Science.gov

Sample records for negative ion collisions

  1. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources.

    PubMed

    Goto, I; Miyamoto, K; Nishioka, S; Mattei, S; Lettry, J; Abe, S; Hatayama, A

    2016-02-01

    To improve the H(-) ion beam optics, it is necessary to understand the energy relaxation process of surface produced H(-) ions in the extraction region of Cs seeded H(-) ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H(-) extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H(-) ions has been greatly increased. The mean kinetic energy of the surface produced H(-) ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H(-) ion beam is strongly affected by the energy relaxation process due to Coulomb collision. PMID:26932090

  2. Negative ion clusters in oxygen: collision cross sections and transport coefficients

    NASA Astrophysics Data System (ADS)

    de Urquijo, J.; Bekstein, A.; Ducasse, O.; Ruíz-Vargas, G.; Yousfi, M.; Benhenni, M.

    2009-12-01

    Using a pulsed Townsend experiment, we have observed the formation of two negative ion species in oxygen over the pressure range 100-600 torr, and the density-normalised electric field strength, E/N, from 2 to 14 Td. The peculiar shape of these transients has led us to propose a scheme of three-body ion-molecule reactions leading to the formation of O4 - and O6 -, which is substantiated by a curve fitting procedure. The resulting mobility data of these two ionic species have been used to calculate their respective momentum transfer collision cross sections, together with the dissociation cross sections that are needed to extend the range of calculation of mobility and diffusion (transverse and longitudinal) to 1000 Td. These calculations were based on an optimised Monte Carlo algorithm, using collision cross sections obtained from a JWKB approximation (Jeffreys-Wentzel-Kramers-Brillouin) or taken from literature.

  3. Effects of adsorption and roughness upon the collision processes at the convertor surface of a plasma sputter negative ion source

    SciTech Connect

    Kenmotsu, T.; Wada, M.

    2012-02-15

    Atomic collision processes associated with surface production of negative hydrogen ions (H{sup -}) by particle reflection at molybdenum surface immersed in hydrogen plasma have been investigated. To calculate sputtering yields of Cs, as well as energy spectra and angular distributions of reflected hydrogen atoms from molybdenum surface by H{sup +} ion and Cs{sup +} ion bombardments, a Monte Carlo simulation code ACAT (Atomic Collision in Amorphous Target) was run with the corresponding surface conditions. A fractal surface model has been developed and adopted to ACAT for evaluating the effect due to roughness of target material. The results obtained with ACAT have indicated that the retention of hydrogen atoms leads to the reduction in sputtering yields of Cs, and the surface roughness does largely affect the sputtering yields of Cs.

  4. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source—Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    SciTech Connect

    Fubiani, G.; Boeuf, J. P.

    2013-11-15

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%)

  5. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source--Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    NASA Astrophysics Data System (ADS)

    Fubiani, G.; Boeuf, J. P.

    2013-11-01

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%).

  6. Negative ion productions in high velocity collision between small carbon clusters and Helium atom target

    NASA Astrophysics Data System (ADS)

    M, Chabot; K, Béroff; T, Pino; G, Féraud; N, Dothi; Padellec A, Le; G, Martinet; S, Bouneau; Y, Carpentier

    2012-11-01

    We measured absolute double capture cross section of Cn+ ions (n=1,5) colliding, at 2.3 and 2.6 a.u velocities, with an Helium target atom and the branching ratios of fragmentation of the so formed electronically excited anions Cn-*. We also measured absolute cross section for the electronic attachment on neutral Cn clusters colliding at same velocities with He atom. This is to our knowledge the first measurement of neutral-neutral charge exchange in high velocity collision.

  7. Collision-induced dissociation analysis of negative atmospheric ion adducts in atmospheric pressure corona discharge ionization mass spectrometry.

    PubMed

    Sekimoto, Kanako; Takayama, Mitsuo

    2013-05-01

    Collision-induced dissociation (CID) experiments were performed on atmospheric ion adducts [M + R](-) formed between various types of organic compounds M and atmospheric negative ions R(-) [such as O2(-), HCO3(-), COO(-)(COOH), NO2(-), NO3(-), and NO3(-)(HNO3)] in negative-ion mode atmospheric pressure corona discharge ionization (APCDI) mass spectrometry. All of the [M + R](-) adducts were fragmented to form deprotonated analytes [M - H](-) and/or atmospheric ions R(-), whose intensities in the CID spectra were dependent on the proton affinities of the [M - H](-) and R(-) fragments. Precursor ions [M + R](-) for which R(-) have higher proton affinities than [M - H](-) formed [M - H](-) as the dominant product. Furthermore, the CID of the adducts with HCO3(-) and NO3(-)(HNO3) led to other product ions such as [M + HO](-) and NO3(-), respectively. The fragmentation behavior of [M + R](-) for each R(-) observed was independent of analyte type (e.g., whether the analyte was aliphatic or aromatic, or possessed certain functional groups).

  8. Linkage determination of linear oligosaccharides by MS(n) (n > 2) collision-induced dissociation of Z₁ ions in the negative ion mode.

    PubMed

    Konda, Chiharu; Bendiak, Brad; Xia, Yu

    2014-02-01

    Obtaining unambiguous linkage information between sugars in oligosaccharides is an important step in their detailed structural analysis. An approach is described that provides greater confidence in linkage determination for linear oligosaccharides based on multiple-stage tandem mass spectrometry (MS(n), n >2) and collision-induced dissociation (CID) of Z1 ions in the negative ion mode. Under low energy CID conditions, disaccharides (18)O-labeled on the reducing carbonyl group gave rise to Z1 product ions (m/z 163) derived from the reducing sugar, which could be mass-discriminated from other possible structural isomers having m/z 161. MS(3) CID of these m/z 163 ions showed distinct fragmentation fingerprints corresponding to the linkage types and largely unaffected by sugar unit identities or their anomeric configurations. This unique property allowed standard CID spectra of Z1 ions to be generated from a small set of disaccharide samples that were representative of many other possible isomeric structures. With the use of MS(n) CID (n = 3 - 5), model linear oligosaccharides were dissociated into overlapping disaccharide structures, which were subsequently fragmented to form their corresponding Z1 ions. CID data of these Z1 ions were collected and compared with the standard database of Z1 ion CID using spectra similarity scores for linkage determination. As the proof-of-principle tests demonstrated, we achieved correct determination of individual linkage types along with their locations within two trisaccharides and a pentasaccharide.

  9. Estimating collision cross sections of negatively charged N-glycans using traveling wave ion mobility-mass spectrometry.

    PubMed

    Hofmann, Johanna; Struwe, Weston B; Scarff, Charlotte A; Scrivens, James H; Harvey, David J; Pagel, Kevin

    2014-11-01

    Glycosylation is one of the most common post-translational modifications occurring in proteins. A detailed structural characterization of the involved carbohydrates, however, is still one of the greatest challenges in modern glycoproteomics, since multiple regio- and stereoisomers with an identical monosaccharide composition may exist. Recently, ion mobility-mass spectrometry (IM-MS), a technique in which ions are separated according to their mass, charge, and shape, has evolved as a promising technique for the separation and structural analysis of complex carbohydrates. This growing interest is based on the fact that the measured drift times can be converted into collision cross sections (CCSs), which can be compared, implemented into databases, and used as additional search criteria for structural identification. However, most of the currently used commercial IM-MS instruments utilize a nonuniform traveling wave field to propel the ions through the IM cell. As a result, CCS measurements cannot be performed directly and require calibration. Here, we present a calibration data set consisting of over 500 reference CCSs for negatively charged N-glycans and their fragments. Moreover, we show that dextran, already widely used as a calibrant in high performance liquid chromatography, is also a suitable calibrant for CCS estimations. Our data also indicate that a considerably increased error has to be taken into account when reference CCSs acquired in a different drift gas are used for calibration. PMID:25268221

  10. Thermodynamic model for electron emission and negative- and positive-ion formation in keV molecular collisions

    NASA Astrophysics Data System (ADS)

    Juhász, Z.

    2016-08-01

    A statistical-type model is developed to describe the ion production and electron emission in collisions of (molecular) ions with atoms. The model is based on the Boltzmann population of the bound electronic energy levels of the quasimolecule formed in the collision and the discretized continuum. The discretization of the continuum is implemented by a free-electron gas in a box model assuming an effective square potential of the quasimolecule. The temperature of the electron gas is calculated by taking into account a thermodynamically adiabatic process due to the change of the effective volume of the quasimolecule as the system evolves. The system may undergo a transition with a small probability from the discretized continuum to the states of the complementary continuum. It is assumed that these states are decoupled from the thermodynamic time development. The decoupled states overwhelmingly determine the yield of the asymptotically observed fragment ions. The main motivation of this work is to describe the recently observed H- ion production in O H++Ar collisions. The obtained differential cross sections for H- formation, cation production, and electron emission are close to the experimental ones. Calculations for the atomic systems O++Ar and H++Ar are also in reasonable agreement with the experiments indicating that the model can be applied to a wide class of collisions.

  11. Ion Collision, Theory

    SciTech Connect

    Shukla, Anil K.

    2013-09-11

    The outcome of a collision between an ion and neutral species depends on the chemical and physical properties of the two reactants, their relative velocities, and the impact parameter of their trajectories. These include elastic and inelastic scattering of the colliding particles, charge transfer (including dissociative charge transfer), atom abstraction, complex formation and dissociation of the colliding ion. Each of these reactions may be characterized in terms of their energy-dependent rate coefficients, cross sections and reaction kinetics. A theoretical framework that emphasizes simple models and classical mechanics is presented for these processes. Collision processes are addressed in two categories of low-energy and high-energy collisions. Experiments under thermal or quasi-thermal conditions–swarms, drift tubes, chemical ionization and ion cyclotron resonance are strongly influenced by long-range forces and often involve collisions in which atom exchange and extensive energy exchange are common characteristics. High-energy collisions are typically impulsive, involve short-range intermolecular forces and are direct, fast processes.

  12. Negative ion generator

    DOEpatents

    Stinnett, Regan W.

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  13. Negative ion generator

    DOEpatents

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  14. Negative Ion Density Fronts

    SciTech Connect

    Igor Kaganovich

    2000-12-18

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.

  15. Heavy ion collisions

    SciTech Connect

    Jacak, B.V.

    1994-11-01

    Heavy ion collisions at very high energies provide an opportunity to recreate in the laboratory the conditions which existed very early in the universe, just after the big bang. We prepare matter at very high energy density and search for evidence that the quarks and gluons are deconfined. I describe the kinds of observables that are experimentally accessible to characterize the system and to search for evidence of new physics. A wealth of information is now available from CERN and BNL heavy ion experiments. I discuss recent results on two particle correlations, strangeness production, and dilepton and direct photon distributions.

  16. Vibrational relaxation in H/sub 2/ molecules by wall collisions: applications to negative ion source processes

    SciTech Connect

    Karo, A.M.; Hiskes, J.R.; Hardy, R.J.

    1984-10-01

    In the volume of a hydrogen discharge, H/sub 2/ molecules, excited to high vibrational levels (v'' > 6), are formed either by fast-electron collisions or from H/sub 2//sup +/ ions that are accelerated across the discharge-wall potential that undergo Auger neutralization prior to impact with the discharge chamber wall. We have used computer molecular dynamics to study the de-excitation and re-excitation of vibrationally-excited H/sub 2/ molecules undergoing repeated wall collisions. The initial translational energies range from thermal to 100 eV and the initial vibrational states range from v'' = 2 to v'' = 12. The average loss or gain of vibrational, rotational, translational, and total molecular energies and the survival rates of the molecules have been evaluated. At thermal energies vibrational de-excitation is the predominant process, and a consistent picture emerges of rapid energy redistribution into all the molecular degrees of freedom and a slower rate of loss of total molecular energy to the wall. At higher translational energies (1 to 100 eV) a substantial fraction of the molecules survive with large (v'' > 6) vibrational energy. This vibrational population provides a contribution to the total excited vibrational population comparable to that from the fast-electron collision process.

  17. Measurements of scattering processes in negative ion: Atom collisions. Technical progress report, 1 September 1991--31 December 1994

    SciTech Connect

    Kvale, T.J.

    1994-09-27

    This report describes the progress made on the research objectives during the past three years of the grant. This research project is designed to study various scattering processes which occur in H{sup {minus}} collisions with atomic (specifically, noble gas and atomic hydrogen) targets in the intermediate energy region. These processes include: elastic scattering, single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H{sup {minus}} is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements will provide total cross sections (TCS) initially, and once the angular positioning apparatus is installed, will provide angular differential cross sections (ADCS).

  18. Polarized negative ions

    SciTech Connect

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.

  19. Negative hydrogen ion yields at plasma grid surface in a negative hydrogen ion source

    SciTech Connect

    Wada, M.; Kenmotsu, T.; Sasao, M.

    2015-04-08

    Negative hydrogen (H{sup −}) ion yield from the plasma grid due to incident hydrogen ions and neutrals has been evaluated with the surface collision cascade model, ACAT (Atomic Collision in Amorphous Target) coupled to a negative surface ionization models. Dependence of negative ion fractions upon the velocity component normal to the surface largely affect the calculation results of the final energy and angular distributions of the H{sup −} ions. The influence is particularly large for H{sup −} ions desorbed from the surface due to less than several eV hydrogen particle implact. The present calculation predicts that H{sup −} ion yield can be maximized by setting the incident angle of hydrogen ions and neutrals to be 65 degree. The Cs thickness on the plasma grid should also affect the yields and mean energies of surface produced H{sup −} ions by back scattering and ion induced desorption processes.

  20. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-08-06

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  1. Negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  2. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1984-12-04

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.

  3. Collisions of ions in gases

    NASA Astrophysics Data System (ADS)

    Bailey, T. L.

    1982-03-01

    This report is a summary description of research carried out under the ONR Project 'Collisions of Ions in Gases'. The work consisted of experimental studies of collisions of low-energy ions (4 < or = E sub L < or = 500 eV) with atoms and molecules, using the ion-beam gas-target technique, and of theoretical and computational studies done in support of the experiments. Three types of experiments were carried out: (a) measurements of relative differential cross-sections for elastic and inelastic (i.e., charge transfer) scattering in collisions of the He(++) ions with Ne, Ar, and Kr atoms, over the ion energy range 8 < or = E sub L < or = 60 eV; (b) kinematical studies of charge transfer in collisions of 30 < or = E sub L < or = 373 eV Ne(+), Ar(+), and Kr(+) ions with H2, D2, O2, and N2 molecules, in which the KE-distributions of the product H2(+), etc., were measured; and (c) measurements of the absolute total cross-sections for the charge transfer process He(++) + R = He(+) + R(+), where R = Ne, Ar, Kr, over the energy range 4 < or = E sub L < or = 500 eV. The experimental results, and their interpretations in terms of appropriate quantum scattering theory (where the latter was feasible) are discussed briefly. The effects of the thermal motions of collision participants (i.e., thermal broadening) in ion-atom and similar scattering experiments were investigated in computational studies, and a new crossed ion-supersonic atom/molecule beams apparatus, designed to remove the thermal broadening effect and to give high resolution in energy and angle, is discussed.

  4. Negative ion source

    DOEpatents

    Delmore, James E.

    1987-01-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  5. Negative hydrogen ion production mechanisms

    SciTech Connect

    Bacal, M.; Wada, M.

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  6. Central collisions of heavy ions

    SciTech Connect

    Fung, Sun-yiu.

    1992-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R D project was performed.

  7. Extracted current saturation in negative ion sources

    SciTech Connect

    Mochalskyy, S.; Lifschitz, A. F.; Minea, T.

    2012-06-01

    The extraction of negatively charged particles from a negative ion source is one of the crucial issues in the development of the neutral beam injector system for future experimental reactor ITER. Full 3D electrostatic particle-in-cell Monte Carlo collision code - ONIX [S. Mochalskyy et al., Nucl. Fusion 50, 105011 (2010)] - is used to simulate the hydrogen plasma behaviour and the extracted particle features in the vicinity of the plasma grid, both sides of the aperture. It is found that the contribution to the extracted negative ion current of ions born in the volume is small compared with that of ions created at the plasma grid walls. The parametric study with respect to the rate of negative ions released from the walls shows an optimum rate. Beyond this optimum, a double layer builds-up by the negative ion charge density close to the grid aperture surface reducing thus extraction probability, and therefore the extracted current. The effect of the extraction potential and magnetic field magnitudes on the extraction is also discussed. Results are in good agreement with available experimental data.

  8. Exotics from Heavy Ion Collisions

    SciTech Connect

    Ohnishi, Akira; Jido, Daisuke; Cho, Sungtae; Furumoto, Takenori; Yazaki, Koichi; Hyodo, Tetsuo; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Sekihara, Takayasu; Yasui, Shigehiro

    2011-10-21

    Discriminating hadronic molecular and multi-quark states is a long standing problem in hadronic physics. We propose here to utilize relativistic heavy ion collisions to resolve this problem, as exotic hadron yields are expected to be strongly affected by their structures. Using the coalescence model, we find that the exotic hadron yield relative to the statistical model result is typically an order of magnitude smaller for a compact multi-quark state, and larger by a factor of two or more for a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured at RHIC and LHC.

  9. Head-on collision of dust-ion-acoustic soliton in quantum pair-ion plasma

    SciTech Connect

    Chatterjee, Prasanta; Ghorui, Malay kr.; Wong, C. S.

    2011-10-15

    In this paper, we study the head-on collision between two dust ion acoustic solitons in quantum pair-ion plasma. Using the extended Poincare-Lighthill-Kuo method, we obtain the Korteweg-de Vries equation, the phase shifts, and the trajectories after the head-on collision of the two dust ion acoustic solitons. It is observed that the phase shifts are significantly affected by the values of the quantum parameter H, the ratio of the multiples of the charge state and density of positive ions to that of the negative ions {beta} and the concentration of the negatively charged dust particles {delta}.

  10. Head-on collision of dust-ion-acoustic soliton in quantum pair-ion plasma

    NASA Astrophysics Data System (ADS)

    Chatterjee, Prasanta; Ghorui, Malay kr.; Wong, C. S.

    2011-10-01

    In this paper, we study the head-on collision between two dust ion acoustic solitons in quantum pair-ion plasma. Using the extended Poincare-Lighthill-Kuo method, we obtain the Korteweg-de Vries equation, the phase shifts, and the trajectories after the head-on collision of the two dust ion acoustic solitons. It is observed that the phase shifts are significantly affected by the values of the quantum parameter H, the ratio of the multiples of the charge state and density of positive ions to that of the negative ions β and the concentration of the negatively charged dust particles δ.

  11. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  12. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    SciTech Connect

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  13. Negative-hydrogen-ion sources

    SciTech Connect

    Prelec, K.

    1983-01-01

    There are two main areas of negative hydrogen ion applications: injection into high energy accelerators and production of beams of energetic hydrogen atoms for fusion devices. In both cases, the ease with which the charge state of negative ions can be changed by either single or double electron stripping is the reason that made their application attractive. In tandem accelerators, the final energy of H/sup +/ ions is twice as high as it would correspond to the terminal voltage, in circular accelerators (synchrotrons, storage rings) injection of H/sup +/ ions by full stripping of H/sup -/ ions in a foil inside the ring is not limited by the Liouville's theorem and results in a higher phase space density than achieved by direct H/sup +/ injection. Finally, beams of hydrogen atoms at energies above 100 keV, which will be required for plasma heating and current drive in future fusion devices, can efficiently be produced only by acceleration of negative ions and their subsequent neutralization.

  14. Can collision-induced negative-ion fragmentations of [M-H](-) anions be used to identify phosphorylation sites in peptides?

    PubMed

    Tran, T T Nha; Wang, Tianfang; Hack, Sandra; Hoffmann, Peter; Bowie, John H

    2011-12-15

    A joint experimental and theoretical investigation of the fragmentation behaviour of energised [M-H](-) anions from selected phosphorylated peptides has confirmed some of the most complex rearrangement processes yet to be reported for peptide negative ions. In particular: pSer and pThr (like pTyr) may transfer phosphate groups to C-terminal carboxyl anions and to the carboxyl anion side chains of Asp and Glu, and characteristic nucleophilic/cleavage reactions accompany or follow these rearrangements. pTyr may transfer phosphate to the side chains of Ser and Thr. The reverse reaction, namely transfer of a phosphate group from pSer or pThr to Tyr, is energetically unfavourable in comparison. pSer can transfer phosphate to a non-phosphorylated Ser. The non-rearranged [M-H](-) species yields more abundant product anions than its rearranged counterpart. If a peptide containing any or all of Ser, Thr and Tyr is not completely phosphorylated, negative-ion cleavages can determine the number of phosphated residues, and normally the positions of Ser, Thr and Tyr, but not which specific residues are phosphorylated. This is in accord with comments made earlier by Lehmann and coworkers.

  15. A new technique for the study of charge transfer in multiply charged ion-ion collisions

    SciTech Connect

    Shinpaugh, J.L.; Meyer, F.W.; Datz, S.

    1994-12-31

    While large cross sections (>10{sup {minus}16} cm{sup 2}) have been predicted for resonant charge transfer in ion-ion collisions, no experimental data exist for multiply charged systems. A novel technique is being developed at the ORNL ECR facility to allow study of symmetric charge exchange in multiply charged ion-ion collisions using a single ion source. Specific intra-beam charge transfer collisions occurring in a well-defined interaction region labeled by negative high voltage are identified and analyzed by electrostatic analysis in combination with ion time-of-flight coincidence detection of the collision products. Center-of-mass collision energies from 400 to 1000 eV are obtained by varying source and labeling-cell voltages. In addition, by the introduction of a target gas into the high-voltage cell, this labeling-voltage method allows measurement of electron-capture and -loss cross sections for ion-atom collisions. Consequently, higher collision energies can be investigated without the requirement of placing the ECR source on a high-voltage platform.

  16. Jets in relativistic heavy ion collisions

    SciTech Connect

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.

  17. Vorticity in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Tian; Huang, Xu-Guang

    2016-06-01

    We study the event-by-event generation of flow vorticity in the BNL Relativistic Heavy Ion Collider Au +Au collisions and CERN Large Hadron Collider Pb +Pb collisions by using the hijing model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.

  18. Dissipative heavy-ion collisions

    SciTech Connect

    Feldmeier, H.T.

    1985-01-01

    This report is a compilation of lecture notes of a series of lectures held at Argonne National Laboratory in October and November 1984. The lectures are a discussion of dissipative phenomena as observed in collisions of atomic nuclei. The model is based on a system which has initially zero temperature and the initial energy is kinetic and binding energy. Collisions excite the nuclei, and outgoing fragments or the compound system deexcite before they are detected. Brownian motion is used to introduce the concept of dissipation. The master equation and the Fokker-Planck equation are derived. 73 refs., 59 figs. (WRF)

  19. Propagation and oblique collision of ion-acoustic solitary waves in a magnetized dusty electronegative plasma

    SciTech Connect

    El-Labany, S. K.; Behery, E. E.; El-Shamy, E. F.

    2013-12-15

    The propagation and oblique collision of ion-acoustic (IA) solitary waves in a magnetized dusty electronegative plasma consisting of cold mobile positive ions, Boltzmann negative ions, Boltzmann electrons, and stationary positive/negative dust particles are studied. The extended Poincaré-Lighthill-Kuo perturbation method is employed to derive the Korteweg-de Vries equations and the corresponding expressions for the phase shifts after collision between two IA solitary waves. It turns out that the angle of collision, the temperature and density of negative ions, and the dust density of opposite polarity have reasonable effects on the phase shift. Clearly, the numerical results demonstrated that the IA solitary waves are delayed after the oblique collision. The current finding of this work is applicable in many plasma environments having negative ion species, such as D- and F-regions of the Earth's ionosphere and some laboratory plasma experiments.

  20. Experimental Evaluation of a Negative Ion Source for a Heavy Ion Fusion Negative Ion Driver

    SciTech Connect

    Grisham, L. R.; Hahto, S. K.; Hahto, S. T.; Kwan, J. W.; Leung, K. N.

    2004-06-16

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photo-detached to neutrals. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm{sup 2} was obtained under the same conditions that gave 57 45 mA/cm{sup 2} of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that i s used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl{sup -} was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 45 mA/cm{sup 2}, sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source.

  1. Negative ion extraction from hydrogen plasma bulk

    SciTech Connect

    Oudini, N.; Taccogna, F.; Minelli, P.

    2013-10-15

    A two-dimensional particle-in-cell/Monte Carlo collision model has been developed and used to study low electronegative magnetized hydrogen plasma. A configuration characterized by four electrodes is used: the left electrode is biased at V{sub l} = −100 V, the right electrode is grounded, while the upper and lower transversal electrodes are biased at an intermediate voltage V{sub ud} between 0 and −100 V. A constant and homogeneous magnetic field is applied parallel to the lateral (left/right) electrodes. It is shown that in the magnetized case, the bulk plasma potential is close to the transversal electrodes bias inducing then a reversed sheath in front of the right electrode. The potential drop within the reversed sheath is controlled by the transversal electrodes bias allowing extraction of negative ions with a significant reduction of co-extracted electron current. Furthermore, introducing plasma electrodes, between the transversal electrodes and the right electrode, biased with a voltage just above the plasma bulk potential, increases the negative ion extracted current and decreases significantly the co-extracted electron current. The physical mechanism on basis of this phenomenon has been discussed.

  2. Electric Potential Near The Extraction Region In Negative Ion Sources With Surface Produced Negative Ions

    SciTech Connect

    Fukano, A.; Hatayama, A.

    2011-09-26

    The potential distribution near the extraction region in negative ion sources for the plasma with the surface produced negative ions is studied analytically. The potential is derived analytically by using a plasma-sheath equation, where negative ions produced on the Plasma Grid (PG) surface are considered in addition to positive ions and electrons. A negative potential peak is formed in the sheath region near the PG surface for the case of strong surface production of negative ions or for low energy negative ions. Negative ions are reflected by the negative potential peak near the PG and returned to the PG surface. This reflection mechanism by the negative potential peak possibly becomes a factor in negative ion extraction. It is also indicated that the potential difference between the plasma region and the wall decreases by the surface produced negative ions. This also has the possibility to contribute to the negative ion extraction.

  3. Study on space charge compensation in negative hydrogen ion beam.

    PubMed

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results. PMID:26932087

  4. Study on space charge compensation in negative hydrogen ion beam.

    PubMed

    Zhang, A L; Peng, S X; Ren, H T; Zhang, T; Zhang, J F; Xu, Y; Guo, Z Y; Chen, J E

    2016-02-01

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H(+) beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H(-) beam from a 2.45 GHz microwave driven H(-) ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  5. Chiral Magnetic Effect in Heavy Ion Collisions

    DOE PAGES

    Liao, Jinfeng

    2016-12-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. We show it is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields |Β→|~m2π are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. Lastly, in this contribution we give a brief overview onmore » the status of such efforts.« less

  6. Simulation Based on Ion Propulsion Rocket System with Using Negative ion - Negative Ion Pair Techniques

    NASA Astrophysics Data System (ADS)

    Sathiyavel, C.

    2016-07-01

    Ion propulsion rocket system is expected to become popular with the development of ion-ion pair techniques because of their stimulated of low propellant, Design of Thrust range is 1N with low electric power and high efficiency. A Negative ion-Negative ion pair of ion propulsion rocket system is proposed in this work .Negative Ion Based Rocket system consists of three parts 1.ionization chamber 2. Repulsion force and ion accelerator 3. Exhaust of Nozzle. The Negative ions from electro negatively gas are produced by attachment of the gas ,such as chlorine with electron emitted from a Electron gun ionization chamber. The formulate of large stable negative ion is achievable in chlorine gas with respect to electron affinity (∆E). The electron affinity is a measure of the energy change when an electron is added to a neutral atom to form a negative ion. When a neutral chlorine atom in the gaseous form picks up an electron to form a Cl- ion, it releases energy of 349 kJ/mol or 3.6 ev/atom. It is said to have an electron affinity of -349 kJ/mol ,the negative sign indicating that energy is released during this process .The mechanisms of attachment involve the formation of intermediate states. In that reason for , the highly repulsive force created between the same negative ions. The distance between same negative ions is important for the evaluate of the rocket thrust and is also determined by the exhaust velocity of the propellant. The mass flow rate of propellant is achieved by the ratio of total mass of the propellant (Kg) needed for operation to time period(s). Accelerate the Negative ions to a high velocity in the thrust vector direction with a significantly intense Magnetic field and the exhaust of negative ions through Nozzle. The simulation of the ion propulsion system has been carried out by MATLAB. By comparing the simulation results with the theoretical and previous results, we have found that the proposed method is achieved of thrust value with estimated

  7. Super high energy heavy ion collisions

    SciTech Connect

    Geist, W.M.

    1987-12-01

    Basic theoretical ideas on a phase transition to a plasma of free quarks and gluons in heavy ion collisions are outlined. First results from experiments with oxygen beams at 14.5 GeV/c/N (BNL), 60 and 200 GeV/c/N (CERN) are discussed. 30 refs., 9 figs.

  8. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  9. Atomic collisions with 33-TeV lead ions

    SciTech Connect

    Vane, C.R.; Datz, S.; Krause, H.F.

    1996-10-01

    Recent availability of relativistic and ultrarelativistic beams of heavy ions has permitted the first controlled studies of atomic collisions at energies sufficient to measure effects of several new basic phenomena. These include measurements substantiating recently predicted finite nuclear size effects resulting in a reduction in the total electronic energy loss of heavy ions in matter, and measurements of Coulomb collisions in which electrons are excited from the Dirac negative energy continuum. Measurements of total energy loss, free electron-positron pair production, and electron capture from pair production have been recently performed using 33-TeV Pb{sup 82+} ions from the CERN SPS accelerator in Geneva. Results of these studies are presented, along with comparisons with relevant theory.

  10. Sputter process diagnostics by negative ions

    NASA Astrophysics Data System (ADS)

    Zeuner, Michael; Neumann, Horst; Zalman, Jan; Biederman, Hynek

    1998-05-01

    We measured the energy distributions of negative ions during reactive sputtering of silicon in oxygen. Various oxygen containing negative ions are formed in the cathode sheath or directly at the sputter target, respectively. These negative ions are accelerated away from the cathode by the electrical field, and can be detected using a mass spectrometer facing the sputter magnetron. The origin of each ion can be determined from peak structures in the energy distribution. Additionally the flux of different negative ions provides information on poisoning of the target by oxide films.

  11. Rapidity dependence in holographic heavy ion collisions

    DOE PAGES

    Wilke van der Schee; Schenke, Bjorn

    2015-12-11

    We present an attempt to closely mimic the initial stage of heavy ion collisions within holography, assuming a decoupling of longitudinal and transverse dynamics in the very early stage. We subsequently evolve the obtained initial state using state-of-the-art hydrodynamic simulations and compare results with experimental data. We present results for charged hadron pseudorapidity spectra and directed and elliptic flow as functions of pseudorapidity for √sNN = 200GeV Au-Au and 2.76TeV Pb-Pb collisions. As a result, the directed flow interestingly turns out to be quite sensitive to the viscosity. The results can explain qualitative features of the collisions, but the rapiditymore » spectra in our current model is narrower than the experimental data.« less

  12. Rapidity dependence in holographic heavy ion collisions

    SciTech Connect

    Wilke van der Schee; Schenke, Bjorn

    2015-12-11

    We present an attempt to closely mimic the initial stage of heavy ion collisions within holography, assuming a decoupling of longitudinal and transverse dynamics in the very early stage. We subsequently evolve the obtained initial state using state-of-the-art hydrodynamic simulations and compare results with experimental data. We present results for charged hadron pseudorapidity spectra and directed and elliptic flow as functions of pseudorapidity for √sNN = 200GeV Au-Au and 2.76TeV Pb-Pb collisions. As a result, the directed flow interestingly turns out to be quite sensitive to the viscosity. The results can explain qualitative features of the collisions, but the rapidity spectra in our current model is narrower than the experimental data.

  13. Theory of Electron-Ion Collisions

    SciTech Connect

    Griffin, Donald C

    2009-10-02

    Collisions of electrons with atoms and ions play a crucial role in the modeling and diagnostics of fusion plasmas. In the edge and divertor regions of magnetically confined plasmas, data for the collisions of electrons with neutral atoms and low charge-state ions are of particular importance, while in the inner region, data on highly ionized species are needed. Since experimental measurements for these collisional processes remain very limited, data for such processes depend primarily on the results of theoretical calculations. Over the period of the present grant (January 2006 - August 2009), we have made additional improvements in our parallel scattering programs, generated data of direct fusion interest and made these data available on The Controlled Fusion Atomic Data Center Web site at Oak Ridge National Laboratory. In addition, we have employed these data to do collsional-radiative modeling studies in support of a variety of experiments with magnetically confined fusion plasmas.

  14. Femtoscopy in Relativistic Heavy Ion Collisions

    SciTech Connect

    Lisa, M; Pratt, S; Soltz, R A; Wiedemann, U

    2005-07-29

    Analyses of two-particle correlations have provided the chief means for determining spatio-temporal characteristics of relativistic heavy ion collisions. We discuss the theoretical formalism behind these studies and the experimental methods used in carrying them out. Recent results from RHIC are put into context in a systematic review of correlation measurements performed over the past two decades. The current understanding of these results are discussed in terms of model comparisons and overall trends.

  15. Ionization phenomena and sources of negative ions

    SciTech Connect

    Alton, G.D.

    1983-01-01

    Negative ion source technology has rapidly advanced during the past several years as a direct consequence of the discovery of Krohn that negative ion yields can be greatly enhanced by sputtering in the presence of Group IA elements. Today, most negative ion sources use this discovery directly or the principles implied to effect negative ion formation through surface ionization. As a consequence, the more traditional direct extraction plasma and charge exchange sources are being used less frequently. However, the charge exchange generation mechanism appears to be as universal, is very competitive in terms of efficiency and has the advantage in terms of metastable ion formation. In this review, an attempt has been made to briefly describe the principal processes involved in negative ion formation and sources which are representative of a particular principle. The reader is referred to the literature for specific details concerning the operational characteristics, emittances, brightnesses, species and intensity capabilities of particular sources. 100 references.

  16. Jets In Heavy Ion Collisions with CMS

    NASA Astrophysics Data System (ADS)

    Salur, Sevil

    2016-08-01

    Jet physics in heavy ion collisions is a rich field which has been rapidly evolving since the first observations of medium interactions at RHIC through back-to-back hadron correlations and at LHC via reconstructed jets. In order to completely characterize the final state via jet-medium interactions and distinguish between competing energy loss mechanisms, complementary and robust jet observables are investigated. Latest developments of jet finding techniques and their applications to heavy ion environments are discussed with an emphasis given on experimental results from CMS experiment.

  17. Negative ion spectrometry for detecting nitrated explosives

    NASA Technical Reports Server (NTRS)

    Boettger, H. G.; Yinon, J.

    1975-01-01

    Ionization procedure is modified to produce mainly negative ions by electron capture. Peaks of negative ions are monitored conventionally. Nitrated organic materials could be identified directly from sample sniff inlet stream by suitably modified mass spectrometer because of unique electronegativity which nitro group imparts to organic material.

  18. Modeling of negative ion transport in a plasma source

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-08-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H-/H+ and of charge exchange H-/H0 are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of «volume production» (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  19. Negative Halogen Ions for Fusion Applications

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85 – 90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams.

  20. Negative ion kinetics in RF glow discharges

    SciTech Connect

    Gottscho, R.A.; Gacbe, C.E.

    1986-04-01

    Using temporally and spatially resolved laser spectroscopy, the authors have determined the identities, approximate concentrations, effects on the local field, and kinetics of formation and loss of negative ions in RF discharges. CI/sup -/ and BCI/sub 3//sup -/ are the dominant negative ions found in low-frequency discharges through CI/sub 2/ and BCI/sub 3/, respectively. The electron affinity for CI is measured to be 3.6118 +- 0.0005 eV. Negative ion kinetics are strongly affected by application of the RF field. Formation of negative ions by attachment of slow electrons in RF discharges is governed by the extent and duration of electron energy relaxation. Similarly, destruction of negative ions by collisional detachment and field extraction is dependent upon ion energy modulation. Thus, at low frequency, the anion density peaks at the beginning of the anodic and cathodic half-cycles after electrons have attached but before detachment and extraction have had time to occur. At higher frequencies, electrons have insufficient time to attach before they are reheated and the instantaneous anion density in the sheath is greatly reduced. When the negative ion density is comparable to the positive ion density, the plasma potential is observed to lie below the anode potential, double layers form between sheath and plasma, and anions and electrons are accelerated by large sheath fields to electrode surfaces.

  1. Issues in the understanding of negative ion extraction for fusion

    NASA Astrophysics Data System (ADS)

    Boeuf, J. P.; Fubiani, G.; Garrigues, L.

    2016-08-01

    A number of recent papers have been devoted to the modeling of negative ion extraction using particle simulations but the published results are not entirely satisfactory and not fully consistent with experiments. Issues raised by the simulations concern the saturation of the negative ion current emitted from the caesiated plasma grid surface, its distribution along the surface, the shape of the meniscus formed around each grid aperture, the distribution and depth of the potential in the virtual cathode, and the profile of the extracted beamlet. These are important issues since they have direct impact on the properties of the extracted negative ion beam (intensity, brightness, aberration). In this paper we first summarize recently published model results that are unexpected and counter-intuitive since they predict that negative ions are extracted from regions of the grid that are directly exposed to the large extraction voltage (i.e. as in vacuum and without the need for a neutralizing background plasma). We then illustrate, with results from two-dimensional particle-in-cell Monte Carlo collision simulations, some regimes of negative ion extraction that are more consistent with the expected physics.

  2. Modeling of negative ion transport in a plasma source (invited)

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-02-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The H-/D- trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collision with H+/D+ and of charge exchange with H0/D0 are handled at each time step by a Monte Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have been allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that, in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided they are produced at a distance lower than 2 cm from the plasma grid in the case of volume production (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  3. Negative and positive cesium ion studies

    NASA Technical Reports Server (NTRS)

    Kuehn, D. G.; Sutliff, D. E.; Chanin, L. M.

    1978-01-01

    Mass spectrometric analyses have been performed on the positive and negative species from discharges in Cs, He-Cs, and He-H2-Cs mixtures. Sampling was conducted through the electrodes of normal glow discharges and from close-spaced heated-cathode conditions, which approximate a cesium thermionic converter. No negative Cs ions were observed for Cs pressures less than .01 torr. Identified species included Cs(+), Cs2(+), Cs(-), and what appeared to be multiply charged ions. Low-mass negative and positive ions attributed to H2 were observed when an He-H2 mixture was also present in the discharge region.

  4. Jet reconstruction in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Cacciari, Matteo; Rojo, Juan; Salam, Gavin P.; Soyez, Gregory

    2011-01-01

    We examine the problem of jet reconstruction at heavy-ion colliders using jet-area-based background subtraction tools as provided by FastJet. We use Monte Carlo simulations with and without quenching to study the performance of several jet algorithms, including the option of filtering, under conditions corresponding to RHIC and LHC collisions. We find that most standard algorithms perform well, though the anti- k t and filtered Cambridge/Aachen algorithms have clear advantages in terms of the reconstructed p t offset and dispersion.

  5. Non abelian hydrodynamics and heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Calzetta, E.

    2014-01-01

    The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

  6. Non abelian hydrodynamics and heavy ion collisions

    SciTech Connect

    Calzetta, E.

    2014-01-14

    The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

  7. An advanced negative hydrogen ion source.

    PubMed

    Goncharov, Alexey A; Dobrovolsky, Andrey N; Goretskii, Victor P

    2016-02-01

    The results of investigation of emission productivity of negative particles source with cesiated combined discharge are presented. A cylindrical beam of negative hydrogen ions with density about 2 A/cm(2) in low noise mode on source emission aperture is obtained. The total beam current values are up to 200 mA for negative hydrogen ions and up to 1.5 A for all negative particles with high divergence after source. The source has simple design and can produce stable discharge with low level of oscillation. PMID:26931996

  8. Viscous photons in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Dion, Maxime; Paquet, Jean-François; Schenke, Björn; Young, Clint; Jeon, Sangyong; Gale, Charles

    2011-12-01

    Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.

  9. Ionization Phenomena in Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Deveney, Edward Francis

    Two many-electron ion-atom collision systems are used to investigate atomic and molecular structure and collisional interactions. Electrons emitted from MeV/u C^{3+} projectile target -atom collisions were measured with a high-resolution position -sensitive electron spectrometer at Oak Ridge National Laboratory. The electrons are predominantly ionized by direct projectile -target interactions or autoionizing (AI) from doubly excited AI levels of the ion which were excited in the collision. The energy dependence of directly scattered target electrons, binary-encounter electrons (BEE), is investigated and compared with theory. AI levels of the projectile 1s to nl single electron excited series, (1s2snl) n = 2,3,4,....infty, including the series limit are identified uniquely using energy level calculations. Original Auger yield calculations using a code by Cowan were used to discover a 1/{n^3} scaling in intensities of Auger peaks in the aforementioned series. This is explained using scattering theory. A nonstatistical population of the terms in the (1s2s2l) configuration was identified and investigated as a function of the beam energy and for four different target atoms. Two electron excited configurations are identified and investigated. The angular distribution of a correlated transfer and excitation AI state is measured and compared to theory. The final scattered charge state distributions of Kr^ {n+}, n = 1, 2, 3, 4, 5, projectiles are measured following collisions with Kr targets in the Van de Graaff Laboratory here at The University of Connecticut. Average scattered charge states as high as 12 are observed. It appears that these electrons are ionized during the lifetime of the quasimolecular state but a complete picture of the ionization mechanism(s) is not known. Calculations using a statistical model of ionization, modified in several ways, are compared with the experimental results to see if it is possible to isolate whether or not the electrons originate

  10. Comments about the electromagnetic field in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    McLerran, L.; Skokov, V.

    2014-09-01

    In this article we discuss the properties of electromagnetic fields in heavy-ion collisions and consequences for observables. We address quantitatively the issue of the magnetic field lifetime in a collision including the electric and chiral magnetic conductivities. We show that for reasonable parameters, the magnetic field created by spectators in a collision is not modified by the presence of matter.

  11. Negative electrodes for Na-ion batteries.

    PubMed

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-01

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  12. Constraining relativistic models through heavy ion collisions

    SciTech Connect

    Menezes, D. P.; Providencia, C.; Chiapparini, M.; Bracco, M. E.; Delfino, A.; Malheiro, M.

    2007-12-15

    Relativistic models can be successfully applied to the description of compact star properties in nuclear astrophysics as well as to nuclear matter and finite nuclei properties, these studies taking place at low and moderate temperatures. Nevertheless, all results are model dependent, and so far it is unclear whether some of them should be discarded. Moreover, in the regime of hot hadronic matter, very few calculations exist using these relativistic models, in particular when applied to particle yields in heavy ion collisions. A very important investigation is the simulation of a supernova explosion that is based on the construction of an adequate equation of state that needs to be valid within very large ranges of temperatures (0 to 100 MeV at least) and densities (very low to ten times the nuclear saturation density at least). In the present work, we comment on the known constraints that can help the selection of adequate models in this wide regime and investigate the main differences that arise when the particle production during a Au+Au collision at the BNL Relativistic Heavy Ion Collider is calculated with different relativistic models. We conclude that most of the models investigated in the present work give a very good overall description of the data and make predictions for not yet measured particle ratios.

  13. The negative ions emission in nitrogen

    NASA Technical Reports Server (NTRS)

    Soon, W. H.; Kunc, J. A.

    1991-01-01

    The contribution of negative atomic ions to continuum radiation in nitrogen plasma is discussed. It is shown that both unstable N(-)(3P) and metastable N(-)(1D) ions have a significant effect on the total production of the continuum radiation at electron temperatures below 12,000 K.

  14. Negative Ions for Emerging Interdisciplinary Applications

    SciTech Connect

    Guharay, Samar K.

    2011-09-26

    In many applications related to ion beam-materials interactions negative ions are particularly desirable due to its merit to yield a very low surface charge-up voltage, {approx} a few volts, for both electrically isolated surfaces and insulators. Some important applications pertaining to ion beam-material interactions include surface analysis by secondary ion mass spectrometry (SIMS), voltage-contrast microscopy for semiconductor device inspection, materials processing, and ion beam lithography. These applications primarily require vacuum environments. On the other hand, a distinct area of activities constitutes formation of ions and ion transport in ambient environmental conditions, i.e., at atmospheric pressures. In this context, ion mobility spectrometry (IMS) is an important analytical device that uses negative ions and operates at ambient conditions. IMS is widely used in both physical and biological sciences including monitoring environmental conditions, security screening and disease detection. This article highlights several critical issues related to the ionization sources and ion transport in IMS. Additionally, the critical issues related to ion sources, transport and focusing are discussed in the context of SIMS with sub-micrometer spatial resolution.

  15. Experimental evaluation of a negative ion source for a heavy ionfusion negative ion driver

    SciTech Connect

    Grisham, L.R.; Hahto, S.K.; Hahto, S.T.; Kwan, J.W.; Leung, K.N.

    2005-01-18

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photodetached to neutrals [1,2,3]. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm{sup 2} was obtained under the same conditions that gave 57 mA/cm{sup 2} of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that is used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl{sup -} was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 mA/cm{sup 2}, sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source.

  16. Theoretical Concepts for Ultra-Relativistic Heavy Ion Collisions

    SciTech Connect

    McLerran,L.

    2009-07-27

    Various forms of matter may be produced in ultra-relativistic heavy ion collisions. These are the Quark GluonPlasma, the Color Glass Condensate , the Glasma and Quarkyoninc Matter. A novel effect that may beassociated with topological charge fluctuations is the Chiral Magnetic Effect. I explain these concepts andexplain how they may be seen in ultra-relatvistic heavy ion collisions

  17. Bose condensation of nuclei in heavy ion collisions.

    PubMed

    Tripathi, R K; Townsend, L W

    1994-07-01

    Using a fully self-consistent quantum statistical model, we demonstrate the possibility of Bose condensation of nuclei in heavy ion collisions. The most favorable conditions of high densities and low temperatures are usually associated with astrophysical processes and may be difficult to achieve in heavy ion collisions. Nonetheless, some suggestions for the possible experimental verification of the existence of this phenomenon are made.

  18. Bose condensation of nuclei in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Townsend, Lawrence W.

    1994-01-01

    Using a fully self-consistent quantum statistical model, we demonstrate the possibility of Bose condensation of nuclei in heavy ion collisions. The most favorable conditions of high densities and low temperatures are usually associated with astrophysical processes and may be difficult to achieve in heavy ion collisions. Nonetheless, some suggestions for the possible experimental verification of the existence of this phenomenon are made.

  19. Entropy lowering in ion-atom collisions

    SciTech Connect

    Nguyen, H.; Bredy, R.; Camp, H.A.; DePaola, B.D.; Lee, T.G.; Awata, T.

    2005-06-15

    In ion-atom collisions, the charge transfer cross section is typically a strong function of the energy defect or Q value, typically with smaller energy defects giving rise to higher capture probabilities. In some theoretical treatments, for example those based on the Demkov model, the cross section is a strong function of the magnitude of the Q value, but is independent of its sign. In order to test this predicted sign independence, one must compare capture cross sections from energetically symmetric collision channels. In this work, relative capture cross sections, differential in scattering angle, are measured and compared for the energetically symmetric channels: Rb{sup +}+Rb(5s){yields}Rb(5p)+Rb{sup +} and Rb{sup +}+Rb(5p){yields}Rb(5s)+Rb{sup +}. It is found that not only are the two cross sections not equal, but that in this case the endoergic channel was 3 times more likely. That is, the entropy reducing channel was preferred. An intuitive model, based on molecular potential curves, is suggested. The endoergic propensity is found to be consistent with this model.

  20. Emission source functions in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Shapoval, V. M.; Sinyukov, Yu. M.; Karpenko, Iu. A.

    2013-12-01

    Three-dimensional pion and kaon emission source functions are extracted from hydrokinetic model (HKM) simulations of central Au+Au collisions at the top Relativistic Heavy Ion Collider (RHIC) energy sNN=200 GeV. The model describes well the experimental data, previously obtained by the PHENIX and STAR collaborations using the imaging technique. In particular, the HKM reproduces the non-Gaussian heavy tails of the source function in the pair transverse momentum (out) and beam (long) directions, observed in the pion case and practically absent for kaons. The role of rescatterings and long-lived resonance decays in forming the mentioned long-range tails is investigated. The particle rescattering contribution to the out tail seems to be dominating. The model calculations also show substantial relative emission times between pions (with mean value 13 fm/c in the longitudinally comoving system), including those coming from resonance decays and rescatterings. A prediction is made for the source functions in Large Hadron Collider (LHC) Pb+Pb collisions at sNN=2.76 TeV, which are still not extracted from the measured correlation functions.

  1. Identifying Multiquark Hadrons from Heavy Ion Collisions

    SciTech Connect

    Cho, Sungtae; Furumoto, Takenori; Yazaki, Koichi; Hyodo, Tetsuo; Jido, Daisuke; Ohnishi, Akira; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Sekihara, Takayasu; Yasui, Shigehiro

    2011-05-27

    Identifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.

  2. Jet Structure in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Blaizot, J.-P.; Mehtar-Tani, Y.

    We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of a fast parton crossing a quark-gluon plasma. We recall the basic mechanisms responsible for medium induced radiation, underline the rapid disappearance of coherence effects, and the ensuing probabilistic nature of the medium induced cascade. We discuss how large radiative corrections modify the classical picture of the gluon cascade, and how these can be absorbed in a renormalization of the jet quenching parameter hat q. Then, we analyze the (wave)-turbulent transport of energy along the medium induced cascade, and point out the main characteristics of the angular structure of such a cascade. Finally, color decoherence of the incone jet structure is discussed. Modest contact with phenomenology is presented towards the end of the review.

  3. Jet structure in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Blaizot, J.-P.; Mehtar-Tani, Y.

    2015-10-01

    We review recent theoretical developments in the study of the structure of jets that are produced in ultra relativistic heavy ion collisions. The core of the review focusses on the dynamics of the parton cascade that is induced by the interactions of a fast parton crossing a quark-gluon plasma. We recall the basic mechanisms responsible for medium induced radiation, underline the rapid disappearance of coherence effects, and the ensuing probabilistic nature of the medium induced cascade. We discuss how large radiative corrections modify the classical picture of the gluon cascade, and how these can be absorbed in a renormalization of the jet quenching parameter q̂. Then, we analyze the (wave)-turbulent transport of energy along the medium induced cascade, and point out the main characteristics of the angular structure of such a cascade. Finally, color decoherence of the in-cone jet structure is discussed. Modest contact with phenomenology is presented towards the end of the review.

  4. 3D modeling of the electron energy distribution function in negative hydrogen ion sources.

    PubMed

    Terasaki, R; Fujino, I; Hatayama, A; Mizuno, T; Inoue, T

    2010-02-01

    For optimization and accurate prediction of the amount of H-ion production in negative ion sources, analysis of electron energy distribution function (EEDF) is necessary. We are developing a numerical code which analyzes EEDF in the tandem-type arc-discharge source. It is a three-dimensional Monte Carlo simulation code with realistic geometry and magnetic configuration. Coulomb collision between electrons is treated with the "binary collision" model and collisions with hydrogen species are treated with the "null-collision" method. We applied this code to the analysis of the JAEA 10 A negative ion source. The numerical result shows that the obtained EEDF is in good agreement with experimental results.

  5. Negative Electrodes for Li-Ion Batteries

    SciTech Connect

    Kinoshita, Kim; Zaghib, Karim

    2001-10-01

    Graphitized carbons have played a key role in the successful commercialization of Li-ion batteries. The physicochemical properties of carbon cover a wide range; therefore identifying the optimum active electrode material can be time consuming. The significant physical properties of negative electrodes for Li-ion batteries are summarized, and the relationship of these properties to their electrochemical performance in nonaqueous electrolytes, are discussed in this paper.

  6. The production and destruction of negative ions

    SciTech Connect

    Pegg, D.J.

    1993-01-01

    Single photon absorption-single electron detachment from few-electron atomic negative ions was studied. A crossed beam apparatus is being used to perform energy- and angle-resolved photoelectron spectroscopic measurements following photodetachment. Forward-directed electrons were collected and energy analyzed. The kinetic energies and yields of the photoelectrons were obtained by fitting the spectral peaks to Gaussian functions. Electron affinities, asymmetry parameters and cross sections are determined from these measurements. A ratio method in which the cross section for the ion of interest is measured relative to that of a reference ion was used. The study of the photodetachment of Li[sup [minus

  7. Factorization, the Glasma and the Ridge in heavy ion collisions

    SciTech Connect

    Venugopalan, Raju

    2008-10-13

    High energy heavy ion collisions can be efficiently described as the collision of two sheets of Color Glass Condensate. The dynamics of the collision can be studied ab initio in a systematic effective field theory approach. This requires factorization theorems that separate the initial state evolution of the wave functions with energy from the final state interactions that produce matter with high energy densities called the Glasma. We discuss how this matter is formed, its remarkable properties and its relevance for understanding thermalization of the Quark Gluon Plasma in heavy ion collisions. Long range rapidity correlations in the collision that have a remarkable ridge like structure may allow us to probe early times in the collision and infer directly the properties of the Glasma.

  8. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS.

    SciTech Connect

    STEINBERG,P.A.FOR THE PHOBOS COLLABORATION

    2002-07-24

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  9. Study of negative ion transport phenomena in a plasma source

    NASA Astrophysics Data System (ADS)

    Riz, D.; Paméla, J.

    1996-07-01

    NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.

  10. Ion collision crosssection measurements in quadrupole ion traps using a time-frequency analysis method.

    PubMed

    He, Muyi; Guo, Dan; Chen, Yu; Xiong, Xingchuang; Fang, Xiang; Xu, Wei

    2014-12-01

    In this study, a method for measuring ion collision crosssections (CCSs) was proposed through time-frequency analysis of ion trajectories in quadrupole ion traps. A linear ion trap with added high-order electric fields was designed and simulated. With the presence of high-order electric fields and ion-neutral collisions, ion secular motion frequency within the quadrupole ion trap will be a function of ion motion amplitude, thus a function of time and ion CCS. A direct relationship was then established between ion CCS and ion motion frequency with respect to time, which could be obtained through time-frequency analysis of ion trajectories (or ion motion induced image currents). To confirm the proposed theory, realistic ion trajectory simulations were performed, where the CCSs of bradykinin, angiotensin I and II, and ubiquitin ions were calculated from simulated ion trajectories. As an example, differentiation of isomeric ubiquitin ions was also demonstrated in the simulations. PMID:25319271

  11. Ultracold collisions between Rb atoms and a Sr+ ion

    NASA Astrophysics Data System (ADS)

    Meir, Ziv; Sikorsky, Tomas; Ben-Shlomi, Ruti; Dallal, Yehonatan; Ozeri, Roee

    2015-05-01

    In last decade, a novel field emerged, in which ultracold atoms and ions in overlapping traps are brought into interaction. In contrast to the short ranged atom-atom interaction which scales as r-6, atom-ion potential persists for hundreds of μm's due to its lower power-law scaling - r-4. Inelastic collisions between the consistuents lead to spin and charge transfer and also to molecule formation. Elastic collisions control the energy transfer between the ion and the atoms. The study of collisions at the μK range has thus far been impeded by the effect of the ion's micromotion which limited collision energy to mK scale. Unraveling this limit will allow to investigate few partial wave and even S-wave collisions. Our system is capable of trapping Sr+ ions and Rb and Sr atoms and cooling them to their quantum ground state. Atoms and ions are trapped and cooled in separate chambers. Then, the atoms are transported using an optical conveyer belt to overlap the ions. In contrast to other experiments in this field where the atoms are used to sympathetic cool the ion, our system is also capable of ground state cooling the ion before immersing it into the atom cloud. By this method, we would be able to explore heating and cooling dynamics in the ultracold regime.

  12. Development of versatile multiaperture negative ion sources

    SciTech Connect

    Cavenago, M.; Minarello, A.; Sattin, M.; Serianni, G.; Antoni, V.; Bigi, M.; Pasqualotto, R.; Recchia, M.; Veltri, P.; Agostinetti, P.; Barbisan, M.; Baseggio, L.; Cervaro, V.; Degli Agostini, F.; Franchin, L.; Laterza, B.; Ravarotto, D.; Rossetto, F.; Zaniol, B.; Zucchetti, S.; and others

    2015-04-08

    Enhancement of negative ion sources for production of large ion beams is a very active research field nowadays, driven from demand of plasma heating in nuclear fusion devices and accelerator applications. As a versatile test bench, the ion source NIO1 (Negative Ion Optimization 1) is being commissioned by Consorzio RFX and INFN. The nominal beam current of 135 mA at −60 kV is divided into 9 beamlets, with multiaperture extraction electrodes. The plasma is sustained by a 2 MHz radiofrequency power supply, with a standard matching box. A High Voltage Deck (HVD) placed inside the lead shielding surrounding NIO1 contains the radiofrequency generator, the gas control, electronics and power supplies for the ion source. An autonomous closed circuit water cooling system was installed for the whole system, with a branch towards the HVD, using carefully optimized helical tubing. Insulation transformer is installed in a nearby box. Tests of several magnetic configurations can be performed. Status of experiments, measured spectra and plasma luminosity are described. Upgrades of magnetic filter, beam calorimeter and extraction grid and related theoretical issues are reviewed.

  13. Development of versatile multiaperture negative ion sources

    NASA Astrophysics Data System (ADS)

    Cavenago, M.; Serianni, G.; Antoni, V.; Bigi, M.; De Muri, M.; Pasqualotto, R.; Recchia, M.; Veltri, P.; Agostinetti, P.; Barbisan, M.; Baseggio, L.; Cervaro, V.; Cazzador, M.; Degli Agostini, F.; Franchin, L.; Kulevoy, T.; Laterza, B.; Mimo, A.; Minarello, A.; Petrenko, S.; Ravarotto, D.; Rossetto, F.; Sattin, M.; Zaniol, B.; Zucchetti, S.

    2015-04-01

    Enhancement of negative ion sources for production of large ion beams is a very active research field nowadays, driven from demand of plasma heating in nuclear fusion devices and accelerator applications. As a versatile test bench, the ion source NIO1 (Negative Ion Optimization 1) is being commissioned by Consorzio RFX and INFN. The nominal beam current of 135 mA at -60 kV is divided into 9 beamlets, with multiaperture extraction electrodes. The plasma is sustained by a 2 MHz radiofrequency power supply, with a standard matching box. A High Voltage Deck (HVD) placed inside the lead shielding surrounding NIO1 contains the radiofrequency generator, the gas control, electronics and power supplies for the ion source. An autonomous closed circuit water cooling system was installed for the whole system, with a branch towards the HVD, using carefully optimized helical tubing. Insulation transformer is installed in a nearby box. Tests of several magnetic configurations can be performed. Status of experiments, measured spectra and plasma luminosity are described. Upgrades of magnetic filter, beam calorimeter and extraction grid and related theoretical issues are reviewed.

  14. Classical gluon production amplitude in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Chirilli, Giovanni Antonio

    2016-03-01

    The distribution of quarks and gluons produced in the initial stages of nuclear collisions, known as the initial condition of the Quark-Gluon Plasma formation, is the fundamental building block of heavy-ion theory. I will present the scattering amplitude, beyond the leading order, of the classical gluon produced in heavy-ion collisions. The result is obtained in the framework of saturation physics and Wilson lines formalism.

  15. Jets and Vector Bosons in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    de la Cruz, Begoña

    2013-11-01

    This paper reviews experimental results on jets and electroweak boson (photon,Wand Z) production in heavy-ion collisions, from the CMS and ATLAS detectors, using data collected during 2011 PbPb run and pp data collected at an equivalent energy. By comparing the two collision systems, the energy loss of the partons propagating through the medium produced in PbPb collisions can be studied. Its characterization is done using dijet events and isolated photon-jet pairs. Since the electroweak gauge bosons do not participate in the strong interaction, and are thus unmodified by the nuclear medium, they serve as clean probes of the initial state in the collision.

  16. Negative ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  17. EDITORIAL: Negative ion based neutral beam injection

    NASA Astrophysics Data System (ADS)

    Hemsworth, R. S.

    2006-06-01

    It is widely recognized that neutral beam injection (NBI), i.e. the injection of high energy, high power, beams of H or D atoms, is a flexible and reliable system that has been the main heating system on a large variety of fusion devices, and NBI has been chosen as one of the three heating schemes of the International Tokomak Reactor (ITER). To date, all the NBI systems but two have been based on the neutralization (in a simple gas target) of positive hydrogen or deuterium ions accelerated to <100 keV/nucleon. Above that energy the neutralization of positive ions falls to unacceptably low values, and higher energy neutral beams have to be created by the neutralization of accelerated negative ions (in a simple gas target), as this remains high (approx60%) up to >1 MeV/nucleon. Unfortunately H- and D- are difficult to create, and the very characteristic that makes them attractive, the ease with which the electron is detached from the ion, means that it is difficult to create high concentrations or fluxes of them, and it is difficult to avoid substantial, collisional, losses in the extraction and acceleration processes. However, there has been impressive progress in negative ion sources and accelerators over the past decade, as demonstrated by the two pioneering, operational, multi-megawatt, negative ion based, NBI systems at LHD (180 keV, H0) and JT-60U (500 keV, D0), both in Japan. Nevertheless, the system proposed for ITER represents a substantial technological challenge as an increase is required in beam energy, to 1 MeV, D0, accelerated ion (D-) current, to 40 A, accelerated current density, 200 A m-2 of D-, and pulse length, to 1 h. At the Fourth IAEA Technical Meeting on Negative Ion Based Neutral Beam Injectors, hosted by the Consorzio RFX, Padova, Italy, 9-11 May 2005, the status of the R&D aimed at the realization of the injectors for ITER was presented. Because of the importance of this development to the success of the ITER project, participants at that

  18. The description of charge transfer in fast negative ions scattering on water covered Si(100) surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Qiu, Shunli; Liu, Pinyang; Xiong, Feifei; Lu, Jianjie; Liu, Yuefeng; Li, Guopeng; Liu, Yiran; Ren, Fei; Xiao, Yunqing; Gao, Lei; Zhao, Qiushuang; Ding, Bin; Li, Yuan; Guo, Yanling; Chen, Ximeng

    2016-11-01

    Doping has significantly affected the characteristics and performance of semiconductor electronic devices. In this work, we study the charge transfer processes for 8.5-22.5 keV C- and F- ions scattering on H2O-terminated p-type Si(100) surfaces with two different doping concentrations. We find that doping has no influence on negative-ion formation for fast collisions in this relatively high energy range. Moreover, we build a model to calculate negative ion fractions including the contribution from positive ions. The calculations support the nonadiabatic feature of charge transfer.

  19. New types of negative ion sources

    SciTech Connect

    Borisko, V.N.; Lapshin, V.I.

    1995-12-31

    The plasma sources of negative ions which were elaborated in Kharkov State University are considered in this paper. These sources use the mechanism of dissociative stick of electrons with low energies to molecules of a working gas. The effective work of such sources needs a special system of low energy electrons formation. The effect of secondary electron emission used in negative ion sources is considered. The electrode material with a great coefficient of secondary electron emission allows one to obtain a few slow electrons per one bombarding electron. A plasma of Penning discharge is an emitter of initial elections. The electron electromagnetic trap in the secondary electron emission region allows one to enlarge volume of interaction of low energy electrons with the working gas molecules. The lifetime of slow electrons grows in this trap.

  20. Photo- and collision-induced dissociation of Ar cluster ions

    NASA Astrophysics Data System (ADS)

    Kondow, Tamotsu; Nagata, Takeshi; Nonose, Shinji

    1992-04-01

    Photo- and collision- induced dissociation of an argon cluster ion, Arn+, were investigated by use of mass spectrometry. The kinetic and angular distributions of the ionic and neutral photofragments revealed two reaction pathways; dissociation of the trimeric core ion and evaporation from its solvation shell. In the Kr and Ne collisions with Arn+, the size- and collision energy- dependences of the dissociation cross sections were explained in the scheme of the charge - induced dipole, and induced dipole - induced dipole scatterings. Conversion efficiency of the collision energy into the internal energy of Arn+ was found to be proportional to the internal degrees of freedom. The upper limit of the conversion efficiency was estimated to be about 60 % in the collision energy of 0.2 eV.

  1. Analysis of plasma dynamics of a negative ion source based on probe measurements

    SciTech Connect

    Bandyopadhyay, M.; Tanga, A.; Falter, H.D.; Franzen, P.; Heinemann, B.; Holtum, D.; Kraus, W.; Lackner, K.; McNeely, P.; Riedl, R.; Speth, E.; Wilhelm, R.

    2004-10-15

    Measurements and analysis of the plasma flow in an ion source made for negative ion extraction are reported in this article. The plasma flow has been measured using a Mach probe having two orthogonal probe heads. The plasma flow along the axis is driven by the electron pressure gradient, dragging along the ions via a measured ambipolar electric field against the collisional drag on the background gas. The force on the ions created by the electric field is mainly balanced by the collisional drag force. The collision between the ions and the background gas creates a pressure gradient along the flow direction. The one-dimensional plasma dynamic analysis supports the consistency of the experimental observations. The presence of a transverse magnetic filter reduces the plasma flow velocity, which could affect the negative ion production on the cesiated grid surface. A simple analysis shows that a strong plasma flow could enhance the surface production of negative ions.

  2. 3D modelling of negative ion extraction from a negative ion source

    NASA Astrophysics Data System (ADS)

    Mochalskyy, S.; Lifschitz, A. F.; Minea, T.

    2010-10-01

    The development of a suitable negative ion source constitutes a crucial step in the construction of the neutral beam injector of ITER. To fulfil the ITER requirements in terms of heating and current drive, the negative ion source should deliver 40 A of D-. The achievement of such a source constitutes a technical and scientific challenge, and it requires a deeper understanding of the underlying physics of the source. The present knowledge of the ion extraction mechanism from the negative ion source is limited. It constitutes a complex problem that involves understanding the behaviour of magnetized plasma sheaths when negative ions and electrons are pulled out from the plasma. Moreover, due to the asymmetry induced by the crossed magnetic configuration used to filter the electrons, any realistic study of this problem must consider the three spatial dimensions. To address this problem in a realistic way, a 3D particles-in-cell electrostatic code specifically designed for this system was developed. The code uses a Cartesian coordinate system and it can deal with complex boundary geometry as it is the case of the extraction apertures (Hemsworth et al 2009 Nucl. Fusion 49 045006). The complex magnetic field that is applied to deflect electrons is also taken into account. This code, called ONIX, was used to investigate the plasma properties and the transport of negative ions and electrons close to a source extraction aperture. Results in the collisionless approach on the formation of the plasma meniscus and the screening of the extraction field by the plasma are presented here, as well as negative ions trajectories. Negative ion extraction efficiency from volume and surfaces is discussed.

  3. String theory and relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Friess, Joshua J.

    It has long been known that string theory describes not only quantum gravity, but also gauge theories with a high degree of supersymmetry. Said gauge theories also have a large number of colors in a regime with a large effective coupling constant that does not depend on energy scale. Supersymmetry is broken in nature, if it is present at all, however the gauge theory described by string theory shares many common features with QCD at temperatures above the quark deconfinement transition. It is generally though not entirely accepted that collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC) produce a thermalized Quark-Gluon Plasma (QGP) at temperatures distinctly above the transition temperature as determined from lattice simulations. Hence, we might hope that a string theoretic description of gauge dynamics can elucidate some otherwise intractable physics of the strongly coupled plasma. Here we use string theory to calculate the outgoing energy flux from a RHIC process called "jet quenching", in which a high-momentum quark or gluon traverses a large distance in the QGP. Our setup is in the context of the highly supersymmetric string dual gauge theory, but we nevertheless find that the gross features of the resulting stress-energy tensor match reasonably well with experimental data. We will furthermore discuss the technology behind computations of the leading-order corrections to gauge theory observables that are uniquely string-induced, and we will describe a potential solution to string theory that could resolve a number of discrepancies between the traditional highly supersymmetric setup and QCD---in particular, a significant reduction in the amount of supersymmetry, and a finite effective coupling that is still greater than unity but does depend on energy scale.

  4. Skyrme tensor force in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Stevenson, P. D.; Suckling, E. B.; Fracasso, S.; Barton, M. C.; Umar, A. S.

    2016-05-01

    Background: It is generally acknowledged that the time-dependent Hartree-Fock (TDHF) method provides a useful foundation for a fully microscopic many-body theory of low-energy heavy ion reactions. The TDHF method is also known in nuclear physics in the small-amplitude domain, where it provides a useful description of collective states, and is based on the mean-field formalism, which has been a relatively successful approximation to the nuclear many-body problem. Currently, the TDHF theory is being widely used in the study of fusion excitation functions, fission, and deep-inelastic scattering of heavy mass systems, while providing a natural foundation for many other studies. Purpose: With the advancement of computational power it is now possible to undertake TDHF calculations without any symmetry assumptions and incorporate the major strides made by the nuclear structure community in improving the energy density functionals used in these calculations. In particular, time-odd and tensor terms in these functionals are naturally present during the dynamical evolution, while being absent or minimally important for most static calculations. The parameters of these terms are determined by the requirement of Galilean invariance or local gauge invariance but their significance for the reaction dynamics have not been fully studied. This work addresses this question with emphasis on the tensor force. Method: The full version of the Skyrme force, including terms arising only from the Skyrme tensor force, is applied to the study of collisions within a completely symmetry-unrestricted TDHF implementation. Results: We examine the effect on upper fusion thresholds with and without the tensor force terms and find an effect on the fusion threshold energy of the order several MeV. Details of the distribution of the energy within terms in the energy density functional are also discussed. Conclusions: Terms in the energy density functional linked to the tensor force can play a non

  5. Probing dissociative electron attachment through heavy-Rydberg ion-pair production in Rydberg atom collisions

    NASA Astrophysics Data System (ADS)

    Buathong, S.; Kelley, M.; Dunning, F. B.

    2016-10-01

    Electron transfer in collisions between low-n, n = 12, Rydberg atoms and targets that attach low-energy electrons can lead to the formation of heavy-Rydberg ion-pair states comprising a weakly-bound positive-negative ion pair that orbit each other at large separations. Measurements of the velocity and angular distribution of ion-pair states produced in collisions with 1,1,1-C2Cl3F3, CBrCl3, BrCN, and Fe(CO)5 are used to show that electron transfer reactions furnish a new technique with which to examine the lifetime and decay energetics of the excited intermediates formed during dissociative electron capture. The results are analyzed with the aid of Monte Carlo simulations based on the free electron model of Rydberg atom collisions. The data further highlight the capabilities of Rydberg atoms as a microscale laboratory in which to probe the dynamics of electron attachment reactions.

  6. Negative ion source with low temperature transverse divergence optical system

    DOEpatents

    Whealton, John H.; Stirling, William L.

    1986-01-01

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  7. Negative ion source with low temperature transverse divergence optical system

    DOEpatents

    Whealton, J.H.; Stirling, W.L.

    1985-03-04

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  8. DNA Oligonucleotide Fragment Ion Rearrangements Upon Collision-Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Harper, Brett; Neumann, Elizabeth K.; Solouki, Touradj

    2015-08-01

    Collision-induced dissociation (CID) of m/z-isolated w type fragment ions and an intact 5' phosphorylated DNA oligonucleotide generated rearranged product ions. Of the 21 studied w ions of various nucleotide sequences, fragment ion sizes, and charge states, 18 (~86%) generated rearranged product ions upon CID in a Synapt G2-S HDMS (Waters Corporation, Manchester, England, UK) ion mobility-mass spectrometer. Mass spectrometry (MS), ion mobility spectrometry (IMS), and theoretical modeling data suggest that purine bases can attack the free 5' phosphate group in w type ions and 5' phosphorylated DNA to generate sequence permuted [phosphopurine]- fragment ions. We propose and discuss a potential mechanism for generation of rearranged [phosphopurine]- and complementary y-B type product ions.

  9. Negative Ion Photoelectron Spectra of Halomethyl Anions

    NASA Astrophysics Data System (ADS)

    Vogelhuber, Kristen M.; Wren, Scott W.; McCoy, Anne B.; Ervin, Kent M.; Lineberger, W. Carl

    2009-06-01

    Halomethyl anions undergo a significant geometry change upon electron photodetachment, resulting in multiple extended vibrational progressions in the photoelectron spectra. The normal mode analysis that successfully models photoelectron spectra when geometry changes are modest is unable to reproduce the experimental data using physically reasonable parameters. A three-dimensional anharmonic coupled-mode analysis was employed to accurately reproduce the observed vibrational structure. We present the 364 nm negative ion photoelectron spectra of the halomethyl anions CHX_2^- and CDX_2^- (X = Cl, Br, I) and report electron affinities, vibrational frequencies, and geometries.

  10. Cesium injection system for negative ion duoplasmatrons

    DOEpatents

    Kobayashi, Maasaki; Prelec, Krsto; Sluyters, Theodorus J

    1978-01-01

    Longitudinally extending, foraminous cartridge means having a cylindrical side wall forming one flat, circular, tip end surface and an opposite end; an open-ended cavity, and uniformly spaced orifices for venting the cavity through the side wall in the annulus of a plasma ring for uniformly ejecting cesium for coating the flat, circular, surface. To this end, the cavity is filled with a cesium containing substance and attached to a heater in a hollow-discharge duoplasmatron. By coating the flat circular surface with a uniform monolayer of cesium and locating it in an electrical potential well at the end of a hollow-discharge, ion duoplasmatron source of an annular hydrogen plasma ring, the negative hydrogen production from the duoplasmatron is increased. The negative hydrogen is produced on the flat surface of the cartridge and extracted by the electrical potential well along a trajectory coaxial with the axis of the plasma ring.

  11. Effects of Ion-Ion Collisions and Inhomogeneity in Two-Dimensional Kinetic Ion Simulations of Stimulated Brillouin Backscattering

    SciTech Connect

    Cohen, B I; Divol, L; Langdon, A B; Williams, E A

    2005-10-17

    Two-dimensional simulations with the BZOHAR [B.I. Cohen, B.F. Lasinski, A.B. Langdon, and E.A. Williams, Phys. Plasmas 4, 956 (1997)] hybrid code (kinetic particle ions and Boltzmann fluid electrons) have been used to investigate the saturation of stimulated Brillouin backscatter (SBBS) instability including the effects of ion-ion collisions and inhomogeneity. Ion-ion collisions tend to increase ion-wave dissipation, which decreases the gain exponent for stimulated Brillouin backscattering; and the peak Brillouin backscatter reflectivities tend to decrease with increasing collisionality in the simulations. Two types of Langevin-operator, ion-ion collision models were implemented in the simulations. In both models used the collisions are functions of the local ion temperature and density, but the collisions have no velocity dependence in the first model. In the second model, the collisions are also functions of the energy of the ion that is being scattered so as to represent a Fokker-Planck collision operator. Collisions decorrelate the ions from the acoustic waves in SBS, which disrupts ion trapping in the acoustic wave. Nevertheless, ion trapping leading to a hot ion tail and two-dimensional physics that allows the SBS ion waves to nonlinearly scatter remain robust saturation mechanisms for SBBS in a high-gain limit over a range of ion collisionality. SBS backscatter in the presence of a spatially nonuniform plasma flow is also investigated. Simulations show that depending on the sign of the spatial gradient of the flow relative to the backscatter, ion trapping effects that produce a nonlinear frequency shift can enhance (auto-resonance) or decrease (anti-auto-resonance) reflectivities in agreement with theoretical arguments.

  12. Head-on collisions of electrostatic solitons in multi-ion plasmas

    SciTech Connect

    Verheest, Frank; Hellberg, Manfred A.; Hereman, Willy A.

    2012-09-15

    Head-on collisions between two electrostatic solitons are dealt with by the Poincare-Lighthill-Kuo method of strained coordinates, for a plasma composed of a number of cold (positive and negative) ion species and Boltzmann electrons. The nonlinear evolution equations for both solitons and their phase shift due to the collision, resulting in time delays, are established. A Korteweg-de Vries description is the generic conclusion, except when the plasma composition is special enough to replace the quadratic by a cubic nonlinearity in the evolution equations, with concomitant repercussions on the phase shifts. Applications include different two-ion plasmas, showing positive or negative polarity solitons in the generic case. At critical composition, a combination of a positive and a negative polarity soliton is possible.

  13. HEAVY ION COLLISIONS AND NEW FORMS OF MATTER

    SciTech Connect

    MCLERRAN,L.

    2007-07-02

    I discuss forms of high energy density matter in QCD. These include the Color Glass Condensate, the Glasma and the Quark Gluon Plasma. These all might be studied in ultra-relativistic heavy ion collisions, and the Color Glass Condensate might also be probed in electron-hadron collisions. I present the properties of such matter, and some aspects of what is known of their properties.

  14. Measurements of Thermal Photons in Heavy Ion Collisions with PHENIX

    SciTech Connect

    Dahms, T.; Awes, Terry C; Cianciolo, Vince; Efremenko, Yuri V; Enokizono, Akitomo; Hornback, Donald; Read Jr, Kenneth F; Silvermyr, David O; Sorensen, Soren P; Stankus, Paul W; Young, Glenn R; PHENIX, Collaboration

    2008-01-01

    Thermal photons are thought to be the ideal probe to measure the temperature of the quark-gluon plasma created in heavy ion collisions. PHENIX has measured direct photons with p{sub T} < 5 GeV/c via their internal conversions into e{sup +}e{sup -} pairs in Au+Au collisions at {radical}s{sub NN} = 200 GeV and has now provided a baseline measurement from p + p data.

  15. Hot topics in ultra-peripheral ion collisions

    SciTech Connect

    Baur, G.; Bertulani, C.A.; Chiu, M.; Ginzburg, I.F.; Hencken, K.; Klein, S.R.; Nystrand, J.; Piotrzkowski, K.; Roldao, C.G.; Silvermyr, D.; Thomas, J.H.; White, S.N.; Yepes, P.

    2001-10-16

    Ultra-peripheral collisions of relativistic heavy ions involve long-ranged electromagnetic interactions at impact parameters too large for hadronic interactions to occur. The nuclear charges are large; with the coherent enhancement, the cross sections are also large. Many types of photonuclear and purely electromagnetic interactions are possible. We present here an introduction to ultra-peripheral collisions, and present four of the most compelling physics topics.

  16. Electron-less negative ion extraction from ion-ion plasmas

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-03-09

    This paper presents experimental results showing that continuous negative ion extraction, without co-extracted electrons, is possible from highly electronegative SF{sub 6} ion-ion plasma at low gas pressure (1 mTorr). The ratio between the negative ion and electron densities is more than 3000 in the vicinity of the two-grid extraction and acceleration system. The measurements are conducted by both magnetized and non-magnetized energy analyzers attached to the external grid. With these two analyzers, we show that the extracted negative ion flux is almost electron-free and has the same magnitude as the positive ion flux extracted and accelerated when the grids are biased oppositely. The results presented here can be used for validation of numerical and analytical models of ion extraction from ion-ion plasma.

  17. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  18. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  19. 2D accelerator design for SITEX negative ion source

    SciTech Connect

    Whealton, J.H.; Raridon, R.J.; McGaffey, R.W.; McCollough, D.H.; Stirling, W.L.; Dagenhart, W.K.

    1983-01-01

    Solving the Poisson-Vlasov equations where the magnetic field, B, is assumed constant, we optimize the optical system of a SITEX negative ion source in infinite slot geometry. Algorithms designed to solve the above equations were modified to include the curved emitter boundary data appropriate to a negative ion source. Other configurations relevant to negative ion sources are examined.

  20. Isotope effect in ion-atom collisions

    SciTech Connect

    Barragan, P.; Errea, L. F.; Mendez, L.; Rabadan, I.

    2010-09-15

    We explain the origin of the unusual large isotopic dependence found in charge-transfer cross sections for H(D,T){sup +}+Be collisions. We show that this large effect appears in a semiclassical treatment as a consequence of the mass dependence of the charge-transfer transition probabilities, which is due to the variation of the radial velocity in the region where the nonadiabatic transitions take place. The possibility of finding such a large isotope effect in other collision systems is discussed.

  1. Source dimensions in ultrarelativistic heavy ion collisions

    SciTech Connect

    Herrmann, M.; Bertsch, G.F.

    1994-05-16

    Recent experiments on pion correlations, interpreted as interferometric measurements of the collision zone, are compared with models that distinguish a prehadronic phase and a hadronic phase. The models include prehadronic longitudinal expansion, conversion to hadrons in local kinetic equilibrium, and rescattering of the produced hadrons. The longitudinal radius measured in collisions of 200 GeV/u sulfur nuclei on a heavy target require the existence of a prehadronic phase which converts to the hadronic phase at densities around 0.8 GeV/fm{sup 3}. The transverse radii cannot be reproduced without introducing more complex dynamics into the transverse expansion.

  2. Hadron production in central heavy-ion collisions

    SciTech Connect

    Gagnon, R.; Simard, M.

    1984-07-01

    We extend a model developed by Margolis and collaborators to describe inclusive central particle production in p-p scattering at high energy to relativistic ion-ion collisions. We calculate the invariant production rate of any particle of mass m as a function of the temperature. Assuming that a temperature of approximately 130 MeV is reached in Ne-NaF collisions at 2.1 GeV/nucleon, we estimate the ratio sigma(..pi..)/sigma(K)approx.100, to be compared with the experimental value of 70 +- 46.

  3. Manipulating ion-atom collisions with coherent electromagnetic radiation.

    PubMed

    Kirchner, Tom

    2002-08-26

    Laser-assisted ion-atom collisions are considered in terms of a nonperturbative quantum mechanical description of the electronic motion. It is shown for the system He(2+) - H at 2 keV/amu that the collision dynamics depend strongly on the initial phase of the laser field and the applied wavelength. Whereas electronic transitions are caused by the concurrent action of the field and the projectile ion at relatively low frequencies, they can be separated into modified collisional capture and field ionization events in the region above the one-photon ionization threshold.

  4. GlycoMob: an ion mobility-mass spectrometry collision cross section database for glycomics.

    PubMed

    Struwe, Weston B; Pagel, Kevin; Benesch, Justin L P; Harvey, David J; Campbell, Matthew P

    2016-06-01

    Ion mobility mass spectrometry (IM-MS) is a promising analytical technique for glycomics that separates glycan ions based on their collision cross section (CCS) and provides glycan precursor and fragment masses. It has been shown that isomeric oligosaccharide species can be separated by IM and identified on basis of their CCS and fragmentation. These results indicate that adding CCSs information for glycans and glycan fragments to searchable databases and analysis pipelines will increase identification confidence and accuracy. We have developed a freely accessible database, GlycoMob ( http://www.glycomob.org ), containing over 900 CCSs values of glycans, oligosaccharide standards and their fragments that will be continually updated. We have measured the absolute CCSs of calibration standards, biologically derived and synthetic N-glycans ionized with various adducts in positive and negative mode or as protonated (positive ion) and deprotonated (negative ion) ions. PMID:26314736

  5. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    SciTech Connect

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  6. Models for Cometary Comae Containing Negative Ions

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Charnley, S. B.

    2012-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [I]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of our new models for the chemistry of cometary comae that include atomic and molecular anions. We calculate the impact of these anions on the charge balance and examine their importance for cometary coma chemistry.

  7. Slow collisions of multicharged ions with metal surfaces

    SciTech Connect

    Meyer, F.W.

    1993-12-31

    Some recent experimental results in the area of multicharged ion-surface interactions are summarized. Discussed are measurements of projectile K-Auger electron emission during interactions of hydrogen-like multicharged ions with clean and cesiated metal surfaces, measurements of total electron yields for various multicharged ions incident on metal targets, and measurements of projectile angular scattering during grazing metal surface collisions. The various experimental results are presented to illustrate progress in the understanding of multicharged ion-surface interactions in the area of above- vs sub-surface neutralization and relaxation processes, as well as to identify certain aspects of such interactions where the picture is as yet still incomplete.

  8. Secondary Molecular Ion Emission In Binary Projectile-Surface Collisions

    NASA Astrophysics Data System (ADS)

    Jalowy, T.; Neugebauer, R.; Farenzena, L. S.; Collado, V. M.; Schmidt-Böcking, H.; da Silveira, E. F.; Groeneveld, K. O.

    2003-08-01

    Secondary molecular ions, emitted from a LiF target bombarded by a MeV argon beam, are analyzed by a XY-TOF detection system. This new method allows, for each emitted ion, simultaneous measurement of its time-of flight (TOF) and its impact coordinates (XY) on the detector surface, after acceleration by a homogenous electric field. Angular distributions and initial velocities for atomic (H+ , Li+, C+) and for molecular (Hn+, CmHn+) ions are determined. The analysis reveals different emission processes, among them a unexpected emission of fast molecular ions from binary collisions.

  9. Meson interferometry in relativistic heavy ion collisions

    SciTech Connect

    Not Available

    1993-05-01

    This report contains discussions on the following topics: Recent HBT results form CERN experiment NA44; interferometry results from E802/E859/E866; recent results on two particle correlations from E814; source sizes from CERN data; intermittency and interferometry; Bose-Einstein correlations in 200A GeV S+Au collisions; HBT correlations at STAR; HBT interferometry with PHENIX; HBT calculations from ARC; three pion correlations; and pion correlations in proton-induced reactions.

  10. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, Ady; Prelec, Krsto

    1983-01-01

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  11. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, A.; Prelec, K.

    1980-12-12

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  12. Electronic excitations in fast ion-solid collisions

    SciTech Connect

    Burgdoerfer, J. . Dept. of Physics and Astronomy Oak Ridge National Lab., TN )

    1990-01-01

    We review recent developments in the study of electronic excitation of projectiles in fast ion-solid collisions. Our focus will be primarily on theory but experimental advances will also be discussed. Topics include the evidence for velocity-dependent thresholds for the existence of bound states, wake-field effects on excited states, the electronic excitation of channeled projectiles, transport phenomena, and the interaction of highly charged ions with surfaces. 44 refs., 14 figs.

  13. Quasimolecular single-nucleon effects in heavy-ion collisions

    SciTech Connect

    Erb, K.A.

    1984-01-01

    Several experimental examples are discussed to illustrate that single-particle molecular orbital behavior has become an established reality in nuclear physics over the last several years. Measurements and analyses of inelastic scattering in the /sup 13/C + /sup 12/C and /sup 17/O + /sup 12/C systems, and of neutron transfer in the /sup 13/C(/sup 13/C, /sup 12/C)/sup 14/C reaction, show that the motion of valence nucleons can be strongly and simultaneously influenced by both collision partners in heavy-ion collisions. This bvehavior is characteristic of a molecular (single-particle) rather than a direct (DWBA) mechanism: it demonstrates that the single-particle analog of atomic molecular motion plays an important role in nuclear reactions at bombarding energies near the Coulomb barrier. Such behavior may be even more pronounced in the collisions of massive nuclei that will be studied with the new generation of heavy-ion accelerators. 19 references.

  14. [12th International workshop on Inelastic Ion-Surface Collisions

    SciTech Connect

    Rabalais, J.W.; Nordlander, P.

    1999-10-15

    The twelfth international workshop on inelastic ion surface collisions was held at the Bahia Mar Resort and Conference Center on South Padre Island, Texas (USA) from January 24-29, 1999. The workshop brought together most of the leading researchers from around the world to focus on both the theoretical and experimental aspects of particle - surface interactions and related topics.

  15. Photon and dilepton production in high energy heavy ion collisions

    DOE PAGES

    Sakaguchi, Takao

    2015-05-07

    The recent results on direct photons and dileptons in high energy heavy ion collisions, obtained particularly at RHIC and LHC are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the physics learned from the results.

  16. Entropy and hadrochemical composition in heavy ion collision

    SciTech Connect

    Biro, T.; Barz, H.W.; Lukacs, B.; Zimanyi, J.

    1983-06-01

    The composite particle production in a heavy ion collision is calculated in the framework of a hadrochemical model. A critical comparison is performed between the produced entropy and the observables. The entropy production during the hadrochemical processes is found to be negligible.

  17. Physical effects of negative air ions in a wet sauna

    NASA Astrophysics Data System (ADS)

    Watanabe, I.; Noro, Hiroshi; Ohtsuka, Yoshinori; Mano, Yukio; Agishi, Yuko

    The physical effects of negative air ions on humans were determined in an experimental sauna room equipped with an ionizer. Thirteen healthy persons took a wet sauna bath (dry bulb temperature 42° C, relative humidity 100%, 10 min exposure) with or without negative air ions. The subjects were not told when they were being exposed to negative air ions. There were no differences in the moods of these persons or changes in their blood pressures between the two saunas. The surface temperatures of the foreheads, hands, and legs in the sauna with negative ions were significantly higher than those in the sauna without ions. The pulse rates and sweat produced in the sauna with ions were singificantly higher than those in the sauna without ions. The results suggest that negative ions may amplify the effects on humans of the sauna.

  18. Production of negative hydrogen ions on metal grids

    SciTech Connect

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K.

    2015-03-15

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  19. Production of negative hydrogen ions on metal grids

    NASA Astrophysics Data System (ADS)

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K.

    2015-03-01

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  20. Cavity Ring-Down System for Density Measurement of Negative Hydrogen Ion on Negative Ion Source

    SciTech Connect

    Nakano, Haruhisa; Tsumori, Katsuyoshi; Nagaoka, Kenichi; Shibuya, Masayuki; Kisaki, Masashi; Ikeda, Katsunori; Osakabe, Masaki; Kaneko, Osamu; Asano, Eiji; Kondo, Tomoki; Sato, Mamoru; Komada, Seiji; Sekiguchi, Haruo; Takeiri, Yasuhiko; Fantz, Ursel

    2011-09-26

    A Cavity Ring-Down (CRD) system was applied to measure the density of negative hydrogen ion (H{sup -}) in vicinity of extraction surface in the H{sup -} source for the development of neutral beam injector on Large Helical Device (LHD). The density measurement with sampling time of 50 ms was carried out. The measured density with the CRD system is relatively good agreement with the density evaluated from extracted beam-current with applying a similar relation of positive ion sources. In cesium seeded into ion-source plasma, the linearity between an arc power of the discharge and the measured density with the CRD system was observed. Additionally, the measured density was proportional to the extracted beam current. These characteristics indicate the CRD system worked well for H{sup -} density measurement in the region of H{sup -} and extraction.

  1. Negative ions at Titan and Enceladus: recent results.

    PubMed

    Coates, Andrew J; Wellbrock, Anne; Lewis, Gethyn R; Jones, Geraint H; Young, David T; Crary, Frank J; Waite, J Hunter; Johnson, Robert E; Hille, Thomas W; Sittler, Edward C

    2010-01-01

    The detection of heavy negative ions (up to 13 800 amu) in Titan's ionosphere is one of the tantalizing new results from the Cassini mission. These heavy ions indicate for the first time the existence of heavy hydrocarbon and nitrile molecules in this primitive Earth-like atmosphere. These ions were suggested to be precursors of aerosols in Titan's atmosphere and may precipitate to the surface as tholins. We present the evidence for and the analysis of these heavy negative ions at Titan. In addition we examine the variation of the maximum mass of the Titan negative ions with altitude and latitude for the relevant encounters so far, and we discuss the implications for the negative ion formation process. We present data from a recent set of encounters where the latitude was varied between encounters, with other parameters fixed. Models are beginning to explain the low mass negative ions, but the formation process for the higher mass ions is still not understood. It is possible that the structures may be chains, rings or even fullerenes. Negative ions, mainly water clusters in this case, were seen during Cassini's recent close flybys of Enceladus. We present mass spectra from the Enceladus plume, showing water clusters and additional species. As at Titan, the negative ions indicate chemical complexities which were unknown before the Cassini encounters, and are indicative of a complex balance between neutrals and positively and negatively charged ions. PMID:21302552

  2. Effect of fast positive ions incident on caesiated plasma grid of negative ion source

    SciTech Connect

    Bacal, M.

    2012-02-15

    This paper describes the effect on negative ion formation on a caesiated surface of the backscattering of positive ions approaching it with energy of a few tens of eV. For a positive ion energy of 45 eV, the surface produced negative ion current density due to these fast positive ions is 12 times larger than that due to thermal atoms, thus dominating the negative ion surface production instead of the thermal atoms, as considered until now.

  3. Threshold photodetachment spectroscopy of negative ions

    SciTech Connect

    Kitsopoulos, T.N.

    1991-12-01

    This thesis is concerned with the development and application of high resolution threshold photodetachment spectroscopy of negative ions. Chapter I deals with the principles of our photodetachment technique, and in chapter II a detailed description of the apparatus is presented. The threshold photodetachment spectra of I{sup {minus}}, and SH{sup {minus}}, presented in the last sections of chapter II, indicated that a resolution of 3 cm{sup {minus}1} can be achieved using our technique. In chapter III the threshold photodetachment spectroscopy study of the transition state region of I + HI and I + Di reactions is discussed. Our technique probes the transition state region directly, and the results of our study are the first unambiguous observations of reactive resonances in a chemical reaction. Chapters IV, V and VI are concerned with the spectroscopy of small silicon and carbon clusters. From our spectra we were able to assign electronic state energies and vibrational frequencies for the low lying electronics states of Si{sub n} (n=2,3,4), C{sub 5} and their corresponding anions.

  4. Beyond the thermal model in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Wolschin, Georg

    2016-08-01

    Deviations from thermal distribution functions of produced particles in relativistic heavy-ion collisions are discussed as indicators for nonequilibrium processes. The focus is on rapidity distributions of produced charged hadrons as functions of collision energy and centrality, which are used to infer the fraction of particles produced from a central fireball as compared with that from the fragmentation sources that are out of equilibrium with the rest of the system. Overall thermal equilibrium would only be reached for large times t →∞ .

  5. Ion trap collision-induced dissociation of locked nucleic acids.

    PubMed

    Huang, Teng-yi; Kharlamova, Anastasia; McLuckey, Scott A

    2010-01-01

    Gas-phase dissociation of model locked nucleic acid (LNA) oligonucleotides and functional LNA-DNA chimeras have been investigated as a function of precursor ion charge state using ion trap collision-induced dissociation (CID). For the model LNA 5 and 8 mer, containing all four LNA monomers in the sequence, cleavage of all backbone bonds, generating a/w-, b/x-, c/y-, and d/z-ions, was observed with no significant preference at lower charge states. Base loss ions, except loss of thymine, from the cleavage of N-glycosidic bonds were also present. In general, complete sequence coverage was achieved in all charge states. For the two LNA-DNA chimeras, however, dramatic differences in the relative contributions of the competing dissociation channels were observed among different precursor ion charge states. At lower charge states, sequence information limited to the a-Base/w-fragment ions from cleavage of the 3'C-O bond of DNA nucleotides, except thymidine (dT), was acquired from CID of both the LNA gapmer and mixmer ions. On the other hand, extensive fragmentation from various dissociation channels was observed from post-ion/ion ion trap CID of the higher charge state ions of both LNA-DNA chimeras. This report demonstrates that tandem mass spectrometry is effective in the sequence characterization of LNA oligonucleotides and LNA-DNA chimeric therapeutics.

  6. Pion probes of heavy ion collision dynamics

    SciTech Connect

    Rasmussen, J.O.

    1985-03-01

    Pion interferometry data (2-pion correlation) are examined for information on size and lifetime of the pion-emitting matter. The temperatures inferred from pion, proton and kaon spectra are considered. An explanation consistent with the above size and temperature data is proposed. New theoretical Monte Carlo results on spectator effects on heavy-ion pion spectra are presented. 23 refs., 9 figs.

  7. Anisotropic negative-ion emission from cluster nanoplasmas

    NASA Astrophysics Data System (ADS)

    Rajeev, R.; Dalui, Malay; Trivikram, T. Madhu; Rishad, K. P. M.; Krishnamurthy, M.

    2015-06-01

    Recent experiments have shown that the enhanced charge transfer by Rydberg excited clusters (ECTREC) reduces the highly charged ions very efficiently to neutral atoms and negative ions with little loss of momentum. Neutral-atom emission is anisotropic with respect to the laser polarization and the anisotropy is larger than that of the ion emission from Coulomb explosion of isolated single clusters. In such a scenario, it is expected that the negative-ion emission (like neutrals) should be anisotropic and have larger propensity along the laser polarization than in the perpendicular direction. Further, it may be anticipated that negative-ion emission is more anisotropic than neutral-atom emission if ECTREC is taken in to account. We demonstrate that the negative-ion emission is anisotropic. Contrary to expectations, the negative-ion emission anisotropy is not more than that of the neutral-atom emission. We show that this can be rationalized if low-energy (about 10 eV) electron collisional detachment of the negative ions is taken into account. Electron collisional detachment depletes the negative-ion yield preferentially along the laser polarization direction and reduces the negative-ion emission anisotropy.

  8. The Photodetachment of Ps ion and Low-Energy e(+) -H Collisions

    NASA Technical Reports Server (NTRS)

    Ward, S.J.

    2007-01-01

    Two calculations in the area of positron collisions are presented. The first is the calculation of the photodetachment cross section of the positronium negative ion (Ps-) using accurate variational wave functions for both the initial bound-state and the final P continuum state. The second is the calculation of partial wave cross sections for Ps(1s)-formation in ef -H(ls) collisions using the hyperspherical hidden crossing method. Since the S-wave Stiickelberg phase is close to pi, the very small S-wave Ps(1s) formation cross section can be understood in terms of destructive interference. Other examples in positron collisions are given where it is either known or expected that destructive interference is the cause of the small S-wave Ps(1s) formation cross section. In addition, examples are presented of processes in atomic physics where the Stiickelberg phase is a multiple of pi/2.

  9. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions

  10. Two models with rescattering for high energy heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Bøggild, H.; Hansen, Ole; Humanic, T. J.

    2006-12-01

    The effects of hadronic rescattering in high energy relativistic Au+Au collisions are studied using two very different models to describe the early stages of the collision. One model is based on a hadronic thermal picture and the other on a superposition of parton-parton collisions. Operationally, the output hadrons from each of these models are used as input to a hadronic rescattering calculation. The results of the rescattering calculations from each model are then compared with rapidity and transverse momentum distributions from the BNL Relativistic Heavy Ion Collider BRAHMS experiment. In spite of the different points of view of the two models of the initial stage, after rescattering, the observed differences between the models are mostly “washed out” and both models give observables that agree roughly with each other and with experimental data.

  11. Negative ion formation by Rydberg electron transfer: Isotope-dependent rate constants

    SciTech Connect

    Carman, H.S. Jr.; Klots, C.E.; Compton, R.N.

    1991-01-01

    The formation of negative ions during collisions of rubidium atoms in selected ns and nd Rydberg states with carbon disulfide molecules has been studied for a range of effective principal quantum numbers (10 {le} n* {le} 25). For a narrow range of n* near n* = 17, rate constants for CS{sub 2}{sup {minus}} formation are found to depend upon the isotopic composition of the molecule, producing a negative ion isotope ratio (mass 78 to mass 76, amu) up to 10.5 times larger than the natural abundance ratio of CS{sub 2} isotopes in the reagent. The isotope ratio is found to depend strongly upon the initial quantum state of the Rydberg atom and perhaps upon the collision energy and CS{sub 2} temperature. 32 refs., 5 figs., 1 tab.

  12. Theoretical Aspects of Ionization in Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Wang, Jianyi

    Mechanisms for ionization resulting from collisions between an ion (or atom) and an atom are discussed and analyzed for slow and fast collisions and for two different collision systems. The first collision system consists of an exactly solvable three-body model in which an electron moves in the field of two centers of zero range potentials travelling at constant speeds. The exact electron emission spectrum shows two important features: (a) Evidence is found for the existence of the so-called "v/2" (or ridge) electrons at intermediate collision speed. These electrons are emitted with about half the speed of the incident ion. It is shown that they are due to promotion to the continuum of the molecular orbitals. v/2 electron emission is strongly influenced by the relative interaction strengths of the electron with the two centers. (b) For fast collisions multiple scattering peaks can be seen to be a dominant feature in the ionization spectrum. Three-body effects are found to be responsible for generation of the peaks. In the second collision system the ionization spectrum resulting from electron loss by the incident ions (atoms) are studied with emphasis on large ejection angles. The ionization spectrum is shown to be composed of two parts: one is caused by the interaction of projectile electron with the mean field of the target core and the other by explicit electron-electron interaction. It is shown that for mean field ionization proper treatment of the off-energy -shell scattering matrix element is required to describe experimental data. The correlated ionization is treated via a double scattering represented by a second Born approximation. It is shown that this two-step mechanism is essential in describing the electron angular and energy distribution, especially on the low energy side of the spectrum for electron loss from atomic hydrogen. For other incident ions (like He ^+) it is found that in addition to double scattering, three-body effects are also very

  13. Investigations of negative and positive cesium ion species

    NASA Technical Reports Server (NTRS)

    Chanin, L. M.

    1978-01-01

    A direct test is provided of the hypothesis of negative ion creation at the anode or collector of a diode operating under conditions simulating a cesium thermionic converter. The experimental technique involves using direct ion sampling through the collector electrode with mass analysis using a quadrupole mass analyzer. Similar measurements are undertaken on positive ions extracted through the emitter electrode. Measurements were made on a variety of gases including pure cesium, helium-cesium mixtures and cesium-hydrogen as well as cesium-xenon mixtures. The gas additive was used primarily to aid in understanding the negative ion formation processes. Measurements were conducted using emitter (cathode) temperatures up to about 1000 F. The major negative ion identified through the collector was Cs(-) with minor negative ion peaks tentatively identified as H(-), H2(-), H3(-), He(-) and a mass 66. Positive ions detected were believed to be Cs(+), Cs2(+) and Cs3(+).

  14. Critical condition in gravitational shock wave collision and heavy ion collisions

    SciTech Connect

    Lin Shu; Shuryak, Edward

    2011-02-15

    In this paper, we derive a critical condition for matter equilibration in heavy ion collisions using a holographic approach. Gravitational shock waves with infinite transverse extension are used to model an infinite nucleus. We construct the trapped surface in the collision of two asymmetric planar shock waves with sources at different depth in the bulk AdS and formulate a critical condition for matter equilibration in the collision of ''nuclei'' in the dual gauge theory. We find the critical condition is insensitive to the depth of the source closer to the AdS boundary. To understand the origin of the critical condition, we compute the Next-to-Leading Order stress tensor in the boundary field theory due to the interaction of the nuclei and find that the critical condition corresponds to the breaking down of the perturbative expansion. We expect nonperturbative effects are needed to describe black hole formation.

  15. Bound state - excitation in ion-ion collisions related to X-ray lasers modelling

    SciTech Connect

    Stancalie, V.; Sureau, A.; Klisnick, A.

    1995-12-31

    As in the earlier work of Walling and Weisheit we used the Seaton`s semi-classical, impact parameter formulation of Coulomb excitation for a variety of inelastic ion-ion collisions, involved in laser-produced soft X-ray lasers with Li-like aluminum ions, 1s{sup 2} nl configuration. Energy levels has been calculated by direct SCF method including the spin-orbit interaction. Our definition of the electric 2{sup {lambda}} - pole line strength, S{sup {lambda}}, is consistent with that of Sobelman. The ion-ion collision processes have been considered for a wide range of temperature between 500 eV to 30 eV, with a particular interest in the last part of plasma evolution time, when complications such as non-Maxwellian particle distributions, radiation fields and transient plasma conditions can be neglected, and when the plasma electrons and ions have comparable temperatures.

  16. Cesium in hydrogen negative-ion sources

    SciTech Connect

    Belchenko, Yu.I.; Davydenko, V.I.

    2006-03-15

    Experimental data on the dynamics of cesium particles in the pulsed magnetron and Penning surface-plasma ion sources are presented. Cesium escape from the source emission apertures and the cesium ion current to discharge electrodes was measured. The low value of cesium flux from the source was detected. An intense cesium ion current to the cathode (up to 0.8 A/cm{sup 2}) was measured. The high value of cesium ion current to surface-plasma source cathode confirms the cesium circulation near the cathode.

  17. Collision-geometry fluctuations and triangular flow in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Alver, B.; Roland, G.

    2010-05-01

    We introduce the concepts of participant triangularity and triangular flow in heavy-ion collisions, analogous to the definitions of participant eccentricity and elliptic flow. The participant triangularity characterizes the triangular anisotropy of the initial nuclear overlap geometry and arises from event-by-event fluctuations in the participant-nucleon collision points. In studies using a multiphase transport model (AMPT), a triangular flow signal is observed that is proportional to the participant triangularity and corresponds to a large third Fourier coefficient in two-particle azimuthal correlation functions. Using two-particle azimuthal correlations at large pseudorapidity separations measured by the PHOBOS and STAR experiments, we show that this Fourier component is also present in data. Ratios of the second and third Fourier coefficients in data exhibit similar trends as a function of centrality and transverse momentum as in AMPT calculations. These findings suggest a significant contribution of triangular flow to the ridge and broad away-side features observed in data. Triangular flow provides a new handle on the initial collision geometry and collective expansion dynamics in heavy-ion collisions.

  18. Collision-geometry fluctuations and triangular flow in heavy-ion collisions

    SciTech Connect

    Alver, B.; Roland, G.

    2010-05-15

    We introduce the concepts of participant triangularity and triangular flow in heavy-ion collisions, analogous to the definitions of participant eccentricity and elliptic flow. The participant triangularity characterizes the triangular anisotropy of the initial nuclear overlap geometry and arises from event-by-event fluctuations in the participant-nucleon collision points. In studies using a multiphase transport model (AMPT), a triangular flow signal is observed that is proportional to the participant triangularity and corresponds to a large third Fourier coefficient in two-particle azimuthal correlation functions. Using two-particle azimuthal correlations at large pseudorapidity separations measured by the PHOBOS and STAR experiments, we show that this Fourier component is also present in data. Ratios of the second and third Fourier coefficients in data exhibit similar trends as a function of centrality and transverse momentum as in AMPT calculations. These findings suggest a significant contribution of triangular flow to the ridge and broad away-side features observed in data. Triangular flow provides a new handle on the initial collision geometry and collective expansion dynamics in heavy-ion collisions.

  19. Isotope analysis in central heavy ion collisions at intermediate energies

    NASA Astrophysics Data System (ADS)

    Geraci, E.; Abbondanno, U.; Bardelli, L.; Barlini, S.; Bini, M.; Bruno, M.; Cannata, F.; Casini, G.; Chiari, M.; D'Agostino, M.; de Sanctis, J.; Giussani, A.; Gramegna, F.; Kravchuk, V. L.; Lanchais, A. L.; Marini, P.; Moroni, A.; Nannini, A.; Olmi, A.; Ordine, A.; Pasquali, G.; Piantelli, S.; Poggi, G.; Vannini, G.; Nucl-Ex Collaboration

    2007-11-01

    Symmetry energy is a key quantity in the study of the equation of state of asymmetric nuclear matter. Heavy ion collisions at low and intermediate energies, performed at Laboratori Nazionali di Legnaro and Laboratori Nazionali del Sud, can be used to extract information on the symmetry energy coefficient Csym, which is currently poorly known but relevant both for astrophysics and for deeper knowledge of the structure of exotic nuclei.

  20. Coherent rho(0) production in ultraperipheral heavy-ion collisions.

    PubMed

    Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Deng, W S; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Nystrand, J; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2002-12-30

    The STAR Collaboration reports the first observation of exclusive rho(0) photoproduction, AuAu-->AuAurho(0), and rho(0) production accompanied by mutual nuclear Coulomb excitation, AuAu-->Au*Au*rho(0), in ultraperipheral heavy-ion collisions. The rho(0) have low transverse momenta, consistent with coherent coupling to both nuclei. The cross sections at sqrt[s(NN)]=130 GeV agree with theoretical predictions treating rho(0) production and Coulomb excitation as independent processes. PMID:12513197

  1. Aspects of heavy-ion collisions at the LHC

    SciTech Connect

    Wolschin, G.

    2014-01-14

    Three aspects of relativistic heavy-ion collisions are considered in this article: (1) Stopping and baryon transport in a QCD-based approach, (2) charged-hadron production in a nonequilibrium-statistical relativistic diffusion model (RDM), and (3) quarkonia suppression and in particular, Υ suppression in PbPb at the current LHC energy of √(s{sub NN}) = 2.76TeV.

  2. BRAHMS collaboration results for relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Arsene, I.

    2008-12-01

    In this work we review very briefly a few of the most important results obtained by the BRAHMS Collaboration on the properties of the collisions of heavy ions at relativistic energies. The discussion is general and aims to illustrate the most important achievements of our collaboration during the RHIC run period with short discussions and references to articles that treat the subjects in more detail.

  3. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Sun, Yifeng; Ko, Che Ming; Li, Feng

    2016-10-01

    Using an anomalous transport model for massless quarks and antiquarks, we study the effect of a magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in noncentral heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision. The electric quadrupole moment subsequently leads to a splitting between the elliptic flows of quarks and antiquarks. The slope of the charge asymmetry dependence of the elliptic flow difference between positively and negatively charged particles is positive, which is expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the BNL Relativistic Heavy Ion Collider, only if the Lorentz force acting on the charged particles is neglected and the quark-antiquark scattering is assumed to be dominated by the chirality changing channel.

  4. Ion-neutral collision effect on an Alfven wave

    SciTech Connect

    Amagishi, Y.; Tanaka, M. Department of High Energy Engineering Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816 )

    1993-07-19

    This paper reports that ion-neutral collisions in a magnetized plasma cause a drastic change in the dispersion relation of the shear Alfven wave with poloidal mode number [ital m]=0, connecting to the branch of the [ital m]=+1 compressional Alfven wave at frequencies below the ion-cyclotron frequency. An anomaly of the dispersion then appears on the refractive index curve and a wave packet in this frequency range undergoes strong amplitude damping and profile deformation. It is confirmed that the Kramers-Kronig relation holds for the dielectric function, estimated from both the measured refractive index and damping rate.

  5. Contribution of wall material to the vibrational excitation and negative ion formation in hydrogen negative ion sources (invited)

    NASA Astrophysics Data System (ADS)

    Bacal, M.; Ivanov, A. A.; Glass-Maujean, M.; Matsumoto, Y.; Nishiura, M.; Sasao, M.; Wada, M.

    2004-05-01

    The wall production contribution to the negative hydrogen ion formation in multicusp ion sources has been investigated using the photodetachment diagnostic (for determining the negative ion density and temperature), negative ion and electron extraction, and vacuum ultraviolet (VUV) emission spectroscopy. The wall material was modified either by depositing thin films from filaments made of different material or by depositing fresh material of the same filament. Thus we show that a fresh tantalum film leads to enhanced negative ion density and enhanced temperature of the hot negative ion population. The slow poisoning effect due to argon additive also indicates the presence of the wall contribution to H- formation. The study of the VUV spectra with different wall materials indicates the presence of vibrationally excited states of H2.

  6. Observation of the negative ions: Ra[sup [minus

    SciTech Connect

    Zhao, X.; Nadeau, M.; Garwan, M.A.; Kilius, L.R.; Litherland, A.E. )

    1993-11-01

    The negative ions of the isotopes [sup 226]Ra, [sup 231]Pa, and [sup 244]Pu have been observed by means of accelerator mass spectrometry and their properties compared with the negative ions of Th and U. The electron affinities of all these elements have been estimated to be similar and greater than 50 meV.

  7. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    SciTech Connect

    Weaver, A.

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ([IHI] and [FH{sub 2}]). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  8. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    SciTech Connect

    Weaver, A.

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ((IHI) and (FH{sub 2})). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  9. Application of anomalous diffusion in production of negative ions

    SciTech Connect

    Jimbo, K.

    1984-11-01

    The production of negative hydrogen ions is investigated in the reflex-type negative ion sources. When anomalous diffusion in the positive column was found by Hoh and Lehnert (Phys. Fluids 3, 600 (1960)), it was pointed out that the large particle loss produced by anomalous diffusion is compensated for by the larger particle production inside the plasma. In the present experiments anomalous diffusion was artificially encouraged by changing the radial electric field inside the reflex discharge. Apparent encouragement of negative ion current by the increase of the density fluctuation amplitude is observed. Twice as much negative ion current was obtained with the artificial encouragement as without. On the other hand, the larger extracted negative ion current was observed with a lower electron temperature, which is calculated from the anomalous diffusion coefficient derived from a simple nonlinear theory. This result is consistent with Wadehra's calculated results (Appl. Phys. Lett. 35, 917 (1979)).

  10. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  11. Negative ion yields in hydrogen scattering from graphite surfaces

    SciTech Connect

    Gleeson, M. A.; Koppers, W. R.; Kleyn, A. W.; Tsumori, K.

    1998-08-20

    We compare the negative ion fraction obtained for scattering of hydrogenous ions (H{sub x}{sup +}, x=1-3) from highly oriented pyrolytic graphite (HOPG), with that obtained for scattering from a polycrystalline graphite surface. In contrast to the HOPG surface, which has a negative ion yield of the order of 1-2%, the polycrystalline sample has yields of up to 30%.

  12. Negative hydrogen ion source for TOKAMAK neutral beam injector (invited)

    NASA Astrophysics Data System (ADS)

    Okumura, Y.; Fujiwara, Y.; Kashiwagi, M.; Kitagawa, T.; Miyamoto, K.; Morishita, T.; Hanada, M.; Takayanagi, T.; Taniguchi, M.; Watanabe, K.

    2000-02-01

    Intense negative ion source producing multimegawatt hydrogen/deuterium negative ion beams has been developed for the neutral beam injector (NBI) in TOKAMAK thermonuclear fusion machines. Negative ions are produced in a cesium seeded multi-cusp plasma generator via volume and surface processes, and accelerated with a multistage electrostatic accelerator. The negative ion source for JT-60U has produced 18.5 A/360 keV (6.7 MW) H- and 14.3 A/380 keV (5.4 MW) D- ion beams at average current densities of 11 mA/cm2 (H-) and 8.5 mA/cm2 (D-). A high energy negative ion source has been developed for the next generation TOKAMAK such as the International Thermonuclear Experimental Reactor (ITER). The source has demonstrated to accelerate negative ions up to 1 MeV, the energy required for ITER. Higher negative ion current density of more than 20 mA/cm2 was obtained in the ITER concept sources. It was confirmed that the consumption rate of cesium is small enough to operate the source for a half year in ITER-NBI without maintenance.

  13. Time evolution of negative ion profile in a large cesiated negative ion source applicable to fusion reactors.

    PubMed

    Yoshida, M; Hanada, M; Kojima, A; Kashiwagi, M; Umeda, N; Hiratsuka, J; Ichikawa, M; Watanabe, K; R Grisham, L; Tsumori, K; Kisaki, M

    2016-02-01

    To understand the physics of the cesium (Cs) recycling in the large Cs-seeded negative ion sources relevant to ITER and JT-60SA with ion extraction area of 45-60 cm × 110-120 cm, the time evolution of the negative ion profile was precisely measured in JT-60SA where the ion extraction area is longitudinally segmented into 5. The Cs was seeded from the oven at 180 °C to the ion source. After 1 g of Cs input, surface production of the negative ions appeared only in the central segment where a Cs nozzle was located. Up to 2 g of Cs, the negative ion profile was longitudinally expanded over full ion extraction area. The measured time evolution of the negative ion profile has the similar tendency of distribution of the Cs atoms that is calculated. From the results, it is suggested that Cs atom distribution is correlated with the formation of the negative ion profile. PMID:26932026

  14. Mass Spectra and Ion Collision Cross Sections of Hemoglobin

    NASA Astrophysics Data System (ADS)

    Kang, Yang; Terrier, Peran; Douglas, D. J.

    2011-02-01

    Mass spectra of commercially obtained hemoglobin (Hb) show higher levels of monomer and dimer ions, heme-deficient dimer ions, and apo-monomer ions than hemoglobin freshly prepared from blood. This has previously been attributed to oxidation of commercial Hb. Further, it has been reported that that dimer ions from commercial bovine Hb have lower collision cross sections than low charge state monomer ions. To investigate these effects further, we have recorded mass spectra of fresh human Hb, commercial human and bovine Hb, fresh human Hb oxidized with H2O2, lyophilized fresh human Hb, fresh human Hb both lyophilized and chemically oxidized, and commercial human Hb oxidized with H2O2. Masses of α-monomer ions of all hemoglobins agree with the masses expected from the sequences within 3 Da or better. Mass spectra of the β chains of commercial Hb and oxidized fresh human Hb show a peak or shoulder on the high mass side, consistent with oxidation of the protein. Both commercial proteins and oxidized fresh human Hb produce heme-deficient dimers with masses 32 Da greater than expected and higher levels of monomer and dimer ions than fresh Hb. Lyophilization or oxidation of Hb both produce higher levels of monomer and dimer ions in mass spectra. Fresh human Hb, commercial human Hb, commercial bovine Hb, and oxidized commercial human Hb all give dimer ions with cross sections greater than monomer ions. Thus, neither oxidation of Hb or the difference in sequence between human and bovine Hb make substantial differences to cross sections of ions.

  15. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOEpatents

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  16. Influence of electron-ion collisions on Buneman instability

    NASA Astrophysics Data System (ADS)

    Rostomyan, Eduard

    2016-07-01

    Buneman instability (BI) [1] has been found to play a role in many scenarios in space physics and geophysics. It has also been invoked to explain many phenomena in the earth ionosphere [2] and in the solar chromosphere [3]. In double-layer and collisionless shock physics the same instability has been found responsible in formation of nonlinear structures [4]. In situations where an electron beam enters plasma, like in the fast ignition scenario for inertial fusion [5], Buneman modes are excited and play essential role [6]. BI is caused by motion of plasma electrons against ions. However, up to now investigations on BI did not take into account influence collisions in plasma (for quantum case a paper has recently appeared [7]). Influence of collisions may be very important especially in dense fully ionized plasma with long distance character of interaction. Particularly collisions lead to energy dissipation with an array of ensuing effects e.g. change of the instability physical nature to that of dissipative type [8]. Due to role of BI in various processes in space (and laboratory) plasma necessity of the consideration is long overdue. Absence of investigations on a problem along with its importance may be explained by its complexity only. For given case correct consideration should be based on solution of transport equation with collisional term. In fully ionized plasma correct description of collisions is given by Landau collision integral (LCI) [9]. This is very complex formation. It greatly complicates transport equation and actually makes it intractable. Since its formulation in 1936, there is very little literature on solution of the transport equation with LCI. Almost all successful attempts to accommodate influence of collisions on various processes in plasma are based on BGK model [10]. This model is much simpler. However in fully ionized plasma usage LCI is more appropriate as it is designed for system with long distance character of particle interaction

  17. Modeling of Momentum Correlations in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Pruneau, Claude; Sharma, Monika

    2010-02-01

    Measurements of transverse momentum (pt) correlations and fluctuations in heavy ion collisions (HIC) are of interest because they provide information on the collision dynamics not readily available from number correlations. For instance, pt fluctuations are expected to diverge for a system near its tri-critical point [1]. Integral momentum correlations may also be used to estimate the shear viscosity of the quark gluon plasma produced in HIC [2]. Integral correlations measured over large fractions of the particle phase space average out several dynamical contributions and as such may be difficult to interpret. It is thus of interest to seek extensions of integral correlation variables that may provide more detailed information about the collision dynamics. We introduce a variety of differential momentum correlations and discuss their basic properties in the light of simple toy models. We also present theoretical predictions based on the PYTHIA, HIJING, AMPT, and EPOS models. Finally, we discuss the interplay of various dynamical effects that may play a role in the determination of the shear viscosity based on the broadening of momentum correlations measured as function of collision centrality. [1] L. Stodolsky, Phys. Rev. Lett. 75 (1995) 1044. [2] S. Gavin and M. A. Aziz, Phys. Rev. Lett. 97 (2006) 162302. )

  18. Search for QCD Hawking Radiation in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Stiles, Laura; Murray, Michael

    2008-04-01

    A wide variety of measurements at RHIC, for example v2 and energy loss, suggest that the partonic matter created in heavy collisions thermalizes early. One possible mechanism for this is the creation of the QCD analogue to gravitational black holes [1]. Such objects have no memory of their creation and radiate with a characteristic temperature, T, that can depend only on their energy, charge, and angular momentum. This hypothesis is consistent with the growth of multiplicity with s in e+e- collisions and thermal temperature observed at LEP. For central heavy ion collisions the angular momentum of the system is approximately zero and the model predicts a universal dependence of the chemical freezeout temperature on the ratios of charge to transverse energy. To test this prediction against BRAHMS data, We have fitted data on π, K, p and p from central Au + Au collisions at several rapidities and energies, using the THERMUS code. The experimental dependence of the temperature on the ratio of charge to transverse energy will be compared to the Hawking radiation predictions. By comparing data sets at different energy, centrality and rapidity we can select systems with the same ratio of baryon number to energy but different rapidities. This may allow us to test for any effect of angular momentum on temperature. [1] P. Castorina, D. Kharzeev and H. Satz, Eur. Phys. J. C 52, 187 (2007)

  19. Development of negative ion source at the IPP Nagoya University

    SciTech Connect

    Kuroda, T; Okamura, H; Kaneko, O; Oka, Y

    1980-01-01

    Preliminary experiments have been made to develop a high current H/sup -/ ion surface for a neutral beam injector. Initially, an H/sup -/ ion source of the magnetron type has been investigated in order to determine its physical and technical problems. A second plasma source for negative ion production is under construction, which is based on controlled plasma production. This paper describes preliminary experimental results of the magnetron ion source and some features in the new type of plasma source.

  20. Torqued fireballs in relativistic heavy-ion collisions

    SciTech Connect

    Bozek, Piotr; Broniowski, Wojciech; Moreira, Joao

    2011-03-15

    We show that the fluctuations in the wounded-nucleon model of the initial stage of relativistic heavy-ion collisions, together with the natural assumption that the forward- (backward-) moving wounded nucleons emit particles preferably in the forward (backward) direction, lead to an event-by-event torqued fireball. The principal axes associated with the transverse shape are rotated in the forward region in the opposite direction than in the backward region. On the average, the standard deviation of the relative torque angle between the forward and backward rapidity regions is {approx}20 deg. for the central and 10 deg. for the midperipheral collisions. The hydrodynamic expansion of a torqued fireball leads to a torqued collective flow, yielding, in turn, torqued principal axes of the transverse-momentum distributions at different rapidities. We propose experimental measures, based on cumulants involving particles in different rapidity regions, which should allow for a quantitative determination of the effect from the data. To estimate the nonflow contributions from resonance decays we run Monte Carlo simulations with therminator, a thermal heavy-ion generator. If the event-by-event torque effect is found in the data, it will support the assumptions concerning the fluctuations in the early stage of the fireball formation, as well as the hypothesis of the asymmetric rapidity shape of the emission functions of the moving sources in the nucleus-nucleus collisions.

  1. Negative Ions Enhance Survival of Membrane Protein Complexes

    NASA Astrophysics Data System (ADS)

    Liko, Idlir; Hopper, Jonathan T. S.; Allison, Timothy M.; Benesch, Justin L. P.; Robinson, Carol V.

    2016-06-01

    Membrane protein complexes are commonly introduced to the mass spectrometer solubilized in detergent micelles. The collisional activation used to remove the detergent, however, often causes protein unfolding and dissociation. As in the case for soluble proteins, electrospray in the positive ion mode is most commonly used for the study of membrane proteins. Here we show several distinct advantages of employing the negative ion mode. Negative polarity can yield lower average charge states for membrane proteins solubilized in saccharide detergents, with enhanced peak resolution and reduced adduct formation. Most importantly, we demonstrate that negative ion mode electrospray ionization (ESI) minimizes subunit dissociation in the gas phase, allowing access to biologically relevant oligomeric states. Together, these properties mean that intact membrane protein ions can be generated in a greater range of solubilizing detergents. The formation of negative ions, therefore, greatly expands the possibilities of using mass spectrometry on this intractable class of protein.

  2. Negative ion-driven associated particle neutron generator

    DOE PAGES

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; Donovan, D. C.; Chames, J. M.; Whaley, J. A.; Buchenauer, D. A.; Chen, A. X.; Hausladen, P. A.; Liang, F.

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to similar to 108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less

  3. Negative ion-driven associated particle neutron generator

    SciTech Connect

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; Donovan, D. C.; Chames, J. M.; Whaley, J. A.; Buchenauer, D. A.; Chen, A. X.; Hausladen, P. A.; Liang, F.

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in either pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to similar to 108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.

  4. Origin of extracted negative ions by 3D PIC-MCC modeling. Surface vs Volume comparison

    NASA Astrophysics Data System (ADS)

    Mochalskyy, S.; Lifschitz, A. F.; Minea, T.

    2011-09-01

    The development of a high performance negative ion (NI) source constitutes a crucial step in the construction of Neutral Beam Injector (NBI) of the future fusion reactor ITER. NI source should deliver 40 A of H- (or D-), which is a technical and scientific challenge, and requires a deeper understanding of the underlying physics of the source and its magnetic filter. The present knowledge of the ion extraction mechanism from the negative ion source is limited and concerns magnetized plasma sheaths used to avoid electrons being co-extracted from the plasma together with the NI. Moreover, due to the asymmetry induced by the ITER crossed magnetic configuration used to filter the electrons, any realistic study of this problem must consider the three spatial dimensions. To address this problem, a 3D Particles-in-Cell electrostatic collisional code was developed, specifically designed for this system. Binary collisions between the particles are introduced using Monte Carlo Collision scheme. The complex orthogonal magnetic field that is applied to deflect electrons is also taken into account. This code, called ONIX (Orsay Negative Ion eXtraction), was used to investigate the plasma properties and the transport of the charged particles close to a typical extraction aperture [1]. This contribution focuses on the limits for the extracted NI current from both, plasma volume and aperture wall. Results of production, destruction, and transport of H- in the extraction region are presented. The extraction efficiency of H- from the volume is compared to the one of H- coming from the wall.

  5. The n-p bremsstrahlung in heavy ion collision processes

    NASA Astrophysics Data System (ADS)

    Blann, M.

    1990-01-01

    The goal is to summarize the current status of the interpretation of energetic gamma-rays in heavy ion collisions via the n-p-bremsstrahlung mechanism. An essential element of the topic is a transport equation to approximate the fast non-equilibrium nucleon-nucleon cascade/emission stage of the heavy ion reactions. It is during this stage that it was expected that the n-p-bremsstrahlung processes produced energetic photons. The Boltzmann master equation (BME) model which will be used as the transport code is briefly described, deferring to earlier works for a more complete description, and present but a single representative comparison with an experimental neutron emission spectrum. The status of the elementary n-p-gamma cross section needed to extend the transport code to photon emission in heavy ion reactions, and the status of these comparisons with data are summarized.

  6. Correlated electron processes in ion-atom collisions

    SciTech Connect

    McColm, D.W. . Dept. of Physics)

    1990-02-01

    This final report covers the work carried out under the LLNL Contract P.O. Number B055762, Subcontractor Regents University of California at Davis. The research carried out under this contract investigated electron processes occurring in collisions between heavy ions and atoms. The doubly-differential secondary electron yield following the impact of 3.5 to 8 MeV/uU{sup q+}(q = 38,68) ion impact on thin carbon foil targets has been investigated experimentally. The absolute electron emission yields were determined for ejection angles varied between 22.5{degree} and 157{degree} and electron energies ranging from 10 eV to 8 keV. The electron spectra are compared to previous investigations and new experimental data using lighter ion impact at MeV projectile energies. 14 refs., 5 figs.

  7. A negative ion source test facility.

    PubMed

    Melanson, S; Dehnel, M; Potkins, D; Theroux, J; Hollinger, C; Martin, J; Philpott, C; Stewart, T; Jackle, P; Williams, P; Brown, S; Jones, T; Coad, B; Withington, S

    2016-02-01

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices. PMID:26931991

  8. Volume production of negative ions in the reflex-type ion source

    SciTech Connect

    Jimbo, K.

    1982-06-01

    The production of negative hydrogen ions is investigated in the reflex-type negative ion source. The extracted negative hydrogen currents of 9.7 mA (100 mA/cm/sup 2/) for H/sup -/ and of 4.1 mA(42 mA/cm/sup 2/) for D/sup -/ are obtained continuously. The impurity is less than 1%. An isotope effect of negative ion production is observed.

  9. Study On Electron Collisions With Zn-like W Ion

    SciTech Connect

    Mihailescu, A.; Pais, V.; Totolici, M. C.; Stancalie, V.

    2008-04-07

    The present work gives new refined results for electron impact excitation rates and collision strengths for transitions of type [Ar]3d{sup 10}4snl->[Ar]3d{sup 10}4sn';l', n, n' = 4,5, and {delta}J = 0,l in Zn-like W ion. We have examined the position and widths of the resonant states of type ls{sup 2}2s2p{sup 6}3s{sup 2}3p{sup 6}3d{sup 10}4s{sup 2}nl. Autoionizing states can radically alter the low temperature behavior of collision rates, and are a major contributor to opacity. Preliminary results for Auger rates are presented. Hartree-Fock calculations have been carried out followed by a configuration interaction (CI) in intermediate coupling using the suite of Cowan's codes.

  10. Longitudinal fluid dynamics for ultrarelativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Satarov, L. M.; Mishustin, I. N.; Merdeev, A. V.; Stöcker, H.

    2007-02-01

    We developed a 1+1 dimensional hydrodynamical model for central heavy-ion collisions at ultrarelativistic energies. Deviations from Bjorken's scaling are taken into account by implementing finite-size profiles for the initial energy density. The calculated rapidity distributions of pions, kaons, and antiprotons in central Au+Au collisions at sNN=200 GeV are compared with experimental data of the BRAHMS Collaboration. The sensitivity of the results to the choice of the equation of state, the parameters of the initial state, and the freeze-out conditions were investigated. Experimental constraints on the total energy of produced particles were used to reduce the number of model parameters. The best fits of experimental data were obtained for soft equations of state and Gaussian-like initial profiles of the energy density. It was found that initial energy densities required for fitting the experimental data decrease with the increasing critical temperature of the phase transition.

  11. Negative hydrogen ion sources for accelerators

    SciTech Connect

    Moehs, D.P.; Peters, J.; Sherman, J.; /Los Alamos

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

  12. Evolution of an expanding dusty plasma with negative ions

    SciTech Connect

    Kechouri, B.; Djebli, M.

    2006-11-15

    The dusty plasma radial expansion is studied in the case of a spherical as well as cylindrical configuration. The effect of negative ions is introduced through the dust charge fluctuation equation. Electrons, positive, and negative ions are modelled by the Boltzmann distribution function and the dust grains by fluid equations. Using the self-similar theory, the nonlinear set of differential equations is solved numerically. It is found that the dust charge presents a critical value which depends on the negative ion species type. It is also found that the dust expansion ends earlier and the lighter particle densities profiles depend on the dust initial charge.

  13. Charmonium production in relativistic heavy-ion collisions

    SciTech Connect

    Song, Taesoo; Han, Kyong Chol; Ko, Che Ming

    2011-09-15

    Using the two-component model that includes charmonium production from both initial nucleon-nucleon hard scattering and regeneration in the produced quark-gluon plasma, we study J/{psi} production in heavy-ion collisions at the Super Proton Synchrotron (SPS), Relativistic Heavy Ion Collider (RHIC), and Large Hadron Collider (LHC). For the expansion dynamics of produced hot dense matter, we use a schematic viscous hydrodynamic model with the specific shear viscosity in the quark-gluon plasma and the hadronic matter taken, respectively, to be two and ten times the lower bound of 1/4{pi} suggested by the anti-de Sitter/conformal field theory (AdS/CFT) correspondence. For the initial dissociation and the subsequent thermal decay of charmonia in the hot dense matter, we use the screened Cornell potential to describe the properties of charmonia and perturbative QCD to calculate their dissociation cross sections. Including regeneration of charmonia in the quark-gluon plasma via a kinetic equation with in-medium chamonium decay widths, we obtain a good description of measured J/{psi} nuclear modification factors in Pb + Pb collisions at {radical}(s{sub NN})=1.73 GeV at SPS and in Au + Au collisions at {radical}(s{sub NN})=200 GeV at RHIC. A reasonable description of the measured nuclear modification factor of high transverse momenta J/{psi} in Pb + Pb collisions at {radical}(s{sub NN})=2.76 TeV at LHC is also obtained.

  14. Multigenerational Broadband Collision-Induced Dissociation of Precursor Ions in a Linear Quadrupole Ion Trap

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Cooks, R. Graham

    2016-09-01

    A method of fragmenting ions over a wide range of m/z values while balancing energy deposition into the precursor ion and available product ion mass range is demonstrated. In the method, which we refer to as "multigenerational collision-induced dissociation", the radiofrequency (rf) amplitude is first increased to bring the lowest m/z of the precursor ion of interest to just below the boundary of the Mathieu stability diagram (q = 0.908). A supplementary AC signal at a fixed Mathieu q in the range 0.2-0.35 (chosen to balance precursor ion potential well depth with available product ion mass range) is then used for ion excitation as the rf amplitude is scanned downward, thus fragmenting the precursor ion population from high to low m/z. The method is shown to generate high intensities of product ions compared with other broadband CID methods while retaining low mass ions during the fragmentation step, resulting in extensive fragment ion coverage for various components of complex mixtures. Because ions are fragmented from high to low m/z, space charge effects are minimized and multiple discrete generations of product ions are produced, thereby giving rise to "multigenerational" product ion mass spectra.

  15. Excitation of lower hybrid waves by a gyrating ion beam in a negative ion plasma

    SciTech Connect

    Sharma, Jyotsna; Jain, V. K.; Sharma, Suresh C.; Gahlot, Ajay

    2013-03-15

    A gyrating ion beam propagating through a magnetized plasma cylinder containing K{sup +} positive ions, electrons, and SF{sub 6}{sup -} negative ions drives electrostatic lower hybrid waves to instability via Cyclotron interaction. Numerical calculations of the unstable mode frequencies and growth rates of both the unstable positive ion and negative ion modes have been carried out for the existing negative ion plasma parameters. It is found that the unstable mode frequencies of both the modes increase, with the relative density of negative ions. In addition, the growth rates of both the unstable modes also increases with relative density of negative ions. Moreover, the growth rates of both the unstable modes scale as the one-third power of the beam density. The frequencies of both the unstable modes also increase with the magnetic fields. The real part of the unstable wave frequency increases as almost the square root of the beam energy.

  16. Formation and photodetachment of cold metal cluster negative ions

    NASA Astrophysics Data System (ADS)

    Zheng, L.-S.; Brucat, P. J.; Pettiette, C. L.; Yang, S.; Smalley, R. E.

    1985-10-01

    A general method is described for the formation of cold metal cluser negative ion beams which serve as excellent sources for photodetachment experiments. The method involves the pulsed laser vaporization of a metal target at the throat of a pulsed supersonic helium expansion. By the optimization of source conditions, intense beams (greater than 105 ions/pulse) of both positive and negative ions are produced routinely. Ionization of the metal cluster molecules, either during vaporization or by irradiation with 193 nm light, occurs prior to supersonic expansion and produces a cold plasma entrained in the neural flow that is renitent to stray electric and magnetic fields, unlike photoions produced in the collisionless downstream molecular beam. The enhancement of the negative ion flux by 193 nm irradiation is believed to be evidence for efficient electron attachment of low energy photoelectrons generated in the nozzle region. This attachment process, however, is apparently not effective for molecules containing less than ˜4 metal atoms. Laser irradition of mass-selected cluster anions extracted from these cold ion beams reveal that photodetachment of the metal cluster negative ion is always the preferred pathway, even when fragmentation of the ion is possible. This new negative ion production technique should therefore permit measurement of both electron affinities and photoelectron spectra as a function of cluster size and composition.

  17. Deciphering azimuthal correlations in relativistic heavy-ion collisions

    SciTech Connect

    Cetner, Tomasz; Grebieszkow, Katarzyna; Mrowczynski, Stanislaw

    2011-02-15

    We discuss various sources of azimuthal correlations in relativistic heavy-ion collisions. The integral measure {Phi} is applied to quantify the correlations. We first consider separately the correlations caused by the elliptic flow, resonance decays, jets, and transverse momentum conservation. An effect of randomly lost particles is also discussed. Using the PYTHIA and HIJING event generators we produce a sample of events that mimic experimental data. By means of kinematic cuts and particle selection criteria, the data are analyzed to identify a dominant source of correlations.

  18. Disappearance of flow in heavy-ion collisions

    SciTech Connect

    Krofcheck, D.; Bauer, W.; Crawley, G.M.; Djalali, C.; Howden, S.; Ogilvie, C.A.; Vander Molen, A.; Westfall, G.D.; Wilson, W.K. ); Tickle, R.S. ); Gale, C. )

    1989-11-06

    We report the first observation of the disappearance of flow in heavy-ion collisions. This is accomplished by measuring the excitation function of the average in-plane transverse momentum for the symmetric system {sup 139}La+{sup 139}La, using beam energies of 130, 70, and 50 MeV/nucleon. The observation is indicative of a change from dominantly repulsive to attractive scattering. We also present the results of calculations performed with the Boltzmann-Uehling-Uhlenbeck equation which support the concept of vanishing flow for this system in the energy region between 30 and 50 MeV/nucleon.

  19. From Stopping to Viscosity in Heavy Ion Collisions

    SciTech Connect

    Barker, Brent W.; Danielewicz, Pawel

    2010-04-26

    Stopping in heavy ion collisions is investigated with the aim of learning about the shear viscosity of nuclear matter. Boltzmann equation simulations are compared to available data on stopping in the energy range of 20-117 MeV/nucleon. Stopping observables used include momentum anisotropy and linear momentum transfer. The data show that modeling the transport with free nucleon-nucleon cross-sections is inaccurate and reduced cross-sections are required. Reduction of the cross-sections produces an increase in the shear viscosity of nuclear matter, compared to calculations based on free cross-sections.

  20. Cesium vapor thermionic converter anomalies arising from negative ion emission

    NASA Astrophysics Data System (ADS)

    Rasor, Ned S.

    2016-08-01

    Compelling experimental evidence is given that a longstanding limit encountered on cesium vapor thermionic energy converter performance improvement and other anomalies arise from thermionic emission of cesium negative ions. It is shown that the energy that characterizes thermionic emission of cesium negative ions is 1.38 eV and, understandably, is not the electron affinity 0.47 eV determined for the photodetachment threshold of the cesium negative ion. The experimental evidence includes measurements of collector work functions and volt-ampere characteristics in quasi-vacuum cesium vapor thermionic diodes, along with reinterpretation of the classic Taylor-Langmuir S-curve data on electron emission in cesium vapor. The quantitative effects of negative ion emission on performance in the ignited, unignited, and quasi-vacuum modes of cesium vapor thermionic converter operation are estimated.

  1. New versions of sources for nuclear polarized negative ion production

    SciTech Connect

    Dudnikov, V.G.; Shabalin, A.L. ); Wojtsekhowski, B.B. ); Belov, A.S.; Kuzik, V.E.; Plohinsky, Y.V.; Yakushev, V.P. )

    1992-10-05

    Several variants of sources for nuclear polarized negative ion production have been proposed and tested. The simple adaptation of a high intensity polarized proton source for nuclear polarized H[sup [minus

  2. Heavy Ion Collisions at the LHC - Last Call for Predictions

    SciTech Connect

    Armesto, N; Borghini, N; Jeon, S; Wiedemann, U A; Abreu, S; Akkelin, V; Alam, J; Albacete, J L; Andronic, A; Antonuv, D; Arleo, F; Armesto, N; Arsene, I C; Barnafoldi, G G; Barrette, J; Bauchle, B; Becattini, F; Betz, B; Bleicher, M; Bluhm, M; Boer, D; Bopp, F W; Braun-Munzinger, P; Bravina, L; Busza, W; Cacciari, M; Capella, A; Casalderrey-Solana, J; Chatterjee, R; Chen, L; Cleymans, J; Cole, B A; delValle, Z C; Csernai, L P; Cunqueiro, L; Dainese, A; de Deus, J D; Ding, H; Djordjevic, M; Drescher, H; Dremin, I M; Dumitru, A; El, A; Engel, R; d'Enterria, D; Eskola, K J; Fai, G; Ferreiro, E G; Fries, R J; Frodermann, E; Fujii, H; Gale, C; Gelis, F; Goncalves, V P; Greco, V; Gyulassy, M; van Hees, H; Heinz, U; Honkanen, H; Horowitz, W A; Iancu, E; Ingelman, G; Jalilian-Marian, J; Jeon, S; Kaidalov, A B; Kampfer, B; Kang, Z; Karpenko, I A; Kestin, G; Kharzeev, D; Ko, C M; Koch, B; Kopeliovich, B; Kozlov, M; Kraus, I; Kuznetsova, I; Lee, S H; Lednicky, R; Letessier, J; Levin, E; Li, B; Lin, Z; Liu, H; Liu, W; Loizides, C; Lokhtin, I P; Machado, M T; Malinina, L V; Managadze, A M; Mangano, M L; Mannarelli, M; Manuel, C; Martinez, G; Milhano, J G; Mocsy, A; Molnar, D; Nardi, M; Nayak, J K; Niemi, H; Oeschler, H; Ollitrault, J; Paic, G; Pajares, C; Pantuev, V S; Papp, G; Peressounko, D; Petreczky, P; Petrushanko, S V; Piccinini, F; Pierog, T; Pirner, H J; Porteboeuf, S; Potashnikova, I; Qin, G Y; Qiu, J; Rafelski, J; Rajagopal, K; Ranft, J; Rapp, R; Rasanen, S S; Rathsman, J; Rau, P; Redlich, K; Renk, T; Rezaeian, A H; Rischke, D; Roesler, S; Ruppert, J; Ruuskanen, P V; Salgado, C A; Sapeta, S; Sarcevic, I; Sarkar, S; Sarycheva, L I; Schmidt, I; Shoski, A I; Sinha, B; Sinyukov, Y M; Snigirev, A M; Srivastava, D K; Stachel, J; Stasto, A; Stocker, H; Teplov, C Y; Thews, R L; Torrieri, G; Pop, V T; Triantafyllopoulos, D N; Tuchin, K L; Turbide, S; Tywoniuk, K; Utermann, A; Venugopalan, R; Vitev, I; Vogt, R; Wang, E; Wang, X N; Werner, K; Wessels, E; Wheaton, S; Wicks, S; Wiedemann, U A; Wolschin, G; Xiao, B; Xu, Z; Yasui, S; Zabrodin, E; Zapp, K; Zhang, B

    2008-02-25

    In August 2006, the CERN Theory Unit announced to restructure its visitor program and to create a 'CERN Theory Institute', where 1-3 month long specific programs can take place. The first such Institute was held from 14 May to 10 June 2007, focusing on 'Heavy Ion Collisions at the LHC - Last Call for Predictions'. It brought together close to 100 scientists working on the theory of ultra-relativistic heavy ion collisions. The aim of this workshop was to review and document the status of expectations and predictions for the heavy ion program at the Large Hadron Collider LHC before its start. LHC will explore heavy ion collisions at {approx} 30 times higher center of mass energy than explored previously at the Relativistic Heavy Ion Collider RHIC. So, on the one hand, the charge of this workshop provided a natural forum for the exchange of the most recent ideas, and allowed to monitor how the understanding of heavy ion collisions has evolved in recent years with the data from RHIC, and with the preparation of the LHC experimental program. On the other hand, the workshop aimed at a documentation which helps to distinguish pre- from post-dictions. An analogous documentation of the 'Last Call for Predictions' [1] was prepared prior to the start of the heavy-ion program at the Relativistic Heavy Ion Collider RHIC, and it proved useful in the subsequent discussion and interpretation of RHIC data. The present write-up is the documentation of predictions for the LHC heavy ion program, received or presented during the CERN TH Institute. The set-up of the CERN TH Institute allowed us to aim for the wide-most coverage of predictions. There were more than 100 presentations and discussions during the workshop. Moreover, those unable to attend could still participate by submitting predictions in written form during the workshop. This followed the spirit that everybody interested in making a prediction had the right to be heard. To arrive at a concise document, we required that

  3. High brilliance negative ion and neutral beam source

    DOEpatents

    Compton, Robert N.

    1991-01-01

    A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.

  4. Enhanced momentum delivery by electric force to ions due to collisions of ions with neutrals

    SciTech Connect

    Makrinich, G.; Fruchtman, A.

    2013-04-15

    Ions in partially ionized argon, nitrogen, and helium gas discharges are accelerated across a magnetic field by an applied electric field, colliding with neutrals during the acceleration. The momentum delivered by the electric force to the ions, which is equal to the momentum carried by the mixed ion-neutral flow, is found by measuring the force exerted on a balance force meter by that flow exiting the discharge. The power deposited in the ions is calculated by measuring the ion flux and the accelerating voltage. The ratio of force over power is found for the three gases, while the gas flow rates and magnetic field intensities are varied over a wide range of values, resulting in a wide range of gas pressures and applied voltages. The measurements for the three different gases confirm our previous suggestion [G. Makrinich and A. Fruchtman, Appl. Phys. Lett. 95, 181504 (2009)] that the momentum delivered to the ions for a given power is enhanced by ion-neutral collisions during the acceleration and that this enhancement is proportional to the square root of the number of ion-neutral collisions.

  5. Quantifying the sQGP - Heavy Ion Collisions at RHIC

    SciTech Connect

    Seto, Richard

    2014-12-01

    This is the closeout for DE-FG02-86ER40271 entitled Quantifying the sQGP - Heavy Ion Collisions at the RHIC. Two major things were accomplished. The first, is the physics planning, design, approval, construction, and commissioning of the MPC-EX. The MPC-EX is an electromagnetic calorimeter covering a rapidity of 3<|eta|<4, which was added to the PHENIX detector. Its primary aim is to measure low-x gluons, in order to understand the suppression seen in a variety of signatures, such as the J/Psi. A candidate to explain this phenomena is the Color Glass Condensate (CGC) A second task was to look at collisions of asymmetric species, in particularly Cu+Au. The signature was the suppression of J/Psi mesons at forward and backward rapidity, where a stronger suppression was seen in the copper going direction. While the blue of the suppression is due to hot nuclear matter effects (e.g. screening) the increase in suppression on the Au side was consistent with cold nuclear matter effects seen in d+Au collisions. A major candidate for the explanation of this phenomena is the aforementioned CGC. Finally the work on sPHENIX, particularly an extension to the forward region, called fsPHENIX is described.

  6. Observation of Global Hyperon Polarization in Ultrarelativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Upsal, Isaac

    2016-08-01

    Non-central heavy-ion collisions provide a system with non-zero total angular momentum which can be transferred, in part, to the fireball via baryon stopping. It has been predicted that a net spin of emitted particles aligned with the system angular momentum may emerge through coupling with the bulk material. Due to its parity violating decay the ⋀ baryon is self-analyzing, which allows us to associate the daughter proton decay direction with ⋀ particle spin. Ultimately this allows us to use them as a probe of net-particle spin. In preliminary STAR measurements of the net ⋀ baryon polarization from Au+Au collisions at 7.7, 11.5, 14.5, 19.6, 27, and 39 GeV we find that both ⋀ and ⊼ particles are polarized in the direction of the system angular momentum. Including previously published STAR results we see a polarization of about 2% for mid-central collisions when √Snn < 100GeV.

  7. Electron Transport across Magnetic Filter in Negative Hydrogen Ion Source

    NASA Astrophysics Data System (ADS)

    Fukano, Azusa; Ogasawara, Masatada

    2001-12-01

    Profiles of electron temperature and number density in a negative-ion source are investigated theoretically. Spatial dependence over the magnetic filter region is obtained using the equations of electron flux and electron heat flux that include the effect of interference of forces by the density gradient and temperature gradient. Due to the effect of the magnetic filter, temperature and density of the electron decrease from the source chamber to the extraction chamber, and the decrease depends on the magnitude of the magnetic flux. The effect of the magnetic filter on the production and destruction rates of the negative hydrogen ion is examined. The reaction rate for the dissociative attachment reaction which produces the negative hydrogen ion increases with the decrease of the electron temperature. However, the production rate per one vibrationally excited hydrogen molecule decreases with the decrease of electron density. On the other hand, the destruction probability of the negative ion by the electron detachment reaction decreases significantly by the decrease of the electron density and temperature. The magnetic filter does not enhance the production of the negative hydrogen ion, but it reduces the destruction of the negative ion because of the decrease of the electron density.

  8. Field-Reversal Source for Negative Halogen Ions

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Orient, O. J.; Aladzhadzhyan, S. H.

    1987-01-01

    Large zero-energy electron-attachment cross sections result in intense ion beams. Concept for producing negative halogen ions takes advantage of large cross sections at zero kinetic energy for dissociative attachment of electrons to such halogen-containing gases as SF6, CFCI3, and CCI4.

  9. Negative thermal ion mass spectrometry of osmium, rhenium, and iridium

    NASA Technical Reports Server (NTRS)

    Creaser, R. A.; Papanastassiou, D. A.; Wasserburg, G. J.

    1991-01-01

    This paper describes a technique for obtaining, in a conventional surface ionization mass spectrometer, intense ion beams of negatively charged oxides of Os, Re, and Ir by thermal ionization. It is shown that the principal ion species of these ions are OsO3(-), ReO4(-), and IrO2(-), respectively. For Re-187/Os-187 studies, this technique offers the advantage of isotopic analyses without prior chemical separation of Re from Os.

  10. Correlated charge-changing ion-atom collisions

    SciTech Connect

    Tanis, J.A.

    1992-04-01

    This report summarizes the progress and accomplishments in accelerator atomic physics research supported by DOE grant DE-FG02-87ER13778 from March 16, 1991 through March 15, 1992. This work involves the experimental investigation of fundamental atomic processes in collisions of charged projectiles with neutral targets or electrons, with particular emphasis on two-electron interactions and electron correlation effects. Processes involving combinations of excitation, ionization, and charge transfer are investigated utilizing coincidence techniques in which projectiles charge-changing events are associated with x-ray emission, target recoil ions, or electron emission. New results have been obtained for studies involving (1) resonant recombination of atomic ions, (2) double ionization of helium, and (3) continuum electron emission. Experiments were conducted using accelerators at the Lawrence Berkeley Laboratory, Argonne National Laboratory, Michigan State University, Western Michigan University, and the Institute of Nuclear Research, Debrecen, Hungary. Brief summaries of work completed and work in progress are given in this report.

  11. Selected experimental results from heavy-ion collisions at LHC

    DOE PAGES

    Singh, Ranbir; Kumar, Lokesh; Netrakanti, Pawan Kumar; Mohanty, Bedangadas

    2013-01-01

    We reviewmore » a subset of experimental results from the heavy-ion collisions at the Large Hadron Collider (LHC) facility at CERN. Excellent consistency is observed across all the experiments at the LHC (at center of mass energysNN=2.76 TeV) for the measurements such as charged particle multiplicity density, azimuthal anisotropy coefficients, and nuclear modification factor of charged hadrons. Comparison to similar measurements from the Relativistic Heavy Ion Collider (RHIC) at lower energy (sNN=200 GeV) suggests that the system formed at LHC has a higher energy density and larger system size and lives for a longer time. These measurements are compared to model calculations to obtain physical insights on the properties of matter created at the RHIC and LHC.« less

  12. Production of negative osmium ions by laser desorption and ionization.

    PubMed

    Rodríguez, D; Sonnenschein, V; Blaum, K; Block, M; Kluge, H-J; Lallena, A M; Raeder, S; Wendt, K

    2010-01-01

    The interest to produce negative osmium ions is manifold in the realm of high-accuracy ion trap experiments: high-resolution nearly Doppler-free laser spectroscopy, antihydrogen formation in its ground state, and contributions to neutrino mass spectrometry. Production of these ions is generally accomplished by sputtering an Os sample with Cs(+) ions at tens of keV. Though this is a well-established method commonly used at accelerators, these kind of sources are quite demanding and tricky to operate. Therefore, the development of a more straightforward and cost effective production scheme will be of benefit for ion trap and other experiments. Such a scheme makes use of desorption and ionization with pulsed lasers and identification of the ions by time-of-flight mass spectrometry. First investigations of negative osmium ion production using a pulsed laser for desorption and ionization and a commercial matrix-assisted laser desorption/ionization time-of-flight system for identification has demonstrated the suitability of this technique. More than 10(3) negative osmium ions per shot were registered after bombarding pure osmium powder with a 5 ns pulse width Nd:yttrium aluminum garnet laser. The limitation in the ion number was imposed by the detection limit of the microchannel plate detector.

  13. Study of the negative ion extraction mechanism from a double-ion plasma in negative ion sources

    SciTech Connect

    Goto, I.; Nishioka, S.; Hatayama, A.; Miyamoto, K.

    2015-04-08

    We have developed a 2D3V-PIC model of the extraction region, aiming to clarify the basic extraction mechanism of H{sup −} ions from the double-ion plasma in H{sup −} negative ion sources. The result shows the same tendency of the H{sup −} ion density n{sub H{sup −}} as that observed in the experiments, i.e.,n{sub H{sup −}} in the upstream region away from the plasma meniscus (H{sup −} emitting surface) has been reduced by applying the extraction voltage. At the same time, relatively slow temporal oscillation of the electric potential compared with the electron plasma frequency has been observed in the extraction region. Results of the systematic study using a 1D3V-PIC model with the uniform magnetic field confirm the result that the electrostatic oscillation is identified to be lower hybrid wave. The effect of this oscillation on the H{sup −} transport will be studied in the future.

  14. Assignment of the stereochemistry and anomeric configuration of structurally informative product ions derived from disaccharides: infrared photodissociation of glycosyl-glycolaldehydes in the negative ion mode.

    PubMed

    Bendiak, Brad; Fang, Tammy T

    2010-11-01

    Using mass spectrometry in the negative ion mode, m/z 221 ions are frequently observed as product ion substructures derived from reducing disaccharides having 2, 4, or 6 linkages. The ions have been shown to be glycosyl-glycolaldehydes. All 16 stereochemical variants of their pyranosides were prepared and evaluated by infrared photodissociation, in addition to HexNAc-glycolaldehyde variants (m/z 262) of 2-acetamido-2-deoxy-d-glucose and 2-acetamido-2-deoxy-d-galactose. The stereochemistry and anomeric configuration of these ions were differentiated in the gas phase using a Fourier transform ion cyclotron resonance spectrometer with infrared multiphoton dissociation at 10.6 μm. Results were compared to those obtained by collision-induced dissociation. In some cases, differentiation was far preferable using infrared photodissociation; in others, collision-induced dissociation was preferred. Using an instrument that interfaced a linear trap with a Fourier transform ion cyclotron resonance spectrometer, either dissociation technique could be used to optimally discriminate between isomers. With infrared photodissociation, spectral differences were highly statistically significant, even between pairs of isomers having spectra that appeared to be visually somewhat similar (p<1×10⁻⁹, student's t-test for key discriminatory ions). Comparisons among different instruments suggest that physical standards of the stereochemical variants of these ions will be required for their detailed structural assignments in unknowns, as some variation was observed among instruments, both using infrared photodissociation and collision-induced dissociation.

  15. Two-particle interferometry for noncentral heavy-ion collisions

    SciTech Connect

    Wiedemann, U.A.

    1998-01-01

    In noncentral heavy-ion collisions, identical two-particle Hanbury-Brown{endash}Twiss (HBT) correlations C({bold K},{bold q}) depend on the azimuthal direction of the pair momentum {bold K}. We investigate the consequences for a harmonic analysis of the corresponding HBT radius parameters R{sub ij}{sup 2}. Our discussion includes both, a model-independent analysis of these parameters in the Gaussian approximation, and the study of a class of hydrodynamical models which mimic essential geometrical and dynamical properties of peripheral heavy-ion collisions. Also, we discuss the additional geometrical and dynamical information contained in the harmonic coefficients of R{sub ij}{sup 2}. The leading contribution of their first and second harmonics are found to satisfy simple constraints. This allows for a minimal, azimuthally sensitive parametrization of all first and second harmonic coefficients in terms of only two additional fit parameters. We determine to what extent these parameters can be extracted from experimental data despite finite multiplicity fluctuations and the resulting uncertainty in the reconstruction of the reaction plane. {copyright} {ital 1998} {ital The American Physical Society}

  16. Relativistic ion collisions as the source of hypernuclei

    NASA Astrophysics Data System (ADS)

    Botvina, A. S.; Bleicher, M.; Pochodzalla, J.; Steinheimer, J.

    2016-08-01

    We shortly review the theory of hypernuclei production in relativistic ion collisions, that is adequate to future experiments at BM@N, NICA, and FAIR. Within a hybrid approach we use transport, coalescence and statistical models to describe the whole process. We demonstrate that the origin of hypernuclei can be explained by typical baryon interactions, that is similar to the production of conventional nuclei. In particular, heavy hypernuclei are coming mostly from projectile and target residues, whereas light hypernuclei can be produced at all rapidities. The yields of hypernuclei increase considerably above the energy threshold for Λ hyperon production, and there is a tendency to saturation of yields of hypernuclei with increasing the beam energy up to few TeV. There are unique opportunities in relativistic ion collisions which are difficult to realize in traditional hypernuclear experiments: The produced hypernuclei have a broad distribution in masses and isospin. They can even reach beyond the neutron and proton drip-lines and that opens a chance to investigate properties of exotic hypernuclei. One finds also the abundant production of multi-strange nuclei, of bound and unbound hypernuclear states with new decay modes. In addition, we can directly get an information on the hypermatter both at high and low temperatures.

  17. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of negative ions

    DOEpatents

    Hershcovitch, Ady

    1987-01-01

    A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.

  18. Entropy production in collisions of gravitational shock waves and of heavy ions

    SciTech Connect

    Gubser, Steven S.; Pufu, Silviu S.; Yarom, Amos

    2008-09-15

    We calculate the area of a marginally trapped surface formed by a head-on collision of gravitational shock waves in AdS{sub D}. We use this to obtain a lower bound on the entropy produced after the collision. A comparison to entropy production in heavy-ion collisions is included. We also discuss an O(D-2) remnant of conformal symmetry, which is present in a class of gravitational shockwave collisions in AdS{sub D} and which might be approximately realized (with D=5) in central heavy-ion collisions.

  19. Excitation of atoms and molecules in collisions with highly charged ions

    SciTech Connect

    Watson, R.L.

    1992-03-01

    This report discusses research of multicharged nitrogen, oxygen and carbon monoxide molecular ions produced with collision with multicharged argon ions. Properties like ionization, dissociation, and excitation are investigated. (LSP)

  20. Negative Dielectric Constant Material Based on Ion Conducting Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2014-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  1. Evaluation of negative ion distribution changes by image processing diagnostic

    SciTech Connect

    Ikeda, K. Nakano, H.; Tsumori, K.; Kisaki, M.; Nagaoka, K.; Tokuzawa, T.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Geng, S.

    2015-04-08

    Distributions of hydrogen Balmer-α (H{sub α}) intensity and its reduction behavior close to a plasma grid (PG) surface have been observed by a spectrally selective imaging system in an arc discharge type negative hydrogen ion source in National Institute for Fusion Science. H{sub α} reduction indicates a reduction of negative hydrogen ions because the mutual neutralization process between H{sup +} and H{sup −} ions causes the dominant excitation process for H{sub α} emission in the rich H{sup −} condition such as in ionic plasma. We observed a significant change in H{sub α} reduction distribution due to change in the bias voltage, which is used to suppress the electron influx. Small H{sub α} reduction in higher bias is likely because the production of negative ions is suppressed by the potential difference between the plasma and PG surface.

  2. Negative air ions as a source of superoxide

    NASA Astrophysics Data System (ADS)

    Goldstein, Naum I.; Goldstein, Roman N.; Merzlyak, Mark N.

    1992-06-01

    The physico-chemical characteristics and possible formation mechanisms of negative air ions are considered. It was found that the products of oxygen and nitrogen negative ionization reduce ferricytochrome c and nitroblue tetrazolium, and that these reactions were inhibited by superoxide dismutase. The interaction of negatively ionized oxygen with water led to hydrogen peroxide accumulation, which was inhibited by tetranitromethane or catalase. Nitrogen ionization under these conditions caused the formation of the hydrated electron e{aq/—} and the superoxide anion O{2/—}. The data obtained indicate that the biological activity of negative air ions may be dependent on superoxide. The generation of reactive oxygen ions in the gas phase and also at a gas/water interface is described. A scheme for superoxide production under oxygen and nitrogen ionization is proposed.

  3. A future, intense source of negative hydrogen ions

    NASA Technical Reports Server (NTRS)

    Siefken, Hugh; Stein, Charles

    1994-01-01

    By directly heating lithium hydride in a vacuum, up to 18 micro-A/sq cm of negative hydrogen has been obtained from the crystal lattice. The amount of ion current extracted and analyzed is closely related to the temperature of the sample and to the rate at which the temperature is changed. The ion current appears to be emission limited and saturates with extraction voltage. For a fixed extraction voltage, the ion current could be maximized by placing a grid between the sample surface and the extraction electrode. Electrons accompanying the negative ions were removed by a magnetic trap. A Wein velocity filter was designed and built to provide definitive mass analysis of the extracted ion species. This technique when applied to other alkali hydrides may produce even higher intensity beams possessing low values of emittance.

  4. Signal Propagation in Collisional Plasma with Negative Ions

    SciTech Connect

    I. Kaganovich; S.V. Berezhnoi; C.B. Shin

    2000-12-18

    The transport of charged species in collisional currentless plasmas is traditionally thought of as a diffusion-like process. In this paper, it is demonstrated that, in contrast to two-component plasma, containing electrons and positive ions, the transport of additional ions in multi-species plasmas is not governed by diffusion, rather described by nonlinear convection. As a particular example, plasmas with the presence of negative ions have been studied. The velocity of a small perturbation of negative ions was found analytically and validated by numerical simulation. As a result of nonlinear convection, initially smooth ion density profiles break and form strongly inhomogeneous shock-like fronts. These fronts are different from collisionless shocks and shocks in fully ionized plasma. The structure of the fronts has been found analytically and numerically.

  5. Volume production of negative ions in the reflex type ion source

    SciTech Connect

    Jimbo, K.

    1982-01-01

    The production of negative hydrogen ions is investigated in the reflex-type negative ion source. The extracted negative hydrogen currents of 9.7 mA (100 mA/cm/sup 2/) for H/sup -/ and of 4.1 mA (42 mA/cm/sup 2/) for D/sup -/ are obtained continuously. The impurity is less then 1%. An isotope effect of negative ion production is observed. When anomalous diffusion in the positive column was found by Lehnert and Hoh (1960), it was pointed out that the large particle loss produced by anomalous diffusion is compensated by the large particle production inside the plasma, i.e., the plasma tries to maintain itself. The self-sustaining property of the plasma is applied to the reflex-type negative ion source. Anomalous diffusion was artificially encouraged by changing the radial electric field inside the reflex discharge. The apparent encouragement of negative ion diffusion by the increase of density fluctuation amplitude is observed. Twice as much negative ion current was obtained with the artificial encouragement as without. It is found from the quasilinear theory that the inwardly directed radial electric field destabilizes the plasma in the reflex-type ion source. The nonlinear theory based on Yoshikawa method (1962) is extended, and the anomalous diffusion coefficient in a weakly ionized plasma is obtained. The electrostatic sheath trap, which increases the confinement of negative ions in the reflex-type ion source, is also discussed.

  6. Maximizing ion current by space-charge neutralization using negative ions and dust particles

    SciTech Connect

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2005-05-15

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space-charge neutralization are introduced. Space-charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space-charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster.

  7. Molecular and negative ion production by a standard electron cyclotron resonance ion source

    SciTech Connect

    Racz, R.; Biri, S.; Juhasz, Z.; Sulik, B.

    2012-02-15

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H{sup -}, O{sup -}, OH{sup -}, O{sub 2}{sup -}, C{sup -}, C{sub 60}{sup -} negative ions and H{sub 2}{sup +}, H{sub 3}{sup +}, OH{sup +}, H{sub 2}O{sup +}, H{sub 3}O{sup +}, O{sub 2}{sup +} positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several {mu}A and positive molecular ion beams in the mA range were successfully obtained.

  8. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    ERIC Educational Resources Information Center

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  9. Numerical analysis of electronegative plasma in the extraction region of negative hydrogen ion sources

    SciTech Connect

    Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.

    2011-01-01

    This numerical study focuses on the physical mechanisms involved in the extraction of volume-produced H{sup -} ions from a steady state laboratory negative hydrogen ion source with one opening in the plasma electrode (PE) on which a dc-bias voltage is applied. A weak magnetic field is applied in the source plasma transversely to the extracted beam. The goal is to highlight the combined effects of the weak magnetic field and the PE bias voltage (upon the extraction process of H{sup -} ions and electrons). To do so, we focus on the behavior of electrons and volume-produced negative ions within a two-dimensional model using the particle-in-cell method. No collision processes are taken into account, except for electron diffusion across the magnetic field using a simple random-walk model at each time step of the simulation. The results show first that applying the magnetic field (without PE bias) enhances H{sup -} ion extraction, while it drastically decreases the extracted electron current. Secondly, the extracted H{sup -} ion current has a maximum when the PE bias is equal to the plasma potential, while the extracted electron current is significantly reduced by applying the PE bias. The underlying mechanism leading to the above results is the gradual opening by the PE bias of the equipotential lines towards the parts of the extraction region facing the PE. The shape of these lines is due originally to the electron trapping by the magnetic field.

  10. Ion collision cross section analyses in quadrupole ion traps using the filter diagonalization method: a theoretical study.

    PubMed

    Jiang, Ting; He, Miyi; Guo, Dan; Zhai, Yanbing; Xu, Wei

    2016-04-28

    Previously, we have demonstrated the feasibility of measuring ion collision cross sections (CCSs) within a quadrupole ion trap by performing time-frequency analyses of simulated ion trajectories. In this study, an improved time-frequency analysis method, the filter diagonalization method (FDM), was applied for data analyses. Using the FDM, high resolution could be achieved in both time- and frequency-domains when calculating ion time-frequency curves. Owing to this high-resolution nature, ion-neutral collision induced ion motion frequency shifts were observed, which further cause the intermodulation of ion trajectories and thus accelerate image current attenuation. Therefore, ion trap operation parameters, such as the ion number, high-order field percentage and buffer gas pressure, were optimized for ion CCS measurements. Under optimized conditions, simulation results show that a resolving power from 30 to more than 200 could be achieved for ion CCS measurements. PMID:27066889

  11. Negative ion ESI-MS analysis of natural yellow dye flavonoids--An isotopic labelling study

    NASA Astrophysics Data System (ADS)

    McNab, Hamish; Ferreira, Ester S. B.; Hulme, Alison N.; Quye, Anita

    2009-07-01

    Flavonoids are amongst the most commonly used natural yellow colourants in paintings, as lakes, and in historical textiles as mordant dyes. In this paper, evidence from isotopically labelled substrates is used to propose negative ion electrospray collision induced decomposition mechanisms of flavones, flavonols and an isoflavone. These mechanisms include a retro-Diels-Alder fragmentation (observed for flavones and flavonols) and an M-122 fragmentation (characteristic of 3',4'-dihydroxyflavonols). In addition, the presence of a m/z 125 fragment ion is shown to be characteristic of 2'-hydroxyflavonols and an ion at m/z 149 is shown to be characteristic of 4'-hydroxyflavones. Applications of these methods are exemplified by the identification of a minor component of Dyer's camomile (Anthemis tinctoria L.) and the identification of the dye source in green threads sampled from an 18th Century Scottish tartan fragment.

  12. Characteristics of ion acoustic solitary waves in a negative ion plasma with superthermal electrons

    SciTech Connect

    Rouhani, M. R.; Ebne Abbasi, Z.

    2012-11-15

    The behavior of ion acoustic solitons in a plasma including positive and negative ions and kappa distributed electrons is studied, using both small amplitude and arbitrary amplitude approaches. The existence regions of compressive and rarefactive solitons will depend on negative to positive ion density ratio ({nu}) and kappa parameter as well as positive to negative ion mass ratio (Q). The numerical analysis of Sagdeev potential shows that for a chosen plasma with fixed Q, the existence regime of compressive solitons is decreased (increased) by increasing density ratio (kappa parameter), while for rarefactive solitons these conditions are quite opposite. Additionally, the possibility of propagation of both compressive and rarefactive subsonic solitons is investigated. It is found that by increasing negative ions, the existence domains of subsonic solitons are decreased, so that in excess of negative ions subsonic solitons will not propagate even at the presence of superthermal electrons. Indeed, there is a critical negative ion density ratio for all values of kappa, above that only supersonic solitons are observed. Furthermore, in addition to the previous results based on Cairns-distributed electrons [R. A. Cairns et al., Geophys. Res. Lett. 22, 2709 (1995)], which predicted that both compressive and rarefactive solitons can coexist simultaneously, we have also found the regions of {nu} and {kappa} in which either positive or negative potentials are permitted (i.e., not together). This research will be helpful in understanding the properties of space and laboratory plasmas containing negative ions with energetic electrons.

  13. Screening-Antiscreening Effect in Ion-Atom Collisions.

    NASA Astrophysics Data System (ADS)

    Hulskotter, Hans-Peter G.

    1990-01-01

    In a collision between an atomic projectile carrying one or more electrons and a target atom, one of the events that may occur is the ionization of a projectile electron. Projectile ionization, usually called electron loss, is normally attributed to the Coulomb interaction between the target nucleus and projectile electron. The effect of the target electrons can be accounted for partially by introducing a screened Coulomb interaction between the target and the projectile electron. However, the target electrons can not only act coherently as screening agents, but may also act incoherently as ionizing (antiscreening) agents. We have measured the cross sections for projectile K-shell ionization for 0.75 - 3.5 MeV/Nucleon Li^{2+ }, C^{5+}, and O^{7+} projectiles, for projectile electron loss of 100 and 380 MeV/Nucleon Au^{52+} projectiles in collisions with H_2, He, and N _2, and for 380 MeV/N Au^ {75+} projectiles in collisions with H _2 and N_2 targets. We unambiguously demonstrate that for energies where the target electrons have sufficient kinetic energy in the projectile frame to ionize the projectile electron, the electron-electron interaction can lead to a significant increase in the total ionization cross section. The largest relative increase we have been able to observe is 76%. The experimental results generally agree with plane-wave Born approximation calculations by Bates and Griffing and modified by Anholt which take into account the interaction between projectile and target electrons. We also describe the properties of a new target gas cell which has been designed and built for the use at the relativistic heavy-ion accelerator at Lawrence Berkeley Laboratory.

  14. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  15. Characteristics of Ion Activation and Collision Induced Dissociation Using Digital Ion Trap Technology.

    PubMed

    Xu, Fuxing; Dang, Qiankun; Dai, Xinhua; Fang, Xiang; Wang, Yuanyuan; Ding, Li; Ding, Chuan-Fan

    2016-08-01

    Collision induced dissociation (CID) is one of the most established techniques for tandem mass spectrometry analysis. The CID of mass selected ion could be realized by ion resonance excitation with a digital rectangular waveform. The method is simple, and highly efficient CID result could be obtained by optimizing the experimental parameters, such as digital waveform voltage, frequency, and q value. In this work, the relationship between ion trapping waveform voltage and frequency at preselected q value, the relationship between waveform frequency and the q value at certain ion trapping voltage for optimum CID efficiency were investigated. Experiment results showed that the max CID efficiency of precursor reserpine ions can be obtained at different trapping waveform voltage and frequency when q and β are different. Based on systematic experimental analysis, the optimum experimental conditions for high CID efficiency can be calculated at any selected β or q. By using digital ion trap technology, the CID process and efficient fragmentation of parent ions can be realized by simply changing the trapping waveform amplitude, frequency, and the β values in the digital ion trap mass spectrometry. The technology and method are simple. It has potential use in ion trap mass spectrometry. Graphical Abstract ᅟ. PMID:27150507

  16. Characteristics of Ion Activation and Collision Induced Dissociation Using Digital Ion Trap Technology

    NASA Astrophysics Data System (ADS)

    Xu, Fuxing; Dang, Qiankun; Dai, Xinhua; Fang, Xiang; Wang, Yuanyuan; Ding, Li; Ding, Chuan-Fan

    2016-08-01

    Collision induced dissociation (CID) is one of the most established techniques for tandem mass spectrometry analysis. The CID of mass selected ion could be realized by ion resonance excitation with a digital rectangular waveform. The method is simple, and highly efficient CID result could be obtained by optimizing the experimental parameters, such as digital waveform voltage, frequency, and q value. In this work, the relationship between ion trapping waveform voltage and frequency at preselected q value, the relationship between waveform frequency and the q value at certain ion trapping voltage for optimum CID efficiency were investigated. Experiment results showed that the max CID efficiency of precursor reserpine ions can be obtained at different trapping waveform voltage and frequency when q and β are different. Based on systematic experimental analysis, the optimum experimental conditions for high CID efficiency can be calculated at any selected β or q. By using digital ion trap technology, the CID process and efficient fragmentation of parent ions can be realized by simply changing the trapping waveform amplitude, frequency, and the β values in the digital ion trap mass spectrometry. The technology and method are simple. It has potential use in ion trap mass spectrometry.

  17. Efficient cesiation in RF driven surface plasma negative ion source.

    PubMed

    Belchenko, Yu; Ivanov, A; Konstantinov, S; Sanin, A; Sotnikov, O

    2016-02-01

    Experiments on hydrogen negative ions production in the large radio-frequency negative ion source with cesium seed are described. The system of directed cesium deposition to the plasma grid periphery was used. The small cesium seed (∼0.5 G) provides an enhanced H(-) production during a 2 month long experimental cycle. The gradual increase of negative ion yield during the long-term source runs was observed after cesium addition to the source. The degraded H(-) production was recorded after air filling to the source or after the cesium washing away from the driver and plasma chamber walls. The following source conditioning by beam shots produces the gradual recovery of H(-) yield to the high value. The effect of H(-) yield recovery after cesium coverage passivation by air fill was studied. The concept of cesium coverage replenishment and of H(-) yield recovery due to sputtering of cesium from the deteriorated layers is discussed. PMID:26932015

  18. Elliptic flow in heavy-ion collisions at NICA energies

    NASA Astrophysics Data System (ADS)

    B. Ivanov, Yu.; Soldatov, A. A.

    2016-08-01

    The transverse-momentum-integrated elliptic flow of charged particles at midrapidity, v2 (charged), and that of identified hadrons from Au+Au collisions are analyzed in the range of incident energies relevant to the Nuclotron-based Ion Collider Facility (NICA). Simulations are performed within a three-fluid model employing three different equations of state (EoSs): a purely hadronic EoS and two versions of the EoS involving the deconfinement transition-a first-order phase transition and a smooth crossover one. The present simulations demonstrate low sensitivity of v2 (charged) to the EoS. All considered scenarios equally well reproduce recent STAR data on v2 (charged) for mid-central Au+Au collisions and properly describe its change of sign at the incident energy decrease below √{s_{NN}} ≈ 3.5 GeV. The predicted integrated elliptic flow of various species exhibits a stronger dependence on the EoS. A noticeable sensitivity to the EoS is found for anti-protons and, to a lesser extent, for K- mesons. Presently there are no experimental data that could verify these predictions. Future experiments at NICA could corroborate these findings.

  19. Progress in numerical calculations of ion-atom collisions

    SciTech Connect

    Reading, J.F.; Ford, A.L.; Becker, R.L.

    1983-01-01

    An ion-atom collision produces a time dependent perturbation of a many fermion system. In this collision, excitation, ionization and charge transfer can occur. The driving mechanism for these processes may be thought of as the potentials seen by individual electrons at any given separation of the projectile and target nuclei. If we think of these potentials as belonging to the target (a nucleus and electrons) and the projectile (another nucleus and electrons) then as detected by an electron the potentials change because: (a) the target and projectile change position, and (b) electrons on the target and projectile change states. Most work in the past fifty years has concentrated on solving the independent particle model (IPM). Cracks are beginning to appear in this model which only allows for type (a) changes in the potential. But in a short review we shall have quite enough to do in understanding the progress made in the last decade on the IPM. This paper is divided into three parts. The first deals with how to reduce the IPM to the single electron model (SEM). The second is on a new method where charge transfer is important. The third confronts some standard models with modern calculations.

  20. Ultra-peripheral heavy-ion collisions with CMS

    SciTech Connect

    Kenny, Pat

    2015-04-10

    Ultra-peripheral collisions (UPCs) of heavy ions involve long range electromagnetic interactions at impact parameters larger than twice the nuclear radius. At TeV energies, the strong electromagnetic field due to the coherent action of the Z = 82 proton charges generates a large flux of photons, which can be used for high-energy photoproduction studies. Heavy vector mesons produced in electromagnetic interactions provide direct information on the parton distribution functions in the nucleus at very low values of Bjorken-x. These events are characterized by a very low hadron multiplicity. The wide pseudo-rapidity coverage of the CMS detectors is used to separate such events from very peripheral nuclear interactions. The CMS experiment has excellent capabilities for the measurement of the heavy vector mesons in the dimuon decay channel using the tracker and the muon chambers. This analysis demonstrates CMS’s capabilities for measuring J/ψ and the two-photon process in ultra-peripheral collisions, using the 2011 PbPb and 2013 pPb data. The prospects for future measurements using the data to be collected in the 2015 PbPb run will be described.

  1. Production of negative hydrogen and deuterium ions in microwave-driven ion sources.

    SciTech Connect

    Spence, D.

    1998-09-11

    The authors report progress they have made in the production of negative hydrogen and deuterium atomic ions in magnetically-confined microwave-driven (2.45 GHz) ion sources. The influence of source surface material, microwave power, source gas pressure and magnetic field configuration on the resulting ion current is discussed. Results strongly suggest that, at least in the source, vibrationally excited molecular hydrogen, the precursor to atomic negative ion production, is produced via a surface mechanism suggested by Hall et al. rather than via a gas phase reaction as is generally believed to be the case in most ion sources.

  2. An Ion-Neutral Collision Database for Astrophysics

    NASA Astrophysics Data System (ADS)

    Stancil, Phillip

    Collisions between ions and neutral atoms and molecules play an important role in a variety of astrophysical, atmospheric, and stellar-spheric gaseous and plasma environments. For example, charge transfer data, at the total and internal-state-specific level, are crucial for determining elemental ionization balances, the temperature balance, and ion emission spectra. Likewise, scattering- angle-dependent elastic and related transport cross sections describe the interaction of ion and neutral fluids largely controlling the rates of energy and momentum transfer, such as in ambipolar diffusion. As a consequence, most plasma/spectral modeling codes (e.g., Xstar, Cloudy, Chianti) require the input of large datasets of collisional information. Unfortunately, the available data are of a diverse nature in quality, energy or temperature coverage, state-specificity, format, and source documentation, or are completely unavailable in the literature. Further, such a lack of ion-neutral collision data, or data of poor quality, can lead to errors in astrophysical models and synthetic spectra and their related deductions. We propose here to address many of these issues with a significant update and extension of the existing Charge Transfer Database for Astrophysics which was funded from 1999- 2002 by the NASA AISRP program. The update of the charge transfer database will include i) the addition of new theoretical data computed in the past decade by our group, ii) the addition of new experimental and theoretical data from the literature with an emphasis on the post-2002 period, iii) data evaluations to produce recommended cross sections and rate coefficients, iv) facilities to generate approximate collisional data from semi-empirical models when data are completely lacking, v) conversion of all data into a format suitable for a relational database, vi) converters to facilitate exchange/export of data to other databases/users (e.g, XSAMS, uaDB, VAMDC), and vii) the development of a

  3. Production of photons in relativistic heavy-ion collisions

    DOE PAGES

    Jean -Francois Paquet; Denicol, Gabriel S.; Shen, Chun; Luzum, Matthew; Schenke, Bjorn; Jeon, Sangyong; Gale, Charles

    2016-04-18

    In this work it is shown that the use of a hydrodynamical model of heavy-ion collisions which incorporates recent developments, together with updated photon emission rates, greatly improves agreement with both ALICE and PHENIX measurements of direct photons, supporting the idea that thermal photons are the dominant source of direct photon momentum anisotropy. The event-by-event hydrodynamical model uses the impact parameter dependent Glasma model (IP-Glasma) initial states and includes, for the first time, both shear and bulk viscosities, along with second-order couplings between the two viscosities. Furthermore, the effect of both shear and bulk viscosities on the photon rates ismore » studied, and those transport coefficients are shown to have measurable consequences on the photon momentum anisotropy.« less

  4. Modelling early stages of relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ruggieri, M.; Puglisi, A.; Oliva, L.; Plumari, S.; Scardina, F.; Greco, V.

    2016-05-01

    In this study we model early time dynamics of relativistic heavy ion collisions by an initial color-electric field which then decays to a plasma by the Schwinger mechanism. The dynamics of the many particles system produced by the decay is described by relativistic kinetic theory, taking into account the backreaction on the color field by solving self-consistently the kinetic and the field equations. Our main results concern isotropization and thermalization for a 1+1D expanding geometry. In case of small η/s (η/s ≲ 0.3) we find τisotropization ≈ 0.8 fm/c and τthermalization ≈ 1 fm/c in agreement with the common lore of hydrodynamics.

  5. Heavy ion collision evolution modeling with ECHO-QGP

    NASA Astrophysics Data System (ADS)

    Rolando, V.; Inghirami, G.; Beraudo, A.; Del Zanna, L.; Becattini, F.; Chandra, V.; De Pace, A.; Nardi, M.

    2014-11-01

    We present a numerical code modeling the evolution of the medium formed in relativistic heavy ion collisions, ECHO-QGP. The code solves relativistic hydrodynamics in (3 + 1)D, with dissipative terms included within the framework of Israel-Stewart theory; it can work both in Minkowskian and in Bjorken coordinates. Initial conditions are provided through an implementation of the Glauber model (both Optical and Monte Carlo), while freezeout and particle generation are based on the Cooper-Frye prescription. The code is validated against several test problems and shows remarkable stability and accuracy with the combination of a conservative (shock-capturing) approach and the high-order methods employed. In particular it beautifully agrees with the semi-analytic solution known as Gubser flow, both in the ideal and in the viscous Israel-Stewart case, up to very large times and without any ad hoc tuning of the algorithm.

  6. Relativistic viscous hydrodynamics for high energy heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Vredevoogd, Joshua Aaron

    It has been over a decade since the first experimental data from gold nuclei collisions at the Relativistic Heavy Ion Collider suggested hydrodynamic behavior. Early ideal hydrodynamical models ignored the large longitudinal gradients that imply viscosity playing an important role in the dynamics. In addition, at that time, much less was known about the equation of state predicted by lattice calculations of quantum chromodynamics and the effects of late (dilute) stage rescattering were handled within the hydrodynamic framework. This dissertation presents a three-dimensional viscous hydrodynamics code with a realistic equation of state coupled consistently to a hadron resonance gas calculation. This code is capable of making significant comparisons to experimental data as part of an effort to learn about the structure of experimental constraints on the microscopic interactions of dense, hot quark matter.

  7. Determining the structure of X (3872) in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Abreu, L. M.; Khemchandani, K. P.; Martínez Torres, A.; Navarra, F. S.; Nielsen, M.

    2016-08-01

    We study the time evolution of the X (3872) abundance in the hot hadron gas produced in the late stage of heavy ion collisions. We use effective field Lagrangians to obtain the production and dissociation cross sections of X(3872). In this evaluation we include diagrams involving the anomalous couplings πD*D̅* and XD̅*D* and also the couplings of the X(3872) with charged D and D* mesons. With these new terms the X(3872) interaction cross sections are much larger than those found in previous works. Using these cross sections as input in rate equations, we conclude that during the expansion and cooling of the hadronic gas, the number of X(3872), originally produced at the end of the mixed QGP/hadron gas phase, is reduced by a factor of 4.

  8. Proof-of-Concept Experiments for Negative Ion Driver Beams for Heavy Ion Fusion

    SciTech Connect

    L.R. Grisham; S.K. Hahto; S.T. Hahto; J.W. Kwan; K.N. Leung

    2003-05-06

    Negative halogen ion beams have recently been proposed as heavy ion fusion drivers. They would avoid the problem of electron accumulation in positive ion beams, and could be efficiently photo-detached to neutrals if desired. Initial experiments using chlorine produced a current density of 45 mA/cm{sup 2} of 99.5% atomic negative Cl with an e/Cl- ratio as low as 7:1 and good emittance.

  9. Doubly Excited Resonances in the Positronium Negative Ion

    NASA Technical Reports Server (NTRS)

    Ho, Y.K.

    2007-01-01

    The recent theoretical studies on the doubly excited states of the Ps' ion are described. The results obtained by using the method of complex coordinate rotation show that the three-lepton system behaves very much like an XYX tri-atomic molecule. Furthermore, the recent investigation on the positronium negative ion embedded in Debye plasma environments is discussed. The problem is modeled by the use of a screened Coulomb potential to represent the interaction between the charge particles.

  10. Improvement of JT-60U Negative Ion Source Performance

    SciTech Connect

    L.R. Grisham; M. Kuriyama; M. Kawai; T. Itoh; N. Umeda; JT-60U Team

    2000-11-15

    The negative ion neutral beam system now operating on JT-60U was the first application of negative ion technology to the production of beams of high current and power for conversion to neutral beams, and has successfully demonstrated the feasibility of negative ion beam heating systems for ITER and future tokamak reactors [1, 2]. It also demonstrated significant electron heating[3] and high current drive efficiency in JT-60U[4]. Because this was such a large advance in the state of the art with respect to all system parameters, many new physical processes appeared during the earlier phases of the beam injection experiments. We have explored the physical mechanisms responsible for these processes, and implemented solutions for some of them, in particular excessive beam stripping, the secular dependence of the arc and beam parameters, and nonuniformity of the plasma illuminating the beam extraction grid. This has reduced the percentage of beam heat loading on the downstream grids by roug hly a third, and permitted longer beam pulses at higher powers. Progress is being made in improving the negative ion current density, and in coping with the sensitivity of the cesium in the ion sources to oxidation by tiny air or water leaks, and the cathode operation is being altered.

  11. Negative ion-based neutral injection on DIII-D

    SciTech Connect

    Stewart, L.D.; Bhadra, D.K.; Colleraine, A.P.; Kim, J.

    1990-01-01

    High energy negative ion-based neutral beam injection is a strong candidate for heating and non-inductive current drive in tokamaks. Many of the questions related to the physics and engineering of this technique remain unanswered. In this paper, we consider the possibility of negative ion-based neutral beam injection on DIII-D. We establish the desired parameter space by examining physics trades. This is combined with potential design constraints and a survey of component technology options to establish an injector concept. Injector performance is estimated assuming particular component technologies, and concept flexibility with respect to incorporating alternate technologies is described. 9 refs., 6 figs., 4 tabs.

  12. Solitons in a relativistic plasma with negative ions--

    SciTech Connect

    Das, G.C. ); Karmakar, B. ); Ibohanbi Singh, KH. )

    1990-02-01

    The interaction of the nonlinearity and the dispersiveness causing the solitary waves are studied in a relativistic plasma with negative ions through the derivation of a nonlinear partial differential equation known as the Korteweg-Devries (K-DV) equation. The negative ions play a salient feature on the existence and behavior of the solitons and could be of interest in laboratory plasmas. First, the observations are made in a nonisothermal plasma, and later the reduction to the nonisothermality of the plasma shows entirely different characteristics as compared to the solitons in the isothermal plasmas. A comparison with the various solutions has been emphasized.

  13. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    SciTech Connect

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  14. Constraints on models for the initial collision geometry in ultrarelativistic heavy ion collisions

    SciTech Connect

    Lacey, Roy A.; Jia, J.; Wei, Rui; Ajitanand, N. N.; Alexander, J. M.; Gong, X.; Taranenko, A.; Pak, R.; Stoecker, Horst

    2010-06-15

    Monte Carlo simulations are used to compute the centrality dependence of the collision zone eccentricities (epsilon{sub 2,4}), for both spherical and deformed ground state nuclei, for different model scenarios. Sizable model dependent differences are observed. They indicate that measurements of the second and fourth order Fourier flow coefficients v{sub 2,4}, expressed as the ratio (v{sub 4}/(v{sub 2}){sup 2}), can provide robust constraints for distinguishing between different theoretical models for the initial-state eccentricity. Such constraints could remove one of the largest impediments to a more precise determination of the specific viscosity from precision v{sub 2,4} measurements at the Relativistic Heavy Ion Collider (RHIC).

  15. Constraints on models for the initial collisions geometry in ultrarelativistic heavy ion collisions

    SciTech Connect

    Lacey, R.; Wei, R.; Ajitanand, N.; Alesander, J.; Gong, X.; Jia, J.; Tarandenko, A.; Pak, R.; Stocker, H.

    2010-06-01

    Monte Carlo simulations are used to compute the centrality dependence of the collision zone eccentricities ({var_epsilon}{sub 2,4}), for both spherical and deformed ground state nuclei, for different model scenarios. Sizable model dependent differences are observed. They indicate that measurements of the second and fourth order Fourier flow coefficients v{sub 2,4}, expressed as the ratio v{sub 4}/(v{sub 2}){sup 2}, can provide robust constraints for distinguishing between different theoretical models for the initial-state eccentricity. Such constraints could remove one of the largest impediments to a more precise determination of the specific viscosity from precision v{sub 2,4} measurements at the Relativistic Heavy Ion Collider (RHIC).

  16. Specific formation of negative ions from leucine and isoleucine molecules

    NASA Astrophysics Data System (ADS)

    Papp, Peter; Shchukin, Pavel; Matejčík, Štefan

    2010-01-01

    Dissociative electron attachment (DEA) to gas phase leucine (Leu) and isoleucine (Ile) molecules was studied using experimental and quantum-chemical methods. The relative partial cross sections for DEA have been measured using crossed electron/molecular beams technique. Supporting ab initio calculations of the structure, energies of neutral molecules, fragments, and negative ions have been carried out at G3MP2 and B3LYP levels in order to interpret the experimental data. Leu and Ile exhibit several common features. The negative ionic fragments from both molecules are formed in the electron energy range from 0 to approximately 14 eV via three resonances (1.2, 5.5, and 8 eV). The relative partial cross sections for DEA Leu and Ile are very similar. The dominant negative ions formed were closed shell negative ions (M-H)- (m/z=130) formed preferentially via low electron energy resonance of 1.23 eV. Additional negative ions with m/z=115, 114, 113, 112, 84, 82, 74, 45, 26, and 17 have been detected.

  17. Triangularity and dipole asymmetry in relativistic heavy ion collisions

    SciTech Connect

    Teaney, Derek; Yan Li

    2011-06-15

    We introduce a cumulant expansion to parametrize possible initial conditions in relativistic heavy ion collisions. We show that the cumulant expansion converges and that it can systematically reproduce the results of Glauber type initial conditions. At third order in the gradient expansion the cumulants characterize the triangularity and the dipole asymmetry of the initial entropy distribution. We show that for midperipheral collisions the orientation angle of the dipole asymmetry {psi}{sub 1,3} has a 20% preference out of plane. This leads to a small net v{sub 1} out of plane. In peripheral and midcentral collisions the orientation angles {psi}{sub 1,3} and {psi}{sub 3,3} are strongly correlated, but this correlation disappears towards central collisions. We study the ideal hydrodynamic response to these cumulants and determine the associated v{sub 1}/{epsilon}{sub 1} and v{sub 3}/{epsilon}{sub 3} for a massless ideal gas equation of state. The space time development of v{sub 1} and v{sub 3} is clarified with figures. These figures show that v{sub 1} and v{sub 3} develop toward the edge of the nucleus, and consequently the final spectra are more sensitive to the viscous dynamics of freezeout. The hydrodynamic calculations for v{sub 3} are provisionally compared to Alver and Roland fit of STAR inclusive two-particle correlation functions. Finally, we propose to measure the v{sub 1} associated with the dipole asymmetry and the correlations between {psi}{sub 1,3} and {psi}{sub 3,3} by measuring a two-particle correlation with respect to the participant plane . The hydrodynamic prediction for this correlation function is several times larger than a correlation currently measured by the STAR collaboration . This experimental measurement would provide

  18. Positive and negative cluster ions from liquid ethanol by fast ion bombardment.

    PubMed

    Kaneda, M; Shimizu, M; Hayakawa, T; Iriki, Y; Tsuchida, H; Itoh, A

    2010-04-14

    Secondary ion mass spectra have been measured for the first time for a liquid ethanol target bombarded by 2.0 MeV He(+) ions. Positive and negative ion spectra exhibit evidently a series of cluster ions of the forms [(EtOH)(n)H](+) and [(EtOH)(n)-H](-), respectively, in addition to light fragment ions from intact parent molecules. It was found that these cluster ions are produced only from liquid phase ethanol. Both positive and negative secondary ion spectra show similar cluster size distributions with almost the same decay slope. We also present for the first time the cluster ion distribution emitted from the liquid at different liquid temperatures.

  19. Significant enhancement of negative secondary ion yields by cluster ion bombardment combined with cesium flooding.

    PubMed

    Philipp, Patrick; Angerer, Tina B; Sämfors, Sanna; Blenkinsopp, Paul; Fletcher, John S; Wirtz, Tom

    2015-10-01

    In secondary ion mass spectrometry (SIMS), the beneficial effect of cesium implantation or flooding on the enhancement of negative secondary ion yields has been investigated in detail for various semiconductor and metal samples. All results have been obtained for monatomic ion bombardment. Recent progress in SIMS is based to a large extent on the development and use of cluster primary ions. In this work we show that the enhancement of negative secondary ions induced by the combination of ion bombardment with simultaneous cesium flooding is valid not only for monatomic ion bombardment but also for cluster primary ions. Experiments carried out using C60+ and Ar4000+ bombardment on silicon show that yields of negative secondary silicon ions can be optimized in the same way as by Ga+ and Cs+ bombardment. Both for monatomic and cluster ion bombardment, the optimization does not depend on the primary ion species. Hence, it can be assumed that the silicon results are also valid for other cluster primary ions and that results obtained for monatomic ion bombardment on other semiconductor and metal samples are also valid for cluster ion bombardment. In SIMS, cluster primary ions are also largely used for the analysis of organic matter. For polycarbonate, our results show that Ar4000+ bombardment combined with cesium flooding enhances secondary ion signals by a factor of 6. This can be attributed to the removal of charging effects and/or reduced fragmentation, but no major influence on ionization processes can be observed. The use of cesium flooding for the imaging of cells was also investigated and a significant enhancement of secondary ion yields was observed. Hence, cesium flooding has also a vast potential for SIMS analyses with cluster ion bombardment.

  20. QED Approach to Modeling Spectra of the Multicharged Ions in a Plasma: Oscillator and Electron-ion Collision Strengths

    SciTech Connect

    Glushkov, A. V.; Khetselius, O. Yu.; Loboda, A. V.; Ignatenko, A.; Svinarenko, A.; Korchevsky, D.; Lovett, L.

    2008-10-22

    The uniform energy approach, formally based on the QED theory with using gauge invariant scheme of generation of the optimal one-electron representation, is used for the description of spectra of the multicharged ions in a laser plasma, calculation of electron-ion collision strengths, cross-sections in Ne-like and Ar-like ions.

  1. From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions

    SciTech Connect

    Venugopalan, R.

    2010-07-22

    We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.

  2. Selected Topics in the Physics of Heavy Ion Collisions (1/3)

    ScienceCinema

    None

    2016-07-12

    In these lectures, I discuss some classes of measurements accessible in heavy ion collisions at the LHC. How can these observables be measured, to what extent can they be calculated, and what do they tell us about the dense mesoscopic system created during the collision? In the first lecture, I shall focus in particular on measurements that constrain the spatio-temporal picture of the collisions and that measure centrality, orientations and extensions. In the subsequent lectures, I then discuss on how classes of measurements allow one to characterize collective phenomena, and to what extent these measurements can constrain the properties of matter produced in heavy ion collisions.

  3. Cesium Delivery System for Negative Ion Source at IPR

    SciTech Connect

    Bansal, G.; Pandya, K.; Soni, J.; Gahlaut, A.; Parmar, K. G.; Bandyopadhyay, M.; Chakraborty, A.; Singh, M. J.

    2011-09-26

    The technique of surface production of negative ions using cesium, Cs, has been efficiently exploited over the years for producing negative ion beams with increased current densities from negative ion sources used on neutral beam lines. Deposition of Cs on the source walls and the plasma grid lowers the work function and therefore enables a higher yield of H{sup -}, when hydrogen particles (H and/or H{sub x}{sup +}) strike these surfaces.A single driver RF based (100 kW, 1 MHz) negative ion source test bed, ROBIN, is being set up at IPR under a technical collaboration between IPR and IPP, Germany. The optimization of the Cs oven design to be used on this facility as well as multidriver sources is underway. The characterization experiments of such a Cs delivery system with a 1 g Cs inventory have been carried out using surface ionization technique. The experiments have been carried by delivering Cs into a vacuum chamber without plasma. The linear motion of the surface ionization detector, SID, attached with a linear motion feedthrough allows measuring the angular distribution of the Cs coming out of the oven. Based on the experimental results, a Cs oven for ROBIN has been proposed. The Cs oven design and experimental results of the prototype Cs oven are reported and discussed in the paper.

  4. Recent advancements in sputter-type heavy negative ion sources

    SciTech Connect

    Alton, G.D.

    1989-01-01

    Significant advancement have been made in sputter-type negative ion sources which utilize direct surface ionization, or a plasma to form the positive ion beam used to effect sputtering of samples containing the material of interest. Typically, such sources can be used to generate usable beam intensities of a few ..mu..A to several mA from all chemically active elements, depending on the particular source and the electron affinity of the element in question. The presentation will include an introduction to the fundamental processes underlying negative ion formation by sputtering from a low work function surface and several sources will be described which reflect the progress made in this technology. 21 refs., 9 figs., 1 tab.

  5. Space Charge Neutralization in the ITER Negative Ion Beams

    SciTech Connect

    Surrey, Elizabeth

    2007-08-10

    A model of the space charge neutralization of negative ion beams, developed from the model due to Holmes, is applied to the ITER heating and diagnostic beams. The Holmes model assumed that the plasma electron temperature was derived from the stripped electrons. This is shown to be incorrect for the ITER beams and the plasma electron temperature is obtained from the average creation energy upon ionization. The model shows that both ITER beams will be fully space charge compensated in the drift distance between the accelerator and the neutralizer. Inside the neutralizer, the plasma over compensates the space charge to the extent that a significant focusing force is predicted. At a certain position in the neutraliser this force balances the defocusing force due to the ions' transverse energy. Under these conditions the beam distribution function can change from Gaussian to Bennett and evidence of such a distribution observed in a multi-aperture, neutralized negative ion beam is presented.

  6. Negative ion beam generation in laser plasma interactions

    NASA Astrophysics Data System (ADS)

    Jequier, Sophie; Tikhonchuk, Vladimir; Ter-Avetisyan, Sargis

    2013-10-01

    Detection of a large number of energetic negative ions and neutral atoms have been reported in recent intense laser plasma interaction experiments. These particles were produced from fast positive ions (proton, carbon, oxygen) accelerated from a laser produced plasma when they were passing through a cold spray of water or ethanol. The negative ions formation is strongly related to the fast positive ions, and it is explained by a process of a single electron capture - loss. Double charge exchange, elastic scattering and energy loss phenomena have been neglected since their cross sections are much smaller. Assuming independent atoms approximation, we study populations evolution through the interaction zone analytically and numerically by solving the rate equations using cross sections drawn from literature. Taking into account the energy distribution of the incident ions, the calculations give the final energy distribution for the different species that can be compared to experimental spectra. First results obtained for hydrogen in the water case indicate that this model can explain the main observed features. The results concerning the carbon and oxygen ions will be also presented as well as refinement of the cross sections since some cross sections are missing for these energies.

  7. Field line equipotentiality and ion neutral collision frequencies in the dynamo region deduced from Saint-Santin ion drift measurements

    SciTech Connect

    Taieb, C.; Blanc, M.

    1981-08-01

    We analyze three-dimensional ion drift data from the Saint-Santin incoherent scatter facility to test experimentally the theoretical description of ion transport in the ionospheric dynamo layer, and to deduce electric fields and ion neutral collision frequencies from the observed drifts. Using a geometrical representation of the ion momentum equation, we show that at middle latitudes, because horizontal neutral wind influences ion motions both parallel and orthogonal to the field lines in the ionospheric dynamo layer, the information contained in a three-dimensional ion drift measurement is redundant, thus permitting to check the standard theoretical description of ionospheric electrodynamics in two ways. First, assuming a model ion-neutral collision frequency profile, one can deduce the north-south perpendicular component of the electric field function of height in the E region from Saint-Santin drift data. We find that its altitude variations remain within the experimental uncertainty of the method, in agreement with the theoretical assumption of equipotential field lines. Second, assuming that the electric field is constant in altitude, one can determine the ion collision ratio, or ratio of the ion collision frequency to the ion gyrofrequency, from a comparison of E and F region drift measurements. Daily median values of the ion collision frequencies, thus obtained for each of the three seasons, are found to compare reasonably well with ion collision frequencies derived from the Jacchia neutral atmosphere model for the case of the equinox sample, but determinations for the other seasons are contaminated by a high level of measurement noise.

  8. Negative hydrogen ion production in a helicon plasma source

    SciTech Connect

    Santoso, J. Corr, C. S.; Manoharan, R.; O'Byrne, S.

    2015-09-15

    In order to develop very high energy (>1 MeV) neutral beam injection systems for applications, such as plasma heating in fusion devices, it is necessary first to develop high throughput negative ion sources. For the ITER reference source, this will be realised using caesiated inductively coupled plasma devices, containing either hydrogen or deuterium discharges, operated with high rf input powers (up to 90 kW per driver). It has been suggested that due to their high power coupling efficiency, helicon devices may be able to reduce power requirements and potentially obviate the need for caesiation due to the high plasma densities achievable. Here, we present measurements of negative ion densities in a hydrogen discharge produced by a helicon device, with externally applied DC magnetic fields ranging from 0 to 8.5 mT at 5 and 10 mTorr fill pressures. These measurements were taken in the magnetised plasma interaction experiment at the Australian National University and were performed using the probe-based laser photodetachment technique, modified for the use in the afterglow of the plasma discharge. A peak in the electron density is observed at ∼3 mT and is correlated with changes in the rf power transfer efficiency. With increasing magnetic field, an increase in the negative ion fraction from 0.04 to 0.10 and negative ion densities from 8 × 10{sup 14 }m{sup −3} to 7 × 10{sup 15 }m{sup −3} is observed. It is also shown that the negative ion densities can be increased by a factor of 8 with the application of an external DC magnetic field.

  9. Caesium Free Negative Ion Sources for Neutral Beam Injectors: a Study of Negative Ion Production on Graphite Surface in Hydrogen and Deuterium Plasma

    SciTech Connect

    Schiesko, L.; Carrere, M.; Cartry, G.; Layet, J.-M.

    2009-03-12

    Negative ion generation on HOPG graphite surface has been studied in hydrogen and deuterium plasma. We measure Ion Distribution Function (IDF) of negative ions coming from graphite surface bombarded by positive ions in H{sub 2}/D{sub 2} plasmas. We showed that negative ions flux was proportional to positive ion flux and was strongly dependant on impinging energy. IDF study shows two generation mechanisms are involved: sputtering of adsorbed H/D as negative ions and, in a less important way, double electron capture. We compare H{sub 2}/D{sub 2} plasmas, and point out isotopic effect between H{sup -} and D{sup -} production.

  10. Electromagnetic fields and anomalous transports in heavy-ion collisions-a pedagogical review.

    PubMed

    Huang, Xu-Guang

    2016-07-01

    The hot and dense matter generated in heavy-ion collisions may contain domains which are not invariant under P and CP transformations. Moreover, heavy-ion collisions can generate extremely strong magnetic fields as well as electric fields. The interplay between the electromagnetic field and triangle anomaly leads to a number of macroscopic quantum phenomena in these P- and CP-odd domains known as anomalous transports. The purpose of this article is to give a pedagogical review of various properties of the electromagnetic fields, the anomalous transport phenomena, and their experimental signatures in heavy-ion collisions.

  11. Volume Production of Negative Hydrogen and Deuterium Ions in aReflex-Type Ion Source

    SciTech Connect

    Jimbo, K.; Ehlers, K.W.; Leung, K.N.; Pyle, R.V.

    1986-01-01

    The extraction of negative and positive hydrogen and deuterium ions from a reflex-type negative ion source has been investigated. Extracted positive and negative ion currents were measured as functions of the gas flow rate, the axial magnetic field, and the bias potential of the cylindrical wall of the arc-chamber. By biasing the cylindrical wall several volts negative relative to the anode, a maximum H{sup -} current of 9.7 mA(J{sup -} {approx_equal} 100 mA/cm{sup 2}) and D{sup -} current of 4.1 mA (J{sup -} {approx_equal} 42 mA/cm{sup 2})were obtained in steady state operation. This result shows a factor of two improvement over previous data. The total impurity negative ion content was less than 1%. When the source was arranged for positive ion extraction, a high proton ratio (90%) was observed. The extracted negative ion current was approximately as large as the positive ion current.

  12. Transport Properties of Negative Ions in HBR Plasmas

    NASA Astrophysics Data System (ADS)

    Stojanovic, Vladimir; Ivanovic, Nenad; Radmilovic-Radjenovic, Marija; Raspopovic, Zoran; Bojarov, Aleksandar; Petrovic, Zoran

    2014-10-01

    Low temperature plasma in halogenated gases is standard environment for dry etching of semiconductors. Amount of negative ions in HBr plasmas determines electronegativity so modeling etching devices requires data for anion transport properties. In this work we present cross section set for Br- ions in HBr assembled by using Denpoh-Nanbu theory. The threshold energy values were calculated by known heats of formation. The calculated total cross section accounts for ion-induced-dipole and ion-permanent-dipole interaction by using the local-dipole model. The total cross section was corrected to fit the reduced mobility obtained by SACM (Statistical Adiabatic Channel Model) approximation. Existing cross section measurements were used to scale calculated cross sections. Finally, we used Monte Carlo method to determine transport parameters for Br- as a function of reduced electric fields that can be used in fluid and hybrid plasma models.

  13. Development of negative ion extractor in the high-power and long-pulse negative ion source for fusion application

    SciTech Connect

    Kashiwagi, M. Umeda, N.; Tobari, H.; Kojima, A.; Yoshida, M.; Taniguchi, M.; Dairaku, M.; Maejima, T.; Yamanaka, H.; Watanabe, K.; Inoue, T.; Hanada, M.

    2014-02-15

    High power and long-pulse negative ion extractor, which is composed of the plasma grid (PG) and the extraction grid (EXG), is newly developed toward the neutral beam injector for heating and current drive of future fusion machines such as ITER, JT-60 Super Advanced and DEMO reactor. The PG is designed to enhance surface production of negative ions efficiently by applying the chamfered aperture. The efficiency of the negative ion production for the discharge power increased by a factor of 1.3 against that of the conventional PG. The EXG is also designed with the thermal analysis to upgrade the cooling capability for the long pulse operation of >1000 s required in ITER. Though the magnetic field for electron suppression is reduced to 0.75 of that in the conventional EXG due to this upgrade, it was experimentally confirmed that the extracted electron current can be suppressed to the allowable level for the long pulse operation. These results show that newly developed extractor has the high potential for the long pulse extraction of the negative ions.

  14. Challenges in plasma and extraction modelling of negative ion sources

    NASA Astrophysics Data System (ADS)

    Kalvas, Taneli

    2013-09-01

    The physical processes taking place in negative ion source plasmas are modelled by state-of-the-art 3D particle-in-cell (PIC) codes. These codes are used to gain understanding and to find optimal solutions for negative ion beam production. The PIC codes can be made to match to the reality if all relevant processes were included. This is unfortunately limited by the availability of data about the processes and the huge amount of computational resources needed for the simulations. The optimization of the extraction system and beam transport ion optics is often made using computationally less intensive methods utilized in so-called gun codes. These codes use simplified plasma models to provide a starting point for the extracted beams being simulated. The relatively fast computation allows systematic studies, which are not practical with PIC codes. The gun codes often match well to reality, but they do have difficulties reproducing some effects, especially in negative ion extraction, due to the approximations made in the plasma model. Could the future solutions for beam production modelling couple the two types of simulations?

  15. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators.

    PubMed

    Sartori, E; Brescaccin, L; Serianni, G

    2016-02-01

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.

  16. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators.

    PubMed

    Sartori, E; Brescaccin, L; Serianni, G

    2016-02-01

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared. PMID:26931910

  17. Effects of discharge chamber length on the negative ion generation in volume-produced negative hydrogen ion source

    SciTech Connect

    Chung, Kyoung-Jae; Jung, Bong-Ki; An, YoungHwa; Dang, Jeong-Jeung; Hwang, Y. S.

    2014-02-15

    In a volume-produced negative hydrogen ion source, control of electron temperature is essential due to its close correlation with the generation of highly vibrationally excited hydrogen molecules in the heating region as well as the generation of negative hydrogen ions by dissociative attachment in the extraction region. In this study, geometric effects of the cylindrical discharge chamber on negative ion generation via electron temperature changes are investigated in two discharge chambers with different lengths of 7.5 cm and 11 cm. Measurements with a radio-frequency-compensated Langmuir probe show that the electron temperature in the heating region is significantly increased by reducing the length of the discharge chamber due to the reduced effective plasma size. A particle balance model which is modified to consider the effects of discharge chamber configuration on the plasma parameters explains the variation of the electron temperature with the chamber geometry and gas pressure quite well. Accordingly, H{sup −} ion density measurement with laser photo-detachment in the short chamber shows a few times increase compared to the longer one at the same heating power depending on gas pressure. However, the increase drops significantly as operating gas pressure decreases, indicating increased electron temperatures in the extraction region degrade dissociative attachment significantly especially in the low pressure regime. It is concluded that the increase of electron temperature by adjusting the discharge chamber geometry is efficient to increase H{sup −} ion production as long as low electron temperatures are maintained in the extraction region in volume-produced negative hydrogen ion sources.

  18. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).

  19. Power supply system for negative ion source at IPR

    NASA Astrophysics Data System (ADS)

    Gahlaut, Agrajit; Sonara, Jashwant; Parmar, K. G.; Soni, Jignesh; Bandyopadhyay, M.; Singh, Mahendrajit; Bansal, Gourab; Pandya, Kaushal; Chakraborty, Arun

    2010-02-01

    The first step in the Indian program on negative ion beams is the setting up of Negative ion Experimental Assembly - RF based, where 100 kW of RF power shall be coupled to a plasma source producing plasma of density ~5 × 1012 cm-3, from which ~ 10 A of negative ion beam shall be produced and accelerated to 35 kV, through an electrostatic ion accelerator. The experimental system is modelled similar to the RF based negative ion source, BATMAN presently operating at IPP, Garching, Germany. The mechanical system for Negative Ion Source Assembly is close to the IPP source, remaining systems are designed and procured principally from indigenous sources, keeping the IPP configuration as a base line. High voltage (HV) and low voltage (LV) power supplies are two key constituents of the experimental setup. The HV power supplies for extraction and acceleration are rated for high voltage (~15 to 35kV), and high current (~ 15 to 35A). Other attributes are, fast rate of voltage rise (< 5ms), good regulation (< ±1%), low ripple (< ±2%), isolation (~50kV), low energy content (< 10J) and fast cut-off (< 100μs). The low voltage (LV) supplies required for biasing and providing heating power to the Cesium oven and the plasma grids; have attributes of low ripple, high stability, fast and precise regulation, programmability and remote operation. These power supplies are also equipped with over-voltage, over-current and current limit (CC Mode) protections. Fault diagnostics, to distinguish abnormal rise in currents (breakdown faults) with over-currents is enabled using fast response breakdown and over-current protection scheme. To restrict the fault energy deposited on the ion source, specially designed snubbers are implemented in each (extraction and acceleration) high voltage path to swap the surge energy. Moreover, the monitoring status and control signals from these power supplies are required to be electrically (~ 50kV) isolated from the system. The paper shall present the

  20. Effect of entrance channel on dynamics of heavy ions collision

    NASA Astrophysics Data System (ADS)

    Naderi, D.

    2016-01-01

    A combined dynamical model using concept of dinuclear systems (DNS) and one-dimensional (1D) Langevin equations was applied to investigate the effect of entrance channel on dynamics of heavy ions collision. The 30Si+170Er, 16O+184W and 19F+181Ta reactions which formed the compound nucleus 200Pb have been considered to study this effect. We studied these reactions dynamically and calculated the ratio of evaporation residue cross-section to fusion cross-section (σER/σFus) as a tool for investigation of entrance channel effect. Results of combined model are compared with available experimental data and results of 1D Langevin equations. Obtained results based on combined model are in better agreement with experimental data in comparison with results of Langevin equations. We concluded for 30Si+170Er and 19F+181Ta reactions the results of combined model that support the quasi-fission process are different relative to Langevin dynamical approach, whereas for 16O+184W system the two models give similar results.

  1. Thermal electromagnetic radiation in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Rapp, R.; van Hees, H.

    2016-08-01

    We review the potential of precise measurements of electromagnetic probes in relativistic heavy-ion collisions for the theoretical understanding of strongly interacting matter. The penetrating nature of photons and dileptons implies that they can carry undistorted information about the hot and dense regions of the fireballs formed in these reactions and thus provide a unique opportunity to measure the electromagnetic spectral function of QCD matter as a function of both invariant mass and momentum. In particular we report on recent progress on how the medium modifications of the (dominant) isovector part of the vector current correlator ( ρ channel) can shed light on the mechanism of chiral symmetry restoration in the hot and/or dense environment. In addition, thermal dilepton radiation enables novel access to a) the fireball lifetime through the dilepton yield in the low invariant-mass window 0.3 GeV ≤ M ≤ 0.7 GeV, and b) the early temperatures of the fireball through the slope of the invariant-mass spectrum in the intermediate-mass region (1.5 GeV < M < 2.5 GeV). The investigation of the pertinent excitation function suggests that the beam energies provided by the NICA and FAIR projects are in a promising range for a potential discovery of the onset of a first-order phase transition, as signaled by a non-monotonous behavior of both low-mass yields and temperature slopes.

  2. Extracting p Λ scattering lengths from heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Shapoval, V. M.; Erazmus, B.; Lednicky, R.; Sinyukov, Yu. M.

    2015-09-01

    The source radii previously extracted by the STAR Collaboration from the p -Λ ⊕p ¯-Λ ¯ and p ¯-Λ ⊕p -Λ ¯ correlation functions measured in 10% most central Au+Au collisions at top Relativistic Heavy Ion Collider (RHIC) energy, √{sN N}=200 GeV, differ by a factor of 2. The probable reason for this is the neglect of residual correlation effect in the STAR analysis. In the present paper we analyze baryon correlation functions within the Lednický and Lyuboshitz analytical model, extended to effectively account for the residual correlation contribution. Different analytical approximations for such a contribution are considered. We also use the averaged source radii extracted from hydrokinetic model (HKM) simulations to fit the experimental data. In contrast to the STAR experimental study, the calculations in HKM show both p Λ and p Λ ¯ radii to be quite close, as expected from theoretical considerations. Using the effective Gaussian parametrization of residual correlations we obtain a satisfactory fit to the measured baryon-antibaryon correlation function with the HKM source radius value 3.28 fm. The baryon-antibaryon spin-averaged strong interaction scattering length is also extracted from the fit to the experimental correlation function.

  3. Modeling early time dynamics of relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Oliva, Lucia; Ruggieri, Marco; Puglisi, Armando; Plumari, Salvatore; Scardina, Francesco; Coci, Gabriele; Greco, Vincenzo

    2016-08-01

    We studied isotropization and thermalization of the quark-gluon plasma produced by decaying color-electric flux tubes created at the very early stages of relativistic heavy ion collisions. We coupled the dynamical evolution of the initial field, which decays to a plasma by the Schwinger mechanism, to the dynamics of the many particles system produced by the decay. The evolution of such a system is described by relativistic transport theory at fixed values of the viscosity over entropy density ratio. Within a single self-consistent calculation scheme we computed quantities which serve as indicators of the equilibration of the plasma for a 1+1 dimensional expanding geometry. We find that the initial color-electric field decays within 1 fm/c and particles production occurs in less than 1 fm/c; however, in the case of large viscosity oscillations of the field appear along the entire time evolution of the system, affecting also the behaviour of the ratio between longitudinal and transverse pressure. In case of small viscosity we find that the isotropization time is about 0.8 fm/c and the thermalization time is about 1 fm/c, in agreement with the common lore of hydrodynamic approaches.

  4. Two-pion correlations in heavy ion collisions

    SciTech Connect

    Zajc, W.A.

    1982-08-01

    An application of intensity interferometry to relativistic heavy ion collisions is reported. Specifically, the correlation between two like-charged pions is used to study the reactions Ar+KCl..-->..2..pi../sup +-/+X and Ne+NaF..-->..2..pi../sup -/+X. Source sizes are obtained that are consistent with a simple geometric interpretation. Lifetimes are less well determined but are indicative of a faster pion production process than predicted by Monte Carlo cascade calculations. There appears to be a substantial coherent component of the pion source, although measurement is complicated by the presence of final state interactions. Additionally, the generation of spectra of uncorrelated events is discussed. In particular, the influence of the correlation function on the background spectrum is analyzed, and a prescription for removal of this influence is given. A formulation to describe the statistical errors in the background is also presented. Finally, drawing from the available literature, a self-contained introduction to Bose-Einstein correlations and the Hanbury-Brown - Twiss effect is provided, with an emphasis on points of contact between classical and quantum mechanical descriptions.

  5. Head-on collision of magnetoacoustic solitary waves in magnetized quantum electron-positron-ion plasma

    NASA Astrophysics Data System (ADS)

    Ruan, Shi-Sen; Wu, Shan; Raissan, Majid; Cheng, Ze

    2013-08-01

    This article presents the first study of the head-on collision between two magnetoacoustic solitary waves (MASWs) in magnetized quantum plasma consisting of electrons, positrons, and ions, using the extended Poincaré-Lighthill-Kou (PLK) method. The effects of the magnetic field intensity, the positron to ion number density ratio, the quantum parameter, the Fermi temperature ratio, and plasma number density on the solitary wave collisions are investigated. It is shown that these factors significantly modify the phase shift.

  6. Theory and observation of a dynamically evolviong negative ion plasma

    SciTech Connect

    Mendillo, M.; Forbes, J.

    1982-10-01

    As part of the Project Firefly ionospheric modification campaigns conducted during the early 1960's, sulfur hexafluoride (SF/sub 6/) was used to study the creation and consequences of artificially-induced electron depletion regions via the attachment process (SF/sub 6/+e..-->..SF/sub 6/). Since those early experiments, a great many advances have occurred in theoretical, laboratory, and diagnostic techniques related to negative ion plasmas. This study examines the full range of negative ion chemistry in the upper ionosphere by using current reaction rate data to investigate the many chemical paths SF/sub 6/ type injections might take in an F region environment. Particular attention is given to the conditions required to create heavy negative ions that persist long enough to affect the dynamical properties of the F region. The ambipolar diffusion characteristics of a three component plasma (O/sup +/, e/sup -/, SF/sub 6//sup -/) are described, and estimates of the incoherent scatter spectra obtained from such a plasma are presented. Model calculations using a first order chemical code are defined and tested to investigate the actual types of negative ion plasmas capable of being created under nighttime conditions. A versatile model for diffusion in an exponential atmosphere ws used to simulate the evolution of 10/sup 26/SF/sub 6/ molecules released at 222 km during a 1962 Firefly experiment. When examined in conjunction with the chemical model calculatins, the results suggest that the ionospheric perturbations recorded at the time probably resulted more from molecular and atomic ion neutralizations involving SF/sub 6//sup -/, SF/sub 5//sup +/, O/sup -/, O/sup +/, and epsilon/sup -/, rather than simple electron attachments, as had been expected. A similar use of SF/sub 6/ diffusion scenarios for high-altitude releases (h = 350-500 km) indicates that large-scale, long-lived negative ion plasmas could be produced by modest rocket or Shuttle-borne payloads to study

  7. Inner-shell photodetachment of transition metal negative ions

    NASA Astrophysics Data System (ADS)

    Dumitriu, Ileana

    This thesis focuses on the study of inner-shell photodetachment of transition metal negative ions, specifically Fe- and Ru- . Experimental investigations have been performed with the aim of gaining new insights into the physics of negative atomic ions and providing valuable absolute cross section data for astrophysics. The experiments were performed using the X-ray radiation from the Advanced Light Source, Lawrence Berkeley National Laboratory, and the merged-beam technique for photoion spectroscopy. Negative ions are a special class of atomic systems very different from neutral atoms and positive ions. The fundamental physics of the interaction of transition metal negative ions with photons is interesting but difficult to analyze in detail because the angular momentum coupling generates a large number of possible terms resulting from the open d shell. Our work reports on the first inner-shell photodetachment studies and absolute cross section measurements for Fe- and Ru -. In the case of Fe-, an important astrophysical abundant element, the inner-shell photodetachment cross section was obtained by measuring the Fe+ and Fe2+ ion production over the photon energy range of 48--72 eV. The absolute cross sections for the production of Fe+ and Fe2+ were measured at four photon energies. Strong shape resonances due to the 3p→3d photoexcitation were measured above the 3p detachment threshold. The production of Ru+, Ru2+, and Ru3+ from Ru- was measured over 30--90 eV photon energy range The absolute photodetachment cross sections of Ru - ([Kr] 4d75s 2) leading to Ru+, Ru2+, and Ru 3+ ion production were measured at three photon energies. Resonance effects were observed due to interference between transitions of the 4 p-electrons to the quasi-bound 4p54d85s 2 states and the 4d→epsilonf continuum. The role of many-particle effects, intershell interaction, and polarization seems much more significant in Ru- than in Fe- photodetachment.

  8. Reflection of ion acoustic solitons in a plasma having negative ions

    SciTech Connect

    Chauhan, S.S.; Malik, H.K.; Dahiya, R.P.

    1996-11-01

    Reflection of compressive and rarefactive ion acoustic solitons propagating in an inhomogeneous plasma in the presence of negative ions is investigated. Modified Korteweg{endash}deVries equations for incident and reflected solitons are derived and solved. The amplitude of incident and reflected solitons increases with negative to positive ion density ratio. With increasing density ratio, reflection of rarefactive solitons is reinforced whereas that of compressive solitons weakened. The rarefactive solitons are found to undergo stronger reflection than the compressive ones. {copyright} {ital 1996 American Institute of Physics.}

  9. Radiocarbon dating using electrostatic accelerators: negative ions provide the key.

    PubMed

    Bennett, C L; Beukens, R P; Clover, M R; Gove, H E; Liebert, R B; Litherland, A E; Purser, K H; Sondheim, W E

    1977-11-01

    Mass spectrometric methods have long been suggested as ways of measuring (14)C/(12)C ratios for carbon dating. One problem has been to distinguish between (14)N and (14)C. With negative ions and a tandem electrostatic accelerator, the (14)N background is virtually absent and fewer than three (14)C atoms in 10(16) atoms of (12)C have been easily measured.

  10. Gabor lens focusing of a negative ion beam

    SciTech Connect

    Palkovic, J.A.; Mills, F.E.; Schmidt, C.; Young, D.E.

    1989-05-01

    Gabor or plasma lenses have previously been used to focus intense beams of positive ions at energies from 10 keV to 5 MeV. It is the large electrostatic field of the non-neutral plasma in the Gabor lens which is responsible for the focusing. Focusing an ion beam with a given sign of charge in a Gabor lens requires a non-neutral plasma with the opposite sign of charge as the beam. A Gabor lens constructed at Fermilab has been used to focus a 30 keV proton beam with good optical quality. We discuss studies of the action of a Gabor lens on a beam of negative ions. A Gabor lens has been considered for matching an H/sup /minus// beam into an RFQ in the redesign of the low energy section of the Fermilab linac. 9 refs., 3 figs., 1 tab.

  11. Observation of a shape resonance of the positronium negative ion

    NASA Astrophysics Data System (ADS)

    Michishio, Koji; Kanai, Tsuneto; Kuma, Susumu; Azuma, Toshiyuki; Wada, Ken; Mochizuki, Izumi; Hyodo, Toshio; Yagishita, Akira; Nagashima, Yasuyuki

    2016-03-01

    When an electron binds to its anti-matter counterpart, the positron, it forms the exotic atom positronium (Ps). Ps can further bind to another electron to form the positronium negative ion, Ps- (e-e+e-). Since its constituents are solely point-like particles with the same mass, this system provides an excellent testing ground for the three-body problem in quantum mechanics. While theoretical works on its energy level and dynamics have been performed extensively, experimental investigations of its characteristics have been hampered by the weak ion yield and short annihilation lifetime. Here we report on the laser spectroscopy study of Ps-, using a source of efficiently produced ions, generated from the bombardment of slow positrons onto a Na-coated W surface. A strong shape resonance of 1Po symmetry has been observed near the Ps (n=2) formation threshold. The resonance energy and width measured are in good agreement with the result of three-body calculations.

  12. A large-area RF source for negative hydrogen ions

    NASA Astrophysics Data System (ADS)

    Frank, P.; Feist, J. H.; Kraus, W.; Speth, E.; Heinemann, B.; Probst, F.; Trainham, R.; Jacquot, C.

    1998-08-01

    In a collaboration with CEA Cadarache, IPP is presently developing an rf source, in which the production of negative ions (H-/D-) is being investigated. It utilizes PINI-size rf sources with an external antenna and for the first step a small size extraction system with 48 cm2 net extraction area. First results from BATMAN (Ba¯varian T_est Ma¯chine for N_egative Ions) show (without Cs) a linear dependence of the negative ion yield with rf power, without any sign of saturation. At elevated pressure (1.6 Pa) a current density of 4.5 mA/cm2 H- (without Cs) has been found so far. At medium pressure (0.6 Pa) the current density is lower by approx. a factor of 5, but preliminary results with Cesium injection show a relative increase by almost the same factor in this pressure range. Langmuir probe measurements indicate an electron temperature Te>2 eV close to the plasma grid with a moderate magnetic filter (700 Gcm). Attempts to improve the performance by using different magnetic configurations and different wall materials are under way.

  13. Time-fractional Gardner equation for ion-acoustic waves in negative-ion-beam plasma with negative ions and nonthermal nonextensive electrons

    SciTech Connect

    Guo, Shimin Mei, Liquan; Zhang, Zhengqiang

    2015-05-15

    Nonlinear propagation of ion-acoustic waves is investigated in a one-dimensional, unmagnetized plasma consisting of positive ions, negative ions, and nonthermal electrons featuring Tsallis distribution that is penetrated by a negative-ion-beam. The classical Gardner equation is derived to describe nonlinear behavior of ion-acoustic waves in the considered plasma system via reductive perturbation technique. We convert the classical Gardner equation into the time-fractional Gardner equation by Agrawal's method, where the time-fractional term is under the sense of Riesz fractional derivative. Employing variational iteration method, we construct solitary wave solutions of the time-fractional Gardner equation with initial condition which depends on the nonlinear and dispersion coefficients. The effect of the plasma parameters on the compressive and rarefactive ion-acoustic solitary waves is also discussed in detail.

  14. Energy straggling of low-energy ion beam in a charge exchange cell for negative ion production

    SciTech Connect

    Takeuchi, S.; Sasao, M.; Sugawara, H.; Tanaka, N.; Kisaki, M.; Okamoto, A.; Shinto, K.; Kitajima, S.; Nishiura, M.; Wada, M.

    2008-02-15

    Energy straggling in a charge exchange cell, which is frequently used for negative ion production, was studied experimentally and compared with the results of theoretical evaluation. The change of the energy spectrum of a He{sup +} beam due to charge exchange processes in argon gas was measured in the energy range of 2-6 keV. Energy straggling by multiple collisions is expressed by the energy loss formula due to inelastic and elastic processes. The impact parameter is related to the elastic scattering angle, and the geometry of the charge exchange cell and other components of the beam transportation system determines the maximum acceptable scattering angle. The energy spread was evaluated taking the integral limit over the impact parameter into consideration. The theoretical results showed good agreement with those of actual measurement.

  15. Dynamic screening and wake effects on electronic excitation in ion-solid and ion-surface collisions

    SciTech Connect

    Burgdoerfer, J. . Dept. of Physics Oak Ridge National Lab., TN )

    1991-01-01

    The collective electronic response in a solid effectively alters ionic and atomic potentials giving rise to dynamic screening and to a wake'' of density fluctuations trailing ions as they propagate through the solid. The presence of dynamic screening modifies electronic excitation processes of projectiles in ion-solid collisions as compared to binary ion-atom collisions. We review recent theoretical and experimental studies directed at the search for and identification of signatures of dynamic screening and wake effects. Examples include the formation of excited projectile bound states under channeling conditions, radiative electron capture, the search for wake riding'' electrons in antiproton-solid collisions, and the neutralization of highly charged ions near surfaces. 42 refs., 7 figs.

  16. Evaluation of Negative-Ion-Beam Driver Concepts for Heavy Ion Fusion

    SciTech Connect

    Grisham, Larry R.

    2003-03-15

    The feasibility of producing and using atomically neutral heavy ion beams produced from negative ions as drivers for an inertial confinement fusion reactor is evaluated. Bromine and iodine appear to be the most attractive elements for the driver beams. Fluorine and chlorine appear to be the most appropriate feedstocks for initial tests of extractable negative-ion current densities. With regard to ion sources, photodetachment neutralizers, and vacuum requirements for accelerators and beam transport, this approach appears feasible within existing technology, and the vacuum requirements are essentially identical to those for positive-ion drivers except in the target chamber. The principal constraint is that this approach requires harder vacuums in the target chamber than do space-charge-neutralized positive-ion drivers. With realistic (but perhaps pessimistic) estimates of the total ionization cross section, limiting the ionization of a neutral beam to <5% while traversing a 3-m path would require a chamber pressure of no more than 1.3 x 10{sup -5} torr. However, it appears that substantial improvements in the beam spot size on target might be achieved at pressures a factor of 10 or more higher than this. Alternatively, even at still higher chamber pressures that would strongly ionize atomically neutral beams, the negative-ion approach may still have significant appeal, since it precludes the possibly challenging problem of electron contamination of a positive-ion beam during acceleration, drift compression, and focusing.

  17. Evaluation of Negative-Ion-Beam Driver Concepts for Heavy Ion Fusion

    SciTech Connect

    Larry R. Grisham

    2002-01-14

    We evaluate the feasibility of producing and using atomically neutral heavy ion beams produced from negative ions as drivers for an inertial confinement fusion reactor. Bromine and iodine appear to be the most attractive elements for the driver beams. Fluorine and chlorine appear to be the most appropriate feedstocks for initial tests of extractable negative ion current densities. With regards to ion sources, photodetachment neutralizers, and vacuum requirements for accelerators and beam transport, this approach appears feasible within existing technology, and the vacuum requirements are essentially identical to those for positive ion drivers except in the target chamber. The principal constraint is that this approach requires harder vacuums in the target chamber than do space-charge-neutralized positive ion drivers. With realistic (but perhaps pessimistic) estimates of the total ionization cross section, limiting the ionization of a neutral beam to less than 5% while traversing a four -meter path would require a chamber pressure of no more than 5 x 10{sup -5} torr. Alternatively, even at chamber pressures that are too high to allow propagation of atomically neutral beams, the negative ion approach may still have appeal, since it precludes the possibly serious problem of electron contamination of a positive ion beam during acceleration, drift compression, and focusing.

  18. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    SciTech Connect

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  19. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    SciTech Connect

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-08

    As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines

  20. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    SciTech Connect

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.

  1. Heavy Quarkonium Dissociation Cross Sections in Relativistic Heavy-Ion Collisions

    SciTech Connect

    C.-Y. Wong; Eric Swanson; Ted Barnes

    2001-12-01

    Many of the hadron-hadron cross sections required for the study of the dynamics of matter produced in relativistic heavy-ion collisions can be calculated using the quark-interchange model. Here we evaluate the low-energy dissociation cross sections of J/{psi}, {psi}', {chi}, {Upsilon}, and {Upsilon}' in collision with {pi}, {rho}, and K, which are important for the interpretation of heavy-quarkonium suppression as a signature for the quark gluon plasma. These comover dissociation processes also contribute to heavy-quarkonium suppression, and must be understood and incorporated in simulations of heavy-ion collisions before QGP formation can be established through this signature.

  2. Overview on collision processes of highly charged ions with atoms present status and problems

    SciTech Connect

    Janev, R.K.

    1983-05-01

    This paper provides a brief discussion on the present status of the collision physics of highly charged ions with atoms. The emphasis is on the main achievements in understanding and describing the most important collision processes, and as charge transfer, ionization and Auger-type processes, and even more on those open problems which, due either to their scientific or practical importance, represent challenges to current research in this field. The paper concentrates on general ideas and problems whose development and solutions have advanced or will advance our basic understanding of the collision dynamics of multiply charged ions with atoms.

  3. Dynamics of strangeness production in heavy-ion collisions near threshold energies

    SciTech Connect

    Feng Zhaoqing; Jin Genming

    2010-11-15

    Within the framework of the improved isospin-dependent quantum molecular dynamics (ImIQMD) model, the dynamics of strangeness (K{sup 0,+}, {Lambda}, and {Sigma}{sup -,0,+}) production in heavy-ion collisions near threshold energies is investigated systematically, with the strange particles considered to be produced mainly by inelastic collisions of baryon-baryon and pion-baryon. Collisions in the region of suprasaturation densities of the dense baryonic matter formed in heavy-ion collisions dominate the yields of strangeness production. Total multiplicities as functions of incident energies and collision centralities are calculated with the Skyrme parameter SLy6. The excitation function of strangeness production is analyzed and also compared with the KaoS data for K{sup +} production in the reactions {sup 12}C+{sup 12}C and {sup 197}Au+{sup 197}Au.

  4. Metastability of isoformyl ions in collisions with helium and hydrogen. [in interstellar molecular clouds

    NASA Technical Reports Server (NTRS)

    Green, S.

    1984-01-01

    The stability of HOC(+) ions under conditions in interstellar molecular clouds is considered. In particular, the possibility that collisions with helium or hydrogen will induce isomerization to the stable HCO(+) form is examined theoretically. Portions of the electronic potential energy surfaces for interaction with He and H atoms are obtained from standard quantum mechanical calculations. Collisions with He atoms are found to be totally ineffective for inducing isomerization. Collisions with H atoms are found to be ineffective at low interstellar temperatures owing to a small (about 500 K) barrier in the entrance channel; at higher temperatures where this barrier can be overcome, however, collisions with hydrogen atoms do result in conversion to the stable HCO(+) form. Although detailed calculations are not presented, it is argued that low-energy collisions with H2 molecules are also ineffective in destroying the metastable ion.

  5. Collision cross section calculations for polyatomic ions considering rotating diatomic/linear gas molecules

    SciTech Connect

    Larriba-Andaluz, Carlos Hogan, Christopher J.

    2014-11-21

    Structural characterization of ions in the gas phase is facilitated by measurement of ion collision cross sections (CCS) using techniques such as ion mobility spectrometry. Further information is gained from CCS measurement when comparison is made between measurements and accurately predicted CCSs for model ion structures and the gas in which measurements are made. While diatomic gases, namely molecular nitrogen and air, are being used in CCS measurement with increasingly prevalency, the majority of studies in which measurements are compared to predictions use models in which gas molecules are spherical or non-rotating, which is not necessarily appropriate for diatomic gases. Here, we adapt a momentum transfer based CCS calculation approach to consider rotating, diatomic gas molecule collisions with polyatomic ions, and compare CCS predictions with a diatomic gas molecule to those made with a spherical gas molecular for model spherical ions, tetra-alkylammonium ions, and multiply charged polyethylene glycol ions. CCS calculations are performed using both specular-elastic and diffuse-inelastic collisions rules, which mimic negligible internal energy exchange and complete thermal accommodation, respectively, between gas molecule and ion. The influence of the long range ion-induced dipole potential on calculations is also examined with both gas molecule models. In large part we find that CCSs calculated with specular-elastic collision rules decrease, while they increase with diffuse-inelastic collision rules when using diatomic gas molecules. Results clearly show the structural model of both the ion and gas molecule, the potential energy field between ion and gas molecule, and finally the modeled degree of kinetic energy exchange between ion and gas molecule internal energy are coupled to one another in CCS calculations, and must be considered carefully to obtain results which agree with measurements.

  6. Collision cross section calculations for polyatomic ions considering rotating diatomic/linear gas molecules.

    PubMed

    Larriba-Andaluz, Carlos; Hogan, Christopher J

    2014-11-21

    Structural characterization of ions in the gas phase is facilitated by measurement of ion collision cross sections (CCS) using techniques such as ion mobility spectrometry. Further information is gained from CCS measurement when comparison is made between measurements and accurately predicted CCSs for model ion structures and the gas in which measurements are made. While diatomic gases, namely molecular nitrogen and air, are being used in CCS measurement with increasingly prevalency, the majority of studies in which measurements are compared to predictions use models in which gas molecules are spherical or non-rotating, which is not necessarily appropriate for diatomic gases. Here, we adapt a momentum transfer based CCS calculation approach to consider rotating, diatomic gas molecule collisions with polyatomic ions, and compare CCS predictions with a diatomic gas molecule to those made with a spherical gas molecular for model spherical ions, tetra-alkylammonium ions, and multiply charged polyethylene glycol ions. CCS calculations are performed using both specular-elastic and diffuse-inelastic collisions rules, which mimic negligible internal energy exchange and complete thermal accommodation, respectively, between gas molecule and ion. The influence of the long range ion-induced dipole potential on calculations is also examined with both gas molecule models. In large part we find that CCSs calculated with specular-elastic collision rules decrease, while they increase with diffuse-inelastic collision rules when using diatomic gas molecules. Results clearly show the structural model of both the ion and gas molecule, the potential energy field between ion and gas molecule, and finally the modeled degree of kinetic energy exchange between ion and gas molecule internal energy are coupled to one another in CCS calculations, and must be considered carefully to obtain results which agree with measurements. PMID:25416874

  7. Semiempirical Theories of the Affinities of Negative Atomic Ions

    NASA Technical Reports Server (NTRS)

    Edie, John W.

    1961-01-01

    The determination of the electron affinities of negative atomic ions by means of direct experimental investigation is limited. To supplement the meager experimental results, several semiempirical theories have been advanced. One commonly used technique involves extrapolating the electron affinities along the isoelectronic sequences, The most recent of these extrapolations Is studied by extending the method to Include one more member of the isoelectronic sequence, When the results show that this extension does not increase the accuracy of the calculations, several possible explanations for this situation are explored. A different approach to the problem is suggested by the regularities appearing in the electron affinities. Noting that the regular linear pattern that exists for the ionization potentials of the p electrons as a function of Z, repeats itself for different degrees of ionization q, the slopes and intercepts of these curves are extrapolated to the case of the negative Ion. The method is placed on a theoretical basis by calculating the Slater parameters as functions of q and n, the number of equivalent p-electrons. These functions are no more than quadratic in q and n. The electron affinities are calculated by extending the linear relations that exist for the neutral atoms and positive ions to the negative ions. The extrapolated. slopes are apparently correct, but the intercepts must be slightly altered to agree with experiment. For this purpose one or two experimental affinities (depending on the extrapolation method) are used in each of the two short periods. The two extrapolation methods used are: (A) an isoelectronic sequence extrapolation of the linear pattern as such; (B) the same extrapolation of a linearization of this pattern (configuration centers) combined with an extrapolation of the other terms of the ground configurations. The latter method Is preferable, since it requires only experimental point for each period. The results agree within

  8. Hyperthermal Energy Collisions of CF3 + Ions with Modified Surfaces: Surface-Induced Dissociation

    SciTech Connect

    Rezayat, T.; Shukla, A.

    2004-01-01

    Collisions of low-energy ions, especially polyatomic ions, with surfaces have become an active area of research due to their numerous applications in chemistry, physics and material sciences. An interesting aspect of such collisions is the dissociation of ions which has been successfully exploited for the characterization of colliding ions, especially high mass ions from biological molecules. However, detailed studies of the energy transfer and dissociation have been performed only for a few simple systems and hence the mechanism(s) of ions’ excitation and dissociation are not as well understood even for small ions. We have therefore undertaken a study of the dissociation of a small polyatomic ion, CF3+, at several collision energies between 28.8 eV and 159 eV in collision with fluorinated alkyl thiol on gold 111 crystal and a LiF surface. These experiments were performed using a custom built tandem mass spectrometer where the energy and intensity distributions of the scattered fragment ions were measured as a function of the fragment ion mass and scattering angle. In contrast with the previous studies of the dissociation of ethanol and acetone cations where the inelastically scattered primary ions dominated the collision process (up to ~50 eV maximum energy used in those experiments), we did not observe a measurable abundance of inelastically scattered undissociated CF3+ ions at all energies studied here. We observed all fragment ions, CF2+, CF+, F+ and C+ at all energies studied with the relative intensity of the highest energy pathway, C+, increasing with collision energy. Also, the dissociation efficiency decreased significantly as the collision energy was increased from to 159 eV. The energy distributions of nearly all the fragment ions showed two distinct components, one corresponding to the loss of nearly all of the kinetic energy and scattered over a broad angular range while the other corresponding to smaller kinetic energy losses and scattered closer to

  9. Transition of ion-acoustic perturbations in multicomponent plasma with negative ions

    SciTech Connect

    Sharma, Sumita Kumari; Devi, Kavita; Adhikary, Nirab Chandra; Bailung, Heremba

    2008-08-15

    Evolution of ion-acoustic compressive (positive) and rarefactive (negative) perturbations in a multicomponent plasma with negative ions has been investigated in a double plasma device. Transition of compressive solitons in electron-positive ion plasma, into a dispersing train of oscillations in a multicomponent plasma, when the negative ion concentration r exceeds a critical value r{sub c}, has been observed. On the other hand, an initial rarefactive perturbation initially evolves into a dispersing train of oscillations in electron-positive ion plasma and transforms into rarefactive solitons in a multicomponent plasma when the negative ion concentration is higher than the critical value. The Mach velocity and width of the compressive and rarefactive solitons are measured. The compressive solitons in the range 0r{sub c} have different characteristics than the Korteweg-de Vries (KdV) solitons at r=0 and modified KdV solitons at r=r{sub c}. A nonlinear differential equation having two terms to account for the lower and higher order nonlinearity has been used to explain the observed results.

  10. Matching stages of heavy-ion collision models

    SciTech Connect

    Cheng Yun; Csernai, L. P.; Magas, V. K.; Schlei, B. R.; Strottman, D.

    2010-06-15

    Heavy-ion reactions and other collective dynamical processes are frequently described by different theoretical approaches for the different stages of the process, like initial equilibration stage, intermediate locally equilibrated fluid dynamical stage, and final freeze-out stage. For the last stage, the best known is the Cooper-Frye description used to generate the phase space distribution of emitted, noninteracting particles from a fluid dynamical expansion or explosion, assuming a final ideal gas distribution, or (less frequently) an out-of-equilibrium distribution. In this work we do not want to replace the Cooper-Frye description, but rather clarify the ways of using it and how to choose the parameters of the distribution and, eventually, how to choose the form of the phase space distribution used in the Cooper-Frye formula. Moreover, the Cooper-Frye formula is used in connection with the freeze-out problem, while the discussion of transition between different stages of the collision is applicable to other transitions also. More recently, hadronization and molecular dynamics models have been matched to the end of a fluid dynamical stage to describe hadronization and freeze-out. The stages of the model description can be matched to each other on space-time hypersurfaces (just like through the frequently used freeze-out hypersurface). This work presents a generalized description of how to match the stages of the description of a reaction to each other, extending the methodology used at freeze-out, in simple covariant form which is easily applicable in its simplest version for most applications.

  11. A collisional radiative model for caesium and its application to an RF source for negative hydrogen ions

    SciTech Connect

    Wünderlich, D. Wimmer, C.; Friedl, R.

    2015-04-08

    A collisional radiative (CR) model for caesium atoms in low-temperature, low-pressure hydrogen-caesium plasmas is introduced. This model includes the caesium ground state, 14 excited states, the singly charged caesium ion and the negative hydrogen ion. The reaction probabilities needed as input are based on data from the literature, using some scaling and extrapolations. Additionally, new cross sections for electron collision ionization and three-body recombination have been calculated. The relevance of mutual neutralization of positive caesium ions and negative hydrogen ions is highlighted: depending on the densities of the involved particle species, this excitation channel can have a significant influence on the population densities of excited states in the caesium atom. This strong influence is successfully verified by optical emission spectroscopy measurements performed at the IPP prototype negative hydrogen ion source for ITER NBI. As a consequence, population models for caesium in electronegative low-temperature, low-pressure hydrogen-caesium plasmas need to take into account the mutual neutralization process. The present CR model is an example for such models and represents an important prerequisite for deducing the total caesium density in surface production based negative hydrogen ion sources.

  12. Cross-B convection of artificially created, negative-ion clouds and plasma depressions - Low-speed flow

    NASA Technical Reports Server (NTRS)

    Bernhardt, Paul A.

    1988-01-01

    A negative-ion, positive-ion plasma produced by the release of an electron attachment chemical into the F region becomes electrically polarized by collisions with neutrals moving across magnetic field lines. The resulting electric field causes E x B drift of the two ion species and the residual electrons. The cross-field flow of the modified ionosphere is computed using a two-dimensional numerical simulation which includes electron attachment and mutual neutralization chemistry, self-consistent electric fields, and three-species plasma transport. The velocity of the plasma is initially in the direction of the neutral wind because the negative-ion cloud is a Pedersen conductivity enhancement. As the positive and negative ions react, the Pedersen conductivity becomes depressed below the ambient value and the velocity of the plasma reverses direction. A plasma hole remains after the positive and negative ions have mutually neutralized. The E x B gradient drift instability produces irregularities on the upwind edge of the hole.

  13. Metal negative ion beam extraction from a radio frequency ion source

    SciTech Connect

    Kanda, S.; Yamada, N.; Kasuya, T.; Romero, C. F. P.; Wada, M.

    2015-04-08

    A metal ion source of magnetron magnetic field geometry has been designed and operated with a Cu hollow target. Radio frequency power at 13.56 MHz is directly supplied to the hollow target to maintain plasma discharge and induce self-bias to the target for sputtering. The extraction of positive and negative Cu ion beams have been tested. The ion beam current ratio of Cu{sup +} to Ar{sup +} has reached up to 140% when Ar was used as the discharge support gas. Cu{sup −} ion beam was observed at 50 W RF discharge power and at a higher Ar gas pressure in the ion source. Improvement of poor RF power matching and suppression of electron current is indispensable for a stable Cu{sup −} ion beam production from the source.

  14. Negative hydrogen ion beam extracted from a Bernas-type ion source

    SciTech Connect

    Miyamoto, N.; Wada, M.

    2011-09-26

    Negative hydrogen (H{sup -}) ion beam was produced without cesium seeding by a Bernas-type ion source with a coaxial hot cathode. The amount of H{sup -} ion beam current extracted from an original Bernas-type ion source using a hairpin shape filament as a hot cathode was 1 {mu}A with the 0.4 A arc current, while that 300 eV beam energy. In the other hand, H{sup -} ion beam current using the Bernas-type ion source with a coaxial hot cathode reached 4 {mu}A under the same condition. Production efficiency was enhanced by the focused plasma produced by a coaxial hot cathode.

  15. Application of Ion and Electron Momentum Imaging to Atomic Collisions

    NASA Astrophysics Data System (ADS)

    Cocke, C. L.

    2000-06-01

    COLTRIMS (COLd Target Recoil Ion Momentum Spectroscopy) combines fast imaging detectors with a supersonically cooled gas target to allow the charged particles from any ionizing collision, including both recoil ions and electrons, to be collected with extremely high efficiency and with fully measured vector momenta. Since all particles are measured in event mode, the full multi-dimensional momentum space is mapped. We will review several examples of the use of this technique to study two- , three- and four-body final states created in ionizing interactions of photons and charged particles with He and D2 . The momentum spectra of electrons ejected from these targets by slow projectiles reveal the stucture of the molecular orbitals which are promoted into the continuum. Double photoionization of the same targets reveals patterns which can be interpreted in terms of collective coordinates. Two-electron removal from D2 by Xe ^26+ reveals the influence of the projectile field on the dissociation process. A recent application of the technique to ionization by high intensity laser fields will be discussed. Work performed in collaboration with M.A.Abdallah^1, I.Ali^1, Matthias Achler^2, H.Braeuning^2,3, Angela Braeuning-Deminian^2, Achim Czasch^2,3, R.Doerner^2,3, R.DuBois^6, A. Landers^1,5, V.Mergel^2, R.E.Olson^6, T.Osipov^1, M.Prior^3, H.Schmidt-Boecking^2, M.Singh^1, A.Staudte^2,3, T.Weber^2, W.Wolff^4, and H.E.Wolf^4 ^1J.R.Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS 66506; ^2 Institut fuer Kernphysik, Univ. Frankfurt, August-Euler-Str.6,D-60486 Frankfurt, Germany ; ^3Lawrence Berkeley National Laboratory, Berkeley, CA 94720; ^4Instituto de Fisica, Universidade Federal do Rio de Janeiro Caixa Postal 68.528, 21945-970, Rio de Janeiro, Brazil; ^5Physics Dept., Western Michigan University, Kalamazoo, MI 49008; ^6Physics Dept., Univ. Missouri Rolla, Rolla, MO 65409 Work supported by the Division of Chemical Sciences, Office of Basic

  16. Detection of negative pickup ions at Saturn's moon Dione

    NASA Astrophysics Data System (ADS)

    Nordheim, T.; Jones, G. H.; Coates, A. J.; Wellbrock, A.; Hand, K. P.; Waite, J. H., Jr.

    2015-12-01

    Negative ions may be formed in both tenuous and dense planetary atmospheres and have been observed in-situ at Earth, Titan [Coates et al., 2007, 2009; Wellbrock et al., 2013] and Enceladus [Coates et al., 2010] as well as at comet Halley [Chaizy et al., 1991]. In the case of Titan, heavy hydrocarbon and nitrile based ions with masses reaching almost 14,000 amu/q have been observed using the CAPS Electron Spectrometer (ELS) onboard Cassini. These are believed to form even more massive organic aerosols termed tholins which fall to lower altitudes where they make up the distinct haze layers, and eventually rain down onto Titan's surface perhaps forming the organic-rich dunes. Very tenuous atmospheres were predicted at the smaller icy moons of Saturn [Sittler et al., 2004; Saur and Strobel, 2005], and subsequently detected [Teolis et al., 2010; Tokar et al., 2012]. These are produced when charged particles from Saturn's magnetosphere interact with moon surfaces, ejecting neutral species. Some portion of these atmospheric neutrals will in turn become ionized and 'picked up' by Saturn's corotating magnetosphere. These pickup ions will then move in cycloidal trajectories that we may intercept using the Cassini spacecraft, even at considerable distance from the moon itself. In this fashion, negative and positive pickup ions have been used to infer a tenuous CO2-O2 atmosphere at Saturn's moon Rhea [Teolis et al., 2010], and positive pickup ions at Dione [Tokar et al., 2012]. Here we report on the detection of negative pickup ions during a close flyby of Dione by the Cassini CAPS ELS instrument, and the implications that these observations may have for the Dionian atmosphere. Chaizy, P., et al. (1991), Nature, 349(6308), 393-396 Coates, A. J., et al. (2007), Geophys. Res. Lett., 34(22), 6-11 Coates, A. J., et al. (2009), Planet. Space Sci., 57(14-15), 1866-1871 Coates, A. J., et al. (2010), Icarus, 206(2), 618-622 Saur, J., and D. F. Strobel (2005), Astrophys. J. Lett., 620

  17. Wigner time delay in photodetachment of negative ions

    NASA Astrophysics Data System (ADS)

    Saha, S.; Deshmukh, P. C.; Jose, J.; Kkeifets, A. S.; Manson, S. T.

    2016-05-01

    In recent years, there has been much interest in studies on Wigner time delay in atomic photoionization using various experimental techniques and theoretical methodologies. In the present work, we report time delay in the photodetachment of negative ions using the relativistic-random-phase approximation (RRPA), which includes relativistic and important correlation effects. Time delay is obtained as energy derivative of phase of the photodetachment complex transition amplitude. We investigate the time delay in the dipole n p --> ɛd channels in the photodetachment of F- and Cl-, and in n f --> ɛg channels in the photodetachment of Tm-. In photodetachment of the negative ions, the photoelectron escapes in the field of the neutral atom and thus does not experience the nuclear Coulomb field; hence the phase is devoid of the Coulomb component. The systems chosen are well suited to examine the sensitivity of the photodetachment time delay to the centrifugal potential. The ions chosen have closed shells, and thus amenable to the RPA. Work supported by DOE, Office of Chemical Sciences, DST (India), and the Australian Research Council.

  18. A large-area RF source for negative hydrogen ions

    SciTech Connect

    Frank, P.; Feist, J. H.; Kraus, W.; Speth, E.; Heinemann, B.; Probst, F.; Trainham, R.; Jacquot, C.

    1998-08-20

    In a collaboration with CEA Cadarache, IPP is presently developing an rf source, in which the production of negative ions (H{sup -}/D{sup -}) is being investigated. It utilizes PINI-size rf sources with an external antenna and for the first step a small size extraction system with 48 cm{sup 2} net extraction area. First results from BATMAN (Bavarian T lowbar est Machine for N lowbar egative Ions) show (without Cs) a linear dependence of the negative ion yield with rf power, without any sign of saturation. At elevated pressure (1.6 Pa) a current density of 4.5 mA/cm{sup 2} H{sup -} (without Cs) has been found so far. At medium pressure (0.6 Pa) the current density is lower by approx. a factor of 5, but preliminary results with Cesium injection show a relative increase by almost the same factor in this pressure range. Langmuir probe measurements indicate an electron temperature T{sub e}>2 eV close to the plasma grid with a moderate magnetic filter (700 Gcm). Attempts to improve the performance by using different magnetic configurations and different wall materials are under way.

  19. First experiments with the negative ion source NIO1.

    PubMed

    Cavenago, M; Serianni, G; De Muri, M; Agostinetti, P; Antoni, V; Baltador, C; Barbisan, M; Baseggio, L; Bigi, M; Cervaro, V; Degli Agostini, F; Fagotti, E; Kulevoy, T; Ippolito, N; Laterza, B; Minarello, A; Maniero, M; Pasqualotto, R; Petrenko, S; Poggi, M; Ravarotto, D; Recchia, M; Sartori, E; Sattin, M; Sonato, P; Taccogna, F; Variale, V; Veltri, P; Zaniol, B; Zanotto, L; Zucchetti, S

    2016-02-01

    Neutral Beam Injectors (NBIs), which need to be strongly optimized in the perspective of DEMO reactor, request a thorough understanding of the negative ion source used and of the multi-beamlet optics. A relatively compact radio frequency (rf) ion source, named NIO1 (Negative Ion Optimization 1), with 9 beam apertures for a total H(-) current of 130 mA, 60 kV acceleration voltage, was installed at Consorzio RFX, including a high voltage deck and an X-ray shield, to provide a test bench for source optimizations for activities in support to the ITER NBI test facility. NIO1 status and plasma experiments both with air and with hydrogen as filling gas are described. Transition from a weak plasma to an inductively coupled plasma is clearly evident for the former gas and may be triggered by rising the rf power (over 0.5 kW) at low pressure (equal or below 2 Pa). Transition in hydrogen plasma requires more rf power (over 1.5 kW). PMID:26932048

  20. Ion collision cross section measurements in Fourier transform-based mass analyzers.

    PubMed

    Li, Dayu; Tang, Yang; Xu, Wei

    2016-06-01

    With the increasing demands of molecular structure analysis, several methods have been developed to measure ion collision cross sections within Fourier transform (FT) based mass analyzers. Particularly in the recent three years since 2012, the method of obtaining biomolecule collision cross sections was achieved in Fourier transform ion cyclotron resonance (FT-ICR) cells. Furthermore, similar methods have been realized or proposed for orbitraps and quadrupole ion traps. This technique adds a new ion structure analysis capability to FT-based mass analyzers. By providing complementary ion structure information, it could be used together with tandem mass spectrometry and ion mobility spectroscopy techniques. Although many questions and challenges remain, this technique potentially would greatly enhance the ion structure analysis capability of a mass spectrometer, and provide a new tool for chemists and biochemists.

  1. Positive and negative ion beam merging system for neutral beam production

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani

    2005-12-13

    The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.

  2. Negative-ion formation in the explosives RDX, PETN, and TNT by using the reversal electron attachment detection technique

    NASA Technical Reports Server (NTRS)

    Boumsellek, S.; Alajajian, S. H.; Chutjian, A.

    1992-01-01

    First results of a beam-beam, single-collision study of negative-ion mass spectra produced by attachment of zero-energy electrons to the molecules of the explosives RDX, PETN, and TNT are presented. The technique used is reversal electron attachment detection (READ) wherein the zero-energy electrons are produced by focusing an intense electron beam into a shaped electrostatic field which reverses the trajectory of electrons. The target beam is introduced at the reversal point, and attachment occurs because the electrons have essentially zero longitudinal and radial velocity. The READ technique is used to obtain the 'signature' of molecular ion formation and/or fragmentation for each explosive. Present data are compared with results from atmospheric-pressure ionization and negative-ion chemical ionization methods.

  3. Studies of relativistic heavy ion collisions at the AGS (Experiment 814)

    SciTech Connect

    Cleland, W.E.

    1992-01-01

    During the past year, the Pittsburgh group has continued to work with the E814 collaboration in carrying out AGS Experiment 814. We present here a brief history of the experiment, followed by a detailed report of the analysis work being pursued at the University of Pittsburgh. As originally proposed, Experiment 814 is a study of both extreme peripheral collisions and the transition from peripheral to central collisions in relativistic heavy ion-nucleus interactions. We are studying relativistic heavy ion interactions with nuclei in two types of collisions: (a) extreme peripheral collisions of large impact parameter, and (b) central collisions with high transverse energy in the final state. The experiment emphasizes the measurement of overall event characteristics, in particular energy flow measurements and a precise measurement of the particle charge, momentum, and energy in the forward direction. This permits measurements of cross sections and rapidity densities as a function of the transverse energy for leading baryons emitted into regions of larger rapidity. Combining the energy flow measurements as a function of rapidity with the spectra of leading baryons provides information on the impact parameter dependence of the nuclear stopping of the projectile in relativistic heavy ion collisions. In 1988, the scope of Experiment 814 was enlarged to include a search for strange matter in central collisions, the first results of which have been published, and analysis on a longer run taken in 1990 is still under way.

  4. Studies of transition states and radicals by negative ion photodetachment

    SciTech Connect

    Metz, R.B.

    1991-12-01

    Negative ion photodetachment is a versatile tool for the production and study of transient neutral species such as reaction intermediates and free radicals. Photodetachment of the stable XHY{sup {minus}} anion provides a direct spectroscopic probe of the transition state region of the potential energy surface for the neutral hydrogen transfer reaction X + HY {yields} XH + Y, where X and Y are halogen atoms. The technique is especially sensitive to resonances, which occur at a specific energy, but the spectra also show features due to direct scattering. We have used collinear adiabatic simulations of the photoelectron spectra to evaluate trail potential energy surfaces for the biomolecular reactions and have extended the adiabatic approach to three dimensions and used it to evaluate empirical potential energy surfaces for the I + Hl and Br + HI reactions. In addition, we have derived an empirical, collinear potential energy surface for the Br + HBr reaction that reproduces our experimental results and have extended this surface to three dimensions. Photodetachment of a negative ion can be also used to study neutral free radicals. We have studied the vibrational and electronic spectroscopy of CH{sub 2}NO{sub 2} by photoelectron spectroscopy of CH{sub 2}NO{sub 2}{sup {minus}}, determining the electron affinity of CH{sub 2}NO{sub 2}, gaining insight on the bonding of the {sup 2}B{sub 1} ground state and observing the {sup 2}A{sub 2} excited state for the first time. Negative ion photodetachment also provides a novel and versatile source of mass-selected, jet-cooled free radicals. We have studied the photodissociation of CH{sub 2}NO{sub 2} at 270, 235, and 208 nm, obtaining information on the dissociation products by measuring the kinetic energy release in the photodissociation.

  5. Ion collector design for an energy recovery test proposal with the negative ion source NIO1

    NASA Astrophysics Data System (ADS)

    Variale, V.; Cavenago, M.; Agostinetti, P.; Sonato, P.; Zanotto, L.

    2016-02-01

    Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D- beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D- and D+), so that an ion beam energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H- each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.

  6. Ion collector design for an energy recovery test proposal with the negative ion source NIO1.

    PubMed

    Variale, V; Cavenago, M; Agostinetti, P; Sonato, P; Zanotto, L

    2016-02-01

    Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D(-) beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D(-) and D(+)), so that an ion beam energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H(-) each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed. PMID:26932033

  7. Interferences in photodetachment of a triatomic negative ion

    SciTech Connect

    Afaq, A.; Ahmad, M. A.; Rashid, A.; Ahmad, Iftikhar; Tahir, B. A.; Hussain, Muhammad Tahir

    2009-01-26

    The photodetachment of a triatomic negative ion is studied and the detached-electron wave function is obtained as a superposition of coherent waves originating from each atom of the system. The photodetached electron flux is evaluated on a screen placed at a large distance from the system, which displays strong interferences. A simple analytical formula is also obtained for the total photodetachment cross section. The formula approaches one time the cross sections for the one-center and two-center systems in the high photon energy limits. Also it approaches three times the cross section for one-center system in the low photon energy limits.

  8. Calibrating the DARHT Electron Spectrometer with Negative Ions

    SciTech Connect

    R. Trainham , A. P. Tipton , and R. R. Bartech

    2005-11-01

    Negative ions of hydrogen and oxygen have been used to calibrate the DARHT electron spectrometer over the momentum range of 2 to 20 MeV/c. The calibration was performed on September 1, 3, and 8, 2004, and it is good to 0.5% absolute, provided that instrument alignment is carefully controlled. The momentum in MeV/c as a function of magnetic field (B in Gauss) and position in the detector plane (X in mm) is: P = (B-6.28)/(108.404-0.1935*X)

  9. Cesium control and diagnostics in surface plasma negative ion sources

    SciTech Connect

    Dudnikov, Vadim; Chapovsky, Pavel; Dudnikov, Andrei

    2010-02-15

    For efficient and reliable negative ion generation it is very important to improve a cesium control and diagnostics. Laser beam attenuation and resonance fluorescence can be used for measurement of cesium distribution and cesium control. Resonant laser excitation and two-photon excitation can be used for improved cesium ionization and cesium trapping in the discharge chamber. Simple and inexpensive diode lasers can be used for cesium diagnostics and control. Cesium migration along the surface is an important mechanism of cesium escaping. It is important to develop a suppression of cesium migration and cesium accumulation on the extraction system.

  10. Electron Rescattering in Above-Threshold Photodetachment of Negative Ions

    SciTech Connect

    Gazibegovic-Busuladzic, A.; Milosevic, D. B.; Becker, W.; Bergues, B.; Hultgren, H.; Kiyan, I. Yu.

    2010-03-12

    We present experimental and theoretical results on photodetachment of Br{sup -} and F{sup -} in a strong infrared laser field. The observed photoelectron spectra of Br{sup -} exhibit a high-energy plateau along the laser polarization direction, which is identified as being due to the rescattering effect. The shape and the extension of the plateau is found to be influenced by the depletion of negative ions during the interaction with the laser pulse. Our findings represent the first observation of electron rescattering in above-threshold photodetachment of an atomic system with a short-range potential.

  11. Nuclear disintegration in relativistic heavy-ion collisions

    SciTech Connect

    Gutbrod, H.H.; Warwick, A.I.; Wieman, H.

    1982-04-01

    The breakdown of the participant spectator model for central relativistic nuclear collisions is discussed and a different picture of a hot spot followed by a target explosion is suggested to be more consistent with the data.

  12. Helicity representation for deep inelastic collisions of heavy ions

    NASA Astrophysics Data System (ADS)

    Strutinsky, V. M.; Vydrug-Vlasenko, S. M.

    1980-09-01

    Quantum-mechanical cross-section for the inelastic collisions characterized by large values of the angular momenta is analysed. For the case of a planar mechanism of the reaction the approximation of the small helicity is drawn.

  13. A Sheath Model for Negative Ion Sources Including the Formation of a Virtual Cathode

    SciTech Connect

    McAdams, R.; King, D. B.; Surrey, E.

    2011-09-26

    A one dimensional model of the sheath between the plasma and the wall in a negative ion source has been developed. The plasma consists of positive ions, electrons and negative ions. The model takes into account the emission of negative ions from the wall into the sheath and thus represents the conditions in a caesiated ion source with surface production of negative ions. At high current densities of the emitted negative ions, the sheath is unable to support the transport of all the negative ions to the plasma and a virtual cathode is formed. This model takes this into account and allows the calculation of the transported negative ions across the sheath with the virtual cathode. The model has been extended to allow the linkage between plasma conditions at the sheath edge and the plasma to be made. Comparisons are made between the results of the model and experimental measurements.

  14. Electrical shielding box measurement of the negative hydrogen beam from Penning ion gauge ion source

    SciTech Connect

    Wang, T.; Yang, Z.; Dong, P.; Long, J. D.; He, X. Z.; Zhang, K. Z.; Zhang, L. W.; Wang, X.

    2012-06-15

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H{sup -}) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H{sup -} beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H{sup -} beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.

  15. Ion-acoustic solitons in negative ion plasma with two-electron temperature distributions

    SciTech Connect

    Mishra, M. K.; Tiwari, R. S.; Chawla, J. K.

    2012-06-15

    Ion-acoustic solitons in a warm positive and negative ion species with different masses, concentrations, and charge states with two electron temperature distributions are studied. Using reductive perturbation method, Korteweg de-Vries (KdV) and modified-KdV (m-KdV) equations are derived for the system. The soliton solution of the KdV and m-KdV equations is discussed in detail. It is found that if the ions have finite temperatures, then there exist two types of modes, namely slow and fast ion-acoustic modes. It is also investigated that the parameter determining the nature of soliton (i.e., whether the system will support compressive or rarefactive solitons) is different for slow and fast modes. For the slow mode, the parameter is the relative temperature of the two ion species; whereas for the fast mode, it is the relative concentration of the two ion species. At a critical concentration of negative ions, both compressive and rarefactive solitons coexist. The amplitude and width of the solitons are discussed in detail at critical concentration for m-KdV solitons. The effect of the relative temperature of the two-electron and cold-electron concentration on the characteristics of the solitons are also discussed.

  16. Numerical modeling of the Linac4 negative ion source extraction region by 3D PIC-MCC code ONIX

    NASA Astrophysics Data System (ADS)

    Mochalskyy, S.; Lettry, J.; Minea, T.; Lifschitz, A. F.; Schmitzer, C.; Midttun, O.; Steyaert, D.

    2013-02-01

    At CERN, a high performance negative ion (NI) source is required for the 160 MeV H- linear accelerator Linac4. The source is planned to produce 80 mA of H- with an emittance of 0.25 mm mradN-RMS which is technically and scientifically very challenging. The optimization of the NI source requires a deep understanding of the underling physics concerning the production and extraction of the negative ions. The extraction mechanism from the negative ion source is complex involving a magnetic filter in order to cool down electrons' temperature. The ONIX (Orsay Negative Ion eXtraction) code is used to address this problem. The ONIX is a selfconsistent 3D electrostatic code using Particles-in-Cell Monte Carlo Collisions (PIC-MCC) approach. It was written to handle the complex boundary conditions between plasma, source walls, and beam formation at the extraction hole. Both, the positive extraction potential (25kV) and the magnetic field map are taken from the experimental set-up, in construction at CERN. This contribution focuses on the modeling of two different extractors (IS01, IS02) of the Linac4 ion sources. The most efficient extraction system is analyzed via numerical parametric studies. The influence of aperture's geometry and the strength of the magnetic filter field on the extracted electron and NI current will be discussed. The NI production of sources based on volume extraction and cesiated surface are also compared.

  17. Particle simulation of collision dynamics for ion beam injection into a rarefied gas

    SciTech Connect

    Giuliano, Paul N.; Boyd, Iain D.

    2013-03-15

    This study details a comparison of ion beam simulations with experimental data from a simplified plasma test cell in order to study and validate numerical models and environments representative of electric propulsion devices and their plumes. The simulations employ a combination of the direct simulation Monte Carlo and particle-in-cell methods representing xenon ions and atoms as macroparticles. An anisotropic collision model is implemented for momentum exchange and charge exchange interactions between atoms and ions in order to validate the post-collision scattering behaviors of dominant collision mechanisms. Cases are simulated in which the environment is either collisionless or non-electrostatic in order to prove that the collision models are the dominant source of low- and high-angle particle scattering and current collection within this environment. Additionally, isotropic cases are run in order to show the importance of anisotropy in these collision models. An analysis of beam divergence leads to better characterization of the ion beam, a parameter that requires careful analysis. Finally, suggestions based on numerical results are made to help guide the experimental design in order to better characterize the ion environment.

  18. Electric field effects on resonance structures in negative ion photodetachment

    NASA Astrophysics Data System (ADS)

    Slonim, V. Z.; Greene, C. H.

    1991-12-01

    The photodetachment of negative ions in a static electric field exhibits some new characteristic features and has beer considered in various theortical approaches.1 Most of them, however, neglect the short-range interaction between the escaping electron and the atomic core, and must be modified to describe various resonant effects. Experiments2 have shown very rich resonant structure in a dc-field, which can be attributed to the mixing of different excited states in the negative ion, to competition between elastic and inelastic decay channels, and to tunneling effects induced by the field. It is known that various resonant structures in Photoprocesses can be successfully described within standard multichannel quantum defect theory (MQDT). We present a modified MQDT frame transformation approach to extend the standard method to long-range potentials with nonspherical symmetry. In our treatment both the electron-field and electron-atom interactions are treated nonperturbatively and on an equal footing. The resulting theoretical calculations are compared with experimental data on field-modified H? photodetachment in the vicinity of the n = 2 resonances.

  19. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    SciTech Connect

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN{sup {minus}}, NCO{sup {minus}} and NCS{sup {minus}}. Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH{sub 3}0H,F + C{sub 2}H{sub 5}OH,F + OH and F + H{sub 2}. A time dependent framework for the simulation and interpretation of the bound {yields} free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH {yields} O({sup 3}P, {sup 1}D) + HF and F + H{sub 2}. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H{sub 2} system, comparisons with three-dimensional quantum calculations are made.

  20. Initial state fluctuations and final state correlations in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Luzum, Matthew; Petersen, Hannah

    2014-06-01

    We review the phenomenology and theory of bulk observables in ultra-relativistic heavy-ion collisions, focusing on recent developments involving event-by-event fluctuations in the initial stages of a heavy-ion collision, and how they manifest in observed correlations. We first define the relevant observables and show how each measurement is related to underlying theoretical quantities. Then we review the prevailing picture of the various stages of a collision, including the state-of-the-art modeling of the initial stages of a collision and subsequent hydrodynamic evolution, as well as hadronic scattering and freeze-out in the later stages. We then discuss the recent results that have shaped our current understanding and identify the challenges that remain. Finally, we point out open issues and the potential for progress in the field.

  1. Symmetric eikonal model for projectile-electron excitation and loss in relativistic ion-atom collisions

    SciTech Connect

    Voitkiv, A. B.; Najjari, B.; Shevelko, V. P.

    2010-08-15

    At impact energies > or approx. 1 GeV/u the projectile-electron excitation and loss occurring in collisions between highly charged ions and neutral atoms is already strongly influenced by the presence of atomic electrons. To treat these processes in collisions with heavy atoms we generalize the symmetric eikonal model, used earlier for considerations of electron transitions in ion-atom collisions within the scope of a three-body Coulomb problem. We show that at asymptotically high collision energies this model leads to an exact transition amplitude and is very well suited to describe the projectile-electron excitation and loss at energies above a few GeV/u. In particular, by considering a number of examples we demonstrate advantages of this model over the first Born approximation at impact energies of {approx}1-30 GeV/u, which are of special interest for atomic physics experiments at the future GSI facilities.

  2. Particle model of full-size ITER-relevant negative ion source.

    PubMed

    Taccogna, F; Minelli, P; Ippolito, N

    2016-02-01

    This work represents the first attempt to model the full-size ITER-relevant negative ion source including the expansion, extraction, and part of the acceleration regions keeping the mesh size fine enough to resolve every single aperture. The model consists of a 2.5D particle-in-cell Monte Carlo collision representation of the plane perpendicular to the filter field lines. Magnetic filter and electron deflection field have been included and a negative ion current density of j(H(-)) = 660 A/m(2) from the plasma grid (PG) is used as parameter for the neutral conversion. The driver is not yet included and a fixed ambipolar flux is emitted from the driver exit plane. Results show the strong asymmetry along the PG driven by the electron Hall (E × B and diamagnetic) drift perpendicular to the filter field. Such asymmetry creates an important dis-homogeneity in the electron current extracted from the different apertures. A steady state is not yet reached after 15 μs.

  3. Charge transfer in cold collisions of rubidium atoms with calcium and ytterbium ions

    NASA Astrophysics Data System (ADS)

    Yakovleva, S. A.; Belyaev, A. K.; Buchachenko, A. A.

    2014-12-01

    Low-energy collisions of the Ca and Yb cations with Rb atoms are investigated theoretically using accurate ab initio potential energy curves and coupling matrix elements to elucidate the dominant charge transfer mechanisms. The cross sections calculated at collision energies above 10-5 cm-1 exhibit the features typical to Langevin ion-atom collision regime, including a rich structure associated with the centrifugal barrier tunnelling (orbiting) resonances. It is shown that the dominant process in Yb+ + Rb collisions is the radiative charge transfer, while in the case of Ca+ + Rb collisions nonadiabatic transitions due to spin-orbit coupling dominate. Theoretical results are in a good agreement with available experimental data.

  4. Observation of a shape resonance of the positronium negative ion

    PubMed Central

    Michishio, Koji; Kanai, Tsuneto; Kuma, Susumu; Azuma, Toshiyuki; Wada, Ken; Mochizuki, Izumi; Hyodo, Toshio; Yagishita, Akira; Nagashima, Yasuyuki

    2016-01-01

    When an electron binds to its anti-matter counterpart, the positron, it forms the exotic atom positronium (Ps). Ps can further bind to another electron to form the positronium negative ion, Ps− (e−e+e−). Since its constituents are solely point-like particles with the same mass, this system provides an excellent testing ground for the three-body problem in quantum mechanics. While theoretical works on its energy level and dynamics have been performed extensively, experimental investigations of its characteristics have been hampered by the weak ion yield and short annihilation lifetime. Here we report on the laser spectroscopy study of Ps−, using a source of efficiently produced ions, generated from the bombardment of slow positrons onto a Na-coated W surface. A strong shape resonance of 1Po symmetry has been observed near the Ps (n=2) formation threshold. The resonance energy and width measured are in good agreement with the result of three-body calculations. PMID:26983496

  5. Observation of a shape resonance of the positronium negative ion.

    PubMed

    Michishio, Koji; Kanai, Tsuneto; Kuma, Susumu; Azuma, Toshiyuki; Wada, Ken; Mochizuki, Izumi; Hyodo, Toshio; Yagishita, Akira; Nagashima, Yasuyuki

    2016-01-01

    When an electron binds to its anti-matter counterpart, the positron, it forms the exotic atom positronium (Ps). Ps can further bind to another electron to form the positronium negative ion, Ps(-) (e(-)e(+)e(-)). Since its constituents are solely point-like particles with the same mass, this system provides an excellent testing ground for the three-body problem in quantum mechanics. While theoretical works on its energy level and dynamics have been performed extensively, experimental investigations of its characteristics have been hampered by the weak ion yield and short annihilation lifetime. Here we report on the laser spectroscopy study of Ps(-), using a source of efficiently produced ions, generated from the bombardment of slow positrons onto a Na-coated W surface. A strong shape resonance of (1)P(o) symmetry has been observed near the Ps (n=2) formation threshold. The resonance energy and width measured are in good agreement with the result of three-body calculations. PMID:26983496

  6. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    SciTech Connect

    Singh, M. J.; Bandyopadhyay, M.; Yadava, Ratnakar; Chakraborty, A. K.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-09-26

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1x10{sup 18}/m{sup 3}, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  7. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    NASA Astrophysics Data System (ADS)

    Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Yadava, Ratnakar; Chakraborty, A. K.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-09-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1×1018/m3, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  8. Negative Ion Based Heating and Diagnostic Neutral Beams for ITER

    NASA Astrophysics Data System (ADS)

    Schunke, B.; Bora, D.; Antoni, V.; Bonicelli, T.; Chakraborty, A.; Cordier, J.-J.; Hemsworth, R.; Inoue, T.; Tanga, A.; Watanabe, K.

    2008-04-01

    To meet the requirements of the four operating and one start-up scenarios foreseen in the International Tokamak Experimental Reactor (ITER) a flexible heating mix will be required, which has to include a reliable contribution from neutral beams. The current baseline of ITER foresees 2 Heating Neutral Beam (HNB) systems based on negative ion technology, each operating at 1 MeV 40 A D- ions, and each capable of delivering up to 16.7 MW of D ° to the ITER plasma. A 3rd HNB injector is foreseen as an upgrade option. In addition a dedicated Diagnostic Neutral Beam (DNB) injecting 100 keV 60 A of negative hydrogen ions will be available for charge exchange resonant spectroscopy (CXRS). The significant R&D effort necessary to meet the design requirements will be provided in the Neutral Beam Test Facility (NBTF), which is to be constructed in Padua, Italy. This paper gives an overview of the current status of the neutral beam (NB) systems and the chosen configuration. The ongoing integration effort into the ITER plant is highlighted and open interface issues are identified. It is shown how installation and maintenance logistics has influenced the design. ITER operating scenarios are briefly discussed, including start-up and commissioning. For example it is now envisaged to have a low current hydrogen phase of ITER operations, essentially for commissioning of the many auxiliary systems used on ITER. The low current limits the achievable plasma density, and hence the NB energy due to shine through limitations. Therefore a possible reconfiguration of the auxiliary heating systems is now being discussed. Other NB related issues identified by the ongoing design review process are emphasized and possible impact on the implementations of the HNB and DNB systems is indicated.

  9. Negative ion gas-phase chemistry of arenes.

    PubMed

    Danikiewicz, Witold; Zimnicka, Magdalena

    2016-01-01

    Reactions of aromatic and heteroaromatic compounds involving anions are of great importance in organic synthesis. Some of these reactions have been studied in the gas phase and are occasionally mentioned in reviews devoted to gas-phase negative ion chemistry, but no reviews exist that collect all existing information about these reactions. This work is intended to fill this gap. In the first part of this review, methods for generating arene anions in the gas phase and studying their physicochemical properties and fragmentation reactions are presented. The main topics in this part are as follows: processes in which gas-phase arene anions are formed, measurements and calculations of the proton affinities of arene anions, proton exchange reactions, and fragmentation processes of substituted arene anions, especially phenide ions. The second part is devoted to gas-phase reactions of arene anions. The most important of these are reactions with electrophiles such as carbonyl compounds and α,β-unsaturated carbonyl and related compounds (Michael acceptors). Other reactions including oxidation of arene anions and halogenophilic reactions are also presented. In the last part of the review, reactions of electrophilic arenes with nucleophiles are discussed. The best known of these is the aromatic nucleophilic substitution (SN Ar) reaction; however, other processes that lead to the substitution of a hydrogen atom in the aromatic ring are also very important. Aromatic substrates in these reactions are usually but not always nitroarenes bearing other substituents in the ring. The first step in these reactions is the formation of an anionic σ-adduct, which, depending on the substituents in the aromatic ring and the structure of the attacking nucleophile, is either an intermediate or a transition state in the reaction path. In the present review, we attempted to collect the results of both experimental and computational studies of the aforementioned reactions conducted since the

  10. Ion-Neutral Collisions in the Interstellar Medium: Wave Damping and Elimination of Collisionless Processes

    SciTech Connect

    Spangler, Steven R.; Savage, Allison H.; Redfield, Seth

    2011-09-21

    Most phases of the interstellar medium contain neutral atoms in addition to ions and electrons. This introduces differences in plasma physics processes in those media relative to the solar corona and the solar wind at a heliocentric distance of 1 astronomical unit. In this paper, we consider two well-diagnosed, partially-ionized interstellar plasmas. The first is the Warm Ionized Medium (WIM) which is probably the most extensive phase in terms of volume. The second is the gas of the Local Clouds of the Very Local Interstellar Medium (VLISM). Ion-neutral interactions seem to be important in both media. In the WIM, ion-neutral collisions are relatively rare, but sufficiently frequent to damp magnetohydrodynamic (MHD) waves (as well as propagating MHD eddies) within less than a parsec of the site of generation. This result raises interesting questions about the sources of turbulence in the WIM. In the case of the VLISM, the ion-neutral collision frequency is higher than that in the WIM, because the hydrogen is partially neutral rather than fully ionized. We present results showing that prominent features of coronal and solar wind turbulence seem to be absent in VLISM turbulence. For example, ion temperature does not depend on ion mass. This difference may be due to ion-neutral collisions, which distribute power from more effectively heated massive ions such as iron to other ion species and neutral atoms.

  11. Ion-Neutral Collisions in the Interstellar Medium: Wave Damping and Elimination of Collisionless Processes

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.; Savage, Allison H.; Redfield, Seth

    2011-09-01

    Most phases of the interstellar medium contain neutral atoms in addition to ions and electrons. This introduces differences in plasma physics processes in those media relative to the solar corona and the solar wind at a heliocentric distance of 1 astronomical unit. In this paper, we consider two well-diagnosed, partially-ionized interstellar plasmas. The first is the Warm Ionized Medium (WIM) which is probably the most extensive phase in terms of volume. The second is the gas of the Local Clouds of the Very Local Interstellar Medium (VLISM). Ion-neutral interactions seem to be important in both media. In the WIM, ion-neutral collisions are relatively rare, but sufficiently frequent to damp magnetohydrodynamic (MHD) waves (as well as propagating MHD eddies) within less than a parsec of the site of generation. This result raises interesting questions about the sources of turbulence in the WIM. In the case of the VLISM, the ion-neutral collision frequency is higher than that in the WIM, because the hydrogen is partially neutral rather than fully ionized. We present results showing that prominent features of coronal and solar wind turbulence seem to be absent in VLISM turbulence. For example, ion temperature does not depend on ion mass. This difference may be due to ion-neutral collisions, which distribute power from more effectively heated massive ions such as iron to other ion species and neutral atoms.

  12. Negative ion production and beam extraction processes in a large ion source (invited).

    PubMed

    Tsumori, K; Ikeda, K; Nakano, H; Kisaki, M; Geng, S; Wada, M; Sasaki, K; Nishiyama, S; Goto, M; Serianni, G; Agostinetti, P; Sartori, E; Brombin, M; Veltri, P; Wimmer, C; Nagaoka, K; Osakabe, M; Takeiri, Y; Kaneko, O

    2016-02-01

    Recent research results on negative-ion-rich plasmas in a large negative ion source have been reviewed. Spatial density and flow distributions of negative hydrogen ions (H(-)) and positive hydrogen ions together with those of electrons are investigated with a 4-pin probe and a photodetachment (PD) signal of a Langmuir probe. The PD signal is converted to local H(-) density from signal calibration to a scanning cavity ring down PD measurement. Introduction of Cs changes the slope of plasma potential local distribution depending upon the plasma grid bias. A higher electron density H2 plasma locally shields the bias potential and behaves like a metallic free electron gas. On the other hand, the bias and extraction electric fields penetrate in a Cs-seeded electronegative plasma even when the electron density is similar. Electrons are transported by the penetrated electric fields from the driver region along and across the filter and electron deflection magnetic fields. Plasma ions exhibited a completely different response against the penetration of electric fields. PMID:26932108

  13. Negative ion production and beam extraction processes in a large ion source (invited)

    NASA Astrophysics Data System (ADS)

    Tsumori, K.; Ikeda, K.; Nakano, H.; Kisaki, M.; Geng, S.; Wada, M.; Sasaki, K.; Nishiyama, S.; Goto, M.; Serianni, G.; Agostinetti, P.; Sartori, E.; Brombin, M.; Veltri, P.; Wimmer, C.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.

    2016-02-01

    Recent research results on negative-ion-rich plasmas in a large negative ion source have been reviewed. Spatial density and flow distributions of negative hydrogen ions (H-) and positive hydrogen ions together with those of electrons are investigated with a 4-pin probe and a photodetachment (PD) signal of a Langmuir probe. The PD signal is converted to local H- density from signal calibration to a scanning cavity ring down PD measurement. Introduction of Cs changes the slope of plasma potential local distribution depending upon the plasma grid bias. A higher electron density H2 plasma locally shields the bias potential and behaves like a metallic free electron gas. On the other hand, the bias and extraction electric fields penetrate in a Cs-seeded electronegative plasma even when the electron density is similar. Electrons are transported by the penetrated electric fields from the driver region along and across the filter and electron deflection magnetic fields. Plasma ions exhibited a completely different response against the penetration of electric fields.

  14. Anisotropy of low energy direct photons in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Koide, T.; Kodama, T.

    2016-09-01

    Using the Wigner function approach for electromagnetic radiation fields, we investigate the behavior of low energy photons radiated by the deceleration processes of two colliding nuclei in relativistic heavy ion collisions. The angular distribution reveals information of the initial geometric configurations, which is reflected in the anisotropic parameter v 2, with an increasing v 2 as energy decreases. This behavior is qualitatively different to the v 2 from the hadrons produced in the collisions.

  15. An optical model description of momentum transfer in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Khan, F.; Khandelwal, G. S.; Townsend, Lawrence W.; Wilson, J. W.; Norbury, John W.

    1989-01-01

    An optical model description of momentum transfer in relativistic heavy ion collisions, based upon composite particle multiple scattering theory, is presented. The imaginary component of the complex momentum transfer, which comes from the absorptive part of the optical potential, is identified as the longitudinal momentum downshift of the projectile. Predictions of fragment momentum distribution observables are made and compared with experimental data. Use of the model as a tool for estimating collision impact parameters is discussed.

  16. High charge state, ion-atom collision experiments using accel-decel

    SciTech Connect

    Bernstein, E.M.; Clark, M.W.; Tanis, J.A.; Graham, W.G.

    1987-01-01

    Recent studies of /sub 16/S/sup 13 +/ + He collisions between 2.5 and 200 MeV, which were made using the accel-decel technique with the Brookhaven National Laboratory coupled MP tandem Van de Graaff accelerators, are discussed. Cross sections were measured for single electron-capture and -loss as well as K x rays correlated to electron-capture. Other planned ion-atom collision experiments requiring accel-decel are also presented. 18 refs., 3 figs.

  17. Optical model description of momentum transfer in relativistic heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Khan, F.; Khandelwal, G. S.; Townsend, L. W.; Wilson, J. W.; Norbury, J. W.

    1991-01-01

    An optical model description of momentum transfer in relativistic heavy ion collisions, based upon composite particle multiple scattering theory, is presented. The imaginary component of the complex momentum transfer, which comes from the absorptive part of the optical potential, is identified as the longitudinal momentum downshift of the projectile. Predictions of fragment momentum distribution observables are made and compared with experimental data. Use of the model as a tool for estimating collision impact parameters is discussed.

  18. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions [1]could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  19. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    SciTech Connect

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  20. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    L. Grisham and J.W. Kwan

    2008-08-12

    Some years ago it was suggested that halogen negative ions [1] could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  1. Metastable atom-activated dissociation mass spectrometry of phosphorylated and sulfonated peptides in negative ion mode.

    PubMed

    Cook, Shannon L; Jackson, Glen P

    2011-06-01

    The dissociation behavior of phosphorylated and sulfonated peptide anions was explored using metastable atom-activated dissociation mass spectrometry (MAD-MS) and collision-induced dissociation (CID). A beam of high kinetic energy helium (He) metastable atoms was exposed to isolated phosphorylated and sulfonated peptides in the 3- and 2- charge states. Unlike CID, where phosphate losses are dominant, the major dissociation channels observed using MAD were C(α) - C peptide backbone cleavages and neutral losses of CO(2), H(2)O, and [CO(2) + H(2)O] from the charge reduced (oxidized) product ion, consistent with an electron detachment dissociation (EDD) mechanism such as Penning ionization. Regardless of charge state or modification, MAD provides ample backbone cleavages with little modification loss, which allows for unambiguous PTM site determination. The relative abundance of certain fragment ions in MAD is also demonstrated to be somewhat sensitive to the number and location of deprotonation sites, with backbone cleavage somewhat favored adjacent to deprotonated sites like aspartic acid residues. MAD provides a complementary dissociation technique to CID, ECD, ETD, and EDD for peptide sequencing and modification identification. MAD offers the unique ability to analyze highly acidic peptides that contain few to no basic amino acids in either negative or positive ion mode.

  2. Free molecular collision cross section calculation methods for nanoparticles and complex ions with energy accommodation

    SciTech Connect

    Larriba, Carlos Hogan, Christopher J.

    2013-10-15

    The structures of nanoparticles, macromolecules, and molecular clusters in gas phase environments are often studied via measurement of collision cross sections. To directly compare structure models to measurements, it is hence necessary to have computational techniques available to calculate the collision cross sections of structural models under conditions matching measurements. However, presently available collision cross section methods contain the underlying assumption that collision between gas molecules and structures are completely elastic (gas molecule translational energy conserving) and specular, while experimental evidence suggests that in the most commonly used background gases for measurements, air and molecular nitrogen, gas molecule reemission is largely inelastic (with exchange of energy between vibrational, rotational, and translational modes) and should be treated as diffuse in computations with fixed structural models. In this work, we describe computational techniques to predict the free molecular collision cross sections for fixed structural models of gas phase entities where inelastic and non-specular gas molecule reemission rules can be invoked, and the long range ion-induced dipole (polarization) potential between gas molecules and a charged entity can be considered. Specifically, two calculation procedures are described detail: a diffuse hard sphere scattering (DHSS) method, in which structures are modeled as hard spheres and collision cross sections are calculated for rectilinear trajectories of gas molecules, and a diffuse trajectory method (DTM), in which the assumption of rectilinear trajectories is relaxed and the ion-induced dipole potential is considered. Collision cross section calculations using the DHSS and DTM methods are performed on spheres, models of quasifractal aggregates of varying fractal dimension, and fullerene like structures. Techniques to accelerate DTM calculations by assessing the contribution of grazing gas

  3. Electron excitation collision strengths for positive atomic ions: a collection of theoretical data

    SciTech Connect

    Merts, A.L.; Mann, J.B.; Robb, W.D.; Magee, N.H. Jr.

    1980-03-01

    This report contains data on theoretical and experimental cross sections for electron impact excitation of positive atomic ions. It is an updated and corrected version of a preliminary manuscript which was used during an Atomic Data Workshop on Electron Excitation of Ions held at Los Alamos in November 1978. The current status of quantitative knowledge of collisional excitation collision strengths is shown for highly stripped ions where configuration mixing, relativistic and resonance effects may be important. The results show a reasonably satisfactory state for first-row isoelectronic ions and indicate that a considerable amount of work remains to be done for second-row and heavier ions.

  4. Collective effects in light-heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Schenke, Björn; Venugopalan, Raju

    2014-11-01

    We present results for the azimuthal anisotropy of charged hadron distributions in A+A, p+A, d+A, and 3He+A collisions within the IP-Glasma+MUSIC model. Obtained anisotropies are due to the fluid dynamic response of the system to the fluctuating initial geometry of the interaction region. While the elliptic and triangular anisotropies in peripheral Pb+Pb collisions at √{ s} = 2.76 TeV are well described by the model, the same quantities in √{ s} = 5.02 TeV p+Pb collisions underestimate the experimental data. This disagreement can be due to neglected initial state correlations or the lack of a detailed description of the fluctuating spatial structure of the proton, or both. We further present predictions for azimuthal anisotropies in p+Au, d+Au, and 3He+Au collisions at √{ s} = 200 GeV. For d+Au and 3He+Au collisions we expect the detailed substructure of the nucleon to become less important.

  5. Jet probes of QCD matter: Single jets and dijets in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Zhang, Ben-Wei; He, Yuncun; Wang, Enke

    2013-05-01

    Modifications of jets in the existence of a hot and dense QCD medium have recently attracted a lot of attentions. In this talk, we demonstrate how jet-medium interactions change the behavior of jets by offering examples of inclusive jet and dijet productions at O(αs3) in heavy ion collisions including initial-state cold nuclear effects and especially the final-state parton energy loss effect. The suppression of inclusive jet spectrum varying with jet radii and a flatter dijet momentum imbalance as compared those in hadron-hadron collisions are observed in high-energy nuclear collisions.

  6. Coincidence measurements between fragment ions and the number of emitted electrons in heavy ion collisions with polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Murai, T.; Majima, T.; Kishimoto, T.; Tsuchida, H.; Itoh, A.

    2012-11-01

    We have studied multiple ionization and multifragmentation of a chlorofluorocarbon molecule, CH2FCF3, induced by collisions of 580-keV C+ ions. Coincidence measurements of product ions and the number of emitted electrons from CH2FCF3 were performed under charge-changing conditions of C+ → Cq+ (q = 0, 2, 3). A fully inclusive measurement regardless of outgoing projectile charge state was also performed by making coincidence with a pulsed ion beam. Mass distributions of fragment ions and number distributions of emitted electrons were both found to change greatly according to charge-changing conditions. Highly multiple ionization emitting up to about 10 electrons was observed in electron loss collisions.

  7. z-scaling in heavy ion collisions at the RHIC

    NASA Astrophysics Data System (ADS)

    Tokarev, M. V.

    2007-09-01

    Experimental data on transverse particle spectra obtained by the STAR, PHENIX, PHOBOS, and BRAHMS collaborations at the RHIC are analyzed in the framework of the generalized concept of z-scaling. It was developed for analysis of inclusive particle production in proton-(anti)proton collisions at high p T and high multiplicities. The general scheme of the approach based on the physical principles of self-similarity, locality, and fractality is reviewed. Independence of the scaling function ψ( z) from energy, multiplicity, and atomic weight for h ±, π ±,0, K {/S 0}, and Λ hadrons produced in Au-Au and Cu-Cu collisions at √ s = 130 and 200 GeV is discussed. Based on z-scaling, the multiplicity dependence of pion transverse spectra up to p T = 25 GeV/ c in Au-Au collisions at √ s = 200 GeV for experiments at the RHIC is predicted.

  8. Treatment of ion-atom collisions using a partial-wave expansion of the projectile wavefunction

    SciTech Connect

    Foster, M; Colgan, J; Wong, T G; Madison, D H

    2008-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge scattering quantities. Here we show that such calculations are possible using modern high-performance computing. We demonstrate the utility of our method by examining elastic scattering of protons by hydrogen and helium atoms, problems familiar to undergraduate students of atomic scattering. Application to ionization of helium using partial-wave expansions of the projectile wavefunction, which has long been desirable in heavy-ion collision physics, is thus quite feasible.

  9. Charge exchange and ionization in hydrogen atom-fully stripped ion collisions in Debye plasmas

    SciTech Connect

    Zhang, H.; Wang, J. G.; He, B.; Qiu, Y. B.; Janev, R. K.

    2007-05-15

    The processes of charge exchange and ionization in collisions of ground state hydrogen atom with fully stripped ions in a weakly coupled plasma are studied by the classical trajectory Monte Carlo method in the collision energy range 10-900 keV/amu. The interparticle interactions are described by the Debye-Hueckel model with inclusion of dynamical effects associated with the projectile velocity. The microcanonical distribution of initial state electronic coordinates and momenta has been determined by inclusion of plasma screening effects. The cross section dependencies on plasma parameters and ion charge and velocity are investigated. It is shown that plasma effects on charge exchange and ionization cross sections are significant and particularly pronounced at low collision velocities. The results of systematic cross section calculations for different values of Debye screening length (in the range 1-50a{sub 0}) and ion charges (in the range 1-14) are presented.

  10. Negative-ion formation in the explosives RDX, PETN, and TNT using the Reversal Electron Attachment Detection (READ) technique

    NASA Technical Reports Server (NTRS)

    Chutijian, Ara; Boumsellek, S.; Alajajian, S. H.

    1992-01-01

    In the search for high sensitivity and direct atmospheric sampling of trace species, techniques have been developed such as atmospheric-sampling, glow-discharge ionization (ASGDI), corona discharge, atmospheric pressure ionization (API), electron-capture detection (ECD), and negative-ion chemical ionization (NICI) that are capable of detecting parts-per-billion to parts-per-trillion concentrations of trace species. These techniques are based on positive- or negative-ion formation via charge-transfer to the target, or electron capture under multiple-collision conditions in a Maxwellian distribution of electron energies at the source temperature. One drawback of the high-pressure, corona- or glow-discharge devices is that they are susceptible to interferences either through indistinguishable product masses, or through undesired ion-molecule reactions. The ASGDI technique is relatively immune from such interferences, since at target concentrations of less than 1 ppm the majority of negative ions arises via electron capture rather than through ion-molecule chemistry. A drawback of the conventional ECD, and possibly of the ASGDI, is that they exhibit vanishingly small densities of electrons with energies in the range 0-10 millielectron volts (meV), as can be seen from a typical Maxwellian electron energy distribution function at T = 300 K. Slowing the electrons to these subthermal (less than 10 meV) energies is crucial, since the cross section for attachment of several large classes of molecules is known to increase to values larger than 10(exp -12) sq cm at near-zero electron energies. In the limit of zero energy these cross sections are predicted to diverge as epsilon(exp -1/2), where epsilon is the electron energy. In order to provide a better 'match' between the electron energy distribution function and attachment cross section, a new concept of attachment in an electrostatic mirror was developed. In this scheme, electrons are brought to a momentary halt by

  11. Ion-Surface Collisions in Mass Spectrometry: Where Analytical Chemistry Meets Surface Science

    SciTech Connect

    Laskin, Julia

    2015-02-01

    This article presents a personal perspective regarding the development of key concepts in understanding hyperthermal collisions of polyatomic ions with surfaces as a unique tool for mass spectrometry applications. In particular, this article provides a historic overview of studies focused on understanding the phenomena underlying surface-induced dissociation (SID) and mass-selected deposition of complex ions on surfaces. Fast energy transfer in ion-surface collisions makes SID especially advantageous for structural characterization of large complex molecules, such as peptides, proteins, and protein complexes. Soft, dissociative, and reactive landing of mass-selected ions provide the basis for preparatory mass spectrometry. These techniques enable precisely controlled deposition of ions on surfaces for a variety of applications. This perspective article shows how basic concepts developed in the 1920s and 1970s have evolved to advance promising mass-spectrometry-based applications.

  12. Method and apparatus for efficient photodetachment and purification of negative ion beams

    DOEpatents

    Beene, James R [Oak Ridge, TN; Liu, Yuan [Knoxville, TN; Havener, Charles C [Knoxville, TN

    2008-02-26

    Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

  13. Excitation of atoms and molecules in collisions with highly charged ions. Progress report, January 1, 1991--March 1, 1992

    SciTech Connect

    Watson, R.L.

    1992-03-01

    This report discusses research of multicharged nitrogen, oxygen and carbon monoxide molecular ions produced with collision with multicharged argon ions. Properties like ionization, dissociation, and excitation are investigated. (LSP)

  14. Procedure for measuring photon and vector meson circular polarization variation with respect to the reaction plane in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Tang, A. H.; Wang, G.

    2016-08-01

    The electromagnetic (EM) field pattern created by spectators in relativistic heavy-ion collisions plants a seed of positive (negative) magnetic helicity in the hemisphere above (below) the reaction plane. Owing to the chiral anomaly, the magnetic helicity interacts with the fermionic helicity of the collision system and causes photons emitted in upper and lower hemispheres to have different preferences in the circular polarization. Similar helicity separation for massive particles, owing to the global vorticity, is also possible. In this paper, we lay out a procedure to measure the variation of the circular polarization with respect to the reaction plane in relativistic heavy-ion collisions for massless photons, as well as similar polarization patterns for vector mesons decaying into two daughters. We propose to study the yield differentially and compare the yield between upper and lower hemispheres to identify and quantify such effects.

  15. Simulating Negative Pickup Ions and Ion Cyclotron Wave Generation at Europa (Invited)

    NASA Astrophysics Data System (ADS)

    Desai, R. T.; Cowee, M.; Gary, S. P.; Wei, H.; Coates, A. J.; Kataria, D. O.; Fu, X.

    2015-12-01

    The mass loading of space environments through the ionisation of planetary atmospheres is a fundamental process governing the plasma interactions and long term evolution of celestial bodies across the solar system. Regions containing significant pickup ion populations have been observed to exhibit a rich variety of electromagnetic plasma wave phenomena, the characteristics and properties of which can be used to infer the ion species present, their spatial and temporal distributions, and the global ionisation rates of the neutral material. In this study we present hybrid (kinetic ion, massless fluid electron) simulations of ion pickup and Ion Cyclotron (IC) waves observed in the Jovian magnetosphere and draw comparisons to sub-alfvénic pickup observed by Cassini in the Saturnian system, and also to supra-alfvénic pickup at planetary bodies immersed directly in the solar wind. At Jupiter, Europa has been identified as the secondary mass loader in the magnetosphere, orbiting within a neutral gas torus at ~9.38 Rj. Near Europa, Galileo magnetometer observations displayed bursty IC wave characteristics at the gyrofrequency of a number of species including SO2, K, Cl, O2, and Na, suggesting a complex mass loading environment. A particular deduction from the dataset was the presence of both positively and negatively charged pickup ions, inferred from the left and right hand polarisations of the transverse waves. Using hybrid simulations for both positively and negatively charged Cl pickup ions we are able to self-consistently reproduce the growth of both right and left hand near-circularly polarised waves in agreement with linear theory and, using the observed wave amplitudes, estimate Cl pickup ion densities at Europa.

  16. Photo and Collision Induced Isomerization of a Cyclic Retinal Derivative: An Ion Mobility Study

    NASA Astrophysics Data System (ADS)

    Coughlan, Neville J. A.; Scholz, Michael S.; Hansen, Christopher S.; Trevitt, Adam J.; Adamson, Brian D.; Bieske, Evan J.

    2016-09-01

    A cationic degradation product, formed in solution from retinal Schiff base (RSB), is examined in the gas phase using ion mobility spectrometry, photoisomerization action spectroscopy, and collision induced dissociation (CID). The degradation product is found to be N- n-butyl-2-(β-ionylidene)-4-methylpyridinium (BIP) produced through 6π electrocyclization of RSB followed by protonation and loss of dihydrogen. Ion mobility measurements show that BIP exists as trans and cis isomers that can be interconverted through buffer gas collisions and by exposure to light, with a maximum response at λ = 420 nm.

  17. Photo and Collision Induced Isomerization of a Cyclic Retinal Derivative: An Ion Mobility Study.

    PubMed

    Coughlan, Neville J A; Scholz, Michael S; Hansen, Christopher S; Trevitt, Adam J; Adamson, Brian D; Bieske, Evan J

    2016-09-01

    A cationic degradation product, formed in solution from retinal Schiff base (RSB), is examined in the gas phase using ion mobility spectrometry, photoisomerization action spectroscopy, and collision induced dissociation (CID). The degradation product is found to be N-n-butyl-2-(β-ionylidene)-4-methylpyridinium (BIP) produced through 6π electrocyclization of RSB followed by protonation and loss of dihydrogen. Ion mobility measurements show that BIP exists as trans and cis isomers that can be interconverted through buffer gas collisions and by exposure to light, with a maximum response at λ = 420 nm.Graphical Abstract.

  18. Effect of an equilibrium phase transition on multiphase transport in relativistic heavy ion collisions

    SciTech Connect

    Yu Meiling; Du Jiaxin; Liu Lianshou

    2006-10-15

    The hadronization scheme for parton transport in relativistic heavy ion collisions is considered in detail. It is pointed out that the traditional scheme for particles being freezed out one by one leads to serious problem on unreasonable long lifetime of partons. A collective phase transition following a supercooling is implemented in a simple way. It turns out that the modified model with a sudden phase transition is able to reproduce the experimental longitudinal distributions of final state particles better than the original one does. The encouraging results indicate that equilibrium phase transition should be taken into proper account in parton transport models for relativistic heavy ion collisions.

  19. Multiple ionization and capture in relativistic heavy-ion atom collisions

    SciTech Connect

    Meyerhof, W.E.; Anholt, R.; Xu, Xiang-Yuan; Gould, H.; Feinberg, B.; McDonald, R.J.; Wegner, H.E.; Thieberger, P.

    1987-02-01

    We show that in relativistic heavy-ion collisions the independent electron model can be used to predict cross sections for multiple inner-shell ionization and capture in a single collision. Charge distributions of 82- to 200-MeV/amu Xe and 105- to 955-MeV/amu U ion beams emerging from thin solid targets were used to obtain single- and multiple-electron stripping and capture cross sections. The probabilities of stripping electrons from the K, L, or M shells were calculated using the semiclassical approximation and Dirac hydrogenic wavefunctions. For capture, a simplified model for electron capture was uded. The data generally agree with theory.

  20. Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-Ion Collisions.

    PubMed

    Ryu, S; Paquet, J-F; Shen, C; Denicol, G S; Schenke, B; Jeon, S; Gale, C

    2015-09-25

    We investigate the consequences of a nonzero bulk viscosity coefficient on the transverse momentum spectra, azimuthal momentum anisotropy, and multiplicity of charged hadrons produced in heavy ion collisions at LHC energies. The agreement between a realistic 3D hybrid simulation and the experimentally measured data considerably improves with the addition of a bulk viscosity coefficient for strongly interacting matter. This paves the way for an eventual quantitative determination of several QCD transport coefficients from the experimental heavy ion and hadron-nucleus collision programs. PMID:26451547

  1. Multiple delivery cesium oven system for negative ion sources

    SciTech Connect

    Bansal, G.; Bhartiya, S.; Pandya, K.; Bandyopadhyay, M.; Singh, M. J.; Soni, J.; Gahlaut, A.; Parmar, K. G.; Chakraborty, A.

    2012-02-15

    Distribution of cesium in large negative ion beam sources to be operational in ITER, is presently based on the use of three or more cesium ovens, which operate simultaneously and are controlled remotely. However, use of multiple Cs ovens simultaneously is likely to pose difficulties in operation and maintenance of the ovens. An alternate method of Cs delivery, based on a single oven distribution system is proposed as one which could reduce the need of simultaneous operation of many ovens. A proof of principle experiment verifying the concept of a multinozzle distributor based Cs oven has been carried out at Institute for Plasma Research. It is also observed that the Cs flux is not controlled by Cs reservoir temperature after few hours of operation but by the temperature of the distributor which starts behaving as a Cs reservoir.

  2. Experimental studies of the Negative Ion of Hydrogen. Final Report

    SciTech Connect

    Bryant, Howard C.

    1999-06-30

    This document presents an overview of the results of the DOE'S support of experimental research into the structure and interactions of the negative ion of hydrogen conducted by the Department of Physics and Astronomy of the University of New Mexico at the Los Alamos National Laboratory. The work involves many collaborations with scientists from both institutions, as well as others. Although official DOE support for this work began in 1977, the experiment that led to it was done in 1971, near the time the 800 MeV linear accelerator at Los Alamos (LAMPF) first came on line. Until the mid nineties, the work was performed using the relativistic beam at LAMFF. The most recent results were obtained using the 35 keV injector beam for the Ground Test Accelerator at Los Alamos. A list of all published results from this work is presented.

  3. High-Resolution Laser Spectroscopy on the Negative Osmium Ion

    SciTech Connect

    Warring, U.; Amoretti, M.; Canali, C.; Fischer, A.; Heyne, R.; Meier, J. O.; Morhard, Ch.; Kellerbauer, A.

    2009-01-30

    We have applied a combination of laser excitation and electric-field detachment to negative atomic ions for the first time, resulting in an enhancement of the excited-state detection efficiency for spectroscopy by at least 2 orders of magnitude. Applying the new method, a measurement of the bound-bound electric-dipole transition frequency in {sup 192}Os{sup -} was performed using collinear spectroscopy with a narrow-bandwidth cw laser. The transition frequency was found to be 257.831 190(35) THz [wavelength 1162.747 06(16) nm, wave number 8600.3227(12) cm{sup -1}], in agreement with the only prior measurement, but with more than 100-fold higher precision.

  4. Improvement of uniformity of the negative ion beams by tent-shaped magnetic field in the JT-60 negative ion source

    SciTech Connect

    Yoshida, Masafumi Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ohzeki, Masahiro; Seki, Norikazu; Sasaki, Shunichi; Shimizu, Tatsuo; Terunuma, Yuto; Grisham, Larry R.

    2014-02-15

    Non-uniformity of the negative ion beams in the JT-60 negative ion source with the world-largest ion extraction area was improved by modifying the magnetic filter in the source from the plasma grid (PG) filter to a tent-shaped filter. The magnetic design via electron trajectory calculation showed that the tent-shaped filter was expected to suppress the localization of the primary electrons emitted from the filaments and created uniform plasma with positive ions and atoms of the parent particles for the negative ions. By modifying the magnetic filter to the tent-shaped filter, the uniformity defined as the deviation from the averaged beam intensity was reduced from 14% of the PG filter to ∼10% without a reduction of the negative ion production.

  5. The Negative Mode Proteome with Activated Ion Negative Electron Transfer Dissociation (AI-NETD)*

    PubMed Central

    Riley, Nicholas M.; Rush, Matthew J. P.; Rose, Christopher M.; Richards, Alicia L.; Kwiecien, Nicholas W.; Bailey, Derek J.; Hebert, Alexander S.; Westphall, Michael S.; Coon, Joshua J.

    2015-01-01

    The field of proteomics almost uniformly relies on peptide cation analysis, leading to an underrepresentation of acidic portions of proteomes, including relevant acidic posttranslational modifications. Despite the many benefits negative mode proteomics can offer, peptide anion analysis remains in its infancy due mainly to challenges with high-pH reversed-phase separations and a lack of robust fragmentation methods suitable for peptide anion characterization. Here, we report the first implementation of activated ion negative electron transfer dissociation (AI-NETD) on the chromatographic timescale, generating 7,601 unique peptide identifications from Saccharomyces cerevisiae in single-shot nLC-MS/MS analyses of tryptic peptides—a greater than 5-fold increase over previous results with NETD alone. These improvements translate to identification of 1,106 proteins, making this work the first negative mode study to identify more than 1,000 proteins in any system. We then compare the performance of AI-NETD for analysis of peptides generated by five proteases (trypsin, LysC, GluC, chymotrypsin, and AspN) for negative mode analyses, identifying as many as 5,356 peptides (1,045 proteins) with LysC and 4,213 peptides (857 proteins) with GluC in yeast—characterizing 1,359 proteins in total. Finally, we present the first deep-sequencing approach for negative mode proteomics, leveraging offline low-pH reversed-phase fractionation prior to online high-pH separations and peptide fragmentation with AI-NETD. With this platform, we identified 3,467 proteins in yeast with trypsin alone and characterized a total of 3,730 proteins using multiple proteases, or nearly 83% of the expressed yeast proteome. This work represents the most extensive negative mode proteomics study to date, establishing AI-NETD as a robust tool for large-scale peptide anion characterization and making the negative mode approach a more viable platform for future proteomic studies. PMID:26193884

  6. Velocity-Map Imaging Spectroscopy of the Ge^-, Sn^-, and Pb^- Negative Ions

    NASA Astrophysics Data System (ADS)

    Chartkunchand, Kiattichart; Carpenter, Kyle; Davis, Vernon; Neill, Paul; Thompson, Jeffrey; Covington, Aaron

    2012-06-01

    Photoelectrons ejected from collisions between laser-produced photons and fast-moving beams of negaitve ions have been studied using the technique of Velocity-Map Imaging (VMI) spectroscopy. Digital images produced by the VMI spectrometer have been used to determine photoelectron kinetic energy spectra, as well as photoelectron angular distributions for select isoelectronic Group 14 anions. Analysis of these data are helping to clarify detailed structural properties of these ions with increasing Z and is providing dynamical information on the photon-ion collision systems.

  7. Effect of non-uniform electron energy distribution function on plasma production in large arc driven negative ion source.

    PubMed

    Shibata, T; Koga, S; Terasaki, R; Inoue, T; Dairaku, M; Kashiwagi, M; Taniguchi, M; Tobari, H; Tsuchida, K; Umeda, N; Watanabe, K; Hatayama, A

    2012-02-01

    Spatially non-uniform electron energy distribution function (EEDF) in an arc driven negative ion source (JAEA 10A negative ion source: 10 A NIS) is calculated numerically by a three-dimensional Monte Carlo kinetic model for electrons to understand spatial distribution of plasma production (such as atomic and ionic hydrogen (H(0)∕H(+)) production) in source chamber. The local EEDFs were directly calculated from electron orbits including electromagnetic effects and elastic∕inelastic collision forces. From the EEDF, spatial distributions of H(0)∕H(+) production rate were obtained. The results suggest that spatial non-uniformity of H(0)∕H(+) productions is enhanced by high energy component of EEDF.

  8. Independent-particle models for light negative atomic ions

    NASA Technical Reports Server (NTRS)

    Ganas, P. S.; Talman, J. D.; Green, A. E. S.

    1980-01-01

    For the purposes of astrophysical, aeronomical, and laboratory application, a precise independent-particle model for electrons in negative atomic ions of the second and third period is discussed. The optimum-potential model (OPM) of Talman et al. (1979) is first used to generate numerical potentials for eight of these ions. Results for total energies and electron affinities are found to be very close to Hartree-Fock solutions. However, the OPM and HF electron affinities both depart significantly from experimental affinities. For this reason, two analytic potentials are developed whose inner energy levels are very close to the OPM and HF levels but whose last electron eigenvalues are adjusted precisely with the magnitudes of experimental affinities. These models are: (1) a four-parameter analytic characterization of the OPM potential and (2) a two-parameter potential model of the Green, Sellin, Zachor type. The system O(-) or e-O, which is important in upper atmospheric physics is examined in some detail.

  9. Negative thermal ion mass spectrometry of oxygen in phosphates

    NASA Astrophysics Data System (ADS)

    Holmden, C.; Papanastassiou, D. A.; Wasserburg, G. J.

    1997-06-01

    A novel technique for the precise measurement of oxygen isotopes by negative thermal ion mass spectrometry (NTIMS) is presented. The technique is ideally suited to the analysis of oxygen isotopes in phosphates which form intense P03 ion beams. Since P is monoisotopic, the mass spectrum for P0 3- at 79, 80, and 81 corresponds to 1660, 170, and 180. Natural and synthetic phosphates are converted and loaded on the mass spectrometer filament as Ag 3PO 4 precipitated directly from ammoniacal solution. To lower the work function of the filament, BaCl, is added in a 1:1 molar ratio of PO 4:Ba. Using these procedures, Br - mass interference (at 79 and 81 amu) is eliminated for typical analyses. Experiments with 180-enriched water show less than 1 % O-exchange between sample PO 4 and adsorbed water, and there is no O-exchange with trace OZ present in the mass spectrometer source chamber. The ionization efficiency of PO 4, as P0 3- is >10% compared to 0.01% for both conventional dual inlet Gas Isotope Ratio Mass Spectrometry (GIRMS) and secondary ion mass spectrometry (SIMS). Therefore, NTIMS offers exceptional sensitivity enabling routine and precise oxygen isotope analysis of sub-microgram samples of PO 4, (<21 nmoles equivalent CO 2 gas) without need for lengthy chemical pre-treatment reproducibility of the sample. Overall external precision is ±1%c (2σ) for 18O/16 O and 170/15O with of instrumental isotope fractionation (calculated from 18O/16O of ±0.5%c amu -1. Small phosphate samples including single mineral grains from meteorites, or apatite microfossils, can be analyzed by this technique.

  10. Estimates of Collisional Cooling and Quenching Rates for Atomic and Molecular Ion Collisions with Ultracold Atoms.

    NASA Astrophysics Data System (ADS)

    Smith, Winthrop; Wells, James

    2009-05-01

    Translational cross sections and rate coefficients for cold ion-neutral elastic and charge-exchange collisions (either atomic or molecular) are >> larger (˜10^6 a.u.) than neutral-neutral collisions at the same CM energy. This is due to the long range polarization potential V(R) = -C4/R^4, where C4 is proportional to the polarizability of the neutral partner. Thus collisions between ultracold alkali atoms (trapped in a magneto-optic trap or MOT) and low-energy ions can be used for sympathetic cooling experiments. We are building a prototype hybrid-trap apparatus [1] that applies these principles to collisions of Ca^+ ions (which can be laser pre-cooled) with MOT-trapped ultracold Na atoms. Some calculations on this system and other related ion-neutral systems have been published [2] and some initial experiments on other ion-neutral species have begun [3]. Estimates of cooling and quenching rates in the low K-mK CM energy range for Ca+ on Na and other cases will be presented and possible experiments described. [1] Winthrop W. Smith, Oleg P. Makarov and Jian Lin, J. Modern Optics 52, 2253 (2005). [2] R. Côt'e and A. Dalgarno, Phys. Rev. A 62, 012709 (2000); R. Côt'e, Phys. Rev. Lett. 85, 5316 (2000). [3] A. Grier, M. Cetina, F.Orucevic, and V. Vuletic, ArXiv atom-ph/0808.3620.

  11. Simulation Based on Negative ion pair Techniques of Electric propulsion In Satellite Mission Using Chlorine Gas

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, R.

    R.Bakkiyaraj,Assistant professor,Government college of Engineering ,Bargur,Tamilnadu. *C.Sathiyavel, PG Student and Department of Aeronautical Engineering/Branch of Avionics, PSN college of Engineering and Technology,Tirunelveli,India. Abstract: Ion propulsion rocket system is expected to become popular with the development of ion-ion pair techniques because of their stimulated of low propellant, Design of repulsive between negative ions with low electric power and high efficiency. A Negative ion pair of ion propulsion rocket system is proposed in this work .Negative Ion Based Rocket system consists of three parts 1.ionization chamber 2. Repulsion force and ion accelerator 3. Exhaust of Nozzle. The Negative ions from electro negatively gas are produced by attachment of the gas ,such as chlorine with electron emitted from a Electron gun ionization chamber. The formulate of large stable negative ion is achievable in chlorine gas with respect to electron affinity (∆E). When a neutral chlorine atom in the gaseous form picks up an electron to form a cl- ion, it releases energy of 349 kJ/mol or 3.6 eV/atom. It is said to have an electron affinity of -349 kJ/mol ,the negative sign indicating that energy is released during this process .The distance between negative ions pair is important for the evaluation of the rocket thrust and is also determined by the exhaust velocity of the propellant. The mass flow rate of ions is related to the ion beam current. Accelerate the Negative ions to a high velocity in the thrust vector direction with a significantly intense grids and the exhaust of negative ions through Nozzle. The simulation of the ion propulsion system has been carried out by MATLAB. By comparing the simulation results with the theoretical and previous results, we have found that the proposed method is achieved of thrust value with low electric power for simulating the ion propulsion rocket system

  12. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS AT RHIC ENERGIES.

    SciTech Connect

    STEINBERG,P.A.FOR THE PHOBOS COLLABORATION

    2002-07-18

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  13. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS AT RHIC ENERGIES.

    SciTech Connect

    STEINBERG,P.A.; FOR THE PHOBOS COLLABORATION

    2002-07-18

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  14. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS AT RHIC ENERGIES.

    SciTech Connect

    STEINBERG,P.A.; FOR THE PHOBOS COLLABORATION

    2002-07-24

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  15. Resonant ion-pair formation in electron collisions with rovibrationally cold H{sub 3}{sup +}

    SciTech Connect

    Kalhori, S.; Thomas, R.; Al-Khalili, A.; Ehlerding, A.; Hellberg, F.; Neau, A.; Larsson, M.; Larson, A.; Huneycutt, A.J.; McCall, B.J.; Djuric, N.; Dunn, G.H.; Semaniak, J.; Novotny, O.; Paal, A.; Oesterdahl, F.; Orel, A.E.

    2004-02-01

    Experimental and theoretical cross sections for the resonant ion-pair formation (RIP) in electron collisions with rovibrationally cold H{sub 3}{sup +} ions are presented. Absolute cross sections for the RIP process producing H{sup -} ions are measured for center-of-mass energies between 2-20 eV using the CRYRING, heavy-ion storage ring. Theoretical cross sections are obtained using wave-packet propagation on both one- and two-dimensional models of relevant diabatic-potential energy surfaces and couplings of H{sub 3}{sup +} and H{sub 3}.

  16. Core-level positive-ion and negative-ion fragmentation of gaseous and condensed HCCl3 using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Lu, K. T.; Chen, J. M.; Lee, J. M.; Haw, S. C.; Liang, Y. C.; Deng, M. J.

    2011-07-01

    We investigated the dissociation dynamics of positive-ion and negative-ion fragments of gaseous and condensed HCCl3 following photoexcitation of Cl 2p electrons to various resonances. Based on ab initio calculations at levels HF/cc-pVTZ and QCISD/6-311G*, the first doublet structures in Cl L-edge x-ray absorption spectrum of HCCl3 are assigned to transitions from the Cl (2P3/2,1/2) initial states to the 10a1* orbitals. The Cl 2p → 10a1* excitation of HCCl3 induces a significant enhancement of the Cl+ desorption yield in the condensed phase and a small increase in the HCCl+ yield in the gaseous phase. Based on the resonant photoemission of condensed HCCl3, excitations of Cl 2p electrons to valence orbitals decay predominantly via spectator Auger transitions. The kinetic energy distributions of Cl+ ion via the Cl 2p → 10a1* excitation are shifted to higher energy ˜0.2 eV and ˜0.1 eV relative to those via the Cl 2p → 10e* excitation and Cl 2p → shape resonance excitation, respectively. The enhancement of the yields of ionic fragments at specific core-excited resonance states is assisted by a strongly repulsive surface that is directly related to the spectator electrons localized in the antibonding orbitals. The Cl- anion is significantly reinforced in the vicinity of Cl 2p ionization threshold of gaseous HCCl3, mediated by photoelectron recapture through post-collision interaction.

  17. Code System for Calculating Ion Track Condensed Collision Model.

    1997-05-21

    Version 00 ICOM calculates the transport characteristics of ion radiation for applicaton to radiation protection, dosimetry and microdosimetry, and radiation physics of solids. Ions in the range Z=1-92 are handled. The energy range for protons is 0.001-10,000 MeV. For other ions the energy range is 0.001-100MeV/nucleon. Computed quantities include stopping powers, ranges; spatial, angular and energy distributions of particle current and fluence; spatial distributions of the absorbed dose; and spatial distributions of thermalized ions.

  18. Fragmentation processes of OCS in collision with highly charged ions

    NASA Astrophysics Data System (ADS)

    Matsumoto, J.; Tezuka, T.; Fukutome, A.; Karimi, R.; Wales, B.; Sanderson, J. H.; Shiromaru, H.

    2014-04-01

    Fragmentation of (OCS)3+ and (OCS)4+ produced by 120 keV Ar8+ collision was studied by using a position-sensitive time-of-flight (PS-TOF) method. We identified stepwise processes involving CO2+ and CS2+ metastable species as well as the concerted process (simultaneous breakup of the two bonds). For the (OCS)4+ events, the stepwise processes were found for fragmentation channels containing a doubly-charged terminal atom.

  19. Single electron capture in fast ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Milojević, Nenad

    2014-12-01

    Single-electron capture cross sections in collisions between fast bare projectiles and heliumlike atomic systems are investigated by means of the four-body boundary-corrected first Born (CB1-4B) approximation. The prior and post transition amplitudes for single charge exchange encompassing symmetric and asymmetric collisions are derived in terms of twodimensional real integrals in the case of the prior form and five-dimensional quadratures for the post form. The dielectronic interaction V12 = 1/r12 = 1/|r1 - r2| explicitly appears in the complete perturbation potential Vf of the post transition probability amplitude T+if. An illustrative computation is performed involving state-selective and total single capture cross sections for the p - He (prior and post form) and He2+, Li3+Be4+B5+C6+ - He (prior form) collisions at intermediate and high impact energies. We have also studied differential cross sections in prior and post form for single electron transfer from helium by protons. The role of dynamic correlations is examined as a function of increased projectile energy. Detailed comparisons with the measurements are carried out and the obtained theoretical cross sections are in reasonable agreement with the available experimental data.

  20. What we have (not)learned from the ultrarelativistic heavy ion collisions

    SciTech Connect

    Paic, Guy

    2009-04-20

    The field of ultrarelativistic heavy ion collisions is today a flourishing activity both on the experimental and on the theoretical side. Although the theoretical justifications to study these collisions was given already more than three decades ago and the experimental studies have a history of more than 25 years we are still very much in the dark as to the details of the processes and of the characteristics of the matter created in collisions. Increasing the energy of collisions has brought new insights but has also resulted with new challenges. In the present paper I will try from a personal perspective to report on the answers we have collected and on the problems we are faced with. The account is partial, taking into account that it is impossible to render justice to every aspect of the field.

  1. What we have (not)learned from the ultrarelativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Paic, Guy

    2009-04-01

    The field of ultrarelativistic heavy ion collisions is today a flourishing activity both on the experimental and on the theoretical side. Although the theoretical justifications to study these collisions was given already more than three decades ago and the experimental studies have a history of more than 25 years we are still very much in the dark as to the details of the processes and of the characteristics of the matter created in collisions. Increasing the energy of collisions has brought new insights but has also resulted with new challenges. In the present paper I will try from a personal perspective to report on the answers we have collected and on the problems we are faced with. The account is partial, taking into account that it is impossible to render justice to every aspect of the field.

  2. ELLIPTIC FLOW, INITIAL ECCENTRICITY AND ELLIPTIC FLOW FLUCTUATIONS IN HEAVY ION COLLISIONS AT RHIC.

    SciTech Connect

    NOUICER,R.; ALVER, B.; BACK, B.B.; BAKER, M.D.; BALLINTIJN, M.; BARTON, D.S.; ET AL.

    2007-02-19

    We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.

  3. Evidence for Sequence Scrambling in Collision-Induced Dissociation of y-Type Fragment Ions

    NASA Astrophysics Data System (ADS)

    Miladi, Mahsan; Harper, Brett; Solouki, Touradj

    2013-11-01

    Sequence scrambling from y-type fragment ions has not been previously reported. In a study designed to probe structural variations among b-type fragment ions, it was noted that y fragment ions might also yield sequence-scrambled ions. In this study, we examined the possibility and extent of sequence-scrambled fragment ion generation from collision-induced dissociation (CID) of y-type ions from four peptides (all containing basic residues near the C-terminus) including: AAAAH AA-NH2 (where " A" denotes carbon thirteen (13C1) isotope on the alanine carbonyl group), des-acetylated-α-melanocyte (SYSMEHFRWGKPV-NH2), angiotensin II antipeptide (EGVYVHPV), and glu-fibrinopeptide b (EGVNDNEEGFFSAR). We investigated fragmentation patterns of 32 y-type fragment ions, including y fragment ions with different charge states (+1 to +3) and sizes (3 to 12 amino acids). Sequence-scrambled fragment ions were observed from ~50 % (16 out of 32) of the studied y-type ions. However, observed sequence-scrambled ions had low relative intensities from ~0.1 % to a maximum of ~12 %. We present and discuss potential mechanisms for generation of sequence-scrambled fragment ions. To the best of our knowledge, results on y fragment dissociation presented here provide the first experimental evidence for generation of sequence-scrambled fragments from CID of y ions through intermediate cyclic "b-type" ions.

  4. Improving Negative Ion Beam Quality and Purity with a RF Quadrupole Cooler

    SciTech Connect

    Liu, Y.

    2011-09-26

    Recent progress in the development of a gas-filled RF quadrupole ion cooler for cooling negative ions is reported. Experiments demonstrate that negative ion beams can be cooled to 2 eV FWHM energy spread with more than 50% transmission through the cooler. The RFQ cooler can potentially improve the purity of radioactive ion beams by magnetic mass separation. New developments on purifying negative ion beams by photodetachment in the RFQ cooler are presented. With a laser of proper photon energy, nearly 100% suppression of the unwanted negative ions in the RFQ cooler has been observed, while the desired ions remain mostly intact. A recent experimental study demonstrates that pure ground state negative ion beams can be obtained by state-selective photodetachment in the RFQ cooler.

  5. Improving Negative Ion Beam Quality And Purity With A RF Quadrupole Cooler

    SciTech Connect

    Liu, Yuan

    2011-01-01

    Recent progress in the development of a gas-filled RF quadrupole ion cooler for cooling negative ions is reported. Experiments demonstrate that negative ion beams can be cooled to 2 eV FWHM energy spread with more than 50% transmission through the cooler. The RFQ cooler can potentially improve the purity of radioactive ion beams by magnetic mass separation. New developments on purifying negative ion beams by photodetachment in the RFQ cooler are presented. With a laser of proper photon energy, nearly 100% suppression of the unwanted negative ions in the RFQ cooler has been observed, while the desired ions remain mostly intact. A recent experimental study demonstrates that pure ground state negation ion beams can be obtained by state-selective photodetachment in the RFQ cooler.

  6. Estimation of negative ions in VHF SiH4/H2 plasma

    NASA Astrophysics Data System (ADS)

    Yamane, Tsukasa; Nakano, Shinya; Nakao, Sachiko; Takeuchi, Yoshiaki; Ichiki, Ryuta; Muta, Hiroshi; Uchino, Kiichiro; Kawai, Yoshinobu

    2014-11-01

    The characteristics of a VHF SiH4/H2 plasma (frequency: 60 MHz) at high pressures were examined as a function of silane concentration with a heated Langmuir probe. Anomalous reductions in electron saturation current were observed, suggesting the existence of many negative ions. An estimation of the concentration of negative ions was attempted using the sheath theory including negative ions. It was found that there exist H- and SiH3- ions as dominant negative ions in the VHF SiH4/H2 plasma. In addition, the measured floating potential agreed with the theoretical value.

  7. Preface: Proceedings of the 21st International Workshop on Inelastic Ion-Surface Collisions (IISC-21)

    NASA Astrophysics Data System (ADS)

    Juaristi, J. I.; Alducin, M.

    2016-09-01

    This special issue contains the Proceedings of the 21st International Workshop on Inelastic Ion-Surface Collisions (IISC-21). The conference series started in 1976 and focuses on fundamental aspects of interactions of atoms, molecules, clusters and ions with surfaces. The main research themes are (a) energy loss of particles at surfaces, (b) charge exchange between particles and surfaces, (c) electron, photon and secondary ion emission due to particle impact on surfaces, (d) ion induced desorption, electronic and kinetic sputtering, (e) defect formation, surface modification and nanostructuring, (f) laser induced desorption, (g) scattering of atoms, ions, molecules and clusters, (h) sputtering, fragmentation, cluster and ion formation in SIMS and SNMS, and (i) cluster/molecular and highly charged ion beams.

  8. Two components in charged particle production in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Bylinkin, A. A.; Chernyavskaya, N. S.; Rostovtsev, A. A.

    2016-02-01

    Transverse momentum spectra of charged particle production in heavy-ion collisions are considered in terms of a recently introduced Two Component parameterization combining exponential ("soft") and power-law ("hard") functional forms. The charged hadron densities calculated separately for them are plotted versus number of participating nucleons, Npart. The obtained dependences are discussed and the possible link between the two component parameterization introduced by the authors and the two component model historically used for the case of heavy-ion collisions is established. Next, the variations of the parameters of the introduced approach with the center of mass energy and centrality are studied using the available data from RHIC and LHC experiments. The spectra shapes are found to show universal dependences on Npart for all investigated collision energies.

  9. Discrimination Between Peptide O-Sulfo- and O-Phosphotyrosine Residues by Negative Ion Mode Electrospray Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Edelson-Averbukh, Marina; Shevchenko, Andrej; Pipkorn, Rüdiger; Lehmann, Wolf D.

    2011-12-01

    Unambiguous differentiation between isobaric sulfated and phosphorylated tyrosine residues (sTyr and pTyr) of proteins by mass spectrometry is challenging, even using high resolution mass spectrometers. Here we show that upon negative ion mode collision-induced dissociation (CID), pTyr- and sTyr-containing peptides exhibit entirely different modification-specific fragmentation patterns leading to a rapid discrimination between the isobaric covalent modifications using the tandem mass spectral data. This study reveals that the ratio between the relative abundances of [M-H-80]- and [M-H-98]- fragment ions in ion-trap CID and higher energy collision dissociation (HCD) spectra of singly deprotonated +80 Da Tyr-peptides can be used as a reliable indication of the Tyr modification group nature. For multiply deprotonated +80 Da Tyr-peptides, CID spectra of sTyr- and pTyr-containing sequences can be readily distinguished based on the presence/absence of the [M-nH-79](n-1)- and [M-nH-79-NL]( n-1)- ( n = 2, 3) fragment ions (NL = neutral loss).

  10. Multiple-scattering model for inclusive proton production in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1994-01-01

    A formalism is developed for evaluating the momentum distribution for proton production in nuclear abrasion during heavy ion collisions using the Glauber multiple-scattering series. Several models for the one-body density matrix of nuclei are considered for performing numerical calculations. Calculations for the momentum distribution of protons in abrasion are compared with experimental data for inclusive proton production.

  11. Heavy ion reaction measurements with the EOS TPC (looking for central collisions with missing energy)

    SciTech Connect

    Wieman, H.H.; EOS Collaboration

    1994-05-01

    The EOS TPC was constructed for complete event measurement of heavy ion collisions at the Bevalac. We report here on the TPC design and some preliminary measurements of conserved event quantities such as total invariant mass, total momentum, total A and Z.

  12. Exclusive processes in electron-ion collisions in the dipole formalism

    SciTech Connect

    Cazaroto, E. R.; Navarra, F. S.; Carvalho, F.; Goncalves, V. P.

    2013-03-25

    We compare the predictions of two saturation models for production of vector mesons and of photons in electron-ion collisions. The models considered are the b-CGC and the rcBK. The calculations were made in the kinematical range of the LHeC and of the future eRHIC.

  13. Can Bose condensation of alpha particles be observed in heavy ion collisions?

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Townsend, Lawrence W.

    1993-01-01

    Using a fully self-consistent quantum statistical model, we demonstrate the possibility of Bose condensation of alpha particles with a concomitant phase transition in heavy ion collisions. Suggestions for the experimental observation of the signature of the onset of this phenomenon are made.

  14. T.D. LEE: RELATIVISTIC HEAVY ION COLLISIONS AND THE RIKEN BROOKHAVEN CENTER.

    SciTech Connect

    MCLERRAN,L.; SAMIOS, N.

    2006-11-24

    This paper presents the history of Professor T. D. Lee's seminal work on the theory of relativistic heavy ion collisions, and the founding and development of the Riken Brookhaven Center. A number of anecdotes are given about Prof. Lee, and his strong positive effect on his colleagues, particularly young physicists.

  15. New aspects in fragmentation of peptide nucleic acids: comparison of positive and negative ions by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Ziehe, Matthias; Grossmann, Tom N; Seitz, Oliver; Linscheid, Michael W

    2009-04-01

    The use of peptide nucleic acids (PNAs) is steadily increasing in biochemistry and diagnostics. So far, PNAs have mostly been investigated using cationic conditions in mass spectrometry. Furthermore, the use of fragmentation techniques developed for peptides and proteins like infrared multiphoton dissociation (IRMPD) and electron capture dissociation (ECD) has barely been examined. However, especially the fragmentation behavior of PNA oligomers in negative ion mode is of high importance, due to the ability to interact with nucleic acids which are almost exclusively analyzed in the negatively charged state. In the current study PNA fragmentations under cationic and anionic conditions were investigated and different fragmentation techniques like collision-induced dissociation (CID), IRMPD and ECD were applied. Especially when using CID and IRMPD, amide bonds were broken, whereas ECD resulted in the elimination of nucleobases. Differences were also observed between positive and negative ionization, while the sequence coverage for the negative ions was superior to positive ions. The fragmentation behavior using IRMPD led to almost complete sequence coverage. Additionally, in anions the interesting effect of multiple eliminations of HNCO was found. PMID:19280610

  16. Determining the isomeric heterogeneity of neutral oligosaccharide-alditols of bovine submaxillary mucin using negative ion traveling wave ion mobility mass spectrometry.

    PubMed

    Li, Hongli; Bendiak, Brad; Siems, William F; Gang, David R; Hill, Herbert H

    2015-02-17

    Negative ions produced by electrospray ionization were used to evaluate the isomeric heterogeneity of neutral oligosaccharide-alditols isolated from bovine submaxillary mucin (BSM). The oligosaccharide-alditol mixture was preseparated on an off-line high-performance liquid chromatography (HPLC) column, and the structural homogeneity of individual LC fractions was investigated using a Synapt G2 traveling wave ion mobility spectrometer coupled between quadupole and time-of-flight mass spectrometers. Mixtures of isomers separated by both chromatography and ion mobility spectrometry were studied. Tandem mass spectrometry (MS/MS) of multiple mobility peaks having the same mass-to-charge ratio (m/z) demonstrated the presence of different structural isomers and not differences in ion conformations due to charge site location. Although the oligosaccharide-alditol mixture was originally separated by HPLC, multiple ion mobility peaks due to structural isomers were observed for a number of oligosaccharide-alditols from single LC fractions. The collision-induced dissociation cells located in front of and after the ion mobility separation device enabled oligosaccharide precursor or product ions to be separated by ion mobility and independent fragmentation spectra to be acquired for isomeric carbohydrate precursor or product ions. MS/MS spectra so obtained for independent mobility peaks at a single m/z demonstrated the presence of structural variants or stereochemical isomers having the same molecular formula. This was observed both for oligosaccharide precursor and product ions. In addition, mobilities of both [M - H](-) and [M + Cl](-) ions, formed by adding NH4OH or NH4Cl to the electrospray solvent, were examined and compared for selected oligosaccharide-alditols. Better separation among structural isomers appeared to be achieved for some [M + Cl](-) anions.

  17. Investigation of rare particle production in relativistic heavy ion collisions

    SciTech Connect

    Crawford, H.J.; Engelage, J.

    1991-01-01

    During FY91 we began our investigation of rare particle production in relativistic nuclear collisions at the Brookhaven National Laboratory. We were funded for a period of one year to perform the initial experimental search, E858, to determine the level of antideuteron ({bar d}) production in Si+Au collisions at the AGS. We accomplished this goal with the discovery of two {bar d}'s in the June 1990 run. We describe in this paper experiment performed and the results obtained. We performed our rare particle search at the A-1 line of the AGS. We instrumented the line with a four time-of-flight (TOF) detectors, two high pressure gas Cerenkox (ck) detectors, and four drift tube (DT) tracking detectors. The TOF detectors achieved time resolution of better than 100ps leading to a mass resolution of <15 MeV at 1 GeV. The Ck detectors were used both to suppress the large {pi}{sup {minus}} signal and in {pi}/K separation at high rigidities. The DT system provided particle trajectories for all of the particles passing the trigger requirements. In this experiment we measured the {pi}{sup {minus}}, K-, and {bar p} momentum spectra at 0{sup o} for rigidities from 2 to 8 GV to a statistical accuracy of 1--3% at all settings. We found that the {bar p} yield as a function of target did not show any evidence for reabsorption within the interaction volume. We also found two {bar d}'s, the first observation of complex antinuclei produced in nucleus-nucleus collisions. The {bar d} yield is at least an order of magnitude smaller than prediced using a simple coalescence model based on the d/p ratio from E802 and the {bar p} spectrum measured in our experiment.

  18. Atom capture and loss in ion molecule collisions

    SciTech Connect

    Breinig, M.; Lasley, S.E.; Gaither, C.C. III

    1985-01-01

    Progress is reported in measuring the energy and angular distribution of protons emerging with velocity close to the beam velocity from the target region when Ar/sup +/ beams collide with a CH/sub 4/ target and ArH/sup +/ beams collide with a He target at asymptotically high speeds. The protons result from the transfer of a target constituent to the projectile (atom capture) or from the dissociation of the projectile molecule in the collision (atom loss). For atom capture processes the Thomas peak is clearly observed. 10 refs., 3 figs.

  19. Intermediate Mass Fragments Emission in Peripheral Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Bini, M.; Casini, G.; Maurenzig, P. R.; Olmi, A.; Pasquali, G.; Piantelli, S.; Poggi, G.; Stefanini, A. A.; Taccetti, N.

    The collision 116Sn + 93Nb at 29.5 AMeV in direct and reverse kinematics has been studied at LNS in Catania. In particular the emission pattern in the νperp - νpar plane of Intermediate Mass Fragments with Z=3-7 (IMF's) shows that for peripheral reactions most of IMF's are emitted at velocities intermediate between those of the projectile- and target-like products. From coulomb trajectory calculations one can infere that these IMF's are produced mainly in the interaction zone, in a short time interval at the end of the target-projectile interaction.

  20. Simple parametrization of fragment reduced widths in heavy ion collisions.

    PubMed

    Tripathi, R K; Townsend, L W

    1994-04-01

    A systematic analysis of the observed reduced widths obtained in relativistic heavy ion fragmentation reactions is used to develop a phenomenological parametrization of these data. The parametrization is simple, accurate, and completely general in applicability.

  1. Electron detachment from negative ions in a short laser pulse

    NASA Astrophysics Data System (ADS)

    Shearer, S. F. C.; Smyth, M. C.; Gribakin, G. F.

    2011-09-01

    We present an efficient and accurate method to study electron detachment from negative ions by a few-cycle linearly polarized laser pulse. The adiabatic saddle-point method of Gribakin and Kuchiev [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.55.3760 55, 3760 (1997)] is adapted to calculate the transition amplitude for a short laser pulse. Its application to a pulse with N optical cycles produces 2(N+1) saddle points in complex time, which form a characteristic “smile.” Numerical calculations are performed for H- in a 5-cycle pulse with frequency 0.0043 a.u. and intensities of 1010, 5×1010, and 1011 W/cm2, and for various carrier-envelope phases. We determine the spectrum of the photoelectrons as a function of both energy and emission angle, as well as the angle-integrated energy spectra and total detachment probabilities. Our calculations show that the dominant contribution to the transition amplitude is given by 5-6 central saddle points, which correspond to the strongest part of the pulse. We examine the dependence of the photoelectron angular distributions on the carrier-envelope phase and show that measuring such distributions can provide a way of determining this phase.

  2. Electron detachment from negative ions in a short laser pulse

    SciTech Connect

    Shearer, S. F. C.; Smyth, M. C.; Gribakin, G. F.

    2011-09-15

    We present an efficient and accurate method to study electron detachment from negative ions by a few-cycle linearly polarized laser pulse. The adiabatic saddle-point method of Gribakin and Kuchiev [Phys. Rev. A 55, 3760 (1997)] is adapted to calculate the transition amplitude for a short laser pulse. Its application to a pulse with N optical cycles produces 2(N+1) saddle points in complex time, which form a characteristic 'smile.' Numerical calculations are performed for H{sup -} in a 5-cycle pulse with frequency 0.0043 a.u. and intensities of 10{sup 10}, 5x10{sup 10}, and 10{sup 11} W/cm{sup 2}, and for various carrier-envelope phases. We determine the spectrum of the photoelectrons as a function of both energy and emission angle, as well as the angle-integrated energy spectra and total detachment probabilities. Our calculations show that the dominant contribution to the transition amplitude is given by 5-6 central saddle points, which correspond to the strongest part of the pulse. We examine the dependence of the photoelectron angular distributions on the carrier-envelope phase and show that measuring such distributions can provide a way of determining this phase.

  3. High current DC negative ion source for cyclotron.

    PubMed

    Etoh, H; Onai, M; Aoki, Y; Mitsubori, H; Arakawa, Y; Sakuraba, J; Kato, T; Mitsumoto, T; Hiasa, T; Yajima, S; Shibata, T; Hatayama, A; Okumura, Y

    2016-02-01

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H(-) beam of 10 mA and D(-) beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H(-) beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H(-) current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H(-) production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H(-) current dependence on the arc power. PMID:26932017

  4. High-energy above-threshold detachment from negative ions

    SciTech Connect

    Gazibegovic-Busuladzic, A.; Milosevic, D.B.; Becker, W.

    2004-11-01

    Above-threshold detachment of electrons from negative ions by an elliptically polarized laser field is analyzed within the strong-field approximation. The low-energy part of the spectrum, that is, its structure and its apparent cutoff, strongly depends on the orbital quantum number l of the initial ground state. The high-energy part is characterized by the usual extended plateau caused by rescattering, which is essentially independent of the ground state. The potential that the returning electron experiences during rescattering is modeled by the sum of a polarization potential and a static potential. This rescattering potential does not have much effect on the shape of the plateau, but it does on its height. For H{sup -} (l=0), the yield of rescattered electrons is five orders of magnitude below the direct electrons, while for I{sup -} (l=1) the yields only differ by a factor of 40. We also analyze the dependence of the angle-resolved energy spectrum on the ellipticity of the laser field and confirm general symmetry properties. An angle-integrated elliptic dichroism parameter is introduced and analyzed.

  5. Momentum spectra of bottomonium in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Fox, Jordan; Du, Xiaojian; Rapp, Ralf

    2015-10-01

    The early universe consisted of a dense nuclear medium that took a short time to expand and form hadrons; this medium is called the quark-gluon plasma (QGP). It is believed that a QGP can be created in URHICs, and that heavy quarks created early in the collision act as a probe of the QGP. We investigate models of producing bottomonium (b b --> Y) states in URHICs at RHIC and LHC energies in order to describe the regeneration of bottomonia from the QGP as it depends on transverse momentum (pT). To simulate the evolution of the bottomonium abundance in URHICs, we rely on the results of a kinetic rate equation approach, which describes the number of bottomonia NY as it approaches equilibrium. We first implement a blastwave model to estimate the pT-spectra of locally thermalized ϒ1S and ϒ2S states, boosted by a flow field. However, since bottomonium is not fully thermalized in the QGP, we employ a quark coalescence model with realistic b-quark spectra in the calculation of its in-medium distributions. Finally, the total nuclear modification factor (RAA (pT)) is calculated accounting for the interplay of suppression and regeneration mechanisms of bottomonium in URHICs as compared to proton-proton collisions.

  6. Probing effective nucleon masses with heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Coupland, D. D. S.; Youngs, M.; Chajecki, Z.; Lynch, W. G.; Tsang, M. B.; Zhang, Y. X.; Famiano, M. A.; Ghosh, T. K.; Giacherio, B.; Kilburn, M. A.; Lee, Jenny; Liu, H.; Lu, F.; Morfouace, P.; Russotto, P.; Sanetullaev, A.; Showalter, R. H.; Verde, G.; Winkelbauer, J.

    2016-07-01

    It has been generally accepted that momentum-dependent potentials for neutrons and protons at energies well away from the Fermi surface cause both to behave as if their inertial masses are effectively 70% of the vacuum values. This similarity in effective masses may no longer hold in dense neutron-rich regions within neutron stars, core-collapse supernovas, and nuclear collisions. There differences in the momentum-dependent symmetry potentials may cause neutron and proton effective masses to differ significantly. We investigate this effect by measuring the energy spectra of neutrons, protons, and charged particles emitted in 112Sn+112Sn and 124Sn+124Sn collisions at Ebeam/A =50 and 120 MeV with precision sufficient to distinguish, in principle, between effective interactions with very different values of the neutron and proton effective masses. These data and model comparisons point the way towards future advances in our capabilities to understand the density and momentum dependence of the nuclear symmetry energy.

  7. Meson production in relativistic-heavy-ion collisions

    SciTech Connect

    Schnetzer, S.R.

    1981-08-01

    The inclusive kappa/sup +/ production cross sections were measured at angles from 15 to 80/sup 0/ in collisions of protons (2.1 GeV) and deuterons (2.1 GeV/amu) on NaF and Pb, and Ne (2.1 GeV/amu) on C, NaF, KCl, Cu, and Pb. The kaons were identified by measuring the time of flight and the momentum in a magnetic spectrometer, and by detecting the particles from the kaon decays in a Pb glass Cerenkov counter. The momentum range of the detected kaons extended from 350 MeV/c to 750 MeV/c. The multiplicity of each event was measured by a set of scintillation counter telescopes which were situated around the target. The differential cross section of the kaons falls off exponentially with center of mass energy in the nucleon nucleon center of mass frame. In addition, the angular distribution of the kaons is nearly isotropic in this frame even for p/sup -1/ NaF and Ne/sup -1/ Pb collisions. The data are compared with a row on row model and a thermal model. Neither are able to explain all features of the data. The row on row model does not reproduce the near isotropy in the nucleon nucleon frame, and the thermal model overpredicts the kaon yield by a factor of approximately twenty.

  8. Ion-neutral chemistry at ultralow energies: dynamics of reactive collisions between laser-cooled Ca+ ions and Rb atoms in an ion-atom hybrid trap†

    NASA Astrophysics Data System (ADS)

    Hall, Felix H. J.; Eberle, Pascal; Hegi, Gregor; Raoult, Maurice; Aymar, Mireille; Dulieu, Olivier; Willitsch, Stefan

    2013-08-01

    Cold chemical reactions between laser-cooled Ca+ ions and Rb atoms were studied in an ion-atom hybrid trap. Reaction rate constants were determined in the range of collision energies ⟨E coll⟩/k B=20 mK-20 K. The lowest energies were achieved in experiments using single localised Ca+ ions. Product branching ratios were studied using resonant-excitation mass spectrometry. The dynamics of the reactive processes in this system (non-radiative and radiative charge transfer as well as radiative association leading to the formation of CaRb+ molecular ions) have been analysed using high-level quantum-chemical calculations of the potential energy curves of CaRb+ and quantum-scattering calculations for the radiative channels. For the present low-energy scattering experiments, it is shown that the energy dependence of the reaction rate constants is governed by long-range interactions in line with the classical Langevin model, but their magnitude is determined by short-range non-adiabatic and radiative couplings which only weakly depend on the asymptotic energy. The quantum character of the collisions is predicted to manifest itself in the occurrence of narrow shape resonances at well-defined collision energies. The present results highlight both universal and system-specific phenomena in cold ion-neutral reactive collisions.

  9. A Cone Jet-Finding Algorithm for Heavy-Ion Collisions at LHCEnergies

    SciTech Connect

    Blyth, S.-L.; Horner, M.J.; Awes, T.C.; Cormier, T.; Gray, H.M.; Klay, J.L.; Klein, S.R.; van Leeuwen, M.; Morsch, A.; Odyniec, G.; Pavlinov, A.

    2006-07-27

    Standard jet finding techniques used in elementary particle collisions have not been successful in the high track density of heavy-ion collisions. This paper describes a modified cone-type jet finding algorithm developed for the complex environment of heavy-ion collisions. The primary modification to the algorithm is the evaluation and subtraction of the large background energy, arising from uncorrelated soft hadrons, in each collision. A detailed analysis of the background energy and its event-by-event fluctuations has been performed on simulated data, and a method developed to estimate the background energy inside the jet cone from the measured energy outside the cone on an event-by-event basis. The algorithm has been tested using Monte-Carlo simulations of Pb+Pb collisions at {radical}s = 5.5 TeV for the ALICE detector at the LHC. The algorithm can reconstruct jets with a transverse energy of 50 GeV and above with an energy resolution of {approx} 30%.

  10. Nuclear quantum many-body dynamics. From collective vibrations to heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Simenel, Cédric

    2012-11-01

    A summary of recent researches on nuclear dynamics with realistic microscopic quantum approaches is presented. The Balian-Vénéroni variational principle is used to derive the time-dependent Hartree-Fock (TDHF) equation describing the dynamics at the mean-field level, as well as an extension including small-amplitude quantum fluctuations which is equivalent to the time-dependent random-phase approximation (TDRPA). Such formalisms as well as their practical implementation in the nuclear physics framework with modern three-dimensional codes are discussed. Recent applications to nuclear dynamics, from collective vibrations to heavy-ion collisions are presented. Particular attention is devoted to the interplay between collective motions and internal degrees of freedom. For instance, the harmonic nature of collective vibrations is questioned. Nuclei are also known to exhibit superfluidity due to pairing residual interaction. Extensions of the theoretical approach to study such pairing vibrations are now available. Large amplitude collective motions are investigated in the framework of heavy-ion collisions leading, for instance, to the formation of a compound system. How fusion is affected by the internal structure of the collision partners, such as their deformation, is discussed. Other mechanisms in competition with fusion, and responsible for the formation of fragments which differ from the entrance channel (transfer reactions, deep-inelastic collisions, and quasi-fission) are investigated. Finally, studies of actinide collisions forming, during very short times of few zeptoseconds, the heaviest nuclear systems available on Earth, are presented.

  11. A Cone Jet-Finding Algorithm for Heavy Ion Collisions at LHC Energies

    SciTech Connect

    Blyth, S; Horner, M J; Awes, T; Cormier, T; Gray, H; Klay, J L; Klein, S R; van Leeuwen, M; Morsch, A; Odyniec, G; Pavlinov, A

    2006-09-15

    Standard jet finding techniques used in elementary particle collisions have not been successful in the high track density of heavy-ion collisions. This paper describes a modified cone-type jet finding algorithm developed for the complex environment of heavy-ion collisions. The primary modification to the algorithm is the evaluation and subtraction of the large background energy, arising from uncorrelated soft hadrons, in each collision. A detailed analysis of the background energy and its event-by-event fluctuations has been performed on simulated data, and a method developed to estimate the background energy inside the jet cone from the measured energy outside the cone on an event-by-event basis. The algorithm has been tested using Monte-Carlo simulations of Pb+Pb collisions at {radical}s = 5.5 TeV for the ALICE detector at the LHC. The algorithm can reconstruct jets with a transverse energy of 50 GeV and above with an energy resolution of {approx} 30%.

  12. Bound-free electron-positron pair production in relativistic heavy-ion collisions

    SciTech Connect

    Senguel, M. Y.; Gueclue, M. C.; Fritzsche, S.

    2009-10-15

    The bound-free electron-positron pair production is considered for relativistic heavy ion collisions. In particular, cross sections are calculated for the pair production with the simultaneous capture of the electron into the 1s ground state of one of the ions and for energies that are relevant for the relativistic heavy ion collider and the large hadron colliders. In the framework of perturbation theory, we applied Monte Carlo integration techniques to compute the lowest-order Feynman diagrams amplitudes by using Darwin wave functions for the bound states of the electrons and Sommerfeld-Maue wave functions for the continuum states of the positrons. Calculations were performed especially for the collision of Au+Au at 100 GeV/nucleon and Pb+Pb at 3400 GeV/nucleon.

  13. Improving efficiency of negative ion production in ion source with saddle antenna

    SciTech Connect

    Dudnikov, V. Johnson, R. P.; Murrey, S.; Pinnisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.; Johnson, C.; Turvey, M.

    2014-02-15

    Extraction of negative ions from a saddle antenna radio-frequency surface plasma source is considered. Several versions of new plasma generators with different antennas and magnetic field configurations were tested in the smal Oak Ridge National Laboratory Spallation Neutron Source Test Stand. The efficiency of positive ion generation in plasma has been improved to 200 mA/cm{sup 2} kW from 2.5 mA/cm{sup 2} kW. A small oven was developed for cesiation by cesium compounds and alloy decomposition. After cesiation, a current of negative ions to the collector was increased from 1 mA to 10 mA with 1.5 kW RF power in the plasma and longitudinal magnetic field B{sub l} ∼ 250 G. The specific efficiency of H{sup −} production was increased to 20 mA/cm{sup 2} kW from 2.5 mA/cm{sup 2} kW.

  14. Effective collision strengths for optically allowed transitions among degenerate levels of hydrogenic ions with 2{<=}Z{<=}30

    SciTech Connect

    Hamada, K.; Aggarwal, K.M.; Akita, K.; Igarashi, A.; Keenan, F.P.; Nakazaki, S.

    2010-09-15

    The Coulomb-Born approximation is used to calculate electron-impact excitation collision strengths and effective collision strengths for optically allowed transitions among degenerate fine-structure levels of hydrogenic ions with 2{<=}Z{<=}30 and n{<=}5. Collision strengths are calculated over a wide range of energies up to E{sub j}/Z{sup 2}=10Ryd. Effective collision strengths are obtained over a wide temperature range up to 10{sup 8}K by integrating the collision strengths over a Maxwellian distribution of electron velocities.

  15. Kinetics and continuum emission of negative atomic ions in partially ionized plasmas

    NASA Technical Reports Server (NTRS)

    Soon, W. H.; Kunc, J. A.

    1991-01-01

    Kinetics and continuum emission of negative ions are studied in stationary atomic hydrogen, nitrogen, and oxygen plasmas. The intensity of the negative-ion emission was found to be neglibible when compared to those of bound-bound and free-bound emission at low and medium particle densities. However, the negative-ion continuum emission can contribute significantly in certain parts of the emission spectrum at high particle densities.

  16. Transport rates and momentum isotropization of gluon matter in ultrarelativistic heavy-ion collisions

    SciTech Connect

    Xu Zhe; Greiner, Carsten

    2007-08-15

    To describe momentum isotropization of gluon matter produced in ultrarelativistic heavy-ion collisions, the transport rate of gluon drift and the transport collision rates of elastic (gg{r_reversible}gg) as well as inelastic (gg{r_reversible}ggg) perturbative quantum chromodynamics- (pQCD) scattering processes are introduced and calculated within the kinetic parton cascade Boltzmann approach of multiparton scatterings (BAMPS), which simulates the space-time evolution of partons. We define isotropization as the development of an anisotropic system as it reaches isotropy. The inverse of the introduced total transport rate gives the correct time scale of the momentum isotropization. The contributions of the various scattering processes to the momentum isotropization can be separated into the transport collision rates. In contrast to the transport cross section, the transport collision rate has an indirect but correctly implemented relationship with the collision-angle distribution. Based on the calculated transport collision rates from BAMPS for central Au+Au collisions at Relativistic Heavy Ion Collider energies, we show that pQCD gg{r_reversible}ggg bremsstrahlung processes isotropize the momentum five times more efficiently than elastic scatterings. The large efficiency of the bremsstrahlung stems mainly from its large momentum deflection. Due to kinematics, 2{yields}N (N>2) production processes allow more particles to become isotropic in momentum space and thus kinetically equilibrate more quickly than their back reactions or elastic scatterings. We also show that the relaxation time in the relaxation time approximation, which is often used, is strongly momentum dependent and thus cannot serve as a global quantity that describes kinetic equilibration.

  17. Charge transfer reactions in multiply charged ion-atom collisions. [in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1975-01-01

    Charge-transfer reactions in collisions between highly charged ions and neutral atoms of hydrogen and/or helium may be rapid at thermal energies. If these reactions are rapid, they will suppress highly charged ions in H I regions and guarantee that the observed absorption features from such ions cannot originate in the interstellar gas. A discussion of such charge-transfer reactions is presented and compared with the available experimental data. The possible implications of these reactions for observations of the interstellar medium, H II regions, and planetary nebulae are outlined.

  18. A Monte Carlo simulation of the effect of ion self-collisions on the ion velocity distribution function in the high-latitude F-region

    NASA Technical Reports Server (NTRS)

    Barghouthi, I. A.; Barakat, A. R.; Schunk, R. W.

    1994-01-01

    Non-Maxwellian ion velocity distribution functions have been theoretically predicted and confirmed by observations, to occur at high latitudes. These distributions deviate from Maxwellian due to the combined effect of the E x B drift and ion-neutral collisions. At high altitude and/or for solar maximum conditions, the ion-to-neutral density ratio increases and, hence, the role of ion self-collisions becomes appreciable. A Monte Carlo simulation was used to investigate the behavior of O(+) ions that are E x B-drifting through a background of neutral O, with the effect of O(+) (Coulomb) self-collisions included. Wide ranges of the ion-to-neutral density ratio n(sub i)/n(sub n) and the electrostatic field E were considered in order to investigate the change of ion behavior with solar cycle and with altitude. For low altitudes and/or solar minimum (n(sub i)/n(sub n) less than or equal to 10(exp -5)), the effect of self-collisions is negligible. For higher values of n(sub i)/n(sub n), the effect of self-collisions becomes significant and, hence, the non-Maxwellian features of the O(+) distribution are reduced. The Monte Carlo results were compared to those that used simplified collision models in order to assess their validity. In general, the simple collision models tend to be more accurate for low E and for high n(sub i)/n(sub n).

  19. Effect of nickel grid parameters on production of negative hydrogen ions

    SciTech Connect

    Oohara, W.; Yokoyama, H.; Takeda, Toshiaki; Maetani, Y.; Takeda, Takashi; Kawata, K.

    2014-06-15

    Negative hydrogen ions are produced by plasma-assisted catalytic ionization using a nickel grid. When positive ions passing through the grid are decelerated by an electric field, the extraction current density of passing positive ions is sharply reduced by neutralization and negative ionization of the ions. This phenomenon is found to depend on the specific surface area of the grid and the current density.

  20. Kinetic modeling of particle dynamics in H- negative ion sources (invited)

    NASA Astrophysics Data System (ADS)

    Hatayama, A.; Shibata, T.; Nishioka, S.; Ohta, M.; Yasumoto, M.; Nishida, K.; Yamamoto, T.; Miyamoto, K.; Fukano, A.; Mizuno, T.

    2014-02-01

    Progress in the kinetic modeling of particle dynamics in H- negative ion source plasmas and their comparisons with experiments are reviewed, and discussed with some new results. Main focus is placed on the following two topics, which are important for the research and development of large negative ion sources and high power H- ion beams: (i) Effects of non-equilibrium features of EEDF (electron energy distribution function) on H- production, and (ii) extraction physics of H- ions and beam optics.

  1. Quasidiatomic Approach to the Collisions of Low KEV Molecular Ions with Atoms

    NASA Astrophysics Data System (ADS)

    Yenen, Orhan

    The polarization of L(,(alpha)) radiation is measured in coincidence with a charged particle scattered at specific laboratory angles, resulting from the collision induced dissociation of low keV H(,2)('+) and H(,3)('+) incident on target gases. Coincidence measurements of the polarization pattern are made for a variety of scattering angles for 3.22 keV H(,2)('+) incident on He and Ne, and for 4.83 keV H(,3)('+) incident on He. The molecular states excited during the collision are determined from the alignment of the observed polarization patterns. A quasidiatomic collision model, which is an extension of the electron promotion model of ion-atom collisions at low keV energies to molecule-atom collisional systems, is developed to interpret the experimental results. The rules of building simple quasidiatomic correlation diagrams, to qualitatively estimate the dynamical behavior of molecular collisions, are presented. The general idea of treating the molecule as an atom under certain circumstances, is applied to a molecular two-state calculation of the differential charge-transfer probabilities in H('+)-H(,2) collisions. This calculation reproduces the essential features of previous experiments.

  2. The collision effect between dust grains and ions to the dust ion acoustic waves in a dusty plasma

    SciTech Connect

    Yang Xue; Wang Canglong; Liu Congbo; Zhang Jianrong; Shi Yuren; Duan Wenshan; Yang Lei

    2012-10-15

    Damping solitary wave in dusty plasma is studied by considering the collision effect between dust grains and ions. It can be described by a KdV type equation in which a damping term of {phi}{sup 2} exist. It is found that both the amplitude and propagation velocity of the solitary wave decrease with time exponentially. Our results are compared with another KdV type equation with the damping term of {phi}. It is noted that the damping rate of the KdV type equation with the damping term of {phi}{sup 2} is larger than that with the term of {phi}. It is found that the damping rate is proportional to the collision frequency between dust grains and ions.

  3. An Experimental Review on Heavy-Flavor v 2 in Heavy-Ion Collision

    DOE PAGES

    Nasim, Md.; Esha, Roli; Huang, Huan Zhong

    2016-01-01

    For overmore » a decade now, the primary purpose of relativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) has been to study the properties of QCD matter under extreme conditions—high temperature and high density. The heavy-ion experiments at both RHIC and LHC have recorded a wealth of data in p+p, p+Pb, d+Au, Cu+Cu, Cu+Au, Au+Au, Pb+Pb, and U+U collisions at energies ranging from s N N = 7.7  GeV to 7 TeV. Heavy quarks are considered good probe to study the QCD matter created in relativistic collisions due to their very large mass and other unique properties. A precise measurement of various properties of heavy-flavor hadrons provides an insight into the fundamental properties of the hot and dense medium created in these nucleus-nucleus collisions, such as transport coefficient and thermalization and hadronization mechanisms. The main focus of this paper is to present a review on the measurements of azimuthal anisotropy of heavy-flavor hadrons and to outline the scientific opportunities in this sector due to future detector upgrade. We will mainly discuss the elliptic flow of open charmed meson ( D -meson), J / ψ , and leptons from heavy-flavor decay at RHIC and LHC energy.« less

  4. Conformation and orientation dependence in ion-induced collisions with DNA and RNA building blocks

    NASA Astrophysics Data System (ADS)

    Bacchus-Montabonel, Marie-Christine

    2015-04-01

    Action of radiations on biological tissues is of major concern in cancer therapy development. Understanding the mechanisms involved at the molecular level in such reactions may be of crucial interest. In particular ion-induced ionization processes appear at the early stage of damage and a detailed analysis has been performed on the charge transfer dynamics of carbon ions with the different DNA and RNA building blocks in order to analyze their respective behavior in ion-induced collisions. We have considered the pyrimidine nucleobases uracil and thymine and the 5-halouracil molecules corresponding to the same skeleton, as well as the sugar moiety 2-deoxy-D-ribose. The calculations have been performed by means of ab initio quantum chemistry molecular methods followed by a semi-classical collision treatment in a wide collision energy range. Considerations of the structure of the biological target as well as analysis of the anisotropy of the process have been performed. The comparison with proton collisions has been developed with regard to previous results. Qualitative trends of interest for DNA building blocks damage may be pointed out.

  5. Charged particle flows in the beam extraction region of a negative ion source for NBI.

    PubMed

    Geng, S; Tsumori, K; Nakano, H; Kisaki, M; Ikeda, K; Osakabe, M; Nagaoka, K; Takeiri, Y; Shibuya, M; Kaneko, O

    2016-02-01

    Experiments by a four-pin probe and photodetachment technique were carried out to investigate the charged particle flows in the beam extraction region of a negative hydrogen ion source for neutral beam injector. Electron and positive ion flows were obtained from the polar distribution of the probe saturation current. Negative hydrogen ion flow velocity and temperature were obtained by comparing the recovery times of the photodetachment signals at opposite probe tips. Electron and positive ions flows are dominated by crossed field drift and ambipolar diffusion. Negative hydrogen ion temperature is evaluated to be 0.12 eV. PMID:26931985

  6. Aberration of a negative ion beam caused by space charge effect.

    PubMed

    Miyamoto, K; Wada, S; Hatayama, A

    2010-02-01

    Aberrations are inevitable when the charged particle beams are extracted, accelerated, transmitted, and focused with electrostatic and magnetic fields. In this study, we investigate the aberration of a negative ion accelerator for a neutral beam injector theoretically, especially the spherical aberration caused by the negative ion beam expansion due to the space charge effect. The negative ion current density profiles with the spherical aberration are compared with those without the spherical aberration. It is found that the negative ion current density profiles in a log scale are tailed due to the spherical aberration.

  7. Determination of Energy-Transfer Distributions in Ionizing Ion-Molecule Collisions.

    PubMed

    Maclot, S; Delaunay, R; Piekarski, D G; Domaracka, A; Huber, B A; Adoui, L; Martín, F; Alcamí, M; Avaldi, L; Bolognesi, P; Díaz-Tendero, S; Rousseau, P

    2016-08-12

    The ionization and fragmentation of the nucleoside thymidine in the gas phase has been investigated by combining ion collision with state-selected photoionization experiments and quantum chemistry calculations. The comparison between the mass spectra measured in both types of experiments allows us to accurately determine the distribution of the energy deposited in the ionized molecule as a result of the collision. The relation of two experimental techniques and theory shows a strong correlation between the excited states of the ionized molecule with the computed dissociation pathways, as well as with charge localization or delocalization. PMID:27563959

  8. Loss of wave-packet coherence in ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Sarkadi, L.; Fabre, I.; Navarrete, F.; Barrachina, R. O.

    2016-03-01

    The projectile beam coherence effects occurring in ion-atom collisions are analyzed on the basis of the recent theory of Karlovets et al. [Phys. Rev. A 92, 052703 (2015), 10.1103/PhysRevA.92.052703] developed for the elastic scattering of wave packets of particles off a potential field. This theory is generalized to estimate the loss of coherence for inelastically scattered projectiles in ionizing collisions. The results obtained by the suggested model are compared with experimental data for the ionization of hydrogen atoms and molecules by 75-keV proton impact. Significantly improved agreement is observed between the theory and experiment.

  9. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus; Kushner, Mark J.

    2016-06-01

    Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology–based society.

  10. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus; Kushner, Mark J.

    2016-06-01

    Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology-based society.

  11. Identity method to study chemical fluctuations in relativistic heavy-ion collisions

    SciTech Connect

    Gazdzicki, Marek; Grebieszkow, Katarzyna; Mackowiak, Maja; Mrowczynski, Stanislaw

    2011-05-15

    Event-by-event fluctuations of the chemical composition of the hadronic final state of relativistic heavy-ion collisions carry valuable information on the properties of strongly interacting matter produced in the collisions. However, in experiments incomplete particle identification distorts the observed fluctuation signals. The effect is quantitatively studied and a new technique for measuring chemical fluctuations, the identity method, is proposed. The method fully eliminates the effect of incomplete particle identification. The application of the identity method to experimental data is explained.

  12. Nuclear fragmentation energy and momentum transfer distributions in relativistic heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Khandelwal, Govind S.; Khan, Ferdous

    1989-01-01

    An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.

  13. Using heavy-ion collisions to elucidate the asymmetric equation-of-state

    NASA Astrophysics Data System (ADS)

    Yennello, Sherry; McIntosh, Alan

    2016-06-01

    The nuclear equation-of-state impacts a number of nuclear properties as well as astrophysical processes. The asymmetric term of the equation-of-state, which describes the behavior away from N=Z, has significant uncertainty. Giant resonances and nuclear masses can elucidate the asymmetry energy for cold normal-density nuclei. Heavy-ion collisions can be used to probe nuclear matter at higher temperatures and densities away from saturation density. The temperatures that are attained in these nuclear collisions are predicted to depend on the isospin asymmetry. In this work we present evidence of the asymmetry dependence of the nuclear caloric curve.

  14. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology.

    PubMed

    Bartschat, Klaus; Kushner, Mark J

    2016-06-28

    Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology-based society. PMID:27317740

  15. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology.

    PubMed

    Bartschat, Klaus; Kushner, Mark J

    2016-06-28

    Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology-based society.

  16. Determination of Energy-Transfer Distributions in Ionizing Ion-Molecule Collisions

    NASA Astrophysics Data System (ADS)

    Maclot, S.; Delaunay, R.; Piekarski, D. G.; Domaracka, A.; Huber, B. A.; Adoui, L.; Martín, F.; Alcamí, M.; Avaldi, L.; Bolognesi, P.; Díaz-Tendero, S.; Rousseau, P.

    2016-08-01

    The ionization and fragmentation of the nucleoside thymidine in the gas phase has been investigated by combining ion collision with state-selected photoionization experiments and quantum chemistry calculations. The comparison between the mass spectra measured in both types of experiments allows us to accurately determine the distribution of the energy deposited in the ionized molecule as a result of the collision. The relation of two experimental techniques and theory shows a strong correlation between the excited states of the ionized molecule with the computed dissociation pathways, as well as with charge localization or delocalization.

  17. Overview of quarkonium production in heavy-ion collisions at LHC

    NASA Astrophysics Data System (ADS)

    Hong, Byungsik

    2016-07-01

    Quarkonium has been regarded as one of the golden probes to identify the phase transition from confined hadronic matter to the deconfined quark-gluon plasma (QGP) in heavy-ion collisions. Recent data on the yields and momentum distributions of J/ψ and ϒ families in pp, pPb, and PbPb collisions at the Large Hadron Collider (LHC) are reviewed. The possible implications related to the propagation of quarkonia in the deconfined hot, dense matter and the modified parton distribution function (PDF) in cold nuclei are also discussed.

  18. Collisions of highly charged ions with hydrogen relevant to plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Illescas, Clara; Errea, L. F.; Méndez, L.

    2013-09-01

    We present total cross sections for ionization, and total and nl-partial cross sections for electron capture in collisions of Kr36+ and W60+ with H(1s). Calculations have been carried out using the classical trajectory Monte Carlo method. We have found that scaling laws as functions of the ion charge are valid for total electron capture cross sections, but they are less accurate for n-partial cross sections. The nl-partial cross sections show l distributions similar to those found for collisions with Ar18+ by Errea et al (2006 J. Phys. B: At. Mol. Opt. Phys. 39 L91).

  19. (Anti-)strangeness in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Moreau, P.; Cassing, W.; Palmese, A.; Bratkovskaya, E. L.

    2016-08-01

    We study the production of hadrons in nucleus-nucleus collisions within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD before. The essential impact of CSR is found in the Schwinger mechanism (for string decay) which fixes the ratio of strange to light quark production in the hadronic medium. Our studies suggest a microscopic explanation for the maximum in the K + /π + and (Ʌ + Σ0)/π - ratios at about 30 A GeV which only shows up if in addition to CSR a deconfinement transition to partonic degrees-of-freedom is incorporated in the reaction dynamics.

  20. Polarization probes of vorticity in heavy ion collisions

    SciTech Connect

    Betz, Barbara; Gyulassy, Miklos; Torrieri, Giorgio

    2007-10-15

    We discuss the information that can be deduced from a measurement of hadron (hyperon or vector meson) polarization in ultrarelativistic nuclear collisions. We describe the sensitivity of polarization to initial conditions, hydrodynamic evolution, and mean free path and find that the polarization observable is sensitive to all details and stages of the system's evolution. We suggest that an experimental investigation covering production plane and reaction plane polarizations, as well as the polarization of jet-associated particles in the plane defined by the jet and particle direction, can help in disentangling the factors contributing to this observable. Scans of polarization in energy and rapidity might also point to a change in the system's properties.

  1. Disappearance of the Mach cone in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Nattrass, Christine; Sharma, Natasha; Mazer, Joel; Stuart, Meghan; Bejnood, Aram

    2016-07-01

    We present an analysis of dihadron correlations using recently developed methods for background subtraction which allow for higher precision measurements with fewer assumptions about the background. These studies indicate that low momentum jets interacting with the medium do not equilibrate with the medium but rather that interactions with the medium lead to more subtle increases in their widths and fragmentation functions, consistent with observations from studies of higher momentum fully reconstructed jets. The away-side shape is not consistent with a Mach cone. The qualitatively different conclusions reached with a more careful consideration of the background subtraction call into question the complete suppression of jets in central collisions observed in earlier studies, indicating that this is also an artifact of the background subtraction.

  2. Vibrationally resolved negative ion photoelectron spectroscopic studies of niobium clusters

    SciTech Connect

    Green, S.M.E.; Alex, S.; Leopold, D.G.

    1996-12-31

    Negative ion photoelectron spectroscopy provides a means of obtaining vibrational data for atoms and small molecules {open_quotes}chemisorbed{close_quotes} on size-selected metal clusters. In the present study, Nb{sub 3}O{sup -}, Nb{sub 4}O{sup -} and Nb{sub 4}CO{sup -} were prepared in a flowing afterglow ion-molecule reactor equipped with a metal cathode cluster source. The 488 nm photoelectron spectrum of the mass-selected Nb{sub 3}O{sup -} anions shows a vertical transition to the ground state of neutral Nb{sub 3}O, with weak progressions in the Nb{sub 3}-O stretching (710{+-}20 cm{sup -1} in Nb{sub 3}O) and Nb, bending (320{+-}15 cm{sup -1}-in both Nb{sub 3}O and Nb{sub 3}O{sup -}) vibrational modes. These results indicate that the Nb{sub 3}O{sup -} anion, like Nb{sub 3}O and Nb{sub 3}O{sup +}, has a planar Ca{sub 2v} structure with the O atom bridging two Nb atoms. The Nb{sub 4}O{sup -} spectrum shows resolved transitions to the ground state of Nb{sub 3}O and to an excited electronic state lying 3050{+-}20 cm{sup -1} higher in energy. In analogy with the Nb{sub 4}O results, the 670{+-}20 cm{sup -1} frequency observed for the Nb{sub 4}O ground state is assigned to a metal-oxygen stretching mode, and the 215{+-}15 cm{sup -1} and 195{+-}15 cm{sup -1} frequencies observed in the ground and excited states, respectively, to a bending mode of the metal cluster. The electron affinities of Nb{sub 3}O and Nb{sub 4}O are 1.402 and 1.178 ({+-}0.006) eV, respectively. Preliminary, ongoing studies of mass selected Nb{sub 4}CO{sup -} anions prepared under a variety of source conditions thus far suggest the presence of two isomers, one with a greatly weakened but intact CO bond as indicated by a very low CO stretching frequency of about 1300 cm{sup -1} and the other with the dissociated C and O atoms bound separately to the niobium cluster.

  3. Long-pulse production of high current negative ion beam by using actively temperature controlled plasma grid for JT-60SA negative ion source

    SciTech Connect

    Kojima, A.; Hanada, M.; Yoshida, M.; Umeda, N.; Hiratsuka, J.; Kashiwagi, M.; Tobari, H.; Watanabe, K.; Grisham, L. R.

    2015-04-08

    The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because the PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.

  4. Cold Nuclear Matter Effects on Heavy Quark Production in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Durham, John Matthew

    2011-12-01

    The experimental collaborations at the Relativistic Heavy Ion Collider (RHIC) have established that dense nuclear matter with partonic degrees of freedom is formed in collisions of heavy nuclei at 200 GeV. Information from heavy quarks has given significant insight into the dynamics of this matter. Charm and bottom quarks are dominantly produced by gluon fusion in the early stages of the collision, and thus experience the complete evolution of the medium. The production baseline measured in p + p collisions can be described by fixed order plus next to leading log perturbative QCD calculations within uncertainties. In central Au+Au collisions, suppression has been measured relative to the yield in p + p scaled by the number of nucleon-nucleon collisions, indicating a significant energy loss by heavy quarks in the medium. The large elliptic flow amplitude v2 provides evidence that the heavy quarks flow along with the lighter partons. The suppression and elliptic flow of these quarks are in qualitative agreement with calculations based on Langevin transport models that imply a viscosity to entropy density ratio close to the conjectured quantum lower bound of 1/4pi. However, a full understanding of these phenomena requires measurements of cold nuclear matter (CNM) effects, which should be present in Au+Au collisions but are difficult to distinguish experimentally from effects due to interactions with the medium. This thesis presents measurements of electrons at midrapidity from the decays of heavy quarks produced in d+Au collisions at RHIC. A significant enhancement of these electrons is seen at a transverse momentum below 5 GeV/c, indicating strong CNM effects on charm quarks that are not present for lighter quarks. A simple model of CNM effects in Au+Au collisions suggests that the level of suppression in the hot nuclear medium is comparable for all quark flavors.

  5. Heavy ion collisions and the pre-equilibrium exciton model

    SciTech Connect

    Betak, E.

    2012-10-20

    We present a feasible way to apply the pre-equilibrium exciton model in its masterequation formulation to heavy-ion induced reactions including spin variables. Emission of nucleons, {gamma}'s and also light clusters is included in our model.

  6. Novel materials for negative electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pereira, Nathalie

    Carbonaceous materials are currently utilized as negative electrodes in commercial rechargeable Li-ion batteries. However, their low capacity prompted the search for alternative materials of higher capacity and good cycling stability in order to maximize the battery energy density and cycle life. Lithium alloys have long been considered as alternative negative electrode materials to substitute for the carbonaceous materials currently used in commercial rechargeable Li-ion batteries. However, they suffer from cracking caused by the large volume changes occurring during lithiation and delithiation. To better understand the alloys failure mechanism, various elements were tested and those that can alloy with lithium electrochemically were identified. Silicon showed extremely high capacity but poor cycle life. To investigate to which extent multiphase materials may improve cycle life, several binary metal-silicides were explored in search for improved cycling stability. Mg 2Si was the only compound of high capacity but it exhibited poor cycle life. Both addition of a matrix and decrease in particle size have been demonstrated to improve cycle life. Each effect has been investigated separately. Using tin-based powders of different size oxidized to various extent, we showed an increase in oxygen content, a particle size decrease and the formation of converted Sn-Sb compounds improved cycling stability. The effect of the matrix nature on the electrochemical properties was explored using Zn-based conversion materials. Upon reaction with lithium, ZnO and ZnS electrodes generated LiZn and a Li2O and Li2S matrix, respectively. The reversible process was identified as the Li-Zn alloying reaction, as obtained in pure metallic Zn electrodes. ZnO and ZnS failure mechanisms were also similar to metallic Zn. However, ZnS showed improved cycle life. LiZnN has been isolated by way of an electrochemical conversion reaction of Zn3N2 with lithium. We showed Zn3N 2 reversibly reacts with

  7. Extraction of negative hydrogen ions from a compact 14 GHz microwave ion source

    SciTech Connect

    Wada, M.; Kasuya, T.; Nishida, T.; Kenmotsu, T.; Maeno, S.; Nishiura, M.; Shinto, K.; Yamaoka, H.

    2012-02-15

    A pair of permanent magnets has formed enough intensity to realize electron cyclotron resonance condition for a 14 GHz microwave in a 2 cm diameter 9 cm long alumina discharge chamber. A three-electrode extraction system assembled in a magnetic shielding has formed a stable beam of negative hydrogen ions (H{sup -}) in a direction perpendicular to the magnetic field. The measured H{sup -} current density was about 1 mA/cm{sup 2} with only 50 W of discharge power, but the beam intensity had shown saturation against further increase in microwave power. The beam current decreased monotonically against increasing pressure.

  8. Extraction of negative hydrogen ions from a compact 14 GHz microwave ion source.

    PubMed

    Wada, M; Kasuya, T; Kenmotsu, T; Maeno, S; Nishida, T; Nishiura, M; Shinto, K; Yamaoka, H

    2012-02-01

    A pair of permanent magnets has formed enough intensity to realize electron cyclotron resonance condition for a 14 GHz microwave in a 2 cm diameter 9 cm long alumina discharge chamber. A three-electrode extraction system assembled in a magnetic shielding has formed a stable beam of negative hydrogen ions (H(-)) in a direction perpendicular to the magnetic field. The measured H(-) current density was about 1 mA∕cm(2) with only 50 W of discharge power, but the beam intensity had shown saturation against further increase in microwave power. The beam current decreased monotonically against increasing pressure.

  9. Influence of ion-neutral collision parameters on dynamic structure of magnetized sheath during plasma immersion ion implantation

    NASA Astrophysics Data System (ADS)

    Khoram, Mansour; Ghomi, Hamid

    2016-03-01

    A cold magnetized plasma sheath is considered to examine the gas pressure effect on the sheath dynamics. A fluid model is used to describe the plasma sheath dynamic. The governing fluid equations in the plasma are solved from plasma center to the target using the finite difference method and some convenient initial and boundary conditions at the plasma center and target. It is found that, the ion-neutral collision has significant effect on the dynamic characteristics of the high-voltage sheath in the plasma immersion ion implantation (PIII). It means that, the temporal profile of the ion dose on the target and sheath width are decreased by increasing the gas pressure. Also, the gas pressure substantially diminishes the temporal psychograph of ion incident angle on the target.

  10. Size scaling of negative hydrogen ion sources for fusion

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.

    2015-04-01

    The RF-driven negative hydrogen ion source (H-, D-) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.

  11. Plasma asymmetry due to the magnetic filter in fusion-type negative ion sources: Comparisons between two and three-dimensional particle-in-cell simulations

    SciTech Connect

    Fubiani, G. Boeuf, J. P.

    2014-07-15

    Previously reported 2D Particle-In-Cell Monte Carlo Collisions (PIC-MCC) simulations of negative ion sources under conditions similar to those of the ITER neutral beam injection system have shown that the presence of the magnetic filter tends to generate asymmetry in the plasma properties in the extraction region. In this paper, we show that these conclusions are confirmed by 3D PIC-MCC simulations and we provide quantitative comparisons between the 2D and 3D model predictions.

  12. Expansion of a plasma across a transverse magnetic field in a negative hydrogen ion source for fusion

    NASA Astrophysics Data System (ADS)

    Fantz, Ursel; Schiesko, Loic; Wünderlich, Dirk

    2012-10-01

    Negative ion sources are a key component of the neutral beam injection systems for the international fusion experiment ITER. To achieve the required ion current of 40 A at a tolerable amount of co-extracted electrons (electron to ion ratio below one) the source is separated into a plasma generation region and an expansion chamber equipped with a magnetic filter field (up to 10 mT). The field is needed for: (1) cooling the electrons down and thus minimize the H^- destruction by collisions, (2) to reduce the co-extracted electron current, and (3) to enhance the extraction probability for the surface produced negative ions. The area of the ITER source will be approximately 1m width and 2 m height, the IPP prototype source is a 1/8-size source. The recently installed flexible magnetic filter frame allows for systematic filter field studies (strength, position, polarity). Two Langmuir probes have been used to measure the plasma parameters simultaneously in axial direction. The profiles in the upper and lower part of the expansion chamber show beside the expected electron temperature and density decrease a drop in the plasma potential and a drift depending on the polarity, which vanishes when removing the filter field. The data interpretation is supported by modeling activities.

  13. Parallelization of a Molecular Dynamics Simulation of AN Ion-Surface Collision System:

    NASA Astrophysics Data System (ADS)

    Atiş, Murat; Özdoğan, Cem; Güvenç, Ziya B.

    Parallel molecular dynamics simulation study of the ion-surface collision system is reported. A sequential molecular dynamics simulation program is converted into a parallel code utilizing the concept of parallel virtual machine (PVM). An effective and favorable algorithm is developed. Our parallelization of the algorithm shows that it is more efficient because of the optimal pair listing, linear scaling, and constant behavior of the internode communications. The code is tested in a distributed memory system consisting of a cluster of eight PCs that run under Linux (Debian 2.4.20 kernel). Our results on the collision system are discussed based on the speed up, efficiency and the system size. Furthermore, the code is used for a full simulation of the Ar-Ni(100) collision system and calculated physical quantities are presented.

  14. Letter: High-mass capabilities of positive-ion and negative-ion direct analysis in real time mass spectrometry.

    PubMed

    Gross, Jürgen H

    2016-01-01

    Of the ionic liquid 1-butyl-3-methylimidazolium (C(+)) tricyanomethide (A(-)) high-mass cluster ions of both positive ([C(n)A(n-1)](+)) and negative ([C(n-1)A(n)](-)) charge were generated and detected by direct analysis in real time (DART) Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS). After optimization of the settings of the DART ionization source and of the mass analyzer ions of m/z values unprecedented in DART-MS were detected. Thus, the upper m/z limits of positive-ion and negative-ion DART- MS were substantially expanded. Negative-ion DART-MS delivered cluster ions up to [C(15)A(16)](-), m/z 3527 (nominal mass of monoisotopic ion), while positive-ion DART-MS even yielded ions up to [C(30)A(29)](+), m/z 6784. The identification of the cluster ions is supported by their accurate mass and exact mass differences corresponding to CA between adjacent cluster ion peaks.

  15. Systematic Azimuth Quadrupole and Minijet Trends from Two-Particle Correlations in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Kettler, David

    Heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) produce a tremendous amount of data but new techniques are necessary for a comprehensive understanding of the physics behind these collisions. We present measurements from the STAR detector of both pt-integral and pt-differential azimuth two-particle correlations on azimuth (phi) and pseudorapidity (eta) for unidentified hadrons in Au-Au collisions at a center of mass energy = 62 and 200 GeV. The azimuth correlations can be fit to extract a quadrupole component--related to conventional v2 measures--and a same-side peak. The azimuth quadrupole component is distinguished from eta-localized same-side correlations by taking advantage of the full 2D eta and phi dependence. Both pt-integral and pt-differential results are presented as functions of Au-Au centrality. We observe simple universal energy and centrality trends for the pt-integral quadrupole component. pt-differential results can be transformed to reveal quadrupole pt spectra that are nearly independent of centrality. A parametrization of the pt-differential quadrupole shows a simple pt dependence that can be factorized from the centrality and collision energy dependence above 0.75 GeV/c. Angular correlations contain jet-like structure with most-probable hadron momentum 1 GeV/c. For better comparison to RHIC data we analyze the energy scale dependence of fragmentation functions from e+-e - collisions on rapidity y. We find that replotting fragmentation functions on a normalized rapidity variable results in a compact form precisely represented by the beta distribution, its two parameters varying slowly and simply with parton energy scale Q. The resulting parameterization enables extrapolation of fragmentation functions to low Q in order to describe fragment distributions at low transverse momentum ptin heavy ion collisions at RHIC. We convert minimum-bias jet-like angular correlations to single-particle hadron yields and compare them with parton

  16. Sixteenth International Conference on the physics of electronic and atomic collisions

    SciTech Connect

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  17. Low Momentum Direct Photons as a Probe of Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Petti, Richard Michael

    Relativistic heavy ion collisions have been a major research interest in the field of nuclear physics for the past few decades. Large collider facilities have been constructed to study the exotic matter produced in relativistic heavy ion collisions, one of which is the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in Upton, NY. Essential to the study of heavy ion collisions are probes that are produced in the collision itself. Photons are a very useful probe of the collisions, since they escape the fireball virtually unmodified and carry with them information about the environment in which it was produced. Recent interest in low momentum direct photons has increased, due to the onset of the "thermal photon puzzle" and the apparent inability for typical models to explain both a large direct photon yield excess and large azimuthal production asymmetry (v2) at low momentum measured by PHENIX. The focus of this thesis will be the measurement of direct photons at low momentum with the PHENIX detector in s1/2NN = 200 GeV Au+Au collisions. Low momentum direct photons (direct is any photon not from a hadron decay) are notoriously difficult to measure in a heavy ion environment, due to large decay photon backgrounds, neutral hadron contamination, and worsening calorimeter resolution. A novel technique for measuring direct photons via their external conversion to di-electron pairs has been developed. The method virtually eliminates the neutral hadron contamination due to the very clean photon identification based on di-electron pair invariant mass cuts. The direct photon fraction, Rgamma, defined as the ratio of the yield of inclusive photons to hadron decay photons is measured through a double ratio, further reducing systematic uncertainties to manageable levels at low momentum. The direct photon fraction is converted to a direct photon invariant yield and a detailed look at the centrality dependence of the excess yield is presented. This

  18. Gluon multiplication in high energy heavy ion collisions

    SciTech Connect

    Xiong, L.; Shuryak, E.V. )

    1994-04-01

    Hot gluons are the dominant components of the QCD plasma to be formed in future high energy heavy ion experiments. In this paper we study the elementary processes in the plasma medium for gluon multiplication based on all orders of the tree diagrams in perturbative QCD. When applying to the chemical equilibration in the expanding system, we found that the gluon reaches chemical equilibrium well within its plasma phase. The inclusion of all the next-to-leading-order processes makes the equilibration considerably faster than the simple [ital gg][leftrightarrow][ital ggg] one considered previously.

  19. NEGATIVE-ION MASS SPECTROMETRY OF SULFONYLUREA HERBICIDES

    EPA Science Inventory

    Sulfonylurea herbicides have been studied using neg-ion desorption chem.-ionization (DCI) mass spectrometry (MS) and DCI-MS/MS techniques. Both {M-H]- and M.- ions were obsd. in the DCI mass spectra. The collisonally activated dissocn. (CAD) spectra were characteristic of the str...

  20. The effects of CO2 on the negative reactant ions of IMS

    NASA Technical Reports Server (NTRS)

    Spangler, Glenn E.

    1995-01-01

    In the presence of CO2, the negative reactant ions of ion mobility spectrometry (IMS) are ion clusters of CO4(-) and CO3(-). Methyl salicylate is ionized by the CO4(-)(H2O(n))(N2(m)) reactant ions, but not by the CO3(-)(H2O(n))(N2(m)) reactant ions. While the CO4(-) ions are formed by direct association, the CO3(-) ions require additional energy to be formed. The additional energy is provided by either excited neutral gas molecules in a metastable state or UV (ultraviolet) radiation.

  1. Physics perspectives of heavy-ion collisions at very high energy

    DOE PAGES

    Chang, Ning-bo; Cao, ShanShan; Chen, Bao-yi; Chen, Shi-yong; Chen, Zhen-yu; Ding, Heng-Tong; He, Min; Liu, Zhi-quan; Pang, Long-gang; Qin, Guang-you; et al

    2016-01-15

    We expect heavy-ion collisions at very high colliding energies to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We also report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. Here, we illustrate the potential of future experimental studies of the initial particle production andmore » formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.« less

  2. Two-body nucleon-nucleon correlations in Glauber models of relativistic heavy-ion collisions

    SciTech Connect

    Broniowski, Wojciech; Rybczynski, Maciej

    2010-06-15

    We investigate the influence of the central two-body nucleon-nucleon correlations on several quantities observed in relativistic heavy-ion collisions. It is demonstrated with explicit Monte Carlo simulations that the basic correlation measures observed in relativistic heavy-ion collisions, such as the fluctuations of participant eccentricity, initial size fluctuations, or the fluctuations of the number of sources producing particles, are all sensitive to the inclusion of the two-body correlations. The effect is at the level of about 10-20%. Moreover, the realistic (Gaussian) correlation function gives indistinguishable results from the hard-core repulsion, with the expulsion distance set to 0.9 fm. Thus, we verify that for investigations of the considered correlation measures, it is sufficient to use the Monte Carlo generators accounting for the hard-core repulsion.

  3. Finite-size effects on plasmonlike excitations in relativistic heavy-ion collisions

    SciTech Connect

    Trueman, T.L. )

    1992-03-15

    The modifications of plasmonlike excitations in hot hadronic or quark-gluon matter due to the finite size of the systems that will be produced in relativistic heavy-ion collisions are investigated. It is shown that the relevant parameter is {ital RM}{sup 2}/{vert bar}{bold q}{vert bar} where {ital R} is the size of the system, {ital M} is the mass of the plasmon in an infinite system, and {bold q} is its three-momentum in the plasmon. If {ital RM}{sup 2}/{vert bar}{bold q}{vert bar}{much lt}1, the plasmon excitations will not be produced. This has important implications for plasmons generated in heavy-ion collisions by electromagnetic interactions which have been suggested by some authors.

  4. An independent-atom-model description of ion-molecule collisions including geometric screening corrections

    NASA Astrophysics Data System (ADS)

    Lüdde, Hans Jürgen; Achenbach, Alexander; Kalkbrenner, Thilo; Jankowiak, Hans-Christian; Kirchner, Tom

    2016-04-01

    A new model to account for geometric screening corrections in an independent-atom-model description of ion-molecule collisions is introduced. The ion-molecule cross sections for net capture and net ionization are represented as weighted sums of atomic cross sections with weight factors that are determined from a geometric model of overlapping cross section areas. Results are presented for proton collisions with targets ranging from diatomic to complex polyatomic molecules. Significant improvement compared to simple additivity rule results and in general good agreement with experimental data are found. The flexibility of the approach opens up the possibility to study more detailed observables such as orientation-dependent and charge-state-correlated cross sections for a large class of complex targets ranging from biomolecules to atomic clusters.

  5. Can induced theta vacua be created in heavy-Ion collisions?

    PubMed

    Buckley; Fugleberg; Zhitnitsky

    2000-05-22

    We discuss a phenomenon important to the development of the early Universe which may be experimentally testable in heavy-ion collisions. An arbitrary induced straight theta vacuum state should be created in heavy-ion collisions, similar to the creation of the disoriented chiral condensate. It should be a large domain with a wrong straight theta(ind) not equal0 orientation which will mimic the physics of the early Universe when it is believed that the fundamental parameter straight theta(fund) not equal0. We test this idea numerically in a simple model where we study the evolution of the phases of the chiral condensates in QCD with two quark flavors with nonzero straight theta(ind) parameter. We see the formation of a nonzero straight theta(ind) vacuum on a time scale of 10(-23) s. PMID:10990805

  6. A particle-hole calculation for pion production in relativistic heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Deutchman, P. A.; Townsend, L. W.

    1985-01-01

    A differential cross section for pi-meson production in peripheral heavy-ion collisions is formulated within the context of a particle-hole model in the Tamm-Dancoff approximation. This is the first attempt at a fully quantum-mechanical particle-hole calculation for pion production in relativistic heavy-ion collisions. The particular reaction studied is an O-16 projectile colliding with a C-12 target at rest. In the projectile a linear combination of isobar-hole states is formed, with the possibility of a coherent isobar giant resonance. The target can be excited to its giant M1 resonance (J-pi = 1(+), T = 1) at 15.11 MeV, or to its isobar analog neighbors, B-12 at 13.4 MeV and N-12 at 17.5 MeV. The theory is compared to recent experimental results.

  7. Size scaling of negative hydrogen ion sources for fusion

    SciTech Connect

    Fantz, U. Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.

    2015-04-08

    The RF-driven negative hydrogen ion source (H{sup −}, D{sup −}) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.

  8. Coulomb explosion and binary encounter processes in collisions between slow ions and small molecules of biological interest

    SciTech Connect

    Juhasz, Z.; Sulik, B.

    2008-12-08

    In this work we study the ion impact induced fragmentation of small molecules, which are relevant for radiation damage studies in biological tissues. We present double differential ion emission yields for collisions of N{sup 6+} ions with water and methane molecules at 15 and 30 keV impact energies. The angular distribution of the fragment ions shows post-collision and nucleus-nucleus binary collision effects. In the multiple capture energy range, a strong interplay is indicated between the Coulomb explosion and the binary collision mechanisms. In the energy region, where triple capture is dominant, an unexpected angular distribution was found for water fragments, which may be attributed to orientation sensitivity of some of the capture channels. Such processes are relevant for astrophysics and radiation therapy.

  9. Central collisions of heavy ions. Progress report, October 1, 1991--September 31, 1992

    SciTech Connect

    Fung, Sun-yiu

    1992-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R&D project was performed.

  10. Evolution of anisotropy of a partonic system from relativistic heavy-ion collisions

    SciTech Connect

    Jas, Weronika; Mrowczynski, Stanislaw

    2007-10-15

    The evolution of anisotropy in momentum and coordinate space of the parton system produced in relativistic heavy-ion collisions is discussed within the free-streaming approximation. The momentum distribution evolves from the prolate shape (elongated along the beam) to the oblate one (squeezed along the beam). At the same time, the eccentricity in coordinate space, which occurs at finite values of impact parameter, decreases. It is argued that the parton system reaches local thermodynamic equilibrium before the momentum distribution becomes oblate.

  11. Universal characteristics of transverse momentum transfer in intermediate energy heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Khan, F.; Townsend, L. W.; Tripathi, R. K.; Cucinotta, F. A.

    1993-01-01

    A microscopic optical model formalism for estimating momentum transfer in intermediate energy heavy ion collisions predicts universal behavior of the transverse component. In particular, for symmetric systems heavier than niobium, it appears that values of P(perpendicular)/A are independent of the mass and charge of the colliding nuclei and vary only with impact parameter and incident beam energy. This suggests that momentum transfer per nucleon saturates to some limiting value with increasing mass.

  12. Production of free electron-positron pairs in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ionescu, D. C.; Eichler, J.

    1993-08-01

    The production of free electron-positron pairs in relativistic heavy-ion collisions is investigated within first-order time-dependent perturbation theory. An analytic expression for the differential pair-production cross section is obtained by employing Furry-Sommerfeld-Maue wave functions for the description of continuum states in the external field of the target nucleus. The angular distributions of electrons and positrons and cross sections are calculated and compared with previous results.

  13. Viscosity and thermal conductivity effects at first-order phase transitions in heavy-ion collisions

    SciTech Connect

    Voskresensky, D. N.; Skokov, V. V.

    2012-06-15

    Effects of viscosity and thermal conductivity on the dynamics of first-order phase transitions are studied. The nuclear gas-liquid and hadron-quark transitions in heavy-ion collisions are considered. We demonstrate that at nonzero thermal conductivity, {kappa} {ne} 0, onset of spinodal instabilities occurs on an isothermal spinodal line, whereas for {kappa} = 0 instabilities take place at lower temperatures, on an adiabatic spinodal.

  14. Eccentricity fluctuations from the color glass condensate in ultrarelativistic heavy ion collisions

    SciTech Connect

    Drescher, Hans-Joachim; Nara, Yasushi

    2007-10-15

    In this Rapid Communication, we determine the fluctuations of the initial eccentricity in heavy-ion collisions caused by fluctuations of the nucleon configurations. This is done via a Monte Carlo implementation of a color glass condensate k{sub t}-factorization approach. The eccentricity fluctuations are found to nearly saturate elliptic flow fluctuations measured recently at RHIC. Extrapolations to LHC energies are shown.

  15. Modelling the ion source for ITER NBI: from the generation of negative hydrogen ions to their extraction

    NASA Astrophysics Data System (ADS)

    Wünderlich, D.; Mochalskyy, S.; Fantz, U.; Franzen, P.; the NNBI-Team

    2014-02-01

    The neutral beam injection (NBI) system for ITER is based on a large (Asource = 1.9 × 0.9 m2) negative hydrogen or deuterium ion source. In this source negative ions are produced in a low-pressure (pfill ≈ 0.3 Pa) plasma by conversion of atoms and protons on a caesiated molybdenum surface with low work function. Then the negative ions are transported through the plasma to the extraction system where extraction of these ions and co-extraction of electrons also take place. This paper describes the status of the modelling activities connected with the negative ion test facilities of IPP Garching. It is illustrated that these modelling activities constitute a strong support of the experimental activities connected with the development of the negative ion source for ITER NBI. Several numerical codes developed in the past years—in close collaboration with the experiment—and their results are introduced. Focus is laid on the production, transport and extraction of negative hydrogen ions and on the inevitable co-extraction of electrons.

  16. Soliton propagation in an inhomogeneous plasma at critical density of negative ions: Effects of gyratory and thermal motions of ions

    SciTech Connect

    Malik, Hitendra K.; Kawata, Shigeo

    2007-10-15

    The effects of gyratory and thermal motions of ions on soliton propagation in an inhomogeneous plasma that contains positive ions, negative ions, and electrons are studied at a critical density of negative ions. Since at this critical negative ion density the nonlinear term of the relevant Korteweg-deVries (KdV) equation vanishes, a higher order of nonlinearity is considered by retaining higher-order perturbation terms in the expansion of dependent quantities together with the appropriate set of stretched coordinates. Under this situation, time-dependent perturbation leads to the evolution of modified KdV solitons, which are governed by a modified form of the KdV equation that has an additional term due to the density gradient present in the plasma. On the basis of the solution of this equation and obliquely applied magnetic field, the effects of gyratory and thermal motions of ions are analyzed on the soliton propagation for three cases, n{sub n0}n{sub e0}, together with n{sub n0} (n{sub e0}) as the density of negative ions (electrons). The role of the negative ions in the evolution of the modes and the solitons is also discussed. Under the limiting cases, our calculations reduce to the ones obtained by other investigators in the past. This substantiates the generality of the present analysis.

  17. Soliton propagation in an inhomogeneous plasma at critical density of negative ions: Effects of gyratory and thermal motions of ions

    NASA Astrophysics Data System (ADS)

    Malik, Hitendra K.; Kawata, Shigeo

    2007-10-01

    The effects of gyratory and thermal motions of ions on soliton propagation in an inhomogeneous plasma that contains positive ions, negative ions, and electrons are studied at a critical density of negative ions. Since at this critical negative ion density the nonlinear term of the relevant Korteweg-deVries (KdV) equation vanishes, a higher order of nonlinearity is considered by retaining higher-order perturbation terms in the expansion of dependent quantities together with the appropriate set of stretched coordinates. Under this situation, time-dependent perturbation leads to the evolution of modified KdV solitons, which are governed by a modified form of the KdV equation that has an additional term due to the density gradient present in the plasma. On the basis of the solution of this equation and obliquely applied magnetic field, the effects of gyratory and thermal motions of ions are analyzed on the soliton propagation for three cases, nn0ne0, together with nn0 (ne0) as the density of negative ions (electrons). The role of the negative ions in the evolution of the modes and the solitons is also discussed. Under the limiting cases, our calculations reduce to the ones obtained by other investigators in the past. This substantiates the generality of the present analysis.

  18. Evidence for the existence of negative ions in the D and lower E regions at twilight

    NASA Technical Reports Server (NTRS)

    Kane, J. A.

    1972-01-01

    Evidence for negative ions in the lower ionosphere is based on the difference between simultaneously measured profiles of electron and positive ion density. The electron density profiles reported were obtained from ground-to-rocket radio wave absorption measurements while Gerdien ion traps were used to measure the positive ion profiles. Results from a series of three rockets launched from Thumba, India near sunset on 27 March, 1970 indicate that a significant number of negative ions are formed at altitudes as high as 95 km at twilight.

  19. Antinuclei production in heavy ion collisions at CERN SPS

    NASA Astrophysics Data System (ADS)

    Arsenescu, R.; Baglin, C.; Beck, H. P.; Borer, K.; Bussière, A.; Elsener, K.; Gorodetzky, Ph.; Guillaud, J. P.; Hess, P.; Kabana, S.; Klingenberg, R.; Lehmann, G.; Lindén, T.; Lohmann, K. D.; Mommsen, R.; Moser, U.; Pretzl, K.; Schacher, J.; Spiwoks, R.; Stoffel, F.; Tuominiemi, J.; Weber, M.

    1999-12-01

    Besides the dedicated search for strangelets NA52 measures light (anti)particle and (anti)nuclei production over a wide range of rapidity. Compared to previous runs the statistics has been increased in the 1998 run by more than one order of magnitude for negatively charged objects at different spectrometer rigidities. At a rigidity of -20 GeV/ c we measured 10 6overlinep, 10 3overlined and one overline3He without any centrality requirements. These preliminary results together with previous measurements near central rapidity are discussed in the framework of a thermodynamical and a coalescence model.

  20. Harmonic well matter densities and Pauli correlation effects in heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1982-01-01

    A generalized optical model heavy ion reaction theory is extended to include correlation effects between projectile and target constituents according to the Pauli exclusion principle. These correlation effects are significant for accurately predicting cross sections for projectile nucleus abrasions, but are relatively unimportant for determining total and absorption cross sections for heavy ion collisions. For lighter nuclei, predictive capabilities were also improved by developing an analytic method for extracting their nuclear single particle density distributions from experimentally measured harmonic well charge density distributions. This improved theory is compared with previous theoretical predictions and recent experimental results.