Development of negative feedback during successive growth cycles of black cherry.
Packer, Alissa; Clay, Keith
2004-01-01
Negative feedback between plant and soil microbial communities can be a key determinant of vegetation structure and dynamics. Previous research has shown that negative feedback between black cherry (Prunus serotina) and soil pathogens is strongly distance dependent. Here, we investigate the temporal dynamics of negative feedback. To examine short-term changes, we planted successive cycles of seedlings in the same soil. We found that seedling mortality increased steadily with growth cycle when sterile background soil was inoculated with living field soil but not in controls inoculated with sterilized field soil. To examine long-term changes, we quantified negative feedback across successive growth cycles in soil inoculated with living field soil from a mature forest system (more than 70 years old) versus a younger successional site (ca. 25 years old). In both cases negative feedback developed similarly. Our results suggest that negative feedback can develop very quickly in forest systems, at the spatial scale of a single seedling. PMID:15058444
A theory of circular organization and negative feedback: defining life in a cybernetic context.
Tsokolov, Sergey
2010-12-01
All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.
A Theory of Circular Organization and Negative Feedback: Defining Life in a Cybernetic Context
NASA Astrophysics Data System (ADS)
Tsokolov, Sergey
2010-12-01
All life today incorporates a variety of systems controlled by negative feedback loops and sometimes amplified by positive feedback loops. The first forms of life necessarily also required primitive versions of feedback, yet surprisingly little emphasis has been given to the question of how feedback emerged out of primarily chemical systems. One chemical system has been established that spontaneously develops autocatalytic feedback, the Belousov-Zhabotinsky (BZ) reaction. In this essay, I discuss the BZ reaction as a possible model for similar reactions that could have occurred under prebiotic Earth conditions. The main point is that the metabolism of contemporary life evolved from primitive homeostatic networks regulated by negative feedback. Because life could not exist in their absence, feedback loops should be included in definitions of life.
Negative feedback system reduces pump oscillations
NASA Technical Reports Server (NTRS)
Rosenmann, W.
1967-01-01
External negative feedback system counteracts low frequency oscillations in rocket engine propellant pumps. The system uses a control piston to sense pump discharge fluid on one side and a gas pocket on the other.
Feedback in Action--The Mechanism of the Iris.
ERIC Educational Resources Information Center
Pingnet, B.; And Others
1988-01-01
Describes two demonstration experiments. Outlines a demonstration of the general principle of positive and negative feedback and the influence of time delays in feedback circuits. Elucidates the principle of negative feedback with a model of the iris of the eye. Emphasizes the importance of feedback in biological systems. (CW)
Clustering in Cell Cycle Dynamics with General Response/Signaling Feedback
Young, Todd R.; Fernandez, Bastien; Buckalew, Richard; Moses, Gregory; Boczko, Erik M.
2011-01-01
Motivated by experimental and theoretical work on autonomous oscillations in yeast, we analyze ordinary differential equations models of large populations of cells with cell-cycle dependent feedback. We assume a particular type of feedback that we call Responsive/Signaling (RS), but do not specify a functional form of the feedback. We study the dynamics and emergent behaviour of solutions, particularly temporal clustering and stability of clustered solutions. We establish the existence of certain periodic clustered solutions as well as “uniform” solutions and add to the evidence that cell-cycle dependent feedback robustly leads to cell-cycle clustering. We highlight the fundamental differences in dynamics between systems with negative and positive feedback. For positive feedback systems the most important mechanism seems to be the stability of individual isolated clusters. On the other hand we find that in negative feedback systems, clusters must interact with each other to reinforce coherence. We conclude from various details of the mathematical analysis that negative feedback is most consistent with observations in yeast experiments. PMID:22001733
Brain Activity Elicited by Positive and Negative Feedback in Preschool-Aged Children
Mai, Xiaoqin; Tardif, Twila; Doan, Stacey N.; Liu, Chao; Gehring, William J.; Luo, Yue-Jia
2011-01-01
To investigate the processing of positive vs. negative feedback in children aged 4–5 years, we devised a prize-guessing game that is analogous to gambling tasks used to measure feedback-related brain responses in adult studies. Unlike adult studies, the feedback-related negativity (FRN) elicited by positive feedback was as large as that elicited by negative feedback, suggesting that the neural system underlying the FRN may not process feedback valence in early childhood. In addition, positive feedback, compared with negative feedback, evoked a larger P1 over the occipital scalp area and a larger positive slow wave (PSW) over the right central-parietal scalp area. We believe that the PSW is related to emotional arousal and the intensive focus on positive feedback that is present in the preschool and early school years has adaptive significance for both cognitive and emotional development during this period. PMID:21526189
Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator.
González Ochoa, Héctor O; Perales, Gualberto Solís; Epstein, Irving R; Femat, Ricardo
2018-05-01
We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.
Effects of stochastic time-delayed feedback on a dynamical system modeling a chemical oscillator
NASA Astrophysics Data System (ADS)
González Ochoa, Héctor O.; Perales, Gualberto Solís; Epstein, Irving R.; Femat, Ricardo
2018-05-01
We examine how stochastic time-delayed negative feedback affects the dynamical behavior of a model oscillatory reaction. We apply constant and stochastic time-delayed negative feedbacks to a point Field-Körös-Noyes photosensitive oscillator and compare their effects. Negative feedback is applied in the form of simulated inhibitory electromagnetic radiation with an intensity proportional to the concentration of oxidized light-sensitive catalyst in the oscillator. We first characterize the system under nondelayed inhibitory feedback; then we explore and compare the effects of constant (deterministic) versus stochastic time-delayed feedback. We find that the oscillatory amplitude, frequency, and waveform are essentially preserved when low-dispersion stochastic delayed feedback is used, whereas small but measurable changes appear when a large dispersion is applied.
A cybernetic theory of morality and moral autonomy.
Chambers, J
2001-04-01
Human morality may be thought of as a negative feedback control system in which moral rules are reference values, and moral disapproval, blame, and punishment are forms of negative feedback given for violations of the moral rules. In such a system, if moral agents held each other accountable, moral norms would be enforced effectively. However, even a properly functioning social negative feedback system could not explain acts in which individual agents uphold moral rules in the face of contrary social pressure. Dr. Frances Kelsey, who withheld FDA approval for thalidomide against intense social pressure, is an example of the degree of individual moral autonomy possible in a hostile environment. Such extreme moral autonomy is possible only if there is internal, psychological negative feedback, in addition to external, social feedback. Such a cybernetic model of morality and moral autonomy is consistent with certain aspects of classical ethical theories.
NASA Astrophysics Data System (ADS)
Wang, Liu-Suo; Li, Ning-Xi; Chen, Jing-Jia; Zhang, Xiao-Peng; Liu, Feng; Wang, Wei
2018-04-01
A positive and a negative feedback loop can induce bistability and oscillation, respectively, in biological networks. Nevertheless, they are frequently interlinked to perform more elaborate functions in many gene regulatory networks. Coupled positive and negative feedback loops may exhibit either oscillation or bistability depending on the intensity of the stimulus in some particular networks. It is less understood how the transition between the two dynamic modes is modulated by the positive and negative feedback loops. We developed an abstract model of such systems, largely based on the core p53 pathway, to explore the mechanism for the transformation of dynamic behaviors. Our results show that enhancing the positive feedback may promote or suppress oscillations depending on the strength of both feedback loops. We found that the system oscillates with low amplitudes in response to a moderate stimulus and switches to the on state upon a strong stimulus. When the positive feedback is activated much later than the negative one in response to a strong stimulus, the system exhibits long-term oscillations before switching to the on state. We explain this intriguing phenomenon using quasistatic approximation. Moreover, early switching to the on state may occur when the system starts from a steady state in the absence of stimuli. The interplay between the positive and negative feedback plays a key role in the transitions between oscillation and bistability. Of note, our conclusions should be applicable only to some specific gene regulatory networks, especially the p53 network, in which both oscillation and bistability exist in response to a certain type of stimulus. Our work also underscores the significance of transient dynamics in determining cellular outcome.
How time delay and network design shape response patterns in biochemical negative feedback systems.
Börsch, Anastasiya; Schaber, Jörg
2016-08-24
Negative feedback in combination with time delay can bring about both sustained oscillations and adaptive behaviour in cellular networks. Here, we study which design features of systems with delayed negative feedback shape characteristic response patterns with special emphasis on the role of time delay. To this end, we analyse generic two-dimensional delay differential equations describing the dynamics of biochemical signal-response networks. We investigate the influence of several design features on the stability of the model equilibrium, i.e., presence of auto-inhibition and/or mass conservation and the kind and/or strength of the delayed negative feedback. We show that auto-inhibition and mass conservation have a stabilizing effect, whereas increasing abruptness and decreasing feedback threshold have a de-stabilizing effect on the model equilibrium. Moreover, applying our theoretical analysis to the mammalian p53 system we show that an auto-inhibitory feedback can decouple period and amplitude of an oscillatory response, whereas the delayed feedback can not. Our theoretical framework provides insight into how time delay and design features of biochemical networks act together to elicit specific characteristic response patterns. Such insight is useful for constructing synthetic networks and controlling their behaviour in response to external stimulation.
NASA Astrophysics Data System (ADS)
Tang, X. H.; Zou, Xingfu
We consider a non-autonomous Lotka-Volterra competition system with distributed delays but without instantaneous negative feedbacks (i.e., pure delay systems). We establish some 3/2-type and M-matrix-type criteria for global attractivity of the positive equilibrium of the system, which generalise and improve the existing ones.
Freedberg, Michael; Glass, Brian; Filoteo, J Vincent; Hazeltine, Eliot; Maddox, W Todd
2017-01-01
Categorical learning is dependent on feedback. Here, we compare how positive and negative feedback affect information-integration (II) category learning. Ashby and O'Brien (2007) demonstrated that both positive and negative feedback are required to solve II category problems when feedback was not guaranteed on each trial, and reported no differences between positive-only and negative-only feedback in terms of their effectiveness. We followed up on these findings and conducted 3 experiments in which participants completed 2,400 II categorization trials across three days under 1 of 3 conditions: positive feedback only (PFB), negative feedback only (NFB), or both types of feedback (CP; control partial). An adaptive algorithm controlled the amount of feedback given to each group so that feedback was nearly equated. Using different feedback control procedures, Experiments 1 and 2 demonstrated that participants in the NFB and CP group were able to engage II learning strategies, whereas the PFB group was not. Additionally, the NFB group was able to achieve significantly higher accuracy than the PFB group by Day 3. Experiment 3 revealed that these differences remained even when we equated the information received on feedback trials. Thus, negative feedback appears significantly more effective for learning II category structures. This suggests that the human implicit learning system may be capable of learning in the absence of positive feedback.
NASA Astrophysics Data System (ADS)
Huang, Dongmei; Xu, Wei
2017-11-01
In this paper, the combination of the cubic nonlinearity and time delay is proposed to improve the performance of a piecewise-smooth (PWS) system with negative stiffness. Dynamical properties, feedback control performance and symmetry-breaking bifurcation are mainly considered for a PWS system with negative stiffness under nonlinear position and velocity feedback control. For the free vibration system, the homoclinic-like orbits are firstly derived. Then, the amplitude-frequency response of the controlled system is obtained analytically in aspect of the Lindstedt-Poincaré method and the method of multiple scales, which is also verified through the numerical results. In this regard, a softening-type behavior, which directly leads to the multi-valued responses, is illustrated over the negative position feedback. Especially, the five-valued responses in which three branches of them are stable are found. And complex multi-valued characteristics are also observed in the force-amplitude responses. Furthermore, for explaining the effectiveness of feedback control, the equivalent damping and stiffness are also introduced. Sensitivity of the system response to the feedback gain and time delay is comprehensively considered and interesting dynamical properties are found. Relatively, from the perspective of suppressing the maximum amplitude and controlling the resonance stability, the selection of the feedback parameters is discussed. Finally, the symmetry-breaking bifurcation and chaotic motion are considered.
Mean field analysis of a spatial stochastic model of a gene regulatory network.
Sturrock, M; Murray, P J; Matzavinos, A; Chaplain, M A J
2015-10-01
A gene regulatory network may be defined as a collection of DNA segments which interact with each other indirectly through their RNA and protein products. Such a network is said to contain a negative feedback loop if its products inhibit gene transcription, and a positive feedback loop if a gene product promotes its own production. Negative feedback loops can create oscillations in mRNA and protein levels while positive feedback loops are primarily responsible for signal amplification. It is often the case in real biological systems that both negative and positive feedback loops operate in parameter regimes that result in low copy numbers of gene products. In this paper we investigate the spatio-temporal dynamics of a single feedback loop in a eukaryotic cell. We first develop a simplified spatial stochastic model of a canonical feedback system (either positive or negative). Using a Gillespie's algorithm, we compute sample trajectories and analyse their corresponding statistics. We then derive a system of equations that describe the spatio-temporal evolution of the stochastic means. Subsequently, we examine the spatially homogeneous case and compare the results of numerical simulations with the spatially explicit case. Finally, using a combination of steady-state analysis and data clustering techniques, we explore model behaviour across a subregion of the parameter space that is difficult to access experimentally and compare the parameter landscape of our spatio-temporal and spatially-homogeneous models.
Managing Written and Oral Negative Feedback in a Synchronous Online Teaching Situation
ERIC Educational Resources Information Center
Guichon, Nicolas; Betrancourt, Mireille; Prie, Yannick
2012-01-01
This case study focuses on the feedback that is provided by tutors to learners in the course of synchronous online teaching. More specifically, we study how trainee tutors used the affordances of Visu, an experimental web videoconferencing system, to provide negative feedback. Visu features classical functionalities such as video and chat, and it…
Kortink, Elise D; Weeda, Wouter D; Crowley, Michael J; Gunther Moor, Bregtje; van der Molen, Melle J W
2018-06-01
Monitoring social threat is essential for maintaining healthy social relationships, and recent studies suggest a neural alarm system that governs our response to social rejection. Frontal-midline theta (4-8 Hz) oscillatory power might act as a neural correlate of this system by being sensitive to unexpected social rejection. Here, we examined whether frontal-midline theta is modulated by individual differences in personality constructs sensitive to social disconnection. In addition, we examined the sensitivity of feedback-related brain potentials (i.e., the feedback-related negativity and P3) to social feedback. Sixty-five undergraduate female participants (mean age = 19.69 years) participated in the Social Judgment Paradigm, a fictitious peer-evaluation task in which participants provided expectancies about being liked/disliked by peer strangers. Thereafter, they received feedback signaling social acceptance/rejection. A community structure analysis was employed to delineate personality profiles in our data. Results provided evidence of two subgroups: one group scored high on attachment-related anxiety and fear of negative evaluation, whereas the other group scored high on attachment-related avoidance and low on fear of negative evaluation. In both groups, unexpected rejection feedback yielded a significant increase in theta power. The feedback-related negativity was sensitive to unexpected feedback, regardless of valence, and was largest for unexpected rejection feedback. The feedback-related P3 was significantly enhanced in response to expected social acceptance feedback. Together, these findings confirm the sensitivity of frontal midline theta oscillations to the processing of social threat, and suggest that this alleged neural alarm system behaves similarly in individuals that differ in personality constructs relevant to social evaluation.
Lehrer, Paul; Eddie, David
2013-06-01
Systems theory has long been used in psychology, biology, and sociology. This paper applies newer methods of control systems modeling for assessing system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning.
Positive And Negative Feedback Loops Coupled By Common Transcription Activator And Repressor
NASA Astrophysics Data System (ADS)
Sielewiesiuk, Jan; Łopaciuk, Agata
2015-03-01
Dynamical systems consisting of two interlocked loops with negative and positive feedback have been studied using the linear analysis of stability and numerical solutions. Conditions for saddle-node bifurcation were formulated in a general form. Conditions for Hopf bifurcations were found in a few symmetrical cases. Auto-oscillations, when they exist, are generated by the negative feedback repressive loop. This loop determines the frequency and amplitude of oscillations. The positive feedback loop of activation slightly modifies the oscillations. Oscillations are possible when the difference between Hilll's coefficients of the repression and activation is sufficiently high. The highly cooperative activation loop with a fast turnover slows down or even makes the oscillations impossible. The system under consideration can constitute a component of epigenetic or enzymatic regulation network.
A minimal mathematical model combining several regulatory cycles from the budding yeast cell cycle.
Sriram, K; Bernot, G; Képès, F
2007-11-01
A novel topology of regulatory networks abstracted from the budding yeast cell cycle is studied by constructing a simple nonlinear model. A ternary positive feedback loop with only positive regulations is constructed with elements that activates the subsequent element in a clockwise fashion. A ternary negative feedback loop with only negative regulations is constructed with the elements that inhibit the subsequent element in an anticlockwise fashion. Positive feedback loop exhibits bistability, whereas the negative feedback loop exhibits limit cycle oscillations. The novelty of the topology is that the corresponding elements in these two homogeneous feedback loops are linked by the binary positive feedback loops with only positive regulations. This results in the emergence of mixed feedback loops in the network that displays complex behaviour like the coexistence of multiple steady states, relaxation oscillations and chaos. Importantly, the arrangement of the feedback loops brings in the notion of checkpoint in the model. The model also exhibits domino-like behaviour, where the limit cycle oscillations take place in a stepwise fashion. As the aforementioned topology is abstracted from the budding yeast cell cycle, the events that govern the cell cycle are considered for the present study. In budding yeast, the sequential activation of the transcription factors, cyclins and their inhibitors form mixed feedback loops. The transcription factors that involve in the positive regulation in a clockwise orientation generates ternary positive feedback loop, while the cyclins and their inhibitors that involve in the negative regulation in an anticlockwise orientation generates ternary negative feedback loop. The mutual regulation between the corresponding elements in the transcription factors and the cyclins and their inhibitors generates binary positive feedback loops. The bifurcation diagram constructed for the whole system can be related to the different events of the cell cycle in terms of dynamical system theory. The checkpoint mechanism that plays an important role in different phases of the cell cycle are accounted for by silencing appropriate feedback loops in the model.
NASA Technical Reports Server (NTRS)
Freeman, Frederick
1995-01-01
A biocybernetic system for use in adaptive automation was evaluated using EEG indices based on the beta, alpha, and theta bandwidths. Subjects performed a compensatory tracking task while their EEG was recorded and one of three engagement indices was derived: beta/(alpha + theta), beta/alpha, or 1/alpha. The task was switched between manual and automatic modes as a function of the subjects' level of engagement and whether they were under a positive or negative feedback condition. It was hypothesized that negative feedback would produce more switches between manual and automatic modes, and that the beta/(alpha + theta) index would produce the strongest effect. The results confirmed these hypotheses. There were no systematic changes in these effects over three 16-minute trials. Tracking performance was found to be better under negative feedback. An analysis of the different EEG bands under positive and negative feedback in manual and automatic modes found more beta power in the positive feedback/manual condition and less in the positive feedback/automatic condition. The opposite effect was observed for alpha and theta power. The implications of biocybernetic systems for adaptive automation are discussed.
Brookes, Gavin; Baker, Paul
2017-01-01
Objective To examine the key themes of positive and negative feedback in patients’ online feedback on NHS (National Health Service) services in England and to understand the specific issues within these themes and how they drive positive and negative evaluation. Design Computer-assisted quantitative and qualitative studies of 228 113 comments (28 971 142 words) of online feedback posted to the NHS Choices website. Comments containing the most frequent positive and negative evaluative words are qualitatively examined to determine the key drivers of positive and negative feedback. Participants Contributors posting comments about the NHS between March 2013 and September 2015. Results Overall, NHS services were evaluated positively approximately three times more often than negatively. The four key areas of focus were: treatment, communication, interpersonal skills and system/organisation. Treatment exhibited the highest proportion of positive evaluative comments (87%), followed by communication (77%), interpersonal skills (44%) and, finally, system/organisation (41%). Qualitative analysis revealed that reference to staff interpersonal skills featured prominently, even in comments relating to treatment and system/organisational issues. Positive feedback was elicited in cases of staff being caring, compassionate and knowing patients’’ names, while rudeness, apathy and not listening were frequent drivers of negative feedback. Conclusions Although technical competence constitutes an undoubtedly fundamental aspect of healthcare provision, staff members were much more likely to be evaluated both positively and negatively according to their interpersonal skills. Therefore, the findings reported in this study highlight the salience of such ‘soft’ skills to patients and emphasise the need for these to be focused upon and developed in staff training programmes, as well as ensuring that decisions around NHS funding do not result in demotivated and rushed staff. The findings also reveal a significant overlap between the four key themes in the ways that care is evaluated by patients. PMID:28450463
Feedback, the various tasks of the doctor, and the feedforward alternative.
Kluger, Avraham N; Van Dijk, Dina
2010-12-01
This study aims to alert users of feedback to its dangers, explain some of its complexities and offer the feedforward alternative. We review the damage that feedback may cause to both motivation and performance. We provide an initial solution to the puzzle of the feedback sign (positive versus negative) using the concepts of promotion focus and prevention focus. We discuss additional open questions pertaining to feedback sign and consider implications for health care systems. Feedback that threatens the self is likely to debilitate recipients and, on average, positive and negative feedback are similar in their effects on performance. Positive feedback contributes to motivation and performance under promotion focus, but the same is true for negative feedback under prevention focus. We offer an alternative to feedback--the feedforward interview--and describe a brief protocol and suggestions on how it might be used in medical education. Feedback is a double-edged sword; its effective application includes careful consideration of regulatory focus and of threats to the self. Feedforward may be a good substitute for feedback in many settings. © Blackwell Publishing Ltd 2010.
Antagonistic autoregulation speeds up a homogeneous response in Escherichia coli.
Rodrigo, Guillermo; Bajic, Djordje; Elola, Ignacio; Poyatos, Juan F
2016-10-31
By integrating positive and negative feedback loops, biological systems establish intricate gene expression patterns linked to multistability, pulsing, and oscillations. This depends on the specific characteristics of each interlinked feedback, and thus one would expect additional expression programs to be found. Here, we investigate one such program associated with an antagonistic positive and negative transcriptional autoregulatory motif derived from the multiple antibiotic resistance (mar) system of Escherichia coli. We studied the dynamics of the system by combining a predictive mathematical model with high-resolution experimental measures of the response both at the population and single-cell level. We show that in this motif the weak positive autoregulation does not slow down but rather enhances response speedup in combination with a strong negative feedback loop. This balance of feedback strengths anticipates a homogeneous population phenotype, which we corroborate experimentally. Theoretical analysis also emphasized the specific molecular properties that determine the dynamics of the mar phenotype. More broadly, response acceleration could provide a rationale for the presence of weak positive feedbacks in other biological scenarios exhibiting these interlinked regulatory architectures.
Lehrer, Paul; Eddie, David
2013-01-01
Systems theory has long been applied in psychology, biology, and sociology. This paper applies newer methods of control systems modeling to the assessment of system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning. PMID:23572244
Quantifying the Relative Contributions of Divisive and Subtractive Feedback to Rhythm Generation
Tabak, Joël; Rinzel, John; Bertram, Richard
2011-01-01
Biological systems are characterized by a high number of interacting components. Determining the role of each component is difficult, addressed here in the context of biological oscillations. Rhythmic behavior can result from the interplay of positive feedback that promotes bistability between high and low activity, and slow negative feedback that switches the system between the high and low activity states. Many biological oscillators include two types of negative feedback processes: divisive (decreases the gain of the positive feedback loop) and subtractive (increases the input threshold) that both contribute to slowly move the system between the high- and low-activity states. Can we determine the relative contribution of each type of negative feedback process to the rhythmic activity? Does one dominate? Do they control the active and silent phase equally? To answer these questions we use a neural network model with excitatory coupling, regulated by synaptic depression (divisive) and cellular adaptation (subtractive feedback). We first attempt to apply standard experimental methodologies: either passive observation to correlate the variations of a variable of interest to system behavior, or deletion of a component to establish whether a component is critical for the system. We find that these two strategies can lead to contradictory conclusions, and at best their interpretive power is limited. We instead develop a computational measure of the contribution of a process, by evaluating the sensitivity of the active (high activity) and silent (low activity) phase durations to the time constant of the process. The measure shows that both processes control the active phase, in proportion to their speed and relative weight. However, only the subtractive process plays a major role in setting the duration of the silent phase. This computational method can be used to analyze the role of negative feedback processes in a wide range of biological rhythms. PMID:21533065
Vegetation-rainfall feedbacks across the Sahel: a combined observational and modeling study
NASA Astrophysics Data System (ADS)
Yu, Y.; Notaro, M.; Wang, F.; Mao, J.; Shi, X.; Wei, Y.
2016-12-01
The Sahel rainfall is characterized by large interannual variability. Past modeling studies have concluded that the Sahel rainfall variability is primarily driven by oceanic forcings and amplified by land-atmosphere interactions. However, the relative importance of oceanic versus terrestrial drivers has never been assessed from observations. The current understanding of vegetation's impacts on climate, i.e. positive vegetation-rainfall feedback through the albedo, moisture, and momentum mechanisms, comes from untested models. Neither the positive vegetation-rainfall feedback, nor the underlying mechanisms, has been fully resolved in observations. The current study fills the knowledge gap about the observed vegetation-rainfall feedbacks, through the application of the multivariate statistical method Generalized Equilibrium Feedback Assessment (GEFA) to observational data. According to GEFA, the observed oceanic impacts dominate over terrestrial impacts on Sahel rainfall, except in the post-monsoon period. Positive leaf area index (LAI) anomalies favor an extended, wetter monsoon across the Sahel, largely due to moisture recycling. The albedo mechanism is not responsible for this positive vegetation feedback on the seasonal-interannual time scale, which is too short for a grass-desert transition. A low-level stabilization and subsidence is observed in response to increased LAI - potentially responsible for a negative vegetation-rainfall feedback. However, the positive moisture feedback overwhelms the negative momentum feedback, resulting in an observed positive vegetation-rainfall feedback. We further applied GEFA to a fully-coupled Community Earth System Model (CESM) control run, as an example of evaluating climate models against the GEFA-based observational benchmark. In contrast to the observed positive vegetation-rainfall feedbacks, CESM simulates a negative vegetation-rainfall feedback across Sahel, peaking in the pre-monsoon season. The simulated negative feedback is largely due to the low-level stabilization caused by increased LAI. Positive moisture feedback is present in the CESM simulation, but an order weaker than the observed and weaker than the negative momentum feedback, thereby leading to the simulated negative vegetation-rainfall feedbacks.
Voluntary modulation of anterior cingulate response to negative feedback.
Shane, Matthew S; Weywadt, Christina R
2014-01-01
Anterior cingulate and medial frontal cortex (dACC/mFC) response to negative feedback represents the actions of a generalized error-monitoring system critical for the management of goal-directed behavior. Magnitude of dACC/mFC response to negative feedback correlates with levels of post-feedback behavioral change, and with proficiency of operant learning processes. With this in mind, it follows that an ability to alter dACC/mFC response to negative feedback may lead to representative changes in operant learning proficiency. To this end, the present study investigated the extent to which healthy individuals would show modulation of their dACC/mFC response when instructed to try to either maximize or minimize their neural response to the presentation of contingent negative feedback. Participants performed multiple runs of a standard time-estimation task, during which they received feedback regarding their ability to accurately estimate a one-second duration. On Watch runs, participants were simply instructed to try to estimate as closely as possible the one second duration. On Increase and Decrease runs, participants performed the same task, but were instructed to "try to increase [decrease] their brain's response every time they received negative feedback". Results indicated that participants showed changes in dACC/mFC response under these differing instructional conditions: dACC/mFC activity following negative feedback was higher in the Increase condition, and dACC activity trended lower in the Decrease condition, compared to the Watch condition. Moreover, dACC activity correlated with post-feedback performance adjustments, and these adjustments were highest in the Increase condition. Potential implications for neuromodulation and facilitated learning are discussed.
ERIC Educational Resources Information Center
Cutumisu, Maria; Blair, Kristen P.; Chin, Doris B.; Schwartz, Daniel L.
2017-01-01
We introduce a choice-based assessment strategy that measures students' choices to seek constructive feedback and to revise their work. We present the feedback system of a game we designed to assess whether students choose positive or negative feedback and choose to revise their posters in the context of a poster design task, where they learn…
Mode Selection Rules for a Two-Delay System with Positive and Negative Feedback Loops
NASA Astrophysics Data System (ADS)
Takahashi, Kin'ya; Kobayashi, Taizo
2018-04-01
The mode selection rules for a two-delay system, which has negative feedback with a short delay time t1 and positive feedback with a long delay time t2, are studied numerically and theoretically. We find two types of mode selection rules depending on the strength of the negative feedback. When the strength of the negative feedback |α1| (α1 < 0) is sufficiently small compared with that of the positive feedback α2 (> 0), 2m + 1-th harmonic oscillation is well sustained in a neighborhood of t1/t2 = even/odd, i.e., relevant condition. In a neighborhood of the irrelevant condition given by t1/t2 = odd/even or t1/t2 = odd/odd, higher harmonic oscillations are observed. However, if |α1| is slightly less than α2, a different mode selection rule works, where the condition t1/t2 = odd/even is relevant and the conditions t1/t2 = odd/odd and t1/t2 = even/odd are irrelevant. These mode selection rules are different from the mode selection rule of the normal two-delay system with two positive feedback loops, where t1/t2 = odd/odd is relevant and the others are irrelevant. The two types of mode selection rules are induced by individually different mechanisms controlling the Hopf bifurcation, i.e., the Hopf bifurcation controlled by the "boosted bifurcation process" and by the "anomalous bifurcation process", which occur for |α1| below and above the threshold value αth, respectively.
Phillips, Benjamin U; Dewan, Sigma; Nilsson, Simon R O; Robbins, Trevor W; Heath, Christopher J; Saksida, Lisa M; Bussey, Timothy J; Alsiö, Johan
2018-04-22
Dysregulation of the serotonin (5-HT) system is a pathophysiological component in major depressive disorder (MDD), a condition closely associated with abnormal emotional responsivity to positive and negative feedback. However, the precise mechanism through which 5-HT tone biases feedback responsivity remains unclear. 5-HT2C receptors (5-HT2CRs) are closely linked with aspects of depressive symptomatology, including abnormalities in reinforcement processes and response to stress. Thus, we aimed to determine the impact of 5-HT2CR function on response to feedback in biased reinforcement learning. We used two touchscreen assays designed to assess the impact of positive and negative feedback on probabilistic reinforcement in mice, including a novel valence-probe visual discrimination (VPVD) and a probabilistic reversal learning procedure (PRL). Systemic administration of a 5-HT2CR agonist and antagonist resulted in selective changes in the balance of feedback sensitivity bias on these tasks. Specifically, on VPVD, SB 242084, the 5-HT2CR antagonist, impaired acquisition of a discrimination dependent on appropriate integration of positive and negative feedback. On PRL, SB 242084 at 1 mg/kg resulted in changes in behaviour consistent with reduced sensitivity to positive feedback. In contrast, WAY 163909, the 5-HT2CR agonist, resulted in changes associated with increased sensitivity to positive feedback and decreased sensitivity to negative feedback. These results suggest that 5-HT2CRs tightly regulate feedback sensitivity bias in mice with consequent effects on learning and cognitive flexibility and specify a framework for the influence of 5-HT2CRs on sensitivity to reinforcement.
Latent resilience in ponderosa pine forest: effects of resumed frequent fire
Andrew J. Larson; R. Travis Belote; C. Alina Cansler; Sean A. Parks; Matthew S. Dietz
2013-01-01
Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated...
Ocean Carbon Cycle Feedbacks Under Negative Emissions
NASA Astrophysics Data System (ADS)
Schwinger, Jörg; Tjiputra, Jerry
2018-05-01
Negative emissions will most likely be needed to achieve ambitious climate targets, such as limiting global warming to 1.5°. Here we analyze the ocean carbon-concentration and carbon-climate feedback in an Earth system model under an idealized strong CO2 peak and decline scenario. We find that the ocean carbon-climate feedback is not reversible by means of negative emissions on decadal to centennial timescales. When preindustrial surface climate is restored, the oceans, due to the carbon-climate feedback, still contain about 110 Pg less carbon compared to a simulation without climate change. This result is unsurprising but highlights an issue with a widely used carbon cycle feedback metric. We show that this metric can be greatly improved by using ocean potential temperature as a proxy for climate change. The nonlinearity (nonadditivity) of climate and CO2-driven feedbacks continues to grow after the atmospheric CO2 peak.
Brookes, Gavin; Baker, Paul
2017-04-27
To examine the key themes of positive and negative feedback in patients' online feedback on NHS (National Health Service) services in England and to understand the specific issues within these themes and how they drive positive and negative evaluation. Computer-assisted quantitative and qualitative studies of 228 113 comments (28 971 142 words) of online feedback posted to the NHS Choices website. Comments containing the most frequent positive and negative evaluative words are qualitatively examined to determine the key drivers of positive and negative feedback. Contributors posting comments about the NHS between March 2013 and September 2015. Overall, NHS services were evaluated positively approximately three times more often than negatively. The four key areas of focus were: treatment, communication, interpersonal skills and system/organisation. Treatment exhibited the highest proportion of positive evaluative comments (87%), followed by communication (77%), interpersonal skills (44%) and, finally, system/organisation (41%). Qualitative analysis revealed that reference to staff interpersonal skills featured prominently, even in comments relating to treatment and system/organisational issues. Positive feedback was elicited in cases of staff being caring, compassionate and knowing patients'' names, while rudeness, apathy and not listening were frequent drivers of negative feedback. Although technical competence constitutes an undoubtedly fundamental aspect of healthcare provision, staff members were much more likely to be evaluated both positively and negatively according to their interpersonal skills. Therefore, the findings reported in this study highlight the salience of such 'soft' skills to patients and emphasise the need for these to be focused upon and developed in staff training programmes, as well as ensuring that decisions around NHS funding do not result in demotivated and rushed staff. The findings also reveal a significant overlap between the four key themes in the ways that care is evaluated by patients. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Miró-Bueno, Jesús M.; Rodríguez-Patón, Alfonso
2011-01-01
Negative and positive transcriptional feedback loops are present in natural and synthetic genetic oscillators. A single gene with negative transcriptional feedback needs a time delay and sufficiently strong nonlinearity in the transmission of the feedback signal in order to produce biochemical rhythms. A single gene with only positive transcriptional feedback does not produce oscillations. Here, we demonstrate that this single-gene network in conjunction with a simple negative interaction can also easily produce rhythms. We examine a model comprised of two well-differentiated parts. The first is a positive feedback created by a protein that binds to the promoter of its own gene and activates the transcription. The second is a negative interaction in which a repressor molecule prevents this protein from binding to its promoter. A stochastic study shows that the system is robust to noise. A deterministic study identifies that the dynamics of the oscillator are mainly driven by two types of biomolecules: the protein, and the complex formed by the repressor and this protein. The main conclusion of this paper is that a simple and usual negative interaction, such as degradation, sequestration or inhibition, acting on the positive transcriptional feedback of a single gene is a sufficient condition to produce reliable oscillations. One gene is enough and the positive transcriptional feedback signal does not need to activate a second repressor gene. This means that at the genetic level an explicit negative feedback loop is not necessary. The model needs neither cooperative binding reactions nor the formation of protein multimers. Therefore, our findings could help to clarify the design principles of cellular clocks and constitute a new efficient tool for engineering synthetic genetic oscillators. PMID:22205920
Hulsman, Robert L; van der Vloodt, Jane
2015-03-01
Self-evaluation and peer-feedback are important strategies within the reflective practice paradigm for the development and maintenance of professional competencies like medical communication. Characteristics of the self-evaluation and peer-feedback annotations of medical students' video recorded communication skills were analyzed. Twenty-five year 4 medical students recorded history-taking consultations with a simulated patient, uploaded the video to a web-based platform, marked and annotated positive and negative events. Peers reviewed the video and self-evaluations and provided feedback. Analyzed were the number of marked positive and negative annotations and the amount of text entered. Topics and specificity of the annotations were coded and analyzed qualitatively. Students annotated on average more negative than positive events. Additional peer-feedback was more often positive. Topics most often related to structuring the consultation. Students were most critical about their biomedical topics. Negative annotations were more specific than positive annotations. Self-evaluations were more specific than peer-feedback and both show a significant correlation. Four response patterns were detected that negatively bias specificity assessment ratings. Teaching students to be more specific in their self-evaluations may be effective for receiving more specific peer-feedback. Videofragmentrating is a convenient tool to implement reflective practice activities like self-evaluation and peer-feedback to the classroom in the teaching of clinical skills. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Stolyarova, Alexandra; O'Dell, Steve J; Marshall, John F; Izquierdo, Alicia
2014-09-01
Learning from mistakes and prospectively adjusting behavior in response to reward feedback is an important facet of performance monitoring. Dopamine (DA) pathways play an important role in feedback learning and a growing literature has also emerged on the importance of serotonin (5HT) in reward learning, particularly during punishment or reward omission (negative feedback). Cognitive impairments resulting from psychostimulant exposure may arise from altered patterns in feedback learning, which in turn may be modulated by DA and 5HT transmission. We analyzed long-term, off-drug changes in learning from positive and negative feedback and associated striatal DA transporter (DAT) and frontocortical 5HT transporter (SERT) binding in rats pretreated with methamphetamine (mAMPH). Specifically, we assessed the reversal phase of pairwise visual discrimination learning in rats receiving single dose- (mAMPHsingle) vs. escalating-dose exposure (mAMPHescal). Using fine-grained trial-by-trial analyses, we found increased sensitivity to and reliance on positive feedback in mAMPH-pretreated animals, with the mAMPHsingle group showing more pronounced use of this type of feedback. In contrast, overall negative feedback sensitivity was not altered following any mAMPH treatment. In addition to validating the enduring effects of mAMPH on early reversal learning, we found more consecutive error commissions before the first correct response in mAMPH-pretreated rats. This behavioral rigidity was negatively correlated with subregional frontocortical SERT whereas positive feedback sensitivity negatively correlated with striatal DAT binding. These results provide new evidence for the overlapping, yet dissociable roles of DA and 5HT systems in overcoming perseveration and in learning new reward rules. Copyright © 2014 Elsevier B.V. All rights reserved.
Integrated regional changes in arctic climate feedbacks: Implications for the global climate system
McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,
2006-01-01
The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.
Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning.
Kastner, Lucas; Kube, Jana; Villringer, Arno; Neumann, Jane
2017-01-01
Successful learning hinges on the evaluation of positive and negative feedback. We assessed differential learning from reward and punishment in a monetary reinforcement learning paradigm, together with cardiac concomitants of positive and negative feedback processing. On the behavioral level, learning from reward resulted in more advantageous behavior than learning from punishment, suggesting a differential impact of reward and punishment on successful feedback-based learning. On the autonomic level, learning and feedback processing were closely mirrored by phasic cardiac responses on a trial-by-trial basis: (1) Negative feedback was accompanied by faster and prolonged heart rate deceleration compared to positive feedback. (2) Cardiac responses shifted from feedback presentation at the beginning of learning to stimulus presentation later on. (3) Most importantly, the strength of phasic cardiac responses to the presentation of feedback correlated with the strength of prediction error signals that alert the learner to the necessity for behavioral adaptation. Considering participants' weight status and gender revealed obesity-related deficits in learning to avoid negative consequences and less consistent behavioral adaptation in women compared to men. In sum, our results provide strong new evidence for the notion that during learning phasic cardiac responses reflect an internal value and feedback monitoring system that is sensitive to the violation of performance-based expectations. Moreover, inter-individual differences in weight status and gender may affect both behavioral and autonomic responses in reinforcement-based learning.
Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning
Kastner, Lucas; Kube, Jana; Villringer, Arno; Neumann, Jane
2017-01-01
Successful learning hinges on the evaluation of positive and negative feedback. We assessed differential learning from reward and punishment in a monetary reinforcement learning paradigm, together with cardiac concomitants of positive and negative feedback processing. On the behavioral level, learning from reward resulted in more advantageous behavior than learning from punishment, suggesting a differential impact of reward and punishment on successful feedback-based learning. On the autonomic level, learning and feedback processing were closely mirrored by phasic cardiac responses on a trial-by-trial basis: (1) Negative feedback was accompanied by faster and prolonged heart rate deceleration compared to positive feedback. (2) Cardiac responses shifted from feedback presentation at the beginning of learning to stimulus presentation later on. (3) Most importantly, the strength of phasic cardiac responses to the presentation of feedback correlated with the strength of prediction error signals that alert the learner to the necessity for behavioral adaptation. Considering participants' weight status and gender revealed obesity-related deficits in learning to avoid negative consequences and less consistent behavioral adaptation in women compared to men. In sum, our results provide strong new evidence for the notion that during learning phasic cardiac responses reflect an internal value and feedback monitoring system that is sensitive to the violation of performance-based expectations. Moreover, inter-individual differences in weight status and gender may affect both behavioral and autonomic responses in reinforcement-based learning. PMID:29163004
Biocybernetic system evaluates indices of operator engagement in automated task
NASA Technical Reports Server (NTRS)
Pope, A. T.; Bogart, E. H.; Bartolome, D. S.
1995-01-01
A biocybernetic system has been developed as a method to evaluate automated flight deck concepts for compatibility with human capabilities. A biocybernetic loop is formed by adjusting the mode of operation of a task set (e.g., manual/automated mix) based on electroencephalographic (EEG) signals reflecting an operator's engagement in the task set. A critical issue for the loop operation is the selection of features of the EEG to provide an index of engagement upon which to base decisions to adjust task mode. Subjects were run in the closed-loop feedback configuration under four candidate and three experimental control definitions of an engagement index. The temporal patterning of system mode switching was observed for both positive and negative feedback of the index. The indices were judged on the basis of their relative strength in exhibiting expected feedback control system phenomena (stable operation under negative feedback and unstable operation under positive feedback). Of the candidate indices evaluated in this study, an index constructed according to the formula, beta power/(alpha power + theta power), reflected task engagement best.
Beyond Symmetry Breaking: Competition and Negative Feedback in GTPase regulation
Wu, Chi-Fang; Lew, Daniel J.
2013-01-01
Summary Cortical domains are often specified by the local accumulation of active GTPases. Such domains can arise through spontaneous symmetry breaking, suggesting that GTPase accumulation occurs via positive feedback. Here, we focus on recent advances in fungal and plant cell models, where new work suggests that polarity-controlling GTPases develop only one “front” because GTPase clusters engage in a winner-takes-all competition. However, in some circumstances two or more GTPase domains can co-exist, and the basis for the switch from competition to coexistence remains an open question. Polarity GTPases can undergo oscillatory clustering and dispersal, suggesting that these systems contain negative feedback. Negative feedback may prevent polarity clusters from spreading too far, regulate the balance between competition and co-existence, and provide directional flexibility for cells tracking gradients. PMID:23731999
ERIC Educational Resources Information Center
Clark-Gordon, Cathlin V.; Bowman, Nicholas D.; Watts, Evan R.; Banks, Jaime; Knight, Jennifer M.
2018-01-01
Research has established that students often consider the delivery of instructor feedback to be a face-threatening event. To minimize the potential negative effects of feedback, verbal and nonverbal face-threat mitigation (FTM) strategies are utilized by instructors. Advances in digital feedback systems, like online documents and learning…
1984-07-01
34robustness" analysis for multiloop feedback systems. Reference [55] describes a simple method based on the Perron - Frobenius Theory of non-negative...Viewpoint, " Operator Theory : Advances and Applications, 12, pp. 277-302, 1984. - E. A. Jonckheere, "New Bound on the Sensitivity -- of the Solution of...Reidel, Dordrecht, Holland, 1984. M. G. Safonov, "Comments on Singular Value Theory in Uncertain Feedback Systems, " to appear IEEE Trans. on Automatic
van Duijvenvoorde, Anna C. K.; Bakermans-Kranenburg, Marian J.; Crone, Eveline A.
2016-01-01
Abstract Negative social feedback often generates aggressive feelings and behavior. Prior studies have investigated the neural basis of negative social feedback, but the underlying neural mechanisms of aggression regulation following negative social feedback remain largely undiscovered. In the current study, participants viewed pictures of peers with feedback (positive, neutral or negative) to the participant’s personal profile. Next, participants responded to the peer feedback by pressing a button, thereby producing a loud noise toward the peer, as an index of aggression. Behavioral analyses showed that negative feedback led to more aggression (longer noise blasts). Conjunction neuroimaging analyses revealed that both positive and negative feedback were associated with increased activity in the medial prefrontal cortex (PFC) and bilateral insula. In addition, more activation in the right dorsal lateral PFC (dlPFC) during negative feedback vs neutral feedback was associated with shorter noise blasts in response to negative social feedback, suggesting a potential role of dlPFC in aggression regulation, or top-down control over affective impulsive actions. This study demonstrates a role of the dlPFC in the regulation of aggressive social behavior. PMID:26755768
Risk-Taking and the Feedback Negativity Response to Loss among At-Risk Adolescents
Crowley, Michael J.; Wu, Jia; Crutcher, Clifford; Bailey, Christopher A.; Lejuez, C.W.; Mayes, Linda C.
2009-01-01
Event-related brain potentials were examined in 32 adolescents (50% female) from a high-risk sample, who were exposed to cocaine and other drugs prenatally. Adolescents were selected for extreme high- or low-risk behavior on the Balloon Analog Risk Task, a measure of real-world risk-taking propensity. The feedback error-related negativity (fERN), an event-related potential (ERP) that occurs when an expected reward does not occur, was examined in a game in which choices lead to monetary gains and losses with feedback delayed 1 or 2 s. The fERN was clearly visible in the fronto-central scalp region in this adolescent sample. Feedback type, feedback delay, risk status, and sex were all associated with fERN variability. Monetary feedback also elicited a P300-like component, moderated by delay and sex. Delaying reward feedback may provide a means for studying complementary functioning of dopamine and norepinephrine systems. PMID:19372694
Punishment sensitivity modulates the processing of negative feedback but not error-induced learning.
Unger, Kerstin; Heintz, Sonja; Kray, Jutta
2012-01-01
Accumulating evidence suggests that individual differences in punishment and reward sensitivity are associated with functional alterations in neural systems underlying error and feedback processing. In particular, individuals highly sensitive to punishment have been found to be characterized by larger mediofrontal error signals as reflected in the error negativity/error-related negativity (Ne/ERN) and the feedback-related negativity (FRN). By contrast, reward sensitivity has been shown to relate to the error positivity (Pe). Given that Ne/ERN, FRN, and Pe have been functionally linked to flexible behavioral adaptation, the aim of the present research was to examine how these electrophysiological reflections of error and feedback processing vary as a function of punishment and reward sensitivity during reinforcement learning. We applied a probabilistic learning task that involved three different conditions of feedback validity (100%, 80%, and 50%). In contrast to prior studies using response competition tasks, we did not find reliable correlations between punishment sensitivity and the Ne/ERN. Instead, higher punishment sensitivity predicted larger FRN amplitudes, irrespective of feedback validity. Moreover, higher reward sensitivity was associated with a larger Pe. However, only reward sensitivity was related to better overall learning performance and higher post-error accuracy, whereas highly punishment sensitive participants showed impaired learning performance, suggesting that larger negative feedback-related error signals were not beneficial for learning or even reflected maladaptive information processing in these individuals. Thus, although our findings indicate that individual differences in reward and punishment sensitivity are related to electrophysiological correlates of error and feedback processing, we found less evidence for influences of these personality characteristics on the relation between performance monitoring and feedback-based learning.
Li, Guanglei; Wang, Junbo; Chen, Deyong; Chen, Lianhong; Xu, Chao
2017-01-01
Electrochemical seismic sensors are key components in monitoring ground vibration, which are featured with high performances in the low-frequency domain. However, conventional electrochemical seismic sensors suffer from low repeatability due to limitations in fabrication and limited bandwidth. This paper presents a micro-fabricated electrochemical seismic sensor with a force-balanced negative feedback system, mainly composed of a sensing unit including porous sensing micro electrodes immersed in an electrolyte solution and a feedback unit including a feedback circuit and a feedback magnet. In this study, devices were designed, fabricated, and characterized, producing comparable performances among individual devices. In addition, bandwidths and total harmonic distortions of the proposed devices with and without a negative feedback system were quantified and compared as 0.005–20 (feedback) Hz vs. 0.3–7 Hz (without feedback), 4.34 ± 0.38% (without feedback) vs. 1.81 ± 0.31% (feedback)@1 Hz@1 mm/s and 3.21 ± 0.25% (without feedback) vs. 1.13 ± 0.19% (feedback)@5 Hz@1 mm/s (ndevice = 6, n represents the number of the tested devices), respectively. In addition, the performances of the proposed MEMS electrochemical seismometers with feedback were compared to a commercial electrochemical seismic sensor (CME 6011), producing higher bandwidth (0.005–20 Hz vs. 0.016–30 Hz) and lower self-noise levels (−165.1 ± 6.1 dB vs. −137.7 dB at 0.1 Hz, −151.9 ± 7.5 dB vs. −117.8 dB at 0.02 Hz (ndevice = 6)) in the low-frequency domain. Thus, the proposed device may function as an enabling electrochemical seismometer in the fields requesting seismic monitoring at the ultra-low frequency domain. PMID:28902150
Excitation system for rotating synchronous machines
Umans, Stephen D.; Driscoll, David J.
2002-01-01
A system for providing DC current to a rotating superconducting winding is provided. The system receives current feedback from the superconducting winding and determines an error signal based on the current feedback and a reference signal. The system determines a control signal corresponding to the error signal and provides a positive and negative superconducting winding excitation voltage based on the control signal.
Cho, Bomsoo; Pierre-Louis, Gandhy; Sagner, Andreas; Eaton, Suzanne; Axelrod, Jeffrey D
2015-05-01
The core components of the planar cell polarity (PCP) signaling system, including both transmembrane and peripheral membrane associated proteins, form asymmetric complexes that bridge apical intercellular junctions. While these can assemble in either orientation, coordinated cell polarization requires the enrichment of complexes of a given orientation at specific junctions. This might occur by both positive and negative feedback between oppositely oriented complexes, and requires the peripheral membrane associated PCP components. However, the molecular mechanisms underlying feedback are not understood. We find that the E3 ubiquitin ligase complex Cullin1(Cul1)/SkpA/Supernumerary limbs(Slimb) regulates the stability of one of the peripheral membrane components, Prickle (Pk). Excess Pk disrupts PCP feedback and prevents asymmetry. We show that Pk participates in negative feedback by mediating internalization of PCP complexes containing the transmembrane components Van Gogh (Vang) and Flamingo (Fmi), and that internalization is activated by oppositely oriented complexes within clusters. Pk also participates in positive feedback through an unknown mechanism promoting clustering. Our results therefore identify a molecular mechanism underlying generation of asymmetry in PCP signaling.
Decorrelation of Neural-Network Activity by Inhibitory Feedback
Einevoll, Gaute T.; Diesmann, Markus
2012-01-01
Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between excitatory (E) and inhibitory (I) neurons, but a consequence of a particular structure of correlations among the three possible pairings (EE, EI, II). PMID:23133368
Potentiated processing of negative feedback in depression is attenuated by anhedonia
Mueller, E. M.; Pechtel, P.; Cohen, A.L.; Douglas, S.R.; Pizzagalli, D.A.
2014-01-01
Background Although cognitive theories of depression have postulated enhanced processing of negatively valenced information, previous EEG studies have shown both increased and reduced sensitivity for negative performance feedback in MDD. To reconcile these paradoxical findings, it has been speculated that sensitivity for negative feedback is potentiated in moderate MDD but reduced in highly anhedonic subjects. The goal of this study was to test this hypothesis by analyzing the feedback-related negativity (FRN), frontomedial theta power (FMT), and source-localized anterior midcingulate cortex (aMCC) activity after negative feedback. Methods Fourteen unmedicated participants with MDD and 15 control participants performed a reinforcement learning task while 128-channel EEG was recorded. FRN, FMT and LORETA source-localized aMCC activity after negative and positive feedback were compared between groups. Results The MDD group showed higher FRN amplitudes and aMCC activation to negative feedback than controls. Moreover, aMCC activation to negative feedback was inversely related to self-reported anhedonia. In contrast, self-reported anxiety correlated with feedback-evoked frontomedial theta (FMT) within the depression group. Conclusions The present findings suggest that, among depressed and anxious individuals, enhanced processing of negative feedback occurs relatively early in the information processing stream. These results extend prior work and indicate that although moderate depression is associated with elevated sensitivity for negative feedback, high levels of anhedonia may attenuate this effect. PMID:25620272
Lindquist, Kristen A.; Adebayo, Morenikeji; Barrett, Lisa Feldman
2016-01-01
Negative stimuli do not only evoke fear or disgust, but can also evoke a state of ‘morbid fascination’ which is an urge to approach and explore a negative stimulus. In the present neuroimaging study, we applied an innovative method to investigate the neural systems involved in typical and atypical conceptualizations of negative images. Participants received false feedback labeling their mental experience as fear, disgust or morbid fascination. This manipulation was successful; participants judged the false feedback correct for 70% of the trials on average. The neuroimaging results demonstrated differential activity within regions in the ‘neural reference space for discrete emotion’ depending on the type of feedback. We found robust differences in the ventrolateral prefrontal cortex, the dorsomedial prefrontal cortex and the lateral orbitofrontal cortex comparing morbid fascination to control feedback. More subtle differences in the dorsomedial prefrontal cortex and the lateral orbitofrontal cortex were also found between morbid fascination feedback and the other emotion feedback conditions. This study is the first to forward evidence about the neural representation of the experimentally unexplored state of morbid fascination. In line with a constructionist framework, our findings suggest that neural resources associated with the process of conceptualization contribute to the neural representation of this state. PMID:26180088
Identity Change in Newly Married Couples: Effects of Positive and Negative Feedback
ERIC Educational Resources Information Center
Cast, Alicia D.; Cantwell, Allison M.
2007-01-01
Previous research has examined individuals' relative preference for consistent and enhancing feedback by examining reactions to negative and positive feedback. Recent research shows that, in general, individuals prefer feedback that is consistent with self-views, even if feedback is negative. It is unclear, however, whether negative and positive…
Feedback Valence Affects Auditory Perceptual Learning Independently of Feedback Probability
Amitay, Sygal; Moore, David R.; Molloy, Katharine; Halliday, Lorna F.
2015-01-01
Previous studies have suggested that negative feedback is more effective in driving learning than positive feedback. We investigated the effect on learning of providing varying amounts of negative and positive feedback while listeners attempted to discriminate between three identical tones; an impossible task that nevertheless produces robust learning. Four feedback conditions were compared during training: 90% positive feedback or 10% negative feedback informed the participants that they were doing equally well, while 10% positive or 90% negative feedback informed them they were doing equally badly. In all conditions the feedback was random in relation to the listeners’ responses (because the task was to discriminate three identical tones), yet both the valence (negative vs. positive) and the probability of feedback (10% vs. 90%) affected learning. Feedback that informed listeners they were doing badly resulted in better post-training performance than feedback that informed them they were doing well, independent of valence. In addition, positive feedback during training resulted in better post-training performance than negative feedback, but only positive feedback indicating listeners were doing badly on the task resulted in learning. As we have previously speculated, feedback that better reflected the difficulty of the task was more effective in driving learning than feedback that suggested performance was better than it should have been given perceived task difficulty. But contrary to expectations, positive feedback was more effective than negative feedback in driving learning. Feedback thus had two separable effects on learning: feedback valence affected motivation on a subjectively difficult task, and learning occurred only when feedback probability reflected the subjective difficulty. To optimize learning, training programs need to take into consideration both feedback valence and probability. PMID:25946173
Enhanced negative feedback responses in remitted depression.
Santesso, Diane L; Steele, Katherine T; Bogdan, Ryan; Holmes, Avram J; Deveney, Christen M; Meites, Tiffany M; Pizzagalli, Diego A
2008-07-02
Major depressive disorder (MDD) is characterized by hypersensitivity to negative feedback that might involve frontocingulate dysfunction. MDD patients exhibit enhanced electrophysiological responses to negative internal (errors) and external (feedback) cues. Whether this dysfunction extends to remitted depressed (RD) individuals with a history of MDD is currently unknown. To address this issue, we examined the feedback-related negativity in RD and control participants using a probabilistic punishment learning task. Despite equivalent behavioral performance, RD participants showed larger feedback-related negativities to negative feedback relative to controls; group differences remained after accounting for residual anxiety and depressive symptoms. The present findings suggest that abnormal responses to negative feedback extend to samples at increased risk for depressive episodes in the absence of current symptoms.
Using negative emotional feedback to modify risky behavior of young moped riders.
Megías, Alberto; Cortes, Abilio; Maldonado, Antonio; Cándido, Antonio
2017-05-19
The aim of this research was to investigate whether the use of messages with negative emotional content is effective in promoting safe behavior of moped riders and how exactly these messages modulate rider behavior. Participants received negative feedback when performing risky behaviors using a computer task. The effectiveness of this treatment was subsequently tested in a riding simulator. The results demonstrated how riders receiving negative feedback had a lower number of traffic accidents than a control group. The reduction in accidents was accompanied by a set of changes in the riding behavior. We observed a lower average speed and greater respect for speed limits. Furthermore, analysis of the steering wheel variance, throttle variance, and average braking force provided evidence for a more even and homogenous riding style. This greater abidance of traffic regulations and friendlier riding style could explain some of the causes behind the reduction in accidents. The use of negative emotional feedback in driving schools or advanced rider assistance systems could enhance riding performance, making riders aware of unsafe practices and helping them to establish more accurate riding habits. Moreover, the combination of riding simulators and feedback-for example, in the training of novice riders and traffic offenders-could be an efficient tool to improve their hazard perception skills and promote safer behaviors.
Feedback regulation in a stem cell model with acute myeloid leukaemia.
Jiao, Jianfeng; Luo, Min; Wang, Ruiqi
2018-04-24
The haematopoietic lineages with leukaemia lineages are considered in this paper. In particular, we mainly consider that haematopoietic lineages are tightly controlled by negative feedback inhibition of end-product. Actually, leukemia has been found 100 years ago. Up to now, the exact mechanism is still unknown, and many factors are thought to be associated with the pathogenesis of leukemia. Nevertheless, it is very necessary to continue the profound study of the pathogenesis of leukemia. Here, we propose a new mathematical model which include some negative feedback inhibition from the terminally differentiated cells of haematopoietic lineages to the haematopoietic stem cells and haematopoietic progenitor cells in order to describe the regulatory mechanisms mentioned above by a set of ordinary differential equations. Afterwards, we carried out detailed dynamical bifurcation analysis of the model, and obtained some meaningful results. In this work, we mainly perform the analysis of the mathematic model by bifurcation theory and numerical simulations. We have not only incorporated some new negative feedback mechanisms to the existing model, but also constructed our own model by using the modeling method of stem cell theory with probability method. Through a series of qualitative analysis and numerical simulations, we obtain that the weak negative feedback for differentiation probability is conducive to the cure of leukemia. However, with the strengthening of negative feedback, leukemia will be more difficult to be cured, and even induce death. In contrast, strong negative feedback for differentiation rate of progenitor cells can promote healthy haematopoiesis and suppress leukaemia. These results demonstrate that healthy progenitor cells are bestowed a competitive advantage over leukaemia stem cells. Weak g 1 , g 2 , and h 1 enable the system stays in the healthy state. However, strong h 2 can promote healthy haematopoiesis and suppress leukaemia.
Effect of Temperature on Synthetic Positive and Negative Feedback Gene Networks
NASA Astrophysics Data System (ADS)
Charlebois, Daniel A.; Marshall, Sylvia; Balazsi, Gabor
Synthetic biological systems are built and tested under well controlled laboratory conditions. How altering the environment, such as the ambient temperature affects their function is not well understood. To address this question for synthetic gene networks with positive and negative feedback, we used mathematical modeling coupled with experiments in the budding yeast Saccharomyces cerevisiae. We found that cellular growth rates and gene expression dose responses change significantly at temperatures above and below the physiological optimum for yeast. Gene expression distributions for the negative feedback-based circuit changed from unimodal to bimodal at high temperature, while the bifurcation point of the positive feedback circuit shifted up with temperature. These results demonstrate that synthetic gene network function is context-dependent. Temperature effects should thus be tested and incorporated into their design and validation for real-world applications. NSERC Postdoctoral Fellowship (Grant No. PDF-453977-2014).
Network Architecture Predisposes an Enzyme to Either Pharmacologic or Genetic Targeting.
Jensen, Karin J; Moyer, Christian B; Janes, Kevin A
2016-02-24
Chemical inhibition and genetic knockdown of enzymes are not equivalent in cells, but network-level mechanisms that cause discrepancies between knockdown and inhibitor perturbations are not understood. Here we report that enzymes regulated by negative feedback are robust to knockdown but susceptible to inhibition. Using the Raf-MEK-ERK kinase cascade as a model system, we find that ERK activation is resistant to genetic knockdown of MEK but susceptible to a comparable degree of chemical MEK inhibition. We demonstrate that negative feedback from ERK to Raf causes this knockdown-versus-inhibitor discrepancy in vivo. Exhaustive mathematical modeling of three-tiered enzyme cascades suggests that this result is general: negative autoregulation or feedback favors inhibitor potency, whereas positive autoregulation or feedback favors knockdown potency. Our findings provide a rationale for selecting pharmacologic versus genetic perturbations in vivo and point out the dangers of using knockdown approaches in search of drug targets.
Self-organizing dynamic stability of far-from-equilibrium biological systems
NASA Astrophysics Data System (ADS)
Ivanitskii, G. R.
2017-10-01
One indication of the stability of a living system is the variation of the system’s characteristic time scales. Underlying the stability mechanism are the structural hierarchy and self-organization of systems, factors that give rise to a positive (accelerating) feedback and a negative (braking) feedback. Information processing in the brain cortex plays a special role in highly organized living organisms.
Liu, Peter Y; Iranmanesh, Ali; Keenan, Daniel M; Pincus, Steven M; Veldhuis, Johannes D
2007-11-01
The secretion of anterior-pituitary hormones is subject to negative feedback. Whether negative feedback evolves dynamically over 24 h is not known. Conventional experimental paradigms to test this concept may induce artifacts due to nonphysiological feedback. These limitations might be overcome by a noninvasive methodology to quantify negative feedback continuously over 24 h without disrupting the axis. The present study exploits a recently validated model-free regularity statistic, approximate entropy (ApEn), which monitors feedback changes with high sensitivity and specificity (both >90%; Pincus SM, Hartman ML, Roelfsema F, Thorner MO, Veldhuis JD. Am J Physiol Endocrinol Metab 273: E948-E957, 1999). A time-incremented moving window of ApEn was applied to LH time series obtained by intensive (10-min) blood sampling for four consecutive days (577 successive measurements) in each of eight healthy men. Analyses unveiled marked 24-h variations in ApEn with daily maxima (lowest feedback) at 1100 +/- 1.7 h (mean +/- SE) and minima (highest feedback) at 0430 +/- 1.9 h. The mean difference between maximal and minimal 24-h LH ApEn was 0.348 +/- 0.018, which differed by P < 0.001 from all three of randomly shuffled versions of the same LH time series, simulated pulsatile data and assay noise. Analyses artificially limited to 24-h rather than 96-h data yielded reproducibility coefficients of 3.7-9.0% for ApEn maxima and minima. In conclusion, a feedback-sensitive regularity statistic unmasks strong and consistent 24-h rhythmicity of the orderliness of unperturbed pituitary-hormone secretion. These outcomes suggest that ApEn may have general utility in probing dynamic mechanisms mediating feedback in other endocrine systems.
Cao, Jianqin; Gu, Ruolei; Bi, Xuejing; Zhu, Xiangru; Wu, Haiyan
2015-01-01
Previous studies on social anxiety have demonstrated negative-expectancy bias in social contexts. In this study, we used a paradigm that employed self-relevant positive or negative social feedback, in order to test whether this negative expectancy manifests in event-related potentials (ERPs) during social evaluation among socially anxious individuals. Behavioral data revealed that individuals with social anxiety disorder (SAD) showed more negative expectancy of peer acceptance both in the experiment and in daily life than did the healthy control participants. Regarding ERP results, we found a overally larger P2 for positive social feedback and also a group main effect, such that the P2 was smaller in SAD group. SAD participants demonstrated a larger feedback-related negativity (FRN) to positive feedback than to negative feedback. In addition, SAD participants showed a more positive ΔFRN (ΔFRN = negative - positive). Furthermore, acceptance expectancy in daily life correlated negatively with ΔFRN amplitude, while the Interaction Anxiousness Scale (IAS) score correlated positively with the ΔFRN amplitude. Finally, the acceptance expectancy in daily life fully mediated the relationship between the IAS and ΔFRN. These results indicated that both groups could differentiate between positive and negative social feedback in the early stage of social feedback processing (reflected on the P2). However, the SAD group exhibited a larger FRN to positive social feedback than to negative social feedback, demonstrating their dysfunction in the late stage of social feedback processing. In our opinion, such dysfunction is due to their greater negative social feedback expectancy.
Cao, Jianqin; Gu, Ruolei; Bi, Xuejing; Zhu, Xiangru; Wu, Haiyan
2015-01-01
Previous studies on social anxiety have demonstrated negative-expectancy bias in social contexts. In this study, we used a paradigm that employed self-relevant positive or negative social feedback, in order to test whether this negative expectancy manifests in event-related potentials (ERPs) during social evaluation among socially anxious individuals. Behavioral data revealed that individuals with social anxiety disorder (SAD) showed more negative expectancy of peer acceptance both in the experiment and in daily life than did the healthy control participants. Regarding ERP results, we found a overally larger P2 for positive social feedback and also a group main effect, such that the P2 was smaller in SAD group. SAD participants demonstrated a larger feedback-related negativity (FRN) to positive feedback than to negative feedback. In addition, SAD participants showed a more positive ΔFRN (ΔFRN = negative – positive). Furthermore, acceptance expectancy in daily life correlated negatively with ΔFRN amplitude, while the Interaction Anxiousness Scale (IAS) score correlated positively with the ΔFRN amplitude. Finally, the acceptance expectancy in daily life fully mediated the relationship between the IAS and ΔFRN. These results indicated that both groups could differentiate between positive and negative social feedback in the early stage of social feedback processing (reflected on the P2). However, the SAD group exhibited a larger FRN to positive social feedback than to negative social feedback, demonstrating their dysfunction in the late stage of social feedback processing. In our opinion, such dysfunction is due to their greater negative social feedback expectancy. PMID:26635659
Relaxation oscillations and hierarchy of feedbacks in MAPK signaling
NASA Astrophysics Data System (ADS)
Kochańczyk, Marek; Kocieniewski, Paweł; Kozłowska, Emilia; Jaruszewicz-Błońska, Joanna; Sparta, Breanne; Pargett, Michael; Albeck, John G.; Hlavacek, William S.; Lipniacki, Tomasz
2017-01-01
We formulated a computational model for a MAPK signaling cascade downstream of the EGF receptor to investigate how interlinked positive and negative feedback loops process EGF signals into ERK pulses of constant amplitude but dose-dependent duration and frequency. A positive feedback loop involving RAS and SOS, which leads to bistability and allows for switch-like responses to inputs, is nested within a negative feedback loop that encompasses RAS and RAF, MEK, and ERK that inhibits SOS via phosphorylation. This negative feedback, operating on a longer time scale, changes switch-like behavior into oscillations having a period of 1 hour or longer. Two auxiliary negative feedback loops, from ERK to MEK and RAF, placed downstream of the positive feedback, shape the temporal ERK activity profile but are dispensable for oscillations. Thus, the positive feedback introduces a hierarchy among negative feedback loops, such that the effect of a negative feedback depends on its position with respect to the positive feedback loop. Furthermore, a combination of the fast positive feedback involving slow-diffusing membrane components with slower negative feedbacks involving faster diffusing cytoplasmic components leads to local excitation/global inhibition dynamics, which allows the MAPK cascade to transmit paracrine EGF signals into spatially non-uniform ERK activity pulses.
Want More? Learn Less: Motivation Affects Adolescents Learning from Negative Feedback.
Zhuang, Yun; Feng, Wenfeng; Liao, Yu
2017-01-01
The primary goal of the present study was to investigate how positive and negative feedback may differently facilitate learning throughout development. In addition, the role of motivation as a modulating factor was examined. Participants (children, adolescents, and adults) completed two forms of the guess and application task (GAT). Feedback from the Cool-GAT task has low motivational salience because there are no consequences, while feedback from the Hot-GAT task has high motivational salience as it pertains to receiving a reward. The results indicated that negative feedback leads to a reduction in learning compared to positive feedback. The effect of negative feedback was greater in adolescent participants compared to children and adults in the Hot-GAT task, suggesting an interaction between age and motivation level on learning. Further analysis indicated that greater risk was associated with a greater reduction in learning from negative feedback and again, the reduction was greatest in adolescents. In summary, the current study supports the idea that learning from positive feedback and negative feedback differs throughout development. In a rule-based learning task, when associative learning is primarily in practice, participants learned less from negative feedback. This reduction is amplified during adolescence when task-elicited motivation is high.
Want More? Learn Less: Motivation Affects Adolescents Learning from Negative Feedback
Zhuang, Yun; Feng, Wenfeng; Liao, Yu
2017-01-01
The primary goal of the present study was to investigate how positive and negative feedback may differently facilitate learning throughout development. In addition, the role of motivation as a modulating factor was examined. Participants (children, adolescents, and adults) completed two forms of the guess and application task (GAT). Feedback from the Cool-GAT task has low motivational salience because there are no consequences, while feedback from the Hot-GAT task has high motivational salience as it pertains to receiving a reward. The results indicated that negative feedback leads to a reduction in learning compared to positive feedback. The effect of negative feedback was greater in adolescent participants compared to children and adults in the Hot-GAT task, suggesting an interaction between age and motivation level on learning. Further analysis indicated that greater risk was associated with a greater reduction in learning from negative feedback and again, the reduction was greatest in adolescents. In summary, the current study supports the idea that learning from positive feedback and negative feedback differs throughout development. In a rule-based learning task, when associative learning is primarily in practice, participants learned less from negative feedback. This reduction is amplified during adolescence when task-elicited motivation is high. PMID:28191003
NASA Astrophysics Data System (ADS)
Faria, Teresa; Oliveira, José J.
This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.
Alcohol impairs brain reactivity to explicit loss feedback.
Nelson, Lindsay D; Patrick, Christopher J; Collins, Paul; Lang, Alan R; Bernat, Edward M
2011-11-01
Alcohol impairs the brain's detection of performance errors as evidenced by attenuated error-related negativity (ERN), an event-related potential (ERP) thought to reflect a brain system that monitors one's behavior. However, it remains unclear whether alcohol impairs performance-monitoring capacity across a broader range of contexts, including those entailing external feedback. This study sought to determine whether alcohol-related monitoring deficits are specific to internal recognition of errors (reflected by the ERN) or occur also in external cuing contexts. We evaluated the impact of alcohol consumption on the feedback-related negativity (FRN), an ERP thought to engage a similar process as the ERN but elicited by negative performance feedback in the environment. In an undergraduate sample randomly assigned to drink alcohol (n = 37; average peak BAC = 0.087 g/100 ml, estimated from breath alcohol sampling) or placebo beverages (n = 42), ERP responses to gain and loss feedback were measured during a two-choice gambling task. Time-frequency analysis was used to parse the overlapping theta-FRN and delta-P3 and clarified the effects of alcohol on the measures. Alcohol intoxication attenuated both the theta-FRN and delta-P3 brain responses to feedback. The theta-FRN attenuation was stronger following loss than gain feedback. Attenuation of both theta-FRN and delta-P3 components indicates that alcohol pervasively attenuates the brain's response to feedback in this task. That theta-FRN attenuation was stronger following loss trials is consistent with prior ERN findings and suggests that alcohol broadly impairs the brain's recognition of negative performance outcomes across differing contexts.
Wang, X G; Shang, X L; Lin, J
2016-05-01
Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically.
Effects of Dopamine Medication on Sequence Learning with Stochastic Feedback in Parkinson's Disease
Seo, Moonsang; Beigi, Mazda; Jahanshahi, Marjan; Averbeck, Bruno B.
2010-01-01
A growing body of evidence suggests that the midbrain dopamine system plays a key role in reinforcement learning and disruption of the midbrain dopamine system in Parkinson's disease (PD) may lead to deficits on tasks that require learning from feedback. We examined how changes in dopamine levels (“ON” and “OFF” their dopamine medication) affect sequence learning from stochastic positive and negative feedback using Bayesian reinforcement learning models. We found deficits in sequence learning in patients with PD when they were “ON” and “OFF” medication relative to healthy controls, but smaller differences between patients “OFF” and “ON”. The deficits were mainly due to decreased learning from positive feedback, although across all participant groups learning was more strongly associated with positive than negative feedback in our task. The learning in our task is likely mediated by the relatively depleted dorsal striatum and not the relatively intact ventral striatum. Therefore, the changes we see in our task may be due to a strong loss of phasic dopamine signals in the dorsal striatum in PD. PMID:20740077
False feedback and beliefs influence name recall in younger and older adults.
Strickland-Hughes, Carla M; West, Robin Lea; Smith, Kimberly A; Ebner, Natalie C
2017-09-01
Feedback is an important self-regulatory process that affects task effort and subsequent performance. Benefits of positive feedback for list recall have been explored in research on goals and feedback, but the effect of negative feedback on memory has rarely been studied. The current research extends knowledge of memory and feedback effects by investigating face-name association memory and by examining the potential mediation of feedback effects, in younger and older adults, through self-evaluative beliefs. Beliefs were assessed before and after name recognition and name recall testing. Repeated presentation of false positive feedback was compared to false negative feedback and a no feedback condition. Results showed that memory self-efficacy declined over time for participants in the negative and no feedback conditions but was sustained for those receiving positive feedback. Furthermore, participants who received negative feedback felt older after testing than before testing. For name recall, the positive feedback group outperformed the negative feedback and no feedback groups combined, with no age interactions. The observed feedback-related effects on memory were fully mediated by changes in memory self-efficacy. These findings advance our understanding of how beliefs are related to feedback in memory and inform future studies examining the importance of self-regulation in memory.
NASA Astrophysics Data System (ADS)
Siscoe, G. L.
2012-12-01
What is a system? A group of elements interacting with each other so as to create feedback loops. A system gets complex as the number of feedback loops increases and as the feedback loops exhibit time delays. Positive and negative feedback loops with time delays can give a system intrinsic time dependence and emergent properties. A system generally has input and output flows of something (matter, energy, money), which, if time variable, add an extrinsic component to its behavior. The magnetosphere is a group of elements interacting through feedback loops, some with time delays, driven by energy and mass inflow from a variable solar wind and outflow into the atmosphere and solar wind. The magnetosphere is a complex system. With no solar wind, there is no behavior. With solar wind, there is behavior from intrinsic and extrinsic causes. As a contribution to taking a macroscopic view of magnetospheric dynamics, to treating the magnetosphere as a globally integrated, complex entity, I will discus the magnetosphere as a system, its feedback loops, time delays, emergent behavior, and intrinsic and extrinsic behavior modes.
The 'sensory tolerance limit': A hypothetical construct determining exercise performance?
Hureau, Thomas J; Romer, Lee M; Amann, Markus
2018-02-01
Neuromuscular fatigue compromises exercise performance and is determined by central and peripheral mechanisms. Interactions between the two components of fatigue can occur via neural pathways, including feedback and feedforward processes. This brief review discusses the influence of feedback and feedforward mechanisms on exercise limitation. In terms of feedback mechanisms, particular attention is given to group III/IV sensory neurons which link limb muscle with the central nervous system. Central corollary discharge, a copy of the neural drive from the brain to the working muscles, provides a signal from the motor system to sensory systems and is considered a feedforward mechanism that might influence fatigue and consequently exercise performance. We highlight findings from studies supporting the existence of a 'critical threshold of peripheral fatigue', a previously proposed hypothesis based on the idea that a negative feedback loop operates to protect the exercising limb muscle from severe threats to homeostasis during whole-body exercise. While the threshold theory remains to be disproven within a given task, it is not generalisable across different exercise modalities. The 'sensory tolerance limit', a more theoretical concept, may address this issue and explain exercise tolerance in more global terms and across exercise modalities. The 'sensory tolerance limit' can be viewed as a negative feedback loop which accounts for the sum of all feedback (locomotor muscles, respiratory muscles, organs, and muscles not directly involved in exercise) and feedforward signals processed within the central nervous system with the purpose of regulating the intensity of exercise to ensure that voluntary activity remains tolerable.
Neural correlates of anticipation and processing of performance feedback in social anxiety.
Heitmann, Carina Y; Peterburs, Jutta; Mothes-Lasch, Martin; Hallfarth, Marlit C; Böhme, Stephanie; Miltner, Wolfgang H R; Straube, Thomas
2014-12-01
Fear of negative evaluation, such as negative social performance feedback, is the core symptom of social anxiety. The present study investigated the neural correlates of anticipation and perception of social performance feedback in social anxiety. High (HSA) and low (LSA) socially anxious individuals were asked to give a speech on a personally relevant topic and received standardized but appropriate expert performance feedback in a succeeding experimental session in which neural activity was measured during anticipation and presentation of negative and positive performance feedback concerning the speech performance, or a neutral feedback-unrelated control condition. HSA compared to LSA subjects reported greater anxiety during anticipation of negative feedback. Functional magnetic resonance imaging results showed deactivation of medial prefrontal brain areas during anticipation of negative feedback relative to the control and the positive condition, and medial prefrontal and insular hyperactivation during presentation of negative as well as positive feedback in HSA compared to LSA subjects. The results indicate distinct processes underlying feedback processing during anticipation and presentation of feedback in HSA as compared to LSA individuals. In line with the role of the medial prefrontal cortex in self-referential information processing and the insula in interoception, social anxiety seems to be associated with lower self-monitoring during feedback anticipation, and an increased self-focus and interoception during feedback presentation, regardless of feedback valence. © 2014 Wiley Periodicals, Inc.
Weismüller, Benjamin; Ghio, Marta; Logmin, Kazimierz; Hartmann, Christian; Schnitzler, Alfons; Pollok, Bettina; Südmeyer, Martin; Bellebaum, Christian
2018-05-11
Phasic dopamine (DA) signals conveyed from the substantia nigra to the striatum and the prefrontal cortex crucially affect learning from feedback, with DA bursts facilitating learning from positive feedback and DA dips facilitating learning from negative feedback. Consequently, diminished nigro-striatal dopamine levels as in unmedicated patients suffering from Parkinson's Disease (PD) have been shown to lead to a negative learning bias. Recent studies suggested a diminished striatal contribution to feedback processing when the outcome of an action is temporally delayed. This study investigated whether the bias towards negative feedback learning induced by a lack of DA in PD patients OFF medication is modulated by feedback delay. To this end, PD patients OFF medication and healthy controls completed a probabilistic selection task, in which feedback was given immediately (after 800 ms) or delayed (after 6800 ms). PD patients were impaired in immediate but not delayed feedback learning. However, differences in the preference for positive/negative learning between patients and controls were seen for both learning from immediate and delayed feedback, with evidence of stronger negative learning in patients than controls. A Bayesian analysis of the data supports the conclusion that feedback timing did not affect the learning bias in the patients. These results hint at reduced, but still relevant nigro-striatal contribution to feedback learning, when feedback is delayed. Copyright © 2018 Elsevier Ltd. All rights reserved.
A conceptual framework for regional feedbacks in a changing climate
NASA Astrophysics Data System (ADS)
Batlle Bayer, L.; van den Hurk, B. J. J. M.; Strengers, B.
2012-04-01
Terrestrial ecosystems and climate influence each other through biogeochemical (e.g. carbon cycle) and biogeophysical (e.g. albedo, water fluxes) processes. These interactions might be disturbed when a climate human-induced forcing takes place (e.g. deforestation); and the ecosystem responses to the climate system might amplify (positive feedback) or dampen (negative feedback) the initial forcing. Research on feedbacks has been mainly based on the carbon cycle at the global scale. However, biogeophysical feedbacks might have a great impact at the local or regional scale, which is the main focus of this article. A conceptual framework, with the major interactions and processes between terrestrial ecosystems and climate, is presented to further explore feedbacks at the regional level. Four hot spots with potential changes in land use/management and climate are selected: sub-Saharan Africa (SSA), Europe, the Amazon Basin and South and Southeast Asia. For each region, diverse climate human-induced forcings and feedbacks were identified based on relevant published literature. For Europe, the positive soil moisture-evapotranspiration (ET) is important for natural vegetation during a heat wave event, while the positive soil moisture-precipitation feedback plays a more important role for droughts in the Amazon region. Agricultural expansion in SSA will depend on the impacts of the changing climate on crop yields and the adopted agro-technologies. The adoption of irrigation in the commonly rainfed systems might turn the positive soil moisture- ET feedback into a negative one. In contrast, South and Southeast Asia might face water shortage in the future, and thus turning the soil moisture-ET feedback into a positive one. Further research is needed for the major processes that affect the ultimate sign of the feedbacks, as well as for the interactions, which effect remains uncertain, such as ET-precipitation interaction. In addition, socio-economic feedbacks need to be added in the ecosystems-climate system since they play an essential role in human decisions on land use and land cover change (LULCC).
Prefrontal Neural Activity When Feedback Is Not Relevant to Adjust Performance
Özyurt, Jale; Rietze, Mareike; Thiel, Christiane M.
2012-01-01
It has been shown that the rostral cingulate zone (RCZ) in humans uses both positive and negative feedback to evaluate performance and to flexibly adjust behaviour. Less is known on how the feedback types are processed by the RCZ and other prefrontal brain areas, when feedback can only be used to evaluate performance, but cannot be used to adjust behaviour. The present fMRI study aimed at investigating feedback that can only be used to evaluate performance in a word-learning paradigm. One group of volunteers (N = 17) received informative, performance-dependent positive or negative feedback after each trial. Since new words had to be learnt in each trial, the feedback could not be used for task-specific adaptations. The other group (N = 17) always received non-informative feedback, providing neither information about performance nor about possible task-specific adaptations. Effects of the informational value of feedback were assessed between-subjects, comparing trials with positive and negative informative feedback to non-informative feedback. Effects of feedback valence were assessed by comparing neural activity to positive and negative feedback within the informative-feedback group. Our results show that several prefrontal regions, including the pre-SMA, the inferior frontal cortex and the insula were sensitive to both, the informational value and the valence aspect of the feedback with stronger activations to informative as compared to non-informative feedback and to informative negative compared to informative positive feedback. The only exception was RCZ which was sensitive to the informational value of the feedback, but not to feedback valence. The findings indicate that outcome information per se is sufficient to activate prefrontal brain regions, with the RCZ being the only prefrontal brain region which is equally sensitive to positive and negative feedback. PMID:22615774
Responses to auxin signals: an operating principle for dynamical sensitivity yet high resilience
Bravi, B.; Martin, O. C.
2018-01-01
Plants depend on the signalling of the phytohormone auxin for their development and for responding to environmental perturbations. The associated biomolecular signalling network involves a negative feedback on Aux/IAA proteins which mediate the influence of auxin (the signal) on the auxin response factor (ARF) transcription factors (the drivers of the response). To probe the role of this feedback, we consider alternative in silico signalling networks implementing different operating principles. By a comparative analysis, we find that the presence of a negative feedback allows the system to have a far larger sensitivity in its dynamical response to auxin and that this sensitivity does not prevent the system from being highly resilient. Given this insight, we build a new biomolecular signalling model for quantitatively describing such Aux/IAA and ARF responses. PMID:29410878
Effects of Oxytocin and Vasopressin on Preferential Brain Responses to Negative Social Feedback.
Gozzi, Marta; Dashow, Erica M; Thurm, Audrey; Swedo, Susan E; Zink, Caroline F
2017-06-01
Receiving negative social feedback can be detrimental to emotional, cognitive, and physical well-being, and fear of negative social feedback is a prominent feature of mental illnesses that involve social anxiety. A large body of evidence has implicated the neuropeptides oxytocin and vasopressin in the modulation of human neural activity underlying social cognition, including negative emotion processing; however, the influence of oxytocin and vasopressin on neural activity elicited during negative social evaluation remains unknown. Here 21 healthy men underwent functional magnetic resonance imaging in a double-blind, placebo-controlled, crossover design to determine how intranasally administered oxytocin and vasopressin modulated neural activity when receiving negative feedback on task performance from a study investigator. We found that under placebo, a preferential response to negative social feedback compared with positive social feedback was evoked in brain regions putatively involved in theory of mind (temporoparietal junction), pain processing (anterior insula and supplementary motor area), and identification of emotionally important visual cues in social perception (right fusiform). These activations weakened with oxytocin and vasopressin administration such that neural responses to receiving negative social feedback were not significantly greater than positive social feedback. Our results show effects of both oxytocin and vasopressin on the brain network involved in negative social feedback, informing the possible use of a pharmacological approach targeting these regions in multiple disorders with impairments in social information processing.
Kobza, Stefan; Ferrea, Stefano; Schnitzler, Alfons; Pollok, Bettina; Südmeyer, Martin; Bellebaum, Christian
2012-01-01
Feedback to both actively performed and observed behaviour allows adaptation of future actions. Positive feedback leads to increased activity of dopamine neurons in the substantia nigra, whereas dopamine neuron activity is decreased following negative feedback. Dopamine level reduction in unmedicated Parkinson's Disease patients has been shown to lead to a negative learning bias, i.e. enhanced learning from negative feedback. Recent findings suggest that the neural mechanisms of active and observational learning from feedback might differ, with the striatum playing a less prominent role in observational learning. Therefore, it was hypothesized that unmedicated Parkinson's Disease patients would show a negative learning bias only in active but not in observational learning. In a between-group design, 19 Parkinson's Disease patients and 40 healthy controls engaged in either an active or an observational probabilistic feedback-learning task. For both tasks, transfer phases aimed to assess the bias to learn better from positive or negative feedback. As expected, actively learning patients showed a negative learning bias, whereas controls learned better from positive feedback. In contrast, no difference between patients and controls emerged for observational learning, with both groups showing better learning from positive feedback. These findings add to neural models of reinforcement-learning by suggesting that dopamine-modulated input to the striatum plays a minor role in observational learning from feedback. Future research will have to elucidate the specific neural underpinnings of observational learning.
van Duijvenvoorde, Anna C K; Zanolie, Kiki; Rombouts, Serge A R B; Raijmakers, Maartje E J; Crone, Eveline A
2008-09-17
How children learn from positive and negative performance feedback lies at the foundation of successful learning and is therefore of great importance for educational practice. In this study, we used functional magnetic resonance imaging (fMRI) to examine the neural developmental changes related to feedback-based learning when performing a rule search and application task. Behavioral results from three age groups (8-9, 11-13, and 18-25 years of age) demonstrated that, compared with adults, 8- to 9-year-old children performed disproportionally more inaccurately after receiving negative feedback relative to positive feedback. Additionally, imaging data pointed toward a qualitative difference in how children and adults use performance feedback. That is, dorsolateral prefrontal cortex and superior parietal cortex were more active after negative feedback for adults, but after positive feedback for children (8-9 years of age). For 11- to 13-year-olds, these regions did not show differential feedback sensitivity, suggesting that the transition occurs around this age. Pre-supplementary motor area/anterior cingulate cortex, in contrast, was more active after negative feedback in both 11- to 13-year-olds and adults, but not 8- to 9-year-olds. Together, the current data show that cognitive control areas are differentially engaged during feedback-based learning across development. Adults engage these regions after signals of response adjustment (i.e., negative feedback). Young children engage these regions after signals of response continuation (i.e., positive feedback). The neural activation patterns found in 11- to 13-year-olds indicate a transition around this age toward an increased influence of negative feedback on performance adjustment. This is the first developmental fMRI study to compare qualitative changes in brain activation during feedback learning across distinct stages of development.
Enhancing Feedback on Professionalism and Communication Skills in Anesthesia Residency Programs.
Mitchell, John D; Ku, Cindy; Diachun, Carol Ann B; DiLorenzo, Amy; Lee, Daniel E; Karan, Suzanne; Wong, Vanessa; Schell, Randall M; Brzezinski, Marek; Jones, Stephanie B
2017-08-01
Despite its importance, training faculty to provide feedback to residents remains challenging. We hypothesized that, overall, at 4 institutions, a faculty development program on providing feedback on professionalism and communication skills would lead to (1) an improvement in the quantity, quality, and utility of feedback and (2) an increase in feedback containing negative/constructive feedback and pertaining to professionalism/communication. As secondary analyses, we explored these outcomes at the individual institutions. In this prospective cohort study (October 2013 to July 2014), we implemented a video-based educational program on feedback at 4 institutions. Feedback records from 3 months before to 3 months after the intervention were rated for quality (0-5), utility (0-5), and whether they had negative/constructive feedback and/or were related to professionalism/communication. Feedback records during the preintervention, intervention, and postintervention periods were compared using the Kruskal-Wallis and χ tests. Data are reported as median (interquartile range) or proportion/percentage. A total of 1926 feedback records were rated. The institutions overall did not have a significant difference in feedback quantity (preintervention: 855/3046 [28.1%]; postintervention: 896/3327 [26.9%]; odds ratio: 1.06; 95% confidence interval, 0.95-1.18; P = .31), feedback quality (preintervention: 2 [1-4]; intervention: 2 [1-4]; postintervention: 2 [1-4]; P = .90), feedback utility (preintervention: 1 [1-3]; intervention: 2 [1-3]; postintervention: 1 [1-2]; P = .61), or percentage of feedback records containing negative/constructive feedback (preintervention: 27%; intervention: 32%; postintervention: 25%; P = .12) or related to professionalism/communication (preintervention: 23%; intervention: 33%; postintervention: 24%; P = .03). Institution 1 had a significant difference in feedback quality (preintervention: 2 [1-3]; intervention: 3 [2-4]; postintervention: 3 [2-4]; P = .001) and utility (preintervention: 1 [1-3]; intervention: 2 [1-3]; postintervention: 2 [1-4]; P = .008). Institution 3 had a significant difference in the percentage of feedback records containing negative/constructive feedback (preintervention: 16%; intervention: 28%; postintervention: 17%; P = .02). Institution 2 had a significant difference in the percentage of feedback records related to professionalism/communication (preintervention: 26%; intervention: 57%; postintervention: 31%; P < .001). We detected no overall changes but did detect different changes at each institution despite the identical intervention. The intervention may be more effective with new faculty and/or smaller discussion sessions. Future steps include refining the rating system, exploring ways to sustain changes, and investigating other factors contributing to feedback quality and utility.
Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops
NASA Astrophysics Data System (ADS)
Huang, Bo; Tian, Xinyu; Liu, Feng; Wang, Wei
2016-11-01
Interlinking a positive feedback loop (PFL) with a negative feedback loop (NFL) constitutes a typical motif in genetic networks, performing various functions in cell signaling. How time delay in feedback regulation affects the dynamics of such systems still remains unclear. Here, we investigate three systems of interlinked PFL and NFL with time delays: a synthetic genetic oscillator, a three-node circuit, and a simplified single-node model. The stability of steady states and the routes to oscillation in the single-node model are analyzed in detail. The amplitude and period of oscillations vary with a pointwise periodicity over a range of time delay. Larger-amplitude oscillations can be induced when the PFL has an appropriately long delay, in comparison with the PFL with no delay or short delay; this conclusion holds true for all the three systems. We unravel the underlying mechanism for the above effects via analytical derivation under a limiting condition. We also develop a stochastic algorithm for simulating a single reaction with two delays and show that robust oscillations can be maintained by the PFL with a properly long delay in the single-node system. This work presents an effective method for constructing robust large-amplitude oscillators and interprets why similar circuit architectures are engaged in timekeeping systems such as circadian clocks.
Chat-Line Interaction and Negative Feedback.
ERIC Educational Resources Information Center
Iwasaki, Junko; Oliver, Rhonda
2003-01-01
Examines communicative interactions between native speakers (NSs) and nonnative speakers (NNSs) of Japanese on Internet relay chat, with a special focus on implicit negative feedback in the interactions. Reports that NSs of Japanese gave implicit negative feedback to their NNS partners and NNSs used the feedback in their subsequent production, but…
Martínez-Velázquez, Eduardo S; Ramos-Loyo, Julieta; González-Garrido, Andrés A; Sequeira, Henrique
2015-01-21
Feedback-related negativity (FRN) is a negative deflection that appears around 250 ms after the gain or loss of feedback to chosen alternatives in a gambling task in frontocentral regions following outcomes. Few studies have reported FRN enhancement in adolescents compared with adults in a gambling task without probabilistic reinforcement learning, despite the fact that learning from positive or negative consequences is crucial for decision-making during adolescence. Therefore, the aim of the present research was to identify differences in FRN amplitude and latency between adolescents and adults on a gambling task with favorable and unfavorable probabilistic reinforcement learning conditions, in addition to a nonlearning condition with monetary gains and losses. Higher rate scores of high-magnitude choices during the final 30 trials compared with the first 30 trials were observed during the favorable condition, whereas lower rates were observed during the unfavorable condition in both groups. Higher FRN amplitude in all conditions and longer latency in the nonlearning condition were observed in adolescents compared with adults and in relation to losses. Results indicate that both the adolescents and the adults improved their performance in relation to positive and negative feedback. However, the FRN findings suggest an increased sensitivity to external feedback to losses in adolescents compared with adults, irrespective of the presence or absence of probabilistic reinforcement learning. These results reflect processing differences on the neural monitoring system and provide new perspectives on the dynamic development of an adolescent's brain.
Plasmids as stochastic model systems
NASA Astrophysics Data System (ADS)
Paulsson, Johan
2003-05-01
Plasmids are self-replicating gene clusters present in on average 2-100 copies per bacterial cell. To reduce random fluctuations and thereby avoid extinction, they ubiquitously autoregulate their own synthesis using negative feedback loops. Here I use van Kampen's Ω-expansion for a two-dimensional model of negative feedback including plasmids and ther replication inhibitors. This analytically summarizes the standard perspective on replication control -- including the effects of sensitivity amplification, exponential time-delays and noisy signaling. I further review the two most common molecular sensitivity mechanisms: multistep control and cooperativity. Finally, I discuss more controversial sensitivity schemes, such as noise-enhanced sensitivity, the exploitation of small-number combinatorics and double-layered feedback loops to suppress noise in disordered environments.
Hu, Xinyi; Chen, Yinghe; Tian, Baowei
2016-01-01
Past studies suggest that managers and educators often consider negative feedback as a motivator for individuals to think about their shortcomings and improve their work, but delivering negative feedback does not always achieve desired results. The present study, based on incremental theory, employed an intervention method to activate the belief that a particular ability could be improved after negative feedback. Three experiments tested the intervention effect on negative self-relevant emotion. Study 1 indicated conveying suggestions for improving ability reduced negative self-relevant emotion after negative feedback. Study 2 tested whether activating the sense of possible improvement in the ability could reduce negative self-relevant emotion. Results indicated activating the belief that ability could be improved reduced negative self-relevant emotion after failure, but delivering emotion management information alone did not yield the same effect. Study 3 extended the results by affirming the effort participants made in doing the test, and found the affirmation reduced negative self-relevant emotion. Collectively, the findings indicated focusing on the belief that the ability could be improved in the future can reduce negative self-relevant emotion after negative feedback.
Century/millennium internal climate oscillations in an ocean-atmosphere-continental ice sheet model
NASA Technical Reports Server (NTRS)
Birchfield, Edward G.; Wang, Huaxiao; Rich, Jonathan J.
1994-01-01
We demonstrate in a simple climate model that there exist nonlinear feedbacks between the atmosphere, ocean, and ice sheets capable of producing century/millennium timescale internal oscillations resembling those seen in the paleoclimate record. Feedbacks involve meridional heat and salt transports in the North Atlantic, surface ocean freshwater fluxes associated with melting and growing continental ice sheets in the northen hemisphere and with Atlantic to Pacific water vapor transport. The positive feedback between the production of North Atlantic Deep Water (NADW) and the meridional salt transport by the Atlantic thermohaline circulation tends to destabilize the climate system, while the negative feedback between the freshwater flux, either to or from the continental ice sheets, and meridional heat flux to the high-latitude North Atlantic, accomplished by the thermohaline circulation, stabilizes the system. The thermohaline circulation plays a central role in both positive and negative feedbacks because of its transport of both heat and salt. Because of asymmetries between the growth and melt phases the oscillations are, in general, accompanied by a growing or decreasing ice volume over each cycle, which in the model is reflected by increasing or decreasing mean salinity.
Kobza, Stefan; Ferrea, Stefano; Schnitzler, Alfons; Pollok, Bettina
2012-01-01
Feedback to both actively performed and observed behaviour allows adaptation of future actions. Positive feedback leads to increased activity of dopamine neurons in the substantia nigra, whereas dopamine neuron activity is decreased following negative feedback. Dopamine level reduction in unmedicated Parkinson’s Disease patients has been shown to lead to a negative learning bias, i.e. enhanced learning from negative feedback. Recent findings suggest that the neural mechanisms of active and observational learning from feedback might differ, with the striatum playing a less prominent role in observational learning. Therefore, it was hypothesized that unmedicated Parkinson’s Disease patients would show a negative learning bias only in active but not in observational learning. In a between-group design, 19 Parkinson’s Disease patients and 40 healthy controls engaged in either an active or an observational probabilistic feedback-learning task. For both tasks, transfer phases aimed to assess the bias to learn better from positive or negative feedback. As expected, actively learning patients showed a negative learning bias, whereas controls learned better from positive feedback. In contrast, no difference between patients and controls emerged for observational learning, with both groups showing better learning from positive feedback. These findings add to neural models of reinforcement-learning by suggesting that dopamine-modulated input to the striatum plays a minor role in observational learning from feedback. Future research will have to elucidate the specific neural underpinnings of observational learning. PMID:23185586
Counterintuitive effects of negative social feedback on attention.
Anderson, Brian A
2017-04-01
Which stimuli we pay attention to is strongly influenced by learning. Stimuli previously associated with reward outcomes, such as money and food, and stimuli previously associated with aversive outcomes, such as monetary loss and electric shock, automatically capture attention. Social reward (happy expressions) can bias attention towards associated stimuli, but the role of negative social feedback in biasing attentional selection remains unexplored. On the one hand, negative social feedback often serves to discourage particular behaviours. If attentional selection can be curbed much like any other behavioural preference, we might expect stimuli associated with negative social feedback to be more readily ignored. On the other hand, if negative social feedback influences attention in the same way that other aversive outcomes do, such feedback might ironically bias attention towards the stimuli it is intended to discourage selection of. In the present study, participants first completed a training phase in which colour targets were associated with negative social feedback. Then, in a subsequent test phase, these same colour stimuli served as task-irrelevant distractors during a visual search task. The results strongly support the latter interpretation in that stimuli previously associated with negative social feedback impaired search performance.
ERIC Educational Resources Information Center
Jansen, Brenda R. J.; van Duijvenvoorde, Anna C. K.; Huizenga, Hilde M.
2014-01-01
In many decision making tasks negative feedback is probabilistic and, as a consequence, may be given when the decision is actually correct. This feedback can be referred to as nonrepresentative negative feedback. In the current study, we investigated developmental and gender related differences in such switching after nonrepresentative negative…
ERIC Educational Resources Information Center
Stroud, Daniel; Olguin, David; Marley, Scott
2016-01-01
This article entails a study focused on the relationship between counseling students' negative childhood memories of receiving corrective feedback and current negative self-evaluations when receiving similar feedback in counselor education programs. Participants (N = 186) completed the Corrective Feedback Instrument-Revised (CFI-R; Hulse-Killacky…
Narrow log-periodic modulations in non-Markovian random walks
NASA Astrophysics Data System (ADS)
Diniz, R. M. B.; Cressoni, J. C.; da Silva, M. A. A.; Mariz, A. M.; de Araújo, J. M.
2017-12-01
What are the necessary ingredients for log-periodicity to appear in the dynamics of a random walk model? Can they be subtle enough to be overlooked? Previous studies suggest that long-range damaged memory and negative feedback together are necessary conditions for the emergence of log-periodic oscillations. The role of negative feedback would then be crucial, forcing the system to change direction. In this paper we show that small-amplitude log-periodic oscillations can emerge when the system is driven by positive feedback. Due to their very small amplitude, these oscillations can easily be mistaken for numerical finite-size effects. The models we use consist of discrete-time random walks with strong memory correlations where the decision process is taken from memory profiles based either on a binomial distribution or on a delta distribution. Anomalous superdiffusive behavior and log-periodic modulations are shown to arise in the large time limit for convenient choices of the models parameters.
Neural responses to negative feedback are related to negative emotionality in healthy adults
Santesso, Diane L.; Bogdan, Ryan; Birk, Jeffrey L.; Goetz, Elena L.; Holmes, Avram J.
2012-01-01
Prior neuroimaging and electrophysiological evidence suggests that potentiated responses in the anterior cingulate cortex (ACC), particularly the rostral ACC, may contribute to abnormal responses to negative feedback in individuals with elevated negative affect and depressive symptoms. The feedback-related negativity (FRN) represents an electrophysiological index of ACC-related activation in response to performance feedback. The purpose of the present study was to examine the FRN and underlying ACC activation using low resolution electromagnetic tomography source estimation techniques in relation to negative emotionality (a composite index including negative affect and subclinical depressive symptoms). To this end, 29 healthy adults performed a monetary incentive delay task while 128-channel event-related potentials were recorded. We found that enhanced FRNs and increased rostral ACC activation in response to negative—but not positive—feedback was related to greater negative emotionality. These results indicate that individual differences in negative emotionality—a putative risk factor for emotional disorders—modulate ACC-related processes critically implicated in assessing the motivational impact and/or salience of environmental feedback. PMID:21917847
Effect of biased feedback on motor imagery learning in BCI-teleoperation system.
Alimardani, Maryam; Nishio, Shuichi; Ishiguro, Hiroshi
2014-01-01
Feedback design is an important issue in motor imagery BCI systems. Regardless, to date it has not been reported how feedback presentation can optimize co-adaptation between a human brain and such systems. This paper assesses the effect of realistic visual feedback on users' BCI performance and motor imagery skills. We previously developed a tele-operation system for a pair of humanlike robotic hands and showed that BCI control of such hands along with first-person perspective visual feedback of movements can arouse a sense of embodiment in the operators. In the first stage of this study, we found that the intensity of this ownership illusion was associated with feedback presentation and subjects' performance during BCI motion control. In the second stage, we probed the effect of positive and negative feedback bias on subjects' BCI performance and motor imagery skills. Although the subject specific classifier, which was set up at the beginning of experiment, detected no significant change in the subjects' online performance, evaluation of brain activity patterns revealed that subjects' self-regulation of motor imagery features improved due to a positive bias of feedback and a possible occurrence of ownership illusion. Our findings suggest that in general training protocols for BCIs, manipulation of feedback can play an important role in the optimization of subjects' motor imagery skills.
Errázuriz, Paula; Zilcha-Mano, Sigal
2018-02-01
Our objective was to assess low-cost and feasible feedback alternatives and compare them to Lambert's OQ feedback system. We also studied patient, therapist, and process characteristics that could moderate the effect of feedback on outcome, session attendance, and alliance. A total of 547 patients, 75% female, average age 41 (SD = 13), 95% Latino, treated in an outpatient individual psychotherapy setting in Chile were randomly assigned to five feedback conditions: no feedback, feedback on symptomatology, feedback on the alliance, feedback on both symptomatology and alliance, and Lambert's OQ progress feedback report. The measures included the Outcome Questionnaire and the Working Alliance Inventory. We also had follow-up interviews with therapists. We found through multilevel modeling that feedback had no effect on outcome, session attendance, and alliance. Contrary to previous findings, these results were maintained even when focusing only on patients "not-on-track." However, patients' former psychiatric hospitalization history and baseline severity, combined with lack of progress, significantly moderated the impact of feedback. For this more dysfunctional population, "positive feedback" (i.e., low symptomatology) to therapists had a positive impact on therapy outcome, while "negative feedback" (i.e., high symptomatology) had a negative impact. Providing feedback to therapists without offering them tools to improve treatment may be ineffective and even be detrimental. This may be especially the case for patients who suffer more severe mental health issues and whose therapists receive mostly discouraging news as feedback. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Large deviation analysis of a simple information engine
NASA Astrophysics Data System (ADS)
Maitland, Michael; Grosskinsky, Stefan; Harris, Rosemary J.
2015-11-01
Information thermodynamics provides a framework for studying the effect of feedback loops on entropy production. It has enabled the understanding of novel thermodynamic systems such as the information engine, which can be seen as a modern version of "Maxwell's Dæmon," whereby a feedback controller processes information gained by measurements in order to extract work. Here, we analyze a simple model of such an engine that uses feedback control based on measurements to obtain negative entropy production. We focus on the distribution and fluctuations of the information obtained by the feedback controller. Significantly, our model allows an analytic treatment for a two-state system with exact calculation of the large deviation rate function. These results suggest an approximate technique for larger systems, which is corroborated by simulation data.
ERIC Educational Resources Information Center
Dweck, Carol S.
Sex differences in children's reactions to failure feedback in school situations were investigated by assessing the ways in which teachers use negative evaluation in the classroom. Three aspects of teachers' evaluative feedback were studied: (1) ratio of negative to positive feedback; (2) contingency vs. noncontingency of feedback; and (3) (the…
Lewis, Carol M; Monroe, Marcus M; Roberts, Dianna B; Hessel, Amy C; Lai, Stephen Y; Weber, Randal S
2015-05-15
An evaluation system was established for measuring physician performance. This study was designed to determine whether an initial evaluation with surgeon feedback improved subsequent performance. After an evaluation of an initial cohort of procedures (2004-2008), surgeons were given risk-adjusted individual feedback. Procedures in a postfeedback cohort (2009-2010) were then assessed. Both groups were further stratified into high-acuity procedure (HAP) and low-acuity procedure (LAP) groups. Negative performance measures included the length of the perioperative stay (2 days or longer for LAPs and 11 days or longer for HAPs); perioperative blood transfusions; a return to the operating room within 7 days; and readmission, surgical site infections, and mortality within 30 days. There were 2618 procedures in the initial cohort and 1389 procedures in the postfeedback cohort. Factors affecting performance included the surgeon, the procedure's acuity, and patient comorbidities. There were no significant differences in the proportions of LAPs and HAPs or in the prevalence of patient comorbidities between the 2 assessment periods. The mean length of stay significantly decreased for LAPs from 2.1 to 1.5 days (P = .005) and for HAPs from 10.5 to 7 days (P = .003). The incidence of 1 or more negative performance indicators decreased significantly for LAPs from 39.1% to 28.6% (P < .001) and trended downward for HAPs from 60.9% to 53.5% (P = .081). Periodic assessments of performance and outcomes are essential for continual quality improvement. Significant decreases in the length of stay and negative performance indicators were seen after feedback. Therefore, an audit and feedback system may be an effective means of improving quality of care and reducing practice variability within a surgical department. © 2015 American Cancer Society.
Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest.
Mangan, Scott A; Schnitzer, Stefan A; Herre, Edward A; Mack, Keenan M L; Valencia, Mariana C; Sanchez, Evelyn I; Bever, James D
2010-08-05
The accumulation of species-specific enemies around adults is hypothesized to maintain plant diversity by limiting the recruitment of conspecific seedlings relative to heterospecific seedlings. Although previous studies in forested ecosystems have documented patterns consistent with the process of negative feedback, these studies are unable to address which classes of enemies (for example, pathogens, invertebrates, mammals) exhibit species-specific effects strong enough to generate negative feedback, and whether negative feedback at the level of the individual tree is sufficient to influence community-wide forest composition. Here we use fully reciprocal shade-house and field experiments to test whether the performance of conspecific tree seedlings (relative to heterospecific seedlings) is reduced when grown in the presence of enemies associated with adult trees. Both experiments provide strong evidence for negative plant-soil feedback mediated by soil biota. In contrast, above-ground enemies (mammals, foliar herbivores and foliar pathogens) contributed little to negative feedback observed in the field. In both experiments, we found that tree species that showed stronger negative feedback were less common as adults in the forest community, indicating that susceptibility to soil biota may determine species relative abundance in these tropical forests. Finally, our simulation models confirm that the strength of local negative feedback that we measured is sufficient to produce the observed community-wide patterns in tree-species relative abundance. Our findings indicate that plant-soil feedback is an important mechanism that can maintain species diversity and explain patterns of tree-species relative abundance in tropical forests.
Negative soil moisture-precipitation feedback in dry and wet regions.
Yang, Lingbin; Sun, Guoqing; Zhi, Lu; Zhao, Jianjun
2018-03-05
Soil moisture-precipitation (SM-P) feedback significantly influences the terrestrial water and energy cycles. However, the sign of the feedback and the associated physical mechanism have been debated, leaving a research gap regarding global water and climate changes. Based on Koster's framework, we estimate SM-P feedback using satellite remote sensing and ground observation data sets. Methodologically, the sign of the feedback is identified by the correlation between monthly soil moisture and next-month precipitation. The physical mechanism is investigated through coupling precipitation and soil moisture (P-SM), soil moisture ad evapotranspiration (SM-E) and evapotranspiration and precipitation (E-P) correlations. Our results demonstrate that although positive SM-P feedback is predominant over land, non-negligible negative feedback occurs in dry and wet regions. Specifically, 43.75% and 40.16% of the negative feedback occurs in the arid and humid climate zones. Physically, negative SM-P feedback depends on the SM-E correlation. In dry regions, evapotranspiration change is soil moisture limited. In wet regions, evapotranspiration change is energy limited. We conclude that the complex SM-E correlation results in negative SM-P feedback in dry and wet regions, and the cause varies based on the environmental and climatic conditions.
The cloud-phase feedback in the Super-parameterized Community Earth System Model
NASA Astrophysics Data System (ADS)
Burt, M. A.; Randall, D. A.
2016-12-01
Recent comparisons of observations and climate model simulations by I. Tan and colleagues have suggested that the Wegener-Bergeron-Findeisen (WBF) process tends to be too active in climate models, making too much cloud ice, and resulting in an exaggerated negative cloud-phase feedback on climate change. We explore the WBF process and its effect on shortwave cloud forcing in present-day and future climate simulations with the Community Earth System Model, and its super-parameterized counterpart. Results show that SP-CESM has much less cloud ice and a weaker cloud-phase feedback than CESM.
Second law of thermodynamics and quantum feedback control: Maxwell's demon with weak measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, Kurt
2009-07-15
Recently Sagawa and Ueda [Phys. Rev. Lett. 100, 080403 (2008)] derived a bound on the work that can be extracted from a quantum system with the use of feedback control. For many quantum measurements their bound was not tight. We show that a tight version of this bound follows straightforwardly from recent work on Maxwell's demon by Alicki et al. [Open Syst. Inf. Dyn. 11, 205 (2004)], for both discrete and continuous feedback control. Our analysis also shows that bare, efficient measurements always do non-negative work on a system in equilibrium, but do not add heat.
Understanding the Influence of Emotions and Reflection upon Multi-Source Feedback Acceptance and Use
ERIC Educational Resources Information Center
Sargeant, Joan; Mann, Karen; Sinclair, Douglas; Van der Vleuten, Cees; Metsemakers, Job
2008-01-01
Introduction: Receiving negative performance feedback can elicit negative emotional reactions which can interfere with feedback acceptance and use. This study investigated emotional responses of family physicians' participating in a multi-source feedback (MSF) program, sources of these emotions, and their influence upon feedback acceptance and…
Whitaker, Briana K; Bauer, Jonathan T; Bever, James D; Clay, Keith
2017-08-01
Over the past 25 years, the plant-soil feedback (PSF) framework has catalyzed our understanding of how belowground microbiota impact plant fitness and species coexistence. Here, we apply a novel extension of this framework to microbiota associated with aboveground tissues, termed 'plant-phyllosphere feedback (PPFs)'. In parallel greenhouse experiments, rhizosphere and phyllosphere microbiota of con- and heterospecific hosts from four species were independently manipulated. In a third experiment, we tested the combined effects of soil and phyllosphere feedback under field conditions. We found that three of four species experienced weak negative PSF whereas, in contrast, all four species experienced strong negative PPFs. Field-based feedback estimates were highly negative for all four species, though variable in magnitude. Our results suggest that phyllosphere microbiota, like rhizosphere microbiota, can potentially mediate plant species coexistence via negative feedbacks. Extension of the PSF framework to the phyllosphere is needed to more fully elucidate plant-microbiota interactions. © 2017 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Abel, R.; Boning, C. W.
2016-02-01
Current practice in ocean-only model simulations is to force the ocean with a prescribed atmospheric state using bulk formulations. This practice provides a strong thermal restoring to the surface ocean with a typical time-scale of one month. In the real ocean a positive feedback (salinity advection) and a negative feedback (temperature advection) are associated with the Atlantic Meridional Overturning Circulation (AMOC). The surface branch of the AMOC transports warm and salty (relative to the mean conditions) to the subpolar North Atlantic and mix with the near-surface waters. A strong AMOC would therefore warm the subpolar North Atlantic, decrease deep water formation and also reduce AMOC strength (negative feedback). This negative feedback is diminished due to the surface forcing formulation and makes the system excessively sensitive to details in the freshwater fluxes . Instead, additional and unrealistic Sea Surface Salinity (SSS) restoring is applied. There have been several suggestions during the last 20 years for at least partially alleviating the problem. This includes some simplified model of the atmospheric mixed layer (AML) (CheapAML; Deremble et al., 2013) with prescribed winds which allows some feedback of SST anomalies on the near-surface air temperature and humidity needed to calculate the turbulent surface fluxes. We show that if the turbulent heat fluxes are modelled by the simple AML model net-fluxes get more realistic. Commonly ocean models experience an AMOC slowdown if SSS restoring is turned off. In the new system (ORCA05 with turbulent fluxes from CheapAML) this slowdown can be eliminated.
A better understanding of ambulance personnel's attitude towards real-time resuscitation feedback.
Brinkrolf, Peter; Lukas, Roman; Harding, Ulf; Thies, Sebastian; Gerss, Joachim; Van Aken, Hugo; Lemke, Hans; Schniedermeier, Udo; Bohn, Andreas
2018-03-01
High-quality chest compressions during cardiopulmonary resuscitation (CPR) play a significant role in surviving cardiac arrest. Chest-compression quality can be measured and corrected by real-time CPR feedback devices, which are not yet commonly used. This article looks at the acceptance of such systems in comparison of equipped and unequipped personnel. Two groups of emergency medical services' (EMS) personnel were interviewed using standardized questionnaires. The survey was conducted in the German cities Dortmund and Münster. Overall, 205 persons participated in the survey: 103 paramedics and emergency physicians from the Dortmund fire service and 102 personnel from the Münster service. The staff of the Dortmund service were not equipped with real-time feedback systems. The test group of equipped personnel of the ambulance service of Münster Fire brigade uses real-time feedback systems since 2007. What is the acceptance level of real-time feedback systems? Are there differences between equipped and unequipped personnel? The total sample is receptive towards real-time feedback systems. More than 80% deem the system useful. However, this study revealed concerns and prejudices by unequipped personnel. Negative ratings are significantly lower at the Münster site that is experienced with the use of the real-time feedback system in contrast to the Dortmund site where no such experience exists-the system's use in daily routine results in better evaluation than the expectations of unequipped personnel. Real-time feedback systems receive overall positive ratings. Prejudices and concerns seem to decrease with continued use of the system.
Feedback coupling in dynamical systems
NASA Astrophysics Data System (ADS)
Trimper, Steffen; Zabrocki, Knud
2003-05-01
Different evolution models are considered with feedback-couplings. In particular, we study the Lotka-Volterra system under the influence of a cumulative term, the Ginzburg-Landau model with a convolution memory term and chemical rate equations with time delay. The memory leads to a modified dynamical behavior. In case of a positive coupling the generalized Lotka-Volterra system exhibits a maximum gain achieved after a finite time, but the population will die out in the long time limit. In the opposite case, the time evolution is terminated in a crash. Due to the nonlinear feedback coupling the two branches of a bistable model are controlled by the the strength and the sign of the memory. For a negative coupling the system is able to switch over between both branches of the stationary solution. The dynamics of the system is further controlled by the initial condition. The diffusion-limited reaction is likewise studied in case the reacting entities are not available simultaneously. Whereas for an external feedback the dynamics is altered, but the stationary solution remain unchanged, a self-organized internal feedback leads to a time persistent solution.
NASA Astrophysics Data System (ADS)
Zhao, Xiao-mei; Xie, Dong-fan; Li, Qi
2015-02-01
With the development of intelligent transport system, advanced information feedback strategies have been developed to reduce traffic congestion and enhance the capacity. However, previous strategies provide accurate information to travelers and our simulation results show that accurate information brings negative effects, especially in delay case. Because travelers prefer to the best condition route with accurate information, and delayed information cannot reflect current traffic condition but past. Then travelers make wrong routing decisions, causing the decrease of the capacity and the increase of oscillations and the system deviating from the equilibrium. To avoid the negative effect, bounded rationality is taken into account by introducing a boundedly rational threshold BR. When difference between two routes is less than the BR, routes have equal probability to be chosen. The bounded rationality is helpful to improve the efficiency in terms of capacity, oscillation and the gap deviating from the system equilibrium.
Linear motor drive system for continuous-path closed-loop position control of an object
Barkman, William E.
1980-01-01
A precision numerical controlled servo-positioning system is provided for continuous closed-loop position control of a machine slide or platform driven by a linear-induction motor. The system utilizes filtered velocity feedback to provide system stability required to operate with a system gain of 100 inches/minute/0.001 inch of following error. The filtered velocity feedback signal is derived from the position output signals of a laser interferometer utilized to monitor the movement of the slide. Air-bearing slides mounted to a stable support are utilized to minimize friction and small irregularities in the slideway which would tend to introduce positioning errors. A microprocessor is programmed to read command and feedback information and converts this information into the system following error signal. This error signal is summed with the negative filtered velocity feedback signal at the input of a servo amplifier whose output serves as the drive power signal to the linear motor position control coil.
A Neurophysiological examination of quality of learning in a feedback-based learning task.
Arbel, Yael; Wu, Hao
2016-12-01
The efficiency with which one processes external feedback contributes to the speed and quality of one's learning. Previous findings that the feedback related negativity (FRN) event related potential (ERP) is modulated by learning outcomes suggested that this ERP reflects the extent to which feedback is used by the learner to improve performance. To further test this suggestion, we measured whether the FRN and the fronto-central positivity (FCP) that follows it are modulated by learning slopes, and as a function of individual differences in learning outcomes. Participants were tasked with learning names (non-words) of 42 novel objects in a two-choice feedback-based visual learning task. The items were divided into three sets of 14 items, each presented in five learning blocks and a sixth test block. Individual learning slopes based on performance on the task, as well as FRN and FCP slopes based on positive and negative feedback related activation in each block were created for 53 participants. Our data pointed to an interaction between slopes of the FRN elicited by negative feedback and learning slopes, such that a sharper decrease in the amplitude of the FRN to negative feedback was associated with sharper learning slopes. We further examined the predictive power of the FRN and FCP elicited in the training blocks on the learning outcomes as measured by performance on the test blocks. We found that small FRN to negative feedback, large FRN to positive feedback, and large FCP to negative feedback in the first training block predicted better learning outcomes. These results add to the growing evidence that the processes giving rise to the FRN and FCP are sensitive to individual differences in the extent to which feedback is used for learning. Copyright © 2016 Elsevier Ltd. All rights reserved.
Balconi, Michela; Crivelli, Davide
2010-02-01
Disruption of the sense of being effective and causally determinant in performing an action was explored in the present research by inducing an erroneous external spatial feedback in response to the subject's behaviour. ERPs were recorded from fifteen subjects when they were receiving mismatching/matching feedback information on direction. In addition, subjective sensitivity to the external cues was monitored by Behavioural Inhibition System (BIS) and Behavioural Activation System (BAS) measures, as well as Behaviour Identification process was tested by Behavior Identification Form (BIF). One negative ERP deflections of higher amplitude was revealed in concomitance to false feedback, peaking at about 210ms post-stimulus, more central-posteriorly localized. We supposed that it may represent feedback-error system of which activity might be reflected in FRN, deputed to monitor the unattended feedback furnished by an external system. Moreover, a P3b effect was also observed in great measure for false spatial feedback, more posteriorly (Pz) distributed. According to the context-updating hypothesis, the P3b may reflect the revision of the mental model of the context. BIS showed to be more sensitive to both veridical and false feedback that increased FRN, whereas higher-BAS and BAS-Reward measures revealed an increased proactive attitude to external feedback (higher P3b). Finally, low-level of action representation explained FRN amplitude more than high-level one.
Holmes, Avram J; Pizzagalli, Diego A
2007-02-01
Emerging evidence suggests that depression is associated with executive dysfunction, particularly after committing errors or receiving negative performance feedback. To test this hypothesis, 57 participants performed two executive tasks known to elicit errors (the Simon and Stroop Tasks) during positive or negative performance feedback. Participants with elevated depressive symptoms (Beck Depression Inventory scores >or= 13) were characterized by impaired posterror and postconflict performance adjustments, especially during emotionally negative task-related feedback. Additionally, for both tasks, depressive symptoms were inversely related to postconflict reaction time adjustments following negative, but not positive, feedback. These findings suggest that subclinical depression is associated with impairments in behavioral adjustments after internal (perceived failure) and external feedback about deficient task performance. (c) 2007 APA, all rights reserved.
ERIC Educational Resources Information Center
Borelli, Jessica L.; Prinstein, Mitchell J.
2006-01-01
This study examined reciprocal associations among adolescents' negative feedback-seeking, depressive symptoms, perceptions of friendship quality, and peer-reported social preference over an 11-month period. A total of 478 adolescents in grades 6-8 completed measures of negative feedback-seeking, depressive symptoms, friendship quality,…
van Schie, C C; Chiu, C D; Rombouts, S A R B; Heiser, W J; Elzinga, B M
2018-02-27
The way we view ourselves may play an important role in our responses to interpersonal interactions. In this study, we investigate how feedback valence, consistency of feedback with self-knowledge and global self-esteem influence affective and neural responses to social feedback. Participants (N = 46) with a high range of self-esteem levels performed the social feedback task in an MRI scanner. Negative, intermediate and positive feedback was provided, supposedly by another person based on a personal interview. Participants rated their mood and applicability of feedback to the self. Analyses on trial basis on neural and affective responses are used to incorporate applicability of individual feedback words. Lower self-esteem related to low mood especially after receiving non-applicable negative feedback. Higher self-esteem related to increased PCC and precuneus activation (i.e., self-referential processing) for applicable negative feedback. Lower self-esteem related to decreased mPFC, insula, ACC and PCC activation (i.e, self-referential processing) during positive feedback and decreased TPJ activation (i.e., other referential processing) for applicable positive feedback. Self-esteem and consistency of feedback with self-knowledge appear to guide our affective and neural responses to social feedback. This may be highly relevant for the interpersonal problems that individuals face with low self-esteem and negative self-views.
Chen, Ziguang; Lam, Wing; Zhong, Jian An
2007-01-01
From a basis in social exchange theory, the authors investigated whether, and how, negative feedback-seeking behavior and a team empowerment climate affect the relationship between leader-member exchange (LMX) and member performance. Results showed that subordinates' negative feedback-seeking behavior mediated the relationship between LMX and both objective and subjective in-role performance. In addition, the level of a team's empowerment climate was positively related to subordinates' own sense of empowerment, which in turn negatively moderated the effects of LMX on negative feedback-seeking behavior. 2007 APA, all rights reserved
Herzallah, Mohammad M.; Moustafa, Ahmed A.; Natsheh, Joman Y.; Abdellatif, Salam M.; Taha, Mohamad B.; Tayem, Yasin I.; Sehwail, Mahmud A.; Amleh, Ivona; Petrides, Georgios; Myers, Catherine E.; Gluck, Mark A.
2013-01-01
One barrier to interpreting past studies of cognition and major depressive disorder (MDD) has been the failure in many studies to adequately dissociate the effects of MDD from the potential cognitive side effects of selective serotonin reuptake inhibitors (SSRIs) use. To better understand how remediation of depressive symptoms affects cognitive function in MDD, we evaluated three groups of subjects: medication-naïve patients with MDD, medicated patients with MDD receiving the SSRI paroxetine, and healthy control (HC) subjects. All were administered a category-learning task that allows for dissociation between learning from positive feedback (reward) vs. learning from negative feedback (punishment). Healthy subjects learned significantly better from positive feedback than medication-naïve and medicated MDD groups, whose learning accuracy did not differ significantly. In contrast, medicated patients with MDD learned significantly less from negative feedback than medication-naïve patients with MDD and healthy subjects, whose learning accuracy was comparable. A comparison of subject’s relative sensitivity to positive vs. negative feedback showed that both the medicated MDD and HC groups conform to Kahneman and Tversky’s (1979) Prospect Theory, which expects losses (negative feedback) to loom psychologically slightly larger than gains (positive feedback). However, medicated MDD and HC profiles are not similar, which indicates that the state of medicated MDD is not “normal” when compared to HC, but rather balanced with less learning from both positive and negative feedback. On the other hand, medication-naïve patients with MDD violate Prospect Theory by having significantly exaggerated learning from negative feedback. This suggests that SSRI antidepressants impair learning from negative feedback, while having negligible effect on learning from positive feedback. Overall, these findings shed light on the importance of dissociating the cognitive consequences of MDD from those of SSRI treatment, and from cognitive evaluation of MDD subjects in a medication-naïve state before the administration of antidepressants. Future research is needed to correlate the mood-elevating effects and the cognitive balance between reward- and punishment-based learning related to SSRIs. PMID:24065894
Herzallah, Mohammad M; Moustafa, Ahmed A; Natsheh, Joman Y; Abdellatif, Salam M; Taha, Mohamad B; Tayem, Yasin I; Sehwail, Mahmud A; Amleh, Ivona; Petrides, Georgios; Myers, Catherine E; Gluck, Mark A
2013-01-01
One barrier to interpreting past studies of cognition and major depressive disorder (MDD) has been the failure in many studies to adequately dissociate the effects of MDD from the potential cognitive side effects of selective serotonin reuptake inhibitors (SSRIs) use. To better understand how remediation of depressive symptoms affects cognitive function in MDD, we evaluated three groups of subjects: medication-naïve patients with MDD, medicated patients with MDD receiving the SSRI paroxetine, and healthy control (HC) subjects. All were administered a category-learning task that allows for dissociation between learning from positive feedback (reward) vs. learning from negative feedback (punishment). Healthy subjects learned significantly better from positive feedback than medication-naïve and medicated MDD groups, whose learning accuracy did not differ significantly. In contrast, medicated patients with MDD learned significantly less from negative feedback than medication-naïve patients with MDD and healthy subjects, whose learning accuracy was comparable. A comparison of subject's relative sensitivity to positive vs. negative feedback showed that both the medicated MDD and HC groups conform to Kahneman and Tversky's (1979) Prospect Theory, which expects losses (negative feedback) to loom psychologically slightly larger than gains (positive feedback). However, medicated MDD and HC profiles are not similar, which indicates that the state of medicated MDD is not "normal" when compared to HC, but rather balanced with less learning from both positive and negative feedback. On the other hand, medication-naïve patients with MDD violate Prospect Theory by having significantly exaggerated learning from negative feedback. This suggests that SSRI antidepressants impair learning from negative feedback, while having negligible effect on learning from positive feedback. Overall, these findings shed light on the importance of dissociating the cognitive consequences of MDD from those of SSRI treatment, and from cognitive evaluation of MDD subjects in a medication-naïve state before the administration of antidepressants. Future research is needed to correlate the mood-elevating effects and the cognitive balance between reward- and punishment-based learning related to SSRIs.
The Search for Perpetual Motion: Fatigue, Friction, and Drag in Quality Improvement.
Cumbler, Ethan; Pierce, Read
Most people who have worked on continuous quality improvement (QI) with teams in the clinical microsystem have experienced "change fatigue." Application of the "Limit-to-Growth" system archetype to QI teams within health care can be used to understand negative feedback loops generated by successful QI that can limit future progress. Awareness of these factors can result in actions designed to reduce drag on forward momentum. Leaders in health care QI can anticipate and minimize negative feedback loops that accumulate to slow subsequent progress of highly functioning improvement teams within clinical microsystems.
A negative feedback mechanism for the long-term stabilization of the earth's surface temperature
NASA Technical Reports Server (NTRS)
Walker, J. C. G.; Hays, P. B.; Kasting, J. F.
1981-01-01
It is suggested that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism, in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, which in turn depends on the carbon dioxide partial pressure through the greenhouse effect. Although the quantitative details of this mechanism are speculative, it appears able to partially stabilize the earth's surface temperature against the steady increase of solar luminosity, believed to have occurred since the origin of the solar system.
Chapter 15: Potential Surprises: Compound Extremes and Tipping Elements
NASA Technical Reports Server (NTRS)
Kopp, R. E.; Hayhoe, K.; Easterling, D. R.; Hall, T.; Horton, R.; Kunkel, K. E.; LeGrande, A. N.
2017-01-01
The Earth system is made up of many components that interact in complex ways across a broad range of temporal and spatial scales. As a result of these interactions the behavior of the system cannot be predicted by looking at individual components in isolation. Negative feedbacks, or self-stabilizing cycles, within and between components of the Earth system can dampen changes (Ch. 2: Physical Drivers of Climate Change). However, their stabilizing effects render such feedbacks of less concern from a risk perspective than positive feedbacks, or self-reinforcing cycles. Positive feedbacks magnify both natural and anthropogenic changes. Some Earth system components, such as arctic sea ice and the polar ice sheets, may exhibit thresholds beyond which these self-reinforcing cycles can drive the component, or the entire system, into a radically different state. Although the probabilities of these state shifts may be difficult to assess, their consequences could be high, potentially exceeding anything anticipated by climate model projections for the coming century.
Li, Peng; Song, Xinxin; Wang, Jing; Zhou, Xiaoran; Li, Jiayi; Lin, Fengtong; Hu, Zhonghua; Zhang, Xinxin; Cui, Hewei; Wang, Wenmiao; Li, Hong; Cong, Fengyu; Roberson, Debi
2015-11-01
Many previous event-related potential (ERP) studies have linked the feedback related negativity (FRN) component with medial frontal cortex processing and associated this component with depression. Few if any studies have investigated the processing of neutral feedback in mildly depressive subjects in the normal population. Two experiments compared brain responses to neutral feedback with behavioral performance in mildly depressed subjects who scored highly on the Beck Depression Inventory (high BDI) and a control group with lower BDI scores (low BDI). In the first study, the FRN component was recorded when neutral, negative or positive feedback was pseudo-randomly delivered to the two groups in a time estimation task. In the second study, real feedback was provided to the two groups in the same task in order to measure their actual accuracy of performance. The results of experiment one (Exp. 1) revealed that a larger FRN effect was elicited by neutral feedback than by negative feedback in the low BDI group, but no significant difference was found between neutral condition and negative condition in the High BDI group. The present findings demonstrated that depressive tendencies influence the processing of neutral feedback in medial frontal cortex. The FRN effect may work as a helpful index for investigating cognitive bias in depression in future studies. Copyright © 2015 Elsevier Inc. All rights reserved.
The changing effects of Alaska’s boreal forests on the climate system
Euskirchen, E.S.; McGuire, A. David; Chapin, F.S.; Rupp, T.S.
2010-01-01
In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. In this manuscript, we examine the type and magnitude of the climate feedbacks from boreal forests in Alaska. Research generally suggests that the net effect of a warming climate is a positive regional feedback to warming. Currently, the primary positive climate feedbacks are likely related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most pronounced at the regional scale and reduce the resilience of the boreal vegetation – climate system by amplifying the rate of regional warming. Given the recent warming in this region, the large variety of associated mechanisms that can alter terrestrial ecosystems and influence the climate system, and a reduction in the boreal forest resilience, there is a strong need to continue to quantify and evaluate the feedback pathways.
Veiga-Lopez, Almudena; Astapova, Olga I.; Aizenberg, Esther F.; Lee, James S.; Padmanabhan, Vasantha
2009-01-01
Prenatal testosterone excess leads to neuroendocrine and periovulatory disruptions in the offspring culminating in progressive loss of cyclicity. It is unknown whether the mediary of these disruptions is androgen or estrogen, because testosterone can be aromatized to estrogen. Taking a reproductive life span approach of studying control, prenatal testosterone, and dihydrotestosterone-treated offspring, this study tested the hypothesis that disruptions in estradiol-negative but not -positive feedback effects are programmed by androgenic actions of testosterone and that these disruptions in turn will have an impact on the periovulatory hormonal dynamics. The approach was to test estradiol-negative and -positive feedback responses of all three groups of ovary-intact females during prepubertal age and then compare the periovulatory dynamics of luteinizing hormone, follicle-stimulating hormone, estradiol, and progesterone during the first breeding season. The findings show that estradiol-negative but not estradiol-positive feedback disruptions in prenatal testosterone-treated females are programmed by androgenic actions of prenatal testosterone excess and that follicular phase estradiol and gonadotropins surge disruptions during reproductive life are consistent with estrogenic programming. Additional studies carried out testing estradiol-positive feedback response over time found progressive deterioration of estradiol-positive feedback in prenatal testosterone-treated sheep until the time of puberty. Together, these findings provide insight into the mechanisms by which prenatal testosterone disrupts the reproductive axis. The findings may be of translational relevance since daughters of mothers with hyperandrogenism are at risk of increased exposure to androgens. PMID:19122183
Veiga-Lopez, Almudena; Astapova, Olga I; Aizenberg, Esther F; Lee, James S; Padmanabhan, Vasantha
2009-04-01
Prenatal testosterone excess leads to neuroendocrine and periovulatory disruptions in the offspring culminating in progressive loss of cyclicity. It is unknown whether the mediary of these disruptions is androgen or estrogen, because testosterone can be aromatized to estrogen. Taking a reproductive life span approach of studying control, prenatal testosterone, and dihydrotestosterone-treated offspring, this study tested the hypothesis that disruptions in estradiol-negative but not -positive feedback effects are programmed by androgenic actions of testosterone and that these disruptions in turn will have an impact on the periovulatory hormonal dynamics. The approach was to test estradiol-negative and -positive feedback responses of all three groups of ovary-intact females during prepubertal age and then compare the periovulatory dynamics of luteinizing hormone, follicle-stimulating hormone, estradiol, and progesterone during the first breeding season. The findings show that estradiol-negative but not estradiol-positive feedback disruptions in prenatal testosterone-treated females are programmed by androgenic actions of prenatal testosterone excess and that follicular phase estradiol and gonadotropins surge disruptions during reproductive life are consistent with estrogenic programming. Additional studies carried out testing estradiol-positive feedback response over time found progressive deterioration of estradiol-positive feedback in prenatal testosterone-treated sheep until the time of puberty. Together, these findings provide insight into the mechanisms by which prenatal testosterone disrupts the reproductive axis. The findings may be of translational relevance since daughters of mothers with hyperandrogenism are at risk of increased exposure to androgens.
Social anxiety and the ironic effects of positive interviewer feedback.
Budnick, Christopher J; Kowal, Marta; Santuzzi, Alecia M
2015-01-01
Positive interviewer feedback should encourage positive experiences and outcomes for interviewees. Yet, positive feedback is inconsistent with socially anxious interviewees' negative self-views. Socially anxious interviewees might experience increased self-focus while attempting to reconcile the inconsistency between their self-perceptions and that feedback. This could interfere with successful interview performance. This study used a 3 (feedback: positive, negative, no) × 2 (social anxiety: high, low) between-subjects design. Undergraduate students (N = 88) completed a measure of dispositional social anxiety. They then engaged in a simulated interview with a White confederate trained to adhere to a standardized script. Interviewees received positive, negative, or no interviewer feedback. Each interview was video recorded to code anxiety displays, impression management tactics, and interview success. Following positive feedback, socially anxious interviewees displayed more anxiety, less assertiveness, and received lower success ratings. Among anxious interviewees, increased self-focus provided an indirect path between positive feedback and lower success. Consistent with self-verification theory, anxious interviewees had poorer interview performance following positive feedback that contradicted their negative self-views. Thus, socially anxious interviewees might be at a disadvantage when interviewing, especially following positive feedback. Implications for interviewees and interviewers are discussed.
NASA Technical Reports Server (NTRS)
Zhang, Minghua; Bretherton, Christopher S.; Blossey, Peter N.; Austin, Phillip H.; Bacmeister, Julio T.; Bony, Sandrine; Brient, Florent; Cheedela, Suvarchal K.; Cheng, Anning; DelGenio, Anthony;
2013-01-01
1] CGILS-the CFMIP-GASS Intercomparison of Large Eddy Models (LESs) and single column models (SCMs)-investigates the mechanisms of cloud feedback in SCMs and LESs under idealized climate change perturbation. This paper describes the CGILS results from 15 SCMs and 8 LES models. Three cloud regimes over the subtropical oceans are studied: shallow cumulus, cumulus under stratocumulus, and well-mixed coastal stratus/stratocumulus. In the stratocumulus and coastal stratus regimes, SCMs without activated shallow convection generally simulated negative cloud feedbacks, while models with active shallow convection generally simulated positive cloud feedbacks. In the shallow cumulus alone regime, this relationship is less clear, likely due to the changes in cloud depth, lateral mixing, and precipitation or a combination of them. The majority of LES models simulated negative cloud feedback in the well-mixed coastal stratus/stratocumulus regime, and positive feedback in the shallow cumulus and stratocumulus regime. A general framework is provided to interpret SCM results: in a warmer climate, the moistening rate of the cloudy layer associated with the surface-based turbulence parameterization is enhanced; together with weaker large-scale subsidence, it causes negative cloud feedback. In contrast, in the warmer climate, the drying rate associated with the shallow convection scheme is enhanced. This causes positive cloud feedback. These mechanisms are summarized as the "NESTS" negative cloud feedback and the "SCOPE" positive cloud feedback (Negative feedback from Surface Turbulence under weaker Subsidence-Shallow Convection PositivE feedback) with the net cloud feedback depending on how the two opposing effects counteract each other. The LES results are consistent with these interpretations
Thomaes, Sander; Kamphuis, Jan Henk; de Castro, Bram Orobio; Telch, Michael J.
2010-01-01
Research among adults has consistently shown that people holding negative self-views prefer negative over positive feedback. The present study tested the hypothesis that this preference is less robust among pre-adolescents, such that it will be mitigated by a preceding positive event. Pre-adolescents (n = 75) holding positive or negative global self-esteem were randomized to a favorable or unfavorable peer evaluation outcome. Next, preferences for positive versus negative feedback were assessed using an unobtrusive behavioral viewing time measure. As expected, results showed that after being faced with the success outcome children holding negative self-views were as likely as their peers holding positive self-views to display a significant preference for positive feedback. In contrast, children holding negative self-views displayed a stronger preference for negative feedback after being faced with the unfavorable outcome that matched their pre-existing self-views. PMID:21151482
Reijntjes, Albert; Thomaes, Sander; Kamphuis, Jan Henk; de Castro, Bram Orobio; Telch, Michael J
2010-12-01
Research among adults has consistently shown that people holding negative self-views prefer negative over positive feedback. The present study tested the hypothesis that this preference is less robust among pre-adolescents, such that it will be mitigated by a preceding positive event. Pre-adolescents (n = 75) holding positive or negative global self-esteem were randomized to a favorable or unfavorable peer evaluation outcome. Next, preferences for positive versus negative feedback were assessed using an unobtrusive behavioral viewing time measure. As expected, results showed that after being faced with the success outcome children holding negative self-views were as likely as their peers holding positive self-views to display a significant preference for positive feedback. In contrast, children holding negative self-views displayed a stronger preference for negative feedback after being faced with the unfavorable outcome that matched their pre-existing self-views.
van Schie, Charlotte C; Chiu, Chui-De; Rombouts, Serge A R B; Heiser, Willem J; Elzinga, Bernet M
2018-01-01
Abstract The way we view ourselves may play an important role in our responses to interpersonal interactions. In this study, we investigate how feedback valence, consistency of feedback with self-knowledge and global self-esteem influence affective and neural responses to social feedback. Participants (N = 46) with a high range of self-esteem levels performed the social feedback task in an MRI scanner. Negative, intermediate and positive feedback was provided, supposedly by another person based on a personal interview. Participants rated their mood and applicability of feedback to the self. Analyses on trial basis on neural and affective responses are used to incorporate applicability of individual feedback words. Lower self-esteem related to low mood especially after receiving non-applicable negative feedback. Higher self-esteem related to increased posterior cingulate cortex and precuneus activation (i.e. self-referential processing) for applicable negative feedback. Lower self-esteem related to decreased medial prefrontal cortex, insula, anterior cingulate cortex and posterior cingulate cortex activation (i.e. self-referential processing) during positive feedback and decreased temporoparietal junction activation (i.e. other referential processing) for applicable positive feedback. Self-esteem and consistency of feedback with self-knowledge appear to guide our affective and neural responses to social feedback. This may be highly relevant for the interpersonal problems that individuals face with low self-esteem and negative self-views. PMID:29490088
Forbes, Chad E; Leitner, Jordan B
2014-10-01
Stereotype threat, a situational pressure individuals experience when they fear confirming a negative group stereotype, engenders a cascade of physiological stress responses, negative appraisals, and performance monitoring processes that tax working memory resources necessary for optimal performance. Less is known, however, about how stereotype threat biases attentional processing in response to performance feedback, and how such attentional biases may undermine performance. Women received feedback on math problems in stereotype threatening compared to stereotype-neutral contexts while continuous EEG activity was recorded. Findings revealed that stereotype threatened women elicited larger midline P100 ERPs, increased phase locking between anterior cingulate cortex and dorsolateral prefrontal cortex (two regions integral for attentional processes), and increased power in left fusiform gyrus in response to negative feedback compared to positive feedback and women in stereotype-neutral contexts. Increased power in left fusiform gyrus in response to negative feedback predicted underperformance on the math task among stereotype threatened women only. Women in stereotype-neutral contexts exhibited the opposite trend. Findings suggest that in stereotype threatening contexts, neural networks integral for attention and working memory are biased toward negative, stereotype confirming feedback at very early speeds of information processing. This bias, in turn, plays a role in undermining performance. Copyright © 2014 Elsevier B.V. All rights reserved.
Valence and magnitude ambiguity in feedback processing.
Gu, Ruolei; Feng, Xue; Broster, Lucas S; Yuan, Lu; Xu, Pengfei; Luo, Yue-Jia
2017-05-01
Outcome feedback which indicates behavioral consequences are crucial for reinforcement learning and environmental adaptation. Nevertheless, outcome information in daily life is often totally or partially ambiguous. Studying how people interpret this kind of information would provide important knowledge about the human evaluative system. This study concentrates on the neural processing of partially ambiguous feedback, that is, either its valence or magnitude is unknown to participants. To address this topic, we sequentially presented valence and magnitude information; electroencephalography (EEG) response to each kind of presentation was recorded and analyzed. The event-related potential components feedback-related negativity (FRN) and P3 were used as indices of neural activity. Consistent with previous literature, the FRN elicited by ambiguous valence was not significantly different from that elicited by negative valence. On the other hand, the FRN elicited by ambiguous magnitude was larger than both the large and small magnitude, indicating the motivation to seek unambiguous magnitude information. The P3 elicited by ambiguous valence and ambiguous magnitude was not significantly different from that elicited by negative valence and small magnitude, respectively, indicating the emotional significance of feedback ambiguity. Finally, the aforementioned effects also manifested in the stage of information integration. These findings indicate both similarities and discrepancies between the processing of valence ambiguity and that of magnitude ambiguity, which may help understand the mechanisms of ambiguous information processing.
NASA Astrophysics Data System (ADS)
Yang, Tao; Cao, Qingjie
2018-03-01
This work presents analytical studies of the stiffness nonlinearities SD (smooth and discontinuous) oscillator under displacement and velocity feedback control with a time delay. The SD oscillator can capture the qualitative characteristics of quasi-zero-stiffness and negative-stiffness. We focus mainly on the primary resonance of the quasi-zero-stiffness SD oscillator and the stochastic resonance (SR) of the negative-stiffness SD oscillator. Using the averaging method, we have been analyzed the amplitude response of the quasi-zero-stiffness SD oscillator. In this regard, the optimum time delay for changing the control intensity according to the optimization standard proposed can be obtained. For the optimum time delay, increasing the displacement feedback intensity is advantageous to suppress the vibrations in resonant regime where vibration isolation is needed, however, increasing the velocity feedback intensity is advantageous to strengthen the vibrations. Moreover, the effects of time-delayed feedback on the SR of the negative-stiffness SD oscillator are investigated under harmonic forcing and Gaussian white noise, based on the Langevin and Fokker-Planck approaches. The time-delayed feedback can enhance the SR phenomenon where vibrational energy harvesting is needed. This paper established the relationship between the parameters and vibration properties of a stiffness nonlinearities SD which provides the guidance for optimizing time-delayed control for vibration isolation and vibrational energy harvesting of the nonlinear systems.
Briat, Corentin; Gupta, Ankit; Khammash, Mustafa
2018-06-01
The ability of a cell to regulate and adapt its internal state in response to unpredictable environmental changes is called homeostasis and this ability is crucial for the cell's survival and proper functioning. Understanding how cells can achieve homeostasis, despite the intrinsic noise or randomness in their dynamics, is fundamentally important for both systems and synthetic biology. In this context, a significant development is the proposed antithetic integral feedback (AIF) motif, which is found in natural systems, and is known to ensure robust perfect adaptation for the mean dynamics of a given molecular species involved in a complex stochastic biomolecular reaction network. From the standpoint of applications, one drawback of this motif is that it often leads to an increased cell-to-cell heterogeneity or variance when compared to a constitutive (i.e. open-loop) control strategy. Our goal in this paper is to show that this performance deterioration can be countered by combining the AIF motif and a negative feedback strategy. Using a tailored moment closure method, we derive approximate expressions for the stationary variance for the controlled network that demonstrate that increasing the strength of the negative feedback can indeed decrease the variance, sometimes even below its constitutive level. Numerical results verify the accuracy of these results and we illustrate them by considering three biomolecular networks with two types of negative feedback strategies. Our computational analysis indicates that there is a trade-off between the speed of the settling-time of the mean trajectories and the stationary variance of the controlled species; i.e. smaller variance is associated with larger settling-time. © 2018 The Author(s).
A cognitive stressor for event-related potential studies: the Portland arithmetic stress task.
Atchley, Rachel; Ellingson, Roger; Klee, Daniel; Memmott, Tabatha; Oken, Barry
2017-05-01
In this experiment, we developed and evaluated the Portland Arithmetic Stress Task (PAST) as a cognitive stressor to evaluate acute and sustained stress reactivity for event-related potential (ERP) studies. The PAST is a titrated arithmetic task adapted from the Montreal Imaging Stress Task (MIST), with added experimental control over presentation parameters, improved and synchronized acoustic feedback and generation of timing markers needed for physiological analyzes of real-time brain activity. Thirty-one older adults (M = 60 years) completed the PAST. EEG was recorded to assess feedback-related negativity (FRN) and the magnitude of the stress response through autonomic nervous system activity and salivary cortisol. Physiological measures other than EEG included heart rate, respiration rate, heart rate variability, blood pressure and salivary cortisol. These measures were collected at several time points throughout the task. Feedback-related negativity evoked-potential responses were elicited and they significantly differed depending on whether positive or negative feedback was received. The PAST also increased systolic blood pressure, heart rate variability and respiration rates compared to a control condition attentional task. These preliminary results suggest that the PAST is an effective cognitive stressor. Successful measurement of the feedback-related negativity suggests that the PAST is conducive to EEG and time-sensitive ERP experiments. Moreover, the physiological findings support the PAST as a potent method for inducing stress in older adult participants. Further research is needed to confirm these results, but the PAST shows promise as a tool for cognitive stress induction for time-locked event-related potential experiments.
Self-esteem Modulates Medial Prefrontal Cortical Responses to Evaluative Social Feedback
Kelley, William M.; Heatherton, Todd F.
2010-01-01
Self-esteem is a facet of personality that influences perception of social standing and modulates the salience of social acceptance and rejection. As such, self-esteem may bias neural responses to positive and negative social feedback across individuals. During functional magnetic resonance imaging scanning, participants (n = 42) engaged in a social evaluation task whereby they ostensibly received feedback from peers indicating they were liked or disliked. Results demonstrated that individuals with low self-esteem believed that they received less positive feedback from others and showed enhanced activity to positive versus negative social feedback in the ventral anterior cingulate cortex/medial prefrontal cortex (vACC/mPFC). By contrast, vACC/mPFC activity was insensitive to positive versus negative feedback in individuals with high self-esteem, and these individuals consistently overestimated the amount of positive feedback received from peers. Voxelwise analyses supported these findings; lower self-esteem predicted a linear increase in vACC/mPFC response to positive versus negative social feedback. Taken together, the present findings propose a functional role for the vACC/mPFC in representing the salience of social feedback and shaping perceptions of relative social standing. PMID:20351022
Leue, Anja; Cano Rodilla, Carmen; Beauducel, André
2015-01-01
Individuals typically evaluate whether their performance and the obtained feedback match. Previous research has shown that feedback negativity (FN) depends on outcome probability and feedback valence. It is, however, less clear to what extent previous effects of outcome probability on FN depend on self-evaluations of response correctness. Therefore, we investigated the effects of outcome probability on FN amplitude in a simple go/no-go task that allowed for the self-evaluation of response correctness. We also investigated effects of performance incompatibility and feedback valence. In a sample of N = 22 participants, outcome probability was manipulated by means of precues, feedback valence by means of monetary feedback, and performance incompatibility by means of feedback that induced a match versus mismatch with individuals' performance. We found that the 100% outcome probability condition induced a more negative FN following no-loss than the 50% outcome probability condition. The FN following loss was more negative in the 50% compared to the 100% outcome probability condition. Performance-incompatible loss resulted in a more negative FN than performance-compatible loss. Our results indicate that the self-evaluation of the correctness of responses should be taken into account when the effects of outcome probability and expectation mismatch on FN are investigated. PMID:26783525
Leue, Anja; Cano Rodilla, Carmen; Beauducel, André
2015-01-01
Individuals typically evaluate whether their performance and the obtained feedback match. Previous research has shown that feedback negativity (FN) depends on outcome probability and feedback valence. It is, however, less clear to what extent previous effects of outcome probability on FN depend on self-evaluations of response correctness. Therefore, we investigated the effects of outcome probability on FN amplitude in a simple go/no-go task that allowed for the self-evaluation of response correctness. We also investigated effects of performance incompatibility and feedback valence. In a sample of N = 22 participants, outcome probability was manipulated by means of precues, feedback valence by means of monetary feedback, and performance incompatibility by means of feedback that induced a match versus mismatch with individuals' performance. We found that the 100% outcome probability condition induced a more negative FN following no-loss than the 50% outcome probability condition. The FN following loss was more negative in the 50% compared to the 100% outcome probability condition. Performance-incompatible loss resulted in a more negative FN than performance-compatible loss. Our results indicate that the self-evaluation of the correctness of responses should be taken into account when the effects of outcome probability and expectation mismatch on FN are investigated.
Fedotchev, A I
2010-01-01
The perspective approach to non-pharmacological correction of the stress induced functional disorders in humans, based on the double negative feedback from patient's EEG was validated and experimentally tested. The approach implies a simultaneous use of narrow frequency EEG-oscillators, characteristic for each patient and recorded in real time span, in two independent contours of negative feedback--traditional contour of adaptive biomanagement and additional contour of resonance stimulation. In the last the signals of negative feedback from individual narrow frequency EEG oscillators are not recognized by the subject, but serve for an automatic modulation of the parameters of the sensory impact. Was shown that due to combination of active (conscious perception) and passive (automatic modulation) use of signals of negative feedback from narrow frequency EEG components of the patient, opens a possibility of considerable increase of efficiency of the procedures of EEG biomanagement.
Liu, Xinhuai; Porteous, Robert; Herbison, Allan E
2017-01-01
Inputs from GABAergic and glutamatergic neurons are suspected to play an important role in regulating the activity of the gonadotropin-releasing hormone (GnRH) neurons. The GnRH neurons exhibit marked plasticity to control the ovarian cycle with circulating estradiol concentrations having profound "feedback" effects on their activity. This includes "negative feedback" responsible for suppressing GnRH neuron activity and "positive feedback" that occurs at mid-cycle to activate the GnRH neurons to generate the preovulatory luteinizing hormone surge. In the present study, we employed brain slice electrophysiology to question whether synaptic ionotropic GABA and glutamate receptor signaling at the GnRH neuron changed at times of negative and positive feedback. We used a well characterized estradiol (E)-treated ovariectomized (OVX) mouse model to replicate negative and positive feedback. Miniature and spontaneous postsynaptic currents (mPSCs and sPSCs) attributable to GABA A and glutamatergic receptor signaling were recorded from GnRH neurons obtained from intact diestrous, OVX, OVX + E (negative feedback), and OVX + E+E (positive feedback) female mice. Approximately 90% of GnRH neurons exhibited spontaneous GABA A -mPSCs in all groups but no significant differences in the frequency or kinetics of mPSCs were found at the times of negative or positive feedback. Approximately 50% of GnRH neurons exhibited spontaneous glutamate mPSCs but again no differences were detected. The same was true for spontaneous PSCs in all cases. These observations indicate that the kinetics of ionotropic GABA and glutamate receptor synaptic transmission to GnRH neurons remain stable across the different estrogen feedback states.
Response to "The Iris Hypothesis: A Negative or Positive Cloud Feedback?"
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Lindzen, Richard S.; Hou, Arthur Y.; Lau, William K. M. (Technical Monitor)
2001-01-01
Based on radiance measurements of Japan's Geostationary Meteorological Satellite, Lindzen et al. found that the high-level cloud cover averaged over the tropical western Pacific decreases with increasing sea surface temperature. They further found that the response of high-level clouds to the sea surface temperature had an effect of reducing the magnitude of climate change, which is referred as a negative climate feedback. Lin et al. reassessed the results found by Lindzen et al. by analyzing the radiation and clouds derived from the Tropical Rainfall Measuring Mission Clouds and the Earth's Radiant Energy System measurements. They found a weak positive feedback between high-level clouds and the surface temperature. We have found that the approach taken by Lin et al. to estimating the albedo and the outgoing longwave radiation is incorrect and that the inferred climate sensitivity is unreliable.
Affective-motivational influences on feedback-related ERPs in a gambling task.
Masaki, Hiroaki; Takeuchi, Shigeki; Gehring, William J; Takasawa, Noriyoshi; Yamazaki, Katuo
2006-08-11
Theories have proposed that both the stimulus-preceding negativity (SPN) and the medial frontal negativity (MFN) reflect affective/motivational processing. We examined the effect of the motivational impact of feedback stimuli on these ERPs using a simple gambling task, focusing on the influence of prior losses and gains on ERPs and choice behavior. Choices were riskier following large losses than following small losses or large gains. The MFN, however, was larger following larger gains. The SPN preceding the outcome was also larger after a greater gain. Thus, we confirmed that both the MFN and the SPN respond to the motivational properties of the feedback. A dissociation between risk-taking behavior and these ERPs suggests that there could be two monitoring systems: one that leads to riskier responses following losses and a second that leads to heightened expectancy.
Servo control of an optical trap.
Wulff, Kurt D; Cole, Daniel G; Clark, Robert L
2007-08-01
A versatile optical trap has been constructed to control the position of trapped objects and ultimately to apply specified forces using feedback control. While the design, development, and use of optical traps has been extensive and feedback control has played a critical role in pushing the state of the art, few comprehensive examinations of feedback control of optical traps have been undertaken. Furthermore, as the requirements are pushed to ever smaller distances and forces, the performance of optical traps reaches limits. It is well understood that feedback control can result in both positive and negative effects in controlled systems. We give an analysis of the trapping limits as well as introducing an optical trap with a feedback control scheme that dramatically improves an optical trap's sensitivity at low frequencies.
Feedback Seeking in Early Adolescence: Self-Enhancement or Self-Verification?
Rosen, Lisa H; Principe, Connor P; Langlois, Judith H
2013-02-13
The authors examined whether early adolescents ( N = 90) solicit self-enhancing feedback (i.e., positive feedback) or self-verifying feedback (i.e., feedback congruent with self-views, even when these views are negative). Sixth, seventh, and eighth graders first completed a self-perception measure and then selected whether to receive positive or negative feedback from an unknown peer in different domains of self. Results were consistent with self-verification theory; adolescents who perceived themselves as having both strengths and weaknesses were more likely to seek negative feedback regarding a self-perceived weakness compared to a self-perceived strength. The authors found similar support for self-verification processes when they considered the entire sample regardless of perceived strengths and weaknesses; hierarchical linear modeling (HLM) examined the predictive power of ratings of self-perceived ability, certainty, and importance on feedback seeking for all participants and provided additional evidence of self-verification strivings in adolescence.
Feedback Seeking in Early Adolescence: Self-Enhancement or Self-Verification?
Rosen, Lisa H.; Principe, Connor P.; Langlois, Judith H.
2012-01-01
The authors examined whether early adolescents (N = 90) solicit self-enhancing feedback (i.e., positive feedback) or self-verifying feedback (i.e., feedback congruent with self-views, even when these views are negative). Sixth, seventh, and eighth graders first completed a self-perception measure and then selected whether to receive positive or negative feedback from an unknown peer in different domains of self. Results were consistent with self-verification theory; adolescents who perceived themselves as having both strengths and weaknesses were more likely to seek negative feedback regarding a self-perceived weakness compared to a self-perceived strength. The authors found similar support for self-verification processes when they considered the entire sample regardless of perceived strengths and weaknesses; hierarchical linear modeling (HLM) examined the predictive power of ratings of self-perceived ability, certainty, and importance on feedback seeking for all participants and provided additional evidence of self-verification strivings in adolescence. PMID:23543746
Agreeable fancy or disagreeable truth? Reconciling self-enhancement and self-verification.
Swann, W B; Pelham, B W; Krull, D S
1989-11-01
Three studies asked why people sometimes seek positive feedback (self-enhance) and sometimes seek subjectively accurate feedback (self-verify). Consistent with self-enhancement theory, people with low self-esteem as well as those with high self-esteem indicated that they preferred feedback pertaining to their positive rather than negative self-views. Consistent with self-verification theory, the very people who sought favorable feedback pertaining to their positive self-conceptions sought unfavorable feedback pertaining to their negative self-views, regardless of their level of global self-esteem. Apparently, although all people prefer to seek feedback regarding their positive self-views, when they seek feedback regarding their negative self-views, they seek unfavorable feedback. Whether people self-enhance or self-verify thus seems to be determined by the positivity of the relevant self-conceptions rather than their level of self-esteem or the type of person they are.
NASA Astrophysics Data System (ADS)
Zhu, Peng; Zhuang, Qianlai; Ciais, Philippe; Welp, Lisa; Li, Wenyu; Xin, Qinchuan
2017-02-01
Increasing atmospheric CO2 affects photosynthesis involving directly increasing leaf carboxylation rates, stomatal closure, and climatic effects. The direct effects are generally thought to be positive leading to increased photosynthesis, while its climatic effects can be regionally positive or negative. These effects are usually considered to be independent from each other, but they are in fact coupled through interactions between land surface exchanges of gases and heat and the physical climate system. In particular, stomatal closure reduces evapotranspiration and increases sensible heat emissions from ecosystems, leading to decreased atmospheric moisture and precipitation and local warming. We use a coupled earth system model to attribute the influence of the increase in CO2 on gross primary productivity (GPP) during the period of 1930-2011. In our model, CO2 radiative effects cause climate change that has only a negligible effect on global GPP (a reduction of 0.9 ± 2% during the last 80 years) because of opposite responses between tropical and northern biomes. On the other hand, CO2 physiological effects on GPP are both positive, by increased carboxylation rates and water use efficiency (7.1 ± 0.48% increase), and negative, by vegetation-climate feedback reducing precipitation, as a consequence of decreased transpiration and increased sensible heat in areas without water limitation (2.7 ± 1.76% reduction).When considering the coupled atmosphere-vegetation system, negative climate feedback on photosynthesis and plant growth due to the current level of CO2 opposes 29-38% of the gains from direct fertilization effects.
Television-optical operational amplifier.
Goetz, J; Häusler, G; Sesselmann, R
1979-08-15
The advantages of negative feedback are well known in electronics and extensively used in the operational amplifier. The properties of such a system are nearly independent of the parameters in the forward branch of the system; they are only determined by external elements in the backward branch. An optical analog of such an operational amplifier is reported. The essential operations, amplifications, and inversion of the circulating signals are carried out using a TV system. The capability of the system to compensate for spatial inhomogeneities and for nonlinearities is demonstrated. In addition, the system is able to create the inverse of a transfer function located in the feedback branch.
Results of adaptive feedforward on GTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziomek, C.D.; Denney, P.M.; Regan, A.H.
1993-01-01
This paper presents the results of the adaptive feedforward system in use on the Ground Test Accelerator (GTA). The adaptive feedforward system was shown to correct repetitive, high-frequency errors in the amplitude and phase of the RF field of the pulsed accelerator. The adaptive feedforward system was designed as an augmentation to the RF field feedback control system and was able to extend the closed-loop bandwidth and disturbance rejection by a factor of ten. Within a second implementation, the adaptive feedforward hardware was implemented in place of the feedback control system and was shown to negate both beam transients andmore » phase droop in the klystron amplifier.« less
Results of adaptive feedforward on GTA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziomek, C.D.; Denney, P.M.; Regan, A.H.
1993-06-01
This paper presents the results of the adaptive feedforward system in use on the Ground Test Accelerator (GTA). The adaptive feedforward system was shown to correct repetitive, high-frequency errors in the amplitude and phase of the RF field of the pulsed accelerator. The adaptive feedforward system was designed as an augmentation to the RF field feedback control system and was able to extend the closed-loop bandwidth and disturbance rejection by a factor of ten. Within a second implementation, the adaptive feedforward hardware was implemented in place of the feedback control system and was shown to negate both beam transients andmore » phase droop in the klystron amplifier.« less
Meng, Liang; Yang, Zijing
2018-01-03
With the aim of examining the positive effect of the formal feedback mechanism itself beyond its informational aspect, we engaged participants in the stopwatch task and recorded their electroencephalogram throughout the experiment. This task requires a button press to stop the watch within a given time interval, the completion of which is simultaneously accompanied by adequate information on task performance. In the self-controlled feedback mode, participants could freely choose whether to request formal feedback after completing the task. In another mode, additional feedback was not provided. The 'non-choice' cue was found to elicit a more negative cue-elicited feedback negativity compared with 'choice', suggesting that the opportunity to solicit formal feedback was perceived as more desirable. In addition, a more enhanced stimulus-preceding negativity was observed prior to the task initiation cue in the self-controlled feedback condition, indicating that participants paid more sustained anticipatory attention during task preparation. Taken together, these electrophysiological results suggested an inherent reward within the formal feedback mechanism itself and the significance of self-controlled formal feedback for autonomous task engagement.
The Role of Implicit Negative Feedback in SLA: Models and Recasts in Japanese and Spanish.
ERIC Educational Resources Information Center
Long, Michael; Inagaki, Shunji; Ortega, Lourdes
1998-01-01
Two experiments were conducted to assess relative utility of models and recasts in second-language (L2) Japanese and Spanish. Using pretest, posttest, control group design, each study provided evidence of adults' ability to learn from implicit negative feedback; in one case, support for notion that reactive implicit negative feedback can be more…
Bocedi, Greta; Reid, Jane M
2017-12-01
Ongoing ambitions are to understand the evolution of costly polyandry and its consequences for species ecology and evolution. Emerging patterns could stem from feed-back dynamics between the evolving mating system and its genetic environment, defined by interactions among kin including inbreeding. However, such feed-backs are rarely considered in nonselfing systems. We use a genetically explicit model to demonstrate a mechanism by which inbreeding depression can select for polyandry to mitigate the negative consequences of mating with inbred males, rather than to avoid inbreeding, and to elucidate underlying feed-backs. Specifically, given inbreeding depression in sperm traits, costly polyandry evolved to ensure female fertility, without requiring explicit inbreeding avoidance. Resulting sperm competition caused evolution of sperm traits and further mitigated the negative effect of inbreeding depression on female fertility. The evolving mating system fed back to decrease population-wide homozygosity, and hence inbreeding. However, the net overall decrease was small due to compound effects on the variances in sex-specific reproductive success and paternity skew. Purging of deleterious mutations did not eliminate inbreeding depression in sperm traits or hence selection for polyandry. Overall, our model illustrates that polyandry evolution, both directly and through sperm competition, might facilitate evolutionary rescue for populations experiencing sudden increases in inbreeding. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.
NASA Astrophysics Data System (ADS)
Euskirchen, E. S.; Bennett, A. P.; Breen, A. L.; Genet, H.; Lindgren, M. A.; Kurkowski, T. A.; McGuire, A. D.; Rupp, T. S.
2016-10-01
Changes in vegetation and snow cover may lead to feedbacks to climate through changes in surface albedo and energy fluxes between the land and atmosphere. In addition to these biogeophysical feedbacks, biogeochemical feedbacks associated with changes in carbon (C) storage in the vegetation and soils may also influence climate. Here, using a transient biogeographic model (ALFRESCO) and an ecosystem model (DOS-TEM), we quantified the biogeophysical feedbacks due to changes in vegetation and snow cover across continuous permafrost to non-permafrost ecosystems in Alaska and northwest Canada. We also computed the changes in carbon storage in this region to provide a general assessment of the direction of the biogeochemical feedback. We considered four ecoregions, or Landscape Conservations Cooperatives (LCCs; including the Arctic, North Pacific, Western Alaska, and Northwest Boreal). We examined the 90 year period from 2010 to 2099 using one future emission scenario (A1B), under outputs from two general circulation models (MPI-ECHAM5 and CCCMA-CGCM3.1). We found that changes in snow cover duration, including both the timing of snowmelt in the spring and snow return in the fall, provided the dominant positive biogeophysical feedback to climate across all LCCs, and was greater for the ECHAM (+3.1 W m-2 decade-1 regionally) compared to the CCCMA (+1.3 W m-2 decade-1 regionally) scenario due to an increase in loss of snow cover in the ECHAM scenario. The greatest overall negative feedback to climate from changes in vegetation cover was due to fire in spruce forests in the Northwest Boreal LCC and fire in shrub tundra in the Western LCC (-0.2 to -0.3 W m-2 decade-1). With the larger positive feedbacks associated with reductions in snow cover compared to the smaller negative feedbacks associated with shifts in vegetation, the feedback to climate warming was positive (total feedback of +2.7 W m-2 decade regionally in the ECHAM scenario compared to +0.76 W m-2 decade regionally in the CCCMA scenario). Overall, increases in C storage in the vegetation and soils across the study region would act as a negative feedback to climate. By exploring these feedbacks to climate, we can reach a more integrated understanding of the manner in which climate change may impact interactions between high-latitude ecosystems and the global climate system.
Feedback-Based, System-Level Properties of Vertebrate-Microbial Interactions
Rivas, Ariel L.; Jankowski, Mark D.; Piccinini, Renata; Leitner, Gabriel; Schwarz, Daniel; Anderson, Kevin L.; Fair, Jeanne M.; Hoogesteijn, Almira L.; Wolter, Wilfried; Chaffer, Marcelo; Blum, Shlomo; Were, Tom; Konah, Stephen N.; Kempaiah, Prakash; Ong’echa, John M.; Diesterbeck, Ulrike S.; Pilla, Rachel; Czerny, Claus-Peter; Hittner, James B.; Hyman, James M.; Perkins, Douglas J.
2013-01-01
Background Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data analysis of feedback-like processes may be considered. Methods To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was evaluated, which utilizes leukocyte data structures designed to diminish data variability and enhance discrimination. Using data collected from one avian and two mammalian (human and bovine) species infected with viral, parasite, or bacterial agents (both sensitive and resistant to antimicrobials), four data structures were explored: (i) counts or percentages of a single leukocyte type, such as lymphocytes, neutrophils, or macrophages (the classic approach), and three levels of the SB/EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-dimensional (rotating 3D) host-microbial interactions. Results In all studies, no classic data structure discriminated disease-positive (D+, or observations in which a microbe was isolated) from disease-negative (D–, or microbial-negative) groups: D+ and D– data distributions overlapped. In contrast, multi-dimensional analysis of indicators designed to possess desirable features, such as a single line of observations, displayed a continuous, circular data structure, whose abrupt inflections facilitated partitioning into subsets statistically significantly different from one another. In all studies, the 3D, SB/EB approach distinguished three (steady, positive, and negative) feedback phases, in which D– data characterized the steady state phase, and D+ data were found in the positive and negative phases. In humans, spatial patterns revealed false-negative observations and three malaria-positive data classes. In both humans and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections were discriminated from non-MRSA infections. Conclusions More information can be extracted, from the same data, provided that data are structured, their 3D relationships are considered, and well-conserved (feedback-like) functions are estimated. Patterns emerging from such structures may distinguish well-conserved from recently developed host-microbial interactions. Applications include diagnosis, error detection, and modeling. PMID:23437039
Feedback-based, system-level properties of vertebrate-microbial interactions.
Rivas, Ariel L; Jankowski, Mark D; Piccinini, Renata; Leitner, Gabriel; Schwarz, Daniel; Anderson, Kevin L; Fair, Jeanne M; Hoogesteijn, Almira L; Wolter, Wilfried; Chaffer, Marcelo; Blum, Shlomo; Were, Tom; Konah, Stephen N; Kempaiah, Prakash; Ong'echa, John M; Diesterbeck, Ulrike S; Pilla, Rachel; Czerny, Claus-Peter; Hittner, James B; Hyman, James M; Perkins, Douglas J
2013-01-01
Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data analysis of feedback-like processes may be considered. To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was evaluated, which utilizes leukocyte data structures designed to diminish data variability and enhance discrimination. Using data collected from one avian and two mammalian (human and bovine) species infected with viral, parasite, or bacterial agents (both sensitive and resistant to antimicrobials), four data structures were explored: (i) counts or percentages of a single leukocyte type, such as lymphocytes, neutrophils, or macrophages (the classic approach), and three levels of the SB/EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-dimensional (rotating 3D) host-microbial interactions. In all studies, no classic data structure discriminated disease-positive (D+, or observations in which a microbe was isolated) from disease-negative (D-, or microbial-negative) groups: D+ and D- data distributions overlapped. In contrast, multi-dimensional analysis of indicators designed to possess desirable features, such as a single line of observations, displayed a continuous, circular data structure, whose abrupt inflections facilitated partitioning into subsets statistically significantly different from one another. In all studies, the 3D, SB/EB approach distinguished three (steady, positive, and negative) feedback phases, in which D- data characterized the steady state phase, and D+ data were found in the positive and negative phases. In humans, spatial patterns revealed false-negative observations and three malaria-positive data classes. In both humans and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections were discriminated from non-MRSA infections. More information can be extracted, from the same data, provided that data are structured, their 3D relationships are considered, and well-conserved (feedback-like) functions are estimated. Patterns emerging from such structures may distinguish well-conserved from recently developed host-microbial interactions. Applications include diagnosis, error detection, and modeling.
Peterson, Jordan B.
2018-01-01
Although performance feedback is widely employed as a means to improve motivation, the efficacy and reliability of performance feedback is often obscured by individual differences and situational variables. The joint role of these moderating variables remains unknown. Accordingly, we investigate how the motivational impact of feedback is moderated by personality and task-difficulty. Utilizing three samples (total N = 916), we explore how Big Five personality traits moderate the motivational impact of false positive and negative feedback on playful, neutral, and frustrating puzzle tasks, respectively. Conscientious and Neurotic individuals together appear particularly sensitive to task difficulty, becoming significantly more motivated by negative feedback on playful tasks and demotivated by negative feedback on frustrating tasks. Results are discussed in terms of Goal-Setting and Self Determination Theory. Implications for industry and education are considered. PMID:29787593
Preserved reward outcome processing in ASD as revealed by event-related potentials.
McPartland, James C; Crowley, Michael J; Perszyk, Danielle R; Mukerji, Cora E; Naples, Adam J; Wu, Jia; Mayes, Linda C
2012-05-31
Problems with reward system function have been posited as a primary difficulty in autism spectrum disorders. The current study examined an electrophysiological marker of feedback monitoring, the feedback-related negativity (FRN), during a monetary reward task. The study advanced prior understanding by focusing exclusively on a developmental sample, applying rigorous diagnostic characterization and introducing an experimental paradigm providing more subtly different feedback valence (reward versus non-reward instead of reward versus loss). Twenty-six children with autism spectrum disorder and 28 typically developing peers matched on age and full-scale IQ played a guessing game resulting in monetary gain ("win") or neutral outcome ("draw"). ERP components marking early visual processing (N1, P2) and feedback appraisal (FRN) were contrasted between groups in each condition, and their relationships to behavioral measures of social function and dysfunction, social anxiety, and autism symptomatology were explored. FRN was observed on draw trials relative to win trials. Consistent with prior research, children with ASD exhibited a FRN to suboptimal outcomes that was comparable to typical peers. ERP parameters were unrelated to behavioral measures. Results of the current study indicate typical patterns of feedback monitoring in the context of monetary reward in ASD. The study extends prior findings of normative feedback monitoring to a sample composed exclusively of children and demonstrates that, as in typical development, individuals with autism exhibit a FRN to suboptimal outcomes, irrespective of neutral or negative valence. Results do not support a pervasive problem with reward system function in ASD, instead suggesting any dysfunction lies in more specific domains, such as social perception, or in response to particular feedback-monitoring contexts, such as self-evaluation of one's errors.
Joiner, T E
1999-09-01
It is suggested that self-verification theory may provide insight as to why bulimic symptoms often persist for years, sometimes even despite intervention. In an effort to meet basic needs for self-confirmation, bulimic women may invite the very responses they fear (e.g., negative feedback about appearance), and thus propagate their symptoms. It was thus predicted that interest in negative feedback would be correlated with body dissatisfaction and bulimic symptoms, and that interest in negative feedback would serve as a risk factor for development of later symptoms, via the mediating effects of increased body dissatisfaction. Seventy-nine undergraduate women completed self-report assessments of interest in negative feedback, bulimic symptoms, and body dissatisfaction. Results supported the prediction that, despite serious concerns about body appearance, bulimic women were interested in the very feedback that would aggravate these concerns. Moreover, interest in negative feedback appeared to serve as a risk factor for development of later symptoms, via the mediating effects of increased body dissatisfaction. The clinical implications of these findings are discussed.
Reijntjes, Albert; Dekovic, Maja; Vermande, Marjolijn; Telch, Michael J
2007-06-01
The present study examined the linkage between pre-adolescent children's depressive symptoms and their preferences for receiving positive vs. negative feedback subsequent to being faced with an experimentally manipulated peer evaluation outcome in real time. Participants (n = 142) ages 10 to 13, played a computer contest based on the television show Survivor and were randomized to either a peer rejection (i.e., receiving the lowest total 'likeability' score from a group of peer-judges), a peer success (i.e., receiving the highest score), or a control peer evaluation condition. Children's self-reported feedback preferences were then assessed. Results revealed that participants assigned to the negative evaluation outcome, relative to either the success or the control outcome, showed a significantly higher subsequent preference for negatively tuned feedback. Contrary to previous work and predictions derived from self-verification theory, children higher in depressive symptoms were only more likely to prefer negative feedback in response to the negative peer evaluation outcome. These effects for depression were not accounted for by either state mood at baseline or mood change in response to the feedback manipulation.
CRPS: A contingent hypothesis with prostaglandins as crucial conversion factor.
van der Veen, Phe
2015-11-01
CRPS is an acute pain disease expressed as chronic pain with a severe loss of tissue and function. CRPS usually occurs after minor injuries and then progresses in a way that is scarcely controllable, or completely uncontrollable. This article addresses the functional control mechanism of a biological organism, a comparison of techniques, and the way the negative feedback mechanisms fail in regulated feedback systems. The measurement and regulation system is controlled at the local, regional, and central levels in a biological system. Locally generated substances such as prostaglandins and hormones, as well as the central nervous system, play important roles in this process. Prostaglandins fulfil many conversion functions and are involved in vasoactive processes, pain, and inflammation. They play an intermediating role between the activity of the autonomic nervous system and local occurrences. The insufficiently explored conversion function of prostaglandins as a ubiquitously present cofactor may be related to the development of CRPS at sites which have had minor injuries in the past. Chronic Regional Pain Syndrome (CRPS) is a moderately prevalent disease, which occurs more frequently with age. Even though there are diseases known to have a precipitating effect on the aetiology of CRPS, for example Carpal tunnel syndrome, the mechanism of onset is unknown. The disease falls under the category of chronic pain, and seldom has an effective treatment based on scientific research. The economic and psychosocial aspects of the disease are substantial. CRPS is the final position of a positive feedback measurement and control system. Homoeostasis is directed by measurement and control processes. In electronics, a rapid conversion system, which quickly adapts to changing circumstances, superimposed with a delayed conversion system, which ensures a stable basis of homoeostasis. Measured changes are compensatorily controlled. An analogy is expected for a Complex Adaptive System such as a living organism. Hormonal systems are slow systems, suitable for stabilising activity. Neural reflex systems function quickly. Prostaglandins that come from local tissue may be the link between the slow and rapid control. In electronics, negative feedback can convert into a feedback loop which results in the dysregulation, which is what prostaglandins do in biochemistry. A dysregulated feedback control mechanism only has two positions: a zero position and a final position. The process is not easily influenced by other factors. Only phase shifting and signal weakness can affect the feedback process. Theoretically, prostaglandins can also affect this process. Copyright © 2015 Elsevier Ltd. All rights reserved.
The magnitude and colour of noise in genetic negative feedback systems.
Voliotis, Margaritis; Bowsher, Clive G
2012-08-01
The comparative ability of transcriptional and small RNA-mediated negative feedback to control fluctuations or 'noise' in gene expression remains unexplored. Both autoregulatory mechanisms usually suppress the average (mean) of the protein level and its variability across cells. The variance of the number of proteins per molecule of mean expression is also typically reduced compared with the unregulated system, but is almost never below the value of one. This relative variance often substantially exceeds a recently obtained, theoretical lower limit for biochemical feedback systems. Adding the transcriptional or small RNA-mediated control has different effects. Transcriptional autorepression robustly reduces both the relative variance and persistence (lifetime) of fluctuations. Both benefits combine to reduce noise in downstream gene expression. Autorepression via small RNA can achieve more extreme noise reduction and typically has less effect on the mean expression level. However, it is often more costly to implement and is more sensitive to rate parameters. Theoretical lower limits on the relative variance are known to decrease slowly as a measure of the cost per molecule of mean expression increases. However, the proportional increase in cost to achieve substantial noise suppression can be different away from the optimal frontier-for transcriptional autorepression, it is frequently negligible.
Graded Positive Feedback in Elasmobranch Ampullae of Lorenzini
NASA Astrophysics Data System (ADS)
Kalmijn, Ad. J.
2003-05-01
The acute electrical sensitivity of marine sharks and rays is the greatest known in the Animal Kingdom. I investigate the possibility that the underlying biophysical principles are the very same as those encountered in the central nervous system of animal and man. The elasmobranch ampullae of Lorenzini detect the weak electric fields originating from the oceanic environment, whereas the nerve cells of the brain detect the electric fields arising, well, from the central nervous system. In responding to electrical signals, the cell membranes of excitable cells behave in different regions of the cell as negative or positive conductors. The negative and positive conductances in series, loaded by the cell's electrolytic environment, constitute a positive feedback circuit. The result may be of an all-or-none nature, as in peripheral nerve conduction, or of a graded nature, as in central processing. In this respect, the operation of the elasmobranch ampullae of Lorenzini is more akin to the graded, integrative processes of higher brain centers than to the conduction of nerve action potentials. Hence, the positive-feedback ampullary circuit promises to help elucidate the functioning of the central nervous system as profoundly as the squid giant axon has served to reveal the process of nervous conduction.
Rapid feedback processing in human nucleus accumbens and motor thalamus.
Schüller, Thomas; Gruendler, Theo O J; Jocham, Gerhard; Klein, Tilmann A; Timmermann, Lars; Visser-Vandewalle, Veerle; Kuhn, Jens; Ullsperger, Markus
2015-04-01
The nucleus accumbens (NAcc) and thalamus are integral parts in models of feedback processing. Deep brain stimulation (DBS) has been successfully employed to alleviate symptoms of psychiatric conditions including obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS). Common target structures are the NAcc and the ventral anterior and ventro-lateral nuclei (VA/VL) of the thalamus, for OCD and TS, respectively. The feedback related negativity (FRN) is an event-related potential associated with feedback processing reflecting posterior medial frontal cortex (pMFC) activity. Here we report on three cases where we recorded scalp EEG and local field potentials (LFP) from externalized electrodes located in the NAcc or thalamus (VA/VL) while patients engaged in a modified time estimation task, known to engage feedback processing and elicit the FRN. Additionally, scalp EEG were recorded from 29 healthy participants (HP) engaged in the same task. The signal in all structures (pMFC, NAcc, and thalamus) was differently modulated by positive and negative feedback. LFP activity in the NAcc showed a biphasic time course after positive feedback during the FRN time interval. Negative feedback elicited a much weaker and later response. In the thalamus a monophasic modulation was recorded during the FRN time interval. Again, this modulation was more pronounced after positive performance feedback compared to negative feedback. In channels outside the target area no modulation was observed. The surface-FRN was reliably elicited on a group level in HP and showed no significant difference following negative feedback between patients and HP. German Clinical Trial Register: Neurocognitive specification of dysfunctions within basal ganglia-cortex loops and their therapeutic modulation by deep brain stimulation in patients with obsessive compulsive disorder and Tourette syndrome, http://www.drks.de/DRKS00005316. Copyright © 2015 Elsevier Ltd. All rights reserved.
Performance feedback, self-esteem, and cardiovascular adaptation to recurring stressors.
Brown, Eoin G; Creaven, Ann-Marie
2017-05-01
This study sought to examine the effects of performance feedback and individual differences in self-esteem on cardiovascular habituation to repeat stress exposure. Sixty-six university students (n = 39 female) completed a self-esteem measure and completed a cardiovascular stress-testing protocol involving repeated exposure to a mental arithmetic task. Cardiovascular functioning was sampled across four phases: resting baseline, initial stress exposure, a recovery period, and repeated stress exposure. Participants were randomly assigned to receive fictional positive feedback, negative feedback, or no feedback following the recovery period. Negative feedback was associated with a sensitized blood pressure response to a second exposure of the stress task. Positive feedback was associated with decreased cardiovascular and psychological responses to a second exposure. Self-esteem was also found to predict reactivity and this interacted with the type of feedback received. These findings suggest that negative performance feedback sensitizes cardiovascular reactivity to stress, whereas positive performance feedback increases both cardiovascular and psychological habituation to repeat exposure to stressors. Furthermore, an individual's self-esteem also appears to influence this process.
Lee, Woogul; Kim, Sung-il
2014-01-01
We conducted behavioral and functional magnetic resonance imaging (fMRI) research to investigate the effects of two types of achievement goals—mastery goals and performance-approach goals— on challenge seeking and feedback processing. The results of the behavioral experiment indicated that mastery goals were associated with a tendency to seek challenge, both before and after experiencing difficulty during task performance, whereas performance-approach goals were related to a tendency to avoid challenge after encountering difficulty during task performance. The fMRI experiment uncovered a significant decrease in ventral striatal activity when participants received negative feedback for any task type and both forms of achievement goals. During the processing of negative feedback for the rule-finding task, performance-approach-oriented participants showed a substantial reduction in activity in the dorsolateral prefrontal cortex (DLPFC) and the frontopolar cortex, whereas mastery-oriented participants showed little change. These results suggest that performance-approach-oriented participants are less likely to either recruit control processes in response to negative feedback or focus on task-relevant information provided alongside the negative feedback. In contrast, mastery-oriented participants are more likely to modulate aversive valuations to negative feedback and focus on the constructive elements of feedback in order to attain their task goals. We conclude that performance-approach goals lead to a reluctant stance towards difficulty, while mastery goals encourage a proactive stance. PMID:25251396
Psychophysiological Control of Acognitive Task Using Adaptive Automation
NASA Technical Reports Server (NTRS)
Freeman, Frederick; Pope, Alan T. (Technical Monitor)
2001-01-01
The major focus of the present proposal was to examine psychophysiological variables related to hazardous states of awareness induced by monitoring automated systems. With the increased use of automation in today's work environment, people's roles in the work place are being redefined from that of active participant to one of passive monitor. Although the introduction of automated systems has a number of benefits, there are also a number of disadvantages regarding worker performance. Byrne and Parasuraman have argued for the use of psychophysiological measures in the development and the implementation of adaptive automation. While both performance based and model based adaptive automation have been studied, the use of psychophysiological measures, especially EEG, offers the advantage of real time evaluation of the state of the subject. The current study used the closed-loop system, developed at NASA-Langley Research Center, to control the state of awareness of subjects while they performed a cognitive vigilance task. Previous research in our laboratory, supported by NASA, has demonstrated that, in an adaptive automation, closed-loop environment, subjects perform a tracking task better under a negative than a positive, feedback condition. In addition, this condition produces less subjective workload and larger P300 event related potentials to auditory stimuli presented in a concurrent oddball task. We have also recently shown that the closed-loop system used to control the level of automation in a tracking task can also be used to control the event rate of stimuli in a vigilance monitoring task. By changing the event rate based on the subject's index of arousal, we have been able to produce improved monitoring, relative to various control groups. We have demonstrated in our initial closed-loop experiments with the the vigilance paradigm that using a negative feedback contingency (i.e. increasing event rates when the EEG index is low and decreasing event rates when the EEG index is high) results in a marked decrease of the vigilance decrement over a 40 minute session. This effect is in direct contrast to performance of a positive feedback group, as well as a number of other control groups which demonstrated the typical vigilance decrement. Interestingly, however, the negative feedback group performed at virtually the same level as a yoked control group. The yoked control group received the same order of changes in event rate that were generated by the negative feedback subjects using the closed-loop system. Thus it would appear to be possible to optimize vigilance performance by controlling the stimuli which subjects are asked to process.
Positivity effect in healthy aging in observational but not active feedback-learning.
Bellebaum, Christian; Rustemeier, Martina; Daum, Irene
2012-01-01
The present study investigated the impact of healthy aging on the bias to learn from positive or negative performance feedback in observational and active feedback learning. In active learning, a previous study had already shown a negative learning bias in healthy seniors older than 75 years, while no bias was found for younger seniors. However, healthy aging is accompanied by a 'positivity effect', a tendency to primarily attend to stimuli with positive valence. Based on recent findings of dissociable neural mechanisms in active and observational feedback learning, the positivity effect was hypothesized to influence older participants' observational feedback learning in particular. In two separate experiments, groups of young (mean age 27) and older participants (mean age 60 years) completed an observational or active learning task designed to differentially assess positive and negative learning. Older but not younger observational learners showed a significant bias to learn better from positive than negative feedback. In accordance with previous findings, no bias was found for active learning. This pattern of results is discussed in terms of differences in the neural underpinnings of active and observational learning from performance feedback.
Leung, Chi K.; Wang, Ying; Deonarine, Andrew; Tang, Lanlan; Prasse, Stephanie
2013-01-01
Negative-feedback loops between transcription factors and repressors in responses to xenobiotics, oxidants, heat, hypoxia, DNA damage, and infection have been described. Although common, the function of feedback is largely unstudied. Here, we define a negative-feedback loop between the Caenorhabditis elegans detoxification/antioxidant response factor SKN-1/Nrf and its repressor wdr-23 and investigate its function in vivo. Although SKN-1 promotes stress resistance and longevity, we find that tight regulation by WDR-23 is essential for growth and reproduction. By disabling SKN-1 transactivation of wdr-23, we reveal that feedback is required to set the balance between growth/reproduction and stress resistance/longevity. We also find that feedback is required to set the sensitivity of a core SKN-1 target gene to an electrophile. Interestingly, the effect of feedback on target gene induction is greatly reduced when the stress response is strongly activated, presumably to ensure maximum activation of cytoprotective genes during potentially fatal conditions. Our work provides a framework for understanding the function of negative feedback in inducible stress responses and demonstrates that manipulation of feedback alone can shift the balance of competing animal processes toward cell protection, health, and longevity. PMID:23836880
The dissociable effects of punishment and reward on motor learning.
Galea, Joseph M; Mallia, Elizabeth; Rothwell, John; Diedrichsen, Jörn
2015-04-01
A common assumption regarding error-based motor learning (motor adaptation) in humans is that its underlying mechanism is automatic and insensitive to reward- or punishment-based feedback. Contrary to this hypothesis, we show in a double dissociation that the two have independent effects on the learning and retention components of motor adaptation. Negative feedback, whether graded or binary, accelerated learning. While it was not necessary for the negative feedback to be coupled to monetary loss, it had to be clearly related to the actual performance on the preceding movement. Positive feedback did not speed up learning, but it increased retention of the motor memory when performance feedback was withdrawn. These findings reinforce the view that independent mechanisms underpin learning and retention in motor adaptation, reject the assumption that motor adaptation is independent of motivational feedback, and raise new questions regarding the neural basis of negative and positive motivational feedback in motor learning.
Joiner, T E
1995-05-01
The hypothesis that people who seek and receive negative feedback are vulnerable to increases in depressed symptoms was tested among 100 undergraduates and their roommates. Students and roommates completed questionnaires on their views of each other and on their own levels of negative feedback seeking, depressed and anxious symptoms, negative and positive affect, and self-esteem. Three weeks later, students and roommates completed the same questionnaires. Results were, in general, consistent with prediction. Students who reported an interest in their roommates' negative feedback and who lived with a roommate who viewed them negatively were at heightened risk for increases in depressed symptoms. These results could not be explained in terms of the variables' relations to trait self-esteem. The symptom specificity of the effect was moderately supported. Implications for work on interpersonal vulnerability to depression are discussed.
Adult Age Differences in Learning from Positive and Negative Probabilistic Feedback
Simon, Jessica R.; Howard, James H.; Howard, Darlene V.
2010-01-01
Objective Past research has investigated age differences in frontal-based decision making, but few studies have focused on the behavioral effects of striatal-based changes in healthy aging. Feedback learning has been found to vary with dopamine levels; increases in dopamine facilitate learning from positive feedback, whereas decreases facilitate learning from negative feedback. Given previous evidence of striatal dopamine depletion in healthy aging, we investigated behavioral differences between college-aged and healthy old adults using a feedback learning task that is sensitive to both frontal and striatal processes. Method Seventeen college-aged (M = 18.9 years) and 24 healthy, older adults (M = 70.3 years) completed the Probabilistic selection task, in which participants are trained on probabilistic stimulus-outcome information and then tested to determine whether they learned more from positive or negative feedback. Results As a group, the old adults learned equally well from positive and negative feedback, whereas the college-aged group learned more from positive than negative feedback, F(1, 39) = 4.10, p < .05, reffect = .3. However, these group differences were not due to the older individuals being more balanced learners. Most individuals of both ages were balanced learners, but while all of the remaining young learners had a positive bias, the remaining older learners were split between those with positive and negative learning biases (χ2(2) = 6.12, p<.047). Conclusions These behavioral results are consistent with the dopamine theory of striatal aging, and suggest there might be adult age differences in the kinds of information people use when faced with a current choice. PMID:20604627
Social deviance activates the brain's error-monitoring system.
Kim, Bo-Rin; Liss, Alison; Rao, Monica; Singer, Zachary; Compton, Rebecca J
2012-03-01
Social psychologists have long noted the tendency for human behavior to conform to social group norms. This study examined whether feedback indicating that participants had deviated from group norms would elicit a neural signal previously shown to be elicited by errors and monetary losses. While electroencephalograms were recorded, participants (N = 30) rated the attractiveness of 120 faces and received feedback giving the purported average rating made by a group of peers. The feedback was manipulated so that group ratings either were the same as a participant's rating or deviated by 1, 2, or 3 points. Feedback indicating deviance from the group norm elicited a feedback-related negativity, a brainwave signal known to be elicited by objective performance errors and losses. The results imply that the brain treats deviance from social norms as an error.
The Interplay between Feedback and Buffering in Cellular Homeostasis.
Hancock, Edward J; Ang, Jordan; Papachristodoulou, Antonis; Stan, Guy-Bart
2017-11-22
Buffering, the use of reservoirs of molecules to maintain concentrations of key molecular species, and negative feedback are the primary known mechanisms for robust homeostatic regulation. To our knowledge, however, the fundamental principles behind their combined effect have not been elucidated. Here, we study the interplay between buffering and negative feedback in the context of cellular homeostasis. We show that negative feedback counteracts slow-changing disturbances, whereas buffering counteracts fast-changing disturbances. Furthermore, feedback and buffering have limitations that create trade-offs for regulation: instability in the case of feedback and molecular noise in the case of buffering. However, because buffering stabilizes feedback and feedback attenuates noise from slower-acting buffering, their combined effect on homeostasis can be synergistic. These effects can be explained within a traditional control theory framework and are consistent with experimental observations of both ATP homeostasis and pH regulation in vivo. These principles are critical for studying robustness and homeostasis in biology and biotechnology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Varalakshmi, M.; Chandrasekaran, V. M.; Saravanarajan, M. C.
2017-11-01
In this paper, we discuss about the steady state behaviour of M/G/1 retrial queueing system with two phases of services and immediate feedbacks under working vacation policy where the regular busy server is affected due to the arrival of negative customers. Upon arrival if the customer finds the server busy, breakdown or on working vacation it enters an orbit; otherwise the customer enters into the service area immediately. After service completion, the customer is allowed to make finite number of immediate feedback. The feedback service also consists of two phases. At the service completion epoch of a positive customer, if the orbit is empty the server goes for a working vacation. The server works at a lower service rate during working vacation (WV) period. Using the supplementary variable technique, we found out the steady state probability generating function for the system and in orbit. System performance measures and reliability measures are discussed. Finally, some numerical examples are presented to validate the analyticalresults.
Dekovic, Maja; Vermande, Marjolijn; Telch, Michael J.
2007-01-01
The present study examined the linkage between pre-adolescent children’s depressive symptoms and their preferences for receiving positive vs. negative feedback subsequent to being faced with an experimentally manipulated peer evaluation outcome in real time. Participants (n = 142) ages 10 to 13, played a computer contest based on the television show Survivor and were randomized to either a peer rejection (i.e., receiving the lowest total ‘likeability’ score from a group of peer-judges), a peer success (i.e., receiving the highest score), or a control peer evaluation condition. Children’s self-reported feedback preferences were then assessed. Results revealed that participants assigned to the negative evaluation outcome, relative to either the success or the control outcome, showed a significantly higher subsequent preference for negatively tuned feedback. Contrary to previous work and predictions derived from self-verification theory, children higher in depressive symptoms were only more likely to prefer negative feedback in response to the negative peer evaluation outcome. These effects for depression were not accounted for by either state mood at baseline or mood change in response to the feedback manipulation. PMID:17279340
Using Feedback to Promote Physical Activity: The Role of the Feedback Sign
Kramer, Jan-Niklas
2017-01-01
Background Providing feedback is a technique to promote health behavior that is emphasized by behavior change theories. However, these theories make contradicting predictions regarding the effect of the feedback sign—that is, whether the feedback signals success or failure. Thus, it is unclear whether positive or negative feedback leads to more favorable behavior change in a health behavior intervention. Objective The aim of this study was to examine the effect of the feedback sign in a health behavior change intervention. Methods Data from participants (N=1623) of a 6-month physical activity intervention was used. Participants received a feedback email at the beginning of each month. Feedback was either positive or negative depending on the participants’ physical activity in the previous month. In an exploratory analysis, change in monthly step count averages was used to evaluate the feedback effect. Results The feedback sign did not predict the change in monthly step count averages over the course of the intervention (b=−84.28, P=.28). Descriptive differences between positive and negative feedback can be explained by regression to the mean. Conclusions The feedback sign might not influence the effect of monthly feedback emails sent out to participants of a large-scale physical activity intervention. However, randomized studies are needed to further support this conclusion. Limitations as well as opportunities for future research are discussed. PMID:28576757
Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback
NASA Astrophysics Data System (ADS)
Al Noufaey, K. S.
2018-06-01
This paper considers the application of a semi-analytical method to the Schnakenberg model of a reaction-diffusion cell. The semi-analytical method is based on the Galerkin method which approximates the original governing partial differential equations as a system of ordinary differential equations. Steady-state curves, bifurcation diagrams and the region of parameter space in which Hopf bifurcations occur are presented for semi-analytical solutions and the numerical solution. The effect of feedback control, via altering various concentrations in the boundary reservoirs in response to concentrations in the cell centre, is examined. It is shown that increasing the magnitude of feedback leads to destabilization of the system, whereas decreasing this parameter to negative values of large magnitude stabilizes the system. The semi-analytical solutions agree well with numerical solutions of the governing equations.
Local feedback mechanisms of the shallow water region around the Maritime Continent
NASA Astrophysics Data System (ADS)
Xue, Pengfei; Eltahir, Elfatih A. B.; Malanotte-Rizzoli, Paola; Wei, Jun
2014-10-01
The focus of this study is the local-scale air-sea feedback mechanisms over the shallow shelf water region (water depth <200 m) of the Maritime Continent (MC). MC was selected as a pilot study site for its extensive shallow water coverage, geographic complexity, and importance in the global climate system. To identify the local-scale air-sea feedback processes, we ran numerical experiments with perturbed surface layer water temperature using a coupled ocean-atmosphere model and an uncoupled ocean model. By examining the responses of the coupled and uncoupled models to the water temperature perturbation, we identify that, at a local-scale, a negative feedback process through the coupled dynamics that tends to restore the SST from its perturbation could dominate the shallow water region of the MC at a short time scale of several days. The energy budget shows that 38% of initial perturbation-induced heat energy was adjusted through the air-sea feedback mechanisms within 2 weeks, of which 58% is directly transferred into the atmosphere by the adjustment of latent heat flux due to the evaporative cooling mechanism. The increased inputs of heat and moisture into the lower atmosphere then modifies its thermal structure and increases the formation of low-level clouds, which act as a shield preventing incoming solar radiation from reaching the sea surface, accounts for 38% of the total adjustment of surface heat fluxes, serving as the second mechanism for the negative feedback process. The adjustment of sensible heat flux and net longwave radiation play a secondary role. The response of the coupled system to the SST perturbation suggests a response time scale of the coupled feedback process of about 3-5 days. The two-way air-sea feedback tightly links the surface heat fluxes, clouds and SST, and can play an important role in regulating the short-term variability of the SST over the shallow shelf water regions.
Slagt, Meike; Dubas, Judith Semon; van Aken, Marcel A G; Ellis, Bruce J; Deković, Maja
2017-02-01
Differential susceptibility theory proposes that a subset of individuals exist who display enhanced susceptibility to both negative (risk-promoting) and positive (development-enhancing) environments. This experiment represents the first attempt to directly test this assumption by exposing children in the experimental group to both negative and positive feedback using puppet role-plays. It thereby serves as an empirical test as well as a methodological primer for testing differential susceptibility. Dutch children (N=190, 45.3% girls) between the ages of 4 and 6years participated. We examined whether negative and positive feedback would differentially affect changes in positive and negative affect, in prosocial and antisocial intentions and behavior, depending on children's negative emotionality. Results show that on hearing negative feedback, children in the experimental group increased in negative affect and decreased in positive affect more strongly than children in the control group. On hearing positive feedback, children in the experimental group tended to increase in positive affect and decrease in prosocial behavior. However, changes in response to negative or positive feedback did not depend on children's negative emotionality. Moreover, using reliable change scores, we found support for a subset of "vulnerable" children but not for a subset of "susceptible" children. The findings offer suggestions to guide future differential susceptibility experiments. Copyright © 2016 Elsevier Inc. All rights reserved.
The Impact of Positive, Negative and Topical Relevance Feedback
2008-11-01
the Netherlands Organization for Scientific Research (NWO, grant # 612.066.513). REFERENCES [1] Y. K. Chang, C. Cirillo, and J . Razon. Evaluation of...feedback retrieval using modified freezing, residual collection and test and control groups. In G. Salton , editor, The SMART retrieval system...information retrieval. In Proceedings SI- GIR 2004, pages 178–185. ACM Press, New York NY, 2004. [3] R. Kaptein and J . Kamps. Web directories as topical context
Visual-perceptual mismatch in robotic surgery.
Abiri, Ahmad; Tao, Anna; LaRocca, Meg; Guan, Xingmin; Askari, Syed J; Bisley, James W; Dutson, Erik P; Grundfest, Warren S
2017-08-01
The principal objective of the experiment was to analyze the effects of the clutch operation of robotic surgical systems on the performance of the operator. The relative coordinate system introduced by the clutch operation can introduce a visual-perceptual mismatch which can potentially have negative impact on a surgeon's performance. We also assess the impact of the introduction of additional tactile sensory information on reducing the impact of visual-perceptual mismatch on the performance of the operator. We asked 45 novice subjects to complete peg transfers using the da Vinci IS 1200 system with grasper-mounted, normal force sensors. The task involves picking up a peg with one of the robotic arms, passing it to the other arm, and then placing it on the opposite side of the view. Subjects were divided into three groups: aligned group (no mismatch), the misaligned group (10 cm z axis mismatch), and the haptics-misaligned group (haptic feedback and z axis mismatch). Each subject performed the task five times, during which the grip force, time of completion, and number of faults were recorded. Compared to the subjects that performed the tasks using a properly aligned controller/arm configuration, subjects with a single-axis misalignment showed significantly more peg drops (p = 0.011) and longer time to completion (p < 0.001). Additionally, it was observed that addition of tactile feedback helps reduce the negative effects of visual-perceptual mismatch in some cases. Grip force data recorded from grasper-mounted sensors showed no difference between the different groups. The visual-perceptual mismatch created by the misalignment of the robotic controls relative to the robotic arms has a negative impact on the operator of a robotic surgical system. Introduction of other sensory information and haptic feedback systems can help in potentially reducing this effect.
Error-related negativities elicited by monetary loss and cues that predict loss.
Dunning, Jonathan P; Hajcak, Greg
2007-11-19
Event-related potential studies have reported error-related negativity following both error commission and feedback indicating errors or monetary loss. The present study examined whether error-related negativities could be elicited by a predictive cue presented prior to both the decision and subsequent feedback in a gambling task. Participants were presented with a cue that indicated the probability of reward on the upcoming trial (0, 50, and 100%). Results showed a negative deflection in the event-related potential in response to loss cues compared with win cues; this waveform shared a similar latency and morphology with the traditional feedback error-related negativity.
Hybrid suboptimal control of multi-rate multi-loop sampled-data systems
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Chen, Gwangchywan; Tsai, Jason S. H.
1992-01-01
A hybrid state-space controller is developed for suboptimal digital control of multirate multiloop multivariable continuous-time systems. First, an LQR is designed for a continuous-time subsystem which has a large bandwidth and is connnected in the inner loop of the overall system. The designed LQR would optimally place the eigenvalues of a closed-loop subsystem in the common region of an open sector bounded by sector angles + or - pi/2k for k = 2 or 3 from the negative real axis and the left-hand side of a vertical line on the negative real axis in the s-plane. Then, the developed continuous-time state-feedback gain is converted into an equivalent fast-rate discrete-time state-feedback gain via a digital redesign technique (Tsai et al. 1989, Shieh et al. 1990) reviewed here. A real state reconstructor is redeveloped utilizing the fast-rate input-output data of the system of interest. The design procedure of multiloop multivariable systems using multirate samplers is shown, and a terminal homing missile system example is used to demonstrate the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Pandey, Saurabh; Majhi, Somanath; Ghorai, Prasenjit
2017-07-01
In this paper, the conventional relay feedback test has been modified for modelling and identification of a class of real-time dynamical systems in terms of linear transfer function models with time-delay. An ideal relay and unknown systems are connected through a negative feedback loop to bring the sustained oscillatory output around the non-zero setpoint. Thereafter, the obtained limit cycle information is substituted in the derived mathematical equations for accurate identification of unknown plants in terms of overdamped, underdamped, critically damped second-order plus dead time and stable first-order plus dead time transfer function models. Typical examples from the literature are included for the validation of the proposed identification scheme through computer simulations. Subsequently, the comparisons between estimated model and true system are drawn through integral absolute error criterion and frequency response plots. Finally, the obtained output responses through simulations are verified experimentally on real-time liquid level control system using Yokogawa Distributed Control System CENTUM CS3000 set up.
Mack, Keenan M L; Bever, James D
2014-09-01
1. Negative plant-soil feedback occurs when the presence of an individual of a particular species at a particular site decreases the relative success of individuals of the same species compared to those other species at that site. This effect favors heterospecifics thereby facilitating coexistence and maintaining diversity. Empirical work has demonstrated that the average strengths of these feedbacks correlate with the relative abundance of species within a community, suggesting that feedbacks are an important driver of plant community composition. Understanding what factors contribute to the generation of this relationship is necessary for diagnosing the dynamic forces that maintain diversity in plant communities. 2. We used a spatially explicit, individual-based computer simulation to test the effects of dispersal distance, the size of feedback neighbourhoods, the strength of pairwise feedbacks and community wide variation of feedbacks, community richness, as well as life-history differences on the dependence of relative abundance on strength of feedback. 3. We found a positive dependence of relative abundance of a species on its average feedback for local scale dispersal and feedback. However, we found that the strength of this dependence decreased as either the spatial scale of dispersal and/or the spatial scale of feedback increased. We also found that for spatially local (i.e. relatively small) scale interaction and dispersal, as the mean strength of feedbacks in the community becomes less negative, the greater the increase in abundance produced by a comparable increase in species-specific average feedback. We found that life-history differences such as mortality rate did not generate a pattern with abundance, nor did they affect the relationship between abundance and average feedback. 4. Synthesis . Our results support the claim that empirical observations of a positive correlation between relative abundance and strength of average feedback serves as evidence that local scale negative feedbacks play a prominent role in structuring plant communities. We also identify that this relationship depends upon local scale plant dispersal and feedback which generates clumping and magnifies the negative feedbacks.
Negative Feedback Enables Fast and Flexible Collective Decision-Making in Ants
Grüter, Christoph; Schürch, Roger; Czaczkes, Tomer J.; Taylor, Keeley; Durance, Thomas; Jones, Sam M.; Ratnieks, Francis L. W.
2012-01-01
Positive feedback plays a major role in the emergence of many collective animal behaviours. In many ants pheromone trails recruit and direct nestmate foragers to food sources. The strong positive feedback caused by trail pheromones allows fast collective responses but can compromise flexibility. Previous laboratory experiments have shown that when the environment changes, colonies are often unable to reallocate their foragers to a more rewarding food source. Here we show both experimentally, using colonies of Lasius niger, and with an agent-based simulation model, that negative feedback caused by crowding at feeding sites allows ant colonies to maintain foraging flexibility even with strong recruitment to food sources. In a constant environment, negative feedback prevents the frequently found bias towards one feeder (symmetry breaking) and leads to equal distribution of foragers. In a changing environment, negative feedback allows a colony to quickly reallocate the majority of its foragers to a superior food patch that becomes available when foraging at an inferior patch is already well underway. The model confirms these experimental findings and shows that the ability of colonies to switch to a superior food source does not require the decay of trail pheromones. Our results help to resolve inconsistencies between collective foraging patterns seen in laboratory studies and observations in the wild, and show that the simultaneous action of negative and positive feedback is important for efficient foraging in mass-recruiting insect colonies. PMID:22984518
Euskirchen, Eugénie S.; Bennett, A. P.; Breen, Amy L.; Genet, Helene; Lindgren, Michael A.; Kurkowski, Tom; McGuire, A. David; Rupp, T. Scott
2016-01-01
Changes in vegetation and snow cover may lead to feedbacks to climate through changes in surface albedo and energy fluxes between the land and atmosphere. In addition to these biogeophysical feedbacks, biogeochemical feedbacks associated with changes in carbon (C) storage in the vegetation and soils may also influence climate. Here, using a transient biogeographic model (ALFRESCO) and an ecosystem model (DOS-TEM), we quantified the biogeophysical feedbacks due to changes in vegetation and snow cover across continuous permafrost to non-permafrost ecosystems in Alaska and northwest Canada. We also computed the changes in carbon storage in this region to provide a general assessment of the direction of the biogeochemical feedback. We considered four ecoregions, or Landscape Conservations Cooperatives (LCCs; including the Arctic, North Pacific, Western Alaska, and Northwest Boreal). We examined the 90 year period from 2010 to 2099 using one future emission scenario (A1B), under outputs from two general circulation models (MPI-ECHAM5 and CCCMA-CGCM3.1). We found that changes in snow cover duration, including both the timing of snowmelt in the spring and snow return in the fall, provided the dominant positive biogeophysical feedback to climate across all LCCs, and was greater for the ECHAM (+3.1 W m−2 decade−1regionally) compared to the CCCMA (+1.3 W m−2 decade−1 regionally) scenario due to an increase in loss of snow cover in the ECHAM scenario. The greatest overall negative feedback to climate from changes in vegetation cover was due to fire in spruce forests in the Northwest Boreal LCC and fire in shrub tundra in the Western LCC (−0.2 to −0.3 W m−2 decade−1). With the larger positive feedbacks associated with reductions in snow cover compared to the smaller negative feedbacks associated with shifts in vegetation, the feedback to climate warming was positive (total feedback of +2.7 W m−2decade regionally in the ECHAM scenario compared to +0.76 W m−2 decade regionally in the CCCMA scenario). Overall, increases in C storage in the vegetation and soils across the study region would act as a negative feedback to climate. By exploring these feedbacks to climate, we can reach a more integrated understanding of the manner in which climate change may impact interactions between high-latitude ecosystems and the global climate system.
Modifying Evaluations and Decisions in Risky Situations.
Maldonado, Antonio; Serra, Sara; Catena, Andrés; Cándido, Antonio; Megías, Alberto
2016-09-20
The main aim of this research was to investigate the decision making process in risky situations. We studied how different types of feedback on risky driving behaviors modulate risk evaluation and risk-taking. For a set of risky traffic situations, participants had to make evaluative judgments (judge the situation as risky or not) and urgent decisions (brake or not). In Experiment 1, participants received feedback with and without negative emotional content when they made risky behaviors. In Experiment 2 we investigated the independent effects of feedback and negative emotional stimuli. The results showed three important findings: First, urgent decisions were faster [F(1, 92) = 6.76, p = .01] and more cautious [F(1, 92) = 17.16, p < .001] than evaluative judgments. These results suggest that evaluative judgments of risk and actual risk-taking may not always coincide, and that they seem to be controlled by two different processing systems as proposed by dual process theories. Second, feedback made participants' responses even faster [F(1, 111) = 71.53, p < .001], allowing greater risk sensitivity [F(1, 111) = 22.12, p < .001] and skewing towards more cautious responses [F(1, 111) = 14.09, p < .001]. Finally, emotional stimuli had an effect only when they were presented as feedback. The results of this research increase our understanding of the processes involved in risky driving behavior and suggest efficient ways to control risk taking through the use of feedback.
Shah, Suharsh; Altonsy, Mohammed O.; Gerber, Antony N.
2017-01-01
Inflammatory signals induce feedback and feedforward systems that provide temporal control. Although glucocorticoids can repress inflammatory gene expression, glucocorticoid receptor recruitment increases expression of negative feedback and feedforward regulators, including the phosphatase, DUSP1, the ubiquitin-modifying enzyme, TNFAIP3, or the mRNA-destabilizing protein, ZFP36. Moreover, glucocorticoid receptor cooperativity with factors, including nuclear factor-κB (NF-κB), may enhance regulator expression to promote repression. Conversely, MAPKs, which are inhibited by glucocorticoids, provide feedforward control to limit expression of the transcription factor IRF1, and the chemokine, CXCL10. We propose that modulation of feedback and feedforward control can determine repression or resistance of inflammatory gene expression toglucocorticoid. PMID:28283576
The Impact of Teacher Feedback on Student Self-Talk and Self-Concept in Reading and Mathematics.
ERIC Educational Resources Information Center
Burnett, Paul C.
2003-01-01
Investigated the relationships between teacher feedback and students' self-talk and self-concepts in mathematics and reading. Data collected from students in six rural Australian elementary schools indicated that self-talk (positive and negative) mediated between subject-specific teacher feedback (ability, effort, and negative) and academic…
Santesso, Diane L; Dzyundzyak, Angela; Segalowitz, Sidney J
2011-11-01
The anterior cingulate cortex (ACC) is central to evaluating performance outcomes and has been linked to individual differences in affective responses to feedback. We used electrophysiological source localization to examine the feedback-related negativity (FRN) and related ACC activity during a gambling task in relation to punishment and reward sensitivity among 16- to 17-year-old adolescents (n=20) and 18- to 29-year-old adults (n=30). The FRN was larger for monetary loss compared to win feedback and larger for high relative to low monetary value feedback, with no age differences in the FRN for win or loss feedback. Self-reported sensitivity to punishment accounted for unique variance (over sex and sensitivity to reward) in FRNs, with higher scores relating to larger FRNs and increased rostral ACC activity. These results support the ACC role in experiencing negative performance feedback, especially for individuals highly sensitive to punishment. Copyright © 2011 Society for Psychophysiological Research.
Doñamayor, Nuria; Dinani, Jakob; Römisch, Manuel; Ye, Zheng; Münte, Thomas F
2014-10-01
Neural responses to performance errors and external feedback have been suggested to be altered in obsessive-compulsive disorder. In the current study, an associative learning task was used in healthy participants assessed for obsessive-compulsive symptoms by the OCI-R questionnaire. The task included a condition with equivocal feedback that did not inform about the participants' performance. Following incorrect responses, an error-related negativity and an error positivity were observed. In the feedback phase, the largest feedback-related negativity was observed following equivocal feedback. Theta and beta oscillatory components were found following incorrect and correct responses, respectively, and an increase in theta power was associated with negative and equivocal feedback. Changes over time were also explored as an indicator for possible learning effects. Finally, event-related potentials and oscillatory components were found to be uncorrelated with OCI-R scores in the current non-clinical sample. Copyright © 2014 Elsevier B.V. All rights reserved.
Interrogative pressure in simulated forensic interviews: the effects of negative feedback.
McGroarty, Allan; Baxter, James S
2007-08-01
Much experimental research on interrogative pressure has concentrated on the effects of leading questions, and the role of feedback in influencing responses in the absence of leading questions has been neglected by comparison. This study assessed the effect of negative feedback and the presence of a second interviewer on interviewee responding in simulated forensic interviews. Participants viewed a videotape of a crime, answered questions about the clip and were requestioned after receiving feedback. Compared with neutral feedback, negative feedback resulted in more response changes, higher reported state anxiety and higher ratings of interview difficulty. These results are consistent with Gudjonsson and Clark's (1986) model of interrogative suggestibility. The presence and involvement of a second interviewer did not significantly affect interviewee responding, although trait anxiety scores were elevated when a second interviewer was present. The theoretical and applied implications of these findings are considered.
Negative feedback from maternal signals reduces false alarms by collectively signalling offspring.
Hamel, Jennifer A; Cocroft, Reginald B
2012-09-22
Within animal groups, individuals can learn of a predator's approach by attending to the behaviour of others. This use of social information increases an individual's perceptual range, but can also lead to the propagation of false alarms. Error copying is especially likely in species that signal collectively, because the coordination required for collective displays relies heavily on social information. Recent evidence suggests that collective behaviour in animals is, in part, regulated by negative feedback. Negative feedback may reduce false alarms by collectively signalling animals, but this possibility has not yet been tested. We tested the hypothesis that negative feedback increases the accuracy of collective signalling by reducing the production of false alarms. In the treehopper Umbonia crassicornis, clustered offspring produce collective signals during predator attacks, advertising the predator's location to the defending mother. Mothers signal after evicting the predator, and we show that this maternal communication reduces false alarms by offspring. We suggest that maternal signals elevate offspring signalling thresholds. This is, to our knowledge, the first study to show that negative feedback can reduce false alarms by collectively behaving groups.
Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective.
Gong, Zhenxing; Zhang, Na
2017-01-01
Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indicate that employees' perceptions of a supportive supervisor feedback environment indirectly influence their level of creative performance through positive affect (t2); the negative affect (t1) moderates the relationship between positive affect (t2) and creative performance (t2), rendering the relationship more positive if negative affect (t1) is high. The change in positive affect mediates the relationship between the supervisor feedback environment and creative performance; a decrease in negative affect moderates the relationship between increased positive affect and creative performance, rendering the relationship more positive if the decrease in negative affect is large. The implications for improving the creative performances of employees are further discussed.
Orphanin FQ-ORL-1 regulation of reproduction and reproductive behavior in the female.
Sinchak, Kevin; Dalhousay, Lauren; Sanathara, Nayna
2015-01-01
Orphanin FQ (OFQ/N) and its receptor, opioid receptor-like receptor-1 (ORL-1), are expressed throughout steroid-responsive limbic and hypothalamic circuits that regulate female ovarian hormone feedback and reproductive behavior circuits. The arcuate nucleus of the hypothalamus (ARH) is a brain region that expresses OFQ/N and ORL-1 important for both sexual behavior and modulating estradiol feedback loops. Within the ARH, the activation of the OFQ/N-ORL-1 system facilitates sexual receptivity (lordosis) through the inhibition of β-endorphin neuronal activity. Estradiol initially activates ARH β-endorphin neurons to inhibit lordosis. Simultaneously, estradiol upregulates coexpression of OFQ/N and progesterone receptors and ORL-1 in ARH β-endorphin neurons. Ovarian hormones regulate pre- and postsynaptic coupling of ORL-1 to its G protein-coupled signaling pathways. When the steroid-primed rat is nonreceptive, estradiol acts pre- and postsynaptically to decrease the ability of the OFQ/N-ORL-1 system to inhibit ARH β-endorphin neurotransmission. Conversely, when sexually receptive, ORL-1 signaling is restored to inhibit β-endorphin neurotransmission. Although steroid signaling that facilitates lordosis converges to deactivate ARH β-endorphin neurons, estradiol-only facilitation of lordosis requires the activation of ORL-1, but estradiol+progesterone does not, indicating that multiple circuits mediate ovarian hormone signaling to deactivate ARH β-endorphin neurons. Research on the role of OFQ/N-ORL-1 in ovarian hormone feedback loops is just beginning. In the rat, OFQ/N may act to terminate gonadotropin-releasing hormone and luteinizing hormone release under positive and negative feedbacks. In the ewe, it appears to directly inhibit gonadotropin-releasing hormone release to mediate progesterone-negative feedback. As a whole, the localization and actions of OFQ/N-ORL-1 system indicate that it may mediate the actions of estradiol and progesterone to synchronize reproductive behavior and ovarian hormone feedback loops. © 2015 Elsevier Inc. All rights reserved.
Performance Feedback Processing Is Positively Biased As Predicted by Attribution Theory.
Korn, Christoph W; Rosenblau, Gabriela; Rodriguez Buritica, Julia M; Heekeren, Hauke R
2016-01-01
A considerable literature on attribution theory has shown that healthy individuals exhibit a positivity bias when inferring the causes of evaluative feedback on their performance. They tend to attribute positive feedback internally (e.g., to their own abilities) but negative feedback externally (e.g., to environmental factors). However, all empirical demonstrations of this bias suffer from at least one of the three following drawbacks: First, participants directly judge explicit causes for their performance. Second, participants have to imagine events instead of experiencing them. Third, participants assess their performance only after receiving feedback and thus differences in baseline assessments cannot be excluded. It is therefore unclear whether the classically reported positivity bias generalizes to setups without these drawbacks. Here, we aimed at establishing the relevance of attributions for decision-making by showing an attribution-related positivity bias in a decision-making task. We developed a novel task, which allowed us to test how participants changed their evaluations in response to positive and negative feedback about performance. Specifically, we used videos of actors expressing different facial emotional expressions. Participants were first asked to evaluate the actors' credibility in expressing a particular emotion. After this initial rating, participants performed an emotion recognition task and did--or did not--receive feedback on their veridical performance. Finally, participants re-rated the actors' credibility, which provided a measure of how they changed their evaluations after feedback. Attribution theory predicts that participants change their evaluations of the actors' credibility toward the positive after receiving positive performance feedback and toward the negative after negative performance feedback. Our results were in line with this prediction. A control condition without feedback showed that correct or incorrect performance alone could not explain the observed positivity bias. Furthermore, participants' behavior in our task was linked to the most widely used measure of attribution style. In sum, our findings suggest that positive and negative performance feedback influences the evaluation of task-related stimuli, as predicted by attribution theory. Therefore, our study points to the relevance of attribution theory for feedback processing in decision-making and provides a novel outlook for decision-making biases.
Performance Feedback Processing Is Positively Biased As Predicted by Attribution Theory
Rodriguez Buritica, Julia M.; Heekeren, Hauke R.
2016-01-01
A considerable literature on attribution theory has shown that healthy individuals exhibit a positivity bias when inferring the causes of evaluative feedback on their performance. They tend to attribute positive feedback internally (e.g., to their own abilities) but negative feedback externally (e.g., to environmental factors). However, all empirical demonstrations of this bias suffer from at least one of the three following drawbacks: First, participants directly judge explicit causes for their performance. Second, participants have to imagine events instead of experiencing them. Third, participants assess their performance only after receiving feedback and thus differences in baseline assessments cannot be excluded. It is therefore unclear whether the classically reported positivity bias generalizes to setups without these drawbacks. Here, we aimed at establishing the relevance of attributions for decision-making by showing an attribution-related positivity bias in a decision-making task. We developed a novel task, which allowed us to test how participants changed their evaluations in response to positive and negative feedback about performance. Specifically, we used videos of actors expressing different facial emotional expressions. Participants were first asked to evaluate the actors’ credibility in expressing a particular emotion. After this initial rating, participants performed an emotion recognition task and did—or did not—receive feedback on their veridical performance. Finally, participants re-rated the actors’ credibility, which provided a measure of how they changed their evaluations after feedback. Attribution theory predicts that participants change their evaluations of the actors’ credibility toward the positive after receiving positive performance feedback and toward the negative after negative performance feedback. Our results were in line with this prediction. A control condition without feedback showed that correct or incorrect performance alone could not explain the observed positivity bias. Furthermore, participants’ behavior in our task was linked to the most widely used measure of attribution style. In sum, our findings suggest that positive and negative performance feedback influences the evaluation of task-related stimuli, as predicted by attribution theory. Therefore, our study points to the relevance of attribution theory for feedback processing in decision-making and provides a novel outlook for decision-making biases. PMID:26849646
Some Properties and Stability Results for Sector-Bounded LTI Systems
NASA Technical Reports Server (NTRS)
Gupta, Sandeep; Joshi, Suresh M.
1994-01-01
This paper presents necessary and sufficient conditions for a linear, time-invariant (LTI) system to be inside sector (n, b) in terms of linear matrix inequalities in its state-space realization matrices, which represents a generalization of similar conditions for bounded H(sub infinity)-norm systems. Further, a weaker definition of LTI systems strictly inside closed sector (a, b) is proposed, and state-space characterization of such systems is presented. Sector conditions for stability of the negative feedback interconnection of two LTI systems and for stability of LTI systems with feedback nonlinearities are investigated using the Lyapunov function approach. It is shown that the proposed weaker conditions for an LTI system to be strictly inside a sector are sufficient to establish closed-loop stability of these systems.
The magnitude and colour of noise in genetic negative feedback systems
Voliotis, Margaritis; Bowsher, Clive G.
2012-01-01
The comparative ability of transcriptional and small RNA-mediated negative feedback to control fluctuations or ‘noise’ in gene expression remains unexplored. Both autoregulatory mechanisms usually suppress the average (mean) of the protein level and its variability across cells. The variance of the number of proteins per molecule of mean expression is also typically reduced compared with the unregulated system, but is almost never below the value of one. This relative variance often substantially exceeds a recently obtained, theoretical lower limit for biochemical feedback systems. Adding the transcriptional or small RNA-mediated control has different effects. Transcriptional autorepression robustly reduces both the relative variance and persistence (lifetime) of fluctuations. Both benefits combine to reduce noise in downstream gene expression. Autorepression via small RNA can achieve more extreme noise reduction and typically has less effect on the mean expression level. However, it is often more costly to implement and is more sensitive to rate parameters. Theoretical lower limits on the relative variance are known to decrease slowly as a measure of the cost per molecule of mean expression increases. However, the proportional increase in cost to achieve substantial noise suppression can be different away from the optimal frontier—for transcriptional autorepression, it is frequently negligible. PMID:22581772
Do Event-Related Evoked Potentials Reflect Apathy Tendency and Motivation?
Takayoshi, Hiroyuki; Onoda, Keiichi; Yamaguchi, Shuhei
2018-01-01
Apathy is a mental state of diminished motivation. Although the reward system as the foundation of the motivation in the human brain has been studied extensively with neuroimaging techniques, the electrophysiological correlates of motivation and apathy have not been fully explored. Thus, in 14 healthy volunteers, we examined whether event-related evoked potentials (ERP) obtained during a simple number discrimination task with/without rewards reflected apathy tendency and a reward-dependent tendency, which were assessed separately using the apathy scale and the temperament and character inventory (TCI). Participants were asked to judge the size of a number, and received feedback based on their performance in each trial. The P3 amplitudes related to the feedback stimuli increased only in the reward condition. Furthermore, the P2 amplitudes related to the negative feedback stimuli in the reward condition had a positive correlation with the reward-dependent tendency in TCI, whereas the P3 amplitudes related to the positive feedback stimuli had a negative correlation with the apathy score. Our result suggests that the P2 and P3 ERPs to reward-related feedback stimuli are modulated in a distinctive manner by the motivational reward dependence and apathy tendency, and thus the current paradigm may be useful for investigating the brain activity associated with motivation. PMID:29445331
Mezulis, Amy H; Hyde, Janet Shibley; Abramson, Lyn Y
2006-11-01
Cognitive models of depression have been well supported with adults, but the developmental origins of cognitive vulnerability are not well understood. The authors hypothesized that temperament, parenting, and negative life events in childhood would contribute to the development of cognitive style, with withdrawal negativity and negative parental feedback moderating the effects of negative life events to predict more depressogenic cognitive styles. These constructs were assessed in 289 children and their parents followed longitudinally from infancy to 5th grade; a subsample (n = 120) also participated in a behavioral task in which maternal feedback to child failure was observed. Results indicated that greater withdrawal negativity in interaction with negative life events was associated with more negative cognitive styles. Self-reported maternal anger expression and observed negative maternal feedback to child's failure significantly interacted with child's negative events to predict greater cognitive vulnerability. There was little evidence of paternal parenting predicting child negative cognitive style.
van Meel, Catharina S; Oosterlaan, Jaap; Heslenfeld, Dirk J; Sergeant, Joseph A
2005-01-01
Neuroimaging studies on ADHD suggest abnormalities in brain regions associated with decision-making and reward processing such as the anterior cingulate cortex (ACC) and orbitofrontal cortex. Recently, event-related potential (ERP) studies demonstrated that the ACC is involved in processing feedback signals during guessing and gambling. The resulting negative deflection, the 'feedback-related negativity' (FRN) has been interpreted as reflecting an error in reward prediction. In the present study, ERPs elicited by positive and negative feedback were recorded in children with ADHD and normal controls during guessing. 'Correct' and 'incorrect' guesses resulted in respectively monetary gains and losses. The FRN amplitude to losses was more pronounced in the ADHD group than in normal controls. Positive and negative feedback differentially affected long latency components in the ERP waveforms of normal controls, but not ADHD children. These later deflections might be related to further emotional or strategic processing. The present findings suggest an enhanced sensitivity to unfavourable outcomes in children with ADHD, probably due to abnormalities in mesolimbic reward circuits. In addition, further processing, such as affective evaluation and the assessment of future consequences of the feedback signal seems to be altered in ADHD. These results may further help understanding the neural basis of decision-making deficits in ADHD.
Emotion blocks the path to learning under stereotype threat
Good, Catherine; Whiteman, Ronald C.; Maniscalco, Brian; Dweck, Carol S.
2012-01-01
Gender-based stereotypes undermine females’ performance on challenging math tests, but how do they influence their ability to learn from the errors they make? Females under stereotype threat or non-threat were presented with accuracy feedback after each problem on a GRE-like math test, followed by an optional interactive tutorial that provided step-wise problem-solving instruction. Event-related potentials tracked the initial detection of the negative feedback following errors [feedback related negativity (FRN), P3a], as well as any subsequent sustained attention/arousal to that information [late positive potential (LPP)]. Learning was defined as success in applying tutorial information to correction of initial test errors on a surprise retest 24-h later. Under non-threat conditions, emotional responses to negative feedback did not curtail exploration of the tutor, and the amount of tutor exploration predicted learning success. In the stereotype threat condition, however, greater initial salience of the failure (FRN) predicted less exploration of the tutor, and sustained attention to the negative feedback (LPP) predicted poor learning from what was explored. Thus, under stereotype threat, emotional responses to negative feedback predicted both disengagement from learning and interference with learning attempts. We discuss the importance of emotion regulation in successful rebound from failure for stigmatized groups in stereotype-salient environments. PMID:21252312
Emotion blocks the path to learning under stereotype threat.
Mangels, Jennifer A; Good, Catherine; Whiteman, Ronald C; Maniscalco, Brian; Dweck, Carol S
2012-02-01
Gender-based stereotypes undermine females' performance on challenging math tests, but how do they influence their ability to learn from the errors they make? Females under stereotype threat or non-threat were presented with accuracy feedback after each problem on a GRE-like math test, followed by an optional interactive tutorial that provided step-wise problem-solving instruction. Event-related potentials tracked the initial detection of the negative feedback following errors [feedback related negativity (FRN), P3a], as well as any subsequent sustained attention/arousal to that information [late positive potential (LPP)]. Learning was defined as success in applying tutorial information to correction of initial test errors on a surprise retest 24-h later. Under non-threat conditions, emotional responses to negative feedback did not curtail exploration of the tutor, and the amount of tutor exploration predicted learning success. In the stereotype threat condition, however, greater initial salience of the failure (FRN) predicted less exploration of the tutor, and sustained attention to the negative feedback (LPP) predicted poor learning from what was explored. Thus, under stereotype threat, emotional responses to negative feedback predicted both disengagement from learning and interference with learning attempts. We discuss the importance of emotion regulation in successful rebound from failure for stigmatized groups in stereotype-salient environments.
Wilson, Mathew G; Lane, Andy M; Beedie, Chris J; Farooq, Abdulaziz
2012-01-01
The objective of the study is to examine the impact of accurate and inaccurate 'split-time' feedback upon a 10-mile time trial (TT) performance and to quantify power output into a practically meaningful unit of variation. Seven well-trained cyclists completed four randomised bouts of a 10-mile TT on a SRM™ cycle ergometer. TTs were performed with (1) accurate performance feedback, (2) without performance feedback, (3) and (4) false negative and false positive 'split-time' feedback showing performance 5% slower or 5% faster than actual performance. There were no significant differences in completion time, average power output, heart rate or blood lactate between the four feedback conditions. There were significantly lower (p < 0.001) average [Formula: see text] (ml min(-1)) and [Formula: see text] (l min(-1)) scores in the false positive (3,485 ± 596; 119 ± 33) and accurate (3,471 ± 513; 117 ± 22) feedback conditions compared to the false negative (3,753 ± 410; 127 ± 27) and blind (3,772 ± 378; 124 ± 21) feedback conditions. Cyclists spent a greater amount of time in a '20 watt zone' 10 W either side of average power in the negative feedback condition (fastest) than the accurate feedback (slowest) condition (39.3 vs. 32.2%, p < 0.05). There were no significant differences in the 10-mile TT performance time between accurate and inaccurate feedback conditions, despite significantly lower average [Formula: see text] and [Formula: see text] scores in the false positive and accurate feedback conditions. Additionally, cycling with a small variation in power output (10 W either side of average power) produced the fastest TT. Further psycho-physiological research should examine the mechanism(s) why lower [Formula: see text] and [Formula: see text] scores are observed when cycling in a false positive or accurate feedback condition compared to a false negative or blind feedback condition.
Convection and the Soil-Moisture Precipitation Feedback
NASA Astrophysics Data System (ADS)
Schar, C.; Froidevaux, P.; Keller, M.; Schlemmer, L.; Langhans, W.; Schmidli, J.
2014-12-01
The soil moisture - precipitation (SMP) feedback is of key importance for climate and climate change. A positive SMP feedback tends to amplify the hydrological response to external forcings (and thereby fosters precipitation and drought extremes), while a negative SMP feedback tends to moderate the influence of external forcings (and thereby stabilizes the hydrological cycle). The sign of the SMP feedback is poorly constrained by the current literature. Theoretical, modeling and observational studies partly disagree, and have suggested both negative and positive feedback loops. Can wet soil anomalies indeed result in either an increase or a decrease of precipitation (positive or negative SMP feedback, respectively)? Here we investigate the local SMP feedback using real-case and idealized convection-resolving simulations. An idealized simulation strategy is developed, which is able to replicate both signs of the feedback loop, depending on the environmental parameters. The mechanism relies on horizontal soil moisture variations, which may develop and intensify spontaneously. The positive expression of the feedback is associated with the initiation of convection over dry soil patches, but the convective cells then propagate over wet patches, where they strengthen and preferentially precipitate. The negative feedback may occur when the wind profile is too weak to support the propagation of convective features from dry to wet areas. Precipitation is then generally weaker and falls preferentially over dry patches. The results highlight the role of the mid-tropospheric flow in determining the sign of the feedback. A key element of the positive feedback is the exploitation of both low convective inhibition (CIN) over dry patches (for the initiation of convection), and high CAPE over wet patches (for the generation of precipitation). The results of this study will also be discussed in relation to climate change scenarios that exhibit large biases in surface temperature and interannual variability over mid-latitude summer climates, both over Europe and North America. It is argued that parameterized convection may contribute towards such biases by overemphasizing a positive SMP feedback.
Bowers, Cyril Y.
2011-01-01
Although stimulatory (feedforward) and inhibitory (feedback) dynamics jointly control neurohormone secretion, the factors that supervise feedback restraint are poorly understood. To parse the regulation of growth hormone (GH) escape from negative feedback, 25 healthy men and women were studied eight times each during an experimental GH feedback clamp. The clamp comprised combined bolus infusion of GH or saline and continuous stimulation by saline GH-releasing hormone (GHRH), GHRP-2, or both peptides after randomly ordered supplementation with placebo (both sexes) vs. E2 (estrogen; women) and T (testosterone; men). Endpoints were GH pulsatility and entropy (a model-free measure of feedback quenching). Gender determined recovery of pulsatile GH secretion from negative feedback in all four secretagog regimens (0.003 ≤ P ≤ 0.017 for women>men). Peptidyl secretagog controlled the mass, number, and duration of feedback-inhibited GH secretory bursts (each, P < 0.001). E2/T administration potentiated both pulsatile (P = 0.006) and entropic (P < 0.001) modes of GH recovery. IGF-I positively predicted the escape of GH secretory burst number and mode (P = 0.022), whereas body mass index negatively forecast GH secretory burst number and mass (P = 0.005). The composite of gender, body mass index, E2, IGF-I, and peptidyl secretagog strongly regulates the escape of pulsatile and entropic GH secretion from autonegative feedback. The ensemble factors identified in this preclinical investigation enlarge the dynamic model of GH control in humans. PMID:21795635
Context-sensitivity of the feedback-related negativity for zero-value feedback outcomes.
Pfabigan, Daniela M; Seidel, Eva-Maria; Paul, Katharina; Grahl, Arvina; Sailer, Uta; Lanzenberger, Rupert; Windischberger, Christian; Lamm, Claus
2015-01-01
The present study investigated whether the same visual stimulus indicating zero-value feedback (€0) elicits feedback-related negativity (FRN) variation, depending on whether the outcomes correspond with expectations or not. Thirty-one volunteers performed a monetary incentive delay (MID) task while EEG was recorded. FRN amplitudes were comparable and more negative when zero-value outcome deviated from expectations than with expected gain or loss, supporting theories emphasising the impact of unexpectedness and salience on FRN amplitudes. Surprisingly, expected zero-value outcomes elicited the most negative FRNs. However, source localisation showed that such outcomes evoked less activation in cingulate areas than unexpected zero-value outcomes. Our study illustrates the context dependency of identical zero-value feedback stimuli. Moreover, the results indicate that the incentive cues in the MID task evoke different reward prediction error signals. These prediction signals differ in FRN amplitude and neuronal sources, and have to be considered in the design and interpretation of future studies. Copyright © 2014 Elsevier B.V. All rights reserved.
Yu, Haihong; Dan, MengHan; Ma, Qingguo; Jin, Jia
2018-05-14
As herding is a typical characteristic of human behavior, many researchers have found the existence of herding behavior in online peer-to-peer lending through empirical surveys. However, the underlying neural basis of this phenomenon is still unclear. In the current study, we studied the neural activities of herding at decision-making stage and feedback stage using event-related potentials (ERPs). Our results showed that at decision-making stage, larger error related negativity (ERN) amplitude was induced under low-proportion conditions than that of high-proportion conditions. Meanwhile, during feedback stage, negative feedback elicited larger feedback related negativity (FRN) amplitude than that of positive feedback under low-proportion conditions, however, there was no significant FRN difference under high-proportion conditions. The current study suggests that herding behavior in online peer-to-peer lending is related to individual's risk perception and is possible to avoid negative emotions brought by failed investments. Copyright © 2018 Elsevier B.V. All rights reserved.
Peterburs, Jutta; Sandrock, Carolin; Miltner, Wolfgang H R; Straube, Thomas
2016-06-01
It is as yet unknown if behavioral and neural correlates of performance monitoring in socially anxious individuals are affected by whether feedback is provided by a person or a computer. This fMRI study investigated modulation of feedback processing by feedback source (person vs. computer) in participants with high (HSA) (N=16) and low social anxiety (LSA) (N=16). Subjects performed a choice task in which they were informed that they would receive positive or negative feedback from a person or the computer. Subjective ratings indicated increased arousal and anxiety in HSA versus LSA, most pronounced for social and negative feedback. FMRI analyses yielded hyperactivation in ventral medial prefrontal cortex (vmPFC)/anterior cingulate cortex (ACC) and insula for social relative to computer feedback, and in mPFC/ventral ACC for positive relative to negative feedback in HSA as compared to LSA. These activation patterns are consistent with increased interoception and self-referential processing in social anxiety, especially during processing of positive feedback. Increased ACC activation in HSA to positive feedback may link to unexpectedness of (social) praise as posited in social anxiety disorder (SAD) psychopathology. Activation in rostral ACC showed a reversed pattern, with decreased activation to positive feedback in HSA, possibly indicating altered action values depending on feedback source and valence. The present findings corroborate a crucial role of mPFC for performance monitoring in social anxiety. Copyright © 2016 Elsevier Inc. All rights reserved.
A negative feedback signal that is triggered by peril curbs honey bee recruitment.
Nieh, James C
2010-02-23
Decision making in superorganisms such as honey bee colonies often uses self-organizing behaviors, feedback loops that allow the colony to gather information from multiple individuals and achieve reliable and agile solutions. Honey bees use positive feedback from the waggle dance to allocate colony foraging effort. However, the use of negative feedback signals by superorganisms is poorly understood. I show that conspecific attacks at a food source lead to the production of stop signals, communication that was known to reduce waggle dancing and recruitment but lacked a clear natural trigger. Signalers preferentially targeted nestmates visiting the same food source, on the basis of its odor. During aggressive food competition, attack victims increased signal production by 43 fold. Foragers that attacked competitors or experienced no aggression did not alter signal production. Biting ambush predators also attack foragers at flowers. Simulated biting of foragers or exposure to bee alarm pheromone also elicited signaling (88-fold and 14-fold increases, respectively). This provides the first clear evidence of a negative feedback signal elicited by foraging peril to counteract the positive feedback of the waggle dance. As in intra- and intercellular communication, negative feedback may play an important, though currently underappreciated, role in self-organizing behaviors within superorganisms. Copyright 2010 Elsevier Ltd. All rights reserved.
Noise-enhanced coding in phasic neuron spike trains.
Ly, Cheng; Doiron, Brent
2017-01-01
The stochastic nature of neuronal response has lead to conjectures about the impact of input fluctuations on the neural coding. For the most part, low pass membrane integration and spike threshold dynamics have been the primary features assumed in the transfer from synaptic input to output spiking. Phasic neurons are a common, but understudied, neuron class that are characterized by a subthreshold negative feedback that suppresses spike train responses to low frequency signals. Past work has shown that when a low frequency signal is accompanied by moderate intensity broadband noise, phasic neurons spike trains are well locked to the signal. We extend these results with a simple, reduced model of phasic activity that demonstrates that a non-Markovian spike train structure caused by the negative feedback produces a noise-enhanced coding. Further, this enhancement is sensitive to the timescales, as opposed to the intensity, of a driving signal. Reduced hazard function models show that noise-enhanced phasic codes are both novel and separate from classical stochastic resonance reported in non-phasic neurons. The general features of our theory suggest that noise-enhanced codes in excitable systems with subthreshold negative feedback are a particularly rich framework to study.
Cheating following success and failure in heavy and moderate social drinkers.
Corcoran, K J; Hankey, J
1989-07-01
Two groups of American undergraduates (moderate and heavy social drinkers) completed a matrix task and received either positive or negative feedback on their performance. Following this they were given a maze task, which was designed so that cheating could be detected. Heavy drinkers cheated more than moderate drinkers under success conditions (positive feedback). Heavy drinkers who received positive feedback also cheated more than heavy drinkers who received negative feedback. The results are interpreted in terms of self-handicapping theory.
Better Bet-Hedging with coupled positive and negative feedback loops
NASA Astrophysics Data System (ADS)
Narula, Jatin; Igoshin, Oleg
2011-03-01
Bacteria use the phenotypic heterogeneity associated with bistable switches to distribute the risk of activating stress response strategies like sporulation and persistence. However bistable switches offer little control over the timing of phenotype switching and first passage times (FPT) for individual cells are found to be exponentially distributed. We show that a genetic circuit consisting of interlinked positive and negative feedback loops allows cells to control the timing of phenotypic switching. Using a mathematical model we find that in this system a stable high expression state and stable low expression limit cycle coexist and the FPT distribution for stochastic transitions between them shows multiple peaks at regular intervals. A multimodal FPT distribution allows cells to detect the persistence of stress and control the rate of phenotype transition of the population. We further show that extracellular signals from cell-cell communication that change the strength of the feedback loops can modulate the FPT distribution and allow cells even greater control in a bet-hedging strategy.
Event-related brain potentials and the study of reward processing: Methodological considerations.
Krigolson, Olave E
2017-11-14
There is growing interest in using electroencephalography and specifically the event-related brain potential (ERP) methodology to study human reward processing. Since the discovery of the feedback related negativity (Miltner et al., 1997) and the development of theories associating the feedback related negativity and more recently the reward positivity with reinforcement learning, midbrain dopamine function, and the anterior cingulate cortex (i.e., Holroyd and Coles, 2002) researchers have used the ERP methodology to probe the neural basis of reward learning in humans. However, examination of the feedback related negativity and the reward positivity cannot be done without an understanding of some key methodological issues that must be taken into account when using ERPs and examining these ERP components. For example, even the component name - the feedback related negativity - is a source of debate within the research community as some now strongly feel that the component should be named the reward positivity (Proudfit, 2015). Here, ten key methodological issues are discussed - confusion in component naming, the reward positivity, component identification, peak quantification and the use of difference waveforms, frequency (the N200) and component contamination (the P300), the impact of feedback timing, action, and task learnability, and how learning results in changes in the amplitude of the feedback-related negativity/reward positivity. The hope here is to not provide a definitive approach for examining the feedback related negativity/reward positivity, but instead to outline the key issues that must be taken into account when examining this component to assist researchers in their study of human reward processing with the ERP methodology. Copyright © 2017 Elsevier B.V. All rights reserved.
Developmental Change in Feedback Processing as Reflected by Phasic Heart Rate Changes
ERIC Educational Resources Information Center
Crone, Eveline A.; Jennings, J. Richard; Van der Molen, Maurits W.
2004-01-01
Heart rate was recorded from 3 age groups (8-10, 12, and 20-26 years) while they performed a probabilistic learning task. Stimuli had to be sorted by pressing a left versus right key, followed by positive or negative feedback. Adult heart rate slowed following negative feedback when stimuli were consistently mapped onto the left or right key…
Newton, Robert; Shah, Suharsh; Altonsy, Mohammed O; Gerber, Antony N
2017-04-28
Inflammatory signals induce feedback and feedforward systems that provide temporal control. Although glucocorticoids can repress inflammatory gene expression, glucocorticoid receptor recruitment increases expression of negative feedback and feedforward regulators, including the phosphatase, DUSP1, the ubiquitin-modifying enzyme, TNFAIP3, or the mRNA-destabilizing protein, ZFP36. Moreover, glucocorticoid receptor cooperativity with factors, including nuclear factor-κB (NF-κB), may enhance regulator expression to promote repression. Conversely, MAPKs, which are inhibited by glucocorticoids, provide feedforward control to limit expression of the transcription factor IRF1, and the chemokine, CXCL10. We propose that modulation of feedback and feedforward control can determine repression or resistance of inflammatory gene expression toglucocorticoid. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective
Gong, Zhenxing; Zhang, Na
2017-01-01
Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indicate that employees’ perceptions of a supportive supervisor feedback environment indirectly influence their level of creative performance through positive affect (t2); the negative affect (t1) moderates the relationship between positive affect (t2) and creative performance (t2), rendering the relationship more positive if negative affect (t1) is high. The change in positive affect mediates the relationship between the supervisor feedback environment and creative performance; a decrease in negative affect moderates the relationship between increased positive affect and creative performance, rendering the relationship more positive if the decrease in negative affect is large. The implications for improving the creative performances of employees are further discussed. PMID:28861025
The Effects of a Local Negative Feedback Function between Choice and Relative Reinforcer Rate
Davison, Michael; Elliffe, Douglas; Marr, M. Jackson
2010-01-01
Four pigeons were trained on two-key concurrent variable-interval schedules with no changeover delay. In Phase 1, relative reinforcers on the two alternatives were varied over five conditions from .1 to .9. In Phases 2 and 3, we instituted a molar feedback function between relative choice in an interreinforcer interval and the probability of reinforcers on the two keys ending the next interreinforcer interval. The feedback function was linear, and was negatively sloped so that more extreme choice in an interreinforcer interval made it more likely that a reinforcer would be available on the other key at the end of the next interval. The slope of the feedback function was −1 in Phase 2 and −3 in Phase 3. We varied relative reinforcers in each of these phases by changing the intercept of the feedback function. Little effect of the feedback functions was discernible at the local (interreinforcer interval) level, but choice measured at an extended level across sessions was strongly and significantly decreased by increasing the negative slope of the feedback function. PMID:21451748
Design and Implementation of a Biomolecular Concentration Tracker
2015-01-01
As a field, synthetic biology strives to engineer increasingly complex artificial systems in living cells. Active feedback in closed loop systems offers a dynamic and adaptive way to ensure constant relative activity independent of intrinsic and extrinsic noise. In this work, we use synthetic protein scaffolds as a modular and tunable mechanism for concentration tracking through negative feedback. Input to the circuit initiates scaffold production, leading to colocalization of a two-component system and resulting in the production of an inhibitory antiscaffold protein. Using a combination of modeling and experimental work, we show that the biomolecular concentration tracker circuit achieves dynamic protein concentration tracking in Escherichia coli and that steady state outputs can be tuned. PMID:24847683
A Post-Transcriptional Feedback Mechanism for Noise Suppression and Fate Stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Maike M. K.; Wen, Winnie Y.; Ingerman, Elena
Diverse biological systems utilize fluctuations (“noise”) in gene expression to drive lineage-commitment decisions. However, once a commitment is made, noise becomes detrimental to reliable function, and the mechanisms enabling post-commitment noise suppression are unclear. Here, we find that architectural constraints on noise suppression are overcome to stabilize fate commitment. Using single-molecule and time-lapse imaging, we find that—after a noise-driven event—human immunodeficiency virus (HIV) strongly attenuates expression noise through a non-transcriptional negative-feedback circuit. Feedback is established through a serial cascade of post-transcriptional splicing, whereby proteins generated from spliced mRNAs auto-deplete their own precursor unspliced mRNAs. Strikingly, this auto-depletion circuitry minimizes noisemore » to stabilize HIV’s commitment decision, and a noise-suppression molecule promotes stabilization. Lastly, this feedback mechanism for noise suppression suggests a functional role for delayed splicing in other systems and may represent a generalizable architecture of diverse homeostatic signaling circuits.« less
A Post-Transcriptional Feedback Mechanism for Noise Suppression and Fate Stabilization
Hansen, Maike M. K.; Wen, Winnie Y.; Ingerman, Elena; ...
2018-05-10
Diverse biological systems utilize fluctuations (“noise”) in gene expression to drive lineage-commitment decisions. However, once a commitment is made, noise becomes detrimental to reliable function, and the mechanisms enabling post-commitment noise suppression are unclear. Here, we find that architectural constraints on noise suppression are overcome to stabilize fate commitment. Using single-molecule and time-lapse imaging, we find that—after a noise-driven event—human immunodeficiency virus (HIV) strongly attenuates expression noise through a non-transcriptional negative-feedback circuit. Feedback is established through a serial cascade of post-transcriptional splicing, whereby proteins generated from spliced mRNAs auto-deplete their own precursor unspliced mRNAs. Strikingly, this auto-depletion circuitry minimizes noisemore » to stabilize HIV’s commitment decision, and a noise-suppression molecule promotes stabilization. Lastly, this feedback mechanism for noise suppression suggests a functional role for delayed splicing in other systems and may represent a generalizable architecture of diverse homeostatic signaling circuits.« less
Audio-vocal system regulation in children with autism spectrum disorders.
Russo, Nicole; Larson, Charles; Kraus, Nina
2008-06-01
Do children with autism spectrum disorders (ASD) respond similarly to perturbations in auditory feedback as typically developing (TD) children? Presentation of pitch-shifted voice auditory feedback to vocalizing participants reveals a close coupling between the processing of auditory feedback and vocal motor control. This paradigm was used to test the hypothesis that abnormalities in the audio-vocal system would negatively impact ASD compensatory responses to perturbed auditory feedback. Voice fundamental frequency (F(0)) was measured while children produced an /a/ sound into a microphone. The voice signal was fed back to the subjects in real time through headphones. During production, the feedback was pitch shifted (-100 cents, 200 ms) at random intervals for 80 trials. Averaged voice F(0) responses to pitch-shifted stimuli were calculated and correlated with both mental and language abilities as tested via standardized tests. A subset of children with ASD produced larger responses to perturbed auditory feedback than TD children, while the other children with ASD produced significantly lower response magnitudes. Furthermore, robust relationships between language ability, response magnitude and time of peak magnitude were identified. Because auditory feedback helps to stabilize voice F(0) (a major acoustic cue of prosody) and individuals with ASD have problems with prosody, this study identified potential mechanisms of dysfunction in the audio-vocal system for voice pitch regulation in some children with ASD. Objectively quantifying this deficit may inform both the assessment of a subgroup of ASD children with prosody deficits, as well as remediation strategies that incorporate pitch training.
The Impact of the Ocean Sulfur Cycle on Climate using the Community Earth System Model
NASA Astrophysics Data System (ADS)
Cameron-Smith, P. J.; Elliott, S. M.; Bergmann, D. J.; Branstetter, M. L.; Chuang, C.; Erickson, D. J.; Jacob, R. L.; Maltrud, M. E.; Mirin, A. A.
2011-12-01
Chemical cycling between the various Earth system components (atmosphere, biosphere, land, ocean, and sea-ice) can cause positive and negative feedbacks on the climate system. The long-standing CLAW/GAIA hypothesis proposed that global warming might stimulate increased production of dimethyl sulfide (DMS) by plankton in the ocean, which would then provide a negative climate feedback through atmospheric oxidation of the DMS to sulfate aerosols that reflect sunlight directly, and indirectly by affecting clouds. Our state-of-the-art earth system model (CESM with an ocean sulfur cycle and atmospheric chemistry) shows increased production of DMS over the 20th century by plankton, particularly in the Southern Ocean and Equatorial Pacific, which leads to modest cooling from direct reflection of sunlight in those regions. This suggests the possibility of local climate change mitigation by the plankton species that produce DMS. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Adaptive disengagement buffers self-esteem from negative social feedback.
Leitner, Jordan B; Hehman, Eric; Deegan, Matthew P; Jones, James M
2014-11-01
The degree to which self-esteem hinges on feedback in a domain is known as a contingency of self-worth, or engagement. Although previous research has conceptualized engagement as stable, it would be advantageous for individuals to dynamically regulate engagement. The current research examined whether the tendency to disengage from negative feedback accounts for variability in self-esteem. We created the Adaptive Disengagement Scale (ADS) to capture individual differences in the tendency to disengage self-esteem from negative outcomes. Results demonstrated that the ADS is reliable and valid (Studies 1 and 2). Furthermore, in response to negative social feedback, higher scores on the ADS predicted greater state self-esteem (Study 3), and this relationship was mediated by disengagement (Study 4). These findings demonstrate that adaptive disengagement protects self-esteem from negative outcomes and that the ADS is a valid measure of individual differences in the implementation of this process. © 2014 by the Society for Personality and Social Psychology, Inc.
Emergent dynamics of the climate-economy system in the Anthropocene.
Kellie-Smith, Owen; Cox, Peter M
2011-03-13
Global CO(2) emissions are understood to be the largest contributor to anthropogenic climate change, and have, to date, been highly correlated with economic output. However, there is likely to be a negative feedback between climate change and human wealth: economic growth is typically associated with an increase in CO(2) emissions and global warming, but the resulting climate change may lead to damages that suppress economic growth. This climate-economy feedback is assumed to be weak in standard climate change assessments. When the feedback is incorporated in a transparently simple model it reveals possible emergent behaviour in the coupled climate-economy system. Formulae are derived for the critical rates of growth of global CO(2) emissions that cause damped or long-term boom-bust oscillations in human wealth, thereby preventing a soft landing of the climate-economy system. On the basis of this model, historical rates of economic growth and decarbonization appear to put the climate-economy system in a potentially damaging oscillatory regime.
Asymmetry in Signal Oscillations Contributes to Efficiency of Periodic Systems.
Bae, Seul-A; Acevedo, Alison; Androulakis, Ioannis P
2016-01-01
Oscillations are an important feature of cellular signaling that result from complex combinations of positive- and negative-feedback loops. The encoding and decoding mechanisms of oscillations based on amplitude and frequency have been extensively discussed in the literature in the context of intercellular and intracellular signaling. However, the fundamental questions of whether and how oscillatory signals offer any competitive advantages-and, if so, what-have not been fully answered. We investigated established oscillatory mechanisms and designed a study to analyze the oscillatory characteristics of signaling molecules and system output in an effort to answer these questions. Two classic oscillators, Goodwin and PER, were selected as the model systems, and corresponding no-feedback models were created for each oscillator to discover the advantage of oscillating signals. Through simulating the original oscillators and the matching no-feedback models, we show that oscillating systems have the capability to achieve better resource-to-output efficiency, and we identify oscillatory characteristics that lead to improved efficiency.
Du, Bin; Cao, Bihua; He, Weiqi; Li, Fuhong
2018-01-01
The ability to learn from feedback is important for children's adaptive behavior and school learning. Feedback has two main components, informative value and valence. How to disentangle these two components and what is the developmental neural correlates of using the informative value of feedback is still an open question. In this study, 23 children (7-10 years old) and 19 adults (19-22 years old) were asked to perform a rule induction task, in which they were required to find a rule, based on the informative value of feedback. Behavioral results indicated that the likelihood of correct searching behavior under negative feedback was low for children. Event-related potentials showed that (1) the effect of valence was processed in a wide time window, particularly in the N2 component; (2) the encoding process of the informative value of negative feedback began later for children than for adults; (3) a clear P300 was observed for adults; for children, however, P300 was absent in the frontal region; and (4) children processed the informative value of feedback chiefly in the left sites during the P300 time window, whereas adults did not show this laterality. These results suggested that children were less sensitive to the informative value of negative feedback possibly because of the immature brain.
Burnout is associated with changes in error and feedback processing.
Gajewski, Patrick D; Boden, Sylvia; Freude, Gabriele; Potter, Guy G; Falkenstein, Michael
2017-10-01
Burnout is a pattern of complaints in individuals with emotionally demanding jobs that is often seen as a precursor of depression. One often reported symptom of burnout is cognitive decline. To analyze cognitive control and to differentiate between subclinical burnout and mild to moderate depression a double-blinded study was conducted that investigates changes in the processing of performance errors and feedback in a task switching paradigm. Fifty-one of 76 employees from emotionally demanding jobs showed a sufficient number of errors to be included in the analysis. The sample was subdivided into groups with low (EE-) and high (EE+) emotional exhaustion and no (DE-) and mild to moderate depression (DE+). The behavioral data did not significantly differ between the groups. In contrast, in the EE+ group, the error negativity (Ne/ERN) was enhanced while the error positivity (Pe) did not differ between the EE+ and EE- groups. After negative feedback the feedback-related negativity (FRN) was enhanced, while the subsequent positivity (FRP) was reduced in EE+ relative to EE-. None of these effects were observed in the DE+ vs. DE-. These results suggest an upregulation of error and negative feedback processing, while the later processing of negative feedback was attenuated in employees with subclinical burnout but not in mild to moderate depression. Copyright © 2017 Elsevier B.V. All rights reserved.
Farreny, Aida; Del Rey-Mejías, Ángel; Escartin, Gemma; Usall, Judith; Tous, Núria; Haro, Josep Maria; Ochoa, Susana
2016-07-01
Schizophrenia involves marked motivational and learning deficits that may reflect abnormalities in reward processing. The purpose of this study was to examine positive and negative feedback sensitivity in schizophrenia using computational modeling derived from the Wisconsin Card Sorting Test (WCST). We also aimed to explore feedback sensitivity in a sample with bipolar disorder. Eighty-three individuals with schizophrenia and 27 with bipolar disorder were included. Demographic, clinical and cognitive outcomes, together with the WCST, were considered in both samples. Computational modeling was performed using the R syntax to calculate 3 parameters based on trial-by-trial execution on the WCST: reward sensitivity (R), punishment sensitivity (P), and choice consistency (D). The associations between outcome variables and the parameters were investigated. Positive and negative sensitivity showed deficits, but P parameter was clearly diminished in schizophrenia. Cognitive variables, age, and symptoms were associated with R, P, and D parameters in schizophrenia. The sample with bipolar disorder would show cognitive deficits and feedback abnormalities to a lesser extent than individuals with schizophrenia. Negative feedback sensitivity demonstrated greater deficit in both samples. Idiosyncratic cognitive requirements in the WCST might introduce confusion when supposing model-free reinforcement learning. Negative symptoms of schizophrenia were related to lower feedback sensitivity and less goal-directed patterns of choice. Copyright © 2016 Elsevier Inc. All rights reserved.
Van der Molen, Melle J W; Poppelaars, Eefje S; Van Hartingsveldt, Caroline T A; Harrewijn, Anita; Gunther Moor, Bregtje; Westenberg, P Michiel
2013-01-01
Cognitive models posit that the fear of negative evaluation (FNE) is a hallmark feature of social anxiety. As such, individuals with high FNE may show biased information processing when faced with social evaluation. The aim of the current study was to examine the neural underpinnings of anticipating and processing social-evaluative feedback, and its correlates with FNE. We used a social judgment paradigm in which female participants (N = 31) were asked to indicate whether they believed to be socially accepted or rejected by their peers. Anticipatory attention was indexed by the stimulus preceding negativity (SPN), while the feedback-related negativity and P3 were used to index the processing of social-evaluative feedback. Results provided evidence of an optimism bias in social peer evaluation, as participants more often predicted to be socially accepted than rejected. Participants with high levels of FNE needed more time to provide their judgments about the social-evaluative outcome. While anticipating social-evaluative feedback, SPN amplitudes were larger for anticipated social acceptance than for social rejection feedback. Interestingly, the SPN during anticipated social acceptance was larger in participants with high levels of FNE. None of the feedback-related brain potentials correlated with the FNE. Together, the results provided evidence of biased information processing in individuals with high levels of FNE when anticipating (rather than processing) social-evaluative feedback. The delayed response times in high FNE individuals were interpreted to reflect augmented vigilance imposed by the upcoming social-evaluative threat. Possibly, the SPN constitutes a neural marker of this vigilance in females with higher FNE levels, particularly when anticipating social acceptance feedback.
Application of simple negative feedback model for avalanche photodetectors investigation
NASA Astrophysics Data System (ADS)
Kushpil, V. V.
2009-10-01
A simple negative feedback model based on Miller's formula is used to investigate the properties of Avalanche Photodetectors (APDs). The proposed method can be applied to study classical APD as well as new type of devices, which are operating in the Internal Negative Feedback (INF) regime. The method shows a good sensitivity to technological APD parameters making it possible to use it as a tool to analyse various APD parameters. It also allows better understanding of the APD operation conditions. The simulations and experimental data analysis for different types of APDs are presented.
Effects of Intrinsic Motivation on Feedback Processing During Learning
DePasque, Samantha; Tricomi, Elizabeth
2015-01-01
Learning commonly requires feedback about the consequences of one’s actions, which can drive learners to modify their behavior. Motivation may determine how sensitive an individual might be to such feedback, particularly in educational contexts where some students value academic achievement more than others. Thus, motivation for a task might influence the value placed on performance feedback and how effectively it is used to improve learning. To investigate the interplay between intrinsic motivation and feedback processing, we used functional magnetic resonance imaging (fMRI) during feedback-based learning before and after a novel manipulation based on motivational interviewing, a technique for enhancing treatment motivation in mental health settings. Because of its role in the reinforcement learning system, the striatum is situated to play a significant role in the modulation of learning based on motivation. Consistent with this idea, motivation levels during the task were associated with sensitivity to positive versus negative feedback in the striatum. Additionally, heightened motivation following a brief motivational interview was associated with increases in feedback sensitivity in the left medial temporal lobe. Our results suggest that motivation modulates neural responses to performance-related feedback, and furthermore that changes in motivation facilitates processing in areas that support learning and memory. PMID:26112370
Bukowski, Alexandra R; Schittko, Conrad; Petermann, Jana S
2018-02-01
One of the processes that may play a key role in plant species coexistence and ecosystem functioning is plant-soil feedback, the effect of plants on associated soil communities and the resulting feedback on plant performance. Plant-soil feedback at the interspecific level (comparing growth on own soil with growth on soil from different species) has been studied extensively, while plant-soil feedback at the intraspecific level (comparing growth on own soil with growth on soil from different accessions within a species) has only recently gained attention. Very few studies have investigated the direction and strength of feedback among different taxonomic levels, and initial results have been inconclusive, discussing phylogeny, and morphology as possible determinants. To test our hypotheses that the strength of negative feedback on plant performance increases with increasing taxonomic level and that this relationship is explained by morphological similarities, we conducted a greenhouse experiment using species assigned to three taxonomic levels (intraspecific, interspecific, and functional group level). We measured certain fitness-related aboveground traits and used them along literature-derived traits to determine the influence of morphological similarities on the strength and direction of the feedback. We found that the average strength of negative feedback increased from the intraspecific over the interspecific to the functional group level. However, individual accessions and species differed in the direction and strength of the feedback. None of our results could be explained by morphological dissimilarities or individual traits. Synthesis . Our results indicate that negative plant-soil feedback is stronger if the involved plants belong to more distantly related species. We conclude that the taxonomic level is an important factor in the maintenance of plant coexistence with plant-soil feedback as a potential stabilizing mechanism and should be addressed explicitly in coexistence research, while the traits considered here seem to play a minor role.
Gray matter volume and rapid decision-making in major depressive disorder.
Nakano, Masayuki; Matsuo, Koji; Nakashima, Mami; Matsubara, Toshio; Harada, Kenichiro; Egashira, Kazuteru; Masaki, Hiroaki; Takahashi, Kanji; Watanabe, Yoshifumi
2014-01-03
Reduced motivation and blunted decision-making are key features of major depressive disorder (MDD). Patients with MDD show abnormal decision-making when given negative feedback regarding a reward. The brain mechanisms underpinning this behavior remain unclear. In the present study, we examined the association between rapid decision-making with negative feedback and brain volume in MDD. Thirty-six patients with MDD and 54 age-, sex- and IQ-matched healthy subjects were studied. Subjects performed a rapid decision-making monetary task in which participants could make high- or low-risk choices. We compared between the 2 groups the probability that a high-risk choice followed negative feedback. In addition, we used voxel-based morphometry (VBM) to compare between group differences in gray matter volume, and the correlation between the probability for high-risk choices and brain volume. Compared to the healthy group, the MDD group showed significantly lower probabilities for high-risk choices following negative feedback. VBM analysis revealed that the MDD group had less gray matter volume in the right medial prefrontal cortex and orbitofrontal cortex (OFC) compared to the healthy group. The right OFC volume was negatively correlated with the probability that a high-risk choice followed negative feedback in patients with MDD. We did not observe these trends in healthy subjects. Patients with MDD show reduced motivation for monetary incentives when they were required to make rapid decisions following negative feedback. We observed a correlation between this reduced motivation and gray matter volume in the medial and ventral prefrontal cortex, which suggests that these brain regions are likely involved in the pathophysiology of aberrant decision-making in MDD. © 2013.
Sultan, Amber Shamim; Mateen Khan, Muhammad Arif
2017-07-01
Feedback is considered as a dynamic process in which information about the observed performance is used to promote the desirable behaviour and correct the negative ones. The importance of feedback is widely acknowledged, but still there seems to be inconsistency in the amount, type and timing of feedback received from the clinical faculty. No significant effort has been put forward from the educator end to empower the learners with the skills of receiving and using the feedback effectively. Some institutions conduct faculty development workshops and courses to facilitate the clinicians on how best to deliver constructive feedback to the learners. Despite of all these struggles learners are not fully satisfied with the quality of feedback received from their busy clinicians. The aim of this paper is to highlight what actually feedback is, type and structure of feedback, the essential components of a constructive feedback, benefits of providing feedback, barriers affecting the provision of timely feedback and different models used for providing feedback. The ultimate purpose of this paper is to provide sufficient information to the clinical directors that there is a need to establish a robust system for giving feedback to learners and to inform all the clinical educators with the skills required to provide constructive feedback to their learners. For the literature review, we had used the key words glossary as: Feedback, constructive feedback, barriers to feedback, principles of constructive feedback, Models of feedback, reflection, self-assessment and clinical practice etc. The data bases for the search include: Cardiff University library catalogue, Pub Med, Google Scholar, Web of Knowledge and Science direct.
Bultena, Sybrine; Danielmeier, Claudia; Bekkering, Harold; Lemhöfer, Kristin
2017-01-01
Humans monitor their behavior to optimize performance, which presumably relies on stable representations of correct responses. During second language (L2) learning, however, stable representations have yet to be formed while knowledge of the first language (L1) can interfere with learning, which in some cases results in persistent errors. In order to examine how correct L2 representations are stabilized, this study examined performance monitoring in the learning process of second language learners for a feature that conflicts with their first language. Using EEG, we investigated if L2 learners in a feedback-guided word gender assignment task showed signs of error detection in the form of an error-related negativity (ERN) before and after receiving feedback, and how feedback is processed. The results indicated that initially, response-locked negativities for correct (CRN) and incorrect (ERN) responses were of similar size, showing a lack of internal error detection when L2 representations are unstable. As behavioral performance improved following feedback, the ERN became larger than the CRN, pointing to the first signs of successful error detection. Additionally, we observed a second negativity following the ERN/CRN components, the amplitude of which followed a similar pattern as the previous negativities. Feedback-locked data indicated robust FRN and P300 effects in response to negative feedback across different rounds, demonstrating that feedback remained important in order to update memory representations during learning. We thus show that initially, L2 representations may often not be stable enough to warrant successful error monitoring, but can be stabilized through repeated feedback, which means that the brain is able to overcome L1 interference, and can learn to detect errors internally after a short training session. The results contribute a different perspective to the discussion on changes in ERN and FRN components in relation to learning, by extending the investigation of these effects to the language learning domain. Furthermore, these findings provide a further characterization of the online learning process of L2 learners.
Feedback and reward processing in high-functioning autism.
Larson, Michael J; South, Mikle; Krauskopf, Erin; Clawson, Ann; Crowley, Michael J
2011-05-15
Individuals with high-functioning autism often display deficits in social interactions and high-level cognitive functions. Such deficits may be influenced by poor ability to process feedback and rewards. The feedback-related negativity (FRN) is an event-related potential (ERP) that is more negative following losses than gains. We examined FRN amplitude in 25 individuals with Autism Spectrum Disorder (ASD) and 25 age- and IQ-matched typically developing control participants who completed a guessing task with monetary loss/gain feedback. Both groups demonstrated a robust FRN that was more negative to loss trials than gain trials; however, groups did not differ in FRN amplitude as a function of gain or loss trials. N1 and P300 amplitudes did not differentiate groups. FRN amplitude was positively correlated with age in individuals with ASD, but not measures of intelligence, anxiety, behavioral inhibition, or autism severity. Given previous findings of reduced-amplitude error-related negativity (ERN) in ASD, we propose that individuals with ASD may process external, concrete, feedback similar to typically developing individuals, but have difficulty with internal, more abstract, regulation of performance. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Gender Bias in Nurse Evaluations of Residents in Obstetrics and Gynecology.
Galvin, Shelley L; Parlier, Anna Beth; Martino, Ellen; Scott, Kacey Ryan; Buys, Elizabeth
2015-10-01
We examined the evaluations given by nurses to obstetrics and gynecology residents to estimate whether gender bias was evident. Women receive more negative feedback and evaluations than men-from both sexes. Some suggest that, to be successful in traditionally male roles such as surgeon, women must manifest a warmth-related (communal) rather than competence-related (agentic) demeanor. Compared with male residents, female residents experience more interpersonal difficulties and less help from female nurses. We examined feedback provided to residents by female nurses. We examined Professional Associate Questionnaires (2006-2014) using a mixed-methods design. We compared scores per training year by gender using Mann-Whitney and linear regression adjusting for resident and nurse cohorts. Using grounded theory analysis, we developed a coding system for blinded comments based on principles of effective feedback, medical learners' evaluation, and impression management. χ examined the proportions of negative and positive and communal and agentic comments between genders. We examined 2,202 evaluations: 397 (18%) for 10 men and 1,805 (82%) for 34 women. Twenty-three compliments (eg, "Great resident!") were excluded. Evaluations per training year varied: men n=77-134; women n=384-482. Postgraduate year (PGY)-1, PGY-2, and PGY-4 women had lower mean ratings (P<.035); when adjusted, the difference remained significant in PGY-2 (MWomen=1.5±0.6 compared with MMen=1.7±0.5; P=.001). Postgraduate year-1 women received disproportionately fewer positive and more negative agentic comments than PGY-1 men (positive=17.3% compared with 40%, negative=17.3% compared with 3.3%, respectively; P=.041). Evidence of gender bias in evaluations emerged; albeit subtle, women received harsher feedback as lower-level residents than men. Training in effective evaluation and gender bias management is warranted.
Noh, Kyungchul; Shin, Kyung Soon; Shin, Dongkwan; Hwang, Jae Yeon; Kim, June Sic; Jang, Joon Hwan; Chung, Chun Kee; Kwon, Jun Soo; Cho, Kwang-Hyun
2013-04-10
Abnormal synchronization of brain oscillations is found to be associated with various core symptoms of schizophrenia. However, the underlying mechanism of this association remains yet to be elucidated. In this study, we found that coupled local and global feedback (CLGF) circuits in the cortical functional network are related to the abnormal synchronization and also correlated to the negative symptom of schizophrenia. Analysis of the magnetoencephalography data obtained from patients with chronic schizophrenia during rest revealed an increase in beta band synchronization and a reduction in gamma band power compared to healthy controls. Using a feedback identification method based on non-causal impulse responses, we constructed functional feedback networks and found that CLGF circuits were significantly reduced in schizophrenia. From computational analysis on the basis of the Wilson-Cowan model, we unraveled that the CLGF circuits are critically involved in the abnormal synchronization and the dynamical switching between beta and gamma bands power in schizophrenia. Moreover, we found that the abundance of CLGF circuits was negatively correlated with the development of negative symptoms of schizophrenia, suggesting that the negative symptom is closely related to the impairment of this circuit. Our study implicates that patients with schizophrenia might have the impaired coupling of inter- and intra-regional functional feedbacks and that the CLGF circuit might serve as a critical bridge between abnormal synchronization and the negative symptoms of schizophrenia.
García de León, David; García-Mozo, Herminia; Galán, Carmen; Alcázar, Purificación; Lima, Mauricio; González-Andújar, José L
2015-10-15
Pollen allergies are the most common form of respiratory allergic disease in Europe. Most studies have emphasized the role of environmental processes, as the drivers of airborne pollen fluctuations, implicitly considering pollen production as a random walk. This work shows that internal self-regulating processes of the plants (negative feedback) should be included in pollen dynamic systems in order to give a better explanation of the observed pollen temporal patterns. This article proposes a novel methodological approach based on dynamic systems to investigate the interaction between feedback structure of plant populations and climate in shaping long-term airborne Poaceae pollen fluctuations and to quantify the effects of climate change on future airborne pollen concentrations. Long-term historical airborne Poaceae pollen data (30 years) from Cordoba city (Southern Spain) were analyzed. A set of models, combining feedback structure, temperature and actual evapotranspiration effects on airborne Poaceae pollen were built and compared, using a model selection approach. Our results highlight the importance of first-order negative feedback and mean annual maximum temperature in driving airborne Poaceae pollen dynamics. The best model was used to predict the effects of climate change under two standardized scenarios representing contrasting temporal patterns of economic development and CO2 emissions. Our results predict an increase in pollen levels in southern Spain by 2070 ranging from 28.5% to 44.3%. The findings from this study provide a greater understanding of airborne pollen dynamics and how climate change might impact the future evolution of airborne Poaceae pollen concentrations and thus the future evolution of related pollen allergies. Copyright © 2015 Elsevier B.V. All rights reserved.
The effect of emotion on keystroke: an experimental study using facial feedback hypothesis.
Tsui, Wei-Hsuan; Lee, Poming; Hsiao, Tzu-Chien
2013-01-01
The automatic emotion recognition technology is an important part of building intelligent systems to prevent the computers acting inappropriately. A novel approach for recognizing emotional state by their keystroke typing patterns on a standard keyboard was developed in recent years. However, there was very limited investigation about the phenomenon itself in the previous literatures. Hence, in our study, we conduct a controlled experiment to collect subjects' keystroke data in the different emotional states induced by facial feedback. We examine the difference of the keystroke data between positive and negative emotional states. The results prove the significance in the differences in the typing patterns under positive and negative emotions for all subjects. Our study provides an evidence for the reasonability about developing the technique of emotion recognition by keystroke.
NASA Astrophysics Data System (ADS)
Ginzel, Matthew D.; Bearfield, Jeremy C.; Keeling, Christopher I.; McCormack, Colin C.; Blomquist, Gary J.; Tittiger, Claus
2007-01-01
Bark beetles use monoterpenoid aggregation pheromones to coordinate host colonization and mating. These chemical signals are produced de novo in midgut cells via the mevalonate pathway, and pheromone production may be regulated by a negative feedback system mediated through the antennae. In this study, we explored the effect of antennectomy on pheromone production and transcript levels of key mevalonate pathway genes in juvenile hormone III-treated male pine engraver beetles, Ips pini (Say). Antennectomized males produced significantly greater amounts of pheromone than podectomized males and those with intact antennae. Likewise, mRNA levels of three mevalonate pathway genes important in pheromone biosynthesis were measured by quantitative real-time PCR and found to be induced to a greater extent with antennectomy, suggesting a transcriptional regulation of pheromone production.
Schnyer, David M; Beevers, Christopher G; deBettencourt, Megan T; Sherman, Stephanie M; Cohen, Jonathan D; Norman, Kenneth A; Turk-Browne, Nicholas B
2015-01-01
There is growing interest in the use of neuroimaging for the direct treatment of mental illness. Here, we present a new framework for such treatment, neurocognitive therapeutics. What distinguishes neurocognitive therapeutics from prior approaches is the use of precise brain-decoding techniques within a real-time feedback system, in order to adapt treatment online and tailor feedback to individuals' needs. We report an initial feasibility study that uses this framework to alter negative attention bias in a small number of patients experiencing significant mood symptoms. The results are consistent with the promise of neurocognitive therapeutics to improve mood symptoms and alter brain networks mediating attentional control. Future work should focus on optimizing the approach, validating its effectiveness, and expanding the scope of targeted disorders.
Van der Molen, Melle J. W.; Poppelaars, Eefje S.; Van Hartingsveldt, Caroline T. A.; Harrewijn, Anita; Gunther Moor, Bregtje; Westenberg, P. Michiel
2014-01-01
Cognitive models posit that the fear of negative evaluation (FNE) is a hallmark feature of social anxiety. As such, individuals with high FNE may show biased information processing when faced with social evaluation. The aim of the current study was to examine the neural underpinnings of anticipating and processing social-evaluative feedback, and its correlates with FNE. We used a social judgment paradigm in which female participants (N = 31) were asked to indicate whether they believed to be socially accepted or rejected by their peers. Anticipatory attention was indexed by the stimulus preceding negativity (SPN), while the feedback-related negativity and P3 were used to index the processing of social-evaluative feedback. Results provided evidence of an optimism bias in social peer evaluation, as participants more often predicted to be socially accepted than rejected. Participants with high levels of FNE needed more time to provide their judgments about the social-evaluative outcome. While anticipating social-evaluative feedback, SPN amplitudes were larger for anticipated social acceptance than for social rejection feedback. Interestingly, the SPN during anticipated social acceptance was larger in participants with high levels of FNE. None of the feedback-related brain potentials correlated with the FNE. Together, the results provided evidence of biased information processing in individuals with high levels of FNE when anticipating (rather than processing) social-evaluative feedback. The delayed response times in high FNE individuals were interpreted to reflect augmented vigilance imposed by the upcoming social-evaluative threat. Possibly, the SPN constitutes a neural marker of this vigilance in females with higher FNE levels, particularly when anticipating social acceptance feedback. PMID:24478667
Effects of generic versus non-generic feedback on motor learning in children.
Chiviacowsky, Suzete; Drews, Ricardo
2014-01-01
Non-generic feedback refers to a specific event and implies that performance is malleable, while generic feedback implies that task performance reflects an inherent ability. The present study examined the influences of generic versus non-generic feedback on motor performance and learning in 10-year-old children. In the first experiment, using soccer ball kicking at a target as a task, providing participants with generic feedback resulted in worse performance than providing non-generic feedback, after both groups received negative feedback. The second experiment measured more permanent effects. Results of a retention test, performed one day after practicing a throwing task, showed that participants who received non-generic feedback during practice outperformed the generic feedback group, after receiving a negative feedback statement. The findings demonstrate the importance of the wording of feedback. Even though different positive feedback statements may not have an immediate influence on performance, they can affect performance, and presumably individuals' motivation, when performance is (purportedly) poor. Feedback implying that performance is malleable, rather than due to an inherent ability, seems to have the potential to inoculate learners against setbacks--a situation frequently encountered in the context of motor performance and learning.
Effects of Generic versus Non-Generic Feedback on Motor Learning in Children
Chiviacowsky, Suzete; Drews, Ricardo
2014-01-01
Non-generic feedback refers to a specific event and implies that performance is malleable, while generic feedback implies that task performance reflects an inherent ability. The present study examined the influences of generic versus non-generic feedback on motor performance and learning in 10-year-old children. In the first experiment, using soccer ball kicking at a target as a task, providing participants with generic feedback resulted in worse performance than providing non-generic feedback, after both groups received negative feedback. The second experiment measured more permanent effects. Results of a retention test, performed one day after practicing a throwing task, showed that participants who received non-generic feedback during practice outperformed the generic feedback group, after receiving a negative feedback statement. The findings demonstrate the importance of the wording of feedback. Even though different positive feedback statements may not have an immediate influence on performance, they can affect performance, and presumably individuals' motivation, when performance is (purportedly) poor. Feedback implying that performance is malleable, rather than due to an inherent ability, seems to have the potential to inoculate learners against setbacks – a situation frequently encountered in the context of motor performance and learning. PMID:24523947
Pfabigan, Daniela Melitta; Alexopoulos, Johanna; Bauer, Herbert; Lamm, Claus; Sailer, Uta
2011-01-01
This study investigated the relationship between feedback processing and antisocial personality traits measured by the PSSI questionnaire (Kuhl and Kazén, 1997) in a healthy undergraduate sample. While event-related potentials [feedback related negativity (FRN), P300] were recorded, participants encountered expected and unexpected feedback during a gambling task. As recent findings suggest learning problems and deficiencies during feedback processing in clinical populations of antisocial individuals, we performed two experiments with different healthy participants in which feedback about monetary gains or losses consisted either of social-emotional (facial emotion displays) or non-social cues (numerical stimuli). Since the FRN and P300 are both sensitive to different aspects of feedback processing we hypothesized that they might help to differentiate between individuals scoring high and low on an antisocial trait measure. In line with previous evidence FRN amplitudes were enhanced after negative and after unexpected feedback stimuli. Crucially, participants scoring high on antisocial traits displayed larger FRN amplitudes than those scoring low only in response to expected and unexpected negative numerical feedback, but not in response to social-emotional feedback - irrespective of expectancy. P300 amplitudes were not modulated by antisocial traits at all, but by subjective reward probabilities. The present findings indicate that individuals scoring high on antisociality attribute higher motivational salience to monetary compared to emotional-social feedback which is reflected in FRN amplitude enhancement. Contrary to recent findings, however, no processing deficiencies concerning social-emotional feedback stimuli were apparent in those individuals. This indicates that stimulus salience is an important aspect in learning and feedback processes in individuals with antisocial traits which has potential implications for therapeutic interventions in clinical populations.
Llerena, Katiah; Wynn, Jonathan K; Hajcak, Greg; Green, Michael F; Horan, William P
2016-07-01
Accurately monitoring one's performance on daily life tasks, and integrating internal and external performance feedback are necessary for guiding productive behavior. Although internal feedback processing, as indexed by the error-related negativity (ERN), is consistently impaired in schizophrenia, initial findings suggest that external performance feedback processing, as indexed by the feedback negativity (FN), may actually be intact. The current study evaluated internal and external feedback processing task performance and test-retest reliability in schizophrenia. 92 schizophrenia outpatients and 63 healthy controls completed a flanker task (ERN) and a time estimation task (FN). Analyses examined the ΔERN and ΔFN defined as difference waves between correct/positive versus error/negative feedback conditions. A temporal principal component analysis was conducted to distinguish the ΔERN and ΔFN from overlapping neural responses. We also assessed test-retest reliability of ΔERN and ΔFN in patients over a 4-week interval. Patients showed reduced ΔERN accompanied by intact ΔFN. In patients, test-retest reliability for both ΔERN and ΔFN over a four-week period was fair to good. Individuals with schizophrenia show a pattern of impaired internal, but intact external, feedback processing. This pattern has implications for understanding the nature and neural correlates of impaired feedback processing in schizophrenia. Published by Elsevier B.V.
Similarities and differences in the p53-mdm2 and NF-kB feedback loops
NASA Astrophysics Data System (ADS)
Krishna, Sandeep
2008-03-01
Ultradian oscillations in the p53 and NF-kB signalling systems are produced using similar mechanisms: a negative feedback loop combined with an effective time delay. However, seemingly small differences in the molecular implementation of this mechanism mean that the NF-kB system is in equilibrium in the resting state, while the p53 system is far from equilibrium. I will discuss how this affects the dynamical response of the systems. In particular, I will argue that the nonequilibrium driving makes the p53 system respond much faster to external stimuli than the NF-kB system. The interesting question then is whether this makes sense physiologically, and is consistent with the fact that p53 triggers cell-cycle arrest and apoptosis, while NF-kB triggers the immune response.
Feedback loop compensates for rectifier nonlinearity
NASA Technical Reports Server (NTRS)
1966-01-01
Signal processing circuit with two negative feedback loops rectifies two sinusoidal signals which are 180 degrees out of phase and produces a single full-wave rectified output signal. Each feedback loop incorporates a feedback rectifier to compensate for the nonlinearity of the circuit.
Koka, Andre; Hagger, Martin S
2010-03-01
In the present study, we tested the effects of specific dimensions of perceived teaching behaviors on students' self-determined motivation in physical education. In accordance with the tenets of self-determination theory (Deci & Ryan, 1985, 2000), we expected the psychological needs for competence, autonomy, and relatedness would mediate these effects. Secondary school students (N=498) ages 12-17 years completed measures of perceived teaching behaviors for seven dimensions: (a) democratic behavior, (b) autocratic behavior (c) teaching and instruction, (d) situation consideration, (e) positive general feedback, (f) positive nonverbal feedback, and (h) negative nonverbal feedback. They also completed measures of perceived satisfaction for competence, autonomy, relatedness, and self-determined motivation. A path-analytic model revealed a positive, indirect effect of perceived positive general feedback on self-determined motivation. The effects of perceived autocratic behavior and negative nonverbal feedback were direct and negative, whereas the effects of teaching and instruction and situation consideration were direct and positive. Results suggest that feedback, situation consideration, and teaching and instruction are essential antecedents to self-determined motivation.
Analytical study of robustness of a negative feedback oscillator by multiparameter sensitivity
2014-01-01
Background One of the distinctive features of biological oscillators such as circadian clocks and cell cycles is robustness which is the ability to resume reliable operation in the face of different types of perturbations. In the previous study, we proposed multiparameter sensitivity (MPS) as an intelligible measure for robustness to fluctuations in kinetic parameters. Analytical solutions directly connect the mechanisms and kinetic parameters to dynamic properties such as period, amplitude and their associated MPSs. Although negative feedback loops are known as common structures to biological oscillators, the analytical solutions have not been presented for a general model of negative feedback oscillators. Results We present the analytical expressions for the period, amplitude and their associated MPSs for a general model of negative feedback oscillators. The analytical solutions are validated by comparing them with numerical solutions. The analytical solutions explicitly show how the dynamic properties depend on the kinetic parameters. The ratio of a threshold to the amplitude has a strong impact on the period MPS. As the ratio approaches to one, the MPS increases, indicating that the period becomes more sensitive to changes in kinetic parameters. We present the first mathematical proof that the distributed time-delay mechanism contributes to making the oscillation period robust to parameter fluctuations. The MPS decreases with an increase in the feedback loop length (i.e., the number of molecular species constituting the feedback loop). Conclusions Since a general model of negative feedback oscillators was employed, the results shown in this paper are expected to be true for many of biological oscillators. This study strongly supports that the hypothesis that phosphorylations of clock proteins contribute to the robustness of circadian rhythms. The analytical solutions give synthetic biologists some clues to design gene oscillators with robust and desired period. PMID:25605374
Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks
NASA Technical Reports Server (NTRS)
Somerville, Richard C. J.; Iacobellis, Sam
1987-01-01
The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.
Harth, Nicole S; Regner, Tobias
2017-12-01
This study investigated state anger and individual differences in negative reciprocity orientation as predictors of individuals' willingness to cooperate with strangers. In order to observe real behaviour, we used a trust game that was played over six periods. In the trust game, a first player (sender) determines how much of a certain endowment she/he wants to share with a second player (trustee), who then can give something back. We varied whether participants received feedback [feedback (yes, no)] about the trustee's behavioural decision (amount sent back). Supporting our hypotheses, the results suggest that feedback compared with no feedback about the trustee's behaviour increased anger. Specifically, information about low back transfers triggered anger and non-cooperation in return. Importantly, participants with a strong negative reciprocity orientation reported higher levels of anger and were less willing to cooperate with the trustee compared with those with low negative reciprocity orientation. Moreover, even when anger was low, individuals with a strong negative reciprocity orientation were less willing to cooperate compared with those with a low negative reciprocity orientation. Thus, negative reciprocity orientation seems to arouse a spiral of distrust. Theoretical and practical implications of these findings are discussed. © 2016 International Union of Psychological Science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yan; Notaro, Michael; Wang, Fuyao
Generalized equilibrium feedback assessment (GEFA) is a potentially valuable multivariate statistical tool for extracting vegetation feedbacks to the atmosphere in either observations or coupled Earth system models. The reliability of GEFA at capturing the terrestrial impacts on regional climate is demonstrated in this paper using the National Center for Atmospheric Research Community Earth System Model (CESM), with focus on North Africa. The feedback is assessed statistically by applying GEFA to output from a fully coupled control run. To reduce the sampling error caused by short data records, the traditional or full GEFA is refined through stepwise GEFA by dropping unimportantmore » forcings. Two ensembles of dynamical experiments are developed for the Sahel or West African monsoon region against which GEFA-based vegetation feedbacks are evaluated. In these dynamical experiments, regional leaf area index (LAI) is modified either alone or in conjunction with soil moisture, with the latter runs motivated by strong regional soil moisture–LAI coupling. Stepwise GEFA boasts higher consistency between statistically and dynamically assessed atmospheric responses to land surface anomalies than full GEFA, especially with short data records. GEFA-based atmospheric responses are more consistent with the coupled soil moisture–LAI experiments, indicating that GEFA is assessing the combined impacts of coupled vegetation and soil moisture. Finally, both the statistical and dynamical assessments reveal a negative vegetation–rainfall feedback in the Sahel associated with an atmospheric stability mechanism in CESM versus a weaker positive feedback in the West African monsoon region associated with a moisture recycling mechanism in CESM.« less
Yu, Yan; Notaro, Michael; Wang, Fuyao; ...
2018-02-05
Generalized equilibrium feedback assessment (GEFA) is a potentially valuable multivariate statistical tool for extracting vegetation feedbacks to the atmosphere in either observations or coupled Earth system models. The reliability of GEFA at capturing the terrestrial impacts on regional climate is demonstrated in this paper using the National Center for Atmospheric Research Community Earth System Model (CESM), with focus on North Africa. The feedback is assessed statistically by applying GEFA to output from a fully coupled control run. To reduce the sampling error caused by short data records, the traditional or full GEFA is refined through stepwise GEFA by dropping unimportantmore » forcings. Two ensembles of dynamical experiments are developed for the Sahel or West African monsoon region against which GEFA-based vegetation feedbacks are evaluated. In these dynamical experiments, regional leaf area index (LAI) is modified either alone or in conjunction with soil moisture, with the latter runs motivated by strong regional soil moisture–LAI coupling. Stepwise GEFA boasts higher consistency between statistically and dynamically assessed atmospheric responses to land surface anomalies than full GEFA, especially with short data records. GEFA-based atmospheric responses are more consistent with the coupled soil moisture–LAI experiments, indicating that GEFA is assessing the combined impacts of coupled vegetation and soil moisture. Finally, both the statistical and dynamical assessments reveal a negative vegetation–rainfall feedback in the Sahel associated with an atmospheric stability mechanism in CESM versus a weaker positive feedback in the West African monsoon region associated with a moisture recycling mechanism in CESM.« less
A Role for Timely Nuclear Translocation of Clock Repressor Proteins in Setting Circadian Clock Speed
Lee, Euna
2014-01-01
By means of a circadian clock system, all the living organisms on earth including human beings can anticipate the environmental rhythmic changes such as light/dark and warm/cold periods in a daily as well as in a yearly manner. Anticipating such environmental changes provide organisms with survival benefits via manifesting behavior and physiology at an advantageous time of the day and year. Cell-autonomous circadian oscillators, governed by transcriptional feedback loop composed of positive and negative elements, are organized into a hierarchical system throughout the organisms and generate an oscillatory expression of a clock gene by itself as well as clock controlled genes (ccgs) with a 24 hr periodicity. In the feedback loop, hetero-dimeric transcription factor complex induces the expression of negative regulatory proteins, which in turn represses the activity of transcription factors to inhibit their own transcription. Thus, for robust oscillatory rhythms of the expression of clock genes as well as ccgs, the precise control of subcellular localization and/or timely translocation of core clock protein are crucial. Here, we discuss how sub-cellular localization and nuclear translocation are controlled in a time-specific manner focusing on the negative regulatory clock proteins. PMID:25258565
Smith, Justin D.; Dishion, Thomas J.; Moore, Kevin J.; Shaw, Daniel S.; Wilson, Melvin N.
2013-01-01
Objective We examined the effect of adding a video feedback intervention component to the assessment feedback session of the Family Check-Up intervention (FCU; Dishion & Stormshak, 2007). We hypothesized that the addition of video feedback procedures during the FCU feedback at child age 2 would have a positive effect on caregivers’ negative relational schemas of their child, which in turn would mediate reductions in observed coercive caregiver-child interactions assessed at age 5. Method We observed the caregiver-child interaction videotapes of 79 high-risk families with toddlers exhibiting clinically significant problem behaviors. A quasi-random sample of families were provided with direct feedback on their interactions during the feedback session of the FCU protocol. Results Path analysis indicated that reviewing and engaging in feedback about videotaped age-2 assessment predicted reduced caregivers’ negative relational schemas of the child at age 3, which acted as an intervening variable on the reduction of observed parent–child coercive interactions recorded at age 5. Video feedback predicted improved family functioning over and above level of engagement in the FCU in subsequent years, indicating the important incremental contribution of using video feedback procedures in early family-based preventive interventions for problem behaviors. Conclusions Supportive video feedback on coercive family dynamics is an important strategy for promoting caregiver motivation to reduce negative attributions toward the child, which fuel coercive interactions. Our study also contributes to the clinical and research literature concerning coercion theory and effective intervention strategies by identifying a potential mechanism of change. PMID:23534831
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia
Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. Here, we argue that in order to understand the dynamics of either system, Earth System Models must be coupled withmore » Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections.This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. Lastly, the importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.« less
NASA Technical Reports Server (NTRS)
Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; Asrar, Ghassem R.; Busalacchi, Antonio J.; Cahalan, Robert F.; Cane, Mark A.; Colwell, Rita R.; Feng, Kuishuang; Franklin, Rachel S.;
2016-01-01
Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as UN population projections. This makes current models likely to miss important feedbacks in the real Earth-Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth-Human system models for devising effective science-based policies and measures to benefit current and future generations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia
Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth System Models must be coupled with Humanmore » System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections. This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.« less
Motesharrei, Safa; Rivas, Jorge; Kalnay, Eugenia; ...
2016-12-11
Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. Here, we argue that in order to understand the dynamics of either system, Earth System Models must be coupled withmore » Human System Models through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections.This makes current models likely to miss important feedbacks in the real Earth–Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models. Lastly, the importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth–Human system models for devising effective science-based policies and measures to benefit current and future generations.« less
Zhang, Qiang; Pi, Jingbo; Woods, Courtney G; Andersen, Melvin E
2009-06-15
Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X'. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of dose-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a possibly common mechanism for the hormetic responses observed with many mutagens/carcinogens whose activities require bioactivation by phase I enzymes. Feedforward control, often operating in combination with negative feedback regulation in a homeostatic system, may be a general control theme responsible for steady-state hormesis.
Khdour, Hussain Y.; Abushalbaq, Oday M.; Mughrabi, Ibrahim T.; Imam, Aya F.; Gluck, Mark A.; Herzallah, Mohammad M.; Moustafa, Ahmed A.
2016-01-01
Anxiety disorders, including generalized anxiety disorder (GAD), social anxiety disorder (SAD), and panic anxiety disorder (PAD), are a group of common psychiatric conditions. They are characterized by excessive worrying, uneasiness, and fear of future events, such that they affect social and occupational functioning. Anxiety disorders can alter behavior and cognition as well, yet little is known about the particular domains they affect. In this study, we tested the cognitive correlates of medication-free patients with GAD, SAD, and PAD, along with matched healthy participants using a probabilistic category-learning task that allows the dissociation between positive and negative feedback learning. We also fitted all participants' data to a Q-learning model and various actor-critic models that examine learning rate parameters from positive and negative feedback to investigate effects of valence vs. action on performance. SAD and GAD patients were more sensitive to negative feedback than either PAD patients or healthy participants. PAD, SAD, and GAD patients did not differ in positive-feedback learning compared to healthy participants. We found that Q-learning models provide the simplest fit of the data in comparison to other models. However, computational analysis revealed that groups did not differ in terms of learning rate or exploration values. These findings argue that (a) not all anxiety spectrum disorders share similar cognitive correlates, but are rather different in ways that do not link them to the hallmark of anxiety (higher sensitivity to negative feedback); and (b) perception of negative consequences is the core feature of GAD and SAD, but not PAD. Further research is needed to examine the similarities and differences between anxiety spectrum disorders in other cognitive domains and potential implementation of behavioral therapy to remediate cognitive deficits. PMID:27445719
Khdour, Hussain Y; Abushalbaq, Oday M; Mughrabi, Ibrahim T; Imam, Aya F; Gluck, Mark A; Herzallah, Mohammad M; Moustafa, Ahmed A
2016-01-01
Anxiety disorders, including generalized anxiety disorder (GAD), social anxiety disorder (SAD), and panic anxiety disorder (PAD), are a group of common psychiatric conditions. They are characterized by excessive worrying, uneasiness, and fear of future events, such that they affect social and occupational functioning. Anxiety disorders can alter behavior and cognition as well, yet little is known about the particular domains they affect. In this study, we tested the cognitive correlates of medication-free patients with GAD, SAD, and PAD, along with matched healthy participants using a probabilistic category-learning task that allows the dissociation between positive and negative feedback learning. We also fitted all participants' data to a Q-learning model and various actor-critic models that examine learning rate parameters from positive and negative feedback to investigate effects of valence vs. action on performance. SAD and GAD patients were more sensitive to negative feedback than either PAD patients or healthy participants. PAD, SAD, and GAD patients did not differ in positive-feedback learning compared to healthy participants. We found that Q-learning models provide the simplest fit of the data in comparison to other models. However, computational analysis revealed that groups did not differ in terms of learning rate or exploration values. These findings argue that (a) not all anxiety spectrum disorders share similar cognitive correlates, but are rather different in ways that do not link them to the hallmark of anxiety (higher sensitivity to negative feedback); and (b) perception of negative consequences is the core feature of GAD and SAD, but not PAD. Further research is needed to examine the similarities and differences between anxiety spectrum disorders in other cognitive domains and potential implementation of behavioral therapy to remediate cognitive deficits.
Feedback Seeking in Early Adolescence: Self-Enhancement or Self-Verification?
ERIC Educational Resources Information Center
Rosen, Lisa H.; Principe, Connor P.; Langlois, Judith H.
2013-01-01
The authors examined whether early adolescents ("N" = 90) solicit self-enhancing feedback (i.e., positive feedback) or self-verifying feedback (i.e., feedback congruent with self-views, even when these views are negative). Sixth, seventh, and eighth graders first completed a self-perception measure and then selected whether to receive…
Anxiety as a Function of Self-Evaluation and Related Feedback
ERIC Educational Resources Information Center
Viney, Linda L.
1971-01-01
The principal result of this study is the demonstration that both positive and negative feedback result in higher diffuse anxiety scores than does congruent feedback while there is no difference in the effects of the two discrepant types of feedback thus confirming a Rogerian hypothesis regarding feedback and anxiety induction. (Author/CG)
Kwon, Yoojung; Kim, Youngmi; Eom, Sangkyung; Kim, Misun; Park, Deokbum; Kim, Hyuna; Noh, Kyeonga; Lee, Hansoo; Lee, Yun Sil; Choe, Jongseon; Kim, Young Myeong; Jeoung, Dooil
2015-01-01
Cyclooxgenase-2 (COX-2) knock-out mouse experiments showed that COX-2 was necessary for in vivo allergic inflammation, such as passive cutaneous anaphylaxis, passive systemic anaphylaxis, and triphasic cutaneous allergic reaction. TargetScan analysis predicted COX-2 as a target of miR-26a and miR-26b. miR-26a/-26b decreased luciferase activity associated with COX-2–3′-UTR. miR-26a/-26b exerted negative effects on the features of in vitro and in vivo allergic inflammation by targeting COX-2. ChIP assays showed the binding of HDAC3 and SNAIL, but not COX-2, to the promoter sequences of miR-26a and miR-26b. Cytokine array analysis showed that the induction of chemokines, such as MIP-2, in the mouse passive systemic anaphylaxis model occurred in a COX-2-dependent manner. ChIP assays showed the binding of HDAC3 and COX-2 to the promoter sequences of MIP-2. In vitro and in vivo allergic inflammation was accompanied by the increased expression of MIP-2. miR-26a/-26b negatively regulated the expression of MIP-2. Allergic inflammation enhanced the tumorigenic and metastatic potential of cancer cells and induced positive feedback involving cancer cells and stromal cells, such as mast cells, macrophages, and endothelial cells. miR-26a mimic and miR-26b mimic negatively regulated the positive feedback between cancer cells and stromal cells and the positive feedback among stromal cells. miR-26a/-26b negatively regulated the enhanced tumorigenic potential by allergic inflammation. COX-2 was necessary for the enhanced metastatic potential of cancer cells by allergic inflammation. Taken together, our results indicate that the miR26a/-26b-COX-2-MIP-2 loop regulates allergic inflammation and the feedback relationship between allergic inflammation and the enhanced tumorigenic and metastatic potential. PMID:25907560
Negative plant-soil feedbacks increase with plant abundance, and are unchanged by competition.
Maron, John L; Laney Smith, Alyssa; Ortega, Yvette K; Pearson, Dean E; Callaway, Ragan M
2016-08-01
Plant-soil feedbacks and interspecific competition are ubiquitous interactions that strongly influence the performance of plants. Yet few studies have examined whether the strength of these interactions corresponds with the abundance of plant species in the field, or whether feedbacks and competition interact in ways that either ameliorate or exacerbate their effects in isolation. We sampled soil from two intermountain grassland communities where we also measured the relative abundance of plant species. In greenhouse experiments, we quantified the direction and magnitude of plant-soil feedbacks for 10 target species that spanned a range of abundances in the field. In soil from both sites, plant-soil feedbacks were mostly negative, with more abundant species suffering greater negative feedbacks than rare species. In contrast, the average response to competition for each species was unrelated with its abundance in the field. We also determined how competitive response varied among our target species when plants competed in live vs. sterile soil. Interspecific competition reduced plant size, but the strength of this negative effect was unchanged by plant-soil feedbacks. Finally, when plants competed interspecifically, we asked how conspecific-trained, heterospecific-trained, and sterile soil influenced the competitive responses of our target species and how this varied depending on whether target species were abundant or rare in the field. Here, we found that both abundant and rare species were not as harmed by competition when they grew in heterospecific-trained soil compared to when they grew in conspecific-cultured soil. Abundant species were also not as harmed by competition when growing in sterile vs. conspecific-trained soil, but this was not the case for rare species. Our results suggest that abundant plants accrue species-specific soil pathogens to a greater extent than rare species. Thus, negative feedbacks may be critical for preventing abundant species from becoming even more abundant than rare species. © 2016 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Calvin, K. V.
2016-12-01
The C4MIP and CMIP5 model intercomparison projects (MIPs) highlighted uncertainties in climate projections, driven to a large extent by interactions between the terrestrial carbon cycle and climate feedbacks. In addition, the importance of feedbacks between human (energy and economic) systems and natural (carbon and climate) systems is poorly understood, and not considered in the previous MIP protocols. The experiments conducted under the previous Integrated Earth System Model (iESM) project, which coupled a earth system model with an integrated assessment model (GCAM), found that the inclusion of climate feedbacks on the terrestrial system in an RCP4.5 scenario increased ecosystem productivity, resulting in declines in cropland extent and increases in bioenergy production and forest cover. As a follow-up to these studies and to further understand climate-carbon cycle interactions and feedbacks, we examined the robustness of these results by running a suite of GCAM-only experiments using changes in ecosystem productivity derived from both the CMIP5 archive and the Agricultural Model Intercomparison Project. In our results, the effects of climate on yield in an RCP8.5 scenario tended to be more positive than those of AgMIP, but more negative than those of the other CMIP models. We discuss these results and the implications of model-to-model variability for integrated coupling studies of the future earth system.
Vermeulen, Joan; Neyens, Jacques CL; Spreeuwenberg, Marieke D; van Rossum, Erik; Sipers, Walther; Habets, Herbert; Hewson, David J; de Witte, Luc P
2013-01-01
Purpose To involve elderly people during the development of a mobile interface of a monitoring system that provides feedback to them regarding changes in physical functioning and to test the system in a pilot study. Methods and participants The iterative user-centered development process consisted of the following phases: (1) selection of user representatives; (2) analysis of users and their context; (3) identification of user requirements; (4) development of the interface; and (5) evaluation of the interface in the lab. Subsequently, the monitoring and feedback system was tested in a pilot study by five patients who were recruited via a geriatric outpatient clinic. Participants used a bathroom scale to monitor weight and balance, and a mobile phone to monitor physical activity on a daily basis for six weeks. Personalized feedback was provided via the interface of the mobile phone. Usability was evaluated on a scale from 1 to 7 using a modified version of the Post-Study System Usability Questionnaire (PSSUQ); higher scores indicated better usability. Interviews were conducted to gain insight into the experiences of the participants with the system. Results The developed interface uses colors, emoticons, and written and/or spoken text messages to provide daily feedback regarding (changes in) weight, balance, and physical activity. The participants rated the usability of the monitoring and feedback system with a mean score of 5.2 (standard deviation 0.90) on the modified PSSUQ. The interviews revealed that most participants liked using the system and appreciated that it signaled changes in their physical functioning. However, usability was negatively influenced by a few technical errors. Conclusion Involvement of elderly users during the development process resulted in an interface with good usability. However, the technical functioning of the monitoring system needs to be optimized before it can be used to support elderly people in their self-management. PMID:24039407
Effects of intrinsic motivation on feedback processing during learning.
DePasque, Samantha; Tricomi, Elizabeth
2015-10-01
Learning commonly requires feedback about the consequences of one's actions, which can drive learners to modify their behavior. Motivation may determine how sensitive an individual might be to such feedback, particularly in educational contexts where some students value academic achievement more than others. Thus, motivation for a task might influence the value placed on performance feedback and how effectively it is used to improve learning. To investigate the interplay between intrinsic motivation and feedback processing, we used functional magnetic resonance imaging (fMRI) during feedback-based learning before and after a novel manipulation based on motivational interviewing, a technique for enhancing treatment motivation in mental health settings. Because of its role in the reinforcement learning system, the striatum is situated to play a significant role in the modulation of learning based on motivation. Consistent with this idea, motivation levels during the task were associated with sensitivity to positive versus negative feedback in the striatum. Additionally, heightened motivation following a brief motivational interview was associated with increases in feedback sensitivity in the left medial temporal lobe. Our results suggest that motivation modulates neural responses to performance-related feedback, and furthermore that changes in motivation facilitate processing in areas that support learning and memory. Copyright © 2015. Published by Elsevier Inc.
Hummel, Alexandra C; Smith, April R
2015-05-01
The current study examined whether certain types of Facebook content (i.e., status updates, comments) relate to eating concerns and attitudes. We examined the effects of seeking and receiving negative feedback via Facebook on disordered eating concerns in a sample of 185 undergraduate students followed for approximately 4 weeks. Results indicated that individuals with a negative feedback seeking style who received a high number of comments on Facebook were more likely to report disordered eating attitudes four weeks later. Additionally, individuals who received extremely negative comments in response to their personally revealing status updates were more likely to report disordered eating concerns four weeks later. Results of the current study provide preliminary evidence that seeking and receiving negative feedback via social networking sites can increase risk for disordered eating attitudes, and suggest that reducing maladaptive social networking usage may be an important target for prevention and intervention efforts aimed at reducing disordered eating attitudes. © 2014 Wiley Periodicals, Inc.
Can we bet on negative emissions to achieve the 2°C target even under strong carbon cycle feedbacks?
NASA Astrophysics Data System (ADS)
Tanaka, K.; Yamagata, Y.; Yokohata, T.; Emori, S.; Hanaoka, T.
2015-12-01
Negative emission technologies such as Bioenergy with Carbon dioxide Capture and Storage (BioCCS) play an ever more crucial role in meeting the 2°C stabilization target. However, such technologies are currently at their infancy and their future penetrations may fall short of the scale required to stabilize the warming. Furthermore, the overshoot in the mid-century prior to a full realization of negative emissions would give rise to a risk because such a temporal but excessive warming above 2°C might amplify itself by strengthening climate-carbon cycle feedbacks. It has not been extensively assessed yet how carbon cycle feedbacks might play out during the overshoot in the context of negative emissions. This study explores how 2°C stabilization pathways, in particular those which undergo overshoot, can be influenced by carbon cycle feedbacks and asks their climatic and economic consequences. We compute 2°C stabilization emissions scenarios under a cost-effectiveness principle, in which the total abatement costs are minimized such that the global warming is capped at 2°C. We employ a reduced-complexity model, the Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate model (ACC2), which comprises a box model of the global carbon cycle, simple parameterizations of the atmospheric chemistry, and a land-ocean energy balance model. The total abatement costs are estimated from the marginal abatement cost functions for CO2, CH4, N2O, and BC.Our preliminary results show that, if carbon cycle feedbacks turn out to be stronger than what is known today, it would incur substantial abatement costs to keep up with the 2°C stabilization goal. Our results also suggest that it would be less expensive in the long run to plan for a 2°C stabilization pathway by considering strong carbon cycle feedbacks because it would cost more if we correct the emission pathway in the mid-century to adjust for unexpectedly large carbon cycle feedbacks during overshoot. Furthermore, our tentative results point to a key policy message: do not rely on negative emissions to achieve the 2°C target. It would make more sense to gear climate mitigation actions toward the stabilization target without betting on negative emissions because negative emissions might create large overshoot in case of strong feedbacks.
Reinforcement learning deficits in people with schizophrenia persist after extended trials.
Cicero, David C; Martin, Elizabeth A; Becker, Theresa M; Kerns, John G
2014-12-30
Previous research suggests that people with schizophrenia have difficulty learning from positive feedback and when learning needs to occur rapidly. However, they seem to have relatively intact learning from negative feedback when learning occurs gradually. Participants are typically given a limited amount of acquisition trials to learn the reward contingencies and then tested about what they learned. The current study examined whether participants with schizophrenia continue to display these deficits when given extra time to learn the contingences. Participants with schizophrenia and matched healthy controls completed the Probabilistic Selection Task, which measures positive and negative feedback learning separately. Participants with schizophrenia showed a deficit in learning from both positive feedback and negative feedback. These reward learning deficits persisted even if people with schizophrenia are given extra time (up to 10 blocks of 60 trials) to learn the reward contingencies. These results suggest that the observed deficits cannot be attributed solely to slower learning and instead reflect a specific deficit in reinforcement learning. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Feedback enhances the positive effects and reduces the negative effects of multiple-choice testing.
Butler, Andrew C; Roediger, Henry L
2008-04-01
Multiple-choice tests are used frequently in higher education without much consideration of the impact this form of assessment has on learning. Multiple-choice testing enhances retention of the material tested (the testing effect); however, unlike other tests, multiple-choice can also be detrimental because it exposes students to misinformation in the form of lures. The selection of lures can lead students to acquire false knowledge (Roediger & Marsh, 2005). The present research investigated whether feedback could be used to boost the positive effects and reduce the negative effects of multiple-choice testing. Subjects studied passages and then received a multiple-choice test with immediate feedback, delayed feedback, or no feedback. In comparison with the no-feedback condition, both immediate and delayed feedback increased the proportion of correct responses and reduced the proportion of intrusions (i.e., lure responses from the initial multiple-choice test) on a delayed cued recall test. Educators should provide feedback when using multiple-choice tests.
Children's reasoning about evaluative feedback.
Heyman, Gail D; Fu, Genyue; Sweet, Monica A; Lee, Kang
2009-11-01
Children's reasoning about the willingness of peers to convey accurate positive and negative performance feedback to others was investigated among a total of 179 6- to 11-year-olds from the USA and China. In Study 1, which was conducted in the USA only, participants responded that peers would be more likely to provide positive feedback than negative feedback, and this tendency was strongest among the younger children. In Study 2, the expectation that peers would preferentially disclose positive feedback was replicated among children from the USA, and was also seen among younger but not older children from China. Participants in all groups took the relationship between communication partners into account when predicting whether peers would express evaluative feedback. Results of open-ended responses suggested cross-cultural differences, including a greater emphasis by Chinese children on the implications of evaluative feedback for future performance, and reference by some older Chinese children to the possibility that positive feedback might make the recipient 'too proud'.
Incidental emotions influence risk preference and outcome evaluation.
Zhao, Ding; Gu, Ruolei; Tang, Ping; Yang, Qiwei; Luo, Yue-Jia
2016-10-01
Incidental emotions, which are irrelevant to the current decision, play a significant role in the decision-making process. In this study, to investigate the influence of incidental emotions on behavioral, psychological, and electrophysiological responses in the process of decision making, participants were required to perform a monetary gambling task. During the selection stage, an emotional picture, which was chosen from the Chinese Affective Picture System and fell into one of three categories: negative, neutral, and positive, was presented between two alternatives (small/large amount of bet). The pictures were provided to induce incidental emotions. ERPs and self-rating emotional experiences to outcome feedback were recorded during the task. Behavioral results showed that positive incidental emotions elicited risk preference, but emotional experiences to outcome feedback were not influenced by incidental emotions. The feedback-related negativity amplitudes were larger in the positive emotion condition than in the negative and neutral emotion conditions for small outcomes (including wins and losses), whereas there was no difference between the three conditions for large outcomes. In addition, the amplitudes of P3 were reduced overall in the negative emotion condition. We suggest that incidental emotions have modulated both the option assessment stage (manifested in behavioral choices) and the outcome evaluation stage (manifested in ERP amplitudes) of decision making unconsciously (indicated by unchanged subjective emotional experiences). The current findings have expanded our understanding of the role of incidental emotion in decision making. © 2016 Society for Psychophysiological Research.
Aging and risky decision-making: New ERP evidence from the Iowa Gambling Task.
Di Rosa, Elisa; Mapelli, Daniela; Arcara, Giorgio; Amodio, Piero; Tamburin, Stefano; Schiff, Sami
2017-02-15
Several pieces of evidence have highlighted the presence of an age-related decline in risky decision-making (DM), but the reason of this decline is still unclear. The aim of the present study was to investigate the neural correlates of feedback processing in risky DM. Twenty-one younger (age <50 years) and 15 older (age >50 years) adults were tested with the Iowa Gambling Task (IGT) during Event Related Potentials (ERP) recording. The analysis was focused on the feedback-related negativity (FRN) and P3, two ERP components that represent different stages of feedback processing. Behavioral results revealed that older adults, despite showing a significant learning trend, completed the IGT with a gain of a smaller amount of money compared to the younger ones. ERP results revealed that while the FRN response was comparable in the two groups, the P3 amplitude was significantly reduced after negative feedback in older adults, compared with the younger ones. Furthermore, the difference in the P3 amplitude evoked by positive and negative feedback was significantly correlated with age. Hence, the present findings suggest that older adults seem to be less willing to shift attention from positive to negative information, and that this relevant change in the later stages of feedback processing could be the cause of a poor performance in risky DM contexts. Copyright © 2017 Elsevier B.V. All rights reserved.
The Positive Impact of Negative Feedback
2011-03-01
8 Feedback Moderation...and Feedback Usefulness ..................................................................................29 Figure 8 . Moderation Plot of...discrepancies may play a motivational role in 8 leadership development, and Atwater et al. (1998) asserted that others-self agreement may be
Euser, Anja S; van Meel, Catharina S; Snelleman, Michelle; Franken, Ingmar H A
2011-09-01
Although risky decision-making is one of the hallmarks of alcohol use disorders, relatively little is known about the acute psychopharmacological effects of alcohol on decision-making processes. The present study investigated the acute effects of alcohol on neural mechanisms underlying feedback processing and outcome evaluation during risky decision-making, using event-related brain potentials (ERPs). ERPs elicited by positive and negative feedback were recorded during performance of a modified version of the Balloon Analogue Risk Task in male participants receiving either a moderate dose of alcohol (0.65 g/kg alcohol; n = 32) or a non-alcoholic placebo beverage (n = 32). Overall, there was no significant difference in the mean number of pumps between the alcohol and the placebo condition. However, when analyzing over time, it was found that the alcohol group made more riskier choices at the beginning of the task than the placebo group. ERPs demonstrated that alcohol consumption did not affect early processing of negative feedback, indexed by the feedback-related negativity. By contrast, alcohol-intoxicated individuals showed significantly reduced P300 amplitudes in response to negative feedback as compared to sober controls, suggesting that more elaborate evaluation to losses was significantly diminished. These results suggest that alcohol consumption does not influence the ability to rapidly evaluate feedback valence, but rather the ability to assign sufficient attention to further process motivationally salient outcomes. Blunted P300 amplitudes may reflect poor integration of feedback across trials, particularly adverse ones. Consequently, alcohol may keep people from effectively predicting the probability of future gains and losses based on their reinforcement history.
ERIC Educational Resources Information Center
Sommer, Kristin L.; Kulkarni, Mukta
2012-01-01
Organizational experts have long touted the importance of delivering negative performance feedback in a manner that enhances employee receptivity to feedback, yet the broader impacts of constructive feedback have received relatively little attention. The present investigation explored the impact of constructive, critical feedback on organizational…
Yau, Yvonne H C; Potenza, Marc N; Mayes, Linda C; Crowley, Michael J
2015-06-01
While the conceptualization of problematic Internet use (PIU) as a "behavioral addiction" resembling substance-use disorders is debated, the neurobiological underpinnings of PIU remain understudied. This study examined whether adolescents displaying features of PIU (at-risk PIU; ARPIU) are more impulsive and exhibit blunted responding in the neural mechanisms underlying feedback processing and outcome evaluation during risk-taking. Event-related potentials (ERPs) elicited by positive (i.e. reward) and negative (i.e. loss) feedback were recorded during performance on a modified version of the Balloon Analogue Risk Task (BART) among ARPIU (n=39) and non-ARPIU subjects (n=27). Compared to non-ARPIU, ARPIU adolescents displayed higher levels of urgency and lack of perseverance on the UPPS Impulsive Behavior Scale. Although no between-group difference in BART performance was observed, ERPs demonstrated overall decreased sensitivity to feedback in ARPIU compared to non-ARPIU adolescents, as indexed by blunted feedback-related negativity (FRN) and P300 amplitudes to both negative and positive feedback. The present study provides evidence for feedback processing during risk-taking as a neural correlate of ARPIU. Given recent concerns regarding the growing prevalence of PIU as a health concern, future work should examine the extent to which feedback processing may represent a risk factor for PIU, a consequence of PIU, or possibly both. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dideriksen, Jakob L.; Negro, Francesco
2015-01-01
Increasing joint stiffness by cocontraction of antagonist muscles and compensatory reflexes are neural strategies to minimize the impact of unexpected perturbations on movement. Combining these strategies, however, may compromise steadiness, as elements of the afferent input to motor pools innervating antagonist muscles are inherently negatively correlated. Consequently, a high afferent gain and active contractions of both muscles may imply negatively correlated neural drives to the muscles and thus an unstable limb position. This hypothesis was systematically explored with a novel computational model of the peripheral nervous system and the mechanics of one limb. Two populations of motor neurons received synaptic input from descending drive, spinal interneurons, and afferent feedback. Muscle force, simulated based on motor unit activity, determined limb movement that gave rise to afferent feedback from muscle spindles and Golgi tendon organs. The results indicated that optimal steadiness was achieved with low synaptic gain of the afferent feedback. High afferent gains during cocontraction implied increased levels of common drive in the motor neuron outputs, which were negatively correlated across the two populations, constraining instability of the limb. Increasing the force acting on the joint and the afferent gain both effectively minimized the impact of an external perturbation, and suboptimal adjustment of the afferent gain could be compensated by muscle cocontraction. These observations show that selection of the strategy for a given contraction implies a compromise between steadiness and effectiveness of compensations to perturbations. This indicates that a task-dependent selection of neural strategy for steadiness is necessary when acting in different environments. PMID:26203102
Reward positivity is elicited by monetary reward in the absence of response choice.
Varona-Moya, Sergio; Morís, Joaquín; Luque, David
2015-02-11
The neural response to positive and negative feedback differs in their event-related potentials. Most often this difference is interpreted as the result of a negative voltage deflection after negative feedback. This deflection has been referred to as the feedback-related negativity component. The reinforcement learning model of the feedback-related negativity establishes that this component reflects an error monitoring process aimed to increase behavior adjustment progressively. However, a recent proposal suggests that the difference observed is actually due to a positivity reflecting the rewarding value of positive feedbacks - that is, the reward positivity component (RewP). From this it follows that RewP could be found even in the absence of any action-monitoring processes. We tested this prediction by means of an experiment in which visual target stimuli were intermixed with nontarget stimuli. Three types of targets signaled money gains, money losses, or the absence of either money gain or money loss, respectively. No motor response was required. Event-related potential analyses showed a central positivity in a 270-370 ms time window that was elicited by target stimuli signaling money gains, as compared with both stimuli signaling losses and no-gain/no-loss neutral stimuli. This is the first evidence to show that RewP is obtained when stimuli with rewarding values are passively perceived.
Regulation of landslide motion by dilatancy and pore pressure feedback
Iverson, R.M.
2005-01-01
A new mathematical model clarifies how diverse styles and rates of landslide motion can result from regulation of Coulomb friction by dilation or contraction of water-saturated basal shear zones. Normalization of the model equations shows that feedback due to coupling between landslide motion, shear zone volume change, and pore pressure change depends on a single dimensionless parameter ??, which, in turn, depends on the dilatancy angle ?? and the intrinsic timescales for pore pressure generation and dissipation. If shear zone soil contracts during slope failure, then ?? 0, and negative feedback permits slow, steady landslide motion to occur while positive pore pressure is supplied by rain infiltration. Steady state slip velocities v0 obey v0 = -(K/??) p*e, where K is the hydraulic conductivity and p*e is the normalized (dimensionless) negative pore pressure generated by dilation. If rain infiltration and attendant pore pressure growth continue unabated, however, their influence ultimately overwhelms the stabilizing influence of negative p*e. Then, unbounded landslide acceleration occurs, accentuated by an instability that develops if ?? diminishes as landslide motion proceeds. Nonetheless, numerical solutions of the model equations show that slow, nearly steady motion of a clay-rich landslide may persist for many months as a result of negative pore pressure feedback that regulates basal Coulomb friction. Similarly stabilized motion is less likely to occur in sand-rich landslides that are characterized by weaker negative feedback.
Valentiner, David P; Skowronski, John J; McGrath, Patrick B; Smith, Sarah A; Renner, Kerry A
2011-10-01
A self-verification model of social anxiety views negative social self-esteem as a core feature of social anxiety. This core feature is proposed to be maintained through self-verification processes, such as by leading individuals with negative social self-esteem to prefer negative social feedback. This model is tested in two studies. In Study 1, questionnaires were administered to a college sample (N = 317). In Study 2, questionnaires were administered to anxiety disordered patients (N = 62) before and after treatment. Study 1 developed measures of preference for negative social feedback and social self-esteem, and provided evidence of their incremental validity in a college sample. Study 2 found that these two variables are not strongly related to fears of evaluation, are relatively unaffected by a treatment that targets such fears, and predict residual social anxiety following treatment. Overall, these studies provide preliminary evidence for a self-verification model of social anxiety.
A mathematical model of the mevalonate cholesterol biosynthesis pathway.
Pool, Frances; Currie, Richard; Sweby, Peter K; Salazar, José Domingo; Tindall, Marcus J
2018-04-14
We formulate, parameterise and analyse a mathematical model of the mevalonate pathway, a key pathway in the synthesis of cholesterol. Of high clinical importance, the pathway incorporates rate limiting enzymatic reactions with multiple negative feedbacks. In this work we investigate the pathway dynamics and demonstrate that rate limiting steps and negative feedbacks within it act in concert to tightly regulate intracellular cholesterol levels. Formulated using the theory of nonlinear ordinary differential equations and parameterised in the context of a hepatocyte, the governing equations are analysed numerically and analytically. Sensitivity and mathematical analysis demonstrate the importance of the two rate limiting enzymes 3-hydroxy-3-methylglutaryl-CoA reductase and squalene synthase in controlling the concentration of substrates within the pathway as well as that of cholesterol. The role of individual feedbacks, both global (between that of cholesterol and sterol regulatory element-binding protein 2; SREBP-2) and local internal (between substrates in the pathway) are investigated. We find that whilst the cholesterol SREBP-2 feedback regulates the overall system dynamics, local feedbacks activate within the pathway to tightly regulate the overall cellular cholesterol concentration. The network stability is analysed by constructing a reduced model of the full pathway and is shown to exhibit one real, stable steady-state. We close by addressing the biological question as to how farnesyl-PP levels are affected by CYP51 inhibition, and demonstrate that the regulatory mechanisms within the network work in unison to ensure they remain bounded. Copyright © 2018 Elsevier Ltd. All rights reserved.
Changes in Intrinsic Motivation as a Function of Negative Feedback and Threats.
ERIC Educational Resources Information Center
Deci, Edward L.; Cascio, Wayne F.
Recent studies have demonstrated that external rewards can affect intrinsic motivation to perform an activity. Money tends to decrease intrinsic motivation, whereas positive verbal reinforcements tend to increase intrinsic motivation. This paper presents evidence that negative feedback and threats of punishment also decrease intrinsic motivation.…
A basic understanding of the endocrinology of the hypothalamic-pituitary-thyroid (HPT) axis of anuran larvae is necessary for predicting the consequences of HPT perturbation by thyroid-disrupting chemicals (TDCs) on the whole organism. This project examined negative feedback con...
Event-related potentials in response to cheating and cooperation in a social dilemma game.
Bell, Raoul; Sasse, Julia; Möller, Malte; Czernochowski, Daniela; Mayr, Susanne; Buchner, Axel
2016-02-01
A sequential prisoner's dilemma game was combined with psychophysiological measures to examine the cognitive underpinnings of reciprocal exchange. Participants played four rounds of the game with partners who either cooperated or cheated. In a control condition, the partners' faces were shown, but no interaction took place. The partners' behaviors were consistent in the first three rounds of the game, but in the last round some of the partners unexpectedly changed strategies. In the first round of the game, the feedback about a partner's decision elicited a feedback P300, which was more pronounced for cooperation and cheating in comparison to the control condition, but did not vary as a function of feedback valence. In the last round, both the feedback negativity and the feedback P300 were sensitive to expectancy violations. There was no consistent evidence for a negativity bias, that is, enhanced allocation of attention to feedback about another person's cheating in comparison to feedback about another person's cooperation. Instead, participants focused on both positive and negative information, and flexibly adjusted their processing biases to the diagnosticity of the information. This conclusion was corroborated by the ERP correlates of memory retrieval. Successful retrieval of a partner's reputation was associated with an anterior positivity between 400 and 600 ms after face onset. This anterior positivity was more pronounced for both cooperator and cheater faces in comparison to control faces. The results suggest that it is not the negativity of social information, but rather its motivational and behavioral relevance that determines its processing. © 2015 Society for Psychophysiological Research.
The Influence of Teacher Feedback on Children's Perceptions of Student-Teacher Relationships
ERIC Educational Resources Information Center
Skipper, Yvonne; Douglas, Karen
2015-01-01
Background: Teachers can deliver feedback using person ("you are clever") or process terms ("you worked hard"). Person feedback can lead to negative academic outcomes, but there is little experimental research examining the impact of feedback on children's perceptions of the student-teacher relationship. Aim: We examined the…
Pfabigan, Daniela M.; Zeiler, Michael; Lamm, Claus; Sailer, Uta
2014-01-01
Objective Electrophysiological studies on feedback processing typically use a wide range of feedback stimuli which might not always be comparable. The current study investigated whether two indicators of feedback processing – feedback-related negativity (FRN) and P3b – differ for feedback stimuli with explicit (facial expressions) or assigned valence information (symbols). In addition, we assessed whether presenting feedback in either a trial-by-trial or a block-wise fashion affected these ERPs. Methods EEG was recorded in three experiments while participants performed a time estimation task and received two different types of performance feedback. Results Only P3b amplitudes varied consistently in response to feedback type for both presentation types. Moreover, the blocked feedback type presentation yielded more distinct FRN peaks, higher effect sizes, and a significant relation between FRN amplitudes and behavioral task performance measures. Conclusion Both stimulus type and presentation mode may provoke systematic changes in feedback-related ERPs. The current findings point at important potential confounds that need to be controlled for when designing FRN or P3b studies. Significance Studies investigating P3b amplitudes using mixed types of stimuli have to be interpreted with caution. Furthermore, we suggest implementing a blocked presentation format when presenting different feedback types within the same experiment. PMID:24144779
The influence of central command on baroreflex resetting during exercise
NASA Technical Reports Server (NTRS)
Raven, Peter B.; Fadel, Paul J.; Smith, Scott A.
2002-01-01
The arterial baroreflex functions as a negative feedback system regulating blood pressure around an established operating point. Paradoxically, a parallel increase in heart rate and blood pressure manifests during exercise. Experimental evidence suggests these events are caused, in part, by a rapid resetting of the baroreflex by central command.
Dynamic Motivational Processing of Antimarijuana Messages: Coactivation Begets Attention
ERIC Educational Resources Information Center
Wang, Zheng; Solloway, Tyler; Tchernev, John M.; Barker, Bethany
2012-01-01
In the theoretical framework of dynamic motivational activation, this study reveals the dynamics of antimarijuana public service announcement (PSA) processing, especially the processing of co-occurring positive and negative content. It specifies the important role of endogenous feedback dynamics of the information processing system and teases them…
ERIC Educational Resources Information Center
Smith, Justin D.; Dishion, Thomas J.; Moore, Kevin J.; Shaw, Daniel S.; Wilson, Melvin N.
2013-01-01
We examined the effect of adding a video feedback intervention component to the assessment feedback session of the Family Check-Up (FCU) intervention (Dishion & Stormshak, 2007). We hypothesized that the addition of video feedback procedures during the FCU feedback at child age 2 would have a positive effect on caregivers' negative relational…
McLean, Leigh; Connor, Carol McDonald
2018-06-01
Recent studies have observed connections among teachers' depressive symptoms and student outcomes; however, the specific mechanisms through which teachers' mental health characteristics operate in the classroom remain largely unknown. The present study used student-level observation methods to examine the relations between third-grade teachers' (N = 32) depressive symptoms and their academic feedback to students (N = 310) and sought to make inferences about how these factors might influence students' mathematics achievement. A novel observational tool, the Teacher Feedback Coding System-Academic (TFCS-A), was used that assesses feedback across 2 dimensions-teacher affect and instructional strategy, which have been shown to be important to student learning. Multilevel exploratory factor analysis of TFCS-A data suggested 2 primary factors: positive feedback and neutral/negative feedback. Hierarchical linear modeling revealed that positive feedback was related to higher math achievement among students who began the year with weaker math skills and that teachers who reported more depressive symptoms less frequently provided this positive feedback. Results offer new information about a type of instruction that may be affected by teachers' depressive symptoms and inform efforts aimed at improving teachers' instructional interactions with students. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Scholte, Marijn; Neeleman-van der Steen, Catherina W. M.; van der Wees, Philip J.; Nijhuis-van der Sanden, Maria W. G.; Braspenning, Jozé
2016-01-01
Objectives To explain the use of feedback reports for quality improvements by the reasons to participate in quality measuring projects and to identify barriers and facilitators. Design Mixed methods design. Methods In 2009–2011 a national audit and feedback system for physical therapy (Qualiphy) was initiated in the Netherlands. After each data collection round, an evaluation survey was held amongst its participants. The evaluation survey data was used to explain the use of feedback reports by studying the reasons to participate with Qualiphy with correlation measures and logistic regression. Semi-structured interviews with PTs served to seek confirmation and disentangle barriers and facilitators. Results Analysis of 257 surveys (response rate: 42.8%) showed that therapists with only financial reasons were less likely to use feedback reports (OR = 0.24;95%CI = 0.11–0.52) compared to therapists with a mixture of reasons. PTs in 2009 and 2010 were more likely to use the feedback reports for quality improvement than PTs in 2011 (OR = 2.41;95%CI = 1.25–4.64 respectively OR = 3.28;95%CI = 1.51–7.10). Changing circumstances in 2011, i.e. using EHRs and financial incentives, had a negative effect on the use of feedback reports (OR = 0.40, 95%CI = 0.20–0.78). Interviews with 12 physical therapists showed that feedback reports could serve as a tool to support and structure quality improvement plans. Barriers were distrust and perceived self-reporting bias on indicator scores. Conclusions Implementing financial incentives that are not well-specified and well-targeted can have an adverse effect on using feedback reports to improve quality of care. Distrust is a major barrier to implementing quality systems. PMID:27518113
Robinson, Michael D; Moeller, Sara K; Fetterman, Adam K
2010-10-01
Responsiveness to negative feedback has been seen as functional by those who emphasize the value of reflecting on such feedback in self-regulating problematic behaviors. On the other hand, the very same responsiveness has been viewed as dysfunctional by its link to punishment sensitivity and reactivity. The present 4 studies, involving 203 undergraduate participants, sought to reconcile such discrepant views in the context of the trait of neuroticism. In cognitive tasks, individuals were given error feedback when they made mistakes. It was found that greater tendencies to slow down following error feedback were associated with higher levels of accuracy at low levels of neuroticism but lower levels of accuracy at high levels of neuroticism. Individual differences in neuroticism thus appear crucial in understanding whether behavioral alterations following negative feedback reflect proactive versus reactive mechanisms and processes. Implications for understanding the processing basis of neuroticism and adaptive self-regulation are discussed.
Distinguishing Feedback Mechanisms in Clock Models
NASA Astrophysics Data System (ADS)
Golden, Alexander; Lubensky, David
Biological oscillators are very diverse but can be classified based on dynamical motifs such as type of feedback. The S. Elongatus circadian oscillator is a novel circadian oscillator that can operate at constant protein number by modifying covalent states. It can be reproduced in vitro with only 3 different purified proteins: KaiA, KaiB, and KaiC. We use computational and analytic techniques to compare models of the S. Elongatus post-translational oscillator that rely on positive feedback with models that rely on negative feedback. We show that introducing a protein that binds competitively with KaiA to the KaiB-KaiC complex can distinguish between positive and negative feedback as the primary driver of the rhythm, which has so far been difficult to address experimentally. NSF Grant DMR-1056456.
Succeeding in the face of stereotype threat: the adaptive role of engagement regulation.
Leitner, Jordan B; Jones, James M; Hehman, Eric
2013-01-01
Two experiments examined Engagement Regulation, the systematic increase or decrease of self-esteem engagement in a domain following positive or negative outcomes, respectively. We hypothesized that, under threat, more positive outcomes increase engagement, and greater engagement augments the influence of subsequent outcomes on self-esteem and performance. Female participants completed an initial math test, received bogus feedback, and then completed a second test. Results indicated that more positive feedback evoked greater engagement and that this relationship was strongest under stereotype threat (Study 1). Under stereotype threat, engagement interacted with subsequent feedback, such that greater engagement to positive feedback increased performance, but greater engagement to negative feedback decreased self-esteem and performance (Study 2). Together, these findings suggest that Engagement Regulation facilitates self-esteem maintenance and positive performance under stereotype threat.
Hitokoto, Hidefumi; Glazer, James; Kitayama, Shinobu
2016-01-01
Previous work shows that when an image of a face is presented immediately prior to each trial of a speeded cognitive task (face-priming), the error-related negativity (ERN) is upregulated for Asians, but it is downregulated for Caucasians. These findings are consistent with the hypothesis that images of "generalized other" vary cross-culturally such that they evoke anxiety for Asians, whereas they serve as safety cues for Caucasians. Here, we tested whether the cross-cultural variation in the face-priming effect would be observed in a gambling paradigm. Caucasian Americans, Asian Americans, and Asian sojourners were exposed to a brief flash of a schematic face during a gamble. For Asian Americans, face-priming resulted in significant increases of both negative-going deflection of ERP upon negative feedback (feedback-related negativity [FRN]) and positive-going deflection of ERP upon positive feedback (feedback-related positivity [FRP]). For Caucasian Americans, face-priming showed a significant reversal, decreasing both FRN and FRP. The cultural difference in the face-priming effect in FRN and FRP was partially mediated by interdependent self-construal. Curiously, Asian sojourners showed a pattern similar to the one for Caucasian Americans. Our findings suggest that culture shapes neural pathways in both systematic and highly dynamic fashion. © 2015 Society for Psychophysiological Research.
Chen, Junwen; McLean, Jordan E; Kemps, Eva
2018-03-01
This study investigated the effects of combined audience feedback with video feedback plus cognitive preparation, and cognitive review (enabling deeper processing of feedback) on state anxiety and self-perceptions including perception of performance and perceived probability of negative evaluation in socially anxious individuals during a speech performance. One hundred and forty socially anxious students were randomly assigned to four conditions: Cognitive Preparation + Video Feedback + Audience Feedback + Cognitive Review (CP+VF+AF+CR), Cognitive Preparation + Video Feedback + Cognitive Review (CP+VF+CR), Cognitive Preparation + Video Feedback only (CP+VF), and Control. They were asked to deliver two impromptu speeches that were evaluated by confederates. Participants' levels of anxiety and self-perceptions pertaining to the speech task were assessed before and after feedback, and after the second speech. Compared to participants in the other conditions, participants in the CP+VF+AF+CR condition reported a significant decrease in their state anxiety and perceived probability of negative evaluation scores, and a significant increase in their positive perception of speech performance from before to after the feedback. These effects generalized to the second speech. Our results suggest that adding audience feedback to video feedback plus cognitive preparation and cognitive review may improve the effects of existing video feedback procedures in reducing anxiety symptoms and distorted self-representations in socially anxious individuals. Copyright © 2017. Published by Elsevier Ltd.
The Quality of Written Feedback by Attendings of Internal Medicine Residents.
Jackson, Jeffrey L; Kay, Cynthia; Jackson, Wilkins C; Frank, Michael
2015-07-01
Attending evaluations are commonly used to evaluate residents. Evaluate the quality of written feedback of internal medicine residents. Retrospective. Internal medicine residents and faculty at the Medical College of Wisconsin from 2004 to 2012. From monthly evaluations of residents by attendings, a randomly selected sample of 500 written comments by attendings were qualitatively coded and rated as high-, moderate-, or low-quality feedback by two independent coders with good inter-rater reliability (kappa: 0.94). Small group exercises with residents and attendings also coded the utterances as high, moderate, or low quality and developed criteria for this categorization. In-service examination scores were correlated with written feedback. There were 228 internal medicine residents who had 6,603 evaluations by 334 attendings. Among 500 randomly selected written comments, there were 2,056 unique utterances: 29% were coded as nonspecific statements, 20% were comments about resident personality, 16% about patient care, 14% interpersonal communication, 7% medical knowledge, 6% professionalism, and 4% each on practice-based learning and systems-based practice. Based on criteria developed by group exercises, the majority of written comments were rated as moderate quality (65%); 22% were rated as high quality and 13% as low quality. Attendings who provided high-quality feedback rated residents significantly lower in all six of the Accreditation Council for Graduate Medical Education (ACGME) competencies (p <0.0005 for all), and had a greater range of scores. Negative comments on medical knowledge were associated with lower in-service examination scores. Most attending written evaluation was of moderate or low quality. Attendings who provided high-quality feedback appeared to be more discriminating, providing significantly lower ratings of residents in all six ACGME core competencies, and across a greater range. Attendings' negative written comments on medical knowledge correlated with lower in-service training scores.
Sarma, Hirendra N; Manikkam, Mohan; Herkimer, Carol; Dell'Orco, James; Welch, Kathleen B; Foster, Douglas L; Padmanabhan, Vasantha
2005-10-01
Exposure of female sheep fetuses to excess testosterone (T) during early to midgestation produces postnatal hypergonadotropism manifest as a selective increase in LH. This hypergonadotropism may result from reduced sensitivity to estradiol (E2) negative feedback and/or increased pituitary sensitivity to GnRH. We tested the hypothesis that excess T before birth reduces responsiveness of LH and FSH to E2 negative feedback after birth. Pregnant ewes were treated with T propionate (100 mg/kg in cotton seed oil) or vehicle twice weekly from d 30-90 gestation. Responsiveness to E2 negative feedback was assessed at 12 and 24 wk of age in the ovary-intact female offspring. Our experimental strategy was first to arrest follicular growth and reduce endogenous E2 by administering the GnRH antagonist (GnRH-A), Nal-Glu (50 microg/kg sc every 12 h for 72 h), and then provide a fixed amount of exogenous E2 via an implant. Blood samples were obtained every 20 min at 12 wk and every 10 min at 24 wk before treatment, during and after GnRH-A treatment both before and after E2 implant. GnRH-A ablated LH pulsatility, reduced FSH by approximately 25%, and E2 production diminished to near detection limit of assay at both ages in both groups. Prenatal T treatment produced a precocious and selective reduction in responsiveness of LH but not FSH to E2 negative feedback, which was manifest mainly at the level of LH/GnRH pulse frequency. Collectively, these findings support the hypothesis that prenatal exposure to excess T decreases postnatal responsiveness to E2 inhibitory feedback of LH/GnRH secretion to contribute to the development of hypergonadotropism.
ERIC Educational Resources Information Center
DiGennaro, Florence D.; Martens, Brian K.; McIntyre, Laura Lee
2005-01-01
The current study examined the extent to which treatment integrity was increased and maintained for 4 teachers in their regular classroom settings as a result of performance feedback and negative reinforcement. Teachers received daily written feedback about their accuracy in implementing an intervention and were able to avoid meeting with a…
Removal of Negative Feedback Enhances WCST Performance for Individuals with ASD
ERIC Educational Resources Information Center
Broadbent, Jaclyn; Stokes, Mark A.
2013-01-01
Negative feedback was explored as a potential mechanism that may exacerbate perseverative behaviours in individuals with Asperger's syndrome (AS). The current study compared 50 individuals with AS and 50 typically developing (TD) individuals for their abilities to successfully complete the Wisconsin Card Sorting Task (WCST) in the presence or…
Framing of feedback impacts student's satisfaction, self-efficacy and performance.
van de Ridder, J M Monica; Peters, Claudia M M; Stokking, Karel M; de Ru, J Alexander; Ten Cate, Olle Th J
2015-08-01
Feedback is considered important to acquire clinical skills. Research evidence shows that feedback does not always improve learning and its effects may be small. In many studies, a variety of variables involved in feedback provision may mask either one of their effects. E.g., there is reason to believe that the way oral feedback is framed may affect its effect if other variables are held constant. In a randomised controlled trial we investigated the effect of positively and negatively framed feedback messages on satisfaction, self-efficacy, and performance. A single blind randomised controlled between-subject design was used, with framing of the feedback message (positively-negatively) as independent variable and examination of hearing abilities as the task. First year medical students' (n = 59) satisfaction, self-efficacy, and performance were the dependent variables and were measured both directly after the intervention and after a 2 weeks delay. Students in the positively framed feedback condition were significantly more satisfied and showed significantly higher self-efficacy measured directly after the performance. Effect sizes found were large, i.e., partial η (2) = 0.43 and η (2) = 0.32 respectively. They showed a better performance throughout the whole study. Significant performance differences were found both at the initial performance and when measured 2 weeks after the intervention: effects were of medium size, respectively r = -.31 and r = -.32. Over time in both conditions performance and self-efficacy decreased. Framing the feedback message in either a positive or negative manner affects students' satisfaction and self-efficacy directly after the intervention be it that these effects seem to fade out over time. Performance may be enhanced by positive framing, but additional studies need to confirm this. We recommend using a positive frame when giving feedback on clinical skills.
Kim, Min-Sik; Hahn, Mi-Young; Cho, Yoobok; Cho, Sang-Nae; Roe, Jung-Hye
2009-09-01
Alternate sigma factors provide an effective way of diversifying bacterial gene expression in response to environmental changes. In Streptomyces coelicolor where more than 65 sigma factors are predicted, sigma(R) is the major regulator for response to thiol-oxidative stresses. sigma(R) becomes available when its bound anti-sigma factor RsrA is oxidized at sensitive cysteine thiols to form disulphide bonds. sigma(R) regulon includes genes for itself and multiple thiol-reducing systems, which constitute positive and negative feedback loops respectively. We found that the positive amplification loop involves an isoform of sigma(R) (sigma(R')) with an N-terminal extension of 55 amino acids, produced from an upstream start codon. A major difference between constitutive sigma(R) and inducible sigma(R') is that the latter is markedly unstable (t(1/2) approximately 10 min) compared with the former (> 70 min). The rapid turnover of sigma(R') is partly due to induced ClpP1/P2 proteases from the sigma(R) regulon. This represents a novel way of elaborating positive and negative feedback loops in a control circuit. Similar phenomenon may occur in other actinomycetes that harbour multiple start codons in the sigR homologous gene. We observed that sigH gene, the sigR orthologue in Mycobacterium smegmatis, produces an unstable larger isoform of sigma(H) upon induction by thiol-oxidative stress.
Closed-loop fiber optic gyroscope with homodyne detection
NASA Astrophysics Data System (ADS)
Zhu, Yong; Qin, BingKun; Chen, Shufen
1996-09-01
Interferometric fiber optic gyroscope (IFOG) has been analyzed with autocontrol theory in this paper. An open-loop IFOG system is not able to restrain the bias drift, but a closed-loop IFOG system can do it very well using negative feedback in order to suppress zero drift. The result of our theoretic analysis and computer simulation indicate that the bias drift of a closed-loop system is smaller than an open- loop one.
Using a Dialogical Approach to Examine Peer Feedback during Chemistry Investigative Task Discussion
ERIC Educational Resources Information Center
Gan Joo Seng, Mark; Hill, Mary
2014-01-01
Peer feedback is an inherent feature of classroom collaborative learning. Students invariably turn to their peers for feedback when carrying out an investigative task, and this feedback is usually implicit, unstructured and may positively or negatively influence students' learning when they work on a task. This study explored the characteristics…
Functional brain connectivity when cooperation fails.
Balconi, Michela; Vanutelli, Maria Elide; Gatti, Laura
2018-06-01
Functional connectivity during cooperative actions is an important topic in social neuroscience that has yet to be answered. Here, we examined the effects of administration of (fictitious) negative social feedback in relation to cooperative capabilities. Cognitive performance and neural activation underlying the execution of joint actions was recorded with functional near-infrared spectroscopy (fNIRS) on prefrontal regions during a task where pairs of participants received negative feedback after their joint action. Performance (error rates (ERs) and response times (RTs)) and intra- and inter-brain connectivity indices were computed, along with the ConIndex (inter-brain/intra-brain connectivity). Finally, correlational measures were considered to assess the relation between these different measures. Results showed that the negative feedback was able to modulate participants' responses for both behavioral and neural components. Cognitive performance was decreased after the feedback. Moreover, decreased inter-brain connectivity and increased intra-brain connectivity was induced by the feedback, whereas the cooperative task pre-feedback condition was able to increase the brain-to-brain coupling, mainly localized within the dorsolateral prefrontal cortex (DLPFC). Finally, the presence of significant correlations between RTs and inter-brain connectivity revealed that ineffective joint action produces the worst cognitive performance and a more 'individual strategy' for brain activity, limiting the inter-brain connectivity. The present study provides a significant contribution to the identification of patterns of intra- and inter-brain functional connectivity when negative social reinforcement is provided in relation to cooperative actions. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Paulsson, Johan; Ehrenberg, Måns
2000-06-01
Many intracellular components are present in low copy numbers per cell and subject to feedback control. We use chemical master equations to analyze a negative feedback system where species X and S regulate each other's synthesis with standard intracellular kinetics. For a given number of X-molecules, S-variation can be significant. We show that this signal noise does not necessarily increase X-variation as previously thought but, surprisingly, can be necessary to reduce it below a Poissonian limit. The principle resembles Stochastic Resonance in that signal noise improves signal detection.
Chaos and Robustness in a Single Family of Genetic Oscillatory Networks
Fu, Daniel; Tan, Patrick; Kuznetsov, Alexey; Molkov, Yaroslav I.
2014-01-01
Genetic oscillatory networks can be mathematically modeled with delay differential equations (DDEs). Interpreting genetic networks with DDEs gives a more intuitive understanding from a biological standpoint. However, it presents a problem mathematically, for DDEs are by construction infinitely-dimensional and thus cannot be analyzed using methods common for systems of ordinary differential equations (ODEs). In our study, we address this problem by developing a method for reducing infinitely-dimensional DDEs to two- and three-dimensional systems of ODEs. We find that the three-dimensional reductions provide qualitative improvements over the two-dimensional reductions. We find that the reducibility of a DDE corresponds to its robustness. For non-robust DDEs that exhibit high-dimensional dynamics, we calculate analytic dimension lines to predict the dependence of the DDEs’ correlation dimension on parameters. From these lines, we deduce that the correlation dimension of non-robust DDEs grows linearly with the delay. On the other hand, for robust DDEs, we find that the period of oscillation grows linearly with delay. We find that DDEs with exclusively negative feedback are robust, whereas DDEs with feedback that changes its sign are not robust. We find that non-saturable degradation damps oscillations and narrows the range of parameter values for which oscillations exist. Finally, we deduce that natural genetic oscillators with highly-regular periods likely have solely negative feedback. PMID:24667178
Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4)
Sakaguchi, K.; Zeng, X.; Leung, L. R.; ...
2016-12-21
Land carbon sensitivity to atmospheric CO 2 concentration (β L) and climate warming (γ L) is a crucial part of carbon-climate feedbacks in the earth system. Using the Community Land Model version 4 with a coupled carbon-nitrogen cycle, we examine whether the inclusion of a dynamic global vegetation model (CNDV) significantly changes the land carbon sensitivity from that obtained with prescribed vegetation cover (CN). For decadal timescale in the late twentieth century, β L is not substantially different between the two models but γ L of CNDV is stronger (more negative) than that of CN. The main reason for themore » difference in γL is not the concurrent change in vegetation cover driving the carbon dynamics, but rather the smaller nitrogen constraint on plant growth in CNDV compared with CN, which arises from the deviation of CNDV's near-equilibrium vegetation distribution from CN’s prescribed, historical land cover. The smaller nitrogen constraint makes the enhanced nitrogen mineralization with warming less effective in stimulating plant productivity to counter moisture stress in a warmer climate, leading to a more negative γ L. This represents a new indirect pathway that has not been identified for dynamic vegetation in the coupled carbon-nitrogen cycle to affect the terrestrial carbon-climate feedbacks in the earth system.« less
Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, K.; Zeng, X.; Leung, L. R.
Land carbon sensitivity to atmospheric CO 2 concentration (β L) and climate warming (γ L) is a crucial part of carbon-climate feedbacks in the earth system. Using the Community Land Model version 4 with a coupled carbon-nitrogen cycle, we examine whether the inclusion of a dynamic global vegetation model (CNDV) significantly changes the land carbon sensitivity from that obtained with prescribed vegetation cover (CN). For decadal timescale in the late twentieth century, β L is not substantially different between the two models but γ L of CNDV is stronger (more negative) than that of CN. The main reason for themore » difference in γL is not the concurrent change in vegetation cover driving the carbon dynamics, but rather the smaller nitrogen constraint on plant growth in CNDV compared with CN, which arises from the deviation of CNDV's near-equilibrium vegetation distribution from CN’s prescribed, historical land cover. The smaller nitrogen constraint makes the enhanced nitrogen mineralization with warming less effective in stimulating plant productivity to counter moisture stress in a warmer climate, leading to a more negative γ L. This represents a new indirect pathway that has not been identified for dynamic vegetation in the coupled carbon-nitrogen cycle to affect the terrestrial carbon-climate feedbacks in the earth system.« less
The impact of cognitive load on reward evaluation.
Krigolson, Olave E; Hassall, Cameron D; Satel, Jason; Klein, Raymond M
2015-11-19
The neural systems that afford our ability to evaluate rewards and punishments are impacted by a variety of external factors. Here, we demonstrate that increased cognitive load reduces the functional efficacy of a reward processing system within the human medial-frontal cortex. In our paradigm, two groups of participants used performance feedback to estimate the exact duration of one second while electroencephalographic (EEG) data was recorded. Prior to performing the time estimation task, both groups were instructed to keep their eyes still and avoid blinking in line with well established EEG protocol. However, during performance of the time-estimation task, one of the two groups was provided with trial-to-trial-feedback about their performance on the time-estimation task and their eye movements to induce a higher level of cognitive load relative to participants in the other group who were solely provided with feedback about the accuracy of their temporal estimates. In line with previous work, we found that the higher level of cognitive load reduced the amplitude of the feedback-related negativity, a component of the human event-related brain potential associated with reward evaluation within the medial-frontal cortex. Importantly, our results provide further support that increased cognitive load reduces the functional efficacy of a neural system associated with reward processing. Copyright © 2015 Elsevier B.V. All rights reserved.
Ling, Hongbo; Zhang, Pei; Guo, Bin; Xu, Hailiang; Ye, Mao; Deng, Xiaoya
2017-01-01
Drought stress changes the relationship between the growth of tree rings and variations in ambient temperature. However, it is not clear how the growth of trees changes in response to drought of varying intensities, especially in arid areas. Therefore, Tree rings were studied for 6years in Populus euphratica to assess the impacts of abrupt changes in environment on tree rings using the theories and methods in dendrohydrology, ecology and phytophysiology. The width of tree rings increased by 8.7% after ecological water conveyance downstream of Tarim River compared to that when the river water had been cut off. However, during intermediate drought, as the depth of the groundwater increases, the downward trend in the tree rings was reversed because of changes in the physiology of the tree. Therefore, the growth of tree rings shows a negative feedback to intermediate drought stress, an observation that challenges the homogenization theory of tree ring reconstruction based on the traditional methods. Owing to the time lag, the cumulative effect and the negative feedback between the growth of tree rings and drought stress, the reconstruction of past environment by studying the patterns of tree rings is often inaccurate. Our research sets out to verify the hypothesis that intermediate drought stress results in a negative feedback adjustment and thus to answers two scientific questions: (1) How does the negative feedback adjustment promote the growth of tree rings as a result of intermediate drought stress? (2) How does the negative feedback adjustment lower the accuracy with which the past is reconstructed based on tree rings? This research not only enriches the connotations of intermediate disturbance hypothesis and reconstruction theory of tree rings, but also provides a scientific basis for the conservation of desert riparian forests worldwide. Copyright © 2016 Elsevier B.V. All rights reserved.
Local dominance of exotic plants declines with residence time: a role for plant–soil feedback?
Speek, Tanja A.A.; Schaminée, Joop H.J.; Stam, Jeltje M.; Lotz, Lambertus A.P.; Ozinga, Wim A.; van der Putten, Wim H.
2015-01-01
Recent studies have shown that introduced exotic plant species may be released from their native soil-borne pathogens, but that they become exposed to increased soil pathogen activity in the new range when time since introduction increases. Other studies have shown that introduced exotic plant species become less dominant when time since introduction increases, and that plant abundance may be controlled by soil-borne pathogens; however, no study yet has tested whether these soil effects might explain the decline in dominance of exotic plant species following their initial invasiveness. Here we determine plant–soil feedback of 20 plant species that have been introduced into The Netherlands. We tested the hypotheses that (i) exotic plant species with a longer residence time have a more negative soil feedback and (ii) greater local dominance of the introduced exotic plant species correlates with less negative, or more positive, plant–soil feedback. Although the local dominance of exotic plant species decreased with time since introduction, there was no relationship of local dominance with plant–soil feedback. Plant–soil feedback also did not become more negative with increasing time since introduction. We discuss why our results may deviate from some earlier published studies and why plant–soil feedback may not in all cases, or not in all comparisons, explain patterns of local dominance of introduced exotic plant species. PMID:25770013
Mathematical modeling in chronobiology.
Bordyugov, G; Westermark, P O; Korenčič, A; Bernard, S; Herzel, H
2013-01-01
Circadian clocks are autonomous oscillators entrained by external Zeitgebers such as light-dark and temperature cycles. On the cellular level, rhythms are generated by negative transcriptional feedback loops. In mammals, the suprachiasmatic nucleus (SCN) in the anterior part of the hypothalamus plays the role of the central circadian pacemaker. Coupling between individual neurons in the SCN leads to precise self-sustained oscillations even in the absence of external signals. These neuronal rhythms orchestrate the phasing of circadian oscillations in peripheral organs. Altogether, the mammalian circadian system can be regarded as a network of coupled oscillators. In order to understand the dynamic complexity of these rhythms, mathematical models successfully complement experimental investigations. Here we discuss basic ideas of modeling on three different levels (1) rhythm generation in single cells by delayed negative feedbacks, (2) synchronization of cells via external stimuli or cell-cell coupling, and (3) optimization of chronotherapy.
Chemically cued suppression of coral reef resilience: Where is the tipping point?
NASA Astrophysics Data System (ADS)
Brooker, Rohan M.; Hay, Mark E.; Dixson, Danielle L.
2016-12-01
Coral reefs worldwide are shifting from high-diversity, coral-dominated communities to low-diversity systems dominated by seaweeds. This shift can impact essential recovery processes such as larval recruitment and ecosystem resilience. Recent evidence suggests that chemical cues from certain corals attract, and from certain seaweeds suppress, recruitment of juvenile fishes, with loss of coral cover and increases in seaweed cover creating negative feedbacks that prevent reef recovery and sustain seaweed dominance. Unfortunately, the level of seaweed increase and coral decline that creates this chemically cued tipping point remains unknown, depriving managers of data-based targets to prevent damaging feedbacks. We conducted flume and field assays that suggest juvenile fishes sense and respond to cues produced by low levels of seaweed cover. However, the herbivore species we tested was more tolerant of degraded reef cues than non-herbivores, possibly providing some degree of resilience if these fishes recruit, consume macroalgae, and diminish negative cues.
Takeda, Kosuke; Shao, Danying; Adler, Micha; Charest, Pascale G; Loomis, William F; Levine, Herbert; Groisman, Alex; Rappel, Wouter-Jan; Firtel, Richard A
2012-01-03
Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.
Forster, Sarah E; Zirnheld, Patrick; Shekhar, Anantha; Steinhauer, Stuart R; O'Donnell, Brian F; Hetrick, William P
2017-09-01
Signals carried by the mesencephalic dopamine system and conveyed to anterior cingulate cortex are critically implicated in probabilistic reward learning and performance monitoring. A common evaluative mechanism purportedly subserves both functions, giving rise to homologous medial frontal negativities in feedback- and response-locked event-related brain potentials (the feedback-related negativity (FRN) and the error-related negativity (ERN), respectively), reflecting dopamine-dependent prediction error signals to unexpectedly negative events. Consistent with this model, the dopamine receptor antagonist, haloperidol, attenuates the ERN, but effects on FRN have not yet been evaluated. ERN and FRN were recorded during a temporal interval learning task (TILT) following randomized, double-blind administration of haloperidol (3 mg; n = 18), diphenhydramine (an active control for haloperidol; 25 mg; n = 20), or placebo (n = 21) to healthy controls. Centroparietal positivities, the Pe and feedback-locked P300, were also measured and correlations between ERP measures and behavioral indices of learning, overall accuracy, and post-error compensatory behavior were evaluated. We hypothesized that haloperidol would reduce ERN and FRN, but that ERN would uniquely track automatic, error-related performance adjustments, while FRN would be associated with learning and overall accuracy. As predicted, ERN was reduced by haloperidol and in those exhibiting less adaptive post-error performance; however, these effects were limited to ERNs following fast timing errors. In contrast, the FRN was not affected by drug condition, although increased FRN amplitude was associated with improved accuracy. Significant drug effects on centroparietal positivities were also absent. Our results support a functional and neurobiological dissociation between the ERN and FRN.
NASA Astrophysics Data System (ADS)
Morrison, Christopher
Nuclear fuels with similar aggregate material composition, but with different millimeter and micrometer spatial configurations of the component materials can have very different safety and performance characteristics. This research focuses on modeling and attempting to engineer heterogeneous combinations of nuclear fuels to improve negative prompt temperature feedback in response to reactivity insertion accidents. Improvements in negative prompt temperature feedback are proposed by developing a tailored thermal resistance in the nuclear fuel. In the event of a large reactivity insertion, the thermal resistance allows for a faster negative Doppler feedback by temporarily trapping heat in material zones with strong absorption resonances. A multi-physics simulation framework was created that could model large reactivity insertions. The framework was then used to model a comparison of a heterogeneous fuel with a tailored thermal resistance and a homogeneous fuel without the tailored thermal resistance. The results from the analysis confirmed the fundamental premise of prompt temperature feedback and provide insights into the neutron spectrum dynamics throughout the transient process. A trade study was conducted on infinite lattice fuels to help map a design space to study and improve prompt temperature feedback with many results. A multi-scale fuel pin analysis was also completed to study more realistic geometries. The results of this research could someday allow for novel nuclear fuels that would behave differently than current fuels. The idea of having a thermal barrier coating in the fuel is contrary to most current thinking. Inherent resistance to reactivity insertion accidents could enable certain reactor types once considered vulnerable to reactivity insertion accidents to be reevaluated in light of improved negative prompt temperature feedback.
Pfabigan, Daniela M; Zeiler, Michael; Lamm, Claus; Sailer, Uta
2014-04-01
Electrophysiological studies on feedback processing typically use a wide range of feedback stimuli which might not always be comparable. The current study investigated whether two indicators of feedback processing - feedback-related negativity (FRN) and P3b - differ for feedback stimuli with explicit (facial expressions) or assigned valence information (symbols). In addition, we assessed whether presenting feedback in either a trial-by-trial or a block-wise fashion affected these ERPs. EEG was recorded in three experiments while participants performed a time estimation task and received two different types of performance feedback. Only P3b amplitudes varied consistently in response to feedback type for both presentation types. Moreover, the blocked feedback type presentation yielded more distinct FRN peaks, higher effect sizes, and a significant relation between FRN amplitudes and behavioral task performance measures. Both stimulus type and presentation mode may provoke systematic changes in feedback-related ERPs. The current findings point at important potential confounds that need to be controlled for when designing FRN or P3b studies. Studies investigating P3b amplitudes using mixed types of stimuli have to be interpreted with caution. Furthermore, we suggest implementing a blocked presentation format when presenting different feedback types within the same experiment. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Systems-Level Feedbacks of NRF2 Controlling Autophagy upon Oxidative Stress Response
Kapuy, Orsolya; Papp, Diána; Bánhegyi, Gábor
2018-01-01
Although the primary role of autophagy-dependent cellular self-eating is cytoprotective upon various stress events (such as starvation, oxidative stress, and high temperatures), sustained autophagy might lead to cell death. A transcription factor called NRF2 (nuclear factor erythroid-related factor 2) seems to be essential in maintaining cellular homeostasis in the presence of either reactive oxygen or nitrogen species generated by internal metabolism or external exposure. Accumulating experimental evidence reveals that oxidative stress also influences the balance of the 5′ AMP-activated protein kinase (AMPK)/rapamycin (mammalian kinase target of rapamycin or mTOR) signaling pathway, thereby inducing autophagy. Based on computational modeling here we propose that the regulatory triangle of AMPK, NRF2 and mTOR guaranties a precise oxidative stress response mechanism comprising of autophagy. We suggest that under conditions of oxidative stress, AMPK is crucial for autophagy induction via mTOR down-regulation, while NRF2 fine-tunes the process of autophagy according to the level of oxidative stress. We claim that the cellular oxidative stress response mechanism achieves an incoherently amplified negative feedback loop involving NRF2, mTOR and AMPK. The mTOR-NRF2 double negative feedback generates bistability, supporting the proper separation of two alternative steady states, called autophagy-dependent survival (at low stress) and cell death (at high stress). In addition, an AMPK-mTOR-NRF2 negative feedback loop suggests an oscillatory characteristic of autophagy upon prolonged intermediate levels of oxidative stress, resulting in new rounds of autophagy stimulation until the stress events cannot be dissolved. Our results indicate that AMPK-, NRF2- and mTOR-controlled autophagy induction provides a dynamic adaptation to altering environmental conditions, assuming their new frontier in biomedicine. PMID:29510589
Reciprocity in Online Markets: Empirical Studies of Auction and Barter Markets
ERIC Educational Resources Information Center
Ye, Shun
2013-01-01
My dissertation seeks to understand how reciprocity affects transaction outcomes and mechanism design in online markets. The first essay examines negative reciprocity illustrated as feedback-revoking behavior in the eBay auction market, focusing on its impact and implications for reputation system design. I utilize the biggest policy change of…
Effects of the fluid flows on enzymatic chemical oscillations
NASA Astrophysics Data System (ADS)
Shklyaev, Oleg; Yashin, Victor; Balazs, Anna
2017-11-01
Chemical oscillations are ubiquitous in nature and have a variety of promising applications. Usually, oscillating chemical systems are analyzed within the context of a reaction-diffusion framework. Here, we examine how fluid flows carrying the reactants can be utilized to modulate the negative feedback loops and time delays that promote chemical oscillations. We consider a model where a chemical reaction network involves two species, X and Y, which undergo transformations catalyzed by respective enzymes immobilized at the bottom wall of a fluid-filled microchamber. The reactions with the enzymes provide a negative feedback in the chemically oscillating system. In particular, the first enzyme, localized on the first patch, promotes production of chemical X, while the second enzyme, immobilized on the second patch, promotes production of chemical Y, which inhibits the production of chemical X. The separation distance between the enzyme-coated patches sets the time delay required for the transportation of X and Y. The chemical transport is significantly enhanced if convective fluxes accompany the diffusive ones. Therefore, the parameter region where oscillations are present is modified. The findings provide guidance to designing micro-scale chemical reactors with improved functionalities.
Autoshaping and automaintenance: a neural-network approach.
Burgos, José E
2007-07-01
This article presents an interpretation of autoshaping, and positive and negative automaintenance, based on a neural-network model. The model makes no distinction between operant and respondent learning mechanisms, and takes into account knowledge of hippocampal and dopaminergic systems. Four simulations were run, each one using an A-B-A design and four instances of feedfoward architectures. In A, networks received a positive contingency between inputs that simulated a conditioned stimulus (CS) and an input that simulated an unconditioned stimulus (US). Responding was simulated as an output activation that was neither elicited by nor required for the US. B was an omission-training procedure. Response directedness was defined as sensory feedback from responding, simulated as a dependence of other inputs on responding. In Simulation 1, the phenomena were simulated with a fully connected architecture and maximally intense response feedback. The other simulations used a partially connected architecture without competition between CS and response feedback. In Simulation 2, a maximally intense feedback resulted in substantial autoshaping and automaintenance. In Simulation 3, eliminating response feedback interfered substantially with autoshaping and automaintenance. In Simulation 4, intermediate autoshaping and automaintenance resulted from an intermediate response feedback. Implications for the operant-respondent distinction and the behavior-neuroscience relation are discussed.
Autoshaping and Automaintenance: A Neural-Network Approach
Burgos, José E
2007-01-01
This article presents an interpretation of autoshaping, and positive and negative automaintenance, based on a neural-network model. The model makes no distinction between operant and respondent learning mechanisms, and takes into account knowledge of hippocampal and dopaminergic systems. Four simulations were run, each one using an A-B-A design and four instances of feedfoward architectures. In A, networks received a positive contingency between inputs that simulated a conditioned stimulus (CS) and an input that simulated an unconditioned stimulus (US). Responding was simulated as an output activation that was neither elicited by nor required for the US. B was an omission-training procedure. Response directedness was defined as sensory feedback from responding, simulated as a dependence of other inputs on responding. In Simulation 1, the phenomena were simulated with a fully connected architecture and maximally intense response feedback. The other simulations used a partially connected architecture without competition between CS and response feedback. In Simulation 2, a maximally intense feedback resulted in substantial autoshaping and automaintenance. In Simulation 3, eliminating response feedback interfered substantially with autoshaping and automaintenance. In Simulation 4, intermediate autoshaping and automaintenance resulted from an intermediate response feedback. Implications for the operant–respondent distinction and the behavior–neuroscience relation are discussed. PMID:17725055
ERIC Educational Resources Information Center
Seevers, Matthew T.; Rowe, William J.; Skinner, Steven J.
2014-01-01
Conventional wisdom in sales management encourages public delivery of positive feedback, and private delivery of negative feedback. In stark contrast, U.S. educators typically provide all performance feedback in relative (if not strict) privacy to comply with the Family Educational Rights and Privacy Act (FERPA). To investigate this discrepancy,…
Bachrach, D G; Bendoly, E; Podsakoff, P M
2001-12-01
The purpose of this study was to examine the possibility that feedback regarding team performance may influence team members' reports of organizational citizenship behaviors. Ninety-five teams of business students (N = 412) participated in a labor-scheduling simulation over a local area network. Teams were provided with false negative, false positive, or neutral feedback regarding their performance. Results support the hypothesis that the perception of 2 forms of organizational citizenship behavior (helping behavior and civic virtue) in work groups may, in part. be a function of the nature of the performance feedback that group members receive. However, negative feedback appears to play a more critical role than positive feedback in this attributional process. Possible reasons for these findings, as well as their implications, are discussed.
Soil feedback and pathogen activity in Prunus serotina throughout its native range
Kurt O. Reinhart; Alejandro Royo; Wim H. Van der Putten; Keith Clay
2005-01-01
1 Oomycete soil pathogens are known to have a negative effect on Prunus serotina seedling establishment and to promote tree diversity in a deciduous forest in Indiana, USA. Here, we investigate whether negative feedbacks operate widely in its native range in eastern USA. 2 In laboratory experiments, soil sterilization was used to test the...
The Human Ventromedial Frontal Lobe Is Critical for Learning from Negative Feedback
ERIC Educational Resources Information Center
Wheeler, Elizabeth Z.; Fellows, Lesley K.
2008-01-01
Are positive and negative feedback weighed in a common balance in the brain, or do they influence behaviour through distinct neural mechanisms? Recent neuroeconomic studies in both human and non-human primates indicate that the ventromedial frontal lobe carries information about both losses and gains, suggesting that this region may encode value…
Social closeness and feedback modulate susceptibility to the framing effect
Sip, Kamila E.; Smith, David V.; Porcelli, Anthony J.; Kar, Kohitij; Delgado, Mauricio R.
2014-01-01
Although, we often seek social feedback from others to help us make decisions, little is known about how social feedback affects decisions under risk, particularly from a close peer. We conducted two experiments using an established framing task to probe how decision making is modulated by social feedback valence (positive, negative) and the level of closeness with feedback provider (friend, confederate). Participants faced mathematically equivalent decisions framed as either an opportunity to keep (gain frame) or lose (loss frame) part of an initial endowment. Periodically, participants were provided with positive (e.g., “Nice!”) or negative (e.g., “Lame!”) feedback about their choices. Such feedback was provided by either a confederate (Experiment 1), or a gender-matched close friend (Experiment 2). As expected, the framing effect was observed in both experiments. Critically, an individual’s susceptibility to the framing effect was modulated by the valence of the social feedback, but only when the feedback provider was a close friend. This effect was reflected in the activation patterns of ventromedial prefrontal cortex and posterior cingulate cortex, regions involved in complex decision making. Taken together, these results highlight social closeness as an important factor in understanding the impact of social feedback on neural mechanisms of decision making. PMID:25074501
Belding, Jennifer N; Naufel, Karen Z; Fujita, Kentaro
2015-06-01
Diagnostic negative information presents people with a motivational dilemma. Although negative feedback can provide useful information with which to guide future self-improvement efforts, it also presents short-term affective costs. We propose that construal level, jointly with the perceived changeability of the feedback domain, determines whether people choose to accept or dismiss such information. Whereas low-level construal promotes short-term self-protection motivation (promoting dismissal), high-level construal promotes long-term self-change motivation (promoting acceptance)--to the extent that change is perceived as possible. Four studies support this hypothesis and examine underlying cognitive and motivational mechanisms. The present work may provide an integrative theoretical framework for understanding when people will be open to and accept negative diagnostic information, and has important practical implications for promoting self-change efforts. © 2015 by the Society for Personality and Social Psychology, Inc.
Constant voltage electro-slag remelting control
Schlienger, Max E.
1996-01-01
A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an eletrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable.
Laidoune, Abdelbaki; Rahal Gharbi, Med El Hadi
2016-09-01
The influence of sociocultural factors on human reliability within an open sociotechnical systems is highlighted. The design of such systems is enhanced by experience feedback. The study was focused on a survey related to the observation of working cases, and by processing of incident/accident statistics and semistructured interviews in the qualitative part. In order to consolidate the study approach, we considered a schedule for the purpose of standard statistical measurements. We tried to be unbiased by supporting an exhaustive list of all worker categories including age, sex, educational level, prescribed task, accountability level, etc. The survey was reinforced by a schedule distributed to 300 workers belonging to two oil companies. This schedule comprises 30 items related to six main factors that influence human reliability. Qualitative observations and schedule data processing had shown that the sociocultural factors can negatively and positively influence operator behaviors. The explored sociocultural factors influence the human reliability both in qualitative and quantitative manners. The proposed model shows how reliability can be enhanced by some measures such as experience feedback based on, for example, safety improvements, training, and information. With that is added the continuous systems improvements to improve sociocultural reality and to reduce negative behaviors.
Endocannabinoid Signaling, Glucocorticoid-Mediated Negative Feedback and Regulation of the HPA Axis
Hill, M. N.; Tasker, J. G.
2012-01-01
The hypothalamic-pituitary-adrenal (HPA) axis regulates the outflow of glucocorticoid hormones under basal conditions and in response to stress. Within the last decade, a large body of evidence has mounted indicating that the endocannabinoid system is involved in the central regulation of the stress response; however, the specific role endocannabinoid signalling plays in phases of HPA axis regulation, or the neural sites of action mediating this regulation, was not mapped out until recently. This review aims to collapse the current state of knowledge regarding the role of the endocannabinoid system in the regulation of the HPA axis to put together a working model of how and where endocannabinoids act within the brain to regulate outflow of the HPA axis. Specifically, we discuss the role of the endocannabinoid system in the regulation of the HPA axis under basal conditions, activation in response to acute stress and glucocorticoid-mediated negative feedback. Interestingly, there appears to be some anatomical specificity to the role of the endocannabinoid system in each phase of HPA axis regulation, as well as distinct roles of both anandamide and 2-arachidonoylglycerol in these phases. Ultimately, the current level of information indicates that endocannabinoid signalling acts to suppress HPA axis activity through concerted actions within the prefrontal cortex, amygdala and hypothalamus. PMID:22214537
From feedback- to response-based performance monitoring in active and observational learning.
Bellebaum, Christian; Colosio, Marco
2014-09-01
Humans can adapt their behavior by learning from the consequences of their own actions or by observing others. Gradual active learning of action-outcome contingencies is accompanied by a shift from feedback- to response-based performance monitoring. This shift is reflected by complementary learning-related changes of two ACC-driven ERP components, the feedback-related negativity (FRN) and the error-related negativity (ERN), which have both been suggested to signal events "worse than expected," that is, a negative prediction error. Although recent research has identified comparable components for observed behavior and outcomes (observational ERN and FRN), it is as yet unknown, whether these components are similarly modulated by prediction errors and thus also reflect behavioral adaptation. In this study, two groups of 15 participants learned action-outcome contingencies either actively or by observation. In active learners, FRN amplitude for negative feedback decreased and ERN amplitude in response to erroneous actions increased with learning, whereas observational ERN and FRN in observational learners did not exhibit learning-related changes. Learning performance, assessed in test trials without feedback, was comparable between groups, as was the ERN following actively performed errors during test trials. In summary, the results show that action-outcome associations can be learned similarly well actively and by observation. The mechanisms involved appear to differ, with the FRN in active learning reflecting the integration of information about own actions and the accompanying outcomes.
Evaluative-feedback stimuli selectively activate the self-related brain area: an fMRI study.
Pan, Xiaohong; Hu, Yang; Li, Lei; Li, Jianqi
2009-11-06
Evaluative-feedback, occurring in our daily life, generally contains subjective appraisal of one's specific abilities and personality characteristics besides objective right-or-wrong information. Traditional psychological researches have proved it to be important in building up one's self-concept; however, the neural basis underlying its cognitive processing remains unclear. The present neuroimaging study revealed the mechanism of evaluative-feedback processing at the neural level. 19 healthy Chinese subjects participated in this experiment, and completed the time-estimation task to better their performance according to four types of feedback, namely positive evaluative- and performance-feedback as well as negative evaluative- and performance-feedback. Neuroimaging findings showed that evaluative- rather than performance-feedback can induce increased activities mainly distributed in the cortical midline structures (CMS), including medial prefrontal cortex (BA 8/9)/anterior cigulate cortex (ACC, BA 20), precuneus (BA 7/31) adjacent to posterior cingulate gyrus (PCC, BA 23) of both hemispheres, as well as right inferior lobule (BA 40). This phenomenon can provide evidence that evaluative-feedback may significantly elicit the self-related processing in our brain. In addition, our results also revealed that more brain areas, particularly some self-related neural substrates were activated by the positive evaluative-feedback, in comparative with the negative one. In sum, this study suggested that evaluative-feedback was closely correlated with the self-concept processing, which distinguished it from the performance-feedback.
Gong, Jingbo; Yuan, Jiajin; Wang, Suhong; Shi, Lijuan; Cui, Xilong; Luo, Xuerong
2014-01-01
The current model of ADHD suggests abnormal reward and punishment sensitivity, although differences in ADHD subgroups are unclear. This study aimed to investigate the effect of feedback valence (reward or punishment) and punishment magnitude (small or large) on Feedback-Related Negativity (FRN) and Late Positive Potential (LPP) in two subtypes of ADHD (ADHD-C and ADHD-I) compared to typically developing children (TD) during a children's gambling task. Children with ADHD-C (n = 16), children with ADHD-I (n = 15) and typically developing children (n = 15) performed a children's gambling task under three feedback conditions: large losses, small losses and gains. FRN and LPP components in brain potentials were recorded and analyzed. In TD children and children with ADHD-C, large loss feedback evoked more negative FRN amplitudes than small loss feedback, suggesting that brain sensitivity to the punishment and its magnitude is not impaired in children with ADHD-C. In contrast to these two groups, the FRN effect was absent in children with ADHD-I. The LPP amplitudes were larger in children with ADHD-C in comparison with those with ADHD-I, regardless of feedback valence and magnitude. Children with ADHD-C exhibit intact brain sensitivity to punishment similar to TD children. In contrast, children with ADHD-I are significantly impaired in neural sensitivity to the feedback stimuli and in particular, to punishment, compared to TD and ADHD-C children. Thus, FRN, rather than LPP, is a reliable index of the difference in reward and punishment sensitivity across different ADHD-subcategories.
Communicating Truthfully and Positively in Appraising Work Performance.
ERIC Educational Resources Information Center
Pearce, C. Glenn; And Others
1989-01-01
Explores the issue of acceptable behavior for managers when giving feedback to their subordinates. Notes that feedback can be either truthful or untruthful, and can be communicated either positively or negatively. Describes the advantages and disadvantages for each feedback approach to work performance. (MM)
Appearance feedback in intimate relationships: the role of self-verification and self-enhancement.
Brown, Jennifer N; Stukas, Arthur A; Evans, Lynette
2013-01-01
To better understand how body image operates within the context of intimate relationships, we investigated women's responses to appearance feedback from an intimate partner. Participants (N=192) imagined receiving feedback from their partner that was either consistent with their own appearance self-view (i.e., self-verifying), more positive (i.e., self-enhancing), or less positive (i.e., devaluing), and then provided their affective and cognitive reactions. As expected, women's perceptions of their own appearance moderated their reactions. Women with more negative self-views felt happier with enhancing feedback, but thought that it meant their partner understood them less well. They also felt less happy when they received verifying feedback, but felt more understood by their partners. Thus, women with body image dissatisfaction may find themselves stuck in the "cognitive-affective crossfire" reacting ambivalently whether their partner enhances their appearance or confirms their negative self-views. Further examination of partners' actual feedback is needed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Positive Feedback From Male Authority Figures Boosts Women's Math Outcomes.
Park, Lora E; Kondrak, Cheryl L; Ward, Deborah E; Streamer, Lindsey
2018-03-01
People often search for cues in the environment to determine whether or not they will be judged or treated negatively based on their social identities. Accordingly, feedback from gatekeepers-members of majority groups who hold authority and power in a field-may be an especially important cue for those at risk of experiencing social identity threat, such as women in math settings. Across a series of studies, women who received positive ("Good job!") versus objective (score only) feedback from a male (vs. female) authority figure in math reported greater confidence; belonging; self-efficacy; more favorable Science, Technology, Engineering, and Mathematics (STEM) attitudes/identification/interest; and greater implicit identification with math. Men were affected only by the type of math feedback they received, not by the source of feedback. A meta-analysis across studies confirmed results. Together, these findings suggest that positive feedback from gatekeepers is an important situational cue that can improve the outcomes of negatively stereotyped groups.
Wang, Lei; Zheng, Jiehui; Meng, Liang
2017-04-01
Although many studies have investigated the relationship between the amount of effort invested in a certain task and one's attitude towards the subsequent reward, whether exerted effort would impact one's expectation and evaluation of performance feedback itself still remains to be examined. In the present study, two types of calculation tasks that varied in the required effort were adopted, and we resorted to electroencephalography to probe the temporal dynamics of how exerted effort would affect one's anticipation and evaluation of performance feedback. In the high-effort condition, a more salient stimulus-preceding negativity was detected during the anticipation stage, which was accompanied with a more salient FRN/P300 complex (a more positive P300 and a less negative feedback-related negativity) in response to positive outcomes in the evaluation stage. These results suggested that when more effort was invested, an enhanced anticipatory attention would be paid toward one's task performance feedback and that positive outcomes would be subjectively valued to a greater extent.
Expectancy bias mediates the link between social anxiety and memory bias for social evaluation
Caouette, Justin D.; Ruiz, Sarah K.; Lee, Clinton C.; Anbari, Zainab; Schriber, Roberta A.; Guyer, Amanda E.
2014-01-01
Social anxiety (SA) involves a multitude of cognitive symptoms related to fear of evaluation, including expectancy and memory biases. We examined whether memory biases are influenced by expectancy biases for social feedback in SA. We hypothesized that, faced with a socially evaluative event, people with higher SA would show a negative expectancy bias for future feedback. Furthermore, we predicted that memory bias for feedback in SA would be mediated by expectancy bias. Ninety-four undergraduate students (55 women, mean age = 19.76 years) underwent a two-visit task that measured expectations about (Visit 1) and memory of (Visit 2) feedback from unknown peers. Results showed that higher levels of SA were associated with negative expectancy bias. An indirect relationship was found between SA and memory bias that was mediated by expectancy bias. The results suggest that expectancy biases are in the causal path from SA to negative memory biases for social evaluation. PMID:25252925
Reinforcement Learning Deficits in People with Schizophrenia Persist after Extended Trials
Cicero, David C.; Martin, Elizabeth A.; Becker, Theresa M.; Kerns, John G.
2014-01-01
Previous research suggests that people with schizophrenia have difficulty learning from positive feedback and when learning needs to occur rapidly. However, they seem to have relatively intact learning from negative feedback when learning occurs gradually. Participants are typically given a limited amount of acquisition trials to learn the reward contingencies and then tested about what they learned. The current study examined whether participants with schizophrenia continue to display these deficits when given extra time to learn the contingences. Participants with schizophrenia and matched healthy controls completed the Probabilistic Selection Task, which measures positive and negative feedback learning separately. Participants with schizophrenia showed a deficit in learning from both positive and negative feedback. These reward learning deficits persisted even if people with schizophrenia are given extra time (up to 10 blocks of 60 trials) to learn the reward contingencies. These results suggest that the observed deficits cannot be attributed solely to slower learning and instead reflect a specific deficit in reinforcement learning. PMID:25172610
Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination.
Lin, Andrew C; Bygrave, Alexei M; de Calignon, Alix; Lee, Tzumin; Miesenböck, Gero
2014-04-01
Sparse coding may be a general strategy of neural systems for augmenting memory capacity. In Drosophila melanogaster, sparse odor coding by the Kenyon cells of the mushroom body is thought to generate a large number of precisely addressable locations for the storage of odor-specific memories. However, it remains untested how sparse coding relates to behavioral performance. Here we demonstrate that sparseness is controlled by a negative feedback circuit between Kenyon cells and the GABAergic anterior paired lateral (APL) neuron. Systematic activation and blockade of each leg of this feedback circuit showed that Kenyon cells activated APL and APL inhibited Kenyon cells. Disrupting the Kenyon cell-APL feedback loop decreased the sparseness of Kenyon cell odor responses, increased inter-odor correlations and prevented flies from learning to discriminate similar, but not dissimilar, odors. These results suggest that feedback inhibition suppresses Kenyon cell activity to maintain sparse, decorrelated odor coding and thus the odor specificity of memories.
An integrative model linking feedback environment and organizational citizenship behavior.
Peng, Jei-Chen; Chiu, Su-Fen
2010-01-01
Past empirical evidence has suggested that a positive supervisor feedback environment may enhance employees' organizational citizenship behavior (OCB). In this study, we aim to extend previous research by proposing and testing an integrative model that examines the mediating processes underlying the relationship between supervisor feedback environment and employee OCB. Data were collected from 259 subordinate-supervisor dyads across a variety of organizations in Taiwan. We used structural equation modeling to test our hypotheses. The results demonstrated that supervisor feedback environment influenced employees' OCB indirectly through (1) both positive affective-cognition and positive attitude (i.e., person-organization fit and organizational commitment), and (2) both negative affective-cognition and negative attitude (i.e., role stressors and job burnout). Theoretical and practical implications are discussed.
The role of feedback in young people's academic choices
NASA Astrophysics Data System (ADS)
Skipper, Yvonne; Leman, Patrick J.
2017-03-01
Women are underrepresented in Science, Technology, Engineering and Mathematics subjects with more girls leaving these subjects at every stage in education. The current research used a scenario methodology to examine the impact of teacher feedback on girls' and boys' choices to study a specific science subject, engineering. British participants aged 13 (N = 479) were given scenarios where a new teacher encouraged them to take engineering using person feedback which focussed on their abilities, process feedback which focussed on their effort levels or gave them no reason. Results suggested that both boys and girls were more likely to select to study engineering when they received person feedback rather than process or no feedback. Young people also thought that ability was more important to being successful in science than in non-science subjects.This suggests young people feel that ability is needed to succeed in science subjects and person feedback can lead them to believe that they have this ability. Therefore, teacher feedback which gives ability attributions for possible success could be used to encourage more young people to persist in science. However, the potentially negative longer term outcomes of ability attributions and how they may be negated are also discussed.
ERIC Educational Resources Information Center
Reinert, Gregory J.
2010-01-01
Apparently fraud is a growth industry. The monetary losses from Internet fraud have increased every year since first officially reported by the Internet Crime Complaint Center (IC3) in 2000. Prior research studies and third-party reports of fraud show rates substantially higher than eBay's reported negative feedback rate of less than 1%. The…
Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment...
Alloy, L B; Lipman, A J
1992-05-01
In this commentary we examine Swann, Wenzlaff, Krull, and Pelham's (1992) findings with respect to each of 5 central propositions in self-verification theory. We conclude that although the data are consistent with self-verification theory, none of the 5 components of the theory have been demonstrated convincingly as yet. Specifically, we argue that depressed subjects' selection of social feedback appears to be balanced or evenhanded rather than biased toward negative feedback and that there is little evidence to indicate that depressives actively seek negative appraisals. Furthermore, we suggest that the studies are silent with respect to the motivational postulates of self-verification theory and that a variety of competing cognitive and motivational models can explain Swann et al.'s findings as well as self-verification theory.
Prospect theory does not describe the feedback-related negativity value function.
Sambrook, Thomas D; Roser, Matthew; Goslin, Jeremy
2012-12-01
Humans handle uncertainty poorly. Prospect theory accounts for this with a value function in which possible losses are overweighted compared to possible gains, and the marginal utility of rewards decreases with size. fMRI studies have explored the neural basis of this value function. A separate body of research claims that prediction errors are calculated by midbrain dopamine neurons. We investigated whether the prospect theoretic effects shown in behavioral and fMRI studies were present in midbrain prediction error coding by using the feedback-related negativity, an ERP component believed to reflect midbrain prediction errors. Participants' stated satisfaction with outcomes followed prospect theory but their feedback-related negativity did not, instead showing no effect of marginal utility and greater sensitivity to potential gains than losses. Copyright © 2012 Society for Psychophysiological Research.
Moss, Britney L; Elhammali, Adnan; Fowlkes, Tiffanie; Gross, Shimon; Vinjamoori, Anant; Contag, Christopher H; Piwnica-Worms, David
2012-09-07
Full understanding of the biological significance of negative feedback processes requires interrogation at multiple scales as follows: in single cells, cell populations, and live animals in vivo. The transcriptionally coupled IκBα/NF-κB negative feedback loop, a pivotal regulatory node of innate immunity and inflammation, represents a model system for multiscalar reporters. Using a κB(5)→IκBα-FLuc bioluminescent reporter, we rigorously evaluated the dynamics of ΙκBα degradation and subsequent NF-κB transcriptional activity in response to diverse modes of TNFα stimulation. Modulating TNFα concentration or pulse duration yielded complex, reproducible, and differential ΙκBα dynamics in both cell populations and live single cells. Tremendous heterogeneity in the transcriptional amplitudes of individual responding cells was observed, which was greater than the heterogeneity in the transcriptional kinetics of responsive cells. Furthermore, administration of various TNFα doses in vivo generated ΙκBα dynamic profiles in the liver resembling those observed in single cells and populations of cells stimulated with TNFα pulses. This suggested that dose modulation of circulating TNFα was perceived by hepatocytes in vivo as pulses of increasing duration. Thus, a robust bioluminescent reporter strategy enabled rigorous quantitation of NF-κB/ΙκBα dynamics in both live single cells and cell populations and furthermore, revealed reproducible behaviors that informed interpretation of in vivo studies.
Cushing's syndrome: from physiological principles to diagnosis and clinical care
Raff, Hershel; Carroll, Ty
2015-01-01
The physiological control of cortisol synthesis in the adrenal cortex involves stimulation of adrenocorticotrophic hormone (ACTH) by hypothalamic corticotrophin-releasing hormone (CRH) and then stimulation of the adrenal by ACTH. The control loop of the hypothalamic–pituitary–adrenal (HPA) axis is closed by negative feedback of cortisol on the hypothalamus and pituitary. Understanding this system is required to master the diagnosis, differential diagnosis and treatment of endogenous hypercortisolism – Cushing's syndrome. Endogenous Cushing's syndrome is caused either by excess ACTH secretion or by autonomous cortisol release from the adrenal cortex. Diagnosis of cortisol excess exploits three physiological principles: failure to achieve the normal nadir in the cortisol diurnal rhythm, loss of sensitivity of ACTH-secreting tumours to cortisol negative feedback, and increased excretion of free cortisol in the urine. Differentiating a pituitary source of excess ACTH (Cushing's disease) from an ectopic source is accomplished by imaging the pituitary and sampling for ACTH in the venous drainage of the pituitary. With surgical removal of ACTH or cortisol-secreting tumours, secondary adrenal insufficiency ensues because of the prior suppression of the HPA axis by glucocorticoid negative feedback. Medical therapy is targeted to the anatomical location of the dysregulated component of the HPA axis. Future research will focus on new diagnostics and treatments of Cushing's syndrome. These are elegant examples of translational research: understanding basic physiology informs the development of new approaches to diagnosis and treatment. Appreciating pathophysiology generates new areas for inquiry of basic physiological and biochemical mechanisms. PMID:25480800
Banis, Stella; Geerligs, Linda; Lorist, Monicque M.
2014-01-01
Sex-specific prevalence rates in mental and physical disorders may be partly explained by sex differences in physiological stress responses. Neural networks that might be involved are those underlying feedback processing. Aim of the present EEG study was to investigate whether acute stress alters feedback processing, and whether stress effects differ between men and women. Male and female participants performed a gambling task, in a control and a stress condition. Stress was induced by exposing participants to a noise stressor. Brain activity was analyzed using both event-related potential and time-frequency analyses, measuring the feedback-related negativity (FRN) and feedback-related changes in theta and beta oscillatory power, respectively. While the FRN and feedback-related theta power were similarly affected by stress induction in both sexes, feedback-related beta power depended on the combination of stress induction condition and sex. FRN amplitude and theta power increases were smaller in the stress relative to the control condition in both sexes, demonstrating that acute noise stress impairs performance monitoring irrespective of sex. However, in the stress but not in the control condition, early lower beta-band power increases were larger for men than women, indicating that stress effects on feedback processing are partly sex-dependent. Our findings suggest that sex-specific effects on feedback processing may comprise a factor underlying sex-specific stress responses. PMID:24755943
Constant voltage electro-slag remelting control
Schlienger, M.E.
1996-10-22
A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.
NASA Astrophysics Data System (ADS)
Ding, Hong-sheng; Tong, Li-ge; Chen, Geng-hua
2001-08-01
A new confocal Fabry-Pérot interferometer (CFPI) has been constructed. By using both of the conjugate rays, the sensitivity of the system was doubled. Moreover, the negative feedback control loop of a single-chip microcomputer (MCS-51) was applied to stabilize the working point at an optimum position. The system has been used in detecting the piezoelectric ultrasonic vibration on the surface of an aluminium sample.
Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics
USDA-ARS?s Scientific Manuscript database
Feedback with soil biota is a major driver of diversity within terrestrial plant communities. However, little is known about the factors regulating plant-soil feedback, which can vary from positive to negative among plant species. In a large-scale observational and experimental study involving 55 sp...
Managing Volunteer Performance: The Role of the Feedback Environment.
ERIC Educational Resources Information Center
Paull, Megan
2000-01-01
Volunteers (n=85) in Australian organizations who responded to a survey indicated that they received both positive and negative feedback from supervisors and coworkers. The feedback environment facilitated or hindered its effectiveness. Effectiveness was enhanced by an organizational culture that was supportive and open and development of…
Medial Frontal Event-Related Potentials and Reward Prediction: Do Responses Matter?
ERIC Educational Resources Information Center
Martin, Laura E.; Potts, Geoffrey F.
2011-01-01
Medial frontal event-related potentials (ERPs) following rewarding feedback index outcome evaluation. The majority of studies examining the feedback related medial frontal negativity (MFN) employ active tasks during which participants' responses impact their feedback, however, the MFN has been elicited during passive tasks. Many of the studies…
Cloud Radiation Forcings and Feedbacks: General Circulation Model Tests and Observational Validation
NASA Technical Reports Server (NTRS)
Lee,Wan-Ho; Iacobellis, Sam F.; Somerville, Richard C. J.
1997-01-01
Using an atmospheric general circulation model (the National Center for Atmospheric Research Community Climate Model: CCM2), the effects on climate sensitivity of several different cloud radiation parameterizations have been investigated. In addition to the original cloud radiation scheme of CCM2, four parameterizations incorporating prognostic cloud water were tested: one version with prescribed cloud radiative properties and three other versions with interactive cloud radiative properties. The authors' numerical experiments employ perpetual July integrations driven by globally constant sea surface temperature forcings of two degrees, both positive and negative. A diagnostic radiation calculation has been applied to investigate the partial contributions of high, middle, and low cloud to the total cloud radiative forcing, as well as the contributions of water vapor, temperature, and cloud to the net climate feedback. The high cloud net radiative forcing is positive, and the middle and low cloud net radiative forcings are negative. The total net cloud forcing is negative in all of the model versions. The effect of interactive cloud radiative properties on global climate sensitivity is significant. The net cloud radiative feedbacks consist of quite different shortwave and longwave components between the schemes with interactive cloud radiative properties and the schemes with specified properties. The increase in cloud water content in the warmer climate leads to optically thicker middle- and low-level clouds and in turn to negative shortwave feedbacks for the interactive radiative schemes, while the decrease in cloud amount simply produces a positive shortwave feedback for the schemes with a specified cloud water path. For the longwave feedbacks, the decrease in high effective cloudiness for the schemes without interactive radiative properties leads to a negative feedback, while for the other cases, the longwave feedback is positive. These cloud radiation parameterizations are empirically validated by using a single-column diagnostic model. together with measurements from the Atmospheric Radiation Measurement program and from the Tropical Ocean Global Atmosphere Combined Ocean-Atmosphere Response Experiment. The inclusion of prognostic cloud water produces a notable improvement in the realism of the parameterizations, as judged by these observations. Furthermore, the observational evidence suggests that deriving cloud radiative properties from cloud water content and microphysical characteristics is a promising route to further improvement.
Interannual-to-decadal air-sea interactions in the tropical Atlantic region
NASA Astrophysics Data System (ADS)
Ruiz-Barradas, Alfredo
2001-09-01
The present research identifies modes of atmosphere-ocean interaction in the tropical Atlantic region and the mechanisms by which air-sea interactions influence the regional climate. Novelties of the present work are (1)the use of relevant ocean and atmosphere variables important to identity coupled variability in the system. (2)The use of new data sets, including realistic diabatic heating. (3)The study of interactions between ocean and atmosphere relevant at interannual-to-decadal time scales. Two tropical modes of variability are identified during the period 1958-1993, the Atlantic Niño mode and the Interhemispheric mode. Those modes have defined structures in both ocean and atmosphere. Anomalous sea surface temperatures and winds are associated to anomalous placement of the Intertropical Convergence Zone (ITCZ). They develop maximum amplitude during boreal summer and spring, respectively. The anomalous positioning of the ITCZ produces anomalous precipitation in some places like Nordeste, Brazil and the Caribbean region. Through the use of a diagnostic primitive equation model, it is found that the most important terms controlling local anomalous surface winds over the ocean are boundary layer temperature gradients and diabatic heating anomalies at low levels (below 780 mb). The latter is of particular importance in the deep tropics in producing the anomalous meridional response to the surface circulation. Simulated latent heat anomalies indicate that a thermodynamic feedback establishes positive feedbacks at both sides of the equator and west of 20°W in the deep tropics and a negative feedback in front of the north west coast of Africa for the Interhemispheric mode. This thermodynamic feedback only establishes negative feedbacks for the Atlantic Niño mode. Transients establish some connection between the tropical Atlantic and other basins. Interhemispheric gradients of surface temperature in the tropical Atlantic influence winds in the midlatitude North Atlantic but winds and heating of the midlatitude North Atlantic have little impact on the deep tropics. The remote influence of El Niño-Southern Oscillation in the tropical Atlantic, similar to the Interhemispheric mode, is the result of two mechanisms triggered by anomalous warming in the central and eastern tropical Pacific: enhancement of the Atlantic Walker circulation, and coupled intrusion of negative 200 mb geopotential height anomalies and negative sea level pressure anomalies that induce southwesterly surface wind anomalies in the northern tropical Atlantic.
Effects of empathic social responses on the emotions of the recipient.
Seehausen, Maria; Kazzer, Philipp; Bajbouj, Malek; Heekeren, Hauke R; Jacobs, Arthur M; Klann-Delius, Gisela; Menninghaus, Winfried; Prehn, Kristin
2016-03-01
Empathy is highly relevant for social behavior and can be verbally expressed by voicing sympathy and concern (emotional empathy) as well as by paraphrasing or stating that one can mentally reconstruct and understand another person's thoughts and feelings (cognitive empathy). In this study, we investigated the emotional effects and neural correlates of receiving empathic social responses after negative performance feedback and compared the effects of emotionally vs. cognitively empathic comments. 20 participants (10 male) underwent functional magnetic resonance imaging while receiving negative performance feedback for a cognitive task. Performance feedback was followed by verbal comments either expressing cognitive and emotional empathy or demonstrating a lack of empathy. Empathic comments in general led to less negative self-reported feelings and calmer breathing. At the neural level, empathic comments induced activity in regions associated with social cognition and emotion processing, specifically in right postcentral gyrus and left cerebellum (cognitively empathic comments), right precentral gyrus, the opercular part of left inferior frontal gyrus, and left middle temporal gyrus (emotionally empathic comments), as well as the orbital part of the left middle frontal gyrus and left superior parietal gyrus (emotionally empathic vs. unempathic comments). The study shows that cognitively and emotionally empathic comments appear to be processed in partially separable neural systems. Furthermore, confirming and expanding on another study on the same subject, the present results demonstrate that the social display of cognitive empathy exerts almost as positive effects on the recipient's feelings and emotions in states of distress as emotionally empathic response does. This can be relevant for professional settings in which strong negative emotions need to be de-escalated while maintaining professional impartiality, which may allow the display of cognitive but not emotional empathy. Copyright © 2015 Elsevier Inc. All rights reserved.
Ren, Xi; Valle-Inclán, Fernando; Tukaiev, Sergii; Hackley, Steven A
2017-07-01
According to reinforcement learning theory, dopamine-dependent anticipatory processes play a critical role in learning from action outcomes such as feedback or reward. To better understand outcome anticipation, we examined variation in slow cortical potentials and assessed their changes over the course of motor-skill acquisition. Healthy young adults learned a series of precisely timed, key press sequences. Feedback was delivered at a delay of either 2.5 or 8 s, to encourage use of either the striatally mediated, habit learning system or the hippocampus-dependent, episodic memory system, respectively. During the 2.5-s delay, the stimulus-preceding negativity (SPN) was shown to decline in amplitude across trials, confirming previous results from a perceptual categorization task (Morís, Luque, & Rodríguez-Fornells, 2013). This falsifies the hypothesis that SPN reflects specific outcome predictions, on the assumption that the ability to make such predictions should improve as a task is mastered. An SPN was also evident during the 8-s delay, but it increased in amplitude across trials. At the conclusion of the 8-s but not the 2.5-s prefeedback interval, a reversed-polarity lateralized readiness potential (LRP) was noted. It was suggested that this might indicate maintenance of an action representation for comparison with the feedback display. If so, this would constitute the first direct psychophysiological evidence for a popular hypothetical construct in quantitative models of reinforcement learning, the so-called eligibility trace. © 2017 Society for Psychophysiological Research.
Jackman, Jay M; Strober, Myra H
2003-04-01
Nobody likes performance reviews. Subordinates are terrified they'll hear nothing but criticism. Bosses think their direct reports will respond to even the mildest criticism with anger or tears. The result? Everyone keeps quiet. That's unfortunate, because most people need help figuring out how to improve their performance and advance their careers. This fear of feedback doesn't come into play just during annual reviews. At least half the executives with whom the authors have worked never ask for feedback. Many expect the worst: heated arguments, even threats of dismissal. So rather than seek feedback, people try to guess what their bosses are thinking. Fears and assumptions about feedback often manifest themselves in psychologically maladaptive behaviors such as procrastination, denial, brooding, jealousy, and self-sabotage. But there's hope, say the authors. Those who learn adaptive techniques can free themselves from destructive responses. They'll be able to deal with feedback better if they acknowledge negative emotions, reframe fear and criticism constructively, develop realistic goals, create support systems, and reward themselves for achievements along the way. Once you've begun to alter your maladaptive behaviors, you can begin seeking regular feedback from your boss. The authors take you through four steps for doing just that: self-assessment, external assessment, absorbing the feedback, and taking action toward change. Organizations profit when employees ask for feedback and deal well with criticism. Once people begin to know how they are doing relative to management's priorities, their work becomes better aligned with organizational goals. What's more, they begin to transform a feedback-averse environment into a more honest and open one, in turn improving performance throughout the organization.
Feedback Regulation of Intracellular Hydrostatic Pressure in Surface Cells of the Lens
Gao, Junyuan; Sun, Xiurong; White, Thomas W.; Delamere, Nicholas A.; Mathias, Richard T.
2015-01-01
In wild-type lenses from various species, an intracellular hydrostatic pressure gradient goes from ∼340 mmHg in central fiber cells to 0 mmHg in surface cells. This gradient drives a center-to-surface flow of intracellular fluid. In lenses in which gap-junction coupling is increased, the central pressure is lower, whereas if gap-junction coupling is reduced, the central pressure is higher but surface pressure is always zero. Recently, we found that surface cell pressure was elevated in PTEN null lenses. This suggested disruption of a feedback control system that normally maintained zero surface cell pressure. Our purpose in this study was to investigate and characterize this feedback control system. We measured intracellular hydrostatic pressures in mouse lenses using a microelectrode/manometer-based system. We found that all feedback went through transport by the Na/K ATPase, which adjusted surface cell osmolarity such that pressure was maintained at zero. We traced the regulation of Na/K ATPase activity back to either TRPV4, which sensed positive pressure and stimulated activity, or TRPV1, which sensed negative pressure and inhibited activity. The inhibitory effect of TRPV1 on Na/K pumps was shown to signal through activation of the PI3K/AKT axis. The stimulatory effect of TRPV4 was shown in previous studies to go through a different signal transduction path. Thus, there is a local two-legged feedback control system for pressure in lens surface cells. The surface pressure provides a pedestal on which the pressure gradient sits, so surface pressure determines the absolute value of pressure at each radial location. We speculate that the absolute value of intracellular pressure may set the radial gradient in the refractive index, which is essential for visual acuity. PMID:26536260
Douglas, Susan; Button, Suzanne; Casey, Susan E
2016-05-01
Measurement feedback systems (MFSs) are increasingly recognized as evidence-based treatments for improving mental health outcomes, in addition to being a useful administrative tool for service planning and reporting. Promising research findings have driven practice administrators and policymakers to emphasize the incorporation of outcomes monitoring into electronic health systems. To promote MFS integrity and protect against potentially negative outcomes, it is vital that adoption and implementation be guided by scientifically rigorous yet practical principles. In this point of view, the authors discuss and provide examples of three user-centered and theory-based principles: emphasizing integration with clinical values and workflow, promoting administrative leadership with the 'golden thread' of data-informed decision-making, and facilitating sustainability by encouraging innovation. In our experience, enacting these principles serves to promote sustainable implementation of MFSs in the community while also allowing innovation to occur, which can inform improvements to guide future MFS research.
Späti, Jakub; Chumbley, Justin; Doerig, Nadja; Brakowski, Janis; Holtforth, Martin Grosse; Seifritz, Erich; Spinelli, Simona
2015-01-01
Background Reduced sensitivity to positive feedback is common in patients with major depressive disorder (MDD). However, findings regarding negative feedback are ambiguous, with both exaggerated and blunted responses being reported. The ventral striatum (VS) plays a major role in processing valenced feedback, and previous imaging studies have shown that the locus of controls (self agency v. external agency) over the outcome influences VS response to feedback. We investigated whether attributing the outcome to one’s own action or to an external agent influences feedback processing in patients with MDD. We hypothesized that depressed participants would be less sensitive to the feedback attribution reflected by an altered VS response to self-attributed gains and losses. Methods Using functional MRI and a motion prediction task, we investigated the neural responses to self-attributed (SA) and externally attributed (EA) monetary gains and losses in unmedicated patients with MDD and healthy controls. Results We included 21 patients and 25 controls in our study. Consistent with our prediction, healthy controls showed a VS response influenced by feedback valence and attribution, whereas in depressed patients striatal activity was modulated by valence but was insensitive to attribution. This attribution insensitivity led to an altered ventral putamen response for SA – EA losses in patients with MDD compared with healthy controls. Limitations Depressed patients with comorbid anxiety disorder were included. Conclusion These results suggest an altered assignment of motivational salience to SA losses in patients with MDD. Altered striatal response to SA negative events may reinforce the belief of not being in control of negative outcomes contributing to a cycle of learned helplessness. PMID:26107160
Mental models of audit and feedback in primary care settings.
Hysong, Sylvia J; Smitham, Kristen; SoRelle, Richard; Amspoker, Amber; Hughes, Ashley M; Haidet, Paul
2018-05-30
Audit and feedback has been shown to be instrumental in improving quality of care, particularly in outpatient settings. The mental model individuals and organizations hold regarding audit and feedback can moderate its effectiveness, yet this has received limited study in the quality improvement literature. In this study we sought to uncover patterns in mental models of current feedback practices within high- and low-performing healthcare facilities. We purposively sampled 16 geographically dispersed VA hospitals based on high and low performance on a set of chronic and preventive care measures. We interviewed up to 4 personnel from each location (n = 48) to determine the facility's receptivity to audit and feedback practices. Interview transcripts were analyzed via content and framework analysis to identify emergent themes. We found high variability in the mental models of audit and feedback, which we organized into positive and negative themes. We were unable to associate mental models of audit and feedback with clinical performance due to high variance in facility performance over time. Positive mental models exhibit perceived utility of audit and feedback practices in improving performance; whereas, negative mental models did not. Results speak to the variability of mental models of feedback, highlighting how facilities perceive current audit and feedback practices. Findings are consistent with prior research in that variability in feedback mental models is associated with lower performance.; Future research should seek to empirically link mental models revealed in this paper to high and low levels of clinical performance.
De Muynck, Gert-Jan; Vansteenkiste, Maarten; Delrue, Jochen; Aelterman, Nathalie; Haerens, Leen; Soenens, Bart
2017-02-01
Grounded in self-determination theory, this experimental study examined whether the valence (i.e., positive vs. negative) and style (i.e., autonomy-supportive vs. controlling) of normative feedback impact the self-talk, motivational experiences (i.e., psychological need satisfaction and enjoyment), and behavioral functioning (i.e., perseverance and performance) of tennis players (N = 120; M age = 24.50 ± 9.86 years). Positive feedback and an autonomy-supportive style positively influenced players' enjoyment and perseverance, with psychological need satisfaction and self-talk playing an intervening role. While positive feedback yielded its beneficial effect via greater competence satisfaction and decreased negative self-talk, the beneficial impact of an autonomy-supportive communication style was explained via greater autonomy satisfaction.
Fishbine, H.L.; Sewell, C. Jr.
1957-08-01
Negative feedback amplifiers, and particularly a negative feedback circuit which is economical on amode power consumption, are described. Basically, the disclosed circuit comprises two tetrode tubes where the output of the first tube is capacitamce coupled to the grid of the second tube, which in turn has its plate coupled to the cathode of the first tube to form a degenerative feedback circuit. Operating potential for screen of the second tube is supplied by connecting the cathode resistor of the first tube to the screen, while the screen is by-passed to the cathode of its tube for the amplified frequencies. Also, the amplifier incorporates a circuit to stabilize the transconductance of the tubes by making the grid potential of each tube interdependent on anode currents of both lubes by voltage divider circuitry.
Competition increases sensitivity of wheat (Triticum aestivum) to biotic plant-soil feedback.
Hol, W H Gera; de Boer, Wietse; ten Hooven, Freddy; van der Putten, Wim H
2013-01-01
Plant-soil feedback (PSF) and plant competition play an important role in structuring vegetation composition, but their interaction remains unclear. Recent studies suggest that competing plants could dilute pathogenic effects, whereas the standing view is that competition may increase the sensitivity of the focal plant to PSF. In agro-ecosystems each of these two options would yield contrasting outcomes: reduced versus enhanced effects of weeds on crop biomass production. To test the effect of competition on sensitivity to PSF, we grew Triticum aestivum (Common wheat) with and without competition from a weed community composed of Vicia villosa, Chenopodium album and Myosotis arvensis. Plants were grown in sterilized soil, with or without living field inoculum from 4 farms in the UK. In the conditioning phase, field inocula had both positive and negative effects on T. aestivum shoot biomass, depending on farm. In the feedback phase the differences between shoot biomass in T. aestivum monoculture on non-inoculated and inoculated soils had mostly disappeared. However, T. aestivum plants growing in mixtures in the feedback phase were larger on non-inoculated soil than on inoculated soil. Hence, T. aestivum was more sensitive to competition when the field soil biota was present. This was supported by the statistically significant negative correlation between shoot biomass of weeds and T. aestivum, which was absent on sterilized soil. In conclusion, competition in cereal crop-weed systems appears to increase cereal crop sensitivity to soil biota.
Determinants of cell-to-cell variability in protein kinase signaling.
Jeschke, Matthias; Baumgärtner, Stephan; Legewie, Stefan
2013-01-01
Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity') and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s) or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.
A PI3-kinase-mediated negative feedback regulates neuronal excitability.
Howlett, Eric; Lin, Curtis Chun-Jen; Lavery, William; Stern, Michael
2008-11-01
Use-dependent downregulation of neuronal activity (negative feedback) can act as a homeostatic mechanism to maintain neuronal activity at a particular specified value. Disruption of this negative feedback might lead to neurological pathologies, such as epilepsy, but the precise mechanisms by which this feedback can occur remain incompletely understood. At one glutamatergic synapse, the Drosophila neuromuscular junction, a mutation in the group II metabotropic glutamate receptor gene (DmGluRA) increased motor neuron excitability by disrupting an autocrine, glutamate-mediated negative feedback. We show that DmGluRA mutations increase neuronal excitability by preventing PI3 kinase (PI3K) activation and consequently hyperactivating the transcription factor Foxo. Furthermore, glutamate application increases levels of phospho-Akt, a product of PI3K signaling, within motor nerve terminals in a DmGluRA-dependent manner. Finally, we show that PI3K increases both axon diameter and synapse number via the Tor/S6 kinase pathway, but not Foxo. In humans, PI3K and group II mGluRs are implicated in epilepsy, neurofibromatosis, autism, schizophrenia, and other neurological disorders; however, neither the link between group II mGluRs and PI3K, nor the role of PI3K-dependent regulation of Foxo in the control of neuronal excitability, had been previously reported. Our work suggests that some of the deficits in these neurological disorders might result from disruption of glutamate-mediated homeostasis of neuronal excitability.
Predictive error detection in pianists: a combined ERP and motion capture study
Maidhof, Clemens; Pitkäniemi, Anni; Tervaniemi, Mari
2013-01-01
Performing a piece of music involves the interplay of several cognitive and motor processes and requires extensive training to achieve a high skill level. However, even professional musicians commit errors occasionally. Previous event-related potential (ERP) studies have investigated the neurophysiological correlates of pitch errors during piano performance, and reported pre-error negativity already occurring approximately 70–100 ms before the error had been committed and audible. It was assumed that this pre-error negativity reflects predictive control processes that compare predicted consequences with actual consequences of one's own actions. However, in previous investigations, correct and incorrect pitch events were confounded by their different tempi. In addition, no data about the underlying movements were available. In the present study, we exploratively recorded the ERPs and 3D movement data of pianists' fingers simultaneously while they performed fingering exercises from memory. Results showed a pre-error negativity for incorrect keystrokes when both correct and incorrect keystrokes were performed with comparable tempi. Interestingly, even correct notes immediately preceding erroneous keystrokes elicited a very similar negativity. In addition, we explored the possibility of computing ERPs time-locked to a kinematic landmark in the finger motion trajectories defined by when a finger makes initial contact with the key surface, that is, at the onset of tactile feedback. Results suggest that incorrect notes elicited a small difference after the onset of tactile feedback, whereas correct notes preceding incorrect ones elicited negativity before the onset of tactile feedback. The results tentatively suggest that tactile feedback plays an important role in error-monitoring during piano performance, because the comparison between predicted and actual sensory (tactile) feedback may provide the information necessary for the detection of an upcoming error. PMID:24133428
NASA Astrophysics Data System (ADS)
Brault, Marc-Olivier; Matthews, Damon; Mysak, Lawrence
2016-04-01
The chemical erosion of carbonate and silicate rocks is a key process in the global carbon cycle and, through its coupling with calcium carbonate deposition in the ocean, is the primary sink of carbon on geologic timescales. The dynamic interdependence of terrestrial weathering rates with atmospheric temperature and carbon dioxide concentrations is crucial to the regulation of Earth's climate over multi-millennial timescales. However any attempts to develop a modeling context for terrestrial weathering as part of a dynamic climate system are limited, mostly because of the difficulty in adapting the multi-millennial timescales of the implied negative feedback mechanism with those of the atmosphere and ocean. Much of the earlier work on this topic is therefore based on box-model approaches, abandoning spatial variability for the sake of computational efficiency and the possibility to investigate the impact of weathering on climate change over time frames much longer than those allowed by traditional climate system models. As a result we still have but a rudimentary understanding of the chemical weathering feedback mechanism and its effects on ocean biogeochemistry and atmospheric CO2. Here, we introduce a spatially-explicit, rock weathering model into the University of Victoria Earth System Climate Model (UVic ESCM). We use a land map which takes into account a number of different rock lithologies, changes in sea level, as well as an empirical model of the temperature and NPP dependency of weathering rates for the different rock types. We apply this new model to the last deglacial period (c. 21000BP to 13000BP) as well as a future climate change scenario (c. 1800AD to 6000AD+), comparing the results of our 2-D version of the weathering feedback mechanism to simulations using only the box-model parameterizations of Meissner et al. [2012]. These simulations reveal the importance of two-dimensional factors (i.e., changes in sea level and rock type distribution) in the role of the weathering negative feedback mechanism on multi-millennial timescales.
Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification
Zhang, Han; Cao, Long
2016-01-01
Ocean uptake of anthropogenic CO2 reduces pH and saturation state of calcium carbonate materials of seawater, which could reduce the calcification rate of some marine organisms, triggering a negative feedback on the growth of atmospheric CO2. We quantify the effect of this CO2-calcification feedback by conducting a series of Earth system model simulations that incorporate different parameterization schemes describing the dependence of calcification rate on saturation state of CaCO3. In a scenario with SRES A2 CO2 emission until 2100 and zero emission afterwards, by year 3500, in the simulation without CO2-calcification feedback, model projects an accumulated ocean CO2 uptake of 1462 PgC, atmospheric CO2 of 612 ppm, and surface pH of 7.9. Inclusion of CO2-calcification feedback increases ocean CO2 uptake by 9 to 285 PgC, reduces atmospheric CO2 by 4 to 70 ppm, and mitigates the reduction in surface pH by 0.003 to 0.06, depending on the form of parameterization scheme used. It is also found that the effect of CO2-calcification feedback on ocean carbon uptake is comparable and could be much larger than the effect from CO2-induced warming. Our results highlight the potentially important role CO2-calcification feedback plays in ocean carbon cycle and projections of future atmospheric CO2 concentrations. PMID:26838480
Romero, Nuria; De Raedt, Rudi
2017-01-01
The present study aimed to clarify: 1) the presence of depression-related attention bias related to a social stressor, 2) its association with depression-related attention biases as measured under standard conditions, and 3) their association with impaired stress recovery in depression. A sample of 39 participants reporting a broad range of depression levels completed a standard eye-tracking paradigm in which they had to engage/disengage their gaze with/from emotional faces. Participants then underwent a stress induction (i.e., giving a speech), in which their eye movements to false emotional feedback were measured, and stress reactivity and recovery were assessed. Depression level was associated with longer times to engage/disengage attention with/from negative faces under standard conditions and with sustained attention to negative feedback during the speech. These depression-related biases were associated and mediated the association between depression level and self-reported stress recovery, predicting lower recovery from stress after giving the speech. PMID:28362826
Chaotic dynamics and diffusion in a piecewise linear equation
NASA Astrophysics Data System (ADS)
Shahrear, Pabel; Glass, Leon; Edwards, Rod
2015-03-01
Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.
Asymmetries in Climate Change Feedbacks: Why the Future may be Hotter Than you Think
NASA Astrophysics Data System (ADS)
Torn, M. S.; Harte, J.
2006-12-01
Feedbacks in the climate system are major sources of uncertainty, and climate predictions do not yet include one key set of feedbacks, namely biospheric greenhouse gas (GhG) feedbacks. Historical evidence shows that atmospheric GhG concentrations increase during periods of warming, implying a positive feedback to future climate change. We quantify this feedback for carbon dioxide (CO2) and methane (CH4) by combining the mathematics of feedback with both empirical ice-core information and general circulation model climate sensitivity. We find that a warming of 1.7-5.8°C predicted for the year 2100 is amplified to a warming commitment of 1.9-7.7°C, with the range deriving from different GCM simulations and paleo temperature records. Thus, anthropogenic emissions result in higher final GhG concentrations, and therefore more warming, than would be predicted in the absence of this feedback. Uncertainty in climate change predictions have been used as a rationale for inaction against the threat of global warming, based on a prevailing view that the uncertainties are symmetric, giving equal support to climate "optimists" (who think it will be a small problem) and "pessimists," (it will be a big problem). Our results show that even a symmetrical uncertainty in any component of feedback, whether positive or negative, produces an asymmetrical distribution of expected temperatures skewed towards higher temperature. For both reasons, the omission of key positive feedbacks and asymmetrical uncertainty from feedbacks, it is likely that the future will be hotter than we think, which implies more severe climate change impacts. Thus, these results suggest that a conservative policy approach would employ lower emission targets and tighter stabilization time horizons than would otherwise be required.
Tait, Lauren; Lee, Kenneth; Rasiah, Rohan; Cooper, Joyce M; Ling, Tristan; Geelan, Benjamin; Bindoff, Ivan
2018-05-03
Background . There are numerous approaches to simulating a patient encounter in pharmacy education. However, little direct comparison between these approaches has been undertaken. Our objective was to investigate student experiences, satisfaction, and feedback preferences between three scenario simulation modalities (paper-, actor-, and computer-based). Methods . We conducted a mixed methods study with randomized cross-over of simulation modalities on final-year Australian graduate-entry Master of Pharmacy students. Participants completed case-based scenarios within each of three simulation modalities, with feedback provided at the completion of each scenario in a format corresponding to each simulation modality. A post-simulation questionnaire collected qualitative and quantitative responses pertaining to participant satisfaction, experiences, and feedback preferences. Results . Participants reported similar levels satisfaction across all three modalities. However, each modality resulted in unique positive and negative experiences, such as student disengagement with paper-based scenarios. Conclusion . Importantly, the themes of guidance and opportunity for peer discussion underlie the best forms of feedback for students. The provision of feedback following simulation should be carefully considered and delivered, with all three simulation modalities producing both positive and negative experiences in regard to their feedback format.
Self-verification in clinical depression: the desire for negative evaluation.
Giesler, R B; Josephs, R A; Swann, W B
1996-08-01
Do clinically depressed individuals seek favorable or unfavorable information about the self? Self-verification theory makes the counterintuitive prediction that depressed individuals solicit feedback that confirms their negative self-views. To test this prediction, participants were classified on the basis of a structured clinical interview and self-report measures into high-esteem, low self-esteem, and depressed groups. All participants were offered a choice between receiving favorable or unfavorable feedback; 82% of the depressed participants chose the unfavorable feedback, compared to 64% of the low self-esteem participants and 25% of the high self-esteem participants. Additional evidence indicated that depressed individuals also failed to exploit fully an opportunity to acquire favorable evaluations that were self-verifying. The authors discuss how seeking negative evaluations and failing to seek favorable evaluations may help maintain depression.
Theory of step on leading edge of negative corona current pulse
NASA Astrophysics Data System (ADS)
Gupta, Deepak K.; Mahajan, Sangeeta; John, P. I.
2000-03-01
Theoretical models taking into account different feedback source terms (e.g., ion-impact electron emission, photo-electron emission, field emission, etc) have been proposed for the existence and explanation of the shape of negative corona current pulse, including the step on the leading edge. In the present work, a negative corona current pulse with the step on the leading edge is obtained in the presence of ion-impact electron emission feedback source only. The step on the leading edge is explained in terms of the plasma formation process and enhancement of the feedback source. Ionization wave-like movement toward the cathode is observed after the step. The conditions for the existence of current pulse, with and without the step on the leading edge, are also described. A qualitative comparison with earlier theoretical and experimental work is also included.
Effects of information type on children's interrogative suggestibility: is Theory-of-Mind involved?
Hünefeldt, Thomas; Rossi-Arnaud, Clelia; Furia, Augusta
2009-08-01
This research was aimed at learning more about the different psychological mechanisms underlying children's suggestibility to leading questions, on the one hand, and children's suggestibility to negative feedback, on the other, by distinguishing between interview questions concerning different types of information. Results showed that, unlike the developmental pattern of children's suggestibility to leading questions, the developmental pattern of children's suggestibility to negative feedback differed depending on whether the interview questions concerned external facts (physical states and events) or internal facts (mental states and events). This difference was not manifested in response to questions concerning central versus peripheral facts. Results are interpreted in terms of the hypothesis that children's suggestibility to negative feedback is differently affected by "Theory-of-Mind" abilities than children's suggestibility to leading questions. Further research is needed in order to test this hypothesis.
Is Positive Feedback a Forgotten Classroom Practice? Findings and Implications for At-Risk Students
ERIC Educational Resources Information Center
Sprouls, Katie; Mathur, Sarup R.; Upreti, Gita
2015-01-01
Although using higher rates of positive to negative feedback is one best practice often recommended to teachers, particularly when it comes to students experiencing behavioral problems in classroom settings, research on the use of positive feedback in classroom teaching practice has revealed inconsistent results. Research has documented…
Children's Reasoning about Evaluative Feedback
ERIC Educational Resources Information Center
Heyman, Gail D.; Fu, Genyue; Sweet, Monica A.; Lee, Kang
2009-01-01
Children's reasoning about the willingness of peers to convey accurate positive and negative performance feedback to others was investigated among a total of 179 6- to 11-year-olds from the USA and China. In Study 1, which was conducted in the USA only, participants responded that peers would be more likely to provide positive feedback than…
Neural responses to negative outcomes predict success in community-based substance use treatment
Forster, Sarah E.; Finn, Peter R.; Brown, Joshua W.
2017-01-01
Background and aims Activation in some specific brain regions has demonstrated promise as prognostic indicators in substance dependent individuals (SDIs) but this issue has not yet been explored in SDIs attending typical of community-based treatment. We used a data-driven, exploratory approach to identify brain-based predictors of treatment outcome in a representative community sample of SDIs. The predictive utility of brain-based measures was evaluated against clinical indicators, cognitive-behavioral performance, and self-report assessments. Design Prospective clinical outcome design, evaluating baseline functional magnetic resonance imaging data from the Balloon Analogue Risk Task (BART) as a predictor of 3-month substance use treatment outcomes. Setting Community-based substance use programs in Bloomington, Indiana, USA. Participants Twenty-three SDIs (17 male, ages 18–43) in an intensive outpatient or residential treatment program; abstinent 1–4 weeks at baseline. Measurements Event-related brain response, BART performance, and self-report scores at treatment onset, substance use outcome measure (based on days of use) Findings Using voxel-level predictive modeling and leave-one-out cross-validation, an elevated response to unexpected negative feedback in bilateral amygdala and anterior hippocampus (Amyg/aHipp) at baseline successfully predicted greater substance use over the 3-month study interval (p ≤ 0.006, cluster-corrected). This effect was robust to inclusion of significant non-brain-based covariates. A larger response to negative feedback in bilateral Amyg/aHipp was also associated with faster reward-seeking responses after negative feedback (r(23) = −0.544, p = 0.007; r(23) = −0.588, p = 0.003). A model including Amyg/aHipp activation, faster reward-seeking after negative feedback, and significant self-report scores accounted for 45% of the variance in substance use outcomes in our sample. Conclusions An elevated response to unexpected negative feedback in bilateral amygdala and anterior hippocampus (Amyg/aHipp) appears to predict relapse to substance use in people attending community-based treatment. PMID:28029198
Yasukawa, Kazutaka; Nakamura, Kentaro; Fujinaga, Koichiro; Ikehara, Minoru; Kato, Yasuhiro
2017-09-12
Multiple transient global warming events occurred during the early Palaeogene. Although these events, called hyperthermals, have been reported from around the globe, geologic records for the Indian Ocean are limited. In addition, the recovery processes from relatively modest hyperthermals are less constrained than those from the severest and well-studied hothouse called the Palaeocene-Eocene Thermal Maximum. In this study, we constructed a new and high-resolution geochemical dataset of deep-sea sediments clearly recording multiple Eocene hyperthermals in the Indian Ocean. We then statistically analysed the high-dimensional data matrix and extracted independent components corresponding to the biogeochemical responses to the hyperthermals. The productivity feedback commonly controls and efficiently sequesters the excess carbon in the recovery phases of the hyperthermals via an enhanced biological pump, regardless of the magnitude of the events. Meanwhile, this negative feedback is independent of nannoplankton assemblage changes generally recognised in relatively large environmental perturbations.
Forests and climate change: forcings, feedbacks, and the climate benefits of forests.
Bonan, Gordon B
2008-06-13
The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.
2009-11-01
and audience presence interact to affect aggressive behaviour in response to self-relevant negative feedback. It was hypothesized that aggression...Audience Presence Impression management theory posits that a key motivation behind human behaviour is to develop a favourable impression of oneself...discrepancy between a negative self-view and need for dominance results in defensive behaviours designed to validate their own favourable self-view
Negative feedback in ants: crowding results in less trail pheromone deposition
Czaczkes, Tomer J.; Grüter, Christoph; Ratnieks, Francis L. W.
2013-01-01
Crowding in human transport networks reduces efficiency. Efficiency can be increased by appropriate control mechanisms, which are often imposed externally. Ant colonies also have distribution networks to feeding sites outside the nest and can experience crowding. However, ants do not have external controllers or leaders. Here, we report a self-organized negative feedback mechanism, based on local information, which downregulates the production of recruitment signals in crowded parts of a network by Lasius niger ants. We controlled crowding by manipulating trail width and the number of ants on a trail, and observed a 5.6-fold reduction in the number of ants depositing trail pheromone from least to most crowded conditions. We also simulated crowding by placing glass beads covered in nest-mate cuticular hydrocarbons on the trail. After 10 bead encounters over 20 cm, forager ants were 45 per cent less likely to deposit pheromone. The mechanism of negative feedback reported here is unusual in that it acts by downregulating the production of a positive feedback signal, rather than by direct inhibition or the production of an inhibitory signal. PMID:23365196
Increased anterior cingulate cortex response precedes behavioural adaptation in anorexia nervosa
Geisler, Daniel; Ritschel, Franziska; King, Joseph A.; Bernardoni, Fabio; Seidel, Maria; Boehm, Ilka; Runge, Franziska; Goschke, Thomas; Roessner, Veit; Smolka, Michael N.; Ehrlich, Stefan
2017-01-01
Patients with anorexia nervosa (AN) are characterised by increased self-control, cognitive rigidity and impairments in set-shifting, but the underlying neural mechanisms are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to elucidate the neural correlates of behavioural adaptation to changes in reward contingencies in young acutely ill AN patients. Thirty-six adolescent/young adult, non-chronic female AN patients and 36 age-matched healthy females completed a well-established probabilistic reversal learning task during fMRI. We analysed hemodynamic responses in empirically-defined regions of interest during positive feedback and negative feedback not followed/followed by behavioural adaptation and conducted functional connectivity analyses. Although overall task performance was comparable between groups, AN showed increased shifting after receiving negative feedback (lose-shift behaviour) and altered dorsal anterior cingulate cortex (dACC) responses as a function of feedback. Specifically, patients had increased dACC responses (which correlated with perfectionism) and task-related coupling with amygdala preceding behavioural adaption. Given the generally preserved task performance in young AN, elevated dACC responses specifically during behavioural adaption is suggestive of increased monitoring for the need to adjust performance strategies. Higher dACC-amygdala coupling and increased adaptation after negative feedback underlines this interpretation and could be related to intolerance of uncertainty which has been suggested for AN. PMID:28198813
Learning processes underlying avoidance of negative outcomes.
Andreatta, Marta; Michelmann, Sebastian; Pauli, Paul; Hewig, Johannes
2017-04-01
Successful avoidance of a threatening event may negatively reinforce the behavior due to activation of brain structures involved in reward processing. Here, we further investigated the learning-related properties of avoidance using feedback-related negativity (FRN). The FRN is modulated by violations of an intended outcome (prediction error, PE), that is, the bigger the difference between intended and actual outcome, the larger the FRN amplitude is. Twenty-eight participants underwent an operant conditioning paradigm, in which a behavior (button press) allowed them to avoid a painful electric shock. During two learning blocks, participants could avoid an electric shock in 80% of the trials by pressing one button (avoidance button), or by not pressing another button (punishment button). After learning, participants underwent two test blocks, which were identical to the learning ones except that no shocks were delivered. Participants pressed the avoidance button more often than the punishment button. Importantly, response frequency increased throughout the learning blocks but it did not decrease during the test blocks, indicating impaired extinction and/or habit formation. In line with a PE account, FRN amplitude to negative feedback after correct responses (i.e., unexpected punishment) was significantly larger than to positive feedback (i.e., expected omission of punishment), and it increased throughout the blocks. Highly anxious individuals showed equal FRN amplitudes to negative and positive feedback, suggesting impaired discrimination. These results confirm the role of negative reinforcement in motivating behavior and learning, and reveal important differences between high and low anxious individuals in the processing of prediction errors. © 2017 Society for Psychophysiological Research.
De Lorenzi, Valentina; Sarra Ferraris, Gian Maria; Madsen, Jeppe B; Lupia, Michela; Andreasen, Peter A; Sidenius, Nicolai
2016-07-01
Components of the plasminogen activation system including urokinase (uPA), its inhibitor (PAI-1) and its cell surface receptor (uPAR) have been implicated in a wide variety of biological processes related to tissue homoeostasis. Firstly, the binding of uPA to uPAR favours extracellular proteolysis by enhancing cell surface plasminogen activation. Secondly, it promotes cell adhesion and signalling through binding of the provisional matrix protein vitronectin. We now report that uPA and plasmin induces a potent negative feedback on cell adhesion through specific cleavage of the RGD motif in vitronectin. Cleavage of vitronectin by uPA displays a remarkable receptor dependence and requires concomitant binding of both uPA and vitronectin to uPAR Moreover, we show that PAI-1 counteracts the negative feedback and behaves as a proteolysis-triggered stabilizer of uPAR-mediated cell adhesion to vitronectin. These findings identify a novel and highly specific function for the plasminogen activation system in the regulation of cell adhesion to vitronectin. The cleavage of vitronectin by uPA and plasmin results in the release of N-terminal vitronectin fragments that can be detected in vivo, underscoring the potential physiological relevance of the process. © 2016 The Authors.
Effects of delay and noise in a negative feedback regulatory motif
NASA Astrophysics Data System (ADS)
Palassini, Matteo; Dies, Marta
2009-03-01
The small copy number of the molecules involved in gene regulation can induce nontrivial stochastic phenomena such as noise-induced oscillations. An often neglected aspect of regulation dynamics are the delays involved in transcription and translation. Delays introduce analytical and computational complications because the dynamics is non-Markovian. We study the interplay of noise and delays in a negative feedback model of the p53 core regulatory network. Recent experiments have found pronounced oscillations in the concentrations of proteins p53 and Mdm2 in individual cells subjected to DNA damage. Similar oscillations occur in the Hes-1 and NK-kB systems, and in circadian rhythms. Several mechanisms have been proposed to explain this oscillatory behaviour, such as deterministic limit cycles, with and without delay, or noise-induced excursions in excitable models. We consider a generic delayed Master Equation incorporating the activation of Mdm2 by p53 and the Mdm2-promoted degradation of p53. In the deterministic limit and for large delays, the model shows a Hopf bifurcation. Via exact stochastic simulations, we find strong noise-induced oscillations well outside the limit-cycle region. We propose that this may be a generic mechanism for oscillations in gene regulatory systems.
Social incentives improve deliberative but not procedural learning in older adults.
Gorlick, Marissa A; Maddox, W Todd
2015-01-01
Age-related deficits are seen across tasks where learning depends on asocial feedback processing, however plasticity has been observed in some of the same tasks in social contexts suggesting a novel way to attenuate deficits. Socioemotional selectivity theory suggests this plasticity is due to a deliberative motivational shift toward achieving well-being with age (positivity effect) that reverses when executive processes are limited (negativity effect). The present study examined the interaction of feedback valence (positive, negative) and social salience (emotional face feedback - happy; angry, asocial point feedback - gain; loss) on learning in a deliberative task that challenges executive processes and a procedural task that does not. We predict that angry face feedback will improve learning in a deliberative task when executive function is challenged. We tested two competing hypotheses regarding the interactive effects of deliberative emotional biases on automatic feedback processing: (1) If deliberative emotion regulation and automatic feedback are interactive we expect happy face feedback to improve learning and angry face feedback to impair learning in older adults because cognitive control is available. (2) If deliberative emotion regulation and automatic feedback are not interactive we predict that emotional face feedback will not improve procedural learning regardless of valence. Results demonstrate that older adults show persistent deficits relative to younger adults during procedural category learning suggesting that deliberative emotional biases do not interact with automatic feedback processing. Interestingly, a subgroup of older adults identified as potentially using deliberative strategies tended to learn as well as younger adults with angry relative to happy feedback, matching the pattern observed in the deliberative task. Results suggest that deliberative emotional biases can improve deliberative learning, but have no effect on procedural learning.
An Intelligent Tutoring System (ITS) for Future Combat Systems (FCS) Robotic Vehicle Command
2003-01-01
relevant to student feedback, as a free - play simulation allows for a degree of flexibility where negative outcomes may occur even if the student has...principle. As the underlying simulation is a free - play environment, the student is free to do things that the ITS does not anticipate. This...principles. This is especially challenging in a real-time free - play scenario, because even with just one scenario, different students executing different
Baker, Travis E; Holroyd, Clay B
2011-04-01
The reinforcement learning theory of the error-related negativity (ERN) holds that the impact of reward signals carried by the midbrain dopamine system modulates activity of the anterior cingulate cortex (ACC), alternatively disinhibiting and inhibiting the ACC following unpredicted error and reward events, respectively. According to a recent formulation of the theory, activity that is intrinsic to the ACC produces a component of the event-related brain potential (ERP) called the N200, and following unpredicted rewards, the N200 is suppressed by extrinsically applied positive dopamine reward signals, resulting in an ERP component called the feedback-ERN (fERN). Here we demonstrate that, despite extensive spatial and temporal overlap between the two ERP components, the functional processes indexed by the N200 (conflict) and the fERN (reward) are dissociable. These results point toward avenues for future investigation. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Notaro, Michael
2018-01-01
A regional climate modeling analysis of the Australian monsoon system reveals a substantial modulation of vegetation-rainfall feedbacks by the Madden Julian Oscillation (MJO), both of which operate at similar sub-seasonal time scales, as evidence that the intensity of land-atmosphere interactions is sensitive to the background atmospheric state. Based on ensemble experiments with imposed modification of northern Australian leaf area index (LAI), the atmospheric responses to LAI anomalies are composited for negative and positive modes of the propagating MJO. In the regional climate model (RCM), northern Australian vegetation feedbacks are characterized by evapotranspiration (ET)-driven rainfall responses, with the moisture feedback mechanism dominating over albedo and roughness feedback mechanisms. During November-April, both Tropical Rainfall Measuring Mission and RCM data reveal MJO's pronounced influence on rainfall patterns across northern Australia, tropical Indian Ocean, Timor Sea, Arafura Sea, and Gulf of Carpentaria, with the MJO dominating over vegetation feedbacks in terms of regulating monsoon rainfall variability. Convectively-active MJO phases support an enhancement of positive vegetation feedbacks on monsoon rainfall. While the MJO imposes minimal regulation of ET responses to LAI anomalies, the vegetation feedback-induced responses in precipitable water, cloud water, and rainfall are greatly enhanced during convectively-active MJO phases over northern Australia, which are characterized by intense low-level convergence and efficient precipitable water conversion. The sub-seasonal response of vegetation-rainfall feedback intensity to the MJO is complex, with significant enhancement of rainfall responses to LAI anomalies in February during convectively-active MJO phases compared to minimal modulation by the MJO during prior and subsequent calendar months.
Semantically Enhanced Online Configuration of Feedback Control Schemes.
Milis, Georgios M; Panayiotou, Christos G; Polycarpou, Marios M
2018-03-01
Recent progress toward the realization of the "Internet of Things" has improved the ability of physical and soft/cyber entities to operate effectively within large-scale, heterogeneous systems. It is important that such capacity be accompanied by feedback control capabilities sufficient to ensure that the overall systems behave according to their specifications and meet their functional objectives. To achieve this, such systems require new architectures that facilitate the online deployment, composition, interoperability, and scalability of control system components. Most current control systems lack scalability and interoperability because their design is based on a fixed configuration of specific components, with knowledge of their individual characteristics only implicitly passed through the design. This paper addresses the need for flexibility when replacing components or installing new components, which might occur when an existing component is upgraded or when a new application requires a new component, without the need to readjust or redesign the overall system. A semantically enhanced feedback control architecture is introduced for a class of systems, aimed at accommodating new components into a closed-loop control framework by exploiting the semantic inference capabilities of an ontology-based knowledge model. This architecture supports continuous operation of the control system, a crucial property for large-scale systems for which interruptions have negative impact on key performance metrics that may include human comfort and welfare or economy costs. A case-study example from the smart buildings domain is used to illustrate the proposed architecture and semantic inference mechanisms.
Lee, Grace J; Suhr, Julie A
2018-03-31
Expectancy is a psychological factor that can impact treatment effectiveness. Research on neurofeedback for attention-deficit/hyperactivity disorder (ADHD) suggests expectancy may contribute to treatment outcomes, though evidence for expectancy as an explanatory factor is sparse. This pilot study investigated the effects of expectancies on self-reported ADHD symptoms in simulated neurofeedback. Forty-six adults who were concerned that they had ADHD expected to receive active neurofeedback, but were randomly assigned to receive a placebo with false feedback indicating attentive (positive false feedback) or inattentive (negative false feedback) states. Effects of the expectancy manipulation were measured on an ADHD self-report scale. Large expectancy effects were found, such that individuals who received positive false feedback reported significant decreases in ADHD symptoms, whereas individuals who received negative false feedback reported significant increases in ADHD symptoms. Findings suggest that expectancy should be considered as an explanatory mechanism for ADHD symptom change in response to neurofeedback.
Friend networking sites and their relationship to adolescents' well-being and social self-esteem.
Valkenburg, Patti M; Peter, Jochen; Schouten, Alexander P
2006-10-01
The aim of this study was to investigate the consequences of friend networking sites (e.g., Friendster, MySpace) for adolescents' self-esteem and well-being. We conducted a survey among 881 adolescents (10-19-year-olds) who had an online profile on a Dutch friend networking site. Using structural equation modeling, we found that the frequency with which adolescents used the site had an indirect effect on their social self-esteem and well-being. The use of the friend networking site stimulated the number of relationships formed on the site, the frequency with which adolescents received feedback on their profiles, and the tone (i.e., positive vs. negative) of this feedback. Positive feedback on the profiles enhanced adolescents' social self-esteem and well-being, whereas negative feedback decreased their self-esteem and well-being.
Lateral interactions in the outer retina
Thoreson, Wallace B.; Mangel, Stuart C.
2012-01-01
Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (ICa) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones. PMID:22580106
Homeostatic systems, biocybernetics, and autonomic neuroscience.
Goldstein, David S; Kopin, Irwin J
2017-12-01
In this review we describe a series of major concepts introduced during the past 150years that have contributed to our current understanding about how physiological processes required for well-being and survival are regulated. One can theorize that hierarchical networks involving input-output relationships continuously orchestrate and learn adaptive patterns of observable behaviors, cognition, memory, mood, and autonomic systems. Taken together, these networks function as "good regulators" determining levels of internal variables and act as if there were homeostatic comparators ("homeostats"). The consequences of models with vs. without homeostats remain the same in terms of allostatic load and the eventual switch from stabilizing negative feedback loops to destabilizing, pathogenic positive feedback loops. Understanding this switch seems important for comprehending senescence-related, neurodegenerative disorders that involve the autonomic nervous system. Our general proposal is that disintegration of homeostatic systems causes disorders of regulation in degenerative diseases and that medical cybernetics can inspire and rationalize new approaches to treatment and prevention. Published by Elsevier B.V.
Social motivation in individuals with isolated cleft lip and palate.
van der Plas, Ellen; Koscik, Timothy R; Conrad, Amy L; Moser, David J; Nopoulos, Peg
2013-01-01
Social isolation is common among individuals with isolated cleft lip and palate (ICLP), but the available data on why this may be are mixed. We present a novel theory relating to reduced social motivation in ICLP, called the social abulia hypothesis. Based on this hypothesis, we predicted that reduced social motivation would lead to reduced responsiveness to negative social feedback, in terms of both explicit responses and noncontrolled, psychophysiological responses. Twenty males with ICLP and 20 normal comparison males between 13 and 25 years old participated in the study. Social motivation was examined by measuring participants' response to negative social feedback (social exclusion). Additionally, psychophysiological reactivity to positive and negative social stimuli was measured. In order to rule out other potential contributors to social isolation, we tested basic social perception, emotion recognition, and social anxiety. In line with the social abulia hypothesis, we show that negative social feedback had less of an effect on males with ICLP than on healthy male peers, which was evident in explicit responses and noncontrolled, psychophysiological responses to negative social feedback. Our results could not be attributed to problems in social perception, a lack of understanding facial expressions, or increased social anxiety, as groups did not differ on these constructs. This study suggests that current views on social isolation in ICLP may need to be reconsidered to include the possibility that isolation in this population may be the direct result of reduced social motivation.
Effects of invalid feedback on learning and feedback-related brain activity in decision-making.
Ernst, Benjamin; Steinhauser, Marco
2015-10-01
For adaptive decision-making it is important to utilize only relevant, valid and to ignore irrelevant feedback. The present study investigated how feedback processing in decision-making is impaired when relevant feedback is combined with irrelevant and potentially invalid feedback. We analyzed two electrophysiological markers of feedback processing, the feedback-related negativity (FRN) and the P300, in a simple decision-making task, in which participants processed feedback stimuli consisting of relevant and irrelevant feedback provided by the color and meaning of a Stroop stimulus. We found that invalid, irrelevant feedback not only impaired learning, it also altered the amplitude of the P300 to relevant feedback, suggesting an interfering effect of irrelevant feedback on the processing of relevant feedback. In contrast, no such effect on the FRN was obtained. These results indicate that detrimental effects of invalid, irrelevant feedback result from failures of controlled feedback processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Affect-Aware Adaptive Tutoring Based on Human-Automation Etiquette Strategies.
Yang, Euijung; Dorneich, Michael C
2018-06-01
We investigated adapting the interaction style of intelligent tutoring system (ITS) feedback based on human-automation etiquette strategies. Most ITSs adapt the content difficulty level, adapt the feedback timing, or provide extra content when they detect cognitive or affective decrements. Our previous work demonstrated that changing the interaction style via different feedback etiquette strategies has differential effects on students' motivation, confidence, satisfaction, and performance. The best etiquette strategy was also determined by user frustration. Based on these findings, a rule set was developed that systemically selected the proper etiquette strategy to address one of four learning factors (motivation, confidence, satisfaction, and performance) under two different levels of user frustration. We explored whether etiquette strategy selection based on this rule set (systematic) or random changes in etiquette strategy for a given level of frustration affected the four learning factors. Participants solved mathematics problems under different frustration conditions with feedback that adapted dynamic changes in etiquette strategies either systematically or randomly. The results demonstrated that feedback with etiquette strategies chosen systematically via the rule set could selectively target and improve motivation, confidence, satisfaction, and performance more than changing etiquette strategies randomly. The systematic adaptation was effective no matter the level of frustration for the participant. If computer tutors can vary the interaction style to effectively mitigate negative emotions, then ITS designers would have one more mechanism in which to design affect-aware adaptations that provide the proper responses in situations where human emotions affect the ability to learn.
Changes in ENSO amplitude under climate warming and cooling
NASA Astrophysics Data System (ADS)
Wang, Yingying; Luo, Yiyong; Lu, Jian; Liu, Fukai
2018-05-01
The response of ENSO amplitude to climate warming and cooling is investigated using the Community Earth System Model (CESM), in which the warming and cooling scenarios are designed by adding heat fluxes of equal amplitude but opposite sign onto the ocean surface, respectively. Results show that the warming induces an increase of the ENSO amplitude but the cooling gives rise to a decrease of the ENSO amplitude, and these changes are robust in statistics. A mixed layer heat budget analysis finds that the increasing (decreasing) SST tendency under climate warming (cooling) is mainly due to an enhancement (weakening) of dynamical feedback processes over the equatorial Pacific, including zonal advective (ZA) feedback, meridional advective (MA) feedback, thermocline (TH) feedback, and Ekman (EK) feedback. As the climate warms, a wind anomaly of the same magnitude across the equatorial Pacific can induce a stronger zonal current change in the east (i.e., a stronger ZA feedback), which in turn produces a greater weakening of upwelling (i.e., a stronger EK feedback) and thus a larger thermocline change (i.e., a stronger TH feedback). In response to the climate warming, in addition, the MA feedback is also strengthened due to an enhancement of the meridional SST gradient around the equator resulting from a weakening of the subtropical cells (STCs). It should be noted that the weakened STCs itself has a negative contribution to the change of the MA feedback which, however, appears to be secondary. And vice versa for the cooling case. Bjerknes linear stability (BJ) index is also evaluated for the linear stability of ENSO, with remarkably larger (smaller) BJ index found for the warming (cooling) case.
Negative plant-soil feedbacks increase with plant abundance, and are unchanged by competition
John L. Maron; Alyssa Laney Smith; Yvette K. Ortega; Dean E. Pearson; Ragan M. Callaway
2016-01-01
Plant-soil feedbacks and interspecific competition are ubiquitous interactions that strongly influence the performance of plants. Yet few studies have examined whether the strength of these interactions corresponds with the abundance of plant species in the field, or whether feedbacks and competition interact in ways that either ameliorate or exacerbate their...
Effects of Feedback on Achievement Goals and Perceived Motivational Climate in Physical Education
ERIC Educational Resources Information Center
Erturan-Ilker, Gökçe
2014-01-01
The aim of the study is to determine the effects of teacher's positive and negative feedback on high school students' perceived motivational climate and achievement goals in a physical education setting. Forty seven ninth grade students participated in the study. The design was a 2 x 2 between subjects factorial crossing feedback condition…
Technology-Supported Peer Feedback in ESL/EFL Writing Classes: A Research Synthesis
ERIC Educational Resources Information Center
Chen, Tsuiping
2016-01-01
Some studies on technology-supported peer feedback in the writing classroom claim that it reduces the threatening atmosphere caused by face-to-face interaction and that the discourse patterns and language use in the electronic feedback are more flexible than in spoken discourse. Others present a negative view that the comments generated from…
Luck and Learning: Feedback Contingencies and Initial Success in Verbal Discrimination Learning.
ERIC Educational Resources Information Center
Schneider, H. G.; Ferrante, A. P.
1983-01-01
A total of 90 undergraduate volunteers learned a 12-pair, low-frequency verbal discrimination list. Independent variables were feedback (positive only, negative only, or both) and initial success (17, 50, or 83 percent correct on the first trial). While the main effect of feedback was not significant, that of initial success was. (Author/RH)
The Role and Functionality of Emotions in Feedback at University: A Qualitative Study
ERIC Educational Resources Information Center
Rowe, Anna D.; Fitness, Julie; Wood, Leigh N.
2014-01-01
This paper reports on a qualitative study exploring the role and functionality of emotions in feedback. In-depth interview data from students and lecturers at an Australian university are analysed using cognitive appraisal and prototype theory. Results suggest that students experience a range of positive and negative emotions in feedback contexts…
A new discrete dynamic model of ABA-induced stomatal closure predicts key feedback loops
Acharya, Biswa R.; Jeon, Byeong Wook; Zañudo, Jorge G. T.; Zhu, Mengmeng; Osman, Karim; Assmann, Sarah M.
2017-01-01
Stomata, microscopic pores in leaf surfaces through which water loss and carbon dioxide uptake occur, are closed in response to drought by the phytohormone abscisic acid (ABA). This process is vital for drought tolerance and has been the topic of extensive experimental investigation in the last decades. Although a core signaling chain has been elucidated consisting of ABA binding to receptors, which alleviates negative regulation by protein phosphatases 2C (PP2Cs) of the protein kinase OPEN STOMATA 1 (OST1) and ultimately results in activation of anion channels, osmotic water loss, and stomatal closure, over 70 additional components have been identified, yet their relationships with each other and the core components are poorly elucidated. We integrated and processed hundreds of disparate observations regarding ABA signal transduction responses underlying stomatal closure into a network of 84 nodes and 156 edges and, as a result, established those relationships, including identification of a 36-node, strongly connected (feedback-rich) component as well as its in- and out-components. The network’s domination by a feedback-rich component may reflect a general feature of rapid signaling events. We developed a discrete dynamic model of this network and elucidated the effects of ABA plus knockout or constitutive activity of 79 nodes on both the outcome of the system (closure) and the status of all internal nodes. The model, with more than 1024 system states, is far from fully determined by the available data, yet model results agree with existing experiments in 82 cases and disagree in only 17 cases, a validation rate of 75%. Our results reveal nodes that could be engineered to impact stomatal closure in a controlled fashion and also provide over 140 novel predictions for which experimental data are currently lacking. Noting the paucity of wet-bench data regarding combinatorial effects of ABA and internal node activation, we experimentally confirmed several predictions of the model with regard to reactive oxygen species, cytosolic Ca2+ (Ca2+c), and heterotrimeric G-protein signaling. We analyzed dynamics-determining positive and negative feedback loops, thereby elucidating the attractor (dynamic behavior) repertoire of the system and the groups of nodes that determine each attractor. Based on this analysis, we predict the likely presence of a previously unrecognized feedback mechanism dependent on Ca2+c. This mechanism would provide model agreement with 10 additional experimental observations, for a validation rate of 85%. Our research underscores the importance of feedback regulation in generating robust and adaptable biological responses. The high validation rate of our model illustrates the advantages of discrete dynamic modeling for complex, nonlinear systems common in biology. PMID:28937978
NASA Astrophysics Data System (ADS)
Ochiai, T.; Nacher, J. C.
2011-09-01
The prices of financial products in markets are determined by the behavior of investors, who are influenced by positive and negative news. Here, we present a mathematical model to reproduce the price movements in real financial markets affected by news. The model has both positive and negative feed-back mechanisms. Furthermore, the behavior of the model is examined by considering two types of noise. Our results show that the dynamic balance of positive and negative feed-back mechanisms with the noise effect determines the asset price movement.
Resonant current in coupled inertial Brownian particles with delayed-feedback control
NASA Astrophysics Data System (ADS)
Gao, Tian-Fu; Zheng, Zhi-Gang; Chen, Jin-Can
2017-12-01
The transport of a walker in rocking feedback-controlled ratchets is investigated. The walker consists of two coupled "feet" that allow the interchange of the order of particles while the walker moves. In the underdamped case, the deterministic dynamics of the walker in a tilted asymmetric ratchet with an external periodic force is considered. It is found that delayed feedback ratchets with a switching-onand-off dependence of the states of the system can lead to absolute negative mobility. In such a novel phenomenon, the particles move against the bias. Moreover, the walker can acquire a series of resonant steps for different values of the current. It is interesting to find that the resonant currents of the walker are induced by the phase locked motion that corresponds to the synchronization of the motion with the change in the frequency of the external driving. These resonant steps can be well predicted in terms of time-space symmetry analysis, which is in good agreement with dynamics simulations. The transport performances can be optimized and controlled by suitably adjusting the parameters of the delayed-feedback ratchets.
Liu, Shuai; Li, Meijuan; Su, Liangchen; Ge, Kui; Li, Limei; Li, Xiaoyun; Liu, Xu; Li, Ling
2016-01-01
Abscisic acid (ABA), a key plant stress-signaling hormone, is produced in response to drought and counteracts the effects of this stress. The accumulation of ABA is controlled by the enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). In Arabidopsis, NCED3 is regulated by a positive feedback mechanism by ABA. In this study in peanut (Arachis hypogaea), we demonstrate that ABA biosynthesis is also controlled by negative feedback regulation, mediated by the inhibitory effect on AhNCED1 transcription of a protein complex between transcription factors AhNAC2 and AhAREB1. AhNCED1 was significantly down-regulated after PEG treatment for 10 h, at which time ABA content reached a peak. A ChIP-qPCR assay confirmed AhAREB1 and AhNAC2 binding to the AhNCED1 promoter in response to ABA. Moreover, the interaction between AhAREB1 and AhNAC2, and a transient expression assay showed that the protein complex could negatively regulate the expression of AhNCED1. The results also demonstrated that AhAREB1 was the key factor in AhNCED1 feedback regulation, while AhNAC2 played a subsidiary role. ABA reduced the rate of AhAREB1 degradation and enhanced both the synthesis and degradation rate of the AhNAC2 protein. In summary, the AhAREB1/AhNAC2 protein complex functions as a negative feedback regulator of drought-induced ABA biosynthesis in peanut. PMID:27892506
The influence of teacher feedback on children's perceptions of student-teacher relationships.
Skipper, Yvonne; Douglas, Karen
2015-09-01
Teachers can deliver feedback using person ('you are clever') or process terms ('you worked hard'). Person feedback can lead to negative academic outcomes, but there is little experimental research examining the impact of feedback on children's perceptions of the student-teacher relationship. We examined the effects of person, process, and no feedback on children's perceptions of their relationship with a (fictional) teacher following success and failure. Participants were British children (145 aged 9-11 in experiment 1 and 98 aged 7-11 in experiment 2). In experiment 1, participants read three scenarios where they succeeded and received one of two types of praise (person or process) or no praise. Participants then read two scenarios where they failed. In experiment 2, participants read that they had failed in three tasks and received one of two types of criticism (person or process) or no criticism. Participants then read two scenarios where they succeeded. They rated how much they liked the teacher and how much they felt that the teacher liked them. Children felt more positive about the student-teacher relationship following success than failure. Type of praise did not influence perceptions of the student-teacher relationship following success or failure. However, person criticism led children to view the student-teacher relationship more negatively following failure and maintain this negative view following the first success. Success appears to be important for developing positive student-teacher relationships. In response to failure, teachers could avoid person criticism which may negatively influence the student-teacher relationship. © 2015 The British Psychological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuanyuan; Wei, Yanyu; Jiang, Xuebing
We present an analysis of a Cherenkov free-electron laser based on a single slab made from negative-index materials. In this system, a flat electron beam with finite thickness travelling close to the surface of the slab interacts with the copropagating electromagnetic surface mode. The dispersion equation for a finitely thick slab is worked out and solved numerically to study the dispersion relation of surface modes supported by negative-index materials, and the calculations are in good agreement with the simulation results from a finite difference time domain code. We find that under suitable conditions there is inherent feedback in such amore » scheme due to the characteristics of negative-index materials, which means that the system can oscillate without external reflectors when the beam current exceeds a threshold value, i.e., start current. Using the hydrodynamic approach, we setup coupled equations for this system, and solve these equations analytically in the small signal regime to obtain formulas for the spatial growth rate and start current.« less
Zhang, Zhaohui; Ma, Fei; Zhou, Feng; Chen, Yibing; Wang, Xiaoyan; Zhang, Hongxin; Zhu, Yong; Bi, Jianwei; Zhang, Yiguan
2014-12-01
Previous studies have demonstrated that circadian negative feedback loop genes play an important role in the development and progression of many cancers. However, the associations between single-nucleotide polymorphisms (SNPs) in these genes and the clinical outcomes of hepatocellular carcinoma (HCC) after surgical resection have not been studied so far. Thirteen functional SNPs in circadian genes were genotyped using the Sequenom iPLEX genotyping system in a cohort of 489 Chinese HCC patients who received radical resection. Multivariate Cox proportional hazards model and Kaplan-Meier curve were used for the prognosis analysis. Cumulative effect analysis and survival tree analysis were used for the multiple SNPs analysis. Four individual SNPs, including rs3027178 in PER1, rs228669 and rs2640908 in PER3 and rs3809236 in CRY1, were significantly associated with overall survival (OS) of HCC patients, and three SNPs, including rs3027178 in PER1, rs228729 in PER3 and rs3809236 in CRY1, were significantly associated with recurrence-free survival (RFS). Moreover, we observed a cumulative effect of significant SNPs on OS and RFS (P for trend < 0.001 for both). Survival tree analysis indicated that wild genotype of rs228729 in PER3 was the primary risk factor contributing to HCC patients' RFS. Our study suggests that the polymorphisms in circadian negative feedback loop genes may serve as independent prognostic biomarkers in predicting clinical outcomes for HCC patients who received radical resection. Further studies with different ethnicities are needed to validate our findings and generalize its clinical utility.
Wu, Jing; Tao, Wei-Wei; Chong, Dan-Yang; Lai, Shan-Shan; Wang, Chuang; Liu, Qi; Zhang, Tong-Yu; Xue, Bin; Li, Chao-Jun
2018-03-15
Postprandial insulin desensitization plays a critical role in maintaining whole-body glucose homeostasis by avoiding the excessive absorption of blood glucose; however, the detailed mechanisms that underlie how the major player, skeletal muscle, desensitizes insulin action remain to be elucidated. Herein, we report that early growth response gene-1 ( Egr-1) is activated by insulin in skeletal muscle and provides feedback inhibition that regulates insulin sensitivity after a meal. The inhibition of the transcriptional activity of Egr-1 enhanced the phosphorylation of the insulin receptor (InsR) and Akt, thus increasing glucose uptake in L6 myotubes after insulin stimulation, whereas overexpression of Egr-1 decreased insulin sensitivity. Furthermore, deletion of Egr-1 in the skeletal muscle improved systemic insulin sensitivity and glucose tolerance, which resulted in lower blood glucose levels after refeeding. Mechanistic analysis demonstrated that EGR-1 inhibited InsR phosphorylation and glucose uptake in skeletal muscle by binding to the proximal promoter region of protein tyrosine phosphatase-1B (PTP1B) and directly activating transcription. PTP1B knockdown largely restored insulin sensitivity and enhanced glucose uptake, even under conditions of EGR-1 overexpression. Our results indicate that EGR-1/PTP1B signaling negatively regulates postprandial insulin sensitivity and suggest a potential therapeutic target for the prevention and treatment of excessive glucose absorption.-Wu, J., Tao, W.-W., Chong, D.-Y., Lai, S.-S., Wang, C., Liu, Q., Zhang, T.-Y., Xue, B., Li, C.-J. Early growth response-1 negative feedback regulates skeletal muscle postprandial insulin sensitivity via activating Ptp1b transcription.
Cushing's syndrome: from physiological principles to diagnosis and clinical care.
Raff, Hershel; Carroll, Ty
2015-02-01
The physiological control of cortisol synthesis in the adrenal cortex involves stimulation of adrenocorticotrophic hormone (ACTH) by hypothalamic corticotrophin-releasing hormone (CRH) and then stimulation of the adrenal by ACTH. The control loop of the hypothalamic-pituitary-adrenal (HPA) axis is closed by negative feedback of cortisol on the hypothalamus and pituitary. Understanding this system is required to master the diagnosis, differential diagnosis and treatment of endogenous hypercortisolism--Cushing's syndrome. Endogenous Cushing's syndrome is caused either by excess ACTH secretion or by autonomous cortisol release from the adrenal cortex. Diagnosis of cortisol excess exploits three physiological principles: failure to achieve the normal nadir in the cortisol diurnal rhythm, loss of sensitivity of ACTH-secreting tumours to cortisol negative feedback, and increased excretion of free cortisol in the urine. Differentiating a pituitary source of excess ACTH (Cushing's disease) from an ectopic source is accomplished by imaging the pituitary and sampling for ACTH in the venous drainage of the pituitary. With surgical removal of ACTH or cortisol-secreting tumours, secondary adrenal insufficiency ensues because of the prior suppression of the HPA axis by glucocorticoid negative feedback. Medical therapy is targeted to the anatomical location of the dysregulated component of the HPA axis. Future research will focus on new diagnostics and treatments of Cushing's syndrome. These are elegant examples of translational research: understanding basic physiology informs the development of new approaches to diagnosis and treatment. Appreciating pathophysiology generates new areas for inquiry of basic physiological and biochemical mechanisms. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
Plant-soil feedback in East-African savanna trees.
Rutten, Gemma; Prati, Daniel; Hemp, Andreas; Fischer, Markus
2016-02-01
Research in savannas has focused on tree-grass interactions, whereas tree species coexistence received little attention. A leading hypothesis to explain tree coexistence is the Janzen-Connell model, which proposes an accumulation of host-specific enemies, e.g., soil organisms. While it has been shown in several non-savanna case studies that seedlings dispersed away from the mother perform better than seedlings that stay close (home-away effect), few studies tested whether foreign seedling species can replace own seedlings under conspecific adults (replacement effect). Some studies additionally tested for negative effects of conspecific biota (conspecific effect) to demonstrate the accumulation of enemies. We tested these effects by reciprocally growing seedlings of four tree species on soil collected beneath adults of all species, with and without applying a soil sterilization treatment. We found negative home-away effects suggesting that dispersal is advantageous and negative replacement effects suggesting species replacement under adults. While negative conspecific effects indicate accumulated enemies, positive heterospecific effects indicate an accumulation of mutualists rather than enemies for some species. We suggest that plant-soil feedbacks may well contribute to tree coexistence in savannas due to both negative conspecific and positive heterospecific feedbacks.
Makkar, Steve R; Grisham, Jessica R
2013-03-01
Current social phobia models (e.g., Clark & Wells, 1995; Leary & Kowalski, 1995) postulate that socially anxious individuals negatively appraise their anxiety sensations (e.g., sweating, heart racing, blushing) as evidence of poor social performance, and thus fear these anxiety symptoms will be noticed and judged negatively by others. Consequently, they become self-focused and hypervigilant of these sensations and use them to judge how they appear to others. To test this model, high (N=41) and low (N=38) socially anxious participants were shown false physiological feedback regarding an increase or decrease in heart rate prior to and during an impromptu speech task. Relative to participants who observed a false heart rate decrease, those in the increase condition reported higher levels of negative affect, more negative performance appraisals, and more frequent negative ruminative thoughts, and these effects were mediated by an increase in self-focused attention. The unhelpful effects of the physiological feedback were not specific to high socially anxious participants. The results have implications for current cognitive models as well as the treatment of social phobia. Copyright © 2012. Published by Elsevier Ltd.
Kisspeptin Expression in Guinea Pig Hypothalamus: Effects of 17β-Estradiol
Bosch, Martha A.; Xue, Changhui; Rønnekleiv, Oline K.
2013-01-01
Kisspeptin is essential for reproductive functions in humans. As a model for the human we have used the female guinea pig, which has a long ovulatory cycle similar to that of primates. Initially, we cloned a guinea pig kisspeptin cDNA sequence and subsequently explored the distribution and 17β-estradiol (E2) regulation of kisspeptin mRNA (Kiss1) and protein (kisspeptin) by using in situ hybridization, real-time PCR and immunocytochemistry. In ovariectomized females, Kiss1 neurons were scattered throughout the preoptic periventricular areas (PV), but the vast majority of Kiss1 neurons were localized in the arcuate nucleus (Arc). An E2 treatment that first inhibits (negative feedback) and then augments (positive feedback) serum luteinizing hormone (LH) increased Kiss1 mRNA density and number of cells expressing Kiss1 in the PV at both time points. Within the Arc, Kiss1 mRNA density was reduced at both time points. Quantitative real-time PCR confirmed the in situ hybridization results during positive feedback. E2 reduced the number of immunoreactive kisspeptin cells in the PV at both time points, perhaps an indication of increased release. Within the Arc, the kisspeptin immunoreactivity was decreased during negative feedback but increased during positive feedback. Therefore, it appears that in guinea pig both the PV and the Arc kisspeptin neurons act cooperatively to excite gonadotropin-releasing hormone (GnRH) neurons during positive feedback. We conclude that E2 regulation of negative and positive feedback may reflect a complex interaction of the kisspeptin circuitry, and both the PV and the Arc respond to hormone signals to encode excitation of GnRH neurons during the ovulatory cycle. PMID:22173890
Development of a 20 mA negative hydrogen ion source for cyclotrons
NASA Astrophysics Data System (ADS)
Etoh, H.; Onai, M.; Arakawa, Y.; Aoki, Y.; Mitsubori, H.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Yajima, S.; Hatayama, A.; Okumura, Y.
2017-08-01
A cesiated DC negative ion source has been developed for proton cyclotrons in medical applications. A continuous H- beam of 23 mA was stably extracted at an arc power of 3 kW. The beam current gradually decreases with a constant arc power and without additional Cs injection and the decay rate was about 0.03 mA (0.14%) per hour. A feed-back control system that automatically adjusts the arc power to stabilize the beam current is able to keep the beam current constant at ±0.04 mA (±0.2%).
Negative autoregulation matches production and demand in synthetic transcriptional networks.
Franco, Elisa; Giordano, Giulia; Forsberg, Per-Ola; Murray, Richard M
2014-08-15
We propose a negative feedback architecture that regulates activity of artificial genes, or "genelets", to meet their output downstream demand, achieving robustness with respect to uncertain open-loop output production rates. In particular, we consider the case where the outputs of two genelets interact to form a single assembled product. We show with analysis and experiments that negative autoregulation matches the production and demand of the outputs: the magnitude of the regulatory signal is proportional to the "error" between the circuit output concentration and its actual demand. This two-device system is experimentally implemented using in vitro transcriptional networks, where reactions are systematically designed by optimizing nucleic acid sequences with publicly available software packages. We build a predictive ordinary differential equation (ODE) model that captures the dynamics of the system and can be used to numerically assess the scalability of this architecture to larger sets of interconnected genes. Finally, with numerical simulations we contrast our negative autoregulation scheme with a cross-activation architecture, which is less scalable and results in slower response times.
NASA Astrophysics Data System (ADS)
Colarco, P. R.; Rocha Lima, A.; Darmenov, A.; Bloecker, C.
2017-12-01
Mineral dust aerosols scatter and absorb solar and infrared radiation, impacting the energy budget of the Earth system which in turns feeds back on the dynamical processes responsible for mobilization of dust in the first place. In previous work with radiatively interactive aerosols in the NASA Goddard Earth Observing System global model (GEOS-5) we found a positive feedback between dust absorption and emissions. Emissions were the largest for the highest shortwave absorption considered, which additionally produced simulated dust transport in the best agreement with observations. The positive feedback found was in contrast to other modeling studies which instead found a negative feedback, where the impact of dust absorption was to stabilize the surface levels of the atmosphere and so reduce wind speeds. A key difference between our model and other models was that in GEOS-5 we simulated generally larger dust particles, with correspondingly larger infrared absorption that led to a pronounced difference in the diurnal cycle of dust emissions versus simulations where these long wave effects were not considered. In this paper we seek to resolve discrepancies between our previous simulations and those of other modeling groups. We revisit the question of dust radiative feedback on emissions with a recent version of the GEOS-5 system running at a higher spatial resolution and including updates to the parameterizations for dust mobilization, initial dust particle size distribution, loss processes, and radiative transfer, and identify key uncertainties that remain based on dust optical property assumptions.
Modeling gene regulatory network motifs using statecharts
2012-01-01
Background Gene regulatory networks are widely used by biologists to describe the interactions among genes, proteins and other components at the intra-cellular level. Recently, a great effort has been devoted to give gene regulatory networks a formal semantics based on existing computational frameworks. For this purpose, we consider Statecharts, which are a modular, hierarchical and executable formal model widely used to represent software systems. We use Statecharts for modeling small and recurring patterns of interactions in gene regulatory networks, called motifs. Results We present an improved method for modeling gene regulatory network motifs using Statecharts and we describe the successful modeling of several motifs, including those which could not be modeled or whose models could not be distinguished using the method of a previous proposal. We model motifs in an easy and intuitive way by taking advantage of the visual features of Statecharts. Our modeling approach is able to simulate some interesting temporal properties of gene regulatory network motifs: the delay in the activation and the deactivation of the "output" gene in the coherent type-1 feedforward loop, the pulse in the incoherent type-1 feedforward loop, the bistability nature of double positive and double negative feedback loops, the oscillatory behavior of the negative feedback loop, and the "lock-in" effect of positive autoregulation. Conclusions We present a Statecharts-based approach for the modeling of gene regulatory network motifs in biological systems. The basic motifs used to build more complex networks (that is, simple regulation, reciprocal regulation, feedback loop, feedforward loop, and autoregulation) can be faithfully described and their temporal dynamics can be analyzed. PMID:22536967
Examination of a perceived cost model of employees' negative feedback-seeking behavior.
Lu, Kuo-Ming; Pan, Su-Ying; Cheng, Jen-Wei
2011-01-01
The present study extends the feedback-seeking behavior literature by investigating how supervisor-related antecedents (i.e., supervisors' expert power, reflected appraisals of supervisors, and supervisors' emotional intelligence) influence subordinates' negative feedback-seeking behavior (NFSB) through different cost/value perceptions (i.e., expectancy value, self-presentation cost, and ego cost). Using data collected from 216 supervisor-subordinate dyads from various industries in Taiwan, we employ structural equation modeling analysis to test our hypotheses. The results show that expectancy value mediates the relationship between supervisor expert power and subordinates' NFSB. Moreover, self-presentation cost mediates the relationship between reflected appraisals of supervisors' and subordinates' NFSB. Theoretical and practical implications of this study are also discussed.
The role of feedbacks in Antarctic sea ice change
NASA Astrophysics Data System (ADS)
Feltham, D. L.; Frew, R. C.; Holland, P.
2017-12-01
The changes in Antarctic sea ice over the last thirty years have a strong seasonal dependence, and the way these changes grow in spring and decay in autumn suggests that feedbacks are strongly involved. The changes may ultimately be caused by atmospheric warming, the winds, snowfall changes, etc., but we cannot understand these forcings without first untangling the feedbacks. A highly simplified coupled sea ice -mixed layer model has been developed to investigate the importance of feedbacks on the evolution of sea ice in two contrasting regions in the Southern Ocean; the Amundsen Sea where sea ice extent has been decreasing, and the Weddell Sea where it has been expanding. The change in mixed layer depth in response to changes in the atmosphere to ocean energy flux is implicit in a strong negative feedback on ice cover changes in the Amundsen Sea, with atmospheric cooling leading to a deeper mixed layer resulting in greater entrainment of warm Circumpolar Deep Water, causing increased basal melting of sea ice. This strong negative feedback produces counter intuitive responses to changes in forcings in the Amundsen Sea. This feedback is absent in the Weddell due to the complete destratification and strong water column cooling that occurs each winter in simulations. The impact of other feedbacks, including the albedo feedback, changes in insulation due to ice thickness and changes in the freezing temperature of the mixed layer, were found to be of secondary importance compared to changes in the mixed layer depth.
Correlations in electrically coupled chaotic lasers.
Rosero, E J; Barbosa, W A S; Martinez Avila, J F; Khoury, A Z; Rios Leite, J R
2016-09-01
We show how two electrically coupled semiconductor lasers having optical feedback can present simultaneous antiphase correlated fast power fluctuations, and strong in-phase synchronized spikes of chaotic power drops. This quite counterintuitive phenomenon is demonstrated experimentally and confirmed by numerical solutions of a deterministic dynamical system of rate equations. The occurrence of negative and positive cross correlation between parts of a complex system according to time scales, as proved in our simple arrangement, is relevant for the understanding and characterization of collective properties in complex networks.
Differentiating the influence of incidental anger and fear on risk decision-making.
Yang, Qiwei; Zhao, Ding; Wu, Yan; Tang, Ping; Gu, Ruolei; Luo, Yue-Jia
2018-02-01
Previous research has revealed that incidental emotions of different valence (positive/negative/neutral) produce distinct impacts on risk decision-making. This study went on to compare the effects of different emotions of which the valence are identical. We focused on anger and fear, both of which are negative emotions but differ in motivational and appraisal dimensions. Participants finished a forced-choice gambling task, during which incidental emotions (anger/fear/happy) were elicited by facial stimuli selected from the Chinese Facial Affective Picture System. Behavioral and event-related potential (ERP) data were recorded in the experiment, which showed that anger and fear were different in their influence on behavioral risk preference and the relationship between outcome processing and subsequent risk decisions. Regarding the behavioral results, risk preference in the anger condition was higher than the fear condition, but lower than the happy condition. Regarding the ERP results elicited by outcome feedback (gain/loss), in the fear condition, the feedback-related negativity (FRN) was positively correlated with risk preference; in the anger condition, the gain-related P3 component was positively correlated with risk preference; in the happy condition, both the FRN and the loss-related P3 was negatively correlated with risk preference. The current findings provide novel insight into distinguishing the effect of different incidental emotions on risk preference. Copyright © 2017 Elsevier Inc. All rights reserved.
Social Anxiety and Biased Recall of Positive Information: It's Not the Content, It's the Valence.
Glazier, Brianne L; Alden, Lynn E
2017-07-01
Cognitive theorists hypothesize that individuals with social anxiety are prone to memory biases such that event recall becomes more negative over time. With few exceptions, studies have focused primarily on changes in negative self-judgments. The current study examined whether memory for positive social events is also subject to recall bias. Undergraduate participants (N = 138) engaged in an unexpected public speaking task and received standardized positive or neutral feedback on their performance. They rated their memory of the received feedback following a 5-minute delay and again 1 week later. Results revealed that higher scores on social anxiety symptoms predicted significant reductions in the recalled valence of positive feedback over time, whereas no changes were observed for neutral feedback. The results suggest that social anxiety may lead to erosion in memory of positive events. Copyright © 2016. Published by Elsevier Ltd.
Selective skepticism: American and Chinese children's reasoning about evaluative academic feedback.
Heyman, Gail D; Fu, Genyue; Lee, Kang
2013-03-01
Children's reasoning about the credibility of positive and negative evaluations of academic performance was examined. Across 2 studies, 7- and 10-year-olds from the United States and China (N = 334) judged the credibility of academic evaluations that were directed toward an unfamiliar peer. In Study 1, participants from China responded that criticism should be accepted to a greater extent than did participants from the United States, and children from both countries demonstrated a selective skepticism effect by treating negative feedback more skeptically than positive feedback. Study 2 replicated the selective skepticism effect among children from both countries and ruled out the possibility that it can be explained as a rational analysis of perceived base rates. The results suggest that children are selective in their trust of evaluative feedback and that their credibility judgments may be influenced by the desirability of the information that is being conveyed or its anticipated consequences.
Social closeness and feedback modulate susceptibility to the framing effect.
Sip, Kamila E; Smith, David V; Porcelli, Anthony J; Kar, Kohitij; Delgado, Mauricio R
2015-01-01
Although we often seek social feedback (SFB) from others to help us make decisions, little is known about how SFB affects decisions under risk, particularly from a close peer. We conducted two experiments using an established framing task to probe how decision-making is modulated by SFB valence (positive, negative) and the level of closeness with feedback provider (friend, confederate). Participants faced mathematically equivalent decisions framed as either an opportunity to keep (gain frame) or lose (loss frame) part of an initial endowment. Periodically, participants were provided with positive (e.g., "Nice!") or negative (e.g., "Lame!") feedback about their choices. Such feedback was provided by either a confederate (Experiment 1) or a gender-matched close friend (Experiment 2). As expected, the framing effect was observed in both experiments. Critically, an individual's susceptibility to the framing effect was modulated by the valence of the SFB, but only when the feedback provider was a close friend. This effect was reflected in the activation patterns of ventromedial prefrontal cortex and posterior cingulate cortex, regions involved in complex decision-making. Taken together, these results highlight social closeness as an important factor in understanding the impact of SFB on neural mechanisms of decision-making.
Self-Affirmation Theory and Performance Feedback: When Scoring High Makes You Feel Low.
Velez, John A; Hanus, Michael D
2016-12-01
Video games have a wide variety of benefits for players. The current study examines how video games can also increase players' willingness to internalize important but threatening self-information. Research suggests that negative information regarding a valued self-image evokes defensive strategies aimed at dismissing or discrediting the source of information. Self-Affirmation Theory proposes that affirming or bolstering an important self-image unrelated to the previous threat can be an effective strategy for reducing defensiveness. Participants in the current study completed a fictitious intelligence test and received negative or no feedback, followed by 15 minutes of video game play that resulted in positive or no feedback. Results suggest that participants who valued video game success as part of their identity exhibited less defensive strategies in the form of increased test credibility ratings and lower self-perceptions of intelligence. This suggests that performing well on a video game is an affirmational resource for players whose identities are contingent upon such success. However, results also indicate that players who did not value video game success but received positive video game feedback exhibited more defensive reactions to the negative intelligence test feedback. This suggests that while players who value video game success as part of their identity may reap benefits from video game play after a self-threat, those who do not value such success may experience more harmful effects.
The mere presence of an outgroup member disrupts the brain's feedback-monitoring system.
Hobson, Nicholas M; Inzlicht, Michael
2016-11-01
Much of human learning happens in the social world. A person's social identity-the groups to which they belong, the people with whom they identify-is a powerful cue that can affect our goal-directed behaviors, often implicitly. In the present experiment, we explored the underlying neural mechanisms driving these processes, testing hypotheses derived from social identity theory. In a within-subjects design, participants underwent a minimal group manipulation where they were randomly assigned to an arbitrary ingroup. In two blocks of the experiment, participants were asked to complete a task for money while being observed by an ingroup member and outgroup member separately. Results revealed that being observed by an ingroup or outgroup member led to divergent patterns of neural activity associated with feedback monitoring, namely the feedback-related negativity (FRN). Receiving feedback in the presence of an ingroup member produced a typical FRN signal, but the FRN was dampened while receiving feedback in the presence of an outgroup member. Further, this differentiated neural pattern was exaggerated in people who reported greater intergroup bias. Together, the mere presence of a person can alter how the brain adaptively monitors feedback, impairing the reinforcement learning signal when the person observing is an outgroup member. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Climate Change, Hydrology and Landscapes of America's Heartland: A Coupled Natural-Human System
NASA Astrophysics Data System (ADS)
Lant, C.; Misgna, G.; Secchi, S.; Schoof, J. T.
2012-12-01
This paper will present a methodological overview of an NSF-funded project under the Coupled Natural and Human System program. Climate change, coupled with variations and changes in economic and policy environments and agricultural techniques, will alter the landscape of the U.S. Midwest. Assessing the effects of these changes on watersheds, and thus on water quantity, water quality, and agricultural production, entails modeling a coupled natural-human system capable of answering research questions such as: (1) How will the climate of the U.S. Midwest change through the remainder of the 21st Century? (2) How will climate change, together with changing markets and policies, affect land use patterns at various scales, from the U.S. Midwest, to agricultural regions, to watersheds, to farms and fields? (3) Under what policies and prices does landscape change induced by climate change generate a positive or a negative feedback through changes in carbon storage, evapotranspiration, and albedo? (4) Will climate change expand or diminish the agricultural production and ecosystem service generation capacities of specific watersheds? Such research can facilitate early adaptation and make a timely contribution to the successful integration of agricultural, environmental, and trade policy. Rural landscapes behave as a system through a number of feedback mechanisms: climatic, agro-technology, market, and policy. Methods, including agent-based modeling, SWAT modeling, map algebra using logistic regression, and genetic algorithms for analyzing each of these feedback mechanisms will be described. Selected early results that link sub-system models and incorporate critical feedbacks will also be presented.igure 1. Overall Modeling framework for Climate Change, Hydrology and Landscapes of America's Heartland.
NASA Astrophysics Data System (ADS)
Pfeil, Thomas; Jordan, Jakob; Tetzlaff, Tom; Grübl, Andreas; Schemmel, Johannes; Diesmann, Markus; Meier, Karlheinz
2016-04-01
High-level brain function, such as memory, classification, or reasoning, can be realized by means of recurrent networks of simplified model neurons. Analog neuromorphic hardware constitutes a fast and energy-efficient substrate for the implementation of such neural computing architectures in technical applications and neuroscientific research. The functional performance of neural networks is often critically dependent on the level of correlations in the neural activity. In finite networks, correlations are typically inevitable due to shared presynaptic input. Recent theoretical studies have shown that inhibitory feedback, abundant in biological neural networks, can actively suppress these shared-input correlations and thereby enable neurons to fire nearly independently. For networks of spiking neurons, the decorrelating effect of inhibitory feedback has so far been explicitly demonstrated only for homogeneous networks of neurons with linear subthreshold dynamics. Theory, however, suggests that the effect is a general phenomenon, present in any system with sufficient inhibitory feedback, irrespective of the details of the network structure or the neuronal and synaptic properties. Here, we investigate the effect of network heterogeneity on correlations in sparse, random networks of inhibitory neurons with nonlinear, conductance-based synapses. Emulations of these networks on the analog neuromorphic-hardware system Spikey allow us to test the efficiency of decorrelation by inhibitory feedback in the presence of hardware-specific heterogeneities. The configurability of the hardware substrate enables us to modulate the extent of heterogeneity in a systematic manner. We selectively study the effects of shared input and recurrent connections on correlations in membrane potentials and spike trains. Our results confirm that shared-input correlations are actively suppressed by inhibitory feedback also in highly heterogeneous networks exhibiting broad, heavy-tailed firing-rate distributions. In line with former studies, cell heterogeneities reduce shared-input correlations. Overall, however, correlations in the recurrent system can increase with the level of heterogeneity as a consequence of diminished effective negative feedback.
Leicht, Gregor; Troschütz, Stefan; Andreou, Christina; Karamatskos, Evangelos; Ertl, Matthias; Naber, Dieter; Mulert, Christoph
2013-01-01
The processing of reward and punishment stimuli in humans appears to involve brain oscillatory activity of several frequencies, probably each with a distinct function. The exact nature of associations of these electrophysiological measures with impulsive or risk-seeking personality traits is not completely clear. Thus, the aim of the present study was to investigate event-related oscillatory activity during reward processing across a wide spectrum of frequencies, and its associations with impulsivity and sensation seeking in healthy subjects. During recording of a 32-channel EEG 22 healthy volunteers were characterized with the Barratt Impulsiveness and the Sensation Seeking Scale and performed a computerized two-choice gambling task comprising different feedback options with positive vs. negative valence (gain or loss) and high or low magnitude (5 vs. 25 points). We observed greater increases of amplitudes of the feedback-related negativity and of activity in the theta, alpha and low-beta frequency range following loss feedback and, in contrast, greater increase of activity in the high-beta frequency range following gain feedback. Significant magnitude effects were observed for theta and delta oscillations, indicating greater amplitudes upon feedback concerning large stakes. The theta amplitude changes during loss were negatively correlated with motor impulsivity scores, whereas alpha and low-beta increase upon loss and high-beta increase upon gain were positively correlated with various dimensions of sensation seeking. The findings suggest that the processing of feedback information involves several distinct processes, which are subserved by oscillations of different frequencies and are associated with different personality traits.
Hemrová, Lucie; Knappová, Jana; Münzbergová, Zuzana
2016-01-01
Field translocation experiments (i.e., the introduction of seeds or seedlings of different species into different localities) are commonly used to study habitat associations of species, as well as factors limiting species distributions and local abundances. Species planted or sown in sites where they naturally occur are expected to perform better or equally well compared to sites at which they do not occur or are rare. This, however, contrasts with the predictions of the Janzen-Connell hypothesis and commonly reported intraspecific negative plant-soil feedback. The few previous studies indicating poorer performance of plants at sites where they naturally occur did not explore the mechanisms behind this pattern. In this study, we used field translocation experiments established using both seeds and seedlings to study the determinants of local abundance of four dominant species in grasslands. To explore the possible effects of intraspecific negative plant-soil feedback on our results, we tested the effect of local species abundance on the performance of the plants in the field experiment. In addition, we set up a garden experiment to explore the intensity of intraspecific as well as interspecific feedback between the dominants used in the experiment. In some cases, the distribution and local abundances of the species were partly driven by habitat conditions at the sites, and species performed better at their own sites. However, the prevailing pattern was that the local dominants performed worse at sites where they naturally occur than at any other sites. Moreover, the success of plants in the field experiment was lower in the case of higher intraspecific abundance prior to experimental setup. In the garden feedback experiment, two of the species performed significantly worse in soils conditioned by their species than in soils conditioned by the other species. In addition, the performance of the plants was significantly correlated between the two experiments, suggesting that plant-soil feedback is a likely explanation of the patterns observed in the field. All of the results indicate that intraspecific negative plant-soil feedback, either biotic or abiotic, may be a key factor determining the performance of the plants in our field translocation experiment. The possible effects of negative feedback should thus be considered when evaluating results of translocation experiments in future studies.
Hemrová, Lucie; Knappová, Jana; Münzbergová, Zuzana
2016-01-01
Background Field translocation experiments (i.e., the introduction of seeds or seedlings of different species into different localities) are commonly used to study habitat associations of species, as well as factors limiting species distributions and local abundances. Species planted or sown in sites where they naturally occur are expected to perform better or equally well compared to sites at which they do not occur or are rare. This, however, contrasts with the predictions of the Janzen-Connell hypothesis and commonly reported intraspecific negative plant-soil feedback. The few previous studies indicating poorer performance of plants at sites where they naturally occur did not explore the mechanisms behind this pattern. Aims and Methods In this study, we used field translocation experiments established using both seeds and seedlings to study the determinants of local abundance of four dominant species in grasslands. To explore the possible effects of intraspecific negative plant-soil feedback on our results, we tested the effect of local species abundance on the performance of the plants in the field experiment. In addition, we set up a garden experiment to explore the intensity of intraspecific as well as interspecific feedback between the dominants used in the experiment. Key Results In some cases, the distribution and local abundances of the species were partly driven by habitat conditions at the sites, and species performed better at their own sites. However, the prevailing pattern was that the local dominants performed worse at sites where they naturally occur than at any other sites. Moreover, the success of plants in the field experiment was lower in the case of higher intraspecific abundance prior to experimental setup. In the garden feedback experiment, two of the species performed significantly worse in soils conditioned by their species than in soils conditioned by the other species. In addition, the performance of the plants was significantly correlated between the two experiments, suggesting that plant-soil feedback is a likely explanation of the patterns observed in the field. Conclusions All of the results indicate that intraspecific negative plant-soil feedback, either biotic or abiotic, may be a key factor determining the performance of the plants in our field translocation experiment. The possible effects of negative feedback should thus be considered when evaluating results of translocation experiments in future studies. PMID:27336400
Neurocardiology: Therapeutic Implications for Cardiovascular Disease
Goldstein, David S.
2016-01-01
SUMMARY The term “neurocardiology” refers to physiologic and pathophysiological interplays of the nervous and cardiovascular systems. This selective review provides an update about cardiovascular therapeutic implications of neurocardiology, with emphasis on disorders involving primary or secondary abnormalities of catecholamine systems. Concepts of scientific integrative medicine help understand these disorders. Scientific integrative medicine is not a treatment method or discipline but a way of thinking that applies systems concepts to acute and chronic disorders of regulation. Some of these concepts include stability by negative feedback regulation, multiple effectors, effector sharing, instability by positive feedback loops, allostasis, and allostatic load. Scientific integrative medicine builds on systems biology but is also distinct in several ways. A large variety of drugs and non-drug treatments are now available or under study for neurocardiologic disorders in which catecholamine systems are hyperfunctional or hypofunctional. The future of therapeutics in neurocardiology is not so much in new curative drugs as in applying scientific integrative medical ideas that take into account concurrent chronic degenerative disorders and interactions of multiple drug and non-drug treatments with each other and with those disorders. PMID:21108771
Void reactivity feedback analysis for U-based and Th-based LWR incineration cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindley, B.A.; Parks, G.T.; Franceschini, F.
2013-07-01
In reduced-moderation LWRs, an external supply of transuranic (TRU) can be incinerated by mixing it with a fertile isotope ({sup 238}U or {sup 232}Th) and recycling all the actinides after each cycle. Performance is limited by coolant reactivity feedback - the moderator density coefficient (MDC) must be kept negative. The MDC is worse when more TRU is loaded, but TRU feed is also needed to maintain criticality. To assess the performance of this fuel cycle in different neutron spectra, three LWRs are considered: 'reference' PWRs and reduced-moderation PWRs and BWRs. The MDC of the equilibrium cycle is analysed by reactivitymore » decomposition with perturbed coolant density by isotope and neutron energy. The results show that using {sup 232}Th as a fertile isotope yields superior performance to {sup 238}U. This is due essentially to the high resonance η of U bred from Th (U3), which increases the fissility of the U3-TRU isotope vector in the Th-fueled system relative to the U-fueled system, and also improves the MDC in a sufficiently hard spectrum. Spatial separation of TRU and U3 in the Th-fueled system renders further improvement by hardening the neutron spectrum in the TRU and softening it in the U3. This improves the TRU η and increases the negative MDC contribution from reduced thermal fission in U3. (authors)« less
Panarchy use in environmental science for risk and resilience ...
Environmental sciences have an important role in informing sustainable management of built environments by providing insights about the drivers and potentially negative impacts of global environmental change. Here, we discuss panarchy theory, a multi-scale hierarchical concept that accounts for the dynamism of complex socio-ecological systems, especially for those systems with strong cross-scale feedbacks. The idea of panarchy underlies much of system resilience, focusing on how systems respond to known and unknown threats. Panarchy theory can provide a framework for qualitative and quantitative research and application in the environmental sciences, which can in turn inform the ongoing efforts in socio-technical resilience thinking and adaptive and transformative approaches to management. The environmental sciences strive for understanding, mitigating and reversing the negative impacts of global environmental change, including chemical pollution, to maintain sustainability options for the future, and therefore play an important role for informing management.
The Trade-Off Mechanism in Mammalian Circadian Clock Model with Two Time Delays
NASA Astrophysics Data System (ADS)
Yan, Jie; Kang, Xiaxia; Yang, Ling
Circadian clock is an autonomous oscillator which orchestrates the daily rhythms of physiology and behaviors. This study is devoted to explore how a positive feedback loop affects the dynamics of mammalian circadian clock. We simplify an experimentally validated mathematical model in our previous work, to a nonlinear differential equation with two time delays. This simplified mathematical model incorporates the pacemaker of mammalian circadian clock, a negative primary feedback loop, and a critical positive auxiliary feedback loop, Rev-erbα/Cry1 loop. We perform analytical studies of the system. Delay-dependent conditions for the asymptotic stability of the nontrivial positive steady state of the model are investigated. We also prove the existence of Hopf bifurcation, which leads to self-sustained oscillation of mammalian circadian clock. Our theoretical analyses show that the oscillatory regime is reduced upon the participation of the delayed positive auxiliary loop. However, further simulations reveal that the auxiliary loop can enable the circadian clock gain widely adjustable amplitudes and robust period. Thus, the positive auxiliary feedback loop may provide a trade-off mechanism, to use the small loss in the robustness of oscillation in exchange for adaptable flexibility in mammalian circadian clock. The results obtained from the model may gain new insights into the dynamics of biological oscillators with interlocked feedback loops.
Flatness-based adaptive fuzzy control of chaotic finance dynamics
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.
2017-11-01
A flatness-based adaptive fuzzy control is applied to the problem of stabilization of the dynamics of a chaotic finance system, describing interaction between the interest rate, the investment demand and the price exponent. By proving that the system is differentially flat and by applying differential flatness diffeomorphisms, its transformation to the linear canonical (Brunovsky) is performed. For the latter description of the system, the design of a stabilizing state feedback controller becomes possible. A first problem in the design of such a controller is that the dynamic model of the finance system is unknown and thus it has to be identified with the use neurofuzzy approximators. The estimated dynamics provided by the approximators is used in the computation of the control input, thus establishing an indirect adaptive control scheme. The learning rate of the approximators is chosen from the requirement the system's Lyapunov function to have always a negative first-order derivative. Another problem that has to be dealt with is that the control loop is implemented only with the use of output feedback. To estimate the non-measurable state vector elements of the finance system, a state observer is implemented in the control loop. The computation of the feedback control signal requires the solution of two algebraic Riccati equations at each iteration of the control algorithm. Lyapunov stability analysis demonstrates first that an H-infinity tracking performance criterion is satisfied. This signifies elevated robustness against modelling errors and external perturbations. Moreover, the global asymptotic stability is proven for the control loop.
Chughtai, Aamir Ali
2016-10-02
This study investigated the mediating role of organizational identification and psychological safety in the relationship between servant leadership and two employee outcomes: employee voice and negative feedback seeking behavior. The sample for this study comprised of 174 full-time employees drawn from a large food company based in Pakistan. Results showed that organizational identification and psychological safety partially mediated the effects of servant leadership on voice and negative feedback seeking behavior. The theoretical and practical implications of this research are discussed.
Delayed-feedback chimera states: Forced multiclusters and stochastic resonance
NASA Astrophysics Data System (ADS)
Semenov, V.; Zakharova, A.; Maistrenko, Y.; Schöll, E.
2016-07-01
A nonlinear oscillator model with negative time-delayed feedback is studied numerically under external deterministic and stochastic forcing. It is found that in the unforced system complex partial synchronization patterns like chimera states as well as salt-and-pepper-like solitary states arise on the route from regular dynamics to spatio-temporal chaos. The control of the dynamics by external periodic forcing is demonstrated by numerical simulations. It is shown that one-cluster and multi-cluster chimeras can be achieved by adjusting the external forcing frequency to appropriate resonance conditions. If a stochastic component is superimposed to the deterministic external forcing, chimera states can be induced in a way similar to stochastic resonance, they appear, therefore, in regimes where they do not exist without noise.
The role of constructive feedback in patient safety and continuous quality improvement.
Altmiller, Gerry
2012-09-01
Constructive feedback is essential for personal and professional growth. It is an integral part of continuous quality improvement and essential in maintaining patient safety in the clinical environment. The perception of feedback can interfere with professionals giving and receiving feedback, which can have negative consequences on patient outcomes. Delivering and receiving feedback effectively are learned skills that should be introduced early in prelicensure education. Faculty have the opportunity to influence the perception of feedback to be viewed as an opportunity so that students can learn to appreciate its value in maintaining patient safety and high-quality care in clinical practice. Copyright © 2012 Elsevier Inc. All rights reserved.
Kent, Rafi; Michael, Yaron; Shnerb, Nadav M.
2017-01-01
The process of desertification in the semi-arid climatic zone is considered by many as a catastrophic regime shift, since the positive feedback of vegetation density on growth rates yields a system that admits alternative steady states. Some support to this idea comes from the analysis of static patterns, where peaks of the vegetation density histogram were associated with these alternative states. Here we present a large-scale empirical study of vegetation dynamics, aimed at identifying and quantifying directly the effects of positive feedback. To do that, we have analyzed vegetation density across 2.5 × 106 km2 of the African Sahel region, with spatial resolution of 30 × 30 meters, using three consecutive snapshots. The results are mixed. The local vegetation density (measured at a single pixel) moves towards the average of the corresponding rainfall line, indicating a purely negative feedback. On the other hand, the chance of spatial clusters (of many “green” pixels) to expand in the next census is growing with their size, suggesting some positive feedback. We show that these apparently contradicting results emerge naturally in a model with positive feedback and strong demographic stochasticity, a model that allows for a catastrophic shift only in a certain range of parameters. Static patterns, like the double peak in the histogram of vegetation density, are shown to vary between censuses, with no apparent correlation with the actual dynamical features. Our work emphasizes the importance of dynamic response patterns as indicators of the state of the system, while the usefulness of static modality features appears to be quite limited. PMID:29261678
Short-term depression and transient memory in sensory cortex.
Gillary, Grant; Heydt, Rüdiger von der; Niebur, Ernst
2017-12-01
Persistent neuronal activity is usually studied in the context of short-term memory localized in central cortical areas. Recent studies show that early sensory areas also can have persistent representations of stimuli which emerge quickly (over tens of milliseconds) and decay slowly (over seconds). Traditional positive feedback models cannot explain sensory persistence for at least two reasons: (i) They show attractor dynamics, with transient perturbations resulting in a quasi-permanent change of system state, whereas sensory systems return to the original state after a transient. (ii) As we show, those positive feedback models which decay to baseline lose their persistence when their recurrent connections are subject to short-term depression, a common property of excitatory connections in early sensory areas. Dual time constant network behavior has also been implemented by nonlinear afferents producing a large transient input followed by much smaller steady state input. We show that such networks require unphysiologically large onset transients to produce the rise and decay observed in sensory areas. Our study explores how memory and persistence can be implemented in another model class, derivative feedback networks. We show that these networks can operate with two vastly different time courses, changing their state quickly when new information is coming in but retaining it for a long time, and that these capabilities are robust to short-term depression. Specifically, derivative feedback networks with short-term depression that acts differentially on positive and negative feedback projections are capable of dynamically changing their time constant, thus allowing fast onset and slow decay of responses without requiring unrealistically large input transients.
Weissmann, Haim; Kent, Rafi; Michael, Yaron; Shnerb, Nadav M
2017-01-01
The process of desertification in the semi-arid climatic zone is considered by many as a catastrophic regime shift, since the positive feedback of vegetation density on growth rates yields a system that admits alternative steady states. Some support to this idea comes from the analysis of static patterns, where peaks of the vegetation density histogram were associated with these alternative states. Here we present a large-scale empirical study of vegetation dynamics, aimed at identifying and quantifying directly the effects of positive feedback. To do that, we have analyzed vegetation density across 2.5 × 106 km2 of the African Sahel region, with spatial resolution of 30 × 30 meters, using three consecutive snapshots. The results are mixed. The local vegetation density (measured at a single pixel) moves towards the average of the corresponding rainfall line, indicating a purely negative feedback. On the other hand, the chance of spatial clusters (of many "green" pixels) to expand in the next census is growing with their size, suggesting some positive feedback. We show that these apparently contradicting results emerge naturally in a model with positive feedback and strong demographic stochasticity, a model that allows for a catastrophic shift only in a certain range of parameters. Static patterns, like the double peak in the histogram of vegetation density, are shown to vary between censuses, with no apparent correlation with the actual dynamical features. Our work emphasizes the importance of dynamic response patterns as indicators of the state of the system, while the usefulness of static modality features appears to be quite limited.
Nilsson, Jan-Erik; Lundh, Lars-Gunnar; Faghihi, Shahriar; Roth-Andersson, Gun
2011-12-01
According to cognitive models, negatively biased processing of the publicly observable self is an important aspect of social phobia; if this is true, effective methods for producing corrective feedback concerning the public self should be strived for. Video feedback is proven effective, but since one's voice represents another aspect of the self, audio feedback should produce equivalent results. This is the first study to assess the enhancement of audio feedback by cognitive preparation in a single-session randomized controlled experiment. Forty socially anxious participants were asked to give a speech, then to listen to and evaluate a taped recording of their performance. Half of the sample was given cognitive preparation prior to the audio feedback and the remainder received audio feedback only. Cognitive preparation involved asking participants to (1) predict in detail what they would hear on the audiotape, (2) form an image of themselves giving the speech and (3) listen to the audio recording as though they were listening to a stranger. To assess generalization effects all participants were asked to give a second speech. Audio feedback with cognitive preparation was shown to produce less negative ratings after the first speech, and effects generalized to the evaluation of the second speech. More positive speech evaluations were associated with corresponding reductions of state anxiety. Social anxiety as indexed by the Implicit Association Test was reduced in participants given cognitive preparation. Small sample size; analogue study. Audio feedback with cognitive preparation may be utilized as a treatment intervention for social phobia. Copyright © 2011 Elsevier Ltd. All rights reserved.
Multiple man-machine interfaces
NASA Technical Reports Server (NTRS)
Stanton, L.; Cook, C. W.
1981-01-01
The multiple man machine interfaces inherent in military pilot training, their social implications, and the issue of possible negative feedback were explored. Modern technology has produced machines which can see, hear, and touch with greater accuracy and precision than human beings. Consequently, the military pilot is more a systems manager, often doing battle against a target he never sees. It is concluded that unquantifiable human activity requires motivation that is not intrinsic in a machine.
Rumination and Rebound from Failure as a Function of Gender and Time on Task
Whiteman, Ronald C.; Mangels, Jennifer A.
2016-01-01
Rumination is a trait response to blocked goals that can have positive or negative outcomes for goal resolution depending on where attention is focused. Whereas “moody brooding” on affective states may be maladaptive, especially for females, “reflective pondering” on concrete strategies for problem solving may be more adaptive. In the context of a challenging general knowledge test, we examined how Brooding and Reflection rumination styles predicted students’ subjective and event-related responses (ERPs) to negative feedback, as well as use of this feedback to rebound from failure on a later surprise retest. For females only, Brooding predicted unpleasant feelings after failure as the task progressed. It also predicted enhanced attention to errors through both bottom-up and top-down processes, as indexed by increased early (400–600 ms) and later (600–1000 ms) late positive potentials (LPP), respectively. Reflection, despite increasing females’ initial attention to negative feedback (i.e., early LPP), as well as both genders’ recurring negative thoughts, did not result in sustained top-down attention (i.e., late LPP) or enhanced negative feelings toward errors. Reflection also facilitated rebound from failure in both genders, although Brooding did not hinder it. Implications of these gender and time-related rumination effects for learning in challenging academic situations are discussed. PMID:26901231
Blowin' in the wind: both `negative' and `positive' feedback in an outflowing quasar at z~1.6
NASA Astrophysics Data System (ADS)
Cresci, Giovanni
2015-02-01
Quasar feedback in the form of powerful outflows is invoked as a key mechanism to quench star formation, preventing massive galaxies to over-grow and producing the red colors of ellipticals. On the other hand, some models are also requiring `positive' AGN feedback, inducing star formation in the host galaxy through enhanced gas pressure in the interstellar medium. However, finding observational evidence of the effects of both types of feedback is still one of the main challenges of extragalactic astronomy, as few observations of energetic and extended radiatively-driven winds are available. We present SINFONI near infrared integral field spectroscopy of XID2028, an obscured, radio-quiet z=1.59 QSO, in which we clearly resolve a fast (1500 km/s) and extended (up to 13 kpc from the black hole) outflow in the [OIII] lines emitting gas, whose large velocity and outflow rate are not sustainable by star formation only. The narrow component of Hα emission and the rest frame U band flux show that the outflow position lies in the center of an empty cavity surrounded by star forming regions on its edge. The outflow is therefore removing the gas from the host galaxy (`negative feedback'), but also triggering star formation by outflow induced pressure at the edges (`positive feedback'). XID2028 represents the first example of a host galaxy showing both types of feedback simultaneously at work.
Feldman, Gilad; Wong, Kin Fai Ellick
2018-04-01
Escalation of commitment to a failing course of action occurs in the presence of (a) sunk costs, (b) negative feedback that things are deviating from expectations, and (c) a decision between escalation and de-escalation. Most of the literature to date has focused on sunk costs, yet we offer a new perspective on the classic escalation-of-commitment phenomenon by focusing on the impact of negative feedback. On the basis of the inaction-effect bias, we theorized that negative feedback results in the tendency to take action, regardless of what that action may be. In four experiments, we demonstrated that people facing escalation-decision situations were indeed action oriented and that framing escalation as action and de-escalation as inaction resulted in a stronger tendency to escalate than framing de-escalation as action and escalation as inaction (mini-meta-analysis effect d = 0.37, 95% confidence interval = [0.21, 0.53]).
von Borries, A K L; Verkes, R J; Bulten, B H; Cools, R; de Bruijn, E R A
2013-12-01
Optimal behavior depends on the ability to assess the predictive value of events and to adjust behavior accordingly. Outcome processing can be studied by using its electrophysiological signatures--that is, the feedback-related negativity (FRN) and the P300. A prominent reinforcement-learning model predicts an FRN on negative prediction errors, as well as implying a role for the FRN in learning and the adaptation of behavior. However, these predictions have recently been challenged. Notably, studies so far have used tasks in which the outcomes have been contingent on the response. In these paradigms, the need to adapt behavioral responses is present only for negative, not for positive feedback. The goal of the present study was to investigate the effects of positive as well as negative violations of expectancy on FRN amplitudes, without the usual confound of behavioral adjustments. A reversal-learning task was employed in which outcome value and outcome expectancy were orthogonalized; that is, both positive and negative outcomes were equally unexpected. The results revealed a double dissociation, with effects of valence but not expectancy on the FRN and, conversely, effects of expectancy but not valence on the P300. While FRN amplitudes were largest for negative-outcome trials, irrespective of outcome expectancy, P300 amplitudes were largest for unexpected-outcome trials, irrespective of outcome valence. These FRN effects were interpreted to reflect an evaluation along a good-bad dimension, rather than reflecting a negative prediction error or a role in behavioral adaptation. By contrast, the P300 reflects the updating of information relevant for behavior in a changing context.
Insights from a refined decomposition of cloud feedbacks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelinka, Mark D.; Zhou, Chen; Klein, Stephen A.
Decomposing cloud feedback into components due to changes in several gross cloud properties provides valuable insights into its physical causes. Here we present a refined decomposition that separately considers changes in free tropospheric and low cloud properties, better connecting feedbacks to individual governing processes and avoiding ambiguities present in a commonly used decomposition. It reveals that three net cloud feedback components are robustly nonzero: positive feedbacks from increasing free tropospheric cloud altitude and decreasing low cloud cover and a negative feedback from increasing low cloud optical depth. Low cloud amount feedback is the dominant contributor to spread in net cloudmore » feedback but its anticorrelation with other components damps overall spread. Furthermore, the ensemble mean free tropospheric cloud altitude feedback is roughly 60% as large as the standard cloud altitude feedback because it avoids aliasing in low cloud reductions. Implications for the “null hypothesis” climate sensitivity from well-understood and robustly simulated feedbacks are discussed.« less
Insights from a refined decomposition of cloud feedbacks
Zelinka, Mark D.; Zhou, Chen; Klein, Stephen A.
2016-09-05
Decomposing cloud feedback into components due to changes in several gross cloud properties provides valuable insights into its physical causes. Here we present a refined decomposition that separately considers changes in free tropospheric and low cloud properties, better connecting feedbacks to individual governing processes and avoiding ambiguities present in a commonly used decomposition. It reveals that three net cloud feedback components are robustly nonzero: positive feedbacks from increasing free tropospheric cloud altitude and decreasing low cloud cover and a negative feedback from increasing low cloud optical depth. Low cloud amount feedback is the dominant contributor to spread in net cloudmore » feedback but its anticorrelation with other components damps overall spread. Furthermore, the ensemble mean free tropospheric cloud altitude feedback is roughly 60% as large as the standard cloud altitude feedback because it avoids aliasing in low cloud reductions. Implications for the “null hypothesis” climate sensitivity from well-understood and robustly simulated feedbacks are discussed.« less
Monitoring Digital Closed-Loop Feedback Systems
NASA Technical Reports Server (NTRS)
Katz, Richard; Kleyner, Igor
2011-01-01
A technique of monitoring digital closed-loop feedback systems has been conceived. The basic idea is to obtain information on the performances of closed-loop feedback circuits in such systems to aid in the determination of the functionality and integrity of the circuits and of performance margins. The need for this technique arises as follows: Some modern digital systems include feedback circuits that enable other circuits to perform with precision and are tolerant of changes in environment and the device s parameters. For example, in a precision timing circuit, it is desirable to make the circuit insensitive to variability as a result of the manufacture of circuit components and to the effects of temperature, voltage, radiation, and aging. However, such a design can also result in masking the indications of damaged and/or deteriorating components. The present technique incorporates test circuitry and associated engineering-telemetry circuitry into an embedded system to monitor the closed-loop feedback circuits, using spare gates that are often available in field programmable gate arrays (FPGAs). This technique enables a test engineer to determine the amount of performance margin in the system, detect out of family circuit performance, and determine one or more trend(s) in the performance of the system. In one system to which the technique has been applied, an ultra-stable oscillator is used as a reference for internal adjustment of 12 time-to-digital converters (TDCs). The feedback circuit produces a pulse-width-modulated signal that is fed as a control input into an amplifier, which controls the circuit s operating voltage. If the circuit s gates are determined to be operating too slowly or rapidly when their timing is compared with that of the reference signal, then the pulse width increases or decreases, respectively, thereby commanding the amplifier to increase or reduce, respectively, its output level, and "adjust" the speed of the circuits. The nominal frequency of the TDC s pulse width modulated outputs is approximately 40 kHz. In this system, the technique is implemented by means of a monitoring circuit that includes a 20-MHz sampling circuit and a 24-bit accumulator with a gate time of 10 ms. The monitoring circuit measures the duty cycle of each of the 12 TDCs at a repetition rate of 28 Hz. The accumulator content is reset to all zeroes at the beginning of each measurement period and is then incremented or decremented based of the value of the state of the pulse width modulated signal. Positive or negative values in the accumulator correspond to duty cycles greater or less, respectively, than 50 percent.
Latent resilience in ponderosa pine forest: effects of resumed frequent fire.
Larson, Andrew J; Belote, R Travis; Cansler, C Alina; Parks, Sean A; Dietz, Matthew S
2013-09-01
Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests.
Design of Tunable Oscillatory Dynamics in a Synthetic NF-κB Signaling Circuit.
Zhang, Zhi-Bo; Wang, Qiu-Yue; Ke, Yu-Xi; Liu, Shi-Yu; Ju, Jian-Qi; Lim, Wendell A; Tang, Chao; Wei, Ping
2017-11-22
Although oscillatory circuits are prevalent in transcriptional regulation, it is unclear how a circuit's structure and the specific parameters that describe its components determine the shape of its oscillations. Here, we engineer a minimal, inducible human nuclear factor κB (NF-κB)-based system that is composed of NF-κB (RelA) and degradable inhibitor of NF-κB (IκBα), into the yeast, Saccharomyces cerevisiae. We define an oscillation's waveform quantitatively as a function of signal amplitude, rest time, rise time, and decay time; by systematically tuning RelA concentration, the strength of negative feedback, and the degradation rate of IκBα, we demonstrate that peak shape and frequency of oscillations can be controlled in vivo and predicted mathematically. In addition, we show that nested negative feedback loops can be employed to specifically tune the frequency of oscillations while leaving their peak shape unchanged. In total, this work establishes design principles that enable function-guided design of oscillatory signaling controllers in diverse synthetic biology applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Booth, David A
2008-11-01
As reviewed by [Cooper, S. J. (2008). From Claude Bernard to Walter Cannon: emergence of the concept of homeostasis. Appetite 51, 419-27.] Claude Bernard's idea of stabilisation of bodily states, as realised in Walter B. Cannon's conception of homeostasis, took mathematical form during the 1940s in the principle that externally originating disturbance of a physiological parameter can feed an informative signal around the brain to trigger counteractive processes--a corrective mechanism known as negative feedback, in practice reliant on feedforward. Three decades later, enough was known of the physiology and psychology of eating and drinking for calculations to show how experimentally demonstrated mechanisms of feedforward that had been learnt from negative feedback combine to regulate exchanges of water and energy between the body and the surroundings. Subsequent systemic physiology, molecular neuroscience and experimental psychology, however, have been traduced by a misconception that learnt controls of intake are 'non-homeostatic', the myth of biological 'set points' and an historic failure to address evidence for the ingestion-adapting information-processing mechanisms on which an operationally integrative theory of eating and drinking relies.
Hinske, Ludwig Christian; Galante, Pedro A. F.; Limbeck, Elisabeth; Möhnle, Patrick; Parmigiani, Raphael B.; Ohno-Machado, Lucila; Camargo, Anamaria A.; Kreth, Simone
2015-01-01
About half of the known miRNA genes are located within protein-coding host genes, and are thus subject to co-transcription. Accumulating data indicate that this coupling may be an intrinsic mechanism to directly regulate the host gene’s expression, constituting a negative feedback loop. Inevitably, the cell requires a yet largely unknown repertoire of methods to regulate this control mechanism. We propose APA as one possible mechanism by which negative feedback of intronic miRNA on their host genes might be regulated. Using in-silico analyses, we found that host genes that contain seed matching sites for their intronic miRNAs yield longer 32UTRs with more polyadenylation sites. Additionally, the distribution of polyadenylation signals differed significantly between these host genes and host genes of miRNAs that do not contain potential miRNA binding sites. We then transferred these in-silico results to a biological example and investigated the relationship between ZFR and its intronic miRNA miR-579 in a U87 cell line model. We found that ZFR is targeted by its intronic miRNA miR-579 and that alternative polyadenylation allows differential targeting. We additionally used bioinformatics analyses and RNA-Seq to evaluate a potential cross-talk between intronic miRNAs and alternative polyadenylation. CPSF2, a gene previously associated with alternative polyadenylation signal recognition, might be linked to intronic miRNA negative feedback by altering polyadenylation signal utilization. PMID:25799583
Humphreys, Kathryn L; Telzer, Eva H; Flannery, Jessica; Goff, Bonnie; Gabard-Durnam, Laurel; Gee, Dylan G; Lee, Steve S; Tottenham, Nim
2016-02-01
Decision making in the context of risk is a complex and dynamic process that changes across development. Here, we assessed the influence of sensitivity to negative feedback (e.g., loss) and learning on age-related changes in risky decision making, both of which show unique developmental trajectories. In the present study, we examined risky decision making in 216 individuals, ranging in age from 3-26 years, using the balloon emotional learning task (BELT), a computerized task in which participants pump up a series of virtual balloons to earn points, but risk balloon explosion on each trial, which results in no points. It is important to note that there were 3 balloon conditions, signified by different balloon colors, ranging from quick- to slow-to-explode, and participants could learn the color-condition pairings through task experience. Overall, we found age-related increases in pumps made and points earned. However, in the quick-to-explode condition, there was a nonlinear adolescent peak for points earned. Follow-up analyses indicated that this adolescent phenotype occurred at the developmental intersection of linear age-related increases in learning and decreases in sensitivity to negative feedback. Adolescence was marked by intermediate values on both these processes. These findings show that a combination of linearly changing processes can result in nonlinear changes in risky decision making, the adolescent-specific nature of which is associated with developmental improvements in learning and reduced sensitivity to negative feedback. (c) 2016 APA, all rights reserved).
Face-induced expectancies influence neural mechanisms of performance monitoring.
Osinsky, Roman; Seeger, Jennifer; Mussel, Patrick; Hewig, Johannes
2016-04-01
In many daily situations, the consequences of our actions are predicted by cues that are often social in nature. For instance, seeing the face of an evaluator (e.g., a supervisor at work) may activate certain evaluative expectancies, depending on the history of prior encounters with that particular person. We investigated how such face-induced expectancies influence neurocognitive functions of performance monitoring. We recorded an electroencephalogram while participants completed a time-estimation task, during which they received performance feedback from a strict and a lenient evaluator. During each trial, participants first saw the evaluator's face before performing the task and, finally, receiving feedback. Therefore, faces could be used as predictive cues for the upcoming evaluation. We analyzed electrocortical signatures of performance monitoring at the stages of cue processing, task performance, and feedback reception. Our results indicate that, at the cue stage, seeing the strict evaluator's face results in an anticipatory preparation of fronto-medial monitoring mechanisms, as reflected by a sustained negative-going amplitude shift (i.e., the contingent negative variation). At the performance stage, face-induced expectancies of a strict evaluation rule led to increases of early performance monitoring signals (i.e., frontal-midline theta power). At the final stage of feedback reception, violations of outcome expectancies differentially affected the feedback-related negativity and frontal-midline theta power, pointing to a functional dissociation between these signatures. Altogether, our results indicate that evaluative expectancies induced by face-cues lead to adjustments of internal performance monitoring mechanisms at various stages of task processing.
Genome-Wide Negative Feedback Drives Transgenerational DNA Methylation Dynamics in Arabidopsis
Kassam, Mohamed; Duvernois-Berthet, Evelyne; Cortijo, Sandra; Takashima, Kazuya; Saze, Hidetoshi; Toyoda, Atsushi; Fujiyama, Asao; Colot, Vincent; Kakutani, Tetsuji
2015-01-01
Epigenetic variations of phenotypes, especially those associated with DNA methylation, are often inherited over multiple generations in plants. The active and inactive chromatin states are heritable and can be maintained or even be amplified by positive feedback in a transgenerational manner. However, mechanisms controlling the transgenerational DNA methylation dynamics are largely unknown. As an approach to understand the transgenerational dynamics, we examined long-term effect of impaired DNA methylation in Arabidopsis mutants of the chromatin remodeler gene DDM1 (Decrease in DNA Methylation 1) through whole genome DNA methylation sequencing. The ddm1 mutation induces a drastic decrease in DNA methylation of transposable elements (TEs) and repeats in the initial generation, while also inducing ectopic DNA methylation at hundreds of loci. Unexpectedly, this ectopic methylation can only be seen after repeated self-pollination. The ectopic cytosine methylation is found primarily in the non-CG context and starts from 3’ regions within transcription units and spreads upstream. Remarkably, when chromosomes with reduced DNA methylation were introduced from a ddm1 mutant into a DDM1 wild-type background, the ddm1-derived chromosomes also induced analogous de novo accumulation of DNA methylation in trans. These results lead us to propose a model to explain the transgenerational DNA methylation redistribution by genome-wide negative feedback. The global negative feedback, together with local positive feedback, would ensure robust and balanced differentiation of chromatin states within the genome. PMID:25902052
Joo, Yeon Kyoung; Lee-Won, Roselyn J
2016-10-01
For members of a group negatively stereotyped in a domain, making mistakes can aggravate the influence of stereotype threat because negative stereotypes often blame target individuals and attribute the outcome to their lack of ability. Virtual agents offering real-time error feedback may influence performance under stereotype threat by shaping the performers' attributional perception of errors they commit. We explored this possibility with female drivers, considering the prevalence of the "women-are-bad-drivers" stereotype. Specifically, we investigated how in-vehicle voice agents offering error feedback based on responsibility attribution (internal vs. external) and outcome attribution (ability vs. effort) influence female drivers' performance under stereotype threat. In addressing this question, we conducted an experiment in a virtual driving simulation environment that provided moment-to-moment error feedback messages. Participants performed a challenging driving task and made mistakes preprogrammed to occur. Results showed that the agent's error feedback with outcome attribution moderated the stereotype threat effect on driving performance. Participants under stereotype threat had a smaller number of collisions when the errors were attributed to effort than to ability. In addition, outcome attribution feedback moderated the effect of responsibility attribution on driving performance. Implications of these findings are discussed.
Edafe, Ovie; Brooks, William S; Laskar, Simone N; Benjamin, Miles W; Chan, Philip
2016-03-20
This study examines the perceived impact of a novel clinical teaching method based on FAIR principles (feedback, activity, individuality and relevance) on students' learning on clinical placement. This was a qualitative research study. Participants were third year and final year medical students attached to one UK vascular firm over a four-year period (N=108). Students were asked to write a reflective essay on how FAIRness approach differs from previous clinical placement, and its advantages and disadvantages. Essays were thematically analysed and globally rated (positive, negative or neutral) by two independent researchers. Over 90% of essays reported positive experiences of feedback, activity, individuality and relevance model. The model provided multifaceted feedback; active participation; longitudinal improvement; relevance to stage of learning and future goals; structured teaching; professional development; safe learning environment; consultant involvement in teaching. Students perceived preparation for tutorials to be time intensive for tutors/students; a lack of teaching on medical sciences and direct observation of performance; more than once weekly sessions would be beneficial; some issues with peer and public feedback, relevance to upcoming exam and large group sizes. Students described negative experiences of "standard" clinical teaching. Progressive teaching programmes based on the FAIRness principles, feedback, activity, individuality and relevance, could be used as a model to improve current undergraduate clinical teaching.
Dynamic route guidance strategy in a two-route pedestrian-vehicle mixed traffic flow system
NASA Astrophysics Data System (ADS)
Liu, Mianfang; Xiong, Shengwu; Li, Bixiang
2016-05-01
With the rapid development of transportation, traffic questions have become the major issue for social, economic and environmental aspects. Especially, during serious emergencies, it is very important to alleviate road traffic congestion and improve the efficiency of evacuation to reduce casualties, and addressing these problems has been a major task for the agencies responsible in recent decades. Advanced road guidance strategies have been developed for homogeneous traffic flows, or to reduce traffic congestion and enhance the road capacity in a symmetric two-route scenario. However, feedback strategies have rarely been considered for pedestrian-vehicle mixed traffic flows with variable velocities and sizes in an asymmetric multi-route traffic system, which is a common phenomenon in many developing countries. In this study, we propose a weighted road occupancy feedback strategy (WROFS) for pedestrian-vehicle mixed traffic flows, which considers the system equilibrium to ease traffic congestion. In order to more realistic simulating the behavior of mixed traffic objects, the paper adopted a refined and dynamic cellular automaton model (RDPV_CA model) as the update mechanism for pedestrian-vehicle mixed traffic flow. Moreover, a bounded rational threshold control was introduced into the feedback strategy to avoid some negative effect of delayed information and reduce. Based on comparisons with the two previously proposed strategies, the simulation results obtained in a pedestrian-vehicle traffic flow scenario demonstrated that the proposed strategy with a bounded rational threshold was more effective and system equilibrium, system stability were reached.
Brandes, Mirko; Elvers, Sebastian
2017-10-01
The purpose of this study was to determine the impact of mild vs. strongly pushed coach feedback on the physiological response, ratio of perceived exertion (RPE), and time-motion characteristics in soccer training with small-sided games (SSGs). Sixteen elite youth soccer players (aged 17.2 ± 0.7 years, V[Combining Dot Above]O2max 62.1 ± 3.8 ml·kg·min) played two 4 vs. 4 small-sided games each. In random order, the coach provided a mild, unobtrusive, or a strongly pushed feedback throughout the game. Physiological measurements included heart rate expressed in mean values and intensity zones, blood lactate concentration, and RPE. The distance traveled, number of sprints, and work:rest ratio were captured by global positioning systems at 5 Hz. Game performance, such as volume of play and efficacy index, was estimated using the Team Sports Assessment Procedure. No differences were found for the physiological response and time-motion characteristics, but effect sizes demonstrated an increase in RPE (+0.4, p = 0.27) and a decrease in game performance (e.g., volume of play, -2.5, p = 0.08) under pushed feedback. Although a pushed feedback raises RPE, it negatively affected the players' game performance, without necessarily provoking higher physiological responses. These results should help coaches to understand that modifying the type of feedback provided during SSG does not impact the physiological response if SSG are already played with high intensity but that the feedback affects RPE and game performance. To keep a better game performance, soccer coaches are encouraged to provide smooth feedback during SSG.
The influence of extratropical cloud phase and amount feedbacks on climate sensitivity
NASA Astrophysics Data System (ADS)
Frey, William R.; Kay, Jennifer E.
2018-04-01
Global coupled climate models have large long-standing cloud and radiation biases, calling into question their ability to simulate climate and climate change. This study assesses the impact of reducing shortwave radiation biases on climate sensitivity within the Community Earth System Model (CESM). The model is modified by increasing supercooled cloud liquid to better match absorbed shortwave radiation observations over the Southern Ocean while tuning to reduce a compensating tropical shortwave bias. With a thermodynamic mixed-layer ocean, equilibrium warming in response to doubled CO2 increases from 4.1 K in the control to 5.6 K in the modified model. This 1.5 K increase in equilibrium climate sensitivity is caused by changes in two extratropical shortwave cloud feedbacks. First, reduced conversion of cloud ice to liquid at high southern latitudes decreases the magnitude of a negative cloud phase feedback. Second, warming is amplified in the mid-latitudes by a larger positive shortwave cloud feedback. The positive cloud feedback, usually associated with the subtropics, arises when sea surface warming increases the moisture gradient between the boundary layer and free troposphere. The increased moisture gradient enhances the effectiveness of mixing to dry the boundary layer, which decreases cloud amount and optical depth. When a full-depth ocean with dynamics and thermodynamics is included, ocean heat uptake preferentially cools the mid-latitude Southern Ocean, partially inhibiting the positive cloud feedback and slowing warming. Overall, the results highlight strong connections between Southern Ocean mixed-phase cloud partitioning, cloud feedbacks, and ocean heat uptake in a climate forced by greenhouse gas changes.
NASA Astrophysics Data System (ADS)
Yang, Simon; Gruber, Nicolas
2016-10-01
Over the last 100 years, anthropogenic emissions have led to a strong increase of atmospheric nitrogen deposition over the ocean, yet the resulting impacts and feedbacks are neither well understood nor quantified. To this end, we run a suite of simulations with the ocean component of the Community Earth System Model v1.2 forced with five scenarios of nitrogen deposition over the period from 1850 through 2100, while keeping all other forcings unchanged. Even though global oceanic net primary production increases little in response to this fertilization, the higher export and the resulting expansion of the oxygen minimum zones cause an increase in pelagic and benthic denitrification and burial by about 5%. In addition, the enhanced availability of fixed nitrogen in the surface ocean reduces global ocean N2 fixation by more than 10%. Despite the compensating effects through these negative feedbacks that eliminate by the year 2000 about 60% of the deposited nitrogen, the anthropogenic nitrogen input forced the upper ocean N budget into an imbalance of between 9 and 22 Tg N yr-1 depending on the deposition scenario. The excess nitrogen accumulates to highly detectable levels and causes in most areas a distinct negative trend in the δ15N of the oceanic fixed nitrogen pools—a trend we refer to as the 15N Haber-Bosch effect. Changes in surface nitrate utilization and the nitrogen feedbacks induce further changes in the δ15N of NO3-, making it a good but complex recorder of the overall impact of the changes in atmospheric deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abi Salloum, Bachir; Steckler, Teresa L.; Herkimer, Carol
Bisphenol-A (BPA), a polymer used in plastics manufacturing, and methoxychlor (MXC), a pesticide, are endocrine disrupting compounds with estrogenic and anti-androgenic properties. Prenatal BPA or MXC treatment induces reproductive defects in sheep with BPA causing prepubertal luteinizing hormone (LH) hypersecretion and dampening of periovulatory LH surges and MXC lengthening follicular phase and delaying the LH surge. In this study, we addressed the underlying neuroendocrine defects by testing the following hypotheses: 1) prenatal BPA, but not MXC reduces sensitivity to estradiol and progesterone negative feedback, 2) prenatal BPA, but not MXC increases pituitary responsiveness to gonadotropin releasing hormone (GnRH), and 3)more » prenatal BPA dampens LH surge response to estradiol positive feedback challenge while prenatal MXC delays the timing of the LH surge. Pregnant sheep were treated with either 1) 5 mg/kg/day BPA (produces approximately twice the level found in human circulation, n = 8), 2) 5 mg/kg/day MXC (the lowest observed effect level stated in the EPA National Toxicology Program's Report; n = 6), or 3) vehicle (cotton seed oil: C: n = 6) from days 30 to 90 of gestation. Female offspring of these ewes were ovariectomized at 21 months of age and tested for progesterone negative, estradiol negative, estradiol positive feedback sensitivities and pituitary responsiveness to GnRH. Results revealed that sensitivity to all 3 feedbacks as well as pituitary responsiveness to GnRH were not altered by either of the prenatal treatments. These findings suggest that the postpubertal reproductive defects seen in these animals may have stemmed from ovarian defects and the steroidal signals emanating from them. - Highlights: ► Prenatal BPA/MXC does not affect reproductive neuroendocrine steroid feedbacks. ► Prenatal BPA or MXC treatment failed to alter pituitary sensitivity to GnRH. ► LH excess in BPA-treated sheep may be due to reduced ovarian feedback signals.« less
Acute and chronic stressors activate the hypothalamic-pituitary-adrenal (lIPA) axis and are known to suppress reproductive function through central negative feedback of the gonadal axis by glucocorticoids. Recently, several environmental chemicals known to attenuate or suppress t...
Pourtois, Gilles
2017-01-01
Abstract Positive mood broadens attention and builds additional mental resources. However, its effect on performance monitoring and reward prediction errors remain unclear. To examine this issue, we used a standard mood induction procedure (based on guided imagery) and asked 45 participants to complete a gambling task suited to study reward prediction errors by means of the feedback-related negativity (FRN) and mid-frontal theta band power. Results showed a larger FRN for negative feedback as well as a lack of reward expectation modulation for positive feedback at the theta level with positive mood, relative to a neutral mood condition. A control analysis showed that this latter result could not be explained by the mere superposition of the event-related brain potential component on the theta oscillations. Moreover, these neurophysiological effects were evidenced in the absence of impairments at the behavioral level or increase in autonomic arousal with positive mood, suggesting that this mood state reliably altered brain mechanisms of reward prediction errors during performance monitoring. We interpret these new results as reflecting a genuine mood congruency effect, whereby reward is anticipated as the default outcome with positive mood and therefore processed as unsurprising (even when it is unlikely), while negative feedback is perceived as unexpected. PMID:28199707
Chloride currents in cones modify feedback from horizontal cells to cones in goldfish retina
Endeman, Duco; Fahrenfort, Iris; Sjoerdsma, Trijntje; Steijaert, Marvin; ten Eikelder, Huub; Kamermans, Maarten
2012-01-01
In neuronal systems, excitation and inhibition must be well balanced to ensure reliable information transfer. The cone/horizontal cell (HC) interaction in the retina is an example of this. Because natural scenes encompass an enormous intensity range both in temporal and spatial domains, the balance between excitation and inhibition in the outer retina needs to be adaptable. How this is achieved is unknown. Using electrophysiological techniques in the isolated retina of the goldfish, it was found that opening Ca2+-dependent Cl− channels in recorded cones reduced the size of feedback responses measured in both cones and HCs. Furthermore, we show that cones express Cl− channels that are gated by GABA released from HCs. Similar to activation of ICl(Ca), opening of these GABA-gated Cl− channels reduced the size of light-induced feedback responses both in cones and HCs. Conversely, application of picrotoxin, a blocker of GABAA and GABAC receptors, had the opposite effect. In addition, reducing GABA release from HCs by blocking GABA transporters also led to an increase in the size of feedback. Because the independent manipulation of Ca2+-dependent Cl− currents in individual cones yielded results comparable to bath-applied GABA, it was concluded that activation of either Cl− current by itself is sufficient to reduce the size of HC feedback. However, additional effects of GABA on outer retinal processing cannot be excluded. These results can be accounted for by an ephaptic feedback model in which a cone Cl− current shunts the current flow in the synaptic cleft. The Ca2+-dependent Cl− current might be essential to set the initial balance between the feedforward and the feedback signals active in the cone HC synapse. It prevents that strong feedback from HCs to cones flood the cone with Ca2+. Modulation of the feedback strength by GABA might play a role during light/dark adaptation, adjusting the amount of negative feedback to the signal to noise ratio of the cone output. PMID:22890705
Analysis of dental students' written peer feedback from a prospective peer assessment protocol.
Tricio, J; Woolford, M; Escudier, M
2016-11-01
Peer assessment and feedback is encouraged to enhance students' learning. The aim of this study was to quantitatively and qualitatively analyse pre-clinical and clinical dental students' written peer feedback provided as part of a continuous, formative and structured peer assessment protocol. A total of 309 Year-2 and Year-5 dental students were invited to participate in a peer assessment and peer feedback protocol. Consenting volunteer students were trained to observe each other whilst working in the skills laboratory (Year-2) and in the dental clinic (Year-5). Subsequently, they followed a structured protocol of peer assessment and peer feedback using specially designed work-based forms during a complete academic year. The content of their written feedback was coded according to the UK General Dental Council domain, sign (positive or negative), specificity (task specific or general), and grouped into themes. A total of 108 participants (40 Year-2 and 68 Year-5) completed 1169 peer assessment work-based forms (516 pre-clinical and 653 clinical); 94% contained written feedback. The large majority (82%) of Year-2 feedback represented the clinical domain, 89% were positive, 77% were task specific, and they were grouped into 14 themes. Year-5 feedback was related mostly to Management and Leadership (37%) and Communication (32%), 64% were positive, 75% task specific, and they were clustered into 24 themes. The content of the feedback showed notable differences between Year-2 and Year-5 students. Senior students focused more on Communication and Management and Leadership skills, whilst juniors were more concerned with clinical skills. Year-5 students provided 13% negative feedback compared to only 2% from Year-2. Regulatory focus theory is discussed to explain these differences. Both groups provided peer feedback on a wide and different range of themes. However, four themes emerged in both groups: efficiency, infection control, time management and working speed. A structured peer assessment framework can be used to guide pre-clinical and clinical students to provide peer feedback focused on different domains, and on contrasting signs and specificities. It can also present an opportunity to complement tutors' feedback. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cardiac and electro-cortical concomitants of social feedback processing in women
van der Molen, Melle J. W.; Gunther Moor, Bregtje; van der Veen, Frederik M.; van der Molen, Maurits W.
2015-01-01
This study provides a joint analysis of the cardiac and electro-cortical—early and late P3 and feedback-related negativity (FRN)—responses to social acceptance and rejection feedback. Twenty-five female participants performed on a social- and age-judgment control task, in which they received feedback with respect to their liking and age judgments, respectively. Consistent with previous reports, results revealed transient cardiac slowing to be selectively prolonged to unexpected social rejection feedback. Late P3 amplitude was more pronounced to unexpected relative to expected feedback. Both early and late P3 amplitudes were shown to be context dependent, in that they were more pronounced to social as compared with non-social feedback. FRN amplitudes were more pronounced to unexpected relative to expected feedback, irrespective of context and feedback valence. This pattern of findings indicates that social acceptance and rejection feedback have widespread effects on bodily state and brain function, which are modulated by prior expectancies. PMID:25870439
Zou, Yuchen; Song, Yan; Xiao, Xue; Huang, Wanyi; Li, Yanfang
2017-01-01
Gender differences in feedback processing have been observed among adolescents and adults through event-related potentials. However, information on whether and how this feedback processing is affected by feedback valence, feedback type, and individual sensitivity in reward/punishment among children remains minimal. In this study, we used a guessing game task coupled with electroencephalography to investigate gender differences in feedback processing, in which feedback to reward and punishment was presented in the context of monetary and social conditions. Results showed that boys were less likely to switch their response after punishment, had generally less feedback-related negativity (FRN) amplitude, and longer FRN latency in monetary and punishment conditions than girls. Moreover, FRN for monetary punishment, which is related to individual difference in reward sensitivity, was observed only in girls. The study provides gender-specific evidence for the neural processing of feedback, which may offer educational guidance for appropriate feedback for girls and boys. PMID:28346515
Ding, Ying; Wang, Encong; Zou, Yuchen; Song, Yan; Xiao, Xue; Huang, Wanyi; Li, Yanfang
2017-01-01
Gender differences in feedback processing have been observed among adolescents and adults through event-related potentials. However, information on whether and how this feedback processing is affected by feedback valence, feedback type, and individual sensitivity in reward/punishment among children remains minimal. In this study, we used a guessing game task coupled with electroencephalography to investigate gender differences in feedback processing, in which feedback to reward and punishment was presented in the context of monetary and social conditions. Results showed that boys were less likely to switch their response after punishment, had generally less feedback-related negativity (FRN) amplitude, and longer FRN latency in monetary and punishment conditions than girls. Moreover, FRN for monetary punishment, which is related to individual difference in reward sensitivity, was observed only in girls. The study provides gender-specific evidence for the neural processing of feedback, which may offer educational guidance for appropriate feedback for girls and boys.
Strong feedback limit of the Goodwin circadian oscillator
NASA Astrophysics Data System (ADS)
Woller, Aurore; Gonze, Didier; Erneux, Thomas
2013-03-01
The three-variable Goodwin model constitutes a prototypical oscillator based on a negative feedback loop. It was used as a minimal model for circadian oscillations. Other core models for circadian clocks are variants of the Goodwin model. The Goodwin oscillator also appears in many studies of coupled oscillator networks because of its relative simplicity compared to other biophysical models involving a large number of variables and parameters. Because the synchronization properties of Goodwin oscillators still remain difficult to explore mathematically, further simplifications of the Goodwin model have been sought. In this paper, we investigate the strong negative feedback limit of Goodwin equations by using asymptotic techniques. We find that Goodwin oscillations approach a sequence of decaying exponentials that can be described in terms of a single-variable leaky integrated-and-fire model.
E-commerce Review System to Detect False Reviews.
Kolhar, Manjur
2017-08-15
E-commerce sites have been doing profitable business since their induction in high-speed and secured networks. Moreover, they continue to influence consumers through various methods. One of the most effective methods is the e-commerce review rating system, in which consumers provide review ratings for the products used. However, almost all e-commerce review rating systems are unable to provide cumulative review ratings. Furthermore, review ratings are influenced by positive and negative malicious feedback ratings, collectively called false reviews. In this paper, we proposed an e-commerce review system framework developed using the cumulative sum method to detect and remove malicious review ratings.
The challenge of giving written thesis feedback to nursing students.
Tuvesson, Hanna; Borglin, Gunilla
2014-11-01
Providing effective written feedback on nursing student's assignments can be a challenging task for any assessor. Additionally, as the student groups tend to become larger, written feedback is likely to gain an overall more prominent position than verbal feedback. Lack of formal training or regular discussion in the teaching faculty about the skill set needed to provide written feedback could negatively affect the students' learning abilities. In this brief paper, we discuss written feedback practices, whilst using the Bachelor of Science in Nursing thesis as an example. Our aim is to highlight the importance of an informed understanding of the impact written feedback can have on students. Creating awareness about this can facilitate the development of more strategic and successful written feedback strategies. We end by offering examples of some relatively simple strategies for improving this practice. Copyright © 2014 Elsevier Ltd. All rights reserved.
Response cost, reinforcement, and children's Porteus Maze qualitative performance.
Neenan, D M; Routh, D K
1986-09-01
Sixty fourth-grade children were given two different series of the Porteus Maze Test. The first series was given as a baseline, and the second series was administered under one of four different experimental conditions: control, response cost, positive reinforcement, or negative verbal feedback. Response cost and positive reinforcement, but not negative verbal feedback, led to significant decreases in the number of all types of qualitative errors in relation to the control group. The reduction of nontargeted as well as targeted errors provides evidence for the generalized effects of response cost and positive reinforcement.
Riepl, Korbinian; Mussel, Patrick; Osinsky, Roman; Hewig, Johannes
2016-01-01
The present study investigates how different emotions can alter social bargaining behavior. An important paradigm to study social bargaining is the Ultimatum Game. There, a proposer gets a pot of money and has to offer part of it to a responder. If the responder accepts, both players get the money as proposed by the proposer. If he rejects, none of the players gets anything. Rational choice models would predict that responders accept all offers above 0. However, evidence shows that responders typically reject a large proportion of all unfair offers. We analyzed participants’ behavior when they played the Ultimatum Game as responders and simultaneously collected electroencephalogram data in order to quantify the feedback-related negativity and P3b components. We induced state affect (momentarily emotions unrelated to the task) via short movie clips and measured trait affect (longer-lasting emotional dispositions) via questionnaires. State happiness led to increased acceptance rates of very unfair offers. Regarding neurophysiology, we found that unfair offers elicited larger feedback-related negativity amplitudes than fair offers. Additionally, an interaction of state and trait affect occurred: high trait negative affect (subsuming a variety of aversive mood states) led to increased feedback-related negativity amplitudes when participants were in an angry mood, but not if they currently experienced fear or happiness. We discuss that increased rumination might be responsible for this result, which might not occur, however, when people experience happiness or fear. Apart from that, we found that fair offers elicited larger P3b components than unfair offers, which might reflect increased pleasure in response to fair offers. Moreover, high trait negative affect was associated with decreased P3b amplitudes, potentially reflecting decreased motivation to engage in activities. We discuss implications of our results in the light of theories and research on depression and anxiety. PMID:26742103
Riepl, Korbinian; Mussel, Patrick; Osinsky, Roman; Hewig, Johannes
2016-01-01
The present study investigates how different emotions can alter social bargaining behavior. An important paradigm to study social bargaining is the Ultimatum Game. There, a proposer gets a pot of money and has to offer part of it to a responder. If the responder accepts, both players get the money as proposed by the proposer. If he rejects, none of the players gets anything. Rational choice models would predict that responders accept all offers above 0. However, evidence shows that responders typically reject a large proportion of all unfair offers. We analyzed participants' behavior when they played the Ultimatum Game as responders and simultaneously collected electroencephalogram data in order to quantify the feedback-related negativity and P3b components. We induced state affect (momentarily emotions unrelated to the task) via short movie clips and measured trait affect (longer-lasting emotional dispositions) via questionnaires. State happiness led to increased acceptance rates of very unfair offers. Regarding neurophysiology, we found that unfair offers elicited larger feedback-related negativity amplitudes than fair offers. Additionally, an interaction of state and trait affect occurred: high trait negative affect (subsuming a variety of aversive mood states) led to increased feedback-related negativity amplitudes when participants were in an angry mood, but not if they currently experienced fear or happiness. We discuss that increased rumination might be responsible for this result, which might not occur, however, when people experience happiness or fear. Apart from that, we found that fair offers elicited larger P3b components than unfair offers, which might reflect increased pleasure in response to fair offers. Moreover, high trait negative affect was associated with decreased P3b amplitudes, potentially reflecting decreased motivation to engage in activities. We discuss implications of our results in the light of theories and research on depression and anxiety.
Gaudine, Alice; Saks, Alan M; Dawe, Doreen; Beaton, Marilyn
2013-04-01
A longitudinal field experiment was conducted to test the effects of absenteeism feedback and goal-setting interventions on nurses' (1) fairness perceptions, (2) discomfort feelings and (3) absenteeism. Nurses' obstacles to reducing absenteeism were also explored. Absenteeism is a significant issue in health care and there is a need to avoid interventions that are seen to be negative, punitive or lead to sick nurses coming to work. Sixty-nine nurses working in a hospital in Eastern Canada received either: (1) absenteeism feedback with individual goal-setting, (2) absenteeism feedback with group goal-setting, or (3) no intervention, and were asked questions about how they could reduce their absenteeism. There was a significant decrease in the total number of days absent but no decrease in absent episodes, and a significant effect on fairness perceptions and discomfort feelings for the nurses in the absenteeism feedback conditions. Six categories of obstacles to reducing absenteeism were identified. The interventions made nurses feel their absence rate was less fair and to experience greater feelings of discomfort. The study's interventions may lead to a reduction in absence without the negative outcomes of a harsh absenteeism policy. © 2011 Blackwell Publishing Ltd.
The processing of unexpected positive response outcomes in the mediofrontal cortex.
Ferdinand, Nicola K; Mecklinger, Axel; Kray, Jutta; Gehring, William J
2012-08-29
The human mediofrontal cortex, especially the anterior cingulate cortex, is commonly assumed to contribute to higher cognitive functions like performance monitoring. How exactly this is achieved is currently the subject of lively debate but there is evidence that an event's valence and its expectancy play important roles. One prominent theory, the reinforcement learning theory by Holroyd and colleagues (2002, 2008), assigns a special role to feedback valence, while the prediction of response-outcome (PRO) model by Alexander and Brown (2010, 2011) claims that the mediofrontal cortex is sensitive to unexpected events regardless of their valence. However, paradigms examining this issue have included confounds that fail to separate valence and expectancy. In the present study, we tested the two competing theories of performance monitoring by using an experimental task that separates valence and unexpectedness of performance feedback. The feedback-related negativity of the event-related potential, which is commonly assumed to be a reflection of mediofrontal cortex activity, was elicited not only by unexpected negative feedback, but also by unexpected positive feedback. This implies that the mediofrontal cortex is sensitive to the unexpectedness of events in general rather than their valence and by this supports the PRO model.