be carried out for other weather conditions.
Sahito, Iftikhar Ali; Sun, Kyung Chul; Arbab, Alvira Ayoub; Qadir, Muhammad Bilal; Jeong, Sung Hoon
2015-10-05
Electroconductive textiles have attended tremendous focus recently and researchers are making efforts to increase conductivity of e-textiles, in order to increase the use of such flexible and low cost textile materials. In this study, surface conductivity and photo catalytic activity of standard cotton fabric (SCF) was enhanced by modifying its surface charge, from negative to positive, using Bovine Serum Albumin (BSA) as a cationic agent, to convert it into cationised cotton fabric (CCF). Then, both types of fabrics were dip coated with a simple dip and dry technique for the adsorption of negatively charged graphene oxide (GO) sheets onto its surface. This resulted in 67.74% higher loading amount of GO on the CCF making self-assembly. Finally, this coating was chemically converted by vapor reduction using hydrazine hydrate to reduced graphene oxide (rGO) for restoration of a high electrical conductivity at the fabric surface. Our results revealed that with such high loading of GO, the surface resistance of CCF was only 40Ω/sq as compared to 510Ω/sq of the SCF and a 66% higher photo catalytic activity was also achieved through cationization for improved GO coating. Graphene coated SCF and CCF were characterized using FE-SEM, FTIR, Raman, UV-vis, WAXD, EDX and XPS spectroscopy to ascertain successful reduction of GO to rGO. The effect of BSA treatment on adsorption of cotton fabric was studied using drop shape analyzer to measure contact angle and for thermal and mechanical resistance, the fabric was tested for TGA and tensile strength, respectively. rGO coated fabric also showed slightly improved thermal stability yet a minor loss of strength was observed. The high flexibility, photocatalytic activity and excellent conductivity of this fabric suggests that it can be used as an electrode material for various applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Protsenko, Dimitry E.; Lim, Amanda; Wu, Edward C.; Manuel, Cyrus; Wong, Brian J. F.
2011-03-01
Electromechanical reshaping (EMR) of cartilage has been suggested as an alternative to the classical surgical techniques of modifying the shape of facial cartilages. The method is based on exposure of mechanically deformed cartilaginous tissue to a low level electric field. Electro-chemical reactions within the tissue lead to reduction of internal stress, and establishment of a new equilibrium shape. The same reactions offset the electric charge balance between collagen and proteoglycan matrix and interstitial fluid responsible for maintenance of cartilage mechanical properties. The objective of this study was to investigate correlation between the electric charge transferred during EMR and equilibrium elastic modulus. We used a finite element model based on the triphasic theory of cartilage mechanical properties to study how electric charges transferred in the electro-chemical reactions in cartilage can change its mechanical responses to step displacements in unconfined compression. The concentrations of the ions, the strain field and the fluid and ion velocities within the specimen subject to an applied mechanical deformation were estimated and apparent elastic modulus (the ratio of the equilibrium axial stress to the axial strain) was calculated as a function of transferred charge. The results from numerical calculations showed that the apparent elastic modulus decreases with increase in electric charge transfer. To compare numerical model with experimental observation we measured elastic modulus of cartilage as a function of electric charge transferred in electric circuit during EMR. Good correlation between experimental and theoretical data suggests that electric charge disbalance is responsible for alteration of cartilage mechanical properties.
Impact of Electrostatics on Processing and Product Performance of Pharmaceutical Solids.
Desai, Parind Mahendrakumar; Tan, Bernice Mei Jin; Liew, Celine Valeria; Chan, Lai Wah; Heng, Paul Wan Sia
2015-01-01
Manufacturing of pharmaceutical solids involves different unit operations and processing steps such as powder blending, fluidization, sieving, powder coating, pneumatic conveying and spray drying. During these operations, particles come in contact with other particles, different metallic, glass or polymer surfaces and can become electrically charged. Electrostatic charging often gives a negative connotation as it creates sticking, jamming, segregation or other issues during tablet manufacturing, capsule filling, film packaging and other pharmaceutical operations. A thorough and fundamental appreciation of the current knowledge of mechanisms and the potential outcomes is essential in order to minimize potential risks resulting from this phenomenon. The intent of this review is to discuss the electrostatic properties of pharmaceutical powders, equipment surfaces and devices affecting pharmaceutical processing and product performance. Furthermore, the underlying mechanisms responsible for the electrostatic charging are described and factors affecting electrostatic charging have been reviewed in detail. Feasibility of different methods used in the laboratory and pharmaceutical industry to measure charge propensity and decay has been summarized. Different computational and experimental methods studied have proven that the particle charging is a very complex phenomenon and control of particle charging is extremely important to achieve reliable manufacturing and reproducible product performance.
Bunster, Claudio; Henneaux, Marc
2007-01-01
A striking property of an electric charge near a magnetic pole is that the system possesses angular momentum even when both the electric and the magnetic charges are at rest. The angular momentum is proportional to the product of the charges and independent of their distance. We analyze the effect of bringing gravitation into this remarkable system. To this end, we study an electric charge held at rest outside a magnetically charged black hole. We find that even if the electric charge is treated as a perturbation on a spherically symmetric magnetic Reissner–Nordstrom hole, the geometry at large distances is that of a magnetic Kerr–Newman black hole. When the charge approaches the horizon and crosses it, the exterior geometry becomes that of a Kerr–Newman hole, with electric and magnetic charges and with total angular momentum given by the standard value for a charged monopole pair. Thus, in accordance with the “no-hair theorem,” once the charge is captured by the black hole, the angular momentum associated with the charge monopole system loses all traces of its exotic origin and is perceived from the outside as common rotation. It is argued that a similar analysis performed on Taub–NUT space should give the same result. PMID:17626789
Study on temperature distribution effect on internal charging by computer simulation
NASA Astrophysics Data System (ADS)
Yi, Zhong
2016-07-01
Internal charging (or deep dielectric charging) is a great threaten to spacecraft. Dielectric conductivity is an important parameter for internal charging and it is sensitive to temperature. Considering the exposed dielectric outside a spacecraft may experience a relatively large temperature range, temperature effect can't be ignored in internal charging assessment. We can see some reporters on techniques of computer simulation of internal charging, but the temperature effect has not been taken into accounts. In this paper, we realize the internal charging simulation with consideration of temperature distribution inside the dielectric. Geant4 is used for charge transportation, and a numerical method is proposed for solving the current reservation equation. The conductivity dependences on temperature, radiation dose rate and intense electric field are considered. Compared to the case of uniform temperature, the internal charging with temperature distribution is more complicated. Results show that temperature distribution can cause electric field distortion within the dielectric. This distortion refers to locally considerable enlargement of electric field. It usually corresponds to the peak electric field which is critical for dielectric breakdown judgment. The peak electric field can emerge inside the dielectric, or appear on the boundary. This improvement of internal charging simulation is beneficial for the assessment of internal charging under multiple factors.
Surface charge features of kaolinite particles and their interactions
NASA Astrophysics Data System (ADS)
Gupta, Vishal
Kaolinite is both a blessing and a curse. As an important industrial mineral commodity, kaolinite clays are extensively used in the paper, ceramic, paint, plastic and rubber industries. In all these applications the wettability, aggregation, dispersion, flotation and thickening of kaolinite particles are affected by its crystal structure and surface properties. It is therefore the objective of this research to investigate selected physical and surface chemical properties of kaolinite, specifically the surface charge of kaolinite particles. A pool of advanced analytical techniques such as XRD, XRF, SEM, AFM, FTIR and ISS were utilized to investigate the morphological and surface chemistry features of kaolinite. Surface force measurements revealed that the silica tetrahedral face of kaolinite is negatively charged at pH>4, whereas the alumina octahedral face of kaolinite is positively charged at pH<6, and negatively charged at pH>8. Based on electrophoresis measurements, the apparent iso-electric point for kaolinite particles was determined to be less than pH 3. In contrast, the point of zero charge was determined to be pH 4.5 by titration techniques, which corresponds to the iso-electric point of between pH 4 and 5 as determined by surface force measurements. Results from kaolinite particle interactions indicate that the silica face--alumina face interaction is dominant for kaolinite particle aggregation at low and intermediate pH values, which explains the maximum shear yield stress at pH 5-5.5. Lattice resolution images reveal the hexagonal lattice structure of these two face surfaces of kaolinite. Analysis of the silica face of kaolinite showed that the center of the hexagonal ring of oxygen atoms is vacant, whereas the alumina face showed that the hexagonal surface lattice ring of hydroxyls surround another hydroxyl in the center of the ring. High resolution transmission electron microscopy investigation of kaolinite has indicated that kaolinite is indeed composed of silica/alumina bilayers with a c-spacing of 7.2 A. The surface charge densities of the silica face, the alumina face and the edge surface of kaolinite all influence particle interactions, and thereby affect the mechanical properties of kaolinite suspensions. The improved knowledge of kaolinite surface chemistry from this dissertation research provides a foundation for the development of improved process strategies for both the use and disposal of clay particles such as kaolinite.
Josephson junction in the quantum mesoscopic electric circuits with charge discreteness
NASA Astrophysics Data System (ADS)
Pahlavani, H.
2018-04-01
A quantum mesoscopic electrical LC-circuit with charge discreteness including a Josephson junction is considered and a nonlinear Hamiltonian that describing the dynamic of such circuit is introduced. The quantum dynamical behavior (persistent current probability) is studied in the charge and phase regimes by numerical solution approaches. The time evolution of charge and current, number-difference and the bosonic phase and also the energy spectrum of a quantum mesoscopic electric LC-circuit with charge discreteness that coupled with a Josephson junction device are investigated. We show the role of the coupling energy and the electrostatic Coulomb energy of the Josephson junction in description of the quantum behavior and the spectral properties of a quantum mesoscopic electrical LC-circuits with charge discreteness.
Ahn, Yongjun; Yeo, Hwasoo
2015-01-01
The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station's density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric vehicles.
NASA Astrophysics Data System (ADS)
Ubink, J.; Enache, M.; Stöhr, M.
2018-05-01
Using the tip of a scanning tunneling microscope, an electric field-induced reversible phase transition between two planar porous structures ("chickenwire" and "flower") of trimesic acid was accomplished at the nonanoic acid/highly oriented pyrolytic graphite interface. The chickenwire structure was exclusively observed for negative sample bias, while for positive sample bias only the more densely packed flower structure was found. We suggest that the slightly negatively charged carboxyl groups of the trimesic acid molecule are the determining factor for this observation: their adsorption behavior varies with the sample bias and is thus responsible for the switching behavior.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anders, André; Ni, Pavel; Panjan, Matjaž
2013-09-30
Ion energy distribution functions measured for high power impulse magnetron sputtering show features, such as a broad peak at several 10 eV with an extended tail, as well as asymmetry with respect to E×B, where E and B are the local electric and magnetic field vectors, respectively. Here it is proposed that those features are due to the formation of a potential hump of several 10 V in each of the traveling ionization zones. Potential hump formation is associated with a negative-positive-negative space charge that naturally forms in ionization zones driven by energetic drifting electrons.
Strain-engineered inverse charge-funnelling in layered semiconductors.
De Sanctis, Adolfo; Amit, Iddo; Hepplestone, Steven P; Craciun, Monica F; Russo, Saverio
2018-04-25
The control of charges in a circuit due to an external electric field is ubiquitous to the exchange, storage and manipulation of information in a wide range of applications. Conversely, the ability to grow clean interfaces between materials has been a stepping stone for engineering built-in electric fields largely exploited in modern photovoltaics and opto-electronics. The emergence of atomically thin semiconductors is now enabling new ways to attain electric fields and unveil novel charge transport mechanisms. Here, we report the first direct electrical observation of the inverse charge-funnel effect enabled by deterministic and spatially resolved strain-induced electric fields in a thin sheet of HfS 2 . We demonstrate that charges driven by these spatially varying electric fields in the channel of a phototransistor lead to a 350% enhancement in the responsivity. These findings could enable the informed design of highly efficient photovoltaic cells.
NASA Astrophysics Data System (ADS)
Krishnan, M.
2017-05-01
We present a model for calculating the net and effective electrical charge of globular macromolecules and linear polyelectrolytes such as proteins and DNA, given the concentration of monovalent salt and pH in solution. The calculation is based on a numerical solution of the non-linear Poisson-Boltzmann equation using a finite element discretized continuum approach. The model simultaneously addresses the phenomena of charge regulation and renormalization, both of which underpin the electrostatics of biomolecules in solution. We show that while charge regulation addresses the true electrical charge of a molecule arising from the acid-base equilibria of its ionizable groups, charge renormalization finds relevance in the context of a molecule's interaction with another charged entity. Writing this electrostatic interaction free energy in terms of a local electrical potential, we obtain an "interaction charge" for the molecule which we demonstrate agrees closely with the "effective charge" discussed in charge renormalization and counterion-condensation theories. The predictions of this model agree well with direct high-precision measurements of effective electrical charge of polyelectrolytes such as nucleic acids and disordered proteins in solution, without tunable parameters. Including the effective interior dielectric constant for compactly folded molecules as a tunable parameter, the model captures measurements of effective charge as well as published trends of pKa shifts in globular proteins. Our results suggest a straightforward general framework to model electrostatics in biomolecules in solution. In offering a platform that directly links theory and experiment, these calculations could foster a systematic understanding of the interrelationship between molecular 3D structure and conformation, electrical charge and electrostatic interactions in solution. The model could find particular relevance in situations where molecular crystal structures are not available or rapid, reliable predictions are desired.
NASA Astrophysics Data System (ADS)
Mahdieh, Mohammad Hossein; Mozaffari, Hossein
2017-10-01
In this paper, we investigate experimentally the effect of electric field on the size, optical properties and crystal structure of colloidal nanoparticles (NPs) of aluminum prepared by nanosecond Pulsed Laser Ablation (PLA) in deionized water. The experiments were conducted for two different conditions, with and without the electric field parallel to the laser beam path and the results were compared. To study the influence of electric field, two polished parallel aluminum metals plates perpendicular to laser beam path were used as the electrodes. The NPs were synthesized for target in negative, positive and neutral polarities. The colloidal nanoparticles were characterized using the scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray Diffraction (XRD). The results indicate that initial charge on the target has strong effect on the size properties and concentration of the synthesized nanoparticles. The XRD patterns show that the structure of produced NPs with and without presence of electric field is Boehmite (AlOOH).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukao, Shinji; Nakanishi, Yoshikazu; Mizoguchi, Tadahiro
X-rays are radiated due to the bremsstrahlung caused by the collision of electrons with a metal target placed opposite the negative electric surface of a crystal by changing the temperature of a LiNbO{sub 3} single crystal uniaxially polarized in the c-axis direction. It is suggested that both electric field intensity and electron density determine the intensity of X-ray radiation. Electrons are supplied by the ionization of residual gas in space, field emission from a case inside which a crystal is located, considered to be due to the high electric-field intensity formed by the surface charges on the crystal, and anmore » external electron source, such as a thermionic source. In a high vacuum, it was found that the electrons supplied by electric-field emission mainly contribute to the radiation of X-rays. It was found that the integrated intensity of X-rays can be maximized by supplying electrons both external and by electric-field emission. Furthermore, the integrated intensity of the X-rays is stable for many repeated temperature changes.« less
Modeling secondary electron emission from nanostructured materials in helium ion microscope
NASA Astrophysics Data System (ADS)
Ohya, K.; Yamanaka, T.
2013-11-01
Charging of a SiO2 layer on a Si substrate during helium (He) beam irradiation is investigated at an energy range relevant to a He ion microscope (HIM). A self-consistent calculation is performed to model the transport of the ions and secondary electrons (SEs), the charge accumulation in the layer, and the electric field below and above the surface. The calculated results are compared with those for gallium (Ga) ions at the same energy and 1 keV electrons corresponding to a low-voltage scanning electron microscope (SEM). The charging of thin layers (<250 nm) is strongly suppressed due to wide depth and lateral distributions of the He ions in the layer, the voltage of which is much lower than that for the Ga ions and the electrons, where the distributions are much more localized. When the irradiation approaches the edge of a 100-nm-high SiO2 step formed on a Si substrate, a sharp increase in the number of SEs is observed, irrespective of whether a material is charged or not. When the He ions are incident on the bottom of the step, the re-entrance of SEs emitted from the substrate into the sidewall is clearly observed, but it causes the sidewall to be charged negatively. At the positions on the SiO2 layer away from the step edge, the charging voltage becomes positive with increasing number of Ga ions and electrons. However, He ions do not induce such a voltage due to strong relaxation of positive and negative charges in the Si substrate and their recombination in the SiO2 layer.
Characterizing the effects of regolith surface roughness on photoemission from surfaces in space
NASA Astrophysics Data System (ADS)
Dove, A.; Horanyi, M.; Wang, X.
2017-12-01
Surfaces of airless bodies and spacecraft in space are exposed to a variety of charging environments. A balance of currents due to plasma bombardment, photoemission, electron and ion emission and collection, and secondary electron emission determines the surface's charge. Photoelectron emission is the dominant charging process on sunlit surfaces in the inner solar system due to the intense solar UV radiation. This can result in a net positive surface potential, with a cloud of photoelectrons immediately above the surface, called the photoelectron sheath. Conversely, the unlit side of the body will charge negatively due the collection of the fast-moving solar wind electrons. The interaction of charged dust grains with these positively and negatively charged surfaces, and within the photoelectron and plasma sheaths may explain the occurrence of dust lofting, levitation and transport above the lunar surface. The surface potential of exposed objects is also dependent on the material properties of their surfaces. Composition and particle size primarily affect the quantum efficiency of photoelectron generation; however, surface roughness can also control the charging process. In order to characterize these effects, we have conducted laboratory experiments to examine the role of surface roughness in generating photoelectrons in dedicated laboratory experiments using solid and dusty surfaces of the same composition (CeO2), and initial comparisons with JSC-1 lunar simulant. Using Langmuir probe measurements, we explore the measured potentials above insulating surfaces exposed to UV and an electric field, and we show that the photoemission current from a dusty surface is largely reduced due to its higher surface roughness, which causes a significant fraction of the emitted photoelectrons to be re-absorbed within the surface. We will discuss these results in context of similar situations on planetary surfaces.
NASA Astrophysics Data System (ADS)
Salem, M. A.; Liu, N.; Rassoul, H.
2016-12-01
It is well known that electrostatic (ES) and quasi-electrostatic (QE) fields can be established in the lower ionosphere by underlying thunderstorms. We recently found that although the thunderstorm ES field is not strong enough to produce transient luminous events (TLEs) such as halos and sprites, it generates significant effects on the electrical properties of the nighttime lower ionosphere [Salem et al., GRL., 42(6), doi: 10.1002/2015GL063268, 2015; Salem et al., GRL., 43(1), doi: 10.1002/2015GL066933, 2016]. In particular, according to Salem et al. [2016], the nighttime lower ionospheric height measured using the VLF wave reflection technique can be increased due to the effects of the ES field. In this work, we continue to study the nighttime lower ionospheric response to QE fields of cloud-to-ground (CG) lightning flashes. In contrast to thunderstorm ES fields, QE fields can be much stronger and trigger halos. Halos are relatively homogeneous glows centered on 75-85 km altitude, with a horizontal extent of tens of kilometers and a vertical thickness of several kilometers. They typically appear within a few milliseconds of their parent CGs. In particular, negative halos are caused by unusually impulsive negative CGs [Boggs et al., JGR. Atmos., doi: 10.1002/2015JD024188, 121(2), 2016; Liu et al., GRL., 43(6), doi: 10.1002/2016GL068256, 2016]. This study uses a one-dimensional plasma discharge fluid model combined with a simplified ionospheric ion chemistry model described by Liu [JGR., 117, doi: 10.1029/2011JA017062, 2012]. The response of the nighttime lower ionosphere to impulsive negative CGs is investigated for different ambient ionospheric density profiles and different CG properties (e.g., charge moment changes and charge transfer times). Finally, the modeling results of the lower ionosphere recovery time are analyzed to investigate the role of negative halos in producing different types of early VLF events.
Baspinar, Yücel; Borchert, Hans-Hubert
2012-07-01
The surface of all tissues, including the stratum corneum, carries a negative charge. Following that fact it is assumed that a positively charged topical formulation could lead to an enhanced penetration because of an increased interaction with the negative charge of the membrane. The intention of this study is to prove an enhanced penetration of a positively charged nanoemulsion compared to a negatively charged nanoemulsion, both containing prednicarbate. The release and penetration of these nanoemulsions, produced with the high pressure homogenization method, were investigated. Regarding these results reveals that the release of the negatively charged formulation is higher compared to the positively charged nanoemulsion, while the penetration of the positively charged nanoemulsion is enhanced compared to the negatively charged formulation. The results of the investigated positively charged nanoemulsion containing prednicarbate show that its topical use could be advantageous for the therapy of atopic dermatitis, especially regarding phytosphingosine, which was responsible for the positive charge. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Chunsheng; Bronder, Thomas; Poghossian, Arshak; Werner, Carl Frederik; Schöning, Michael J.
2015-03-01
A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent-voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout.A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent-voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07225a
On the behavior of return stroke current and the remotely detected electric field change waveform
NASA Astrophysics Data System (ADS)
Shao, Xuan-Min; Lay, Erin; Jacobson, Abram R.
2012-04-01
After accumulating a large number of remotely recorded negative return stroke electric field change waveforms, a subtle but persistent kink was found following the main return stroke peak by several microseconds. To understand the corresponding return stroke current properties behind the kink and the general return stroke radiation waveform, we analyze strokes occurring in triggered lightning flashes for which have been measured both the channel base current and simultaneous remote electric radiation field. In this study, the channel base current is assumed to propagate along the return stroke channel in a dispersive and lossy manner. The measured channel base current is band-pass filtered, and the higher-frequency component is assumed to attenuate faster than the lower-frequency component. The radiation electric field is computed for such a current behavior and is then propagated to distant sensors. It is found that such a return stroke model is capable of very closely reproducing the measured electric waveforms at multiple stations for the triggered return strokes, and such a model is considered applicable to the common behavior of the natural return stroke as well. On the basis of the analysis, a number of other observables are derived. The time-evolving current dispersion and attenuation compare well with previously reported optical observations. The observable speed tends to agree with optical and VHF observations. Line charge density that is removed or deposited by the return stroke is derived, and the implication of the charge density distribution on leader channel decay is discussed.
Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu
2015-05-20
A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid-liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid-liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid-liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid-liquid interfaces.
Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt.
Jeżowski, P; Crosnier, O; Deunf, E; Poizot, P; Béguin, F; Brousse, T
2018-02-01
Lithium-ion capacitors (LICs) shrewdly combine a lithium-ion battery negative electrode capable of reversibly intercalating lithium cations, namely graphite, together with an electrical double-layer positive electrode, namely activated carbon. However, the beauty of this concept is marred by the lack of a lithium-cation source in the device, thus requiring a specific preliminary charging step. The strategies devised thus far in an attempt to rectify this issue all present drawbacks. Our research uncovers a unique approach based on the use of a lithiated organic material, namely 3,4-dihydroxybenzonitrile dilithium salt. This compound can irreversibly provide lithium cations to the graphite electrode during an initial operando charging step without any negative effects with respect to further operation of the LIC. This method not only restores the low CO 2 footprint of LICs, but also possesses far-reaching potential with respect to designing a wide range of greener hybrid devices based on other chemistries, comprising entirely recyclable components.
Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt
NASA Astrophysics Data System (ADS)
Jeżowski, P.; Crosnier, O.; Deunf, E.; Poizot, P.; Béguin, F.; Brousse, T.
2018-02-01
Lithium-ion capacitors (LICs) shrewdly combine a lithium-ion battery negative electrode capable of reversibly intercalating lithium cations, namely graphite, together with an electrical double-layer positive electrode, namely activated carbon. However, the beauty of this concept is marred by the lack of a lithium-cation source in the device, thus requiring a specific preliminary charging step. The strategies devised thus far in an attempt to rectify this issue all present drawbacks. Our research uncovers a unique approach based on the use of a lithiated organic material, namely 3,4-dihydroxybenzonitrile dilithium salt. This compound can irreversibly provide lithium cations to the graphite electrode during an initial operando charging step without any negative effects with respect to further operation of the LIC. This method not only restores the low CO2 footprint of LICs, but also possesses far-reaching potential with respect to designing a wide range of greener hybrid devices based on other chemistries, comprising entirely recyclable components.
Hidden momentum and the Abraham-Minkowski debate
NASA Astrophysics Data System (ADS)
Saldanha, Pablo L.; Filho, J. S. Oliveira
2017-04-01
We use an extended version of electrodynamics, which admits the existence of magnetic charges and currents, to discuss how different models for electric and magnetic dipoles do or do not carry hidden momentum under the influence of external electromagnetic fields. Based on that, we discuss how the models adopted for the electric and magnetic dipoles from the particles that compose a material medium influence the expression for the electromagnetic part of the light momentum in the medium. We show that Abraham expression is compatible with electric dipoles formed by electric charges and magnetic dipoles formed by magnetic charges, while Minkowski expression is compatible with electric dipoles formed by magnetic currents and magnetic dipoles formed by electric currents. The expression ɛ0E ×B , on the other hand, is shown to be compatible with electric dipoles formed by electric charges and magnetic dipoles formed by electric currents, which are much more natural models. So this expression has an interesting interpretation in the Abraham-Minkowski debate about the momentum of light in a medium: It is the expression compatible with the nonexistence of magnetic charges. We also provide a simple justification of why Abraham and Minkowski momenta can be associated with the kinetic and canonical momentum of light, respectively.
NASA Astrophysics Data System (ADS)
Thompson, Tammy M.; King, Carey W.; Allen, David T.; Webber, Michael E.
2011-04-01
The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NOx emissions from EGUs during times of day when the vehicle is charging, and a decrease in NOx from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NOx emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.
NASA Technical Reports Server (NTRS)
Robinson, Paul A., Jr.
1988-01-01
Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.
Alternative Fuels Data Center: Innovations Improve Electric Vehicle
Charging InfrastructureA> Innovations Improve Electric Vehicle Charging Infrastructure to someone Magazine Provided by Maryland Public Television Related Videos Photo of a car Electric Vehicles Charge up at State Parks in West Virginia Dec. 9, 2017 Photo of a car Hydrogen Powers Fuel Cell Vehicles in
A nickel metal hydride battery for electric vehicles
NASA Astrophysics Data System (ADS)
Ovshinsky, S. R.; Fetcenko, M. A.; Ross, J.
1993-04-01
An efficient battery is the key technological element to the development of practical electric vehicles. The science and technology of a nickel metal hydride battery, which stores hydrogen in the solid hydride phase and has high energy density, high power, long life, tolerance to abuse, a wide range of operating temperature, quick-charge capability, and totally sealed maintenance-free operation, is described. A broad range of multi-element metal hydride materials that use structural and compositional disorder on several scales of length has been engineered for use as the negative electrode in this battery. The battery operates at ambient temperature, is made of nontoxic materials, and is recyclable. Demonstration of the manufacturing technology has been achieved.
Understanding charge transport in lead iodide perovskite thin-film field-effect transistors
Senanayak, Satyaprasad P.; Yang, Bingyan; Thomas, Tudor H.; Giesbrecht, Nadja; Huang, Wenchao; Gann, Eliot; Nair, Bhaskaran; Goedel, Karl; Guha, Suchi; Moya, Xavier; McNeill, Christopher R.; Docampo, Pablo; Sadhanala, Aditya; Friend, Richard H.; Sirringhaus, Henning
2017-01-01
Fundamental understanding of the charge transport physics of hybrid lead halide perovskite semiconductors is important for advancing their use in high-performance optoelectronics. We use field-effect transistors (FETs) to probe the charge transport mechanism in thin films of methylammonium lead iodide (MAPbI3). We show that through optimization of thin-film microstructure and source-drain contact modifications, it is possible to significantly minimize instability and hysteresis in FET characteristics and demonstrate an electron field-effect mobility (μFET) of 0.5 cm2/Vs at room temperature. Temperature-dependent transport studies revealed a negative coefficient of mobility with three different temperature regimes. On the basis of electrical and spectroscopic studies, we attribute the three different regimes to transport limited by ion migration due to point defects associated with grain boundaries, polarization disorder of the MA+ cations, and thermal vibrations of the lead halide inorganic cages. PMID:28138550
Over-limiting Current and Control of Dendritic Growth by Surface Conduction in Nanopores
Han, Ji-Hyung; Khoo, Edwin; Bai, Peng; Bazant, Martin Z.
2014-01-01
Understanding over-limiting current (faster than diffusion) is a long-standing challenge in electrochemistry with applications in desalination and energy storage. Known mechanisms involve either chemical or hydrodynamic instabilities in unconfined electrolytes. Here, it is shown that over-limiting current can be sustained by surface conduction in nanopores, without any such instabilities, and used to control dendritic growth during electrodeposition. Copper electrodeposits are grown in anodized aluminum oxide membranes with polyelectrolyte coatings to modify the surface charge. At low currents, uniform electroplating occurs, unaffected by surface modification due to thin electric double layers, but the morphology changes dramatically above the limiting current. With negative surface charge, growth is enhanced along the nanopore surfaces, forming surface dendrites and nanotubes behind a deionization shock. With positive surface charge, dendrites avoid the surfaces and are either guided along the nanopore centers or blocked from penetrating the membrane. PMID:25394685
Final Technical Report for Grant DE-FG02-04ER54795
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merlino, Robert L
This is the final technical report for DOE Grant #DE-FG02-04ER54795-Experimental Investigations of Fundamental Processes in Dusty Plasmas. A plasma is an ionized gas, and a dusty plasmas is a plasma that contains, in addition to electrons and ions, micron-sized dust particles. The dust particles acquire and electric charge in the plasma by collecting electrons and ions. The electrons move more rapidly than the ions, so the dust charge is negative. A 1 micron dust particle in a typical low temperature plasma has a charge corresponding to approximately 2000 electrons. Dusty plasmas are naturally found in astrophysical plasmas, planetary rings, technologicalmore » plasmas, and magnetic fusion plasmas. The goal of this project was to study in the laboratory, the basic physical processes that occur in dusty plasmas. This report provides a summary of the major scientific products and activities of this award.« less
Development of a solar-powered electric bicycle in bike sharing transportation system
NASA Astrophysics Data System (ADS)
Adhisuwignjo, S.; Siradjuddin, I.; Rifa'i, M.; Putri, R. I.
2017-06-01
The increasing mobility has directly led to deteriorating traffic conditions, extra fuel consumption, increasing automobile exhaust emissions, air pollution and lowering quality of life. Apart from being clean, cheap and equitable mode of transport for short-distance journeys, cycling can potentially offer solutions to the problem of urban mobility. Many cities have tried promoting cycling particularly through the implementation of bike-sharing. Apparently the fourth generation bikesharing system has been promoted utilizing electric bicycles which considered as a clean technology implementation. Utilization of solar power is probably the development keys in the fourth generation bikesharing system and will become the standard in bikesharing system in the future. Electric bikes use batteries as a source of energy, thus they require a battery charger system which powered from the solar cells energy. This research aims to design and implement electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. It is necessary to develop an electric bicycle battery charging system with solar energy sources using fuzzy logic algorithm. The study was conducted by means of experimental method which includes the design, manufacture and testing controller systems. The designed fuzzy algorithm have been planted in EEPROM microcontroller ATmega8535. The charging current was set at 1.2 Amperes and the full charged battery voltage was observed to be 40 Volts. The results showed a fuzzy logic controller was able to maintain the charging current of 1.2 Ampere with an error rate of less than 5% around the set point. The process of charging electric bike lead acid batteries from empty to fully charged was 5 hours. In conclusion, the development of solar-powered electric bicycle controlled using fuzzy logic controller can keep the battery charging current in solar-powered electric bicycle to remain stable. This shows that the fuzzy algorithm can be used as a controller in the process of charging for a solar electric bicycle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smart, John Galloway; Salisbury, Shawn Douglas
2015-07-01
This report summarizes key findings in two national plug-in electric vehicle charging infrastructure demonstrations: The EV Project and ChargePoint America. It will be published to the INL/AVTA website for the general public.
NASA Astrophysics Data System (ADS)
Kato, Riku; Frusawa, Hiroshi
2015-07-01
We investigated the individual properties of various polyion-coated bubbles with a mean diameter ranging from 300 to 500 nm. Dark field microscopy allows one to track the individual particles of the submicron bubbles (SBs) encapsulated by the layer-by-layer (LbL) deposition of cationic and anionic polyelectrolytes (PEs). Our focus is on the two-step charge reversals of PE-SB complexes: the first is a reversal from negatively charged bare SBs with no PEs added to positive SBs encapsulated by polycations (monolayer deposition), and the second is overcharging into negatively charged PE-SB complexes due to the subsequent addition of polyanions (double-layer deposition). The details of these phenomena have been clarified through the analysis of a number of trajectories of various PE-SB complexes that experience either Brownian motion or electrophoresis. The contrasted results obtained from the analysis were as follows: an amount in excess of the stoichiometric ratio of the cationic polymers was required for the first charge-reversal, whereas the stoichiometric addition of the polyanions lead to the electrical neutralization of the PE-SB complex particles. The recovery of the stoichiometry in the double-layer deposition paves the way for fabricating multi-layered SBs encapsulated solely with anionic and cationic PEs, which provides a simple protocol to create smart agents for either drug delivery or ultrasound contrast imaging.
Kato, Riku; Frusawa, Hiroshi
2015-07-08
We investigated the individual properties of various polyion-coated bubbles with a mean diameter ranging from 300 to 500 nm. Dark field microscopy allows one to track the individual particles of the submicron bubbles (SBs) encapsulated by the layer-by-layer (LbL) deposition of cationic and anionic polyelectrolytes (PEs). Our focus is on the two-step charge reversals of PE-SB complexes: the first is a reversal from negatively charged bare SBs with no PEs added to positive SBs encapsulated by polycations (monolayer deposition), and the second is overcharging into negatively charged PE-SB complexes due to the subsequent addition of polyanions (double-layer deposition). The details of these phenomena have been clarified through the analysis of a number of trajectories of various PE-SB complexes that experience either Brownian motion or electrophoresis. The contrasted results obtained from the analysis were as follows: an amount in excess of the stoichiometric ratio of the cationic polymers was required for the first charge-reversal, whereas the stoichiometric addition of the polyanions lead to the electrical neutralization of the PE-SB complex particles. The recovery of the stoichiometry in the double-layer deposition paves the way for fabricating multi-layered SBs encapsulated solely with anionic and cationic PEs, which provides a simple protocol to create smart agents for either drug delivery or ultrasound contrast imaging.
Harmonic Analysis of Electric Vehicle Loadings on Distribution System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yijun A; Xu, Yunshan; Chen, Zimin
2014-12-01
With the increasing number of Electric Vehicles (EV) in this age, the power system is facing huge challenges of the high penetration rates of EVs charging stations. Therefore, a technical study of the impact of EVs charging on the distribution system is required. This paper is applied with PSCAD software and aimed to analyzing the Total Harmonic Distortion (THD) brought by Electric Vehicles charging stations in power systems. The paper starts with choosing IEEE34 node test feeder as the distribution system, building electric vehicle level two charging battery model and other four different testing scenarios: overhead transmission line and undergroundmore » cable, industrial area, transformer and photovoltaic (PV) system. Then the statistic method is used to analyze different characteristics of THD in the plug-in transient, plug-out transient and steady-state charging conditions associated with these four scenarios are taken into the analysis. Finally, the factors influencing the THD in different scenarios are found. The analyzing results lead the conclusion of this paper to have constructive suggestions for both Electric Vehicle charging station construction and customers' charging habits.« less
Feizabadi, Mitra Shojania; Rosario, Brandon; Hernandez, Marcos A V
2017-11-04
Recent studies suggested a link between diversity of beta tubulin isotypes in microtubule structures and the regulatory roles that they play not only on microtubules' intrinsic dynamic, but also on the translocation characteristics of some of the molecular motors along microtubules. Remarkably, unlike porcine brain microtubules, MCF7 microtubules are structured from a different beta tubulin distribution. These types of cancer microtubules show a relatively stable and slow dynamic. In addition, the translocation parameters of some molecular motors are distinctly different along MCF7 as compared to those parameters on brain microtubules. It is known that the diversity of beta tubulin isotypes differ predominantly in the specifications and the electric charge of their carboxy-terminal tails. A key question is to identify whether the negative electrostatic charge of tubulin isotypes and, consequently, microtubules, can potentially be considered as one of the sources of functional differences in MCF7 vs. brain microtubules. We tested this possibility experimentally by monitoring the electro-orientation of these two types of microtubules inside a uniform electric field. Through this evaluation, we quantified and compared the average normalized polarization coefficient of MCF7 vs. Porcine brain microtubules. The higher value obtained for the polarization of MCF7 microtubules, which is associated to the higher negative charge of these types of microtubules, is significant as it can further explain the slow intrinsic dynamic that has been recently reported for single MCF7 microtubules in vitro. Furthermore, it can be potentially considered as a factor that can directly impact the translocation parameters of some molecular motors along MCF7 microtubules, by altering the mutual electrostatic interactions between microtubules and molecular motors. Copyright © 2017 Elsevier Inc. All rights reserved.
ELECTRIC-FIELD-ENHANCED FABRIC FILTRATION OF ELECTRICALLY CHARGED FLYASH
The paper summarizes measurements in which both external electric field (applied by electrodes at the fabric surface) and flyash electrical charge (controlled by an upstream corona precharger) are independent variables in a factorial performance experiment carried out in a labora...
Using the History of Electricity and Magnetism To Enhance Teaching.
ERIC Educational Resources Information Center
Binnie, Anna
2001-01-01
Explains the properties of charged objects, the nature of an electric charge, and interactions between electricity and magnetism. Suggests that the development of modern ideas about electricity and magnetism were not a linear progression. (Contains 34 references.) (Author/YDS)
Electric motorcycle charging station powered by solar energy
NASA Astrophysics Data System (ADS)
Siriwattanapong, Akarawat; Chantharasenawong, Chawin
2018-01-01
This research proposes a design and verification of an off-grid photovoltaic system (PVS) for electric motorcycle charging station to be located in King’s Mongkut’s University of Technology Thonburi, Bangkok, Thailand. The system is designed to work independently (off-grid) and it must be able to fully charge the batteries of a typical passenger electric motorcycle every evening. A 1,000W Toyotron electric motorcycle is chosen for this study. It carries five units of 12.8V 20Ah batteries in series; hence its maximum energy requirement per day is 1,200Wh. An assessment of solar irradiation data and the Generation Factor in Bangkok, Thailand suggests that the charging system consists of one 500W PV panel, an MPPT charge controller, 48V 150Ah battery, a 1,000W DC to AC inverter and other safety devices such as fuses and breakers. An experiment is conducted to verify the viability of the off-grid PVS charging station by collecting the total daily energy generation data in the raining season and winter. The data suggests that the designed off-grid solar power charging station for electric motorcycle is able to supply sufficient energy for daily charging requirements.
NASCAP modelling computations on large optics spacecraft in geosynchronous substorm environments
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Purvis, C. K.
1980-01-01
Satellites in geosynchronous orbits have been found to be charged to significant negative voltages during encounters with geomagnetic substorms. When satellite surfaces are charged, there is a probability of enhanced contamination from charged particles attracted back to the satellite by electrostatic forces. This could be particularly disturbing to large satellites using sensitive optical systems. In this study the NASA Charging Analyzer Program (NASCAP) is used to evaluate qualitatively the possibility of such enhanced contamination on a conceptual version of a large satellite. The evaluation is made by computing surface voltages on the satellite due to encounters with substorm environments and then computing charged-particle trajectories in the electric fields around the satellite. Particular attention is paid to the possibility of contaminants reaching a mirror surface inside a dielectric tube because this mirror represents a shielded optical surface in the satellite model used. Deposition of low energy charged particles from other parts of the spacecraft onto the mirror was found to be possible in the assumed moderate substorm environment condition. In the assumed severe substorm environment condition, however, voltage build up on the inside and edges of the dielectric tube in which the mirror is located prevents contaminants from reaching the mirror surface.
Exploring the effect of hole localization on the charge-phonon dynamics of hole doped delafossite
NASA Astrophysics Data System (ADS)
Mazumder, Nilesh; Mandal, Prasanta; Roy, Rajarshi; Ghorai, Uttam Kumar; Saha, Subhajit; Chattopadhyay, Kalyan Kumar
2017-09-01
For weak or moderate doping, electrical measurement is not suitable for detecting changes in the charge localization inside a semiconductor. Here, to investigate the nature of charge-phonon coupling in the presence of gradually delocalized holes within a weak doping regime (~1016 cm-3), we examine the temperature dependent Raman spectra (303-817 K) of prototype hole doped delafossite CuC{{r}1-x}M{{g}x}{{O}2-y}{{S}y} (x = 0/0.03, y = 0/0.01). For both {{E}g} and {{A}1g} phonons, negative lineshape asymmetry and relative thermal hardening are distinctly observed upon SO× and (MgCr\\bullet+SO×) doping. Using Allen formalism, charge density of states at the Fermi level per spin and molecule, and charge delocalization associated to a - b plane, are estimated to increase appreciably upon codoping compared to the c -axis. We delineate the interdependence between charge-phonon coupling constant (λ ) and anharmonic phonon lifetime ({τanh} ), and deduce that excitation of delocalized holes weakly coupled with phonons of larger {τanh} is the governing feature of observed Fano asymmetry (q ) reversal.
NASA Astrophysics Data System (ADS)
Arenas, Mónica P.; Lanzoni, Evandro M.; Pacheco, Clara J.; Costa, Carlos A. R.; Eckstein, Carlos B.; de Almeida, Luiz H.; Rebello, João M. A.; Deneke, Christoph F.; Pereira, Gabriela R.
2018-01-01
In this study, we investigate artifacts arising from electric charges present in magnetic force microscopy images. Therefore, we use two austenitic steel samples with different microstructural conditions. Furthermore, we examine the influence of the surface preparation, like etching, in magnetic force images. Using Kelvin probe force microscopy we can quantify the charges present on the surface. Our results show that electrical charges give rise to a signature in the magnetic force microscopy, which is indistinguishable from a magnetic signal. Our results on two differently aged steel samples demonstrate that the magnetic force microscopy images need to be interpreted with care and must be corrected due to the influence of electrical charges present. We discuss three approaches, how to identify these artifacts - parallel acquisition of magnetic force and electric force images on the same position, sample surface preparation to decrease the presence of charges and inversion of the magnetic polarization in two succeeding measurement.
Credit WCT. Original 2¾" x 2Y4" color negative is housed ...
Credit WCT. Original 2-¾" x 2-Y4" color negative is housed in the JPL Photography Laboratory, Pasadena, California. View shows JPL staff member John Morrow loading the grinder hopper. The hopper has a 10 mesh screen to filter out particles too large for the mill. Oxidizer is passed steadily to the hammers by a stainless steel feed screw. Oxidizer may be passed through the mill several times depending on the fineness required by a given propellant formula; the maximum charge is 130 pounds (59.0 Kg). The drum below the mill has an electrically conductive plastic liner which receives the ground oxidizer (JPL negative no. JPL10279AC, 27 January 1989) - Jet Propulsion Laboratory Edwards Facility, Oxidizer Grinder Building, Edwards Air Force Base, Boron, Kern County, CA
Uncharged positive electrode composition
Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi
1977-03-08
An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.
Utilities Power Change: Engaging Commercial Customers in Workplace Charging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lommele, Stephen; Dafoe, Wendy
As stewards of an electric grid that is available almost anywhere people park, utilities that support workplace charging are uniquely positioned to help their commercial customers be a part of the rapidly expanding network of charging infrastructure. Utilities understand the distinctive challenges of their customers, have access to technical information about electrical infrastructure, and have deep experience modeling and managing demand for electricity. This case study highlights the experiences of two utilities with workplace charging programs.
Electric field mill network products to improve detection of the lightning hazard
NASA Technical Reports Server (NTRS)
Maier, Launa M.
1987-01-01
An electric field mill network has been used at Kennedy Space Center for over 10 years as part of the thunderstorm detection system. Several algorithms are currently available to improve the informational output of the electric field mill data. The charge distributions of roughly 50 percent of all lightning can be modeled as if they reduced the charged cloud by a point charge or a point dipole. Using these models, the spatial differences in the lightning induced electric field changes, and a least squares algorithm to obtain an optimum solution, the three-dimensional locations of the lightning charge centers can be located. During the lifetime of a thunderstorm, dynamically induced charging, modeled as a current source, can be located spatially with measurements of Maxwell current density. The electric field mills can be used to calculate the Maxwell current density at times when it is equal to the displacement current density. These improvements will produce more accurate assessments of the potential electrical activity, identify active cells, and forecast thunderstorm termination.
NASA Astrophysics Data System (ADS)
Margulis, M. A.; Pil'Gunov, V. N.
2009-10-01
The mechanism of the effects observed in hydrodynamic unit throttles was studied. These effects included luminescence in the visible range localized in a microscopic toroidal volume and electric pulses when a dielectric liquid flew through a narrow passage orifice. Equations for charging and conduction currents were obtained. The stationary electric charge, potential, and field strength on the internal surface of a passage orifice were calculated. It was shown theoretically that the appearance of luminescence most probably occurred in electrical breakdowns in cavitation bubbles in the initial flow section inside the passage orifice. Electric charge formed not only during hydrodynamic cavitation but also in a laminar throttle in the absence of cavitation in the liquid; the electrokinetic mechanism applied to this phenomenon too. It was shown experimentally that electric charges appeared not only in plastic but also in metallic throttles. The suggested mechanism of light emission and electric charge appearance was in agreement with the experimental results.
10 CFR 205.376 - Rates and charges.
Code of Federal Regulations, 2010 CFR
2010-01-01
... DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and Reports; Applications; Administrative Procedures and Sanctions Emergency Interconnection of Electric Facilities and the Transfer of Electricity to Alleviate An Emergency Shortage of Electric Power § 205.376 Rates and charges...
The effect of a radial electric field on ripple-trapped ions observed by neutral particle fluxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heikkinen, J.A.; Herrmann, W.; Kurki-Suonio, T.
1997-10-01
The effect of a radial electric field on nonthermal ripple-trapped ions is investigated using toroidal Monte Carlo simulations for edge tokamak plasmas. The increase in the neutral particle flux from the ions trapped in local magnetic wells observed by the charge exchange (CX) detector at a low confinement to high confinement transition at ASDEX (Axially Symmetric Divertor Experiment). Upgrade tokamak [{ital Proceedings of the 20th European Conference on Controlled Fusion and Plasma Physics}, Lisbon (European Physical Society, Petit-Lancy, Switzerland, 1993), Vol. 17C, Part I, p. 267] is reproduced in the simulations by turning on a radial electric field near themore » plasma periphery. The poloidal and toroidal angles at which the CX detector signal is most sensitive to the radial electric field are determined. A fast response time of the signal in the range of 50{endash}100 {mu}s to the appearance of the electric field can be found in the simulations with a relatively large half-width of the negative electric field region. {copyright} {ital 1997 American Institute of Physics.}« less
Effects of hydration on steric and electric charge-induced interstitial volume exclusion--a model.
Øien, Alf H; Justad, Sigrid R; Tenstad, Olav; Wiig, Helge
2013-09-03
The presence of collagen and charged macromolecules like glycosaminoglycans (GAGs) in the interstitial space limits the space available for plasma proteins and other macromolecules. This phenomenon, known as interstitial exclusion, is of importance for interstitial fluid volume regulation. Physical/mathematical models are presented for calculating the exclusion of electrically charged and neutral macromolecules that equilibrate in the interstitium under various degrees of hydration. Here, a central hypothesis is that the swelling of highly electrically charged GAGs with increased hydration shields parts of the neutral collagen of the interstitial matrix from interacting with electrically charged macromolecules, such that exclusion of charged macromolecules exhibits change due to steric and charge effects. GAGs are also thought to allow relatively small neutral, but also charged macromolecules neutralized by a very high ionic strength, diffuse into the interior of GAGs, whereas larger macromolecules may not. Thus, in the model, relatively small electrically charged macromolecules, such as human serum albumin, and larger neutral macromolecules such as IgG, will have quite similar total volume exclusion properties in the interstitium. Our results are in agreement with ex vivo and in vivo experiments, and suggest that the charge of GAGs or macromolecular drugs may be targeted to increase the tissue uptake of macromolecular therapeutic agents. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Single electrode triboelectric generator
Wang, Zhong Lin; Yang, Ya; Zhang, Hulin; Zhu, Guang
2017-11-07
A triboelectric generator includes a first contact charging member, a second contact charging member and an electrical load. The first contact charging member has a contact side and an opposite back side. The first contact charging member includes a material that has a first rating on a triboelectric series and also has a conductive aspect. The second contact charging member has a second rating on the triboelectric series, different from the first rating, and is configured to come into contact with the first contact layer and go out of contact with the first contact layer. The electrical load electrically is coupled to the first contact charging member and to a common voltage so that current will flow through the load after the second contact charging member comes into contact with the first contact charging member and then goes out of contact with the first contact charging member.
Wong, Melody Yee-Man; Man, Sin-Heng; Che, Chi-Ming; Lau, Kai-Chung; Ng, Kwan-Ming
2014-03-21
The simplicity and easy manipulation of a porous substrate-based ESI-MS technique have been widely applied to the direct analysis of different types of samples in positive ion mode. However, the study and application of this technique in negative ion mode are sparse. A key challenge could be due to the ease of electrical discharge on supporting tips upon the application of negative voltage. The aim of this study is to investigate the effect of supporting materials, including polyester, polyethylene and wood, on the detection sensitivity of a porous substrate-based negative ESI-MS technique. By using nitrobenzene derivatives and nitrophenol derivatives as the target analytes, it was found that the hydrophobic materials (i.e., polyethylene and polyester) with a higher tendency to accumulate negative charge could enhance the detection sensitivity towards nitrobenzene derivatives via electron-capture ionization; whereas, compounds with electron affinities lower than the cut-off value (1.13 eV) were not detected. Nitrophenol derivatives with pKa smaller than 9.0 could be detected in the form of deprotonated ions; whereas polar materials (i.e., wood), which might undergo competitive deprotonation with the analytes, could suppress the detection sensitivity. With the investigation of the material effects on the detection sensitivity, the porous substrate-based negative ESI-MS method was developed and applied to the direct detection of two commonly encountered explosives in complex samples.
Economic Analysis of Different Electric Vehicle Charging Scenarios
NASA Astrophysics Data System (ADS)
Ying, Li; Haiming, Zhou; Xiufan, Ma; Hao, Wang
2017-05-01
Influence of electric vehicles (EV) to grid cannot be ignored. Research on the economy analysis of different charging scenarios is helpful to guide the user to charge or discharge orderly. EV charging models are built such as disordered charging, valley charging, intelligent charging, and V2G (Vehicle to Grid), by which changes of charging load in different scenarios can be seen to analyze the influence to initial load curve, and comparison can be done about user’s average cost. Monte Carlo method is used to simulate the electric vehicle charging behavior, cost in different charging scenarios are compared, social cost is introduced in V2G scene, and the relationship between user’s average cost and social cost is analyzed. By test, it is proved that user’s cost is the lowest in V2G scenario, and the larger the scale of vehicles is, the more the social cost can save.
Ahn, Yongjun; Yeo, Hwasoo
2015-01-01
The charging infrastructure location problem is becoming more significant due to the extensive adoption of electric vehicles. Efficient charging station planning can solve deeply rooted problems, such as driving-range anxiety and the stagnation of new electric vehicle consumers. In the initial stage of introducing electric vehicles, the allocation of charging stations is difficult to determine due to the uncertainty of candidate sites and unidentified charging demands, which are determined by diverse variables. This paper introduces the Estimating the Required Density of EV Charging (ERDEC) stations model, which is an analytical approach to estimating the optimal density of charging stations for certain urban areas, which are subsequently aggregated to city level planning. The optimal charging station’s density is derived to minimize the total cost. A numerical study is conducted to obtain the correlations among the various parameters in the proposed model, such as regional parameters, technological parameters and coefficient factors. To investigate the effect of technological advances, the corresponding changes in the optimal density and total cost are also examined by various combinations of technological parameters. Daejeon city in South Korea is selected for the case study to examine the applicability of the model to real-world problems. With real taxi trajectory data, the optimal density map of charging stations is generated. These results can provide the optimal number of chargers for driving without driving-range anxiety. In the initial planning phase of installing charging infrastructure, the proposed model can be applied to a relatively extensive area to encourage the usage of electric vehicles, especially areas that lack information, such as exact candidate sites for charging stations and other data related with electric vehicles. The methods and results of this paper can serve as a planning guideline to facilitate the extensive adoption of electric vehicles. PMID:26575845
NASA Astrophysics Data System (ADS)
Donglai, WANG; Tiebing, LU; Yuan, WANG; Bo, CHEN; Xuebao, LI
2018-05-01
The ion flow field on the ground is one of the significant parameters used to evaluate the electromagnetic environment of high voltage direct current (HVDC) power lines. HVDC lines may cross the greenhouses due to the restricted transmission corridors. Under the condition of ion flow field, the dielectric films on the greenhouses will be charged, and the electric fields in the greenhouses may exceed the limit value. Field mills are widely used to measure the ground-level direct current electric fields under the HVDC power lines. In this paper, the charge inversion method is applied to calculate the surface charges on the dielectric film according to the measured ground-level electric fields. The advantages of hiding the field mill probes in the ground are studied. The charge inversion algorithm is optimized in order to decrease the impact of measurement errors. Based on the experimental results, the surface charge distribution on a piece of quadrate dielectric film under a HVDC corona wire is studied. The enhanced effect of dielectric film on ground-level electric field is obviously weakened with the increase of film height. Compared with the total electric field strengths, the normal components of film-free electric fields at the corresponding film-placed positions have a higher effect on surface charge accumulation.
Asymmetric Wormholes via Electrically Charged Lightlike Branes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guendelman, E.; Kaganovich, A.; Nissimov, E.
2010-06-17
We consider a self-consistent Einstein-Maxwell-Kalb-Ramond system in the bulk D = 4 space-time interacting with a variable-tension electrically charged lightlike brane. The latter serves both as a material and charge source for gravity and electromagnetism, as well as it dynamically generates a bulk space varying cosmological constant. We find an asymmetric wormhole solution describing two 'universes' with different spherically symmetric black-hole-type geometries connected through a 'throat' occupied by the lightlike brane. The electrically neutral 'left universe' comprises the exterior region of Schwarzschild-de-Sitter (or pure Schwarzschild) space-time above the inner(Schwarzschild-type) horizon, whereas the electrically charged 'right universe' consists of the exteriormore » Reissner-Nordstroem (or Reissner-Nordstroem-de-Sitter) black hole region beyond the outer Reissner-Nordstroem horizon. All physical parameters of the wormhole are uniquely determined by two free parameters - the electric charge and Kalb-Ramond coupling of the lightlike brane.« less
The report examines the effect of particle charge and electric fields on the filtration of dust by fabrics. Both frictional charging and charging by corona are studied. Charged particles and an electric field driving particles toward the fabric can greatly reduce the initial pres...
Vector electric field measurement via position-modulated Kelvin probe force microscopy
NASA Astrophysics Data System (ADS)
Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.
2017-10-01
High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.
Role of protein surface charge in monellin sweetness.
Xue, Wei-Feng; Szczepankiewicz, Olga; Thulin, Eva; Linse, Sara; Carey, Jannette
2009-03-01
A small number of proteins have the unusual property of tasting intensely sweet. Despite many studies aimed at identifying their sweet taste determinants, the molecular basis of protein sweetness is not fully understood. Recent mutational studies of monellin have implicated positively charged residues in sweetness. In the present work, the effect of overall net charge was investigated using the complementary approach of negative charge alterations. Multiple substitutions of Asp/Asn and Glu/Gln residues radically altered the surface charge of single-chain monellin by removing six negative charges or adding four negative charges. Biophysical characterization using circular dichroism, fluorescence, and two-dimensional NMR demonstrates that the native fold of monellin is preserved in the variant proteins under physiological solution conditions although their stability toward chemical denaturation is altered. A human taste test was employed to determine the sweetness detection threshold of the variants. Removal of negative charges preserves monellin sweetness, whereas added negative charge has a large negative impact on sweetness. Meta-analysis of published charge variants of monellin and other sweet proteins reveals a general trend toward increasing sweetness with increasing positive net charge. Structural mapping of monellin variants identifies a hydrophobic surface predicted to face the receptor where introduced positive or negative charge reduces sweetness, and a polar surface where charges modulate long-range electrostatic complementarity.
Radiation from an Accelerated Point Charge and Non-Inertial Observers
ERIC Educational Resources Information Center
Leonov, A. B.
2012-01-01
It is known that observers comoving with a uniformly accelerated point charge detect the electromagnetic field of a charge as a static electric field. We show that one can find a similar family of observers, which detect the field of a charge as a static electric field, in the general case of arbitrary point-charge motion. We find the velocities…
Electromechanical Properties of Bone Tissue.
NASA Astrophysics Data System (ADS)
Regimbal, Raymond L.
Discrepancies between calculated and empirical properties of bone are thought to be due to a general lack of consideration for the extent and manner(s) with which bone components interact at the molecular level. For a bone component in physiological fluid or whenever two phases are in contact, there is a region between the bulk phases called the electrical double layer which is marked by a separation of electric charges. For the purpose of studying electrical double layer interactions, the method of particle microelectrophoresis was used to characterize bone and its major constituents on the basis of the net charge they bear when suspended in ionic media of physiological relevance. With the data presented as pH versus zeta (zeta ) potential, the figures reveal an isoelectric point (IEP) for bone mineral near pH 8.6, whereas intact and EDTA demineralized bone tissue both exhibit IEPs near pH 5.1. While these data demonstrate the potential for a significant degree of coulombic interaction between the bone mineral and organic constituent double layers, it was also observed that use of inorganic phosphate buffers, as a specific marker for bone mineral, resulted in (1) an immediate reversal, from positive to negative, of the bone mineral zeta potential (2) rendered the zeta potential of intact bone more negative in a manner linearly dependent on both time and temperature and (3) had no affect on demineralized bone (P < 0.01). In agreement with that shown in model protein-hydroxyapatite systems, it is suggested here that inorganic phosphate ions in solution compete with organic acid groups (e.g. carboxyl and phosphate of collagen, sialoprotein, ...) for positively charged sites on the bone mineral surface and effectively uncouple the bone mineral and organic phase double layers. Mechanically, this uncoupling is manifested as a loss of tissue rigidity when monitoring the midspan deflection of bone beams subject to constant load for a 3 day period. While it is thus demonstrated that the major inorganic and organic phases of bone are electromechanically coupled, a thermodynamic consideration of the data suggests that the nature of the bond is to preserve mineral and organic phase electroneutralities by participating in electrical double layer interactions. The results are discussed in terms of bone mechanical modeling, electrokinetic properties, aging, tissue-implant compatibility and the etiologies of bone pathologic conditions.
Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Kłos, Jacek; Lamperski, Stanisław
2017-12-20
The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the differential and integral capacity, the electrode's surface charge density, and the mean electrostatic potential at the electrode's surface.
Design of electric vehicle charging station based on wind and solar complementary power supply
NASA Astrophysics Data System (ADS)
Wang, Li
2018-05-01
Electric vehicles have become a major trend in the development of the automobile industry. Green energy saving is an important feature of their development. At the same time, the related charging facilities construction is also critical. If we improve the charging measures to adapt to its green energy-saving features, it will be to a greater extent to promote its further development. This article will propose a highly efficient green energy-saving charging station designed for the electric vehicles.
Analysis of Surface Charging for a Candidate Solar Sail Mission Using NASCAP-2K
NASA Technical Reports Server (NTRS)
Parker, Linda Neergaard; Minow, Joseph L.; Davis, V. A.; Mandell, Myron; Gardner, Barbara
2005-01-01
The characterization of the electromagnetic interaction for a solar sail in the solar wind environment and identification of viable charging mitigation strategies are critical solar sail mission design tasks. Spacecraft charging has important implications both for science applications and for lifetime and reliability issues of sail propulsion systems. To that end, surface charging calculations of a candidate 150-meter-class solar sail spacecraft for the 0.5 AU solar polar and 1.9 AU LI solar wind environments are performed. A model of the spacecraft with candidate materials having appropriate electrical properties is constructed using Object Toolkit. The spacecraft charging analysis is performed using Nascap-2k. the NASA/AFRL sponsored spacecraft charging analysis tool. Nominal and atypical solar wind environments appropriate for the 0.5 AU and 1.0 AU missions are used to establish current collection of solar wind ions and electrons. Finally, a geostationary orbit environment case is included to demonstrate a bounding example of extreme (negative) charging of a solar sail spacecraft. Results from the charging analyses demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as anticipated from standard guidelines for mitigation of spacecraft charging issues. Examples with dielectric materials exposed to the space environment exhibit differential potentials ranging from a few volts to extreme potentials in the kilovolt range.
Analysis of Surface Charging for a Candidate Solar Sail Mission Using Nascap-2k
NASA Technical Reports Server (NTRS)
Parker, Linda Neergaard; Minow, Joseph I.; Davis, Victoria; Mandell, Myron; Gardner, Barbara
2005-01-01
The characterization of the electromagnetic interaction for a solar sail in the solar wind environment and identification of viable charging mitigation strategies are critical solar sail mission design task. Spacecraft charging has important implications both for science applications and for lifetime and reliability issues of sail propulsion systems. To that end, surface charging calculations of a candidate 150-meter-class solar sail spacecraft for the 0.5 AU solar polar and 1.0 AU L1 solar wind environments are performed. A model of the spacecraft with candidate materials having appropriate electrical properties is constructed using Object Toolkit. The spacecraft charging analysis is performed using Nascap-2k, the NASA/AFRL sponsored spacecraft charging analysis tool. Nominal and atypical solar wind environments appropriate for the 0.5 AU and 1.0 AU missions are used to establish current collection of solar wind ions and electrons. Finally, a geostationary orbit environment case is included to demonstrate a bounding example of extreme (negative) charging of a solar sail spacecraft. Results from the charging analyses demonstrate that minimal differential potentials (and resulting threat of electrostatic discharge) occur when the spacecraft is constructed entirely of conducting materials, as anticipated from standard guidelines for mitigation of spacecraft charging issues. Examples with dielectric materials exposed to the space environment exhibit differential potentials ranging from a few volts to extreme potentials in the kilovolt range.
Delmore, J.E.
1984-05-01
A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reaccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200 to 500/sup 0/C for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.
Dirac and non-Dirac conditions in the two-potential theory of magnetic charge
NASA Astrophysics Data System (ADS)
Scott, John; Evans, Timothy J.; Singleton, Douglas; Dzhunushaliev, Vladimir; Folomeev, Vladimir
2018-05-01
We investigate the Cabbibo-Ferrari, two-potential approach to magnetic charge coupled to two different complex scalar fields, Φ _1 and Φ _2, each having different electric and magnetic charges. The scalar field, Φ _1, is assumed to have a spontaneous symmetry breaking self-interaction potential which gives a mass to the "magnetic" gauge potential and "magnetic" photon, while the other "electric" gauge potential and "electric" photon remain massless. The magnetic photon is hidden until one reaches energies of the order of the magnetic photon rest mass. The second scalar field, Φ _2, is required in order to make the theory non-trivial. With only one field one can always use a duality rotation to rotate away either the electric or magnetic charge, and thus decouple either the associated electric or magnetic photon. In analyzing this system of two scalar fields in the Cabbibo-Ferrari approach we perform several duality and gauge transformations, which require introducing non-Dirac conditions on the initial electric and magnetic charges. We also find that due to the symmetry breaking the usual Dirac condition is altered to include the mass of the magnetic photon. We discuss the implications of these various conditions on the charges.
2014-01-01
Since cell membranes are weak sources of electrostatic fields, this ECG interpretation relies on the analogy between cells and electrets. It is here assumed that cell-bound electric fields unite, reach the body surface and the surrounding space and form the thoracic electric field that consists from two concentric structures: the thoracic wall and the heart. If ECG leads measure differences in electric potentials between skin electrodes, they give scalar values that define position of the electric field center along each lead. Repolarised heart muscle acts as a stable positive electric source, while depolarized heart muscle produces much weaker negative electric field. During T-P, P-R and S-T segments electric field is stable, only subtle changes are detectable by skin electrodes. Diastolic electric field forms after ventricular depolarization (T-P segments in the ECG recording). Telediastolic electric field forms after the atria have been depolarized (P-Q segments in the ECG recording). Systolic electric field forms after the ventricular depolarization (S-T segments in the ECG recording). The three ECG waves (P, QRS and T) can then be described as unbalanced transitions of the heart electric field from one stable configuration to the next and in that process the electric field center is temporarily displaced. In the initial phase of QRS, the rapidly diminishing septal electric field makes measured potentials dependent only on positive charges of the corresponding parts of the left and the right heart that lie within the lead axes. If more positive charges are near the "DOWN" electrode than near the "UP" electrode, a Q wave will be seen, otherwise an R wave is expected. Repolarization of the ventricular muscle is dampened by the early septal muscle repolarization that reduces deflection of T waves. Since the "UP" electrode of most leads is near the usually larger left ventricle muscle, T waves are in these leads positive, although of smaller amplitude and longer duration than the QRS wave in the same lead. The proposed interpretation is applied to bundle branch blocks, fascicular (hemi-) blocks and changes during heart muscle ischemia. PMID:24506945
Influence of aspartic acid and lysine on the uptake of gold nanoparticles in rice.
Ye, Xinxin; Li, Hongying; Wang, Qingyun; Chai, Rushan; Ma, Chao; Gao, Hongjian; Mao, Jingdong
2018-02-01
The interactions between plants and nanomaterials (NMs) can shed light on the environmental consequences of nanotechnology. We used the major crop plant rice (Oryza sativa L.) to investigate the uptake of gold nanoparticles (GNPs) coated with either negatively or positively charged ligands, over a 5-day period, in the absence or presence of one of two amino acids, aspartic acid (Asp) or lysine (Lys), acting as components of rice root exudates. The presence of Asp or Lys influenced the uptake and distribution of GNPs in rice, which depended on the electrical interaction between the coated GNPs and each amino acid. When the electrical charge of the amino acid was the same as that of the surface ligand coated onto the GNPs, the GNPs could disperse well in nutrient solution, resulting in increased uptake of GNPs into rice tissue. The opposite was true where the charge on the surface ligand was different from that on the amino acid, resulting in agglomeration and reduced Au uptake into rice tissue. The behavior of GNPs in the hydroponic nutrient solution was monitored in terms of agglomeration, particle size distribution, and surface charge in the presence and absence of Asp or Lys, which depended strongly on the electrostatic interaction. Results from this study indicated that the species of root exudates must be taken into account in assessing the bioavailability of nanomaterials to plants. Copyright © 2017 Elsevier Inc. All rights reserved.
Analysis of Fast Charging Station Network for Electrified Ride-Hailing Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Eric W; Rames, Clement L; Kontou, Eleftheria
Today's electric vehicle (EV) owners charge their vehicles mostly at home and seldom use public direct current fast charger (DCFCs), reducing the need for a large deployment of DCFCs for private EV owners. However, due to the emerging interest among transportation network companies to operate EVs in their fleet, there is great potential for DCFCs to be highly utilized and become economically feasible in the future. This paper describes a heuristic algorithm to emulate operation of EVs within a hypothetical transportation network company fleet using a large global positioning system data set from Columbus, Ohio. DCFC requirements supporting operation ofmore » EVs are estimated using the Electric Vehicle Infrastructure Projection tool. Operation and installation costs were estimated using real-world data to assess the economic feasibility of the recommended fast charging stations. Results suggest that the hypothetical transportation network company fleet increases daily vehicle miles traveled per EV with less overall down time, resulting in increased demand for DCFC. Sites with overhead service lines are recommended for hosting DCFC stations to minimize the need for trenching underground service lines. A negative relationship was found between cost per unit of energy and fast charging utilization, underscoring the importance of prioritizing utilization over installation costs when siting DCFC stations. Although this preliminary analysis of the impacts of new mobility paradigms on alternative fueling infrastructure requirements has produced several key results, the complexity of the problem warrants further investigation.« less
NASA Astrophysics Data System (ADS)
Boggs, Levi D.; Liu, Ningyu; Splitt, Michael; Lazarus, Steven; Glenn, Chad; Rassoul, Hamid; Cummer, Steven A.
2016-01-01
In this study we analyze the discharge morphologies of five confirmed negative sprite-parent discharges and the associated charge structures of the thunderstorms that produced them. The negative sprite-parent lightning took place in two thunderstorms that were associated with a tropical disturbance in east central and south Florida. The first thunderstorm, which moved onshore in east central Florida, produced four of the five negative sprite-parent discharges within a period of 17 min, as it made landfall from the Atlantic Ocean. These negative sprite-parents were composed of bolt-from-the-blue (BFB), hybrid intracloud-negative cloud-to-ground (IC-NCG), and multicell IC-NCGs discharges. The second thunderstorm, which occurred inland over south Florida, produced a negative sprite-parent that was a probable hybrid IC-NCG discharge and two negative gigantic jets (GJs). Weakened upper positive charge with very large midlevel negative charge was inferred for both convective cells that initiated the negative-sprite-parent discharges. Our study suggests tall, intense convective systems with high wind shear at the middle to upper regions of the cloud accompanied by low cloud-to-ground (CG) flash rates promote these charge structures. The excess amount of midlevel negative charge results in these CG discharges transferring much more charge to ground than typical negative CG discharges. We find that BFB discharges prefer an asymmetrical charge structure that brings the negative leader exiting the upper positive charge region closer to the lateral positive screening charge layer. This may be the main factor in determining whether a negative leader exiting the upper positive region of the thundercloud forms a BFB or GJ.
Anisotropic charged stellar models in Generalized Tolman IV spacetime
NASA Astrophysics Data System (ADS)
Murad, Mohammad Hassan; Fatema, Saba
2015-01-01
With the presence of electric charge and pressure anisotropy some anisotropic stellar models have been developed. An algorithm recently presented by Herrera et al. (Phys. Rev. D 77, 027502 (2008)) to generate static spherically symmetric anisotropic solutions of Einstein's equations has been used to derive relativistic anisotropic charged fluid spheres. In the absence of pressure anisotropy the fluid spheres reduce to some well-known Generalized Tolman IV exact metrics. The astrophysical significance of the resulting equations of state (EOS) for a particular case (Wyman-Leibovitz-Adler) for the anisotropic charged matter distribution has been discussed. Physical analysis shows that the relativistic stellar structure obtained in this work may reasonably model an electrically charged compact star, whose energy density associated with the electric fields is on the same order of magnitude as the energy density of fluid matter itself like electrically charged bare strange quark stars.
Creating and optimizing interfaces for electric-field and photon-induced charge transfer.
Park, Byoungnam; Whitham, Kevin; Cho, Jiung; Reichmanis, Elsa
2012-11-27
We create and optimize a structurally well-defined electron donor-acceptor planar heterojunction interface in which electric-field and/or photon-induced charge transfer occurs. Electric-field-induced charge transfer in the dark and exciton dissociation at a pentacene/PCBM interface were probed by in situ thickness-dependent threshold voltage shift measurements in field-effect transistor devices during the formation of the interface. Electric-field-induced charge transfer at the interface in the dark is correlated with development of the pentacene accumulation layer close to PCBM, that is, including interface area, and dielectric relaxation time in PCBM. Further, we demonstrate an in situ test structure that allows probing of both exciton diffusion length and charge transport properties, crucial for optimizing optoelectronic devices. Competition between the optical absorption length and the exciton diffusion length in pentacene governs exciton dissociation at the interface. Charge transfer mechanisms in the dark and under illumination are detailed.
Charge and energy minimization in electrical/magnetic stimulation of nervous tissue
NASA Astrophysics Data System (ADS)
Jezernik, Sašo; Sinkjaer, Thomas; Morari, Manfred
2010-08-01
In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.
Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.
Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred
2010-08-01
In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.
Mechanism of the free charge carrier generation in the dielectric breakdown
NASA Astrophysics Data System (ADS)
Rahim, N. A. A.; Ranom, R.; Zainuddin, H.
2017-12-01
Many studies have been conducted to investigate the effect of environmental, mechanical and electrical stresses on insulator. However, studies on physical process of discharge phenomenon, leading to the breakdown of the insulator surface are lacking and difficult to comprehend. Therefore, this paper analysed charge carrier generation mechanism that can cause free charge carrier generation, leading toward surface discharge development. Besides, this paper developed a model of surface discharge based on the charge generation mechanism on the outdoor insulator. Nernst’s Planck theory was used in order to model the behaviour of the charge carriers while Poisson’s equation was used to determine the distribution of electric field on insulator surface. In the modelling of surface discharge on the outdoor insulator, electric field dependent molecular ionization was used as the charge generation mechanism. A mathematical model of the surface discharge was solved using method of line technique (MOL). The result from the mathematical model showed that the behaviour of net space charge density was correlated with the electric field distribution.
A Novel Method for Measuring Electrical Conductivity of High Insulating Oil Using Charge Decay
NASA Astrophysics Data System (ADS)
Wang, Z. Q.; Qi, P.; Wang, D. S.; Wang, Y. D.; Zhou, W.
2016-05-01
For the high insulating oil, it is difficult to measure the conductivity precisely using voltammetry method. A high-precision measurementis proposed for measuring bulk electrical conductivity of high insulating oils (about 10-9--10-15S/m) using charge decay. The oil is insulated and charged firstly, and then grounded fully. During the experimental procedure, charge decay is observed to show an exponential law according to "Ohm" theory. The data of time dependence of charge density is automatically recorded using an ADAS and a computer. Relaxation time constant is fitted from the data using Gnuplot software. The electrical conductivity is calculated using relaxation time constant and dielectric permittivity. Charge density is substituted by electric potential, considering charge density is difficult to measure. The conductivity of five kinds of oils is measured. Using this method, the conductivity of diesel oil is easily measured to beas low as 0.961 pS/m, as shown in Fig. 5.
Alternative Fuels Data Center: How Do All-Electric Cars Work?
charge while charging the pack. Power electronics controller: This unit manages the flow of electrical of the engine, electric motor, power electronics, and other components. Traction battery pack: Stores
2015-01-03
Dissociation in Perovskite Solar Cells Yu-Che Hsiao, Ting Wu, Mingxing Li, and Bin Hu Advanced Materials, DOI: 10.1002/adma.201405946, 2015 2...Electrode Interface and Donor/Acceptor Interface via Charge Dissociation in Organic Solar Cells at Device-Operating Condition Ting Wu, Yu-Che Hsiao...exchange energy at donor:acceptor interfaces in organic solar cells Mingxing Li, Hongfeng Wang, Lei He, Huidong Zang, Hengxing Xu, and Bin Hu Appl
An Analysis of Two Thunderstorms Producing Five Negative Sprites on 12 September 2014
NASA Astrophysics Data System (ADS)
Boggs, L.; Liu, N.; Splitt, M. E.; Lazarus, S. M.; Cummer, S. A.; Rassoul, H.
2015-12-01
We present a detailed analysis of the thunderstorms and the parent lightning discharge morphologies of five confirmed negative sprites taking place in two different thunderstorms. These two thunderstorms took place in east-central and south Florida on 12 September 2014. We utilized several lightning location networks, remote magnetic field measurements, dual polarization radar, and balloon borne soundings in our analysis. Each parent discharge was immediately preceded by intra-cloud (IC) discharges between the mid-level negative and upper positive charge regions. This either allowed a second upward negative leader to escape the upper positive charge region, or encouraged a downward negative leader to be initiated and connect with ground. The discharges found in this study support the findings of Lu et al., 2012 [JGR,117, D04212, 2012] that negative sprite-parent lightning consists primarily of hybrid intra-cloud negative cloud-to-ground (IC-NCG) and bolt-from-the-blue (BFB) lightning. Our work finds these unique discharges form in thunderstorms that have an excess of mid-level negative charge and weakened upper positive charge. Due to this charge structure, these unusual discharges transfer more charge to the ground than typical negative cloud-to-ground discharges. Our study suggests that the key difference separating bolt-from-the-blue and gigantic jet discharges is an asymmetric charge structure. This acts to bring the negative leader exiting the thundercloud closer to the lateral positive screening layer, encouraging the negative leader to turn towards ground. This investigation reveals IC discharges that involve multiple convective cells and come to ground as a negative CG discharge, a breed of hybrid IC-NCG discharges, also transfer more negative charge to ground than typical negative CG discharges and are able to initiate negative sprites. From this work, the charge structures mentioned above resulted from tall, intense convective cells with low CG flash rates with high wind shear in the mid to upper regions of the cloud. This acted to create a large reservoir of mid-level negative charge and create a general asymmetry to the charge structure. The wind shear in the upper regions also acted to weaken the upper positive charge by turbulent mixing with the upper negative screening charge layer.
NASA Astrophysics Data System (ADS)
Wang, Yu; Zhao, Yan-Jiao; Huang, Ji-Ping
2012-07-01
The detection of macromolecular conformation is particularly important in many physical and biological applications. Here we theoretically explore a method for achieving this detection by probing the electricity of sequential charged segments of macromolecules. Our analysis is based on molecular dynamics simulations, and we investigate a single file of water molecules confined in a half-capped single-walled carbon nanotube (SWCNT) with an external electric charge of +e or -e (e is the elementary charge). The charge is located in the vicinity of the cap of the SWCNT and along the centerline of the SWCNT. We reveal the picosecond timescale for the re-orientation (namely, from one unidirectional direction to the other) of the water molecules in response to a switch in the charge signal, -e → +e or +e → -e. Our results are well understood by taking into account the electrical interactions between the water molecules and between the water molecules and the external charge. Because such signals of re-orientation can be magnified and transported according to Tu et al. [2009 Proc. Natl. Acad. Sci. USA 106 18120], it becomes possible to record fingerprints of electric signals arising from sequential charged segments of a macromolecule, which are expected to be useful for recognizing the conformations of some particular macromolecules.
Zakim, D; Eibl, H
1992-07-05
Studies of the mechanism of lipid-induced regulation of the microsomal enzyme UDP-glucuronosyltransferase have been extended by examining the influence of charge within the polar region on the ability of lipids to activate delipidated pure enzyme. The effects of net negative charge, of charge separation in phosphocholine, and of the distribution of charge in the polar region of lipids were studied using the GT2p isoform isolated from pig liver. Prior experiments have shown that lipids with net negative charge inhibit the enzyme (Zakim, D., Cantor, M., and Eibl, H. (1988) J. Biol. Chem. 263, 5164-5169). The current experiments show that the extent of inhibition on a molar basis increases as the net negative charge increases from -1 to -2. The inhibitory effect of negatively charged lipids is on the functional state of the enzyme and is not due to electrostatic repulsion of negatively charged substrates of the enzyme. Although the inhibitory effect of net negative charge is removed when negative charge is balanced by a positive charge due to a quaternary nitrogen, neutrality of the polar region is not a sufficient condition for activation of the enzyme. In addition to a balance of charge between Pi and the quaternary nitrogen, the distance between the negative and positive charges and the orientation of the dipole created by them are critical for activation of GT2p. The negative and positive charges must be separated by the equivalent of three -CH2- groups for optimal activation by a lipid. Shortening this distance by one -CH2- unit leads to a lipid that is ineffective in activating the enzyme. Reversal of the orientation of the dipole in which the negative charge is on the polymethylene side of the lipid-water interface and the positive charge extends into water also produces a lipid that is not effective for activating GT2p. On the other hand, lipids with phosphoserine as the polar region, which has the "normal" P-N distance but carries a net negative charge, do not inhibit GT2p. This result again illustrates the importance of the dipole of phosphocholine for modulating the functional state of GT2p.
NASA Astrophysics Data System (ADS)
Gnann, Till; Klingler, Anna-Lena; Kühnbach, Matthias
2018-06-01
Plug-in electric vehicles are the currently favoured option to decarbonize the passenger car sector. However, a decarbonisation is only possible with electricity from renewable energies and plug-in electric vehicles might cause peak loads if they started to charge at the same time. Both these issues could be solved with coordinated load shifting (demand response). Previous studies analyzed this research question by focusing on private vehicles with domestic and work charging infrastructure. This study additionally includes the important early adopter group of commercial fleet vehicles and reflects the impact of domestic, commercial, work and public charging. For this purpose, two models are combined. In a comparison of three scenarios, we find that charging of commercial vehicles does not inflict evening load peaks in the same magnitude as purely domestic charging of private cars does. Also for private cars, charging at work occurs during the day and may reduce the necessity of load shifting while public charging plays a less important role in total charging demand as well as load shifting potential. Nonetheless, demand response reduces the system load by about 2.2 GW or 2.8% when domestic and work charging are considered compared to a scenario with only domestic charging.
Assowe, O; Politano, O; Vignal, V; Arnoux, P; Diawara, B; Verners, O; van Duin, A C T
2012-12-06
Corrosion processes occurring in aqueous solutions are critically dependent upon the interaction between the metal electrode and the solvent. In this work, the interaction of a nickel substrate with water molecules has been investigated using reactive force field (ReaxFF) molecular dynamics simulations. This approach was originally developed by van Duin and co-workers to study hydrocarbon chemistry and the catalytic properties of organic compounds. To our knowledge, this method has not previously been used to study the corrosion of nickel. In this work, we studied the interaction of 480 molecules of water (ρ = 0.99 g·cm(-3)) with Ni(111) surfaces at 300 K. The results showed that a water "bilayer" was adsorbed on the nickel surface. In the absence of an applied electric field, no dissociation of water was observed. However, the nickel atoms at the surface were charged positively, whereas the first water layer was charged negatively, indicating the formation of an electric double layer. To study the corrosion of nickel in pure water, we introduced an external electric field between the metal and the solution. The electric field intensity varied between 10 and 20 MeV/cm. The presence of this electric field led to oxidation of the metal surface. The structural and morphological differences associated with the growth of this oxide film in the presence of the electric field were evaluated. The simulated atomic trajectories were used to analyze the atomic displacement during the reactive process. The growth of the oxide scale on the nickel surface was primarily due to the movement of anions toward the interior of the metal substrate and the migration of nickel toward the free surface. We found that increasing the electric field intensity sped up the corrosion of nickel. The results also showed that the oxide film thickness increased linearly with increasing electric field intensity.
Solar photovoltaic charging of lithium-ion batteries
NASA Astrophysics Data System (ADS)
Gibson, Thomas L.; Kelly, Nelson A.
Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.
Energy use behaviour: A window of opportunity
NASA Astrophysics Data System (ADS)
Roy, Deborah
2017-06-01
The environmental impact of electric vehicles depends on the kind of energy used to charge them. They are typically charged at peak times, when extra fossil fuels are needed to meet energy demands. A study shows that e-mails targeting electric vehicle charging for new owners can be effective for promoting greener charging behaviours.
Utility Company Electric Vehicle (EV) Charging Load Projection Requirement The Public Utilities Regulatory Authority requires electric distribution companies to integrate EV charging load projections into the EV charging load projections for the company's distribution planning. (Reference Connecticut
Reducing Soot in Diesel Exhaust
NASA Technical Reports Server (NTRS)
Bellan, J.
1984-01-01
Electrically charged fuel improves oxidation. Fuel injection system reduces amount of soot formed in diesel engines. Spray injector electrically charges fuel droplets as they enter cylinder. Charged droplets repel each other, creating, dilute fuel mist easily penetrated by oxygen in cylinder.
Color control through FRET efficiency modulation using CDI (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wolowelsky, Karni; Guyes, Eric; Rubin, Shimon; Suss, Matthew; Bercovici, Moran; Rotschild, Carmel
2017-02-01
Although much progress was made in light emitting devices, the ability to electrically control their spectral emission remains limited. We will present a novel approach and experimental results for dynamic color control, by electrically modulating the non-radiative Forster resonance energy transfer (FRET) efficiency between donor and acceptor dyes in a solution. FRET efficiency depends on the 6th power of the distance between donor and acceptor dye molecules, and thus, it is sensitive to variations in acceptor's concentration. Controlled acceptor concentrations could be achieved by attracting or repelling ionic dyes from the electrodes using a capacitive deionization (CDI) cell, with high surface area porous electrodes. This approach to dynamic color control may open new directions in 100% fill-factor displays, and can be expanded to energy saving applications such as controlling building's external wall emissivity. We studied the modulation of a single dye emission using a CDI cell with negatively charged Fluorescein Sodium Salt in aquatic solution. Photoluminescence was measured along few charging-discharging CDI cycles and showed the ability to control extensive optical response through CDI. We experimented with two types of FRET-pair dyes: a) anion-cation, where the acceptor and the donor ions are oppositely charged, and b) zwitterion and ion, where the donor is neutral. We found that electrical control on FRET in aquatic solution is weak, due to hydrophobic attractive interaction between the acceptor and the donor. In order to avoid this effect, we are experimenting FRET control in organic solvents. These results will be presented in the talk.
Distorted secretory granule composition in mast cells with multiple protease deficiency.
Grujic, Mirjana; Calounova, Gabriela; Eriksson, Inger; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Tchougounova, Elena; Kjellén, Lena; Pejler, Gunnar
2013-10-01
Mast cells are characterized by an abundance of secretory granules densely packed with inflammatory mediators such as bioactive amines, cytokines, serglycin proteoglycans with negatively charged glycosaminoglycan side chains of either heparin or chondroitin sulfate type, and large amounts of positively charged proteases. Despite the large biological impact of mast cell granules and their contents on various pathologies, the mechanisms that regulate granule composition are incompletely understood. In this study, we hypothesized that granule composition is dependent on a dynamic electrostatic interrelationship between different granule compounds. As a tool to evaluate this possibility, we generated mice in which mast cells are multideficient in a panel of positively charged proteases: the chymase mouse mast cell protease-4, the tryptase mouse mast cell protease-6, and carboxypeptidase A3. Through a posttranslational effect, mast cells from these mice additionally lack mouse mast cell protease-5 protein. Mast cells from mice deficient in individual proteases showed normal morphology. In contrast, mast cells with combined protease deficiency displayed a profound distortion of granule integrity, as seen both by conventional morphological criteria and by transmission electron microscopy. An assessment of granule content revealed that the distorted granule integrity in multiprotease-deficient mast cells was associated with a profound reduction of highly negatively charged heparin, whereas no reduction in chondroitin sulfate storage was observed. Taken together with previous findings showing that the storage of basic proteases conversely is regulated by anionic proteoglycans, these data suggest that secretory granule composition in mast cells is dependent on a dynamic interrelationship between granule compounds of opposite electrical charge.
NASA Astrophysics Data System (ADS)
Ayarcı Kuruoğlu, Neslihan; Özdemir, Orhan; Bozkurt, Kutsal; Sundaram, Suresh; Salvestrini, Jean-Paul; Ougazzaden, Abdallah; Gaimard, Quentin; Belahsene, Sofiane; Merghem, Kamel; Ramdane, Abderrahim
2017-12-01
The electrical response of gallium nitride (GaN), produced through metal-organic chemical vapor deposition in a p-i-n structure was investigated through temperature-dependent current-voltage (I-V) and admittance measurement. The I-V curves showed double diode behavior together with several distinct regions in which trap-assisted tunnelling current has been identified at low and moderate forward/reverse direction and space charge limited current (SCLC) at large forward/reverse bias. The value of extracted energy (˜200 meV in forward and ˜70 meV in reverse direction) marked the tunnelling entity as electron and heavy hole in the present structure. These values were also obtained in space charge limited regime and considered as minority carriers which might originate the experimentally observed negative capacitance issue at low frequencies over the junction under both forward and reverse bias directions. Analytically derived expression for the admittance in the revised versions of SCLC model was also applied to explain the inductance effect, yielding good fits to the experimentally measured admittance data.
NASA Astrophysics Data System (ADS)
Krichene, A.; Boujelben, W.; Mukherjee, S.; Shah, N. A.; Solanki, P. S.
2018-03-01
We have investigated the effect of charge ordering and phase separation on the electrical and magnetotransport properties of La0.4Eu0.1Ca0.5MnO3 polycrystalline sample. Temperature dependence of resistivity shows a metal-insulator transition at transition temperature Tρ. A hysteretic behavior is observed for zero field resistivity curves with Tρ = 128 K on cooling process and Tρ = 136 K on warming process. Zero field resistivity curves follow Zener polynomial law in the metallic phase with unusual n exponent value ∼9. Presence of resistivity minimum at low temperatures has been ascribed to the coulombic electron-electron scattering process. Resistivity modification due to the magnetic field cycling testifies the presence of the training effect. Magnetization and resistivity appear to be highly correlated. Magnetoresistive study reveals colossal values of negative magnetoresistance reaching about 75% at 132 K under only 2T applied field. Colossal values of magnetoresistance suggest the possibility of using this sample for magnetic field sensing and spintronic applications.
Conduction mechanism of leakage current due to the traps in ZrO2 thin film
NASA Astrophysics Data System (ADS)
Seo, Yohan; Lee, Sangyouk; An, Ilsin; Song, Chulgi; Jeong, Heejun
2009-11-01
In this work, a metal-oxide-semiconductor capacitor with zirconium oxide (ZrO2) gate dielectric was fabricated by an atomic layer deposition (ALD) technique and the leakage current characteristics under negative bias were studied. From the result of current-voltage curves there are two possible conduction mechanisms to explain the leakage current in the ZrO2 thin film. The dominant mechanism is the space charge limited conduction in the high-electric field region (1.5-5.0 MV cm-1) while the trap-assisted tunneling due to the existence of traps is prevailed in the low-electric field region (0.8-1.5 MV cm-1). Conduction caused by the trap-assisted tunneling is found from the experimental results of a weak temperature dependence of current, and the trap barrier height is obtained. The space charge limited conduction is evidenced, for different temperatures, by Child's law dependence of current density versus voltage. Child's law dependence can be explained by considering a single discrete trapping level and we can obtain the activation energy of 0.22 eV.
Heterogeneous Electrochemical Immunoassay of Hippuric Acid on the Electrodeposited Organic Films
Choi, Young-Bong; Kim, Nam-Hyuk; Kim, Seung-Hoi; Tae, Gun-Sik; Kim, Hyug-Han
2014-01-01
By directly coordinating hippuric acid (HA) to the ferrate (Fe) as an electron transfer mediator, we synthesized a Fe-HA complex, which shows a good electrochemical signal and thus enables the electrochemical immunoanalysis for HA. We electrodeposited organic films containing imidazole groups on the electrode surface and then bonded Ni ion (positive charge) to induce immobilization of Fe-HA (negative charge) through the electrostatic interaction. The heterogeneous competitive immunoassay system relies on the interaction between immobilized Fe-HA antigen conjugate and free HA antigen to its antibody (anti-HA). The electric signal becomes weaker due to the hindered electron transfer reaction when a large-sized HA antibody is bound onto the Fe-HA. However, in the presence of HA, the electric signal increases because free HA competitively reacts with the HA antibody prior to actual reaction and thus prevents the HA antibody from interacting with Fe-HA at the electrode surface. This competition reaction enabled an electrochemical quantitative analysis of HA concentration with a detection limit of 0.5 μg mL−1, and thus allowed us to develop a simple and rapid electrochemical immunosensor. PMID:25313491
Monoenergetic source of kilodalton ions from Taylor cones of ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larriba, C.; Castro, S.; Fernandez de la Mora, J.
2007-04-15
The ionic liquid ion sources (ILISs) recently introduced by Lozano and Martinez Sanchez [J. Colloid Interface Sci. 282, 415 (2005)], based on electrochemically etched tungsten tips as emitters for Taylor cones of ionic liquids (ILs), have been tested with ionic liquids [A{sup +}B{sup -}] of increasing molecular weight and viscosity. These ILs have electrical conductivities well below 1 S/m and were previously thought to be unsuitable to operate in the purely ionic regime because their Taylor cones produce mostly charged drops from conventional capillary tube sources. Strikingly, all the ILs tried on ILIS form charged beams composed exclusively of smallmore » ions and cluster ions A{sup +}(AB){sub n} or B{sup -}(AB){sub n}, with abundances generally peaking at n=1. Particularly interesting are the positive and negative ion beams produced from the room temperature molten salts 1-methyl-3-pentylimidazolium tris(pentafluoroethyl) trifluorophosphate (C{sub 5}MI-(C{sub 2}F{sub 5}){sub 3}PF{sub 3}) and 1-ethyl-3-methylimidazolium bis(pentafluoroethyl) sulfonylimide (EMI-(C{sub 2}F{sub 5}SO{sub 3}){sub 2}N). We extend to these heavier species the previous conclusions from Lozano and Martinez Sanchez on the narrow energy distributions of the ion beams. In combination with suitable ILs, this source yields nanoamphere currents of positive and negative monoenergetic molecular ions with masses exceeding 2000 amu. Potential applications are in biological secondary ion mass spectrometry, chemically assisted high-resolution ion beam etching, and electrical propulsion. Advantages of the ILISs versus similar liquid metal ion sources include the possibility to form negative as well as positive ion beams and a much wider range of ion compositions and molecular masses.« less
NASA Astrophysics Data System (ADS)
Song, Z. G.; Gong, H.; Ong, C. K.
1997-06-01
A scanning electron microscope (SEM) mirror-image method (MIM) is employed to investigate the charging behaviour of polarized polymethylmethacrylate (PMMA) under electron-beam irradiation. An ellipsoid is used to model the trapped charge distribution and a fitting method is employed to calculate the total amount of the trapped charge and its distribution parameters. The experimental results reveal that the charging ability decreases with increasing applied electric field, which polarizes the PMMA sample, whereas the trapped charge distribution is elongated along the direction of the applied electric field and increases with increasing applied electric field. The charges are believed to be trapped in some localization states, of activation energy and radius estimated to be about 19.6 meV and 0022-3727/30/11/004/img6, respectively.
Removal of humic acid by a new type of electrical hollow-fiber microfiltration (E-HFMF)
NASA Astrophysics Data System (ADS)
Shang, Ran; Deng, Hui-ping; Hu, Jing-yi
2010-11-01
Low pressure membrane filtration, such as microfiltration, was widely used in the field of drinking water purification in the past few decades. Traditional microfiltration membranes are not efficient enough in the removal of natural organic matters (NOM) from raw water. Moreover, they tend to be fouled by the NOM and the filtration age of the membranes is thus shrinked. To tackle these problems, a new type of electrical hollow-fiber microfiltration module (E-HFMF) was designed. In the E-HFMF module, the hollow-fiber microfiltration membranes were placed into the radialized electrical field which functioned from the centre to the exterior of the cylindrical cavity. The main goal of the present study was to evaluate the efficiency of E-HFMF to remove the humic acid (HA, one of the main components of NOM). According to the parallel tests compared with the traditional microfiltration, the removal rate of humic acid was raised to 70%˜85% in terms of UV-254 and to 60%˜75% in terms of DOC when filtrating with the E-HFMF, while the removal rates of humic acid were 10%˜20% and 1%˜10% respectively when filtrating with the traditional microfiltration. The negative charged humic acid moved to the anode because of the electrophoresis, so few humic acid could be able to permeate through the membrane. The electrophoresis mobility of the humic acid permeating through the traditional microfiltration decreased by 19%, while the same index from the E-HFMF decreased by 75%. This indicated that the electrophoresis played a significant role on removing the humic acid. According to the gel permeate chromatograph analysis, humic acid aggregated in an electric field and thus forms loose and permeable cake layer on the membrane surface, which also relieved membrane fouling. Meanwhile, the negative charged humic acid migrating to the anode at the center minimized the deposition onto the membrane surface, and eliminated the membrane fouling as a result. During the E-HFMF filtration, the humic acid was not oxidized observably in the electrical field, according to the FT-IR analysis.
Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser
NASA Astrophysics Data System (ADS)
Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki
2012-12-01
An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact potential difference between the PMMA and the stainless steel. Furthermore, the current in air using the dual coaxial glass pipes was less than that using the ejector.
Modeling, hybridization, and optimal charging of electrical energy storage systems
NASA Astrophysics Data System (ADS)
Parvini, Yasha
The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems analytically. Efficiency analysis for constant power (CP) and optimal charging strategies under different charging times (slow and fast) was performed. In case of the lithium ion battery, the model included the electronic as well as polarization resistance. Furthermore, in order to investigate the influence of temperature on the internal resistance of the lithium ion battery, the optimal charging problem for a three state electro-thermal model was solved using dynamic programming (DP). The ability to charge electric vehicles is a pace equivalent to fueling a gasoline car will be a game changer in the widespread acceptability and feasibility of the electric vehicles. Motivated by the knowledge gained from the optimal charging study, the challenges facing the fast charging of lithium ion batteries are investigated. In this context, the suitable models for the study of fast charging, high rate anode materials, and different charging strategies are studied. The side effects of fast charging such as lithium plating and mechanical failure are also discussed. This dissertation has targeted some of the most challenging questions in the field of electrical energy storage systems and the reported results are applicable to a wide range of applications such as in electronic gadgets, medical devices, electricity grid, and electric vehicles.