Science.gov

Sample records for negative estrogen receptor

  1. Modern reproductive patterns associated with estrogen receptor positive but not negative breast cancer susceptibility

    PubMed Central

    Aktipis, C. Athena; Ellis, Bruce J.; Nishimura, Katherine K.; Hiatt, Robert A.

    2015-01-01

    It has long been accepted that modern reproductive patterns are likely contributors to breast cancer susceptibility because of their influence on hormones such as estrogen and the importance of these hormones in breast cancer. We conducted a meta-analysis to assess whether this ‘evolutionary mismatch hypothesis’ can explain susceptibility to both estrogen receptor positive (ER-positive) and estrogen receptor negative (ER-negative) cancer. Our meta-analysis includes a total of 33 studies and examines parity, age of first birth and age of menarche broken down by estrogen receptor status. We found that modern reproductive patterns are more closely linked to ER-positive than ER-negative breast cancer. Thus, the evolutionary mismatch hypothesis for breast cancer can account for ER-positive breast cancer susceptibility but not ER-negative breast cancer. PMID:25389105

  2. Nonclassical estrogen receptor alpha signaling mediates negative feedback in the female mouse reproductive axis.

    PubMed

    Glidewell-Kenney, C; Hurley, L A; Pfaff, L; Weiss, J; Levine, J E; Jameson, J L

    2007-05-01

    Ovarian estrogen exerts both positive and negative feedback control over luteinizing hormone (LH) secretion during the ovulatory cycle. Estrogen receptor (ER) alpha but not ERbeta knockout mice lack estrogen feedback. Thus, estrogen feedback appears to be primarily mediated by ERalpha. However, it is now recognized that, in addition to binding to estrogen response elements (EREs) in DNA to alter target gene transcription, ERalpha signals through ERE-independent or nonclassical pathways, and the relative contributions of these pathways in conveying estrogen feedback remain unknown. Previously we created a knockin mouse model expressing a mutant form of ERalpha (AA) with ablated ERE-dependent but intact ERE-independent activity. Breeding this allele onto the ERalpha-null (-/-) background, we examine the ability of ERE-independent ERalpha signaling pathways to convey estrogen feedback regulation of the female hypothalamic-pituitary axis in vivo. ERalpha-/AA exhibited 69.9% lower serum LH levels compared with ERalpha-/- mice. Additionally, like wild type, ERalpha-/AA mice exhibited elevated LH after ovariectomy (OVX). Furthermore, the post-OVX rise in serum LH was significantly suppressed by estrogen treatment in OVX ERalpha-/AA mice. However, unlike wild type, both ERalpha-/AA and ERalpha-/- mice failed to exhibit estrous cyclicity, spontaneous ovulation, or an afternoon LH surge response to estrogen. These results indicate that ERE-independent ERalpha signaling is sufficient to convey a major portion of estrogen's negative feedback actions, whereas positive feedback and spontaneous ovulatory cyclicity require ERE-dependent ERalpha signaling.

  3. Estrogen receptor beta participate in the regulation of metabolizm of extracellular matrix in estrogen alpha negative breast cancer.

    PubMed

    Leśniewska, Monika; Miltyk, Wojciech; Swiatecka, Jolanta; Tomaszewska, Małgorzata; Kuźmicki, Mariusz; Pałka, Jerzy; Wołczyński, Sławomir

    2009-01-01

    The biology of breast cancer is closely releted to sex steroid hormones. Estrogen receptor beta is overexpressed in around 70% breast cancer cases, referrd to as "ER positive". Estrogens bind to estrogen receptor and stimulate the transcription of genes involved in control of cell proliferation. Moreover, estrogens may induce growth factors and components of extracellular matrix and interact with them in a complex manner. Extracellular matrix and integrins play an important role in cell functions and their aberrant expressions are implicated in breast cancer development, invasion and metastasis. ER beta is certainly associated with more differentiated tumors, while evidence of role of ER beta is controversial. The highly invasive breast cancer ER beta negative cell line MDA-MB 231 can be the model of exam the role of ER beta in breast cancer. The aim of this study was to examine the role of activation of ER beta on the metabolism of the extracellular matrix and the expression of beta-1 integrin in the breast cancer cell line MDA-MB 231. The cells were exposed on the estradiol, tamoxifen, raloxifen and genisteina in dose dependent concentrations. To determine the relative rate of collagen syntesis we measured the time-dependent reduction of collagen-bound radioactivity after pulse-chase labeling with [3 H] prolina by Peterkofsky methods. The expression of beta-1 integrin was determine by Western blot analysis. The activity of MMP2 and 9 were measured using gelatin zymography with an image analysis system. Our data suggest on the role of estrogen receptor beta on the metabolism of extracellular matrix in the breast cancer line MDA - MB 231. Estradiol and SERMs regulate the expression of ECM proteins: collagen, integrins and enhance activity of metaloproteinases 2 and 9. PMID:20067880

  4. Elevated Resistin Gene Expression in African American Estrogen and Progesterone Receptor Negative Breast Cancer

    PubMed Central

    Vallega, Karin A.; Liu, NingNing; Myers, Jennifer S.; Yu, Kaixian; Sang, Qing-Xiang Amy

    2016-01-01

    Introduction African American (AA) women diagnosed with breast cancer are more likely to have aggressive subtypes. Investigating differentially expressed genes between patient populations may help explain racial health disparities. Resistin, one such gene, is linked to inflammation, obesity, and breast cancer risk. Previous studies indicated that resistin expression is higher in serum and tissue of AA breast cancer patients compared to Caucasian American (CA) patients. However, resistin expression levels have not been compared between AA and CA patients in a stage- and subtype-specific context. Breast cancer prognosis and treatments vary by subtype. This work investigates differential resistin gene expression in human breast cancer tissues of specific stages, receptor subtypes, and menopause statuses in AA and CA women. Methods Differential gene expression analysis was performed using human breast cancer gene expression data from The Cancer Genome Atlas. We performed inter-race resistin gene expression level comparisons looking at receptor status and stage-specific data between AA and CA samples. DESeq was run to test for differentially expressed resistin values. Results Resistin RNA was higher in AA women overall, with highest values in receptor negative subtypes. Estrogen-, progesterone-, and human epidermal growth factor receptor 2- negative groups showed statistically significant elevated resistin levels in Stage I and II AA women compared to CA women. In inter-racial comparisons, AA women had significantly higher levels of resistin regardless of menopause status. In whole population comparisons, resistin expression was higher among Stage I and III estrogen receptor negative cases. In comparisons of molecular subtypes, resistin levels were significant higher in triple negative than in luminal A breast cancer. Conclusion Resistin gene expression levels were significantly higher in receptor negative subtypes, especially estrogen receptor negative cases in AA

  5. Activation of Estrogen Receptor Transfected into a Receptor-Negative Brest Cancer Cell Line Decreases the Metastatic and Invasive Potential of the Cells

    NASA Astrophysics Data System (ADS)

    Garcia, Marcel; Derocq, Danielle; Freiss, Gilles; Rochefort, Henri

    1992-12-01

    Breast cancers containing estrogen receptors are responsive to antiestrogen treatment and have a better prognosis than estrogen receptor-negative tumors. The loss of estrogen and progesterone receptors appears to be associated with a progression to less-differentiated tumors. We transfected the human estrogen receptor into the estrogen receptor-negative metastatic breast cancer cell line MDA-MB-231 in an attempt to restore their sensitivity to antiestrogens. Two stable sublines of MDA-MB-231 cells (HC1 and HE5) expressing functional estrogen receptors were studied for their ability to grow and invade in vitro and to metastasize in athymic nude mice. The number and size of lung metastases developed by these two sublines in ovariectomized nude mice was not markedly altered by tamoxifen but was inhibited 3-fold by estradiol. Estradiol also significantly inhibited in vitro cell proliferation of these sublines and their invasiveness in Matrigel, a reconstituted basement membrane, whereas the antiestrogens 4-hydroxytamoxifen and ICI 164,384 reversed these effects. These results show that estradiol inhibits the metastatic ability of estrogen receptornegative breast cancer cells following transfection with the estrogen receptor, whereas estrogen receptor-positive breast cancers are stimulated by estrogen, indicating that factors other than the estrogen receptor are involved in progression toward hormone independence. Reactivation or transfer of the estrogen receptor gene can therefore be considered as therapeutic approaches to hormone-independent cancers

  6. Outcomes of Estrogen Receptor Negative and Progesterone Receptor Positive Breast Cancer

    PubMed Central

    Chan, Melissa; Chang, Martin C.; González, Rosa; Lategan, Belinda; del Barco, Elvira; Vera-Badillo, Francisco; Quesada, Paula; Goldstein, Robyn; Cruz, Ignacio; Ocana, Alberto; Cruz, Juan J.; Amir, Eitan

    2015-01-01

    Purpose To describe the clinical features and outcomes of estrogen receptor negative (ER-) and progesterone receptor positive (PgR+) breast cancer. Methods We retrospectively reviewed a well-characterized database of sequential patients diagnosed with early stage invasive breast carcinoma. Outcomes of interest were time to relapse (TTR) and overall survival (OS). Multivariable Cox proportional hazards analysis was conducted to assess the association of ER-/PgR+ with TTR and OS in comparison to ER+ and to ER- and PgR negative (ER-/PgR-) tumors irrespective of HER2 status. ER and PgR expression was conservatively defined as 10% or greater staining of cancer cells. Results 815 patients were followed for a median of 40.5 months; 56 patients (7%) had ER-/PgR+, 624 (77%) had ER+ and 136 (17%) had ER-/PgR- phenotypes. Compared with ER+ tumors, ER-/PgR+ tumors were associated with younger age (50 versus 59 years, p=0.03), high grade (50% versus 24%, p<0.001) and more frequent HER2 overexpression/amplification (43% versus 14%, p<0.001). TTR for ER-/PgR+ was intermediate between ER+ and ER-/PgR- tumors, but was not significantly different from ER+ tumors. Recurrences in the ER-/PgR+ and ER-/PgR- groups occurred early in follow-up while in ER+ tumors recurrences continued to occur over the duration of follow-up. OS of ER-/PgR+ was similar to ER+ tumors and better than that of ER-/PgR- tumors. Conclusions The ER-/PgR+ phenotype is associated with higher grade with HER2 overexpression/amplification and occurs more commonly in younger women. Risk of relapse and death more closely resembles ER+ than ER-/PgR- tumors suggesting this phenotype represents a group of more aggressive hormone receptor positive tumors. PMID:26161666

  7. Effective Targeting of Estrogen Receptor Negative Breast Cancers with the Protein Kinase D inhibitor CRT0066101

    PubMed Central

    Borges, Sahra; Perez, Edith A.; Thompson, E. Aubrey; Radisky, Derek C.; Geiger, Xochiquetzal J.; Storz, Peter

    2015-01-01

    Invasive ductal carcinomas (IDCs) of the breast are associated with altered expression of hormone receptors (HR), amplification or overexpression of HER2, or a triple-negative phenotype. The most aggressive cases of IDC are characterized by a high proliferation rate, a great propensity to metastasize and their ability to resist to standard chemotherapy, hormone therapy or HER2 targeted therapy. Using progression tissue microarrays we here demonstrate that the serine/threonine kinase Protein Kinase D3 (PKD3) is highly up-regulated in estrogen receptor (ER)-negative tumors. We identify direct binding of the estrogen receptor to the PRKD3 gene promoter as a mechanism of inhibition of PKD3 expression. Loss of ER results in upregulation of PKD3 leading to all hallmarks of aggressive IDC, including increased cell proliferation, migration and invasion. This identifies ER-negative breast cancers as ideal for treatment with the PKD inhibitor CRT0066101. We show that similar to a knockdown of PKD3, treatment with this inhibitor targets all tumorigenic processes in vitro and decreases growth of primary tumors and metastasis in vivo. Our data strongly support the development of PKD inhibitors for clinical use for ER-negative breast cancers, including the triple-negative phenotype. PMID:25852060

  8. Placental Kisspeptins Differentially Modulate Vital Parameters of Estrogen Receptor-Positive and -Negative Breast Cancer Cells

    PubMed Central

    Rasoulzadeh, Zahra; Ghods, Roya; Kazemi, Tohid; Mirzadegan, Ebrahim; Ghaffari-Tabrizi-Wizsy, Nassim; Rezania, Simin; Kazemnejad, Somaieh; Arefi, Soheila; Ghasemi, Jamileh; Vafaei, Sedigheh; Mahmoudi, Ahmad-Reza; Zarnani, Amir-Hassan

    2016-01-01

    Kisspeptins (KPs) are major regulators of trophoblast and cancer invasion. Thus far, limited and conflicting data are available on KP-mediated modulation of breast cancer (BC) metastasis; mostly based on synthetic KP-10, the most active fragment of KP. Here, we report for the first time comprehensive functional effects of term placental KPs on proliferation, adhesion, Matrigel invasion, motility, MMP activity and pro-inflammatory cytokine production in MDA-MB-231 (estrogen receptor-negative) and MCF-7 (estrogen receptor-positive). KPs were expressed at high level by term placental syncytiotrophoblasts and released in soluble form. Placental explant conditioned medium containing KPs (CM) significantly reduced proliferation of both cell types compared to CM without (w/o) KP (CM-w/o KP) in a dose- and time-dependent manner. In MDA-MB-231 cells, placental KPs significantly reduced adhesive properties, while increased MMP9 and MMP2 activity and stimulated invasion. Increased invasiveness of MDA-MB-231 cells after CM treatment was inhibited by KP receptor antagonist, P-234. CM significantly reduced motility of MCF-7 cells at all time points (2–30 hr), while it stimulated motility of MDA-MB-231 cells. These effects were reversed by P-234. Co-treatment with selective ER modulators, Tamoxifen and Raloxifene, inhibited the effect of CM on motility of MCF-7 cells. The level of IL-6 in supernatant of MCF-7 cells treated with CM was higher compared to those treated with CM-w/o KP. Both cell types produced more IL-8 after treatment with CM compared to those treated with CM-w/o KP. Taken together, our observations suggest that placental KPs differentially modulate vital parameters of estrogen receptor-positive and -negative BC cells possibly through modulation of pro-inflammatory cytokine production. PMID:27101408

  9. Dicer expression in estrogen receptor-positive versus triple-negative breast cancer: an antibody comparison.

    PubMed

    Spoelstra, Nicole S; Cittelly, Diana M; Christenson, Jessica L; Gordon, Michael A; Elias, Anthony; Jedlicka, Paul; Richer, Jennifer K

    2016-10-01

    Dicer is an RNase III enzyme responsible for cleaving double-stranded RNAs into small interfering RNAs and microRNAs, which either target messenger RNA transcripts for degradation or inhibit translation. Dicer protein levels have been examined in breast cancer with contradictory results. Our goal was to resolve whether Dicer levels differ in breast cancer versus normal breast epithelium and between estrogen receptor-α-positive (ER+) or estrogen receptor-α-negative (ER-) primary breast cancers. We compared 3 different Dicer antibodies: Abcam 4A6, Abcam ab5818, and Sigma HPA000694, using immunohistochemistry and Western blot analyses. All 3 Dicer antibodies detected higher levels of Dicer in ER+ breast cancer cell lines versus ER-, and all 3 recognized exogenous overexpressed Dicer. In clinical specimens, all 3 antibodies detected higher Dicer in ER+ breast cancers versus triple-negative breast cancer (TNBC) but had very different staining patterns by immunohistochemistry on the same tumor samples. Using the optimal antibody, ab5818, selected for its sensitivity and specificity, Dicer protein expression was significantly higher in ER+ versus TNBC clinical specimens of primary tumor (P<.0001, unpaired t test). Dicer was also significantly higher in adjacent normal breast epithelium versus TNBC (P<.0001, paired t test; n=18 pairs). Differences in antibody performance may explain contrasting results observed in the literature regarding Dicer protein in breast cancer. If Dicer becomes more clinically relevant as a prognostic indicator, further antibody optimization and standardization will be critical. PMID:27260947

  10. Vandetanib as a potential new treatment for estrogen receptor-negative breast cancers.

    PubMed

    Hatem, Rana; Labiod, Dalila; Château-Joubert, Sophie; de Plater, Ludmilla; El Botty, Rania; Vacher, Sophie; Bonin, Florian; Servely, Jean-Luc; Dieras, Véronique; Bièche, Ivan; Marangoni, Elisabetta

    2016-05-15

    The receptor tyrosine kinase RET is implicated in the progression of luminal breast cancers (BC) but its role in estrogen receptor (ER) negative tumors is unknown. Here we investigated the expression of RET in breast cancer patients tumors and patient-derived xenografts (PDX) and evaluated the therapeutic potential of Vandetanib, a tyrosin kinase inhibitor with strong activity against RET, EGFR and VEGFR2, in ER negative breast cancer PDX. The RT-PCR analysis of RET expression in breast tumors of 446 patients and 57 PDX, showed elevated levels of RET in ER+ and HER2+ subtypes and in a small subgroup of triple-negative breast cancers (TNBC). The activity of Vandetanib was tested in vivo in three PDX models of TNBC and one model of HER2+ BC with different expression levels of RET and EGFR. Vandetanib induced tumor regression in PDX models with high expression of RET or EGFR. The effect was associated with inhibition of RET/EGFR phosphorylation and MAP kinase pathway and increased necrosis. In a PDX model with no expression of RET nor EGFR, Vandetanib slowed tumor growth without inducing tumor regression. In addition, treatment by Vandetanib decreased expression of murine Vegf receptors and the endothelial marker Cd31 in the four PDX models tested, suggesting inhibition of tumor vascularization. In summary, these preclinical results suggest that Vandetanib treatment could be useful for patients with ER negative breast cancers overexpressing Vandetanib's main targets.

  11. Differential Effect of Phosphorylation-Defective Survivin on Radiation Response in Estrogen Receptor-Positive and -Negative Breast Cancer

    PubMed Central

    Li, Li; Larson, Richard; Xu, Wei; Woodward, Wendy A.

    2015-01-01

    Survivin is a key member of the inhibitor of apoptosis protein family, and is considered a promising therapeutic target due to its universal overexpression in cancers. Survivin is implicated in cellular radiation response through its role in apoptosis, cell division, and DNA damage response. In the present study, analysis of publically available data sets showed that survivin gene expression increased with breast cancer stage (p < 0.00001) and was significantly higher in estrogen receptor-negative cancers as compared to estrogen receptor-positive cancers (p = 9e-46). However, survivin was prognostic in estrogen receptor-positive tumors (p = 0.03) but not in estrogen receptor-negative tumors (p = 0.28). We assessed the effect of a survivin dominant-negative mutant on colony-formation (2D) and mammosphere-formation (3D) efficiency, and radiation response in the estrogen receptor-positive MCF7 and estrogen receptor-negative SUM149 breast cancer cell lines. The colony-formation efficiency was significantly lower in the dominant-negative survivin-transduced cells versus control MCF7 cells (0.42 vs. 0.58, p < 0.01), but it was significantly higher in dominant-negative population versus control-transduced SUM149 cells (0.29 vs. 0.20, p < 0.01). A similar, non-significant, trend in mammosphere-formation efficiency was observed. We compared the radiosensitivity of cells stably expressing dominant-negative survivin with their controls in both cell lines under 2D and 3D culture conditions following exposure to increasing doses of radiation. We found that the dominant-negative populations were radioprotective in MCF7 cells but radiosensitive in SUM149 cells compared to the control-transduced population; further, Taxol was synergistic with the survivin mutant in SUM149 but not MCF7. Our data suggests that survivin modulation influences radiation response differently in estrogen receptor-positive and estrogen receptor-negative breast cancer subtypes, warranting further

  12. Calcitriol restores antiestrogen responsiveness in estrogen receptor negative breast cancer cells: A potential new therapeutic approach

    PubMed Central

    2014-01-01

    Background Approximately 30% of breast tumors do not express the estrogen receptor (ER) α, which is necessary for endocrine therapy approaches. Studies are ongoing in order to restore ERα expression in ERα-negative breast cancer. The aim of the present study was to determine if calcitriol induces ERα expression in ER-negative breast cancer cells, thus restoring antiestrogen responses. Methods Cultured cells derived from ERα-negative breast tumors and an ERα-negative breast cancer cell line (SUM-229PE) were treated with calcitriol and ERα expression was assessed by real time PCR and western blots. The ERα functionality was evaluated by prolactin gene expression analysis. In addition, the effects of antiestrogens were assessed by growth assay using the XTT method. Gene expression of cyclin D1 (CCND1), and Ether-à-go-go 1 (EAG1) was also evaluated in cells treated with calcitriol alone or in combination with estradiol or ICI-182,780. Statistical analyses were determined by one-way ANOVA. Results Calcitriol was able to induce the expression of a functional ERα in ER-negative breast cancer cells. This effect was mediated through the vitamin D receptor (VDR), since it was abrogated by a VDR antagonist. Interestingly, the calcitriol-induced ERα restored the response to antiestrogens by inhibiting cell proliferation. In addition, calcitriol-treated cells in the presence of ICI-182,780 resulted in a significant reduction of two important cell proliferation regulators CCND1 and EAG1. Conclusions Calcitriol induced the expression of ERα and restored the response to antiestrogens in ERα-negative breast cancer cells. The combined treatment with calcitriol and antiestrogens could represent a new therapeutic strategy in ERα-negative breast cancer patients. PMID:24678876

  13. Characterization of macrophage - cancer cell crosstalk in estrogen receptor positive and triple-negative breast cancer

    PubMed Central

    Hollmén, Maija; Roudnicky, Filip; Karaman, Sinem; Detmar, Michael

    2015-01-01

    Tumor heterogeneity may broadly influence the activation of tumor-associated macrophages. We aimed to dissect how breast cancer cells of different molecular characteristics contribute to macrophage phenotype and function. Therefore, we performed whole transcriptome sequencing of human monocytes that were co-cultured with estrogen receptor positive (ER+) or triple-negative (TNBC) breast cancer cell lines and studied the biological responses related to the differential gene activation in both monocytes and cancer cells by pathway analysis. ER+ and TNBC cancer cell lines induced distinctly different macrophage phenotypes with different biological functions, cytokine and chemokine secretion, and morphology. Conversely, ER+ and TNBC breast cancer cell lines were distinctly influenced by the presence of macrophages. ER+ cells demonstrated up-regulation of an acute phase inflammatory response, IL-17 signaling and antigen presentation pathway, whereas thioredoxin and vitamin D3 receptor pathways were down-regulated in the respective macrophages. The TNBC educated macrophages down-regulated citrulline metabolism and differentiated into M2-like macrophages with increased MMR protein expression and CCL2 secretion. These data demonstrate how different cancer cells educate the host cells to support tumor growth and might explain why high infiltration of macrophages in TNBC tumors associates with poor prognosis. PMID:25776849

  14. Mammary Adipose Tissue-Derived Lysophospholipids Promote Estrogen Receptor-Negative Mammary Epithelial Cell Proliferation.

    PubMed

    Volden, Paul A; Skor, Maxwell N; Johnson, Marianna B; Singh, Puneet; Patel, Feenalie N; McClintock, Martha K; Brady, Matthew J; Conzen, Suzanne D

    2016-05-01

    Lysophosphatidic acid (LPA), acting in an autocrine or paracrine fashion through G protein-coupled receptors, has been implicated in many physiologic and pathologic processes, including cancer. LPA is converted from lysophosphatidylcholine (LPC) by the secreted phospholipase autotaxin (ATX). Although various cell types can produce ATX, adipocyte-derived ATX is believed to be the major source of circulating ATX and also to be the major regulator of plasma LPA levels. In addition to ATX, adipocytes secrete numerous other factors (adipokines); although several adipokines have been implicated in breast cancer biology, the contribution of mammary adipose tissue-derived LPC/ATX/LPA (LPA axis) signaling to breast cancer is poorly understood. Using murine mammary fat-conditioned medium, we investigated the contribution of LPA signaling to mammary epithelial cancer cell biology and identified LPA signaling as a significant contributor to the oncogenic effects of the mammary adipose tissue secretome. To interrogate the role of mammary fat in the LPA axis during breast cancer progression, we exposed mammary adipose tissue to secreted factors from estrogen receptor-negative mammary epithelial cell lines and monitored changes in the mammary fat pad LPA axis. Our data indicate that bidirectional interactions between mammary cancer cells and mammary adipocytes alter the local LPA axis and increase ATX expression in the mammary fat pad during breast cancer progression. Thus, the LPC/ATX/LPA axis may be a useful target for prevention in patients at risk of ER-negative breast cancer. Cancer Prev Res; 9(5); 367-78. ©2016 AACR. PMID:26862086

  15. Estrogen-negative feedback and estrous cyclicity are critically dependent upon estrogen receptor-α expression in the arcuate nucleus of adult female mice.

    PubMed

    Yeo, Shel-Hwa; Herbison, Allan E

    2014-08-01

    The location and characteristics of cells within the brain that suppress GnRH neuron activity to contribute to the estrogen-negative feedback mechanism are poorly understood. Using adeno-associated virus (AAV)-mediated Cre-LoxP recombination in estrogen receptor-α (ERα) floxed mice (ERα(flox/flox)), we aimed to examine the role of ERα-expressing neurons located in the arcuate nucleus (ARN) in the estrogen-negative feedback mechanism. Bilateral injection of AAV-Cre into the ARN of ERα(flox/flox) mice (n = 14) resulted in the time-dependent ablation of up to 99% of ERα-immunoreactive cell numbers throughout the rostrocaudal length of the ARN. These mice were all acyclic by 5 weeks after AAV-Cre injections with most mice in constant estrous. Control wild-type mice injected with AAV-Cre (n = 13) were normal. Body weight was not altered in ERα(flox/flox) mice. After ovariectomy, a significant increment in LH secretion was observed in all genotypes, although its magnitude was reduced in ERα(flox/flox) mice. Acute and chronic estrogen-negative feedback were assessed by administering 17β-estradiol to mice as a bolus (LH measured 3 h later) or SILASTIC brand capsule implant (LH measured 5 d later). This demonstrated that chronic estrogen feedback was absent in ERα(flox/flox) mice, whereas the acute feedback was normal. These results reveal a critical role for ERα-expressing cells within the ARN in both estrous cyclicity and the chronic estrogen negative feedback mechanism in female mice. This suggests that ARN cells provide a key indirect, transsynpatic route through which estradiol suppresses the activity of GnRH neurons.

  16. Value of post-operative reassessment of estrogen receptor α expression following neoadjuvant chemotherapy with or without gefitinib for estrogen receptor negative breast cancer.

    PubMed

    Bernsdorf, Mogens; Balslev, Eva; Lykkesfeldt, Anne E; Kroman, Niels; Harder, Eva; von der Maase, Hans; Jakobsen, Erik H; Grabau, Dorthe; Ejlertsen, Bent

    2011-07-01

    The NICE trial was designed to evaluate the possible benefits of adding epidermal growth factor receptor targeted therapy to neoadjuvant chemotherapy in patients with estrogen receptor α (ER) negative and operable breast cancer. Preclinical data have suggested that signalling through the ErbB receptors or downstream effectors may repress ER expression. Here the authors investigated whether gefitinib, given neoadjuvant in combination with epirubicin and cyclophosphamide (EC), could restore ER expression. Eligible patients in the NICE trial were women with unilateral, primary operable, ER negative invasive breast cancer ≥ 2 cm. Material from patients randomized and completing treatment (four cycles of neoadjuvant EC plus 12 weeks of either gefitinib or placebo) in the NICE trial having available ER status both at baseline and after neoadjuvant treatment were eligible for this study. Tumors with indication of changed ER phenotype (based on collected pathology reports) were immunohistochemically reassessed centrally. 115 patients were eligible for this study; 59 patients in the gefitinib group and 56 patients in the placebo group. Five (4.3%) of 115 tumors changed ER phenotype from negative to positive. A change was seen in three patients in the gefitinib (5.1%) and in two patients in the placebo (3.6%) group with a difference of 1.51% (95% CI, -6.1-9.1). Results of the NICE trial have been reported previously. Post-operative reassessment of ER expression changed the assessment of ER status in a small but significant fraction of patients and should, whenever possible, be performed following neoadjuvant chemotherapy for ER negative breast cancer. Gefitinib did not affect the reversion rate of ER negative tumors.

  17. FLT PET in Measuring Treatment Response in Patients With Newly Diagnosed Estrogen Receptor-Positive, HER2-Negative Stage I-III Breast Cancer

    ClinicalTrials.gov

    2016-06-02

    Estrogen Receptor Positive; HER2/Neu Negative; Male Breast Carcinoma; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer

  18. The aryl hydrocarbon receptor mediates raloxifene-induced apoptosis in estrogen receptor-negative hepatoma and breast cancer cells

    PubMed Central

    O'Donnell, E F; Koch, D C; Bisson, W H; Jang, H S; Kolluri, S K

    2014-01-01

    Identification of new molecular targets for the treatment of breast cancer is an important clinical goal, especially for triple-negative breast cancer, which is refractory to existing targeted treatments. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor known primarily as the mediator of dioxin toxicity. However, the AhR can also inhibit cellular proliferation in a ligand-dependent manner and act as a tumor suppressor in mice, and thus may be a potential anticancer target. To investigate the AhR as an anticancer target, we conducted a small molecule screen to discover novel AhR ligands with anticancer properties. We identified raloxifene, a selective estrogen receptor (ER) modulator currently used in the clinic for prevention of ER-positive breast cancer and osteoporosis in post-menopausal women, as an AhR activator. Raloxifene directly bound the AhR and induced apoptosis in ER-negative mouse and human hepatoma cells in an AhR-dependent manner, indicating that the AhR is a molecular target of raloxifene and mediates raloxifene-induced apoptosis in the absence of ER. Raloxifene selectively induced apoptosis of triple-negative MDA-MB-231 breast cancer cells compared with non-transformed mammary epithelial cells via the AhR. Combined with recent data showing that raloxifene inhibits triple-negative breast cancer xenografts in vivo (Int J Oncol. 43(3):785-92, 2013), our results support the possibility of repurposing of raloxifene as an AhR-targeted therapeutic for triple-negative breast cancer patients. To this end, we also evaluated the role of AhR expression on survival of patients diagnosed with breast cancer. We found that higher expression of the AhR is significantly associated with increased overall survival and distant metastasis-free survival in both hormone-dependent (ER-positive) and hormone-independent (ER and progesterone receptor (PR)-negative) breast cancers. Together, our data strongly support the possibility of using the Ah

  19. A model of spontaneous mouse mammary tumor for human estrogen receptor- and progesterone receptor-negative breast cancer

    PubMed Central

    ZHENG, LIXIANG; ZHOU, BUGAO; MENG, XIANMING; ZHU, WEIFENG; ZUO, AIREN; WANG, XIAOMIN; JIANG, RUNDE; YU, SHIPING

    2014-01-01

    Breast cancer (BC) is the most frequently malignancy in women. Therefore, establishment of an animal model for the development of preventative measures and effective treatment for tumors is required. A novel heterogeneous spontaneous mammary tumor animal model of Kunming mice was generated. The purpose of this study was to characterize the spontaneous mammary tumor model. Histopathologically, invasive nodular masses of pleomorphic tubular neoplastic epithelial cells invaded fibro-vascular stroma, adjacent dermis and muscle tissue. Metastatic spread through blood vessel into liver and lungs was observed by hematoxylin eosin staining. No estrogen receptor (ER) or progesterone receptor (PR) immunoreactivity was detected in their associated malignant tumors, human epidermal growth factor receptor-2 (HER-2) protein weak expression was found by immunohistochemistry. High expression of vascular endothelial growth factor (VEGF), moderate or high expression of c-Myc and cyclin D1 were observed in tumor sections at different stages (2, 4, 6 and 8 weeks after cancer being found) when compared with that of the normal mammary glands. The result showed that the model is of an invasive ductal carcinoma. Remarkably in the mouse model, ER and PR-negative and HER2 weak positivity are observed. The high or moderate expressions of breast cancer markers (VEGF, c-Myc and cyclin D1) in mammary cancer tissue change at different stages. To our knowledge, this is the first report of a spontaneous mammary model displaying colony-strain, outbred mice. This model will be an attractive tool to understand the biology of anti-hormonal breast cancer in women. PMID:25230850

  20. Effects of neuron-specific estrogen receptor (ER) α and ERβ deletion on the acute estrogen negative feedback mechanism in adult female mice.

    PubMed

    Cheong, Rachel Y; Porteous, Robert; Chambon, Pierre; Abrahám, István; Herbison, Allan E

    2014-04-01

    The negative feedback mechanism through which 17β-estradiol (E2) acts to suppress the activity of the GnRH neurons remains unclear. Using inducible and cell-specific genetic mouse models, we examined the estrogen receptor (ER) isoforms expressed by neurons that mediate acute estrogen negative feedback. Adult female mutant mice in which ERα was deleted from all neurons in the neonatal period failed to exhibit estrous cycles or negative feedback. Adult mutant female mice with neonatal neuronal ERβ deletion exhibited normal estrous cycles, but a failure of E2 to suppress LH secretion was seen in ovariectomized mice. Mutant mice with a GnRH neuron-selective deletion of ERβ exhibited normal cycles and negative feedback, suggesting no critical role for ERβ in GnRH neurons in acute negative feedback. To examine the adult roles of neurons expressing ERα, an inducible tamoxifen-based Cre-LoxP approach was used to ablate ERα from neurons that express calmodulin kinase IIα in adults. This resulted in mice with no estrous cycles, a normal increase in LH after ovariectomy, but an inability of E2 to suppress LH secretion. Finally, acute administration of ERα- and ERβ-selective agonists to adult ovariectomized wild-type mice revealed that activation of ERα suppressed LH secretion, whereas ERβ agonists had no effect. This study highlights the differences in adult reproductive phenotypes that result from neonatal vs adult ablation of ERα in the brain. Together, these experiments expand previous global knockout studies by demonstrating that neurons expressing ERα are essential and probably sufficient for the acute estrogen negative feedback mechanism in female mice. PMID:24476134

  1. Vascular expression of E-selectin is increased in estrogen-receptor-negative breast cancer: a role for tumor-cell-secreted interleukin-1 alpha.

    PubMed Central

    Nguyen, M.; Corless, C. L.; Kräling, B. M.; Tran, C.; Atha, T.; Bischoff, J.; Barsky, S. H.

    1997-01-01

    Angiogenesis plays an important role in breast cancer growth and metastasis. Multiple adhesion molecules have been shown to perform critical functions in the process of angiogenesis. In this study, we analyzed 15 benign and 22 malignant estrogen-receptor-negative and estrogen-receptor-positive breast specimens for the presence of the endothelial cell adhesion molecules E-selectin and P-selectin. We found that E-selectin's expression was increased in the malignant breast tumors compared with their benign counterparts (23.86% of blood vessels versus 2.47%; P = 0.0005). Furthermore, E-selectin staining was found to be significantly increased in the estrogen-receptor-negative carcinomas compared with the estrogen-receptor-positive ones (P = 0.005). In vitro findings strongly correlated with the in vivo findings and showed a higher degree of E-selectin induction in endothelial cells exposed to conditioned media from estrogen-receptor-negative breast cancer cell lines than from estrogen-receptor-positive ones. The degree of E-selectin induction correlated with the amount of interleukin-1 alpha in the tumor-conditioned media. Neutralizing antibodies to interleukin-1 alpha significantly inhibited the E-selectin expression in endothelial cells exposed to tumor-conditioned media. The results indicate that the endothelial E-selectin expression during angiogenesis is related to breast carcinoma progression in vivo and that this component of angiogenesis may be due directly to tumor-cell-secreted interleukin-1 alpha. Images Figure 1 PMID:9094987

  2. An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer

    PubMed Central

    Teschendorff, Andrew E; Miremadi, Ahmad; Pinder, Sarah E; Ellis, Ian O; Caldas, Carlos

    2007-01-01

    Background Estrogen receptor (ER)-negative breast cancer specimens are predominantly of high grade, have frequent p53 mutations, and are broadly divided into HER2-positive and basal subtypes. Although ER-negative disease has overall worse prognosis than does ER-positive breast cancer, not all ER-negative breast cancer patients have poor clinical outcome. Reliable identification of ER-negative tumors that have a good prognosis is not yet possible. Results We apply a recently proposed feature selection method in an integrative analysis of three major microarray expression datasets to identify molecular subclasses and prognostic markers in ER-negative breast cancer. We find a subclass of basal tumors, characterized by over-expression of immune response genes, which has a better prognosis than the rest of ER-negative breast cancers. Moreover, we show that, in contrast to ER-positive tumours, the majority of prognostic markers in ER-negative breast cancer are over-expressed in the good prognosis group and are associated with activation of complement and immune response pathways. Specifically, we identify an immune response related seven-gene module and show that downregulation of this module confers greater risk for distant metastasis (hazard ratio 2.02, 95% confidence interval 1.2-3.4; P = 0.009), independent of lymph node status and lymphocytic infiltration. Furthermore, we validate the immune response module using two additional independent datasets. Conclusion We show that ER-negative basal breast cancer is a heterogeneous disease with at least four main subtypes. Furthermore, we show that the heterogeneity in clinical outcome of ER-negative breast cancer is related to the variability in expression levels of complement and immune response pathway genes, independent of lymphocytic infiltration. PMID:17683518

  3. Estrogen Receptors, the Hippocampus, and Memory

    PubMed Central

    Bean, Linda A.; Ianov, Lara; Foster, Thomas C.

    2015-01-01

    Estradiol effects on memory depend on hormone levels and the interaction of different estrogen receptors within neural circuits. Estradiol induces gene transcription and rapid membrane signaling mediated by estrogen receptor-alpha (ERα), estrogen receptor-beta (ERβ), and a recently characterized G-protein coupled estrogen receptor, each with distinct distributions and ability to influence estradiol-dependent signaling. Investigations using receptor specific agonists suggest that all three receptors rapidly activate kinase-signaling and have complex dose-dependent influences on memory. Research employing receptor knockout mice demonstrate that ERα maintains transcription and memory as estradiol levels decline. This work indicates a regulatory role of ERβ in transcription and cognition, which depends on estradiol levels and the function of ERα. The regulatory role of ERβ is due in part to ERβ acting as a negative regulator of ERα-mediated transcription. Vector-mediated expression of estrogen receptors in the hippocampus provides an innovative research approach and suggests that memory depends on the relative expression of ERα and ERβ interacting with estradiol levels. Notably, the ability of estradiol to improve cognition declines with advanced age along with decreased expression of estrogen receptors. Thus, it will be important for future research to determine the mechanisms that regulate estrogen receptor expression during aging. PMID:24510074

  4. Estrogen receptors and endothelium.

    PubMed

    Arnal, Jean-François; Fontaine, Coralie; Billon-Galés, Audrey; Favre, Julie; Laurell, Henrik; Lenfant, Françoise; Gourdy, Pierre

    2010-08-01

    Estrogens, and in particular 17beta-estradiol (E2), play a pivotal role in sexual development and reproduction and are also implicated in a large number of physiological processes, including the cardiovascular system. Both acetylcholine-induced and flow-dependent vasodilation are preserved or potentiated by estrogen treatment in both animal models and humans. Indeed, E2 increases the endothelial production of nitric oxide and prostacyclin and prevents early atheroma through endothelial-mediated mechanisms. Furthermore, whereas it prevents endothelial activation, E2 potentiates the ability of several subpopulations of the circulating or resident immune cells to produce proinflammatory cytokines. The balance between these 2 actions could determine the final effect in a given pathophysiological process. E2 also promotes endothelial healing, as well as angiogenesis. Estrogen actions are essentially mediated by 2 molecular targets: estrogen receptor-alpha (ERalpha) and ERbeta. The analysis of mouse models targeted for ERalpha or ERbeta demonstrated a prominent role of ERalpha in vascular biology. ERalpha directly modulates transcription of target genes through 2 activation functions (AFs), AF-1 and AF-2. Interestingly, an AF-1-deficient ERalpha isoform can be physiologically expressed in the endothelium and appears sufficient to mediate most of the vasculoprotective actions of E2. In contrast, AF-1 is necessary for the E2 actions in reproductive targets. Thus, it appears conceivable to uncouple the vasculoprotective and sexual actions with appropriate selective ER modulators. PMID:20631350

  5. Impact of palbociclib combinations on treatment of advanced estrogen receptor-positive/human epidermal growth factor 2-negative breast cancer

    PubMed Central

    Boér, Katalin

    2016-01-01

    Breast cancer is a heterogeneous disease with multiple subgroups based on clinical and molecular characteristics. For the largest subgroup of breast cancers, hormone receptor-positive/human epidermal growth factor 2 (HER2)-negative tumors, hormone treatment is the mainstay of therapy and is likely to result in significant improvement in disease outcomes. However, some of these cancers demonstrate de novo or acquired resistance to endocrine therapy. Despite intensive research to develop new strategies to enhance the efficacy of currently available treatment options for hormone receptor-positive breast cancer, progress has been slow, and there were few advances for a period of 10 years. In 2012, a new molecularly targeted therapeutic strategy, inhibition of mammalian target of rapamycin with everolimus, was introduced into clinical practice. Everolimus, in combination with a steroidal aromatase inhibitor, exemestane, resulted in an increase in progression-free survival, but not overall survival in patients with estrogen receptor (ER)+ve advanced disease who had progressed on hormone therapy. In 2015, the first cyclin-dependent kinases 4/6 (CDK4/6) inhibitor, palbociclib, received accelerated US Food and Drug Administration approval for use in combination with letrozole for the treatment of postmenopausal ER+ve/HER2−ve advanced breast cancer as initial, endocrine-based therapy. The addition of palbociclib to endocrine therapy resulted in longer progression-free survival than letrozole alone. One year later, palbociclib received a new indication, use in combination with fulvestrant, in both premenopausal and postmenopausal females with advanced breast cancer of the same subtype with disease progression following endocrine therapy. Adding palbociclib to fulvestrant resulted in a significantly increased median progression-free survival compared to fulvestrant monotherapy. These new combination regimens of palbociclib with endocrine agents represent an important

  6. Mechanisms for the activity of heterocyclic cyclohexanone curcumin derivatives in estrogen receptor negative human breast cancer cell lines.

    PubMed

    Somers-Edgar, Tiffany J; Taurin, Sebastien; Larsen, Lesley; Chandramouli, Anupama; Nelson, Mark A; Rosengren, Rhonda J

    2011-02-01

    Estrogen receptor (ER)-negative breast cancer is an aggressive form that currently requires more drug treatment options. Thus, we have further modified cyclohexanone derivatives of curcumin and examined them for cytotoxicity towards ER-negative human breast cancer cells. Two of the analogs screened elicited increased cytotoxic potency compared to curcumin and other previously studied derivatives. Specifically, 2,6-bis(pyridin-3-ylmethylene)-cyclohexanone (RL90) and 2,6-bis(pyridin-4-ylmethylene)-cyclohexanone (RL91) elicited EC(50) values of 1.54 and 1.10 µM, respectively, in MDA-MB-231 cells and EC(50) values of 0.51 and 0.23 in SKBr3 cells. All other new compounds examined were less potent than curcumin, which elicited EC(50) values of 7.6 and 2.4 µM in MDA-MB-231 and SKBr3 cells, respectively. Mechanistic analyses demonstrated that RL90 and RL91 significantly induced G(2)/M-phase cell cycle arrest and apoptosis. RL90 and RL91 also modulated the expression of key cell signaling proteins, specifically, in SKBr3 cells, protein levels of Her-2, Akt, and NFκB were decreased in a time-dependent manner, while activity of stress kinases JNK1/2 and P38 MAPK were increased. Signaling events in MDA-MB-231 cells were differently implicated, as EGFR protein levels were decreased and activity of GSK-3β transiently decreased, while β-catenin protein level and activity of P38 MAPK, Akt, and JNK1/2 were transiently increased. In conclusion replacement of the phenyl group of cyclohexanone derived curcumin derivatives with heterocyclic rings forms a class of second-generation analogs that are more potent than both curcumin and other derivatives. These new derivatives provide a platform for the further development of drugs for the treatment of ER-negative breast cancer.

  7. A Genome-Wide “Pleiotropy Scan” Does Not Identify New Susceptibility Loci for Estrogen Receptor Negative Breast Cancer

    PubMed Central

    Campa, Daniele; Barrdahl, Myrto; Tsilidis, Konstantinos K.; Severi, Gianluca; Diver, W. Ryan; Siddiq, Afshan; Chanock, Stephen; Hoover, Robert N.; Ziegler, Regina G.; Berg, Christine D.; Buys, Saundra S.; Haiman, Christopher A.; Henderson, Brian E.; Schumacher, Fredrick R.; Le Marchand, Loïc; Flesch-Janys, Dieter; Lindström, Sara; Hunter, David J.; Hankinson, Susan E.; Willett, Walter C.; Kraft, Peter; Cox, David G.; Khaw, Kay-Tee; Tjønneland, Anne; Dossus, Laure; Trichopoulos, Dimitrios; Panico, Salvatore; van Gils, Carla H.; Weiderpass, Elisabete; Barricarte, Aurelio; Sund, Malin; Gaudet, Mia M.; Giles, Graham; Southey, Melissa; Baglietto, Laura; Chang-Claude, Jenny; Kaaks, Rudolf; Canzian, Federico

    2014-01-01

    Approximately 15–30% of all breast cancer tumors are estrogen receptor negative (ER−). Compared with ER-positive (ER+) disease they have an earlier age at onset and worse prognosis. Despite the vast number of risk variants identified for numerous cancer types, only seven loci have been unambiguously identified for ER-negative breast cancer. With the aim of identifying new susceptibility SNPs for this disease we performed a pleiotropic genome-wide association study (GWAS). We selected 3079 SNPs associated with a human complex trait or disease at genome-wide significance level (P<5×10−8) to perform a secondary analysis of an ER-negative GWAS from the National Cancer Institute's Breast and Prostate Cancer Cohort Consortium (BPC3), including 1998 cases and 2305 controls from prospective studies. We then tested the top ten associations (i.e. with the lowest P-values) using three additional populations with a total sample size of 3509 ER+ cases, 2543 ER− cases and 7031 healthy controls. None of the 3079 selected variants in the BPC3 ER-GWAS were significant at the adjusted threshold. 186 variants were associated with ER− breast cancer risk at a conventional threshold of P<0.05, with P-values ranging from 0.049 to 2.3×10−4. None of the variants reached statistical significance in the replication phase. In conclusion, this study did not identify any novel susceptibility loci for ER-breast cancer using a “pleiotropic approach”. PMID:24523857

  8. Biologic Roles of Estrogen Receptor-β and Insulin-Like Growth Factor-2 in Triple-Negative Breast Cancer

    PubMed Central

    Elshimali, Yahya; Garbán, Hermes; Elashoff, David; Vadgama, Jaydutt; Goodglick, Lee

    2015-01-01

    Triple-negative breast cancer (TNBC) occurs in 10–15% of patients yet accounts for almost half of all breast cancer deaths. TNBCs lack expression of estrogen and progesterone receptors and HER-2 overexpression and cannot be treated with current targeted therapies. TNBCs often occur in African American and younger women. Although initially responsive to some chemotherapies, TNBCs tend to relapse and metastasize. Thus, it is critical to find new therapeutic targets. A second ER gene product, termed ERβ, in the absence of ERα may be such a target. Using human TNBC specimens with known clinical outcomes to assess ERβ expression, we find that ERβ1 associates with significantly worse 5-year overall survival. Further, a panel of TNBC cell lines exhibit significant levels of ERβ protein. To assess ERβ effects on proliferation, ERβ expression in TNBC cells was silenced using shRNA, resulting in a significant reduction in TNBC proliferation. ERβ-specific antagonists similarly suppressed TNBC growth. Growth-stimulating effects of ERβ may be due in part to downstream actions that promote VEGF, amphiregulin, and Wnt-10b secretion, other factors associated with tumor promotion. In vivo, insulin-like growth factor-2 (IGF-2), along with ERβ1, is significantly expressed in TNBC and stimulates high ERβ mRNA in TNBC cells. This work may help elucidate the interplay of metabolic and growth factors in TNBC. PMID:25874233

  9. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer

    PubMed Central

    Ha, Ngoc-Han; Long, Jirong; Cai, Qiuyin; Shu, Xiao Ou

    2016-01-01

    Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs) could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ) and low metastatic (MOLF/EiJ) mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL) SNPs with disease-free survival, consistent with the mouse studies. PMID:27656887

  10. Enhanced cytotoxicity in triple-negative and estrogen receptor-positive breast adenocarcinoma cells due to inhibition of the transient receptor potential melastatin-2 channel

    PubMed Central

    KOH, DAVID W.; POWELL, DANIEL P.; BLAKE, STEVEN D.; HOFFMAN, JOY L.; HOPKINS, MANDI M.; FENG, XIAOXING

    2015-01-01

    We previously demonstrated a unique protective role for the transient receptor potential, melastatin-2 (TRPM2) cation channel in breast cancer cells. In the present study, we investigated the chemotherapeutic effects elicited by inhibiting this protective role in metastatic breast adenocarcinoma cells. TRPM2 inhibition led to dose-dependent increases in MDA-MB-231 breast adenocarcinoma cell death after treatment with doxorubicin or the DNA-methylating agent, N-methyl-N'-nitro-N-nitrosoguanidine. Similar results were observed after RNAi silencing of TRPM2 in these cells after doxorubicin treatment. However, TRPM2 RNAi silencing also led to increased MCF-7 breast adenocarcinoma cell death after tamoxifen treatment, yet not in non-cancerous human mammary epithelial cells. These results thus revealed that TRPM2 inhibition selectively increased cytotoxicity in a triple-negative and an estrogen receptor-positive breast cancer cell line, with minimal deleterious effects in non-cancerous breast cells. Analysis of DNA damage revealed enhanced DNA damage levels in MCF-7 cells treated with doxorubicin due to TRPM2 inhibition. Analysis of cell death demonstrated that inhibition of apoptosis, caspase-independent cell death or autophagy failed to significantly reduce cell death induced by TRPM2 inhibition and chemotherapy. These results indicate that TRPM2 inhibition activates alternative pathways of cell death in breast cancer cells. Taken together, our results provide significant evidence that TRPM2 inhibition is a potential strategy to induce triple-negative and estrogen receptor-positive breast adenocarcinoma cell death via alternative cell death pathways. This is expected to provide a basis for inhibiting TRPM2 for the improved treatment of breast cancer, which potentially includes treating breast tumors that are resistant to chemotherapy due to their evasion of apoptosis. PMID:26178079

  11. Selective Estrogen Receptor Modulators.

    PubMed

    An, Ki-Chan

    2016-08-01

    Selective estrogen receptor modulators (SERMs) are now being used as a treatment for breast cancer, osteoporosis and postmenopausal symptoms, as these drugs have features that can act as an estrogen agonist and an antagonist, depending on the target tissue. After tamoxifen, raloxifene, lasofoxifene and bazedoxifene SERMs have been developed and used for treatment. The clinically decisive difference among these drugs (i.e., the key difference) is their endometrial safety. Compared to bisphosphonate drug formulations for osteoporosis, SERMs are to be used primarily in postmenopausal women of younger age and are particularly recommended if there is a family history of invasive breast cancer, as their use greatly reduces the incidence of this type of cancer in women. Among the above mentioned SERMs, raloxifene has been widely used in prevention and treatment of postmenopausal osteoporosis and vertebral compression fractures, and clinical studies are now underway to test the comparative advantages of raloxifene with those of bazedoxifene, a more recently developed SERM. Research on a number of adverse side effects of SERM agents is being performed to determine the long-term safety of this class of compouds for treatment of osteoporosis. PMID:27559463

  12. Selective Estrogen Receptor Modulators

    PubMed Central

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are now being used as a treatment for breast cancer, osteoporosis and postmenopausal symptoms, as these drugs have features that can act as an estrogen agonist and an antagonist, depending on the target tissue. After tamoxifen, raloxifene, lasofoxifene and bazedoxifene SERMs have been developed and used for treatment. The clinically decisive difference among these drugs (i.e., the key difference) is their endometrial safety. Compared to bisphosphonate drug formulations for osteoporosis, SERMs are to be used primarily in postmenopausal women of younger age and are particularly recommended if there is a family history of invasive breast cancer, as their use greatly reduces the incidence of this type of cancer in women. Among the above mentioned SERMs, raloxifene has been widely used in prevention and treatment of postmenopausal osteoporosis and vertebral compression fractures, and clinical studies are now underway to test the comparative advantages of raloxifene with those of bazedoxifene, a more recently developed SERM. Research on a number of adverse side effects of SERM agents is being performed to determine the long-term safety of this class of compouds for treatment of osteoporosis. PMID:27559463

  13. Prognostic significance of full-length estrogen receptor beta expression in stage I-III triple negative breast cancer

    PubMed Central

    Shanle, Erin K; Onitilo, Adedayo A; Huang, Wei; Kim, KyungMann; Zang, Chong; Engel, Jessica M; Xu, Wei; Wisinski, Kari B

    2015-01-01

    Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype for which there is a need to identify new therapeutic targets. Full-length estrogen receptor beta (ERβ1) may be a possible target given its antiproliferative effects on breast cancer cells. The prognostic significance of ERβ in breast cancer subtypes has remained elusive, and disparate results observed across previously published reports might be due to the detection of multiple ERβ isoforms, the lack of specific antibodies and the use of different cutoffs to define ERβpositivity. The objective of this retrospective study was to determine the association between ERβ1 expression and disease-free and overall survival, as well as Ki67 expression, in non-metastatic TNBC. Immunohistochemical protocols were optimized using xenograft tissues obtained from a breast cancer cell line with inducible ERβ1 expression. ERβ1 localization and expression were assessed in two cohorts of TNBC using the VECTRATM platform. There was a close relationship between nuclear and cytoplasmic ERβ1 expression. ERβ1 was expressed in a subset of TNBCs, but its expression was significantly associated with Ki67 in only one of the cohorts. There was no significant association between ERβ1 expression and disease-free and overall survival in either cohort. Although these results suggest that ERβ1 expression alone may not be informative in TNBCs, this study provides a new strategy for optimizing and objectively measuring ERβ1 expression in tissues, which may provide a standard for ERβ1 immunohistochemistry in future large-scale clinical studies aimed at better understanding the role of ERβ1 in breast cancer. PMID:26328009

  14. Life history theory and breast cancer risk: methodological and theoretical challenges: Response to "Is estrogen receptor negative breast cancer risk associated with a fast life history strategy?".

    PubMed

    Aktipis, Athena

    2016-01-01

    In a meta-analysis published by myself and co-authors, we report differences in the life history risk factors for estrogen receptor negative (ER-) and estrogen receptor positive (ER+) breast cancers. Our meta-analysis did not find the association of ER- breast cancer risk with fast life history characteristics that Hidaka and Boddy suggest in their response to our article. There are a number of possible explanations for the differences between their conclusions and the conclusions we drew from our meta-analysis, including limitations of our meta-analysis and methodological challenges in measuring and categorizing estrogen receptor status. These challenges, along with the association of ER+ breast cancer with slow life history characteristics, may make it challenging to find a clear signal of ER- breast cancer with fast life history characteristics, even if that relationship does exist. The contradictory results regarding breast cancer risk and life history characteristics illustrate a more general challenge in evolutionary medicine: often different sub-theories in evolutionary biology make contradictory predictions about disease risk. In this case, life history models predict that breast cancer risk should increase with faster life history characteristics, while the evolutionary mismatch hypothesis predicts that breast cancer risk should increase with delayed reproduction. Whether life history tradeoffs contribute to ER- breast cancer is still an open question, but current models and several lines of evidence suggest that it is a possibility. PMID:26874356

  15. Marijuana: interaction with the estrogen receptor.

    PubMed

    Sauer, M A; Rifka, S M; Hawks, R L; Cutler, G B; Loriaux, D L

    1983-02-01

    Crude marijuana extract competed with estradiol for binding to the estrogen receptor of rat uterine cytosol. Condensed marijuana smoke also competed with estradiol for its receptor. Pure delta 9-tetrahydrocannabinol, however, did not interact with the estrogen receptor. Ten delta 9-tetrahydrocannabinol metabolites also failed to compete with estradiol for its receptor. Of several other common cannabinoids tested, only cannabidiol showed any estrogen receptor binding. This was evident only at very high concentrations of cannabidiol. Apigenin, the aglycone of a flavinoid phytoestrogen found in cannabis, displayed high affinity for the estrogen receptor. To assess the biological significance of these receptor data, estrogen activity was measured in vivo with the uterine growth bioassay, using immature rats. Cannabis extract in large doses exhibited neither estrogenic nor antiestrogenic effects. Thus, although estrogen receptor binding activity was observed in crude marijuana extract, marijuana smoke condensate and several known components of cannabis, direct estrogenic activity of cannabis extract could not be demonstrated in vivo.

  16. 17β-estradiol promotes the invasion and migration of nuclear estrogen receptor-negative breast cancer cells through cross-talk between GPER1 and CXCR1.

    PubMed

    Jiang, Qi-Feng; Wu, Ting-Ting; Yang, Jun-Yan; Dong, Chao-Ran; Wang, Ni; Liu, Xiao-Hua; Liu, Zhi-Min

    2013-11-01

    G protein-coupled estrogen receptor 1 (GPER1) is widely expressed in human breast cancers correlating with increased tumor size and malignancy. Although estrogen signaling via GPER1 was extensively studied in recent years, the underlying molecular mechanism of GPER1-associated metastasis of breast cancer still remains unclear. In this study, the main aims were focused on the potential role of GPER1 in regulating migration and invasion of nuclear estrogen receptor (ER)-negative breast cancer cells upon 17β-estradiol (E2) stimulation and the involved signaling pathway. Key events in estrogen signaling were chosen for our studies, such as the activation of ERK and AKT, nuclear translocation of NF-κB and secretion of Interleukin-8 (IL-8). The migration and invasion activities upon E2 stimulation were also examined in ER-negative SKBR3 and BT-20 breast cancer cells. Compared with ER-positive MCF-7 breast cancer cells, both SKBR3 and BT-20 cells had very similar expression of GPER1, but relatively high expression of CXC receptor-1 (CXCR1), which is considered as an active regulator for cancer metastasis upon binding IL-8. Results showed that E2 facilitated the activation of ERK, AKT and NF-κB, which could be significantly attenuated by GPER1 blockage or knock-down in both SKBR3 and BT-20 cells. Moreover, increased secretion of IL-8 induced by E2 was also inhibited either by specific inhibitors for GPER1, ERK, AKT, and NF-κB, or by knock-down for GPER1. Furthermore, E2 could activate the migration and invasion of both SKBR3 and BT-20 cells, which in turn could also be inhibited by blocking GPER1, ERK, AKT, NF-κB, and CXCR1, respectively, or knock-down for GPER1 and CXCR1. In conclusion, we demonstrated that estrogen signaling via GPER1 associated with the metastasis of breast cancer, which might be through GPER1/ERK&AKT/NF-κB/IL-8/CXCR1 cascade. The cross-talk between GPER1 and CXCR1 could be another potential target for the therapy of metastatic breast cancer.

  17. Estrogen receptor signaling during vertebrate development

    PubMed Central

    Bondesson, Maria; Hao, Ruixin; Lin, Chin-Yo; Williams, Cecilia; Gustafsson, Jan-Åke

    2014-01-01

    Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affecting both the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for development of reproductive tissues, as well as non-reproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans. PMID:24954179

  18. Antiproliferative effect of the Ginkgo biloba extract is associated with the enhancement of cytochrome P450 1B1 expression in estrogen receptor-negative breast cancer cells.

    PubMed

    Zhao, Xiao-Dan; Dong, Ni; Man, Hong-Tao; Fu, Zhong-Lin; Zhang, Mei-Hong; Kou, Shuang; Ma, Shi-Liang

    2013-09-01

    Ginkgo biloba is a dioecious tree and its extract is a complex mixture that has been used for thousands of years to treat a variety of ailments in traditional Chinese medicine. The aim of this study was to present our observations on the inhibitory effects of different Ginkgo biloba extracts on human breast cancer cell proliferation and growth. Our results demonstrated that treatment of MCF-7 and MDA-MB-231 human breast cancer cells with Ginkgo biloba leaves and ginkgo fruit extract inhibited cell proliferation. It was also observed that this inhibition was accompanied by the enhancement of cytochrome P450 (CYP) 1B1 expression in MDA-MB-231 cells. In addition, treatment with ginkgo fruit extract resulted in a higher CYP1B1 expression in MDA-MB-231 cells compared to treatment with the Ginkgo biloba leaves extract. Our results suggested that the inhibitory effects of the Ginkgo biloba extract on estrogen receptor-negative breast cancer proliferation and the induction of CYP1B1 expression may be exerted through an alternative pathway, independent of the estrogen receptor or the aryl hydrocarbon receptor pathway.

  19. Antiproliferative effect of the Ginkgo biloba extract is associated with the enhancement of cytochrome P450 1B1 expression in estrogen receptor-negative breast cancer cells

    PubMed Central

    ZHAO, XIAO-DAN; DONG, NI; MAN, HONG-TAO; FU, ZHONG-LIN; ZHANG, MEI-HONG; KOU, SHUANG; MA, SHI-LIANG

    2013-01-01

    Ginkgo biloba is a dioecious tree and its extract is a complex mixture that has been used for thousands of years to treat a variety of ailments in traditional Chinese medicine. The aim of this study was to present our observations on the inhibitory effects of different Ginkgo biloba extracts on human breast cancer cell proliferation and growth. Our results demonstrated that treatment of MCF-7 and MDA-MB-231 human breast cancer cells with Ginkgo biloba leaves and ginkgo fruit extract inhibited cell proliferation. It was also observed that this inhibition was accompanied by the enhancement of cytochrome P450 (CYP) 1B1 expression in MDA-MB-231 cells. In addition, treatment with ginkgo fruit extract resulted in a higher CYP1B1 expression in MDA-MB-231 cells compared to treatment with the Ginkgo biloba leaves extract. Our results suggested that the inhibitory effects of the Ginkgo biloba extract on estrogen receptor-negative breast cancer proliferation and the induction of CYP1B1 expression may be exerted through an alternative pathway, independent of the estrogen receptor or the aryl hydrocarbon receptor pathway. PMID:24649031

  20. Identification of Potential Glycoprotein Biomarkers in Estrogen Receptor Positive (ER+) and Negative (ER-) Human Breast Cancer Tissues by LC-LTQ/FT-ICR Mass Spectrometry

    PubMed Central

    Semaan, Suzan M.; Wang, Xu; Marshall, Alan G.; Sang, Qing-Xiang Amy

    2012-01-01

    Breast cancer is the second most fatal cancer in American women. To increase the life expectancy of patients with breast cancer new diagnostic and prognostic biomarkers and drug targets must be identified. A change in the glycosylation on a glycoprotein often causes a change in the function of that glycoprotein; such a phenomenon is correlated with cancerous transformation. Thus, glycoproteins in human breast cancer estrogen receptor positive (ER+) tissues and those in the more advanced stage of breast cancer, estrogen receptor negative (ER-) tissues, were compared. Glycoproteins showing differences in glycosylation were examined by 2-dimensional gel electrophoresis with double staining (glyco- and total protein staining) and identified by reversed-phase nano-liquid chromatography coupled with a hybrid linear quadrupole ion trap/ Fourier transform ion cyclotron resonance mass spectrometer. Among the identified glycosylated proteins are alpha 1 acid glycoprotein, alpha-1-antitrypsin, calmodulin, and superoxide dismutase mitochondrial precursor that were further verified by Western blotting for both ER+ and ER- human breast tissues. Results show the presence of a possible glycosylation difference in alpha-1-antitrypsin, a potential tumor-derived biomarker for breast cancer progression, which was expressed highest in the ER- samples. PMID:22773931

  1. Estrogen/Progesterone Receptor Negativity and HER2 Positivity Predict Locoregional Recurrence in Patients With T1a,bN0 Breast Cancer

    SciTech Connect

    Albert, Jeffrey M.; Gonzalez-Angulo, Ana M.; Guray, Merih; Sahin, Aysegul

    2010-08-01

    Purpose: Data have suggested that the molecular features of breast cancer are important determinants of outcome; however, few studies have correlated these features with locoregional recurrence (LRR). In the present study, we evaluated estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) as predictors of LRR in patients with lymph node-negative disease and tumors {<=}1 cm, because these patients often do not receive adjuvant chemotherapy or trastuzumab. Methods and Materials: The data from 911 patients with stage T1a,bN0 breast cancer who had received definitive treatment at our institution between 1997 and 2002 were retrospectively reviewed. We prospectively analyzed ER/PR/HER2 expression from the archival tissue blocks of 756 patients. These 756 patients represented the cohort for the present study. Results: With a median follow-up of 6.0 years, the 5- and 8-year Kaplan-Meier LRR rate was 1.6% and 5.9%, respectively, with no difference noted in those who underwent breast conservation therapy vs. mastectomy (p = .347). The 8-year LRR rates were greater in the patients with ER-negative (10.6% vs. 4.2%, p = .016), PR-negative (9.0% vs. 4.2%, p = .009), or HER2-positive (17.5% vs. 3.9%, p = 0.009) tumors. On multivariate analysis, ER-negative and PR-negative disease (hazard ratio, 2.37; p = .046) and HER2-positive disease (hazard ratio, 3.13, p = .016) independently predicted for LRR. Conclusion: Patients with ER/PR-negative or HER2-positive T1a,bN0 breast cancer had a greater risk of LRR. Therapeutic strategies, such as the use of chemotherapy and/or anti-HER2 therapies, should be considered for future clinical trials for these patients.

  2. Antineoplastic effects of α-santalol on estrogen receptor-positive and estrogen receptor-negative breast cancer cells through cell cycle arrest at G2/M phase and induction of apoptosis.

    PubMed

    Santha, Sreevidya; Bommareddy, Ajay; Rule, Brittny; Guillermo, Ruth; Kaushik, Radhey S; Young, Alan; Dwivedi, Chandradhar

    2013-01-01

    Anticancer efficacy and the mechanism of action of α-santalol, a terpenoid isolated from sandalwood oil, were investigated in human breast cancer cells by using p53 wild-type MCF-7 cells as a model for estrogen receptor (ER)-positive and p53 mutated MDA-MB-231 cells as a model for ER-negative breast cancer. α-Santalol inhibited cell viability and proliferation in a concentration and time-dependent manner in both cells regardless of their ER and/or p53 status. However, α-santalol produced relatively less toxic effect on normal breast epithelial cell line, MCF-10A. It induced G2/M cell cycle arrest and apoptosis in both MCF-7 and MDA-MB-231 cells. Cell cycle arrest induced by α-santalol was associated with changes in the protein levels of BRCA1, Chk1, G2/M regulatory cyclins, Cyclin dependent kinases (CDKs), Cell division cycle 25B (Cdc25B), Cdc25C and Ser-216 phosphorylation of Cdc25C. An up-regulated expression of CDK inhibitor p21 along with suppressed expression of mutated p53 was observed in MDA-MB-231 cells treated with α-santalol. On the contrary, α-santalol did not increase the expression of wild-type p53 and p21 in MCF-7 cells. In addition, α-santalol induced extrinsic and intrinsic pathways of apoptosis in both cells with activation of caspase-8 and caspase-9. It led to the activation of the executioner caspase-6 and caspase-7 in α-santalol-treated MCF-7 cells and caspase-3 and caspase-6 in MDA-MB-231 cells along with strong cleavage of poly(ADP-ribose) polymerase (PARP) in both cells. Taken together, this study for the first time identified strong anti-neoplastic effects of α-santalol against both ER-positive and ER-negative breast cancer cells.

  3. Antineoplastic Effects of α-Santalol on Estrogen Receptor-Positive and Estrogen Receptor-Negative Breast Cancer Cells through Cell Cycle Arrest at G2/M Phase and Induction of Apoptosis

    PubMed Central

    Santha, Sreevidya; Bommareddy, Ajay; Rule, Brittny; Guillermo, Ruth; Kaushik, Radhey S.; Young, Alan; Dwivedi, Chandradhar

    2013-01-01

    Anticancer efficacy and the mechanism of action of α-santalol, a terpenoid isolated from sandalwood oil, were investigated in human breast cancer cells by using p53 wild-type MCF-7 cells as a model for estrogen receptor(ER)-positive and p53 mutated MDA-MB-231 cells as a model for ER-negative breast cancer. α-Santalol inhibited cell viability and proliferation in a concentration and time-dependent manner in both cells regardless of their ER and/or p53 status. However, α-santalol produced relatively less toxic effect on normal breast epithelial cell line, MCF-10A. It induced G2/M cell cycle arrest and apoptosis in both MCF-7 and MDA-MB-231 cells. Cell cycle arrest induced by α-santalol was associated with changes in the protein levels of BRCA1, Chk1, G2/M regulatory cyclins, Cyclin dependent kinases (CDKs), Cell division cycle 25B (Cdc25B), Cdc25C and Ser-216 phosphorylation of Cdc25C. An up-regulated expression of CDK inhibitor p21 along with suppressed expression of mutated p53 was observed in MDA-MB-231 cells treated with α-santalol. On the contrary, α-santalol did not increase the expression of wild-type p53 and p21 in MCF-7 cells. In addition, α-santalol induced extrinsic and intrinsic pathways of apoptosis in both cells with activation of caspase-8 and caspase-9. It led to the activation of the executioner caspase-6 and caspase-7 in α-santalol-treated MCF-7 cells and caspase-3 and caspase-6 in MDA-MB-231 cells along with strong cleavage of poly(ADP-ribose) polymerase (PARP) in both cells. Taken together, this study for the first time identified strong anti-neoplastic effects of α-santalol against both ER-positive and ER-negative breast cancer cells. PMID:23451128

  4. Estrogen receptors in the wobbler mouse.

    PubMed

    Siegel, L I; Fox, T O

    1985-12-01

    Recent research has raised the interesting possibility that the neurological mutant mouse, wobbler (wr/wr), possesses an estrogen receptor deficit analogous to the androgen receptor deficiency found in androgen-resistant mice with testicular feminization. In the present report we examined estrogen-binding activity in cytosolic extracts of kidney, liver, and brain from wobbler mice, littermate control animals, and C57BL/6J mice, using DNA-cellulose chromatography. Estrogen binding components exhibiting properties of estrogen receptors were present in all tissues examined. Estrogen receptors adhered to DNA, displayed characteristic elution profiles from DNA-cellulose, and showed high affinity and limited capacity for estradiol, in contrast to non-receptor entities which bind estradiol. The qualitative elution patterns for estrogen receptors did not differ among groups within each tissue studied, and were similar to those reported previously in mouse kidney and brain. While estrogen receptors have been shown in mouse liver by other techniques, this is the first demonstration of putative estrogen receptors in mouse liver by DNA-cellulose chromatography. No consistent deficits in estrogen receptor concentration were found in wobblers compared to littermates. Thus, the data do not support the hypothesis that the wobbler mouse is an estrogen receptor-deficient mutant.

  5. Downregulation of GLUT4 contributes to effective intervention of estrogen receptor-negative/HER2-overexpressing early stage breast disease progression by lapatinib.

    PubMed

    Acharya, Sunil; Xu, Jia; Wang, Xiao; Jain, Shalini; Wang, Hai; Zhang, Qingling; Chang, Chia-Chi; Bower, Joseph; Arun, Banu; Seewaldt, Victoria; Yu, Dihua

    2016-01-01

    Tamoxifen and aromatase inhibitors (AIs) have shown efficacy in prevention of estrogen receptor-positive (ER+) breast cancer; however, there exists no proven prevention strategy for estrogen receptor-negative (ER-) breast cancer. Up to 40% of ER- breast cancers have human epidermal growth factor receptor 2 overexpression (HER2+), suggesting HER2 signaling might be a good target for chemoprevention for certain ER- breast cancers. Here, we tested the feasibility of the HER2-targeting agent lapatinib in prevention and/or early intervention of an ER-/HER2+ early-stage breast disease model. We found that lapatinib treatment forestalled the progression of atypical ductal hyperplasia (ADH)-like acini to ductal carcinoma in situ (DCIS)-like acini in ER-/HER2+ human mammary epithelial cells (HMECs) in 3D culture. Mechanistically, we found that inhibition of HER2/Akt signaling by lapatinib led to downregulation of GLUT4 and a reduced glucose uptake in HER2-overexpressing cells, resulting in decreased proliferation and increased apoptosis of these cells in 3D culture. Additionally, our data suggest that HER2-driven glycolytic metabolic dysregulation in ER-/HER2+ HMECs might promote early-stage breast disease progression, which can be reversed by lapatinib treatment. Furthermore, low-dose lapatinib treatment, starting at the early stages of mammary grand transformation in the MMTV-neu* mouse model, significantly delayed mammary tumor initiation and progression, extended tumor-free survival, which corresponded to effective inhibition of HER2/Akt signaling and downregulation of GLUT4 in vivo. Taken together, our results indicate that lapatinib, through its inhibition of key signaling pathways and tumor-promoting metabolic events, is a promising agent for the prevention/early intervention of ER-/HER2+ breast cancer progression. PMID:27293993

  6. Downregulation of GLUT4 contributes to effective intervention of estrogen receptor-negative/HER2-overexpressing early stage breast disease progression by lapatinib

    PubMed Central

    Acharya, Sunil; Xu, Jia; Wang, Xiao; Jain, Shalini; Wang, Hai; Zhang, Qingling; Chang, Chia-Chi; Bower, Joseph; Arun, Banu; Seewaldt, Victoria; Yu, Dihua

    2016-01-01

    Tamoxifen and aromatase inhibitors (AIs) have shown efficacy in prevention of estrogen receptor-positive (ER+) breast cancer; however, there exists no proven prevention strategy for estrogen receptor-negative (ER-) breast cancer. Up to 40% of ER- breast cancers have human epidermal growth factor receptor 2 overexpression (HER2+), suggesting HER2 signaling might be a good target for chemoprevention for certain ER- breast cancers. Here, we tested the feasibility of the HER2-targeting agent lapatinib in prevention and/or early intervention of an ER-/HER2+ early-stage breast disease model. We found that lapatinib treatment forestalled the progression of atypical ductal hyperplasia (ADH)-like acini to ductal carcinoma in situ (DCIS)-like acini in ER-/HER2+ human mammary epithelial cells (HMECs) in 3D culture. Mechanistically, we found that inhibition of HER2/Akt signaling by lapatinib led to downregulation of GLUT4 and a reduced glucose uptake in HER2-overexpressing cells, resulting in decreased proliferation and increased apoptosis of these cells in 3D culture. Additionally, our data suggest that HER2-driven glycolytic metabolic dysregulation in ER-/HER2+ HMECs might promote early-stage breast disease progression, which can be reversed by lapatinib treatment. Furthermore, low-dose lapatinib treatment, starting at the early stages of mammary grand transformation in the MMTV-neu* mouse model, significantly delayed mammary tumor initiation and progression, extended tumor-free survival, which corresponded to effective inhibition of HER2/Akt signaling and downregulation of GLUT4 in vivo. Taken together, our results indicate that lapatinib, through its inhibition of key signaling pathways and tumor-promoting metabolic events, is a promising agent for the prevention/early intervention of ER-/HER2+ breast cancer progression. PMID:27293993

  7. Kruppel-like Factor 9 is a Negative Regulator of Ligand-dependent Estrogen Receptor Alpha Signaling in Ishikawa Endometrial Adenocarcinoma Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogen (E) and progesterone (P), acting through their respective receptors and other nuclear proteins, exhibit opposing activities in target cells. We previously reported that Krüppel-like factor 9 (KLF9) cooperates with progesterone receptor (PR) to facilitate P-dependent gene transcription in ut...

  8. A divergent role for estrogen receptor-beta in node-positive and node-negative breast cancer classified according to molecular subtypes: an observational prospective study

    PubMed Central

    Novelli, Flavia; Milella, Michele; Melucci, Elisa; Di Benedetto, Anna; Sperduti, Isabella; Perrone-Donnorso, Raffaele; Perracchio, Letizia; Venturo, Irene; Nisticò, Cecilia; Fabi, Alessandra; Buglioni, Simonetta; Natali, Pier Giorgio; Mottolese, Marcella

    2008-01-01

    Introduction Estrogen receptor-alpha (ER-α) and progesterone receptor (PgR) are consolidated predictors of response to hormonal therapy (HT). In contrast, little information regarding the role of estrogen receptor-beta (ER-β) in various breast cancer risk groups treated with different therapeutic regimens is available. In particular, there are no data concerning ER-β distribution within the novel molecular breast cancer subtypes luminal A (LA) and luminal B (LB), HER2 (HS), and triple-negative (TN). Methods We conducted an observational prospective study using immunohistochemistry to evaluate ER-β expression in 936 breast carcinomas. Associations with conventional biopathological factors and with molecular subtypes were analyzed by multiple correspondence analysis (MCA), while univariate and multivariate Cox regression analysis and classification and regression tree analysis were applied to determine the impact of ER-β on disease-free survival in the 728 patients with complete follow-up data. Results ER-β evenly distributes (55.5%) across the four molecular breast cancer subtypes, confirming the lack of correlation between ER-β and classical prognosticators. However, the relationships among the biopathological factors, analyzed by MCA, showed that ER-β positivity is located in the quadrant containing more aggressive phenotypes such as HER2 and TN or ER-α/PgR/Bcl2- tumors. Kaplan-Meier curves and Cox regression analysis identified ER-β as a significant discriminating factor for disease-free survival both in the node-negative LA (P = 0.02) subgroup, where it is predictive of response to HT, and in the node-positive LB (P = 0.04) group, where, in association with PgR negativity, it conveys a higher risk of relapse. Conclusion Our data indicated that, in contrast to node-negative patients, in node-positive breast cancer patients, ER-β positivity appears to be a biomarker related to a more aggressive clinical course. In this context, further investigations

  9. A Phase II Study Evaluating the Role of Androgen Receptors as Targets for Therapy of Pre-treated Post-menopausal Patients With ER/PgR-negative/AR-positive or ER and/or PgRpositive/ AR-positive Metastatic Breast Cancer (ARTT)

    ClinicalTrials.gov

    2016-09-28

    Metastatic Breastcancer; Estrogen Receptor Positive Breast Cancer; Estrogen Receptor Negative Neoplasm; Progesterone Receptor Positive Tumor; Progesterone Receptor Negative Neoplasm; Androgen Receptor Gene Overexpression

  10. HDAC inhibition does not induce estrogen receptor in human triple-negative breast cancer cell lines and patient-derived xenografts.

    PubMed

    de Cremoux, Patricia; Dalvai, Mathieu; N'Doye, Olivia; Moutahir, Fatima; Rolland, Gaëlle; Chouchane-Mlik, Olfa; Assayag, Franck; Lehmann-Che, Jacqueline; Kraus-Berthie, Laurence; Nicolas, André; Lockhart, Brian Paul; Marangoni, Elisabetta; de Thé, Hugues; Depil, Stéphane; Bystricky, Kerstin; Decaudin, Didier

    2015-01-01

    Several publications have suggested that histone deacetylase inhibitors (HDACis) could reverse the repression of estrogen receptor alpha (ERα) in triple-negative breast cancer (TNBC) cell lines, leading to the induction of a functional protein. Using different HDACis, vorinostat, panobinostat, and abexinostat, we therefore investigated this hypothesis in various human TNBC cell lines and patient-derived xenografts (PDXs). We used three human TNBC cell lines and three PDXs. We analyzed the in vitro toxicity of the compounds, their effects on the hormone receptors and hormone-related genes and protein expression both in vitro and in vivo models. We then explored intra-tumor histone H3 acetylation under abexinostat in xenograft models. Despite major cytotoxicity of all tested HDAC inhibitors and repression of deactylation-dependent CCND1 gene, neither ERα nor ERβ, ESR1 or ESR2 genes respectively, were re-expressed in vitro. In vivo, after administration of abexinostat for three consecutive days, we did not observe any induction of ESR1 or ESR1-related genes and ERα protein expression by RT-qPCR and immunohistochemical methods in PDXs. This observation was concomitant to the fact that in vivo administration of abexinostat increased intra-tumor histone H3 acetylation. These observations do not allow us to confirm previous studies which suggested that HDACis are able to convert ER-negative (ER-) tumors to ER-positive (ER+) tumors, and that a combination of HDAC inhibitors and hormone therapy could be proposed in the management of TNBC patients.

  11. Caffeic Acid Phenethyl Ester Increases Radiosensitivity of Estrogen Receptor-Positive and -Negative Breast Cancer Cells by Prolonging Radiation-Induced DNA Damage

    PubMed Central

    Khoram, Nastaran Masoudi; Bigdeli, Bahareh; Nikoofar, Alireza

    2016-01-01

    Purpose Breast cancer is an important cause of death among women. The development of radioresistance in breast cancer leads to recurrence after radiotherapy. Caffeic acid phenethyl ester (CAPE), a polyphenolic compound of honeybee propolis, is known to have anticancer properties. In this study, we examined whether CAPE enhanced the radiation sensitivity of MDA-MB-231 (estrogen receptor-negative) and T47D (estrogen receptor-positive) cell lines. Methods The cytotoxic effect of CAPE on MDA-MB-231 and T47D breast cancer cells was evaluated by performing an 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. To assess clonogenic ability, MDA-MB-231 and T47D cells were treated with CAPE (1 µM) for 72 hours before irradiation, and then, a colony assay was performed. A comet assay was used to determine the number of DNA strand breaks at four different times. Results CAPE decreased the viability of both cell lines in a dose- and time-dependent manner. In the clonogenic assay, pretreatment of cells with CAPE before irradiation significantly reduced the surviving fraction of MDA-MB-231 cells at doses of 6 and 8 Gy. A reduction in the surviving fraction of T47D cells was observed relative to MDA-MB-231 at lower doses of radiation. Additionally, CAPE maintained radiation-induced DNA damage in T47D cells for a longer period than in MDA-MB-231 cells. Conclusion Our results indicate that CAPE impairs DNA damage repair immediately after irradiation. The induction of radiosensitivity by CAPE in radioresistant breast cancer cells may be caused by prolonged DNA damage. PMID:27066092

  12. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay.

    PubMed

    Wang, Si; Bovee, Toine F H

    2016-01-01

    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter. PMID:26585147

  13. Estrogen Receptors are Present in Neocortical Transplants

    PubMed Central

    Pedersen, Erik B.; O'Keefe, Joan A.; Handa, Robert J.; Castro, Anthony J.

    1992-01-01

    Fetal neocortical tissue was grafted into neocortical lesion cavities made in newborn rats. After two weeks survival, in vitro binding of [3H]- estradiol to cytosolic preparations provided evidence of estrogen receptors within the transplants. The observed high levels correspond to previous work demonstrating elevated estrogen receptor levels during the first postnatal week in the rat cerebral cortex. PMID:1515481

  14. Impact of suppression of tumorigenicity 14 (ST14)/serine protease 14 (Prss14) expression analysis on the prognosis and management of estrogen receptor negative breast cancer

    PubMed Central

    Kim, Sauryang; Yang, Jae Woong; Kim, Chungho; Kim, Moon Gyo

    2016-01-01

    To elucidate the role of a type II transmembrane serine protease, ST14/Prss14, during breast cancer progression, we utilized publically accessible databases including TCGA, GEO, NCI-60, and CCLE. Survival of breast cancer patients with high ST14/Prss14 expression is significantly poor in estrogen receptor (ER) negative populations regardless of the ratios of ST14/Prss14 to its inhibitors, SPINT1 or SPINT2. In a clustering of 1085 selected EMT signature genes, ST14/Prss14 is located in the same cluster with CDH3, and closer to post-EMT markers, CDH2, VIM, and FN1 than to the pre-EMT marker, CDH1. Coexpression analyses of known ST14/Prss14 substrates and transcription factors revealed context dependent action. In cell lines, paradoxically, ST14/Prss14 expression is higher in the ER positive group and located closer to CDH1 in clustering. This apparent contradiction is not likely due to ST14/Prss14 expression in a cancer microenvironment, nor due to negative regulation by ER. Genes consistently coexpressed with ST14/Prss14 include transcription factors, ELF5, GRHL1, VGLL1, suggesting currently unknown mechanisms for regulation. Here, we report that ST14/Prss14 is an emerging therapeutic target for breast cancer where HER2 is not applicable. In addition we suggest that careful conclusions should be drawn not exclusively from the cell line studies for target development. PMID:27167193

  15. Impact of suppression of tumorigenicity 14 (ST14)/serine protease 14 (Prss14) expression analysis on the prognosis and management of estrogen receptor negative breast cancer.

    PubMed

    Kim, Sauryang; Yang, Jae Woong; Kim, Chungho; Kim, Moon Gyo

    2016-06-01

    To elucidate the role of a type II transmembrane serine protease, ST14/Prss14, during breast cancer progression, we utilized publically accessible databases including TCGA, GEO, NCI-60, and CCLE. Survival of breast cancer patients with high ST14/Prss14 expression is significantly poor in estrogen receptor (ER) negative populations regardless of the ratios of ST14/Prss14 to its inhibitors, SPINT1 or SPINT2. In a clustering of 1085 selected EMT signature genes, ST14/Prss14 is located in the same cluster with CDH3, and closer to post-EMT markers, CDH2, VIM, and FN1 than to the pre-EMT marker, CDH1. Coexpression analyses of known ST14/Prss14 substrates and transcription factors revealed context dependent action. In cell lines, paradoxically, ST14/Prss14 expression is higher in the ER positive group and located closer to CDH1 in clustering. This apparent contradiction is not likely due to ST14/Prss14 expression in a cancer microenvironment, nor due to negative regulation by ER. Genes consistently coexpressed with ST14/Prss14 include transcription factors, ELF5, GRHL1, VGLL1, suggesting currently unknown mechanisms for regulation. Here, we report that ST14/Prss14 is an emerging therapeutic target for breast cancer where HER2 is not applicable. In addition we suggest that careful conclusions should be drawn not exclusively from the cell line studies for target development.

  16. Standardization of Estrogen Receptor Measurement in Breast Cancer Suggests False-Negative Results Are a Function of Threshold Intensity Rather Than Percentage of Positive Cells

    PubMed Central

    Welsh, Allison W.; Moeder, Christopher B.; Kumar, Sudha; Gershkovich, Peter; Alarid, Elaine T.; Harigopal, Malini; Haffty, Bruce G.; Rimm, David L.

    2011-01-01

    Purpose Recent misclassification (false negative) incidents have raised awareness concerning limitations of immunohistochemistry (IHC) in assessment of estrogen receptor (ER) in breast cancer. Here we define a new method for standardization of ER measurement and then examine both change in percentage and threshold of intensity (immunoreactivity) to assess sources for test discordance. Methods An assay was developed to quantify ER by using a control tissue microarray (TMA) and a series of cell lines in which ER immunoreactivity was analyzed by quantitative immunoblotting in parallel with the automated quantitative analysis (AQUA) method of quantitative immunofluorescence (QIF). The assay was used to assess the ER protein expression threshold in two independent retrospective cohorts from Yale and was compared with traditional methods. Results Two methods of analysis showed that change in percentage of positive cells from 10% to 1% did not significantly affect the overall number of ER-positive patients. The standardized assay for ER on two Yale TMA cohorts showed that 67.9% and 82.5% of the patients were above the 2-pg/μg immunoreactivity threshold. We found 9.1% and 19.7% of the patients to be QIF-positive/IHC-negative, and 4.0% and 0.4% to be QIF-negative/IHC-positive for a total of 13.1% and 20.1% discrepant cases when compared with pathologists' judgment of threshold. Assessment of survival for both cohorts showed that patients who were QIF-positive/pathologist-negative had outcomes similar to those of patients who had positive results for both assays. Conclusion Assessment of intensity threshold by using a quantitative, standardized assay on two independent cohorts suggests discordance in the 10% to 20% range with current IHC methods, in which patients with discrepant results have prognostic outcomes similar to ER-positive patients with concordant results. PMID:21709197

  17. Synergistic epigenetic reactivation of estrogen receptor-α (ERα) by combined green tea polyphenol and histone deacetylase inhibitor in ERα-negative breast cancer cells

    PubMed Central

    2010-01-01

    Background The status of estrogen receptor-α (ERα) is critical to the clinical prognosis and therapeutic approach in breast cancer. ERα-negative breast cancer is clinically aggressive and has a poor prognosis because of the lack of hormone target-directed therapies. Previous studies have shown that epigenetic regulation plays a major role in ERα silencing in human breast cancer cells. Dietary green tea polyphenol, (-)-epigallocatechin-3-gallate (EGCG), is believed to be an anticancer agent in part through its regulation of epigenetic processes. Results In our current studies, we found that EGCG can reactivate ERα expression in ERα-negative MDA-MB-231 breast cancer cells. Combination studies using EGCG with the histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), revealed a synergistic effect of reactivation of ERα expression in ERα-negative breast cancer cells. Reactivation of ERα expression by EGCG and TSA treatment was found to sensitize ERα-dependent cellular responses to activator 17β-estradiol (E2) and antagonist tamoxifen in ERα-negative breast cancer cells. We also found that EGCG can lead to remodeling of the chromatin structure of the ERα promoter by altering histone acetylation and methylation status thereby resulting in ERα reactivation. A decreased binding of the transcription repressor complex, Rb/p130-E2F4/5-HDAC1-SUV39H1-DNMT1, in the regulatory region of the ERα promoter also contributes to ERα transcriptional activation through treatment with EGCG and/or TSA. Conclusions Collectively, these studies show that green tea EGCG can restore ERα expression by regulating epigenetic mechanisms, and this effect is enhanced when combined with an HDAC inhibitor. This study will facilitate more effective uses of combination approaches in breast cancer therapy and will help to explore more effective chemotherapeutic strategies toward hormone-resistant breast cancer. PMID:20946668

  18. Prevention and Treatment of Experimental Estrogen ReceptorNegative Mammary Carcinogenesis by the Synthetic Triterpenoid CDDO-Methyl Ester and the Rexinoid LG100268

    PubMed Central

    Liby, Karen; Risingsong, Renee; Royce, Darlene B.; Williams, Charlotte R.; Yore, Mark M.; Honda, Tadashi; Gribble, Gordon W.; Lamph, William W.; Vannini, Nicola; Sogno, Ilaria; Albini, Adriana; Sporn, Michael B.

    2016-01-01

    Purpose To test whether the triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) and the rexinoid LG100268 (268) prevent the formation of estrogen receptor (ER) – negative mammary tumors or either arrest the growth or cause regression of established tumors in MMTV-neu mice. Experimental Design For prevention, mice were fed control diet, CDDO-Me (60 mg/kg diet), 268 (20 mg/kg diet), or the combination for 45 weeks. For treatment, mice with established tumors at least 4 mm in diameter were fed control diet, CDDO-Me (100 mg/kg diet), 268 (60 mg/kg diet), or the combination for 4 weeks. Results CDDO-Me and 268 significantly delayed the development of ER-negative tumors, with a 14- and 24-week delay, respectively, compared with the control group for the time required to reach 50% tumor incidence. The combination of CDDO-Me and 268 was significantly more potent than the individual drugs, as only one tumor was found in the combination group, after 45 weeks on diet, at which time all control animals had tumors. Treating established tumors with CDDO-Me arrested the growth of 86% of the tumors, and 268 induced tumor regression in 85% of tumors. CDDO-Me and 268 target different signaling pathways and cell types. CDDO-Me inhibited constitutive STAT3 phosphorylation and the degradation of IKBα in ER-negative breast cancer cells, whereas 268 blocked IKBα degradation and the release of interleukin-6 in RAW264.7 macrophage-like cells, inhibited the ability of endothelial cells to organize into networks, and blocked angiogenesis in vivo. Conclusions CDDO-Me and 268 are useful as individual drugs to prevent ER-negative mammary tumorigenesis and to treat established tumors. They synergize when used in combination for prevention. PMID:18628471

  19. Estrogen Receptor α (ERα) and Estrogen Related Receptor α (ERRα) are both transcriptional regulators of the Runx2-I isoform.

    PubMed

    Kammerer, Martial; Gutzwiller, Sabine; Stauffer, Daniela; Delhon, Isabelle; Seltenmeyer, Yves; Fournier, Brigitte

    2013-04-30

    Runx2 is a master regulator of bone development and has also been described as an oncogene. Estrogen Receptor α (ERα) and Estrogen Related Receptor α (ERRα), both implicated in bone metabolism and breast cancer, have been shown to share common transcriptional targets. Here, we show that ERα is a positive regulator of Runx2-I transcription. Moreover, ERRα can act as a transcriptional activator of Runx2-I in presence of peroxisome proliferator activated receptor gamma coactivator-1 alpha (PGC-1α). In contrast, ERRα behaves as a negative regulator of Runx2-I transcription in presence of PGC-1β. ERα and ERRα cross-talk via a common estrogen receptor response element on the Runx2-I promoter. In addition, estrogen regulates PGC-1β that in turn is able to modulate both ERα and ERRα transcriptional activity.

  20. Economic evaluation of 21-gene reverse transcriptase-polymerase chain reaction assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer in Japan.

    PubMed

    Kondo, Masahide; Hoshi, Shu Ling; Ishiguro, Hiroshi; Yoshibayashi, Hiroshi; Toi, Masakazu

    2008-11-01

    The 21-gene reverse transcriptase-polymerase chain reaction assay with a patented algorithm is validated as a good predictor of prognosis and potential benefit from adjuvant chemotherapy for lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer, while its high cost raises concern about how to finance it. Cost-effectiveness analysis comparing prevalent National Comprehensive Cancer Network (NCCN) guideline/St Gallen recommendation-guided treatment with the assay-guided treatment is carried out with budget impact estimation in the context of Japan's health care system. Incremental cost-effectiveness ratios are estimated as 2,997,495 yen/QALY (26,065 US$/QALY) in the comparison between NCCN guided-treatment vs. the assay-guided treatment, and as 1,239,055 yen/QALY (10,774 US$/QALY) in the comparison between St Gallen guided-treatment vs. the assay-guided treatment. Budget impact is estimated as yen2,638 million (US$23 million) to yen3,225 million (US$28 million) per year. The routine use of the assay is indicated as cost-effective. And the budget impact could be judged as within fundable level. PMID:18075786

  1. Variants in the vitamin D pathway, serum levels of vitamin D, and estrogen receptor negative breast cancer among African-American women: a case-control study

    PubMed Central

    2012-01-01

    Introduction American women of African ancestry (AA) are more likely than European Americans (EA) to have estrogen receptor (ER)-negative breast cancer. 25-hydroxyvitamin D (25OHD) is low in AAs, and was associated with ER-negative tumors in EAs. We hypothesized that racial differences in 25OHD levels, as well as in inherited genetic variations, may contribute, in part, to the differences in tumor characteristics. Methods In a case (n = 928)-control (n = 843) study of breast cancer in AA and EA women, we measured serum 25OHD levels in controls and tested associations between risk and tag single nucleotide polymorphisms (SNPs) in VDR, CYP24A1 and CYP27B1, particularly by ER status. Results More AAs had severe vitamin D deficiency (< 10 ng/ml) than EAs (34.3% vs 5.9%), with lowest levels among those with the highest African ancestry. Associations for SNPs differed by race. Among AAs, VDR SNP rs2239186, associated with higher serum levels of 25OHD, decreased risk after correction for multiple testing (OR = 0.53, 95% CI = 0.31-0.79, p by permutation = 0.03), but had no effect in EAs. The majority of associations were for ER-negative breast cancer, with seven differential associations between AA and EA women for CYP24A1 (p for interaction < 0.10). SNP rs27622941 was associated with a > twofold increased risk of ER-negative breast cancer among AAs (OR = 2.62, 95% CI = 1.38-4.98), but had no effect in EAs. rs2209314 decreased risk among EAs (OR = 0.38, 95% CI = 0.20-0.73), with no associations in AAs. The increased risk of ER-negative breast cancer in AAs compared to EAs was reduced and became non-significant (OR = 1.20, 95% CI = 0.80-1.79) after adjusting for these two CYP24A1 SNPs. Conclusions These data suggest that genetic variants in the vitamin D pathway may be related to the higher prevalence of ER-negative breast cancer in AA women. PMID:22480149

  2. A Novel Combinatorial Epigenetic Therapy Using Resveratrol and Pterostilbene for Restoring Estrogen Receptor-α (ERα) Expression in ERα-Negative Breast Cancer Cells

    PubMed Central

    Kala, Rishabh; Tollefsbol, Trygve O.

    2016-01-01

    Breast cancer is the second most common cancer and a leading cause of cancer death in women. Specifically, estrogen receptor-α (ERα)-negative breast cancers are clinically more aggressive and normally do not respond to conventional hormone-directed therapies such as tamoxifen. Although epigenetic-based therapies such as 5-aza-2’-deoxycytidine and/or trichostatin A as DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibitors, respectively, can regulate the expression of ERα, this can often lead to a number of side effects. Plant-based dietary compounds such as resveratrol and pterostilbene in novel combinatorial therapy provides new avenues to target these side effects and provide similar results with a higher level of safety. Here, we report that combinatorial resveratrol and pterostilbene leads to the reactivation of ERα expression in ERα-negative breast cancer cells in a time-dependent manner. Chromatin immunoprecipitation analysis of the ERα promoter in each cell type revealed an increase in enrichment of acetyl-H3, acetyl-H3lysine9 (H3K9) and acetyl-H4 active chromatin markers in the ERα promoter region after combinatorial treatment. This treatment also resulted in a significant change in HDAC and histone acetyl transferase (HAT) enzyme activity in these cells after 3 days of treatments. The combination resulted in a significant decrease in DNMT enzyme activity and 5-methylcytosine levels in MDA-MB-157 breast cancer cells. Moreover, reactivation of ERα expression by resveratrol combined with pterostilbene was found to sensitize ERα-dependent response to 17β-estradiol (E2)-mediated cellular proliferation and antagonist 4-hydroxytamoxifen (4-OHT)-mediated inhibition of cellular proliferation in ERα-negative breast cancer cells. E2 and 4-OHT further affected the ERα-responsive downstream progesterone receptor (PGR) gene in ERα reactivated MDA-MB-157 cells. Collectively, our findings provide a new and safer way of restoring ER

  3. Targeted Radiotherapy of Estrogen Receptor Positive Tumors

    SciTech Connect

    Raghavan Rajagopalan

    2006-08-31

    The overall objectives of the proposal were to develop estrogen receptor (ER) binding small molecule radiopharmaceuticals for targeted radiotherapy of ER positive (ER+) tumors. In particular, this proposal focused on embedding a {sup 186,188}Re or a {sup 32}P radionuclide into an estrogen steroidal framework by isosteric substitution such that the resulting structure is topologically similar to the estrogen (estrogen mimic). The estrogen mimic molecules expected to bind to the ER and exhibit biodistribution akin to that of native estrogen due to structural mimicry. It is anticipated that the {sup 186,188}Re- or a {sup 32}P-containing estrogen mimics will be useful for targeted molecular radiotherapy of ER+ tumors. It is well established that the in vivo target tissue uptake of estrogen like steroidal molecules is related to the binding of the steroids to sex hormone binding globulin (SHBG). SHBG is important in the uptake of estrogens and testosterone in target tissues by SHBG receptors on the cell surface. However, hitherto the design of estrogen like small molecule radiopharmaceuticals was focused on optimizing ER binding characteristics without emphasis on SHBG binding properties. Consequently, even the molecules with good ER affinity in vitro, performed poorly in biodistribution studies. Based on molecular modeling studies the proposal focused on developing estrogen mimics 1-3 which were topologically similar to native estrogens, and form hydrogen bonds in ER and SHBG in the same manner as those of native estrogens. To this end the technical objectives of the proposal focused on synthesizing the rhenium-estrone and estradiol mimics 1 and 2 respectively, and phosphorous estradiol mimic 3 and to assess their stability and in vitro binding characteristics to ER and SHBG.

  4. Plasma fluorescent oxidation products and risk of estrogen receptor-negative breast cancer in the Nurses’ Health Study and Nurses’ Health Study II

    PubMed Central

    Hirko, Kelly A.; Fortner, Renée T.; Hankinson, Susan E.; Wu, Tianying; Eliassen, A. Heather

    2016-01-01

    Purpose Findings from epidemiologic studies of oxidative stress biomarkers and breast cancer have been mixed; although no studies have focused on estrogen receptor-negative (ER−) tumors, which may be more strongly associated with oxidative stress. We examined pre-diagnostic plasma fluorescent oxidation products (FlOP), a global biomarker of oxidative stress, and risk of ER− breast cancer in a nested case-control study in the Nurses’ Health Study (NHS) and NHSII. Methods ER− breast cancer cases (n=355) were matched to 355 controls on age, month/time of day of blood collection, fasting status, menopausal status and menopausal hormone use. Conditional logistic regression models were used to examine associations of plasma FlOP at three emission wavelengths (FlOP_360, FlOP_320, and FlOP_400) and risk of ER− breast cancer. Results We did not observe any significant associations between FlOP measures and risk of ER− breast cancer overall; the RRQ4vsQ1 (95%CI) =0.70 (0.43-1.13), ptrend=0.09 for FlOP_360; 0.91(0.56-1.46), ptrend=0.93 for FlOP_320; and 0.62 (0.37-1.03), ptrend=0.10 for FlOP_400. Results were similar in models additionally adjusted for total carotenoid levels, and in models stratified by age and by total carotenoids. Although, high (vs. low) levels of FIOP_360 and FIOP_400 were associated with lower risk of ER− breast cancer in lean women (body mass index (BMI)<25 kg/m2) but not in overweight/obese women, these differences were not statistically significant (pint=0.23 for FlOP_360; pint=0.37 for FlOP_400). Conclusions Our findings suggest that positive associations of plasma FlOP concentrations and ER− breast cancer risk are unlikely. PMID:27294610

  5. Inverse agonist of estrogen-related receptor α suppresses the growth of triple negative breast cancer cells through ROS generation and interaction with multiple cell signaling pathways

    PubMed Central

    Jiang, Guan-Min; Zhang, Kun-Shui; Liu, Qiao; Liang, Shu-Wei; Zhou, Yan; Huang, Hong-Bin; Du, Jun; Wang, Hong-Sheng

    2016-01-01

    There is an urgent clinical need for targeted therapy approaches for triple-negative breast cancer (TNBC) patients. Increasing evidences suggested that the expression of estrogen-related receptor alpha (ERRα) was correlate with unfavorable clinical outcomes of breast cancer patients. We here show that inhibition of ERRα by its inverse agonist XCT-790 can suppress the proliferation, decrease G2/M phases, and induce mitochondrial-related apoptosis of TNBC cells. XCT-790 elevates the proteins related to endoplasmic reticulum (ER) stress such as ATF4/6, XBT-1 and CHOP. It also increases the expression of growth inhibition related proteins such as p53 and p21. Further, XCT-790 can increase the generation of reactive oxygen species (ROS) in TNBC cells mainly through inhibition of SOD1/2. While ROS scavenger NAC abolishes XCT-790 induced ER-stress and growth arrest. XCT-790 treatment can rapidly activate the signal molecules including ERK1/2, p38-MAPK, JNK, Akt, p65, and IκBα, while NAC attenuates effects of XCT-790 induced phosphorylation of ERK1/2, p38-MAPK and Akt. Further, the inhibitors of ERK1/2, JNK, Akt, and NF-κB attenuate XCT-790 induced ROS generation. These data suggest that AKT/ROS and ERK/ROS positive feedback loops, NF-κB/ROS, and ROS/p38-MAPK, are activated in XCT-790 treated TNBC cells. In vivo experiments show that XCT-790 significantly suppresses the growth of MDA-MB-231 xenograft tumors, which is associated with up regulation of p53, p21, ER-stress related proteins while down regulation of bcl-2. The present discovery makes XCT-790 a promising candidate drug and lays the foundation for future development of ERRα-based therapies for TNBC patients. PMID:26871469

  6. A functionally significant cross-talk between androgen receptor and ErbB2 pathways in estrogen receptor negative breast cancer.

    PubMed

    Naderi, Ali; Hughes-Davies, Luke

    2008-06-01

    Recent studies have identified novel subgroups in ER-negative breast cancer based on the expression pattern of androgen receptor (AR). One subtype (molecular apocrine) has an over-expression of steroid-response genes and ErbB2. Using breast cancer cell lines with molecular apocrine features, we demonstrate a functional cross-talk between AR and ErbB2 pathways. We show that stimulation of AR and ErbB2 pathways leads to the cross-regulation of gene expression for AR, ErbB2, FOXA1, XBP1, TFF3, and KLK3. As opposed to the physiologic transient phosphorylation of extracellular signal-regulated kinase (ERK1/2) observed with the testosterone treatment, we demonstrate that the addition of ErbB2 inhibition leads to a persistent phosphorylation of ERK1/2, which negatively regulates the downstream signaling and cell growth. This suggests a mechanism for the cross-talk involving the ERK pathway. Moreover, testosterone stimulates the proliferation of molecular apocrine breast cell lines, and this effect can be reversed using antiandrogen flutamide and anti-ErbB2 AG825. Conversely, the growth stimulatory effect of heregulin can also be inhibited with flutamide, suggesting a cross-talk between the AR and ErbB2 pathways affecting cell proliferation. Importantly, there is a synergy with the combined use of flutamide and AG825 on cell proliferation and apoptosis, which indicates a therapeutic advantage in the combined blockage of AR and ErbB2 pathways.

  7. Plasma fluorescent oxidation products and risk of estrogen receptor-negative breast cancer in the Nurses' Health Study and Nurses' Health Study II.

    PubMed

    Hirko, Kelly A; Fortner, Renée T; Hankinson, Susan E; Wu, Tianying; Eliassen, A Heather

    2016-07-01

    Findings from epidemiologic studies of oxidative stress biomarkers and breast cancer have been mixed, although no studies have focused on estrogen receptor-negative (ER-) tumors which may be more strongly associated with oxidative stress. We examined prediagnostic plasma fluorescent oxidation products (FlOP), a global biomarker of oxidative stress, and risk of ER- breast cancer in a nested case-control study in the Nurses' Health Study and Nurses' Health Study II. ER- breast cancer cases (n = 355) were matched to 355 controls on age, month/time of day of blood collection, fasting status, menopausal status, and menopausal hormone use. Conditional logistic regression models were used to examine associations of plasma FlOP at three emission wavelengths (FlOP_360, FlOP_320, and FlOP_400) and risk of ER- breast cancer. We did not observe any significant associations between FlOP measures and risk of ER- breast cancer overall; the RRQ4vsQ1 (95 %CI) 0.70 (0.43-1.13), p trend = 0.09 for FlOP_360; 0.91(0.56-1.46), p trend = 0.93 for FlOP_320; and 0.62 (0.37-1.03), p trend = 0.10 for FlOP_400. Results were similar in models additionally adjusted for total carotenoid levels and in models stratified by age and total carotenoids. Although high (vs. low) levels of FIOP_360 and FIOP_400 were associated with lower risk of ER- breast cancer in lean women (body mass index (BMI) < 25 kg/m(2)) but not in overweight/obese women, these differences were not statistically significant (pint = 0.23 for FlOP_360; pint = 0.37 for FlOP_400). Our findings suggest that positive associations of plasma FlOP concentrations and ER- breast cancer risk are unlikely. PMID:27294610

  8. Nitric Oxide-Releasing Aspirin Suppresses NF-κB Signaling in Estrogen Receptor Negative Breast Cancer Cells in Vitro and in Vivo.

    PubMed

    Nath, Niharika; Chattopadhyay, Mitali; Rodes, Deborah B; Nazarenko, Anna; Kodela, Ravinder; Kashfi, Khosrow

    2015-01-01

    Estrogen receptor negative (ER(-)) breast cancer is aggressive, responds poorly to current treatments and has a poor prognosis. The NF-κB signaling pathway is implicated in ER(-) tumorigenesis. Aspirin (ASA) is chemopreventive against ER(+) but not for ER(-) breast cancers. Nitric oxide-releasing aspirin (NO-ASA) is a safer ASA where ASA is linked to an NO-releasing moiety through a spacer. In vitro, we investigated anti-proliferation effects of NO-ASA (para- and meta-isomers) against ER(-) breast cancer cells MDA-MB-231 and SK-BR-23, effects on NF-κB signaling, and reactive oxygen species by standard techniques. In vivo, effects of NO-ASA were evaluated in a mouse xenograft model using MDA-MB-231 cells. p-NO-ASA inhibited the growth of MDA-MB-231 and SK-BR-3 cells at 24 h, the respective IC50s were 13 ± 2 and 17 ± 2 μM; ASA had an IC50 of >3000 μM in both cell lines. The IC50s for m-NO-ASA in MDA-MB-231 and SK-BR-3 were 173 ± 15 and 185 ± 12 μM, respectively, therefore, implying p-NO-ASA as a stronger inhibitor of growth p-NO-ASA reduced cell growth by inhibiting proliferation, inducing apoptosis and causing G0/G1 cell cycle block. Activation of NF-κB was inhibited by both isomers as demonstrated by decreases in NF-κB-DNA binding and luciferase activity at 24 h, However, m-NO-ASA produced transient effects at 3 h such as increased NF-κB-DNA-binding, increased levels of nuclear p50, even though both isomers inhibited IκB degradation. Increase in nuclear p50 by m-NO-ASA was associated with translocation of p50 in to the nucleus as observed by immunoflouresence at 3 h. NO-ASA induced reactive oxygen species (ROS) as evidenced by overall increases in both H2DCFDA (2',7'-dichlorodihydrofluorescein) and DHE (dihydroethidium)-derived fluorescence. Inhibition of ROS by N-acetyl-cysteine reversed the m-NO-ASA-mediated translocation of p50 in to the nucleus. In xenografts, p-NO-ASA inhibited tumor growth by inhibiting proliferation (PCNA and tumor volume

  9. GDC-0941 and Cisplatin in Treating Patients With Androgen Receptor-Negative Triple Negative Metastatic Breast Cancer

    ClinicalTrials.gov

    2015-08-17

    Estrogen Receptor Negative Breast Cancer; Human Epidermal Growth Factor 2 Negative Carcinoma of Breast; Triple Negative Breast Cancer; Recurrent Breast Cancer; Stage IV Breast Cancer; Triple-negative Breast Cancer

  10. The role of estrogens and estrogen receptor signaling pathways in cancer and infertility: the case of schistosomes.

    PubMed

    Botelho, Mónica C; Alves, Helena; Barros, Alberto; Rinaldi, Gabriel; Brindley, Paul J; Sousa, Mário

    2015-06-01

    Schistosoma haematobium, a parasitic flatworm that infects more than 100 million people, mostly in the developing world, is the causative agent of urogenital schistosomiasis, and is associated with a high incidence of squamous cell carcinoma (SCC) of the bladder. Schistosomiasis haematobia also appears to negatively influence fertility, and is particularly associated with female infertility. Given that estrogens and estrogen receptors are key players in human reproduction, we speculate that schistosome estrogen-like molecules may contribute to infertility through hormonal imbalances. Here, we review recent findings on the role of estrogens and estrogen receptors on both carcinogenesis and infertility associated with urogenital schistosomiasis and discuss the basic hormonal mechanisms that might be common in cancer and infertility.

  11. A relationship between artifical menopause, previous estrogen consumption, and estrogen receptor content of breast neoplasms: preliminary communication.

    PubMed

    Wallace, R B; Sherman, B M; Bean, J A

    1980-01-01

    A history of prior total bilateral oophorectomy and exogenous estrogen use was elicited from 45 women with breast surgery for cancer, 19 of whose neoplasms were estrogen receptor (ER) positive and 26 ER negative. In the ER-positive group there was a history of oophorectomy in 0/19 and estrogen use in 3/19. In the ER-negative group, corresponding values were 8/26 and 12/26 (p less than 0.05). Manipulation of the female hormonal milieu during or prior to the menopause may be related to the subsequent ER status of incident breast cancers.

  12. Estrogen receptor expert system overview and examples

    EPA Science Inventory

    The estrogen receptor expert system (ERES) is a rule-based system developed to prioritize chemicals based upon their potential for binding to the ER. The ERES was initially developed to predict ER affinity of chemicals from two specific EPA chemical inventories, antimicrobial pe...

  13. Modulators of androgen and estrogen receptor activity.

    PubMed

    Clarke, Bart L; Khosla, Sundeep

    2010-01-01

    This review focuses on significant recent findings regarding modulators of androgen and estrogen receptor activity. Selective androgen receptor modulators (SARMs) interact with androgen receptors (ARs), and selective estrogen receptor modulators (SERMs) interact with estrogen receptors (ERs), with variable tissue selectivity. SERMs, which interact with both ERб and ERв in a tissue-specific manner to produce diverse outcomes in multiple tissues, continue to generate significant interest for clinical application. Development of SARMs for clinical application has been slower to date because of potential adverse effects, but these diverse compounds continue to be investigated for use in disorders in which modulation of the AR is important. SARMs have been investigated mostly at the basic and preclinical level to date, with few human clinical trials published. These compounds have been evaluated mostly for application in different stages of prostate cancer to date, but they hold promise for multiple other applications. Publication of the large STAR and RUTH clinical trials demonstrated that the SERMs tamoxifen and raloxifene have interesting similarities and differences in tissues that contain ERs. Lasofoxifene, bazedoxifene, and arzoxifene are newer SERMs that have been demonstrated in clinical trials to more potently increase bone mineral density and lower serum cholesterol values than tamoxifen or raloxifene. Both SARMs and SERMs hold great promise for therapeutic use in multiple disorders in which tissue-specific effects are mediated by their respective receptors.

  14. Estrogen receptors in prostate development and cancer

    PubMed Central

    Yeh, Chiuan-Ren; Da, Jun; Song, Wenbin; Fazili, Anees; Yeh, Shuyuan

    2014-01-01

    Prostate cancer (PCa) is an androgen-sensitive disease, which can be pharmacologically controlled by androgen blockade. To date, a growing body of evidence showed that estrogen and estrogen receptors (ERs) could regulate prostate development, as well as cancer initiation and progression. This review will address the expression levels and function of ERs in different stages of PCa progression. The functions of ERs in different types of prostate cells, the ligand effect, and the potential applications of selective estrogen modulators (SERMs) will also be discussed. To further dissect ERs’ roles in prostate development, cell type specific ER knockout mouse models were generated. Results collected from the prostate cell type-specific ERαKO mouse models provided new insights about the cell type specific ERα roles in prostate development prenatally and postnatally. The results of ERs’ roles in mouse PCa mode and the correlation of ERs expression and biomedical outcome will also be discussed. PMID:25374919

  15. Estrogen-related Receptor β Reduces the Subnuclear Mobility of Estrogen Receptor α and Suppresses Estrogen-dependent Cellular Function*

    PubMed Central

    Tanida, Takashi; Matsuda, Ken Ichi; Yamada, Shunji; Hashimoto, Takashi; Kawata, Mitsuhiro

    2015-01-01

    Estrogen-related receptor (ERR) is a member of the nuclear receptor superfamily that has strong homology with estrogen receptor (ER) α. ERR has three subtypes (α, β, and γ) expressed in estrogen-sensitive organs, including ovary, breast, and brain. No endogenous ligands of ERRs have been identified, but these receptors share a common DNA element with ERα and control estrogen-mediated gene transcription. Recent evidence suggests a role of ERRs in estrogen-related pathophysiology, but the detailed mechanisms of ERR functions in estrogen-related tissues are unclear. Using live-cell imaging with fluorescent protein labeling, we found that only ERRβ among the ERRs exhibits a punctate intranuclear pattern overlapping with ERα following 17β-estradiol (E2)-stimulation. Fluorescence recovery after photobleaching showed significant reduction of the mobility of ligand-activated ERα with co-expression of ERRβ. Fluorescence resonance energy transfer revealed that ERRβ directly interacts with ERα. The N-terminal domain of ERRβ was identified as the region that interacts with ERα. We also found a correlation between punctate cluster formation of ERα and interaction between the receptors. Expression of ERRβ significantly repressed ERα-mediated transactivity, whereas that of other ERR subtypes had no effect on the transactivity of ERα. Consistent with this finding, E2-stimulated proliferation of MCF-7 breast carcinoma cells and bcl-2 expression was significantly inhibited by expression of ERRβ. These results provide strong evidence for a suppressive effect of ERRβ on estrogen signaling through reduction of the intranuclear mobility of ERα. The findings further suggest a unique inhibitory role for ERRβ in estrogen-dependent cellular function such as cancer cell proliferation. PMID:25805499

  16. Estrogen receptors and human disease: an update

    PubMed Central

    Burns, Katherine A.

    2016-01-01

    A myriad of physiological processes in mammals are influenced by estrogens and the estrogen receptors (ERs), ERα and ERβ. As we reviewed previously, given the widespread role for estrogen in normal human physiology, it is not surprising that estrogen is implicated in the development or progression of a number of diseases. In this review, we are giving a 5-year update of the literature regarding the influence of estrogens on a number of human cancers (breast, ovarian, colorectal, prostate, and endometrial), endometriosis, fibroids, and cardiovascular disease. A large number of sophisticated experimental studies have provided insights into human disease, but for this review, the literature citations were limited to articles published after our previous review (Deroo and Korach in J Clin Invest 116(3):561–570, 2006) and will focus in most cases on human data and clinical trials. We will describe the influence in which estrogen’s action, through one of or both of the ERs, mediates the aforementioned human disease states. PMID:22648069

  17. Characterization of the Interactions between Calmodulin and Death Receptor 5 in Triple-negative and Estrogen Receptor-positive Breast Cancer Cells: AN INTEGRATED EXPERIMENTAL AND COMPUTATIONAL STUDY.

    PubMed

    Fancy, Romone M; Wang, Lingyun; Zeng, Qinghua; Wang, Hong; Zhou, Tong; Buchsbaum, Donald J; Song, Yuhua

    2016-06-10

    Activation of death receptor-5 (DR5) leads to the formation of death inducing signaling complex (DISC) for apoptotic signaling. Targeting DR5 to induce breast cancer apoptosis is a promising strategy to circumvent drug resistance and present a target for breast cancer treatment. Calmodulin (CaM) has been shown to regulate DR5-mediated apoptotic signaling, however, its mechanism remains unknown. In this study, we characterized CaM and DR5 interactions in breast cancer cells with integrated experimental and computational approaches. Results show that CaM directly binds to DR5 in a calcium dependent manner in breast cancer cells. The direct interaction of CaM with DR5 is localized at DR5 death domain. We have predicted and verified the CaM-binding site in DR5 being (354)WEPLMRKLGL(363) that is located at the α2 helix and the loop between α2 helix and α3 helix of DR5 DD. The residues of Trp-354, Arg-359, Glu-355, Leu-363, and Glu-367 in DR5 death domain that are important for DR5 recruitment of FADD and caspase-8 for DISC formation to signal apoptosis also play an important role for CaM-DR5 binding. The changed electrostatic potential distribution in the CaM-binding site in DR5 DD by the point mutations of W354A, E355K, R359A, L363N, or E367K in DR5 DD could directly contribute to the experimentally observed decreased CaM-DR5 binding by the point mutations of the key residues in DR5 DD. Results from this study provide a key step for the further investigation of the role of CaM-DR5 binding in DR5-mediated DISC formation for apoptosis in breast cancer cells.

  18. Computational estimation of rainbow trout estrogen receptor binding affinities for environmental estrogens

    SciTech Connect

    Shyu, Conrad; Cavileer, Timothy D.; Nagler, James J.; Ytreberg, F. Marty

    2011-02-01

    Environmental estrogens have been the subject of intense research due to their documented detrimental effects on the health of fish and wildlife and their potential to negatively impact humans. A complete understanding of how these compounds affect health is complicated because environmental estrogens are a structurally heterogeneous group of compounds. In this work, computational molecular dynamics simulations were utilized to predict the binding affinity of different compounds using rainbow trout (Oncorhynchus mykiss) estrogen receptors (ERs) as a model. Specifically, this study presents a comparison of the binding affinity of the natural ligand estradiol-17{beta} to the four rainbow trout ER isoforms with that of three known environmental estrogens 17{alpha}-ethinylestradiol, bisphenol A, and raloxifene. Two additional compounds, atrazine and testosterone, that are known to be very weak or non-binders to ERs were tested. The binding affinity of these compounds to the human ER{alpha} subtype is also included for comparison. The results of this study suggest that, when compared to estradiol-17{beta}, bisphenol A binds less strongly to all four receptors, 17{alpha}-ethinylestradiol binds more strongly, and raloxifene has a high affinity for the {alpha} subtype only. The results also show that atrazine and testosterone are weak or non-binders to the ERs. All of the results are in excellent qualitative agreement with the known in vivo estrogenicity of these compounds in the rainbow trout and other fishes. Computational estimation of binding affinities could be a valuable tool for predicting the impact of environmental estrogens in fish and other animals.

  19. Estrogen receptor immunoreactivity in prepubertal and adult male Syrian hamsters.

    PubMed

    Romeo, R D; Diedrich, S L; Sisk, C L

    1999-04-23

    Estrogen and estrogen receptors (ER) are involved in the expression of steroid-dependent male sexual behavior and negative feedback regulation of the hypothalamic-pituitary-gonadal axis. The purpose of the present experiment was to determine whether there are pubertal changes in ER expression in brain that are correlated with pubertal changes in responsiveness to steroid negative feedback and behavioral activation. We found equivalent numbers of ER-immunoreactive (ER-ir) cells in castrated prepubertal and adult male hamsters in nuclei that comprise the neural circuit that mediate male sexual behavior. Therefore, increases in the number of cells in these nuclei that express ER are not correlated with the increased behavioral responsiveness to steroid hormone shown by hamsters after puberty. The number of ER-ir cells in the ventral medial hypothalamus was less in adults compared with juveniles. This pubertal decrease in ER expression is correlated with the decreased responsiveness to steroid negative feedback in the adult.

  20. Zinc finger protein 131 inhibits estrogen signaling by suppressing estrogen receptor {alpha} homo-dimerization

    SciTech Connect

    Oh, Yohan; Chung, Kwang Chul

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer ZNF131 directly interacts with ER{alpha}. Black-Right-Pointing-Pointer The binding affinity of ZNF131 to ER{alpha} increases upon E2 stimulation. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Black-Right-Pointing-Pointer ZNF131 inhibits ER{alpha}-dimerization and E2-induced breast cancer cell proliferation. Black-Right-Pointing-Pointer ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor. -- Abstract: Steroid hormone estrogen elicits various physiological functions, many of which are mediated through two structurally and functionally distinct estrogen receptors, ER{alpha} and ER{beta}. The functional role of zinc finger protein 131 (ZNF131) is poorly understood, but it is assumed to possess transcriptional regulation activity due to the presence of a DNA binding motif. A few recent reports, including ours, revealed that ZNF131 acts as a negative regulator of ER{alpha} and that SUMO modification potentiates the negative effect of ZNF131 on estrogen signaling. However, its molecular mechanism for ER{alpha} inhibition has not been elucidated in detail. Here, we demonstrate that ZNF131 directly interacts with ER{alpha}, which consequently inhibits ER{alpha}-mediated trans-activation by suppressing its homo-dimerization. Moreover, we show that the C-terminal region of ZNF131 containing the SUMOylation site is necessary for its inhibition of estrogen signaling. Taken together, these data suggest that ZNF131 inhibits estrogen signaling by acting as an ER{alpha}-co-repressor.

  1. Adipocyte hypoxia promotes epithelial-mesenchymal transition-related gene expression and estrogen receptor-negative phenotype in breast cancer cells

    PubMed Central

    YAO-BORENGASSER, AIWEI; MONZAVI-KARBASSI, BEHJATOLAH; HEDGES, REBECCA A; ROGERS, LORA J; KADLUBAR, SUSAN A; KIEBER-EMMONS, THOMAS

    2015-01-01

    The development of breast cancer is linked to the loss of estrogen receptor (ER) during the course of tumor progression, resulting in loss of responsiveness to hormonal treatment. The mechanisms underlying dynamic ERα gene expression change in breast cancer remain unclear. A range of physiological and biological changes, including increased adipose tissue hypoxia, accompanies obesity. Hypoxia in adipocytes can establish a pro-malignancy environment in breast tissues. Epidemiological studies have linked obesity with basal-like breast cancer risk and poor disease outcome, suggesting that obesity may affect the tumor phenotype by skewing the microenvironment toward support of more aggressive tumor phenotypes. In the present study, human SGBS adipocytes were co-cultured with ER-positive MCF7 cells for 24 h. After co-culture, HIF1α, TGF-β, and lectin-type oxidized LDL receptor 1 (LOX1) mRNA levels in the SGBS cells were increased. Expression levels of the epithelial-mesenchymal transition (EMT)-inducing transcription factors FOXC2 and TWIST1 were increased in the co-cultured MCF7 cells. In addition, the E-cadherin mRNA level was decreased, while the N-cadherin mRNA level was increased in the co-cultured MCF7 cells. ERα mRNA levels were significantly repressed in the co-cultured MCF7 cells. ERα gene expression in the MCF7 cells was decreased due to increased HIF1α in the SGBS cells. These results suggest that adipocytes can modify breast cancer cell ER gene expression through hypoxia and also can promote EMT processes in breast cancer cells, supporting an important role of obesity in aggressive breast cancer development. PMID:25823469

  2. NJK14013, a novel synthetic estrogen receptor-α agonist, exhibits estrogen receptor-independent, tumor cell-specific cytotoxicity.

    PubMed

    Kim, Hye-In; Kim, Taelim; Kim, Ji-Eun; Lee, Jun; Heo, Jinyuk; Lee, Na-Rae; Kim, Nam-Jung; Inn, Kyung-Soo

    2015-07-01

    Estrogens act through interactions with estrogen receptors (ERs) to play diverse roles in various pathophysiological conditions. A number of synthetic selective estrogen receptor modulators (SERMs), such as tamoxifen and raloxifene, have been developed and used to treat ER-related diseases, including breast cancer and osteoporosis. Here, we identified a novel compound, bis(4-hydroxyphenyl)methanone-O-isopentyl oxime, designated NJK14013, as an ER agonist. NJK14013 activated ER-dependent transcription in a concentration-dependent manner, while suppressing androgen receptor-dependent transcriptional activity. It induced the activation-related phosphorylation of ER and enhanced the transcription of growth regulation by estrogen in breast cancer 1 (GREB1), further supporting its ER-stimulating activity. NJK14013 exerted anti-proliferative effects on various cancer cell lines, including an ER-negative breast cancer cell line, suggesting that it is capable of suppressing the growth of cancer cells independent of its ER-modulating activity. In addition, NJK14013 treatment resulted in significant apoptotic death of MCF7 and Ishikawa cancer cells, but did not induce apoptosis in non-cancer human umbilical vein endothelial cells. Collectively, our findings demonstrate that NJK14013 is a novel SERM that can activate ER-mediated transcription in MCF7 cells and suppress the proliferation of various cancer cells, including breast cancer cells and endometrial cancer cells. These results suggest that NJK14013 has potential as a novel SERM for anticancer or hormone-replacement therapy with reduced risk of carcinogenesis.

  3. Radiobrominated triphenylethylenes as estrogen receptor binding radiopharmaceuticals

    SciTech Connect

    Seevers, R.H.; Meese, R.C.; Friedman, A.M.; DeSombre, E.R.

    1985-05-01

    Estrogen receptor binding radiopharmaceuticals have potential for use in the diagnosis and treatment of cancers of the female reproductive system. Tamoxifen is an antiestrogen derived from the triphenylethylene skeleton which is used in the treatment of mammary carcinoma. Hydroxytamoxifen is a metabolite of tamoxifen which binds tightly to the estrogen receptor. Two triphenylethylene derivatives based on the structure of hydroxytamoxifen have been prepared: 1-bromo-1-phenyl-2- (2-dimethylamino)-4-ethoxyphenyl -2-(4-hydroxyphenyl) ethene (1) where the ethyl group of hydroxytamoxifen has been replaced by a bromine, and 1-bromo-1-phenyl-2,2-(4-hydroxyphenyl) ethene (2) with a similar substitution and also lacking the aminoethoxy side chain believed to confer antiestrogenicity. Both 1 and 2 bind strongly to the estrogen receptor. 2 has been labeled with the Auger electron emitting nuclide Br-80m in moderate yields in high specific activity using either N-bromosuccinimide or N-bromophthalimide and shows promise as a potential radiotherapy agent.

  4. Acyl-CoA synthetase-4, a new regulator of mTOR and a potential therapeutic target for enhanced estrogen receptor function in receptor-positive and -negative breast cancer

    PubMed Central

    Dattilo, Melina A.; Solano, Angela R.; Maloberti, Paula M.; Podesta, Ernesto J.

    2015-01-01

    Although the role of acyl-CoA synthetase 4 (ACSL4) in mediating an aggressive phenotype is well accepted, there is little evidence as to the early steps through which ACSL4 increases tumor growth and progression. In this study, and by means of the stable transfection of MCF-7 cells with ACSL4 using the tetracycline Tet-Off system (MCF-7 Tet-Off/ACSL4), we identify the mTOR pathway as one of the main specific signatures of ACSL4 expression and demonstrate the partial involvement of the lipoxygenase pathway in the activation of mTOR. The specificity of ACSL4 action on mTOR signaling is also determined by doxycycline inhibition of ACSL4 expression in MCF-7 Tet-Off/ACSL4 cells, by the expression of ACSL4 in the non-aggressive T47D breast cancer cell line and by knocking down this enzyme expression in the MDA-MB-231 breast cancer cells, which constitutively express ACSL4. ACSL4 regulates components of the two complexes of the mTOR pathway (mTORC1/2), along with upstream regulators and substrates. We show that mTOR inhibitor rapamycin and ACSL4 inhibitor rosiglitazone can act in combination to inhibit cell growth. In addition, we demonstrate a synergistic effect on cell growth inhibition by the combination of rosiglitazone and tamoxifen, an estrogen receptor α (ERα) inhibitor. Remarkably, this synergistic effect is also evident in the triple negative MDA-MB-231 cells in vitro and in vivo. These results suggest that ACSL4 could be a target to restore tumor hormone dependence in tumors with poor prognosis for disease-free and overall survival, in which no effective specifically targeted therapy is readily available. PMID:26536660

  5. Acyl-CoA synthetase-4, a new regulator of mTOR and a potential therapeutic target for enhanced estrogen receptor function in receptor-positive and -negative breast cancer.

    PubMed

    Orlando, Ulises D; Castillo, Ana F; Dattilo, Melina A; Solano, Angela R; Maloberti, Paula M; Podesta, Ernesto J

    2015-12-15

    Although the role of acyl-CoA synthetase 4 (ACSL4) in mediating an aggressive phenotype is well accepted, there is little evidence as to the early steps through which ACSL4 increases tumor growth and progression. In this study, and by means of the stable transfection of MCF-7 cells with ACSL4 using the tetracycline Tet-Off system (MCF-7 Tet-Off/ACSL4), we identify the mTOR pathway as one of the main specific signatures of ACSL4 expression and demonstrate the partial involvement of the lipoxygenase pathway in the activation of mTOR. The specificity of ACSL4 action on mTOR signaling is also determined by doxycycline inhibition of ACSL4 expression in MCF-7 Tet-Off/ACSL4 cells, by the expression of ACSL4 in the non-aggressive T47D breast cancer cell line and by knocking down this enzyme expression in the MDA-MB-231 breast cancer cells, which constitutively express ACSL4. ACSL4 regulates components of the two complexes of the mTOR pathway (mTORC1/2), along with upstream regulators and substrates.We show that mTOR inhibitor rapamycin and ACSL4 inhibitor rosiglitazone can act in combination to inhibit cell growth. In addition, we demonstrate a synergistic effect on cell growth inhibition by the combination of rosiglitazone and tamoxifen, an estrogen receptor α (ERα) inhibitor. Remarkably, this synergistic effect is also evident in the triple negative MDA-MB-231 cells in vitro and in vivo.These results suggest that ACSL4 could be a target to restore tumor hormone dependence in tumors with poor prognosis for disease-free and overall survival, in which no effective specifically targeted therapy is readily available.

  6. Estrogen receptor variant ER-α36 is involved in estrogen neuroprotection against oxidative toxicity.

    PubMed

    Han, S; Zhao, B; Pan, X; Song, Z; Liu, J; Gong, Y; Wang, M

    2015-12-01

    It is well known that estrogen exerts neuroprotective effect against various neuronal damages. However, the estrogen receptor (ER) that mediates estrogen neuroprotection has not been well established. In this study, we investigated the potential receptor that mediates estrogen neuroprotection and the underlying molecular mechanisms. Hydrogen peroxide (H2O2) was chosen as an agent in our study to mimic free radicals that are often involved in the pathogenesis of many degenerative diseases. We found that in human SY5Y and IMR-32 cells, the estrogen neuroprotection against H2O2 toxicity was abrogated by knockdown of a variant of estrogen receptor-α, ER-α36. We also studied the rapid estrogen signaling mediated by ER-α36 in neuroprotective effect and found the PI3K/AKT and MAPK/ERK1/2 signaling mediated by ER-α36 is involved in estrogen neuroprotection. We also found that GPER, an orphan G protein-coupled receptor, is not involved in ER-α36-mediated rapid estrogen response. Our study thus demonstrates that ER-α36-mediated rapid estrogen signaling is involved in the neuroprotection activity of estrogen against oxidative toxicity. PMID:26383254

  7. Functional roles of plasma membrane localized estrogen receptors.

    PubMed

    Sreeja, S; Thampan, RaghavaVarman

    2003-07-01

    A series of emerging data supports the existence and importance of plasma membrane localized estrogen receptors in a variety of cells that are targets for the steroid hormone action. When estradiol (E2) binds to the cell surface protein, the ensuing signal transduction event triggers downstream signaling cascades that contribute to important biological functions. Aside from the classical signaling through nuclear estrogen receptors, we have provided evidence for the functional roles of an estrogen receptor localized in the plasma membrane. This review highlights some of the recent advances made in the understanding of the genomic/non-genomic actions of plasma membrane localized estrogen receptors. PMID:15255376

  8. Estrogen or estrogen receptor agonist inhibits lipopolysaccharide induced microglial activation and death.

    PubMed

    Smith, Joshua A; Das, Arabinda; Butler, Jonathan T; Ray, Swapan K; Banik, Naren L

    2011-09-01

    Inflammation is an important pathogenic mechanism in many neurodegenerative disorders. Activated microglia play a pivotal role in releasing pro-inflammatory factors including interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) for inducing inflammation. While microglia mediated inflammation is essential in maintaining CNS homeostasis, chronic inflammation results in activation of proteases for cell death. Here, we examined the effect of PPT (estrogen receptor α agonist), DPN (estrogen receptor β agonist), and estrogen on rat primary microglia following exposure to lipopolysaccharide (LPS). Exposure of microglia to LPS (200 ng/ml) for 24 h induced cell death. After LPS toxicity for 15 min, microglia were treated with 25 nM PPT, 25 nM DPN, or 100 nM estrogen that prevented cell death by attenuating the release of IL-1α, IL-1β, TNF-α, and COX-2. Treatment of cells with 100 nM fulvestrant (estrogen receptor antagonist) prior to addition of PPT, DPN, or estrogen significantly decreased their ability to prevent cell death, indicating involvement of estrogen receptor (ER) in providing PPT, DPN, or estrogen mediated cytoprotection. Reverse transcriptase polymerase chain reaction (RT-PCR) analyses showed alterations in mRNA expression of Bax, Bcl-2, calpain, and calpastatin during apoptosis. We also examined mRNA expression of ERβ and ERα following exposure of microglia to LPS and subsequent treatment with PPT, DPN, or estrogen. We found that estrogen or estrogen receptor agonists upregulated expression of ERs. Overall, results indicate that estrogen receptor agonist or estrogen uses a receptor mediated pathway to protect microglia from LPS toxicity.

  9. Interleukin-8 upregulates integrin β3 expression and promotes estrogen receptor-negative breast cancer cell invasion by activating the PI3K/Akt/NF-κB pathway.

    PubMed

    Shao, Nan; Lu, Zhenhai; Zhang, Yunjian; Wang, Mian; Li, Wen; Hu, Ziye; Wang, Shenming; Lin, Ying

    2015-08-10

    Interleukin-8 (IL-8) possesses tumorigenic and proangiogenic properties and is overexpressed in many human cancers. The integrin family regulates a diverse array of cellular functions crucial to the initiation, progression and metastasis of solid tumors. However, the mechanisms of action of IL-8 and integrin in estrogen receptor-negative breast cancer are largely unknown. In this study, IL-8 and integrin β3 expression in human breast cancer cells and tissues was examined by real-time PCR, Western blot and immunochemistry analysis. Integrin β3 expression, invasive ability and the activation of PI3K/Akt and NF-κB pathways in IL-8 knockdown breast cancer cells were evaluated. In addition, reporter assay and ChIP were performed to assess integrin β3 promoter activity in IL-8 knockdown cells. We observed a positive correlation between integrin β3 and IL-8 expression, which was inversely correlated with ER status in breast cancer cell lines and tissues. IL-8 siRNA decreased the invasion and integrin β3 expression in human breast cancer cells. Moreover, IL-8 siRNA attenuated the phosphorylation of PI3K and Akt and inhibited NF-κB activity and binding on integrin β3 promoter. IL-8 siRNA diminished NF-κB nuclear translocation via blocking IκB phosphorylation in the cytoplasm. In conclusion, IL-8 activates the PI3K/Akt pathway, which in turn activates NF-κB, resulting in the upregulation of integrin β3 expression and increased invasion of estrogen receptor-negative breast cancer cells. IL-8/PI3K/Akt/NF-κB/integrin β3 axis may be exploited for therapeutic intervention to breast cancer metastasis.

  10. Synergistic activation of estrogen receptor with combinations of environmental chemicals

    SciTech Connect

    Arnold, S.F.; Klotz, D.M.; Collins, B.M.

    1996-06-07

    Certain chemicals in the environment are estrogenic. The low potencies of the compounds, when studied singly, suggest that they may have little effect on biological systems. The estrogenic potencies of combinations of such chemicals were screened in a simple yeast estrogen potencies of combination of such chemicals were screened in a simple yeast estrogen systems (YES) containing human estrogen receptor (hER). Combinations of two weak environmental estrogens, such as dieldrin, endosulfan, or toxaphene, were 100 times as potent in hER-mediated transactivation as any chemical alone. Hydroxylated polychlorinated biphenyls shown previously to synergistically alter sexual development in turtles also synergized in the YES. The synergistic interaction of chemical mixtures with the estrogen receptor may have profound environmental implications. These results may represent a previously uncharacterized level of regulation of estrogen-associated responses. 32 refs., 3 figs., 3 tabs.

  11. Identification of an estrogenic hormone receptor in Caenorhabditis elegans

    SciTech Connect

    Mimoto, Ai; Fujii, Madoka; Usami, Makoto; Shimamura, Maki; Hirabayashi, Naoko; Kaneko, Takako; Sasagawa, Noboru; Ishiura, Shoichi

    2007-12-28

    Changes in both behavior and gene expression occur in Caenorhabditis elegans following exposure to sex hormones such as estrogen and progesterone, and to bisphenol A (BPA), an estrogenic endocrine-disrupting compound. However, only one steroid hormone receptor has been identified. Of the 284 known nuclear hormone receptors (NHRs) in C. elegans, we selected nhr-14, nhr-69, and nhr-121 for analysis as potential estrogenic hormone receptors, because they share sequence similarity with the human estrogen receptor. First, the genes were cloned and expressed in Escherichia coli, and then the affinity of each protein for estrogen was determined using a surface plasmon resonance (SPR) biosensor. All three NHRs bound estrogen in a dose-dependent fashion. To evaluate the specificity of the binding, we performed a solution competition assay using an SPR biosensor. According to our results, only NHR-14 was able to interact with estrogen. Therefore, we next examined whether nhr-14 regulates estrogen signaling in vivo. To investigate whether these interactions actually control the response of C. elegans to hormones, we investigated the expression of vitellogenin, an estrogen responsive gene, in an nhr-14 mutant. Semi-quantitative RT-PCR showed that vitellogenin expression was significantly reduced in the mutant. This suggests that NHR-14 is a C. elegans estrogenic hormone receptor and that it controls gene expression in response to estrogen.

  12. Age and stage dependency of estrogen receptor expression by lymphocyte precursors

    PubMed Central

    Igarashi, Hideya; Kouro, Taku; Yokota, Takafumi; Comp, Phillip C.; Kincade, Paul W.

    2001-01-01

    Sex steroids negatively regulate B lymphopoiesis in adult mice. Paradoxically, lymphocytes arise during fetal life, when estrogen levels are high and maternal lymphopoiesis is suppressed. Here we demonstrate that embryonic B lymphopoiesis was unaffected by estrogen, but sensitive to glucocorticoids. Both fetal and adult precursors contained glucocorticoid receptor transcripts, but only adult precursors expressed estrogen receptor α and β together with the androgen receptor. Fetal hematopoietic cells did not efficiently acquire functional estrogen receptors after transplantation to irradiated adult mice. Sex steroid receptors were also expressed in a stage- and developmental age-dependent fashion in human precursors. A developmental switch in responsiveness of hematopoietic cells to sex steroids may be essential for formation of the immune system. PMID:11752459

  13. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    PubMed Central

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  14. [Estrogen receptor alpha in obesity and diabetes].

    PubMed

    Cahua-Pablo, José Ángel; Flores-Alfaro, Eugenia; Cruz, Miguel

    2016-01-01

    Estradiol (E2) is an important hormone in reproductive physiology, cardiovascular, skeletal and in the central nervous system (CNS). In human and rodents, E2 and its receptors are involved in the control of energy and glucose metabolism in health and metabolic diseases. The estrogen receptor (ER) belongs to the superfamily of nuclear receptors (NR), which are transcription factors that regulate gene expression. Three ER, ER-alpha, ER-beta and the G protein-coupled ER (GPER; also called GPR30) in tissues are involved in glucose and lipid homeostasis. Also, it may have important implications for risk factors associated with metabolic syndrome (MS), insulin resistance (IR), obesity and type 2 diabetes (T2D).

  15. Steroid binding domain of porcine estrogen receptor

    SciTech Connect

    Koike, S.; Nii, A.; Sakai, M.; Muramatsu, M.

    1987-05-05

    For the purpose of characterizing the estrogen binding domain of porcine estrogen receptor (ER), the authors have made use of affinity labeling of partially purified ER with (/sup 3/H)tamoxifen aziridine. The labeling is very efficient and selective particularly after partial purification of ER. A 65,000-dalton (65-kDa) band was detected on the fluorogram of a sodium dodecyl sulfate-polyacrylamide gel, together with a 50-kDa band and a few more smaller bands. The 50-kDa protein appears to be a degradation product of the 65-kDa protein in view of the similar peptide map. ER was affinity labeled before or after controlled limited proteolysis with either trypsin, papain, or ..cap alpha..-chymotrypsin. The labeling patterns of limited digests indicate that a fragment of about 30 kDa is relatively resistant to proteases and has a full and specific binding activity to estrogen, whereas smaller fragments have lost much of the binding activity. This fragment is very hydrophobic and probably corresponds to the carboxy half of ER.

  16. Estrogen and Progesterone hormone receptor expression in oral cavity cancer

    PubMed Central

    Biegner, Thorsten; Teriete, Peter; Hoefert, Sebastian; Krimmel, Michael; Munz, Adelheid; Reinert, Siegmar

    2016-01-01

    Background Recent studies have shown an increase in the incidence of oral squamous cell carcinoma (OSCC) in younger patients. The hypothesis that tumors could be hormonally induced during pregnancy or in young female patients without the well-known risk factors alcohol or tobacco abuse seems to be plausible. Material and Methods Estrogen Receptor alpha (ERα) and Progesterone Receptor (PR) expression were analyzed in normal oral mucosa (n=5), oral precursor lesions (simple hyperplasia, n=11; squamous intraepithelial neoplasia, SIN I-III, n=35), and OSCC specimen. OSCCs were stratified in a young female (n=7) study cohort and older patients (n=46). In the young female study cohort three patients (n=3/7) developed OSCC during or shortly after pregnancy. Breast cancer tissues were used as positive control for ERα and PR expression. Results ERα expression was found in four oral precursor lesions (squamous intraepithelial neoplasia, SIN I-III, n=4/35, 11%) and in five OSCC specimen (n=5/46, 11%). The five ERα positive OSCC samples were older male patients. All patients within the young female study cohort were negatively stained for both ERα and PR. Conclusions ER expression could be regarded as a seldom risk factor for OSCC. PR expression seems to be not relevant for the development of OSCC. Key words:Oral squamous cell carcinoma, estrogen receptor, progesterone receptor, hormone receptor. PMID:27475696

  17. Insights from the Study of Animals Lacking Functional Estrogen Receptor

    NASA Astrophysics Data System (ADS)

    Korach, Kenneth S.

    1994-12-01

    Estrogen hormones produce physiological actions within a variety of target sites in the body and during development by activating a specific receptor protein. Hormone responsiveness for the estrogen receptor protein was investigated at different stages of development with the use of gene knockout techniques because no natural genetic mutants have been described. A mutant mouse line without a functional estrogen receptor was created and is being used to assess estrogen responsiveness. Both sexes of these mutant animals are infertile and show a variety of phenotypic changes, some of which are associated with the gonads, mammary glands, reproductive tracts, and skeletal tissues.

  18. The expression of estrogen receptor and estrogen effect in MBA-15 marrow stromal osteoblasts.

    PubMed

    Shamay, A; Knopov, V; Benayahu, D

    1996-06-01

    MBA-15, a marrow stromal-derived cell line, was shown to express an estrogen receptor. This finding was confirmed by in situ hybridization and receptor binding assay. An exposure to estrogen (10(-12)-10(-6) M) in a dose response manner resulted in a decrease of cell proliferation as measured by MTT assay. Cell function was measured by enzymatic activities of two osteoblastic markers, CD10/NEP and alkaline phosphatase. These enzymatic activities were elevated following the estrogen treatment. This model enabled direct evaluation of the estrogen effect on stromal osteoblast cells. PMID:8858824

  19. Radiotherapy Can Decrease Locoregional Recurrence and Increase Survival in Mastectomy Patients With T1 to T2 Breast Cancer and One to Three Positive Nodes With Negative Estrogen Receptor and Positive Lymphovascular Invasion Status

    SciTech Connect

    Yang, P.S.; Chen, C.M.; Liu, M.C.; Jian, J.M.; Horng, C.F.; Liu, M.J.; Yu, B.L.; Lee, M.Y.; Chi, C.W.

    2010-06-01

    Purpose: To define a subgroup of patients at high risk of locoregional recurrence (LRR) who might be benefit from postmastectomy radiotherapy in invasive breast cancer and tumor size <5 cm with one to three involved axillary lymph nodes (T1-2 N1). Methods and Materials: Between April 1991 and December 2005, 544 patients with T1-2 N1 invasive breast cancer were treated with modified radical mastectomy. Of the 544 patients, 383 patients (70.4%) had no radiotherapy, and 161 patients (29.6%) received radiotherapy. We retrospectively compared these two patient groups. Results: With a median follow-up of 40.3 months, LRR occurred in 40 (7.4%) of 544 patients. On univariate analysis, high nuclear grade (p = 0.04), negative estrogen receptor (ER) status (p = 0.001), presence of lymphovascular invasion (LVI) (p = 0.003), and no radiotherapy (p = 0.0015) were associated with a significantly higher rate of LRR. Negative ER status (hazard ratio = 5.1) and presence of LVI (hazard ratio = 2.5) were the risk factors for LRR with statistical significance in the multivariate analysis. Radiotherapy reduced the LRR in patients with the following characteristics: age <40 years, T2 stage, high nuclear grade, negative ER status, and presence of LVI. For 41 patients with negative ER and positive LVI status, radiotherapy can reduce LRR from 10 of 25 (40%) to 2 of 16 (12.5%) and increase the 5-year overall survival from 43.7% to 87.1%. Conclusion: Radiotherapy can reduce LRR and increase survival in T1-2 N1 breast cancer patients with negative ER status and presence of LVI.

  20. CERAPP: Collaborative Estrogen Receptor Activity Prediction Project

    PubMed Central

    Mansouri, Kamel; Abdelaziz, Ahmed; Rybacka, Aleksandra; Roncaglioni, Alessandra; Tropsha, Alexander; Varnek, Alexandre; Zakharov, Alexey; Worth, Andrew; Richard, Ann M.; Grulke, Christopher M.; Trisciuzzi, Daniela; Fourches, Denis; Horvath, Dragos; Benfenati, Emilio; Muratov, Eugene; Wedebye, Eva Bay; Grisoni, Francesca; Mangiatordi, Giuseppe F.; Incisivo, Giuseppina M.; Hong, Huixiao; Ng, Hui W.; Tetko, Igor V.; Balabin, Ilya; Kancherla, Jayaram; Shen, Jie; Burton, Julien; Nicklaus, Marc; Cassotti, Matteo; Nikolov, Nikolai G.; Nicolotti, Orazio; Andersson, Patrik L.; Zang, Qingda; Politi, Regina; Beger, Richard D.; Todeschini, Roberto; Huang, Ruili; Farag, Sherif; Rosenberg, Sine A.; Slavov, Svetoslav; Hu, Xin; Judson, Richard S.

    2016-01-01

    Background: Humans are exposed to thousands of man-made chemicals in the environment. Some chemicals mimic natural endocrine hormones and, thus, have the potential to be endocrine disruptors. Most of these chemicals have never been tested for their ability to interact with the estrogen receptor (ER). Risk assessors need tools to prioritize chemicals for evaluation in costly in vivo tests, for instance, within the U.S. EPA Endocrine Disruptor Screening Program. Objectives: We describe a large-scale modeling project called CERAPP (Collaborative Estrogen Receptor Activity Prediction Project) and demonstrate the efficacy of using predictive computational models trained on high-throughput screening data to evaluate thousands of chemicals for ER-related activity and prioritize them for further testing. Methods: CERAPP combined multiple models developed in collaboration with 17 groups in the United States and Europe to predict ER activity of a common set of 32,464 chemical structures. Quantitative structure–activity relationship models and docking approaches were employed, mostly using a common training set of 1,677 chemical structures provided by the U.S. EPA, to build a total of 40 categorical and 8 continuous models for binding, agonist, and antagonist ER activity. All predictions were evaluated on a set of 7,522 chemicals curated from the literature. To overcome the limitations of single models, a consensus was built by weighting models on scores based on their evaluated accuracies. Results: Individual model scores ranged from 0.69 to 0.85, showing high prediction reliabilities. Out of the 32,464 chemicals, the consensus model predicted 4,001 chemicals (12.3%) as high priority actives and 6,742 potential actives (20.8%) to be considered for further testing. Conclusion: This project demonstrated the possibility to screen large libraries of chemicals using a consensus of different in silico approaches. This concept will be applied in future projects related to other

  1. MODELING THE EFFECTS OF FLEXIBILITY ON THE BINDING OF ENVIRONMENTAL ESTROGENS TO THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the effects of flexibility on the binding of environmental estrogens to the estrogen receptor
    There are many reports of environmental endocrine disruption in the literature, yet it has been difficult to identify the specific chemicals responsible for these effects. ...

  2. Estrogen Receptor Ligands: A Review (2013–2015)

    PubMed Central

    Farzaneh, Shabnam; Zarghi, Afshin

    2016-01-01

    Estrogen receptors (ERs) are a group of compounds named for their importance in both menstrual and estrous reproductive cycles. They are involved in the regulation of various processes ranging from tissue growth maintenance to reproduction. Their action is mediated through ER nuclear receptors. Two subtypes of the estrogen receptor, ERα and ERβ, exist and exhibit distinct cellular and tissue distribution patterns. In humans, both receptor subtypes are expressed in many cells and tissues, and they control key physiological functions in various organ systems. Estrogens attract great attention due to their wide applications in female reproductive functions and treatment of some estrogen-dependent cancers and osteoporosis. This paper provides a general review of ER ligands published in international journals patented between 2013 and 2015. The broad physiological profile of estrogens has attracted the attention of many researchers to develop new estrogen ligands as therapeutic molecules for various clinical purposes. After the discovery of the ERβ receptor, subtype-selective ligands could be used to elicit beneficial estrogen-like activities and reduce adverse side effects, based on the different distributions and relative levels of the two ER subtypes in different estrogen target tissues. Therefore, recent literature has focused on selective estrogen ligands as highly promising agents for the treatment of some types of cancer, as well as for cardiovascular, inflammatory, and neurodegenerative diseases. Estrogen receptors are nuclear transcription factors that are involved in the regulation of many complex physiological functions in humans. Selective estrogen ligands are highly promising targets for treatment of some types of cancer, as well as for cardiovascular, inflammatory and neurodegenerative diseases. Extensive structure-activity relationship studies of ER ligands based on small molecules indicate that many different structural scaffolds may provide high

  3. Induction of apoptotic cell death by phytoestrogens by up-regulating the levels of phospho-p53 and p21 in normal and malignant estrogen receptor α-negative breast cells.

    PubMed

    Seo, Hye-Sook; Ju, Ji-Hyun; Jang, Kibeom; Shin, Incheol

    2011-02-01

    In this study, we investigated the underlying mechanism by which phytoestrogens suppress the growth of normal (MCF-10A) and malignant (MDA-MB-231) estrogen receptor α (ERα)-negative breast cells. We hypothesized that phytoestrogen inhibits the proliferation of ERα-negative breast cancer cells. We found that all tested phytoestrogens (genistein, apigenin, and quercetin) suppressed the growth of both MCF-10A and MDA-MB-231 cells, as revealed by proliferation assays. These results were accompanied by an increase in the sub-G0/G1 apoptotic fractions as well as an increase in the cell population in the G2/M phase in both cell types, as revealed by cell cycle analysis. When we assessed the effect of phytoestrogens on the level of intracellular signaling molecules by Western blot analysis, we found that phytoestrogens increased the level of active p53 (phospho-p53) without changing the p53 level in both MCF-10A and MDA-MB-231 cells. Phytoestrogens also induced an increase in p21, a p53 target gene, and a decrease in either Bcl-xL or cyclin B1 in both cell types. In contrast, the protein levels of phosphatase and tensin homolog, cyclin D1, cell division control protein 2 homolog, phospho-cell division control protein 2 homolog, and p27 were not changed after phytoestrogen treatment. Our data indicate that phytoestrogens induce apoptotic cell death of ERα-negative breast cancer cells via p53-dependent pathway and suggest that phytoestrogens may be promising agents in the treatment and prevention of ERα-negative breast cancer.

  4. Emergence of constitutively active estrogen receptor-α mutations in pretreated advanced estrogen receptor positive breast cancer

    PubMed Central

    Meric-Bernstam, Funda; Gonzalez-Angulo, Ana Maria; Ferrer-Lozano, Jaime; Perez-Fidalgo, Jose A.; Cristofanilli, Massimo; Gómez, Henry; Arteaga, Carlos L.; Giltnane, Jennifer; Balko, Justin M.; Cronin, Maureen T; Jarosz, Mirna; Sun, James; Hawryluk, Matthew; Lipson, Doron; Otto, Geoff; Ross, Jeffrey S; Dvir, Addie; Soussan-Gutman, Lior; Wolf, Ido; Rubinek, Tamar; Gilmore, Lauren; Schnitt, Stuart; Come, Steven E.; Pusztai, Lajos; Stephens, Philip; Brown, Myles; Miller, Vincent A.

    2014-01-01

    Purpose We undertook this study to determine the prevalence of estrogen receptor (ER) α (ESR1) mutations throughout the natural history of hormone dependent breast cancer and to delineate the functional roles of the most commonly detected alterations. Experimental Design We studied a total of 249 tumor specimens from 208 patients. The specimens include 134 ER positive (ER+/HER2–) and, as controls, 115 ER negative (ER−) tumors. The ER+ samples consist of 58 primary breast cancers and 76 metastatic samples. All tumors were sequenced to high unique coverage using next generation sequencing targeting the coding sequence of the estrogen receptor and an additional 182 cancer-related genes. Results Recurring somatic mutations in codons 537 and 538 within the ligand-binding domain of ER were detected in ER+ metastatic disease. Overall, the frequency of these mutations was 12% (9/76, 95% CI 6%-21%) in metastatic tumors and in a subgroup of patients who received an average of 7 lines of treatment the frequency was 20% (5/25, 95% CI 7%-41%). These mutations were not detected in primary or treatment naïve ER+ cancer or in any stage of ER− disease. Functional studies in cell line models demonstrate that these mutations render estrogen receptor constitutive activity and confer partial resistance to currently available endocrine treatments. Conclusions In this study we show evidence for the temporal selection of functional ESR1 mutations as potential drivers of endocrine resistance during the progression of ER positive breast cancer. PMID:24398047

  5. Membrane estrogen receptors: genomic actions and post transcriptional regulation.

    PubMed

    Jacob, Julie; Sebastian, K S; Devassy, Sony; Priyadarsini, Lakshmi; Farook, Mohamed Febin; Shameem, A; Mathew, Deepa; Sreeja, S; Thampan, Raghava Varman

    2006-02-26

    The primary cellular location of the nuclear estrogen receptor II (nER II) is the plasma membrane. A number of reports that have appeared in the recent past indicate that plasma membrane localized estrogen receptor alpha (ERalpha) also exists. Whether the membrane localized ERalpha represents the receptor that binds to the estrogen responsive element (ERE) remains to be known. The mechanisms that underlie the internalization of nER II (non-activated estrogen receptor, deglycosylated) have been identified to a certain extent. The question remains: is the primary location of the ERalpha also the plasma membrane? If that is the case, it will be a challenging task to identify the molecular events that underlie the plasma membrane-to-nucleus movement of ERalpha. The internalization mechanisms for the two 66kDa plasma membrane ERs, following hormone binding, appear to be distinct and without any overlaps. Interestingly, while the major gene regulatory role for ERalpha appears to be at the level of transcription, the nER II has its major functional role in post transcriptional mechanisms. The endoplasmic reticulum associated anchor protein-55 (ap55) that was recently reported from the author's laboratory needs a closer look. It is a high affinity estrogen binding protein that anchors the estrogen receptor activation factor (E-RAF) in an estrogen-mediated event. It will be interesting to examine whether ap55 bears any structural similarity with either ERalpha or ERbeta. PMID:16423448

  6. Canadian Cancer Trials Group IND197: a phase II study of foretinib in patients with estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2-negative recurrent or metastatic breast cancer.

    PubMed

    Rayson, Daniel; Lupichuk, Sasha; Potvin, Kylea; Dent, Susan; Shenkier, Tamara; Dhesy-Thind, Sukhbinder; Ellard, Susan L; Prady, Catherine; Salim, Muhammad; Farmer, Patricia; Allo, Ghasson; Tsao, Ming-Sound; Allan, Alison; Ludkovski, Olga; Bonomi, Maria; Tu, Dongsheng; Hagerman, Linda; Goodwin, Rachel; Eisenhauer, Elizabeth; Bradbury, Penelope

    2016-05-01

    In murine models, overexpression of the MET receptor transgene induces tumors with human basal gene expression characteristics supporting MET inhibition as a treatment strategy for triple-negative breast cancer (TNBC). Foretinib is an oral multi-kinase inhibitor of MET, RON, AXL, TIE-2, and VEGF receptors with anti-tumor activity in advanced HCC and papillary renal cell cancer. Patients with centrally reviewed primary TNBC and 0-1 prior regimens for metastatic disease received daily foretinib 60 mg po in a 2-stage single-arm trial. Primary endpoints were objective response and early progression rates per RECIST 1.1. In stage 2, correlative studies of MET, PTEN, EGFR, and p53 on archival and fresh tumor specimens were performed along with enumeration of CTCs. 45 patients were enrolled with 37 patients having response evaluable and centrally confirmed primary TNBC (cTNBC). There were 2 partial responses (ITT 4.7 % response evaluable cTNBC 5.4 %) with a median duration of 4.4 months (range 3.7-5 m) and 15 patients had stable disease (ITT 33 %, response evaluable cTNBC 40.5 %) with a median duration of 5.4 months (range 2.3-9.7 m). The most common toxicities (all grades/grade 3) were nausea (64/4 %), fatigue (60/4 %), hypertension (58/49 %), and diarrhea (40/7 %). Six serious adverse events were considered possibly related to foretinib and 4 patients went off study due to adverse events. There was no correlation between MET positivity and response nor between response and PTEN, EGFR, p53, or MET expression in CTCs. Although CCTG IND 197 did not meet its primary endpoint, the observation of a clinical benefit rate of 46 % in this cTNBC population suggests that foretinib may have clinical activity as a single, non-cytotoxic agent in TNBC (ClinicalTrials.gov number, NCT01147484). PMID:27116183

  7. SPONTANEOUS AIRWAY HYPERRESPONSIVENESS IN ESTROGEN RECEPTOR-A DEFICIENT MICE

    EPA Science Inventory

    Rationale: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans. Objectives: To examine the role of estrogen receptors in modulat...

  8. Binding of Estrogenic Compounds to Recombinant Estrogen Receptor-α: Application to Environmental Analysis

    PubMed Central

    Pillon, Arnaud; Boussioux, Anne-Marie; Escande, Aurélie; Aït-Aïssa, Sélim; Gomez, Elena; Fenet, Hélène; Ruff, Marc; Moras, Dino; Vignon, Françoise; Duchesne, Marie-Josèphe; Casellas, Claude; Nicolas, Jean-Claude; Balaguer, Patrick

    2005-01-01

    Estrogenic activity in environmental samples could be mediated through a wide variety of compounds and by various mechanisms. High-affinity compounds for estrogen receptors (ERs), such as natural or synthetic estrogens, as well as low-affinity compounds such as alkylphenols, phthalates, and polychlorinated biphenyls are present in water and sediment samples. Furthermore, compounds such as polycyclic aromatic hydrocarbons, which do not bind ERs, modulate estrogen activity by means of the aryl hydrocarbon receptor (AhR). In order to characterize compounds that mediate estrogenic activity in river water and sediment samples, we developed a tool based on the ER-αligand-binding domain, which permitted us to estimate contaminating estrogenic compound affinities. We designed a simple transactivation assay in which compounds of high affinity were captured by limited amounts of recombinant ER-αand whose capture led to a selective inhibition of transactivation. This approach allowed us to bring to light that water samples contain estrogenic compounds that display a high affinity for ERs but are present at low concentrations. In sediment samples, on the contrary, we showed that estrogenic compounds possess a low affinity and are present at high concentration. Finally, we used immobilized recombinant ER-αto separate ligands for ER and AhR that are present in river sediments. Immobilized ER-α, which does not retain dioxin-like compounds, enabled us to isolate and concentrate ER ligands to facilitate their further analysis. PMID:15743715

  9. Estrogenic Compounds, Estrogen Receptors and Vascular Cell Signaling in the Aging Blood Vessels

    PubMed Central

    Smiley, Dia A.; Khalil, Raouf A.

    2010-01-01

    The cardiovascular benefits of menopausal hormone therapy (MHT) remain controversial. The earlier clinical observations that cardiovascular disease (CVD) was less common in MHT users compared to non-users suggested cardiovascular benefits of MHT. Also, experimental studies have identified estrogen receptors ERα, ERβ and GPR30, which mediate genomic or non-genomic effects in vascular endothelium, smooth muscle, and extracellular matrix (ECM). However, data from randomized clinical trials (RCTs), most notably the Women's Health Initiative (WHI) study, have challenged the cardiovascular benefits and highlighted adverse cardiovascular events with MHT. The discrepancies have been attributed to the design of RCTs, the subjects' advanced age and preexisting CVD, and the form of estrogen used. The discrepancies may also stem from age-related changes in vascular ER amount, distribution, integrity, and post-receptor signaling pathways as well as structural changes in the vasculature. Age-related changes in other sex hormones such as testosterone may also alter the hormonal environment and influence the cardiovascular effects of estrogen. Investigating the chemical properties, structure-activity relationship and pharmacology of natural and synthetic estrogens should improve the effectiveness of conventional MHT. Further characterization of phytoestrogens, selective estrogen-receptor modulators (SERMs), and specific ER agonists may provide substitutes to conventional MHT. Conditions with excess or low estrogen levels such as polycystic ovary syndrome (PCOS) and Turner syndrome may provide insight into the development and regulation of ER and the mechanisms of aberrant estrogen-ER interactions. The lessons learned from previous RCTs have led to more directed studies such as the Kronos Early Estrogen Prevention Study (KEEPS). Careful design of experimental models and RCTs, coupled with the development of specific ER modulators, hold the promise of improving the actions of

  10. Estrogen and estrogen receptors in cardiovascular oxidative stress.

    PubMed

    Arias-Loza, Paula-Anahi; Muehlfelder, Melanie; Pelzer, Theo

    2013-05-01

    The cardiovascular system of a premenopausal woman is prepared to adapt to the challenges of increased cardiac output and work load that accompany pregnancy. Thus, it is tempting to speculate whether enhanced adaptability of the female cardiovascular system might be advantageous under conditions that promote cardiovascular disease. In support of this concept, 17β-estradiol as the major female sex hormone has been shown to confer protective cardiovascular effects in experimental studies. Mechanistically, these have been partially linked to the prevention and protection against oxidative stress. Current evidence indicates that estrogens attenuate oxidative stress at two levels: first, by preventing generation of reactive oxygen species (ROS) and, second, by scavenging ROS in the myocardium and in the vasculature. The purpose of this review is to give an overview on current concepts on conditions and mechanisms by which estrogens protect the cardiovascular system against ROS-mediated cellular injury.

  11. Selective estrogen receptor modulators (SERMs): new alternatives for osteoarthritis?

    PubMed

    Lugo, L; Villalvilla, A; Largo, R; Herrero-Beaumont, G; Roman-Blas, J A

    2014-04-01

    The dramatic rise in the prevalence rate of osteoarthritis (OA) after the menopause and the presence of estrogen receptors in joint tissues suggest that estrogen may help protect against the development of OA. Trials of estrogen therapy have produced inconclusive results, however, partly because of flaws in study design and partly because of the complexity of the mechanisms underlying estrogen's effects on joint tissues. Initial studies of the use of selective estrogen receptor modulators (SERMs) have reported beneficial effects in OA. These agents may exert both a direct effect upon joint cartilage and indirect effects on subchondral bone, synovium, muscle, tendons and ligaments. SERMs may be particularly beneficial for postmenopausal patients with osteoporotic OA, a phenotype defined by decreased bone density, associated with high remodeling in subchondral bone. More research is needed, though, before SERMs can become a therapeutic option for OA.

  12. Prediction of Low versus High Recurrence Scores in Estrogen Receptor-Positive, Lymph Node-Negative Invasive Breast Cancer on the Basis of Radiologic-Pathologic Features: Comparison with Oncotype DX Test Recurrence Scores.

    PubMed

    Dialani, Vandana; Gaur, Shantanu; Mehta, Tejas S; Venkataraman, Shambhavi; Fein-Zachary, Valerie; Phillips, Jordana; Brook, Alexander; Slanetz, Priscilla J

    2016-08-01

    Purpose To review mammographic, ultrasonographic (US), and magnetic resonance (MR) imaging features and pathologic characteristics of estrogen receptor (ER)-positive, lymph node-negative invasive breast cancer and to determine the relationship of these characteristics to Oncotype DX (Genomic Health, Redwood City, Calif) test recurrence scores (ODRS) for breast cancer recurrence. Materials and Methods This institutional review board-approved retrospective study was performed in a single large academic medical center. The study population included patients with ER-positive, lymph node-negative invasive breast cancer who underwent genomic testing from January 1, 2009, to December 31, 2013. Imaging features of the tumor were classified according to the Breast Imaging Reporting and Data System lexicon by breast imagers who were blinded to the ODRS. Mammography was performed in 86% of patients, US was performed in 84%, and MR imaging was performed in 33%, including morphologic and kinetic evaluation. Images from each imaging modality were evaluated. Each imaging finding, progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) status, and tumor grade were then individually correlated with ODRS. Analysis of variance was used to determine differences for each imaging feature. Regression analysis was used to calculate prediction of recurrence on the basis of imaging features combined with histopathologic features. Results The 319 patients had a mean age ± standard deviation of 55 years ± 8.7 (range, 31-82 years). Imaging features with a positive correlation with ODRS included a well-circumscribed oval mass (P = .024) at mammography, vascularity (P = .047) and posterior enhancement (P = .004) at US, and lobulated mass (P = .002) at MR imaging. Recurrence scores were predicted by using these features in combination with PR and HER2 status and tumor grade by using the threshold of more than 30 as a high recurrence score. With a regression tree, there

  13. Role of estrogen receptor-α on food demand elasticity.

    PubMed

    Minervini, Vanessa; Rowland, Neil E; Robertson, Kimberly L; Foster, Thomas C

    2015-05-01

    Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. PMID:25869426

  14. Role of estrogen receptor-α on food demand elasticity.

    PubMed

    Minervini, Vanessa; Rowland, Neil E; Robertson, Kimberly L; Foster, Thomas C

    2015-05-01

    Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions.

  15. The "busy life" of unliganded estrogen receptors.

    PubMed

    Stellato, Claudia; Porreca, Immacolata; Cuomo, Danila; Tarallo, Roberta; Nassa, Giovanni; Ambrosino, Concetta

    2016-01-01

    Understanding of the role of estrogen receptors (ERα and ERβ) in the pathophysiology of breast cancer (BC) has considerably increased in last decades. Despite sharing a similar structure, these two transcription factors often exert opposite roles in BC. In addition, it has been shown that their transcriptional activity is not strictly associated to ligand activation and that unliganded ERs are able to "have a life on their own." This appears to be mainly due to ligand-independent mechanisms leading to ERs PTMs or to their recruitment to specific protein complexes, dependent on cellular context. Furthermore, a significant unliganded ER activity, probably independent by the activation of other pathways, has been recently reported to affect gene transcription, microRNA expression, and downstream proteome. In this review, we describe recent findings on nuclear and cytoplasmic unliganded ERα and ERβ activity. We focus on functional genomics, epigenomics, and interaction proteomics data, including PTM induced by ERs-modulated miRNAs in the BC context. A better comprehension of the molecular events controlled by unliganded ERs activity in BC pathogenesis is crucial since it may impact the therapeutic approach to the initial or acquired resistance to endocrine therapies, frequently experienced in the treatment of BC. PMID:26508451

  16. The molecular, cellular and clinical consequences of targeting the estrogen receptor following estrogen deprivation therapy.

    PubMed

    Fan, Ping; Maximov, Philipp Y; Curpan, Ramona F; Abderrahman, Balkees; Jordan, V Craig

    2015-12-15

    During the past 20 years our understanding of the control of breast tumor development, growth and survival has changed dramatically. The once long forgotten application of high dose synthetic estrogen therapy as the first chemical therapy to treat any cancer has been resurrected, refined and reinvented as the new biology of estrogen-induced apoptosis. High dose estrogen therapy was cast aside once tamoxifen, from its origins as a failed "morning after pill", was reinvented as the first targeted therapy to treat any cancer. The current understanding of the mechanism of estrogen-induced apoptosis is described as a consequence of acquired resistance to long term antihormone therapy in estrogen receptor (ER) positive breast cancer. The ER signal transduction pathway remains a target for therapy in breast cancer despite "antiestrogen" resistance, but becomes a regulator of resistance. Multiple mechanisms of resistance come into play: Selective ER modulator (SERM) stimulated growth, growth factor/ER crosstalk, estrogen-induced apoptosis and mutations of ER. But it is with the science of estrogen-induced apoptosis that the next innovation in women's health will be developed. Recent evidence suggests that the glucocorticoid properties of medroxyprogesterone acetate blunt estrogen-induced apoptosis in estrogen deprived breast cancer cell populations. As a result breast cancer develops during long-term hormone replacement therapy (HRT). A new synthetic progestin with estrogen-like properties, such as the 19 nortestosterone derivatives used in oral contraceptives, will continue to protect the uterus from unopposed estrogen stimulation but at the same time, reinforce apoptosis in vulnerable populations of nascent breast cancer cells.

  17. The adverse effects of estrogen and selective estrogen receptor modulators on hemostasis and thrombosis.

    PubMed

    Artero, Arturo; Tarín, Juan J; Cano, Antonio

    2012-11-01

    Agonists of the estrogen receptor include estrogens and selective estrogen receptor modulators (SERMs). Both types of compounds increase the risk for thrombosis in the arterial and the venous tree. The magnitude of the effect is influenced by potency, which depends on the type of compound and the dose. The particulars of the process change in each territory. Atherosclerosis, which creates local inflammatory conditions, may favor thrombogenesis in arteries. A direct effect of estrogen agonists is also well endorsed at both arteries, as suggested from data with high-estrogenic contraceptives, and veins. Dose reduction has been proved to be an effective strategy, but there is debate on whether additional benefit may be attained beyond a certain threshold. Hormone therapy and SERMs exhibit a lower potency estrogenic profile, but are mainly used by older women, who have a baseline increased thrombogenic risk. When used as sole agents, estrogens substantially reduce the increased risk (venous thrombosis) or may even be neutral (coronary disease). SERMs exhibit a neutral profile for coronary disease and possibly for stroke but not for venous thrombosis.

  18. Visualization of Estrogen Receptor Transcriptional Activation in Zebrafish

    PubMed Central

    Halpern, Marnie E.

    2011-01-01

    Estrogens regulate a diverse range of physiological processes and affect multiple tissues. Estrogen receptors (ERs) regulate transcription by binding to DNA at conserved estrogen response elements, and such elements have been used to report ER activity in cultured cells and in transgenic mice. We generated stable, transgenic zebrafish containing five consecutive elements upstream of a c-fos minimal promoter and green fluorescent protein (GFP) to visualize and quantify transcriptional activation in live larvae. Transgenic larvae show robust, dose-dependent estrogen-dependent fluorescent labeling in the liver, consistent with er gene expression, whereas ER antagonists inhibit GFP expression. The nonestrogenic steroids dexamethasone and progesterone fail to activate GFP, confirming ER selectivity. Natural and synthetic estrogens activated the transgene with varying potency, and two chemicals, genistein and bisphenol A, preferentially induce GFP expression in the heart. In adult fish, fluorescence was observed in estrogenic tissues such as the liver, ovary, pituitary gland, and brain. Individual estrogen-responsive neurons and their projections were visualized in the adult brain, and GFP-positive neurons increased in number after 17β-estradiol exposure. The transgenic estrogen-responsive zebrafish allow ER signaling to be monitored visually and serve as in vivo sentinels for detection of estrogenic compounds. PMID:21540282

  19. Treatment of BG-1 Ovarian Cancer Cells Expressing Estrogen Receptors with Lambda-cyhalothrin and Cypermethrin Caused a Partial Estrogenicity Via an Estrogen Receptor-dependent Pathway

    PubMed Central

    Kim, Cho-Won; Go, Ryeo-Eun

    2015-01-01

    Synthetic pyrethroids (SPs) are the most common pesticides which are recently used for indoor pest control. The widespread use of SPs has resulted in the increased exposure to wild animals and humans. Recently, some SPs are suspected as endocrine disrupting chemicals (EDCs) and have been assessed for their potential estrogenicity by adopting various analyzing assays. In this study, we examined the estrogenic effects of lambda-cyhalothrin (LC) and cypermethrin (CP), the most commonly used pesticides in Korea, using BG-1 ovarian cancer cells expressing estrogen receptors (ERs). To evaluate the estrogenic activities of two SPs, LC and CP, we employed MTT assay and reverse-transcription polymerase chain reaction (RT-PCR) in LC or CP treated BG-1 ovarian cancer cells. In MTT assay, LC (10−6 M) and CP (10−5 M) significantly induced the growth of BG-1 cancer cells. LC or CP-induced cell growth was antagonized by addition of ICI 182,720 (10−8 M), an ER antagonist, suggesting that this effect appears to be mediated by an ER-dependent manner. Moreover, RT-PCR results showed that transcriptional level of cyclin D1, a cell cycle-regulating gene, was significantly up-regulated by LC and CP, while these effects were reversed by co-treatment of ICI 182,780. However, p21, a cyclin D-ckd-4 inhibitor gene, was not altered by LC or CP. Moreover, ERα expression was not significantly changed by LC and CP, while downregulated by E2. Finally, in xenografted mouse model transplanted with human BG-1 ovarian cancer cells, E2 significantly increased the tumor volume compare to a negative control, but LC did not. Taken together, these results suggest that LC and CP may possess estrogenic potentials by stimulating the growth of BG-1 ovarian cancer cells via partially ER signaling pathway associated with cell cycle as did E2, but this estrogenic effect was not found in in vivo mouse model. PMID:26877835

  20. NADH-Cytochrome b5 Reductase 3 Promotes Colonization and Metastasis Formation and Is a Prognostic Marker of Disease-Free and Overall Survival in Estrogen Receptor-Negative Breast Cancer.

    PubMed

    Lund, Rikke R; Leth-Larsen, Rikke; Caterino, Tina Di; Terp, Mikkel G; Nissen, Jeanette; Lænkholm, Anne-Vibeke; Jensen, Ole N; Ditzel, Henrik J

    2015-11-01

    Metastasis is the main cause of cancer-related deaths and remains the most significant challenge to management of the disease. Metastases are established through a complex multistep process involving intracellular signaling pathways. To gain insight to proteins central to specific steps in metastasis formation, we used a metastasis cell line model that allows investigation of extravasation and colonization of circulating cancer cells to lungs in mice. Using stable isotopic labeling by amino acids in cell culture and subcellular fractionation, the nuclear, cytosol, and mitochondria proteomes were analyzed by LC-MS/MS, identifying a number of proteins that exhibited altered expression in isogenic metastatic versus nonmetastatic cancer cell lines, including NADH-cytochrome b5 reductase 3 (CYB5R3), l-lactate dehydrogenase A (LDHA), Niemann-pick c1 protein (NPC1), and nucleolar RNA helicase 2 (NRH2). The altered expression levels were validated at the protein and transcriptional levels, and analysis of breast cancer biopsies from two cohorts of patients demonstrated a significant correlation between high CYB5R3 expression and poor disease-free and overall survival in patients with estrogen receptor-negative tumors (DFS: p = .02, OS: p = .04). CYB5R3 gene knock-down using siRNA in metastasizing cells led to significantly decreased tumor burden in lungs when injected intravenously in immunodeficient mice. The cellular effects of CYB5R3 knock-down showed signaling alterations associated with extravasation, TGFβ and HIFα pathways, and apoptosis. The decreased apoptosis of CYB5R3 knock-down metastatic cancer cell lines was confirmed in functional assays. Our study reveals a central role of CYB5R3 in extravasation/colonization of cancer cells and demonstrates the ability of our quantitative, comparative proteomic approach to identify key proteins of specific important biological processes that may also prove useful as potential biomarkers of clinical relevance. MS data are

  1. Cost-effectiveness of a 21-gene recurrence score assay versus Canadian clinical practice in women with early-stage estrogen- or progesterone-receptor-positive, axillary lymph-node negative breast cancer

    PubMed Central

    2012-01-01

    Background A 21-gene recurrence score (RS) assay may inform adjuvant systematic treatment decisions in women with early stage breast cancer. We sought to investigate the cost effectiveness of using the RS-assay versus current clinical practice (CCP) in women with early-stage estrogen- or progesterone-receptor-positive, axilliary lymph-node negative breast cancer (ER+/ PR + LN- ESBC) from the perspective of the Canadian public healthcare system. Methods We developed a Markov model to project the lifetime clinical and economic consequences of ESBC. We evaluated adjuvant therapy separately in post- and pre-menopausal women with ER+/ PR + LN- ESBC. We assumed that the RS-assay would reclassify pre- and post-menopausal women among risk levels (low, intermediate and high) and guide adjuvant systematic treatment decisions. The model was parameterized using 7 year follow up data from the Manitoba Cancer Registry, cost data from Manitoba administrative databases, and secondary sources. Costs are presented in 2010 CAD. Future costs and benefits were discounted at 5%. Results The RS-assay compared to CCP generated cost-savings in pre-menopausal women and had an ICER of $60,000 per QALY gained in post-menopausal women. The cost effectiveness was most sensitive to the proportion of women classified as intermediate risk by the RS-assay who receive adjuvant chemotherapy and the risk of relapse in the RS-assay model. Conclusions The RS-assay is likely to be cost effective in the Canadian healthcare system and should be considered for adoption in women with ER+/ PR + LN- ESBC. However, ongoing assessment and validation of the assay in real-world clinical practice is warranted. PMID:23031196

  2. Estrogen, vascular estrogen receptor and hormone therapy in postmenopausal vascular disease.

    PubMed

    Khalil, Raouf A

    2013-12-15

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women's Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject's age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  3. Estrogen, Vascular Estrogen Receptor and Hormone Therapy in Postmenopausal Vascular Disease

    PubMed Central

    Khalil, Raouf A.

    2013-01-01

    Cardiovascular disease (CVD) is less common in premenopausal women than men of the same age or postmenopausal women, suggesting vascular benefits of estrogen. Estrogen activates estrogen receptors ERα, ERβ and GPR30 in endothelium and vascular smooth muscle (VSM), which trigger downstream signaling pathways and lead to genomic and non-genomic vascular effects such as vasodilation, decreased VSM contraction and growth and reduced vascular remodeling. However, randomized clinical trials (RCTs), such as the Women’s Health Initiative (WHI) and Heart and Estrogen/progestin Replacement Study (HERS), have shown little vascular benefits and even adverse events with menopausal hormone therapy (MHT), likely due to factors related to the MHT used, ER profile, and RCT design. Some MHT forms, dose, combinations or route of administration may have inadequate vascular effects. Age-related changes in ER amount, distribution, integrity and post-ER signaling could alter the vascular response to MHT. The subject’s age, preexisting CVD, and hormone environment could also reduce the effects of MHT. Further evaluation of natural and synthetic estrogens, phytoestrogens, and selective estrogen-receptor modulators (SERMs), and the design of appropriate MHT combinations, dose, route and 'timing' could improve the effectiveness of conventional MHT and provide alternative therapies in the peri-menopausal period. Targeting ER using specific ER agonists, localized MHT delivery, and activation of specific post-ER signaling pathways could counter age-related changes in ER. Examination of the hormone environment and conditions associated with hormone imbalance such as polycystic ovary syndrome may reveal the causes of abnormal hormone-receptor interactions. Consideration of these factors in new RCTs such as the Kronos Early Estrogen Prevention Study (KEEPS) could enhance the vascular benefits of estrogen in postmenopausal CVD. PMID:24099797

  4. Estrogen Receptors and Their Implications in Colorectal Carcinogenesis

    PubMed Central

    Caiazza, Francesco; Ryan, Elizabeth J.; Doherty, Glen; Winter, Desmond C.; Sheahan, Kieran

    2015-01-01

    Upon binding their cognate receptors, ERα (ESR1) and ERβ (ESR2), estrogens activate intracellular signaling cascades that have important consequences for cellular behavior. Historically linked to carcinogenesis in reproductive organs, estrogens have also been implicated in the pathogenesis of different cancer types of non-reproductive tissues including the colon. ERβ is the predominant estrogen receptor expressed in both normal and malignant colonic epithelium. However, during colon cancer progression, ERβ expression is lost, suggesting that estrogen signaling may play a role in disease progression. Estrogens may in fact exert an anti-tumor effect through selective activation of pro-apoptotic signaling mediated by ERβ, inhibition of inflammatory signals and modulation of the tumor microenvironment. In this review, we analyze the estrogen pathway as a possible therapeutic avenue in colorectal cancer, we report the most recent experimental evidence to explain the cellular and molecular mechanisms of estrogen-mediated protection against colorectal tumorigenesis, and we discuss future challenges and potential avenues for targeted therapy. PMID:25699240

  5. Structural and Functional Diversity of Estrogen Receptor Ligands

    PubMed Central

    Farooq, Amjad

    2015-01-01

    Estrogen receptors, comprised of ERα and ERβ isoforms in mammals, act as ligand-modulated transcription factors and orchestrate a plethora of cellular functions from sexual development and reproduction to metabolic homeostasis. Herein, I revisit the structural basis of the binding of ERα to DNA and estradiol in light of the recent discoveries and emerging trends in the field of nuclear receptors. A particular emphasis of this review is on the chemical and structural diversity of an ever-increasing repertoire of physiological, environmental and synthetic ligands of estrogen receptors that ultimately modulate their interactions with cognate DNA located within the promoters of estrogen-responsive genes. In particular, modulation of estrogen receptors by small molecule ligands represents an important therapeutic goal toward the treatment of a wide variety of human pathologies including breast cancer, cardiovascular disease, osteoporosis and obesity. Collectively, this article provides an overview of a wide array of small organic and inorganic molecules that can fine-tune the physiological function of estrogen receptors, thereby bearing a direct impact on human health and disease. PMID:25866274

  6. [Association of estrogens and selective estrogens receptors modulators: towards a renewal of the hormonal treatment?].

    PubMed

    Valéra, Marie-Cécile; Chantalat, Elodie; Vinel, Alexia; Benoit, Thibaut; Guillaume, Maeva; Game, Xavier; Gourdy, Pierre; Trémollières, Florence; Payrastre, Bernard; Arnal, Jean-François

    2015-01-01

    The life expectancy of women has risen in the past century from 48years to more than 80. The decline of endogenous estrogen production (in particular, the principal circulating physiological hormone, 17β-estradiol) at menopause (which occurs at an average of 51years) is often accompanied by a series of functional disorders that affect quality of life (QoL). This estrogen deficiency affects different tissues and results in an increase in the prevalence of various disorders, including but not limited to osteoporosis and cardiovascular disease. Hormone therapy for menopause is a relatively recent biomedical challenge, which underwent a downturn after the Women Health Initiative study of older postmenopausal women. We will summarize the WHI findings in the first part of this article. At Inserm unit 1048, we are working on understanding the protective effects of estrogen against the development of atherosclerosis and type 2 diabetes in murine models. We have also focused in recent years on modeling the impact of estrogen in thrombosis models, to attempt to clarify the complex relation between estrogen and thrombotic risk. In part II of this article, we will describe a new strategy of hormone therapy for menopause, combining estrogens and selective estrogen receptor modulators (SERM). We review the scientific underpinnings of this strategy, which may enable the renewal of hormone therapy for menopause.

  7. Comparative analysis of the interaction of various estrogens with the estrogen-receptor system of the uterus

    SciTech Connect

    Fanchenko, N.D.; Alekseeva, M.L.; Minina, L.S.; Novikov, E.A.; Khel'mun, D.K.

    1986-05-20

    The binding of various labeled estrogens under conditions of equilibrium in the cytosol of the uterus of sexually immature Wistar rats was studied. An analysis of the data obtained, as well as the kinetics of the dissociation of the complexes of the ligands used with specific high-affinity estrogen-binding sites of the cytosol, suggested that the population of estrogen receptors in the rat uterus is homogeneous. The possibility of intracellular regulation of the action of estrogens in the target cell in the presence of a homogeneous population of receptors, both at the receptor and at the post-receptor stages, is suggested.

  8. Delay in post-ovariectomy estrogen replacement negates estrogen-induced augmentation of post-exercise muscle satellite cell proliferation.

    PubMed

    Mangan, Gary; Iqbal, Sobia; Hubbard, Andrew; Hamilton, Victoria; Bombardier, Eric; Tiidus, Peter M

    2015-11-01

    This study examined the effects of a delay in post-ovariectomy replacement of 17β-estradiol (estrogen) on the post-exercise proliferation of muscle satellite cells. Nine-week-old, ovariectomized, female Sprague-Dawley rats (n = 64) were distributed among 8 groups based on estrogen status (0.25 mg estrogen pellet or sham), exercise status (90 min run at 17 m·min(-1) and a grade of -13.5° or unexercised), and estrogen replacement ("proximal", estrogen replacement within 2 weeks; or "delayed", estrogen replacement at 11 weeks following ovariectomy). Significant increases in satellite cells were found in the soleus and white gastrocnemius muscle (immunofluorescent colocalization of nuclei with Pax7) 72 h following eccentric exercise (p < 0.05) in all exercised groups. Proximal E2 replacement resulted in a further augmentation of muscle satellite cells in exercised rats (p < 0.05) relative to the delayed estrogen replacement group. Expression of PI3K was unaltered and phosphorylation of Akt relative to total Akt increased following estrogen supplementation and exercise. Exercise alone did not alter the expression levels of Akt. An 11 week delay in post-ovariectomy estrogen replacement negated the augmenting influence seen with proximal (2 week delay) post-ovariectomy estrogen replacement on post-exercise muscle satellite cell proliferation. This effect appears to be independent of the PI3K-Akt signaling pathway.

  9. MicroRNA-520/373 family functions as a tumor suppressor in estrogen receptor negative breast cancer by targeting NF-κB and TGF-β signaling pathways.

    PubMed

    Keklikoglou, I; Koerner, C; Schmidt, C; Zhang, J D; Heckmann, D; Shavinskaya, A; Allgayer, H; Gückel, B; Fehm, T; Schneeweiss, A; Sahin, O; Wiemann, S; Tschulena, U

    2012-09-13

    MicroRNAs (miRNAs) as modulators of gene expression have been described to display both tumor-promoting and tumor-suppressive functions. Although their role has been studied in different tumor types, little is known about how they regulate nuclear factor κB (NF-κB) signaling in breast cancer. Here, we performed an unbiased whole genome miRNA (miRome) screen to identify novel modulators of NF-κB pathway in breast cancer. The screen identified 13 miRNA families whose members induced consistent effects on NF-κB activity. Among those, the miR-520/373 family inhibited NF-κB signaling through direct targeting of RELA and thus strongly reduced expression and secretion of the pro-inflammatory cytokines interleukin (IL)-6 and IL-8. With a combination of in vitro and in vivo approaches, we propose a metastasis-suppressive role of miR-520/373 family. miR-520c and miR-373 abrogated both in vitro cell invasion and in vivo intravasation of highly invasive MDA-MB-231 cells. However, knockdown of RELA did not affect their metastatic ability. mRNA profiling of MDA-MB-231 cells on overexpression of miR-520/373 members revealed a strong downregulation of transforming growth factor-β (TGF-β) signaling. Mechanistically, the metastasis-suppressive role of miR-520/373 can be attributed to direct suppression of TGFBR2, as the silencing of TGFBR2 phenocopied the effects of miR-520/373 overexpression on suppression of Smad-dependent expression of the metastasis-promoting genes parathyroid hormone-related protein, plasminogen activator inhibitor-1 and angiopoietin-like 4 as well as tumor cell invasion, in vitro and in vivo. A negative correlation between miR-520c and TGFBR2 expression was observed in estrogen receptor negative (ER(-)) breast cancer patients but not in the ER positive (ER(+)) subtype. Remarkably, decreased expression of miR-520c correlated with lymph node metastasis specifically in ER(-) tumors. Taken together, our findings reveal that miR-520/373 family has a tumor

  10. Mechanism of the estrogen receptor interaction with 4-hydroxytamoxifen.

    PubMed

    Sasson, S; Notides, A C

    1988-04-01

    The binding mechanism of the estrogen receptor with 4-[3H]hydroxytamoxifen was investigated. The equilibrium binding analysis with 4-[3H]hydroxytamoxifen indicated a positive cooperative interaction: the Scatchard plot was convex and the Hill coefficient was 1.4-1.5. This binding appears similar to the positively cooperative interaction of the estrogen receptor with [3H]estradiol. However, a competitive binding assay with a saturating concentration of [3H] estradiol and variable concentrations of 4-hydroxytamoxifen produced nonparallel displacement curves indicating that the binding mechanism of the receptor with these two ligands is different. The competitive binding assay with [3H]estradiol and 4-hydroxytamoxifen at constant molar ratios demonstrated that the receptor's affinity for estradiol was reduced and the receptor preferentially bound 4-hydroxytamoxifen. These data suggest that 4-hydroxytamoxifen interacts with the receptor differently than estradiol; it antagonizes the binding of estradiol when these two ligands are simultaneously present.

  11. Mechanism of the estrogen receptor interaction with 4-hydroxytamoxifen

    SciTech Connect

    Sasson, S.; Notides, A.C.

    1988-04-01

    The binding mechanism of the estrogen receptor with 4-(/sup 3/H)hydroxytamoxifen was investigated. The equilibrium binding analysis with 4-(/sup 3/H)hydroxytamoxifen indicated a positive cooperative interaction: the Scatchard plot was convex and the Hill coefficient was 1.4-1.5. This binding appears similar to the positively cooperative interaction of the estrogen receptor with (/sup 3/H)estradiol. However, a competitive binding assay with a saturating concentration of (/sup 3/H) estradiol and variable concentrations of 4-hydroxytamoxifen produced nonparallel displacement curves indicating that the binding mechanism of the receptor with these two ligands is different. The competitive binding assay with (/sup 3/H)estradiol and 4-hydroxytamoxifen at constant molar ratios demonstrated that the receptor's affinity for estradiol was reduced and the receptor preferentially bound 4-hydroxytamoxifen. These data suggest that 4-hydroxytamoxifen interacts with the receptor differently than estradiol; it antagonizes the binding of estradiol when these two ligands are simultaneously present.

  12. Estrogen-related receptor β (ERRβ) – renaissance receptor or receptor renaissance?

    PubMed Central

    Divekar, Shailaja D.; Tiek, Deanna M.; Fernandez, Aileen; Riggins, Rebecca B.

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor. PMID:27507929

  13. Estrogen-related receptor β (ERRβ) - renaissance receptor or receptor renaissance?

    PubMed

    Divekar, Shailaja D; Tiek, Deanna M; Fernandez, Aileen; Riggins, Rebecca B

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor.

  14. Estrogen-related receptor β (ERRβ) - renaissance receptor or receptor renaissance?

    PubMed

    Divekar, Shailaja D; Tiek, Deanna M; Fernandez, Aileen; Riggins, Rebecca B

    2016-01-01

    Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα and ERRγ at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ, however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor. PMID:27507929

  15. Wedelolactone induces growth of breast cancer cells by stimulation of estrogen receptor signalling.

    PubMed

    Nehybova, Tereza; Smarda, Jan; Daniel, Lukas; Brezovsky, Jan; Benes, Petr

    2015-08-01

    Wedelolactone, a plant coumestan, was shown to act as anti-cancer agent for breast and prostate carcinomas in vitro and in vivo targeting multiple cellular proteins including androgen receptors, 5-lipoxygenase and topoisomerase IIα. It is cytotoxic to breast, prostate, pituitary and myeloma cancer cell lines in vitro at μM concentrations. In this study, however, a novel biological activity of nM dose of wedelolactone was demonstrated. Wedelolactone acts as agonist of estrogen receptors (ER) α and β as demonstrated by transactivation of estrogen response element (ERE) in cells transiently expressing either ERα or ERβ and by molecular docking of this coumestan into ligand binding pocket of both ERα and ERβ. In breast cancer cells, wedelolactone stimulates growth of estrogen receptor-positive cells, expression of estrogen-responsive genes and activates rapid non-genomic estrogen signalling. All these effects can be inhibited by pretreatment with pure ER antagonist ICI 182,780 and they are not observed in ER-negative breast cancer cells. We conclude that wedelolactone acts as phytoestrogen in breast cancer cells by stimulating ER genomic and non-genomic signalling pathways.

  16. Designer interface peptide grafts target estrogen receptor alpha dimerization.

    PubMed

    Chakraborty, S; Asare, B K; Biswas, P K; Rajnarayanan, R V

    2016-09-01

    The nuclear transcription factor estrogen receptor alpha (ERα), triggered by its cognate ligand estrogen, regulates a variety of cellular signaling events. ERα is expressed in 70% of breast cancers and is a widely validated target for anti-breast cancer drug discovery. Administration of anti-estrogen to block estrogen receptor activation is still a viable anti-breast cancer treatment option but anti-estrogen resistance has been a significant bottle-neck. Dimerization of estrogen receptor is required for ER activation. Blocking ERα dimerization is therefore a complementary and alternative strategy to combat anti-estrogen resistance. Dimer interface peptide "I-box" derived from ER residues 503-518 specifically blocks ER dimerization. Recently using a comprehensive molecular simulation we studied the interaction dynamics of ERα LBDs in a homo-dimer. Based on this study, we identified three interface recognition peptide motifs LDKITDT (ERα residues 479-485), LQQQHQRLAQ (residues 497-506), and LSHIRHMSNK (residues 511-520) and reported the suitability of using LQQQHQRLAQ (ER 497-506) as a template to design inhibitors of ERα dimerization. Stability and self-aggregation of peptide based therapeutics poses a significant bottle-neck to proceed further. In this study utilizing peptide grafted to preserve their pharmacophoric recognition motif and assessed their stability and potential to block ERα mediated activity in silico and in vitro. The Grafted peptides blocked ERα mediated cell proliferation and viability of breast cancer cells but did not alter their apoptotic fate. We believe the structural clues identified in this study can be used to identify novel peptidometics and small molecules that specifically target ER dimer interface generating a new breed of anti-cancer agents. PMID:27462021

  17. Detection of estrogen receptors in the trigonum and urinary bladder with an immunohistochemical technique.

    PubMed

    Bussolati, G; Tizzani, A; Casetta, G; Cassoni, P; Pacchioni, D; Piana, P; Revelli, A; Massobrio, M

    1990-09-01

    In order to detect estrogen receptors (ER) in the female bladder, 5 premenopausal and 10 postmenopausal women affected by gynecological diseases were submitted to cystoscopy, during which both the trigonum and the bladder lateral wall were biopsied. A new, simple, cost-effective immunohistochemical technique was employed to stain the estrogen specific binding sites. ER were found in the trigonum of 3 premenopausal and 4 postmenopausal subjects, while the bladder lateral wall was always ER-negative. A comparison with previously used ER detection methods and a discussion of further hypothetical applications of the immunohistochemical technique in the study of the lower female urogenital tract are reported.

  18. Glycone-rich Soy Isoflavone Extracts Promote Estrogen Receptor Positive Breast Cancer Cell Growth.

    PubMed

    Johnson, Kailee A; Vemuri, Sravan; Alsahafi, Sameerh; Castillo, Rudy; Cheriyath, Venugopalan

    2016-01-01

    Due to the association of hormone replacement therapy (HRT) with breast cancer risk, estrogenically active soy isoflavones are considered as an HRT alternative to alleviate menopausal symptoms. However, several recent reports challenged the health benefits of soy isoflavones and associated them with breast cancer promotion. While glyconic isoflavones are the major constituents of soybean seeds, due to their low cell permeability, they are considered to be biologically inactive. The glyconic isoflavones may exert their effects on membrane-bound estrogen receptors or could be converted to aglycones by extracellular β-glucosidases. Therefore, we hypothesized that despite their low cell permeability, soybean cultivars with high glyconic isoflavones may promote breast cancer cell growth. To test this, composition and estrogenic activity of isoflavones from 54 commercial soybean cultivars were determined. Soybean seeds produced in identical climate and growth conditions were used to minimize the effects of extraneous factors on isoflavone profile and concentrations. The glyconic daidzin concentration negatively correlated with genistin and with other aglycones. Relative to control, isoflavone extracts from 51 cultivars were estrogenic and promoted the growth of estrogen receptor positive (ER+) breast cancer cell line MCF-7 from 1.14 to 4.59 folds and other three cultivars slightly reduced the growth. Among these, extracts from three cultivars were highly estrogenic and promoted MCF-7 cell growth by 2.59-4.64 folds (P<0.005). Among six isoflavones, daidzin was positively associated with MCF-7 cell growth (P<0.005, r = 0.13966), whereas the negative correlation between genistin and MCF-7 cell growth was nearly significant (P≤0.0562, r = -0.026141). Furthermore, in drug interaction studies daidzin-rich isoflavone extracts antagonized tamoxifen, an ER inhibitor. Taken together, our results suggest that the glyconic daidzin-rich soy isoflavone extracts may exert estrogenic

  19. Androgen- and Estrogen-Receptor Content in Spontaneous and Experimentally Induced Canine Prostatic Hyperplasia

    PubMed Central

    Trachtenberg, John; Hicks, L. Louise; Walsh, Patrick C.

    1980-01-01

    development of both spontaneously arising and experimentally induced canine prostatic hyperplasia. The mechanism of androgen-estrogen synergism in the experimental induction of canine benign prostatic hyperplasia may be explained by estradiol-mediated increases in nuclear androgen-receptor content. Because androstanediol blocked certain estradiol-mediated events within the prostate, a negative feedback mechanism may exist in which the response of the canine prostate to estrogens is modulated by rising levels of androgen. PMID:6154062

  20. Binding of type II nuclear receptors and estrogen receptor to full and half-site estrogen response elements in vitro.

    PubMed Central

    Klinge, C M; Bodenner, D L; Desai, D; Niles, R M; Traish, A M

    1997-01-01

    The mechanism by which retinoids, thyroid hormone (T3) and estrogens modulate the growth of breast cancer cells is unclear. Since nuclear type II nuclear receptors, including retinoic acid receptor (RAR), retinoid X receptor (RXR) and thyroid hormone receptor (TR), bind direct repeats (DR) of the estrogen response elements (ERE) half-site (5'-AGGTCA-3'), we examined the ability of estrogen receptor (ER) versus type II nuclear receptors, i.e. RARalpha, beta and gamma, RXRbeta, TRalpha and TRbeta, to bind various EREs in vitro . ER bound a consensus ERE, containing a perfectly palindromic 17 bp inverted repeat (IR), as a homodimer. In contrast, ER did not bind to a single ERE half-site. Likewise, ER did not bind two tandem (38 bp apart) half-sites, but low ER binding was detected to three tandem copies of the same half-site. RARalpha,beta or gamma bound both ERE and half-site constructs as a homodimer. RXRbeta did not bind full or half-site EREs, nor did RXRbeta enhance RARalpha binding to a full ERE. However, RARalpha and RXRbeta bound a half-site ERE cooperatively forming a dimeric complex. The RARalpha-RXRbeta heterodimer bound the Xenopus vitellogenin B1 estrogen responsive unit, with two non-consensus EREs, with higher affinity than one or two copies of the full or half-site ERE. Both TRalpha and TRbeta bound the full and the half-site ERE as monomers and homodimers and cooperatively as heterodimers with RXRbeta. We suggest that the cellular concentrations of nuclear receptors and their ligands, and the nature of the ERE or half-site sequence and those of its flanking sequences determine the occupation of EREs in estrogen-regulated genes in vivo . PMID:9115356

  1. Synthesis of 3-alkyl naphthalenes as novel estrogen receptor ligands

    SciTech Connect

    Fang, Jing; Akwabi-Ameyaw, Adwoa; Britton, Jonathan E.; Katamreddy, Subba R.; Navas III, Frank; Miller, Aaron B.; Williams, Shawn P.; Gray, David W.; Orband-Miller, Lisa A.; Shearin, Jean; Heyer, Dennis

    2009-06-24

    A series of estrogen receptor ligands based on a 3-alkyl naphthalene scaffold was synthesized using an intramolecular enolate-alkyne cycloaromatization as the key step. Several of these compounds bearing a C6-OH group were shown to be high affinity ligands. All compounds had similar ER{alpha} and ER{beta} binding affinity ranging from micromolar to low nanomolar.

  2. Preliminary genetic imaging study of the association between estrogen receptor-α gene polymorphisms and harsh human maternal parenting.

    PubMed

    Lahey, Benjamin B; Michalska, Kalina J; Liu, Chunyu; Chen, Qi; Hipwell, Alison E; Chronis-Tuscano, Andrea; Waldman, Irwin D; Decety, Jean

    2012-09-01

    A failure of neural changes initiated by the estrogen surge in late pregnancy to reverse the valence of infant stimuli from aversive to rewarding is associated with dysfunctional maternal behavior in nonhuman mammals. Estrogen receptor-α plays the crucial role in mediating these neural effects of estrogen priming. This preliminary study examines associations between estrogen receptor-α gene polymorphisms and human maternal behavior. Two polymorphisms were associated with human negative maternal parenting. Furthermore, hemodynamic responses in functional magnetic resonance imaging to child stimuli in neural regions associated with social cognition fully mediated the association between genetic variation and negative parenting. This suggests testable hypotheses regarding a biological pathway between genetic variants and dysfunctional human maternal parenting.

  3. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer

    PubMed Central

    Haiman, Christopher A; Chen, Gary K; Vachon, Celine M; Canzian, Federico; Dunning, Alison; Millikan, Robert C; Wang, Xianshu; Ademuyiwa, Foluso; Ahmed, Shahana; Ambrosone, Christine B; Baglietto, Laura; Balleine, Rosemary; Bandera, Elisa V; Beckmann, Matthias W; Berg, Christine D; Bernstein, Leslie; Blomqvist, Carl; Blot, William J; Brauch, Hiltrud; Buring, Julie E; Carey, Lisa A; Carpenter, Jane E; Chang-Claude, Jenny; Chanock, Stephen J; Chasman, Daniel I; Clarke, Christine L; Cox, Angela; Cross, Simon S; Deming, Sandra L; Diasio, Robert B; Dimopoulos, Athanasios M; Driver, W Ryan; Dünnebier, Thomas; Durcan, Lorraine; Eccles, Diana; Edlund, Christopher K; Ekici, Arif B; Fasching, Peter A; Feigelson, Heather S; Flesch-Janys, Dieter; Fostira, Florentia; Försti, Asta; Fountzilas, George; Gerty, Susan M; Giles, Graham G; Godwin, Andrew K; Goodfellow, Paul; Graham, Nikki; Greco, Dario; Hamann, Ute; Hankinson, Susan E; Hartmann, Arndt; Hein, Rebecca; Heinz, Judith; Holbrook, Andrea; Hoover, Robert N; Hu, Jennifer J; Hunter, David J; Ingles, Sue A; Irwanto, Astrid; Ivanovich, Jennifer; John, Esther M; Johnson, Nicola; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Ko, Yon-Dschun; Kolonel, Laurence N; Konstantopoulou, Irene; Kosma, Veli-Matti; Kulkarni, Swati; Lambrechts, Diether; Lee, Adam M; Le Marchand, Loïc; Lesnick, Timothy; Liu, Jianjun; Lindstrom, Sara; Mannermaa, Arto; Margolin, Sara; Martin, Nicholas G; Miron, Penelope; Montgomery, Grant W; Nevanlinna, Heli; Nickels, Stephan; Nyante, Sarah; Olswold, Curtis; Palmer, Julie; Pathak, Harsh; Pectasides, Dimitrios; Perou, Charles M; Peto, Julian; Pharoah, Paul D P; Pooler, Loreall C; Press, Michael F; Pylkäs, Katri; Rebbeck, Timothy R; Rodriguez-Gil, Jorge L; Rosenberg, Lynn; Ross, Eric; Rüdiger, Thomas; Silva, Isabel dos Santos; Sawyer, Elinor; Schmidt, Marjanka K; Schulz-Wendtland, Rüdiger; Schumacher, Fredrick; Severi, Gianluca; Sheng, Xin; Signorello, Lisa B; Sinn, Hans-Peter; Stevens, Kristen N; Southey, Melissa C; Tapper, William J; Tomlinson, Ian; Hogervorst, Frans B L; Wauters, Els; Weaver, JoEllen; Wildiers, Hans; Winqvist, Robert; Van Den Berg, David; Wan, Peggy; Xia, Lucy Y; Yannoukakos, Drakoulis; Zheng, Wei; Ziegler, Regina G; Siddiq, Afshan; Slager, Susan L; Stram, Daniel O; Easton, Douglas; Kraft, Peter; Henderson, Brian E; Couch, Fergus J

    2012-01-01

    Estrogen receptor (ER)-negative breast cancer shows a higher incidence in women of African ancestry compared to women of European ancestry. In search of common risk alleles for ER-negative breast cancer, we combined genome-wide association study (GWAS) data from women of African ancestry (1,004 ER-negative cases and 2,745 controls) and European ancestry (1,718 ER-negative cases and 3,670 controls), with replication testing conducted in an additional 2,292 ER-negative cases and 16,901 controls of European ancestry. We identified a common risk variant for ER-negative breast cancer at the TERT-CLPTM1L locus on chromosome 5p15 (rs10069690: per-allele odds ratio (OR) = 1.18 per allele, P = 1.0 × 10−10). The variant was also significantly associated with triple-negative (ER-negative, progesterone receptor (PR)-negative and human epidermal growth factor-2 (HER2)-negative) breast cancer (OR = 1.25, P = 1.1 × 10−9), particularly in younger women (<50 years of age) (OR = 1.48, P = 1.9 × 10−9). Our results identify a genetic locus associated with estrogen receptor negative breast cancer subtypes in multiple populations. PMID:22037553

  4. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene.

    PubMed

    Tran, Thi Kim Anh; MacFarlane, Geoff R; Kong, Richard Yuen Chong; O'Connor, Wayne A; Yu, Richard Man Kit

    2016-10-01

    In vertebrates, estrogens and estrogen mimicking chemicals modulate gene expression mainly through a genomic pathway mediated by the estrogen receptors (ERs). Although the existence of an ER orthologue in the mollusc genome has been known for some time, its role in estrogen signalling has yet to be deciphered. This is largely due to its constitutive (ligand-independent) activation and a limited mechanistic understanding of its regulation. To fill this knowledge gap, we cloned and characterised an ER cDNA (sgER) and the 5'-flanking region of the gene from the Sydney rock oyster Saccostrea glomerata. The sgER cDNA is predicted to encode a 477-amino acid protein that contains a DNA-binding domain (DBD) and a ligand-binding domain (LBD) typically conserved among both vertebrate and invertebrate ERs. A comparison of the sgER LBD sequence with those of other ligand-dependent ERs revealed that the sgER LBD is variable at several conserved residues known to be critical for ligand binding and receptor activation. Ligand binding assays using fluorescent-labelled E2 and purified sgER protein confirmed that sgER is devoid of estrogen binding. In silico analysis of the sgER 5'-flanking sequence indicated the presence of three putative estrogen responsive element (ERE) half-sites and several putative sites for ER-interacting transcription factors, suggesting that the sgER promoter may be autoregulated by its own gene product. sgER mRNA is ubiquitously expressed in adult oyster tissues, with the highest expression found in the ovary. Ovarian expression of sgER mRNA was significantly upregulated following in vitro and in vivo exposure to 17β-estradiol (E2). Notably, the activation of sgER expression by E2 in vitro was abolished by the specific ER antagonist ICI 182, 780. To determine whether sgER expression is epigenetically regulated, the in vivo DNA methylation status of the putative proximal promoter in ovarian tissues was assessed using bisulfite genomic sequencing. The

  5. Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1

    PubMed Central

    Neubauer, Hans; Clare, Susan E; Wozny, Wojciech; Schwall, Gerhard P; Poznanović, Slobodan; Stegmann, Werner; Vogel, Ulrich; Sotlar, Karl; Wallwiener, Diethelm; Kurek, Raffael; Fehm, Tanja; Cahill, Michael A

    2008-01-01

    Introduction Breast tumors lacking the estrogen receptor-α (ER-α) have increased incidence of resistance to therapy and poorer clinical prognosis. Methods Whole tissue sections from 16 cryopreserved breast cancer tumors that were either positive or negative for the ER (eight ER positive and eight ER negative) were differentially analyzed by multiplex imaging of two-dimensional PAGE gels using 54 cm isoelectric focusing. Differentially detected spots of Progesterone Receptor Membrane Component 1 (PGRMC1) were shown to differ in phosphorylation status by differential two dimensional polyacrylamide gel electrophoresis of phosphatase-treated tumor proteins. Site directed mutagenesis was used to create putative phosphorylation site point mutants in PGRMC1. Stable transfectants of these mutants in MCF7 cells were assayed for their survival after oxidative stress, and for AKT kinase phosphorylation. Immune fluorescence using anti-PGRMC1 monoclonal antibody 5G7 was performed on breast cancer tissue microarrays. Results Proteins significantly differentially abundant between estrogen receptor negative and estrogen receptor positive tumors at the 0.1% level were consistent with published profiles, suggesting an altered keratin pool, and increased inflammation and wound responses in estrogen receptor negative tumors. Two of three spots of PGRMC1 were more abundant in estrogen receptor negative tumors. Phosphatase treatment of breast tumor proteins indicated that the PGRMC1 isoforms differed in their phosphorylation status. Simultaneous mutation of PGRMC1 serine-56 and serine-181 fully abrogated the sensitivity of stably transfected MCF7 breast cancer cells to peroxide-induced cell death. Immune fluorescence revealed that PGRMC1 was primarily expressed in ER-negative basal epithelial cells of mammary ductules. Even in advanced tumors, high levels of ER or PGRMC1 were almost mutually exclusive in individual cells. In five out of five examined ductal in situ breast cancers of

  6. DNA Repair, Redox Regulation and Modulation of Estrogen Receptor Alpha Mediated Transcription

    ERIC Educational Resources Information Center

    Curtis-Ducey, Carol Dianne

    2009-01-01

    Interaction of estrogen receptor [alpha] (ER[alpha]) with 17[beta]-estradiol (E[subscript 2]) facilitates binding of the receptor to estrogen response elements (EREs) in target genes, which in turn leads to recruitment of coregulatory proteins. To better understand how estrogen-responsive genes are regulated, our laboratory identified a number of…

  7. Binding and transactivation of the largemouth bass estrogen receptors by model compounds

    EPA Science Inventory

    Environmental estrogens (EEs) are chemicals in the environment that can elicit adverse effects on estrogen (E2) signaling by binding with the estrogen receptors (ERs). In largemouth bass (LMB), the physiological actions of E2 are primarily mediated via three receptors (ERα, ERßb ...

  8. Understanding the molecular basis for differences in responses of fish estrogen receptor subtypes to environmental estrogens.

    PubMed

    Tohyama, Saki; Miyagawa, Shinichi; Lange, Anke; Ogino, Yukiko; Mizutani, Takeshi; Tatarazako, Norihisa; Katsu, Yoshinao; Ihara, Masaru; Tanaka, Hiroaki; Ishibashi, Hiroshi; Kobayashi, Tohru; Tyler, Charles R; Iguchi, Taisen

    2015-06-16

    Exposure to endocrine disrupting chemicals (EDCs) can elicit adverse effects on development, sexual differentiation, and reproduction in fish. Teleost species exhibit at least three subtypes of estrogen receptor (ESR), ESR1, ESR2a, and ESR2b; thus, estrogenic signaling pathways are complex. We applied in vitro reporter gene assays for ESRs in five fish species to investigate the ESR subtype-specificity for better understanding the signaling pathway of estrogenic EDCs. Responses to bisphenol A, 4-nonylphenol, and o,p'-DDT varied among ESR subtypes, and the response pattern of ESRs was basically common among the different fish species. Using a computational in silico docking model and through assays quantifying transactivation of the LBD (using GAL-LBD fusion proteins and chimera proteins for the ESR2s), we found that the LBD of the different ESR subtypes generally plays a key role in conferring responsiveness of the ESR subtypes to EDCs. These results also indicate that responses of ESR2s to EDCs cannot necessarily be predicted from the LBD sequence alone, and an additional region is required for full transactivation of these receptors. Our data thus provide advancing understanding on receptor functioning for both basic and applied research. PMID:26032098

  9. Understanding the molecular basis for differences in responses of fish estrogen receptor subtypes to environmental estrogens.

    PubMed

    Tohyama, Saki; Miyagawa, Shinichi; Lange, Anke; Ogino, Yukiko; Mizutani, Takeshi; Tatarazako, Norihisa; Katsu, Yoshinao; Ihara, Masaru; Tanaka, Hiroaki; Ishibashi, Hiroshi; Kobayashi, Tohru; Tyler, Charles R; Iguchi, Taisen

    2015-06-16

    Exposure to endocrine disrupting chemicals (EDCs) can elicit adverse effects on development, sexual differentiation, and reproduction in fish. Teleost species exhibit at least three subtypes of estrogen receptor (ESR), ESR1, ESR2a, and ESR2b; thus, estrogenic signaling pathways are complex. We applied in vitro reporter gene assays for ESRs in five fish species to investigate the ESR subtype-specificity for better understanding the signaling pathway of estrogenic EDCs. Responses to bisphenol A, 4-nonylphenol, and o,p'-DDT varied among ESR subtypes, and the response pattern of ESRs was basically common among the different fish species. Using a computational in silico docking model and through assays quantifying transactivation of the LBD (using GAL-LBD fusion proteins and chimera proteins for the ESR2s), we found that the LBD of the different ESR subtypes generally plays a key role in conferring responsiveness of the ESR subtypes to EDCs. These results also indicate that responses of ESR2s to EDCs cannot necessarily be predicted from the LBD sequence alone, and an additional region is required for full transactivation of these receptors. Our data thus provide advancing understanding on receptor functioning for both basic and applied research.

  10. Binding of estrogen receptor with estrogen conjugated to bovine serum albumin (BSA).

    PubMed

    Taguchi, Yasuto; Koslowski, Mirek; Bodenner, Donald L

    2004-08-19

    BACKGROUND: The classic model of estrogen action requires that the estrogen receptor (ER) activates gene expression by binding directly or indirectly to DNA. Recent studies, however, strongly suggest that ER can act through nongenomic signal transduction pathways and may be mediated by a membrane bound form of the ER. Estradiol covalently linked to membrane impermeable BSA (E2-BSA) has been widely used as an agent to study these novel membrane-associated ER events. However, a recent report suggests that E2-BSA does not compete for E2 binding to purified ER in vitro. To resolve this apparent discrepancy, we performed competition studies examining the binding of E2 and E2-BSA to both purified ER preparations and ER within intact cells. To eliminate potential artifacts due to contamination of commercially available E2-BSA preparations with unconjugated E2 (usually between 3-5%), the latter was carefully removed by ultrafiltration. RESULTS: As previously reported, a 10-to 1000-fold molar excess of E2-BSA was unable to compete with 3H-E2 binding to ER when added simultaneously. However, when ER was pre-incubated with the same concentrations of E2-BSA, the binding of 3H-E2 was significantly reduced. E2-BSA binding to a putative membrane-associated ER was directly visualized using fluorescein labeled E2-BSA (E2-BSA-FITC). Staining was restricted to the cell membrane when E2-BSA-FITC was incubated with stable transfectants of the murine ERalpha within ER-negative HeLa cells and with MC7 cells that endogenously produce ERalpha. This staining appeared highly specific since it was competed by pre-incubation with E2 in a dose dependent manner and with the competitor ICI-182,780. CONCLUSIONS: These results demonstrate that E2-BSA does bind to purified ER in vitro and to ER in intact cells. It seems likely that the size and structure of E2-BSA requires more energy for it to bind to the ER and consequently binds more slowly than E2. More importantly, these findings demonstrate

  11. Binding of estrogen receptor with estrogen conjugated to bovine serum albumin (BSA)

    PubMed Central

    Taguchi, Yasuto; Koslowski, Mirek; Bodenner, Donald L

    2004-01-01

    Background The classic model of estrogen action requires that the estrogen receptor (ER) activates gene expression by binding directly or indirectly to DNA. Recent studies, however, strongly suggest that ER can act through nongenomic signal transduction pathways and may be mediated by a membrane bound form of the ER. Estradiol covalently linked to membrane impermeable BSA (E2-BSA) has been widely used as an agent to study these novel membrane-associated ER events. However, a recent report suggests that E2-BSA does not compete for E2 binding to purified ER in vitro. To resolve this apparent discrepancy, we performed competition studies examining the binding of E2 and E2-BSA to both purified ER preparations and ER within intact cells. To eliminate potential artifacts due to contamination of commercially available E2-BSA preparations with unconjugated E2 (usually between 3–5%), the latter was carefully removed by ultrafiltration. Results As previously reported, a 10-to 1000-fold molar excess of E2-BSA was unable to compete with 3H-E2 binding to ER when added simultaneously. However, when ER was pre-incubated with the same concentrations of E2-BSA, the binding of 3H-E2 was significantly reduced. E2-BSA binding to a putative membrane-associated ER was directly visualized using fluorescein labeled E2-BSA (E2-BSA-FITC). Staining was restricted to the cell membrane when E2-BSA-FITC was incubated with stable transfectants of the murine ERα within ER-negative HeLa cells and with MC7 cells that endogenously produce ERα. This staining appeared highly specific since it was competed by pre-incubation with E2 in a dose dependent manner and with the competitor ICI-182,780. Conclusions These results demonstrate that E2-BSA does bind to purified ER in vitro and to ER in intact cells. It seems likely that the size and structure of E2-BSA requires more energy for it to bind to the ER and consequently binds more slowly than E2. More importantly, these findings demonstrate that in

  12. Expression of estrogen and progesterone receptors in astrocytomas: a literature review.

    PubMed

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde-Junior, Airton Mendes; Barros-Oliveira, Maria da Conceição; Sousa, Emerson Brandão; Barros, Lorena da Rocha; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-08-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: "estrogen receptor beta" OR "estrogen receptor alpha" OR "estrogen receptor antagonists" OR "progesterone receptors" OR "astrocytoma" OR "glioma" OR "glioblastoma". Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  13. COMPARISON OF FATHEAD MINNOW AND HUMAN ESTROGEN RECEPTOR BINDING TO ENDOCRINE DISRUPTING COMPOUNDS

    EPA Science Inventory

    Environmental estrogens have the potential to disrupt endocrine function in a myriad of species. However, in vitro assays designed to detect and characterize endocrine disrupting chemicals (EDCs) typically utilize mammalian estrogen receptors. Our overall objective is to charac...

  14. Function of G-Protein-Coupled Estrogen Receptor-1 in Reproductive System Tumors

    PubMed Central

    Qian, Hongyan; Xuan, Jingxiu; Liu, Yuan; Shi, Guixiu

    2016-01-01

    The G-protein-coupled estrogen receptor-1 (GPER-1), also known as GPR30, is a novel estrogen receptor mediating estrogen receptor signaling in multiple cell types. The progress of estrogen-related cancer is promoted by GPER-1 activation through mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), and phospholipase C (PLC) signaling pathways. However, this promoting effect of GPER-1 is nonclassic estrogen receptor (ER) dependent manner. In addition, clinical evidences revealed that GPER-1 is associated with estrogen resistance in estrogen-related cancer patients. These give a hint that GPER-1 may be a novel therapeutic target for the estrogen-related cancers. However, preclinical studies also found that GPER-1 activation of its special agonist G-1 inhibits cancer cell proliferation. This review aims to summarize the characteristics and complex functions of GPER-1 in cancers. PMID:27314054

  15. INDUCTION OF MAMMARY GLAND DEVELOPMENT IN ESTROGEN RECEPTOR-ALPHA KNOCKOUT MICE

    EPA Science Inventory

    Mammary glands from the estrogen receptor knockout ( ERKO) mouse do not undergo ductal morphogenesis or alveolar development. Disrupted Er signaling may result in reduced estrogen-responsive gene products in the mammary gland or reduced mammotropic hormones that contribute t...

  16. Estrogen receptor alpha and androgen receptor are commonly expressed in well-differentiated liposarcoma

    PubMed Central

    2014-01-01

    Background Liposarcoma (LS) is the second-most common type of soft-tissue sarcoma. Despite advances in knowledge and treatment of this disease, there remains a need for more effective LS therapy. Steroid hormone receptors regulate metabolism in adipocytes. Estrogen receptor alpha (ER), progesterone receptor (PR), and androgen receptor (AR) have been implicated in the pathophysiology of other cancer types. We sought to comprehensively determine temporal expression patterns of these receptors in LS. Methods We analyzed 561 histologically subtyped LS specimens from 354 patients for expression of ER, PR, and AR by immunohistochemistry (IHC) using diagnostic-grade reagents and protocols. The fractions of positively stained tumor cells were scored within each specimen. IHC scores were compared across LS subtypes using the Kruskal-Wallis test, and subtypes were compared using Dunn’s post-hoc test. Ages of patients with receptor-positive vs. -negative LS were compared by t-test. Genders and races were compared for hormone receptor positivity using Fisher’s exact test and Chi-square analysis, respectively. Recurrence-free survival was compared between receptor-positive and negative patients by log-rank test. p< 0.05 was considered significant. Results ER and AR were frequently expressed in LS, while few tumors expressed PR. Most of the ER + and AR + samples were of the well-differentiated LS subtype. A smaller fraction of de-differentiated LS expressed ER or AR, but expression was common within well-differentiated regions of tumors histologically classified as de-differentiated LS. In LS specimens from patients who underwent multiple surgeries over time, receptor expression frequently changed over time, which may be attributable in part to intratumor heterogeneity, varying degrees of de-differentiation, and biopsy bias. ER and AR were frequently co-expressed. Receptor status was not significantly associated with gender or race, but AR and PR expression were

  17. Correlation between erythropoietin receptor(s) and estrogen and progesterone receptor expression in different breast cancer cell lines.

    PubMed

    Trošt, Nina; Hevir, Neli; Rižner, Tea Lanišnik; Debeljak, Nataša

    2013-03-01

    Erythropoietin (EPO) receptor (EPOR) expression in breast cancer has been shown to correlate with the expression of estrogen receptor (ESR) and progesterone receptor (PGR) and to be associated with the response to tamoxifen in ESR+/PGR+ tumors but not in ESR- tumors. In addition, the correlation between EPOR and G protein-coupled estrogen receptor 1 [GPER; also known as G protein-coupled receptor 30 (GPR30)] has been reported, suggesting the prognostic potential of EPOR expression. Moreover, the involvement of colony stimulating factor 2 receptor, β, low‑affinity (CSF2RB) and ephrin type-B receptor 4 (EPHB4) as EPOR potential receptor partners in cancer has been indicated. This study analyzed the correlation between the expression of genes for EPO, EPOR, CSF2RB, EPHB4, ESR, PGR and GPER in the MCF-7, MDA-MB-361, T-47D, MDA-MB-231, Hs578Bst, SKBR3, MCF-10A and Hs578T cell lines. The cell lines were also treated with recombinant human EPO (rHuEPO) in order to determine its ability to activate the Jak/STAT5, MAPK and PI3K signaling pathways and modify cell growth characteristics. Expression analysis stratified the cell lines in 2 main clusters, hormone-dependent cell lines expressing ESR and PGR and a hormone-independent cluster. A significant correlation was observed between the expression levels of ESR and PGR and their expression was also associated with that of GPER. Furthermore, the expression of GPER was associated with that of EPOR, suggesting the connection between this orphan G protein and EPO signaling. A negative correlation between EPOR and CSF2RB expression was observed, questioning the involvement of these two receptors in the hetero-receptor formation. rHuEPO treatment only influenced the hormone-independent cell lines, since only the MDA-MB-231, SKBR3 and Hs578T cells responded to the treatment. The correlation between the expression of the analyzed receptors suggests that the receptors may interact in order to activate signaling pathways

  18. Selectivity of natural, synthetic and environmental estrogens for zebrafish estrogen receptors

    SciTech Connect

    Pinto, Caroline; Grimaldi, Marina; Boulahtouf, Abdelhay; Pakdel, Farzad; Brion, François; Aït-Aïssa, Sélim; Cavaillès, Vincent; Bourguet, William; Gustafsson, Jan-Ake; and others

    2014-10-01

    Zebrafish, Danio rerio, is increasingly used as an animal model to study the effects of pharmaceuticals and environmental estrogens. As most of these estrogens have only been tested on human estrogen receptors (ERs), it is necessary to measure their effects on zebrafish ERs. In humans there are two distinct nuclear ERs (hERα and hERβ), whereas the zebrafish genome encodes three ERs, zfERα and two zfERβs (zfERβ1 and zfERβ2). In this study, we established HeLa-based reporter cell lines stably expressing each of the three zfERs. We first reported that estrogens more efficiently activate the zfERs at 28 °C as compared to 37 °C, thus reflecting the physiological temperature of zebrafish in wildlife. We then showed significant differences in the ability of agonist and antagonist estrogens to modulate activation of the three zfER isotypes in comparison to hERs. Environmental compounds (bisphenol A, alkylphenols, mycoestrogens) which are hER panagonists and hERβ selective agonists displayed greater potency for zfERα as compared to zfERβs. Among hERα selective synthetic agonists, PPT did not activate zfERα while 16α-LE2 was the most zfERα selective compound. Altogether, these results confirm that all hER ligands control in a similar manner the transcriptional activity of zfERs although significant differences in selectivity were observed among subtypes. The zfER subtype selective ligands that we identified thus represent new valuable tools to dissect the physiological roles of the different zfERs. Finally, our work also points out that care has to be taken in transposing the results obtained using the zebrafish as a model for human physiopathology. - Highlights: • Zebrafish is increasingly used to study the effects of estrogens. • We assessed the activity of pharmaceutical and environmental estrogens on zfERs. • Environmental estrogens displayed greater potency for zfERα compared to zfERβs. • hERβ selective agonists displayed greater potency for zf

  19. The membrane estrogen receptor GPR30 mediates cadmium-induced proliferation of breast cancer cells

    SciTech Connect

    Yu Xinyuan; Filardo, Edward J.; Shaikh, Zahir A.

    2010-05-15

    Cadmium (Cd) is a nonessential metal that is dispersed throughout the environment. It is an endocrine-disrupting element which mimics estrogen, binds to estrogen receptor alpha (ERalpha), and promotes cell proliferation in breast cancer cells. We have previously published that Cd promotes activation of the extracellular regulated kinases, erk-1 and -2 in both ER-positive and ER-negative human breast cancer cells, suggesting that this estrogen-like effect of Cd is not associated with the ER. Here, we have investigated whether the newly appreciated transmembrane estrogen receptor, G-protein coupled receptor 30 (GPR30), may be involved in Cd-induced cell proliferation. Towards this end, we compared the effects of Cd in ER-negative human SKBR3 breast cancer cells in which endogenous GPR30 signaling was selectively inhibited using a GPR30 interfering mutant. We found that Cd concentrations from 50 to 500 nM induced a proliferative response in control vector-transfected SKBR3 cells but not in SKBR3 cells stably expressing interfering mutant. Similarly, intracellular cAMP levels increased about 2.4-fold in the vector transfectants but not in cells in which GPR30 was inactivated within 2.5 min after treatment with 500 nM Cd. Furthermore, Cd treatment rapidly activated (within 2.5 min) raf-1, mitogen-activated protein kinase kinase, mek-1, extracellular signal regulated kinases, erk-1/2, ribosomal S6 kinase, rsk, and E-26 like protein kinase, elk, about 4-fold in vector transfectants. In contrast, the activation of these signaling molecules in SKBR3 cells expressing the GPR30 mutant was only about 1.4-fold. These results demonstrate that Cd-induced breast cancer cell proliferation occurs through GPR30-mediated activation in a manner that is similar to that achieved by estrogen in these cells.

  20. Estrogen receptor subtypes selectively mediate female mouse reproductive abnormalities induced by neonatal exposure to estrogenic chemicals.

    PubMed

    Nakamura, Takeshi; Katsu, Yoshinao; Watanabe, Hajime; Iguchi, Taisen

    2008-11-20

    Perinatal exposure to estrogens such as diethylstilbestrol (DES), and to estrogenic chemicals, induces persistent anovulation caused by alteration of hypothalamic-pituitary-gonadal (HPG) axis, polyovular follicles, uterine abnormalities and persistent vaginal changes in mice. Most activities of estrogenic chemicals are mediated through estrogen receptor alpha (ERalpha) and/or ERbeta. However, little was known about the relative contribution of the individual ER subtypes in induction of abnormalities. We tested the effects of neonatal exposure to ER selective ligands and DES on female mice. Transactivation assays using mouse ERalpha and ERbeta showed that 10(-10)M DES activated both ER subtypes and that the ERalpha agonist (propyl pyrazole triol, PPT) and the ERbeta agonist (diarylpropionitrile, DPN) selectively activated their respective ERs at 10(-9)M. Neonatal female mice were injected subcutaneously with DES, PPT or DPN and the animals were examined at 13 and 15 weeks of age, respectively. Persistent estrous smears and anovulation were induced in all mice by 0.025-2.5 microg DES and 2.5-25 microg PPT, but not by DPN, suggesting that the observed anovulation was primarily mediated through ERalpha. Disorganization of uterine musculature and ovary-independent vaginal epithelial cell proliferation accompanied by persistent expression of EGF-related genes and interleukin-1-related genes were also mediated through ERalpha. In contrast, polyovular follicles were induced by neonatal treatment with both ERalpha and ERbeta ligands, suggesting that ovarian abnormalities are mediated through both ER subtypes.

  1. [Immunocytochemical localization of estrogen receptor in the spermatogenesis of termites].

    PubMed

    Su, Xiao Hong; Xing, Lian Xi; Yin, Ling Fang; Xi, Geng Si

    2007-04-01

    The available information indicates that estrogen receptor(ER) play a physiological role in the regulation of spermatogenesis in vertebrates. However, the cellular distribution of ER in the testis is poorly understood in invertebrates. The aim of this study was to determine the presence and cellular distribution of ER in the spermatogenesis of termite (Reticulitermes aculabialis). Immunocytochemical analysis showed ER was present in the nucleus of the primary spermatocytes, and the expression of ER was relatively stronger in the primary spermatocytes of the swarming termites. Previous studies have demonstrated the procerebrum of the swarming male termites could strongly secrete FSH (Follicle Stimulating Hormone) and LH (Luteinizing Hormone) which stimulated estrogen secreting. In conclusion, we demonstrated here for the first time that ER might be an important factor in the regulation of the spermatogenesis of termites, and play an important role for starting and maintaining the meiosis cell division of spermatocytes.

  2. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    PubMed Central

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression. PMID:27626480

  3. Expression of estrogen and progesterone receptors in astrocytomas: a literature review

    PubMed Central

    Tavares, Cléciton Braga; Gomes-Braga, Francisca das Chagas Sheyla Almeida; Costa-Silva, Danylo Rafhael; Escórcio-Dourado, Carla Solange; Borges, Umbelina Soares; Conde, Airton Mendes; da Conceição Barros-Oliveira, Maria; Sousa, Emerson Brandão; da Rocha Barros, Lorena; Martins, Luana Mota; Facina, Gil; da-Silva, Benedito Borges

    2016-01-01

    Gliomas are the most common type of primary central nervous system neoplasm. Astrocytomas are the most prevalent type of glioma and these tumors may be influenced by sex steroid hormones. A literature review for the presence of estrogen and progesterone receptors in astrocytomas was conducted in the PubMed database using the following MeSH terms: “estrogen receptor beta” OR “estrogen receptor alpha” OR “estrogen receptor antagonists” OR “progesterone receptors” OR “astrocytoma” OR “glioma” OR “glioblastoma”. Among the 111 articles identified, 13 studies met our inclusion criteria. The majority of reports showed the presence of estrogen and progesterone receptors in astrocytomas. Overall, higher tumor grades were associated with decreased estrogen receptor expression and increased progesterone receptor expression.

  4. Potential biological functions emerging from the different estrogen receptors.

    PubMed

    Carpenter, Karen D; Korach, Kenneth S

    2006-12-01

    Technological advances and new tools have brought about tremendous advances in elucidating the roles of estradiol and the estrogen receptors (ERs) in biological processes, especially within the female reproductive system. Development and analysis of multiple genetic models have provided insight into the particular functions of each of the ERs. This article reviews the insights into ER biology in female reproduction gained from the development and use of new types of experimental models.

  5. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens.

    PubMed

    Iwanowicz, Luke R; Stafford, James L; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W; Blazer, Vicki S

    2014-09-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.

  6. Channel catfish (Ictalurus punctatus) leukocytes express estrogen receptor isoforms ERα and ERβ2 and are functionally modulated by estrogens

    USGS Publications Warehouse

    Iwanowicz, Luke R.; Stafford, James L.; Patiño, Reynaldo; Bengten, Eva; Miller, Norman W.; Blazer, Vicki

    2014-01-01

    Estrogens are recognized as modulators of immune responses in mammals and teleosts. While it is known that the effects of estrogens are mediated via leukocyte-specific estrogen receptors (ERs) in humans and mice, leucocyte-specific estrogen receptor expression and the effects of estrogens on this cell population is less explored and poorly understood in teleosts. Here in, we verify that channel catfish (Ictalurus punctaus) leukocytes express ERα and ERβ2. Transcripts of these isoforms were detected in tissue-associated leukocyte populations by PCR, but ERβ2 was rarely detected in PBLs. Expression of these receptors was temporally regulated in PBLs following polyclonal activation by concanavalin A, lipopolysaccharide or alloantigen based on evaluation by quantitative and end-point PCR. Examination of long-term leukocyte cell lines demonstrated that these receptors are differentially expressed depending on leukocyte lineage and phenotype. Expression of ERs was also temporally dynamic in some leukocyte lineages and may reflect stage of cell maturity. Estrogens affect the responsiveness of channel catfish peripheral blood leukocytes (PBLs) to mitogens in vitro. Similarly, bactericidal activity and phorbol 12-myristate 13-acetate induced respiratory burst was modulated by 17β-estradiol. These actions were blocked by the pure ER antagonist ICI 182780 indicating that response is, in part, mediated via ERα. In summary, estrogen receptors are expressed in channel catfish leukocytes and participate in the regulation of the immune response. This is the first time leukocyte lineage expression has been reported in teleost cell lines.

  7. Estrogen Receptor beta binds Sp1 and recruits a Corepressor Complex to the Estrogen Receptor alpha Gene Promoter

    PubMed Central

    Bartella, V; Rizza, P; Barone, I; Zito, D; Giordano, F; Giordano, C; Catalano, S; Mauro, L; Sisci, D; Panno, ML; Fuqua, SA; Andò, Sebastiano

    2015-01-01

    Human estrogen receptors (ERs) alpha and beta are crucially involved in the regulation of mammary growth and development. Normal breast tissues display a prevalently expression of ER beta than ER alpha, which drastically increases during breast tumorogenesis. So, it is reasonable to assume how a dysregulation of the two estrogen receptor subtypes may induce breast cancer development. However, the molecular mechanism underlying the opposite role played by the two estrogen receptors on tumor cell growth remains to be elucidated. In the present study, we have demonstrated that ER beta overexpression in breast cancer cells decreases cell proliferation and down-regulates ER alpha mRNA and protein content along with a concomitant repression of estrogen-regulated genes. Transient transfection experiments, using a vector containing the human ER alpha promoter region, showed that elevated levels of the ER beta down-regulated basal ER alpha promoter activity. Furthermore, side-directed mutagenesis and deletion analysis have revealed that the proximal GC-rich motifs at −223 and −214 is crucial for the ER beta-induced ER alpha down-regulation in breast cancer cells. This occurred through ER beta-Sp1 protein-protein interaction within the ER alpha promoter region and the recruitment of a corepressor complex containing NCoR/SMRT (nuclear receptor corepressor/silencing mediator of retinoic acid and thyroid hormone receptor), accompanied by hypoacetylation of histone H4 and displacement of RNA polymerase II. Silencing of NCoR gene expression by RNA interference reversed the down-regulatory effect of ER beta on ER alpha gene expression and cell proliferation. Our results provide evidence for a novel mechanism by which overexpression of ER beta through NCoR is able to down regulate ER alpha gene expression, thus inhibiting ER alpha’s driving role on breast cancer cell growth. PMID:22622808

  8. Blocking Estrogen Signaling After the Hormone: Pyrimidine-Core Inhibitors of Estrogen Receptor-Coactivator Binding

    PubMed Central

    Parent, Alexander A.; Gunther, Jillian R.; Katzenellenbogen, John A.

    2009-01-01

    As an alternative approach to blocking estrogen action, we have developed small molecules that directly disrupt the key estrogen receptor (ER)/coactivator interaction necessary for gene activation. The more direct, protein-protein nature of this disruption might be effective even in hormone-refractory breast cancer. We have synthesized a pyrimidine-core library of moderate size, members of which act as α-helix mimics to block ERα/coactivator interaction. Structure- activity relationships have been explored with various C, N, O and S-substituents on the pyrimidine core. Time-resolved fluorescence resonance energy transfer and cell-based reporter gene assays show that the most active members inhibit the ERα/steroid receptor coactivator interaction with Ki’s in the low micromolar range. Through these studies, we have obtained a refined pharmacophore model for activity in this pyrimidine series. Furthermore, the favorable activities of several of these compounds support the feasibility that this coactivator binding inhibition mechanism for blocking estrogen action might provide a potential alternative approach to endocrine therapy. PMID:18785725

  9. Aromatase, estrogen receptors and brain development in fish and amphibians.

    PubMed

    Coumailleau, Pascal; Pellegrini, Elisabeth; Adrio, Fátima; Diotel, Nicolas; Cano-Nicolau, Joel; Nasri, Ahmed; Vaillant, Colette; Kah, Olivier

    2015-02-01

    Estrogens affect brain development of vertebrates, not only by impacting activity and morphology of existing circuits, but also by modulating embryonic and adult neurogenesis. The issue is complex as estrogens can not only originate from peripheral tissues, but also be locally produced within the brain itself due to local aromatization of androgens. In this respect, teleost fishes are quite unique because aromatase is expressed exclusively in radial glial cells, which represent pluripotent cells in the brain of all vertebrates. Expression of aromatase in the brain of fish is also strongly stimulated by estrogens and some androgens. This creates a very intriguing positive auto-regulatory loop leading to dramatic aromatase expression in sexually mature fish with elevated levels of circulating steroids. Looking at the effects of estrogens or anti-estrogens in the brain of adult zebrafish showed that estrogens inhibit rather than stimulate cell proliferation and newborn cell migration. The functional meaning of these observations is still unclear, but these data suggest that the brain of fish is experiencing constant remodeling under the influence of circulating steroids and brain-derived neurosteroids, possibly permitting a diversification of sexual strategies, notably hermaphroditism. Recent data in frogs indicate that aromatase expression is limited to neurons and do not concern radial glial cells. Thus, until now, there is no other example of vertebrates in which radial progenitors express aromatase. This raises the question of when and why these new features were gained and what are their adaptive benefits. This article is part of a Special Issue entitled: Nuclear receptors in animal development.

  10. Aromatase, estrogen receptors and brain development in fish and amphibians.

    PubMed

    Coumailleau, Pascal; Pellegrini, Elisabeth; Adrio, Fátima; Diotel, Nicolas; Cano-Nicolau, Joel; Nasri, Ahmed; Vaillant, Colette; Kah, Olivier

    2015-02-01

    Estrogens affect brain development of vertebrates, not only by impacting activity and morphology of existing circuits, but also by modulating embryonic and adult neurogenesis. The issue is complex as estrogens can not only originate from peripheral tissues, but also be locally produced within the brain itself due to local aromatization of androgens. In this respect, teleost fishes are quite unique because aromatase is expressed exclusively in radial glial cells, which represent pluripotent cells in the brain of all vertebrates. Expression of aromatase in the brain of fish is also strongly stimulated by estrogens and some androgens. This creates a very intriguing positive auto-regulatory loop leading to dramatic aromatase expression in sexually mature fish with elevated levels of circulating steroids. Looking at the effects of estrogens or anti-estrogens in the brain of adult zebrafish showed that estrogens inhibit rather than stimulate cell proliferation and newborn cell migration. The functional meaning of these observations is still unclear, but these data suggest that the brain of fish is experiencing constant remodeling under the influence of circulating steroids and brain-derived neurosteroids, possibly permitting a diversification of sexual strategies, notably hermaphroditism. Recent data in frogs indicate that aromatase expression is limited to neurons and do not concern radial glial cells. Thus, until now, there is no other example of vertebrates in which radial progenitors express aromatase. This raises the question of when and why these new features were gained and what are their adaptive benefits. This article is part of a Special Issue entitled: Nuclear receptors in animal development. PMID:25038582

  11. No substantial changes in estrogen receptor and estrogen-related receptor orthologue gene transcription in Marisa cornuarietis exposed to estrogenic chemicals.

    PubMed

    Bannister, Richard; Beresford, Nicola; Granger, David W; Pounds, Nadine A; Rand-Weaver, Mariann; White, Roger; Jobling, Susan; Routledge, Edwin J

    2013-09-15

    Estrogen receptor orthologues in molluscs may be targets for endocrine disruptors, although mechanistic evidence is lacking. Molluscs are reported to be highly susceptible to effects caused by very low concentrations of environmental estrogens which, if substantiated, would have a major impact on the risk assessment of many chemicals. The present paper describes the most thorough evaluation to-date of the susceptibility of Marisa cornuarietis ER and ERR gene transcription to modulation by vertebrate estrogens in vivo and in vitro. We investigated the effects of estradiol-17β and 4-tert-Octylphenol exposure on in vivo estrogen receptor (ER) and estrogen-related receptor (ERR) gene transcription in the reproductive and neural tissues of the gastropod snail M. cornuarietis over a 12-week period. There was no significant effect (p>0.05) of treatment on gene transcription levels between exposed and non-exposed snails. Absence of a direct interaction of estradiol-17β and 4-tert-Octylphenol with mollusc ER and ERR protein was also supported by in vitro studies in transfected HEK-293 cells. Additional in vitro studies with a selection of other potential ligands (including methyl-testosterone, 17α-ethinylestradiol, 4-hydroxytamoxifen, diethylstilbestrol, cyproterone acetate and ICI182780) showed no interaction when tested using this assay. In repeated in vitro tests, however, genistein (with mcER-like) and bisphenol-A (with mcERR) increased reporter gene expression at high concentrations only (>10(-6)M for Gen and >10(-5)M for BPA, respectively). Like vertebrate estrogen receptors, the mollusc ER protein bound to the consensus vertebrate estrogen-response element (ERE). Together, these data provide no substantial evidence that mcER-like and mcERR activation and transcript levels in tissues are modulated by the vertebrate estrogen estradiol-17β or 4-tert-Octylphenol in vivo, or that other ligands of vertebrate ERs and ERRs (with the possible exception of genistein and

  12. Multiple estrogen receptor subtypes influence ingestive behavior in female rodents.

    PubMed

    Santollo, Jessica; Daniels, Derek

    2015-12-01

    Postmenopausal women are at an increased risk of obesity and cardiovascular-related diseases. This is attributable, at least in part, to loss of the ovarian hormone estradiol, which inhibits food and fluid intake in humans and laboratory animal models. Although the hypophagic and anti-dipsogenic effects of estradiol have been well documented for decades, the precise mechanisms underlying these effects are not fully understood. An obvious step toward addressing this open question is identifying which estrogen receptor subtypes are involved and what intracellular processes are involved. This question, however, is complicated not only by the variety of estrogen receptor subtypes that exist, but also because many subtypes have multiple locations of action (i.e. in the nucleus or in the plasma membrane). This review will highlight our current understanding of the roles that specific estrogen receptor subtypes play in mediating estradiol's anorexigenic and anti-dipsogenic effects along with highlighting the many open questions that remain. This review will also describe recent work being performed by our laboratory aimed at answering these open questions.

  13. Kaempferol is an estrogen-related receptor alpha and gamma inverse agonist.

    PubMed

    Wang, Junjian; Fang, Fang; Huang, Zhiyan; Wang, Yanfei; Wong, Chiwai

    2009-02-18

    Kaempferol is a dietary flavonoid that is thought to function as a selective estrogen receptor modulator. In this study, we established that kaempferol also functions as an inverse agonist for estrogen-related receptors alpha and gamma (ERRalpha and ERRgamma). We demonstrated that kaempferol binds to ERRalpha and ERRgamma and blocks their interaction with coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha). Kaempferol also suppressed the expressions of ERR-target genes pyruvate dehydrogenase kinase 2 and 4 (PDK2 and PDK4). This evidence suggests that kaempferol may exert some of its biological effect through both estrogen receptors and estrogen-related receptors. PMID:19171140

  14. Evolution of estrogen receptors in ray-finned fish and their comparative responses to estrogenic substances.

    PubMed

    Tohyama, Saki; Miyagawa, Shinichi; Lange, Anke; Ogino, Yukiko; Mizutani, Takeshi; Ihara, Masaru; Tanaka, Hiroaki; Tatarazako, Norihisa; Kobayashi, Tohru; Tyler, Charles R; Iguchi, Taisen

    2016-04-01

    In vertebrates, estrogens play fundamental roles in regulating reproductive activities through estrogen receptors (ESRs), and disruption of estrogen signaling is now of global concern for both wildlife and human health. To date, ESRs of only a limited number of species have been characterized. We investigated the functional diversity and molecular basis or ligand sensitivity of ESRs among ray-finned fish species (Actinopterygii), the most variable group within vertebrates. We cloned and characterized ESRs from several key species in the evolution of ray-finned fish including bichir (Polypteriformes, ESR1 and ESR2) at the basal lineage of ray-finned fish, and arowana (Osteoglossiformes, ESR1 and ESR2b) and eel (Anguilliformes, ESR1, ESR2a and ESR2b) both belonging to ancient early-branching lineages of teleosts, and suggest that ESR2a and ESR2b emerged through teleost-specific whole genome duplication, but an ESR1 paralogue has been lost in the early lineage of euteleost fish species. All cloned ESR isoforms showed similar responses to endogenous and synthetic steroidal estrogens, but they responded differently to non-steroidal estrogenic endocrine disrupting chemicals (EDCs) (e.g., ESR2a exhibits a weaker reporter activity compared with ESR2b). We show that variation in ligand sensitivity of ESRs can be attributed to phylogeny among species of different taxonomic groups in ray-finned fish. The molecular information provided contributes both to understanding of the comparative role of ESRs in the reproductive biology of fish and their comparative responses to EDCs. PMID:26707410

  15. Prognostic value of Ki67 and p53 in patients with estrogen receptor-positive and human epidermal growth factor receptor 2-negative breast cancer: Validation of the cut-off value of the Ki67 labeling index as a predictive factor

    PubMed Central

    OHARA, MASAHIRO; MATSUURA, KAZUO; AKIMOTO, ETSUSHI; NOMA, MIDORI; DOI, MIHOKO; NISHIZAKA, TAKASHI; KAGAWA, NAOKI; ITAMOTO, TOSHIYUKI

    2016-01-01

    The aim of this study was to evaluate the significance of the Ki67 labeling index and p53 status as prognostic and predictive indicators of operable estrogen receptor (ER)-positive and human epidermal growth factor receptor 2 (HER2)-negative breast cancer. Among 697 consecutive patients with primary breast cancer who underwent curative surgery between 2002 and 2013, 308 patients with ER-positive and HER2-negative breast cancer were assessed. The results of the multivariate Cox analysis demonstrated that a high Ki67 labeling index was significantly associated with a short recurrence-free interval (RFI) (p=0.004) and was marginally associated with a worse overall survival (p=0.074). A positive p53 status was not associated with worse outcomes. To validate the cut-off values of the Ki67 labeling index for identifying patients who may benefit from additional chemotherapy, prognostic factors were investigated in breast cancer patients treated postoperatively with endocrine therapy alone. Analysis of receiver operating characteristic curves demonstrated that a Ki67 labeling index cut-off of 20.0% was optimal for predicting recurrence among patients who did not receive adjuvant chemotherapy. The 5-year RFIs for patients with Ki67 <20 and ≥20% were 97.2 and 86.6%, respectively (p=0.0244). A high Ki67 labeling index (≥20%) was significantly associated with large tumors (p<0.01), lymph node metastasis (p=0.0236) and positive p53 status (p<0.001). The univariate analysis demonstrated that Ki67 labeling index ≥20%, lymph node metastasis and progesterone receptor negativity were significant worse prognostic factors for RFI (p=0.0333, 0.0116 and 0.0573, respectively). The Ki67 labeling index was found to be a useful prognostic factor in patients with ER-positive and HER2-negative breast cancer and the cut-off values of the Ki67 labeling index for making a decision regarding adjuvant treatment were validated. PMID:27073684

  16. Characterization of the ovarian and reproductive abnormalities in prepubertal and adult estrogen non-responsive estrogen receptor alpha knock-in (ENERKI) mice.

    PubMed

    Sinkevicius, K W; Woloszyn, K; Laine, M; Jackson, K S; Greene, G L; Woodruff, T K; Burdette, J E

    2009-11-01

    Estrogen non-responsive estrogen receptor alpha (ERalpha) knock-in (ENERKI) mice have a mutation (glycine 525 to leucine, G525L) in the ligand-binding domain of ERalpha. The mutant ERalpha protein has a significantly lower affinity and response to endogenous estrogens, while not altering growth factor activated ligand-independent pathways. ENERKI females demonstrated signs of early follicle development as determined by a significant increase in antral follicle formation by 20 days of age. Adult ENERKI females were infertile, had hemorrhagic ovarian follicular cysts, and failed to develop corpora lutea in response to a superovulation regimen. These results illustrate the importance of ERalpha ligand-induced signaling for ovarian development and for estrogen feedback on the hypothalamus and pituitary. Although ERalpha ligand-induced signaling by endogenous estrogens is lost in ENERKI females, the ERalpha selective agonist propyl pyrazole triol (PPT), a synthetic nonsteroidal compound, is still able to activate G525L ERalphain vivo to increase uterine weight. To test whether PPT could restore ligand-dependent receptor activation, ENERKI females were treated with PPT and evaluated for spontaneous ovulation, ovarian hemorrhagic cysts, and LH serum levels. Daily PPT treatments beginning on day 4 of life prevented formation of ovarian hemorrhagic cysts in adult ENERKI animals. In accordance with this result, preputial gland weight and LH levels were also lowered in these animals, indicating PPT treatments most likely led to restoration of ERalpha negative feedback of the hypothalamic-pituitary axis.

  17. Nuclear estrogen receptor molecular heterogeneity in the mouse uterus.

    PubMed Central

    Golding, T S; Korach, K S

    1988-01-01

    Holomeric estrogen receptor (ER) prepared from ovariectomized mouse uteri displays heterogeneous electrophoretic mobility when analyzed by NaDodSO4/PAGE. ER derived from nuclei (ERn) appears as a closely spaced doublet having apparent molecular masses of 66.4 and 65 kDa, while ER from the cytosolic compartment (ERc) has a single band of 65 kDa. Both partially purified ERc and the 8S form of unactivated ERc show only the 65-kDa band. The appearance of the ERn doublet is hormonally inducible, and the relative proportions of the two doublet bands are influenced by the type of hormone treatment, with weakly estrogenic compounds yielding the lower band as predominant while potent estrogens increase the proportion of the upper band. Steroid binding of the ERn doublet was determined by [3H]tamoxifen aziridine affinity labeling of both the 66.4- and the 65-kDa peptides; binding to the 65-kDa peptide was predominant. The ERn doublet displays a time dependency after estrogen administration with maximal amounts occurring in a bimodal fashion at 1 and 8 hr. Images PMID:3422428

  18. Nuclear estrogen receptor molecular heterogeneity in the mouse uterus

    SciTech Connect

    Golding, T.S.; Korach, K.S.

    1988-01-01

    Holomeric estrogen receptor (ER) prepared from ovariectomized mouse uteri displays heterogeneous electrophoretic mobility when analyzed by NaDodSO/sub 4//PAGE. ER derived from nuclei (ER/sub n/) appears as a closely spaced doublet having apparent molecular masses of 66.4 and 65 kDa, while ER from the cytosolic compartment (ER/sub c/) has a single band of 65 kDa. Both partially purified ER/sub c/ and the 8S form of unactivated ER/sub c/ show only the 65-kDa band. The appearance of the ER/sub n/ doublet is hormonally inducible, and the relative proportions of the two doublet bands are influenced by the type of hormone treatment, with weakly estrogenic compounds yielding the lower band as predominant while potent estrogens increase the proportion of the upper band. Steroid binding of the ER/sub n/ doublet was determined by (/sup 3/H)tamoxifen aziridine affinity labeling of both the 66.4- and the 65-kDa peptides; binding to the 65-kDa peptide was predominant. The ER/sub n/ doublet displays a time dependency after estrogen administration with maximal amounts occurring in a bimodal fashion at 1 and 8 hr.

  19. Colocalization of Estrogen Receptors with the Fluorescent Tamoxifen Derivative, FLTX1, Analyzed by Confocal Microscopy.

    PubMed

    Morales, Araceli; Marín, Raquel; Marrero-Alonso, Jorge; Boto, Alicia; Díaz, Mario

    2016-01-01

    Tamoxifen is a selective estrogen receptor modulator that competitively binds the ligand-binding domain of estrogen receptors. Binding of tamoxifen displaces its cognate ligand, 17β-estradiol, thereby hampering the activation of estrogen receptors. Cellular labeling of ER is typically carried out using specific antibodies which require permeabilization of cells, incubation with secondary antibodies, and are expensive and time consuming. In this article, we describe the usefulness of FLTX1, a novel fluorescent tamoxifen derivative, which allows the labeling of estrogen receptors in immunocytochemistry and immunohistochemistry studies, both under permeabilized and non-permeabilized conditions. Further, besides labeling canonical estrogen receptors, this novel fluorescent probe is also suitable for the identification of unconventional targets such membrane estrogen receptors as well as other noncanonical targets, some of which are likely responsible for the number of undesired side effects reported during long-term tamoxifen treatments. PMID:26585134

  20. Rapid screening of environmental chemicals for estrogen receptor binding capacity.

    PubMed Central

    Bolger, R; Wiese, T E; Ervin, K; Nestich, S; Checovich, W

    1998-01-01

    Over the last few years, an increased awareness of endocrine disrupting chemicals (EDCs) and their potential to affect wildlife and humans has produced a demand for practical screening methods to identify endocrine activity in a wide range of environmental and industrial chemicals. While it is clear that in vivo methods will be required to identify adverse effects produced by these chemicals, in vitro assays can define particular mechanisms of action and have the potential to be employed as rapid and low-cost screens for use in large scale EDC screening programs. Traditional estrogen receptor (ER) binding assays are useful for characterizing a chemical's potential to be an estrogen-acting EDC, but they involve displacement of a radioactive ligand from crude receptor preparations at low temperatures. The usefulness of these assays for realistically determining the ER binding interactions of weakly estrogenic environmental and industrial compounds that have low aqueous solubility is unclear. In this report, we present a novel fluorescence polarization (FP) method that measures the capacity of a competitor chemical to displace a high affinity fluorescent ligand from purified, recombinant human ER-[alpha] at room temperature. The ER-[alpha] binding interactions generated for 15 natural and synthetic compounds were found to be similar to those determined with traditional receptor binding assays. We also discuss the potential to employ this FP technology to binding studies involving ER-ss and other receptors. Thus, the assay introduced in this study is a nonradioactive receptor binding method that shows promise as a high throughput screening method for large-scale testing of environmental and industrial chemicals for ER binding interactions. Images Figure 2 Figure 3 Figure 4 PMID:9721254

  1. Hormone Binding to Recombinant Estrogen Receptors from Human, Alligator, Quail, Salamander, and Fathead Minnow

    EPA Science Inventory

    In this work, a 96-well plate estrogen receptor binding assay was developed to facilitate the direct comparison of chemical binding to full-length recombinant estrogen receptors across vertebrate classes. Receptors were generated in a baculovirus expression system. This approach ...

  2. Estrogen and Estrogen Receptor-α-Mediated Transrepression of Bile Salt Export Pump

    PubMed Central

    Chen, Yuan; Vasilenko, Alex; Song, Xiulong; Valanejad, Leila; Verma, Ruchi; You, Sangmin; Yan, Bingfang; Shiffka, Stephanie; Hargreaves, Leeza; Nadolny, Christina

    2015-01-01

    Among diseases unique to pregnancy, intrahepatic cholestasis of pregnancy is the most prevalent disorder with elevated serum bile acid levels. We have previously shown that estrogen 17β-estradiol (E2) transrepresses bile salt export pump (BSEP) through an interaction between estrogen receptor (ER)-α and farnesoid X receptor (FXR) and transrepression of BSEP by E2/ERα is an etiological contributing factor to intrahepatic cholestasis of pregnancy. Currently the mechanistic insights into such transrepression are not fully understood. In this study, the dynamics of coregulator recruitment to BSEP promoter after FXR activation and E2 treatment were established with quantitative chromatin immunoprecipitation assays. Coactivator peroxisome proliferator-activated receptor-γ coactivator-1 was predominantly recruited to the BSEP promoter upon FXR activation, and its recruitment was decreased by E2 treatment. Meanwhile, recruitment of nuclear receptor corepressor was markedly increased upon E2 treatment. Functional evaluation of ERα and ERβ chimeras revealed that domains AC of ERα are the determinants for ERα-specific transrepression on BSEP. Further studies with various truncated ERα proteins identified the domains in ERα responsible for ligand-dependent and ligand-independent transrepression. Truncated ERα-AD exhibited potent ligand-independent transrepressive activity, whereas ERα-CF was fully capable of transrepressing BSEP ligand dependently in vitro in Huh 7 cells and in vivo in mice. Both ERα-AD and ERα-CF proteins were associated with FXR in the coimmunoprecipitation assays. In conclusion, E2 repressed BSEP expression through diminishing peroxisome proliferator-activated receptor-γ coactivator-1 recruitment with a concurrent increase in nuclear receptor corepressor recruitment to the BSEP promoter. Domains AD and CF in ERα mediated ligand-independent and ligand-dependent transrepression on BSEP, respectively, through interacting with FXR. PMID:25675114

  3. Estrogen, SNP-Dependent Chemokine Expression and Selective Estrogen Receptor Modulator Regulation.

    PubMed

    Ho, Ming-Fen; Bongartz, Tim; Liu, Mohan; Kalari, Krishna R; Goss, Paul E; Shepherd, Lois E; Goetz, Matthew P; Kubo, Michiaki; Ingle, James N; Wang, Liewei; Weinshilboum, Richard M

    2016-03-01

    We previously reported, on the basis of a genome-wide association study for aromatase inhibitor-induced musculoskeletal symptoms, that single-nucleotide polymorphisms (SNPs) near the T-cell leukemia/lymphoma 1A (TCL1A) gene were associated with aromatase inhibitor-induced musculoskeletal pain and with estradiol (E2)-induced TCL1A expression. Furthermore, variation in TCL1A expression influenced the downstream expression of proinflammatory cytokines and cytokine receptors. Specifically, the top hit genome-wide association study SNP, rs11849538, created a functional estrogen response element (ERE) that displayed estrogen receptor (ER) binding and increased E2 induction of TCL1A expression only for the variant SNP genotype. In the present study, we pursued mechanisms underlying the E2-SNP-dependent regulation of TCL1A expression and, in parallel, our subsequent observations that SNPs at a distance from EREs can regulate ERα binding and that ER antagonists can reverse phenotypes associated with those SNPs. Specifically, we performed a series of functional genomic studies using a large panel of lymphoblastoid cell lines with dense genomic data that demonstrated that TCL1A SNPs at a distance from EREs can modulate ERα binding and expression of TCL1A as well as the expression of downstream immune mediators. Furthermore, 4-hydroxytamoxifen or fulvestrant could reverse these SNP-genotype effects. Similar results were found for SNPs in the IL17A cytokine and CCR6 chemokine receptor genes. These observations greatly expand our previous results and support the existence of a novel molecular mechanism that contributes to the complex interplay between estrogens and immune systems. They also raise the possibility of the pharmacological manipulation of the expression of proinflammatory cytokines and chemokines in a SNP genotype-dependent fashion. PMID:26866883

  4. A fusion protein of the estrogen receptor (ER) and nuclear receptor corepressor (NCoR) strongly inhibits estrogen-dependent responses in breast cancer cells.

    PubMed

    Chien, P Y; Ito, M; Park, Y; Tagami, T; Gehm, B D; Jameson, J L

    1999-12-01

    Nuclear receptor corepressor (NCoR) mediates repression (silencing) of basal gene transcription by nuclear receptors for thyroid hormone and retinoic acid. The goal of this study was to create novel estrogen receptor (ER) mutants by fusing transferable repressor domains from the N-terminal region of NCoR to a functional ER fragment. Three chimeric NCoR-ER proteins were created and shown to lack transcriptional activity. These fusion proteins silenced basal transcription of the ERE2-tk-Luc reporter gene and inhibited the activity of co-transfected wild-type ER (wtER), indicating that they possess dominant negative activity. One of the fusion proteins (CDE-RD1), containing the ER DNA-binding and ligand-binding domains linked to the NCoR repressor domain (RD1), was selected for detailed examination. Its hormone affinity, intracellular localization, and level of expression in transfected cells were similar to wtER, and it bound to the estrogen response element (ERE) DNA in gel shift assays. Glutathione-S-transferase pull-down assays showed that CDE-RD1 retains the ability to bind to steroid receptor coactivator-1. Introduction of a DNA-binding domain mutation into the CDE-RD1 fusion protein eliminated silencing and dominant negative activity. Thus, the RD1 repressor domain prevents transcriptional activation despite the apparent ability of CDE-RD1 to bind DNA, ligand, and coactivators. Transcriptional silencing was incompletely reversed by trichostatin A, suggesting a histone deacetylase-independent mechanism for repression. CDE-RD1 inhibited ER-mediated transcription in T47D and MDA-MB-231 breast cancer cells and repressed the growth of T47D cells when delivered to the cells by a retroviral vector. These ER-NCoR fusion proteins provide a novel means for inhibiting ER-mediated cellular responses, and analogous strategies could be used to create dominant negative mutants of other transcription factors.

  5. Dynamic estrogen receptor interactomes control estrogen-responsive trefoil Factor (TFF) locus cell-specific activities.

    PubMed

    Quintin, Justine; Le Péron, Christine; Palierne, Gaëlle; Bizot, Maud; Cunha, Stéphanie; Sérandour, Aurélien A; Avner, Stéphane; Henry, Catherine; Percevault, Frédéric; Belaud-Rotureau, Marc-Antoine; Huet, Sébastien; Watrin, Erwan; Eeckhoute, Jérôme; Legagneux, Vincent; Salbert, Gilles; Métivier, Raphaël

    2014-07-01

    Estradiol signaling is ideally suited for analyzing the molecular and functional linkages between the different layers of information directing transcriptional regulations: the DNA sequence, chromatin modifications, and the spatial organization of the genome. Hence, the estrogen receptor (ER) can bind at a distance from its target genes and engages timely and spatially coordinated processes to regulate their expression. In the context of the coordinated regulation of colinear genes, identifying which ER binding sites (ERBSs) regulate a given gene still remains a challenge. Here, we investigated the coordination of such regulatory events at a 2-Mb genomic locus containing the estrogen-sensitive trefoil factor (TFF) cluster of genes in breast cancer cells. We demonstrate that this locus exhibits a hormone- and cohesin-dependent reduction in the plasticity of its three-dimensional organization that allows multiple ERBSs to be dynamically brought to the vicinity of estrogen-sensitive genes. Additionally, by using triplex-forming oligonucleotides, we could precisely document the functional links between ER engagement at given ERBSs and the regulation of particular genes. Hence, our data provide evidence of a formerly suggested cooperation of enhancers toward gene regulation and also show that redundancy between ERBSs can occur.

  6. Dynamic Estrogen Receptor Interactomes Control Estrogen-Responsive Trefoil Factor (TFF) Locus Cell-Specific Activities

    PubMed Central

    Quintin, Justine; Le Péron, Christine; Palierne, Gaëlle; Bizot, Maud; Cunha, Stéphanie; Sérandour, Aurélien A.; Avner, Stéphane; Henry, Catherine; Percevault, Frédéric; Belaud-Rotureau, Marc-Antoine; Huet, Sébastien; Watrin, Erwan; Eeckhoute, Jérôme; Legagneux, Vincent; Salbert, Gilles

    2014-01-01

    Estradiol signaling is ideally suited for analyzing the molecular and functional linkages between the different layers of information directing transcriptional regulations: the DNA sequence, chromatin modifications, and the spatial organization of the genome. Hence, the estrogen receptor (ER) can bind at a distance from its target genes and engages timely and spatially coordinated processes to regulate their expression. In the context of the coordinated regulation of colinear genes, identifying which ER binding sites (ERBSs) regulate a given gene still remains a challenge. Here, we investigated the coordination of such regulatory events at a 2-Mb genomic locus containing the estrogen-sensitive trefoil factor (TFF) cluster of genes in breast cancer cells. We demonstrate that this locus exhibits a hormone- and cohesin-dependent reduction in the plasticity of its three-dimensional organization that allows multiple ERBSs to be dynamically brought to the vicinity of estrogen-sensitive genes. Additionally, by using triplex-forming oligonucleotides, we could precisely document the functional links between ER engagement at given ERBSs and the regulation of particular genes. Hence, our data provide evidence of a formerly suggested cooperation of enhancers toward gene regulation and also show that redundancy between ERBSs can occur. PMID:24752895

  7. Estrogen Signalling and the Metabolic Syndrome: Targeting the Hepatic Estrogen Receptor Alpha Action

    PubMed Central

    Matic, Marko; Bryzgalova, Galyna; Gao, Hui; Antonson, Per; Humire, Patricia; Omoto, Yoko; Portwood, Neil; Pramfalk, Camilla; Efendic, Suad; Berggren, Per-Olof; Gustafsson, Jan-Åke; Dahlman-Wright, Karin

    2013-01-01

    An increasing body of evidence now links estrogenic signalling with the metabolic syndrome (MS). Despite the beneficial estrogenic effects in reversing some of the MS symptoms, the underlying mechanisms remain largely undiscovered. We have previously shown that total estrogen receptor alpha (ERα) knockout (KO) mice exhibit hepatic insulin resistance. To determine whether liver-selective ablation of ERα recapitulates metabolic phenotypes of ERKO mice we generated a liver-selective ERαKO mouse model, LERKO. We demonstrate that LERKO mice have efficient reduction of ERα selectively within the liver. However, LERKO and wild type control mice do not differ in body weight, and have a comparable hormone profile as well as insulin and glucose response, even when challenged with a high fat diet. Furthermore, LERKO mice display very minor changes in their hepatic transcript profile. Collectively, our findings indicate that hepatic ERα action may not be the responsible factor for the previously identified hepatic insulin resistance in ERαKO mice. PMID:23451233

  8. Steroid receptor coactivator-1 mediates estrogenic actions to prevent body weight gain in female mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estrogen receptor-alpha (ERalpha) expressed by hypothalamic proopiomelanocortin and steroidogenic factor-1 neurons largely mediates the antiobesity effects of estrogens in females. However, the critical molecular events that are coupled to ERalpha and mediate estrogenic effects on energy balance rem...

  9. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor.

    PubMed Central

    Cavaillès, V; Dauvois, S; L'Horset, F; Lopez, G; Hoare, S; Kushner, P J; Parker, M G

    1995-01-01

    A conserved region in the hormone-dependent activation domain AF2 of nuclear receptors plays an important role in transcriptional activation. We have characterized a novel nuclear protein, RIP140, that specifically interacts in vitro with this domain of the estrogen receptor. This interaction was increased by estrogen, but not by anti-estrogens and the in vitro binding capacity of mutant receptors correlates with their ability to stimulate transcription. RIP140 also interacts with estrogen receptor in intact cells and modulates its transcriptional activity in the presence of estrogen, but not the anti-estrogen 4-hydroxytamoxifen. In view of its widespread expression in mammalian cells, RIP140 may interact with other members of the superfamily of nuclear receptors and thereby act as a potential co-activator of hormone-regulated gene transcription. Images PMID:7641693

  10. Importance of sex to pain and its amelioration; relevance of spinal estrogens and its membrane receptors

    PubMed Central

    Gintzler, Alan R; Liu, Nai-Jiang

    2013-01-01

    Estrogens have a multitude of effects on opioid systems and are thought to play a key role in sexually dimorphic nociception and opioid antinociception. Heretofore, classical genomic actions of estrogens are largely thought to be responsible for the effects of these steroids on nociception and opioid antinociception. The recent discovery that estrogens can also activate estrogen receptors that are located in the plasma membrane, the effects of which are manifest in seconds to minutes instead of hours to days has revolutionized our thinking concerning the ways in which estrogens are likely to modulate pain responsiveness and the dynamic nature of that modulation. This review summarizes parameters of opioid functionality and nociception that are subject to modulation by estrogens, underscoring the added dimensions of such modulation that accrues from rapid membrane estrogen receptor signaling. Implications of this mode of signaling regarding putative sources of estrogens and its degradation are also discussed. PMID:23036438

  11. Angiogenesis in Breast Cancer and its Correlation with Estrogen, Progesterone Receptors and other Prognostic Factors

    PubMed Central

    Rani, Poonam; Kamal, Vinay; Agarwal, Prem Narayan

    2015-01-01

    Purpose: The aim of study is to evaluate angiogenesis using CD34, in estrogen, progesterone positive and negative breastcancer and to correlate the microvessel density with known histological prognostic factors, morphological type of breast carcinoma and lymph node metastasis. Materials and Methods: Twenty eight untreated cases of breast cancer were included in the study and paraffin embedded sections were obtained from representative mastectomy specimen of breast cancer patient. The sections were stained with hematoxylin and eosin stain and immunohistochemistry was performed using CD34, estrogen, progesterone, cytokeratin and epithelial membrane antigen antibody. Angiogenesis was analysed using CD 34 antibody. For statistical analysis, cases were grouped into estrogen, progesterone positive and negative receptors. Results: Mean microvessel density in ER-/PR-, ER-/ PR+, ER+/PR-, ER+/PR+ was 15.45, 14.83, 11, 10.89 respectively. A significant correlation was found between ER receptors and mean vascular density with p-value (< 0.05). A significant difference was observed in mean vascular density between the four groups comprising (p-value < 0.05). Infiltrating duct carcinoma (NOS) grade III has got the highest mean microvessel density (14.17) followed by grade II (12.93) and grade I (12.33). Conclusion: Information about prognostic factors in breast cancer patients may lead to better ways to identify those patients at high risk who might benefit from adjuvant therapies. PMID:25737993

  12. Mixture Effects of Estrogenic Pesticides at the Human Estrogen Receptor α and β.

    PubMed

    Seeger, Bettina; Klawonn, Frank; Nguema Bekale, Boris; Steinberg, Pablo

    2016-01-01

    Consumers of fruits and vegetables are frequently exposed to small amounts of hormonally active pesticides, some of them sharing a common mode of action such as the activation of the human estrogen receptor α (hERα) or β (hERβ). Therefore, it is of particular importance to evaluate risks emanating from chemical mixtures, in which the individual pesticides are present at human-relevant concentrations, below their corresponding maximum residue levels. Binary and ternary iso-effective mixtures of estrogenic pesticides at effect concentrations eliciting a 1 or 10% effect in the presence or absence of 17β-estradiol were tested experimentally at the hERα in the yeast-based estrogen screen (YES) assay as well as in the human U2-OS cell-based ERα chemical-activated luciferase gene expression (ERα CALUX) assay and at the hERβ in the ERβ CALUX assay. The outcome was then compared to predictions calculated by means of concentration addition. In most cases, additive effects were observed with the tested combinations in all three test systems, an observation that supports the need to expand the risk assessment of pesticides and consider cumulative risk assessment. An additional testing of mixture effects at the hERβ showed that most test substances being active at the hERα could also elicit additive effects at the hERβ, but the hERβ was less sensitive. In conclusion, effects of the same ligands at the hERα and the hERβ could influence the estrogenic outcome under physiological conditions.

  13. Effect of estrogen receptor-subtype-specific ligands on fertility in adult male rats.

    PubMed

    Dumasia, Kushaan; Kumar, Anita; Kadam, Leena; Balasinor, N H

    2015-06-01

    Maintenance of normal male fertility relies on the process of spermatogenesis which is under complex endocrine control by mechanisms involving gonadotropin and steroid hormones. Although testosterone is the primary sex steroid in males, estrogen is locally produced in the testis and plays a very crucial role in male fertility. This is evident from presence of both the estrogen receptors alpha (ERα) and beta (ERβ) in the testis and their absence, as in the case of knockout mice models, leads to sterility. The present study was undertaken to understand individual roles of the two ERs in spermatogenesis and their direct contribution towards the maintenance of male fertility using receptor-subtype-specific ligands. Administration of ERα and β agonists to adult male rats for 60 days results in a significant decrease in fertility, mainly due to an increase in pre- and post-implantation loss and a concomitant decrease in litter size and sperm counts. Our results indicate that ERα is mainly involved in negative feedback regulation of gonadotropin hormones, whereas both ERs are involved in regulation of prolactin and testosterone production. Histological examinations of the testis reveal that ERβ could be involved in the process of spermiation since many failed spermatids were observed in stages IX-XI following ERβ agonist treatment. Our results indicate that overactivation of estrogen signaling through either of its receptors can have detrimental effects on the fertility parameters and that the two ERs have both overlapping and distinct roles in maintenance of male fertility.

  14. Effect of estrogen receptor-subtype-specific ligands on fertility in adult male rats.

    PubMed

    Dumasia, Kushaan; Kumar, Anita; Kadam, Leena; Balasinor, N H

    2015-06-01

    Maintenance of normal male fertility relies on the process of spermatogenesis which is under complex endocrine control by mechanisms involving gonadotropin and steroid hormones. Although testosterone is the primary sex steroid in males, estrogen is locally produced in the testis and plays a very crucial role in male fertility. This is evident from presence of both the estrogen receptors alpha (ERα) and beta (ERβ) in the testis and their absence, as in the case of knockout mice models, leads to sterility. The present study was undertaken to understand individual roles of the two ERs in spermatogenesis and their direct contribution towards the maintenance of male fertility using receptor-subtype-specific ligands. Administration of ERα and β agonists to adult male rats for 60 days results in a significant decrease in fertility, mainly due to an increase in pre- and post-implantation loss and a concomitant decrease in litter size and sperm counts. Our results indicate that ERα is mainly involved in negative feedback regulation of gonadotropin hormones, whereas both ERs are involved in regulation of prolactin and testosterone production. Histological examinations of the testis reveal that ERβ could be involved in the process of spermiation since many failed spermatids were observed in stages IX-XI following ERβ agonist treatment. Our results indicate that overactivation of estrogen signaling through either of its receptors can have detrimental effects on the fertility parameters and that the two ERs have both overlapping and distinct roles in maintenance of male fertility. PMID:25869617

  15. Sex differences in opioid analgesia and addiction: interactions among opioid receptors and estrogen receptors

    PubMed Central

    2013-01-01

    Opioids are widely used as the pain reliever and also notorious for being addictive drugs. Sex differences in the opioid analgesia and addiction have been reported and investigated in human subjects and animal models. Yet, the molecular mechanism underlying the differences between males and females is still unclear. Here, we reviewed the literature describing the sex differences in analgesic responses and addiction liabilities to clinically relevant opioids. The reported interactions among opioids, estrogens, opioid receptors, and estrogen receptors are also evaluated. We postulate that the sex differences partly originated from the crosstalk among the estrogen and opioid receptors when stimulated by the exogenous opioids, possibly through common secondary messengers and the downstream gene transcriptional regulators. PMID:24010861

  16. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    SciTech Connect

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye; Hong, Darong; Jung, Bom; Park, Min-Ju; Kim, Jong-Ho

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.

  17. Immunohistochemical analysis of estrogen and progesterone receptors in benign breast diseases.

    PubMed

    Tóth, J; De Sombre, E R; Greene, G L

    1991-01-01

    Surgical specimens of 62 patients with fibrocystic disease, 39 with fibroadenoma and 11 with intraductal papilloma were evaluated with ER-ICA and PgR-ICA methods. Positive nuclear staining was only observed in the epithelial components. The myoepithelium, myofibroblasts, fibroblasts and the so called apocrine epithelium, however, did not contain steroid receptors. Some steroid receptor negative cases occurred among the atrophic and non-proliferating fibrocystic diseases. In the proliferating benign alterations, particularly in those considered preneoplastic, e.g. radial scar, ductal and lobular atypical epithelioses, such as carcinoma lobulare in situ and florid intraductal papilloma there was a positive staining for estrogen receptor and progesterone receptor in the epithelial cells. Authors' results seem to serve as a theoretical basis for the hormonal influence of precarcinomatous cases and to explain the success of antisteroid therapy in patients with fibrocystic disease.

  18. Role of estrogen in lung cancer based on the estrogen receptor-epithelial mesenchymal transduction signaling pathways

    PubMed Central

    Zhao, Xiao-zhen; Liu, Yu; Zhou, Li-juan; Wang, Zhong-qi; Wu, Zhong-hua; Yang, Xiao-yuan

    2015-01-01

    Background/aim Estrogen is reported to promote the occurrence and development of several human cancers. Increasing evidence shows that most human lung tumors exert estrogen receptor expression. In the present study, we investigated the underlying mechanism of estrogen effect in lung cancer through estrogen receptor-epithelial–mesechymal-transition signaling pathways for the first time. Materials and methods A total of 36 inbred C57BL/6 mice (18 male and 18 female) were injected subcutaneously with human lung adenocarcinoma cell line, Lewis. After the lung tumor model was established, mice with lung adenocarcinoma were randomly divided into three groups for each sex (n=6), such as vehicle group, estrogen group, and estrogen plus tamoxifen group. The six groups of mice were sacrificed after 21 days of drug treatment. Tumor tissue was stripped and weighed, and tumor inhibition rate was calculated based on average tumor weight. Protein and messenger RNA (mRNA) expressions of estrogen receptor α (ERα), estrogen receptor β (ERβ), phosphatidylinositol 3′-kinase (PI3K), AKT, E-cadherin, and vimentin were detected in both tumor tissue and lung tissue by using immunohistochemistry and real-time reverse transcription-polymerase chain reaction. Results 1) For male mice: in the estrogen group, estrogen treatment significantly increased ERα protein and mRNA expressions in tumor tissue and protein expression of PI3K, AKT, and vimentin in both tumor tissue and lung tissue compared with the vehicle-treated group. Besides, mRNA expression of E-cadherin was significantly reduced in estrogen-treated tumor tissues than that in vehicle-treated tissues. In the estrogen plus tamoxifen group, protein and mRNA expressions of ERα and AKT were dramatically reduced by tamoxifen treatment in tumor tissue compared with the estrogen group; mRNA expression of E-cadherin was increased in tumor tissue; protein expression of vimentin and PI3K were downregulated in tumor tissue; protein

  19. Inhibition of angiogenesis by selective estrogen receptor modulators through blockade of cholesterol trafficking rather than estrogen receptor antagonism.

    PubMed

    Shim, Joong Sup; Li, Ruo-Jing; Lv, Junfang; Head, Sarah A; Yang, Eun Ju; Liu, Jun O

    2015-06-28

    Selective estrogen receptor modulators (SERM) including tamoxifen are known to inhibit angiogenesis. However, the underlying mechanism, which is independent of their action on the estrogen receptor (ER), has remained largely unknown. In the present study, we found that tamoxifen and other SERM inhibited cholesterol trafficking in endothelial cells, causing a hyper-accumulation of cholesterol in late endosomes/lysosomes. Inhibition of cholesterol trafficking by tamoxifen was accompanied by abnormal subcellular distribution of vascular endothelial growth factor receptor-2 (VEGFR2) and inhibition of the terminal glycosylation of the receptor. Tamoxifen also caused perinuclear positioning of lysosomes, which in turn trapped the mammalian target of rapamycin (mTOR) in the perinuclear region of endothelial cells. Abnormal distribution of VEGFR2 and mTOR and inhibition of VEGFR2 and mTOR activities by tamoxifen were significantly reversed by addition of cholesterol-cyclodextrin complex to the culture media of endothelial cells. Moreover, high concentrations of tamoxifen inhibited endothelial and breast cancer cell proliferation in a cholesterol-dependent, but ER-independent, manner. Together, these results unraveled a previously unrecognized mechanism of angiogenesis inhibition by tamoxifen and other SERM, implicating cholesterol trafficking as an attractive therapeutic target for cancer treatment.

  20. A variant of estrogen receptor-α, hER-α36: Transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling

    PubMed Central

    Wang, ZhaoYi; Zhang, XinTian; Shen, Peng; Loggie, Brian W.; Chang, YunChao; Deuel, Thomas F.

    2006-01-01

    The status of the 66-kDa human estrogen receptor-α (hER-α66) is a critical determinant in the assessment of the prognosis and in the design of treatment strategies of human breast cancer. Recently, we cloned the cDNA of an alternatively spliced variant of hER-α66, termed hER-α36; the predicted protein lacks both transcriptional activation domains of hER-α66 but retains its DNA-binding domain, partial dimerization, and ligand-binding domains and three potential myristoylation sites located near the N terminus. These findings thus predict that hER-α36 functions very differently from hER-α66 in response to estrogen signaling. We now demonstrate that hER-α36 inhibits the estrogen-dependent and estrogen-independent transactivation activities of hER-α66 and hER-β. We further demonstrate that hER-α36 is predominantly associated with the plasma membrane where it transduces both estrogen- and antiestrogen-dependent activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and stimulates cell growth. We conclude that hER-α36 is a predominantly membrane-based, unique alternatively spliced variant of hER-α66 that acts as a dominant-negative effector of both estrogen-dependent and estrogen-independent transactivation functions signaled through hER-α66 and ER-β; it also transduces membrane-initiated estrogen-dependent activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase mitogenic signaling pathway. The estrogen and antiestrogen signaling pathways mediated by hER-α36 provide an alternative explanation for why some human breast cancers are resistant to and others are worsened by antiestrogen therapy; the data suggest that hER-α36 also may be an important marker to direct therapy in human breast cancers, and perhaps hER-α36 also may transduce estrogen-dependent signaling in other estrogen target tissues. PMID:16754886

  1. Oxytocin and Estrogen Receptor β in the Brain: An Overview

    PubMed Central

    Acevedo-Rodriguez, Alexandra; Mani, Shaila K.; Handa, Robert J.

    2015-01-01

    Oxytocin (OT) is a neuropeptide synthesized primarily by neurons of the paraventricular and supraoptic nuclei of the hypothalamus. These neurons have axons that project into the posterior pituitary and release OT into the bloodstream to promote labor and lactation; however, OT neurons also project to other brain areas where it plays a role in numerous brain functions. OT binds to the widely expressed OT receptor (OTR), and, in doing so, it regulates homeostatic processes, social recognition, and fear conditioning. In addition to these functions, OT decreases neuroendocrine stress signaling and anxiety-related and depression-like behaviors. Steroid hormones differentially modulate stress responses and alter OTR expression. In particular, estrogen receptor β activation has been found to both reduce anxiety-related behaviors and increase OT peptide transcription, suggesting a role for OT in this estrogen receptor β-mediated anxiolytic effect. Further research is needed to identify modulators of OT signaling and the pathways utilized and to elucidate molecular mechanisms controlling OT expression to allow better therapeutic manipulations of this system in patient populations. PMID:26528239

  2. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    PubMed

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. PMID:26166135

  3. Prothymosin alpha selectively enhances estrogen receptor transcriptional activity by interacting with a repressor of estrogen receptor activity.

    PubMed

    Martini, P G; Delage-Mourroux, R; Kraichely, D M; Katzenellenbogen, B S

    2000-09-01

    We find that prothymosin alpha (PTalpha) selectively enhances transcriptional activation by the estrogen receptor (ER) but not transcriptional activity of other nuclear hormone receptors. This selectivity for ER is explained by PTalpha interaction not with ER, but with a 37-kDa protein denoted REA, for repressor of estrogen receptor activity, a protein that we have previously shown binds to ER, blocking coactivator binding to ER. We isolated PTalpha, known to be a chromatin-remodeling protein associated with cell proliferation, using REA as bait in a yeast two-hybrid screen with a cDNA library from MCF-7 human breast cancer cells. PTalpha increases the magnitude of ERalpha transcriptional activity three- to fourfold. It shows lesser enhancement of ERbeta transcriptional activity and has no influence on the transcriptional activity of other nuclear hormone receptors (progesterone receptor, glucocorticoid receptor, thyroid hormone receptor, or retinoic acid receptor) or on the basal activity of ERs. In contrast, the steroid receptor coactivator SRC-1 increases transcriptional activity of all of these receptors. Cotransfection of PTalpha or SRC-1 with increasing amounts of REA, as well as competitive glutathione S-transferase pulldown and mammalian two-hybrid studies, show that REA competes with PTalpha (or SRC-1) for regulation of ER transcriptional activity and suppresses the ER stimulation by PTalpha or SRC-1, indicating that REA can function as an anticoactivator in cells. Our data support a model in which PTalpha, which does not interact with ER, selectively enhances the transcriptional activity of the ER but not that of other nuclear receptors by recruiting the repressive REA protein away from ER, thereby allowing effective coactivation of ER with SRC-1 or other coregulators. The ability of PTalpha to directly interact in vitro and in vivo with REA, a selective coregulator of the ER, thereby enabling the interaction of ER with coactivators, appears to explain

  4. Defining the conformation of the estrogen receptor complex that controls estrogen-induced apoptosis in breast cancer.

    PubMed

    Obiorah, Ifeyinwa; Sengupta, Surojeet; Curpan, Ramona; Jordan, V Craig

    2014-05-01

    Development of acquired antihormone resistance exposes a vulnerability in breast cancer: estrogen-induced apoptosis. Triphenylethylenes (TPEs), which are structurally similar to 4-hydroxytamoxifen (4OHT), were used for mechanistic studies of estrogen-induced apoptosis. These TPEs all stimulate growth in MCF-7 cells, but unlike the planar estrogens they block estrogen-induced apoptosis in the long-term estrogen-deprived MCF7:5C cells. To define the conformation of the TPE:estrogen receptor (ER) complex, we employed a previously validated assay using the induction of transforming growth factor α (TGFα) mRNA in situ in MDA-MB 231 cells stably transfected with wild-type ER (MC2) or D351G ER mutant (JM6). The assays discriminate ligand fit in the ER based on the extremes of published crystallography of planar estrogens or TPE antiestrogens. We classified the conformation of planar estrogens or angular TPE complexes as "estrogen-like" or "antiestrogen-like" complexes, respectively. The TPE:ER complexes did not readily recruit the coactivator steroid receptor coactivator-3 (SRC3) or ER to the PS2 promoter in MCF-7 and MCF7:5C cells, and molecular modeling showed that they prefer to bind to the ER in an antagonistic fashion, i.e., helix 12 not sealing the ligand binding domain (LBD) effectively, and therefore reduce critical SRC3 binding. The fully activated ER complex with helix 12 sealing the LBD is suggested to be the appropriate trigger to initiate rapid estrogen-induced apoptosis.

  5. A systematic comparison of three commercial estrogen receptor assays in a single clinical outcome breast cancer cohort.

    PubMed

    Kornaga, Elizabeth N; Klimowicz, Alexander C; Guggisberg, Natalia; Ogilvie, Travis; Morris, Don G; Webster, Marc; Magliocco, Anthony M

    2016-08-01

    Breast cancers are routinely assessed for estrogen receptor status using immunohistochemical assays to assist in patient prognosis and clinical management. Specific assays vary between laboratories, and several antibodies have been validated and recommended for clinical use. As numerous factors can influence assay performance, many laboratories have opted for ready-to-use assays using automated stainers to improve reproducibility and consistency. Three commonly used autostainer vendors-Dako, Leica, and Ventana-all offer such estrogen receptor assays; however, they have never been directly compared. Here, we present a systematic comparison of three platform-specific estrogen receptor ready-to-use assays using a retrospective, tamoxifen-treated, breast cancer cohort from patients who were treated in Calgary, Alberta, Canada from 1985 to 2000. We found all assays showed good intra-observer agreement. Inter-observer pathological scoring showed some variability: Ventana had the strongest agreement followed closely by Dako, whereas Leica only showed substantial agreement. We also analyzed each estrogen receptor assay with respect to 5-year disease-free survival, and found that all performed similarly in univariate and multivariate models. Determination of measures of test performance found that the Leica assay had a lower negative predictive value than Dako or Ventana, compared with the original ligand-binding assay, while other measures-sensitivity, specificity, positive predictive value, and accuracy-were comparable between the three ready-to-use assays. When comparing against disease-free survival, the difference in negative predictive value between the vendor assays were not as extreme, but Dako and Ventana still performed slightly better than Leica. Despite some discordance, we found that all ready-to-use assays were comparable with or superior to the ligand-binding assay, endorsing their continued use. Our analysis also allowed for exploration of estrogen receptor-negative

  6. The Estrogen Receptor-β Expression in De Quervain's Disease.

    PubMed

    Shen, Po-Chuan; Wang, Ping-Hui; Wu, Po-Ting; Wu, Kuo-Chen; Hsieh, Jeng-Long; Jou, I-Ming

    2015-01-01

    Stenosing tenosynovitis of the first dorsal compartment of the wrist (a.k.a. de Quervain's disease) is common but how estrogen is involved is still unknown. We previously reported that inflammation was involved in the pathogenesis of this ailment. In the present study, we extended our investigation of estrogen receptor (ER)-β expression to determine whether estrogen is involved in the pathogenesis of de Quervain's. Intraoperative retinaculum samples were collected from 16 patients with the ailment. Specimens were histologically graded by collagen structure and immunohistochemically evaluated by quantifying the expression of ER-β, interleukin (IL)-1β and IL-6 (inflammatory cytokines), cyclooxygenase (COX)-2 (an inflammatory enzyme), and vascular endothelial growth factor (VEGF), and Von Willebrand's factor (vWF). De Quervain's occurs primarily in women. The female:male ratio in our study was 7:1. We found that ER-β expression in the retinaculum was positively correlated with disease grade and patient age. Additionally, disease severity was associated with inflammatory factors--IL-1β and IL-6, COX-2, and VEGF and vWF in tenosynovial tissue. The greater the levels of ER-β expression, tissue inflammation, and angiogenesis are, the more severe de Quervain's disease is. ER-β might be a useful target for novel de Quervain's disease therapy. PMID:26556342

  7. Evolution of steroid receptors from an estrogen-sensitive ancestral receptor.

    PubMed

    Eick, Geeta N; Thornton, Joseph W

    2011-03-01

    Members of the steroid hormone receptor (SR) family activate transcription from different DNA response elements and are regulated by distinct hormonal ligands. Understanding the evolutionary process by which this diversity arose can provide insight into how and why SRs function as they do. Here we review the characteristics of the ancient receptor protein from which the SR family descends by a process of gene duplication and divergence. Several orthogonal lines of evidence - bioinformatic, phylogenetic, and experimental - indicate that this ancient SR had the capacity to activate transcription from DNA estrogen response elements in response to estrogens. Duplication and divergence of the ancestral SR gene subsequently generated new receptors that were activated by other steroid hormones, including progestagens, androgens, and corticosteroids. The androgen and progesterone receptors recruited as their ligands steroids that were previously present as biochemical intermediates in the synthesis of estrogens. This process is an example of molecular exploitation--the evolution of new molecular interactions when an older molecule, which previously had a different function, is co-opted as a binding partner by a newly evolved molecule. The primordial interaction between the ancestral steroid receptor and estrogens may itself have evolved due to an early molecular exploitation event.

  8. Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism.

    PubMed

    Sartorius, C A; Hanna, C T; Gril, B; Cruz, H; Serkova, N J; Huber, K M; Kabos, P; Schedin, T B; Borges, V F; Steeg, P S; Cittelly, D M

    2016-06-01

    Brain metastases (BM) are a devastating consequence of breast cancer. BM occur more frequently in patients with estrogen receptor-negative (ER-) breast cancer subtypes; HER2 overexpressing (HER2+) tumors and triple-negative (TN) (ER-, progesterone receptor-negative (PR-) and normal HER2) tumors. Young age is an independent risk factor for the development of BM, thus we speculated that higher circulating estrogens in young, pre-menopausal women could exert paracrine effects through the highly estrogen-responsive brain microenvironment. Using a TN experimental metastases model, we demonstrate that ovariectomy decreased the frequency of magnetic resonance imaging-detectable lesions by 56% as compared with estrogen supplementation, and that the combination of ovariectomy and letrozole further reduced the frequency of large lesions to 14.4% of the estrogen control. Human BM expressed 4.2-48.4% ER+ stromal area, particularly ER+ astrocytes. In vitro, E2-treated astrocytes increased proliferation, migration and invasion of 231BR-EGFP cells in an ER-dependent manner. E2 upregulated epidermal growth factor receptor (EGFR) ligands Egf, Ereg and Tgfa mRNA and protein levels in astrocytes, and activated EGFR in brain metastatic cells. Co-culture of 231BR-EGFP cells with E2-treated astrocytes led to the upregulation of the metastatic mediator S100 Calcium-binding protein A4 (S100A4) (1.78-fold, P<0.05). Exogenous EGF increased S100A4 mRNA levels in 231BR-EGFP cells (1.40±0.02-fold, P<0.01 compared with vehicle control) and an EGFR/HER2 inhibitor blocked this effect, suggesting that S100A4 is a downstream effector of EGFR activation. Short hairpin RNA-mediated S100A4 silencing in 231BR-EGFP cells decreased their migration and invasion in response to E2-CM, abolished their increased proliferation in co-cultures with E2-treated astrocytes and decreased brain metastatic colonization. Thus, S100A4 is one effector of the paracrine action of E2 in brain metastatic cells. These

  9. [Roles of G protein-coupled estrogen receptor in the male reproductive system].

    PubMed

    Chen, Kai-hong; Zhang, Xian; Jiang, Xue-wu

    2016-02-01

    The G protein-coupled estrogen receptor (GPER), also known as G protein-coupled receptor 30 (GPR30), was identified in the recent years as a functional membrane receptor different from the classical nuclear estrogen receptors. This receptor is widely expressed in the cortex, cerebellum, hippocampus, heart, lung, liver, skeletal muscle, and the urogenital system. It is responsible for the mediation of nongenomic effects associated with estrogen and its derivatives, participating in the physiological activities of the body. The present study reviews the molecular structure, subcellular localization, signaling pathways, distribution, and function of GPER in the male reproductive system.

  10. Development of a Competitive Binding Assay System with Recombinant Estrogen Receptors from Multiple Species

    EPA Science Inventory

    ABSTRACT In the current study, we developed a new system using full-length recombinant baculovirus-expressed estrogen receptors which allows for direct comparison of binding across species. Estrogen receptors representing five vertebrate classes were compared: human (hERα), quai...

  11. Effect of anti-PMSG on distribution of estrogen receptor alpha and progesterone receptor in mouse ovary, oviduct and uterus.

    PubMed

    Lin, Zi Li; Ni, He Min; Liu, Yun Hai; Sheng, Xi Hui; Cui, Xiang Shun; Kim, Nam Hyung; Guo, Yong

    2015-10-01

    It is well established that estrogen and progesterone are critical endogenous hormones that are essential for implantation and pregnancy in females. However, the distribution of estrogen receptor α (ERα) and progesterone receptor (PR) in female reproductive tracts is elusive. Herein, we report that after serial treatments with pregnant mare's serum gonadotrophin (PMSG) with or without anti-PMSG (AP), mice could regulate the distribution of ERα and PR in the murine ovary, oviduct and uterus and the level of estradiol in serum. ERα and PR regulation by PMSG and anti-PMSG was estrous cycle-dependent and critical for promoting the embryo-implantation period. Furthermore, our results suggested that AP-42 h treatment is more effective than the other treatments. In contrast, other treatment groups also affected the distribution of ERα and PR in mouse reproductive tracts. Thus, we found that anti-PMSG has the potential to restore the distribution of ERα and PR, which could effectively reduce the negative impact of residual estrogen caused by the normal superovulation effect of PMSG in mice.

  12. Estrogen Receptor-α Polymorphisms and Predisposition to TMJ Disorder

    PubMed Central

    Ribeiro-Dasilva, Margarete Cristiane; Line, Sérgio Roberto Peres; dos Santos, Maria Cristina Leme Godoy; Arthuri, Mariana Trevisani; Hou, Wei; Fillingim, Roger Benton; Barbosa, Célia Marisa Rizzatti

    2009-01-01

    Temporomandibular joint disorders (TMJD) affect women with greater frequency than men, and sex hormones may contribute to this female predominance. Therefore, this study investigated whether estrogen receptor-α (XbaI/PvuII) single nucleotide polymorphisms (SNPs) are associated with TMJD in women. DNA was obtained from 200 women with TMJD (100 with chronic pain and 100 with signs of TMJD but no pain) diagnosed according to the Research Diagnostic Criteria for Temporomandibular Disorder (RDC/TMD) and 100 control women without TMJD. Restriction fragment length polymorphisms of polymerase chain reaction products were used to analyze XbaI and PvuII SNPs in DNA fragments. A model directly characterizing specific DNA sequence variants based on the risk haplotypic structure implemented with the EM algorithm was used to analyze the data. The [GC] haplotype of the XbaI locus was significantly more prevalent in both TMJD groups when compared with the control group (P =.0012). Specifically, the [GC] haplotype was more prevalent within the painful TMJD group versus the control group (OR = 3.203, 95% CI = 1.633, 6.284) and in the TMJD no pain versus the control group (OR = 2.51, 95% CI = 1.267, 4.97). In conclusion, the presence of [GC] haplotype in the XbaI locus may increase the susceptibility of women to develop TMJD. Perspective: This study suggests that a polymorphism in the estrogen receptor may increase the risk of women developing temporomandibular joint disorder. This finding may elucidate the interindividual differences in the contribution of estrogen to TMJD, the genetic influences on TMJD predisposition, and may serve as the basis for future treatment tailoring, which could enhance outcomes for these patients. PMID:19411060

  13. Differing species responsiveness of estrogenic contaminants in fish is conferred by the ligand binding domain of the estrogen receptor.

    PubMed

    Miyagawa, Shinichi; Lange, Anke; Hirakawa, Ikumi; Tohyama, Saki; Ogino, Yukiko; Mizutani, Takeshi; Kagami, Yoshihiro; Kusano, Teruhiko; Ihara, Masaru; Tanaka, Hiroaki; Tatarazako, Norihisa; Ohta, Yasuhiko; Katsu, Yoshinao; Tyler, Charles R; Iguchi, Taisen

    2014-05-01

    Exposure to estrogenic endocrine disrupting chemicals (EDCs) induces a range of adverse effects, notably on reproduction and reproductive development. These responses are mediated via estrogen receptors (ERs). Different species of fish may show differences in their responsiveness to environmental estrogens but there is very limited understanding on the underlying mechanisms accounting for these differences. We used custom developed in vitro ERα reporter gene assays for nine fish species to analyze the ligand- and species-specificity for 12 environmental estrogens. Transcriptonal activities mediated by estradiol-17β (E2) were similar to only a 3-fold difference in ERα sensitivity between species. Diethylstilbestrol was the most potent estrogen (∼ 10-fold that of E2) in transactivating the fish ERαs, whereas equilin was about 1 order of magnitude less potent in all species compared to E2. Responses of the different fish ERαs to weaker environmental estrogens varied, and for some considerably. Medaka, stickleback, bluegill and guppy showed higher sensitivities to nonylphenol, octylphenol, bisphenol A and the DDT-metabolites compared with cyprinid ERαs. Triclosan had little or no transactivation of the fish ERαs. By constructing ERα chimeras in which the AF-containing domains were swapped between various fish species with contrasting responsiveness and subsequent exposure to different environmental estrogens. Our in vitro data indicate that the LBD plays a significant role in accounting for ligand sensitivity of ERα in different species. The differences seen in responsiveness to different estrogenic chemicals between species indicate environmental risk assessment for estrogens cannot necessarily be predicted for all fish by simply examining receptor activation for a few model fish species. PMID:24689804

  14. Specific regulation of male rat liver cytosolic estrogen receptor by the modulator of the glucocorticoid receptor.

    PubMed

    Celiker, M Y; Haas, A; Saunders, D; Litwack, G

    1993-08-31

    Modulator is a novel low-molecular-weight organic compound that regulates activities of glucocorticoid and mineralocorticoid receptors as well as protein kinase C. In this study we show that male rat liver cytosolic estrogen receptor activation is inhibited by modulator in a dose-dependent manner. Fifty percent inhibition is obtained with 1 unit/ml modulator purified from bovine liver which is within the physiological concentration for modulator. However, sheep uterine cytosolic estrogen and androgen receptors are insensitive to regulation by modulator. Exogenous sodium molybdate treatment inhibits activation of all of these receptors of liver or uterus origin in an identical manner, further differentiating the effects of modulator and the molybdate anion. PMID:8363596

  15. Estrogen-related receptor γ is an in vivo receptor of bisphenol A.

    PubMed

    Tohmé, Marie; Prud'homme, Sophie M; Boulahtouf, Abdel; Samarut, Eric; Brunet, Frédéric; Bernard, Laure; Bourguet, William; Gibert, Yann; Balaguer, Patrick; Laudet, Vincent

    2014-07-01

    Bisphenol A (BPA) is an endocrine disruptor that displays estrogenic activity. Several reports suggest that BPA may have estrogen receptor-independent effects. In zebrafish, 50 μM BPA exposure induces otic vesicle abnormalities, including otolith aggregation. The purpose of this study was to test if BPA action was mediated in vivo during zebrafish development by the orphan nuclear estrogen related receptor (ERR) γ. Combining pharmacological and functional approaches, we demonstrate that the zebrafish ERRγ mediates BPA-induced malformations in otoliths. Using different bisphenol derivatives, we show that different compounds can induce a similar otolith phenotype than BPA and that the binding affinity of these derivatives to the zebrafish ERRγ correlates with their ability to induce otolith malformations. Morpholino knockdown of ERRγ function suppresses the BPA effect on otoliths whereas overexpression of ERRγ led to a BPA-like otolith phenotype. Moreover, a subphenotypical dose of BPA (1 μM) combined with ERRγ overexpression led to a full-dose (50 μM) BPA otolith phenotype. We therefore conclude that ERRγ mediates the otic vesicle phenotype generated by BPA. Our results suggest that the range of pathways perturbed by this compound and its potential harmful effect are larger than expected.-Tohmé, M., Prud'homme, S. M., Boulahtouf, A., Samarut, E., Brunet, F., Bernard, L., Bourguet, W., Gibert, Y., Balaguer, P., Laudet, V. Estrogen-related receptor γ is an in vivo receptor of bisphenol A. PMID:24744145

  16. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    SciTech Connect

    Wang, Jing; Yang, Qifeng; Haffty, Bruce G.; Li, Xiaoyan; Moran, Meena S.

    2013-02-08

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT

  17. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    PubMed

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation. PMID:27069764

  18. Expression of estrogen and progesterone receptors in papillary thyroid carcinoma

    PubMed Central

    Jalali-Nadoushan, Mohammad-Reza; Amirtouri, Reza; Davati, Ali; Askari, Samaneh; Siadati, Sepideh

    2016-01-01

    Background: Papillary thyroid carcinoma (PTC), occurs mostly in women and sex hormones may play a role in the pathogenesis and clinical course. The objective of this study was to determine the status and prevalence of estrogen and progesterone receptors in PTC with regard to age, gender, tumor size and lymph node involvement. Methods: Immunohistochemical stains were performed on 92 tissue blocks of PTC for estrogen receptor (ER) and progesterone receptor (PR) expression in tumor cells. Chi-square test and Mann-Whitney U test were used to determine statistical difference using statistical software SPSS. Results: The mean age of patients was 39.32±1.7 years (range 13-80) with 79(85.9%) women and 13 (14.1%) men. Lymph node involvement was seen in 76.1% of patients. The average tumor size was 3.6±2.21 cm. The rate of ER and PR expression were 46.75% and 5.6%, respectively. ER expression for females was higher than males (P=0.014), but no relation was found between males and females in PR expression (P=0.7). Also there was no statistical difference between ER and PR expression with respect to age, lymph node involvement and tumor size. Conclusion: Our study showed higher ER expression in females than males with PTC. No relation was found between the expression of these receptors and age of presentation, lymph node involvement and tumor size. Further investigation is required to determine the prognostic importance of ER and PR in PTC.

  19. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    PubMed

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation.

  20. Monitoring of xenobiotic ligands for human estrogen receptor and aryl hydrocarbon receptor in industrial wastewater effluents.

    PubMed

    Chou, Pei-Hsin; Liu, Tong-Cun; Lin, Yi-Ling

    2014-07-30

    Industrial wastewater contains a variety of toxic substances, which may severely contaminate the aquatic environment if discharged without adequate treatment. In this study, effluents from a thin film transistor liquid crystal display wastewater treatment plant and the receiving water were analyzed by bioassays and liquid chromatography-tandem mass spectrometry to investigate the presence of estrogenic compounds, aryl hydrocarbon receptor (AhR) agonists, and genotoxicants. Xenobiotic AhR agonists were frequently detected and, in particular, strong AhR agonist activity and genotoxicity were found in the suspended solids of the aeration tank outflow. The high AhR agonist activity in the final effluent (FE) and the downstream river water suggested that the treatment plant failed to remove the wastewater-related AhR agonists. In contrast, although significant estrogenic potency could be detected in raw wastewater or effluents from different treatment processes, the FE and the receiving river water exhibited no or weak estrogenicity. Instrumental analysis showed that bisphenol A was often detected in water samples. However, the investigated estrogenic compounds could only account for a small portion of the estrogenicity in the collected samples. Therefore, further investigation is necessary to identify the major estrogenic compounds and AhR agonist contaminants in the wastewater effluents.

  1. Estrogen receptor beta in the brain: from form to function.

    PubMed

    Weiser, Michael J; Foradori, Chad D; Handa, Robert J

    2008-03-01

    Estrogens have numerous effects on the brain, both in adulthood and during development. These actions of estrogen are mediated by two distinct estrogen receptor (ER) systems, ER alpha (ERalpha) and ER beta (ERbeta). In brain, ERalpha plays a critical role in regulating reproductive neuroendocrine function and behavior, however, a definitive role for ERbeta in any neurobiological function has been slow in forthcoming. Clues to the function of ERbeta in the central nervous system can be gleaned from the neuroanatomical distribution of ERbeta and the phenotypes of neurons that express ERbeta. ERbeta immunoreactivity has been found in populations of GnRH, CRH, vasopressin, oxytocin and prolactin containing neurons in the hypothalamus. Utilizing subtype-selective estrogen receptor agonists can help determine the roles for ERbeta in non-reproductive behaviors in rat models. ERbeta-selective agonists exert potent anxiolytic activity when animals were tested in a number of behavioral paradigms. Consistent with this, ERbeta-selective agonists also inhibited the ACTH and corticosterone response to stress. In contrast, ERalpha selective agonists were found to be anxiogenic and correspondingly increased the hormonal stress response. Taken together, our studies implicate ERbeta as an important modulator of some non-reproductive neurobiological systems. The molecular and neuroanatomical targets of estrogen that are mediated by ERbeta remain to be determined. A number of splice variants of ERbeta mRNA have been reported in brain tissue. Imaging of eGFP labeled chimeric receptor proteins transfected into cell lines shows that ERbeta splice variation can alter trafficking patterns and function. The originally described ERbeta (herein termed ERbeta1) is characterized by possessing a high affinity for estradiol. Similar to ERalpha, it is localized in the nucleus and is trafficked to nuclear sites termed "hyperspeckles" following ligand binding. In contrast, ERbeta2 contains an 18

  2. The wedelolactone derivative inhibits estrogen receptor-mediated breast, endometrial, and ovarian cancer cells growth.

    PubMed

    Xu, Defeng; Lin, Tzu-Hua; Yeh, Chiuan-Ren; Cheng, Max A; Chen, Lu-Min; Chang, Chawnshang; Yeh, Shuyuan

    2014-01-01

    Estrogen and estrogen receptor (ER)-mediated signaling pathways play important roles in the etiology and progression of human breast, endometrial, and ovarian cancers. Attenuating ER activities by natural products and their derivatives is a relatively practical strategy to control and reduce breast, endometrial, and ovarian cancer risk. Here, we found 3-butoxy-1,8,9-trihydroxy-6H-benzofuro[3,2-c]benzopyran-6-one (BTB), a new derivative of wedelolactone, could effectively inhibit the 17-estradiol (E2)-induced ER transactivation and suppress the growth of breast cancer as well as endometrial and ovarian cancer cells. Our results indicate that 2.5 μM BTB effectively suppresses ER-positive, but not ER-negative, breast, endometrial, and ovarian cancer cells. Furthermore, our data indicate that BTB can modulate ER transactivation and suppress the expression of E2-mediated ER target genes (Cyclin D1, E2F1, and TERT) in the ER-positive MCF-7, Ishikawa, and SKOV-3 cells. Importantly, this BTB mediated inhibition of ER activity is selective since BTB does not suppress the activities of other nuclear receptors, including glucocorticoid receptor and progesterone receptor, suggesting that BTB functions as a selective ER signaling inhibitor with the potential to treat breast, endometrial, and ovarian cancers.

  3. Estrogen receptor ligands counteract cognitive deficits caused by androgen deprivation in male rats.

    PubMed

    Lagunas, Natalia; Calmarza-Font, Isabel; Grassi, Daniela; Garcia-Segura, Luis M

    2011-04-01

    Androgen deprivation causes impairment of cognitive tasks in rodents and humans, and this deficit can be reverted by androgen replacement therapy. Part of the effects of androgens in the male may be mediated by their local metabolism to estradiol or 3-alpha androstanediol within the brain and the consequent activation of estrogen receptors. In this study we have assessed whether the administration of estradiol benzoate, the estrogen receptor β selective agonist diarylpropionitrile or the estrogen receptor α selective agonist propyl pyrazole triol affect performance of androgen-deprived male Wistar rats in the cross-maze test. In addition, we tested the effect of raloxifene and tamoxifen, two selective estrogen receptor modulators used in clinical practice. The behavior of the rats was assessed 2 weeks after orchidectomy or sham surgery. Orchidectomy impaired acquisition in the cross-maze test. Estradiol benzoate and the selective estrogen receptor β agonist significantly improved acquisition in the cross-maze test compared to orchidectomized animals injected with vehicle. Raloxifene and tamoxifen at a dose of 1mg/kg, but not at doses of 0.5 or 2mg/kg, also improved acquisition of orchidectomized animals. Our findings suggest that estrogenic compounds with affinity for estrogen receptor β and selective estrogen receptor modulators, such as raloxifene and tamoxifen, may represent good candidates to promote cognitive performance in androgen-deprived males.

  4. Signaling, physiological functions and clinical relevance of the G protein-coupled estrogen receptor GPER

    PubMed Central

    Prossnitz, Eric R.; Barton, Matthias

    2009-01-01

    GPR30, now named GPER1 (G protein-coupled estrogen receptor1) or GPER here, was first identified as an orphan 7- transmembrane G protein-coupled receptor by multiple laboratories using either homology cloning or differential expression and subsequently shown to be required for estrogen-mediated signaling in certain cancer cells. The actions of estrogen are extensive in the body and are thought to be mediated predominantly by classical nuclear estrogen receptors that act as transcription factors/regulators. Nevertheless, certain aspects of estrogen function remain incompatible with the generally accepted mechanisms of classical estrogen receptor action. Many recent studies have revealed that GPER contributes to some of the actions of estrogen, including rapid signaling events and rapid transcriptional activation. With the introduction of GPER-selective ligands and GPER knockout mice, the functions of GPER are becoming more clearly defined. In many cases, there appears to be a complex interplay between the two receptor systems, suggesting that estrogen-mediated physiological responses may be mediated by either receptor or a combination of both receptor types, with important medical implications. PMID:19442754

  5. Estrogen receptor and progesterone receptor genes are expressed differentially in mouse embryos during preimplantation development.

    PubMed Central

    Hou, Q; Gorski, J

    1993-01-01

    Estrogen and progesterone play an important role in the development and implantation of preimplantation embryos. However, it is controversial whether these hormones act directly on the embryos. The effects of these hormones depend on the existence of their specific receptors. To determine whether estrogen receptor (ER) and progesterone receptor genes are expressed in mouse preimplantation embryos, we examined RNA from embryos at different stages of preimplantation development by reverse transcription-polymerase chain reaction techniques. ER mRNA was found in oocytes and fertilized eggs. The message level began to decline at the two-cell stage and reached its lowest level at the five- to eight-cell stage. ER mRNA was not detectable at the morula stage but reappeared at the blastocyst stage. Progesterone receptor mRNA was not detectable until the blastocyst stage. The embryonic expression of ER and progesterone receptor genes in the blastocyst suggests a possible functional requirement for ER and progesterone receptor at this stage of development. These results provide a basis for determining the direct role of estrogen and progesterone in preimplantation embryos. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8415723

  6. Effects of gamma irradiation on the DNA-protein complex between the estrogen response element and the estrogen receptor

    NASA Astrophysics Data System (ADS)

    Štísová, Viktorie; Goffinont, Stephane; Spotheim-Maurizot, Melanie; Davídková, Marie

    2010-08-01

    Signaling by estrogens, risk factors in breast cancer, is mediated through their binding to the estrogen receptor protein (ER), followed by the formation of a complex between ER and a DNA sequence, called estrogen response element (ERE). Anti-estrogens act as competitive inhibitors by blocking the signal transduction. We have studied in vitro the radiosensitivity of the complex between ERα, a subtype of this receptor, and a DNA fragment bearing ERE, as well as the influence of an estrogen (estradiol) or an anti-estrogen (tamoxifen) on this radiosensitivity. We observe that the complex is destabilized upon irradiation with γ rays in aerated aqueous solution. The analysis of the decrease of binding abilities of the two partners shows that destabilization is mainly due to the damage to the protein. The destabilization is reduced when irradiating in presence of tamoxifen and is increased in presence of estradiol. These effects are due to opposite influences of the ligands on the loss of binding ability of ER. The mechanism that can account for our results is: binding of estradiol or tamoxifen induces distinct structural changes of the ER ligand-binding domain that can trigger (by allostery) distinct structural changes of the ER DNA-binding domains and thus, can differently affect ER-ERE interaction.

  7. Histone methylase MLL1 and MLL3 coordinate with estrogen receptors in estrogen-mediated HOXB9 expression

    PubMed Central

    Ansari, Khairul I.; Shrestha, Bishakha; Hussain, Imran; Kasiri, Sahba; Mandal, Subhrangsu S.

    2011-01-01

    Homeobox gene HOXB9 is a critical player in development of mammary gland and sternum and in regulation of Renin which is closely linked with blood pressure control. Our studies demonstrated that HOXB9 gene is transcriptionally regulated by estrogen (E2). HOXB9 promoter contains several estrogen-response elements (ERE). Reporter assay based experiments demonstrated that HOXB9 promoter EREs are estrogen-responsive. Estrogen receptors ERα and ERβ are essential for E2-mediated transcriptional activation of HOXB9. Chromatin immuno-precipitation assay demonstrated that ERs bind to HOXB9 EREs as a function of E2. Similarly, histone methylases MLL1 and MLL3 also bind to HOXB9 EREs and play critical role in E2-mediated transcriptional activation of HOXB9. Overall, our studies demonstrated that HOXB9 is an E2-responsive gene and ERs coordinate with MLL1 and MLL3 in E2-mediated transcriptional regulation of HOXB9. PMID:21428455

  8. Structural and Functional Profiling of Environmental Ligands for Estrogen Receptors

    PubMed Central

    Delfosse, Vanessa; Grimaldi, Marina; Cavaillès, Vincent

    2014-01-01

    Background: Individuals are exposed daily to environmental pollutants that may act as endocrine-disrupting chemicals (EDCs), causing a range of developmental, reproductive, metabolic, or neoplastic diseases. With their mostly hydrophobic pocket that serves as a docking site for endogenous and exogenous ligands, nuclear receptors (NRs) can be primary targets of small molecule environmental contaminants. However, most of these compounds are chemically unrelated to natural hormones, so their binding modes and associated hormonal activities are hardly predictable. Objectives: We conducted a correlative analysis of structural and functional data to gain insight into the mechanisms by which 12 members of representative families of pollutants bind to and activate the estrogen receptors ERα and ERβ. Methods: We used a battery of biochemical, structural, biophysical, and cell-based approaches to characterize the interaction between ERs and their environmental ligands. Results: Our study revealed that the chemically diverse compounds bound to ERs via varied sets of protein–ligand interactions, reflecting their differential activities, binding affinities, and specificities. We observed xenoestrogens binding to both ERs—with affinities ranging from subnanomolar to micromolar values—and acting in a subtype-dependent fashion as full agonists or partial agonists/antagonists by using different combinations of the activation functions 1 and 2 of ERα and ERβ. Conclusions: The precise characterization of the interactions between major environmental pollutants and two of their primary biological targets provides rational guidelines for the design of safer chemicals, and will increase the accuracy and usefulness of structure-based computational methods, allowing for activity prediction of chemicals in risk assessment. Citation: Delfosse V, Grimaldi M, Cavaillès V, Balaguer P, Bourguet W. 2014. Structural and functional profiling of environmental ligands for estrogen

  9. Estrogen receptor-β in the gonadotropin-releasing hormone neuron.

    PubMed

    Wolfe, Andrew; Wu, Sheng

    2012-01-01

    Estrogen regulation of gonadotropin-releasing hormone (GnRH) neuronal activity plays a crucial role in homeostatic regulation of the hypothalamic-pituitary-gonadal axis. Estrogen also coordinates a complex series of physiological changes culminating with a surge of gonadotropin secretion that triggers ovulation of a developed follicle from the ovary. The coordinated functions of estrogen ensure that the female will elaborate appropriate reproductive behaviors ultimately designed to deliver sperm to the oocyte and to provide a receptive uterine environment for the fertilized embryo. Although the effects of estrogen on GnRH neuronal function have long been proposed to be indirect due to the presumed lack of estrogen receptors in GnRH neurons, the identification of alternative estrogen signaling pathways, including estrogen receptor (ER)β and membrane ERs such as GPR30, has put the focus back on estrogen's effect at the level of the GnRH neuron itself. One candidate to mediate the effects of estrogen is the β isoform of the estrogen receptor. We review the evidence for a role for ERβ-mediated regulation of GnRH neuronal function.

  10. Rational modification of estrogen receptor by combination of computational and experimental analysis.

    PubMed

    Ferrero, Valentina Elisabetta Viviana; Pedotti, Mattia; Chiadò, Alessandro; Simonelli, Luca; Calzolai, Luigi; Varani, Luca; Lettieri, Teresa

    2014-01-01

    In this manuscript, we modulate the binding properties of estrogen receptor protein by rationally modifying the amino acid composition of its ligand binding domain. By combining sequence alignment and structural analysis of known estrogen receptor-ligand complexes with computational analysis, we were able to predict estrogen receptor mutants with altered binding properties. These predictions were experimentally confirmed by producing single point variants with up to an order of magnitude increased binding affinity towards some estrogen disrupting chemicals and reaching an half maximal inhibitory concentration (IC50) value of 2 nM for the 17α-ethinylestradiol ligand. Due to increased affinity and stability, utilizing such mutated estrogen receptor instead of the wild type as bio-recognition element would be beneficial in an assay or biosensor.

  11. Rational modification of estrogen receptor by combination of computational and experimental analysis.

    PubMed

    Ferrero, Valentina Elisabetta Viviana; Pedotti, Mattia; Chiadò, Alessandro; Simonelli, Luca; Calzolai, Luigi; Varani, Luca; Lettieri, Teresa

    2014-01-01

    In this manuscript, we modulate the binding properties of estrogen receptor protein by rationally modifying the amino acid composition of its ligand binding domain. By combining sequence alignment and structural analysis of known estrogen receptor-ligand complexes with computational analysis, we were able to predict estrogen receptor mutants with altered binding properties. These predictions were experimentally confirmed by producing single point variants with up to an order of magnitude increased binding affinity towards some estrogen disrupting chemicals and reaching an half maximal inhibitory concentration (IC50) value of 2 nM for the 17α-ethinylestradiol ligand. Due to increased affinity and stability, utilizing such mutated estrogen receptor instead of the wild type as bio-recognition element would be beneficial in an assay or biosensor. PMID:25075862

  12. Licorice root components in dietary supplements are selective estrogen receptor modulators with a spectrum of estrogenic and anti-estrogenic activities.

    PubMed

    Boonmuen, Nittaya; Gong, Ping; Ali, Zulfiqar; Chittiboyina, Amar G; Khan, Ikhlas; Doerge, Daniel R; Helferich, William G; Carlson, Kathryn E; Martin, Teresa; Piyachaturawat, Pawinee; Katzenellenbogen, John A; Katzenellenbogen, Benita S

    2016-01-01

    Licorice root extracts are often consumed as botanical dietary supplements by menopausal women as a natural alternative to pharmaceutical hormone replacement therapy. In addition to their components liquiritigenin (Liq) and isoliquiritigenin (Iso-Liq), known to have estrogenic activity, licorice root extracts also contain a number of other flavonoids, isoflavonoids, and chalcones. We have investigated the estrogenic activity of 7 of these components, obtained from an extract of Glycyrrhiza glabra powder, namely Glabridin (L1), Calycosin (L2), Methoxychalcone (L3), Vestitol (L4), Glyasperin C (L5), Glycycoumarin (L6), and Glicoricone (L7), and compared them with Liq, Iso-Liq, and estradiol (E2). All components, including Liq and Iso-Liq, have low binding affinity for estrogen receptors (ERs). Their potency and efficacy in stimulating the expression of estrogen-regulated genes reveal that Liq and Iso-Liq and L2, L3, L4, and L6 are estrogen agonists. Interestingly, L3 and L4 have an efficacy nearly equivalent to E2 but with a potency ca. 10,000-fold less. The other components, L1, L5 and L7, acted as partial estrogen antagonists. All agonist activities were reversed by the antiestrogen, ICI 182,780, or by knockdown of ERα with siRNA, indicating that they are ER dependent. In HepG2 hepatoma cells stably expressing ERα, only Liq, Iso-Liq, and L3 stimulated estrogen-regulated gene expression, and in all cases gene stimulation did not occur in HepG2 cells lacking ERα. Collectively, these findings classify the components of licorice root extracts as low potency, mixed ER agonists and antagonists, having a character akin to that of selective estrogen receptor modulators or SERMs. PMID:26631549

  13. Licorice root components in dietary supplements are selective estrogen receptor modulators with a spectrum of estrogenic and anti-estrogenic activities.

    PubMed

    Boonmuen, Nittaya; Gong, Ping; Ali, Zulfiqar; Chittiboyina, Amar G; Khan, Ikhlas; Doerge, Daniel R; Helferich, William G; Carlson, Kathryn E; Martin, Teresa; Piyachaturawat, Pawinee; Katzenellenbogen, John A; Katzenellenbogen, Benita S

    2016-01-01

    Licorice root extracts are often consumed as botanical dietary supplements by menopausal women as a natural alternative to pharmaceutical hormone replacement therapy. In addition to their components liquiritigenin (Liq) and isoliquiritigenin (Iso-Liq), known to have estrogenic activity, licorice root extracts also contain a number of other flavonoids, isoflavonoids, and chalcones. We have investigated the estrogenic activity of 7 of these components, obtained from an extract of Glycyrrhiza glabra powder, namely Glabridin (L1), Calycosin (L2), Methoxychalcone (L3), Vestitol (L4), Glyasperin C (L5), Glycycoumarin (L6), and Glicoricone (L7), and compared them with Liq, Iso-Liq, and estradiol (E2). All components, including Liq and Iso-Liq, have low binding affinity for estrogen receptors (ERs). Their potency and efficacy in stimulating the expression of estrogen-regulated genes reveal that Liq and Iso-Liq and L2, L3, L4, and L6 are estrogen agonists. Interestingly, L3 and L4 have an efficacy nearly equivalent to E2 but with a potency ca. 10,000-fold less. The other components, L1, L5 and L7, acted as partial estrogen antagonists. All agonist activities were reversed by the antiestrogen, ICI 182,780, or by knockdown of ERα with siRNA, indicating that they are ER dependent. In HepG2 hepatoma cells stably expressing ERα, only Liq, Iso-Liq, and L3 stimulated estrogen-regulated gene expression, and in all cases gene stimulation did not occur in HepG2 cells lacking ERα. Collectively, these findings classify the components of licorice root extracts as low potency, mixed ER agonists and antagonists, having a character akin to that of selective estrogen receptor modulators or SERMs.

  14. Circular Permutation Probes for Illuminating Phosphorylation of Estrogen Receptor.

    PubMed

    Kim, Sung-Bae; Tao, Hiroaki

    2016-01-01

    The present protocol demonstrates a new strategy for imaging ligand-triggered protein phosphorylation using circularly permutated luciferases (cpLuc): (1) a luciferase is first fragmented into two segments for creating new N- and C-terminal ends in the hydrophilic region, (2) the original N- and C-terminal ends are circularly permutated and linked via a GS linker, whereas the new ends made by fragmentation are correspondingly linked with two proteins of interest. When the new ends of the cpLuc are linked with the ligand-binding domain of estrogen receptor (ER LBD) and Src homology two domain of Src (SH2), the estrogen can trigger phosphorylation of the ER LBD and consequent intramolecular ER LBD-SH2 binding. This interaction triggers an approximation of the adjacent fragments of split-cpLuc recovering the enzyme activity. This probe design greatly improves signal-to-noise (S/N) ratios upon tracing weak protein-protein interactions (PPIs) in mammalian cells. PMID:27424903

  15. Expression and function of a novel variant of estrogen receptor-α36 in murine airways.

    PubMed

    Jia, Shuping; Zhang, Xintian; He, David Z Z; Segal, Manav; Berro, Abdo; Gerson, Trevor; Wang, Zhaoyi; Casale, Thomas B

    2011-11-01

    Evidence suggests that estrogen signaling is involved in sex differences in the prevalence rates and control of asthma, but the expression patterns of estrogen receptor variants and estrogen function in the lung are not well established. We investigated the expression of major estrogen receptor variants occurring naturally and after the development of allergen-induced airway hyperreactivity in a murine model of allergic asthma, along with the role of estrogen signaling in small-airway ciliary motion and smooth muscle contraction. Female BALB/c mice were sensitized with ovalbumin, and estrogen receptor expression patterns were examined by immunofluorescence and Western blot analysis. Time-lapse video and photodiode-based displacement measurement systems were used to assess the effects of estrogen signaling on airway ciliary beat frequency and smooth muscle contraction. We found that a novel variant of estrogen receptor (ER)-α, ER-α36, is expressed in airway epithelial and smooth muscle cells. ER-α36 was predominately localized on the plasma membranes of airway cells. After sensitization to allergen, the expression levels of ER-α36 increased significantly (P < 0.01), whereas the expression of ER-β and ER-α66 did not significantly change. Estrogen treatment in vitro resulted in a rapid increase in airway cilia motion in a dose-dependent fashion, but did not exert any effect on airway smooth muscle contraction. We speculate that the up-regulation of estrogen receptor expression associated with allergen-induced airway hyperresponsiveness may constitute a protective mechanism to facilitate the clearance of mucus. The identification and localization of specific estrogen receptor subtypes in the lung could lead to newer therapeutic avenues aimed at addressing sex differences of asthma susceptibility. PMID:21642591

  16. Anti-thrombotic effects of selective estrogen receptor modulator tamoxifen.

    PubMed

    Nayak, Manasa K; Singh, Sunil K; Roy, Arnab; Prakash, Vivek; Kumar, Anand; Dash, Debabrata

    2011-10-01

    Tamoxifen is a known anti-cancer drug and established estrogen receptor modulator. Few clinical studies have earlier implicated the drug in thrombotic complications attributable to lower anti-thrombin and protein S levels in plasma. However, action of tamoxifen on platelet signalling machinery has not been elucidated in detail. In the present report we show that tamoxifen is endowed with significant inhibitory property against human platelet aggregation. From a series of in vivo and in vitro studies tamoxifen was found to inhibit almost all platelet functions, prolong tail bleeding time in mouse and profoundly prevent thrombus formation at injured arterial wall in mice, as well as on collagen matrix perfused with platelet-rich plasma under arterial shear against the vehicle dimethylsulfoxide (DMSO). These findings strongly suggest that tamoxifen significantly downregulates platelet responses and holds potential as a promising anti-platelet/anti-thrombotic agent. PMID:21866300

  17. Anti-thrombotic effects of selective estrogen receptor modulator tamoxifen.

    PubMed

    Nayak, Manasa K; Singh, Sunil K; Roy, Arnab; Prakash, Vivek; Kumar, Anand; Dash, Debabrata

    2011-10-01

    Tamoxifen is a known anti-cancer drug and established estrogen receptor modulator. Few clinical studies have earlier implicated the drug in thrombotic complications attributable to lower anti-thrombin and protein S levels in plasma. However, action of tamoxifen on platelet signalling machinery has not been elucidated in detail. In the present report we show that tamoxifen is endowed with significant inhibitory property against human platelet aggregation. From a series of in vivo and in vitro studies tamoxifen was found to inhibit almost all platelet functions, prolong tail bleeding time in mouse and profoundly prevent thrombus formation at injured arterial wall in mice, as well as on collagen matrix perfused with platelet-rich plasma under arterial shear against the vehicle dimethylsulfoxide (DMSO). These findings strongly suggest that tamoxifen significantly downregulates platelet responses and holds potential as a promising anti-platelet/anti-thrombotic agent.

  18. Modulation of the estrogen receptor structure, evidence of a heterogeneity

    SciTech Connect

    Toulas, C.; Guilbaud, N.; Delassus, F.; Bayard, F.; Faye, J.C. )

    1990-01-01

    In order to analyse the molecular weight polymorphism of the estrogen receptor (ER) in MCF-7 cells, we have developed a procedure which allowed in situ linkage of ER by (3H) tamoxifen aziridine and provided labelled proteins in conditions which minimized protease activities. After labelling, cell lysis was performed in SDS buffer containing various concentrations of mercaptoethanol. Proteins extracted with phenolic solution and precipitated by cold acetone were analysed by SDS PAGE. It appears that beside the form of 67 kDa already described, binding entities of tamoxifen aziridine were also present at a molecular mass of 110 kDa and 45 kDa. On the other hand, investigations on the effect of 12-0-Tetradecanoyl Phorbol 13-Acetate (TPA) showed that TPA induces a decrease of the 67 kDa entity.

  19. Role of the short isoform of the progesterone receptor in breast cancer cell invasiveness at estrogen and progesterone levels in the pre- and post-menopausal ranges

    PubMed Central

    McFall, Thomas; Patki, Mugdha; Rosati, Rayna; Ratnam, Manohar

    2015-01-01

    Overexpression of the progesterone receptor (PR) isoform A (PR-A) is a negative prognosticator for estrogen receptor (ER)-positive breast cancer but in vitro studies have implicated PR-B in progestin-induced invasiveness. As estrogen is known to suppress invasiveness and tumor progression and as the in vitro studies were conducted in models that either lacked ER or excluded estrogen, we examined the role of PR isoforms in the context of estrogen signaling. Estrogen (< 0.01nM) strongly suppressed invasiveness in various ER+ model cell lines. At low (< 1nM) concentrations, progestins completely abrogated inhibition of invasiveness by estrogen. It was only in a higher (5 nM — 50 nM) concentration range that progestins induced invasiveness in the absence of estrogen. The ability of low dose progestins to rescue invasiveness from estrogen regulation was exclusively mediated by PR-A, whereas PR-B mediated the estrogen-independent component of progestin-induced invasiveness. Overexpression of PR-A lowered the progestin concentration needed to completely rescue invasiveness. Among estrogen-regulated genes, progestin/PR-A counter-regulated a distinctive subset, including breast tumor progression genes (e.g., HES1, PRKCH, ELF5, TM4SF1), leading to invasiveness. In this manner, at relatively low hormone concentrations (corresponding to follicular stage and post-menopausal breast tissue or plasma levels), progesterone influences breast cancer cell invasiveness by rescuing it from estrogen regulation via PR-A, whereas at higher concentrations the hormone also induces invasiveness independent of estrogen signaling, through PR-B. The findings point to a direct functional link between PR-A and progression of luminal breast cancer in the context of the entire range of pre- and post-menopausal plasma and breast tissue hormone levels. PMID:26356672

  20. A Study Evaluating INIPARIB in Combination With Chemotherapy to Treat Triple Negative Breast Cancer Brain Metastasis

    ClinicalTrials.gov

    2016-02-17

    Estrogen Receptor Negative (ER-Negative) Breast Cancer; Progesterone Receptor Negative (PR-Negative) Breast Cancer; Human Epidermal Growth Factor Receptor 2 Negative (HER2-Negative) Breast Cancer; Brain Metastases

  1. Estrogens Induce Expression of Membrane-Associated Estrogen Receptor α Isoforms in Lactotropes

    PubMed Central

    Zárate, Sandra; Jaita, Gabriela; Ferraris, Jimena; Eijo, Guadalupe; Magri, María L.; Pisera, Daniel; Seilicovich, Adriana

    2012-01-01

    Estrogens are key to anterior pituitary function, stimulating hormone release and controlling cell fate to achieve pituitary dynamic adaptation to changing physiological conditions. In addition to their classical mechanism of action through intracellular estrogen receptors (ERs), estrogens exert rapid actions via cell membrane-localized ERs (mERs). We previously showed that E2 exerts a rapid pro-apoptotic action in anterior pituitary cells, especially in lactotropes and somatotropes, through activation of mERs. In the present study, we examined the involvement of mERα in the rapid pro-apoptotic action of estradiol by TUNEL in primary cultures of anterior pituitary cells from ovariectomized rats using a cell-impermeable E2 conjugate (E2-BSA) and an ERα selective antagonist (MPP dihydrochloride). We studied mERα expression during the estrous cycle and its regulation by gonadal steroids in vivo by flow cytometry. We identified ERα variants in the plasma membrane of anterior pituitary cells during the estrous cycle and studied E2 regulation of these mERα variants in vitro by surface biotinylation and Western Blot. E2-BSA-induced apoptosis was abrogated by MPP in total anterior pituitary cells and lactotropes. In cycling rats, we detected a higher number of lactotropes and a lower number of somatotropes expressing mERα at proestrus than at diestrus. Acute E2 treatment increased the percentage of mERα-expressing lactotropes whereas it decreased the percentage of mERα-expressing somatotropes. We detected three mERα isoforms of 66, 39 and 22 kDa. Expression of mERα66 and mERα39 was higher at proestrus than at diestrus, and short-term E2 incubation increased expression of these two mERα variants. Our results indicate that the rapid apoptotic action exerted by E2 in lactotropes depends on mERα, probably full-length ERα and/or a 39 kDa ERα variant. Expression and activation of mERα variants in lactotropes could be one of the mechanisms through which E2

  2. A helminth cestode parasite express an estrogen-binding protein resembling a classic nuclear estrogen receptor.

    PubMed

    Ibarra-Coronado, Elizabeth Guadalupe; Escobedo, Galileo; Nava-Castro, Karen; Jesús Ramses, Chávez-Rios; Hernández-Bello, Romel; García-Varela, Martìn; Ambrosio, Javier R; Reynoso-Ducoing, Olivia; Fonseca-Liñán, Rocío; Ortega-Pierres, Guadalupe; Pavón, Lenin; Hernández, María Eugenia; Morales-Montor, Jorge

    2011-01-01

    The role of an estrogen-binding protein similar to a known mammalian estrogen receptor (ER) is described in the estradiol-dependent reproduction of the helminth parasite Taenia crassiceps. Previous results have shown that 17-β-estradiol induces a concentration-dependent increase in bud number of in vitro cultured cysticerci. This effect is inhibited when parasites are also incubated in the presence of an ER binding-inhibitor (tamoxifen). RT-PCR assays using specific oligonucleotides of the most conserved ER sequences, showed expression by the parasite of a mRNA band of molecular weight and sequence corresponding to an ER. Western blot assays revealed reactivity with a 66 kDa protein corresponding to the parasite ER protein. Tamoxifen treatment strongly reduced the production of the T. crassiceps ER-like protein. Antibody specificity was demonstrated by immunoprecipitating the total parasite protein extract with anti-ER-antibodies. Cross-contamination by host cells was discarded by flow cytometry analysis. ER was specifically detected on cells expressing paramyosin, a specific helminth cell marker. Parasite cells expressing the ER-like protein were located by confocal microscopy in the subtegumental tissue exclusively. Analysis of the ER-like protein by bidimensional electrophoresis and immunoblot identified a specific protein of molecular weight and isoelectric point similar to a vertebrates ER. Sequencing of the spot produced a small fragment of protein similar to the mammalian nuclear ER. Together these results show that T. crassiceps expresses an ER-like protein which activates the budding of T. crassiceps cysticerci in vitro. To the best of our knowledge, this is the first report of an ER-like protein in parasites. This finding may have strong implications in the fields of host-parasite co-evolution as well as in sex-associated susceptibility to this infection, and could be an important target for the design of new drugs.

  3. Prebending the estrogen response element destabilizes binding of the estrogen receptor DNA binding domain.

    PubMed Central

    Kim, J; de Haan, G; Nardulli, A M; Shapiro, D J

    1997-01-01

    Binding of many eukaryotic transcription regulatory proteins to their DNA recognition sequences results in conformational changes in DNA. To test the effect of altering DNA topology by prebending a transcription factor binding site, we examined the interaction of the estrogen receptor (ER) DNA binding domain (DBD) with prebent estrogen response elements (EREs). When the ERE in minicircle DNA was prebent toward the major groove, which is in the same direction as the ER-induced DNA bend, there was no significant effect on ER DBD binding relative to the linear counterparts. However, when the ERE was bent toward the minor groove, in a direction that opposes the ER-induced DNA bend, there was a four- to eightfold reduction in ER DBD binding. Since reduced binding was also observed with the ERE in nicked circles, the reduction in binding was not due to torsional force induced by binding of ER DBD to the prebent ERE in covalently closed minicircles. To determine the mechanism responsible for reduced binding to the prebent ERE, we examined the effect of prebending the ERE on the association and dissociation of the ER DBD. Binding of the ER DBD to ERE-containing minicircles was rapid when the EREs were prebent toward either the major or minor groove of the DNA (k(on) of 9.9 x 10(6) to 1.7 x 10(7) M(-1) s(-1)). Prebending the ERE toward the minor groove resulted in an increase in k(off) of four- to fivefold. Increased dissociation of the ER DBD from the ERE is, therefore, the major factor responsible for reduced binding of the ER DBD to an ERE prebent toward the minor groove. These data provide the first direct demonstration that the interaction of a eukaryotic transcription factor with its recognition sequence can be strongly influenced by altering DNA topology through prebending the DNA. PMID:9154816

  4. Molecular Characterization and Sex-Specific Tissue Expression of Estrogen Receptor Alpha (esr1), Estrogen Receptor Beta-a (esr2a) and Ovarian Aromatase (cyp19a1a) in Yellow Perch (Perca flavescens)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yellow perch (Perca flavescens) exhibit an estrogen-stimulated sexual size dimorphism (SSD) wherein females grow faster and larger than males. To aid in the examination of this phenomenon, the cDNA sequences encoding estrogen receptor-alpha (esr1), estrogen receptor-beta-a (esr2a) and ovarian aroma...

  5. Repression of estrogen receptor {beta} function by putative tumor suppressor DBC1

    SciTech Connect

    Koyama, Satoshi; Wada-Hiraike, Osamu; Nakagawa, Shunsuke; Tanikawa, Michihiro; Hiraike, Haruko; Miyamoto, Yuichiro; Sone, Kenbun; Oda, Katsutoshi; Fukuhara, Hiroshi; Nakagawa, Keiichi; Kato, Shigeaki; Yano, Tetsu; Taketani, Yuji

    2010-02-12

    It has been well established that estrogen is involved in the pathophysiology of breast cancer. Estrogen receptor (ER) {alpha} appears to promote the proliferation of cancer tissues, while ER{beta} can protect against the mitogenic effect of estrogen in breast tissue. The expression status of ER{alpha} and ER{beta} may greatly influence on the development, treatment, and prognosis of breast cancer. Previous studies have indicated that the deleted in breast cancer 1 (DBC1/KIAA1967) gene product has roles in regulating functions of nuclear receptors. The gene encoding DBC1 is a candidate for tumor suppressor identified by genetic search for breast cancer. Caspase-dependent processing of DBC1 promotes apoptosis, and depletion of the endogenous DBC1 negatively regulates p53-dependent apoptosis through its specific inhibition of SIRT1. In addition, DBC1 modulates ER{alpha} expression and promotes breast cancer cell survival by binding to ER{alpha}. Here we report an ER{beta}-specific repressive function of DBC1. Immunoprecipitation and immunofluorescence studies show that ER{beta} and DBC1 interact in a ligand-independent manner similar to ER{alpha}. In vitro pull-down assays revealed a direct interaction between DBC1 amino-terminus and activation function-1/2 domain of ER{beta}. Although DBC1 shows no influence on the ligand-dependent transcriptional activation function of ER{alpha}, the expression of DBC1 negatively regulates the ligand-dependent transcriptional activation function of ER{beta}in vivo, and RNA interference-mediated depletion of DBC1 stimulates the transactivation function of ER{beta}. These results implicate the principal role of DBC1 in regulating ER{beta}-dependent gene expressions.

  6. Differential expression of estrogen receptor α and progesterone receptor in the normal and cryptorchid testis of a dog

    PubMed Central

    Jung, Hyo Young; Yoo, Dae Young; Jo, Young Kwang; Kim, Geon A; Chung, Jin Young; Choi, Jung Hoon

    2016-01-01

    Descending of the testes is an important process for spermatogenesis and cryptorchidism is one of the most relevant genital defects in dogs. In a previous study, we observed abnormal morphology and proliferation of Sertoli cells in a cryptorchid testis. In the present study, we investigated the expression of estrogen and progesterone receptors in the normal and cryptorchid testis of a dog. Elective orchidectomy was performed on the dog's abdominal right testis (undescended, cryptorchid) and scrotal left testis (descended, normal). In the normal testis, estrogen receptor α immunoreactivity was detected in Leydig cells alone, while estrogen receptor α immunoreactivity in the cryptorchid testis was significantly prominent in the Sertoli cells as well. In addition, progesterone receptor immunoreactivity in the control testis was detected in the spermatids, but was not detected in the cryptorchid testis. This result suggests that unilateral cryptorchidism causes increases of estrogen receptor α expression in Sertoli cells. PMID:27382382

  7. Differential expression of estrogen receptor α and progesterone receptor in the normal and cryptorchid testis of a dog.

    PubMed

    Jung, Hyo Young; Yoo, Dae Young; Jo, Young Kwang; Kim, Geon A; Chung, Jin Young; Choi, Jung Hoon; Jang, Goo; Hwang, In Koo

    2016-06-01

    Descending of the testes is an important process for spermatogenesis and cryptorchidism is one of the most relevant genital defects in dogs. In a previous study, we observed abnormal morphology and proliferation of Sertoli cells in a cryptorchid testis. In the present study, we investigated the expression of estrogen and progesterone receptors in the normal and cryptorchid testis of a dog. Elective orchidectomy was performed on the dog's abdominal right testis (undescended, cryptorchid) and scrotal left testis (descended, normal). In the normal testis, estrogen receptor α immunoreactivity was detected in Leydig cells alone, while estrogen receptor α immunoreactivity in the cryptorchid testis was significantly prominent in the Sertoli cells as well. In addition, progesterone receptor immunoreactivity in the control testis was detected in the spermatids, but was not detected in the cryptorchid testis. This result suggests that unilateral cryptorchidism causes increases of estrogen receptor α expression in Sertoli cells. PMID:27382382

  8. Sphingosine-1-phosphate receptor 1 transmits estrogens' effects in endothelial cells.

    PubMed

    Sukocheva, Olga; Wadham, Carol; Gamble, Jennifer; Xia, Pu

    2015-12-01

    We have previously reported that the steroid hormone estrogens stimulate activation of sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate (S1P) receptors in breast cancer cells. Both estrogens and S1P are potent biological modulators of endothelial function in vasculature able to activate multiple effectors, including endothelial nitric oxide synthase (eNOS). In this study we report that treatment of endothelial cells (ECs) with 17β-estradiol (E2) resulted in a rapid, transient, and dose-dependent increase in SphK activity and increased S1P production. The effect was not reproduced by the inactive E2 analogue 17α-E2. Expression of the dominant-negative mutant SphK1(G82D) or transfection of SphK1-targeted siRNA in ECs caused not only a defect in SphK activation by E2, but also a significant inhibition of E2-induced activation of Akt/eNOS. Furthermore, E2 treatment induced internalization of plasma membrane S1P1 receptor, accompanied with an increase in the amount of cytosolic S1P1. By down-regulating S1P1 receptor expression, the S1P1-specific antisense oligonucleotides significantly inhibited E2-induced activation of Akt/eNOS in ECs. E2-induced EC migration and tube formation were also inhibited by S1P1 down-regulation. Thus, the findings indicate an important role of the SphK1/S1P1 pathway in mediating estrogen signaling and its actions in vasculature.

  9. Estrogen receptor independent neurotoxic mechanism of bisphenol A, an environmental estrogen

    PubMed Central

    Lee, Yoot Mo; Seong, Min Jae; Lee, Jae Woong; Lee, Yong Kyung; Kim, Tae Myoung; Nam, Sang-Yoon; Kim, Dae Joong; Yun, Young Won; Kim, Tae Seong; Han, Soon Young

    2007-01-01

    Bisphenol A (BPA), a ubiquitous environmental contaminant, has been shown to cause developmental toxicity and carcinogenic effects. BPA may have physiological activity through estrogen receptor (ER) -α and -β, which are expressed in the central nervous system. We previously found that exposure of BPA to immature mice resulted in behavioral alternation, suggesting that overexposure of BPA could be neurotoxic. In this study, we further investigated the molecular neurotoxic mechanisms of BPA. BPA increased vulnerability (decrease of cell viability and differentiation, and increase of apoptotic cell death) of undifferentiated PC12 cells and cortical neuronal cells isolated from gestation 18 day rat embryos in a concentration-dependent manner (more than 50 µM). The ER antagonists, ICI 182,780, and tamoxifen, did not block these effects. The cell vulnerability against BPA was not significantly different in the PC12 cells overexpressing ER-α and ER-β compared with PC12 cells expressing vector alone. In addition, there was no difference observed between BPA and 17-β estradiol, a well-known agonist of ER receptor in the induction of neurotoxic responses. Further study of the mechanism showed that BPA significantly activated extracellular signal-regulated kinase (ERK) but inhibited anti-apoptotic nuclear factor kappa B (NF-κB) activation. In addition, ERK-specific inhibitor, PD 98,059, reversed BPA-induced cell death and restored NF-κB activity. This study demonstrated that exposure to BPA can cause neuronal cell death which may eventually be related with behavioral alternation in vivo. However, this neurotoxic effect may not be directly mediated through an ER receptor, as an ERK/NF-κB pathway may be more closely involved in BPA-induced neuronal toxicity. PMID:17322771

  10. The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our data demonstrate that estrogens, estrogen receptor-alpha (ERalpha), and estrogen receptor-ßeta (ERßeta) regulate adipose tissue distribution, inflammation, fibrosis, and glucose homeostasis, by determining that alphaERKO mice have increased adipose tissue inflammation and fibrosis prior to obesi...

  11. Identification and Biological Evaluation of Coactivator Binding Inhibitors for the Estrogen Receptor

    ERIC Educational Resources Information Center

    Gunther, Jillian Rebecca

    2009-01-01

    The physiologic effects of estrogen action through the estrogen receptor (ER) are widespread, as this hormone exerts actions in both reproductive (e.g., uterus) and non-reproductive (e.g., bone, brain) tissues in both men and women. As such, the regulation of the activity of this ligand-activated transcription factor is highly relevant to the…

  12. The relationship between ovarian steroids and uterine estrogen receptors during late pregnancy

    SciTech Connect

    Cathey, T.M.; Chung, Kyung W. )

    1991-01-01

    Although a direct interdependence exists between the ovarian steroids, estrogen and progesterone, the exact role of these two hormones during pregnancy, especially late pregnancy, is not completely understood. Investigations have been conducted to determine whether the circulating levels of progesterone and estrogen or changes in the ratio of progesterone/estrogen in relation to the concentration of uterine estrogen receptors are associated with triggering parturition. Ninety-day old female rats were sacrificed at gestation days 14, 16, 18, 20 and two days post-partum. The plasma levels of estradiol and progesterone were measured by solid-phase radioimmunoassay. Uterine cytosol was subjected to a charcoal binding assay to determine the concentration of estrogen receptors. Our findings demonstrate that there is a significant drop in both plasma progesterone and estradiol during late pregnancy. Also indicated is a significant increase in uterine estrogen receptors throughout late pregnancy. Finally, during this period there is a direct correlation between the shift in the progesterone/estrogen ratio and the increase in the concentration of uterine estrogen receptors in late pregnancy.

  13. Integration of Nuclear- and Extranuclear-Initiated Estrogen Receptor Signaling in Breast Cancer Cells

    ERIC Educational Resources Information Center

    Madak Erdogan, Zeynep

    2009-01-01

    Estrogenic hormones exert their effects through binding to Estrogen Receptors (ERs), which work in concert with coregulators and extranuclear signaling pathways to control gene expression in normal as well as cancerous states, including breast tumors. In this thesis, we have used multiple genome-wide analysis tools to elucidate various ways that…

  14. Defining a minimal estrogen receptor DNA binding domain.

    PubMed Central

    Mader, S; Chambon, P; White, J H

    1993-01-01

    The estrogen receptor (ER) is a transcriptional regulator which binds to cognate palindromic DNA sequences known as estrogen response elements (EREs). A 66 amino acid core region which contains two zinc fingers and is highly conserved among the nuclear receptors is essential for site specific DNA recognition. However, it remains unclear how many flanking amino acids in addition to the zinc finger core are required for DNA binding. Here, we have characterized the minimal DNA binding region of the human ER by analysing the DNA binding properties of a series of deletion mutants expressed in bacteria. We find that the 66 amino acid zinc finger core of the DBD fails to bind DNA, and that the C-terminal end of the minimal ER DBD required for binding to perfectly palindromic EREs corresponds to the limit of 100% amino acid homology between the chicken and human receptors, which represents the boundary between regions C and D in the ER. Moreover, amino acids of region D up to 30 residues C-terminal to the zinc fingers greatly stabilize DNA binding by the DBD to perfectly palindromic EREs and are absolutely required for formation of gel retardation complexes by the DBD on certain physiological imperfectly palindromic EREs. These results indicate that in addition to the zinc finger core, amino acids C-terminal to the core in regions C and D play a key role in DNA binding by the ER, particularly to imperfectly palindromic response elements. The ER DBD expressed in E. coli binds as a dimer to ERE palindromes in a highly cooperative manner and forms only low levels of monomeric protein-DNA complexes on either palindromic or half-palindromic response elements. Conversion of ER amino acids 222 to 226, which lie within region C, to the corresponding residues of the human RAR alpha abolishes formation of dimeric protein-DNA complexes. Conversely, replacement of the same region of RAR alpha with ER residues 222 to 226 creates a derivative that, unlike the RAR alpha DBD, binds

  15. Interaction of Vault Particles with Estrogen Receptor in the MCF-7 Breast Cancer Cell

    PubMed Central

    Abbondanza, Ciro; Rossi, Valentina; Roscigno, Annarita; Gallo, Luigi; Belsito, Angela; Piluso, Giulio; Medici, Nicola; Nigro, Vincenzo; Molinari, Anna Maria; Moncharmont, Bruno; Puca, Giovanni A.

    1998-01-01

    A 104-kD protein was coimmunoprecipitated with the estrogen receptor from the flowtrough of a phosphocellulose chromatography of MCF-7 cell nuclear extract. mAbs to this protein identified several cDNA clones coding for the human 104-kD major vault protein. Vaults are large ribonucleoprotein particles of unknown function present in all eukaryotic cells. They have a complex morphology, including several small molecules of RNA, but a single protein species, the major vault protein, accounts for >70% of their mass. Their shape is reminiscent of the nucleopore central plug, but no proteins of known function have been described to interact with them. Western blot analysis of vaults purified on sucrose gradient showed the presence of estrogen receptor co-migrating with the vault peak. The AER317 antibody to estrogen receptor coimmunoprecipitated the major vault protein and the vault RNA also in the 20,000 g supernatant fraction. Reconstitution experiments of estrogen receptor fragments with the major vault protein mapped the site of the interaction between amino acids 241 and 280 of human estrogen receptor, where the nuclear localization signal sequences are located. Estradiol treatment of cells increased the amount of major vault protein present in the nuclear extract and coimmunoprecipitated with estrogen receptor, whereas the anti-estrogen ICI182,780 had no effect. The hormone-dependent interaction of vaults with estrogen receptor was reproducible in vitro and was prevented by sodium molybdate. Antibodies to progesterone and glucocorticoid receptors were able to coimmunoprecipitate the major vault protein. The association of nuclear receptors with vaults could be related to their intracellular traffic. PMID:9628887

  16. Molecular cloning of estrogen receptor alpha (ERalpha; ESR1) of the Japanese giant salamander, Andrias japonicus.

    PubMed

    Katsu, Yoshinao; Kohno, Satomi; Oka, Tomohiro; Mitsui, Naoko; Tooi, Osamu; Santo, Noriaki; Urushitani, Hiroshi; Fukumoto, Yukio; Kuwabara, Kazushi; Ashikaga, Kazuhide; Minami, Shinji; Kato, Shigeaki; Ohta, Yasuhiko; Guillette, Louis J; Iguchi, Taisen

    2006-09-26

    Estrogens are essential for normal reproductive activity in females and males and for ovarian differentiation during a critical developmental stage in many vertebrates. To understand the molecular mechanisms of estrogen action and to evaluate estrogen receptor ligand interactions in the Japanese giant salamander (Andrias japonicus), we isolated cDNA encoding the estrogen receptor (ER) from the liver. A full-length Japanese giant salamander ER cDNA (jgsER) was obtained using 5' and 3' rapid amplification cDNA ends (RACE). The deduced amino acid sequence of the jgsER showed high identity to the Xenopus ERalpha (ESR1) (77.7%). We have applied both the conventional ERE-luciferase reporter assay system and the GAL4-transactivation system to characterize this receptor. In two different transient transfection assay systems using mammalian cells, the jgsER protein displayed estrogen-dependent activation of transcription. The GAL4-transactivation system showed about 10-fold greater activity of the estrogen receptor by hormone when compared to the conventional ERE-luciferase reporter assay system. Tissue distribution of ERalpha mRNA was examined and kidney, ovary and liver exhibited expression. This is the first isolation of an estrogen receptor from a salamander and also is the first functional cDNA obtained from the Japanese giant salamander, an endangered species considered a special natural monument of Japan.

  17. Bromine-80m-labeled estrogens: Auger-electron emitting, estrogen receptor-directed ligands with potential for therapy of estrogen receptor positive cancers

    SciTech Connect

    DeSombre, E.R.; Mease, R.C.; Hughes, A.; Harper, P.V.; DeJesus, O.T.; Friedman, A.M.

    1988-01-01

    A triphenylbromoethylene, 1,1-bis(p-hydroxyphenyl)-2-bromo-2-phenylethylene, Br-BHPE, and a bromosteroidal estrogen, 17..cap alpha..- bromovinylestradiol, BrVE/sub 2/, were labeled with the Auger electron emitting nuclide bromine-80m, prepared by the (p,n) reaction with /sup 80/Se. To assess their potential as estrogen receptor (ER) directed therapeutic substrates the bromine-80m labeled estrogens were injected into immature female rats and the tissue distribution studied at 0.5 and 2 hours. Both radiobromoestrogens showed substantial diethylstilbesterol (DES)-inhibitable localization in the ER rich tissues, uterus, pituitary, ovary and vagina at both time points. While the percent dose per gram tissue was higher for the Br-BHPE, the BrVE/sub 2/ showed higher tissue to blood ratios, especially at 2 hr, reflecting the lower blood concentrations of radiobromine following administration of the steroidal bromoestrogen. Comparing intraperitoneal, intravenous and subcutaneous routes of administration for the radiobromine labeled Br-BHPE, the intraperitoneal route was particularly advantageous to provide maximum, DES-inhibitable concentrations in the peritoneal, ER-rich target organs, the uterus, ovary and vagina. While uterine concentrations after BrBHPE were from 10--48% dose/g and after BrVE/sub 2/ were 15--25% dose/g, similar treatment with /sup 80m/Br as sodium bromide showed uniform low concentrations in all tissues at about the levels seen in blood. The effective specific activity of (/sup 80m/Br)BrBHPE, assayed by specific binding to ER in rat uterine cytosol, was 8700 Ci/mmole. 23 refs., 9 figs., 2 tabs.

  18. Regulatory function of the P295-T311 motif of the estrogen receptor α - does proteasomal degradation of the receptor induce emergence of peptides implicated in estrogenic responses?

    PubMed Central

    Gallo, Dominique; Haddad, Iman; Laurent, Guy; Vinh, Joëlle; Jacquemotte, Françoise; Jacquot, Yves; Leclercq, Guy

    2008-01-01

    The way in which estrogen receptor α (ERα) mediates gene transcription and hormone-dependent cancer cell proliferation is now being largely reconsidered in view of several recent discoveries. ERα-mediated transcription appears to be a cyclic and transient process where the proteasome - and thus receptor degradation - plays a pivotal role. In view of our recent investigations, which demonstrate the estrogenic activity of a synthetic peptide corresponding to a regulatory motif of the receptor (ERα17p), we propose that ERα proteasomal degradation could induce the emergence of regulatory peptide(s). The latter would function as a signal and contribute to the ERα activation process, amplifying the initial hormonal stimulation and giving rise to sustained estrogenic response. PMID:18432312

  19. Design and Synthesis of Norendoxifen Analogues with Dual Aromatase Inhibitory and Estrogen Receptor Modulatory Activities

    PubMed Central

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C.; Flockhart, David A.; Cushman, Mark

    2015-01-01

    Both selective estrogen receptor modulators and aromatase inhibitors are widely used for the treatment of breast cancer. Compounds with both aromatase inhibitory and estrogen receptor modulatory activities could have special advantages for treatment of breast cancer. Our previous efforts led to the discovery of norendoxifen as the first compound with dual aromatase inhibitory and estrogen receptor binding activities. To optimize its efficacy and aromatase selectivity versus other cytochrome P450 enzymes, a series of structurally related norendoxifen analogues were designed and synthesized. The most potent compound, 4'-hydroxynorendoxifen (10), displayed elevated inhibitory potency against aromatase and enhanced affinity for estrogen receptors when compared to norendoxifen. The selectivity of 10 for aromatase versus other cytochrome P450 enzymes was also superior to norendoxifen. 4'-Hydroxynorendoxifen is therefore an interesting lead for further development to obtain new anticancer agents of potential value for the treatment of breast cancer. PMID:25751283

  20. Dissection of Estrogen Receptor Alpha Signaling Pathways in Osteoblasts Using RNA-Sequencing

    PubMed Central

    Roforth, Matthew M.; Atkinson, Elizabeth J.; Levin, Ellis R.; Khosla, Sundeep; Monroe, David G.

    2014-01-01

    The effects of 17-β-estradiol in osteoblasts are primarily mediated by the nuclear transcription factors, estrogen receptor (ER)α and ERβ. ERs function through three general modes of action: DNA-binding dependent through estrogen response elements (EREs; designated nuclear ERE signaling); nuclear signaling via protein-protein interactions to other transcription factors (nuclear non-ERE signaling); and extra-nuclear signaling (membrane-bound functions of ERs). Identification of the specific transcriptional signatures regulated by each of these modes of action should contribute to an enhanced understanding of estrogen signaling in osteoblasts. To achieve this goal, we utilized specific mutations of ERα that eliminate the ability of the receptor to signal through a specific mode of action. The non-classical ERα knock-in (NERKI) mutation is incapable of signaling through direct DNA binding to EREs and the nuclear only ERα (NOER) mutation eliminates all membrane-localized signaling. Comparison of the gene expression patterns elicited by these mutations with the wild-type ERα (WT) pattern provides mode-specific data concerning transcriptional regulation by ERα. We expressed these constructs in the ER-negative osteoblastic cell line hFOB (−/+ estrogen) and performed global RNA-sequencing. Using a series of pair-wise comparisons, we generated three lists of genes that were regulated either by the nuclear ERE-dependent, nuclear ERE-independent, or extra-nuclear actions of ERα. Pathway and gene ontology analyses revealed that genes regulated through the nuclear ERE and nuclear non-ERE pathways were largely involved in transcriptional regulation, whereas genes regulated through extra-nuclear mechanisms are involved in cytoplasmic signaling transduction pathways. We also intersected our data with genes linked to bone density and fractures from a recent genome-wide association study and found 25 of 72 genes (35%) regulated by estrogen. These data provide a

  1. Receptor-binding radiopharmaceuticals for imaging breast tumors: estrogen-receptor interactions and selectivity of tissue uptake of halogenated estrogen analogs

    SciTech Connect

    Katzenellenbogen J.A.; Carlson, K.E.; Heiman, D.F.; Goswami, R.

    1980-06-01

    Four halogenated estrogen analogs - o-fluorohexestrol, and 1-fluoro-, 1-bromo-, and 1-iodohexestrol - have been prepared and tritium-labeled in high specific activity, to investigate their potential as estrogen-receptor-based agents for imaging breast tumors. These compounds bind with high affinity in vitro to the cytoplasmic uterine estrogen receptor from rat and lamb and sediment as 8S receptor complexes on sucrose gradients. After 1 hr in immature rats, these compounds show high uptake into the uterus, but low uptakes (10 to 25% of the uterine levels) into most nontarget tissues. The uterine uptake is estrogen specific since it is depressed by excess nonradioactive estradiol. Uptake selectivity is greatest for the fluorohexestrols and decreases for the bromo and iodo compounds. In mature rats bearing DMBA-induced mammary tumors, selective uptake by the uterus and tumors is seen with 1-fluoro(/sup 3/H/sub 4/)hexestrol and o-fluoro(/sup 3/H/sub 3/)hexestrol. The studies indicate that these four halogenated hexestrols are promising candidates as estrogen-receptor-based agents for the imaging of human breast tumors.

  2. Estrogen Receptor β Activation Rapidly Modulates Male Sexual Motivation through the Transactivation of Metabotropic Glutamate Receptor 1a.

    PubMed

    Seredynski, Aurore L; Balthazart, Jacques; Ball, Gregory F; Cornil, Charlotte A

    2015-09-23

    In addition to the transcriptional activity of their liganded nuclear receptors, estrogens, such as estradiol (E2), modulate cell functions, and consequently physiology and behavior, within minutes through membrane-initiated events. The membrane-associated receptors (mERs) underlying the acute effects of estrogens on behavior have mostly been documented in females where active estrogens are thought to be of ovarian origin. We determined here, by acute intracerebroventricular injections of specific agonists and antagonists, the type(s) of mERs that modulate rapid effects of brain-derived estrogens on sexual motivation in male Japanese quail. Brain aromatase blockade acutely inhibited sexual motivation. Diarylpropionitrile (DPN), an estrogen receptor β (ERβ)-specific agonist, and to a lesser extent 17α-estradiol, possibly acting through ER-X, prevented this effect. In contrast, drugs targeting ERα (PPT and MPP), GPR30 (G1 and G15), and the Gq-mER (STX) did not affect sexual motivation. The mGluR1a antagonist LY367385 significantly inhibited sexual motivation but mGluR2/3 and mGluR5 antagonists were ineffective. LY367385 also blocked the behavioral restoration induced by E2 or DPN, providing functional evidence that ERβ interacts with metabotropic glutamate receptor 1a (mGluR1a) signaling to acutely regulate male sexual motivation. Together these results show that ERβ plays a key role in sexual behavior regulation and the recently uncovered cooperation between mERs and mGluRs is functional in males where it mediates the acute effects of estrogens produced centrally in response to social stimuli. The presence of an ER-mGluR interaction in birds suggests that this mechanism emerged relatively early in vertebrate history and is well conserved. Significance statement: The membrane-associated receptors underlying the acute effects of estrogens on behavior have mostly been documented in females, where active estrogens are thought to be of ovarian origin. Using acute

  3. Characterization of the estrogen receptor transfected MCF10A breast cell line 139B6.

    PubMed

    Pilat, M J; Christman, J K; Brooks, S C

    1996-01-01

    There has been increasing evidence which suggests that abnormal expression of the estrogen receptor (ER) protein in nonmalignant breast tissue may be important in the carcinogenic process. To examine the effects of ER expression in immortalized nonmalignant mammary epithelial cells, an expression vector containing human ER cDNA was transfected into the ER negative human breast cells, MCF10A. Characterization of a clone stably expressing ER, 139B6, provided evidence for the regulated synthesis of a functional ER capable of binding estradiol-17 beta (E2) and undergoing processing. Expression of the ER gene did not enable E2 to stimulate endogenous genes [progesterone receptor (PgR), pS2, cathepsin D and TGF alpha] which normally respond to estrogens in breast cancer cells. The ER in 139B6 cells was, however, capable of inducing expression of an ERE-regulated reporter gene, indicating its ability to interact with transcriptional machinery. Furthermore, cultures in log growth displayed a slight increase in doubling time in the presence of E2. These results indicate that ER expression alone is not sufficient to induce a transformed phenotype. Thus, the 139B6 cell line should provide a new model for determining what additional changes lead to increased growth potential in response to E2 and for exploring how E2 itself may help bring about changes leading to progression of preneoplastic breast epithelial cells.

  4. Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α

    PubMed Central

    Chen, Xueyan; Uzuner, Ugur; Li, Man; Shi, Weibing; Yuan, Joshua S.; Dai, Susie Y.

    2016-01-01

    Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER) and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD) when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX) assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors. PMID:27589781

  5. Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α.

    PubMed

    Chen, Xueyan; Uzuner, Ugur; Li, Man; Shi, Weibing; Yuan, Joshua S; Dai, Susie Y

    2016-01-01

    Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER) and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD) when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX) assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors. PMID:27589781

  6. Effects of the estrogen receptor antagonist fulvestrant on F344 rat prolactinoma models.

    PubMed

    Cao, Lei; Gao, Hua; Gui, Songbai; Bai, Giwei; Lu, Runchun; Wang, Fei; Zhang, Yazhuo

    2014-02-01

    The relationship between estrogen and prolactinoma is well documented. But the anti-tumor effects of a pure estrogen receptor antagonist fulvestrant on prolactinomas, especially in vivo, and the possible mechanisms are still unclear. Therefore, the aim of this study was to evaluate the effects of fulvestrant and the involvement of the Wnt signaling pathway on rat prolactinoma models. Forty female F344 rat prolactinoma models were established by subcutaneous administration of 10 mg 17β-estradiol for 6 weeks. Rats were intramuscularly injected with fulvestrant (0, 0.5, 3, 20, 40 mg/kg), and tumor size, weight and serum prolactin (PRL) levels were evaluated before and after fulvestrant treatment at 3, 7 and 14 days. Expression of estrogen receptor α (ERα), β-catenin and Wnt inhibitory factor-1 (WIF-1) in prolactinomas was measured using quantitative PCR and western blotting, and methylation of the WIF-1 promoter was investigated using pyrosequencing. Tumor size, weight and serum PRL levels were inhibited in dose-dependent and time-dependent manners after fulvestrant treatments. β-catenin expression was downregulated but WIF-1 expression was upregulated following fulvestrant treatment. The methylation of the CpG site of the WIF-1 promoter was negatively correlated to the expression of WIF-1. In addition, the anti-cell proliferation of fulvestrant on GH3 cells was partly disrupted by Wnt signaling pathway agonist SB 216763. In conclusion, fulvestrant inhibited tumor proliferation and PRL secretion of prolactinomas via ERα, and the Wnt signaling pathway was involved in this anti-tumor effect. Therefore, fulvestrant may be a potential new drug for prolactinomas.

  7. Estrogen Receptor Expression Is Associated with DNA Repair Capacity in Breast Cancer

    PubMed Central

    Matta, Jaime; Morales, Luisa; Ortiz, Carmen; Adams, Damian; Vargas, Wanda; Casbas, Patricia; Dutil, Julie; Echenique, Miguel; Suárez, Erick

    2016-01-01

    Estrogen-receptor-positive (ER+) tumors employ complex signaling that engages in crosstalk with multiple pathways through genomic and non-genomic regulation. A greater understanding of these pathways is important for developing improved biomarkers that can better determine treatment choices, risk of recurrence and cancer progression. Deficiencies in DNA repair capacity (DRC) is a hallmark of breast cancer (BC); therefore, in this work we tested whether ER signaling influences DRC. We analyzed the association between ER positivity (% receptor activation) and DRC in 270 BC patients, then further stratified our analysis by HER2 receptor status. Our results show that among HER2 negative, the likelihood of having low DRC values among ER- women is 1.92 (95% CI: 1.03, 3.57) times the likelihood of having low DRC values among ER+ women, even adjusting for different potential confounders (p<0.05); however, a contrary pattern was observed among HER2 positives women. In conclusion, there is an association between DRC levels and ER status, and this association is modified by HER2 receptor status. Adding a DNA repair capacity test to hormone receptor testing may provide new information on defective DNA repair phenotypes, which could better stratify BC patients who have ER+ tumors. ER+/HER2- tumors are heterogeneous, incompletely defined, and clinically challenging to treat; the addition of a DRC test could better characterize and classify these patients as well as help clinicians select optimal therapies, which could improve outcomes and reduce recurrences. PMID:27032101

  8. A second estrogen receptor from Japanese lamprey (Lethenteron japonicum) does not have activities for estrogen binding and transcription.

    PubMed

    Katsu, Yoshinao; Cziko, Paul A; Chandsawangbhuwana, Charlie; Thornton, Joseph W; Sato, Rui; Oka, Koari; Takei, Yoshio; Baker, Michael E; Iguchi, Taisen

    2016-09-15

    Estrogens regulate many physiological responses in vertebrates by binding to the estrogen receptor (ER), a ligand-activated transcription factor. To understand the evolution of vertebrate ERs and to investigate how estrogen acts in a jawless vertebrate, we used degenerate primer sets and PCR to isolate DNA fragments encoding two distinct ER subtypes, Esr1a and Esr1b from the Japanese lamprey, Lethenteron japonicum. Phylogenetic analysis indicates that these two ERs are the result of lineage-specific gene duplication within the jawless fishes, different from the previous duplication event of Esr1 (ERα) and Esr2 (ERβ) within the jawed vertebrates. Reporter gene assays show that lamprey Esr1a displays both constitutive and estrogen-dependent activation of gene transcription. Domain swapping experiments indicate that constitutive activity resides in the A/B domain of lamprey Esr1a. Unexpectedly, lamprey Esr1b does not bind estradiol and is not stimulated by other estrogens, androgens or corticosteroids. A 3D model of lamprey Esr1b suggests that although estradiol fits into the steroid binding site, some stabilizing contacts between the ligand and side chains that are found in human Esr1 and Esr2 are missing in lamprey Esr1b. PMID:27432813

  9. A second estrogen receptor from Japanese lamprey (Lethenteron japonicum) does not have activities for estrogen binding and transcription.

    PubMed

    Katsu, Yoshinao; Cziko, Paul A; Chandsawangbhuwana, Charlie; Thornton, Joseph W; Sato, Rui; Oka, Koari; Takei, Yoshio; Baker, Michael E; Iguchi, Taisen

    2016-09-15

    Estrogens regulate many physiological responses in vertebrates by binding to the estrogen receptor (ER), a ligand-activated transcription factor. To understand the evolution of vertebrate ERs and to investigate how estrogen acts in a jawless vertebrate, we used degenerate primer sets and PCR to isolate DNA fragments encoding two distinct ER subtypes, Esr1a and Esr1b from the Japanese lamprey, Lethenteron japonicum. Phylogenetic analysis indicates that these two ERs are the result of lineage-specific gene duplication within the jawless fishes, different from the previous duplication event of Esr1 (ERα) and Esr2 (ERβ) within the jawed vertebrates. Reporter gene assays show that lamprey Esr1a displays both constitutive and estrogen-dependent activation of gene transcription. Domain swapping experiments indicate that constitutive activity resides in the A/B domain of lamprey Esr1a. Unexpectedly, lamprey Esr1b does not bind estradiol and is not stimulated by other estrogens, androgens or corticosteroids. A 3D model of lamprey Esr1b suggests that although estradiol fits into the steroid binding site, some stabilizing contacts between the ligand and side chains that are found in human Esr1 and Esr2 are missing in lamprey Esr1b.

  10. Interactions between the estrogen receptor, its cofactors and microRNAs in breast cancer.

    PubMed

    McCafferty, Marc P J; McNeill, Roisin E; Miller, Nicola; Kerin, Michael J

    2009-08-01

    The activity of selective estrogen receptor modulators (SERMs) is not fully explained by an estrogen receptor (ER) switch model that simply turns estrogen activity on or off. A better understanding of the mechanisms involved in estrogen signaling and the development of drug resistance could help stratify patients into more coherent treatment groups and identify novel therapeutic candidates. This review describes how interactions between two novel factors known to influence estrogenic activity: nuclear receptor cofactors--protein partners which modulate estrogen action, and microRNAs--a class of recently discovered regulatory elements, may impact hormone-sensitive breast cancer. The role of nuclear receptor cofactors in estrogen signaling and the associations between ER cofactors and breast cancer are described. We outline the activity of microRNAs (miRNAs) and their associations with breast cancer and detail recent evidence of interactions between the ER and its cofactors and miRNA and provide an overview of the emerging field of miRNA-based therapeutics. We propose that previously unrecognised interactions between these two species of regulatory molecules may underlie at least some of the heterogeneity of breast cancer in terms of its clinical course and response to treatment. The exploitation of such associations will have important implications for drug development.

  11. Recurrence of cervical cancer in mice after selective estrogen receptor modulator therapy.

    PubMed

    Spurgeon, Megan E; Chung, Sang-Hyuk; Lambert, Paul F

    2014-02-01

    Estrogen and its nuclear receptor, estrogen receptor α, are necessary cofactors in the initiation and multistage progression of carcinogenesis in the K14E6/E7 transgenic mouse model of human papillomavirus-associated cervical cancer. Recently, our laboratory reported that raloxifene, a selective estrogen receptor modulator, promoted regression of high-grade dysplasia and cancer that arose in the cervix of K14E6/E7 transgenic mice treated long-term with estrogen. Herein, we evaluated the recurrence of cervical cancer after raloxifene therapy in our preclinical model of human papillomavirus-associated cervical carcinogenesis. We observed recurrence of cervical cancer in mice re-exposed to estrogen after raloxifene treatment, despite evidence suggesting the antagonistic effects of raloxifene persisted in the reproductive tract after treatment had ceased. We also observed recurrence of neoplastic disease in mice that were not retreated with exogenous estrogen, although the severity of disease was less. Recurrent neoplastic disease and cancers retained functional estrogen receptor α and responded to retreatment with raloxifene. Moreover, continuous treatment of mice with raloxifene prevented the emergence of recurrent disease seen in mice in which raloxifene was discontinued. These data suggest that cervical cancer cells are not completely eradicated by raloxifene and rapidly expand if raloxifene treatment is ceased. These findings indicate that a prolonged treatment period with raloxifene might be required to prevent recurrence of neoplastic disease and lower reproductive tract cancers.

  12. Distinct effects of loss of classical estrogen receptor signaling versus complete deletion of estrogen receptor alpha on bone

    PubMed Central

    Syed, Farhan A.; Fraser, Daniel G.; Monroe, David G.; Khosla, Sundeep

    2011-01-01

    Estrogen receptor (ER)α is a major regulator of bone metabolism which can modulate gene expression via a “classical” pathway involving direct DNA binding to estrogen-response elements (EREs) or via “non-classical” pathways involving protein-protein interactions. While the skeletal consequences of loss of ERE binding by ERα have been described, a significant unresolved question is how loss of ERE binding differs from complete loss of ERα. Thus, we compared the skeletal phenotype of wild-type (ERα+/+) and ERα knock out (ERα−/−) mice with that of mice in which the only ERα present had a knock-in mutation abolishing ERE binding (non-classical ERα knock-in [NERKI], ERα−/NERKI). All three groups were in the same genetic background (C57BL/6). As compared to both ERα+/+ and ERα−/− mice, ERα−/NERKI mice had significantly reduced cortical volumetric bone mineral density and thickness at the tibial diaphysis; this was accompanied by significant decreases in periosteal and endocortical mineral apposition rates. Colony forming unit (CFU)-fibroblast, CFU-alkaline phosphatase, and CFU-osteoblast numbers were all increased in ERα−/− compared to ERα+/+ mice, but reduced in ERα−/NERKI mice compared to the two other groups. Thus, using mice in identical genetic backgrounds, our data indicate that the presence of an ERα that cannot bind DNA but can function through protein-protein interactions may have more deleterious skeletal effects than complete loss of ERα. These findings suggest that shifting the balance of classical versus non-classical ERα signaling triggers pathways that impair bone formation. Further studies defining these pathways may lead to novel approaches to selectively modulate ER signaling for beneficial skeletal effects. PMID:21458604

  13. LSD1 engages a corepressor complex for the activation of the estrogen receptor α by estrogen and cAMP

    PubMed Central

    Bennesch, Marcela A.; Segala, Gregory; Wider, Diana; Picard, Didier

    2016-01-01

    The estrogen receptor α (ERα) is a transcription factor that can be directly activated by estrogen or indirectly by other signaling pathways. We previously reported that activation of the unliganded ERα by cAMP is mediated by phosphorylation of the transcriptional coactivator CARM1 by protein kinase A (PKA), allowing CARM1 to bind ERα directly. This being insufficient by itself to activate ERα, we looked for additional factors and identified the histone H3 demethylase LSD1 as a substrate of PKA and an important mediator of this signaling crosstalk as well as of the response to estrogen. Surprisingly, ERα engages not only LSD1, but its partners of the CoREST corepressor complex and the molecular chaperone Hsp90. The recruitment of Hsp90 to promote ERα transcriptional activity runs against the steroid receptor paradigm and suggests that it might be involved as an assembly factor or scaffold. In a breast cancer cell line, which is resistant to the anti-estrogen tamoxifen because of constitutively activated PKA, some interactions are constitutive and drug combinations partially rescue tamoxifen sensitivity. In ERα-positive breast cancer patients, high expression of the genes encoding some of these factors correlates with poor prognosis. Thus, these mechanisms might contribute to ERα-driven breast cancer. PMID:27325688

  14. G-1-activated membrane estrogen receptors mediate increased contractility of the human myometrium.

    PubMed

    Maiti, K; Paul, J W; Read, M; Chan, E C; Riley, S C; Nahar, P; Smith, R

    2011-06-01

    Estrogens are key mediators of increased uterine contractility at labor. We sought to determine whether membrane-associated estrogen receptors, such as the recently described seven-transmembrane receptor G protein-coupled receptor 30 (GPR30), mediated some of this effect. Using human myometrium obtained at term cesarean section before or after the onset of labor, we demonstrated the presence of GPR30 mRNA and protein using quantitative RT-PCR and Western blotting. GPR30 receptor was localized to the cell membrane and often colocalized with calveolin-1. Using the specific estrogen membrane receptor agonist G-1 and myometrial explants, we showed that membrane receptor activation led to phosphorylation of MAPK and the actin-modifying small heat shock protein 27. Using myometrial strips incubated with G-1 or vehicle we demonstrated that estrogen membrane receptor activation increased the myometrial contractile response to oxytocin. These data suggest that activation of the plasma membrane estrogen receptor GPR30 likely participates in the physiology of the human myometrium during pregnancy and identifies it as a potential target to modify uterine activity. PMID:21427217

  15. Identification of the G protein-coupled estrogen receptor (GPER) in human prostate: expression site of the estrogen receptor in the benign and neoplastic gland.

    PubMed

    Rago, V; Romeo, F; Giordano, F; Ferraro, A; Carpino, A

    2016-01-01

    Estrogens are involved in growth, differentiation and pathogenesis of human prostate through the mediation of the classical estrogen receptors ERα and ERβ. The G protein-coupled estrogen receptor (GPER) is a 'novel' mediator of estrogen signaling which has been recently recognized in some human reproductive tissues, but its expression in the prostate gland is still unknown. Here, we investigated GPER in benign (from 5 patients) and neoplastic prostatic tissues (from 50 patients) by immunohistochemical analysis and Western blotting. Normal areas of benign prostates revealed a strong GPER immunoreactivity in the basal epithelial cells while luminal epithelial cells were unreactive and stromal cells were weakly immunostained. GPER was also immunolocalized in adenocarcinoma samples but the immunoreactivity of tumoral areas decreased from Gleason pattern 2 to Gleason pattern 4. Furthermore, a strong GPER immunostaining was also revealed in cells of pre-neoplastic lesions (high-grade prostatic intra-epithelial neoplasia). Western blot analysis of benign and tumor protein extracts showed the presence of a ~42 kDa band, consistent with the GPER molecular weight. An increase in both pAkt and p cAMP-response-binding protein (pCREB) levels was also observed in poorly differentiated PCa samples. Finally, this work identified GPER in the epithelial basal cells of benign human prostate, with a different localization with respect to the classical estrogen receptors. Furthermore, the expression of GPER in prostatic adenocarcinoma cells was also observed but with a modulation of the immunoreactivity according to tumor cell arrangements.

  16. Rapid estrogen signaling negatively regulates PTEN activity through phosphorylation in endometrial cancer cells

    PubMed Central

    Scully, Melanie M.; Palacios-Helgeson, Leslie K.; Wah, Lah S.; Jackson, Twila A.

    2014-01-01

    Hyperestrogenicity is a risk factor for endometrial cancer. 17β-estradiol (E2) is known to stimulate both genomic and nongenomic estrogen receptor-α (ERα) actions in a number of reproductive tissues. However, the contributions of transcription-independent ERα signaling on normal and malignant endometrium are not fully understood. Phosphatase and tensin homolog (PTEN) is a tumor suppressor that decreases cellular mitosis primarily through negative regulation of the phosphoinositide 3-kinase/AKT signaling axis. PTEN levels are elevated during the E2 dominated, mitotically active, proliferative phase of the menstrual cycle, indicating possible hormonal regulation of PTEN in the uterus. In order to determine if rapid E2 signaling regulates PTEN, we used ERα positive, PTEN positive, endometrial cells. We show that cytosolic E2/ERα signaling leads to increased phosphorylation of PTEN at key regulatory residues. Importantly, E2 stimulation decreased PTEN lipid phosphatase activity and caused consequent increases in phospho-AKT. We further demonstrate that cytosolic ERα forms a complex with PTEN in an E2-dependent manner, and that ERα constitutively complexes with protein kinase2-α (CK2α), a kinase previously shown to phosphorylate the C-terminal tail of PTEN. These results provide mechanistic support for an E2-dependent, ERα cytosolic signaling complex that negatively regulates PTEN activity through carboxy terminus phosphorylation. Using an animal model, we show that sustained E2 signaling results in increased phospho-PTEN (S380, T382, T383), total PTEN and phospho-AKT (S473). Taken together, we provide a novel mechanism in which transcription-independent E2/ERα signaling may promote a pro-tumorigenic environment in the endometrium. PMID:24844349

  17. Estrogen receptor and progesterone receptor synthesis and degradation in target cells

    SciTech Connect

    Nardulli, A.M.

    1987-01-01

    It was the intent of this study to determine the turnover of the estrogen receptor (ER) and progesterone receptors (PR) in rat uterine and human breast cancer cells, respectively, and to examine the effect of estrogen and progestin on PR levels. The rates of synthesis and degradation of ER were determined in rat uterine cells in vitro and in vivo. The affinity labeling antiestrogen, (/sup 3/H)tamoxifen aziridine, was used in pulse chase experiments to show that the 65,000 molecular weight ER has a half-life of 3-4h in primary cultures of rat uterine cells in vitro and in the intact rat uterus in vivo. Density shift analyses using dense (/sup 15/N, /sup 13/C, /sup 2/H) amino acid incorporation corroborate the rapid turnover of ER in rat uterine cell cultures. The regulation of PR by progestins in T47D human breast cancer cells was examined using density shift-dense amino acid incorporation. When T47D cells, which normally maintain high PR levels, are exposed to progestin (R5020), PR levels decline. Receptor half-life, which is 21h in control cells, is reduced to 6h when cells are exposed to 20 nM (/sup 3/H)R5020. In addition, PR synthesis rate declines exponentially following R5020 exposure. The reduction in receptor level is thus due to dramatic increases in PR degradation as well as marked decreases in PR synthesis.

  18. Luminescent enzyme-linked receptor assay for estrogenic compounds.

    PubMed

    Seifert, Martin

    2004-02-01

    The analytics of endocrine-disrupting compounds has become a major issue during recent years. Several test systems have been developed for endocrine-disrupting chemicals. Yeast reporter gene assays and MCF-7 cell-based proliferation assays (E-screen) are particularly popular. A correlation of an enzyme-linked receptor assay (ELRA) with a yeast reporter gene assay is shown. In addition, the development of an ultra-sensitive luminescent ELRA with a detection limit of 20 ng/L for 17 beta-estradiol in the sample is reported. Data for real sample analysis are shown in this paper. ELRA characteristics are compared with cell-based assays, and the issue of detection limits is addressed. In this context, the detection limits of the cell-based assays have been claimed to be below the ELRA detection limits. However, it is clarified that the given detection limits for the yeast estrogen screen and the E-screen are usually based on concentrations of 17 beta-estradiol in the well, not in the sample, whereas ELRA detection limits are concentrations in the sample.

  19. Screening Chemicals for Estrogen Receptor Bioactivity Using a Computational Model.

    PubMed

    Browne, Patience; Judson, Richard S; Casey, Warren M; Kleinstreuer, Nicole C; Thomas, Russell S

    2015-07-21

    The U.S. Environmental Protection Agency (EPA) is considering high-throughput and computational methods to evaluate the endocrine bioactivity of environmental chemicals. Here we describe a multistep, performance-based validation of new methods and demonstrate that these new tools are sufficiently robust to be used in the Endocrine Disruptor Screening Program (EDSP). Results from 18 estrogen receptor (ER) ToxCast high-throughput screening assays were integrated into a computational model that can discriminate bioactivity from assay-specific interference and cytotoxicity. Model scores range from 0 (no activity) to 1 (bioactivity of 17β-estradiol). ToxCast ER model performance was evaluated for reference chemicals, as well as results of EDSP Tier 1 screening assays in current practice. The ToxCast ER model accuracy was 86% to 93% when compared to reference chemicals and predicted results of EDSP Tier 1 guideline and other uterotrophic studies with 84% to 100% accuracy. The performance of high-throughput assays and ToxCast ER model predictions demonstrates that these methods correctly identify active and inactive reference chemicals, provide a measure of relative ER bioactivity, and rapidly identify chemicals with potential endocrine bioactivities for additional screening and testing. EPA is accepting ToxCast ER model data for 1812 chemicals as alternatives for EDSP Tier 1 ER binding, ER transactivation, and uterotrophic assays. PMID:26066997

  20. Tristetraprolin Represses Estrogen Receptor α Transactivation in Breast Cancer Cells*

    PubMed Central

    Barrios-García, Tonatiuh; Tecalco-Cruz, Angeles; Gómez-Romero, Vania; Reyes-Carmona, Sandra; Meneses-Morales, Iván; León-Del-Río, Alfonso

    2014-01-01

    Estrogen receptor α (ERα) mediates the effects of 17β-estradiol (E2) in normal mammary gland, and it is a key participant in breast cancer tumor development. ERα transactivation activity is mediated by the synergistic interaction of two domains designated AF1 and AF2. The function of AF2 is to recruit coactivator and corepressor proteins that allow ERα to oscillate between the roles of transcriptional activator and repressor. In contrast, the mechanism responsible for AF-1 transcriptional activity is not completely understood. In this study, we identified tristetraproline (TTP) as a novel ERα-associated protein. TTP expression in MCF7 cells repressed ERα transactivation and reduced MCF7 cell proliferation and the ability of the cells to form tumors in a mouse model. We show that TTP transcriptional activity is mediated through its recruitment to the promoter region of ERα target genes and its interaction with histone deacetylases, in particular with HDAC1. TTP expression attenuates the coactivating activity of SRC-1, suggesting that exchange between TTP and other coactivators may play an important role in fine-tuning ERα transactivation. These results indicate that TTP acts as a bona fide ERα corepressor and suggest that this protein may be a contributing factor in the development of E2-dependent tumors in breast cancer. PMID:24737323

  1. Tristetraprolin represses estrogen receptor α transactivation in breast cancer cells.

    PubMed

    Barrios-García, Tonatiuh; Tecalco-Cruz, Angeles; Gómez-Romero, Vania; Reyes-Carmona, Sandra; Meneses-Morales, Iván; León-Del-Río, Alfonso

    2014-05-30

    Estrogen receptor α (ERα) mediates the effects of 17β-estradiol (E2) in normal mammary gland, and it is a key participant in breast cancer tumor development. ERα transactivation activity is mediated by the synergistic interaction of two domains designated AF1 and AF2. The function of AF2 is to recruit coactivator and corepressor proteins that allow ERα to oscillate between the roles of transcriptional activator and repressor. In contrast, the mechanism responsible for AF-1 transcriptional activity is not completely understood. In this study, we identified tristetraproline (TTP) as a novel ERα-associated protein. TTP expression in MCF7 cells repressed ERα transactivation and reduced MCF7 cell proliferation and the ability of the cells to form tumors in a mouse model. We show that TTP transcriptional activity is mediated through its recruitment to the promoter region of ERα target genes and its interaction with histone deacetylases, in particular with HDAC1. TTP expression attenuates the coactivating activity of SRC-1, suggesting that exchange between TTP and other coactivators may play an important role in fine-tuning ERα transactivation. These results indicate that TTP acts as a bona fide ERα corepressor and suggest that this protein may be a contributing factor in the development of E2-dependent tumors in breast cancer.

  2. Tristetraprolin represses estrogen receptor α transactivation in breast cancer cells.

    PubMed

    Barrios-García, Tonatiuh; Tecalco-Cruz, Angeles; Gómez-Romero, Vania; Reyes-Carmona, Sandra; Meneses-Morales, Iván; León-Del-Río, Alfonso

    2014-05-30

    Estrogen receptor α (ERα) mediates the effects of 17β-estradiol (E2) in normal mammary gland, and it is a key participant in breast cancer tumor development. ERα transactivation activity is mediated by the synergistic interaction of two domains designated AF1 and AF2. The function of AF2 is to recruit coactivator and corepressor proteins that allow ERα to oscillate between the roles of transcriptional activator and repressor. In contrast, the mechanism responsible for AF-1 transcriptional activity is not completely understood. In this study, we identified tristetraproline (TTP) as a novel ERα-associated protein. TTP expression in MCF7 cells repressed ERα transactivation and reduced MCF7 cell proliferation and the ability of the cells to form tumors in a mouse model. We show that TTP transcriptional activity is mediated through its recruitment to the promoter region of ERα target genes and its interaction with histone deacetylases, in particular with HDAC1. TTP expression attenuates the coactivating activity of SRC-1, suggesting that exchange between TTP and other coactivators may play an important role in fine-tuning ERα transactivation. These results indicate that TTP acts as a bona fide ERα corepressor and suggest that this protein may be a contributing factor in the development of E2-dependent tumors in breast cancer. PMID:24737323

  3. Importance of Estrogenic Signaling and Its Mediated Receptors in Prostate Cancer.

    PubMed

    Lau, Kin-Mang; To, Ka-Fai

    2016-01-01

    Prostate cancer (PCa) treatment was first established by Huggins and Hodges in 1941, primarily described as androgen deprivation via interference of testicular androgen production. The disease remains incurable with relapse of hormone-refractory cancer after treatments. Epidemiological and clinical studies disclosed the importance of estrogens in PCa. Discovery of estrogen receptor ERβ prompted direct estrogenic actions, in conjunction with ERα, on PCa cells. Mechanistically, ERs upon ligand binding transactivate target genes at consensus genomic sites via interactions with various transcriptional co-regulators to mold estrogenic signaling. With animal models, Noble revealed estrogen dependencies of PCa, providing insight into potential uses of antiestrogens in the treatment. Subsequently, various clinical trials were conducted and molecular and functional consequences of antiestrogen treatment in PCa were delineated. Besides, estrogens can also trigger rapid non-genomic signaling responses initiated at the plasma membrane, at least partially via an orphan G-protein-coupled receptor GPR30. Activation of GPR30 significantly inhibited in vitro and in vivo PCa cell growth and the underlying mechanism was elucidated. Currently, molecular networks of estrogenic and antiestrogenic signaling via ERα, ERβ and GPR30 in PCa have not been fully deciphered. This crucial information could be beneficial to further developments of effective estrogen- and antiestrogen-based therapy for PCa patients. PMID:27589731

  4. Importance of Estrogenic Signaling and Its Mediated Receptors in Prostate Cancer.

    PubMed

    Lau, Kin-Mang; To, Ka-Fai

    2016-08-31

    Prostate cancer (PCa) treatment was first established by Huggins and Hodges in 1941, primarily described as androgen deprivation via interference of testicular androgen production. The disease remains incurable with relapse of hormone-refractory cancer after treatments. Epidemiological and clinical studies disclosed the importance of estrogens in PCa. Discovery of estrogen receptor ERβ prompted direct estrogenic actions, in conjunction with ERα, on PCa cells. Mechanistically, ERs upon ligand binding transactivate target genes at consensus genomic sites via interactions with various transcriptional co-regulators to mold estrogenic signaling. With animal models, Noble revealed estrogen dependencies of PCa, providing insight into potential uses of antiestrogens in the treatment. Subsequently, various clinical trials were conducted and molecular and functional consequences of antiestrogen treatment in PCa were delineated. Besides, estrogens can also trigger rapid non-genomic signaling responses initiated at the plasma membrane, at least partially via an orphan G-protein-coupled receptor GPR30. Activation of GPR30 significantly inhibited in vitro and in vivo PCa cell growth and the underlying mechanism was elucidated. Currently, molecular networks of estrogenic and antiestrogenic signaling via ERα, ERβ and GPR30 in PCa have not been fully deciphered. This crucial information could be beneficial to further developments of effective estrogen- and antiestrogen-based therapy for PCa patients.

  5. Importance of Estrogenic Signaling and Its Mediated Receptors in Prostate Cancer

    PubMed Central

    Lau, Kin-Mang; To, Ka-Fai

    2016-01-01

    Prostate cancer (PCa) treatment was first established by Huggins and Hodges in 1941, primarily described as androgen deprivation via interference of testicular androgen production. The disease remains incurable with relapse of hormone-refractory cancer after treatments. Epidemiological and clinical studies disclosed the importance of estrogens in PCa. Discovery of estrogen receptor ERβ prompted direct estrogenic actions, in conjunction with ERα, on PCa cells. Mechanistically, ERs upon ligand binding transactivate target genes at consensus genomic sites via interactions with various transcriptional co-regulators to mold estrogenic signaling. With animal models, Noble revealed estrogen dependencies of PCa, providing insight into potential uses of antiestrogens in the treatment. Subsequently, various clinical trials were conducted and molecular and functional consequences of antiestrogen treatment in PCa were delineated. Besides, estrogens can also trigger rapid non-genomic signaling responses initiated at the plasma membrane, at least partially via an orphan G-protein-coupled receptor GPR30. Activation of GPR30 significantly inhibited in vitro and in vivo PCa cell growth and the underlying mechanism was elucidated. Currently, molecular networks of estrogenic and antiestrogenic signaling via ERα, ERβ and GPR30 in PCa have not been fully deciphered. This crucial information could be beneficial to further developments of effective estrogen- and antiestrogen-based therapy for PCa patients. PMID:27589731

  6. Estrogen receptors in gastric cancer: Advances and perspectives

    PubMed Central

    Rahman, Muhammad Saif Ur; Cao, Jiang

    2016-01-01

    Worldwide, gastric cancer is one of the most common malignancies with high mortality. Various aspects of the development and progression of gastric cancer continue to be extensively investigated in order to further our understanding and provide more effective means for the prevention, diagnosis, and treatment of the disease. Estrogen receptors (ERs) are steroid hormone receptors that regulate cellular activities in many physiological and pathological processes in different tissues. There are two distinct forms of ERs, namely ERα and ERβ, with several alternative-splicing isoforms for each. They show distinct tissue distribution patterns and exert different biological functions. Dysregulation of ERs has been found to be associated closely with many diseases, including cancer. A number of studies have been conducted to investigate the role of ERs in gastric cancer, the possible mechanisms underlying these roles, and the clinical relevance of deregulated ERs in gastric cancer patients. To date, inconsistent associations of different ERs with gastric cancer have been reported. These inconsistencies may be caused by variations in in vitro cell models and clinical samples, including assay conditions and protocols with regard to different forms of ERs. Given the potential of the deregulated ERs as diagnostic/prognostic markers or therapeutic targets for gastric cancer, it will be important to identify/confirm the association of each ER isoform with gastric cancer, to determine the specific roles and interactions that these individual ER isoforms play under specific conditions in the development and/or progression of gastric cancer, and to elucidate precisely these mechanisms. In this review, we summarize the achievements from early ER studies in gastric cancer to the most up-to-date discoveries, with an effort to provide a comprehensive understanding of the role of ERs roles in gastric cancer and its possible mechanisms. Furthermore, we propose directions for future

  7. Discordance of Estrogen & Progesterone Receptors After Neoadjuvant Chemotherapy in Breast Cancer- an Indian Study.

    PubMed

    Anand, Aravindh Sivanandan; Velayudhan, Sandeep Thekoot

    2016-09-01

    Neoadjuvant chemotherapy forms the initial modality of treatment for primarily inoperable locally advanced breast cancer (LABC). Breast cancer is characterized by cellular heterogeneity. A change in hormone receptor status after neoadjuvant chemotherapy (NACT) has important therapeutic and prognostic consequences. Data on the influence of neoadjuvant chemotherapy on estrogen receptors (ER) and progesterone receptors (PR) are limited. The primary objective of this study is to compare hormone receptor (HR) status before and after neoadjuvant chemotherapy (discordance) in Indian patients. The secondary objective is to study correlation between tumor response and hormone receptor expression. This is a descriptive study of 78 LABC patients who received neoadjuvant chemotherapy from October 2012 to October 2014. All patients who underwent core biopsy and ER/PR assessment before and after NACT were included in the study. Data was collected prospectively from each patient in a structured proforma. Patients were classified as Group A (ER+, PR+), Group B (ER+, PR-), Group C (ER-, PR+), Group D (ER-, PR-). The HR discordance rate & response to neoadjuvant chemotherapy was assessed. Total HR discordance rate was 21.7 %. The ER discordance was 8.7 % and PR discordance was 13 %. PR positive to PR negative discordance was the predominant one. The pathological complete remission (pCR) rate of endocrine responsive patients was 10.2 % and in the endocrine unresponsive group it was 13.8 %. ER/PR status can change after chemotherapy, hence they need to be re-evaluated after neoadjuvant chemotherapy. This becomes therapeutically important when receptor negative becomes positive. PMID:27651692

  8. Discordance of Estrogen & Progesterone Receptors After Neoadjuvant Chemotherapy in Breast Cancer- an Indian Study.

    PubMed

    Anand, Aravindh Sivanandan; Velayudhan, Sandeep Thekoot

    2016-09-01

    Neoadjuvant chemotherapy forms the initial modality of treatment for primarily inoperable locally advanced breast cancer (LABC). Breast cancer is characterized by cellular heterogeneity. A change in hormone receptor status after neoadjuvant chemotherapy (NACT) has important therapeutic and prognostic consequences. Data on the influence of neoadjuvant chemotherapy on estrogen receptors (ER) and progesterone receptors (PR) are limited. The primary objective of this study is to compare hormone receptor (HR) status before and after neoadjuvant chemotherapy (discordance) in Indian patients. The secondary objective is to study correlation between tumor response and hormone receptor expression. This is a descriptive study of 78 LABC patients who received neoadjuvant chemotherapy from October 2012 to October 2014. All patients who underwent core biopsy and ER/PR assessment before and after NACT were included in the study. Data was collected prospectively from each patient in a structured proforma. Patients were classified as Group A (ER+, PR+), Group B (ER+, PR-), Group C (ER-, PR+), Group D (ER-, PR-). The HR discordance rate & response to neoadjuvant chemotherapy was assessed. Total HR discordance rate was 21.7 %. The ER discordance was 8.7 % and PR discordance was 13 %. PR positive to PR negative discordance was the predominant one. The pathological complete remission (pCR) rate of endocrine responsive patients was 10.2 % and in the endocrine unresponsive group it was 13.8 %. ER/PR status can change after chemotherapy, hence they need to be re-evaluated after neoadjuvant chemotherapy. This becomes therapeutically important when receptor negative becomes positive.

  9. Estrogen and selective estrogen receptor modulators (SERMs) for the treatment of acromegaly: a meta-analysis of published observational studies.

    PubMed

    Stone, Jennifer C; Clark, Justin; Cuneo, Ross; Russell, Anthony W; Doi, Suhail A R

    2014-06-01

    Estrogen and selective estrogen receptor modulator (SERM) treatments for acromegaly have received limited attention since the development of newer pharmacologic therapies. There has been ongoing research evidence suggesting their utility in the biochemical control of acromegaly. Therefore, the aim of this meta-analysis was to synthesise current evidence with a view to determining to what extent and in which acromegalic patient subsets do estrogen and SERMs reduce IGF-1 levels. A literature search was conducted (finished December 2012), which included all studies pertaining to estrogen or SERM treatment and IGF-1. Seven patient subsets were identified from six published observational studies, and were pooled using meta-analytic methods. Overall, the pooled mean loss in IGF-1 was -29.09 nmol/L (95 % CI -37.23 to -20.95). A sensitivity analysis indicated that women receiving estrogen had a substantially greater reduction in IGF-1 levels compared with women receiving SERMs, with a weighted mean loss in IGF-1 of -38.12 nmol/L (95 % CI -46.78 to -29.45) compared with -22.91 nmol/L (95 % CI -32.73 to -13.09). There was a trend that did not reach statistical significance for men receiving SERM treatment at -11.41 nmol/L (95 % CI -30.14 to 7.31). It was concluded that estrogen and SERMs are a low cost and effective treatment to achieve control of IGF-1 levels in acromegalic women either as concomitant treatment for refractory disease, or where access to conventional therapy is restricted. Their use in men requires further study.

  10. Antiestrogenic effects of the fetal estrogen estetrol in women with estrogen-receptor positive early breast cancer.

    PubMed

    Singer, Christian F; Bennink, Herjan J T Coelingh; Natter, Camilla; Steurer, Stefan; Rudas, Margaretha; Moinfar, Farid; Appels, Nicole; Visser, Monique; Kubista, Ernst

    2014-11-01

    Estetrol (E4) is a fetal estrogen with estrogenic effects on reproductive organs and bone in preclinical models and in postmenopausal women. However, E4 exerts antiestrogenic effects on breast cancer (BC) cell growth in vitro and in vivo. We have investigated the effect of 14 days preoperative treatment with 20mg E4 per day on tumor proliferation markers, sex steroid receptor expression and endocrine parameters in a prospective, randomized, placebo-controlled, preoperative window trial in 30 pre- and post-menopausal women with estrogen-receptor positive early BC. E4 had a significant pro-apoptotic effect on tumor tissue, whereas Ki67 expression remained unchanged in both pre- and post-menopausal women. E4 increased sex-hormone-binding globulin significantly thereby reducing the concentrations of bioavailable estradiol. Follicle-stimulating hormone levels decreased in postmenopausal women only and luteinizing hormone levels remained unchanged. Systemic insulin growth factor-1 levels decreased significantly. Intratumoral epithelial ERα expression decreased significantly and a trend was found towards an increased expression of ERβ. This clinical data support the preclinical findings that E4 has antiestrogenic effects on BC cells, whereas earlier studies have shown that E4 has estrogenic effects on reproductive tissues and bone. Further clinical studies seem acceptable and are needed to confirm the safety and efficacy of E4 for the breast in hormone replacement therapy, including hormone replacement therapy in women who have or have had BC, especially in those BC patients treated with aromatase inhibitors and suffering from serious complaints due to estrogen deficiency. PMID:24997853

  11. Anti-tumor efficacy of fulvestrant in estrogen receptor positive gastric cancer

    PubMed Central

    Yi, Jun Ho; Do, In-Gu; Jang, Jiryeon; Kim, Seung Tae; Kim, Kyoung-Mee; Park, Se Hoon; Park, Joon Oh; Park, Young Suk; Lim, Ho Yeong; Kang, Won Ki; Lee, Jeeyun

    2014-01-01

    To investigate the prognostic role of the estrogen receptor (ER) in gastric cancer (GC) patients, tumor tissues from 932 patients with advanced GC were assessed for ER expression using immunohistochemistry, and their clinicopathologic features were evaluated. Forty patients (4.3%) had ER expression and they were more frequently associated with diffuse type gastric cancer and shorter disease free survival. Furthermore, we carried out in vitro analysis to evaluate the effect of ER modulation on the proliferation of GC cell lines. Estradiol enhanced proliferation of ER positive GC cells while it did not show any effect on ER negative GC cells. When ER was inhibited by fulvestrant and ER siRNA, estradiol-induced proliferation of ER positive GC cell was suppressed. Paclitaxel showed synergistic anti-proliferative impacts with fulvestrant. Suppressing ER by fulvestrant, paclitaxel and ER siRNA showed increased expression of E-cadherin, which is a crucial factor in diffuse-type carcinogenesis. PMID:25534230

  12. Bisphenol A regulates the estrogen receptor alpha signaling in developing hippocampus of male rats through estrogen receptor.

    PubMed

    Xu, Xiao-Bin; He, Ye; Song, Chen; Ke, Xin; Fan, Shi-Jun; Peng, Wei-Jie; Tan, Ruei; Kawata, Mitsuhiro; Matsuda, Ken-Ichi; Pan, Bing-Xing; Kato, Nobumasa

    2014-12-01

    Bisphenol A (BPA), one of the most common environmental endocrine disruptors, has been recognized to have wide adverse effects on the brain development and behavior. These adversities are related to its ability to bind estrogen receptor (ER) with subsequent alteration of its expression in the target areas. However, very little is known about whether BPA exposure also affects ER phosphorylation and its translocation to nucleus during postnatal development, two critical steps for its function. Here, we found that during development from postnatal day 7 (P7) to P21, the alpha subtype of ER (ERα) in the hippocampus of male rats experienced remarkable alterations in terms of its expression, phosphorylation and translocation to nucleus. Exposure to low level of BPA had bidirectional, development-dependent effects on the expression of ERα mRNA and protein, but decreased ERα phosphorylation and impaired its translocation to nucleus throughout the period investigated. Treatment with low dose of ICI 182,780 (ICI), an ER antagonist to block the binding of ER with BPA, reversed the altered ERα following BPA exposure, highlighting critical involvement of ER. Moreover, ICI treatment rescued the hippocampus-dependent behavioral deficits in the adult rats experiencing early-life BPA exposure. Overall, our results indicate that BPA interferes with the ERα signaling in the developing hippocampus in an ER-dependent manner, which may underlie its adverse behavioral and cognitive outcomes in adult animals.

  13. Expression pattern and methylation of estrogen receptor α in breast intraductal proliferative lesions

    PubMed Central

    Mao, Xiaoyun; Qiao, Zhen; Fan, Chuifeng; Guo, Ayao; Yu, Xinmiao; Jin, Feng

    2016-01-01

    Intraductal proliferative lesions of the breast including usual ductal hyperplasia (UDH), atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS) are associated with increased risk, albeit of greatly different magnitudes, for the subsequent development of invasive carcinoma. Estrogen receptor α (ERα) has been widely accepted as a prognostic marker and a predictor for endocrine therapy response of breast cancer. To investigate the ERα expression and methylation in breast intraductal proliferative lesions, we analyzed ERα expression in breast intraductal proliferative lesions including pure UDH (N=98), ADH without DCIS (N=160), DCIS without invasive breast cancer (N=149) by immunohistochemistry. Furthermore, the methylation status of ERα by methylation-specific PCR (MSP) was defined in 217 cases of breast intraductal proliferative lesions. Immunohistochemistry showed that 98/98 (100%) of the UDH cases were positive for ERα expression. ERα protein expression in ADH (132/160) (92.5%) was higher than in DCIS (101/149) (67.8%). But the ERα expression pattern was different with histological diversity of breast intraductal proliferative lesions. The average percent cells staining positive for ERα was 35.33% in UDH, 87.75% in ADH and 71.45% in DCIS. ERα methylation in 32/60 (53.3%) UDH, 11/77 (10.2%) ADH and 32/80 (40.0%) DCIS. Our results demonstrated a strong negative correlation between the percent of cells staining positive for ERα and ERα methylation (r=−0.831, p<0.001). Taken together, our results underlined that ERα expression or methylation may be involved in the breast carcinogenesis and advancement, thus it is not parallel to breast cancer risk in breast intraductal proliferative lesions. No obvious watershed between ERα-positive and -negative breast carcinogenesis was established. Estrogen receptor (ER) methylation or expression is a reversible signal in breast carcinogenesis which affected biological behavior of cells. PMID:27498697

  14. Synthesis of Triphenylethylene Bisphenols as Aromatase Inhibitors That Also Modulate Estrogen Receptors.

    PubMed

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C; O'Neill, Elizaveta; Yu, Ge; Flockhart, David A; Cushman, Mark

    2016-01-14

    A series of triphenylethylene bisphenol analogues of the selective estrogen receptor modulator (SERM) tamoxifen were synthesized and evaluated for their abilities to inhibit aromatase, bind to estrogen receptor α (ER-α) and estrogen receptor β (ER-β), and antagonize the activity of β-estradiol in MCF-7 human breast cancer cells. The long-range goal has been to create dual aromatase inhibitor (AI)/selective estrogen receptor modulators (SERMs). The hypothesis is that in normal tissue the estrogenic SERM activity of a dual AI/SERM could attenuate the undesired effects stemming from global estrogen depletion caused by the AI activity of a dual AI/SERM, while in breast cancer tissue the antiestrogenic SERM activity of a dual AI/SERM could act synergistically with AI activity to enhance the antiproliferative effect. The potent aromatase inhibitory activities and high ER-α and ER-β binding affinities of several of the resulting analogues, together with the facts that they antagonize β-estradiol in a functional assay in MCF-7 human breast cancer cells and they have no E/Z isomers, support their further development in order to obtain dual AI/SERM agents for breast cancer treatment. PMID:26704594

  15. Gender-specific alteration of adrenergic responses in small femoral arteries from estrogen receptor-beta knockout mice.

    PubMed

    Luksha, Leonid; Poston, Lucilla; Gustafsson, Jan-Ake; Aghajanova, Lusine; Kublickiene, Karolina

    2005-11-01

    Estrogen receptor-beta knockout mice become hypertensive as they age, and males have a higher blood pressure than females. We hypothesized that the absence of estrogen receptor-beta may contribute to development of cardiovascular dysfunction by modification of adrenergic responsiveness in the peripheral vasculature. Small femoral arteries (internal diameter <200 microm) were isolated from estrogen receptor-beta knockout and wild-type mice and mounted on a wire myograph. Concentration-response curves to phenylephrine and norepinephrine were compared and the contribution of adrenoceptor subtypes established using specific agonists and antagonists. The involvement of endothelial factors in the modulation of resting tone was also investigated and immunohistochemical analysis used to confirm the presence or absence of estrogen receptor expression. Compared with wild type, arteries from estrogen receptor-beta knockout male, but not female, mice demonstrated gender-specific enhancement of the response to phenylephrine (alpha1-adrenoceptor agonist), which was accompanied by elevated basal tension attributable to endothelial factors. Contractile responses to the mixed adrenoceptor agonist norepinephrine did not differ significantly between estrogen receptor-beta knockout and wild type; however, beta-adrenoceptor inhibition unmasked an enhanced underlying alpha1-adrenoceptor responsiveness in estrogen receptor-beta knockout males. beta-adrenoceptor-mediated dilatation was also enhanced in estrogen receptor-beta knockout versus wild-type males. We suggest that estrogen receptor-beta modifies the adrenergic control of small artery tone in males but not in females.

  16. A new class of small molecule estrogen receptor-alpha antagonists that overcome anti-estrogen resistance

    PubMed Central

    Ma, Yongxian; Preet, Anju; Tomita, York; De Oliveira, Eliseu; Zhang, Li; Ueda, Yumi; Clarke, Robert; Brown, Milton; Rosen, Eliot M.

    2015-01-01

    Previous studies indicate that BRCA1 protein binds to estrogen receptor-alpha (ER) and inhibits its activity. Here, we found that BRCA1 over-expression not only inhibits ER activity in anti-estrogen-resistant LCC9 cells but also partially restores their sensitivity to Tamoxifen. To simulate the mechanism of BRCA1 inhibition of ER in the setting of Tamoxifen resistance, we created a three-dimensional model of a BRCA1-binding cavity within the ER/Tamoxifen complex; and we screened a pharmacophore database to identify small molecules that could fit into this cavity. Among the top 40 “hits”, six exhibited potent ER inhibitory activity in anti-estrogen-sensitive MCF-7 cells and four of the six exhibited similar activity (IC50 ≤ 1.0 μM) in LCC9 cells. We validated the model by mutation analysis. Two representative compounds (4631-P/1 and 35466-L/1) inhibited ER-dependent cell proliferation in Tamoxifen-resistant cells (LCC9 and LCC2) and partially restored sensitivity to Tamoxifen. The compounds also disrupted the association of BRCA1 with ER. In electrophoretic mobility shift assays, the compounds caused dissociation of ER from a model estrogen response element. Finally, a modified form of compound 35446 (hydrochloride salt) inhibited growth of LCC9 tumor xenografts at non-toxic concentrations. These results identify a novel group of small molecules that can overcome Tamoxifen resistance. PMID:26575173

  17. Targeting estrogen/estrogen receptor alpha enhances Bacillus Calmette-Guérin efficacy in bladder cancer

    PubMed Central

    Shang, Zhiqun; Li, Yanjun; Hsu, Iawen; Zhang, Minghao; Tian, Jing; Wen, Simeng; Han, Ruifa; Messing, Edward M.; Chang, Chawnshang; Niu, Yuanjie; Yeh, Shuyuan

    2016-01-01

    Recent studies showed the potential linkage of estrogen/estrogen receptor signaling with bladder tumorigenesis, yet detailed mechanisms remain elusive. Here we found a new potential therapy with the combination of Bacillus Calmette Guerin (BCG) and the anti-estrogen ICI 182,780 led to better suppression of bladder cancer (BCa) than BCG alone. Mechanism dissection found ICI 182,780 could promote BCG attachment/internalization to the BCa cells through increased integrin-α5β1 expression and IL-6 release, which may enhance BCG-induced suppression of BCa cell growth via recruiting more monocytes/macrophages to BCa cells and increased TNF-α release. Consistently, in vivo studies found ICI 182,780 could potentiate the anti-BCa effects of BCG in the carcinogen-induced mouse BCa models. Together, these in vitro and in vivo results suggest that combining BCG with anti-estrogen may become a new therapeutic approach with better efficacy to suppress BCa progression and recurrence. PMID:27092883

  18. A new class of small molecule estrogen receptor-alpha antagonists that overcome anti-estrogen resistance.

    PubMed

    Ma, Yongxian; Preet, Anju; Tomita, York; De Oliveira, Eliseu; Zhang, Li; Ueda, Yumi; Clarke, Robert; Brown, Milton; Rosen, Eliot M

    2015-12-01

    Previous studies indicate that BRCA1 protein binds to estrogen receptor-alpha (ER) and inhibits its activity. Here, we found that BRCA1 over-expression not only inhibits ER activity in anti-estrogen-resistant LCC9 cells but also partially restores their sensitivity to Tamoxifen. To simulate the mechanism of BRCA1 inhibition of ER in the setting of Tamoxifen resistance, we created a three-dimensional model of a BRCA1-binding cavity within the ER/Tamoxifen complex; and we screened a pharmacophore database to identify small molecules that could fit into this cavity. Among the top 40 "hits", six exhibited potent ER inhibitory activity in anti-estrogen-sensitive MCF-7 cells and four of the six exhibited similar activity (IC50 ≤ 1.0 μM) in LCC9 cells. We validated the model by mutation analysis. Two representative compounds (4631-P/1 and 35466-L/1) inhibited ER-dependent cell proliferation in Tamoxifen-resistant cells (LCC9 and LCC2) and partially restored sensitivity to Tamoxifen. The compounds also disrupted the association of BRCA1 with ER. In electrophoretic mobility shift assays, the compounds caused dissociation of ER from a model estrogen response element. Finally, a modified form of compound 35446 (hydrochloride salt) inhibited growth of LCC9 tumor xenografts at non-toxic concentrations. These results identify a novel group of small molecules that can overcome Tamoxifen resistance.

  19. A Robotic BG1Luc Reporter Assay to Detect Estrogen Receptor Agonists

    PubMed Central

    Stoner, Matthew A.; Yang, Chun Z.; Bittner, George D.

    2014-01-01

    Endocrine disrupting chemicals with estrogenic activity (EA) have been associated with various adverse health effects. US agencies (ICCVAM/NICEATM) tasked to assess in vitro transcription activation assays to detect estrogenic receptor (ER) agonists for EA have recently validated a BG1Luc assay in manual format, but prefer robotic formats. We have developed a robotic BG1Luc EA assay to detect EA that demonstrated 100% concordance with ICCVAM meta-analyses and ICCVAM BG1Luc results in manual format for 27 ICCVAM test substances, i.e. no false negatives or false positives. This robotic assay also consistently assessed other, more problematic ICCVAM test substances such as clomiphene citrate, L-thyroxin, and tamoxifen. Agonist responses using this robotic BG1Luc assay were consistently inhibited by the ER antagonist ICI 182,780, confirming that agonist responses were due to binding to ERs rather than to a non-specific agonist response. This robotic assay also detected EA in complex mixtures of substances such as extracts of personal care products, plastic resins or plastic consumer products. This robotic BG1Luc assay had at least as high accuracy and greater sensitivity and repeatability when compared to its manual version or to the other ICCVAM/OECD validated assays for EA (manual BG1Luc and CERI). PMID:24747293

  20. Lack of functional estrogen receptor beta gene disrupts pubertal male sexual behavior.

    PubMed

    Temple, Jennifer L; Scordalakes, Elka M; Bodo, Cristian; Gustafsson, Jan Ake; Rissman, Emilie F

    2003-12-01

    The estrogen receptor-beta (ERbeta) mediates estrogen action in the female gonads, reproductive tract, and central nervous system. In addition, in rats and mice, gonadotropin-releasing hormone (GnRH-I) neurons coexpress ERbeta. Here we asked if ERbeta plays a role in the onset of puberty and in hypothalamic-pituitary-gonadal (HPG) axis function in male mice. We examined mating behavior, testosterone concentrations, steroid negative feedback on gonadotropins, and GnRH-I function in male ERbeta knockout (ERbetaKO) and wild-type (WT) mice. Peripubertal ERbetaKO males displayed their first ejaculation at a significantly older age than WT littermates. Castrated, adult ERbetaKO mice had significantly higher plasma luteinizing hormone (LH) than WT counterparts. Estradiol (E2) treatment reduced LH and follicle stimulating hormone (FSH) concentrations to an equivalent degree in castrates of both genotypes. In three different measures of the adult GnRH-I system, no genotypic differences were observed. These data show that ERbeta plays an important role in the timing of male sexual behavior at puberty, but does not appear to be involved in adult HPG axis functioning. Furthermore, our data suggest that a primary role of ERbeta may be to regulate ejaculatory behavior.

  1. Solubilization of the chromatin-bound estrogen receptor from chicken liver and fractionation on hydroxylapatite.

    PubMed

    Gschwendt, M

    1976-08-16

    1. High-affinity estrogen-binding sites can be solubilized from the liver chromatin of estrogenized chickens by treatment of the chromatin with 2 M KCL/5 M urea and fractionation on hydroxylapatite. Two estrogen-binding proteins are eluted from hydroxylapatite columns by 20mM phosphate (binding protein I) and 200mMphosphate (binding protein II), respectively. 2. The binding protein I is part of a non-histone protein fraction containing acid-soluble and insoluble proteins, whereas the binding protein II elutes together with high molecular weight nonhistone proteins containing acid insoluble proteins only. Both binding proteins exhibit the smae affinity for estradiol (Kd approximately 10(-9) M). 3. From chromatin of untreated chickens very small amounts of binding protein I (0.1 pmol/mg protein compared to 1.9 pmol/mg protein from estrogenized chickens) with the smae affinity for estradiol as that from estrogenized animals can be solubilized. Binding protein II is not detectable. 4. The "soluble nuclear estrogen receptor" extracted from crude liver nucleir of estrogenized chickens by 0.5 M KCL behaves on hydroxylapatite very similarly to salt/urea-dissociated chromatin with respect to the binding protein I. No binding protein II, however, can be demonstrated. 5. Chromatography of various preparations on Bio-Gel A-1.5 m indicates that the binding protein II is a residual chromatin fragment containing an unseparated binding protein-DNA complex, whereas the binding protein I represents the solubilized nucleic-acid-free chromosomal estrogen receptor. The "soluble nuclear receptor" and the binding protein I, however, are not identical with respect to their chromatographic behaviour on Bio-Gel A-1.5m, even though their estrogen binding entity remaining after trypsin treatment seems to be very similar.

  2. Abnormal Vascular Function and Hypertension in Mice Deficient in Estrogen Receptor β

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Bian, Zhao; Lu, Ping; Karas, Richard H.; Bao, Lin; Cox, Daniel; Hodgin, Jeffrey; Shaul, Philip W.; Thorén, Peter; Smithies, Oliver; Gustafsson, Jan-Åke; Mendelsohn, Michael E.

    2002-01-01

    Blood vessels express estrogen receptors, but their role in cardiovascular physiology is not well understood. We show that vascular smooth muscle cells and blood vessels from estrogen receptor β (ERβ)-deficient mice exhibit multiple functional abnormalities. In wild-type mouse blood vessels, estrogen attenuates vasoconstriction by an ERβ-mediated increase in inducible nitric oxide synthase expression. In contrast, estrogen augments vasoconstriction in blood vessels from ERβ-deficient mice. Vascular smooth muscle cells isolated from ERβ-deficient mice show multiple abnormalities of ion channel function. Furthermore, ERβ-deficient mice develop sustained systolic and diastolic hypertension as they age. These data support an essential role for ERβ in the regulation of vascular function and blood pressure.

  3. Urethral Dysfunction in Female Mice with Estrogen Receptor β Deficiency

    PubMed Central

    Chen, Yung-Hsiang; Chen, Chao-Jung; Yeh, Shuyuan; Lin, Yu-Ning; Wu, Yang-Chang; Hsieh, Wen-Tsong; Wu, Bor-Tsang; Ma, Wen-Lung; Chen, Wen-Chi; Chang, Chawnshang; Chen, Huey-Yi

    2014-01-01

    Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI). Wild-type (ERβ+/+) and knockout (ERβ−/−) female mice were generated (aged 6–8 weeks, n = 6) and urethral function and protein expression were measured. Leak point pressures (LPP) and maximum urethral closure pressure (MUCP) were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography–mass spectrometry (LC-MS/MS) analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ+/+ group, the LPP and MUCP values of the ERβ−/− group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ−/− female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ−/− mice. This study is the first study to estimate protein expression changes in urethras from ERβ−/− female mice. These changes could be related to the molecular mechanism of ERβ in SUI. PMID:25275480

  4. Comparison between different forms of estrogen cytosol receptor and the nuclear receptor extracted by micrococcal nuclease.

    PubMed

    Rochefort, H; André, J

    1978-11-01

    As an approach to the mechanism of the nuclear translocation of estrogen receptor, the estradiol nuclear receptor (RN) of lamb endometrium was extracted with micrococcal nuclease at 2--4 degrees and compared to the "native" 8S and to the Ca2+-transformed cytosol receptors. After extensive digestion of chromatin, giving up to 10% perchloric acid-soluble DNA and a majority of nucleosome monomers, up to 80% of the RN was extracted and under low ionic strength. This RN was found to be completely different from the partially proteolyzed Ca2+-transformed cytosol receptor. It migrated with a sedimentation constant of 4 and 6 S. The Stokes radius of the predominant form as determined by ACA 34 chromatography was 5.3 nm. The calculated apparent molecular weights were 130,000 and 90,000, respectively. The RN was able to bind DNA and was eluted from a diethylaminoethyl cellulose column at 0.23 and 0.30 M KCl. We conclude that the mechanism proposed by Puca et al., according to which the Ca2+-transformed cytosol receptor is split by a Ca2+ receptor-transforming factor into a smaller form able to cross the nuclear membrane, is very unlikely. PMID:698961

  5. Transcriptional activation of nuclear estrogen receptor and progesterone receptor and its regulation.

    PubMed

    Xin, Qi-Liang; Qiu, Jing-Tao; Cui, Sheng; Xia, Guo-Liang; Wang, Hai-Bin

    2016-08-25

    Estrogen receptor (ER) and progesterone receptor (PR) are two important members of steroid receptors family, an evolutionarily conserved family of transcription factors. Upon binding to their ligands, ER and PR enter cell nucleus to interact with specific DNA element in the context of chromatin to initiate the transcription of diverse target genes, which largely depends on the timely recruitment of a wide range of cofactors. Moreover, the interactions between steroid hormones and their respective receptors also trigger post-translational modifications on these receptors to fine-tune their transcriptional activities. Besides the well-known phosphorylation modifications on tyrosine and serine/threonine residues, recent studies have identified several other covalent modifications, such as ubiquitylation and sumoylation. These post-translational modifications of steroid receptors affect its stability, subcellular localization, and/or cofactor recruitment; eventually influence the duration and extent of transcriptional activation. This review is to focus on the recent research progress on the transcriptional activation of nuclear ER and PR as well as their physiological functions in early pregnancy, which may help us to better understand related female reproductive diseases. PMID:27546504

  6. Use of computational modeling approaches in studying the binding interactions of compounds with human estrogen receptors.

    PubMed

    Wang, Pan; Dang, Li; Zhu, Bao-Ting

    2016-01-01

    Estrogens have a whole host of physiological functions in many human organs and systems, including the reproductive, cardiovascular, and central nervous systems. Many naturally-occurring compounds with estrogenic or antiestrogenic activity are present in our environment and food sources. Synthetic estrogens and antiestrogens are also important therapeutic agents. At the molecular level, estrogen receptors (ERs) mediate most of the well-known actions of estrogens. Given recent advances in computational modeling tools, it is now highly practical to use these tools to study the interaction of human ERs with various types of ligands. There are two common categories of modeling techniques: one is the quantitative structure activity relationship (QSAR) analysis, which uses the structural information of the interacting ligands to predict the binding site properties of a macromolecule, and the other one is molecular docking-based computational analysis, which uses the 3-dimensional structural information of both the ligands and the receptor to predict the binding interaction. In this review, we discuss recent results that employed these and other related computational modeling approaches to characterize the binding interaction of various estrogens and antiestrogens with the human ERs. These examples clearly demonstrate that the computational modeling approaches, when used in combination with other experimental methods, are powerful tools that can precisely predict the binding interaction of various estrogenic ligands and their derivatives with the human ERs.

  7. Hyperglycaemia-induced chemoresistance in breast cancer cells: role of the estrogen receptor.

    PubMed

    Zeng, L; Zielinska, H A; Arshad, A; Shield, J P; Bahl, A; Holly, J M P; Perks, C M

    2016-02-01

    Breast cancer patients with diabetes respond less well to chemotherapy; in keeping with this we determined previously that hyperglycaemia-induced chemoresistance in estrogen receptor (ERα) positive breast cancer cells and showed that this was mediated by fatty acid synthase (FASN). More recent evidence suggests that the effect of metabolic syndrome and diabetes is not the same for all subtypes of breast cancer with inferior disease-free survival and worse overall survival only found in women with ERα positive breast cancer and not for other subtypes. Here we examined the impact of hyperglycaemia on ERα negative breast cancer cells and further investigated the mechanism underlying chemoresistance in ERα with a view to identifying strategies to alleviate hyperglycaemia-induced chemoresistance. We found that hyperglycaemia-induced chemoresistance was only observed in ERα breast cancer cells and was dependent upon the expression of ERα as chemoresistance was negated when the ERα was silenced. Hyperglycaemia-induced an increase in activation and nuclear localisation of the ERα that was downstream of FASN and dependent on the activation of MAPK. We found that fulvestrant successfully negated the hyperglycaemia-induced chemoresistance, whereas tamoxifen had no effect. In summary our data suggests that the ERα may be a predictive marker of poor response to chemotherapy in breast cancer patients with diabetes. It further indicates that anti-estrogens could be an effective adjuvant to chemotherapy in such patients and indicates the importance for the personalised management of breast cancer patients with diabetes highlighting the need for clinical trials of tailored chemotherapy for diabetic patients diagnosed with ERα positive breast cancers.

  8. Transcriptional activation of estrogen receptor ERalpha and ERbeta by polycyclic musks is cell type dependent.

    PubMed

    Schreurs, Richard H M M; Quaedackers, Monique E; Seinen, Willem; van der Burg, Bart

    2002-08-15

    In the past decade the list of chemicals in the environment that are able to mimic the natural hormone estrogen, thereby disrupting endocrine function, has grown rapidly. These chemicals are able to bind to estrogen receptors (ERs) and influence estrogen signaling pathways, although several of them have structures that differ substantially from the endogenous hormone 17beta-estradiol. Because of their polycyclic nature, the polycyclic musks AHTN (6-acetyl-1,1,2,4,4,7-hexamethyltetraline) and HHCB (1,2,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-gamma-2-benzopyran) were assessed for interaction with estrogen receptors. These compounds are ubiquitously present in surface waters and have been identified in human milk fat and blood. Using sensitive in vitro reporter gene assays, we found that AHTN and HHCB act as selective estrogen receptor modulators (SERMs), inducing both estrogenic and antiestrogenic activity dependent on the cell line and the ER subtype targeted. Weak estrogenic effects were observed only at relatively high concentrations (10 microM). Antiestrogenic effects were observed in various cell lines starting at concentrations of 0.1 microM. In comparison with the well-known SERM, 4-hydroxytamoxifen, AHTN and HHCB have a much lower potency in suppressing estradiol-induced transactivation. Results with various mutant ER receptor types suggest that binding sites of the musk compounds differ from 17beta-estradiol and 4-hydroxytamoxifen. The cell type dependency of ER transactivation shows that caution should be exerted when interpreting effects of estrogenic compounds using in vitro systems.

  9. Phytoestrogens Activate the Estrogen Receptor in HepG2 Cells.

    PubMed

    Kelly, Lynne A

    2016-01-01

    Phytoestrogens are popular alternatives to estrogen therapy however their effects on hemostasis in postmenopausal women are unknown. This chapter describes a protocol to determine the effect of the phytoestrogens genistein, daidzein and equol, on the expression of key genes from the hemostatic system in human hepatocyte cell models and to determine the role of estrogen receptors in mediating any response seen using in vitro culture systems and Taqman(®) gene expression analysis. PMID:26585156

  10. Phytoestrogens Activate the Estrogen Receptor in HepG2 Cells.

    PubMed

    Kelly, Lynne A

    2016-01-01

    Phytoestrogens are popular alternatives to estrogen therapy however their effects on hemostasis in postmenopausal women are unknown. This chapter describes a protocol to determine the effect of the phytoestrogens genistein, daidzein and equol, on the expression of key genes from the hemostatic system in human hepatocyte cell models and to determine the role of estrogen receptors in mediating any response seen using in vitro culture systems and Taqman(®) gene expression analysis.

  11. G Protein-Coupled Estrogen Receptor (GPER) Expression in Normal and Abnormal Endometrium

    PubMed Central

    Lessey, Bruce A.; Taylor, Robert N.; Wang, Wei; Bagchi, Milan K.; Yuan, Lingwen; Scotchie, Jessica; Fritz, Marc A.; Young, Steven L.

    2012-01-01

    Rapid estrogen effects are mediated by membrane receptors, and evidence suggests a role for both a membrane-associated form of estrogen receptor alpha (ESR1; ERα) and G-protein coupled receptor 30 (GPER; GPR30). Considering estrogen’s importance in endometrial physiology and endometriosis pathophysiology, we hypothesized that GPER could be involved in both cyclic changes in endometrial estrogen action and that aberrant expression might be seen in the eutopic endometrium of women with endometriosis. Using real-time reverse transcriptase–polymerase chain reaction (RT-PCR) and immunohistochemical analysis of normal endometrium, endometrial samples demonstrated cycle-regulated expression of GPER, with maximal expression in the proliferative phase. Eutopic and ectopic endometrium from women with endometriosis overexpressed GPER as compared to eutopic endometrium of normal participants. Ishikawa cells, an adenocarcinoma cell line, expressed GPER, with increased expression upon treatment with estrogen or an ESR1 agonist, but not with a GPER-specific agonist. Decreased expression was seen in Ishikawa cells stably transfected with progesterone receptor A. Together, these data suggest that normal endometrial GPER expression is cyclic and regulated by nuclear estrogen and progesterone receptors, while expression is dysregulated in endometriosis. PMID:22378861

  12. Female Mice Lacking Estrogen Receptor-α in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass

    PubMed Central

    Farman, H. H.; Windahl, S. H.; Westberg, L.; Isaksson, H.; Egecioglu, E.; Schele, E.; Ryberg, H.; Jansson, J. O.; Tuukkanen, J.; Koskela, A.; Xie, S. K.; Hahner, L.; Zehr, J.; Clegg, D. J.; Lagerquist, M. K.

    2016-01-01

    Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα−/−). Female POMC-ERα−/− and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα−/− mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice. PMID:27254004

  13. Female Mice Lacking Estrogen Receptor-α in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass.

    PubMed

    Farman, H H; Windahl, S H; Westberg, L; Isaksson, H; Egecioglu, E; Schele, E; Ryberg, H; Jansson, J O; Tuukkanen, J; Koskela, A; Xie, S K; Hahner, L; Zehr, J; Clegg, D J; Lagerquist, M K; Ohlsson, C

    2016-08-01

    Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα(-/-)). Female POMC-ERα(-/-) and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα(-/-) mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice.

  14. Estrogen receptor alpha (ESR1)-signaling regulates the expression of the taxane-response biomarker PRP4K.

    PubMed

    Lahsaee, Sara; Corkery, Dale P; Anthes, Livia E; Holly, Alice; Dellaire, Graham

    2016-01-01

    The pre-mRNA splicing factor 4 kinase PRP4K (PRPF4B), is an essential kinase that is a component of the U5 snRNP and functions in spliceosome assembly. We demonstrated that PRP4K is a novel biological marker for taxane response in ovarian cancer patients and reduced levels of PRP4K correlate with intrinsic and acquired taxane resistance in both breast and ovarian cancer. Breast cancer treatments are chosen based on hormone and growth factor receptor status, with HER2 (ERBB2) positive breast cancer patients receiving anti-HER2 agents and taxanes and estrogen receptor alpha (ESR1) positive (ER+) breast cancer patients receiving anti-estrogen therapies such as tamoxifen. Here we demonstrate that PRP4K is expressed in the normal mammary duct epithelial cells of the mouse, and that estrogen induces PRP4K gene and protein expression in ER+ human MCF7 breast cancer cells. Estrogen acts through ESR1 to regulate PRP4K expression, as over-expression of ESR1 in the ER-negative MDA-MB-231 breast cancer cell line increased the expression of this kinase, and knock-down of ESR1 in ER+ T47D breast cancer cells reduced PRP4K levels. Furthermore, treatment with 4-hydroxytamoxifen (4-OHT) resulted in a dose-dependent decrease in PRP4K protein expression in MCF7 cells. Consistent with our previous studies identifying PRP4K as a taxane-response biomarker, reduced PRP4K expression in 4-OHT-treated cells correlated with reduced sensitivity to paclitaxel. Thus, PRP4K is novel estrogen regulated kinase, and its levels can be reduced by 4-OHT in ER+ breast cancer cells altering their response to taxanes. PMID:26712520

  15. Enantioselective recognition of mono-demethylated methoxychlor metabolites by the estrogen receptor.

    PubMed

    Miyashita, Masahiro; Shimada, Takahiro; Nakagami, Shizuka; Kurihara, Norio; Miyagawa, Hisashi; Akamatsu, Miki

    2004-02-01

    Metabolites of methoxychlor such as 2-(p-hydroxyphenyl)-2-(p-methoxyphenyl)-1,1,1-trichloroethane (mono-OH-MXC) and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (bis-OH-MXC), have estrogenic activity. Mono-OH-MXC is a chiral compound in which the carbon atom bridging two benzene rings is the chiral centre. In previous studies the estrogenic activity of racemic mono-OH-MXC has been measured, and the activity of each enantiomer of this compound has not yet been elucidated. In this study, we evaluated the estrogen receptor-binding activity of each enantiomer of mono-OH-MXC to clarify the enantioselective recognition by the estrogen receptor. (S)-mono-OH-MXC showed 3-fold higher binding activity than that of the (R) enantiomer. The activity of bis-OH-MXC was only 1.7-fold higher than that of (S)-mono-OH-MXC. This result suggests that the one hydroxy group and the orientation of the CCl3 group of mono- and bis-OH-MXCs are important for the interaction with the estrogen receptor. The result also points out the estrogenic activity of methoxychlor after metabolic activation in vivo, which predominantly produces the (S)-mono-OH-MXC, may be higher than estimated from the in vitro activity of racemic mixtures.

  16. Characterization of two uterine proteases and their actions on the estrogen receptor

    SciTech Connect

    Gregory, M.R.; Notides, A.C.

    1982-01-01

    We have characterized two previously undetected proteases from the calf uterine cytosol and measured their actions on the estrogen receptor. One is an exopeptidase, purified 60-fold, that hydrolyzed amino acid (lysine-, and alanine-, or leucine-) p-nitroanilide substrates and leucyl-glycylglycine, did not hydrolyze (/sup 14/C)methemoglobin, was completely inhibited by 1 mM bestatin or puromycin (specific inhibitors of leucine aminopeptidase like enzymes), and was unable to influence the sedimentation of the 8S form of the estrogen receptor in sucrose gradients containing dilute Tris buffer. A commercial porcine leucine aminopeptidase, like the calf uterine aminopeptidase, did not convert the 8S estrogen receptor to a 4S form. Evidently, removal of the N-terminal amino acid(s) from the estrogen receptor by exopeptidase action cannot alter the sedimentation of the 8S form of the receptor, or the N-terminal amino acid(s) of the receptor is (are) unaccessible or resistant to exopeptidase activity. The second, a receptor-active protease, is an endopeptidase that did not hydrolyze any of the synthetic amide or peptide substrates tested but did possess (/sup 14/C)methemoglobin-degrading activity and the ability to convert the 8S estrogen receptor to a modified 4S form in sucrose gradients containing dilute Tris buffer. The modified 4S receptor was separable from the native receptor by DEAE-cellulose chromatography. The endopeptidase did not require Ca/sup 2 +/ for activity, and its chromatographic properties were distinctly different from a previously isolated Ca/sup 2 +/-activated protease. It was inhibited by leupeptin or dipyridyl disulfide, suggesting the presence of a thiol group that is essential for its activity.

  17. Postlesion estradiol treatment increases cortical cholinergic innervations via estrogen receptor-α dependent nonclassical estrogen signaling in vivo.

    PubMed

    Koszegi, Zsombor; Szego, Éva M; Cheong, Rachel Y; Tolod-Kemp, Emeline; Ábrahám, István M

    2011-09-01

    17β-Estradiol (E2) treatment exerts rapid, nonclassical actions via intracellular signal transduction system in basal forebrain cholinergic (BFC) neurons in vivo. Here we examined the effect of E2 treatment on lesioned BFC neurons in ovariectomized mice and the role of E2-induced nonclassical action in this treatment. Mice given an N-methyl-d-aspartic acid (NMDA) injection into the substantia innominata-nucleus basalis magnocellularis complex (SI-NBM) exhibited cholinergic cell loss in the SI-NBM and ipsilateral cholinergic fiber loss in the cortex. A single injection of E2 after NMDA lesion did not have an effect on cholinergic cell loss in the SI-NBM, but it restored the ipsilateral cholinergic fiber density in the cortex in a time- and dose-dependent manner. The most effective cholinergic fiber restoration was observed with 33 ng/g E2 treatment at 1 h after NMDA lesion. The E2-induced cholinergic fiber restoration was absent in neuron-specific estrogen receptor-α knockout mice in vivo. Selective activation of nonclassical estrogen signaling in vivo by estren induced E2-like restorative actions. Selective blockade of the MAPK or protein kinase A pathway in vivo prevented E2's ability to restore cholinergic fiber loss. Finally, studies in intact female mice revealed an E2-induced restorative effect that was similar to that of E2-treated ovariectomized mice. These observations demonstrate that a single E2 treatment restores the BFC fiber loss in the cortex, regardless of endogenous E2 levels. They also reveal the critical role of nonclassical estrogen signaling via estrogen receptor-α and protein kinase A-MAPK pathways in E2-induced restorative action in the cholinergic system in vivo.

  18. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    SciTech Connect

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline; Sun, Jianmin; Jögi, Annika; Neumann, Drorit; Rönnstrand, Lars; Påhlman, Sven

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  19. A novel taspine derivative, HMQ1611, inhibits breast cancer cell growth via estrogen receptor α and EGF receptor signaling pathways.

    PubMed

    Zhan, Yingzhuan; Zhang, Yanmin; Liu, Cuicui; Zhang, Jie; Smith, Wanli W; Wang, Nan; Chen, Yinnan; Zheng, Lei; He, Langchong

    2012-06-01

    Breast cancer is a common cancer with a leading cause of cancer mortality in women. Currently, the chemotherapy for breast cancer is underdeveloped. Here, we report a novel taspine derivative, HMQ1611, which has anticancer effects using in vitro and in vivo breast cancer models. HMQ1611 reduced cancer cell proliferation in four human breast cancer cell lines including MDA-MB-231, SK-BR-3, ZR-75-30, and MCF-7. HMQ1611 more potently reduced growth of estrogen receptor α (ERα)-positive breast cancer cells (ZR-75-30 and MCF-7) than ERα-negative cells (MDA-MB-231 and SK-BR-3). Moreover, HMQ1611 arrested breast cancer cell cycle at S-phase. In vivo tumor xenograft model, treatment of HMQ1611 significantly reduced tumor size and weight compared with vehicles. We also found that HMQ1611 reduced ERα expression and inhibited membrane ERα-mediated mitogen-activated protein kinase (MAPK) signaling following the stimulation of cells with estrogen. Knockdown of ERα by siRNA transfection in ZR-75-30 cells attenuated HMQ1611 effects. In contrast, overexpression of ERα in MDA-MB-231 cells enhanced HMQ1611 effects, suggesting that ERα pathway mediated HMQ1611's inhibition of breast cancer cell growth in ERα-positive breast cancer. HMQ1611 also reduced phosphorylation of EGF receptor (EGFR) and its downstream signaling players extracellular signal-regulated kinase (ERK)1/2 and AKT activation both in ZR-75-30 and MDA-MB-231 cells. These results showed that the novel compound HMQ1611 had anticancer effects, and partially via ERα and/or EGFR signaling pathways, suggesting that HMQ1611 may be a potential novel candidate for human breast cancer intervention.

  20. Enhanced noscapine delivery using estrogen-receptor-targeted nanoparticles for breast cancer therapy.

    PubMed

    Madan, Jitender; Gundala, Sushma R; Kasetti, Yoganjaneyulu; Bharatam, Prasad V; Aneja, Ritu; Katyal, Anju; Jain, Upendra K

    2014-07-01

    Noscapine (Nos), an orally available plant-derived antitussive alkaloid, is in phase II clinical trials for cancer chemotherapy. It has extensively been shown to inhibit tumor growth in nude mice bearing human xenografts of hematopoietic, breast, lung, ovarian, brain, and prostate origin. However, high tumor-suppressive Nos dosages encumber the development of oral controlled-release formulations because of a short biological half-life (<2 h), poor absorption, low aqueous solubility, and extensive first-pass metabolism. Here, we present the design, fabrication, optimization, characterization, and biological evaluation of estrone-conjugated noscapine-loaded gelatin nanoparticles (Nos-ES-GN) for targeting estrogen-receptor-positive breast cancer MCF-7 cells. Gelatin nanoparticles (GN) were a uniformly compact size, stable at physiological pH, and showed a drug entrapment efficiency of 66.1±5.9 and 65.2±5.6% for Nos-GN and Nos-ES-GN, respectively. The secondary structure of gelatin nanocoacervates was predicted using circular dichroism and in-silico molecular modeling. Our data suggest that ethanol-fabricated GN retained the α-helical content of gelatin, whereas acetone favored the formation of random coils. The conjugation of estrone to Nos-GN did not affect the release rate of the drug, and both formulations followed first-order release kinetics with an initial burst, followed by a slow release. The IC50 value of Nos-ES-GN was 21.2 μmol/l, which was ∼50% lower than the free drug (43.3 μmol/l), suggesting targeted drug delivery. Our cell uptake study carried out in an estrogen-receptor-positive (MCF-7) and negative (MDA-MB-231) cancer cell lines showed greater accumulation of Nos-ES-GN in MCF-7 cells instead of MDA-MB-231 cells. Our data indicated that estrone-conjugated nanoparticles may potentially be used for targeting breast cancer cells.

  1. Estrogen receptor testing and 10-year mortality from breast cancer: A model for determining testing strategy

    PubMed Central

    Naugler, Christopher

    2012-01-01

    Background: The use of adjuvant tamoxifen therapy in the treatment of estrogen receptor (ER) expressing breast carcinomas represents a major advance in personalized cancer treatment. Because there is no benefit (and indeed there is increased morbidity and mortality) associated with the use of tamoxifen therapy in ER-negative breast cancer, its use is restricted to women with ER expressing cancers. However, correctly classifying cancers as ER positive or negative has been challenging given the high reported false negative test rates for ER expression in surgical specimens. In this paper I model practice recommendations using published information from clinical trials to address the question of whether there is a false negative test rate above which it is more efficacious to forgo ER testing and instead treat all patients with tamoxifen regardless of ER test results. Methods: I used data from randomized clinical trials to model two different hypothetical treatment strategies: (1) the current strategy of treating only ER positive women with tamoxifen and (2) an alternative strategy where all women are treated with tamoxifen regardless of ER test results. The variables used in the model are literature-derived survival rates of the different combinations of ER positivity and treatment with tamoxifen, varying true ER positivity rates and varying false negative ER testing rates. The outcome variable was hypothetical 10-year survival. Results: The model predicted that there will be a range of true ER rates and false negative test rates above which it would be more efficacious to treat all women with breast cancer with tamoxifen and forgo ER testing. This situation occurred with high true positive ER rates and false negative ER test rates in the range of 20-30%. Conclusions: It is hoped that this model will provide an example of the potential importance of diagnostic error on clinical outcomes and furthermore will give an example of how the effect of that error could be

  2. Mechanisms of transcriptional activation of the mouse claudin-5 promoter by estrogen receptor alpha and beta.

    PubMed

    Burek, Malgorzata; Steinberg, Katrin; Förster, Carola Y

    2014-07-01

    Claudin-5 is an integral membrane protein and a critical component of endothelial tight junctions that control paracellular permeability. Claudin-5 is expressed at high levels in the brain vascular endothelium. Estrogens have multiple effects on vascular physiology and function. The biological actions of estrogens are mediated by two different estrogen receptor (ER) subtypes, ER alpha and ER beta. Estrogens have beneficial effects in several vascular disorders. Recently we have cloned and characterized a murine claudin-5 promoter and demonstrated 17beta-estradiol (E2)-mediated regulation of claudin-5 in brain and heart microvascular endothelium on promoter, mRNA and protein level. Sequence analysis revealed a putative estrogen response element (ERE) and a putative Sp1 transcription factor binding site in the claudin-5 promoter. The aim of the present study was to further characterize the estrogen-responsive elements of claudin-5 promoter. First, we introduced point mutations in ERE or Sp1 site in -500/+111 or in Sp1 site of -268/+111 claudin-5 promoter construct, respectively. Basal and E2-mediated transcriptional activation of mutated constructs was abrogated in the luciferase reporter gene assay. Next, we examined whether estrogen receptor subtypes bind to the claudin-5 promoter region. For this purpose we performed chromatin immunoprecipitation assays using anti-estrogen receptor antibodies and cellular lysates of E2-treated endothelial cells followed by quantitative PCR analysis. We show enrichment of claudin-5 promoter fragments containing the ERE- and Sp1-binding site in immunoprecipitates after E2 treatment. Finally, in a gel mobility shift assay, we demonstrated DNA-protein interaction of both ER subtypes at ERE. In summary, this study provides evidence that both a non-consensus ERE and a Sp1 site in the claudin-5 promoter are functional and necessary for the basal and E2-mediated activation of the promoter.

  3. Prognostic ability of EndoPredict compared to research-based versions of the PAM50 risk of recurrence (ROR) scores in node-positive, estrogen receptor-positive, and HER2-negative breast cancer. A GEICAM/9906 sub-study.

    PubMed

    Martin, Miguel; Brase, Jan C; Ruiz, Amparo; Prat, Aleix; Kronenwett, Ralf; Calvo, Lourdes; Petry, Christoph; Bernard, Philip S; Ruiz-Borrego, Manuel; Weber, Karsten E; Rodriguez, César A; Alvarez, Isabel M; Segui, Miguel A; Perou, Charles M; Casas, Maribel; Carrasco, Eva; Caballero, Rosalía; Rodriguez-Lescure, Alvaro

    2016-02-01

    There are several prognostic multigene-based tests for managing breast cancer (BC), but limited data comparing them in the same cohort. We compared the prognostic performance of the EndoPredict (EP) test (standardized for pathology laboratory) with the research-based PAM50 non-standardized qRT-PCR assay in node-positive estrogen receptor-positive (ER+) and HER2-negative (HER2-) BC patients receiving adjuvant chemotherapy followed by endocrine therapy (ET) in the GEICAM/9906 trial. EP and PAM50 risk of recurrence (ROR) scores [based on subtype (ROR-S) and on subtype and proliferation (ROR-P)] were compared in 536 ER+/HER2- patients. Scores combined with clinical information were evaluated: ROR-T (ROR-S, tumor size), ROR-PT (ROR-P, tumor size), and EPclin (EP, tumor size, nodal status). Patients were assigned to risk-categories according to prespecified cutoffs. Distant metastasis-free survival (MFS) was analyzed by Kaplan-Meier. ROR-S, ROR-P, and EP scores identified a low-risk group with a relative better outcome (10-year MFS: ROR-S 87 %; ROR-P 89 %; EP 93 %). There was no significant difference between tests. Predictors including clinical information showed superior prognostic performance compared to molecular scores alone (10-year MFS, low-risk group: ROR-T 88 %; ROR-PT 92 %; EPclin 100 %). The EPclin-based risk stratification achieved a significantly improved prediction of MFS compared to ROR-T, but not ROR-PT. All signatures added prognostic information to common clinical parameters. EPclin provided independent prognostic information beyond ROR-T and ROR-PT. ROR and EP can reliably predict risk of distant metastasis in node-positive ER+/HER2- BC patients treated with chemotherapy and ET. Addition of clinical parameters into risk scores improves their prognostic ability. PMID:26909792

  4. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells

    SciTech Connect

    Komm, B.S.; Terpening, C.M.; Benz, D.J.; Graeme, K.A.; Gallegos, A.; Korc, M.; Greene, G.L.; O'Malley, B.W.; Haussler, M.R.

    1988-07-01

    High specific activity estradiol labeled with iodine-125 was used to detect approximately 200 saturable, high-affinity (dissociation constant approximately equal to 1.0 nM) nuclear binding sites in rat (ROS 17/2.8) and human (HOS TE85) clonal osteoblast-like osteosarcoma cells. Of the steroids tested, only testosterone exhibited significant cross-reactivity with estrogen binding. RNA blot analysis with a complementary DNA probe to the human estrogen receptor revealed putative receptor transcripts of 6 to 6.2 kilobases in both rat and human osteosarcoma cells. Type I procollagen and transforming growth factor-beta messenger RNA levels were enhanced in cultured human osteoblast-like cells treated with 1 nM estradiol. Thus, estrogen can act directly on osteoblasts by a receptor-mediated mechanism and thereby modulate the extracellular matrix and other proteins involved in the maintenance of skeletal mineralization and remodeling.

  5. Not lost in translation: Emerging clinical importance of the G protein-coupled estrogen receptor GPER.

    PubMed

    Barton, Matthias

    2016-07-01

    It has been 20years that the G protein-coupled estrogen receptor (GPER) was cloned as the orphan receptor GPR30 from multiple cellular sources, including vascular endothelial cells. Here, I will provide an overview of estrogen biology and the historical background leading to the discovery of rapid vascular estrogen signaling. I will also review the recent advances in the understanding of the mechanisms underlying GPER function, its role in physiology and disease, some of the currently available GPER-targeting drugs approved for clinical use such as SERMs (selective estrogen receptor modulators) and SERDs (selective estrogen receptor downregulators). Many of currently used drugs such as tamoxifen, raloxifene, or faslodex™/fulvestrant were discovered targeting GPER many years after they had been introduced to the clinics for entirely different purposes. This has important implications for the clinical use of these drugs and their modes of action, which I have termed 'reverse translational medicine'. In addition, environmental pollutants known as 'endocrine disruptors' have been found to bind to GPER. This article also discusses recent evidence in these areas as well as opportunities in translational clinical medicine and GPER research, including medical genetics, personalized medicine, prevention, and its theranostic use. PMID:26921679

  6. Sharing the Roles: An Assessment of Japanese Medaka Estrogen Receptors in Vitellogenin Induction.

    PubMed

    Lee Pow, Crystal S D; Yost, Erin E; Aday, D Derek; Kullman, Seth W

    2016-08-16

    Teleost fish express at least three estrogen receptor (ER) subtypes. To date, however, the individual role of these ER subtypes in regulating expression of estrogen responsive genes remains ambiguous. Here, we investigate putative roles of three ER subtypes in Japanese medaka (Oryzias latipes), using vitellogenin (VTG) I and II as model genes. We identify specific ligand/receptor/promoter dynamics, using transient transactivation assays that incorporate luciferase reporters comprising 3kb promoter/enhancer regions of medaka VTGI and VTGII genes. Four steroidal estrogens (17β-estradiol, estrone, estriol, and 17α-estradiol) were tested in these assays. Results indicate that all three medaka ERs (mERs) are capable of initiating transactivation of both VTG I and II, with ERβ2 exhibiting greatest activity. Promoter deletion analysis suggests that ligand-specific receptor transactivation and utilization of regional-specific estrogen response elements may be associated with differential activities of each medaka ER. Further, cluster analysis of in vivo gene expression and in vitro transactivation suggests that all three ER subtypes putatively play a role in up-regulation of VTG. Results illustrate that preferential ligand/receptor/promoter interactions may have direct implications for VTG gene expression and other ER-mediated regulatory functions that are relevant to the risk assessment of estrogenic compounds.

  7. Sharing the Roles: An Assessment of Japanese Medaka Estrogen Receptors in Vitellogenin Induction.

    PubMed

    Lee Pow, Crystal S D; Yost, Erin E; Aday, D Derek; Kullman, Seth W

    2016-08-16

    Teleost fish express at least three estrogen receptor (ER) subtypes. To date, however, the individual role of these ER subtypes in regulating expression of estrogen responsive genes remains ambiguous. Here, we investigate putative roles of three ER subtypes in Japanese medaka (Oryzias latipes), using vitellogenin (VTG) I and II as model genes. We identify specific ligand/receptor/promoter dynamics, using transient transactivation assays that incorporate luciferase reporters comprising 3kb promoter/enhancer regions of medaka VTGI and VTGII genes. Four steroidal estrogens (17β-estradiol, estrone, estriol, and 17α-estradiol) were tested in these assays. Results indicate that all three medaka ERs (mERs) are capable of initiating transactivation of both VTG I and II, with ERβ2 exhibiting greatest activity. Promoter deletion analysis suggests that ligand-specific receptor transactivation and utilization of regional-specific estrogen response elements may be associated with differential activities of each medaka ER. Further, cluster analysis of in vivo gene expression and in vitro transactivation suggests that all three ER subtypes putatively play a role in up-regulation of VTG. Results illustrate that preferential ligand/receptor/promoter interactions may have direct implications for VTG gene expression and other ER-mediated regulatory functions that are relevant to the risk assessment of estrogenic compounds. PMID:27391190

  8. Triple-negative breast cancer risk in women is defined by the defect of estrogen signaling: preventive and therapeutic implications

    PubMed Central

    Suba, Zsuzsanna

    2014-01-01

    Epidemiologic studies strongly support that triple-negative breast cancers (TNBCs) may be distinct entities as compared with estrogen receptor (ER)+ tumors, suggesting that the etiologic factors, clinical characteristics, and therapeutic possibilities may vary by molecular subtypes. Many investigations propose that reproductive factors and exogenous hormone use differently or even quite inversely affect the risk of TNBCs and ER+ cancers. Controversies concerning the exact role of even the same risk factor in TNBC development justify that the biological mechanisms behind the initiation of both TNBCs and non-TNBCs are completely obscure. To arrive at a comprehensive understanding of the etiology of different breast cancer subtypes, we should also reconsider our traditional concepts and beliefs regarding cancer risk factors. Malignancies are multicausal, but the disturbance of proper estrogen signaling seems to be a crucial risk factor for the development of mammary cancers. The grade of defect in metabolic and hormonal equilibrium is directly associated with TNBC risk for women during their whole life. Inverse impact of menopausal status or parity on the development of ER+ and ER− breast cancers may not be possible; these controversial results derive from the misinterpretation of percentage-based statistical evaluations. Exogenous or parity-associated excessive estrogen supply is suppressive against breast cancer, though the lower the ER expression of tumors, the weaker the anticancer capacity. In women, the most important preventive strategy against breast cancers – included TNBCs – is the strict control and maintenance of hormonal equilibrium from early adolescence through the whole lifetime, particularly during the periods of great hormonal changes. PMID:24482576

  9. The interaction site for tamoxifen aziridine with the bovine estrogen receptor

    SciTech Connect

    Ratajczak, T.; Wilkinson, S.P.; Brockway, M.J.; Haehnel, R.M.; Moritz, R.L.; Begg, G.S.; Simpson, R.J.

    1989-08-15

    Calf uterine estrogen receptor was covalently labeled with ({sup 3}H)tamoxifen aziridine during affinity chromatography purification. After carboxymethylation, affinity labeled receptor was digested with trypsin under limit conditions and the labeled peptides were fractionated by reversed-phase high performance liquid chromatography into one major and two minor components. Sequence analysis of the dominant labeled fragment indicated the facile cleavage of label during Edman degradation but identified two peptides, both derived from the extreme carboxyl terminus of the steroid-binding domain. The 17 residues of one peptide were fully conserved in all estrogen receptors. This fragment contained five nucleophilic amino acids and was considered as the more favored interaction site for tamoxifen aziridine. A corresponding region of the glucocorticoid receptor has recently been identified as one of three major contact sites for glucocorticoids. A comparison of amino acid physical characteristics in the hormone-binding domains of human estrogen and glucocorticoid receptors demonstrated an excellent structural correlation between the two regions and delineated elements in the estrogen receptor which may be directly involved in estradiol binding.

  10. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells.

    PubMed

    Shen, Minqian; Shi, Haifei

    2016-01-01

    Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC). Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2), estrogen receptor-α (ER-α) selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER) selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients. PMID:26982332

  11. Estradiol and Estrogen Receptor Agonists Oppose Oncogenic Actions of Leptin in HepG2 Cells

    PubMed Central

    Shen, Minqian; Shi, Haifei

    2016-01-01

    Obesity is a significant risk factor for certain cancers, including hepatocellular carcinoma (HCC). Leptin, a hormone secreted by white adipose tissue, precipitates HCC development. Epidemiology data show that men have a much higher incidence of HCC than women, suggesting that estrogens and its receptors may inhibit HCC development and progression. Whether estrogens antagonize oncogenic action of leptin is uncertain. To investigate potential inhibitory effects of estrogens on leptin-induced HCC development, HCC cell line HepG2 cells were treated with leptin in combination with 17 β-estradiol (E2), estrogen receptor-α (ER-α) selective agonist PPT, ER-β selective agonist DPN, or G protein-coupled ER (GPER) selective agonist G-1. Cell number, proliferation, and apoptosis were determined, and leptin- and estrogen-related intracellular signaling pathways were analyzed. HepG2 cells expressed a low level of ER-β mRNA, and leptin treatment increased ER-β expression. E2 suppressed leptin-induced HepG2 cell proliferation and promoted cell apoptosis in a dose-dependent manner. Additionally E2 reversed leptin-induced STAT3 and leptin-suppressed SOCS3, which was mainly achieved by activation of ER-β. E2 also enhanced ERK via activating ER-α and GPER and activated p38/MAPK via activating ER-β. To conclude, E2 and its receptors antagonize the oncogenic actions of leptin in HepG2 cells by inhibiting cell proliferation and stimulating cell apoptosis, which was associated with reversing leptin-induced changes in SOCS3/STAT3 and increasing p38/MAPK by activating ER-β, and increasing ERK by activating ER-α and GPER. Identifying roles of different estrogen receptors would provide comprehensive understanding of estrogenic mechanisms in HCC development and shed light on potential treatment for HCC patients. PMID:26982332

  12. Integrated Summary Report: Validation of Two Binding Assays Using Human Recombinant Estrogen Receptor Alpha (hrERa)

    EPA Science Inventory

    This Integrated Summary Report (ISR) summarizes, in a single document, the results from an international multi-laboratory validation study conducted for two in vitro estrogen receptor (ER) binding assays. These assays both use human recombinant estrogen receptor, alpha subtype (h...

  13. Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An estimated 70% of breast cancer tumors utilize estrogen receptor (ER) signaling to maintain tumorigenesis, and targeting of the estrogen receptor is a common method of treatment for these tumor types. However, ER-positive (+) breast cancers often acquire drug resistant or altered ER activity in r...

  14. Characterization of the weak estrogen receptor α agonistic activity of exemestane

    PubMed Central

    Masri, Selma; Lui, Ki; Phung, Sheryl; Ye, Jingjing; Zhou, Dujin; Wang, Xin; Chen, Shiuan

    2012-01-01

    Third generation aromatase inhibitors (AI) have shown good clinical efficacy in comparison to the anti-estrogen tamoxifen. The steroidal AI, exemestane (EXE) has previously been shown to act as an androgen, but this report demonstrates the estrogen-like activity of EXE. Based on genome-wide microarray analysis, high correlation was seen between EXE-Only (EXE O, hormone-free) and hormone-containing AI-resistant lines. In addition, the top regulated genes in the EXE O lines were mostly estrogen-responsive genes. This estrogen-like activity of EXE was further validated using estrogen receptor (ER) activity assays, where in comparison to 17β-estradiol (E2), EXE was able to induce ER activity, though at a higher concentration. Also, this EXE-mediated ER activity was blocked by the ER antagonist ICI as well as the ERα-specific antagonist methyl-piperidino-pyrazole (MPP). Similarly, EXE was able to induce proliferation of breast cancer cell lines, MCF-7 and MCF-7aro, as well as activate transcription of known estrogen-responsive genes, i.e., PGR, pS2 and AREG. These results suggest that EXE does have weak estrogen-like activity. PMID:18677558

  15. Epithelial estrogen receptor 1 intrinsically mediates squamous differentiation in the mouse vagina

    PubMed Central

    Miyagawa, Shinichi; Iguchi, Taisen

    2015-01-01

    Estrogen-mediated actions in female reproductive organs are tightly regulated, mainly through estrogen receptor 1 (ESR1). The mouse vaginal epithelium cyclically exhibits cell proliferation and differentiation in response to estrogen and provides a unique model for analyzing the homeostasis of stratified squamous epithelia. To address the role of ESR1-mediated tissue events during homeostasis, we analyzed mice with a vaginal epithelium-specific knockout of Esr1 driven by keratin 5-Cre (K5-Esr1KO). We show here that loss of epithelial ESR1 in the vagina resulted in aberrant epithelial cell proliferation in the suprabasal cell layers and led to failure of keratinized differentiation. Gene expression analysis showed that several known estrogen target genes, including erbB growth factor ligands, were not induced by estrogen in the K5-Esr1KO mouse vagina. Organ culture experiments revealed that the addition of erbB growth factor ligands, such as amphiregulin, could activate keratinized differentiation in the absence of epithelial ESR1. Thus, epithelial ESR1 integrates estrogen and growth factor signaling to mediate regulation of cell proliferation in squamous differentiation, and our results provide new insights into estrogen-mediated homeostasis in female reproductive organs. PMID:26438838

  16. The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System.

    PubMed

    Menazza, Sara; Murphy, Elizabeth

    2016-03-18

    Estrogen has important effects on cardiovascular function including regulation of vascular function, blood pressure, endothelial relaxation, and the development of hypertrophy and cardioprotection. However, the mechanisms by which estrogen mediates these effects are still poorly understood. As detailed in this review, estrogen can regulate transcription by binding to 2 nuclear receptors, ERα and ERβ, which differentially regulate gene transcription. ERα and ERβ regulation of gene transcription is further modulated by tissue-specific coactivators and corepressors. Estrogen can bind to ERα and ERβ localized at the plasma membrane as well as G-protein-coupled estrogen receptor to initiate membrane delimited signaling, which enhances kinase signaling pathways that can have acute and long-term effects. The kinase signaling pathways can also mediate transcriptional changes and can synergize with the ER to regulate cell function. This review will summarize the beneficial effects of estrogen in protecting the cardiovascular system through ER-dependent mechanisms with an emphasis on the role of the recently described ER membrane signaling mechanisms.

  17. G Protein-Coupled Estrogen Receptor in Energy Homeostasis and Obesity Pathogenesis

    PubMed Central

    Shi, Haifei; Dharshan Senthil Kumar, Shiva Priya; Liu, Xian

    2013-01-01

    Obesity and its related metabolic diseases have reached a pandemic level worldwide. There are sex differences in the prevalence of obesity and its related metabolic diseases, with men being more vulnerable than women; however, the prevalence of these disorders increases dramatically in women after menopause, suggesting that sex steroid hormone estrogens play key protective roles against development of obesity and metabolic diseases. Estrogens are important regulators of several aspects of metabolism, including body weight and body fat, caloric intake and energy expenditure, and glucose and lipid metabolism in both males and females. Estrogens act in complex ways on their nuclear estrogen receptors (ERs) ERα and ERβ and transmembrane ERs such as G protein-coupled estrogen receptor. Genetic tools, such as different lines of knockout mouse models, and pharmacological agents, such as selective agonists and antagonists, are available to study function and signaling mechanisms of ERs. We provide an overview of the evidence for the physiological and cellular actions of ERs in estrogen-dependent processes in the context of energy homeostasis and body fat regulation and discuss its pathology that leads to obesity and related metabolic states. PMID:23317786

  18. Androgen receptor (AR), estrogen receptor-alpha (ER-α) and estrogen receptor-beta (ER-β) expression in the testis of the newt, Triturus marmoratus marmoratus during the annual cycle

    PubMed Central

    ARENAS, M. I.; ROYUELA, M.; LOBO, M. V. T.; ALFARO, J. M.; FRAILE, B.; PANIAGUA, R.

    2001-01-01

    Expression of androgen receptor (AR), estrogen receptor alpha (ER-α) and estrogen receptor beta (ER-β) in the testis of the marbled newt (Triturus marmoratus marmoratus) was investigated, with special attention to changes during the annual testicular cycle, using light microscopy immunohistochemistry and Western blot analysis. Primordial germ cells, primary and secondary spermatogonia and spermatocytes showed a positive reaction to the 3 receptor antibodies during the annual reproductive cycle. Follicular cells were positive to AR, ER-α and ER-β during the spermiogenesis and quiescence periods in the glandular tissue. Interstitial cells showed reactivity to AR, ER-α and ER-β in the spermiogenesis and the quiescence periods, and presented no labelling to these receptors in the proliferative period. These findings suggest that, as in mammals, there is an androgen-estrogen regulation of the function and development of the newt testis. PMID:11693307

  19. Estrogen receptor-β in mitochondria: implications for mitochondrial bioenergetics and tumorigenesis.

    PubMed

    Liao, Tien-Ling; Tzeng, Chii-Ruey; Yu, Chao-Lan; Wang, Yi-Pei; Kao, Shu-Huei

    2015-09-01

    Estrogen enhances mitochondrial function by enhancing mitochondrial biogenesis and sustaining mitochondrial energy-transducing capacity. Shifts in mitochondrial bioenergetic pathways from oxidative phosphorylation to glycolysis have been hypothesized to be involved in estrogen-induced tumorigenesis. Studies have shown that mitochondria are an important target of estrogen. Estrogen receptor-β (ERβ) has been shown to localize to mitochondria in a ligand-dependent or -independent manner and can affect mitochondrial bioenergetics and anti-apoptotic signaling. However, the functional role of mitochondrial ERβ in tumorigenesis remains unclear. Clinical studies of ERβ-related tumorigenesis have shown that ERβ stimulates mitochondrial metabolism to meet the high energy demands of processes such as cell proliferation, cell survival, and transformation. Thus, in elucidating the precise role of mitochondrial ERβ in cell transformation and tumorigenesis, it will be particularly valuable to explore new approaches for the development of medical treatments targeting mitochondrial ERβ-mediated mitochondrial function and preventing apoptosis.

  20. Estrogen receptor-α is localized to neurofibrillary tangles in Alzheimer’s disease

    PubMed Central

    Wang, Chunyu; Zhang, Fan; Jiang, Sirui; Siedlak, Sandra L.; Shen, Lu; Perry, George; Wang, Xinglong; Tang, Beisha; Zhu, Xiongwei

    2016-01-01

    The female predominance for developing Alzheimer disease (AD) suggests the involvement of gender specific factor(s) such as a reduced estrogen-estrogen receptor signaling in the pathogenesis of AD. The potential role of ERα in AD pathogenesis has been explored by several groups with mixed results. We revisited this issue of expression and distribution of ERα in AD brain using a specific ERα antibody. Interestingly, we found that ERα co-localized with neurofibrillary pathology in AD brain and further demonstrated that ERα interacts with tau protein in vivo. Immunoprecipitaion experiments found increased ERα-tau interaction in the AD cases, which may account for ERα being sequestered in neuronal tau pathology. Indeed, tau overexpression in M17 cells leads to interruption of estrogen signaling. Our data support the idea that sequestration of ERα by tau pathology underlies the loss of estrogen neuroprotection during the course of AD. PMID:26837465

  1. Identification of Estrogen Response Element in Aquaporin-3 Gene that Mediates Estrogen-induced Cell Migration and Invasion in Estrogen Receptor-positive Breast Cancer

    PubMed Central

    Huang, Yi-Ting; Zhou, Jun; Shi, Shuai; Xu, Hai-Yan; Qu, Fan; Zhang, Dan; Chen, Yi-Ding; Yang, Jing; Huang, He-Feng; Sheng, Jian-Zhong

    2015-01-01

    Accumulating evidence suggests that aquaporins (AQPs) may facilitate tumor development. The molecular pathways connecting the pathological functions of AQPs are unclear and need to be better defined. This study aimed to investigate whether AQP3, one of the AQPs expressed highly in breast cancer, had any clinical implication in estrogen-receptor (ER) positive breast cancer, and explore the regulatory mechanisms of AQP3 in estrogen-related breast cancer progression. Here we show that AQP3 is an important enforcer of migration and invasion in breast cancer. We, for the first time, reported that ER-positive breast cancer tissues obtained from premenopausal patients had higher AQP3 expression when compared to those obtained from postmenopausal patients. Estrogen directly upregulates AQP3 by activating ERE in the promoter of the AQP3 gene. The upregulation of AQP3 can influence the expression of molecules related to epithelial-mesenchymal transition and the reorganization of actin-cytoskeleton, resulting in enhancement of cell migration and invasion in ER-positive breast cancer cells. PMID:26219409

  2. Cholesterol inhibits the nuclear entry of estrogen receptor activation factor (E-RAF) and its dimerization with the nonactivated estrogen receptor (naER) in goat uterus.

    PubMed

    Thampan, R V; Zafar, A; Imam, N S; Sreeja, S; Suma, K; Vairamani, M

    2000-04-01

    An alternative form of estrogen receptor isolated from goat uterus, the nonactivated estrogen receptor (naER), has no DNA-binding function, although it is closely similar to the classical estrogen receptor (ER) in its hormone binding affinity and specificity. The naER dimerizes with a DNA binding protein, estrogen receptor activation factor (E-RAF). The heterodimer binds to the DNA. Assays carried out during the purification of E-RAF showed that an endogenous inhibitor that is heat stable and dialyzable bound to the E-RAF and prevented the formation of the heterodimer. The inhibitor has been isolated and purified. GC-MS analysis identifies this molecule to be cholesterol. Circular dichroism measurement has shown that the high-affinity binding of cholesterol to E-RAF results in subtle changes in the secondary and the tertiary structure of the protein. The E-RAF with altered conformation fails to dimerize with the naER. Instead of facilitating E-RAF entry into the nucleus, dimerization with the naER prevents it. Similarly, cholesterol binding blocks the nuclear entry of the protein, showing that E-RAF with altered conformation is incapable of interaction with the nuclear pore complex/membrane proteins. The naER-E-RAF heterodimer remains at the nuclear periphery, incapable of further transport. These results indicate the possibility that the dimerization between naER and the E-RAF takes place only within the nuclear compartment. The observation that cholesterol binding prevents nuclear entry of the E-RAF reflects the similarity of E-RAF with the sterol regulatory element (SRE) binding protein that enters the nucleus and binds to SRE only when the intracellular level of cholesterol remains low. PMID:10760947

  3. Cholesterol inhibits the nuclear entry of estrogen receptor activation factor (E-RAF) and its dimerization with the nonactivated estrogen receptor (naER) in goat uterus.

    PubMed

    Thampan, R V; Zafar, A; Imam, N S; Sreeja, S; Suma, K; Vairamani, M

    2000-04-01

    An alternative form of estrogen receptor isolated from goat uterus, the nonactivated estrogen receptor (naER), has no DNA-binding function, although it is closely similar to the classical estrogen receptor (ER) in its hormone binding affinity and specificity. The naER dimerizes with a DNA binding protein, estrogen receptor activation factor (E-RAF). The heterodimer binds to the DNA. Assays carried out during the purification of E-RAF showed that an endogenous inhibitor that is heat stable and dialyzable bound to the E-RAF and prevented the formation of the heterodimer. The inhibitor has been isolated and purified. GC-MS analysis identifies this molecule to be cholesterol. Circular dichroism measurement has shown that the high-affinity binding of cholesterol to E-RAF results in subtle changes in the secondary and the tertiary structure of the protein. The E-RAF with altered conformation fails to dimerize with the naER. Instead of facilitating E-RAF entry into the nucleus, dimerization with the naER prevents it. Similarly, cholesterol binding blocks the nuclear entry of the protein, showing that E-RAF with altered conformation is incapable of interaction with the nuclear pore complex/membrane proteins. The naER-E-RAF heterodimer remains at the nuclear periphery, incapable of further transport. These results indicate the possibility that the dimerization between naER and the E-RAF takes place only within the nuclear compartment. The observation that cholesterol binding prevents nuclear entry of the E-RAF reflects the similarity of E-RAF with the sterol regulatory element (SRE) binding protein that enters the nucleus and binds to SRE only when the intracellular level of cholesterol remains low.

  4. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer.

    PubMed

    Singhal, Hari; Greene, Marianne E; Tarulli, Gerard; Zarnke, Allison L; Bourgo, Ryan J; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G; Raj, Ganesh V; Hickey, Theresa E; Tilley, Wayne D; Greene, Geoffrey L

    2016-06-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER(+) (estrogen receptor-positive)/PR(+) human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER(+)/PR(+) breast cancers should be explored. PMID:27386569

  5. Palbociclib in Combination With Tamoxifen as First Line Therapy for Metastatic Hormone Receptor Positive Breast Cancer

    ClinicalTrials.gov

    2016-10-04

    Hormone Receptor Positive Malignant Neoplasm of Breast; Human Epidermal Growth Factor 2 Negative Carcinoma of Breast; Estrogen Receptor Positive Breast Cancer; Progesterone Receptor Positive Tumor; Metastatic Breast Cancer

  6. Up-regulation of cyclin E in breast cancer via estrogen receptor pathway.

    PubMed

    Niu, Dehong; Wang, Gang; Wang, Xiuwen

    2015-01-01

    It is well known that cell cycle dysregulation plays an important role in breast cancer. The mechanism, however, is not fully understood. In this study, we aimed to explore whether estrogen and estrogen receptor pathway play a role in the regulation of cell cycle protein cyclin E expression, and whether the expression of cyclin E is associated with breast cancer prognosis. We first examined the level of cyclin E expression in breast cancer by immunohistochemistry. Benign fibroadenoma was used as controls. Next we cultured MCF-7 cells with different concentration of 17β-estradiol or tamoxifen for 48 hours. Then we employ qRT-PCR to determine changes of cyclin E in MCF-7 cells. Cyclin E is overexpressed in breast cancer and its expression is associated with the status of estrogen receptor and lymph node metastasis. After treatment with 17β-estradiol, the gene expression of cyclin E was enhanced, and as the concentration increased, the enhancement increased. After treatment with tamoxifen, the gene expression of cyclin E was inhibited, and as the concentration decreased, the inhibition increased. We demonstrated that estrogen induces, while tamoxifen inhibits cyclin E expression. This indicate that estrogen receptor pathway play a critical role in cell cycle dysregulation in breast cancer.

  7. Estrogen and progesterone modulate [35S]GTPgammaS binding to nociceptin receptors.

    PubMed

    Quesada, Arnulfo; Micevych, Paul

    2008-01-01

    Sex steroids modulate reproduction by altering the response of steroid-activated opioid circuits in the hypothalamus and limbic system, by inducing release of endogenous opioids and activation of their cognate receptors. Many studies have concentrated on steroid regulation of exogenous opioid peptides, but steroids also have important actions on opioid receptors inducing receptor trafficking. Opioid receptors are G protein-coupled receptors and their activation catalyzes the exchange of GTP for GDP initiating intracellular signaling cascades. Kinetics of G protein activation were studied using [(35)S]GTPgammaS binding. Catalytic amplification, the number of G proteins activated per occupied receptor, was used as a measure of receptor/transducer amplification. The present study examined whether estrogen and progesterone treatment altered the kinetics of nociceptin opioid receptor (ORL1) in plasma membranes from the medial preoptic area and mediobasal hypothalamus. These hypothalamic regions are important in the gonadal steroid hormone regulation of sexual receptivity. In the mediobasal hypothalamus, estrogen increased ORL1 (B(max)) receptor number 2-fold and maximal GTPgammaS binding (E(max)) 3.9-fold. Subsequent progesterone treatment further increased ORL1 E(max )6.9-fold above baseline, despite a 2-fold decrease in the catalytic amplification factor. In the medial preoptic area, estrogen alone did not increase E(max), but both estrogen and progesterone were able to increase ORL1 B(max) 2.2-fold and E(max) 3-fold, despite having a 3-fold decrease in the catalytic amplification factor. These effects are interesting because they indicate actions of steroids that increase the number of ORL1 but decrease the catalytic amplification suggesting that the steroid effects on opioid receptors are complex and may involve modulation by other signals. PMID:18212517

  8. DIFFERENCES IN SENSITIVITY BUT NOT SELECTIVITY OF XENOESTROGEN BINDING TO ALLIGATOR VERSUS HUMAN ESTROGEN RECEPTOR ALPHA

    PubMed Central

    Rider, Cynthia V.; Hartig, Phillip C.; Cardon, Mary C.; Lambright, Christy R.; Bobseine, Kathy L.; Guillette, Louis J.; Gray, L. Earl; Wilson, Vickie S.

    2010-01-01

    Reproductive abnormalities in alligators exposed to contaminants in Lake Apopka, Florida, USA represent a clear example of endocrine disruption in wildlife. Several of these contaminants that are not able to bind to mammalian estrogen receptors (such as atrazine and cyanazine) have previously been reported to bind to the alligator estrogen receptor from oviductal tissue. Binding of known Lake Apopka contaminants to full length estrogen receptors alpha from human (hERα) and alligator (aERα) was assessed in a side-by-side comparison within the same assay system. Baculovirus-expressed recombinant hERα and aERα were used in a competitive binding assay. Atrazine and cyanazine were not able to bind to either receptor. p,p′-Dicofol was able to bind to aERα with a concentration inhibiting 50% of binding (IC50) of 4 μM, while only partially displacing 17β-estradiol (E2) from hERα and yielding a projected IC50 of 45 μM. Chemicals that only partially displaced E2 from either receptor, including some dichlorodiphenyltrichloroethane (DDT) metabolites and trans-nonachlor, appeared to have higher affinity for aERα than hERα. p,p′-Dicofol-mediated transcriptional activation through aERα and hERα was assessed to further explore the preferential binding of p,p′-dicofol to aERα over hERα. p,p′-Dicofol was able to stimulate transcriptional activation in a similar manner with both receptors. However, the in vitro results obtained with p,p′-dicofol were not reflected in an in vivo mammalian model, where Kelthane™ (mixed o,p′-and p,p′-dicofol isomers) did not elicit estrogenic effects. In conclusion, although there was no evidence of exclusively species-specific estrogen receptor binders, some xenoestrogens, especially p,p′-dicofol, had a higher affinity for aERα than for hERα. PMID:20821664

  9. G protein-coupled estrogen receptor inhibits vascular prostanoid production and activity.

    PubMed

    Meyer, Matthias R; Fredette, Natalie C; Barton, Matthias; Prossnitz, Eric R

    2015-10-01

    Complications of atherosclerotic vascular disease, such as myocardial infarction and stroke, are the most common causes of death in postmenopausal women. Endogenous estrogens inhibit vascular inflammation-driven atherogenesis, a process that involves cyclooxygenase (COX)-derived vasoconstrictor prostanoids such as thromboxane A2. Here, we studied whether the G protein-coupled estrogen receptor (GPER) mediates estrogen-dependent inhibitory effects on prostanoid production and activity under pro-inflammatory conditions. Effects of estrogen on production of thromboxane A(2) were determined in human endothelial cells stimulated by the pro-inflammatory cytokine tumour necrosis factor alpha (TNF-α). Moreover, Gper-deficient (Gper(-/-)) and WT mice were fed a pro-inflammatory diet and underwent ovariectomy or sham surgery to unmask the role of endogenous estrogens. Thereafter, contractions to acetylcholine-stimulated endothelial vasoconstrictor prostanoids and the thromboxane-prostanoid receptor agonist U46619 were recorded in isolated carotid arteries. In endothelial cells, TNF-α-stimulated thromboxane A2 production was inhibited by estrogen, an effect blocked by the GPER-selective antagonist G36. In ovary-intact mice, deletion of Gper increased prostanoid-dependent contractions by twofold. Ovariectomy also augmented prostanoid-dependent contractions by twofold in WT mice but had no additional effect in Gper(-/-) mice. These contractions were blocked by the COX inhibitor meclofenamate and unaffected by the nitric oxide synthase inhibitor l-N(G)-nitroarginine methyl ester. Vasoconstrictor responses to U46619 did not differ between groups, indicating intact signaling downstream of thromboxane-prostanoid receptor activation. In summary, under pro-inflammatory conditions, estrogen inhibits vasoconstrictor prostanoid production in endothelial cells and activity in intact arteries through GPER. Selective activation of GPER may therefore be considered as a novel strategy to

  10. G protein-coupled estrogen receptor inhibits vascular prostanoid production and activity

    PubMed Central

    Meyer, Matthias R.; Fredette, Natalie C.; Barton, Matthias; Prossnitz, Eric R.

    2016-01-01

    Complications of atherosclerotic vascular disease, such as myocardial infarction and stroke, are the most common cause of death in postmenopausal women. Endogenous estrogens inhibit vascular inflammation-driven atherogenesis, a process that involves cyclooxygenase-derived vasoconstrictor prostanoids such as thromboxane A2. Here, we studied whether the G protein-coupled estrogen receptor (GPER) mediates estrogen-dependent inhibitory effects on prostanoid production and activity under pro-inflammatory conditions. Effects of estrogen on production of thromboxane A2 were determined in human endothelial cells stimulated by the pro-inflammatory cytokine TNF-α. Moreover, Gper-deficient (Gper−/−) and wild-type mice were fed a pro-inflammatory diet and underwent ovariectomy or sham surgery to unmask the role of endogenous estrogens. Thereafter, endothelium-dependent contractions to acetylcholine-stimulated vasoconstrictor prostanoids and the thromboxane-prostanoid receptor agonist U46619 were recorded in isolated carotid arteries. In endothelial cells, TNF-α-stimulated thromboxane A2 production was inhibited by estrogen, an effect blocked by the GPER-selective antagonist G36. In ovary-intact mice, deletion of Gper increased prostanoid-dependent contractions by 2-fold. Ovariectomy also augmented prostanoid-dependent contractions by 2-fold in wild-type mice, but had no additional effect in Gper−/− mice. These contractions were blocked by the cyclooxygenase inhibitor meclofenamate and unaffected by the nitric oxide synthase inhibitor L-NAME. Vasoconstrictor responses to U46619 did not differ between groups, indicating intact signaling downstream of thromboxane-prostanoid receptor activation. In summary, under pro-inflammatory conditions, estrogen inhibits vasoconstrictor prostanoid production in endothelial cells and activity in intact arteries through GPER. Selective activation of GPER may therefore be considered as a novel strategy to treat increased prostanoid

  11. Histone acetyltransferase Hbo1 destabilizes estrogen receptor α by ubiquitination and modulates proliferation of breast cancers.

    PubMed

    Iizuka, Masayoshi; Susa, Takao; Takahashi, Yoshihisa; Tamamori-Adachi, Mimi; Kajitani, Takashi; Okinaga, Hiroko; Fukusato, Toshio; Okazaki, Tomoki

    2013-12-01

    The estrogen receptor (ER) is a key molecule for growth of breast cancers. It has been a successful target for treatment of breast cancers. Elucidation of the ER expression mechanism is of importance for designing therapeutics for ER-positive breast cancers. However, the detailed mechanism of ER stability is still unclear. Here, we report that histone acetyltransferase Hbo1 promotes destabilization of estrogen receptor α (ERα) in breast cancers through lysine 48-linked ubiquitination. The acetyltransferase activity of Hbo1 is linked to its activity for ERα ubiquitination. Depletion of Hbo1 and anti-estrogen treatment displayed a potent growth suppression of breast cancer cell line. Hbo1 modulated transcription by ERα. Mutually exclusive expression of Hbo1 and ERα was observed in roughly half of the human breast tumors examined in the present study. Modulation of ER stability by Hbo1 in breast cancers may provide a novel therapeutic possibility.

  12. There and back again: The journey of the estrogen-related receptors in the cancer realm.

    PubMed

    Tam, Ingrid S; Giguère, Vincent

    2016-03-01

    The identification of two genes encoding polypeptides with structural features common with the estrogen receptor more than a quarter century ago, referred to as the estrogen-related receptors (ERRs), subsequently led to the discovery of several previously unrecognized hormone responsive systems through the application of reverse endocrinology. Paradoxically, the natural ligand(s) associated with members of the ERR subfamily remains to be identified. While initial studies on the mode of action and physiological functions of the ERRs focused on interaction with estrogen signalling in breast cancer, subsequent work showed that the ERRs are ubiquitous master regulators of cellular energy metabolism. This review aims to demonstrate that the ERRs occupy a central node at the interface of cancer and metabolism, and that modulation of their activity may represent a worthwhile strategy to induce metabolic vulnerability in tumors of various origins and thus achieve a more comprehensive response to current therapies. PMID:26151739

  13. Endocrine disruptors differently influence estrogen receptor β and androgen receptor in male and female rat VSMC.

    PubMed

    Pellegrini, Marco; Bulzomi, Pamela; Lecis, Marco; Leone, Stefano; Campesi, Ilaria; Franconi, Flavia; Marino, Maria

    2014-08-01

    Sex steroid hormones differently control the major physiological processes in male and female organisms. In particular, their effects on vascular smooth muscle cells (VSMCs) migration are at the root of sex/gender-related differences reported in the cardiovascular system. Several exogenous substances, defined endocrine disruptor chemicals (EDCs), could interfere with these androgen and estrogen effects; however, the sex/gender-related susceptibility of VSMC motility to EDCs is completely unknown. Here, the effect of naturally occurring (naringenin, Nar) and synthetic (bisphenol A, BPA) EDCs on male and female VSMC motility has been evaluated. 17β-estradiol (E2, 0.1 nM-1 µM) induced a dose-dependent inhibition of motility in female-derived VSMC. In contrast, neither dihydrotestosterone (DHT, 0.01-100 nM) nor the common precursor of sex steroid hormones, testosterone (Tes, 0.01-100 nM) modified male-derived VSMC motility. Estrogen receptor (ER) β subtype-dependent activation of p38 was necessary for the E2 effect on cell motility. High BPA concentration prevented E2 effects in female-derived cells being without any effect in male-derived cells. Nar mimicked E2 effects on female-derived cells even in the presence of E2 or BPA. Intriguingly, Nar also inhibited the male-derived VSMC mobility. This latter effect was prevented by ERβ inhibitor, but not by the androgen receptor (AR) inhibitor. As a whole, ERβ-dependent signals in VSMC results more susceptible to the impact of EDCs than AR signals suggesting a possible high and overall susceptibility of female to EDCs. However, several male-derived cells, including VSMC, express ERβ, which could also serve as target of EDC disruption in male organisms. PMID:24347325

  14. Truncating Prolactin Receptor Mutations Promote Tumor Growth in Murine Estrogen Receptor-Alpha Mammary Carcinomas.

    PubMed

    Griffith, Obi L; Chan, Szeman Ruby; Griffith, Malachi; Krysiak, Kilannin; Skidmore, Zachary L; Hundal, Jasreet; Allen, Julie A; Arthur, Cora D; Runci, Daniele; Bugatti, Mattia; Miceli, Alexander P; Schmidt, Heather; Trani, Lee; Kanchi, Krishna-Latha; Miller, Christopher A; Larson, David E; Fulton, Robert S; Vermi, William; Wilson, Richard K; Schreiber, Robert D; Mardis, Elaine R

    2016-09-27

    Estrogen receptor alpha-positive (ERα+) luminal tumors are the most frequent subtype of breast cancer. Stat1(-/-) mice develop mammary tumors that closely recapitulate the biological characteristics of this cancer subtype. To identify transforming events that contribute to tumorigenesis, we performed whole genome sequencing of Stat1(-/-) primary mammary tumors and matched normal tissues. This investigation identified somatic truncating mutations affecting the prolactin receptor (PRLR) in all tumor and no normal samples. Targeted sequencing confirmed the presence of these mutations in precancerous lesions, indicating that this is an early event in tumorigenesis. Functional evaluation of these heterozygous mutations in Stat1(-/-) mouse embryonic fibroblasts showed that co-expression of truncated and wild-type PRLR led to aberrant STAT3 and STAT5 activation downstream of the receptor, cellular transformation in vitro, and tumor formation in vivo. In conclusion, truncating mutations of PRLR promote tumor growth in a model of human ERα+ breast cancer and warrant further investigation. PMID:27681435

  15. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    SciTech Connect

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L.

    2013-07-26

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co

  16. Fulvestrant-Induced Cell Death and Proteasomal Degradation of Estrogen Receptor α Protein in MCF-7 Cells Require the CSK c-Src Tyrosine Kinase

    PubMed Central

    Yeh, Wei-Lan; Shioda, Keiko; Coser, Kathryn R.; Rivizzigno, Danielle; McSweeney, Kristen R.; Shioda, Toshi

    2013-01-01

    Fulvestrant is a representative pure antiestrogen and a Selective Estrogen Receptor Down-regulator (SERD). In contrast to the Selective Estrogen Receptor Modulators (SERMs) such as 4-hydroxytamoxifen that bind to estrogen receptor α (ERα) as antagonists or partial agonists, fulvestrant causes proteasomal degradation of ERα protein, shutting down the estrogen signaling to induce proliferation arrest and apoptosis of estrogen-dependent breast cancer cells. We performed genome-wide RNAi knockdown screenings for protein kinases required for fulvestrant-induced apoptosis of the MCF-7 estrogen-dependent human breast caner cells and identified the c-Src tyrosine kinase (CSK), a negative regulator of the oncoprotein c-Src and related protein tyrosine kinases, as one of the necessary molecules. Whereas RNAi knockdown of CSK in MCF-7 cells by shRNA-expressing lentiviruses strongly suppressed fulvestrant-induced cell death, CSK knockdown did not affect cytocidal actions of 4-hydroxytamoxifen or paclitaxel, a chemotherapeutic agent. In the absence of CSK, fulvestrant-induced proteasomal degradation of ERα protein was suppressed in both MCF-7 and T47D estrogen-dependent breast cancer cells whereas the TP53-mutated T47D cells were resistant to the cytocidal action of fulvestrant in the presence or absence of CSK. MCF-7 cell sensitivities to fulvestrant-induced cell death or ERα protein degradation was not affected by small-molecular-weight inhibitors of the tyrosine kinase activity of c-Src, suggesting possible involvement of other signaling molecules in CSK-dependent MCF-7 cell death induced by fulvestrant. Our observations suggest the importance of CSK in the determination of cellular sensitivity to the cytocidal action of fulvestrant. PMID:23593342

  17. International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators.

    PubMed

    Prossnitz, Eric R; Arterburn, Jeffrey B

    2015-07-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein-coupled receptor (GPCR) family (GPR30/G protein-coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor.

  18. International Union of Basic and Clinical Pharmacology. XCVII. G Protein–Coupled Estrogen Receptor and Its Pharmacologic Modulators

    PubMed Central

    2015-01-01

    Estrogens are critical mediators of multiple and diverse physiologic effects throughout the body in both sexes, including the reproductive, cardiovascular, endocrine, nervous, and immune systems. As such, alterations in estrogen function play important roles in many diseases and pathophysiological conditions (including cancer), exemplified by the lower prevalence of many diseases in premenopausal women. Estrogens mediate their effects through multiple cellular receptors, including the nuclear receptor family (ERα and ERβ) and the G protein–coupled receptor (GPCR) family (GPR30/G protein–coupled estrogen receptor [GPER]). Although both receptor families can initiate rapid cell signaling and transcriptional regulation, the nuclear receptors are traditionally associated with regulating gene expression, whereas GPCRs are recognized as mediating rapid cellular signaling. Estrogen-activated pathways are not only the target of multiple therapeutic agents (e.g., tamoxifen, fulvestrant, raloxifene, and aromatase inhibitors) but are also affected by a plethora of phyto- and xeno-estrogens (e.g., genistein, coumestrol, bisphenol A, dichlorodiphenyltrichloroethane). Because of the existence of multiple estrogen receptors with overlapping ligand specificities, expression patterns, and signaling pathways, the roles of the individual receptors with respect to the diverse array of endogenous and exogenous ligands have been challenging to ascertain. The identification of GPER-selective ligands however has led to a much greater understanding of the roles of this receptor in normal physiology and disease as well as its interactions with the classic estrogen receptors ERα and ERβ and their signaling pathways. In this review, we describe the history and characterization of GPER over the past 15 years focusing on the pharmacology of steroidal and nonsteroidal compounds that have been employed to unravel the biology of this most recently recognized estrogen receptor. PMID

  19. Estrogen receptor function as revealed by knockout studies: neuroendocrine and behavioral aspects.

    PubMed

    Rissman, E F; Wersinger, S R; Taylor, J A; Lubahn, D B

    1997-06-01

    Estrogens are an important class of steroid hormones, involved in the development of brain, skeletal, and soft tissues. These hormones influence adult behaviors, endocrine state, and a host of other physiological functions. Given the recent cloning of a second estrogen receptor (ER) cDNA (the ER beta), work on alternate spliced forms of ER alpha, and the potential for membrane estrogen receptors, an animal with a null background for ER alpha function is invaluable for distinguishing biological responses of estrogens working via the ER alpha protein and those working via another ER protein. Data generated to date, and reviewed here, indicate that there are profound ramifications of the ER alpha disruption on behavior and neuroendocrine function. First, data on plasma levels of estradiol (E2), testosterone (T), and luteinizing hormone (LH) in wild-type (WT) versus ER alpha- mice confirm that ER alpha is essential in females for normal regulation of the hypothalamic-pituitary gonadal axis. Second, ovariectomized female ER alpha- mice do not display sexual receptivity when treated with a hormonal regime of estrogen and progesterone that induces receptivity in WT littermates. Finally, male sexual behaviors are disrupted in ER alpha- animals. Given decades of data on these topics our findings may seem self-evident. However, these data represent the most direct test currently possible of the specific role of the ER alpha protein on behavior and neuroendocrinology. The ER alpha- mouse can be used to ascertain the specific functions of ER alpha, to suggest functions for the other estrogen receptors, and to study indirect effects of ER alpha on behavior via actions on other receptors, neurotransmitters, and neuropeptides.

  20. Chronic oxidative stress causes estrogen-independent aggressive phenotype, and epigenetic inactivation of estrogen receptor alpha in MCF-7 breast cancer cells.

    PubMed

    Mahalingaiah, Prathap Kumar S; Ponnusamy, Logeswari; Singh, Kamaleshwar P

    2015-08-01

    The role of chronic oxidative stress in the development and aggressive growth of estrogen receptor (ER)-positive breast cancer is well known; however, the mechanistic understanding is not clear. Estrogen-independent growth is one of the features of aggressive subtype of breast cancer. Therefore, the objective of this study was to evaluate the effect of oxidative stress on estrogen sensitivity and expression of nuclear estrogen receptors in ER-positive breast cancer cells. MCF-7 cells chronically exposed to hydrogen peroxide were used as a cell model in this study, and their growth in response to 17-β estradiol was evaluated by cell viability, cell cycle, and cell migration analysis. Results were further confirmed at molecular level by analysis of gene expressions at transcript and protein levels. Histone H3 modifications, expression of epigenetic regulatory genes, and the effect of DNA demethylation were also analyzed. Loss of growth in response to estrogen with a decrease in ERα expression was observed in MCF-7 cells adapted to chronic oxidative stress. Increases in mtTFA and NRF1 in these cells further suggested the role of mitochondria-dependent redox-sensitive growth signaling as an alternative pathway to estrogen-dependent growth. Changes in expression of epigenetic regulatory genes, levels of histone H3 modifications as well as significant restorations of both ERα expression and estrogen response by 5-Aza-2'-deoxycytidine further confirmed the epigenetic basis for estrogen-independent growth in these cells. In conclusion, results of this study suggest that chronic oxidative stress can convert estrogen-dependent nonaggressive breast cancer cells into estrogen-independent aggressive form potentially by epigenetic mechanism.

  1. Veliparib and Carboplatin in Treating Patients With HER2-Negative Metastatic Breast Cancer

    ClinicalTrials.gov

    2016-08-02

    BRCA1 Mutation Carrier; BRCA2 Mutation Carrier; Estrogen Receptor Negative; Estrogen Receptor Positive; HER2/Neu Negative; Progesterone Receptor Negative; Progesterone Receptor Positive; Recurrent Breast Carcinoma; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Triple-Negative Breast Carcinoma

  2. Serum estrogen and tumor-positive estrogen receptor-alpha are strong prognostic classifiers of non-small-cell lung cancer survival in both men and women

    PubMed Central

    Olivo-Marston, Susan E.; Mechanic, Leah E.; Mollerup, Steen; Bowman, Elise D.; Remaley, Alan T.; Forman, Michele R.; Skaug, Vidar; Zheng, Yun-Ling; Haugen, Aage; Harris, Curtis C.

    2010-01-01

    The role of tumor estrogen receptors (ERs) and serum estrogen in lung cancer is inconclusive. We investigated the hypothesis that ERs and functional single-nucleotide polymorphisms in the estrogen biosynthesis pathway are associated with poorer lung cancer survival. Lung cancer patients (n = 305) from a National Cancer Institute-Maryland (NCI-MD) case–case cohort in the Baltimore metropolitan area were used as a test cohort. To validate, 227 cases from the NCI-MD case–control cohort and 293 cases from a Norwegian lung cancer cohort were studied. Information on demographics, tobacco and reproductive histories was collected in an interviewer-administered questionnaire. Serum estrogen, progesterone, tumor messenger RNA expression of hormone receptors and germ line DNA polymorphisms were analyzed for associations with lung cancer survival. Patients in the highest tertile of serum estrogen had worse survival in all three cohorts (P combined < 0.001). Furthermore, the variant allele of estrogen receptor alpha (ER-α) polymorphism (rs2228480) was significantly associated with increased tumor ER-α levels and worse survival in all three cohorts [hazard ratio (HR) = 2.59, 95% confidence interval (CI): 1.20– 4.01; HR = 1.76, 95% CI: 1.08–2.87 and HR = 2.85, 95% CI: 1.31–4.36). Other polymorphisms associated with lower serum estrogen correlated with improved survival. Results were independent of gender and hormone replacement therapy. We report a significant association of increased serum estrogen with poorer survival among lung cancer male and female patients. Understanding the genetic control of estrogen biosynthesis and response in lung cancer could lead to improved prognosis and therapy. PMID:20729390

  3. New method for predicting estrogen receptor status utilizing breast MRI texture kinetic analysis

    NASA Astrophysics Data System (ADS)

    Chaudhury, Baishali; Hall, Lawrence O.; Goldgof, Dmitry B.; Gatenby, Robert A.; Gillies, Robert; Drukteinis, Jennifer S.

    2014-03-01

    Magnetic Resonance Imaging (MRI) of breast cancer typically shows that tumors are heterogeneous with spatial variations in blood flow and cell density. Here, we examine the potential link between clinical tumor imaging and the underlying evolutionary dynamics behind heterogeneity in the cellular expression of estrogen receptors (ER) in breast cancer. We assume, in an evolutionary environment, that ER expression will only occur in the presence of significant concentrations of estrogen, which is delivered via the blood stream. Thus, we hypothesize, the expression of ER in breast cancer cells will correlate with blood flow on gadolinium enhanced breast MRI. To test this hypothesis, we performed quantitative analysis of blood flow on dynamic contrast enhanced MRI (DCE-MRI) and correlated it with the ER status of the tumor. Here we present our analytic methods, which utilize a novel algorithm to analyze 20 volumetric DCE-MRI breast cancer tumors. The algorithm generates post initial enhancement (PIE) maps from DCE-MRI and then performs texture features extraction from the PIE map, feature selection, and finally classification of tumors into ER positive and ER negative status. The combined gray level co-occurrence matrices, gray level run length matrices and local binary pattern histogram features allow quantification of breast tumor heterogeneity. The algorithm predicted ER expression with an accuracy of 85% using a Naive Bayes classifier in leave-one-out cross-validation. Hence, we conclude that our data supports the hypothesis that imaging characteristics can, through application of evolutionary principles, provide insights into the cellular and molecular properties of cancer cells.

  4. Estrogen receptor 2b deficiency impairs the antiviral response of zebrafish.

    PubMed

    López-Muñoz, Azucena; Liarte, Sergio; Gómez-González, Nuria E; Cabas, Isabel; Meseguer, José; García-Ayala, Alfonsa; Mulero, Victoriano

    2015-11-01

    Although several studies have demonstrated the ability of some endocrine disruptive chemicals (EDCs) to alter the physiology of zebrafish, the immune-reproductive interaction has received little attention in this species. In this study, we used a homozygous line carrying an insertion of 8 amino acids in the ligand-binding domain of the estrogen receptor 2b gene (esr2b) to further understand the role of estrogen signaling on innate immunity. Adult mutant fish showed distorted sexual ratios related with alterations in testicular morphology and supraphysiological testosterone and 17β-estradiol (E2) levels. Immunity-wise, although esr2b mutant fish showed unaltered antibacterial responses, they were unable to mount an effective antiviral response upon viral challenge. RT-qPCR analysis demonstrated that mutant fish were able to induce the genes encoding major antiviral molecules, including Ifnphi1, Ifnphi2, Infphi3, Mxb and Mxc, and the negative feedback regulator of cytokine signaling Socs1. Notably, although esr2b mutant larvae showed a similar resistance to SVCV infection to their wild type siblings, waterborne E2 increased their viral susceptibility. Similarly, the exposure of adult wild type zebrafish to E2 also resulted in increased susceptibility to SVCV infection. Finally, the administration of recombinant Ifnphi1 hardly reversed the higher viral susceptibility of esr2b mutant zebrafish, suggesting that elevated socs1 levels impair Ifn signaling. All together, these results uncover an important role for E2 and Esr signaling in the fine-tuning of sexual hormone balance and the antiviral response of vertebrates.

  5. CLONING, EXPRESSION AND CHARACTERIZATION OF THE ANDROGEN RECEPTOR AND ISOLATION OF ESTROGEN RECEPTOR ALPHA FROM THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    In vitro screening assays designed to identify hormone mimics or antagonists, including those recommended for use in the EPA's Tier 1 screening battery, typically use mammalian estrogen (ER) and androgen receptors (AR) such as rat or human. Although we know that the amino acid s...

  6. Analysis of estrogen and progesterone receptors on preoperative fine-needle aspirates.

    PubMed

    Frigo, B; Pilotti, S; Zurrida, S; Ermellino, L; Manzari, A; Rilke, F

    1995-01-01

    For 56 cases of carcinoma of the breast, results of the immunocytochemical assay for estrogen and progesterone receptors performed on preoperative fine-needle aspirates were compared with those obtained on scraping material from the same tumors. The value and usefulness of this last analysis was demonstrated in a previous study. The level of agreement between the two cytological techniques was assessed by the k statistic. A high level of agreement was found, with k values of 0.909 and 0.889 for estrogen and progesterone receptors, respectively. The results reported here revealed the reliability of steroid receptor determination on fine-needle aspiration biopsies, provided that sufficient cellularity was available. This technique can replace the open biopsy procedure, in as much as it represents a rapid, almost painless, and easily repeated method for the assessment of the receptor status, and is useful for treatment decisions at any time during the course of the disease.

  7. COMPARATIVE DOCKING STUDIES OF THE BINDING OF POLYCYCLIC AROMATIC HYDROCARBONS TO THE ESTROGEN RECEPTOR

    EPA Science Inventory

    The interactions of several PAHs, and some of their possible metabolites, with the ligand binding domain of the estrogen receptor have been examined using molecular docking and quantum mechanical methods. The geometries of the PAHs were optimized at the Hartree-Fock level and the...

  8. Endocrine disrupting chemicals targeting estrogen receptor signaling: Identification and mechanisms of action

    PubMed Central

    Shanle, Erin K.; Xu, Wei

    2011-01-01

    Many endocrine disrupting chemicals (EDCs) adversely impact estrogen signaling by interacting with two estrogen receptors (ERs): ERα and ERβ. Though the receptors have similar ligand binding and DNA binding domains, ERα and ERβ have some unique properties in terms of ligand selectivity and target gene regulation. EDCs that target ER signaling can modify genomic and non-genomic ER activity through direct interactions with ERs, indirectly through transcription factors like the aryl hydrocarbon receptor (AhR), or through modulation of metabolic enzymes that are critical for normal estrogen synthesis and metabolism. Many EDCs act through multiple mechanisms as exemplified by chemicals that bind both AhR and ER, such as 3-methylcholanthrene. Other EDCs that target ER signaling include phytoestrogens, bisphenolics, and organochlorine pesticides and many alter normal ER signaling through multiple mechanisms. EDCs can also display tissue-selective ER agonist and antagonist activities similar to selective estrogen receptor modulators (SERMs) designed for pharmaceutical use. Thus, biological effects of EDCs need to be carefully interpreted because EDCs can act through complex tissue-selective modulation of ERs and other signaling pathways in vivo. Current requirements by the U.S. Environmental Protection Agency require some in vitro and cell-based assays to identify EDCs that target ER signaling through direct and metabolic mechanisms. Additional assays may be useful screens for identifying EDCs that act through alternative mechanisms prior to further in vivo study. PMID:21053929

  9. Nature of the binding interaction for 50 structurally diverse chemicals with rat estrogen receptors

    EPA Science Inventory

    This study was conducted to characterize the estrogen receptor (ER)-binding affinities of 50 chemicals selected from among the high production volume chemicals under the U.S. EPA's (U.S. Environmental Protection Agency's) Toxic Substances Control Act inventory. The chemicals were...

  10. Species comparisons in molecular and functional attributes of the androgen and estrogen receptor

    EPA Science Inventory

    While endocrine disrupting compounds (EDCs) have the potential to act via several mechanisms of action, one of the most widely studied is the ability of environmental chemicals to interact directly with either the estrogen (ER) or androgen receptor (AR). In vitro screening assay...

  11. NATURE OF BINDING INTERACTION OF SELECTED CHEMICALS WITH RAT ESTROGEN RECEPTORS

    EPA Science Inventory

    The US EPA is currently validating a rat uterine estrogen receptor (ER) binding assay as part of the Tier 1 Screening Battery for the Endocrine Disruptor Program. An eventual goal is to use interactive data to create computerized structure-activity models. However, more informati...

  12. Cloning and functional characterization of Chondrichthyes, cloudy catshark, Scyliorhinus torazame and whale shark, Rhincodon typus estrogen receptors.

    PubMed

    Katsu, Yoshinao; Kohno, Satomi; Narita, Haruka; Urushitani, Hiroshi; Yamane, Koudai; Hara, Akihiko; Clauss, Tonya M; Walsh, Michael T; Miyagawa, Shinichi; Guillette, Louis J; Iguchi, Taisen

    2010-09-15

    Sex-steroid hormones are essential for normal reproductive activity in both sexes in all vertebrates. Estrogens are required for ovarian differentiation during a critical developmental stage and promote the growth and differentiation of the female reproductive system following puberty. Recent studies have shown that environmental estrogens influence the developing reproductive system as well as gametogenesis, especially in males. To understand the molecular mechanisms of estrogen actions and to evaluate estrogen receptor-ligand interactions in Elasmobranchii, we cloned a single estrogen receptor (ESR) from two shark species, the cloudy catshark (Scyliorhinus torazame) and whale shark (Rhincodon typus) and used an ERE-luciferase reporter assay system to characterize the interaction of these receptors with steroidal and other environmental estrogens. In the transient transfection ERE-luciferase reporter assay system, both shark ESR proteins displayed estrogen-dependent activation of transcription, and shark ESRs were more sensitive to 17beta-estradiol compared with other natural and synthetic estrogens. Further, the environmental chemicals, bisphenol A, nonylphenol, octylphenol and DDT could activate both shark ESRs. The assay system provides a tool for future studies examining the receptor-ligand interactions and estrogen disrupting mechanisms in Elasmobranchii.

  13. Expression of androgen, estrogen, and progesterone receptors in salivary gland tumors. Frequent expression of androgen receptor in a subset of malignant salivary gland tumors.

    PubMed

    Nasser, Selim M; Faquin, William C; Dayal, Yogeshwar

    2003-06-01

    The expression of sex hormone receptors in some tumors suggests a role for these receptors in tumor pathogenesis and therapy. Previous studies of the expression of estrogen and progesterone receptors in salivary gland tumors have reported conflicting results. We evaluated the immunohistochemical expression of androgen, estrogen, and progesterone receptors (AR, ER, and PR) in a series of 78 formalin-fixed, paraffin-embedded salivary gland tumors. Immunoreactivity for AR was seen in 14 of 14 carcinoma ex pleomorphic adenomas, 6 of 6 salivary duct carcinomas, and 2 of 2 basal cell adenocarcinomas but in only 2 of 10 acinic cell carcinomas, mucoepidermoid carcinomas, and adenoid cystic carcinomas each. AR expression was distributed evenly between the sexes. ER and PR were expressed in only a few cases of salivary gland tumors. All 26 benign salivary gland tumors were negative for AR, ER, and PR. The uniform expression of AR exclusively in a subset of malignant salivary gland tumors suggests a possible role for AR in the histogenesis and possibly in the clinical management of these malignant salivary gland tumors.

  14. Semi-quantitative immunohistochemical assay versus oncotype DX(®) qRT-PCR assay for estrogen and progesterone receptors: an independent quality assurance study.

    PubMed

    Kraus, James A; Dabbs, David J; Beriwal, Sushil; Bhargava, Rohit

    2012-06-01

    Estrogen receptor (ER) status is a strong predictor of response to hormonal therapy in breast cancer patients. Presence of ER and level of expression have been shown to correlate with time to recurrence in patients undergoing therapy with tamoxifen or aromatase inhibitors. Risk reduction is also known to occur in ER-negative, progesterone receptor (PR)-positive patients treated with hormonal therapy. Since the 1990s, immunohistochemistry has been the primary method for assessing hormone receptor status. Recently, as a component of its oncotype DX(®) assay, Genomic Health began reporting quantitative estrogen and PR results determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). As part of an ongoing quality assurance program at our institution, we reviewed 464 breast cancer cases evaluated by both immunohistochemistry and oncotype DX(®) assay for estrogen and PR. We found good correlation for ER status between both assays (98.9% concordance), with immunohistochemistry being slightly more sensitive. Concordance for PR was 94.2% between immunohistochemistry and qRT-PCR with immunohistochemistry again more sensitive than RT-PCR. The results also showed linear correlation between immunohistochemistry H-scores and qRT-PCR expression values for ER (correlation coefficient of 0.579), and PR (correlation coefficient of 0.685). Due to the higher sensitivity of hormone receptor immunohistochemistry and additional advantages (ie preservation of morphology, less expensive, faster, more convenient), we conclude immunohistochemistry is preferable to qRT-PCR for determination of estrogen and PR expression.

  15. HOXC6 is transcriptionally regulated via coordination of MLL histone methylase and estrogen receptor under estrogen environment

    PubMed Central

    Ansari, Khairul I.; Hussain, Imran; Shrestha, Bishakha; Kasiri, Sahba; Mandal, Subhrangsu S.

    2011-01-01

    Homeobox containing gene HOXC6 is a critical player in mammary gland development, milk production and is overexpressed in breast and prostate cancer. We demonstrated that HOXC6 is transcriptionally regulated by estrogen (E2). HOXC6 promoter contains two putative estrogen-response elements (EREs), termed as ERE11/2 and ERE21/2. Promoter analysis using luciferase based reporter assay demonstrated that both EREs are responsive to E2, ERE11/2 being more responsive than ERE21/2. Estrogen receptors, ERα and ERβ, bind to these EREs in an E2-dependent manner and antisense-mediated knockdown of ERs suppressed the E2-dependent activation of HOXC6 expression. Similarly, knockdown of histone methylases, MLL2 and MLL3, decreased E2-mediated activation of HOXC6. However, depletion of MLL1 or MLL4 showed no significant effect. MLL2 and MLL3 were bound to the HOXC6 EREs in an E2-dependent manner. In contrast, MLL1 and MLL4 that were bound to the HOXC6 promoter in the absence of E2, decreased upon exposure to E2. MLL2 and MLL3 play key roles in histone H3K4-trimethylation and recruitment of general transcription factors and RNAP II in the HOXC6 promoter during E2-dependent transactivation. Nuclear receptor corepressors N-CoR and SAFB1 were bound in the HOXC6 promoter in absence of E2 and that binding were decreased upon E2-treatment indicating their critical roles in suppressing HOXC6 gene expression under non-activated condition. Knockdown of either ERα or ERβ abolished E2-dependent recruitment of MLL2 and MLL3 into the HOXC6 promoter demonstrating key roles of ERs in recruitment of these MLLs into HOXC6 promoter. Overall, our studies demonstrated that HOXC6 is an estrogen-responsive gene and histone methylases MLL2 and MLL3, in coordination with ERα and ERβ, transcriptionally regulate HOXC6 in an E2-dependent manner. PMID:21683083

  16. Estrogen prevents norepinephrine alpha-2a receptor reversal of stress-induced working memory impairment

    PubMed Central

    SHANSKY, REBECCA M.; BENDER, GENEVIEVE; ARNSTEN, A. F. T.

    2011-01-01

    Understanding effects of estrogen on the medial prefrontal cortex (PFC) may help to elucidate the increased prevalence of depression and post-traumatic stress disorder in women of ovarian cycling age. Estrogen replacement in ovariectomized (OVX) young rats amplifies the detrimental effects of stress on working memory (a PFC-mediated task), but the mechanisms by which this occurs have yet to be identified. In male rats, stimulation of norepinephrine alpha-2 adrenoceptors protects working memory from stress-induced impairments. However, this effect has not been studied in females, and has not been examined for sensitivity to estrogen. The current study asked whether OVX females with estrogen replacement (OVX + Est) and without replacement (OVX + Veh) responded differently to stimulation of alpha-2 adrenoceptors after administration of the benzodiazepine inverse agonist FG7142, a pharmacological stressor. The alpha-2 agonist, guanfacine, protected working memory from the impairing effects of FG7142 in OVX + Veh, but not in OVX + Est rats. Western Blot analysis for alpha-2 receptors was performed on PFC tissue from each group, but no changes in expression were found, indicating that the behavioral effects observed were likely not due to changes in receptor expression. These findings point to possible mechanisms by which estrogen may enhance the stress response, and hold implications for the gender discrepancy in the prevalence of stress-related mental illness. PMID:19005873

  17. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.

    2016-01-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor–positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER+/PR+ breast cancers should be explored. PMID:27386569

  18. GGNBP2 acts as a tumor suppressor by inhibiting estrogen receptor α activity in breast cancer cells.

    PubMed

    Lan, Zi-Jian; Hu, YunHui; Zhang, Sheng; Li, Xian; Zhou, Huaxin; Ding, Jixiang; Klinge, Carolyn M; Radde, Brandie N; Cooney, Austin J; Zhang, Jin; Lei, Zhenmin

    2016-07-01

    Gametogenetin-binding protein 2 (GGNBP2) is encoded in human chromosome 17q12-q23, a region known as a breast and ovarian cancer susceptibility locus. GGNBP2, also referred to ZFP403, has a single C2H2 zinc finger and a consensus LxxLL nuclear receptor-binding motif. Here, we demonstrate that GGNBP2 expression is reduced in primary human breast tumors and in breast cancer cell lines, including T47D, MCF-7, LCC9, LY2, and MDA-MB-231 compared with normal, immortalized estrogen receptor α (ERα) negative MCF-10A and MCF10F breast epithelial cells. Overexpression of GGNBP2 inhibits the proliferation of T47D and MCF-7 ERα positive breast cancer cells without affecting MCF-10A and MCF10F. Stable GGNBP2 overexpression in T47D cells inhibits 17β-estradiol (E2)-stimulated proliferation as well as migration, invasion, anchorage-independent growth in vitro, and xenograft tumor growth in mice. We further demonstrate that GGNBP2 protein physically interacts with ERα, inhibits E2-induced activation of estrogen response element-driven reporter activity, and attenuates ER target gene expression in T47D cells. In summary, our in vitro and in vivo findings suggest that GGNBP2 is a novel breast cancer tumor suppressor functioning as a nuclear receptor corepressor to inhibit ERα activity and tumorigenesis. PMID:27357812

  19. Autocrine interferon-γ may affect malignant behavior and sensitivity to tamoxifen of MCF-7 via estrogen receptor β subtype.

    PubMed

    Niu, Xiu Long; Wang, Yue; Yao, Zhi; Duan, Hongjie; Li, Zhijun; Liu, Wenxing; Zhang, Hongjian; Deng, Wei Min

    2015-12-01

    Mitogenic actions of estrogens are mediated by two distinct estrogen receptors (ERs), which are critical in the progression and therapeutic response of breast cancer. ER expression is a dynamic phenomenon that is regulated by numerous factors, including cytokines, in the tumor microenvironment. Recently, studies have shown that autocrine production of IL-4 promotes cancer cell growth and there is negative correlation between tumor IL-4 and hormone receptor levels, suggesting that there is crosstalk between cytokine receptors and ER. Thus, we evaluated for interaction between the two ERs and the cytokines IL-4 and IFN-γ, and if this interaction modulates malignant behavior. We identified that ERβ exerts protective activity in the progression of breast cancer cell line MCF-7, which co-expresses ERα and ERβ. IFN-γ and IL-4 have the opposite effects on malignant biological behavior. Furthermore, we found positive correlation between IFN-γ and ERβ expression in MCF-7. We also determined that autocrine IFN-γ in MCF-7 increases mRNA expression of ERβ resulting in enhanced sensitivity to tamoxifen (TAM). These results indicate that ERβ and autocrine IFN-γ represent two putative targets for breast cancer therapy.

  20. Interaction of Galaxolide® with the human and trout estrogen receptor-α.

    PubMed

    Simmons, Denina B D; Marlatt, V L; Trudeau, V L; Sherry, J P; Metcalfe, C D

    2010-11-15

    Synthetic musks have been detected in sewage effluents, surface waters, and fish tissues where the polycyclic musk compound, HHCB (Galaxolide®) is the dominant compound in those matrices. In the present study, the Galaxolide® formulation was tested in the yeast estrogenicity screening (YES) assay, and also tested in in vitro and in vivo teleost systems to determine whether it interacts with the estrogen receptor as either an agonist or antagonist. In those tests, Galaxolide® did not act as an estrogen agonist, however there was strong evidence of antagonistic activity as Galaxolide® inhibited the estrogenic activity of 17β-estradiol (E2). In the YES assay based on a recombinant strain of yeast containing the human estrogen receptor (i.e. hERα), Galaxolide® inhibited the effects of E2 in a dose-dependent manner (IC50=1.63×10(-5)M). In a luciferase reporter gene assay based on the rainbow trout estrogen receptor (i.e. rtER) transfected into a rainbow trout gonadal (RTG-2) cell line, the IC50 for the antagonistic effect of Galaxolide® was 2.79×10(-9)M. In an in vivo assay based on modulation of vitellogenin in rainbow trout, Galaxolide® i.p. injected into trout at a dose of 3.64mg/kg caused inhibition of E2-induced vitellogenin production. That dose is within the range of concentrations of Galaxolide® that have been detected in tissues of fish from contaminated locations.

  1. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    SciTech Connect

    Xiang, Jin; Wang, Ying; Su, Ke; Liu, Min; Hu, Peng-Chao; Ma, Tian; Li, Jia-Xi; Wei, Lei; Zheng, Zhongliang; Yang, Fang

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.

  2. Orphan Nuclear Receptor Estrogen-Related Receptor γ (ERRγ) Is Key Regulator of Hepatic Gluconeogenesis*

    PubMed Central

    Kim, Don-Kyu; Ryu, Dongryeol; Koh, Minseob; Lee, Min-Woo; Lim, Donghyun; Kim, Min-Jung; Kim, Yong-Hoon; Cho, Won-Jea; Lee, Chul-Ho; Park, Seung Bum; Koo, Seung-Hoi; Choi, Hueng-Sik

    2012-01-01

    Glucose homeostasis is tightly controlled by hormonal regulation of hepatic glucose production. Dysregulation of this system is often associated with insulin resistance and diabetes, resulting in hyperglycemia in mammals. Here, we show that the orphan nuclear receptor estrogen-related receptor γ (ERRγ) is a novel downstream mediator of glucagon action in hepatic gluconeogenesis and demonstrate a beneficial impact of the inverse agonist GSK5182. Hepatic ERRγ expression was increased by fasting-dependent activation of the cAMP-response element-binding protein-CRTC2 pathway. Overexpression of ERRγ induced Pck1 and G6PC gene expression and glucose production in primary hepatocytes, whereas abolition of ERRγ gene expression attenuated forskolin-mediated induction of gluconeogenic gene expression. Deletion and mutation analyses of the Pck1 promoter showed that ERRγ directly regulates the Pck1 gene transcription via ERR response elements of the Pck1 promoter as confirmed by ChIP assay and in vivo imaging analysis. We also demonstrate that GSK5182, an inverse agonist of ERRγ, specifically inhibits the transcriptional activity of ERRγ in a PGC-1α dependent manner. Finally, the ERRγ inverse agonist ameliorated hyperglycemia through inhibition of hepatic gluconeogenesis in db/db mice. Control of hepatic glucose production by an ERRγ-specific inverse agonist is a new potential therapeutic approach for the treatment of type 2 diabetes. PMID:22549789

  3. Non-genomic estrogen/estrogen receptor α promotes cellular malignancy of immature ovarian teratoma in vitro.

    PubMed

    Hung, Yao-Ching; Chang, Wei-Chun; Chen, Lu-Min; Chang, Ying-Yi; Wu, Ling-Yu; Chung, Wei-Min; Lin, Tze-Yi; Chen, Liang-Chi; Ma, Wen-Lung

    2014-06-01

    Malignant immature ovarian teratomas (IOTs) most often occur in women of reproductive age. It is unclear, however, what roles estrogenic signaling plays in the development of IOT. In this study, we examined whether estrogen receptors (ERα and β) promote the cellular malignancy of IOT. Estradiol (E2), PPT (propylpyrazole), and DPN (diarylpropionitrile) (ERα- and β-specific agonists, respectively), as well as ERα- or ERβ-specific short hairpin (sh)RNA were applied to PA-1 cells, a well-characterized IOT cell line. Cellular tumorigenic characteristics, for example, cell migration/invasion, expression of the cancer stem/progenitor cell marker CD133, and evidence for epithelial-mesenchymal transition (EMT) were examined. In PA-1 cells that expressed ERα and ERβ, we found that ERα promoted cell migration and invasion. We also found that E2/ERα signaling altered cell behavior through non-classical transactivation function. Our data show non-genomic E2/ERα activations of focal adhesion kinase-Ras homolog gene family member A (FAK-RhoA) and ERK governed cell mobility capacity. Moreover, E2/ERα signaling induces EMT and overexpression of CD133 through upregulation micro-RNA 21 (miR21; IOT stem/progenitor promoter), and ERK phosphorylations. Furthermore, E2/ERα signaling triggers a positive feedback regulatory loop within miR21 and ERK. At last, expression levels of ERα, CD133, and EMT markers in IOT tissue samples were examined by immunohistochemistry. We found that cytosolic ERα was co-expressed with CD133 and mesenchymal cell markers but not epithelial cell markers. In conclusion, estrogenic signals exert malignant transformation capacity of cancer cells, exclusively through non-genomic regulation in female germ cell tumors.

  4. Non-genomic estrogen/estrogen receptor α promotes cellular malignancy of immature ovarian teratoma in vitro.

    PubMed

    Hung, Yao-Ching; Chang, Wei-Chun; Chen, Lu-Min; Chang, Ying-Yi; Wu, Ling-Yu; Chung, Wei-Min; Lin, Tze-Yi; Chen, Liang-Chi; Ma, Wen-Lung

    2014-06-01

    Malignant immature ovarian teratomas (IOTs) most often occur in women of reproductive age. It is unclear, however, what roles estrogenic signaling plays in the development of IOT. In this study, we examined whether estrogen receptors (ERα and β) promote the cellular malignancy of IOT. Estradiol (E2), PPT (propylpyrazole), and DPN (diarylpropionitrile) (ERα- and β-specific agonists, respectively), as well as ERα- or ERβ-specific short hairpin (sh)RNA were applied to PA-1 cells, a well-characterized IOT cell line. Cellular tumorigenic characteristics, for example, cell migration/invasion, expression of the cancer stem/progenitor cell marker CD133, and evidence for epithelial-mesenchymal transition (EMT) were examined. In PA-1 cells that expressed ERα and ERβ, we found that ERα promoted cell migration and invasion. We also found that E2/ERα signaling altered cell behavior through non-classical transactivation function. Our data show non-genomic E2/ERα activations of focal adhesion kinase-Ras homolog gene family member A (FAK-RhoA) and ERK governed cell mobility capacity. Moreover, E2/ERα signaling induces EMT and overexpression of CD133 through upregulation micro-RNA 21 (miR21; IOT stem/progenitor promoter), and ERK phosphorylations. Furthermore, E2/ERα signaling triggers a positive feedback regulatory loop within miR21 and ERK. At last, expression levels of ERα, CD133, and EMT markers in IOT tissue samples were examined by immunohistochemistry. We found that cytosolic ERα was co-expressed with CD133 and mesenchymal cell markers but not epithelial cell markers. In conclusion, estrogenic signals exert malignant transformation capacity of cancer cells, exclusively through non-genomic regulation in female germ cell tumors. PMID:24142535

  5. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status.

    PubMed

    Pais, Adi; Degani, Hadassa

    2016-01-01

    The estrogen receptor (ER) α is overexpressed in most breast cancers, and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer and in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging (MRI) effects of two novel ER-targeted contrast agents (CAs), based on pyridine-tetra-acetate-Gd(III) chelate conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd). The experiments were conducted in solution, in human breast cancer cells, and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen-like agonistic activity, enhancing cell proliferation, as well as upregulating cMyc oncogene and downregulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast-enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd-specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors' ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also revealed that this

  6. Estrogen Receptor-Targeted Contrast Agents for Molecular Magnetic Resonance Imaging of Breast Cancer Hormonal Status

    PubMed Central

    Pais, Adi; Degani, Hadassa

    2016-01-01

    The estrogen receptor (ER) α is overexpressed in most breast cancers, and its level serves as a major prognostic factor. It is important to develop quantitative molecular imaging methods that specifically detect ER in vivo and assess its function throughout the entire primary breast cancer and in metastatic breast cancer lesions. This study presents the biochemical and molecular features, as well as the magnetic resonance imaging (MRI) effects of two novel ER-targeted contrast agents (CAs), based on pyridine-tetra-acetate-Gd(III) chelate conjugated to 17β-estradiol (EPTA-Gd) or to tamoxifen (TPTA-Gd). The experiments were conducted in solution, in human breast cancer cells, and in severe combined immunodeficient mice implanted with transfected ER-positive and ER-negative MDA-MB-231 human breast cancer xenografts. Binding studies with ER in solution and in human breast cancer cells indicated affinities in the micromolar range of both CAs. Biochemical and molecular studies in breast cancer cell cultures showed that both CAs exhibit estrogen-like agonistic activity, enhancing cell proliferation, as well as upregulating cMyc oncogene and downregulating ER expression levels. The MRI longitudinal relaxivity was significantly augmented by EPTA-Gd in ER-positive cells as compared to ER-negative cells. Dynamic contrast-enhanced studies with EPTA-Gd in vivo indicated specific augmentation of the MRI water signal in the ER-positive versus ER-negative xenografts, confirming EPTA-Gd-specific interaction with ER. In contrast, TPTA-Gd did not show increased enhancement in ER-positive tumors and did not appear to interact in vivo with the tumors’ ER. However, TPTA-Gd was found to interact strongly with muscle tissue, enhancing muscle signal intensity in a mechanism independent of the presence of ER. The specificity of EPTA-Gd interaction with ER in vivo was further verified by acute and chronic competition with tamoxifen. The chronic tamoxifen treatment also revealed that this

  7. Pomegranate extract demonstrate a selective estrogen receptor modulator profile in human tumor cell lines and in vivo models of estrogen deprivation.

    PubMed

    Sreeja, Sreekumar; Santhosh Kumar, Thankayyan R; Lakshmi, Baddireddi S; Sreeja, Sreeharshan

    2012-07-01

    Selective estrogen receptor modulators (SERMs) are estrogen receptor (ER) ligands exhibiting tissue-specific agonistic or antagonistic biocharacter and are used in the hormonal therapy for estrogen-dependent breast cancers. Pomegranate fruit has been shown to exert antiproliferative effects on human breast cancer cells in vitro. In this study, we investigated the tissue-specific estrogenic/antiestrogenic activity of methanol extract of pericarp of pomegranate (PME). PME was evaluated for antiproliferative activity at 20-320 μg/ml on human breast (MCF-7, MDA MB-231) endometrial (HEC-1A), cervical (SiHa, HeLa), ovarian (SKOV3) carcinoma and normal breast fibroblast (MCF-10A) cells. Competitive radioactive binding studies were carried out to ascertain whether PME interacts with ER. The reporter gene assay measured the estrogenic/antiestrogenic activity of PME in MCF-7 and MDA MB-231 cells transiently transfected with plasmids coding estrogen response elements with a reporter gene (pG5-ERE-luc) and wild-type ERα (hEG0-ER). PME inhibited the binding of [³H] estradiol to ER and suppressed the growth and proliferation of ER-positive breast cancer cells. PME binds ER and down-regulated the transcription of estrogen-responsive reporter gene transfected into breast cancer cells. The expressions of selected estrogen-responsive genes were down-regulated by PME. Unlike 17β-estradiol [1 mg/kg body weight (BW)] and tamoxifen (10 mg/kg BW), PME (50 and 100 mg/kg BW) did not increase the uterine weight and proliferation in ovariectomized mice and its cardioprotective effects were comparable to that of 17β-estradiol. In conclusion, our findings suggest that PME displays a SERM profile and may have the potential for prevention of estrogen-dependent breast cancers with beneficial effects in other hormone-dependent tissues. PMID:21839626

  8. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer.

    PubMed

    Xiong, Rui; Patel, Hitisha K; Gutgesell, Lauren M; Zhao, Jiong; Delgado-Rivera, Loruhama; Pham, Thao N D; Zhao, Huiping; Carlson, Kathryn; Martin, Teresa; Katzenellenbogen, John A; Moore, Terry W; Tonetti, Debra A; Thatcher, Gregory R J

    2016-01-14

    Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth.

  9. Selective Human Estrogen Receptor Partial Agonists (ShERPAs) for Tamoxifen-Resistant Breast Cancer.

    PubMed

    Xiong, Rui; Patel, Hitisha K; Gutgesell, Lauren M; Zhao, Jiong; Delgado-Rivera, Loruhama; Pham, Thao N D; Zhao, Huiping; Carlson, Kathryn; Martin, Teresa; Katzenellenbogen, John A; Moore, Terry W; Tonetti, Debra A; Thatcher, Gregory R J

    2016-01-14

    Almost 70% of breast cancers are estrogen receptor α (ERα) positive. Tamoxifen, a selective estrogen receptor modulator (SERM), represents the standard of care for many patients; however, 30-50% develop resistance, underlining the need for alternative therapeutics. Paradoxically, agonists at ERα such as estradiol (E2) have demonstrated clinical efficacy in patients with heavily treated breast cancer, although side effects in gynecological tissues are unacceptable. A drug that selectively mimics the actions of E2 in breast cancer therapy but minimizes estrogenic effects in other tissues is a novel, therapeutic alternative. We hypothesized that a selective human estrogen receptor partial agonist (ShERPA) at ERα would provide such an agent. Novel benzothiophene derivatives with nanomolar potency in breast cancer cell cultures were designed. Several showed partial agonist activity, with potency of 0.8-76 nM, mimicking E2 in inhibiting growth of tamoxifen-resistant breast cancer cell lines. Three ShERPAs were tested and validated in xenograft models of endocrine-independent and tamoxifen-resistant breast cancer, and in contrast to E2, ShERPAs did not cause significant uterine growth. PMID:26681208

  10. Targeting estrogen receptor β as preventive therapeutic strategy for Leber's hereditary optic neuropathy.

    PubMed

    Pisano, Annalinda; Preziuso, Carmela; Iommarini, Luisa; Perli, Elena; Grazioli, Paola; Campese, Antonio F; Maresca, Alessandra; Montopoli, Monica; Masuelli, Laura; Sadun, Alfredo A; d'Amati, Giulia; Carelli, Valerio; Ghelli, Anna; Giordano, Carla

    2015-12-15

    Leber's hereditary optic neuropathy (LHON) is a maternally inherited blinding disease characterized by degeneration of retinal ganglion cells (RGCs) and consequent optic nerve atrophy. Peculiar features of LHON are incomplete penetrance and gender bias, with a marked male prevalence. Based on the different hormonal metabolism between genders, we proposed that estrogens play a protective role in females and showed that these hormones ameliorate mitochondrial dysfunction in LHON through the estrogen receptors (ERs). We also showed that ERβ localize to the mitochondria of RGCs. Thus, targeting ERβ may become a therapeutic strategy for LHON specifically aimed at avoiding or delaying the onset of disease in mutation carriers. Here, we tested the effects of ERβ targeting on LHON mitochondrial defective metabolism by treating LHON cybrid cells carrying the m.11778G>A mutation with a combination of natural estrogen-like compounds that bind ERβ with high selectivity. We demonstrated that these molecules improve cell viability by reducing apoptosis, inducing mitochondrial biogenesis and strongly reducing the levels of reactive oxygen species in LHON cells. These effects were abolished in cells with ERβ knockdown by silencing receptor expression or by using specific receptor antagonists. Our observations support the hypothesis that estrogen-like molecules may be useful in LHON prophylactic therapy. This is particularly important for lifelong disease prevention in unaffected LHON mutation carriers. Current strategies attempting to combat degeneration of RGCs during the acute phase of LHON have not been very effective. Implementing a different and preemptive approach with a low risk profile may be very helpful.

  11. Role of direct estrogen receptor signaling in wear particle-induced osteolysis

    PubMed Central

    Nich, Christophe; Rao, Allison J.; Valladares, Roberto D.; Li, Chenguang; Christman, Jane E.; Antonios, Joseph K.; Yao, Zhenyu; Zwingenberger, Stefan; Petite, Hervé; Hamadouche, Moussa; Goodman, Stuart B.

    2014-01-01

    Estrogen withdrawal following surgical ovariectomy was recently shown to mitigate particle-induced osteolysis in the murine calvarial model. Currently, we hypothesize that estrogen receptors (ERs) were involved in this paradoxical phenomenon. To test this hypothesis, we first evaluated polyethylene (PE) particle-induced osteolysis in the murine calvarial model, using wild type (WT) C57BL6J female mice, ERα deficient (ERαKO) mice, and WT mice either treated with 17β-estradiol (E2) or with the ER pan-antagonist ICI 182,780. According to micro-CT and histomorphometry, we showed that bone resorption was consistently altered in both ERαKO and ICI 182,780 treated mice as compared to WT and E2 groups. Then, we demonstrated that ER disruption consistently decreased both PE and polymethylmethacrylate (PMMA) particle-induced production of TNF-α by murine macrophages in vitro. Similar results were obtained following ER blockade using ICI 182,780 in RAW 264.7 and WT macrophages. ER disruption and pre treatment with ICI 182,780 resulted in a consistent down-regulation of particle-induced TNF-α mRNA expression relative to WT macrophages or untreated RAW cells. These results indicate that the response to wear particles involves estrogen receptors in female mice, as part of macrophage activation. Estrogen receptors may be considered as a future therapeutic target for particle-induced osteolysis. PMID:23113918

  12. Application of phosphorylation site-specific antibodies to measure nuclear receptor signaling: characterization of novel phosphoantibodies for estrogen receptor α

    PubMed Central

    Al-Dhaheri, Mariam H.; Rowan, Brian G.

    2006-01-01

    An understanding of posttranslational events in nuclear receptor signaling is crucial for drug design and clinical therapeutic strategies. Phosphorylation is a well-characterized posttranslational modification that regulates subcellular localization and function of nuclear receptors and coregulators. Although the role of single phosphorylation sites in nuclear receptor function has been described, the contribution of combinations of multiple phosphorylation sites to receptor function remains unclear. The development of phosphoantibodies to each phosphorylation site in a nuclear receptor is a powerful tool to address the role of phosphorylation in multiply phosphorylated receptors. However, phosphoantibodies must be rigorously validated prior to use. This review describes the general methodology for design, characterization and validation of phosphoantibodies using the example of eight phosphoantibodies raised against phosphorylation sites in estrogen receptor α (ERα). PMID:16741565

  13. Human glutathione S-transferase P1-1 functions as an estrogen receptor α signaling modulator

    SciTech Connect

    Liu, Xiyuan; An, Byoung Ha; Kim, Min Jung; Park, Jong Hoon; Kang, Young Sook; Chang, Minsun

    2014-09-26

    Highlights: • GSTP induces the classical ERα signaling event. • The functional GSTP is a prerequisite for GSTP-induced ERα transcription activity. • The expression of RIP140, a transcription cofactor, was inhibited by GSTP protein. • We propose the novel non-enzymatic role of GSTP. - Abstract: Estrogen receptor α (ERα) plays a crucial role in estrogen-mediated signaling pathways and exerts its action as a nuclear transcription factor. Binding of the ligand-activated ERα to the estrogen response element (ERE) is a central part of ERα-associated signal transduction pathways and its aberrant modulation is associated with many disease conditions. Human glutathione S-transferase P1-1 (GSTP) functions as an enzyme in conjugation reactions in drug metabolism and as a regulator of kinase signaling pathways. It is overexpressed in tumors following chemotherapy and has been associated with a poor prognosis in breast cancer. In this study, a novel regulatory function of GSTP has been proposed in which GSTP modulates ERE-mediated ERα signaling events. Ectopic expression of GSTP was able to induce the ERα and ERE-mediated transcriptional activities in ERα-positive but GSTP-negative MCF7 human breast cancer cells. This inductive effect of GSTP on the ERE-transcription activity was diminished when the cells express a mutated form of the enzyme or are treated with a GSTP-specific chemical inhibitor. It was found that GSTP inhibited the expression of the receptor interacting protein 140 (RIP140), a negative regulator of ERα transcription, at both mRNA and protein levels. Our study suggests a novel non-enzymatic role of GSTP which plays a significant role in regulating the classical ERα signaling pathways via modification of transcription cofactors such as RIP140.

  14. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism

    SciTech Connect

    Moreira, Liliana; Araújo, Isabel; Costa, Tito; Correia-Branco, Ana; Faria, Ana; Martel, Fátima; Keating, Elisa

    2013-07-15

    In this study we characterized {sup 3}H-2-deoxy-D-glucose ({sup 3}H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon {sup 3}H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells {sup 3}H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (V{sub max}) and affinity (K{sub m}), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that {sup 3}H-DG uptake by both cell types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited {sup 3}H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling.

  15. Characterization of estrogenic receptor agonists and evaluation of estrogenic activity in the sediments of Liaohe River protected areas.

    PubMed

    Ke, Xin; Wang, Chunyong; Zhang, Haijun; Zhang, Yun; Gui, Shaofeng

    2015-11-15

    Estrogenic activity of 12 sediment samples from Liaohe River protected areas was evaluated by the recombinant yeast bioassays. The bioassay-derived 17β-estradiol equivalents of crude extracts (Bio-EEQcrudes) were between 52.2 and 207.6pg/g dry weight. The most concerned estrogenic receptor (ER) agonists including estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethynylestradiol (EE2), 4-nonylphenols (4-NP), bisphenol A (BPA), and organochlorine pesticides (OCPs) were determined. The concentrations of E1, E2, E3, EE2, BPA, andΣ10OCPs ranged up to 203.3pg/g, 185.8pg/g, 237.7pg/g, 188.5pg/g, 51.0ng/g, and 3.6ng/g, respectively. Taken together with polarity-based fractionation, in vitro bioassay and chemical analysis, it indicated that E1, E2, and EE2 were the predominant ER agonists and were mainly from the discharge of domestic wastewater and breeding wastewater. Meanwhile, this study showed that the establishment of protected areas had not obviously reduced the ecological risk caused by ER agonists in Liaohe River protected areas sediments. PMID:26388445

  16. CIA, a novel estrogen receptor coactivator with a bifunctional nuclear receptor interacting determinant.

    PubMed

    Sauvé, F; McBroom, L D; Gallant, J; Moraitis, A N; Labrie, F; Giguère, V

    2001-01-01

    Coregulators for nuclear receptors (NR) are factors that either enhance or repress their transcriptional activity. Both coactivators and corepressors have been shown to use similar but functionally distinct NR interacting determinants containing the core motifs LxxLL and PhixxPhiPhi, respectively. These interactions occur through a hydrophobic cleft located on the surface of the ligand-binding domain (LBD) of the NR and are regulated by ligand-dependent activation function 2 (AF-2). In an effort to identify novel coregulators that function independently of AF-2, we used the LBD of the orphan receptor RVR (which lacks AF-2) as bait in a yeast two-hybrid screen. This strategy led to the cloning of a nuclear protein referred to as CIA (coactivator independent of AF-2 function) that possesses both repressor and activator functions. Strikingly, we observed that CIA not only interacts with RVR and Rev-ErbAalpha in a ligand-independent manner but can also form complexes with estrogen receptor alpha (ERalpha) and ERbeta in vitro and enhances ERalpha transcriptional activity in the presence of estradiol (E(2)). CIA-ERalpha interactions were found to be independent of AF-2 and enhanced by the antiestrogens EM-652 and ICI 182,780 but not by 4-hydroxytamoxifen and raloxifene. We further demonstrate that CIA-ERalpha interactions require the presence within CIA of a novel bifunctional NR recognition determinant containing overlapping LxxLL and PhixxPhiPhi motifs. The identification and functional characterization of CIA suggest that hormone binding can create a functional coactivator interaction interface in the absence of AF-2.

  17. Estrogen receptor-alpha as a predictive biomarker in endometrioid endometrial cancer

    PubMed Central

    Backes, Floor J.; Walker, Christopher J.; Goodfellow, Paul J.; Hade, Erinn M; Agarwal, Garima; Mutch, David; Cohn, David E.; Suarez, Adrian A.

    2016-01-01

    Background We sought to validate the prognostic significance of Estrogen Receptor alpha (ERα) expression and to investigate the relationship between ESR1 mutation status and outcomes in a large cohort of patients with endometrial cancer. We also investigated the predictive value of ERα for lymph node involvement in a large surgically staged cohort. Methods A tumor microarray (TMA) was constructed including only pure endometrioid adenocarcinomas, stained with ER50 monoclonal antibody, and assessed using digital image analysis. For mutation analysis, somatic DNA was extracted and sequenced for ESR1 gene hotspot regions. Differences in patient and tumor characteristics, recurrence and survival between ERα positive and negative, mutated and wild-type tumors were evaluated. Results Sixty (18.6%) tumors were negative for ERα. Absence of ERα was significantly associated with stage and grade, but not with disease-free or overall survival. ERα was a strong predictor of lymph node involvement (RR: 2.37, 95% CI: 1.12–5.02). Nineteen of 1034 tumors (1.8%) had an ESR1 hotspot mutation; twelve in hotspot 537Y, four in 538D and three in 536L. Patients with an ESR1 mutation had a significantly lower BMI, but were comparable in age, stage and grade, and progression-free survival. Conclusion Patients with ERα negative endometrioid endometrial cancer are more often diagnosed with higher grade and advanced stage disease. Lymph node involvement is more common with lack of ERα expression, and may be able to help triage which patients should undergo lymphadenectomy. Mutations in ESR1 might explain why some low risk women with low BMI develop endometrial cancer. PMID:26957478

  18. Molecular subtype profiling of invasive breast cancers weakly positive for estrogen receptor.

    PubMed

    Sheffield, Brandon S; Kos, Zuzana; Asleh-Aburaya, Karama; Wang, Xiu Qing; Leung, Samuel; Gao, Dongxia; Won, Jennifer; Chow, Christine; Rachamadugu, Rakesh; Stijleman, Inge; Wolber, Robert; Gilks, C Blake; Myles, Nickolas; Thomson, Tom; Hayes, Malcolm M; Bernard, Philip S; Nielsen, Torsten O; Chia, Stephen K L

    2016-02-01

    The estrogen receptor (ER) is a key predictive biomarker in the treatment of breast cancer. There is uncertainty regarding the use of hormonal therapy in the setting of weakly positive ER by immunohistochemistry (IHC). We report intrinsic subtype classification on a cohort of ER weakly positive early-stage breast cancers. Consecutive cases of breast cancer treated by primary surgical resection were retrospectively identified from 4 centers that engage in routine external proficiency testing for breast biomarkers. ER-negative (Allred 0 and 2) and ER weakly positive (Allred 3-5) cases were included. Gene expression profiling was performed using qRT-PCR. Intrinsic subtype prediction was made based upon the PAM50 gene expression signature. 148 cases were included in the series: 60 cases originally diagnosed as ER weakly positive and 88 ER negative. Of the cases originally assessed as ER weakly positive, only 6 (10 %) were confirmed to be of luminal subtype by gene expression profiling; the remaining 90 % of cases were classified as basal-like or HER2-enriched subtypes. This was not significantly different than the fraction of luminal cases identified in the IHC ER-negative cohort (5 (5 %) luminal, 83(95 %) non-luminal). Recurrence-free, and overall, survival rates were similar in both groups (p = 0.4 and 0.5, respectively) despite adjuvant hormonal therapy prescribed in the majority (59 %) of weakly positive ER cases. Weak ER expression by IHC is a poor correlate of luminal subtype in invasive breast cancer. In the setting of highly sensitive and robust IHC methodology, cutoffs for ER status determination and subsequent systemic therapy should be revisited. PMID:26846986

  19. SPBP Is a Phosphoserine-Specific Repressor of Estrogen Receptor α

    PubMed Central

    Gburcik, Valentina; Bot, Nathalie; Maggiolini, Marcello; Picard, Didier

    2005-01-01

    Multiple signaling pathways stimulate the activity of estrogen receptor α (ERα) by direct phosphorylation within its N-terminal activation function 1 (AF1). How phosphorylation affects AF1 activity remains poorly understood. We performed a phage display screen for human proteins that are exclusively recruited to the phosphorylated form of AF1 and found the stromelysin-1 platelet-derived growth factor-responsive element-binding protein (SPBP). In a purified system, SPBP bound only the in vitro-phosphorylated form of the ERα AF1 or the phosphoserine mimic S118E, and the interaction domain could be mapped to a 42-amino-acid fragment of SPBP. In cells, SPBP preferentially interacted with liganded and phosphorylated ERα. Functionally, SPBP behaved as a repressor of activated ERα, which extends its previously demonstrated roles as a DNA binding transactivation factor and coactivator of other transcription factors. By targeting the phosphorylated form of AF1, SPBP may contribute to attenuating and fine-tuning ERα activity. A functional consequence is that SPBP inhibits the proliferation of ERα-dependent but not ERα-independent breast cancer cell lines, mirroring a reported negative correlation with the ERα status of breast tumors. PMID:15831449

  20. SPBP is a phosphoserine-specific repressor of estrogen receptor alpha.

    PubMed

    Gburcik, Valentina; Bot, Nathalie; Maggiolini, Marcello; Picard, Didier

    2005-05-01

    Multiple signaling pathways stimulate the activity of estrogen receptor alpha (ERalpha) by direct phosphorylation within its N-terminal activation function 1 (AF1). How phosphorylation affects AF1 activity remains poorly understood. We performed a phage display screen for human proteins that are exclusively recruited to the phosphorylated form of AF1 and found the stromelysin-1 platelet-derived growth factor-responsive element-binding protein (SPBP). In a purified system, SPBP bound only the in vitro-phosphorylated form of the ERalpha AF1 or the phosphoserine mimic S118E, and the interaction domain could be mapped to a 42-amino-acid fragment of SPBP. In cells, SPBP preferentially interacted with liganded and phosphorylated ERalpha. Functionally, SPBP behaved as a repressor of activated ERalpha, which extends its previously demonstrated roles as a DNA binding transactivation factor and coactivator of other transcription factors. By targeting the phosphorylated form of AF1, SPBP may contribute to attenuating and fine-tuning ERalpha activity. A functional consequence is that SPBP inhibits the proliferation of ERalpha-dependent but not ERalpha-independent breast cancer cell lines, mirroring a reported negative correlation with the ERalpha status of breast tumors. PMID:15831449

  1. Intracellular lactate-mediated induction of estrogen receptor beta (ERβ) in biphasic malignant pleural mesothelioma cells

    PubMed Central

    Zonca, Sara; Cilli, Michele; Rinaldi, Maurizio; Daga, Antonio; Nilsson, Stefan; Moro, Laura

    2015-01-01

    Biphasic malignant pleural mesothelioma (MPM) is the second most common histotype of MPM. It is histologically characterized by the concomitant presence of epithelioid and sarcomatoid features, the latter associated with worse prognosis. In this report we describe that silencing of AKT1 in spindle-shaped biphasic MPM cells promotes the shift toward an epithelioid phenotype. Furthermore, AKT1 silencing resulted in decreased expression of the lactate/H+ symporter MCT4 and its chaperone CD147/Basigin, and in the induction of estrogen receptor β (ERβ) expression. We provide evidence that ERβ expression is induced by increased intracellular lactate concentration. Spheroid culturing and tumor growth of ERβ negative biphasic MPM in nude mice resulted in the induction of ERβ expression and response to the selective agonist KB9520. In both models, the treatment with the ERβ agonist results in reduced cell proliferation, decreased expression of MCT4 and CD147/Basigin and increased acetylation and inactivation of AKT1. Collectively, in response to metabolic changes, ERβ expression is induced and exerts an anti-tumor effect through selective agonist activation. The possibility to reverse the more aggressive biphasic mesothelioma histotype by targeting ERβ with a selective agonist could represent a new effective treatment strategy. PMID:26208479

  2. Effect of the XbaI polymorphism of estrogen receptor alpha on postmenopausal gray matter.

    PubMed

    Boccardi, Marina; Scassellati, Catia; Ghidoni, Roberta; Testa, Cristina; Benussi, Luisa; Bonetti, Matteo; Bocchio-Chiavetto, Luisella; Gennarelli, Massimo; Binetti, Giuliano; Frisoni, Giovanni B

    2008-04-01

    The frequent polymorphism XbaI (A351G) in the estrogen receptor alpha (ERalpha) gene has been associated with some postmenopausal pathologies' risk such as Alzheimer's disease (AD) or cognitive decline. In the present study, we explored whether the XbaI polymorphism leads to different gray matter volumes using voxel-based morphometry (VBM) on 20 magnetic resonance images of healthy postmenopausal women. Subjects carrying the less common XbaI/X allele were contrasted to non-carriers in groups well balanced by relevant confounding variables. The XbaI/X allele carriers displayed clusters ranging from 9 to 28% of tissue reductions in the cerebellar (cluster size, z, stereotactic coordinates: 16 mm(3); 3.17; 14, -94, -38) and cerebral cortex, in particular in the occipital lobe (272 mm(3); 3.76; -38,-68,-16), in the middle frontal gyrus (192 mm(3); 3.71; 38, 12, 38) and in the middle temporal gyrus, while the opposite comparison was negative. The XbaI/X allele in ERalpha gene is associated to smaller gray matter volumes of the cerebral and cerebellar cortex. This allele might increase the susceptibility for senile neurodegenerative conditions, being associated to smaller cerebral reserve.

  3. Investigation on estrogen receptor alpha gene polymorphisms in Iranian women with recurrent pregnancy loss

    PubMed Central

    Mahdavipour, Marzieh; Idali, Farah; Zarei, Saeed; Talebi, Saeed; Fatemi, Ramina; Jeddi-Tehrani, Mahmood; Pahlavan, Somayeh; Rajaei, Farzad

    2014-01-01

    Background: Recurrent pregnancy loss (RPL) is a multifactorial disorder. Environmental factors and genetics can affect pregnancy outcomes. Objective: Conflicting data suggest an association between estrogen receptor alpha (ESR1) gene polymorphisms and RPL. In this study, such association was investigated in Iranian women with RPL. Materials and Methods: In this case control study, blood samples were collected from 244 women with a history of three or more consecutive pregnancy losses and 104 healthy women with at least two live births. Using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP), we studied -397C/T and -351A/G polymorphisms on ESR1 gene in case and control subjects. Results: The genotypic frequencies of -397C/T and -351A/G polymorphisms on ESR1were not significantly different between RPL and control groups (p=0.20 and p=0.09, respectively). A significantly negative correlation was observed between -397C/T and -351A/G (r=-0.852, p<0.001) in RPL women and complete linkage disequilibrium between the investigated polymorphisms was found (D’: 0.959; r-square= 0.758, p<0.001). Conclusion: This investigation suggests that the analyzed polymorphisms on ESR1gene are not associated with an increased risk of RPL in the studied population. PMID:25071847

  4. Sumoylation of TCF21 downregulates the transcriptional activity of estrogen receptor-alpha

    PubMed Central

    Ao, Xiang; Li, Shujing; Xu, Zhaowei; Yang, Yangyang; Chen, Min; Jiang, Xiao; Wu, Huijian

    2016-01-01

    Aberrant estrogen receptor-α (ERα) signaling is recognized as a major contributor to the development of breast cancer. However, the molecular mechanism underlying the regulation of ERα in breast cancer is still inconclusive. In this study, we showed that the transcription factor 21 (TCF21) interacted with ERα, and repressed its transcriptional activity in a HDACs-dependent manner. We also showed that TCF21 could be sumoylated by the small ubiquitin-like modifier SUMO1, and this modification could be reversed by SENP1. Sumoylation of TCF21 occurred at lysine residue 24 (K24). Substitution of K24 with arginine resulted in complete abolishment of sumoylation. Sumoylation stabilized TCF21, but did not affect its subcellular localization. Sumoylation of TCF21 also enhanced its interaction with HDAC1/2 without affecting its interaction with ERα. Moreover, sumoylation of TCF21 promoted its repression of ERα transcriptional activity, and increased the recruitment of HDAC1/2 to the pS2 promoter. Consistent with these observations, sumoylation of TCF21 could inhibit the growth of ERα-positive breast cancer cells and decreased the proportion of S-phase cells in the cell cycle. These findings suggested that TCF21 might act as a negative regulator of ERα, and its sumoylation inhibited the transcriptional activity of ERα through promoting the recruitment of HDAC1/2. PMID:27028856

  5. Body Mass Index and Breast Cancer Risk According to Postmenopausal Estrogen-Progestin Use and Hormone Receptor Status

    PubMed Central

    Munsell, Mark F.; Sprague, Brian L.; Berry, Donald A.; Chisholm, Gary; Trentham-Dietz, Amy

    2014-01-01

    To assess the joint relationships among body mass index, menopausal status, and breast cancer according to breast cancer subtype and estrogen-progestin medication use, we conducted a meta-analysis of 89 epidemiologic reports published in English during 1980–2012 identified through a systematic search of bibliographic databases. Pooled analysis yielded a summary risk ratio of 0.78 (95% confidence interval (CI): 0.67, 0.92) for hormone receptor–positive premenopausal breast cancer associated with obesity (body mass index (weight (kg)/height (m)2) ≥30 compared with <25). Obesity was associated with a summary risk ratio of 1.39 (95% CI: 1.14, 1.70) for receptor-positive postmenopausal breast cancer. For receptor-negative breast cancer, the summary risk ratios of 1.06 (95% CI: 0.70, 1.60) and 0.98 (95% CI: 0.78, 1.22) associated with obesity were null for both premenopausal and postmenopausal women, respectively. Elevated postmenopausal breast cancer risk ratios associated with obesity were limited to women who never took estrogen-progestin therapy, with risk ratios of 1.42 (95% CI: 1.30, 1.55) among never users and 1.18 (95% CI: 0.98, 1.42) among users; too few studies were available to examine this relationship according to receptor subtype. Future research is needed to confirm whether obesity is unrelated to receptor-negative breast cancer in populations of postmenopausal women with low prevalence of hormone medication use. PMID:24375928

  6. A Dominant Negative ERβ Splice Variant Determines the Effectiveness of Early or Late Estrogen Therapy after Ovariectomy in Rats

    PubMed Central

    Wang, Jun Ming; Hou, Xu; Adeosun, Samuel; Hill, Rosanne; Henry, Sherry; Paul, Ian; Irwin, Ronald W.; Ou, Xiao-Ming; Bigler, Steven; Stockmeier, Craig; Brinton, Roberta Diaz; Gomez-Sanchez, Elise

    2012-01-01

    The molecular mechanisms for the discrepancy in outcome of initiating estrogen therapy (ET) around peri-menopause or several years after menopause in women are unknown. We hypothesize that the level of expression of a dominant negative estrogen receptor (ER) β variant, ERβ2, may be a key factor determining the effectiveness of ET in post-menopausal women. We tested this hypothesis in ovariectomized nine month-old (an age when irregular estrous cycles occur) female Sprague Dawley rats. Estradiol treatment was initiated either 6 days (Early ET, analogous to 4 months post-menopause in humans), or 180 days (Late ET, analogous to 11 years post-menopause in humans) after ovariectomy. Although ERβ2 expression increased in all OVX rats, neurogenic and neuroprotective responses to estradiol differed in Early and Late ET. Early ET reduced ERβ2 expression in both hippocampus and white blood cells, increased the hippocampal cell proliferation as assessed by Ki-67 expression, and improved mobility in the forced swim test. Late ET resulted in either no or modest effects on these parameters. There was a close correlation between the degree of ERβ2 expression and the preservation of neural effects by ET after OVX in rats, supporting the hypothesis that persistent elevated levels of ERβ2 are a molecular basis for the diminished effectiveness of ET in late post-menopausal women. The correlation between the expression of ERβ2 in circulating white blood cells and brain cells suggests that ERβ2 expression in peripheral blood cells may be an easily accessible marker to predict the effective window for ET in the brain. PMID:22428062

  7. Sex-specificity and estrogen-dependence of kappa opioid receptor-mediated antinociception and antihyperalgesia.

    PubMed

    Lawson, Kera P; Nag, Subodh; Thompson, Analisa D; Mokha, Sukhbir S

    2010-12-01

    This investigation determined whether the activation of the kappa opioid receptor (KOR) in the spinal cord produces estrogen-dependent, sex-specific modulation of acute and inflammation-induced persistent nociception. We demonstrate for the first time that KOR antinociception and gene expression are enhanced by exogenous or endogenous estrogen in the female. The lack of KOR antinociception and KOR gene expression are not altered by the hormonal status (testosterone or estrogen) in males. Cannulae were implanted intrathecally in male, gonadectomized male (GDX), intact and ovariectomized female (OVX) Sprague-Dawley rats. Estradiol was injected subcutaneously, 48h before testing (GDX+E and OVX+E). Intrathecal injection of U50,488H, a selective KOR agonist, dose dependently increased heat-evoked tail flick latencies (TFLs) in proestrous and OVX+E groups, but not in male, GDX, GDX+E, OVX, and diestrous groups. Further, estrogen dose-dependently enhanced the effect of U50,488H in OVX rats. KOR selective antagonist, nor-binaltorphimine (Nor-BNI), blocked the antinociceptive effect of U50,488H. U50,488H reversed the carrageenan-induced thermal hyperalgesia in OVX+E rats, but not in male or OVX rats. However, U50,488H treatment did not alter mechanical thresholds in any group, with or without inflammation. KOR gene expression was enhanced in proestrous and OVX+E groups as compared to any other group. We conclude that selective activation of KOR in the spinal cord produces sex-specific, stimulus- and estrogen-dependent attenuation of acute and inflammatory pain in the rat via estrogen-induced upregulation of the KOR gene expression in the spinal cord. These findings may further implicate estrogen dependence of KOR effects in learning, epilepsy, stress response, addiction etc. PMID:20926192

  8. Estrogen receptor-targeted optical imaging of breast cancer cells with near-infrared fluorescent dye

    NASA Astrophysics Data System (ADS)

    Jose, Iven; Deodhar, Kodand; Chiplunkar, Shuba V.; Patkar, Meena

    2010-02-01

    compared to ICG, which was established by the partition coefficient studies. The replacement of the sodium ion in the ester by a larger glucosammonium ion was found to enhance the hydrophilicity and reduce the toxic effect on the cell lines. The excitation and emission peaks for the conjugate were recorded in the NIR region as 750nm and 788nm respectively. The ester was found nontoxic on adenocarcinoma breast cancer cell lines MCF-7/MDA-MB-231. Specific binding and endocytosis of the estrogen-labeled conjugate was studied on the MCF-7 (ER positive) and MDA-MB-231 (ER negative). Conjugate staining of MCF-7 cells showed ~ 4-fold increase in signal intensity compared to MDA-MB- 231. Further, estrogen molecules were found to be specifically localized to the nuclear region of MCF-7 cells, whereas MDA-MB-231 showed plasma membrane staining. This technique offers the potential of noninvasive detection of hormone receptor status in breast cancer cells and would help in decreasing the load of unnecessary biopsies. Here, we have reported the progress made in the development of a novel NIR external contrast agent and the work is in progress to use this conjugate for the molecular based, diagnostic imaging of breast cancer.

  9. Effects of coumestrol on estrogen receptor function and uterine growth in ovariectomized rats.

    PubMed Central

    Markaverich, B M; Webb, B; Densmore, C L; Gregory, R R

    1995-01-01

    Isoflavonoids and related compounds such as coumestrol have classically been categorized as phytoestrogens because these environmentally derived substances bind to the estrogen receptor (ER) and increase uterine wet weight in immature rats and mice. Assessment of the binding affinities of isoflavonoids for ER and subsequent effects on uterine growth suggest these compounds are less active estrogens than estradiol and therefore may reduce the risk of developing breast or prostate cancer in humans by preventing estradiol binding to ER. With the renewed interest in the relationships between environmental estrogens and cancer cause and prevention, we assessed the effects of the phytoestrogen coumestrol on uterotropic response in the immature, ovariectomized rat. Our studies demonstrated that in this animal model, coumestrol is an atypical estrogen that does not stimulate uterine cellular hyperplasia. Although acute (subcutaneous injection) or chronic (multiple injection or orally via drinking water) administration of coumestrol significantly increased uterine wet and dry weights, the phytoestrogen failed to increase uterine DNA content. The lack of true estrogenic activity was characterized by the inability of this phytoestrogen to cause cytosolic ER depletion, nuclear ER accumulation, or the stimulation of nuclear type II sites which characteristically precede estrogenic stimulation of cellular DNA synthesis and proliferation. In fact, subcutaneous or oral coumestrol treatment caused an atypical threefold induction of cytosolic ER without corresponding cytosolic depletion and nuclear accumulation of this receptor, and this increased the sensitivity of the uterus to subsequent stimulation by estradiol.(ABSTRACT TRUNCATED AT 250 WORDS) Images p574-a Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. PMID:7556010

  10. Estrogen Receptor 1 Gene Expression and Its Combination with Estrogen Receptor 2 or Aromatase Expression Predicts Survival in Non-Small Cell Lung Cancer

    PubMed Central

    Aresti, Unai; Carrera, Sergio; Iruarrizaga, Eluska; Fuente, Natalia; Marrodan, Ines; de Lobera, Abigail Ruiz; Muñoz, Alberto; Buque, Aitziber; Condori, Elizabeth; Ugalde, Irene; Calvo, Begoña; Vivanco, Guillermo López

    2014-01-01

    The biological roles of estrogen receptor 1 (ERS1), estrogen receptor 2 (ERS2), and aromatase (CYP19A1) genes in the development of non-small cell lung cancer (NSCLC) is unclear, as is the use of their expression as a prognostic factor. The aim of this study was to investigate the prognostic value of estrogen receptors and aromatase mRNA expression, along with aromatase protein concentration, in resected NSCLC patients. Tumor and non-tumor lung tissue samples were analyzed for the mRNA expression of ERS1, ERS2 and CYP19A1 by RT-PCR. Aromatase concentration was measured with an ELISA. A total of 96 patients were included. ERS1 expression was significantly higher in non-tumor tissue than in tumor samples. Two gene expression categories were created for each gene (and protein): high and low. ERS1 high category showed increased overall survival (OS) when compared to the low expression category. Aromatase protein concentration was significantly higher in tumor samples. Higher ERS1 expression in tumor tissues was related to longer overall survival. The analysis of gene expression combinations provides evidence for longer OS when both ERS1 and ERS2 are highly expressed. ESR1, alone or in combination with ERS2 or CYP19A1, is the most determining prognostic factor within the analyzed 3 genes. It seems that ERS1 can play a role in NSCLC prognosis, alone or in combination with other genes such as ERS2 or Cyp19a1. ERS2 in combination with aromatase concentration could have a similar function. PMID:25310221

  11. Vaginal estrogen products in hormone receptor-positive breast cancer patients on aromatase inhibitor therapy.

    PubMed

    Sulaica, Elisabeth; Han, Tiffany; Wang, Weiqun; Bhat, Raksha; Trivedi, Meghana V; Niravath, Polly

    2016-06-01

    Atrophic vaginitis represents a major barrier to compliance with aromatase inhibitor (AI) therapy in breast cancer (BC) survivors. While local estrogen therapy is effective for postmenopausal vaginal dryness, the efficacy of such therapies has not been evaluated systematically in hormone receptor-positive (HR+) BC patients on AI therapy. Furthermore, the potential risk of breast cancer recurrence with vaginal estrogen therapy represents a long-term safety concern for the patients with HR + BC. Unfortunately, there is no standardized assay to measure very low concentrations of estradiol (E2) in these women being treated with AI therapy. This makes it difficult to evaluate even indirectly the potential risk of BC recurrence with vaginal estrogen therapy in HR + BC patients on AI therapy. In this review, we describe available assays to measure very low concentrations of E2, discuss the Food and Drug Administration-approved vaginal estrogen products on the market, and summarize published and ongoing clinical trials evaluating the safety and efficacy of vaginal estrogen in HR + BC patients on AI therapy. In the absence of any randomized controlled clinical trials, this review serves as a summary of available clinical data and ongoing studies to aid clinicians in selecting the best available option for their patients.

  12. Discovery of a sulfamate-based steroid sulfatase inhibitor with intrinsic selective estrogen receptor modulator properties.

    PubMed

    Ouellet, Charles; Maltais, René; Ouellet, Étienne; Barbeau, Xavier; Lagüe, Patrick; Poirier, Donald

    2016-08-25

    Steroid sulfatase (STS), the enzyme which converts inactive sulfated steroid precursors into active hormones, is a promising therapeutic target for the treatment of estrogen-sensitive breast cancer. We report herein the synthesis and in vitro study of dual-action STS inhibitors with selective estrogen-receptor modulator (SERM) effects. A library of tetrahydroisoquinoline-N-substituted derivatives (phenolic compounds) was synthesized by solid-phase chemistry and tested on estrogen-sensitive breast cancer T-47D cells. Three phenolic compounds devoid of estrogenic activity and toxicity emerged from this screening. Their sulfamate analogs were then synthesized, tested in STS-transfected HEK-293 cells, and found to be potent inhibitors of the enzyme (IC50 of 3.9, 8.9, and 16.6 nM). When tested in T-47D cells they showed no estrogenic activity and produced a moderate antiestrogenic activity. The compounds were further tested on osteoblast-like Saos-2 cells and found to significantly stimulate their proliferation as well as their alkaline phosphatase activity, thus suggesting a SERM activity. These results are supported by molecular docking experiments. PMID:27155470

  13. Requirement for Estrogen Receptor Alpha in a Mouse Model for Human Papillomavirus-Associated Cervical Cancer

    PubMed Central

    Chung, Sang-Hyuk; Wiedmeyer, Kerri; Shai, Anny; Korach, Kenneth S.; Lambert, Paul F.

    2008-01-01

    The majority of human cervical cancers are associated with the high-risk human papillomaviruses (HPVs), which encode the potent E6 and E7 oncogenes. Upon prolonged treatment with physiological levels of exogenous estrogen, K14E7 transgenic mice expressing HPV-16 E7 oncoprotein in their squamous epithelia succumb to uterine cervical cancer. Furthermore, prolonged withdrawal of exogenous estrogen results in complete or partial regression of tumors in this mouse model. In the current study we investigated whether estrogen receptor alpha (ERα) is required for the development of cervical cancer in K14E7 transgenic mice. We demonstrate that exogenous estrogen fails to promote either dysplasia or cervical cancer in K14E7/ERα−/− mice despite the continued presence of the presumed cervical cancer precursor cell type, reserve cells, and evidence for E7 expression therein. We also observed that cervical cancers in our mouse models are strictly associated with atypical squamous metaplasia (ASM), which is believed to be the precursor for cervical cancer in women. Consistently, E7 and exogenous estrogen failed to promote ASM in the absence of ERα. We conclude that ERα plays a crucial role at an early stage of cervical carcinogenesis in this mouse model. PMID:19047174

  14. Estrogen and progesterone receptors: an overview from the year 2000.

    PubMed

    Peterson, C M

    2000-01-01

    Our current understanding of the steroid/thyroid superfamily of ligand-dependent nuclear transcription factors now involves specific domains for steroid ligand binding, receptor homo- and heterodimer formation, the association of transcription mediators or adaptors that activate, repress, or integrate competing influences, interaction with the hormone response element, transcription modulation based on the components of the transcriptional complex, and intracellular trafficking. Various ligands, including selective hormone receptor modulators, interact with transcriptional mediators in both ligand- and tissue-specific manners, thus multiplying the variety and complexity of interactions substantially. Transcriptional mediators, selective hormone receptor modulators, and varying isoforms of nuclear receptors and their tissue-specific interactions will be a major focus of research in the future. This symposium assembles many of the investigators presently elucidating our understanding of nuclear receptors as we move into the next millennium. PMID:10732320

  15. HSP90 Inhibitor AT13387 and Paclitaxel in Treating Patients With Advanced Triple Negative Breast Cancer

    ClinicalTrials.gov

    2016-10-13

    Estrogen Receptor Negative; HER2/Neu Negative; Progesterone Receptor Negative; Recurrent Breast Carcinoma; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Stage IV Breast Cancer; Triple-Negative Breast Carcinoma

  16. Comparative study on transcriptional activity of 17 parabens mediated by estrogen receptor α and β and androgen receptor.

    PubMed

    Watanabe, Yoko; Kojima, Hiroyuki; Takeuchi, Shinji; Uramaru, Naoto; Ohta, Shigeru; Kitamura, Shigeyuki

    2013-07-01

    The structure-activity relationships of parabens which are widely used as preservatives for transcriptional activities mediated by human estrogen receptor α (hERα), hERβ and androgen receptor (hAR) were investigated. Fourteen of 17 parabens exhibited hERα and/or hERβ agonistic activity at concentrations of ≤ 1 × 10(-5)M, whereas none of the 17 parabens showed AR agonistic or antagonistic activity. Among 12 parabens with linear alkyl chains ranging in length from C₁ to C₁₂, heptylparaben (C₇) and pentylparaben (C₅) showed the most potent ERα and ERβ agonistic activity in the order of 10(-7)M and 10(-8)M, respectively, and the activities decreased in a stepwise manner as the alkyl chain was shortened to C₁ or lengthened to C₁₂. Most parabens showing estrogenic activity exhibited ERβ-agonistic activity at lower concentrations than those inducing ERα-agonistic activity. The estrogenic activity of butylparaben was markedly decreased by incubation with rat liver microsomes, and the decrease of activity was blocked by a carboxylesterase inhibitor. These results indicate that parabens are selective agonists for ERβ over ERα; their interactions with ERα/β are dependent on the size and bulkiness of the alkyl groups; and they are metabolized by carboxylesterases, leading to attenuation of their estrogenic activity.

  17. Estrogenic effects of natural and synthetic compounds including tibolone assessed in Saccharomyces cerevisiae expressing the human estrogen alpha and beta receptors.

    PubMed

    Hasenbrink, Guido; Sievernich, André; Wildt, Ludwig; Ludwig, Jost; Lichtenberg-Fraté, Hella

    2006-07-01

    The human estrogen receptors (hER)alpha and hERbeta, differentially expressed and localized in various tissues and cell types, mediate transcriptional activation of target genes. These encode a variety of physiological reproductive and nonreproductive functions involved in energy metabolism, salt balance, immune system, development, and differentiation. As a step toward developing a screening assay for the use in applications where significant numbers of compounds or complex matrices need to be tested for (anti) estrogenic bioactivity, hERalpha and hERbeta were expressed in a genetically modified Saccharomyces cerevisiae strain, devoid of three endogenous xenobiotic transporters (PDR5, SNQ2, and YOR1). By using receptor-mediated transcriptional activation of the green fluorescent protein optimized for expression in yeast (yEGFP) as reporter 17 natural, comprising estrogens and phytoestrogens or synthetic compounds among which tibolone with its metabolites, gestagens, and antiestrogens were investigated. The reporter assay deployed a simple and robust protocol for the rapid detection of estrogenic effects within a 96-well microplate format. Results were expressed as effective concentrations (EC50) and correlated to other yeast based and cell line assays. Tibolone and its metabolites exerted clear estrogenic effects, though considerably less potent than all other natural and synthetic compounds. For the blood serum of two volunteers, considerable higher total estrogenic bioactivity than single estradiol concentrations as determined by immunoassay was found. Visualization of a hERalpha/GFP fusion protein in yeast revealed a sub cellular cytosolic localization. This study demonstrates the versatility of (anti) estrogenic bioactivity determination using sensitized S. cerevisiae cells to assess estrogenic exposure and effects.

  18. G Protein-Coupled Estrogen Receptor 1 Mediates Acute Estrogen-Induced Cardioprotection via MEK/ERK/GSK-3β Pathway after Ischemia/Reperfusion

    PubMed Central

    Kabir, Mohammad E.; Singh, Harpreet; Lu, Rong; Olde, Bjorn; Leeb-Lundberg, L. M. Fredrik; Bopassa, Jean Chrisostome

    2015-01-01

    Three types of estrogen receptors (ER) exist in the heart, Esr1, Esr2 and the G protein-coupled estrogen receptor 1, Gper1. However, their relative importance in mediating estrogen protective action is unknown. We found that, in the male mouse ventricle, Gper1 transcripts are three- and seventeen-fold more abundant than Esr1 and Esr2 mRNAs, respectively. Analysis of the three ER knockouts (Esr1-/-, Esr2-/- and Gper1-/-) showed that only the Gper1-/- hearts lost their ability to be protected by 40 nM estrogen as measured by heart function, infarct size and mitochondrial Ca2+ overload, an index of mitochondrial permeability transition pore (mPTP) activity. Analysis of Akt, ERK1/2 and GSK-3β salvage kinases uncovered Akt and ERK1/2 transient activation by estrogen whose phosphorylation increased during the first 5 min of non-ischemic perfusion. All these increase in phosphorylation effects were abrogated in Gper1-/-. Inhibition of MEK1/2/ERK1/2 (1 μM U0126) and PI-3K/Akt (10 μM LY294002) signaling showed that the MEK1/2/ERK1/2 pathway via GSK-3β exclusively was responsible for cardioprotection as an addition of U0126 prevented estrogen-induced GSK-3β increased phosphorylation, resistance to mitochondrial Ca2+-overload, functional recovery and protection against infarction. Further, inhibiting PKC translocation (1 μM chelerythrin-chloride) abolished estrogen-induced cardioprotection. These data indicate that estrogen-Gper1 acute coupling plays a key role in cardioprotection against ischemia/reperfusion injury in male mouse via a cascade involving PKC translocation, ERK1/2/GSK-3β phosphorylation leading to the inhibition of the mPTP opening. PMID:26356837

  19. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

    PubMed Central

    2010-01-01

    Background Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. Methods We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone) at 10 pM (representing pre-development levels), and 1 nM (representing higher cycle-dependent and pregnancy levels) in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2) phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER) were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively). Results All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation) of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Conclusions Responses mediated by endogenous estrogens representing different life stages are vulnerable to very

  20. Artonin E and Structural Analogs from Artocarpus Species Abrogates Estrogen Receptor Signaling in Breast Cancer.

    PubMed

    Etti, Imaobong; Abdullah, Rasedee; Hashim, Najihah Mohd; Kadir, Arifah; Abdul, Ahmad Bustamam; Etti, Christopher; Malami, Ibrahim; Waziri, Peter; How, Chee Wun

    2016-01-01

    The increasing rate of mortality ensued from breast cancer has encouraged research into safer and efficient therapy. The human Estrogen receptor α has been implicated in the majority of reported breast cancer cases. Molecular docking employing Glide, Schrodinger suite 2015, was used to study the binding affinities of small molecules from the Artocarpus species after their drug-like properties were ascertained. The structure of the ligand-binding domain of human Estrogen receptor α was retrieved from Protein Data Bank while the structures of compounds were collected from PubChem database. The binding interactions of the studied compounds were reported as well as their glide scores. The best glide scored ligand, was Artonin E with a score of -12.72 Kcal when compared to other studied phytomolecules and it evoked growth inhibition of an estrogen receptor positive breast cancer cells in submicromolar concentration (3.8-6.9 µM) in comparison to a reference standard Tamoxifen (18.9-24.1 µM) within the tested time point (24-72 h). The studied ligands, which had good interactions with the target receptor, were also drug-like when compared with 95% of orally available drugs with the exception of Artoelastin, whose predicted physicochemical properties rendered it less drug-like. The in silico physicochemical properties, docking interactions and growth inhibition of the best glide scorer are indications of the anti-breast cancer relevance of the studied molecules. PMID:27367662

  1. Artonin E and Structural Analogs from Artocarpus Species Abrogates Estrogen Receptor Signaling in Breast Cancer.

    PubMed

    Etti, Imaobong; Abdullah, Rasedee; Hashim, Najihah Mohd; Kadir, Arifah; Abdul, Ahmad Bustamam; Etti, Christopher; Malami, Ibrahim; Waziri, Peter; How, Chee Wun

    2016-06-29

    The increasing rate of mortality ensued from breast cancer has encouraged research into safer and efficient therapy. The human Estrogen receptor α has been implicated in the majority of reported breast cancer cases. Molecular docking employing Glide, Schrodinger suite 2015, was used to study the binding affinities of small molecules from the Artocarpus species after their drug-like properties were ascertained. The structure of the ligand-binding domain of human Estrogen receptor α was retrieved from Protein Data Bank while the structures of compounds were collected from PubChem database. The binding interactions of the studied compounds were reported as well as their glide scores. The best glide scored ligand, was Artonin E with a score of -12.72 Kcal when compared to other studied phytomolecules and it evoked growth inhibition of an estrogen receptor positive breast cancer cells in submicromolar concentration (3.8-6.9 µM) in comparison to a reference standard Tamoxifen (18.9-24.1 µM) within the tested time point (24-72 h). The studied ligands, which had good interactions with the target receptor, were also drug-like when compared with 95% of orally available drugs with the exception of Artoelastin, whose predicted physicochemical properties rendered it less drug-like. The in silico physicochemical properties, docking interactions and growth inhibition of the best glide scorer are indications of the anti-breast cancer relevance of the studied molecules.

  2. Improvement of a sensitive enzyme-linked immunosorbent assay for screening estrogen receptor binding activity.

    PubMed

    Koda, Tomoko; Soya, Yoshihiro; Negishi, Harumi; Shiraishi, Fujio; Morita, Masatoshi

    2002-12-01

    A competitive enzyme-linked immunosorbent assay (ELISA) with estrogen receptor (alpha) and a fluorescence depolarization method with Full-Range Beacon were examined as estrogen receptor binding assays to prescreen endocrine-disrupting chemicals (EDCs). In this study, because it is difficult to measure the receptor binding ability of sparingly water-soluble chemicals using these methods, the competitive enzyme immunoassay was further modified for improved sensitivity by changing the operational parameters, such as receptor concentration, ligand concentration, and the reaction temperature. The method was applied to 10 test chemicals, including alkylphenols and bisphenol A (BPA). The diethylstilbestrol (DES) relative binding affinity (RBA) of ELISA kit was set equal to 1 (RBA = IC50/IC50 of DES). The RBAs of BPA, 4-nonylphenol (p-NP), and 4-t-octylphenol (p-t-OP) are 5386, 8619. and 8121 before using the improved competitive enzyme immunoassay and 883, 699, and 2832 using improved it respectively. Mixtures of BPA, p-NP, and p-t-OP gave results that the estrogen binding affinities of these chemicals are additive or slightly more than additive.

  3. Interaction between bone morphogenetic protein receptor type 2 and estrogenic compounds in pulmonary arterial hypertension.

    PubMed

    Fessel, Joshua P; Chen, Xinping; Frump, Andrea; Gladson, Santhi; Blackwell, Tom; Kang, Christie; Johnson, Jennifer; Loyd, James E; Hemnes, Anna; Austin, Eric; West, James

    2013-09-01

    Abstract The majority of heritable pulmonary arterial hypertension (HPAH) cases are associated with mutations in bone morphogenetic protein receptor type 2 (BMPR2). BMPR2 mutation carries about a 20% lifetime risk of PAH development, but penetrance is approximately three times higher in females. Previous studies have shown a correlation between estrogen metabolism and penetrance, with increased levels of the estrogen metabolite 16α-hydroxyestrone (16αOHE) and reduced levels of the metabolite 2-methoxyestrogen (2ME) associated with increased risk of disease. The goal of this study was to determine whether 16αOHE increased and 2ME decreased penetrance of disease in Bmpr2 mutant mice and, if so, by what mechanism. We found that 16αOHE∶2ME ratio was high in male human HPAH patients. Bmpr2 mutant male mice receiving chronic 16αOHE had doubled disease penetrance, associated with reduced cardiac output. 2ME did not have a significant protective effect, either alone or in combination with 16αOHE. In control mice but not in Bmpr2 mutant mice, 16αOHE suppressed bone morphogenetic protein signaling, probably directly through suppression of Bmpr2 protein. Bmpr2 mutant pulmonary microvascular endothelial cells were insensitive to estrogen signaling through canonical pathways, associated with aberrant intracellular localization of estrogen receptor α. In both control and Bmpr2 mutant mice, 16αOHE was associated with suppression of cytokine expression but with increased alternate markers of injury, including alterations in genes related to thrombotic function, angiogenesis, planar polarity, and metabolism. These data support a causal relationship between increased 16αOHE and increased PAH penetrance, with the likely molecular mechanisms including suppression of BMPR2, alterations in estrogen receptor translocation, and induction of vascular injury and insulin resistance-related pathways.

  4. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    SciTech Connect

    Ikeda, Kazuhiro; Tsukui, Tohru; Imazawa, Yukiko; Horie-Inoue, Kuniko; Inoue, Satoshi

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively active mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  5. Selective estrogen receptor modulators (SERMs): a review of clinical data.

    PubMed

    Mirkin, Sebastian; Pickar, James H

    2015-01-01

    SERMs represent a diverse group of molecules with varying levels of estrogenic agonist and antagonist activity in target tissues. SERMs have a long regulatory approval history and have been studied for a variety of therapeutic indications. The clinical effects of SERMs have been evaluated in a large number of phase 3 clinical trials. Many of the available SERMs have proved to be effective as chemo-preventive agents and treatments for breast cancer and a number are useful for the prevention and treatment of osteoporosis. The endometrial effect of SERMs has been a key differentiator in clinical practice and a major hurdle for regulatory approval. The effect of SERMs in the vagina also represents a major distinction among different SERMs. This review summarized key clinical finding of SERMs in different target tissues. PMID:25466304

  6. Optical redox ratio differentiates breast cancer cell lines based on estrogen receptor status.

    PubMed

    Ostrander, Julie Hanson; McMahon, Christine M; Lem, Siya; Millon, Stacy R; Brown, J Quincy; Seewaldt, Victoria L; Ramanujam, Nimmi

    2010-06-01

    Autofluorescence spectroscopy is a powerful imaging technique that exploits endogenous fluorophores. The endogenous fluorophores NADH and flavin adenine dinucleotide (FAD) are two of the principal electron donors and acceptors in cellular metabolism, respectively. The optical oxidation-reduction (redox) ratio is a measure of cellular metabolism and can be determined by the ratio of NADH/FAD. We hypothesized that there would be a significant difference in the optical redox ratio of normal mammary epithelial cells compared with breast tumor cell lines and that estrogen receptor (ER)-positive cells would have a higher redox ratio than ER-negative cells. To test our hypothesis, the optical redox ratio was determined by collecting the fluorescence emission for NADH and FAD via confocal microscopy. We observed a statistically significant increase in the optical redox ratio of cancer compared with normal cell lines (P < 0.05). Additionally, we observed a statistically significant increase in the optical redox ratio of ER(+) breast cancer cell lines. The level of ESR1 expression, determined by real-time PCR, directly correlated with the optical redox ratio (Pearson's correlation coefficient = 0.8122, P = 0.0024). Furthermore, treatment with tamoxifen and ICI 182,870 statistically decreased the optical redox ratio of only ER(+) breast cancer cell lines. The results of this study raise the important possibility that fluorescence spectroscopy can be used to identify subtypes of breast cancer based on receptor status, monitor response to therapy, or potentially predict response to therapy. This source of optical contrast could be a potentially useful tool for drug screening in preclinical models.

  7. MODELING THE BINDING OF THE METABOLITES OF SOME POLYCYCLIC AROMTIC HYDROCARBONS TO THE LIGAND BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
    James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...

  8. ESR1 gene promoter region methylation in free circulating DNA and its correlation with estrogen receptor protein expression in tumor tissue in breast cancer patients

    PubMed Central

    2014-01-01

    Background Tumor expression of estrogen receptor (ER) is an important marker of prognosis, and is predictive of response to endocrine therapy in breast cancer. Several studies have observed that epigenetic events, such methylation of cytosines and deacetylation of histones, are involved in the complex mechanisms that regulate promoter transcription. However, the exact interplay of these factors in transcription activity is not well understood. In this study, we explored the relationship between ER expression status in tumor tissue samples and the methylation of the 5′ CpG promoter region of the estrogen receptor gene (ESR1) isolated from free circulating DNA (fcDNA) in plasma samples from breast cancer patients. Methods Patients (n = 110) with non-metastatic breast cancer had analyses performed of ER expression (luminal phenotype in tumor tissue, by immunohistochemistry method), and the ESR1-DNA methylation status (fcDNA in plasma, by quantitative methylation specific PCR technique). Results Our results showed a significant association between presence of methylated ESR1 in patients with breast cancer and ER negative status in the tumor tissue (p = 0.0179). There was a trend towards a higher probability of ESR1-methylation in those phenotypes with poor prognosis i.e. 80% of triple negative patients, 60% of HER2 patients, compared to 28% and 5.9% of patients with better prognosis such as luminal A and luminal B, respectively. Conclusion Silencing, by methylation, of the promoter region of the ESR1 affects the expression of the estrogen receptor protein in tumors of breast cancer patients; high methylation of ESR1-DNA is associated with estrogen receptor negative status which, in turn, may be implicated in the patient’s resistance to hormonal treatment in breast cancer. As such, epigenetic markers in plasma may be of interest as new targets for anticancer therapy, especially with respect to endocrine treatment. PMID:24495356

  9. Loss of B-cell translocation gene 2 expression in estrogen receptor-positive breast cancer predicts tamoxifen resistance

    PubMed Central

    Takahashi, Maiko; Hayashida, Tetsu; Okazaki, Hiroshi; Miyao, Kazuhiro; Jinno, Hiromitsu; Kitagawa, Yuko

    2014-01-01

    B-cell translocation gene 2 (BTG2), a gene suppressed in a subset of aggressive breast cancer, is repressed by estrogen. BTG2 inhibits the expression of HER ligands and promotes AKT activation, which plays an essential role in the tamoxifen resistance of estrogen receptor (ER)-positive breast cancer. To determine if BTG2 expression modifies tamoxifen efficacy, a cohort of 60 patients treated with adjuvant tamoxifen monotherapy was analyzed. We found that increased BTG2 expression showed better clinical survival and was the only independent prognostic factor for disease-free survival (hazard ratio, 0.691; 95% confidence interval, 0.495–0.963; P = 0.029). Tamoxifen suppressed the human epidermal growth factor receptor 2 (HER2)-Akt signaling in BTG2 expressing ER-positive breast cancer cells with a correlated increase in sensitivity, whereas BTG2 knockdown abrogated this sensitivity. Consistent with this observation, tamoxifen significantly suppressed the growth ratio, tumor weight and Ki-67 expression in BTG2 expressing breast cancer xenografts in mice. These studies demonstrate that BTG2 is a significant factor in tamoxifen response, acting through modification of AKT activation in ER-positive/HER2-negative breast cancer. PMID:24698107

  10. Estrogenic Regulation of Histamine Receptor Subtype H1 Expression in the Ventromedial Nucleus of the Hypothalamus in Female Rats

    PubMed Central

    Mori, Hiroko; Matsuda, Ken-Ichi; Yamawaki, Masanaga; Kawata, Mitsuhiro

    2014-01-01

    Female sexual behavior is controlled by central estrogenic action in the ventromedial nucleus of the hypothalamus (VMN). This region plays a pivotal role in facilitating sex-related behavior in response to estrogen stimulation via neural activation by several neurotransmitters, including histamine, which participates in this mechanism through its strong neural potentiating action. However, the mechanism through which estrogen signaling is linked to the histamine system in the VMN is unclear. This study was undertaken to investigate the relationship between estrogen and histamine receptor subtype H1 (H1R), which is a potent subtype among histamine receptors in the brain. We show localization of H1R exclusively in the ventrolateral subregion of the female VMN (vl VMN), and not in the dorsomedial subregion. In the vl VMN, abundantly expressed H1R were mostly colocalized with estrogen receptor α. Intriguingly, H1R mRNA levels in the vl VMN were significantly elevated in ovariectomized female rats treated with estrogen benzoate. These data suggest that estrogen can amplify histamine signaling by enhancing H1R expression in the vl VMN. This enhancement of histamine signaling might be functionally important for allowing neural excitation in response to estrogen stimulation of the neural circuit and may serve as an accelerator of female sexual arousal. PMID:24805361

  11. Serum Sclerostin Levels Negatively Correlate with Parathyroid Hormone Levels and Free Estrogen Index in Postmenopausal Women

    PubMed Central

    Mirza, Faryal S.; Padhi, I. Desmond; Raisz, Lawrence G.; Lorenzo, Joseph A.

    2010-01-01

    Context: Sclerostin is a negative regulator of bone formation. Objective: The aim of the study was to compare serum sclerostin levels in premenopausal and postmenopausal women and evaluate its relationship to estrogen, TH, bone turnover, and bone mass. Design, Setting, and Participants: We conducted a cross-sectional observational study of healthy community-dwelling pre- and postmenopausal women. Intervention(s): There were no interventions. Main Outcome Measure(s): We compared serum sclerostin levels in pre- and postmenopausal women and correlated sclerostin levels with female sex hormones, calciotropic hormones, bone turnover markers, and bone mineral density. Results: Premenopausal women were 26.8 yr old, and postmenopausal women were 56.8 yr old. Postmenopausal women had lower values for estradiol (30 ± 23 vs. 10 ± 4 pg/ml; P < 0.001), estrone (61 ± 24 vs. 29 ± 10 pg/ml; P <0.001), and free estrogen index (FEI) (6 ± 4 vs. 3 ± 2 pmol/nmol; P = 0.008) and significantly lower bone mineral density at all sites compared to premenopausal women, with no significant differences in levels of PTH, 25-hydroxy or 1,25-dihydroxy vitamin D levels. Postmenopausal women had significantly higher serum sclerostin levels (1.16 ± 0.38 ng/ml vs. 0.48 ± 0.15 ng/ml; P < 0.001). Because most of the premenopausal women were on oral contraceptives, subsequent analyses were limited to postmenopausal women. There were significant negative correlations between sclerostin and FEI and sclerostin and PTH in this group. Using multiple regression analysis, both FEI (β = −0.629; P = 0.002) and PTH (β = −0.554; P = 0.004) were found to be independent predictors of sclerostin levels in postmenopausal women. Conclusions: Our findings suggest that serum sclerostin levels are regulated by both estrogens and PTH in postmenopausal women. These findings need to be explored further in larger prospective studies. PMID:20156921

  12. Lipid metabolism genes in contralateral unaffected breast and estrogen receptor status of breast cancer.

    PubMed

    Wang, Jun; Scholtens, Denise; Holko, Michelle; Ivancic, David; Lee, Oukseub; Hu, Hong; Chatterton, Robert T; Sullivan, Megan E; Hansen, Nora; Bethke, Kevin; Zalles, Carola M; Khan, Seema A

    2013-04-01

    Risk biomarkers that are specific to estrogen receptor (ER) subtypes of breast cancer would aid the development and implementation of distinct prevention strategies. The contralateral unaffected breast of women with unilateral breast cancer (cases) is a good model for defining subtype-specific risk because women with ER-negative (ER-) index primaries are at high risk for subsequent ER-negative primary cancers. We conducted random fine needle aspiration of the unaffected breasts of cases. Samples from 30 subjects [15 ER-positive (ER+) and 15 ER- cases matched for age, race and menopausal status] were used for Illumina expression array analysis. Findings were confirmed using quantitative real-time PCR (qRT-PCR) in the same samples. A validation set consisting of 36 subjects (12 ER+, 12 ER- and 12 standard-risk healthy controls) was used to compare gene expression across groups. ER- case samples displayed significantly higher expression of 18 genes/transcripts, 8 of which were associated with lipid metabolism on gene ontology analysis (GO: 0006629). This pattern was confirmed by qRT-PCR in the same samples, and in the 24 cases of the validation set. When compared to the healthy controls in the validation set, significant overexpression of 4 genes (DHRS2, HMGCS2, HPGD and ACSL3) was observed in ER- cases, with significantly lower expression of UGT2B11 and APOD in ER+ cases, and decreased expression of UGT2B7 in both subtypes. These data suggest that differential expression of lipid metabolism genes may be involved in the risk for subtypes of breast cancer, and are potential biomarkers of ER-specific breast cancer risk. PMID:23512947

  13. Soy isoflavones--benefits and risks from nature's selective estrogen receptor modulators (SERMs).

    PubMed

    Setchell, K D

    2001-10-01

    Phytoestrogens have become one of the more topical areas of interest in clinical nutrition. These non-nutrient bioactive compounds are ubiquitous to the plant kingdom and possess a wide range of biological properties that contribute to the many different health-related benefits reported for soy foods and flaxseeds--two of the most abundant dietary sources of phytoestrogens. Reviewed is the recent knowledge related to their pharmacokinetics and clinical effects, focusing mainly on isoflavones that are found in high concentrations in soy foods. Arguments are made for considering soy isoflavones as natural selective estrogen receptor modulators (SERMs) based upon recent data of their conformational binding to estrogen receptors. Rebuttal is made to several key and important issues related to the recent concerns about the safety of soy and its constituent isoflavones. This article is not intended to be a comprehensive review of the literature but merely highlight recent research with key historical perspectives.

  14. Structure-based design of eugenol analogs as potential estrogen receptor antagonists.

    PubMed

    Anita, Yulia; Radifar, Muhammad; Kardono, Leonardus Bs; Hanafi, Muhammad; Istyastono, Enade P

    2012-01-01

    Eugenol is an essential oil mainly found in the buds and leaves of clove (Syzygium aromaticum (L.) Merrill and Perry), which has been reported to have activity on inhibition of cell proliferation and apoptosis induction in human MCF-7 breast cancer cells. This biological activity is correlated to its activity as an estrogen receptor antagonist. In this article, we present the construction and validation of structure-based virtual screening (SBVS) protocols to identify the potent estrogen receptor α (ER) antagonists. The selected protocol, which gave acceptable enrichment factors as a virtual screening protocol, subsequently used to virtually screen eugenol, its analogs and their dimers. Based on the virtual screening results, dimer eugenol of 4-[4-hydroxy-3-(prop-2-en-1- yl)phenyl]-2-(prop-2-en-1-yl)phenol is recommended to be developed further in order to discover novel and potent ER antagonists. PMID:23144548

  15. Bile acid receptor agonist GW4064 regulates PPARγ coactivator-1α expression through estrogen receptor-related receptor α.

    PubMed

    Dwivedi, Shailendra Kumar Dhar; Singh, Nidhi; Kumari, Rashmi; Mishra, Jay Sharan; Tripathi, Sarita; Banerjee, Priyam; Shah, Priyanka; Kukshal, Vandana; Tyagi, Abdul Malik; Gaikwad, Anil Nilkanth; Chaturvedi, Rajnish Kumar; Mishra, Durga Prasad; Trivedi, Arun Kumar; Sanyal, Somali; Chattopadhyay, Naibedya; Ramachandran, Ravishankar; Siddiqi, Mohammad Imran; Bandyopadhyay, Arun; Arora, Ashish; Lundåsen, Thomas; Anakk, Sayee Priyadarshini; Moore, David D; Sanyal, Sabyasachi

    2011-06-01

    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is induced in energy-starved conditions and is a key regulator of energy homeostasis. This makes PGC-1α an attractive therapeutic target for metabolic syndrome and diabetes. In our effort to identify new regulators of PGC-1α expression, we found that GW4064, a widely used synthetic agonist for the nuclear bile acid receptor [farnesoid X receptor (FXR)] strongly enhances PGC-1α promoter reporter activity, mRNA, and protein expression. This induction in PGC-1α concomitantly enhances mitochondrial mass and expression of several PGC-1α target genes involved in mitochondrial function. Using FXR-rich or FXR-nonexpressing cell lines and tissues, we found that this effect of GW4064 is not mediated directly by FXR but occurs via activation of estrogen receptor-related receptor α (ERRα). Cell-based, biochemical and biophysical assays indicate GW4064 as an agonist of ERR proteins. Interestingly, FXR disruption alters GW4064 induction of PGC-1α mRNA in a tissue-dependent manner. Using FXR-null [FXR knockout (FXRKO)] mice, we determined that GW4064 induction of PGC-1α expression is not affected in oxidative soleus muscles of FXRKO mice but is compromised in the FXRKO liver. Mechanistic studies to explain these differences revealed that FXR physically interacts with ERR and protects them from repression by the atypical corepressor, small heterodimer partner in liver. Together, this interplay between ERRα-FXR-PGC-1α and small heterodimer partner offers new insights into the biological functions of ERRα and FXR, thus providing a knowledge base for therapeutics in energy balance-related pathophysiology.

  16. The estrogen receptor alpha nuclear localization sequence is critical for fulvestrant-induced degradation of the receptor.

    PubMed

    Casa, Angelo J; Hochbaum, Daniel; Sreekumar, Sreeja; Oesterreich, Steffi; Lee, Adrian V

    2015-11-01

    Fulvestrant, a selective estrogen receptor down-regulator (SERD) is a pure competitive antagonist of estrogen receptor alpha (ERα). Fulvestrant binds ERα and reduces the receptor's half-life by increasing protein turnover, howev