Science.gov

Sample records for negative ion collisions

  1. Negative ion formation in potassium-adenine collisions

    NASA Astrophysics Data System (ADS)

    Chunha, T.; Mendes, M.; Ferreira da Silva, F.; García, G.; Limáo Vieira, P.

    2016-09-01

    We have devoted experimental studies to time-of-flight negative ion formation in electron transfer experiments from neutral potassium atoms with neutral adenine molecules1. Total partial cross sections have been obtained as a function of the collision energy, together with branching ratios for the most relevant fragment anions. Additional set of measurements in adenine derivatives have been performed in order to probe the role of negative ions as well as to probe whether site- and bond-selective excision is also a prevalent mechanism within electron transfer in atom-molecule collision experiments.

  2. General theory of electron detachment in negative ion collisions

    SciTech Connect

    Wang, T.S.

    1983-01-01

    In this thesis a general theory of electron detachment in slow collisions of negative ions with atoms is presented. The theory is based upon a semiclassical close-coupling framework, following the work of Taylor and Delos. The Schrodinger equation is reduced, under certain assumptions, to a non-denumerably infinite set of coupled equations. A new method for solving these equations is developed that is more general than the methods used by Taylor and Delos. A zero-order approximation of the solution is applied to the case of H-(D-) on Ne collisions, the results are compared with the experimental data, and good agreement between theory and experiment, particularly with regard to the isotope effect, is found. A first-order approximation of the solution is proved to be very close to the exact solution, and it is applied to the case of H-(D-) on He collisions. Quadratic and quartic approximations are used for the energy gap ..delta..(t) to calculate, among other things, the survival probability and electron energy spectrum. There are some interesting results of the electron energy spectrum which have not yet been observed in experiments.

  3. Effect of Coulomb collision on the negative ion extraction mechanism in negative ion sources

    SciTech Connect

    Goto, I. Nishioka, S.; Abe, S.; Hatayama, A.; Miyamoto, K.; Mattei, S.; Lettry, J.

    2016-02-15

    To improve the H{sup −} ion beam optics, it is necessary to understand the energy relaxation process of surface produced H{sup −} ions in the extraction region of Cs seeded H{sup −} ion sources. Coulomb collisions of charged particles have been introduced to the 2D3V-PIC (two dimension in real space and three dimension in velocity space particle-in-cell) model for the H{sup −} extraction by using the binary collision model. Due to Coulomb collision, the lower energy part of the ion energy distribution function of H{sup −} ions has been greatly increased. The mean kinetic energy of the surface produced H{sup −} ions has been reduced to 0.65 eV from 1.5 eV. It has been suggested that the beam optics of the extracted H{sup −} ion beam is strongly affected by the energy relaxation process due to Coulomb collision.

  4. Observation of the emission of positive and negative ions in triple and quadruple collisions in a solid under bombardment with keV argon ions

    NASA Astrophysics Data System (ADS)

    Babenko, P. Yu.; Shergin, A. P.

    2006-12-01

    Particles that leave a solid as a result of several consecutive binary collisions are detected in the energy spectra of positive and negative ions emitted upon the irradiation of C, Si, Ge, and In targets with 2-to 5-keV Ar+ ions. The appearance of a spectral structure due to the sequence of three and four collisions in the solid can be attributed to the selective role of the surface, which is similar to the channeling effect in crystals.

  5. Effects of adsorption and roughness upon the collision processes at the convertor surface of a plasma sputter negative ion sourcea)

    NASA Astrophysics Data System (ADS)

    Kenmotsu, T.; Wada, M.

    2012-02-01

    Atomic collision processes associated with surface production of negative hydrogen ions (H-) by particle reflection at molybdenum surface immersed in hydrogen plasma have been investigated. To calculate sputtering yields of Cs, as well as energy spectra and angular distributions of reflected hydrogen atoms from molybdenum surface by H+ ion and Cs+ ion bombardments, a Monte Carlo simulation code ACAT (Atomic Collision in Amorphous Target) was run with the corresponding surface conditions. A fractal surface model has been developed and adopted to ACAT for evaluating the effect due to roughness of target material. The results obtained with ACAT have indicated that the retention of hydrogen atoms leads to the reduction in sputtering yields of Cs, and the surface roughness does largely affect the sputtering yields of Cs.

  6. Effects of adsorption and roughness upon the collision processes at the convertor surface of a plasma sputter negative ion source

    SciTech Connect

    Kenmotsu, T.; Wada, M.

    2012-02-15

    Atomic collision processes associated with surface production of negative hydrogen ions (H{sup -}) by particle reflection at molybdenum surface immersed in hydrogen plasma have been investigated. To calculate sputtering yields of Cs, as well as energy spectra and angular distributions of reflected hydrogen atoms from molybdenum surface by H{sup +} ion and Cs{sup +} ion bombardments, a Monte Carlo simulation code ACAT (Atomic Collision in Amorphous Target) was run with the corresponding surface conditions. A fractal surface model has been developed and adopted to ACAT for evaluating the effect due to roughness of target material. The results obtained with ACAT have indicated that the retention of hydrogen atoms leads to the reduction in sputtering yields of Cs, and the surface roughness does largely affect the sputtering yields of Cs.

  7. Role of positive ions on the surface production of negative ions in a fusion plasma reactor type negative ion source—Insights from a three dimensional particle-in-cell Monte Carlo collisions model

    SciTech Connect

    Fubiani, G.; Boeuf, J. P.

    2013-11-15

    Results from a 3D self-consistent Particle-In-Cell Monte Carlo Collisions (PIC MCC) model of a high power fusion-type negative ion source are presented for the first time. The model is used to calculate the plasma characteristics of the ITER prototype BATMAN ion source developed in Garching. Special emphasis is put on the production of negative ions on the plasma grid surface. The question of the relative roles of the impact of neutral hydrogen atoms and positive ions on the cesiated grid surface has attracted much attention recently and the 3D PIC MCC model is used to address this question. The results show that the production of negative ions by positive ion impact on the plasma grid is small with respect to the production by atomic hydrogen or deuterium bombardment (less than 10%)

  8. Linkage determination of linear oligosaccharides by MS(n) (n > 2) collision-induced dissociation of Z₁ ions in the negative ion mode.

    PubMed

    Konda, Chiharu; Bendiak, Brad; Xia, Yu

    2014-02-01

    Obtaining unambiguous linkage information between sugars in oligosaccharides is an important step in their detailed structural analysis. An approach is described that provides greater confidence in linkage determination for linear oligosaccharides based on multiple-stage tandem mass spectrometry (MS(n), n >2) and collision-induced dissociation (CID) of Z1 ions in the negative ion mode. Under low energy CID conditions, disaccharides (18)O-labeled on the reducing carbonyl group gave rise to Z1 product ions (m/z 163) derived from the reducing sugar, which could be mass-discriminated from other possible structural isomers having m/z 161. MS(3) CID of these m/z 163 ions showed distinct fragmentation fingerprints corresponding to the linkage types and largely unaffected by sugar unit identities or their anomeric configurations. This unique property allowed standard CID spectra of Z1 ions to be generated from a small set of disaccharide samples that were representative of many other possible isomeric structures. With the use of MS(n) CID (n = 3 - 5), model linear oligosaccharides were dissociated into overlapping disaccharide structures, which were subsequently fragmented to form their corresponding Z1 ions. CID data of these Z1 ions were collected and compared with the standard database of Z1 ion CID using spectra similarity scores for linkage determination. As the proof-of-principle tests demonstrated, we achieved correct determination of individual linkage types along with their locations within two trisaccharides and a pentasaccharide.

  9. Negative ions of p-nitroaniline: Photodetachment, collisions, and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Smith, Byron H.; Buonaugurio, Angela; Chen, Jing; Collins, Evan; Bowen, Kit H.; Compton, Robert N.; Sommerfeld, Thomas

    2013-06-01

    The structures of parent anion, M-, and deprotonated molecule, [M-H]-, anions of the highly polar p-nitroaniline (pNA) molecule are studied experimentally and theoretically. Photoelectron spectroscopy (PES) of the parent anion is employed to estimate the adiabatic electron affinity (EAa = 0.75 ± 0.1 eV) and vertical detachment energy (VDE = 1.1 eV). These measured energies are in good agreement with computed values of 0.73 eV for the EAa and the range of 0.85 to 1.0 eV for the VDE at the EOM-CCSD/Aug-cc-pVTZ level. Collision induced dissociation (CID) of deprotonated pNA, [pNA - H]-, with argon yielded [pNA - H - NO]- (i.e., rearrangement to give loss of NO) with a threshold energy of 2.36 eV. Calculations of the energy difference between [pNA - H]- and [pNA - H - NO]- give 1.64 eV, allowing an estimate of a 0.72 eV activation barrier for the rearrangement reaction. Direct dissociation of [pNA - H]- yielding NO_2^ - occurs at a threshold energy of 3.80 eV, in good agreement with theory (between 3.39 eV and 4.30 eV). As a result of the exceedingly large dipole moment for pNA (6.2 Debye measured in acetone), we predict two dipole-bound states, one at ˜110 meV and an excited state at 2 meV. No dipole-bound states are observed in the photodetachment experiments due the pronounced mixing between states with dipole-bound and valence character similar to what has been observed in other nitro systems. For the same reason, dipole-bound states are expected to provide highly efficient "doorway states" for the formation of the pNA- valence anion, and these states should be observable as resonances in the reverse process, that is, in the photodetachment spectrum of pNA- near the photodetachment threshold.

  10. Negative ion generator

    DOEpatents

    Stinnett, Regan W.

    1984-01-01

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions.

  11. Negative ion generator

    DOEpatents

    Stinnett, R.W.

    1984-05-08

    A negative ion generator is formed from a magnetically insulated transmission line having a coating of graphite on the cathode for producing negative ions and a plurality of apertures on the opposed anode for the release of negative ions. Magnetic insulation keeps electrons from flowing from the cathode to the anode. A transverse magnetic field removes electrons which do escape through the apertures from the trajectory of the negative ions. 8 figs.

  12. Ion Accelerator With Negatively Biased Decelerator Grid

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1994-01-01

    Three-grid ion accelerator in which accelerator grid is biased at negative potential and decelerator grid downstream of accelerator grid biased at smaller negative potential. This grid and bias arrangement reduces frequency of impacts, upon accelerator grid, of charge-exchange ions produced downstream in collisions between accelerated ions and atoms and molecules of background gas. Sputter erosion of accelerator grid reduced.

  13. Negative Ion Density Fronts

    SciTech Connect

    Igor Kaganovich

    2000-12-18

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.

  14. Vibrational relaxation in H/sub 2/ molecules by wall collisions: applications to negative ion source processes

    SciTech Connect

    Karo, A.M.; Hiskes, J.R.; Hardy, R.J.

    1984-10-01

    In the volume of a hydrogen discharge, H/sub 2/ molecules, excited to high vibrational levels (v'' > 6), are formed either by fast-electron collisions or from H/sub 2//sup +/ ions that are accelerated across the discharge-wall potential that undergo Auger neutralization prior to impact with the discharge chamber wall. We have used computer molecular dynamics to study the de-excitation and re-excitation of vibrationally-excited H/sub 2/ molecules undergoing repeated wall collisions. The initial translational energies range from thermal to 100 eV and the initial vibrational states range from v'' = 2 to v'' = 12. The average loss or gain of vibrational, rotational, translational, and total molecular energies and the survival rates of the molecules have been evaluated. At thermal energies vibrational de-excitation is the predominant process, and a consistent picture emerges of rapid energy redistribution into all the molecular degrees of freedom and a slower rate of loss of total molecular energy to the wall. At higher translational energies (1 to 100 eV) a substantial fraction of the molecules survive with large (v'' > 6) vibrational energy. This vibrational population provides a contribution to the total excited vibrational population comparable to that from the fast-electron collision process.

  15. Measurements of scattering processes in negative ion: Atom collisions. Technical progress report, 1 September 1991--31 December 1994

    SciTech Connect

    Kvale, T.J.

    1994-09-27

    This report describes the progress made on the research objectives during the past three years of the grant. This research project is designed to study various scattering processes which occur in H{sup {minus}} collisions with atomic (specifically, noble gas and atomic hydrogen) targets in the intermediate energy region. These processes include: elastic scattering, single- and double-electron detachment, and target excitation/ionization. For the elastic and target inelastic processes where H{sup {minus}} is scattered intact, the experimental technique of Ion Energy-Loss Spectroscopy (IELS) will be employed to identify the final target state(s). In most of the above processes, cross sections are unknown both experimentally and theoretically. The measurements will provide total cross sections (TCS) initially, and once the angular positioning apparatus is installed, will provide angular differential cross sections (ADCS).

  16. Negative hydrogen ion yields at plasma grid surface in a negative hydrogen ion source

    SciTech Connect

    Wada, M.; Kenmotsu, T.; Sasao, M.

    2015-04-08

    Negative hydrogen (H{sup −}) ion yield from the plasma grid due to incident hydrogen ions and neutrals has been evaluated with the surface collision cascade model, ACAT (Atomic Collision in Amorphous Target) coupled to a negative surface ionization models. Dependence of negative ion fractions upon the velocity component normal to the surface largely affect the calculation results of the final energy and angular distributions of the H{sup −} ions. The influence is particularly large for H{sup −} ions desorbed from the surface due to less than several eV hydrogen particle implact. The present calculation predicts that H{sup −} ion yield can be maximized by setting the incident angle of hydrogen ions and neutrals to be 65 degree. The Cs thickness on the plasma grid should also affect the yields and mean energies of surface produced H{sup −} ions by back scattering and ion induced desorption processes.

  17. Negative hydrogen ion yields at plasma grid surface in a negative hydrogen ion source

    NASA Astrophysics Data System (ADS)

    Wada, M.; Kenmotsu, T.; Sasao, M.

    2015-04-01

    Negative hydrogen (H-) ion yield from the plasma grid due to incident hydrogen ions and neutrals has been evaluated with the surface collision cascade model, ACAT (Atomic Collision in Amorphous Target) coupled to a negative surface ionization models. Dependence of negative ion fractions upon the velocity component normal to the surface largely affect the calculation results of the final energy and angular distributions of the H- ions. The influence is particularly large for H- ions desorbed from the surface due to less than several eV hydrogen particle implact. The present calculation predicts that H- ion yield can be maximized by setting the incident angle of hydrogen ions and neutrals to be 65 degree. The Cs thickness on the plasma grid should also affect the yields and mean energies of surface produced H- ions by back scattering and ion induced desorption processes.

  18. Polarized negative ions

    SciTech Connect

    Haeberli, W.

    1981-04-01

    This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited state (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.

  19. Negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.

    1984-01-01

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  20. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1982-08-06

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field.

  1. Negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.

    1984-12-04

    An ionization vessel is divided into an ionizing zone and an extraction zone by a magnetic filter. The magnetic filter prevents high-energy electrons from crossing from the ionizing zone to the extraction zone. A small positive voltage impressed on a plasma grid, located adjacent an extraction grid, positively biases the plasma in the extraction zone to thereby prevent positive ions from migrating from the ionizing zone to the extraction zone. Low-energy electrons, which would ordinarily be dragged by the positive ions into the extraction zone, are thereby prevented from being present in the extraction zone and being extracted along with negative ions by the extraction grid. Additional electrons are suppressed from the output flux using ExB drift provided by permanent magnets and the extractor grid electrical field. 14 figs.

  2. Semiholography for heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Ayan; Preis, Florian

    2017-03-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  3. Improved negative ion source

    DOEpatents

    Delmore, J.E.

    1984-05-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reaccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200 to 500/sup 0/C for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  4. Negative ion source

    DOEpatents

    Delmore, James E.

    1987-01-01

    A method and apparatus for providing a negative ion source accelerates electrons away from a hot filament electron emitter into a region of crossed electric and magnetic fields arranged in a magnetron configuration. During a portion of the resulting cycloidal path, the electron velocity is reduced below its initial value. The electron accelerates as it leaves the surface at a rate of only slightly less than if there were no magnetic field, thereby preventing a charge buildup at the surface of the emitter. As the electron traverses the cycloid, it is decelerated during the second, third, and fourth quadrants, then reeccelerated as it approaches the end of the fourth quadrant to regain its original velocity. The minimum velocity occurs during the fourth quadrant, and corresponds to an electron temperature of 200.degree. to 500.degree. for the electric and magnetic fields commonly encountered in the ion sources of magnetic sector mass spectrometers. An ion source using the above-described thermalized electrons is also disclosed.

  5. Central collisions of heavy ions

    SciTech Connect

    Fung, Sun-yiu.

    1992-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R D project was performed.

  6. Negative hydrogen ion production mechanisms

    SciTech Connect

    Bacal, M.; Wada, M.

    2015-06-15

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  7. Negative hydrogen ion production mechanisms

    NASA Astrophysics Data System (ADS)

    Bacal, M.; Wada, M.

    2015-06-01

    Negative hydrogen/deuterium ions can be formed by processes occurring in the plasma volume and on surfaces facing the plasma. The principal mechanisms leading to the formation of these negative ions are dissociative electron attachment to ro-vibrationally excited hydrogen/deuterium molecules when the reaction takes place in the plasma volume, and the direct electron transfer from the low work function metal surface to the hydrogen/deuterium atoms when formation occurs on the surface. The existing theoretical models and reported experimental results on these two mechanisms are summarized. Performance of the negative hydrogen/deuterium ion sources that emerged from studies of these mechanisms is reviewed. Contemporary negative ion sources do not have negative ion production electrodes of original surface type sources but are operated with caesium with their structures nearly identical to volume production type sources. Reasons for enhanced negative ion current due to caesium addition to these sources are discussed.

  8. Heavy ion collisions and cosmology

    NASA Astrophysics Data System (ADS)

    Floerchinger, Stefan

    2016-12-01

    There are interesting parallels between the physics of heavy ion collisions and cosmology. Both systems are out-of-equilibrium and relativistic fluid dynamics plays an important role for their theoretical description. From a comparison one can draw interesting conclusions for both sides. For heavy ion physics it could be rewarding to attempt a theoretical description of fluid perturbations similar to cosmological perturbation theory. In the context of late time cosmology, it could be interesting to study dissipative properties such as shear and bulk viscosity and corresponding relaxation times in more detail. Knowledge and experience from heavy ion physics could help to constrain the microscopic properties of dark matter from observational knowledge of the cosmological fluid properties.

  9. Negative ions of polyatomic molecules.

    PubMed Central

    Christophorou, L G

    1980-01-01

    In this paper general concepts relating to, and recent advances in, the study of negative ions of polyatomic molecules area discussed with emphasis on halocarbons. The topics dealt with in the paper are as follows: basic electron attachment processes, modes of electron capture by molecules, short-lived transient negative ions, dissociative electron attachment to ground-state molecules and to "hot" molecules (effects of temperature on electron attachment), parent negative ions, effect of density, nature, and state of the medium on electron attachment, electron attachment to electronically excited molecules, the binding of attached electrons to molecules ("electron affinity"), and the basic and the applied significance of negative-ion studies. PMID:7428744

  10. Negative ions of polyatomic molecules.

    PubMed

    Christophorou, L G

    1980-06-01

    In this paper general concepts relating to, and recent advances in, the study of negative ions of polyatomic molecules area discussed with emphasis on halocarbons. The topics dealt with in the paper are as follows: basic electron attachment processes, modes of electron capture by molecules, short-lived transient negative ions, dissociative electron attachment to ground-state molecules and to "hot" molecules (effects of temperature on electron attachment), parent negative ions, effect of density, nature, and state of the medium on electron attachment, electron attachment to electronically excited molecules, the binding of attached electrons to molecules ("electron affinity"), and the basic and the applied significance of negative-ion studies.

  11. Negative Ions in Space.

    PubMed

    Millar, Thomas J; Walsh, Catherine; Field, Thomas A

    2017-02-08

    Until a decade ago, the only anion observed to play a prominent role in astrophysics was H(-). The bound-free transitions in H(-) dominate the visible opacity in stars with photospheric temperatures less than 7000 K, including the Sun. The H(-) anion is also believed to have been critical to the formation of molecular hydrogen in the very early evolution of the Universe. Once H2 formed, about 500 000 years after the Big Bang, the expanding gas was able to lose internal gravitational energy and collapse to form stellar objects and "protogalaxies", allowing the creation of heavier elements such as C, N, and O through nucleosynthesis. Although astronomers had considered some processes through which anions might form in interstellar clouds and circumstellar envelopes, including the important role that polycyclic aromatic hydrocarbons might play in this, it was the detection in 2006 of rotational line emission from C6H(-) that galvanized a systematic study of the abundance, distribution, and chemistry of anions in the interstellar medium. In 2007, the Cassini mission reported the unexpected detection of anions with mass-to-charge ratios of up to ∼10 000 in the upper atmosphere of Titan; this observation likewise instigated the study of fundamental chemical processes involving negative ions among planetary scientists. In this article, we review the observations of anions in interstellar clouds, circumstellar envelopes, Titan, and cometary comae. We then discuss a number of processes by which anions can be created and destroyed in these environments. The derivation of accurate rate coefficients for these processes is an essential input for the chemical kinetic modeling that is necessary to fully extract physics from the observational data. We discuss such models, along with their successes and failings, and finish with an outlook on the future.

  12. Head-on collision of dust-ion-acoustic soliton in quantum pair-ion plasma

    SciTech Connect

    Chatterjee, Prasanta; Ghorui, Malay kr.; Wong, C. S.

    2011-10-15

    In this paper, we study the head-on collision between two dust ion acoustic solitons in quantum pair-ion plasma. Using the extended Poincare-Lighthill-Kuo method, we obtain the Korteweg-de Vries equation, the phase shifts, and the trajectories after the head-on collision of the two dust ion acoustic solitons. It is observed that the phase shifts are significantly affected by the values of the quantum parameter H, the ratio of the multiples of the charge state and density of positive ions to that of the negative ions {beta} and the concentration of the negatively charged dust particles {delta}.

  13. Three chamber negative ion source

    DOEpatents

    Leung, K.N.; Ehlers, K.W.; Hiskes, J.R.

    1983-11-10

    It is an object of this invention provide a negative ion source which efficiently provides a large flux of negatively ionized particles. This invention provides a volume source of negative ions which has a current density sufficient for magnetic fusion applications and has electrons suppressed from the output. It is still another object of this invention to provide a volume source of negative ions which can be electrostatically accelerated to high energies and subsequently neutralized to form a high energy neutral beam for use with a magnetically confined plasma.

  14. Three chamber negative ion source

    DOEpatents

    Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.

    1985-01-01

    A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.

  15. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    SciTech Connect

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  16. About the Extraction of Surface Produced Ions in Negative Ion Sources

    NASA Astrophysics Data System (ADS)

    Taccogna, Francesco; Minelli, Pierpaolo; Longo, Savino; Capitelli, Mario

    2011-09-01

    The enhancement of extracted negative ion current in cesiated sources is usually explained by the surface production of negative ions. In this contribution, the self-consistent production and transport of H- in the extraction region of a radio-frequency driven negative ion source is modelled by means of a parallel two-dimensional Particle-in-Cell/Monte Carlo Collision simulation. It is shown that the number of surface-produced negative ions extracted is regulated by a potential well developed in front of the plasma grid such that the extracted current does not proportionally increase with the flux of negative ions emitted at the surface.

  17. Negative-ion plasma sources

    NASA Astrophysics Data System (ADS)

    Sheehan, D. P.; Rynn, N.

    1988-08-01

    Three designs for negative-ion plasma sources are described. Two sources utilize metal hexafluorides such as SF6 and WF6 to scavenge electrons from electron-ion plasmas and the third relies upon surface ionization of alkali halide salts on heated alumina and zirconia. SF6 introduced into electron-ion plasmas yielded negative-ion plasma densities of 10 to the 10th/cu cm with low residual electron densities. On alumina, plasma densities of 10 to the 9th/cu cm were obtained for CsCl, CsI, and KI and 10 to the 9th/cu cm for KCl. On zirconia 10 to the 10th/cu cm densities were obtained for CsCl. For alkali halide sources, electron densities of less than about 10 to the -4th have been achieved.

  18. Jets in relativistic heavy ion collisions

    SciTech Connect

    Wang, Xin-Nian; Gyulassy, M.

    1990-09-01

    Several aspects of hard and semihard QCD jets in relativistic heavy ion collisions are discussed, including multiproduction of minijets and the interaction of a jet with dense nuclear matter. The reduction of jet quenching effect in deconfined phase of nuclear matter is speculated to provide a signature of the formation of quark gluon plasma. HIJING Monte Carlo program which can simulate events of jets production and quenching in heavy ion collisions is briefly described. 35 refs., 13 figs.

  19. Holographic heavy ion collisions with baryon charge

    NASA Astrophysics Data System (ADS)

    Casalderrey-Solana, Jorge; Mateos, David; van der Schee, Wilke; Triana, Miquel

    2016-09-01

    We numerically simulate collisions of charged shockwaves in Einstein-Maxwell theory in anti-de Sitter space as a toy model of heavy ion collisions with non-zero baryon charge. The stress tensor and the baryon current become well described by charged hydrodynamics at roughly the same time. The effect of the charge density on generic observables is typically no larger than 15%. We find significant stopping of the baryon charge and compare our results with those in heavy ion collision experiments.

  20. Vorticity in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Tian; Huang, Xu-Guang

    2016-06-01

    We study the event-by-event generation of flow vorticity in the BNL Relativistic Heavy Ion Collider Au +Au collisions and CERN Large Hadron Collider Pb +Pb collisions by using the hijing model. Different definitions of the vorticity field and velocity field are considered. A variety of properties of the vorticity are explored, including the impact parameter dependence, the collision energy dependence, the spatial distribution, the event-by-event fluctuation of the magnitude and azimuthal direction, and the time evolution. In addition, the spatial distribution of the flow helicity is also studied.

  1. Dissipative heavy-ion collisions

    SciTech Connect

    Feldmeier, H.T.

    1985-01-01

    This report is a compilation of lecture notes of a series of lectures held at Argonne National Laboratory in October and November 1984. The lectures are a discussion of dissipative phenomena as observed in collisions of atomic nuclei. The model is based on a system which has initially zero temperature and the initial energy is kinetic and binding energy. Collisions excite the nuclei, and outgoing fragments or the compound system deexcite before they are detected. Brownian motion is used to introduce the concept of dissipation. The master equation and the Fokker-Planck equation are derived. 73 refs., 59 figs. (WRF)

  2. Angular spectrum analysis in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Llanes-Estrada, Felipe J.; Muñoz Martínez, Jose L.

    2017-01-01

    Heavy Ion Collisions serve to study some features of early-universe cosmology. In this contribution we adapt data analysis frequently used to understand the Cosmic Microwave Background anisotropies (such as the Mollweide projection and the angular power spectrum) to heavy ion collisions at the LHC. We examine a few publicly available events of the ALICE collaboration under this light. Because the ALICE time projection chamber has limited coverage in rapidity and some blind angles in the transverse plane, the angular spectrum seems very influenced by the detector's acceptance.

  3. Propagation and oblique collision of ion-acoustic solitary waves in a magnetized dusty electronegative plasma

    SciTech Connect

    El-Labany, S. K.; Behery, E. E.; El-Shamy, E. F.

    2013-12-15

    The propagation and oblique collision of ion-acoustic (IA) solitary waves in a magnetized dusty electronegative plasma consisting of cold mobile positive ions, Boltzmann negative ions, Boltzmann electrons, and stationary positive/negative dust particles are studied. The extended Poincaré-Lighthill-Kuo perturbation method is employed to derive the Korteweg-de Vries equations and the corresponding expressions for the phase shifts after collision between two IA solitary waves. It turns out that the angle of collision, the temperature and density of negative ions, and the dust density of opposite polarity have reasonable effects on the phase shift. Clearly, the numerical results demonstrated that the IA solitary waves are delayed after the oblique collision. The current finding of this work is applicable in many plasma environments having negative ion species, such as D- and F-regions of the Earth's ionosphere and some laboratory plasma experiments.

  4. Chiral Magnetic Effect in Heavy Ion Collisions

    SciTech Connect

    Liao, Jinfeng

    2016-12-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. We show it is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields |Β|~m2π are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. Lastly, in this contribution we give a brief overview on the status of such efforts.

  5. Chiral Magnetic Effect in Heavy Ion Collisions

    DOE PAGES

    Liao, Jinfeng

    2016-12-01

    The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. We show it is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields |Β→|~m2π are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. Lastly, in this contribution we give a brief overview onmore » the status of such efforts.« less

  6. Relativistic Hydrodynamics for Heavy-Ion Collisions

    ERIC Educational Resources Information Center

    Ollitrault, Jean-Yves

    2008-01-01

    Relativistic hydrodynamics is essential to our current understanding of nucleus-nucleus collisions at ultrarelativistic energies (current experiments at the Relativistic Heavy Ion Collider, forthcoming experiments at the CERN Large Hadron Collider). This is an introduction to relativistic hydrodynamics for graduate students. It includes a detailed…

  7. Super high energy heavy ion collisions

    SciTech Connect

    Geist, W.M.

    1987-12-01

    Basic theoretical ideas on a phase transition to a plasma of free quarks and gluons in heavy ion collisions are outlined. First results from experiments with oxygen beams at 14.5 GeV/c/N (BNL), 60 and 200 GeV/c/N (CERN) are discussed. 30 refs., 9 figs.

  8. Experimental Evaluation of a Negative Ion Source for a Heavy Ion Fusion Negative Ion Driver

    SciTech Connect

    Grisham, L. R.; Hahto, S. K.; Hahto, S. T.; Kwan, J. W.; Leung, K. N.

    2004-06-16

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photo-detached to neutrals. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm{sup 2} was obtained under the same conditions that gave 57 45 mA/cm{sup 2} of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that i s used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl{sup -} was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 45 mA/cm{sup 2}, sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source.

  9. Atomic collisions with 33-TeV lead ions

    SciTech Connect

    Vane, C.R.; Datz, S.; Krause, H.F.

    1996-10-01

    Recent availability of relativistic and ultrarelativistic beams of heavy ions has permitted the first controlled studies of atomic collisions at energies sufficient to measure effects of several new basic phenomena. These include measurements substantiating recently predicted finite nuclear size effects resulting in a reduction in the total electronic energy loss of heavy ions in matter, and measurements of Coulomb collisions in which electrons are excited from the Dirac negative energy continuum. Measurements of total energy loss, free electron-positron pair production, and electron capture from pair production have been recently performed using 33-TeV Pb{sup 82+} ions from the CERN SPS accelerator in Geneva. Results of these studies are presented, along with comparisons with relevant theory.

  10. Antiproton production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Jacak, B. V.

    In high energy p-p and alpha-alpha collisions, baryons are observed predominantly at rapidities near those of target and projectile; the mean rapidity shift of projectile and target nucleons is approximately one unit. In the central rapidity region, the number of baryons is quite small. In fact, the number of baryons and antibaryons is rather similar, indicating that most of these baryons are CREATED particles rather than projectile and target fragments. Antibaryon production is of interest in heavy ion collisions as enhanced antiquark production has been predicted as a potential signature of quark-gluon plasma formation. Antibaryons also provide a sensitive probe of the hadronic environment, via annihilation and/or mean field effects upon their final distributions. However, the collision dynamics also affect the baryon and antibaryon distributions. Baryons are more shifted toward midrapidity in nucleus-nucleus and p-p nucleus collisions than in p-p collisions, increasing the probability of annihilating the antibaryons. The interpretation of antibaryon yields is further complicated by collective processes which may take place in the dense hadronic medium formed in nucleus-nucleus collisions. Jahns and coworkers have shown that multistep processes can increase antibaryon production near threshold. Antiproton production is clearly very interesting, but is sensitive to a combination of processes taking place in the collision. The final number of observed antiprotons depends on the balance between mechanisms for extra antiproton production beyond those from the individual nucleon-nucleon collisions and annihilation with surrounding baryons. We can hope to sort out these things by systematic studies, varying the system size and beam energy. I will review what is known about antiproton production at both the AGS and SPS, and look at trends going from p-p to p-nucleus to nucleus-nucleus collisions.

  11. Experiments on Negative Ion Plasmas in a Q-Machine

    NASA Astrophysics Data System (ADS)

    An, Tao

    Three experiments on negative ion plasmas in the University of Iowa Q-machine IQ-2 are described in this thesis. In the Lower-Hybrid wave experiment, the low-frequency (ion-ion mode) waves are excited, waves propagate at a right angle to the magnetic field. The wave frequencies increase as the negative ion concentration increases, in agreement with the dispersion relation obtained from fluid theory. In the Kelvin-Helmholtz instability experiment, the negative ions have a generally destabilizing effect on the instability driven by a relative drift between ions in adjacent layers. However, for large negative ion concentrations, enhanced radial diffusion associated with the Kelvin-Helmholtz oscillations tends to have a stabilizing effect due to a "mixing" of ion flows in adjacent layer. In the diffusion experiment, the K^ {+} ions experience a displacement across the magnetic filed on the order of their gyroradius upon collision with a negative ion, leading to an enhancement in the rate of cross-field diffusion over that expected in the ordinary K^{+}/electron plasma.

  12. Study on space charge compensation in negative hydrogen ion beam

    SciTech Connect

    Zhang, A. L.; Chen, J. E.; Peng, S. X. Ren, H. T.; Zhang, T.; Zhang, J. F.; Xu, Y.; Guo, Z. Y.

    2016-02-15

    Negative hydrogen ion beam can be compensated by the trapping of ions into the beam potential. When the beam propagates through a neutral gas, these ions arise due to gas ionization by the beam ions. However, the high neutral gas pressure may cause serious negative hydrogen ion beam loss, while low neutral gas pressure may lead to ion-ion instability and decompensation. To better understand the space charge compensation processes within a negative hydrogen beam, experimental study and numerical simulation were carried out at Peking University (PKU). The simulation code for negative hydrogen ion beam is improved from a 2D particle-in-cell-Monte Carlo collision code which has been successfully applied to H{sup +} beam compensated with Ar gas. Impacts among ions, electrons, and neutral gases in negative hydrogen beam compensation processes are carefully treated. The results of the beam simulations were compared with current and emittance measurements of an H{sup −} beam from a 2.45 GHz microwave driven H{sup −} ion source in PKU. Compensation gas was injected directly into the beam transport region to modify the space charge compensation degree. The experimental results were in good agreement with the simulation results.

  13. Negative ion chemistry in Titan's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Vuitton, V.; Lavvas, P.; Yelle, R. V.; Wellbrock, A.; Lewis, G. R.; Coates, A.; Thissen, R.; Dutuit, O.

    2008-09-01

    . For example, the following proton transfer reaction: CN- + HC3N → C3N- + HCN is responsible for most of the C3N- production but has never been studied. To proceed with the analysis we estimated rates for the missing reactions based on analogy with similar reactions for other molecules or Fig. 2 Production and destruction rates of C3N- as a function of altitude. from their collision rate. Clearly, more accurate information is needed, from which we can derive more precise estimates of negative ion densities. This analysis also identifies numerous other deficiencies in currently available rate coefficient data thereby providing guidance for future laboratory measurements.

  14. Simulation Based on Ion Propulsion Rocket System with Using Negative ion - Negative Ion Pair Techniques

    NASA Astrophysics Data System (ADS)

    Sathiyavel, C.

    2016-07-01

    Ion propulsion rocket system is expected to become popular with the development of ion-ion pair techniques because of their stimulated of low propellant, Design of Thrust range is 1N with low electric power and high efficiency. A Negative ion-Negative ion pair of ion propulsion rocket system is proposed in this work .Negative Ion Based Rocket system consists of three parts 1.ionization chamber 2. Repulsion force and ion accelerator 3. Exhaust of Nozzle. The Negative ions from electro negatively gas are produced by attachment of the gas ,such as chlorine with electron emitted from a Electron gun ionization chamber. The formulate of large stable negative ion is achievable in chlorine gas with respect to electron affinity (∆E). The electron affinity is a measure of the energy change when an electron is added to a neutral atom to form a negative ion. When a neutral chlorine atom in the gaseous form picks up an electron to form a Cl- ion, it releases energy of 349 kJ/mol or 3.6 ev/atom. It is said to have an electron affinity of -349 kJ/mol ,the negative sign indicating that energy is released during this process .The mechanisms of attachment involve the formation of intermediate states. In that reason for , the highly repulsive force created between the same negative ions. The distance between same negative ions is important for the evaluate of the rocket thrust and is also determined by the exhaust velocity of the propellant. The mass flow rate of propellant is achieved by the ratio of total mass of the propellant (Kg) needed for operation to time period(s). Accelerate the Negative ions to a high velocity in the thrust vector direction with a significantly intense Magnetic field and the exhaust of negative ions through Nozzle. The simulation of the ion propulsion system has been carried out by MATLAB. By comparing the simulation results with the theoretical and previous results, we have found that the proposed method is achieved of thrust value with estimated

  15. Rapidity dependence in holographic heavy ion collisions

    DOE PAGES

    Wilke van der Schee; Schenke, Bjorn

    2015-12-11

    We present an attempt to closely mimic the initial stage of heavy ion collisions within holography, assuming a decoupling of longitudinal and transverse dynamics in the very early stage. We subsequently evolve the obtained initial state using state-of-the-art hydrodynamic simulations and compare results with experimental data. We present results for charged hadron pseudorapidity spectra and directed and elliptic flow as functions of pseudorapidity for √sNN = 200GeV Au-Au and 2.76TeV Pb-Pb collisions. As a result, the directed flow interestingly turns out to be quite sensitive to the viscosity. The results can explain qualitative features of the collisions, but the rapiditymore » spectra in our current model is narrower than the experimental data.« less

  16. Rapidity dependence in holographic heavy ion collisions

    SciTech Connect

    Wilke van der Schee; Schenke, Bjorn

    2015-12-11

    We present an attempt to closely mimic the initial stage of heavy ion collisions within holography, assuming a decoupling of longitudinal and transverse dynamics in the very early stage. We subsequently evolve the obtained initial state using state-of-the-art hydrodynamic simulations and compare results with experimental data. We present results for charged hadron pseudorapidity spectra and directed and elliptic flow as functions of pseudorapidity for √sNN = 200GeV Au-Au and 2.76TeV Pb-Pb collisions. As a result, the directed flow interestingly turns out to be quite sensitive to the viscosity. The results can explain qualitative features of the collisions, but the rapidity spectra in our current model is narrower than the experimental data.

  17. Theory of Electron-Ion Collisions

    SciTech Connect

    Griffin, Donald C

    2009-10-02

    Collisions of electrons with atoms and ions play a crucial role in the modeling and diagnostics of fusion plasmas. In the edge and divertor regions of magnetically confined plasmas, data for the collisions of electrons with neutral atoms and low charge-state ions are of particular importance, while in the inner region, data on highly ionized species are needed. Since experimental measurements for these collisional processes remain very limited, data for such processes depend primarily on the results of theoretical calculations. Over the period of the present grant (January 2006 - August 2009), we have made additional improvements in our parallel scattering programs, generated data of direct fusion interest and made these data available on The Controlled Fusion Atomic Data Center Web site at Oak Ridge National Laboratory. In addition, we have employed these data to do collsional-radiative modeling studies in support of a variety of experiments with magnetically confined fusion plasmas.

  18. Femtoscopy in Relativistic Heavy Ion Collisions

    SciTech Connect

    Lisa, M; Pratt, S; Soltz, R A; Wiedemann, U

    2005-07-29

    Analyses of two-particle correlations have provided the chief means for determining spatio-temporal characteristics of relativistic heavy ion collisions. We discuss the theoretical formalism behind these studies and the experimental methods used in carrying them out. Recent results from RHIC are put into context in a systematic review of correlation measurements performed over the past two decades. The current understanding of these results are discussed in terms of model comparisons and overall trends.

  19. Travelling-wave ion mobility and negative ion fragmentation of high mannose N-glycans

    PubMed Central

    Harvey, David J.; Scarff, Charlotte A.; Edgeworth, Matthew; Struwe, Weston B.; Pagel, Kevin; Thalassinos, Konstantinos; Crispin, Max; Scrivens, Jim

    2016-01-01

    The isomeric structure of high-mannose N-glycans can significantly impact biological recognition events. Here, the utility of travelling-wave ion mobility-mass spectrometry (TW IM-MS)for isomer separation of high-mannose N-glycans is investigated. Negative ion fragmentation using collision-induced dissociation (CID) gave more informative spectra than positive ion spectra with mass-different fragment ions characterizing many of the isomers. Isomer separation by ion mobility in both ionization modes was generally limited, with the arrival time distributions (ATD) often showing little sign of isomers. However, isomers could be partially resolved by plotting extracted fragment ATDs of the diagnostic fragment ions from the negative ion spectra and the fragmentation spectra of the isomers could be extracted by using ions from limited areas of the ATD peak. In some cases, asymmetric ATDs were observed but no isomers could be detected by fragmentation. In these cases, it was assumed that conformers were being separated. Collision cross sections (CCSs) of the isomers in positive and negative fragmentation mode were estimated from TW IM-MS data using dextran glycans as calibrant. More complete CCS data were achieved in negative ion mode by utilizing the diagnostic fragment ions. Examples of isomer separations are shown for N-glycans released from the well-characterized glycoproteins chicken ovalbumin, porcine thyroglobulin and gp120 from the human immunodeficiency virus. In addition to the cross sectional data, details of the negative ion collision-induced dissociation (CID) spectra of all resolved isomers are discussed. PMID:26956389

  20. Coincidence studies of ion-molecule collisions

    NASA Astrophysics Data System (ADS)

    Ben-Itzhak, Itzik

    1998-05-01

    Two of the simplest collision systems one can imagine are H^+ + H(1s) and H^+ + D(1s). Electron transfer is resonant in the first and nearly resonant in the latter because of the 3.7 meV gap between the H(1s) and D(1s). Once the collision velocity becomes small enough quantum effects become more pronounced and the electron transfer rate as a function of collision energy exhibits many resonances(G. Hunter and M. Kuriyan, Proc. Roy. Soc. Lond. A 358), 321 (1977).^,(J.P. Davis and W.R. Thorson, Can. J. Phys. 56), 996 (1978).. However, most of the interesting features appear at very low energies, of a few meV, and these collision systems which are the ``theorist's dream'' become a nightmare to experimentalists. Nevertheless, we are undertaking the challenging measurement of near resonant electron transfer in the H^+ + D(1s) collision system. When a HD molecule is ionized quickly, such that the transition to the HD^+ molecular ion is vertical, about 1% of the HD^+(1sσ) is in the vibrational continuum. The transition probability falls off approximately exponentially above threshold and its width is about 200 meV. During the dissociation, the electron initially centered on the D core can make a transition to the H core when the 2pσ and 1sσ potential energy curves associated with the two dissociation limits get close to each other. It is important to note that during molecular dissociation the ``avoided crossing'' is crossed only once in contrast to twice during a full collision. Using a localized cold HD target and 3D imaging of the low energy H^+ and D^+ dissociation fragments one can experimentally determine the transition probability between these two states as a function of the dissociation energy. Clearly, a recoil energy resolution of the order of a meV is necessary, which is the primary experimental challenge.

  1. Observation of the negative muonium ion in vacuum

    SciTech Connect

    Kuang, Yunan

    1989-05-01

    The negative muonium ion (M/sup /minus//), which is the bound system of a positive muon and two electrons, has been produced and observed for the first time. Its counterpart H/sup /minus// is well known, and spectroscopy and collision studies with H/sup /minus// have yielded many fruitful results. Noteworthy are recent investigations of the photoionization of a relativistic H/sup /minus// beam. The negative positronium ion has also been formed and observed. The discovery of M/sup /minus// provides us with a new leptonic system for spectroscopy and collision studies, which may reveal interesting physics associated with mass effects. Since M/sup /minus// is a charged particle, it can also be used to produce a beam of exotic atoms with a small phase space. This dissertation is a detailed account of the observation of M/sup /minus//. 93 refs., 54 figs., 18 tabs.

  2. High gluon densities in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Blaizot, Jean-Paul

    2017-03-01

    The early stages of heavy ion collisions are dominated by high density systems of gluons that carry each a small fraction x of the momenta of the colliding nucleons. A distinguishing feature of such systems is the phenomenon of ‘saturation’ which tames the expected growth of the gluon density as the energy of the collision increases. The onset of saturation occurs at a particular transverse momentum scale, the ‘saturation momentum’, that emerges dynamically and that marks the onset of non-linear gluon interactions. At high energy, and for large nuclei, the saturation momentum is large compared to the typical hadronic scale, making high density gluons amenable to a description with weak coupling techniques. This paper reviews some of the challenges faced in the study of such dense systems of small x gluons, and of the progress made in addressing them. The focus is on conceptual issues, and the presentation is both pedagogical, and critical. Examples where high gluon density could play a visible role in heavy ion collisions are briefly discussed at the end, for illustration purpose.

  3. Negative Ion Beam Extraction and Emittance

    SciTech Connect

    Holmes, Andrew J. T.

    2007-08-10

    The use of magnetic fields to both aid the production of negative ions and suppress the co-extracted electrons causes the emittance and hence the divergence of the negative ion beam to increase significantly due to the plasma non-uniformity from jxB drift. This drift distorts the beam-plasma meniscus and experimental results of the beam emittance are presented, which show that non-uniformity causes the square of the emittance to be proportional to the 2/3 power of the extracted current density. This can cause the divergence of the negative ion beam to be significantly larger than its positive ion counterpart. By comparing results from positive and negative ion beam emittances from the same source, it is also possible to draw conclusions about their vulnerability to magnetic effects. Finally emittances of caesiated and un-caesiated negative ion beams are compared to show how the surface and volume modes of production interact.

  4. Multiplicity and theremalization time in heavy-ions collisions

    NASA Astrophysics Data System (ADS)

    Aref'eva, Irina

    2016-10-01

    We present a concise review of quark-gluon plasma formation in heavy-ions collisions within the holographic approach. In particular, we discuss how to get the total multiplicity in heavy ions collision to fit the recent experimental data. We also discuss theoretical estimations of time formation of QGP in heavy ions collision and show that different observables can give the different times of QGP formation.

  5. Modeling of negative ion transport in a plasma source

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-08-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The ion trajectory is calculated by numerically solving the 3-D motion equation, while the atomic processes of destruction, of elastic collision H-/H+ and of charge exchange H-/H0 are handled at each time step by a Monte-Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided if they are produced at a distance lower than 2 cm from the plasma grid in the case of «volume production» (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  6. Transfer ionization in collisions with a fast highly charged ion.

    PubMed

    Voitkiv, A B

    2013-07-26

    Transfer ionization in fast collisions between a bare ion and an atom, in which one of the atomic electrons is captured by the ion whereas another one is emitted, crucially depends on dynamic electron-electron correlations. We show that in collisions with a highly charged ion a strong field of the ion has a very profound effect on the correlated channels of transfer ionization. In particular, this field weakens (strongly suppresses) electron emission into the direction opposite (perpendicular) to the motion of the ion. Instead, electron emission is redirected into those parts of the momentum space which are very weakly populated in fast collisions with low charged ions.

  7. Non abelian hydrodynamics and heavy ion collisions

    SciTech Connect

    Calzetta, E.

    2014-01-14

    The goal of the relativistic heavy ion collisions (RHIC) program is to create a state of matter where color degrees of freedom are deconfined. The dynamics of matter in this state, in spite of the complexities of quantum chromodynamics, is largely determined by the conservation laws of energy momentum and color currents. Therefore it is possible to describe its main features in hydrodynamic terms, the very short color neutralization time notwithstanding. In this lecture we shall give a simple derivation of the hydrodynamics of a color charged fluid, by generalizing the usual derivation of hydrodynamics from kinetic theory to the non abelian case.

  8. Jet reconstruction in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Cacciari, Matteo; Rojo, Juan; Salam, Gavin P.; Soyez, Gregory

    2011-01-01

    We examine the problem of jet reconstruction at heavy-ion colliders using jet-area-based background subtraction tools as provided by FastJet. We use Monte Carlo simulations with and without quenching to study the performance of several jet algorithms, including the option of filtering, under conditions corresponding to RHIC and LHC collisions. We find that most standard algorithms perform well, though the anti- k t and filtered Cambridge/Aachen algorithms have clear advantages in terms of the reconstructed p t offset and dispersion.

  9. CERN achievements in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Eugenio Bruno, Giuseppe

    2015-05-01

    Twenty years after a Letter of Intent by the GSI and LBL groups for the "Study of particle production and target fragmentation in central 20Ne on Pb reactions, at 12 GeV per nucleon energy of the CERN PS external beam" [1], based on the results found by the NA45/CERES, NA49, NA50, and WA97/NA57 experiments at the SPS, CERN announced compelling evidence for the formation of a new state of matter in heavyion collisions at CERN-SPS energies [2]. Some of the experiments were indeed the 2nd or 3rd generation successors of the apparatuses originally proposed by the GSI-LBL collaboration. Actually, the CERN ion program initiated at the SPS with the acceleration of oxygen ions at 60 and 200 GeV/nucleon only in 1986, and continued with sulphur ions at 200 GeV/nucleon up to 1993. The rest is history: lead-ion beams at 160 GeV/nucleon became available at the SPS in 1994; the LHC accelerated and collided lead beams at a center of mass energy per nucleon pair √sNN = 2.76 TeV in 2010. Heavy ion physics is definitely in the future program of CERN: ALICE will operate a major upgrade of its detectors during the second long shutdown of the LHC, in 2018-2019, and the associated physics program will span the third and fourth LHC runs, till late 2020s.

  10. New results for ultraperipheral heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Szczurek, Antoni; Kłusek-Gawenda, Mariola; Lebiedowicz, Piotr; Schäfer, Wolfgang

    2017-03-01

    We discuss diphoton semi(exclusive) production in ultraperipheral PbPb collisions at energy of √{sN N }=5.5 TeV (LHC). The nuclear calculations are based on equivalent photon approximation in the impact parameter space. The cross sections for elementary γγ → γγ subprocess are calculated including three different mechanisms: box diagrams with leptons and quarks in the loops, a VDM-Regge contribution with virtual intermediate hadronic excitations of the photons and the two-gluon exchange contribution (formally three-loops). We got relatively high cross sections in PbPb collisions. This opens a possibility to study the γγ → γγ (quasi)elastic scattering at the LHC. We find that the cross section for elastic γγ scattering could be measured in the lead-lead collisions for the diphoton invariant mass up to Wγγ ≈ 15 - 20 GeV. We identify region(s) of phase space where the two-gluon exchange contribution becomes important ingredient compared to box and nonperturbative VDM-Regge mechanisms. We discuss also first results concerning production of two e+e- pairs in UPCs of heavy ions. We considered only double scattering mechanism.

  11. Ionization Phenomena in Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Deveney, Edward Francis

    Two many-electron ion-atom collision systems are used to investigate atomic and molecular structure and collisional interactions. Electrons emitted from MeV/u C^{3+} projectile target -atom collisions were measured with a high-resolution position -sensitive electron spectrometer at Oak Ridge National Laboratory. The electrons are predominantly ionized by direct projectile -target interactions or autoionizing (AI) from doubly excited AI levels of the ion which were excited in the collision. The energy dependence of directly scattered target electrons, binary-encounter electrons (BEE), is investigated and compared with theory. AI levels of the projectile 1s to nl single electron excited series, (1s2snl) n = 2,3,4,....infty, including the series limit are identified uniquely using energy level calculations. Original Auger yield calculations using a code by Cowan were used to discover a 1/{n^3} scaling in intensities of Auger peaks in the aforementioned series. This is explained using scattering theory. A nonstatistical population of the terms in the (1s2s2l) configuration was identified and investigated as a function of the beam energy and for four different target atoms. Two electron excited configurations are identified and investigated. The angular distribution of a correlated transfer and excitation AI state is measured and compared to theory. The final scattered charge state distributions of Kr^ {n+}, n = 1, 2, 3, 4, 5, projectiles are measured following collisions with Kr targets in the Van de Graaff Laboratory here at The University of Connecticut. Average scattered charge states as high as 12 are observed. It appears that these electrons are ionized during the lifetime of the quasimolecular state but a complete picture of the ionization mechanism(s) is not known. Calculations using a statistical model of ionization, modified in several ways, are compared with the experimental results to see if it is possible to isolate whether or not the electrons originate

  12. Heavy-ion collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Roland, G.; Šafařík, K.; Steinberg, P.

    2014-07-01

    A new era in the study of high-energy nuclear collisions began when the CERN Large Hadron Collider (LHC) provided the first collisions of lead nuclei in late 2010. In the first three years of operation the ALICE, ATLAS and CMS experiments each collected Pb-Pb data samples of more than 50 μb at √{sNN}=2.76 TeV, exceeding the previously studied collision energies by more than an order of magnitude. These data have provided new insights into the properties of QCD matter under extreme conditions, with extensive measurements of soft particle production and newly accessible hard probes of the hot and dense medium. In this review, we provide a comprehensive overview of the results obtained in heavy-ion collisions at the LHC so far, with particular emphasis on the complementary nature of the observations by the three experiments. In particular, the combination of ALICE’s strengths at hadron identification, the strengths of ATLAS and CMS to make precise measurements of high pT probes, and the resourceful measurements of collective flow by all of the experiments have provided a rich and diverse dataset in only a few years. While the basic paradigm established at RHIC - that of a hot, dense medium that flows with a viscosity to shear-entropy ratio near the predicted lower bound, and which degrades the energy of probes, such as jets, heavy-flavours and J/ψ - is confirmed at the LHC, the new data suggest many new avenues for extracting its properties in detail.

  13. Geometrical methods in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Taliotis, Anastasios

    Currently there exists no known way to construct the Stress-Energy tensor (Tmunu) of the medium produced in heavy ion collisions at strong coupling from purely theoretical grounds. In this work, some steps are taken in that direction. In particular, the evolution of Tmunu at strong coupling and at high energies is being studied for early proper times (tau). This is achieved in the context of the AdS/CFT duality by constructing the evolution of the dual geometry in an AdS5 background. We consider high energy collisions of two shock waves in AdS5 as a model of ultra-relativistic nucleus-nucleus collisions in the boundary theory. We first calculate the graviton field produced in the collisions in the LO, NLO and NNLO approximations, corresponding to two, three and four-graviton exchanges with the shock waves. We use this model to study Tmunu and in particular the energy density of the strongly-coupled matter created immediately after the collision because as we argue, the expansion of the energy density (epsilon) in the powers of proper time tau squared corresponds on the gravity side to a perturbative expansion of the metric in graviton exchanges. We point out that shock waves corresponding to physical energy-momentum tensors of the nuclei is likely to completely stop after the collision; on the field theory side, this corresponds to complete nuclear stopping due to strong coupling effects, likely leading to Landau hydrodynamics. This motivates a more detailed investigation. For this reason we consider the asymmetric limit where the energy density in one shock wave is much higher than in the other one. In the boundary theory this setup corresponds to proton-nucleus collisions. Employing the eikonal approximation we find the exact high energy analytic solution for the metric in AdS5 for the asymmetric collision of two delta-function shock waves. The solution resums all-order graviton exchanges with the nucleus-shock wave and a single-graviton exchange with the proton

  14. Negative Halogen Ions for Fusion Applications

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.; Hahto, S.K.; Hahto, S.T.; Leung, K.N.; Westenskow, G.

    2006-01-01

    Over the past quarter century, advances in hydrogen negative ion sources have extended the usable range of hydrogen isotope neutral beams to energies suitable for large magnetically confined fusion devices. Recently, drawing upon this experience, negative halogen ions have been proposed as an alternative to positive ions for heavy ion fusion drivers in inertial confinement fusion, because electron accumulation would be prevented in negative ion beams, and if desired, the beams could be photo-detached to neutrals. This paper reports the results of an experiment comparing the current density and beam emittance of Cl+ and Cl- extracted from substantially ion-ion plasmas with that of Ar+ extracted from an ordinary electron-ion plasma, all using the same source, extractor, and emittance scanner. At similar discharge conditions, the Cl- current was typically 85 – 90% of the positive chlorine current, with an e-/ Cl- ratio as low as seven without grid magnets. The Cl- was as much as 76% of the Ar+ current from a discharge with the same RF drive. The minimum normalized beam emittance and inferred ion temperatures of Cl+, Cl-, and Ar+ were all similar, so the current density and optical quality of Cl- appear as suitable for heavy ion fusion driver applications as a positive noble gas ion of similar mass. Since F, I, and Br should all behave similarly in an ion source, they should also be suitable as driver beams.

  15. Issues in the understanding of negative ion extraction for fusion

    NASA Astrophysics Data System (ADS)

    Boeuf, J. P.; Fubiani, G.; Garrigues, L.

    2016-08-01

    A number of recent papers have been devoted to the modeling of negative ion extraction using particle simulations but the published results are not entirely satisfactory and not fully consistent with experiments. Issues raised by the simulations concern the saturation of the negative ion current emitted from the caesiated plasma grid surface, its distribution along the surface, the shape of the meniscus formed around each grid aperture, the distribution and depth of the potential in the virtual cathode, and the profile of the extracted beamlet. These are important issues since they have direct impact on the properties of the extracted negative ion beam (intensity, brightness, aberration). In this paper we first summarize recently published model results that are unexpected and counter-intuitive since they predict that negative ions are extracted from regions of the grid that are directly exposed to the large extraction voltage (i.e. as in vacuum and without the need for a neutralizing background plasma). We then illustrate, with results from two-dimensional particle-in-cell Monte Carlo collision simulations, some regimes of negative ion extraction that are more consistent with the expected physics.

  16. Modeling of negative ion transport in a plasma source (invited)

    NASA Astrophysics Data System (ADS)

    Riz, David; Paméla, Jérôme

    1998-02-01

    A code called NIETZSCHE has been developed to simulate the negative ion transport in a plasma source, from their birth place to the extraction holes. The H-/D- trajectory is calculated by numerically solving the 3D motion equation, while the atomic processes of destruction, of elastic collision with H+/D+ and of charge exchange with H0/D0 are handled at each time step by a Monte Carlo procedure. This code can be used to calculate the extraction probability of a negative ion produced at any location inside the source. Calculations performed with NIETZSCHE have been allowed to explain, either quantitatively or qualitatively, several phenomena observed in negative ion sources, such as the isotopic H-/D- effect, and the influence of the plasma grid bias or of the magnetic filter on the negative ion extraction. The code has also shown that, in the type of sources contemplated for ITER, which operate at large arc power densities (>1 W cm-3), negative ions can reach the extraction region provided they are produced at a distance lower than 2 cm from the plasma grid in the case of volume production (dissociative attachment processes), or if they are produced at the plasma grid surface, in the vicinity of the extraction holes.

  17. Storage rings for investigation of ion-atom collisions

    SciTech Connect

    Schuch, R.

    1987-08-01

    In this survey, we give a brief description of synchrotron storage rings for heavy ions, and examples for their use in ion-atom collision physics. The compression of the phase space distribution of the ions by electron cooling, and the gain factors of in-ring experiments compared to single-pass experiments are explained. Some examples of a new generation of ion-atom collision experiments which may become feasible with storage rings are given. These include the studies of angular differential single- and double-electron capture cross sections, the production of slow highly charged recoil ions, and atomic collision processes using decelerated and crossed beam. 30 refs.

  18. Fluid and kinetic models of negative ion sheaths

    SciTech Connect

    Cavenago, M.

    2011-09-26

    Due to the presence of a large transverse magnetic field (B{sub x} and B{sub y} where z is the extraction axis), the extraction of electrons from a negative ion source is likely to happen with a large angle with respect to z axis. The negative ion and electron sheaths are here studied both with kinetic and with fluid models. First, Vlasov-Poisson models are reduced to one dimensional integrodifferential equations, discussing also trapped orbits. The integrodifferential equations for electron transport are analytically solved for a variety of extraction potentials (in 1D). Collision frequency dependency from electron flow speed and temperature is discussed. Then both ion and electron space charge and fluid motion are solved, using electron densities expression consistent with kinetic model. Results for the sheath charge profile and extraction field as a function of B{sub x} are shown.

  19. Negative and positive cesium ion studies

    NASA Technical Reports Server (NTRS)

    Kuehn, D. G.; Sutliff, D. E.; Chanin, L. M.

    1978-01-01

    Mass spectrometric analyses have been performed on the positive and negative species from discharges in Cs, He-Cs, and He-H2-Cs mixtures. Sampling was conducted through the electrodes of normal glow discharges and from close-spaced heated-cathode conditions, which approximate a cesium thermionic converter. No negative Cs ions were observed for Cs pressures less than .01 torr. Identified species included Cs(+), Cs2(+), Cs(-), and what appeared to be multiply charged ions. Low-mass negative and positive ions attributed to H2 were observed when an He-H2 mixture was also present in the discharge region.

  20. Theoretical Concepts for Ultra-Relativistic Heavy Ion Collisions

    SciTech Connect

    McLerran,L.

    2009-07-27

    Various forms of matter may be produced in ultra-relativistic heavy ion collisions. These are the Quark GluonPlasma, the Color Glass Condensate , the Glasma and Quarkyoninc Matter. A novel effect that may beassociated with topological charge fluctuations is the Chiral Magnetic Effect. I explain these concepts andexplain how they may be seen in ultra-relatvistic heavy ion collisions

  1. Bose condensation of nuclei in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Townsend, Lawrence W.

    1994-01-01

    Using a fully self-consistent quantum statistical model, we demonstrate the possibility of Bose condensation of nuclei in heavy ion collisions. The most favorable conditions of high densities and low temperatures are usually associated with astrophysical processes and may be difficult to achieve in heavy ion collisions. Nonetheless, some suggestions for the possible experimental verification of the existence of this phenomenon are made.

  2. An advanced negative hydrogen ion source

    SciTech Connect

    Goncharov, Alexey A. Dobrovolsky, Andrey N.; Goretskii, Victor P.

    2016-02-15

    The results of investigation of emission productivity of negative particles source with cesiated combined discharge are presented. A cylindrical beam of negative hydrogen ions with density about 2 A/cm{sup 2} in low noise mode on source emission aperture is obtained. The total beam current values are up to 200 mA for negative hydrogen ions and up to 1.5 A for all negative particles with high divergence after source. The source has simple design and can produce stable discharge with low level of oscillation.

  3. Negative electrodes for Na-ion batteries.

    PubMed

    Dahbi, Mouad; Yabuuchi, Naoaki; Kubota, Kei; Tokiwa, Kazuyasu; Komaba, Shinichi

    2014-08-07

    Research interest in Na-ion batteries has increased rapidly because of the environmental friendliness of sodium compared to lithium. Throughout this Perspective paper, we report and review recent scientific advances in the field of negative electrode materials used for Na-ion batteries. This paper sheds light on negative electrode materials for Na-ion batteries: carbonaceous materials, oxides/phosphates (as sodium insertion materials), sodium alloy/compounds and so on. These electrode materials have different reaction mechanisms for electrochemical sodiation/desodiation processes. Moreover, not only sodiation-active materials but also binders, current collectors, electrolytes and electrode/electrolyte interphase and its stabilization are essential for long cycle life Na-ion batteries. This paper also addresses the prospect of Na-ion batteries as low-cost and long-life batteries with relatively high-energy density as their potential competitive edge over the commercialized Li-ion batteries.

  4. Hadron Production in Heavy Ion Collisions

    SciTech Connect

    Ritter, Hans Georg; Xu, Nu

    2009-05-19

    Heavy ion collisions are an ideal tool to explore the QCD phase diagram. The goal is to study the equation of state (EOS) and to search for possible in-medium modifications of hadrons. By varying the collision energy a variety of regimes with their specific physics interest can be studied. At energies of a few GeV per nucleon, the regime where experiments were performed first at the Berkeley Bevalac and later at the Schwer-Ionen-Synchrotron (SIS) at GSI in Darmstadt, we study the equation of state of dense nuclear matter and try to identify in-medium modifications of hadrons. Towards higher energies, the regime of the Alternating Gradient Synchrotron (AGS) at the Brookhaven National Laboratory (BNL), the Super-Proton Synchrotron (SPS) at CERN, and the Relativistic Heavy Ion Collider (RHIC) at BNL, we expect to produce a new state of matter, the Quark-Gluon Plasma (QGP). The physics goal is to identify the QGP and to study its properties. By varying the energy, different forms of matter are produced. At low energies we study dense nuclear matter, similar to the type of matter neutron stars are made of. As the energy is increased the main constituents of the matter will change. Baryon excitations will become more prevalent (resonance matter). Eventually we produce deconfined partonic matter that is thought to be in the core of neutron stars and that existed in the early universe. At low energies a great variety of collective effects is observed and a rather good understanding of the particle production has been achieved, especially that of the most abundantly produced pions and kaons. Many observations can be interpreted as time-ordered emission of various particle species. It is possible to determine, albeit model dependent, the equation of state of nuclear matter. We also have seen indications, that the kaon mass, especially the mass of the K{sup +}, might be modified by the medium created in heavy ion collisions. At AGS energies and above, emphasis shifts towards

  5. Negative Ions for Emerging Interdisciplinary Applications

    NASA Astrophysics Data System (ADS)

    Guharay, Samar K.

    2011-09-01

    In many applications related to ion beam-materials interactions negative ions are particularly desirable due to its merit to yield a very low surface charge-up voltage, ˜ a few volts, for both electrically isolated surfaces and insulators. Some important applications pertaining to ion beam-material interactions include surface analysis by secondary ion mass spectrometry (SIMS), voltage-contrast microscopy for semiconductor device inspection, materials processing, and ion beam lithography. These applications primarily require vacuum environments. On the other hand, a distinct area of activities constitutes formation of ions and ion transport in ambient environmental conditions, i.e., at atmospheric pressures. In this context, ion mobility spectrometry (IMS) is an important analytical device that uses negative ions and operates at ambient conditions. IMS is widely used in both physical and biological sciences including monitoring environmental conditions, security screening and disease detection. This article highlights several critical issues related to the ionization sources and ion transport in IMS. Additionally, the critical issues related to ion sources, transport and focusing are discussed in the context of SIMS with sub-micrometer spatial resolution.

  6. Surface Production of Negative Hydrogen Ions.

    DTIC Science & Technology

    2014-09-26

    Identify by block number) -ii -"Measurements of sputtering of adsorbed hydrogen by cesium ion bombardment -m r -J have been completed. The temperature...of the desorbed negative hydrogen ions - Ad is about 0.5 percent of the bombarding energy. An experiment for studying bombardment with cesium and...hydrogen ions has been constructed. Formation of cesium coverage due to cesium bombardment of a molybdenum target has been studied. Cesium coverage is

  7. Unresolved problems in cesiation processes of negative hydrogen ion sources

    NASA Astrophysics Data System (ADS)

    Wada, Motoi

    2013-09-01

    Attempts are being made to optimize negative hydrogen (H-) ion current by introducing Cs into an ion source, but there are some unanswered questions in properly handling Cs to realize stable extraction of H- ion beams. For example, Cs amount to optimize H- production often becomes much larger than the amount predicted to realize partial monolayer of Cs on the source wall. Additional charge of Cs into a source to recover reduced H- current by continuous operation does not necessarily realize the original value. Beam intensity of H- changes with the impurity content in the ion source. The purpose of the present paper is to list up these uncertainties and unknown factors in negative ion source performance operated with Cs. The paper tries to identify possible mechanisms causing these problems by running a simulation code ACAT (Atomic Collision in Amorphous Target). The code predicts that glancing injection of hydrogen ions doubles the numbers of both reflection coefficients and ion induced desorption yields from those for the normal incidence. It also indicates smaller hydrogen desorption yields for thick layer of adsorbed hydrogen on the surface. These results are compared with experimental data obtained in UHV conditions.

  8. Chemical Properties of Dipole-Bound Negative Ions

    NASA Astrophysics Data System (ADS)

    Liu, Y.

    2005-05-01

    In dipole bound negative ions the extra electron is weakly bound by the dipole potential of the neutral molecule in a diffuse orbital localized near the positive end of the dipole. In consequence, it is reasonable to expect that such species will be highly reactive and possess chemical properties similar to those of Rydberg atoms, which also contain a weakly-bound electron in a diffuse orbital. These properties are being examined using a negative ion Penning trap. Data for electron transfer in collisions with attaching targets such as SF6 show that the rate constants for this process are large, ˜ 10-7 cm^3 s-1, and similar to those for free electron attachment. This suggests that collisions can be described in terms of an essentially-free electron model. This is further reinforced by the observation that rotational energy transfer in collisions with polar molecules can lead to rapid electron detachment, again with large rate constants of ˜ 10 -7 cm^3 s-1. Results for several target species will be presented and discussed in light of a free electron model.

  9. Experimental evaluation of a negative ion source for a heavy ionfusion negative ion driver

    SciTech Connect

    Grisham, L.R.; Hahto, S.K.; Hahto, S.T.; Kwan, J.W.; Leung, K.N.

    2005-01-18

    Negative halogen ions have recently been proposed as a possible alternative to positive ions for heavy ion fusion drivers because electron accumulation would not be a problem in the accelerator, and if desired, the beams could be photodetached to neutrals [1,2,3]. To test the ability to make suitable quality beams, an experiment was conducted at Lawrence Berkeley National Laboratory using chlorine in an RF-driven ion source. Without introducing any cesium (which is required to enhance negative ion production in hydrogen ion sources) a negative chlorine current density of 45 mA/cm{sup 2} was obtained under the same conditions that gave 57 mA/cm{sup 2} of positive chlorine, suggesting the presence of nearly as many negative ions as positive ions in the plasma near the extraction plane. The negative ion spectrum was 99.5% atomic chlorine ions, with only 0.5% molecular chlorine, and essentially no impurities. Although this experiment did not incorporate the type of electron suppression technology that is used in negative hydrogen beam extraction, the ratio of co-extracted electrons to Cl{sup -} was as low as 7 to 1, many times lower than the ratio of their mobilities, suggesting that few electrons are present in the near-extractor plasma. This, along with the near-equivalence of the positive and negative ion currents, suggests that the plasma in this region was mostly an ion-ion plasma. The negative chlorine current density was relatively insensitive to pressure, and scaled linearly with RF power. If this linear scaling continues to hold at higher RF powers, it should permit current densities of 100 mA/cm{sup 2}, sufficient for present heavy ion fusion injector concepts. The effective ion temperatures of the positive and negative ions appeared to be similar and relatively low for a plasma source.

  10. Influence of the quantum interference on the bosonic and fermionic ion-ion collisions

    NASA Astrophysics Data System (ADS)

    Hong, Woo-Pyo; Jung, Young-Dae

    2014-03-01

    The quantum interference effects on the bosonic-bosonic (He-4)-(He-4), fermionic-fermionic (He-3)-(He-3), and bosonic-fermionic (He-4)-(He-3) ion-ion collisions are investigated by using the isotope of the He nucleus in dense semiclassical Coulomb systems with the Faxen-Holtzmark method. It is found that the scattering cross section for the fermionic-fermionic ion-ion collision is greater than the bosonic-bosonic and bosonic-fermionic ion collision cross sections. It is also found that the collisional induced quantum interference effect enhances the ion-ion collision cross section in semiclassical Coulomb systems. The variation of the quantum-mechanical effect on the bosonic and fermionic ion-ion collisions is also discussed. This paper is dedicated to the late Prof. P. K. Shukla in memory of exciting and stimulating collaborations on physical processes in semiclassical Coulomb systems.

  11. Beam-plasma interactions in a positive ion-negative ion plasma

    NASA Technical Reports Server (NTRS)

    Intrator, T.; Hershkowitz, N.; Stern, R.

    1983-01-01

    An electron-free plasma consisting of negative ions /SF6(-)/ and positive ions /Ar(+)/, and negligible neutral-ion collision frequencies has been created in the laboratory. This plasma has a mass ratio of approximately 3.5-similar to many computer particle-in-cell simulated systems. A fluid description of this positive and negative ion confinement (PANIC) plasma is given and compared to experimental measurements of a beam-plasma instability for both beam species and a wide range of beam energies. The fluid dispersion relation and most growing modes are predicted to be insensitive to many parameters of the PANIC beam-plasma system, and found to the consistent with the data.

  12. Newly appreciated roles for electrons in ion-atom collisions

    SciTech Connect

    Sellin, I.A. . Dept. of Physics and Astronomy Oak Ridge National Lab., TN )

    1990-01-01

    Since the previous Debrecen workshop on High-Energy Ion-Atom Collisions there have been numerous experiments and substantial theoretical developments in the fields of fast ion-atom and ion- solid collisions concerned with explicating the previously largely underappreciated role of electrons as ionizing and exciting agents in such collisions. Examples to be discussed include the double electron ionization problem in He; transfer ionization by protons in He; double excitation in He; backward scattering of electrons in He; the role of electron-electron interaction in determining beta parameters for ELC; projectile K ionization by target electrons; electron spin exchange in transfer excitation; electron impact ionization in crystal channels; resonant coherent excitation in crystal channels; excitation and dielectronic recombination in crystal channels; resonant transfer and excitation; the similarity of recoil ion spectra observed in coincidence with electron capture vs. electron loss; and new research on ion-atom collisions at relativistic energies.

  13. PIC modeling of negative ion sources for fusion

    NASA Astrophysics Data System (ADS)

    Taccogna, F.; Minelli, P.

    2017-01-01

    This work represents the first attempt to model the full-size ITER negative ion source prototype including expansion, extraction and part of the acceleration regions keeping the resolution fine enough to resolve every single aperture of the extraction grid. The model consists of a 2.5-dimensional Particle-in-Cell/Monte Carlo Collision representation of the plane perpendicular to the filter field lines. Both the magnetic filter and electron deflection fields have been included. A negative ion current density of {j}{H-}=500 {{A}} {{{m}}}-2 produced by neutral conversion from the plasma grid is used as fixed parameter, while negative ions produced by electron dissociative attachment of vibrationally excited molecules and by ionic conversion on plasma grid are self-consistently simulated. Results show the non-ambipolar character of the transport in the expansion region driven by electron magnetic drifts in the plane perpendicular to the filter field. It induces a top-bottom asymmetry detected up to the extraction grid which in turn leads to a tilted positive ion flow hitting the plasma grid and a tilted negative ion flow emitted from the plasma grid. As a consequence, the plasma structure is not uniform around the single aperture: the meniscus assumes a form of asymmetric lobe and a deeper potential well is detected from one side of the aperture relative to the other side. Therefore, the surface-produced contribution to the negative ion extraction is not equally distributed between both the sides around the aperture but it come mainly from the lower side of the grid giving an asymmetrical current distribution in the single beamlet.

  14. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS.

    SciTech Connect

    STEINBERG,P.A.FOR THE PHOBOS COLLABORATION

    2002-07-24

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  15. Factorization, the Glasma and the Ridge in heavy ion collisions

    SciTech Connect

    Venugopalan, Raju

    2008-10-13

    High energy heavy ion collisions can be efficiently described as the collision of two sheets of Color Glass Condensate. The dynamics of the collision can be studied ab initio in a systematic effective field theory approach. This requires factorization theorems that separate the initial state evolution of the wave functions with energy from the final state interactions that produce matter with high energy densities called the Glasma. We discuss how this matter is formed, its remarkable properties and its relevance for understanding thermalization of the Quark Gluon Plasma in heavy ion collisions. Long range rapidity correlations in the collision that have a remarkable ridge like structure may allow us to probe early times in the collision and infer directly the properties of the Glasma.

  16. Generation of intense negative ion beams

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Orient, Otto J. (Inventor); Aladzhadzhyan, Samuel H. (Inventor)

    1987-01-01

    An electron gun is used with a mirror electrostatic field to produce zero or near zero velocity electrons by forming a turning point in their trajectories. A gas capable of attaching zero or near zero velocity is introduced at this turning point, and negative ions are produced by the attachment or dissociative attachment process. Operation may be continuous or pulsed. Ions thus formed are extracted by a simple lens system and suitable biasing of grids.

  17. Negative Electrodes for Li-Ion Batteries

    SciTech Connect

    Kinoshita, Kim; Zaghib, Karim

    2001-10-01

    Graphitized carbons have played a key role in the successful commercialization of Li-ion batteries. The physicochemical properties of carbon cover a wide range; therefore identifying the optimum active electrode material can be time consuming. The significant physical properties of negative electrodes for Li-ion batteries are summarized, and the relationship of these properties to their electrochemical performance in nonaqueous electrolytes, are discussed in this paper.

  18. The production and destruction of negative ions

    SciTech Connect

    Pegg, D.J.

    1993-01-01

    Single photon absorption-single electron detachment from few-electron atomic negative ions was studied. A crossed beam apparatus is being used to perform energy- and angle-resolved photoelectron spectroscopic measurements following photodetachment. Forward-directed electrons were collected and energy analyzed. The kinetic energies and yields of the photoelectrons were obtained by fitting the spectral peaks to Gaussian functions. Electron affinities, asymmetry parameters and cross sections are determined from these measurements. A ratio method in which the cross section for the ion of interest is measured relative to that of a reference ion was used. The study of the photodetachment of Li[sup [minus

  19. Negative ion sound solitary waves revisited

    NASA Astrophysics Data System (ADS)

    Cairns, R. A.; Cairns

    2013-12-01

    Some years ago, a group including the present author and Padma Shukla showed that a suitable non-thermal electron distribution allows the formation of ion sound solitary waves with either positive or negative density perturbations, whereas with Maxwellian electrons only a positive density perturbation is possible. The present paper discusses the qualitative features of this distribution allowing the negative waves and shared with suitable two-temperature distributions.

  20. Effect of correlations on cumulants in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Mishra, D. K.; Garg, P.; Netrakanti, P. K.

    2016-02-01

    We study the effects of correlations on cumulants and their ratios of net-proton multiplicity distributions which have been measured for central (0%-5%) Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC). This effect has been studied by assuming individual proton and antiproton distributions as a Poisson or negative binomial distribution (NBD). In spite of significantly correlated production due to baryon number, electric charge conservation, and kinematical correlations of protons and antiprotons, the measured cumulants of the net-proton distribution follow the independent-production model. In the present work we demonstrate how the introduction of the correlations will affect the cumulants and their ratios for the difference distributions. We have also demonstrated this study using the proton and antiproton distributions obtained from the hijing event generator.

  1. Study of negative ion transport phenomena in a plasma source

    NASA Astrophysics Data System (ADS)

    Riz, D.; Paméla, J.

    1996-07-01

    NIETZSCHE (Negative Ions Extraction and Transport ZSimulation Code for HydrogEn species) is a negative ion (NI) transport code developed at Cadarache. This code calculates NI trajectories using a 3D Monte-Carlo technique, taking into account the main destruction processes, as well as elastic collisions (H-/H+) and charge exchanges (H-/H0). It determines the extraction probability of a NI created at a given position. According to the simulations, we have seen that in the case of volume production, only NI produced close to the plasma grid (PG) can be extracted. Concerning the surface production, we have studied how NI produced on the PG and accelerated by the plasma sheath backward into the source could be extracted. We demonstrate that elastic collisions and charge exchanges play an important role, which in some conditions dominates the magnetic filter effect, which acts as a magnetic mirror. NI transport in various conditions will be discussed: volume/surface production, high/low plasmas density, tent filter/transverse filter.

  2. Observation of Cold Collisions between Trapped Ions and Trapped Atoms

    NASA Astrophysics Data System (ADS)

    Grier, Andrew T.; Cetina, Marko; Oručević, Fedja; Vuletić, Vladan

    2009-06-01

    We study cold collisions between trapped ions and trapped atoms in the semiclassical (Langevin) regime. Using Yb+ ions confined in a Paul trap and Yb atoms in a magneto-optical trap, we investigate charge-exchange collisions of several isotopes over three decades of collision energies down to 3μeV (kB×35mK). The minimum measured rate coefficient of 6×10-10cm3s-1 is in good agreement with that derived from a Langevin model for an atomic polarizability of 143 a.u.

  3. Reversal ion source - A new source of negative ion beams

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Chutjian, A.; Alajajian, S. H.

    1985-01-01

    A new type of ion source utilizing beams of electrons and target molecules, rather than a diffuse, volume plasma, is described. The source utilizes an electrostatic electron 'mirror' which reverses trajectories in an electron beam, producing electrons at their turning point having a distribution of velocities centered at zero velocity. A gas which attaches zero-velocity electrons is introduced at this turning point. Negative ions are produced by an attachment or dissociative attachment process. For many of the thermal electron-attaching molecules the cross sections can be quite large, varying as the inverse square root of the electron energy or just the s-wave threshold law. The efficiency and current density of the ion source for production of Cl(-) through the large, thermal energy attachment process is estimated. It is argued that the source can be used for the production of negative ions through attachment resonances located at higher energies as well.

  4. Jets in heavy ion collisions at the LHC

    NASA Astrophysics Data System (ADS)

    Roland, Christof

    2015-11-01

    In this document I present a brief review of the concepts of jet physics employed in heavy ion physics. Fast partons originating from scatterings with large momentum transfer are produced at very short time-scales and subsequently propagate through the strongly interacting medium produced in the collisions of heavy nuclei. They feature the only experimental handle available to directly study the interaction of a well defined probe and the medium. Consequently they are ideally suited to investigate the nature of the medium produced in these collisions and the mechanism of interaction between the medium and the partons. The experimental methods necessary to reconstruct jets originating from fragmenting partons in the environment of high particle multiplicity heavy ion collisions will be discussed. Physics observables suited to investigate the parton medium interaction will be introduced and a summary of recent results on jet physics in heavy ion collisions is presented.

  5. Skyrme tensor force in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Stevenson, P. D.; Suckling, E. B.; Fracasso, S.; Barton, M. C.; Umar, A. S.

    2016-05-01

    Background: It is generally acknowledged that the time-dependent Hartree-Fock (TDHF) method provides a useful foundation for a fully microscopic many-body theory of low-energy heavy ion reactions. The TDHF method is also known in nuclear physics in the small-amplitude domain, where it provides a useful description of collective states, and is based on the mean-field formalism, which has been a relatively successful approximation to the nuclear many-body problem. Currently, the TDHF theory is being widely used in the study of fusion excitation functions, fission, and deep-inelastic scattering of heavy mass systems, while providing a natural foundation for many other studies. Purpose: With the advancement of computational power it is now possible to undertake TDHF calculations without any symmetry assumptions and incorporate the major strides made by the nuclear structure community in improving the energy density functionals used in these calculations. In particular, time-odd and tensor terms in these functionals are naturally present during the dynamical evolution, while being absent or minimally important for most static calculations. The parameters of these terms are determined by the requirement of Galilean invariance or local gauge invariance but their significance for the reaction dynamics have not been fully studied. This work addresses this question with emphasis on the tensor force. Method: The full version of the Skyrme force, including terms arising only from the Skyrme tensor force, is applied to the study of collisions within a completely symmetry-unrestricted TDHF implementation. Results: We examine the effect on upper fusion thresholds with and without the tensor force terms and find an effect on the fusion threshold energy of the order several MeV. Details of the distribution of the energy within terms in the energy density functional are also discussed. Conclusions: Terms in the energy density functional linked to the tensor force can play a non

  6. Development of versatile multiaperture negative ion sources

    SciTech Connect

    Cavenago, M.; Minarello, A.; Sattin, M.; Serianni, G.; Antoni, V.; Bigi, M.; Pasqualotto, R.; Recchia, M.; Veltri, P.; Agostinetti, P.; Barbisan, M.; Baseggio, L.; Cervaro, V.; Degli Agostini, F.; Franchin, L.; Laterza, B.; Ravarotto, D.; Rossetto, F.; Zaniol, B.; Zucchetti, S.; and others

    2015-04-08

    Enhancement of negative ion sources for production of large ion beams is a very active research field nowadays, driven from demand of plasma heating in nuclear fusion devices and accelerator applications. As a versatile test bench, the ion source NIO1 (Negative Ion Optimization 1) is being commissioned by Consorzio RFX and INFN. The nominal beam current of 135 mA at −60 kV is divided into 9 beamlets, with multiaperture extraction electrodes. The plasma is sustained by a 2 MHz radiofrequency power supply, with a standard matching box. A High Voltage Deck (HVD) placed inside the lead shielding surrounding NIO1 contains the radiofrequency generator, the gas control, electronics and power supplies for the ion source. An autonomous closed circuit water cooling system was installed for the whole system, with a branch towards the HVD, using carefully optimized helical tubing. Insulation transformer is installed in a nearby box. Tests of several magnetic configurations can be performed. Status of experiments, measured spectra and plasma luminosity are described. Upgrades of magnetic filter, beam calorimeter and extraction grid and related theoretical issues are reviewed.

  7. Ion momentum and energy transfer rates for charge exchange collisions

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Banks, P. M.

    1973-01-01

    The rates of momentum and energy transfer have been obtained for charge exchange collisions between ion and neutral gases having arbitrary Maxwellian temperatures and bulk transport velocities. The results are directly applicable to the F-region of the ionosphere where 0+ - 0 charge is the dominant mechanism affecting ion momentum and energy transfer.

  8. Negative ion source with external RF antenna

    DOEpatents

    Leung, Ka-Ngo; Hahto, Sami K.; Hahto, Sari T.

    2007-02-13

    A radio frequency (RF) driven plasma ion source has an external RF antenna, i.e. the RF antenna is positioned outside the plasma generating chamber rather than inside. The RF antenna is typically formed of a small diameter metal tube coated with an insulator. An external RF antenna assembly is used to mount the external RF antenna to the ion source. The RF antenna tubing is wound around the external RF antenna assembly to form a coil. The external RF antenna assembly is formed of a material, e.g. quartz, which is essentially transparent to the RF waves. The external RF antenna assembly is attached to and forms a part of the plasma source chamber so that the RF waves emitted by the RF antenna enter into the inside of the plasma chamber and ionize a gas contained therein. The plasma ion source is typically a multi-cusp ion source. A converter can be included in the ion source to produce negative ions.

  9. EDITORIAL: Negative ion based neutral beam injection

    NASA Astrophysics Data System (ADS)

    Hemsworth, R. S.

    2006-06-01

    It is widely recognized that neutral beam injection (NBI), i.e. the injection of high energy, high power, beams of H or D atoms, is a flexible and reliable system that has been the main heating system on a large variety of fusion devices, and NBI has been chosen as one of the three heating schemes of the International Tokomak Reactor (ITER). To date, all the NBI systems but two have been based on the neutralization (in a simple gas target) of positive hydrogen or deuterium ions accelerated to <100 keV/nucleon. Above that energy the neutralization of positive ions falls to unacceptably low values, and higher energy neutral beams have to be created by the neutralization of accelerated negative ions (in a simple gas target), as this remains high (approx60%) up to >1 MeV/nucleon. Unfortunately H- and D- are difficult to create, and the very characteristic that makes them attractive, the ease with which the electron is detached from the ion, means that it is difficult to create high concentrations or fluxes of them, and it is difficult to avoid substantial, collisional, losses in the extraction and acceleration processes. However, there has been impressive progress in negative ion sources and accelerators over the past decade, as demonstrated by the two pioneering, operational, multi-megawatt, negative ion based, NBI systems at LHD (180 keV, H0) and JT-60U (500 keV, D0), both in Japan. Nevertheless, the system proposed for ITER represents a substantial technological challenge as an increase is required in beam energy, to 1 MeV, D0, accelerated ion (D-) current, to 40 A, accelerated current density, 200 A m-2 of D-, and pulse length, to 1 h. At the Fourth IAEA Technical Meeting on Negative Ion Based Neutral Beam Injectors, hosted by the Consorzio RFX, Padova, Italy, 9-11 May 2005, the status of the R&D aimed at the realization of the injectors for ITER was presented. Because of the importance of this development to the success of the ITER project, participants at that

  10. DNA Oligonucleotide Fragment Ion Rearrangements Upon Collision-Induced Dissociation

    NASA Astrophysics Data System (ADS)

    Harper, Brett; Neumann, Elizabeth K.; Solouki, Touradj

    2015-08-01

    Collision-induced dissociation (CID) of m/z-isolated w type fragment ions and an intact 5' phosphorylated DNA oligonucleotide generated rearranged product ions. Of the 21 studied w ions of various nucleotide sequences, fragment ion sizes, and charge states, 18 (~86%) generated rearranged product ions upon CID in a Synapt G2-S HDMS (Waters Corporation, Manchester, England, UK) ion mobility-mass spectrometer. Mass spectrometry (MS), ion mobility spectrometry (IMS), and theoretical modeling data suggest that purine bases can attack the free 5' phosphate group in w type ions and 5' phosphorylated DNA to generate sequence permuted [phosphopurine]- fragment ions. We propose and discuss a potential mechanism for generation of rearranged [phosphopurine]- and complementary y-B type product ions.

  11. Dynamical Aspects of Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Garcia-Solis, Edmundo Javier

    1995-01-01

    Two independent studies on heavy-ion collisions are presented. In the first part, the charge and mass of the projectile-like fragments produced in the 15-MeV per nucleon ^{40}Ca+^{209 } Bi reaction were determined for products detected near the grazing angle. Neutron number-charge (N-Z) distributions were generated as a function of the total kinetic energy loss and parameterized by their centroids, variances and correlation coefficients. After the interaction, a drift of the charge and mass centroids towards asymmetry is observed. The production of projectile -like fragments is consistent with a tendency of the projectile -like fragments to retain the projectile neutron-to-proton ratio < N > / < Z > = 1. The correlation coefficient remains well below 1.0 for the entire range of total kinetic energy lost. Predictions of two nucleon exchange models, Randrup's and Tassan-Got's, are compared to the experimental results. The models are not able to reproduce the evolution of the experimental distributions, especially the fact that the variances reach a maximum and then decrease as function of the energy loss. This behavior supports the hypothesis that some form of projectile -like fragmentation or cluster emission is perturbing the product distribution from that expected from a damped mechanism. In the second part of the thesis a clustering model that allows the recognition of mass fragments from dynamical simulations has been developed. Studying the evolution of a microscopic computation based on the nuclear -Boltzman transport equation, a suitable time is chosen to identify the bound clusters. At this time the number of binding surfaces for each test nucleon is found. Based on the number of nucleon bindings the interior nucleons are identified, and the cluster kernels are formed. An iterative routine is then applied to determine the coalescence of the surrounding free nucleons. Once the fragment formation has been established, a statistical decay code is used to

  12. Effects of Ion-Ion Collisions and Inhomogeneity in Two-Dimensional Kinetic Ion Simulations of Stimulated Brillouin Backscattering

    SciTech Connect

    Cohen, B I; Divol, L; Langdon, A B; Williams, E A

    2005-10-17

    Two-dimensional simulations with the BZOHAR [B.I. Cohen, B.F. Lasinski, A.B. Langdon, and E.A. Williams, Phys. Plasmas 4, 956 (1997)] hybrid code (kinetic particle ions and Boltzmann fluid electrons) have been used to investigate the saturation of stimulated Brillouin backscatter (SBBS) instability including the effects of ion-ion collisions and inhomogeneity. Ion-ion collisions tend to increase ion-wave dissipation, which decreases the gain exponent for stimulated Brillouin backscattering; and the peak Brillouin backscatter reflectivities tend to decrease with increasing collisionality in the simulations. Two types of Langevin-operator, ion-ion collision models were implemented in the simulations. In both models used the collisions are functions of the local ion temperature and density, but the collisions have no velocity dependence in the first model. In the second model, the collisions are also functions of the energy of the ion that is being scattered so as to represent a Fokker-Planck collision operator. Collisions decorrelate the ions from the acoustic waves in SBS, which disrupts ion trapping in the acoustic wave. Nevertheless, ion trapping leading to a hot ion tail and two-dimensional physics that allows the SBS ion waves to nonlinearly scatter remain robust saturation mechanisms for SBBS in a high-gain limit over a range of ion collisionality. SBS backscatter in the presence of a spatially nonuniform plasma flow is also investigated. Simulations show that depending on the sign of the spatial gradient of the flow relative to the backscatter, ion trapping effects that produce a nonlinear frequency shift can enhance (auto-resonance) or decrease (anti-auto-resonance) reflectivities in agreement with theoretical arguments.

  13. Heavy Ion Collisions and New Forms of Matter

    SciTech Connect

    McLerran, Larry

    2007-11-20

    I discuss forms of high energy density matter in QCD. These include the Color Glass Condensate, the Glasma and the Quark Gluon Plasma. These all might be studied in ultra-relativistic heavy ion collisions, and the Color Glass Condensate might also be probed in electron-hadron collisions. I present the properties of such matter, and some aspects of what is known of their properties.

  14. Density trends of negative ions at Titan

    NASA Astrophysics Data System (ADS)

    Wellbrock, A.; Coates, A. J.; Jones, G. H.; Arridge, C. S.; Lewis, G.; Sittler, E. C.; Young, D. T.

    2012-12-01

    The Electron Spectrometer part of the Cassini Plasma Spectrometer (CAPS-ELS) has revealed the existence of negative ions in Titan's ionosphere (Coates et al, 2007, Waite et al, 2007). These are observed during every encounter when the instrument points in the ram direction at altitudes between 950 and 1400 km. The heaviest ions observed so far have masses up to 13 800 amu/q. This suggests that complex hydrocarbon and nitrile chemical processes take place in Titan's upper atmosphere, probably playing a role in haze formation. Even heavier particles such as tholins can form which fall to lower altitudes and build up on Titan's surface (Coates et al., 2009). Coates et al. (2009) discussed trends in the highest masses observed with solar zenith angle (SZA), altitude and latitude. We are extending this study to density trends of different masses. With data from over 34 encounters and taking advantage of an increase in the duty cycle of measurements during recent flybys we have accumulated a large negative ion database. Groups of masses can be identified because recurrent peaks are observed in the mass-per-charge spectra of different encounters. We have updated these mass groups according to the spectra including the most recent flybys. This includes a heavy group of 625 amu/q and above. We investigate the effects of different controlling parameters such as altitude, solar zenith angle, latitude and possible seasonal effects. The aim of this study is to help constrain the chemical formation and destruction processes of negative ions in Titan's ionosphere. By studying SZA trends we can for example learn about whether nightside reactions or photochemical reactions yield higher densities for the different groups. We present the results and discuss their implications. For instance, the heaviest mass group (>625 amu/q) negative ions are only present at altitudes below 1100 km. Densities of this mass group are highest on the nightside however there are some moderate densities

  15. Negative ion source with low temperature transverse divergence optical system

    DOEpatents

    Whealton, J.H.; Stirling, W.L.

    1985-03-04

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  16. Negative ion source with low temperature transverse divergence optical system

    DOEpatents

    Whealton, John H.; Stirling, William L.

    1986-01-01

    A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.

  17. Manipulating ion-atom collisions with coherent electromagnetic radiation.

    PubMed

    Kirchner, Tom

    2002-08-26

    Laser-assisted ion-atom collisions are considered in terms of a nonperturbative quantum mechanical description of the electronic motion. It is shown for the system He(2+) - H at 2 keV/amu that the collision dynamics depend strongly on the initial phase of the laser field and the applied wavelength. Whereas electronic transitions are caused by the concurrent action of the field and the projectile ion at relatively low frequencies, they can be separated into modified collisional capture and field ionization events in the region above the one-photon ionization threshold.

  18. Multiple-electron processes in fast ion-atom collisions

    SciTech Connect

    Schlachter, A.S.

    1989-03-01

    Research in atomic physics at the Lawrence Berkeley Laboratory Super-HILAC and Bevalac accelerators on multiple-electron processes in fast ion-atom collisions is described. Experiments have studied various aspects of the charge-transfer, ionization, and excitation processes. Examples of processes in which electron correlation plays a role are resonant transfer and excitation and Auger-electron emission. Processes in which electron behavior can generally be described as uncorrelated include ionization and charge transfer in high-energy ion-atom collisions. A variety of experiments and results for energies from 1 MeV/u to 420 MeV/u are presented. 20 refs., 15 figs.

  19. Electron-less negative ion extraction from ion-ion plasmas

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-03-09

    This paper presents experimental results showing that continuous negative ion extraction, without co-extracted electrons, is possible from highly electronegative SF{sub 6} ion-ion plasma at low gas pressure (1 mTorr). The ratio between the negative ion and electron densities is more than 3000 in the vicinity of the two-grid extraction and acceleration system. The measurements are conducted by both magnetized and non-magnetized energy analyzers attached to the external grid. With these two analyzers, we show that the extracted negative ion flux is almost electron-free and has the same magnitude as the positive ion flux extracted and accelerated when the grids are biased oppositely. The results presented here can be used for validation of numerical and analytical models of ion extraction from ion-ion plasma.

  20. Cesium injection system for negative ion duoplasmatrons

    DOEpatents

    Kobayashi, Maasaki; Prelec, Krsto; Sluyters, Theodorus J

    1978-01-01

    Longitudinally extending, foraminous cartridge means having a cylindrical side wall forming one flat, circular, tip end surface and an opposite end; an open-ended cavity, and uniformly spaced orifices for venting the cavity through the side wall in the annulus of a plasma ring for uniformly ejecting cesium for coating the flat, circular, surface. To this end, the cavity is filled with a cesium containing substance and attached to a heater in a hollow-discharge duoplasmatron. By coating the flat circular surface with a uniform monolayer of cesium and locating it in an electrical potential well at the end of a hollow-discharge, ion duoplasmatron source of an annular hydrogen plasma ring, the negative hydrogen production from the duoplasmatron is increased. The negative hydrogen is produced on the flat surface of the cartridge and extracted by the electrical potential well along a trajectory coaxial with the axis of the plasma ring.

  1. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  2. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  3. Meson interferometry in relativistic heavy ion collisions

    SciTech Connect

    Not Available

    1993-05-01

    This report contains discussions on the following topics: Recent HBT results form CERN experiment NA44; interferometry results from E802/E859/E866; recent results on two particle correlations from E814; source sizes from CERN data; intermittency and interferometry; Bose-Einstein correlations in 200A GeV S+Au collisions; HBT correlations at STAR; HBT interferometry with PHENIX; HBT calculations from ARC; three pion correlations; and pion correlations in proton-induced reactions.

  4. Catalytic reactions in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Tomášik, B.

    2012-06-01

    We discuss a new type of reactions of a ϕ-meson production on hyperons, πY → ϕY and antikaons -KN → ϕY. These reactions are not suppressed according to Okubo-Zweig-Iizuka rule and can be a new efficient source of ϕ mesons in a nucleus-nucleus collision. We discuss how these reactions can affect the centrality dependence and the rapidity distributions of the ϕ yield.

  5. Quasimolecular single-nucleon effects in heavy-ion collisions

    SciTech Connect

    Erb, K.A.

    1984-01-01

    Several experimental examples are discussed to illustrate that single-particle molecular orbital behavior has become an established reality in nuclear physics over the last several years. Measurements and analyses of inelastic scattering in the /sup 13/C + /sup 12/C and /sup 17/O + /sup 12/C systems, and of neutron transfer in the /sup 13/C(/sup 13/C, /sup 12/C)/sup 14/C reaction, show that the motion of valence nucleons can be strongly and simultaneously influenced by both collision partners in heavy-ion collisions. This bvehavior is characteristic of a molecular (single-particle) rather than a direct (DWBA) mechanism: it demonstrates that the single-particle analog of atomic molecular motion plays an important role in nuclear reactions at bombarding energies near the Coulomb barrier. Such behavior may be even more pronounced in the collisions of massive nuclei that will be studied with the new generation of heavy-ion accelerators. 19 references.

  6. Creating The Perfect Liquid In Heavy-Ion Collisions

    SciTech Connect

    Jacak, B.; Steinberg, P.

    2010-05-01

    In 2005 the four experimental groups at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) announced that collisions of gold nuclei at ultrarelativistic energies produced a 'perfect liquid' of quarks and gluons. That's something quite different from the gaseous quark-gluon state theorists and experimenters were expecting from quantum chromodynamics, the standard theory of the strong interaction.

  7. Photon and dilepton production in high energy heavy ion collisions

    SciTech Connect

    Sakaguchi, Takao

    2015-05-07

    The recent results on direct photons and dileptons in high energy heavy ion collisions, obtained particularly at RHIC and LHC are reviewed. The results are new not only in terms of the probes, but also in terms of the precision. We shall discuss the physics learned from the results.

  8. [12th International workshop on Inelastic Ion-Surface Collisions

    SciTech Connect

    Rabalais, J.W.; Nordlander, P.

    1999-10-15

    The twelfth international workshop on inelastic ion surface collisions was held at the Bahia Mar Resort and Conference Center on South Padre Island, Texas (USA) from January 24-29, 1999. The workshop brought together most of the leading researchers from around the world to focus on both the theoretical and experimental aspects of particle - surface interactions and related topics.

  9. Study of negative hydrogen ion beam optics using the 3D3V PIC model

    SciTech Connect

    Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.

    2015-04-08

    The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.

  10. Collision-induced dissociation of glycero phospholipids using electrospray ion-trap mass spectrometry.

    PubMed

    Larsen, A; Uran, S; Jacobsen, P B; Skotland, T

    2001-01-01

    Characterisation of phospholipids was achieved using collision-induced dissociation (CID) with an ion-trap mass spectrometer. The product ions were compared with those obtained with a triple quadrupole mass spectrometer. In the negative ion mode the product ions were mainly sn-1 and sn-2 lyso-phospholipids with neutral loss of ketene in combination with neutral loss of the polar head group. Less abundant product ions were sn-1 and sn-2 carboxylate anions. CID using a triple quadrupole mass spectrometer, however, gave primarily the sn-1 and sn-2 carboxylate anions together with lyso-phosphatidic acid with neutral loss of water. For the ion trap a charge-remote-type mechanism is proposed for formation of the lyso-phospholipid product ions by loss of alpha-hydrogen on the fatty acid moiety, electron rearrangement and neutral loss of ketene. A second mechanism involves nucleophilic attack of the phosphate oxygen on the sn-1 and sn-2 glycerol backbone to form carboxylate anions with neutral loss of cyclo lyso-phospholipids. CID (MS(3) and MS(4)) of the lyso-phospholipids using the ion-trap gave the same carboxylate anions as those obtained with a triple quadrupole instrument where multiple collisions in the collision cell are expected to occur. The data demonstrate that phospholipid species determination can be performed by using LC/MS(n) with an ion-trap mass spectrometer with detection of the lyso-phospholipid anions. The ion-trap showed no loss in sensitivity in full scan MS(n) compared to multiple reaction monitoring data acquisition. In combination with on-line liquid chromatography this feature makes the ion-trap useful in the scanning modes for rapid screening of low concentrations of phospholipid species in biological samples as recently described (Uran S, Larsen A, Jacobsen PB, Skotland T. J. Chromatogr. B 2001; 758: 265).

  11. Progress in collisions of multiply charged ions

    SciTech Connect

    Phaneuf, R.A.

    1991-01-01

    The increasing power and availability of supercomputers during the last decade led to significant progress in the theory of multicharged ion interactions. However, important tests of many theoretical predictions were lacking, and have become possible only quite recently as new capabilities have been realized in the laboratory. This paper broadly surveys some of these experimental developments, and their impact on our understanding of collisional interactions of multicharged ions. The scope is limited to measurements made with monoenergetic beams. 35 refs., 6 figs.

  12. Collision-energy resolved ion mobility characterization of isomeric mixtures.

    PubMed

    Pettit, Michael E; Harper, Brett; Brantley, Matthew R; Solouki, Touradj

    2015-10-21

    Existing instrumental resolving power limitations in ion mobility spectrometry (IMS) often restrict adequate characterization of unresolved or co-eluting chemical isomers. Recently, we introduced a novel chemometric deconvolution approach that utilized post-IM collision-induced dissociation (CID) mass spectrometry (MS) data to extract "pure" IM profiles and construct CID mass spectra of individual components from a mixture containing two IM-overlapped components [J. Am. Soc. Mass Spectrom., 2012, 23, 1873-1884]. In this manuscript we extend the capabilities of the IM-MS deconvolution methodology and demonstrate the utility of energy resolved IM deconvolution for successful characterization of ternary and quaternary isomer mixtures with overlapping IM profiles. Furthermore, we show that the success of IM-MS deconvolution is a collision-energy dependent process where different isomers can be identified at various ion fragmentation collision-energies. Details on how to identify a single collision-energy or suitable collision-energy ranges for successful characterization of isomer mixtures are discussed. To confirm the validity of the proposed approach, deconvoluted IM and MS spectra from IM overlapped analyte mixtures are compared to IM and MS data from individually run mixture components. Criteria for "successful" deconvolution of overlapping IM profiles and extraction of their corresponding pure mass spectra are discussed.

  13. Negative ion studies on the RF plasma device MAGPIE

    NASA Astrophysics Data System (ADS)

    Willett, Hannah; Santoso, Jesse; Corr, Cormac; Gibson, Kieran

    2016-10-01

    Neutral beam injection (NBI) systems provide both heating and current drive in tokamak fusion reactors. High energy (> 1 MeV) neutral beams are produced by neutralising accelerated ions, for which negative ions are used; the neutralisation cross section for positive ions becomes negligible at these energies. This requires very high throughput negative ion sources. Currently this is achieved using inductively coupled plasma sources, which incorporate caesium to improve the production rate. It has been proposed that helicon plasma sources could provide a more efficient, higher throughput method of producing negative ions for NBI, possibly even removing the need for caesium. We report on studies of the negative hydrogen ion population in the MAGPIE helicon device (Australian National University) under a variety of operating conditions. The probe-based laser photodetachment method and Langmuir probes are employed to estimate the negative hydrogen ion density throughout the device. Initial results support the viability of helicon-based negative ion sources.

  14. Models for Cometary Comae Containing Negative Ions

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Charnley, S. B.

    2012-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [I]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of our new models for the chemistry of cometary comae that include atomic and molecular anions. We calculate the impact of these anions on the charge balance and examine their importance for cometary coma chemistry.

  15. Direct recoil oxygen ion fractions resulting from Ar + collisions

    NASA Astrophysics Data System (ADS)

    Chen, Jie-Nan; Rabalais, J. Wayne

    1986-03-01

    Direct recoil of oxygen from oxidized and hydroxylated magnesium surfaces as a result of 6 keV Ar + collisions produces O -, O +, and O species. The total ion fraction at a recoil angle of 22° is ~33.5%, of which O - is 23.7% and O + is 9.8% for the oxidized surface. The O -/O + intensity ratio is extremely sensitive to the amount of hydrogen present, with the O + yield dropping to ~1% on the hydroxylated surface. These results are considered within a model for electronic transitions in ion/surface collisions which considers Auger and resonant transitions along the ion trajectory and electron promotions in the quasi-diatomic molecule of the close encounter.

  16. Open Heavy Flavor Measurements in Heavy Ion Collisions with CMS

    NASA Astrophysics Data System (ADS)

    Sun, Jian

    2016-12-01

    The measurement of heavy flavor production is a powerful tool to study the properties of the high-density QCD medium created in heavy-ion collisions as heavy quarks are sensitive to the transport properties of the medium and may interact with the matter differently than light quarks. Heavy flavor jets, non-prompt J / ψ (J / ψ from B-hadron decay) and fully reconstructed B mesons have been studied in PbPb collisions at 2.76 TeV and pPb collisions at 5.02 TeV with CMS. Recently, the nuclear modification factor of prompt D0 mesons has been measured in PbPb collisions at 2.76 TeV with CMS as a function of both transverse momentum and collision centrality. These studies show that prompt D0 production is suppressed in semi-central to central PbPb collisions and the suppression is smaller at high pT. A comparison with the RAA of charged particle and non-prompt J / ψ hints a hierarchy of suppression as a function of flavor.

  17. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, A.; Prelec, K.

    1980-12-12

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  18. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, Ady; Prelec, Krsto

    1983-01-01

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  19. Inelastic processes in ion/surface collisions: Direct recoil ion fractions as a function of kinetic energy

    NASA Astrophysics Data System (ADS)

    Rabalais, J. Wayne; Chen, Jie-Nan

    1986-09-01

    Time-of-flight (TOF) spectra of the scattered and recoiled particles resulting from 1-10 keV Ar+ ions impingent on surfaces of MgO, Mg(OH)2, graphite, Si, and SiO2 have been obtained. Measurements of directly recoiled (DR) neutrals plus ions and neutrals only are used to calculate positive and negative ion fractions Y+,- from DR events. These positive and negative ion yields observed for DR of H, C, O, and Si have distinctly different behavior as a function of ion kinetic energy. The Y+ values exhibit a ``threshold-type'' behavior with a steep rise followed by a slowly rising or plateau region at higher energy. The Y- values exhibit a maximum in the low energy region followed by a decreasing yield as energy increases. The Y-/Y+ ratio for C and O is very sensitive to the amount of hydrogen present, with the Y+ yields dropping as hydrogen concentration increases. The recently developed model for electronic transitions in keV ion/surface collisions which considers Auger and resonant transitions along the ion trajectory and electron promotions in the quasidiatomic molecule of the close atomic encounter is extended to include DR events. Analytical expressions for Y+,- are derived for the case of surface atoms in positive, neutral, and negative bonding environments. These model expressions are fitted to the experimental data, allowing determination of the probabilities of ionization in the close atomic encounter and of electron capture along the outgoing trajectory.

  20. Electron-Ion collisions in relativistically strong laser fields

    SciTech Connect

    Balakin, A. A.

    2008-04-15

    Electron-ion collisions in relativistically strong electromagnetic fields are considered. Analytical and numerical analyses both show that all qualitative effects characteristic of collisions in nonrelativistic strong fields [1-3] occur at relativistic intensities of an electromagnetic wave as well. Expressions for Joule plasma heating and for the energy distributions of fast particles are derived from simple analytic considerations and are confirmed by numerical simulations. It is found, in particular, that, due to the relativistic increase in the mass of a scattered electron, Joule heating in ultrarelativistic fields becomes more intense as the field amplitude grows.

  1. Effect of collision parameters in electronegative plasma sheath with two species of positive ions

    SciTech Connect

    Moulick, R.; Goswami, K. S.; Mahanta, M. K.

    2013-09-15

    The effect of ion neutral collision is shown for two species of positive ions in electronegative plasma. The ion neutral collision is modeled using power law of collision cross section. It is a usual case for processing plasma to have two species of positive ions and hence we attempt to study the dynamics of the two species of ions inside the collisional sheath of electronegative plasma.

  2. Production of negative hydrogen ions on metal grids

    SciTech Connect

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K.

    2015-03-15

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  3. Ion-Atom Cold Collisions and Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Prestage, John D.; Maleki, Lute; Tjoelker, Robert L.

    1997-01-01

    Collisions between ultracold neutral atoms have for some time been the subject of investigation, initially with hydrogen and more recently with laser cooled alkali atoms. Advances in laser cooling and trapping of neutral atoms in a Magneto-Optic Trap (MOT) have made cold atoms available as the starting point for many laser cooled atomic physics investigations. The most spectacularly successful of these, the observation of Bose-Einstein Condensation (BEC) in a dilute ultra-cold spin polarized atomic vapor, has accelerated the study of cold collisions. Experimental and theoretical studies of BEC and the long range interaction between cold alkali atoms is at the boundary of atomic and low temperature physics. Such studies have been difficult and would not have been possible without the development and advancement of laser cooling and trapping of neutral atoms. By contrast, ion-atom interactions at low temperature, also very difficult to study prior to modern day laser cooling, have remained largely unexplored. But now, many laboratories worldwide have almost routine access to cold neutral atoms. The combined technologies of ion trapping, together with laser cooling of neutrals has made these studies experimentally feasible and several very important, novel applications might come out of such investigations . This paper is an investigation of ion-atom interactions in the cold and ultra-cold temperature regime. Some of the collisional ion-atom interactions present at room temperature are very much reduced in the low temperature regime. Reaction rates for charge transfer between unlike atoms, A + B(+) approaches A(+) + B, are expected to fall rapidly with temperature, approximately as T(sup 5/2). Thus, cold mixtures of atoms and ions are expected to coexist for very long times, unlike room temperature mixtures of the same ion-atom combination. Thus, it seems feasible to cool ions via collisions with laser cooled atoms. Many of the conventional collisional interactions

  4. The Photodetachment of Ps ion and Low-Energy e(+) -H Collisions

    NASA Technical Reports Server (NTRS)

    Ward, S.J.

    2007-01-01

    Two calculations in the area of positron collisions are presented. The first is the calculation of the photodetachment cross section of the positronium negative ion (Ps-) using accurate variational wave functions for both the initial bound-state and the final P continuum state. The second is the calculation of partial wave cross sections for Ps(1s)-formation in ef -H(ls) collisions using the hyperspherical hidden crossing method. Since the S-wave Stiickelberg phase is close to pi, the very small S-wave Ps(1s) formation cross section can be understood in terms of destructive interference. Other examples in positron collisions are given where it is either known or expected that destructive interference is the cause of the small S-wave Ps(1s) formation cross section. In addition, examples are presented of processes in atomic physics where the Stiickelberg phase is a multiple of pi/2.

  5. Radii broadening due to molecular collision in focused ion beams

    NASA Astrophysics Data System (ADS)

    Komuro, Masanori

    1988-01-01

    Point exposures of poly(methyl methacrylate) resist are carried out with focused ion beams of Si++ and Au++ from a liquid AuSi ion source in order to obtain a current density distribution in the probe. All the distributions are composed of a main Gaussian distribution and a long tail dependent on r-3.3 (r means radial distance). The magnitude of this tail increases with the increase in ambient pressure of the ion-drifting space. When the probe is steered at the corner of deflection field, two types of clear ghost patterns appear: (1) circular patterns and (2) lines trailing from the main spot toward the deflection center. It is revealed that they are produced by exposures to ions or energetic neutrals generated with charge transfer collision of the primary ions with residual gas molecules. It is shown that the long tail in the current density distribution is also due to scattering with the residual gas molecules.

  6. Pion and photon production in heavy ion collisions

    SciTech Connect

    Gabor,D.

    2008-03-16

    Measurement of neutral pions and direct photons are closely connected experimentally, on the other hand they probe quite different aspects of relativistic heavy ion collisions. In this short review of the {pi}{sup 0} results from the PHENIX experiment at RHIC our focus is on the {phi}-integrated nuclear modification factor, its energy and system size dependence, and the impact of these results on parton energy loss models. We also discuss the current status of high p{sub T} and thermal direct photon measurements both in p+p and Au+Au collisions. Recognizing the advantages of measuring not only the 'signal', but also all the 'references' needed for proper interpretation in the same experiments (with same or similar systematics) we argue that RHIC should regularly include d+A and even d+d collisions into its system size and energy scan.

  7. Heavy quarkonium photoproduction in ultrarelativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Yu, Gong-Ming; Cai, Yang-Bing; Li, Yun-De; Wang, Jian-Song

    2017-01-01

    Based on the factorization formalism of nonrelativistic quantum chromodynamics (NRQCD), we calculate the production cross section for the charmonium [J /ψ , ψ (2 S ) , χc J, ηc, and hc] and the bottomonium [Υ (n S ) , χb J, ηb, and hb] produced by the hard photoproduction processes and fragmentation processes in relativistic heavy ion collisions. It is shown that the existing experimental data on heavy quarkonium production at the Large Hadron Collider (LHC) can be described in the framework of the NRQCD formalism, and the phenomenological values of matrix elements for color-singlet and color-octet components give the main contribution. The numerical results of photoproduction processes and fragmentation processes for the heavy quarkonium production become prominent in p -p collisions and Pb-Pb collisions at LHC energies.

  8. Non-Lorentzian ion cyclotron resonance line shapes arising from velocity-dependent ion-neutral collision frequencies

    NASA Technical Reports Server (NTRS)

    Whealton, J. H.; Mason, E. A.

    1973-01-01

    An asymptotic solution of the Boltzmann equation is developed for ICR absorption, without restrictions on the ion-neutral collision frequency or mass ratio. Velocity dependence of the collision frequency causes deviations from Lorentzian line shape.

  9. Critical condition in gravitational shock wave collision and heavy ion collisions

    SciTech Connect

    Lin Shu; Shuryak, Edward

    2011-02-15

    In this paper, we derive a critical condition for matter equilibration in heavy ion collisions using a holographic approach. Gravitational shock waves with infinite transverse extension are used to model an infinite nucleus. We construct the trapped surface in the collision of two asymmetric planar shock waves with sources at different depth in the bulk AdS and formulate a critical condition for matter equilibration in the collision of ''nuclei'' in the dual gauge theory. We find the critical condition is insensitive to the depth of the source closer to the AdS boundary. To understand the origin of the critical condition, we compute the Next-to-Leading Order stress tensor in the boundary field theory due to the interaction of the nuclei and find that the critical condition corresponds to the breaking down of the perturbative expansion. We expect nonperturbative effects are needed to describe black hole formation.

  10. Temporal characteristics of electrostatic surface waves in a cold complex plasma containing collision-dominated ion flow

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-03-01

    The influence of electron-ion collision frequency and dust charge on the growth rate of two-stream instability of the electrostatic surface wave propagating at the interface of semi-infinite complex plasma whose constituents are electrons, negatively charged dust, and streaming ions. It is found that the surface wave can be unstable if the multiplication of wave number and ion flow velocity is greater than the total plasma frequency of electrons and dusts. The analytical solution of the growth rate is derived as a function of collision frequency, dust charge, and ion-to-electron density ratio. It is found that the growth rate is inversely proportional to the collision rate, but it is enhanced as the number of electrons residing on the dust grain surface is increased. The growth rate of surface wave is compared to that of the bulk wave.

  11. Cavity Ring-Down System for Density Measurement of Negative Hydrogen Ion on Negative Ion Source

    SciTech Connect

    Nakano, Haruhisa; Tsumori, Katsuyoshi; Nagaoka, Kenichi; Shibuya, Masayuki; Kisaki, Masashi; Ikeda, Katsunori; Osakabe, Masaki; Kaneko, Osamu; Asano, Eiji; Kondo, Tomoki; Sato, Mamoru; Komada, Seiji; Sekiguchi, Haruo; Takeiri, Yasuhiko; Fantz, Ursel

    2011-09-26

    A Cavity Ring-Down (CRD) system was applied to measure the density of negative hydrogen ion (H{sup -}) in vicinity of extraction surface in the H{sup -} source for the development of neutral beam injector on Large Helical Device (LHD). The density measurement with sampling time of 50 ms was carried out. The measured density with the CRD system is relatively good agreement with the density evaluated from extracted beam-current with applying a similar relation of positive ion sources. In cesium seeded into ion-source plasma, the linearity between an arc power of the discharge and the measured density with the CRD system was observed. Additionally, the measured density was proportional to the extracted beam current. These characteristics indicate the CRD system worked well for H{sup -} density measurement in the region of H{sup -} and extraction.

  12. Bound state - excitation in ion-ion collisions related to X-ray lasers modelling

    SciTech Connect

    Stancalie, V.; Sureau, A.; Klisnick, A.

    1995-12-31

    As in the earlier work of Walling and Weisheit we used the Seaton`s semi-classical, impact parameter formulation of Coulomb excitation for a variety of inelastic ion-ion collisions, involved in laser-produced soft X-ray lasers with Li-like aluminum ions, 1s{sup 2} nl configuration. Energy levels has been calculated by direct SCF method including the spin-orbit interaction. Our definition of the electric 2{sup {lambda}} - pole line strength, S{sup {lambda}}, is consistent with that of Sobelman. The ion-ion collision processes have been considered for a wide range of temperature between 500 eV to 30 eV, with a particular interest in the last part of plasma evolution time, when complications such as non-Maxwellian particle distributions, radiation fields and transient plasma conditions can be neglected, and when the plasma electrons and ions have comparable temperatures.

  13. Hydrogen Ion-Molecule Isotopomer Collisions: Charge Transfer and Rearrangement

    NASA Astrophysics Data System (ADS)

    Wang, J. G.; Stancil, P. C.

    A survey of existing data for collisions of isotopes of hydrogen atoms, ions, and molecules is presented. The survey was limited to atom - diatom ionic collisions and to energies generally less than about 10 keV/u. The processes include particle-rearrangement and charge transfer, including both dissociative and non-dissociative channels, with an emphasis on state-to-state (or state-selected) data, where available. Since the last survey (Linder, Janev and Botero 1995), a small number of investigations for deuterium and tritium ion-diatom systems have been performed, with some involving state-resolved data, which include the initial-state-resolved and state-to-state processes. While some progress has been made since the last survey, the database involving hydrogen isotope collisional processes, both total and state- resolved, is far from complete.

  14. Probing transverse momentum broadening in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Mueller, A. H.; Wu, Bin; Xiao, Bo-Wen; Yuan, Feng

    2016-12-01

    We study the dijet azimuthal de-correlation in relativistic heavy ion collisions as an important probe of the transverse momentum broadening effects of a high energy jet traversing the quark-gluon plasma. We take into account both the soft gluon radiation in vacuum associated with the Sudakov logarithms and the jet PT-broadening effects in the QCD medium. We find that the Sudakov effects are dominant at the LHC, while the medium effects can play an important role at RHIC energies. This explains why the LHC experiments have not yet observed sizable PT-broadening effects in the measurement of dijet azimuthal correlations in heavy ion collisions. Future investigations at RHIC will provide a unique opportunity to study the PT-broadening effects and help to pin down the underlying mechanism for jet energy loss in a hot and dense medium.

  15. Coherent rho(0) production in ultraperipheral heavy-ion collisions.

    PubMed

    Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderón de la Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Deng, W S; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Nystrand, J; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2002-12-30

    The STAR Collaboration reports the first observation of exclusive rho(0) photoproduction, AuAu-->AuAurho(0), and rho(0) production accompanied by mutual nuclear Coulomb excitation, AuAu-->Au*Au*rho(0), in ultraperipheral heavy-ion collisions. The rho(0) have low transverse momenta, consistent with coherent coupling to both nuclei. The cross sections at sqrt[s(NN)]=130 GeV agree with theoretical predictions treating rho(0) production and Coulomb excitation as independent processes.

  16. Aspects of heavy-ion collisions at the LHC

    SciTech Connect

    Wolschin, G.

    2014-01-14

    Three aspects of relativistic heavy-ion collisions are considered in this article: (1) Stopping and baryon transport in a QCD-based approach, (2) charged-hadron production in a nonequilibrium-statistical relativistic diffusion model (RDM), and (3) quarkonia suppression and in particular, Υ suppression in PbPb at the current LHC energy of √(s{sub NN}) = 2.76TeV.

  17. Thermalization in the initial stage of heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Zhu, Yan

    2017-03-01

    The high density non-abelian matter produced in heavy ion collisions is extremely anisotropic. Prethermal dynamics for the anisotropic and weakly coupled matter is discussed. Thermalization is realized with the effective kinetic theory in the leading order accuracy of the weakly coupled expansion. With the initial condition from color glass condensate, hydrodynamization time for the LHC energies is realized to be about 1 fm/c, while the thermalization happens much later than the hydrodynamization.

  18. The multistring model VENUS for ultrarelativistic heavy ion collisions

    SciTech Connect

    Werner, K.

    1988-02-01

    The event generator VENUS is based on a multistring model for heavy ion collisions at ultrarelativistic energies. The model is a straightforward extension of a successful model for soft proton-proton scattering, the latter one being consistent with e/sup )plus/)e/sup )minus/) annihilation and deep inelastic lepton scattering. Comparisons of VENUS results with pA and recent AA data alow some statements about intranuclear cascading. 18 refs., 7 figs

  19. Collision-geometry fluctuations and triangular flow in heavy-ion collisions

    SciTech Connect

    Alver, B.; Roland, G.

    2010-05-15

    We introduce the concepts of participant triangularity and triangular flow in heavy-ion collisions, analogous to the definitions of participant eccentricity and elliptic flow. The participant triangularity characterizes the triangular anisotropy of the initial nuclear overlap geometry and arises from event-by-event fluctuations in the participant-nucleon collision points. In studies using a multiphase transport model (AMPT), a triangular flow signal is observed that is proportional to the participant triangularity and corresponds to a large third Fourier coefficient in two-particle azimuthal correlation functions. Using two-particle azimuthal correlations at large pseudorapidity separations measured by the PHOBOS and STAR experiments, we show that this Fourier component is also present in data. Ratios of the second and third Fourier coefficients in data exhibit similar trends as a function of centrality and transverse momentum as in AMPT calculations. These findings suggest a significant contribution of triangular flow to the ridge and broad away-side features observed in data. Triangular flow provides a new handle on the initial collision geometry and collective expansion dynamics in heavy-ion collisions.

  20. Threshold photodetachment spectroscopy of negative ions

    SciTech Connect

    Kitsopoulos, T.N.

    1991-12-01

    This thesis is concerned with the development and application of high resolution threshold photodetachment spectroscopy of negative ions. Chapter I deals with the principles of our photodetachment technique, and in chapter II a detailed description of the apparatus is presented. The threshold photodetachment spectra of I{sup {minus}}, and SH{sup {minus}}, presented in the last sections of chapter II, indicated that a resolution of 3 cm{sup {minus}1} can be achieved using our technique. In chapter III the threshold photodetachment spectroscopy study of the transition state region of I + HI and I + Di reactions is discussed. Our technique probes the transition state region directly, and the results of our study are the first unambiguous observations of reactive resonances in a chemical reaction. Chapters IV, V and VI are concerned with the spectroscopy of small silicon and carbon clusters. From our spectra we were able to assign electronic state energies and vibrational frequencies for the low lying electronics states of Si{sub n} (n=2,3,4), C{sub 5} and their corresponding anions.

  1. Ion-neutral collision effect on an Alfven wave

    SciTech Connect

    Amagishi, Y.; Tanaka, M. Department of High Energy Engineering Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816 )

    1993-07-19

    This paper reports that ion-neutral collisions in a magnetized plasma cause a drastic change in the dispersion relation of the shear Alfven wave with poloidal mode number [ital m]=0, connecting to the branch of the [ital m]=+1 compressional Alfven wave at frequencies below the ion-cyclotron frequency. An anomaly of the dispersion then appears on the refractive index curve and a wave packet in this frequency range undergoes strong amplitude damping and profile deformation. It is confirmed that the Kramers-Kronig relation holds for the dielectric function, estimated from both the measured refractive index and damping rate.

  2. Saturation Effect of Projectile Excitation in Ion-Atom Collisions

    NASA Astrophysics Data System (ADS)

    Mukoyama, Takeshi; Lin, Chii-Dong

    Calculations of projectile K-shell electron excitation cross sections for He-like ions during ion-atom collisions have been performed in the distortion approximation by the use of Herman-Skillman wave functions. The calculated results are compared with the experimental data for several targets. The excitation cross sections deviate from the first-Born approximation and show the saturation effect as a function of target atomic number. This effect can be explained as the distortion of the projectile electronic states by the target nucleus.

  3. Morphology of high-multiplicity events in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Naselsky, P.; Christensen, C. H.; Christensen, P. R.; Damgaard, P. H.; Frejsel, A.; Gaardhøje, J. J.; Hansen, A.; Hansen, M.; Kim, J.; Verkhodanov, O.; Wiedemann, U. A.

    2012-08-01

    We discuss opportunities that may arise from subjecting high-multiplicity events in relativistic heavy ion collisions to an analysis similar to the one used in cosmology for the study of fluctuations of the cosmic microwave background (CMB). To this end, we discuss examples of how pertinent features of heavy ion collisions including global characteristics, signatures of collective flow, and event-wise fluctuations are visually represented in a Mollweide projection commonly used in CMB analysis, and how they are statistically analyzed in an expansion over spherical harmonic functions. If applied to the characterization of purely azimuthal dependent phenomena such as collective flow, the expansion coefficients of spherical harmonics are seen to contain redundancies compared to the set of harmonic flow coefficients commonly used in heavy ion collisions. Our exploratory study indicates, however, that these redundancies may offer novel opportunities for a detailed characterization of those event-wise fluctuations that remain after subtraction of the dominant collective flow signatures. By construction, the proposed approach allows also for the characterization of more complex collective phenomena like higher-order flow and other sources of fluctuations, and it may be extended to the characterization of phenomena of noncollective origin such as jets.

  4. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Sun, Yifeng; Ko, Che Ming; Li, Feng

    2016-10-01

    Using an anomalous transport model for massless quarks and antiquarks, we study the effect of a magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in noncentral heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision. The electric quadrupole moment subsequently leads to a splitting between the elliptic flows of quarks and antiquarks. The slope of the charge asymmetry dependence of the elliptic flow difference between positively and negatively charged particles is positive, which is expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the BNL Relativistic Heavy Ion Collider, only if the Lorentz force acting on the charged particles is neglected and the quark-antiquark scattering is assumed to be dominated by the chirality changing channel.

  5. Negative ion formation by Rydberg electron transfer: Isotope-dependent rate constants

    SciTech Connect

    Carman, H.S. Jr.; Klots, C.E.; Compton, R.N.

    1991-01-01

    The formation of negative ions during collisions of rubidium atoms in selected ns and nd Rydberg states with carbon disulfide molecules has been studied for a range of effective principal quantum numbers (10 {le} n* {le} 25). For a narrow range of n* near n* = 17, rate constants for CS{sub 2}{sup {minus}} formation are found to depend upon the isotopic composition of the molecule, producing a negative ion isotope ratio (mass 78 to mass 76, amu) up to 10.5 times larger than the natural abundance ratio of CS{sub 2} isotopes in the reagent. The isotope ratio is found to depend strongly upon the initial quantum state of the Rydberg atom and perhaps upon the collision energy and CS{sub 2} temperature. 32 refs., 5 figs., 1 tab.

  6. Investigations of negative and positive cesium ion species

    NASA Technical Reports Server (NTRS)

    Chanin, L. M.

    1978-01-01

    A direct test is provided of the hypothesis of negative ion creation at the anode or collector of a diode operating under conditions simulating a cesium thermionic converter. The experimental technique involves using direct ion sampling through the collector electrode with mass analysis using a quadrupole mass analyzer. Similar measurements are undertaken on positive ions extracted through the emitter electrode. Measurements were made on a variety of gases including pure cesium, helium-cesium mixtures and cesium-hydrogen as well as cesium-xenon mixtures. The gas additive was used primarily to aid in understanding the negative ion formation processes. Measurements were conducted using emitter (cathode) temperatures up to about 1000 F. The major negative ion identified through the collector was Cs(-) with minor negative ion peaks tentatively identified as H(-), H2(-), H3(-), He(-) and a mass 66. Positive ions detected were believed to be Cs(+), Cs2(+) and Cs3(+).

  7. Convoy electron production in heavy-ion-solid collisions

    SciTech Connect

    Sellin, I.A.; Breinig, M.; Brandt, W.; Laubert, R.

    1981-01-01

    The properties of the sharp v vector/sub e/ approx. = v vector cusps observed in the velocity spectrum of convoy electrons (v vector/sub e/) ejected in heavy ion-solid collisions in the ion velocity range (v vector) 6 to 18 au are compared to the properties of analogous cusps observed in binary electron capture to the continuum (ECC) and electron loss to the continuum (ELC) collisions in gases. Apart from a skew toward v vector/sub e/ > v vector, the v-independent convoy distributions observed are very similar to those for ELC and the cusp widths are the same in both cases. While the shape of convoy peaks is approximately independent of projectile Z, v, and of target material, yields in polycrystalline targets (C, Al, Ag, Au) exhibit a strong dependence on Z and v. Coincidence experiments in which convoy electrons are allocated according to emergent ion charge-state q/sub e/ show a surprising independence of q/sub e/, mirroring the unweighted statistical emergent charge-state fraction. Coincidence experiments of O/sup 6 +/ /sup 7 +/ /sup 8 +/ ions traversing < 110 > and < 100 > channels in Au show a strong yield suppression and a dependence of yield on the channel chosen. Interpretation of these observations, comparisons to convoy production studies using protons, and a discussion of remaining puzzles is given. The history of ECC, ELC, and wake-riding models of convoy electron production is also reviewed.

  8. Excitation of heavy hydrogenlike ions in relativistic collisions

    SciTech Connect

    Voitkiv, A. B.; Najjari, B.; Ullrich, J.

    2007-06-15

    We study the excitation of heavy hydrogenlike ions occurring in high-energy collisions with many-electron atoms by considering three theoretical approaches. In all of them the initial and final undistorted states of the electron in the ion are described by relativistic Coulomb-Dirac wave functions. In two of these approaches the interaction between the electron of the ion and the atom is described within the first order perturbation theory. In the first approach the presence of the atomic electrons is neglected whereas the second approach takes them into account. The comparison of results of these two approaches allows one to establish the range of collision energies where the effect of the electrons of the atom on the excitation process is weak and can be neglected. At these energies, however, the interaction between the electron of the ion and the nucleus of the atom may become too strong for the first order theory to be a good approximation. In order to deal with this point we present the third approach which is based on the symmetric eikonal approximation. Theoretical results are compared with available experimental data.

  9. Influence of electron-ion collisions on Buneman instability

    NASA Astrophysics Data System (ADS)

    Rostomyan, Eduard

    2016-07-01

    Buneman instability (BI) [1] has been found to play a role in many scenarios in space physics and geophysics. It has also been invoked to explain many phenomena in the earth ionosphere [2] and in the solar chromosphere [3]. In double-layer and collisionless shock physics the same instability has been found responsible in formation of nonlinear structures [4]. In situations where an electron beam enters plasma, like in the fast ignition scenario for inertial fusion [5], Buneman modes are excited and play essential role [6]. BI is caused by motion of plasma electrons against ions. However, up to now investigations on BI did not take into account influence collisions in plasma (for quantum case a paper has recently appeared [7]). Influence of collisions may be very important especially in dense fully ionized plasma with long distance character of interaction. Particularly collisions lead to energy dissipation with an array of ensuing effects e.g. change of the instability physical nature to that of dissipative type [8]. Due to role of BI in various processes in space (and laboratory) plasma necessity of the consideration is long overdue. Absence of investigations on a problem along with its importance may be explained by its complexity only. For given case correct consideration should be based on solution of transport equation with collisional term. In fully ionized plasma correct description of collisions is given by Landau collision integral (LCI) [9]. This is very complex formation. It greatly complicates transport equation and actually makes it intractable. Since its formulation in 1936, there is very little literature on solution of the transport equation with LCI. Almost all successful attempts to accommodate influence of collisions on various processes in plasma are based on BGK model [10]. This model is much simpler. However in fully ionized plasma usage LCI is more appropriate as it is designed for system with long distance character of particle interaction

  10. Large amounts of antiproton production by heavy ion collision

    SciTech Connect

    Takahashi, Hiroshi; Powell, J.

    1987-01-01

    To produce large amounts of antiprotons, on the order of several grams/year, use of machines to produce nuclear collisions are studied. These can be of either proton-proton, proton-nucleus and nucleus-nucleus in nature. To achieve high luminosity colliding beams, on the order of 10/sup 41/ m/cm/sup 2/, a self-colliding machine is required, rather than a conventional circular colliding type. The self-colliding machine can produce additional antiprotons through successive collisions of secondary particles, such as spectator nucleons. A key problem is how to collect the produced antiprotons without capture by beam nuclei in the collision zone. Production costs for anti-matter are projected for various energy source options and technology levels. Dedicated facilities using heavy ion collisions could produce antiproton at substantially less than 1 million $/milligram. With co-production of other valuable products, e.g., nuclear fuel for power reactors, antiproton costs could be reduced to even lower values.

  11. Ultrarelativistic heavy ion collisions: the first billion seconds

    NASA Astrophysics Data System (ADS)

    Baym, Gordon

    2016-12-01

    I first review the early history of the ultrarelativistic heavy ion program, starting with the 1974 Bear Mountain Workshop, and the 1983 Aurora meeting of the U.S. Nuclear Science Committtee, just one billion seconds ago, which laid out the initial science goals of an ultrarelativistic collider. The primary goal, to discover the properties of nuclear matter at the highest energy densities, included finding new states of matter - the quark-gluon plasma primarily - and to use collisions to open a new window on related problems of matter in cosmology, neutron stars, supernovae, and elsewhere. To bring out how the study of heavy ions and hot, dense matter in QCD has been fulfilling these goals, I concentrate on a few topics, the phase diagram of matter in QCD, and connections of heavy ion physics to cold atoms, cosmology, and neutron stars.

  12. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    SciTech Connect

    Weaver, A.

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ([IHI] and [FH{sub 2}]). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  13. Spectroscopy of transient neutral species via negative ion photoelectron spectroscopy

    SciTech Connect

    Weaver, A.

    1991-12-01

    Negative ion photoelectron spectroscopy has been used to study two types of transient neutral species: bound free radicals (NO{sub 2} and NO{sub 3}) and unstable neutral species ((IHI) and (FH{sub 2})). The negative ion time-of-flight photoelectron spectrometer used for these experiments is described in detail.

  14. Observation of the negative ions: Ra[sup [minus

    SciTech Connect

    Zhao, X.; Nadeau, M.; Garwan, M.A.; Kilius, L.R.; Litherland, A.E. )

    1993-11-01

    The negative ions of the isotopes [sup 226]Ra, [sup 231]Pa, and [sup 244]Pu have been observed by means of accelerator mass spectrometry and their properties compared with the negative ions of Th and U. The electron affinities of all these elements have been estimated to be similar and greater than 50 meV.

  15. Study On Electron Collisions With Zn-like W Ion

    SciTech Connect

    Mihailescu, A.; Pais, V.; Totolici, M. C.; Stancalie, V.

    2008-04-07

    The present work gives new refined results for electron impact excitation rates and collision strengths for transitions of type [Ar]3d{sup 10}4snl->[Ar]3d{sup 10}4sn';l', n, n' = 4,5, and {delta}J = 0,l in Zn-like W ion. We have examined the position and widths of the resonant states of type ls{sup 2}2s2p{sup 6}3s{sup 2}3p{sup 6}3d{sup 10}4s{sup 2}nl. Autoionizing states can radically alter the low temperature behavior of collision rates, and are a major contributor to opacity. Preliminary results for Auger rates are presented. Hartree-Fock calculations have been carried out followed by a configuration interaction (CI) in intermediate coupling using the suite of Cowan's codes.

  16. Hard thermal photon production in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Steffen, F. D.; Thoma, M. H.

    2001-06-01

    The recent status of hard thermal photon production in relativistic heavy ion collisions is reviewed and the current rates are presented with emphasis on corrected bremsstrahlung processes in the quark-gluon plasma (QGP) and quark-hadron duality. Employing Bjorken hydrodynamics with an EOS supporting the phase transition from QGP to hot hadron gas (HHG), thermal photon spectra are computed. For SPS 158 GeV Pb+Pb collisions, comparison with other theoretical results and the WA98 direct photon data indicates significant contributions due to prompt photons. Extrapolating the presented approach to RHIC and LHC experiments, predictions of the thermal photon spectrum show a QGP outshining the HHG in the high-pT-region.

  17. Complete strangeness measurements in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Tomášik, Boris; Kolomeitsev, Evgeni E.

    2016-08-01

    We discuss strangeness production in heavy-ion collisions within and around the energy range of the planned NICA facility. We describe a minimal statistical model, in which the total strangeness yield is fixed by the observed or calculated K+ multiplicity. We show how the exact strangeness conservation can be taken into account on event-by-event basis in such a model. We argue that from strange particle yields one can reveal information about the collision dynamics and about possible modifications of particle properties in medium. This can be best achieved if the complete strangeness measurement is performed, i.e. kaons, antikaons, hyperons and multistrange hyperons are registered in the same experimental setup. In particular, production of hadrons containing two and more strange quarks, like Ξ and Ω baryons could be of interest.

  18. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  19. Negative ions as a source of low energy neutral beams

    SciTech Connect

    Fink, J.H.

    1980-01-01

    Little consideration has been given to the impact of recent developments in negative ion source technology on the design of low energy neutral beam injectors. However, negative ion sources of improved operating efficiency, higher gas efficiency, and smaller beam divergence will lead to neutral deuterium injectors, operating at less than 100 keV, with better operating efficiencies and more compact layouts than can be obtained from positive ion systems.

  20. Polyatomic ion/surface collisions: new methodology in tandem mass spectrometry

    SciTech Connect

    Mabud, M.A.

    1987-01-01

    The excitation of a gas phase ion to induce fragmentation is an important aspect of tandem mass spectrometry. Investigations have been made by using metal surfaces as collision partners to activate polyatomic ions by using ions of 20-150 eV kinetic energy. Among the phenomena investigated are dissociation of the polyatomic ions upon collision with metal surfaces. The extent of dissociation can be controlled by selection of the impact energy. Collision with a surface gives rise to a narrower range of internal energies than do the corresponding ion/gaseous target collisions. Very large amounts of energy can be deposited in polyatomic ions upon collision with a metal target. Even at modest laboratory kinetic energies, the average internal energy deposited in ion/surface collisions exceeds that in gaseous collisions. Charge-exchange of multiply-charged species at the surface also occurs. Although simple charge exchange is observed, dissociative charge exchange is dominant in the cases studied. Dissociation and charge exchange of polyatomic ions in ion/surface collision are also accompanied by reactive collisions between organic ions and gas-covered metal surfaces. Utility of polyatomic ion/surface interaction technique for isomeric ion characterization has also been investigated. The ion/surface interaction technique appears to have excellent ability to distinguish isomeric ions. One advantage of SID is isomeric ion characterization lies in the fact that reactive collisions occur simultaneously and add a new dimension of information to the daughter spectra recorded. The hydrogen and methyl radical abstraction reactions assist in distinguishing closely related isomeric ions.

  1. Multigenerational Broadband Collision-Induced Dissociation of Precursor Ions in a Linear Quadrupole Ion Trap

    NASA Astrophysics Data System (ADS)

    Snyder, Dalton T.; Cooks, R. Graham

    2016-12-01

    A method of fragmenting ions over a wide range of m/ z values while balancing energy deposition into the precursor ion and available product ion mass range is demonstrated. In the method, which we refer to as "multigenerational collision-induced dissociation", the radiofrequency (rf) amplitude is first increased to bring the lowest m/ z of the precursor ion of interest to just below the boundary of the Mathieu stability diagram (q = 0.908). A supplementary AC signal at a fixed Mathieu q in the range 0.2-0.35 (chosen to balance precursor ion potential well depth with available product ion mass range) is then used for ion excitation as the rf amplitude is scanned downward, thus fragmenting the precursor ion population from high to low m/ z. The method is shown to generate high intensities of product ions compared with other broadband CID methods while retaining low mass ions during the fragmentation step, resulting in extensive fragment ion coverage for various components of complex mixtures. Because ions are fragmented from high to low m/ z, space charge effects are minimized and multiple discrete generations of product ions are produced, thereby giving rise to "multigenerational" product ion mass spectra.

  2. Multigenerational Broadband Collision-Induced Dissociation of Precursor Ions in a Linear Quadrupole Ion Trap.

    PubMed

    Snyder, Dalton T; Cooks, R Graham

    2016-12-01

    A method of fragmenting ions over a wide range of m/z values while balancing energy deposition into the precursor ion and available product ion mass range is demonstrated. In the method, which we refer to as "multigenerational collision-induced dissociation", the radiofrequency (rf) amplitude is first increased to bring the lowest m/z of the precursor ion of interest to just below the boundary of the Mathieu stability diagram (q = 0.908). A supplementary AC signal at a fixed Mathieu q in the range 0.2-0.35 (chosen to balance precursor ion potential well depth with available product ion mass range) is then used for ion excitation as the rf amplitude is scanned downward, thus fragmenting the precursor ion population from high to low m/z. The method is shown to generate high intensities of product ions compared with other broadband CID methods while retaining low mass ions during the fragmentation step, resulting in extensive fragment ion coverage for various components of complex mixtures. Because ions are fragmented from high to low m/z, space charge effects are minimized and multiple discrete generations of product ions are produced, thereby giving rise to "multigenerational" product ion mass spectra. Graphical Abstract ᅟ.

  3. Ion collisions and the Z-pinch precursor column

    NASA Astrophysics Data System (ADS)

    Sherlock, M.; Chittenden, J. P.; Lebedev, S. V.; Haines, M. G.

    2004-04-01

    During the early stages of a wire array Z-pinch implosion, low density plasma streams toward the axis by virtue of the Lorentz force. This streaming precursor plasma may initially be highly collisionless with respect to ion-ion collisions and therefore cannot be modeled using standard fluid theory. The hybrid method in this paper models both collisional and collisionless behavior with ions exchanging energy and momentum with other ions via a Monte Carlo algorithm equivalent to a small-angle kinetic solution and with an electron fluid via a frictional force. It is shown that the axial stagnation of the plasma flow occurs once the density becomes sufficiently high to initiate a nonlinear rise in electron-ion energy exchange, resulting in the thermal equilibration between radiatively cooling electrons and hot, thermalized ions. This then gives rise to a dense, long-lived precursor column on axis, as observed experimentally. The column is held in place by the kinetic pressure of the streaming precursor plasma, which is balanced by the thermal pressure of the plasma in the column at the column's edge.

  4. A negative ion source test facility

    SciTech Connect

    Melanson, S.; Dehnel, M. Potkins, D.; Theroux, J.; Hollinger, C.; Martin, J.; Stewart, T.; Jackle, P.; Withington, S.; Philpott, C.; Williams, P.; Brown, S.; Jones, T.; Coad, B.

    2016-02-15

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.

  5. Time evolution of negative ion profile in a large cesiated negative ion source applicable to fusion reactors

    SciTech Connect

    Yoshida, M. Hanada, M.; Kojima, A.; Kashiwagi, M.; Umeda, N.; Hiratsuka, J.; Ichikawa, M.; Watanabe, K.; Grisham, L.R.; Tsumori, K.; Kisaki, M.

    2016-02-15

    To understand the physics of the cesium (Cs) recycling in the large Cs-seeded negative ion sources relevant to ITER and JT-60SA with ion extraction area of 45-60 cm × 110-120 cm, the time evolution of the negative ion profile was precisely measured in JT-60SA where the ion extraction area is longitudinally segmented into 5. The Cs was seeded from the oven at 180 °C to the ion source. After 1 g of Cs input, surface production of the negative ions appeared only in the central segment where a Cs nozzle was located. Up to 2 g of Cs, the negative ion profile was longitudinally expanded over full ion extraction area. The measured time evolution of the negative ion profile has the similar tendency of distribution of the Cs atoms that is calculated. From the results, it is suggested that Cs atom distribution is correlated with the formation of the negative ion profile.

  6. Ar^+ recombination with negative ions in a flowing afterglow: A new approach.

    NASA Astrophysics Data System (ADS)

    Miller, Thomas M.; Viggiano, A. A.

    2006-05-01

    Ion-ion recombination (mutual neutralization) has been previously studied in a flowing-afterglow Langmuir-probe apparatus, using the probe to measure the positive-ion and negative-ion densities as a function of distance (time) along the flow tube axis.^1 A different approach has been taken in the present work, applicable to Ar^+ (or Kr^+ and Xe^+) recombination reactions. A flowing electron-Ar^+ afterglow plasma is first established, and the ambipolar diffusion frequency is measured. Then, an electron attaching gas is added to the afterglow, and the electron attachment rate constant and product ion branching fractions are measured in the usual manner.^2 Finally, the reactant gas concentration is reduced enough that the attachment reaction has not gone to completion by the end of the flow tube. Modeling of the diffusion, attachment, and recombination processes allows us to determine rate constants for each negative ion type recombining with Ar^+. For example, Ar^+ neutralized by Cl^-, Cl2^-, and CCl2O^- produced in attachment to oxalyl chloride,^2 shows that Cl2^- recombines at about half the rate constant of CCl2O^-, and Cl^- + Ar^+ recombination is negligible. ^1D. Smith and N. G. Adams, in Physics of Ion-Ion and Electron-Ion Collisions, Ed. F. Brouillard and J. W. McGowan (Plenum, New York, 1983). ^2J. M. Van Doren, T. M. Miller, and A. A. Viggiano, J. Chem. Phys. (submitted).

  7. From Stopping to Viscosity in Heavy Ion Collisions

    SciTech Connect

    Barker, Brent W.; Danielewicz, Pawel

    2010-04-26

    Stopping in heavy ion collisions is investigated with the aim of learning about the shear viscosity of nuclear matter. Boltzmann equation simulations are compared to available data on stopping in the energy range of 20-117 MeV/nucleon. Stopping observables used include momentum anisotropy and linear momentum transfer. The data show that modeling the transport with free nucleon-nucleon cross-sections is inaccurate and reduced cross-sections are required. Reduction of the cross-sections produces an increase in the shear viscosity of nuclear matter, compared to calculations based on free cross-sections.

  8. Disappearance of flow in heavy-ion collisions

    SciTech Connect

    Krofcheck, D.; Bauer, W.; Crawley, G.M.; Djalali, C.; Howden, S.; Ogilvie, C.A.; Vander Molen, A.; Westfall, G.D.; Wilson, W.K. ); Tickle, R.S. ); Gale, C. )

    1989-11-06

    We report the first observation of the disappearance of flow in heavy-ion collisions. This is accomplished by measuring the excitation function of the average in-plane transverse momentum for the symmetric system {sup 139}La+{sup 139}La, using beam energies of 130, 70, and 50 MeV/nucleon. The observation is indicative of a change from dominantly repulsive to attractive scattering. We also present the results of calculations performed with the Boltzmann-Uehling-Uhlenbeck equation which support the concept of vanishing flow for this system in the energy region between 30 and 50 MeV/nucleon.

  9. Heavy Ion Collisions at the LHC - Last Call for Predictions

    SciTech Connect

    Armesto, N; Borghini, N; Jeon, S; Wiedemann, U A; Abreu, S; Akkelin, V; Alam, J; Albacete, J L; Andronic, A; Antonuv, D; Arleo, F; Armesto, N; Arsene, I C; Barnafoldi, G G; Barrette, J; Bauchle, B; Becattini, F; Betz, B; Bleicher, M; Bluhm, M; Boer, D; Bopp, F W; Braun-Munzinger, P; Bravina, L; Busza, W; Cacciari, M; Capella, A; Casalderrey-Solana, J; Chatterjee, R; Chen, L; Cleymans, J; Cole, B A; delValle, Z C; Csernai, L P; Cunqueiro, L; Dainese, A; de Deus, J D; Ding, H; Djordjevic, M; Drescher, H; Dremin, I M; Dumitru, A; El, A; Engel, R; d'Enterria, D; Eskola, K J; Fai, G; Ferreiro, E G; Fries, R J; Frodermann, E; Fujii, H; Gale, C; Gelis, F; Goncalves, V P; Greco, V; Gyulassy, M; van Hees, H; Heinz, U; Honkanen, H; Horowitz, W A; Iancu, E; Ingelman, G; Jalilian-Marian, J; Jeon, S; Kaidalov, A B; Kampfer, B; Kang, Z; Karpenko, I A; Kestin, G; Kharzeev, D; Ko, C M; Koch, B; Kopeliovich, B; Kozlov, M; Kraus, I; Kuznetsova, I; Lee, S H; Lednicky, R; Letessier, J; Levin, E; Li, B; Lin, Z; Liu, H; Liu, W; Loizides, C; Lokhtin, I P; Machado, M T; Malinina, L V; Managadze, A M; Mangano, M L; Mannarelli, M; Manuel, C; Martinez, G; Milhano, J G; Mocsy, A; Molnar, D; Nardi, M; Nayak, J K; Niemi, H; Oeschler, H; Ollitrault, J; Paic, G; Pajares, C; Pantuev, V S; Papp, G; Peressounko, D; Petreczky, P; Petrushanko, S V; Piccinini, F; Pierog, T; Pirner, H J; Porteboeuf, S; Potashnikova, I; Qin, G Y; Qiu, J; Rafelski, J; Rajagopal, K; Ranft, J; Rapp, R; Rasanen, S S; Rathsman, J; Rau, P; Redlich, K; Renk, T; Rezaeian, A H; Rischke, D; Roesler, S; Ruppert, J; Ruuskanen, P V; Salgado, C A; Sapeta, S; Sarcevic, I; Sarkar, S; Sarycheva, L I; Schmidt, I; Shoski, A I; Sinha, B; Sinyukov, Y M; Snigirev, A M; Srivastava, D K; Stachel, J; Stasto, A; Stocker, H; Teplov, C Y; Thews, R L; Torrieri, G; Pop, V T; Triantafyllopoulos, D N; Tuchin, K L; Turbide, S; Tywoniuk, K; Utermann, A; Venugopalan, R; Vitev, I; Vogt, R; Wang, E; Wang, X N; Werner, K; Wessels, E; Wheaton, S; Wicks, S; Wiedemann, U A; Wolschin, G; Xiao, B; Xu, Z; Yasui, S; Zabrodin, E; Zapp, K; Zhang, B

    2008-02-25

    In August 2006, the CERN Theory Unit announced to restructure its visitor program and to create a 'CERN Theory Institute', where 1-3 month long specific programs can take place. The first such Institute was held from 14 May to 10 June 2007, focusing on 'Heavy Ion Collisions at the LHC - Last Call for Predictions'. It brought together close to 100 scientists working on the theory of ultra-relativistic heavy ion collisions. The aim of this workshop was to review and document the status of expectations and predictions for the heavy ion program at the Large Hadron Collider LHC before its start. LHC will explore heavy ion collisions at {approx} 30 times higher center of mass energy than explored previously at the Relativistic Heavy Ion Collider RHIC. So, on the one hand, the charge of this workshop provided a natural forum for the exchange of the most recent ideas, and allowed to monitor how the understanding of heavy ion collisions has evolved in recent years with the data from RHIC, and with the preparation of the LHC experimental program. On the other hand, the workshop aimed at a documentation which helps to distinguish pre- from post-dictions. An analogous documentation of the 'Last Call for Predictions' [1] was prepared prior to the start of the heavy-ion program at the Relativistic Heavy Ion Collider RHIC, and it proved useful in the subsequent discussion and interpretation of RHIC data. The present write-up is the documentation of predictions for the LHC heavy ion program, received or presented during the CERN TH Institute. The set-up of the CERN TH Institute allowed us to aim for the wide-most coverage of predictions. There were more than 100 presentations and discussions during the workshop. Moreover, those unable to attend could still participate by submitting predictions in written form during the workshop. This followed the spirit that everybody interested in making a prediction had the right to be heard. To arrive at a concise document, we required that

  10. Positive/negative ion velocity mapping apparatus for electron-molecule reactions.

    PubMed

    Wu, Bin; Xia, Lei; Li, Hong-Kai; Zeng, Xian-Jin; Tian, Shan Xi

    2012-01-01

    In molecular dissociative ionization by electron collisions and dissociative electron attachment to molecule, the respective positively and negatively charged fragments are the important products. A compact ion velocity mapping apparatus is developed for the angular distribution measurements of the positive or negative fragments produced in the electron-molecule reactions. This apparatus consists of a pulsed electron gun, a set of ion velocity mapping optic lenses, a two-dimensional position detector including two pieces of micro-channel plates, and a phosphor screen, and a charge-coupled-device camera for data acquisition. The positive and negative ion detections can be simply realized by changing the voltage polarity of ion optics and detector. Velocity sliced images can be directly recorded using a narrow voltage pulse applied on the rear micro-channel plate. The efficient performance of this system is evaluated by measuring the angular distribution of O(-) from the electron attachments to NO at 7.3 and 8.3 eV and O(+) from the electron collision with CO at 40.0 eV.

  11. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of cold negative ions

    DOEpatents

    Hershcovitch, A.

    1984-02-13

    A process for selectively neutralizing H/sup -/ ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H/sup -/ ions that are

  12. Negative ion-driven associated particle neutron generator

    SciTech Connect

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; Donovan, D. C.; Chames, J. M.; Whaley, J. A.; Buchenauer, D. A.; Chen, A. X.; Hausladen, P. A.; Liang, F.

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in either pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to similar to 108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.

  13. Negative ion-driven associated particle neutron generator

    NASA Astrophysics Data System (ADS)

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; Donovan, D. C.; Chames, J. M.; Whaley, J. A.; Buchenauer, D. A.; Chen, A. X.; Hausladen, P. A.; Liang, F.

    2016-01-01

    An associated particle neutron generator is described that employs a negative ion source to produce high neutron flux from a small source size. Negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). The neutron generator can operate in either pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to ~108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.

  14. Negative Ions Enhance Survival of Membrane Protein Complexes

    NASA Astrophysics Data System (ADS)

    Liko, Idlir; Hopper, Jonathan T. S.; Allison, Timothy M.; Benesch, Justin L. P.; Robinson, Carol V.

    2016-06-01

    Membrane protein complexes are commonly introduced to the mass spectrometer solubilized in detergent micelles. The collisional activation used to remove the detergent, however, often causes protein unfolding and dissociation. As in the case for soluble proteins, electrospray in the positive ion mode is most commonly used for the study of membrane proteins. Here we show several distinct advantages of employing the negative ion mode. Negative polarity can yield lower average charge states for membrane proteins solubilized in saccharide detergents, with enhanced peak resolution and reduced adduct formation. Most importantly, we demonstrate that negative ion mode electrospray ionization (ESI) minimizes subunit dissociation in the gas phase, allowing access to biologically relevant oligomeric states. Together, these properties mean that intact membrane protein ions can be generated in a greater range of solubilizing detergents. The formation of negative ions, therefore, greatly expands the possibilities of using mass spectrometry on this intractable class of protein.

  15. Negative ion-driven associated particle neutron generator

    DOE PAGES

    Antolak, A. J.; Leung, K. N.; Morse, D. H.; ...

    2015-10-09

    We describe an associated particle neutron generator that employs a negative ion source to produce high neutron flux from a small source size. Furthermore, negative ions produced in an rf-driven plasma source are extracted through a small aperture to form a beam which bombards a positively biased, high voltage target electrode. Electrons co-extracted with the negative ions are removed by a permanent magnet electron filter. The use of negative ions enables high neutron output (100% atomic ion beam), high quality imaging (small neutron source size), and reliable operation (no high voltage breakdowns). Finally, the neutron generator can operate in eithermore » pulsed or continuous-wave (cw) mode and has been demonstrated to produce 106 D-D n/s (equivalent to similar to 108 D-T n/s) from a 1 mm-diameter neutron source size to facilitate high fidelity associated particle imaging.« less

  16. Volume production of negative ions in the reflex-type ion source

    SciTech Connect

    Jimbo, K.

    1982-06-01

    The production of negative hydrogen ions is investigated in the reflex-type negative ion source. The extracted negative hydrogen currents of 9.7 mA (100 mA/cm/sup 2/) for H/sup -/ and of 4.1 mA(42 mA/cm/sup 2/) for D/sup -/ are obtained continuously. The impurity is less than 1%. An isotope effect of negative ion production is observed.

  17. Discovery of heavy negative ions in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Coates, A. J.; Crary, F. J.; Lewis, G. R.; Young, D. T.; Waite, J. H.; Sittler, E. C.

    2007-11-01

    Titan's ionosphere contains a rich positive ion population including organic molecules. Here, using CAPS electron spectrometer data from sixteen Titan encounters, we reveal the existence of negative ions. These ions, with densities up to ~100 cm-3, are in mass groups of 10-30, 30-50, 50-80, 80-110, 110-200 and 200+ amu/charge. During one low encounter, negative ions with mass per charge as high as 10,000 amu/q are seen. Due to their unexpectedly high densities at ~950 km altitude, these negative ions must play a key role in the ion chemistry and they may be important in the formation of organic-rich aerosols (tholins) eventually falling to the surface.

  18. Enhanced momentum delivery by electric force to ions due to collisions of ions with neutrals

    SciTech Connect

    Makrinich, G.; Fruchtman, A.

    2013-04-15

    Ions in partially ionized argon, nitrogen, and helium gas discharges are accelerated across a magnetic field by an applied electric field, colliding with neutrals during the acceleration. The momentum delivered by the electric force to the ions, which is equal to the momentum carried by the mixed ion-neutral flow, is found by measuring the force exerted on a balance force meter by that flow exiting the discharge. The power deposited in the ions is calculated by measuring the ion flux and the accelerating voltage. The ratio of force over power is found for the three gases, while the gas flow rates and magnetic field intensities are varied over a wide range of values, resulting in a wide range of gas pressures and applied voltages. The measurements for the three different gases confirm our previous suggestion [G. Makrinich and A. Fruchtman, Appl. Phys. Lett. 95, 181504 (2009)] that the momentum delivered to the ions for a given power is enhanced by ion-neutral collisions during the acceleration and that this enhancement is proportional to the square root of the number of ion-neutral collisions.

  19. Quantifying the sQGP - Heavy Ion Collisions at RHIC

    SciTech Connect

    Seto, Richard

    2014-12-01

    This is the closeout for DE-FG02-86ER40271 entitled Quantifying the sQGP - Heavy Ion Collisions at the RHIC. Two major things were accomplished. The first, is the physics planning, design, approval, construction, and commissioning of the MPC-EX. The MPC-EX is an electromagnetic calorimeter covering a rapidity of 3<|eta|<4, which was added to the PHENIX detector. Its primary aim is to measure low-x gluons, in order to understand the suppression seen in a variety of signatures, such as the J/Psi. A candidate to explain this phenomena is the Color Glass Condensate (CGC) A second task was to look at collisions of asymmetric species, in particularly Cu+Au. The signature was the suppression of J/Psi mesons at forward and backward rapidity, where a stronger suppression was seen in the copper going direction. While the blue of the suppression is due to hot nuclear matter effects (e.g. screening) the increase in suppression on the Au side was consistent with cold nuclear matter effects seen in d+Au collisions. A major candidate for the explanation of this phenomena is the aforementioned CGC. Finally the work on sPHENIX, particularly an extension to the forward region, called fsPHENIX is described.

  20. Effects of Photon Absorption in High Energy Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Winchell, Joshua; Somanathan, Sidharth; Fries, Ranier

    2014-09-01

    Photons are an important probe of the hot and dense nuclear matter created in high-energy collisions of nuclei at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Since the mean free path of photons is larger than the size of the fireball of nuclear matter, final state interactions of photons are usually neglected. In light of recent tension between theoretical calculations and data from RHIC and LHC, we study the effect of reabsorption of photons on elliptic flow v2 and on the nuclear modification factor RAA. We consider photons emitted in primary hard collisions and thermal photons from quark-gluon plasma and hot hadron gas. We use the jet-quenching code PPM to simulate the propagation of those photons in a fireball of quark-gluon plasma and hot hadron gas created by collisions of heavy nuclei. For the absorption cross-sections we consider three different approaches: (a) Compton and pair production processes calculated by us in a static approximation, (b) the photon damping rates calculated by Thoma (1995), and (c) absorption rates derived from a recent photon calculation by van Hees et al.

  1. Review of Negative Hydrogen Ion Sources

    DTIC Science & Technology

    1990-09-01

    250 mA/cm 2 Second Symposium (1980) BNL 51304, with reduced e/H" ratios. At high cesium levels, where extraction Third Symposium ( 1983 ) ABp Conf...Sym. on Ion Sources and Formation of Ion Beams, Typically the accelerator usage has stressed duty factor, Berkeley, LBL -3399 (1974) VIII-1. reliability...source and for low-duty usage the lifetime can be NS-30 ( 1983 ) 2743. many months to a year as witnessed by operating magnetrons. 13. H. S. Zhang, G.-G

  2. Selected experimental results from heavy-ion collisions at LHC

    DOE PAGES

    Singh, Ranbir; Kumar, Lokesh; Netrakanti, Pawan Kumar; ...

    2013-01-01

    We reviewmore » a subset of experimental results from the heavy-ion collisions at the Large Hadron Collider (LHC) facility at CERN. Excellent consistency is observed across all the experiments at the LHC (at center of mass energysNN=2.76 TeV) for the measurements such as charged particle multiplicity density, azimuthal anisotropy coefficients, and nuclear modification factor of charged hadrons. Comparison to similar measurements from the Relativistic Heavy Ion Collider (RHIC) at lower energy (sNN=200 GeV) suggests that the system formed at LHC has a higher energy density and larger system size and lives for a longer time. These measurements are compared to model calculations to obtain physical insights on the properties of matter created at the RHIC and LHC.« less

  3. Correlated eikonal initial state in ion-atom collisions

    SciTech Connect

    Ciappina, M.F.; Otranto, S.; Garibotti, C.R.

    2002-11-01

    An approximation is developed to deal with the ionization of atoms by bare charged ions. In this method the transition amplitude describing the three-body final state is evaluated using a continuum correlated wave and that for the initial state by an analytical continuation of the {phi}{sub 2} model to complex momenta. This procedure introduces in the atomic bound state a kinematical correlation with the projectile motion. Doubly differential cross sections (DDCS's) are computed for collisions of H{sup +} and F{sup 9+} ions with He atoms. Results for the DDCS's in the forward direction are compared with experimental data and other theoretical models. We find an enhancement of the distribution for low energy electrons and that the asymmetry of the electron capture to the continuum (ECC) peak is correctly described.

  4. Negative hydrogen ion sources for accelerators

    SciTech Connect

    Moehs, D.P.; Peters, J.; Sherman, J.; /Los Alamos

    2005-08-01

    A variety of H{sup -} ion sources are in use at accelerator laboratories around the world. A list of these ion sources includes surface plasma sources with magnetron, Penning and surface converter geometries as well as magnetic-multipole volume sources with and without cesium. Just as varied is the means of igniting and maintaining magnetically confined plasmas. Hot and cold cathodes, radio frequency, and microwave power are all in use, as well as electron tandem source ignition. The extraction systems of accelerator H{sup -} ion sources are highly specialized utilizing magnetic and electric fields in their low energy beam transport systems to produce direct current, as well as pulsed and/or chopped beams with a variety of time structures. Within this paper, specific ion sources utilized at accelerator laboratories shall be reviewed along with the physics of surface and volume H{sup -} production in regard to source emittance. Current research trends including aperture modeling, thermal modeling, surface conditioning, and laser diagnostics will also be discussed.

  5. Increase of the electric field in head-on collisions between negative and positive streamers

    NASA Astrophysics Data System (ADS)

    Ihaddadene, Mohand A.; Celestin, Sebastien

    2015-07-01

    Head-on collisions between negative and positive streamer discharges have recently been suggested to be responsible for the production of high electric fields leading to X-rays emissions. Using a plasma fluid approach, we model head-on collisions between negative and positive streamers. We observe the occurrence of a very strong electric field at the location of the streamer collision. However, the enhancement of the field produces a strong increase in the electron density, which leads to a collapse of the field over only a few picoseconds. Using a Monte Carlo model, we have verified that this process is therefore not responsible for the acceleration of a significant number of electrons to energy >1 keV. We conclude that no significant X-ray emission could be produced by the head-on encounter of nonthermal streamer discharges. Moreover, we quantify the optical emissions produced in the streamer collision.

  6. Model for hypernucleus production in heavy ion collisions

    SciTech Connect

    Topor Pop, V.; Das Gupta, S.

    2010-05-15

    We estimate the production cross sections of hypernuclei in projectile-like fragments (PLFs) in heavy ion collisions. The discussed scenario for the formation cross section of a LAMBDA hypernucleus is (a) LAMBDA particles are produced in the participant region but have a considerable rapidity spread and (b) LAMBDA with rapidity close to that of the PLF and total momentum (in the rest system of the PLF) up to Fermi motion can then be trapped and produce hypernuclei. Process (a) is considered here within the heavy ion jet interaction generator (HIJING/BB) model, and process (b) in the canonical thermodynamic model (CTM). We estimate the production cross sections for a hypernucleus {sub L}AMBDA{sup A}{sub F}Z where Z=1, 2, 3, and 4 for C + C at total nucleon-nucleon center of mass (c.m.) energy sq root(s{sub NN})=3.7 GeV, and for Ne + Ne and Ar + Ar collisions at sq root(s{sub NN})=5.0 GeV. By taking into account explicitly the impact parameter dependence of the colliding systems, it is found that the cross section is different from that predicted by the coalescence model, and large discrepancy is obtained for {sub L}AMBDA{sup 6}He and {sub L}AMBDA{sup 9}Be hypernuclei.

  7. Inelastic Collisions of Positrons with Beryllium and Magnesium Ions

    NASA Astrophysics Data System (ADS)

    El-Bakry, Salah-Yaseen

    The collision of positrons with beryllium and magnesium positive ions is treated for the first time as a three-channel problem with the assumption that the elastic, ground-positronium and excited-positronium formation channels are open. A one-valence-electron model for the targets, based on the Clementi-Roetti Slater basis functions, as well as an improved coupled-static approach allowing for the polarization of the excited positronium, are used for calculating the partial cross-sections of eight partial waves (corresponding to 0≤ℓ≤7, where ℓ is the total angular momentum of the scattering problem considered). The calculations are carried out, in each case, at 19 values of the incident energy lying above the excited positronium formation threshold (i.e. above 16.42 eV in e+-Be+ scattering and above 13.02 eV in e+-Mg+ scattering). The total elastic cross-sections of e+-Mg+ scattering show a peak around the ionization threshold of Mg+ (at 14.723 eV) but for e+-Be+ scattering, display a peak at 90 eV (remember that the ionization threshold of Be+ is 18.2 eV). Although the resulting total collisional positronium formation cross-sections are smaller than the elastic ones, their relatively large values should draw the attention of experimental and theoretical physicists to the field of positron-ion collisions.

  8. Hot QCD equations of state and relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Chandra, Vinod; Kumar, Ravindra; Ravishankar, V.

    2007-11-01

    We study two recently proposed equations of state obtained from high-temperature QCD and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously, the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the first, with contributions up to O[g6ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to distinguish the two equations of state in heavy ion collisions.

  9. Relativistic ion collisions as the source of hypernuclei

    NASA Astrophysics Data System (ADS)

    Botvina, A. S.; Bleicher, M.; Pochodzalla, J.; Steinheimer, J.

    2016-08-01

    We shortly review the theory of hypernuclei production in relativistic ion collisions, that is adequate to future experiments at BM@N, NICA, and FAIR. Within a hybrid approach we use transport, coalescence and statistical models to describe the whole process. We demonstrate that the origin of hypernuclei can be explained by typical baryon interactions, that is similar to the production of conventional nuclei. In particular, heavy hypernuclei are coming mostly from projectile and target residues, whereas light hypernuclei can be produced at all rapidities. The yields of hypernuclei increase considerably above the energy threshold for Λ hyperon production, and there is a tendency to saturation of yields of hypernuclei with increasing the beam energy up to few TeV. There are unique opportunities in relativistic ion collisions which are difficult to realize in traditional hypernuclear experiments: The produced hypernuclei have a broad distribution in masses and isospin. They can even reach beyond the neutron and proton drip-lines and that opens a chance to investigate properties of exotic hypernuclei. One finds also the abundant production of multi-strange nuclei, of bound and unbound hypernuclear states with new decay modes. In addition, we can directly get an information on the hypermatter both at high and low temperatures.

  10. Entropy production in collisions of gravitational shock waves and of heavy ions

    SciTech Connect

    Gubser, Steven S.; Pufu, Silviu S.; Yarom, Amos

    2008-09-15

    We calculate the area of a marginally trapped surface formed by a head-on collision of gravitational shock waves in AdS{sub D}. We use this to obtain a lower bound on the entropy produced after the collision. A comparison to entropy production in heavy-ion collisions is included. We also discuss an O(D-2) remnant of conformal symmetry, which is present in a class of gravitational shockwave collisions in AdS{sub D} and which might be approximately realized (with D=5) in central heavy-ion collisions.

  11. Heavy-ion peripheral collisions in the Fermi energy domain : Fragmentation processes or dissipative collisions ?

    NASA Astrophysics Data System (ADS)

    Borderie, B.; Rivet, M. F.; Tassan-Got, L.

    For several years a new field in nuclear physics has been opened by the opportunity to accelerate heavy ions through an energy domain including the Fermi energy of nucleons. The new domain has to be seen as a link between dissipative processes observed at low energies, dominated by mean field considerations, and high energy collisions for which nucleon-nucleon collisions play an important role. This paper reviews our present knowledge on peripheral collisions. A reminder of contiguous energy domains is done as well as their extension in the new field. Specific calculations are also presented. Finally a wide comparison between experiments and calculations is performed. A fast dissipative stage proves to be responsible for the dominant mechanisms involved, at least when the incident energy is lower than 50 MeV/nucleon. Un nouveau champ d'études de la physique nucléaire s'est ouvert depuis quelques années avec la possibilité de réaliser des collisions noyau-noyau dans un domaine en énergie franchissant l'énergie de Fermi des nucléons. Ce nouveau domaine constitue le lien entre les processus dissipatifs observés à basse énergie, dominés par le concept de champ moyen, et les réactions à grande énergie pour lesquelles les collisions nucléon-nucléon jouent un rôle important. Cet article sur les collisions périphériques fait le point sur l'état actuel de nos connaissances. Après un rappel des domaines en énergie connexes, de leurs eventuelles extensions dans le domaine considéré, des calculs spécifiques au domaine sont décrits. Enfin une importante comparaison calculs théoriques-expériences est présentée. Une dissipation en énergie très rapide est responsable des processus dominants observés jusqu'à des énergies incidentes d'environ 50 MeV/nucléon.

  12. Collision energy dependence of viscous hydrodynamic flow in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Heinz, Ulrich

    2012-05-01

    Using a (2+1)-dimensional viscous hydrodynamical model, we study the dependence of flow observables on the collision energy ranging from s=7.7A GeV at the Relativistic Heavy Ion Collider (RHIC) to s=2760A GeV at the Large Hadron Collider (LHC). With a realistic equation of state, Glauber model initial conditions, and a small specific shear viscosity η/s=0.08, the differential charged hadron elliptic flow v2ch(pT,s) is found to exhibit a very broad maximum as a function of s around top RHIC energy, rendering it almost independent of collision energy for 39⩽s⩽2760A GeV. Compared to ideal fluid dynamical simulations, this “saturation” of elliptic flow is shifted to higher collision energies by shear viscous effects. For color-glass-motivated Monte Carlo-Kharzeev-Levin-Nardi initial conditions, which require a larger shear viscosity η/s=0.2 to reproduce the measured elliptic flow, a similar saturation is not observed up to LHC energies, except for very low pT. We emphasize that this saturation of the elliptic flow is not associated with the QCD phase transition, but arises from the interplay between radial and elliptic flow, which shifts with s depending on the fluid's viscosity and leads to a subtle cancellation between increasing contributions from light particles and decreasing contributions from heavy particles to v2 in the s range, where v2ch(pT,s) at fixed pT is maximal. By generalizing the definition of spatial eccentricity ɛx to isothermal hypersurfaces, we calculate ɛx on the kinetic freeze-out surface at different collision energies. Up to top RHIC energy, s=200A GeV, the fireball is still out-of-plane deformed at freeze-out, while at LHC energy the final spatial eccentricity is predicted to approach zero.

  13. Ionization and Electron Emission of Heavy Ion - Collisions: the Argon-Krypton Collision System.

    NASA Astrophysics Data System (ADS)

    Zarcone, Michael Joseph, Jr.

    The Ar-Kr collision system has been studied by examining the charge states of the scattered ions together with the energies of the emitted electrons. The charge state data show that there are increases in the average scattered charge state at distances of closest approach that correspond well with internuclear distances for which the molecular orbital model^1 predicts electron promotions of krypton and argon electrons to occur. The electron data show a well resolved Auger peak between 150 -200 eV superimposed on an exponentially decreasing background of continuum electrons. Doppler shifts identify the Auger peak as originating from the argon collision partner. Ion -electron coincidence experiments exhibit the same peak and link it to a specific distance of closest approach. The threshold for this L-Auger electron production falls between 0.2 and 0.3 a.u., agreeing well with molecular orbital predictions. ftn^1Fano U. and W. Lichten, Phys. Rev. Lett., 14, 627 1965.

  14. Heavy Flavor Dynamics in Relativistic Heavy-ion Collisions

    NASA Astrophysics Data System (ADS)

    Cao, Shanshan

    Heavy flavor hadrons serve as valuable probes of the transport properties of the quark-gluon plasma (QGP) created in relativistic heavy-ion collisions. In this dissertation, we introduce a comprehensive framework that describes the full-time evolution of heavy flavor in heavy-ion collisions, including its initial production, in-medium evolution inside the QGP matter, hadronization process from heavy quarks to their respective mesonic bound states and the subsequent interactions between heavy mesons and the hadron gas. The in-medium energy loss of heavy quarks is studied within the framework of a Langevin equation coupled to hydrodynamic models that simulate the space-time evolution of the hot and dense QGP matter. We improve the classical Langevin approach such that, apart from quasi-elastic scatterings between heavy quarks and the medium background, radiative energy loss is incorporated as well by treating gluon radiation as a recoil force term. The subsequent hadronization of emitted heavy quarks is simulated via a hybrid fragmentation plus recombination model. The propagation of produced heavy mesons in the hadronic phase is described using the ultra-relativistic quantum molecular dynamics (UrQMD) model. Our calculation shows that while collisional energy loss dominates the heavy quark motion inside the QGP in the low transverse momentum (p T) regime, contributions from gluon radiation are found to be significant at high pT. The recombination mechanism is important for the heavy flavor meson production at intermediate energies. The hadronic final state interactions further enhance the suppression and the collective flow of heavy mesons we observe. Within our newly developed framework, we present numerical results for the nuclear modification and the elliptic flow of D mesons, which are consistent with measurements at both the CERN Large Hadron Collider (LHC) and the BNL Relativistic Heavy-Ion Collider (RHIC); predictions for B mesons are also provided. In

  15. Negative air ion effects on human performance and physiological condition.

    PubMed

    Buckalew, L W; Rizzuto, A P

    1984-08-01

    Beneficial effects of exposure to negative air ions have been suggested, to include improved performance, mood, attention, and physiological condition. Existing support is clouded by methodological problems of control and standardization in treatment and equipment. This study investigated effects of negative ions produced by a commercially marketed air purification device on grip magnitude, coding, motor dexterity, reaction time, tracking, pulse, blood pressure, and temperature. Two groups of 12 males were exposed to 6 continuous h of either negative or "normal" ion environments under a double blind condition. Repeated measures (0,3,6 h) on each variable were obtained. MANOVA applied to change scores revealed no differences between groups, and 0 vs. 3 and 0 vs. 6-h group differences showed no significant alteration in any measure. Negative ions generated by an air purification device were concluded to produce no general or specific alteration of cognitive or psychomotor performance or physiological condition.

  16. Cesium vapor thermionic converter anomalies arising from negative ion emission

    NASA Astrophysics Data System (ADS)

    Rasor, Ned S.

    2016-08-01

    Compelling experimental evidence is given that a longstanding limit encountered on cesium vapor thermionic energy converter performance improvement and other anomalies arise from thermionic emission of cesium negative ions. It is shown that the energy that characterizes thermionic emission of cesium negative ions is 1.38 eV and, understandably, is not the electron affinity 0.47 eV determined for the photodetachment threshold of the cesium negative ion. The experimental evidence includes measurements of collector work functions and volt-ampere characteristics in quasi-vacuum cesium vapor thermionic diodes, along with reinterpretation of the classic Taylor-Langmuir S-curve data on electron emission in cesium vapor. The quantitative effects of negative ion emission on performance in the ignited, unignited, and quasi-vacuum modes of cesium vapor thermionic converter operation are estimated.

  17. High brilliance negative ion and neutral beam source

    DOEpatents

    Compton, Robert N.

    1991-01-01

    A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.

  18. Assignment of the stereochemistry and anomeric configuration of structurally informative product ions derived from disaccharides: infrared photodissociation of glycosyl-glycolaldehydes in the negative ion mode.

    PubMed

    Bendiak, Brad; Fang, Tammy T

    2010-11-02

    Using mass spectrometry in the negative ion mode, m/z 221 ions are frequently observed as product ion substructures derived from reducing disaccharides having 2, 4, or 6 linkages. The ions have been shown to be glycosyl-glycolaldehydes. All 16 stereochemical variants of their pyranosides were prepared and evaluated by infrared photodissociation, in addition to HexNAc-glycolaldehyde variants (m/z 262) of 2-acetamido-2-deoxy-d-glucose and 2-acetamido-2-deoxy-d-galactose. The stereochemistry and anomeric configuration of these ions were differentiated in the gas phase using a Fourier transform ion cyclotron resonance spectrometer with infrared multiphoton dissociation at 10.6 μm. Results were compared to those obtained by collision-induced dissociation. In some cases, differentiation was far preferable using infrared photodissociation; in others, collision-induced dissociation was preferred. Using an instrument that interfaced a linear trap with a Fourier transform ion cyclotron resonance spectrometer, either dissociation technique could be used to optimally discriminate between isomers. With infrared photodissociation, spectral differences were highly statistically significant, even between pairs of isomers having spectra that appeared to be visually somewhat similar (p<1×10⁻⁹, student's t-test for key discriminatory ions). Comparisons among different instruments suggest that physical standards of the stereochemical variants of these ions will be required for their detailed structural assignments in unknowns, as some variation was observed among instruments, both using infrared photodissociation and collision-induced dissociation.

  19. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    ERIC Educational Resources Information Center

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  20. Field-Reversal Source for Negative Halogen Ions

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Orient, O. J.; Aladzhadzhyan, S. H.

    1987-01-01

    Large zero-energy electron-attachment cross sections result in intense ion beams. Concept for producing negative halogen ions takes advantage of large cross sections at zero kinetic energy for dissociative attachment of electrons to such halogen-containing gases as SF6, CFCI3, and CCI4.

  1. A negative ion model in the lower stratosphere

    NASA Astrophysics Data System (ADS)

    Kawamoto, H.; Ogawa, T.

    1985-12-01

    There are a number of problems in the electricity of the stratosphere at middle latitudes; e.g., the positive relation between the seasonal variations of negative polar conductivity and that of ozone density, the observed dependence of the daytime variation of conductivity on the solar zenith angle, and the interaction between the ions and aerosols, particularly the processes of the conversion from negative ions to the sulfate aerosols; e.g., ion-nucleation and the growth through multi-ion complexes. As a basic tool for investigating these problems, a negative ion chemical model was constructed in the altitude region of 15 to 30 km. Recently, the success of in situ mass analysis of stratospheric ions has revealed the nature of the most abundant ions in the stratosphere. Further, the height variations of negative ion composition between 15 and 34 km were obtained with the balloon-borne mass spectrometer by another researcher. A comparison of the calculated result with the observed result is given.

  2. A negative ion model in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Kawamoto, H.; Ogawa, T.

    1985-01-01

    There are a number of problems in the electricity of the stratosphere at middle latitudes; e.g., the positive relation between the seasonal variations of negative polar conductivity and that of ozone density, the observed dependence of the daytime variation of conductivity on the solar zenith angle, and the interaction between the ions and aerosols, particularly the processes of the conversion from negative ions to the sulfate aerosols; e.g., ion-nucleation and the growth through multi-ion complexes. As a basic tool for investigating these problems, a negative ion chemical model was constructed in the altitude region of 15 to 30 km. Recently, the success of in situ mass analysis of stratospheric ions has revealed the nature of the most abundant ions in the stratosphere. Further, the height variations of negative ion composition between 15 and 34 km were obtained with the balloon-borne mass spectrometer by another researcher. A comparison of the calculated result with the observed result is given.

  3. Negative thermal ion mass spectrometry of osmium, rhenium, and iridium

    NASA Technical Reports Server (NTRS)

    Creaser, R. A.; Papanastassiou, D. A.; Wasserburg, G. J.

    1991-01-01

    This paper describes a technique for obtaining, in a conventional surface ionization mass spectrometer, intense ion beams of negatively charged oxides of Os, Re, and Ir by thermal ionization. It is shown that the principal ion species of these ions are OsO3(-), ReO4(-), and IrO2(-), respectively. For Re-187/Os-187 studies, this technique offers the advantage of isotopic analyses without prior chemical separation of Re from Os.

  4. Energy loss straggling in collisions of fast finite-size ions with atoms

    NASA Astrophysics Data System (ADS)

    Makarov, D. N.; Matveev, V. I.

    2013-03-01

    The influence of ion size on straggling of energy losses by fast partially stripped ions is studied using the nonperturbative approach based on the eikonal approximation. It is shown that such a consideration of collisions of ions with complex atoms can lead to considerable corrections in calculating root-mean-square straggling of energy losses by fast ions compared to the results obtained for point ions. The root-mean-square straggling of energy losses are calculated for bromide and iodine ions in collisions with copper, silver, and aluminum atoms. It is shown that allowance for the size of the electron "coat" of an ion noticeably improves the agreement with experimental data.

  5. Energy loss straggling in collisions of fast finite-size ions with atoms

    SciTech Connect

    Makarov, D. N. Matveev, V. I.

    2013-03-15

    The influence of ion size on straggling of energy losses by fast partially stripped ions is studied using the nonperturbative approach based on the eikonal approximation. It is shown that such a consideration of collisions of ions with complex atoms can lead to considerable corrections in calculating root-mean-square straggling of energy losses by fast ions compared to the results obtained for point ions. The root-mean-square straggling of energy losses are calculated for bromide and iodine ions in collisions with copper, silver, and aluminum atoms. It is shown that allowance for the size of the electron 'coat' of an ion noticeably improves the agreement with experimental data.

  6. Study of the negative ion extraction mechanism from a double-ion plasma in negative ion sources

    SciTech Connect

    Goto, I.; Nishioka, S.; Hatayama, A.; Miyamoto, K.

    2015-04-08

    We have developed a 2D3V-PIC model of the extraction region, aiming to clarify the basic extraction mechanism of H{sup −} ions from the double-ion plasma in H{sup −} negative ion sources. The result shows the same tendency of the H{sup −} ion density n{sub H{sup −}} as that observed in the experiments, i.e.,n{sub H{sup −}} in the upstream region away from the plasma meniscus (H{sup −} emitting surface) has been reduced by applying the extraction voltage. At the same time, relatively slow temporal oscillation of the electric potential compared with the electron plasma frequency has been observed in the extraction region. Results of the systematic study using a 1D3V-PIC model with the uniform magnetic field confirm the result that the electrostatic oscillation is identified to be lower hybrid wave. The effect of this oscillation on the H{sup −} transport will be studied in the future.

  7. Holographic description of QGP production in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Aref'eva, Irina

    2016-01-01

    Dual holographic approach provides a powerful tool to study the static properties of the QGP as well as its thermalization. There are holographic models that reproduce perfectly the static properties of the QGP, meanwhile others holographic models are used to get non-static characteristics such as the thermalization time in heavy ions collisions and the charged multiplicity. Holographic thermalization means a black hole formation in the dual space-time and particles multiplicities is defined by the entropy of the produced black hole. In this talk, we report results (arXiv:1409.7558) of study the holographic thermalization in a bottom-up AdS/QCD dual confinement background that provides the Cornell potential and QCD β -function. We perturb this background by colliding domain shock waves that are assumed to be dual to colliding heavy ions. It is known, that only for a special background the entropy of the black hole produced in the domain shock waves collision reproduces energy dependence of particles multiplicities obtained at RHIC and LHC. This background is different from the confinement background. We note that this special background approximates the confinement background in an intermediate domain. We assume that the main part of entropy is produced in this intermediate domain. This permits us to estimate the thermalization time. We show that the dependence of the multiplicity on the energy for the intermediate background has an asymptotic expansion whose first term depends on energy as E1/3, which is rather close to the experimental dependence of particles multiplicities on colliding ions energy obtained at RHIC and LHC. Motivated by recent experimental indications in favor of anisotropic thermalization, we also discuss a holographic thermalization scenario in the anisotropic 5-dimensional Lifshitz-like background. Collision of domain walls in this background has been recently considered in (arXiv:1410.4595). Our estimates show that for the critical exponent

  8. Screening-Antiscreening Effect in Ion-Atom Collisions.

    NASA Astrophysics Data System (ADS)

    Hulskotter, Hans-Peter G.

    1990-01-01

    In a collision between an atomic projectile carrying one or more electrons and a target atom, one of the events that may occur is the ionization of a projectile electron. Projectile ionization, usually called electron loss, is normally attributed to the Coulomb interaction between the target nucleus and projectile electron. The effect of the target electrons can be accounted for partially by introducing a screened Coulomb interaction between the target and the projectile electron. However, the target electrons can not only act coherently as screening agents, but may also act incoherently as ionizing (antiscreening) agents. We have measured the cross sections for projectile K-shell ionization for 0.75 - 3.5 MeV/Nucleon Li^{2+ }, C^{5+}, and O^{7+} projectiles, for projectile electron loss of 100 and 380 MeV/Nucleon Au^{52+} projectiles in collisions with H_2, He, and N _2, and for 380 MeV/N Au^ {75+} projectiles in collisions with H _2 and N_2 targets. We unambiguously demonstrate that for energies where the target electrons have sufficient kinetic energy in the projectile frame to ionize the projectile electron, the electron-electron interaction can lead to a significant increase in the total ionization cross section. The largest relative increase we have been able to observe is 76%. The experimental results generally agree with plane-wave Born approximation calculations by Bates and Griffing and modified by Anholt which take into account the interaction between projectile and target electrons. We also describe the properties of a new target gas cell which has been designed and built for the use at the relativistic heavy-ion accelerator at Lawrence Berkeley Laboratory.

  9. Ion mobility derived collision cross sections to support metabolomics applications.

    PubMed

    Paglia, Giuseppe; Williams, Jonathan P; Menikarachchi, Lochana; Thompson, J Will; Tyldesley-Worster, Richard; Halldórsson, Skarphédinn; Rolfsson, Ottar; Moseley, Arthur; Grant, David; Langridge, James; Palsson, Bernhard O; Astarita, Giuseppe

    2014-04-15

    Metabolomics is a rapidly evolving analytical approach in life and health sciences. The structural elucidation of the metabolites of interest remains a major analytical challenge in the metabolomics workflow. Here, we investigate the use of ion mobility as a tool to aid metabolite identification. Ion mobility allows for the measurement of the rotationally averaged collision cross-section (CCS), which gives information about the ionic shape of a molecule in the gas phase. We measured the CCSs of 125 common metabolites using traveling-wave ion mobility-mass spectrometry (TW-IM-MS). CCS measurements were highly reproducible on instruments located in three independent laboratories (RSD < 5% for 99%). We also determined the reproducibility of CCS measurements in various biological matrixes including urine, plasma, platelets, and red blood cells using ultra performance liquid chromatography (UPLC) coupled with TW-IM-MS. The mean RSD was < 2% for 97% of the CCS values, compared to 80% of retention times. Finally, as proof of concept, we used UPLC-TW-IM-MS to compare the cellular metabolome of epithelial and mesenchymal cells, an in vitro model used to study cancer development. Experimentally determined and computationally derived CCS values were used as orthogonal analytical parameters in combination with retention time and accurate mass information to confirm the identity of key metabolites potentially involved in cancer. Thus, our results indicate that adding CCS data to searchable databases and to routine metabolomics workflows will increase the identification confidence compared to traditional analytical approaches.

  10. Production of intense negative hydrogen beams with polarized nuclei by selective neutralization of negative ions

    DOEpatents

    Hershcovitch, Ady

    1987-01-01

    A process for selectively neutralizing H.sup.- ions in a magnetic field to produce an intense negative hydrogen ion beam with spin polarized protons. Characteristic features of the process include providing a multi-ampere beam of H.sup.- ions that are intersected by a beam of laser light. Photodetachment is effected in a uniform magnetic field that is provided around the beam of H.sup.- ions to spin polarize the H.sup.- ions and produce first and second populations or groups of ions, having their respective proton spin aligned either with the magnetic field or opposite to it. The intersecting beam of laser light is directed to selectively neutralize a majority of the ions in only one population, or given spin polarized group of H.sup.- ions, without neutralizing the ions in the other group thereby forming a population of H.sup.- ions each of which has its proton spin down, and a second group or population of H.sup.o atoms having proton spin up. Finally, the two groups of ions are separated from each other by magnetically bending the group of H.sup.- ions away from the group of neutralized ions, thereby to form an intense H.sup.- ion beam that is directed toward a predetermined objective.

  11. Characteristics of Ion Activation and Collision Induced Dissociation Using Digital Ion Trap Technology

    NASA Astrophysics Data System (ADS)

    Xu, Fuxing; Dang, Qiankun; Dai, Xinhua; Fang, Xiang; Wang, Yuanyuan; Ding, Li; Ding, Chuan-Fan

    2016-08-01

    Collision induced dissociation (CID) is one of the most established techniques for tandem mass spectrometry analysis. The CID of mass selected ion could be realized by ion resonance excitation with a digital rectangular waveform. The method is simple, and highly efficient CID result could be obtained by optimizing the experimental parameters, such as digital waveform voltage, frequency, and q value. In this work, the relationship between ion trapping waveform voltage and frequency at preselected q value, the relationship between waveform frequency and the q value at certain ion trapping voltage for optimum CID efficiency were investigated. Experiment results showed that the max CID efficiency of precursor reserpine ions can be obtained at different trapping waveform voltage and frequency when q and β are different. Based on systematic experimental analysis, the optimum experimental conditions for high CID efficiency can be calculated at any selected β or q. By using digital ion trap technology, the CID process and efficient fragmentation of parent ions can be realized by simply changing the trapping waveform amplitude, frequency, and the β values in the digital ion trap mass spectrometry. The technology and method are simple. It has potential use in ion trap mass spectrometry.

  12. Ultra-peripheral heavy-ion collisions with CMS

    SciTech Connect

    Kenny, Pat

    2015-04-10

    Ultra-peripheral collisions (UPCs) of heavy ions involve long range electromagnetic interactions at impact parameters larger than twice the nuclear radius. At TeV energies, the strong electromagnetic field due to the coherent action of the Z = 82 proton charges generates a large flux of photons, which can be used for high-energy photoproduction studies. Heavy vector mesons produced in electromagnetic interactions provide direct information on the parton distribution functions in the nucleus at very low values of Bjorken-x. These events are characterized by a very low hadron multiplicity. The wide pseudo-rapidity coverage of the CMS detectors is used to separate such events from very peripheral nuclear interactions. The CMS experiment has excellent capabilities for the measurement of the heavy vector mesons in the dimuon decay channel using the tracker and the muon chambers. This analysis demonstrates CMS’s capabilities for measuring J/ψ and the two-photon process in ultra-peripheral collisions, using the 2011 PbPb and 2013 pPb data. The prospects for future measurements using the data to be collected in the 2015 PbPb run will be described.

  13. Numerical calculation of ionization in fast ion-atom collisions

    NASA Astrophysics Data System (ADS)

    Horbatsch, Marko; Chassid, Michal

    1996-05-01

    Numerical solutions of the time-dependent Schrödinger equation in a 1D model and in a realistic 3D setting^1,2 are analyzed to calculate excitation probabilities and differential electron emission probabilities for collisions of fast bare projectiles with hydrogen atoms. The results are tested for the expected scaling behaviour with projectile charge and collision energy. The ionization probabilities are calculated by first projecting out the bound-state contributions from the time-evolved wavefunction and then performing a discrete Fourier transform. Comparison is provided with recent experiments for helium targets using cold target recoil ion momentum spectroscopy^3. For fast (v=12 au) and highly charged projectiles (Z_p=24) bound-state excitations are dominantly produced at much larger impact parameters than b >= 3 au for which the ionization channel receives its largest contribution. ^1 M. Horbatsch, Phys. Rev. A 44, R5346 (1991) ^2 M. Chassid and M. Horbatsch, J. Phys. B 28,L621 (1995) ^3 R. Moshammer, J. Ullrich, et. al. Phys. Rev. Lett. 73, 3371 (1994).

  14. Elliptic flow in heavy-ion collisions at NICA energies

    NASA Astrophysics Data System (ADS)

    B. Ivanov, Yu.; Soldatov, A. A.

    2016-08-01

    The transverse-momentum-integrated elliptic flow of charged particles at midrapidity, v2 (charged), and that of identified hadrons from Au+Au collisions are analyzed in the range of incident energies relevant to the Nuclotron-based Ion Collider Facility (NICA). Simulations are performed within a three-fluid model employing three different equations of state (EoSs): a purely hadronic EoS and two versions of the EoS involving the deconfinement transition-a first-order phase transition and a smooth crossover one. The present simulations demonstrate low sensitivity of v2 (charged) to the EoS. All considered scenarios equally well reproduce recent STAR data on v2 (charged) for mid-central Au+Au collisions and properly describe its change of sign at the incident energy decrease below √{s_{NN}} ≈ 3.5 GeV. The predicted integrated elliptic flow of various species exhibits a stronger dependence on the EoS. A noticeable sensitivity to the EoS is found for anti-protons and, to a lesser extent, for K- mesons. Presently there are no experimental data that could verify these predictions. Future experiments at NICA could corroborate these findings.

  15. Negative Dielectric Constant Material Based on Ion Conducting Materials

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2014-01-01

    Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.

  16. Evaluation of negative ion distribution changes by image processing diagnostic

    SciTech Connect

    Ikeda, K. Nakano, H.; Tsumori, K.; Kisaki, M.; Nagaoka, K.; Tokuzawa, T.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Geng, S.

    2015-04-08

    Distributions of hydrogen Balmer-α (H{sub α}) intensity and its reduction behavior close to a plasma grid (PG) surface have been observed by a spectrally selective imaging system in an arc discharge type negative hydrogen ion source in National Institute for Fusion Science. H{sub α} reduction indicates a reduction of negative hydrogen ions because the mutual neutralization process between H{sup +} and H{sup −} ions causes the dominant excitation process for H{sub α} emission in the rich H{sup −} condition such as in ionic plasma. We observed a significant change in H{sub α} reduction distribution due to change in the bias voltage, which is used to suppress the electron influx. Small H{sub α} reduction in higher bias is likely because the production of negative ions is suppressed by the potential difference between the plasma and PG surface.

  17. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    NASA Astrophysics Data System (ADS)

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-01

    As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.

  18. Conformal anomaly and photon anisotropy in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Basar, Gokce; Kharzeev, Dmitri; Skokov, Vladimir

    2013-10-01

    I introduce a novel mechanism for anisotropic photon production in heavy ion collisions, stemming from the interplay between anomalies of QCDxQED and the existence of strong (electro)magnetic fields. For the case of conformal anomaly, using the hydrodynamical description of the bulk modes of QCD plasma, I show that this mechanism leads to the pho- ton production yield that is comparable to the yield from conventional sources. Furthermore, this mechanism provides a a significant positive contribution to the azimuthal anisotropy of photons (v2) and shows agree- ment with the PHENIX data. This research was supported by the US Department of Energy under Contracts DE-AC02-98CH10886 and DE-FG-88ER41723.

  19. Production of photons in relativistic heavy-ion collisions

    DOE PAGES

    Jean -Francois Paquet; Denicol, Gabriel S.; Shen, Chun; ...

    2016-04-18

    In this work it is shown that the use of a hydrodynamical model of heavy-ion collisions which incorporates recent developments, together with updated photon emission rates, greatly improves agreement with both ALICE and PHENIX measurements of direct photons, supporting the idea that thermal photons are the dominant source of direct photon momentum anisotropy. The event-by-event hydrodynamical model uses the impact parameter dependent Glasma model (IP-Glasma) initial states and includes, for the first time, both shear and bulk viscosities, along with second-order couplings between the two viscosities. Furthermore, the effect of both shear and bulk viscosities on the photon rates ismore » studied, and those transport coefficients are shown to have measurable consequences on the photon momentum anisotropy.« less

  20. Production of photons in relativistic heavy-ion collisions

    SciTech Connect

    Jean -Francois Paquet; Denicol, Gabriel S.; Shen, Chun; Luzum, Matthew; Schenke, Bjorn; Jeon, Sangyong; Gale, Charles

    2016-04-18

    In this work it is shown that the use of a hydrodynamical model of heavy-ion collisions which incorporates recent developments, together with updated photon emission rates, greatly improves agreement with both ALICE and PHENIX measurements of direct photons, supporting the idea that thermal photons are the dominant source of direct photon momentum anisotropy. The event-by-event hydrodynamical model uses the impact parameter dependent Glasma model (IP-Glasma) initial states and includes, for the first time, both shear and bulk viscosities, along with second-order couplings between the two viscosities. Furthermore, the effect of both shear and bulk viscosities on the photon rates is studied, and those transport coefficients are shown to have measurable consequences on the photon momentum anisotropy.

  1. Volume production of negative ions in the reflex type ion source

    SciTech Connect

    Jimbo, K.

    1982-01-01

    The production of negative hydrogen ions is investigated in the reflex-type negative ion source. The extracted negative hydrogen currents of 9.7 mA (100 mA/cm/sup 2/) for H/sup -/ and of 4.1 mA (42 mA/cm/sup 2/) for D/sup -/ are obtained continuously. The impurity is less then 1%. An isotope effect of negative ion production is observed. When anomalous diffusion in the positive column was found by Lehnert and Hoh (1960), it was pointed out that the large particle loss produced by anomalous diffusion is compensated by the large particle production inside the plasma, i.e., the plasma tries to maintain itself. The self-sustaining property of the plasma is applied to the reflex-type negative ion source. Anomalous diffusion was artificially encouraged by changing the radial electric field inside the reflex discharge. The apparent encouragement of negative ion diffusion by the increase of density fluctuation amplitude is observed. Twice as much negative ion current was obtained with the artificial encouragement as without. It is found from the quasilinear theory that the inwardly directed radial electric field destabilizes the plasma in the reflex-type ion source. The nonlinear theory based on Yoshikawa method (1962) is extended, and the anomalous diffusion coefficient in a weakly ionized plasma is obtained. The electrostatic sheath trap, which increases the confinement of negative ions in the reflex-type ion source, is also discussed.

  2. A future, intense source of negative hydrogen ions

    NASA Technical Reports Server (NTRS)

    Siefken, Hugh; Stein, Charles

    1994-01-01

    By directly heating lithium hydride in a vacuum, up to 18 micro-A/sq cm of negative hydrogen has been obtained from the crystal lattice. The amount of ion current extracted and analyzed is closely related to the temperature of the sample and to the rate at which the temperature is changed. The ion current appears to be emission limited and saturates with extraction voltage. For a fixed extraction voltage, the ion current could be maximized by placing a grid between the sample surface and the extraction electrode. Electrons accompanying the negative ions were removed by a magnetic trap. A Wein velocity filter was designed and built to provide definitive mass analysis of the extracted ion species. This technique when applied to other alkali hydrides may produce even higher intensity beams possessing low values of emittance.

  3. K* vector meson resonance dynamics in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ilner, Andrej; Cabrera, Daniel; Markert, Christina; Bratkovskaya, Elena

    2017-01-01

    We study the strange vector meson (K*,K¯* ) dynamics in relativistic heavy-ion collisions based on the microscopic parton-hadron-string dynamics (PHSD) transport approach which incorporates partonic and hadronic degrees of freedom, a phase transition from hadronic to partonic matter—quark-gluon-plasma (QGP)—and a dynamical hadronization of quarks and antiquarks as well as final hadronic interactions. We investigate the role of in-medium effects on the K*,K¯* meson dynamics by employing Breit-Wigner spectral functions for the K* with self-energies obtained from a self-consistent coupled-channel G -matrix approach. Furthermore, we confront the PHSD calculations with experimental data for p +p , Cu+Cu , and Au+Au collisions at energies up to √{sN N}=200 GeV. Our analysis shows that, at relativistic energies, most of the final K* (observed experimentally) are produced during the late hadronic phase, dominantly by the K +π →K* channel, such that the fraction of the K* from the QGP is small and can hardly be reconstructed from the final observables. The influence of the in-medium effects on the K* dynamics at energies typical of the BNL Relativistic Heavy Ion Collider is rather modest due to their dominant production at low baryon densities (but high meson densities); however, it increases with decreasing beam energy. Moreover, we find that the additional cut on the invariant-mass region of the K* further influences the shape and the height of the final spectra. This imposes severe constraints on the interpretation of the experimental results.

  4. Maximizing Ion Current by Space Charge Neutralization using Negative Ions and Dust Particles

    SciTech Connect

    A. Smirnov; Y. Raitses; N.J. Fisch

    2005-01-25

    Ion current extracted from an ion source (ion thruster) can be increased above the Child-Langmuir limit if the ion space charge is neutralized. Similarly, the limiting kinetic energy density of the plasma flow in a Hall thruster might be exceeded if additional mechanisms of space charge neutralization are introduced. Space charge neutralization with high-mass negative ions or negatively charged dust particles seems, in principle, promising for the development of a high current or high energy density source of positive light ions. Several space charge neutralization schemes that employ heavy negatively charged particles are considered. It is shown that the proposed neutralization schemes can lead, at best, only to a moderate but nonetheless possibly important increase of the ion current in the ion thruster and the thrust density in the Hall thruster.

  5. Molecular and negative ion production by a standard electron cyclotron resonance ion source.

    PubMed

    Rácz, R; Biri, S; Juhász, Z; Sulik, B; Pálinkás, J

    2012-02-01

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H(-), O(-), OH(-), O(2)(-), C(-), C(60)(-) negative ions and H(2)(+), H(3)(+), OH(+), H(2)O(+), H(3)O(+), O(2)(+) positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several μA and positive molecular ion beams in the mA range were successfully obtained.

  6. Molecular and negative ion production by a standard electron cyclotron resonance ion source

    SciTech Connect

    Racz, R.; Biri, S.; Juhasz, Z.; Sulik, B.

    2012-02-15

    Molecular and negative ion beams, usually produced in special ion sources, play an increasingly important role in fundamental and applied atomic physics. The ATOMKI-ECRIS is a standard ECR ion source, designed to provide highly charged ion (HCI) plasmas and beams. In the present work, H{sup -}, O{sup -}, OH{sup -}, O{sub 2}{sup -}, C{sup -}, C{sub 60}{sup -} negative ions and H{sub 2}{sup +}, H{sub 3}{sup +}, OH{sup +}, H{sub 2}O{sup +}, H{sub 3}O{sup +}, O{sub 2}{sup +} positive molecular ions were generated in this HCI-ECRIS. Without any major modification in the source and without any commonly applied tricks (such as usage of cesium or magnetic filter), negative ion beams of several {mu}A and positive molecular ion beams in the mA range were successfully obtained.

  7. A collision cross-section database of singly-charged peptide ions.

    PubMed

    Tao, Lei; McLean, Janel R; McLean, John A; Russell, David H

    2007-07-01

    A database of ion-neutral collision cross-sections for singly-charged peptide ions is presented. The peptides included in the database were generated by enzymatic digestion of known proteins using three different enzymes, resulting in peptides that differ in terms of amino acid composition as well as N-terminal and C-terminal residues. The ion-neutral collision cross-sections were measured using ion mobility (IM) spectrometry that is directly coupled to a time-of-flight (TOF) mass spectrometer. The ions were formed by a matrix-assisted laser desorption ionization (MALDI) ion source operated at pressures (He bath gas) of 2 to 3 torr. The majority (63%) of the peptide ion collision cross-sections correlate well with structures that are best described as charge-solvated globules, but a significant number of the peptide ions exhibit collision cross-sections that are significantly larger or smaller than the average, globular mobility-mass correlation. Of the peptide ions having larger than average collision cross-sections, approximately 71% are derived from trypsin digestion (C-terminal Arg or Lys residues) and most of the peptide ions that have smaller (than globular) collision cross-sections are derived from pepsin digestion (90%).

  8. Forward electron production in heavy ion-atom and ion-solid collisions

    SciTech Connect

    Sellin, I.A.

    1984-01-01

    A sharp cusp in the velocity spectrum of electrons, ejected in ion-atom and ion-solid collisions, is observed when the ejected electron velocity vector v/sub e/ matches that of the emergent ion vector v/sub p/ in both speed and direction. In ion-atom collisions, the electrons originate from capture to low-lying, projectile-centered continuum states (ECC) for fast bare or nearly bare projectiles, and from loss to those low-lying continuum states (ELC) when loosely bound projectile electrons are available. Most investigators now agree that ECC cusps are strongly skewed toward lower velocities, and exhibit full widths half maxima roughly proportional to v/sub p/ (neglecting target-shell effects, which are sometimes strong). A close examination of recent ELC data shows that ELC cusps are instead nearly symmetric, with widths nearly independent on v/sub p/ in the velocity range 6 to 18 a.u., a result only recently predicted by theory. Convoy electron cusps produced in heavy ion-solid collisions at MeV/u energies exhibit approximately velocity-independent widths very similar to ELC cusp widths. While the shape of the convoy peaks is approximately independent of projectile Z, velocity, and of target material, it is found that the yields in polycrystalline targets exhibit a strong dependence on projectile Z and velocity. While attempts have been made to link convoy electron production to binary ECC or ELC processes, sometimes at the last layer, or alternatively to a solid-state wake-riding model, our measured dependences of cusp shape and yield on projectile charge state and energy are inconsistent with the predictions of available theories. 10 references, 8 figures, 1 table.

  9. Numerical analysis of electronegative plasma in the extraction region of negative hydrogen ion sources

    SciTech Connect

    Kuppel, S.; Matsushita, D.; Hatayama, A.; Bacal, M.

    2011-01-01

    This numerical study focuses on the physical mechanisms involved in the extraction of volume-produced H{sup -} ions from a steady state laboratory negative hydrogen ion source with one opening in the plasma electrode (PE) on which a dc-bias voltage is applied. A weak magnetic field is applied in the source plasma transversely to the extracted beam. The goal is to highlight the combined effects of the weak magnetic field and the PE bias voltage (upon the extraction process of H{sup -} ions and electrons). To do so, we focus on the behavior of electrons and volume-produced negative ions within a two-dimensional model using the particle-in-cell method. No collision processes are taken into account, except for electron diffusion across the magnetic field using a simple random-walk model at each time step of the simulation. The results show first that applying the magnetic field (without PE bias) enhances H{sup -} ion extraction, while it drastically decreases the extracted electron current. Secondly, the extracted H{sup -} ion current has a maximum when the PE bias is equal to the plasma potential, while the extracted electron current is significantly reduced by applying the PE bias. The underlying mechanism leading to the above results is the gradual opening by the PE bias of the equipotential lines towards the parts of the extraction region facing the PE. The shape of these lines is due originally to the electron trapping by the magnetic field.

  10. QED Approach to Modeling Spectra of the Multicharged Ions in a Plasma: Oscillator and Electron-ion Collision Strengths

    SciTech Connect

    Glushkov, A. V.; Khetselius, O. Yu.; Loboda, A. V.; Ignatenko, A.; Svinarenko, A.; Korchevsky, D.; Lovett, L.

    2008-10-22

    The uniform energy approach, formally based on the QED theory with using gauge invariant scheme of generation of the optimal one-electron representation, is used for the description of spectra of the multicharged ions in a laser plasma, calculation of electron-ion collision strengths, cross-sections in Ne-like and Ar-like ions.

  11. Negative ion ESI-MS analysis of natural yellow dye flavonoids--An isotopic labelling study

    NASA Astrophysics Data System (ADS)

    McNab, Hamish; Ferreira, Ester S. B.; Hulme, Alison N.; Quye, Anita

    2009-07-01

    Flavonoids are amongst the most commonly used natural yellow colourants in paintings, as lakes, and in historical textiles as mordant dyes. In this paper, evidence from isotopically labelled substrates is used to propose negative ion electrospray collision induced decomposition mechanisms of flavones, flavonols and an isoflavone. These mechanisms include a retro-Diels-Alder fragmentation (observed for flavones and flavonols) and an M-122 fragmentation (characteristic of 3',4'-dihydroxyflavonols). In addition, the presence of a m/z 125 fragment ion is shown to be characteristic of 2'-hydroxyflavonols and an ion at m/z 149 is shown to be characteristic of 4'-hydroxyflavones. Applications of these methods are exemplified by the identification of a minor component of Dyer's camomile (Anthemis tinctoria L.) and the identification of the dye source in green threads sampled from an 18th Century Scottish tartan fragment.

  12. From many body wee partons dynamics to perfect fluid: a standard model for heavy ion collisions

    SciTech Connect

    Venugopalan, R.

    2010-07-22

    We discuss a standard model of heavy ion collisions that has emerged both from experimental results of the RHIC program and associated theoretical developments. We comment briefly on the impact of early results of the LHC program on this picture. We consider how this standard model of heavy ion collisions could be solidified or falsified in future experiments at RHIC, the LHC and a future Electro-Ion Collider.

  13. Negative hydrogen ions in a linear helicon plasma device

    NASA Astrophysics Data System (ADS)

    Corr, Cormac; Santoso, Jesse; Samuell, Cameron; Willett, Hannah; Manoharan, Rounak; O'Byrne, Sean

    2015-09-01

    Low-pressure negative ion sources are of crucial importance to the development of high-energy (>1 MeV) neutral beam injection systems for the ITER experimental tokamak device. Due to their high power coupling efficiency and high plasma densities, helicon devices may be able to reduce power requirements and potentially remove the need for caesium. In helicon sources, the RF power can be coupled efficiently into the plasma and it has been previously observed that the application of a small magnetic field can lead to a significant increase in the plasma density. In this work, we investigate negative ion dynamics in a high-power (20 kW) helicon plasma source. The negative ion fraction is measured by probe-based laser photodetachment, electron density and temperature are determined by a Langmuir probe and tuneable diode laser absorption spectroscopy is used to determine the density of the H(n = 2) excited atomic state and the gas temperature. The negative ion density and excited atomic hydrogen density display a maximum at a low applied magnetic field of 3 mT, while the electron temperature displays a minimum. The negative ion density can be increased by a factor of 8 with the application of the magnetic field. Spatial and temporal measurements will also be presented. The Australian Research Grants Council is acknowledged for funding.

  14. Selected Topics in the Physics of Heavy Ion Collisions (1/3)

    ScienceCinema

    None

    2016-07-12

    In these lectures, I discuss some classes of measurements accessible in heavy ion collisions at the LHC. How can these observables be measured, to what extent can they be calculated, and what do they tell us about the dense mesoscopic system created during the collision? In the first lecture, I shall focus in particular on measurements that constrain the spatio-temporal picture of the collisions and that measure centrality, orientations and extensions. In the subsequent lectures, I then discuss on how classes of measurements allow one to characterize collective phenomena, and to what extent these measurements can constrain the properties of matter produced in heavy ion collisions.

  15. Centrality determination in heavy-ion collisions with the CBM experiment

    NASA Astrophysics Data System (ADS)

    Klochkov; Selyuzhenkov, I.; CBM collaboration

    2017-01-01

    The size and evolution of the medium created in a heavy-ion collision depends on collision geometry. Experimentally collisions can be characterized by the measured particle multiplicities around midrapidity or by the energy measured in the forward rapidity region, which is sensitive to the spectator fragments. In the Compressed Baryonic Matter (CBM) experiment at the future Facility for Antiproton and Ion Research (FAIR) the multiplicity of produced particles is measured with the silicon tracking system (STS). The projectile spectator detector (PSD) measures the energy of spectator fragments. We present the procedure of collision centrality determination in CBM and its performance using the PSD and the STS information.

  16. Negative ion mass spectrometry and the detection of carbonyls and HCN from clover

    NASA Astrophysics Data System (ADS)

    Custer, Thomas G.; Kato, Shuji; Fall, Ray; Bierbaum, Veronica M.

    2000-12-01

    We have demonstrated that negative ion-chemical ionization mass spectrometry (NI-CIMS) can be used to distinguish several isomeric volatile organic compounds (VOCs) that are emitted from wounded plants. Reaction chemistry with HO-, hydrogen/deuterium exchange patterns, and collision-induced dissociation spectra allow identification of the isomers. Laboratory studies of emissions from wounded clover using NI-CIMS show several previously detected VOCs, but also clearly demonstrate the emission of HCN. This compound is presumably formed by the decomposition of cyanogenic glycosides which also form aldehyde and ketone byproducts. These results suggest that NI-CIMS may be a valuable tool for investigating VOCs and HCN release from vegetation.

  17. Effect of ion-neutral collision mechanism on the trapped-ion equation of motion: a new mass spectral line shape for high-mass trapped ions

    NASA Astrophysics Data System (ADS)

    Guan, Shenheng; Li, Guo-Zhong; Marshall, Alan G.

    1997-11-01

    The decay amplitude envelope of an ICR time-domain signal determines its corresponding Fourier transform mass spectral line shape. The commonly accepted FT-ICR frequency-domain unapodized Lorentzian spectral line shape originates from the Langevin ion-neutral collision model, in which an ion is treated as a point charge that induces an electric dipole moment in a neutral collision partner. The Langevin model provides a good description of reactions of low-energy collisions of low-mass positive ions with neutrals. However, the Langevin model is inappropriate for collisions of high-mass gas-phase biopolymer ions with low-mass neutrals. Here, we examine ion trajectories for both Langevin and hard-sphere ion-neutral collision models. For the Langevin model, collision frequency is independent of ion speed, leading to a linear differential equation of ion motion with a frictional damping term linearly proportional to ion velocity. For the hard-sphere model, collision frequency is proportional to ion speed and the frictional damping term is proportional to the square of ion velocity. We show that the resulting (non-linear) equation of ion motion leads to a non-exponential time-domain ICR signal whose amplitude envelope has the form, 1/(1 + [sigma]t), in which [sigma] is a constant. Dispersion-vs-absorption (DISPA) line shape analysis reveals that the `hard-sphere' spectral line shape resembles that of overlaid narrow and broad Lorentzians. We discuss several important implications of the new `hard-sphere' line shape for ICR spectral analysis, ICR signal processing, collision-based ion activation, and ion axialization. Finally, in the hard-sphere limit, a non-linear frictional damping term will also apply to ions in a Paul trap.

  18. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    NASA Astrophysics Data System (ADS)

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-01

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H-) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H- current at higher frequency of cathode heating current.

  19. Production of negative hydrogen and deuterium ions in microwave-driven ion sources.

    SciTech Connect

    Spence, D.

    1998-09-11

    The authors report progress they have made in the production of negative hydrogen and deuterium atomic ions in magnetically-confined microwave-driven (2.45 GHz) ion sources. The influence of source surface material, microwave power, source gas pressure and magnetic field configuration on the resulting ion current is discussed. Results strongly suggest that, at least in the source, vibrationally excited molecular hydrogen, the precursor to atomic negative ion production, is produced via a surface mechanism suggested by Hall et al. rather than via a gas phase reaction as is generally believed to be the case in most ion sources.

  20. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, William K.; Stirling, William L.

    1982-01-01

    An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.

  1. Effects of Ion-ion Collisions and Inhomogeneity in Two-dimensional Simulations of Stimulated Brillouin Backscattering*

    NASA Astrophysics Data System (ADS)

    Cohen, B. I.

    2005-10-01

    Two-dimensional simulations of stimulated Brillouin backscattering (SBBS) with the BZOHAR^1 code have been extended to include ion-ion collisions and spatial nonuniformity in the mean ion flow. BZOHAR hybrid simulations (particle-in-cell kinetic ions and Boltzmann fluid electrons) have shown^2 that SBBS saturation is dominated by ion trapping effects and secondary instability of the primary ion wave (decay into subharmonic ion waves and ion quasi-modes). Here we address the effects of ion collisions^3 on SBBS saturation and employ the efficient Langevin ion collision algorithm of Ref. 4 and the Fokker-Planck collision operator of Ref. 5. We also report simulations of SBBS with a linear gradient in the mean ion drift, which in conjunction with the nonlinear frequency shift due to ion trapping can introduce auto-resonance effects that may enhance reflectivities.^6 For SBBS in a high-gain limit with ion collisions or inhomogeneity, we find that ion trapping and secondary ion wave instabilities are robust saturation mechanisms. *Work performed for US DOE by UC LLNL under Contr. W-7405-ENG-48. ^1B.I. Cohen, et al., Phys. Plasmas 4, 956 (1997). ^2B.I. Cohen, et al., Phys. Plasmas, 12, 052703 (2005),. ^ 3P.W. Rambo, et al., Phys. Rev. Lett. 79, 83 (1997). ^ 4M.E. Jones, et al., J. Comp. Phys. 123, 169, (1996). ^ 5W. M. Manheimer, et al., J. Comp. Phys. 138, 563 (1997). ^ 6E.A. Williams, et al., Phys. Plasmas 11, 231 (2004).

  2. Doubly Excited Resonances in the Positronium Negative Ion

    NASA Technical Reports Server (NTRS)

    Ho, Y.K.

    2007-01-01

    The recent theoretical studies on the doubly excited states of the Ps' ion are described. The results obtained by using the method of complex coordinate rotation show that the three-lepton system behaves very much like an XYX tri-atomic molecule. Furthermore, the recent investigation on the positronium negative ion embedded in Debye plasma environments is discussed. The problem is modeled by the use of a screened Coulomb potential to represent the interaction between the charge particles.

  3. Inelastic processes in ion/surface collisions: Scattered ion fractions and VUV photon emission for Ne + and Ar + collisions with Mg and Y surfaces

    NASA Astrophysics Data System (ADS)

    Rabalais, J. Wayne; Chen, Jie-Nan; Kumar, R.; Narayana, M.

    1985-12-01

    Time-of-flight (TOF) scattering spectra and vacuum ultraviolet (VUV) photon emission spectra resulting from 1-10 keV Ne+ and Ar+ ions impinging on magnesium and yttrium surfaces and the corresponding oxidized and hydroxylated surfaces have been measured. Measurements of the scattered neutrals plus ions and neutrals only are used to calculate scattered ion fractions Y+ for the single scattering collisions. The Y+ values rise steeply at low ion energies E0 (˜1-2 keV), reaching values of 70% and 38% at 10 keV for Ne+/Mg and Ar+/Y, respectively, and are very sensitive to adsorbate coverage. The dominant photon emission observed from the clean metals in the VUV range 30-200 nm is 1,3P → 1S resonance radiation from the excited neutral projectile atoms; emission was also observed from excited H and O for adsorbate covered surfaces. A model is developed for electronic transitions in keV ion/surface collisions which considers Auger and resonant transitions along the ion trajectory and electron promotions in the quasidiatomic molecule of the close encounter. By making an assumption of equality in the close encounter, the model can be fitted to the experimental data, allowing determination of ionization PI and neutralization PN probabilities as a function of the distance of approach. The results show that electron promotions within MO's of the collision complex formed during encounter are significant, if not dominating, processes in keV ion surface collisions.

  4. Positive and negative cluster ions from liquid ethanol by fast ion bombardment.

    PubMed

    Kaneda, M; Shimizu, M; Hayakawa, T; Iriki, Y; Tsuchida, H; Itoh, A

    2010-04-14

    Secondary ion mass spectra have been measured for the first time for a liquid ethanol target bombarded by 2.0 MeV He(+) ions. Positive and negative ion spectra exhibit evidently a series of cluster ions of the forms [(EtOH)(n)H](+) and [(EtOH)(n)-H](-), respectively, in addition to light fragment ions from intact parent molecules. It was found that these cluster ions are produced only from liquid phase ethanol. Both positive and negative secondary ion spectra show similar cluster size distributions with almost the same decay slope. We also present for the first time the cluster ion distribution emitted from the liquid at different liquid temperatures.

  5. Improvement of JT-60U Negative Ion Source Performance

    SciTech Connect

    L.R. Grisham; M. Kuriyama; M. Kawai; T. Itoh; N. Umeda; JT-60U Team

    2000-11-15

    The negative ion neutral beam system now operating on JT-60U was the first application of negative ion technology to the production of beams of high current and power for conversion to neutral beams, and has successfully demonstrated the feasibility of negative ion beam heating systems for ITER and future tokamak reactors [1, 2]. It also demonstrated significant electron heating[3] and high current drive efficiency in JT-60U[4]. Because this was such a large advance in the state of the art with respect to all system parameters, many new physical processes appeared during the earlier phases of the beam injection experiments. We have explored the physical mechanisms responsible for these processes, and implemented solutions for some of them, in particular excessive beam stripping, the secular dependence of the arc and beam parameters, and nonuniformity of the plasma illuminating the beam extraction grid. This has reduced the percentage of beam heat loading on the downstream grids by roug hly a third, and permitted longer beam pulses at higher powers. Progress is being made in improving the negative ion current density, and in coping with the sensitivity of the cesium in the ion sources to oxidation by tiny air or water leaks, and the cathode operation is being altered.

  6. The unreasonable effectiveness of hydrodynamics in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Noronha-Hostler, Jacquelyn; Noronha, Jorge; Gyulassy, Miklos

    2016-12-01

    Event-by-event hydrodynamic simulations of AA and pA collisions involve initial energy densities with large spatial gradients. This is associated with the presence of large Knudsen numbers (Kn ≈ 1) at early times, which may lead one to question the validity of the hydrodynamic approach in these rapidly evolving, largely inhomogeneous systems. A new procedure to smooth out the initial energy densities is employed to show that the initial spatial eccentricities, εn, are remarkably robust with respect to variations in the underlying scale of initial energy density spatial gradients, λ. For √{sNN} = 2.76 TeV LHC initial conditions generated by the MCKLN code, εn (across centralities) remains nearly constant if the fluctuation scale varies by an order of magnitude, i.e., when λ varies from 0.1 to 1 fm. Given that the local Knudsen number Kn ≈ 1 / λ, the robustness of the initial eccentricities with respect to changes in the fluctuation scale suggests that the vn's cannot be used to distinguish between events with large Kn from events where Kn is in the hydrodynamic regime. We use the 2+1 Lagrangian hydrodynamic code v-USPhydro to show that this is indeed the case: anisotropic flow coefficients computed within event-by-event viscous hydrodynamics are only sensitive to long wavelength scales of order 1 /ΛQCD ≈ 1 fm and are incredibly robust with respect to variations in the initial local Knudsen number. This robustness can be used to justify the somewhat unreasonable effectiveness of the nearly perfect fluid paradigm in heavy ion collisions.

  7. Negative ion-based neutral injection on DIII-D

    SciTech Connect

    Stewart, L.D.; Bhadra, D.K.; Colleraine, A.P.; Kim, J.

    1990-01-01

    High energy negative ion-based neutral beam injection is a strong candidate for heating and non-inductive current drive in tokamaks. Many of the questions related to the physics and engineering of this technique remain unanswered. In this paper, we consider the possibility of negative ion-based neutral beam injection on DIII-D. We establish the desired parameter space by examining physics trades. This is combined with potential design constraints and a survey of component technology options to establish an injector concept. Injector performance is estimated assuming particular component technologies, and concept flexibility with respect to incorporating alternate technologies is described. 9 refs., 6 figs., 4 tabs.

  8. Photodetachment of hydrogen negative ions with screened Coulomb interaction

    SciTech Connect

    Zhang, Song Bin; Chen, Xiang Jun; Wang, Jian Guo; Janev, R. K.; Qu, Yi Zhi

    2010-06-15

    The effects of Coulomb interaction screening on photodetachment cross sections of hydrogen negative ions below the n =2 excitation threshold is investigated by using the R-matrix method with pseudostates. The contributions of Feshbach and shape resonances to H{sup -} photodetachment cross section are presented when screening length (D) varies from D = {infinity} to D = 4.6 a.u. It is found that the interaction screening has dramatic effects on the photodetachment cross sections of hydrogen negative ions in the photoelectron energy region around the n = 2 excitation threshold by strongly affecting the evolution of near-threshold resonances.

  9. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    SciTech Connect

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  10. Solitons in a relativistic plasma with negative ions--

    SciTech Connect

    Das, G.C. ); Karmakar, B. ); Ibohanbi Singh, KH. )

    1990-02-01

    The interaction of the nonlinearity and the dispersiveness causing the solitary waves are studied in a relativistic plasma with negative ions through the derivation of a nonlinear partial differential equation known as the Korteweg-Devries (K-DV) equation. The negative ions play a salient feature on the existence and behavior of the solitons and could be of interest in laboratory plasmas. First, the observations are made in a nonisothermal plasma, and later the reduction to the nonisothermality of the plasma shows entirely different characteristics as compared to the solitons in the isothermal plasmas. A comparison with the various solutions has been emphasized.

  11. Production of negative ions of hydrogen isotopes. [Patent application

    SciTech Connect

    Garscadden, A.

    1981-05-14

    A process for generating negative ions of hydrogen isotopes is described which comprises cooling the hydrogen gas below 300K, and preferably to about 200K, vibrationally exciting the molecules of the gas, and then dissociating the molecules by electron impact into neutral hydrogen atoms and negative hydrogen ions. Alternatively, the gas may first be vibrationally excited by heating or the like, and then cooled translationally, for example, by rapid expansion prior to dissociation by electron impact. The processes of this invention are characterized by control of non-equilibrium conditions to obtain large increases in dissociative attachment rates by increasing the population of hydrogen gas molecules having a higher vibrational energy state.

  12. Collisions of ions with surfaces at chemically relevant energies: Instrumentation and phenomena

    NASA Astrophysics Data System (ADS)

    Grill, Verena; Shen, Jianwei; Evans, Chris; Cooks, R. Graham

    2001-08-01

    An overview of gaseous ion/surface collisions is presented, with special emphasis on the behavior of polyatomic projectile ions at hyperthermal collision energies (1-100 eV) and the instrumentation needed for such studies. The inelastic and reactive processes occurring during ion/surface collisions are described in terms of several archetypes, viz., elastic and quasielastic scattering, chemical sputtering leading to release of surface material, inelastic scattering leading to surface-induced dissociation (SID) of the projectile, ion/surface reactions, and soft landing. Parameters that are important in ion/surface interactions are discussed, including the interaction time, the conversion of translational to internal energy, the translational energies of the scattered ions, the effects of scattering angle, and the influence of the nature of the surface. Different types of tandem mass spectrometers, built specifically to study ion/surface collision phenomena, are discussed and the advantages and disadvantages of the individual designs are compared. The role of SID as a technique in bioanalytical mass spectrometry is illustrated and this inelastic collision experiment is compared and contrasted with gas-phase collision-induced dissociation, the standard method of tandem mass spectrometry. Special emphasis is placed on reactive scattering including the use of ion/surface reactions for surface chemical analysis and for surface chemical modification.

  13. Collective phenomena in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Wang, Shan

    1998-12-01

    Collective motion in the final state of relativistic nucleus-nucleus collisions, produced by the release of compressional energy built-up during the stage of maximum density, is widely accepted as a good observable to test models and a useful tool to probe the nuclear equation of state. This dissertation presents an experimental study of nuclear collisions at the Bevalac accelerator at Lawrence Berkeley National Laboratory, with special emphasis on collective phenomena. The main detector used is a time projection chamber with more than two million pixels. Using high statistics measurements of all charged final- state fragments in Au + Au reactions at 0.25, 0.4, 0.6, 0.8, 1.0, and 1.15A GeV, we present a new method to unify the description of light fragment spectra and the three main categories of collective motion: sideward flow, squeeze-out, and transverse expansion. In this alternative representation, the speed of collective expansion is shown to be slowest in the plane of the reaction, and is modulated sinusoidally according to fragment azimuth relative to this plane. This simple yet complete characterization of squeeze-out leads to its interpretation as an in-plane retardation of collective expansion. We test momentum space power law behavior by studying the momentum-space densities of fragments up to 4He. We conclude that the simple momentum-space power law consistently describes light participant fragment production at p⊥/A/ge0.2 GeV/c over a remarkably wide range of transverse momentum, azimuth relative to the reaction plane, rapidity, multiplicity and beam energy in intermediate-energy heavy-ion collisions and in particular, the increase in sideward flow with fragment mass is well described by a momentum- space power law under these conditions. This behavior is consistent with composite fragment formation through a statistical coalescence mechanism in momentum space. Our conclusion supports the use of models without composite formation to interpret flow

  14. Charge-exchange collisions of C 60z+ : a probe of the ion charge distribution

    NASA Astrophysics Data System (ADS)

    Cameron, Douglas B.; Parks, Joel H.

    1997-06-01

    We present Paul trap measurements of charge-exchange collisions of Li, Cs and C 60 with C 60z+ ions ( z = 1-3) at thermal energies. Surprisingly, the measured charge-exchange rates for each neutral species are not proportional to the ion charge z as would be expected for Langevin collisions involving a uniformly charged ion. The relative rates can be reproduced by a model based on a symmetric distribution of point charges that are free to move on the ion surface during the neutral trajectory. Such behavior can be attributed to static and possibly dynamic Jahn-Teller effects in C 60z+ ions.

  15. Propagation of ion acoustic shock waves in negative ion plasmas with nonextensive electrons

    SciTech Connect

    Hussain, S.; Akhtar, N.; Mahmood, S.

    2013-09-15

    Nonlinear ion acoustic shocks (monotonic as well as oscillatory) waves in negative ion plasmas are investigated. The inertialess electron species are assumed to be nonthermal and follow Tsallis distribution. The dissipation in the plasma is considered via kinematic viscosities of both positive and negative ion species. The Korteweg-de Vries Burgers (KdVB) equation is derived using small amplitude reductive perturbation technique and its analytical solution is presented. The effects of variation of density and temperature of negative ions and nonthermal parameter q of electrons on the strength of the shock structures are plotted for illustration. The numerical solutions of KdVB equation using Runge Kutta method are obtained, and transition from oscillatory to monotonic shock structures is also discussed in detail for negative ions nonthermal plasmas.

  16. Simulation Studies of Hydrogen Ion reflection from Tungsten for the Surface Production of Negative Hydrogen Ions

    SciTech Connect

    Kenmotsu, Takahiro; Wada, Motoi

    2011-09-26

    The production efficiency of negative ions at tungsten surface by particle reflection has been investigated. Angular distributions and energy spectra of reflected hydrogen ions from tungsten surface are calculated with a Monte Carlo simulation code ACAT. The results obtained with ACAT have indicated that angular distributions of reflected hydrogen ions show narrow distributions for low-energy incidence such as 50 eV, and energy spectra of reflected ions show sharp peaks around 90% of incident energy. These narrow angular distributions and sharp peaks are favorable for the efficient extraction of negative ions from an ion source equipped with tungsten surface as negative ionization converter. The retained hydrogen atoms in tungsten lead to the reduction in extraction efficiency due to boarded angular distributions.

  17. Simulation Studies of Hydrogen Ion reflection from Tungsten for the Surface Production of Negative Hydrogen Ions

    NASA Astrophysics Data System (ADS)

    Kenmotsu, Takahiro; Wada, Motoi

    2011-09-01

    The production efficiency of negative ions at tungsten surface by particle reflection has been investigated. Angular distributions and energy spectra of reflected hydrogen ions from tungsten surface are calculated with a Monte Carlo simulation code ACAT. The results obtained with ACAT have indicated that angular distributions of reflected hydrogen ions show narrow distributions for low-energy incidence such as 50 eV, and energy spectra of reflected ions show sharp peaks around 90% of incident energy. These narrow angular distributions and sharp peaks are favorable for the efficient extraction of negative ions from an ion source equipped with tungsten surface as negative ionization converter. The retained hydrogen atoms in tungsten lead to the reduction in extraction efficiency due to boarded angular distributions.

  18. Debate on the current understanding of high-energy heavy-ion collisions

    SciTech Connect

    Becattini, Francesco; Busza, Wit; Foka, Panagiota; Gazdzicki, Marek; Hippolyte, Boris; Pajares, Carlos; Philipsen, Owe; Snellings, Raimond

    2011-05-23

    We present a debate on the picture of high-energy heavy-ion collisions. Based on conventional wisdom the different stages of the collision and properties of the medium are described. The panel is asked to discuss plausible results which will either verify or unambiguously falsify the outlined picture or some aspects of it.

  19. A novel approach to collision-induced dissociation (CID) for ion mobility-mass spectrometry experiments.

    PubMed

    Becker, Christopher; Fernandez-Lima, Francisco A; Gillig, Kent J; Russell, William K; Cologna, Stephanie M; Russell, David H

    2009-06-01

    Collision induced dissociation (CID) combined with matrix assisted laser desorption ionization-ion mobility-mass spectrometry (MALDI-IM-MS) is described. In this approach, peptide ions are separated on the basis of mobility in a 15 cm drift cell. Following mobility separation, the ions exit the drift cell and enter a 5 cm vacuum interface with a high field region (up to 1000 V/cm) to undergo collisional activation. Ion transmission and ion kinetic energies in the interface are theoretically evaluated accounting for the pressure gradient, interface dimensions, and electric fields. Using this CID technique, we have successfully fragmented and sequenced a number of model peptide ions as well as peptide ions obtained by a tryptic digest. This instrument configuration allows for the simultaneous determination of peptide mass, peptide-ion sequence, and collision-cross section of MALDI-generated ions, providing information critical to the identification of unknown components in complex proteomic samples.

  20. National negative-ion-based neutral-beam development plan

    SciTech Connect

    Cooper, W.S.; Pyle, R.V.

    1983-08-01

    The plan covers facilities required, program milestones, and decision points. It includes identification of applications, experiments, theoretical research areas, development of specific technologies and reactor development and demonstration facilities required to bring about the successful application of negative-ion-based neutral beams. Particular emphasis is placed on those activities leading to use on existing plasma confinement experiments or their upgrades.

  1. Applicability of causal dissipative hydrodynamics to relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Huovinen, Pasi; Molnar, Denes

    2009-01-01

    We utilize nonequilibrium covariant transport theory to determine the region of validity of causal Israel-Stewart (IS) dissipative hydrodynamics and Navier-Stokes (NS) theory for relativistic heavy ion physics applications. A massless ideal gas with 2→2 interactions is considered in a Bjorken scenario in 0 + 1 dimension (D) appropriate for the early longitudinal expansion stage of the collision. In the scale-invariant case of a constant shear viscosity to entropy density ratio η/s≈const, we find that IS theory is accurate within 10% in calculating dissipative effects if initially the expansion time scale exceeds half the transport mean free path τ0/λtr,0≳2. The same accuracy with NS requires three times larger τ0/λtr,0≳6. For dynamics driven by a constant cross section, on the other hand, about 50% larger τ0/λtr,0≳3 (IS) and 9 (NS) are needed. For typical applications at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC), i.e., sNN~100-200 GeV, these limits imply that even the IS approach becomes marginal when η/s≳0.15. In addition, we find that the “naive” approximation to IS theory, which neglects products of gradients and dissipative quantities, has an even smaller range of applicability than Navier-Stokes. We also obtain analytic IS and NS solutions in 0 + 1D, and present further tests for numerical dissipative hydrodynamics codes in 1 + 1, 2 + 1, and 3 + 1D based on generalized conservation laws.

  2. Negative ions at Titan: New results using spacecraft attitude changes

    NASA Astrophysics Data System (ADS)

    Wellbrock, A.; Coates, A. J.; Lewis, G. R.; Jones, G. H.; Arridge, C. S.; Magee, B. A.; Crary, F. J.; Waite, J. H.; Sittler, E. C.; Young, D. T.

    2009-04-01

    A. Wellbrock, A. J. Coates, G. R. Lewis, G. H. Jones, C. S. Arridge, B. A. Magee, F. J. Crary, J. H. Waite, E. C. Sittler, D. T. Young The ELS (ELectron Spectrometer) part of the Cassini Plasma Spectrometer (CAPS) revealed the existence of negative ions in Titan's ionosphere (Coates et al, 2007, Waite et al, 2007). The instrument is mounted on a rotating platform called the actuator. The negative ions are detected when this actuator points in the direction in which the spacecraft travels (the ‘ram direction'). This is because the negative ions have slow thermal speeds compared to the spacecraft speed, whereas electrons have much higher thermal speeds and are detected in any direction as their distribution is isotropic. Hence the negative ions can be identified as narrow spikes in the ELS electron spectrograms. During most Titan flybys, the spacecraft attitude is oriented such that the central anode of the instrument points in the ram direction. However, during Titan encounters when the spacecraft rotates, other anodes can point in the ram direction for short periods of time, or in a direction very close to the ram direction. In the latter case, only higher mass ions are detected. Comparing data from different anodes in and near the ram direction can be used to obtain information related to the ion velocity and temperature, which we discuss. The study of measurements from all anodes of the instrument also significantly increases the number of negative ion spikes available for analysis. The resulting set of data allows a statistical study of the different mass groups at a range of altitudes and latitudes, and their scale heights. We summarise and discuss the results. References: Coates, A.J., F.J. Crary, G.R. Lewis, D.T. Young, J.H. Waite, Jr., E.C.Sittler Jr., Discovery of heavy negative ions in Titan's ionosphere, Geophys. Res. Lett., 34, L22103, 2007. Waite, J. H., Jr., D. T. Young, T. E. Cravens, A. J. Coates, F. J. Crary, B. Magee and J. Westlake, The Process

  3. Experimental results from CERN on reaction mechanisms in high energy heavy ion collisions

    SciTech Connect

    Sorensen, S.P. Tennessee Univ., Knoxville, TN . Dept. of Physics)

    1990-01-01

    Three main experimental results from CERN concerning reaction mechanisms in high energy heavy ion collisions are discussed: (1) the striking validity of the single particle picture, (2) the nuclear stopping power and (3) the attained energy densities.

  4. Symmetry Energy Effects on Low Energy Dissipative Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Rizzo, C.; Baran, V.; Colonna, M.; Di Toro, M.; Odsuren, M.

    2011-02-01

    We investigate the reaction path followed by Heavy Ion Collisions with exotic nuclear beams at low energies. We focus on the interplay between reaction mechanisms, fusion vs. break-up (fast-fission, deep-inelastic), that in exotic systems is expected to be influenced by the symmetry energy term at densities around the normal value. The method described here, based on the event by event evolution of phase space quadrupole collective modes, will nicely allow to extract the fusion probability at relatively early times, when the transport results are reliable. Fusion probabilities for reactions induced by 132Sn on 64,58Ni targets at 10 AMeV are evaluated. We obtain larger fusion cross sections for the more n-rich composite system, and, for a given reaction, with a soft symmetry term above saturation. A collective charge equilibration mechanism (the Dynamical Dipole Resonance, DDR) is revealed in both fusion and break-up events, depending on the stiffness of the symmetry term just below saturation. Finally we investigate the effect of the mass asymmetry in the entrance channel for systems with the same overall isospin content and similar initial charge asymmetry. As expected we find reduced fusion probabilities for the more mass symmetric case, while the DDR strength appears not much affected. This is a nice confirmation of the prompt nature of such collective isovector mode.

  5. Propagation of heavy baryons in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Das, Santosh K.; Torres-Rincon, Juan M.; Tolos, Laura; Minissale, Vincenzo; Scardina, Francesco; Greco, Vincenzo

    2016-12-01

    The drag and diffusion coefficients of heavy baryons (Λc and Λb ) in the hadronic phase created in the latter stage of the heavy-ion collisions at RHIC and LHC energies have been evaluated recently. In this work we compute some experimental observables, such as the nuclear suppression factor RA A and the elliptic flow v2 of heavy baryons at RHIC and LHC energies, highlighting the role of the hadronic phase contribution to these observables, which are going to be measured at Run 3 of LHC. For the time evolution of the heavy quarks in the quark and gluon plasma (QGP) and heavy baryons in the hadronic phase, we use the Langevin dynamics. For the hadronization of the heavy quarks to heavy baryons we employ Peterson fragmentation functions. We observe a strong suppression of both the Λc and Λb . We find that the hadronic medium has a sizable impact on the heavy-baryon elliptic flow whereas the impact of hadronic medium rescattering is almost unnoticeable on the nuclear suppression factor. We evaluate the Λc/D ratio at RHIC and LHC. We find that the Λc/D ratio remains unaffected due to the hadronic phase rescattering which enables it as a nobel probe of QGP phase dynamics along with its hadronization.

  6. Thermal electromagnetic radiation in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Rapp, R.; van Hees, H.

    2016-08-01

    We review the potential of precise measurements of electromagnetic probes in relativistic heavy-ion collisions for the theoretical understanding of strongly interacting matter. The penetrating nature of photons and dileptons implies that they can carry undistorted information about the hot and dense regions of the fireballs formed in these reactions and thus provide a unique opportunity to measure the electromagnetic spectral function of QCD matter as a function of both invariant mass and momentum. In particular we report on recent progress on how the medium modifications of the (dominant) isovector part of the vector current correlator ( ρ channel) can shed light on the mechanism of chiral symmetry restoration in the hot and/or dense environment. In addition, thermal dilepton radiation enables novel access to a) the fireball lifetime through the dilepton yield in the low invariant-mass window 0.3 GeV ≤ M ≤ 0.7 GeV, and b) the early temperatures of the fireball through the slope of the invariant-mass spectrum in the intermediate-mass region (1.5 GeV < M < 2.5 GeV). The investigation of the pertinent excitation function suggests that the beam energies provided by the NICA and FAIR projects are in a promising range for a potential discovery of the onset of a first-order phase transition, as signaled by a non-monotonous behavior of both low-mass yields and temperature slopes.

  7. Negative hydrogen ion production in a helicon plasma source

    SciTech Connect

    Santoso, J. Corr, C. S.; Manoharan, R.; O'Byrne, S.

    2015-09-15

    In order to develop very high energy (>1 MeV) neutral beam injection systems for applications, such as plasma heating in fusion devices, it is necessary first to develop high throughput negative ion sources. For the ITER reference source, this will be realised using caesiated inductively coupled plasma devices, containing either hydrogen or deuterium discharges, operated with high rf input powers (up to 90 kW per driver). It has been suggested that due to their high power coupling efficiency, helicon devices may be able to reduce power requirements and potentially obviate the need for caesiation due to the high plasma densities achievable. Here, we present measurements of negative ion densities in a hydrogen discharge produced by a helicon device, with externally applied DC magnetic fields ranging from 0 to 8.5 mT at 5 and 10 mTorr fill pressures. These measurements were taken in the magnetised plasma interaction experiment at the Australian National University and were performed using the probe-based laser photodetachment technique, modified for the use in the afterglow of the plasma discharge. A peak in the electron density is observed at ∼3 mT and is correlated with changes in the rf power transfer efficiency. With increasing magnetic field, an increase in the negative ion fraction from 0.04 to 0.10 and negative ion densities from 8 × 10{sup 14 }m{sup −3} to 7 × 10{sup 15 }m{sup −3} is observed. It is also shown that the negative ion densities can be increased by a factor of 8 with the application of an external DC magnetic field.

  8. Negative hydrogen ion production in a helicon plasma source

    NASA Astrophysics Data System (ADS)

    Santoso, J.; Manoharan, R.; O'Byrne, S.; Corr, C. S.

    2015-09-01

    In order to develop very high energy (>1 MeV) neutral beam injection systems for applications, such as plasma heating in fusion devices, it is necessary first to develop high throughput negative ion sources. For the ITER reference source, this will be realised using caesiated inductively coupled plasma devices, containing either hydrogen or deuterium discharges, operated with high rf input powers (up to 90 kW per driver). It has been suggested that due to their high power coupling efficiency, helicon devices may be able to reduce power requirements and potentially obviate the need for caesiation due to the high plasma densities achievable. Here, we present measurements of negative ion densities in a hydrogen discharge produced by a helicon device, with externally applied DC magnetic fields ranging from 0 to 8.5 mT at 5 and 10 mTorr fill pressures. These measurements were taken in the magnetised plasma interaction experiment at the Australian National University and were performed using the probe-based laser photodetachment technique, modified for the use in the afterglow of the plasma discharge. A peak in the electron density is observed at ˜3 mT and is correlated with changes in the rf power transfer efficiency. With increasing magnetic field, an increase in the negative ion fraction from 0.04 to 0.10 and negative ion densities from 8 × 1014 m-3 to 7 × 1015 m-3 is observed. It is also shown that the negative ion densities can be increased by a factor of 8 with the application of an external DC magnetic field.

  9. D-meson observables in heavy-ion collisions at LHC with EPOSHQ model

    NASA Astrophysics Data System (ADS)

    Ozvenchuk, Vitalii; Aichelin, Joerg; Gossiaux, Pol-Bernard; Guiot, Benjamin; Nahrgang, Marlene; Werner, Klaus

    2016-11-01

    We study the propagation of charm quarks in the quark-gluon plasma (QGP) created in ultrarelativistic heavy-ion collisions at LHC within EPOSHQ model. The interactions of heavy quarks with the light partons in ultrarelativistic heavy-ion collisions through the collisional and radiative processes lead to a large suppression of final D-meson spectra at high transverse momentum and a finite D-meson elliptic flow. Our results are in a good agreement with the available experimental data.

  10. Energetic negative ion and neutral atom beam generation at passage of laser accelerated high energy positive ions through a liquid spray

    NASA Astrophysics Data System (ADS)

    Abicht, F.; Prasad, R.; Priebe, G.; Braenzel, J.; Ehrentraut, L.; Andreev, A.; Nickles, P. V.; Schnürer, M.; Tikhonchuk, V.; Ter-Avetisyan, Sargis

    2013-05-01

    Beams of energetic negative ions and neutral atoms are obtained from water and ethanol spray targets irradiated by high intensity (5×1019 W/cm2) and ultrashort (50 fs) laser pulses. The resulting spectra were measured with the Thomson parabola spectrometer, which enabled absolute measurements of both: positive and negative ions. The generation of a beam of energetic neutral hydrogen atoms was confirmed with CR-39 track detectors and their spectral characteristics have been measured using time of flight technique. Generation is ascribed to electron-capture and -loss processes in the collisions of laser-accelerated high-energy protons with spray of droplets. The same method can be applied to generate energetic negative ions and neutral atoms of different species.

  11. Transport Properties of Negative Ions in HBR Plasmas

    NASA Astrophysics Data System (ADS)

    Stojanovic, Vladimir; Ivanovic, Nenad; Radmilovic-Radjenovic, Marija; Raspopovic, Zoran; Bojarov, Aleksandar; Petrovic, Zoran

    2014-10-01

    Low temperature plasma in halogenated gases is standard environment for dry etching of semiconductors. Amount of negative ions in HBr plasmas determines electronegativity so modeling etching devices requires data for anion transport properties. In this work we present cross section set for Br- ions in HBr assembled by using Denpoh-Nanbu theory. The threshold energy values were calculated by known heats of formation. The calculated total cross section accounts for ion-induced-dipole and ion-permanent-dipole interaction by using the local-dipole model. The total cross section was corrected to fit the reduced mobility obtained by SACM (Statistical Adiabatic Channel Model) approximation. Existing cross section measurements were used to scale calculated cross sections. Finally, we used Monte Carlo method to determine transport parameters for Br- as a function of reduced electric fields that can be used in fluid and hybrid plasma models.

  12. Charge Transfer in Collisions between Bare Ions and Hydrogenic Carbon Ions

    NASA Astrophysics Data System (ADS)

    Winter, T. G.

    1997-04-01

    Cross sections have been calculated for electron transfer, as well as ionization, in collisions between 125-1000 keV/amu protons, α particles, Li^2+ ions, etc. and C^5+(1s) ions. The dependence of cross sections on projectile charge has been determined and compared with results of first-order perturbation theory. This study parallels an earlier one in which the target nuclear charge was instead varied.(T. G. Winter, Phys. Rev. A 35), 3799 (1987). A coupled-Sturmian-pseudostate approach is again taken, yielding capture cross sections accurate to at least a few per cent. In the case of α-particle projectiles, the results are important for understanding α losses to the walls of the TFTR, (H. Herrmann (private communication, 1996).) and are much larger than existing published results.(M. Lal, M. K. Srivastava, and A. N. Tripathi, Phys. Rev. A 26), 305 (1982).

  13. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators.

    PubMed

    Sartori, E; Brescaccin, L; Serianni, G

    2016-02-01

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production-detrimental for high current negative ion systems such as beam sources for fusion-are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.

  14. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators

    NASA Astrophysics Data System (ADS)

    Sartori, E.; Brescaccin, L.; Serianni, G.

    2016-02-01

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production—detrimental for high current negative ion systems such as beam sources for fusion—are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.

  15. Simulation of diatomic gas-wall interaction and accommodation coefficients for negative ion sources and accelerators

    SciTech Connect

    Sartori, E. Serianni, G.; Brescaccin, L.

    2016-02-15

    Particle-wall interactions determine in different ways the operating conditions of plasma sources, ion accelerators, and beams operating in vacuum. For instance, a contribution to gas heating is given by ion neutralization at walls; beam losses and stray particle production—detrimental for high current negative ion systems such as beam sources for fusion—are caused by collisional processes with residual gas, with the gas density profile that is determined by the scattering of neutral particles at the walls. This paper shows that Molecular Dynamics (MD) studies at the nano-scale can provide accommodation parameters for gas-wall interactions, such as the momentum accommodation coefficient and energy accommodation coefficient: in non-isothermal flows (such as the neutral gas in the accelerator, coming from the plasma source), these affect the gas density gradients and influence efficiency and losses in particular of negative ion accelerators. For ideal surfaces, the computation also provides the angular distribution of scattered particles. Classical MD method has been applied to the case of diatomic hydrogen molecules. Single collision events, against a frozen wall or a fully thermal lattice, have been simulated by using probe molecules. Different modelling approximations are compared.

  16. Volume generation of negative ions in high density hydrogen discharges. Revision 1

    SciTech Connect

    Hiskes, J.R.; Karo, A.M.

    1983-11-11

    An optimized tandem two-chamber negative-ion source system is discussed. In the first chamber high energy (E > 20 eV) electron collisions provide for H/sub 2/ vibrational excitation, while in the second chamber negative ions are formed by dissociative attachment. The gas density, electron density, and system scale length are varied as independent parameters. The extracted negative ion current density passes through a maximum as electron and gas densities are varied. This maximum scales inversely with system scale length, R. The optimum extracted current densities occur for electron densities near nR = 10/sup 13/ electrons cm/sup -2/ and for gas densities, N/sub 2/R, in the range 10/sup 14/ to 10/sup 15/ molecules cm/sup -2/. The extracted current densities are sensitive to the atomic concentration in the discharge. The atomic concentration is parametrized by the wall recombination coefficient, ..gamma.., and scale length, R. As ..gamma.. ranges from 0.1 to 1.0 and for system scale lengths of one centimeter, extracted current densities range from 8.0 to 80. mA cm/sup -2/.

  17. Development of negative ion extractor in the high-power and long-pulse negative ion source for fusion application

    SciTech Connect

    Kashiwagi, M. Umeda, N.; Tobari, H.; Kojima, A.; Yoshida, M.; Taniguchi, M.; Dairaku, M.; Maejima, T.; Yamanaka, H.; Watanabe, K.; Inoue, T.; Hanada, M.

    2014-02-15

    High power and long-pulse negative ion extractor, which is composed of the plasma grid (PG) and the extraction grid (EXG), is newly developed toward the neutral beam injector for heating and current drive of future fusion machines such as ITER, JT-60 Super Advanced and DEMO reactor. The PG is designed to enhance surface production of negative ions efficiently by applying the chamfered aperture. The efficiency of the negative ion production for the discharge power increased by a factor of 1.3 against that of the conventional PG. The EXG is also designed with the thermal analysis to upgrade the cooling capability for the long pulse operation of >1000 s required in ITER. Though the magnetic field for electron suppression is reduced to 0.75 of that in the conventional EXG due to this upgrade, it was experimentally confirmed that the extracted electron current can be suppressed to the allowable level for the long pulse operation. These results show that newly developed extractor has the high potential for the long pulse extraction of the negative ions.

  18. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    SciTech Connect

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.

  19. Heavy Quarkonium Dissociation Cross Sections in Relativistic Heavy-Ion Collisions

    SciTech Connect

    C.-Y. Wong; Eric Swanson; Ted Barnes

    2001-12-01

    Many of the hadron-hadron cross sections required for the study of the dynamics of matter produced in relativistic heavy-ion collisions can be calculated using the quark-interchange model. Here we evaluate the low-energy dissociation cross sections of J/{psi}, {psi}', {chi}, {Upsilon}, and {Upsilon}' in collision with {pi}, {rho}, and K, which are important for the interpretation of heavy-quarkonium suppression as a signature for the quark gluon plasma. These comover dissociation processes also contribute to heavy-quarkonium suppression, and must be understood and incorporated in simulations of heavy-ion collisions before QGP formation can be established through this signature.

  20. Simulations of ion velocity distribution functions taking into account both elastic and charge exchange collisions

    NASA Astrophysics Data System (ADS)

    Wang, Huihui; Sukhomlinov, Vladimir S.; Kaganovich, Igor D.; Mustafaev, Alexander S.

    2017-02-01

    Based on accurate representation of the He+-He angular differential scattering cross sections consisting of both elastic and charge exchange collisions, we performed detailed numerical simulations of the ion velocity distribution functions (IVDF) by Monte Carlo collision method (MCC). The results of simulations are validated by comparison with the experimental data of the ion mobility and the transverse diffusion. The IVDF simulation study shows that due to significant effect of scattering in elastic collisions IVDF cannot be separated into product of two independent IVDFs in the transverse and parallel to the electric field directions.

  1. Charmonium production in ultra-peripheral heavy ion collisions with two-photon processes

    NASA Astrophysics Data System (ADS)

    Yu, Gong-Ming; Yu, Yue-Chao; Li, Yun-De; Wang, Jian-Song

    2017-04-01

    We calculate the production of large-pT charmonium and narrow resonance state (exotic charmonium) in proton-proton, proton-nucleus, and nucleus-nucleus collisions with the semi-coherent two-photon interactions at Relativistic Heavy Ion Collider (RHIC), Large Hadron Collider (LHC), and Future Circular Collider (FCC) energies. Using the large quasi-real photon fluxes, we present the γγ → H differential cross section for charmonium and narrow resonance state production at large transverse momentum in ultra-peripheral heavy ion collisions. The numerical results demonstrate that the experimental study of ultra-peripheral collisions is feasible at RHIC, LHC, and FCC energies.

  2. Inner-Shell Photodetachment of Nickel Negative Ions

    NASA Astrophysics Data System (ADS)

    Dumitriu, Ileana; Bilodeau, Rene; Gibson, Daniel; Walter, Wes; Gorczyca, Thomas; Aguilar, Alex; Rolles, Daniel; Pesic, Zoran; Berrah, Nora

    2015-05-01

    Transition metals are of interest for their catalytic properties and participation of d-orbital electrons in the bonding properties. Theoretical studies of transition metal negative ions are challenging due to strong electron correlation effects and existence of low-lying electronic states as a result of open d-shell configurations. Experimental studies of transition metal negative ions are limited compared with the ions belonging to the main groups of periodic table and these studies have mostly investigated the valence-shell electrons using laser spectroscopy. Our experiment focuses on inner-shell photodetachment studies of Ni- transition metal ions using the Ion-Photon Beamline on the ALS beamline 10.0.1. Inner-shell photodetachment spectrum was recorded over a range of 30 to 90 eV which includes the 3 p threshold for Ni-. The higher-charge state formation was also observed, indicating multi-electron ejection processes. The absolute cross-section for the production of Ni+ will also be presented.

  3. Strong Turbulence in Alkali Halide Negative Ion Plasmas

    NASA Astrophysics Data System (ADS)

    Sheehan, Daniel

    1999-11-01

    Negative ion plasmas (NIPs) are charge-neutral plasmas in which the negative charge is dominated by negative ions rather than electrons. They are found in laser discharges, combustion products, semiconductor manufacturing processes, stellar atmospheres, pulsar magnetospheres, and the Earth's ionosphere, both naturally and man-made. They often display signatures of strong turbulence^1. Development of a novel, compact, unmagnetized alkali halide (MX) NIP source will be discussed, it incorporating a ohmically-heated incandescent (2500K) tantulum solenoid (3cm dia, 15 cm long) with heat shields. The solenoid ionizes the MX vapor and confines contaminant electrons, allowing a very dry (electron-free) source. Plasma densities of 10^10 cm-3 and positive to negative ion mass ratios of 1 <= fracm_+m- <= 20 are achievable. The source will allow tests of strong turbulence theory^2. 1 Sheehan, D.P., et al., Phys. Fluids B5, 1593 (1993). 2 Tsytovich, V. and Wharton, C.W., Comm. Plasma Phys. Cont. Fusion 4, 91 (1978).

  4. Collision cross section calculations for polyatomic ions considering rotating diatomic/linear gas molecules

    SciTech Connect

    Larriba-Andaluz, Carlos Hogan, Christopher J.

    2014-11-21

    Structural characterization of ions in the gas phase is facilitated by measurement of ion collision cross sections (CCS) using techniques such as ion mobility spectrometry. Further information is gained from CCS measurement when comparison is made between measurements and accurately predicted CCSs for model ion structures and the gas in which measurements are made. While diatomic gases, namely molecular nitrogen and air, are being used in CCS measurement with increasingly prevalency, the majority of studies in which measurements are compared to predictions use models in which gas molecules are spherical or non-rotating, which is not necessarily appropriate for diatomic gases. Here, we adapt a momentum transfer based CCS calculation approach to consider rotating, diatomic gas molecule collisions with polyatomic ions, and compare CCS predictions with a diatomic gas molecule to those made with a spherical gas molecular for model spherical ions, tetra-alkylammonium ions, and multiply charged polyethylene glycol ions. CCS calculations are performed using both specular-elastic and diffuse-inelastic collisions rules, which mimic negligible internal energy exchange and complete thermal accommodation, respectively, between gas molecule and ion. The influence of the long range ion-induced dipole potential on calculations is also examined with both gas molecule models. In large part we find that CCSs calculated with specular-elastic collision rules decrease, while they increase with diffuse-inelastic collision rules when using diatomic gas molecules. Results clearly show the structural model of both the ion and gas molecule, the potential energy field between ion and gas molecule, and finally the modeled degree of kinetic energy exchange between ion and gas molecule internal energy are coupled to one another in CCS calculations, and must be considered carefully to obtain results which agree with measurements.

  5. Collision cross section calculations for polyatomic ions considering rotating diatomic/linear gas molecules.

    PubMed

    Larriba-Andaluz, Carlos; Hogan, Christopher J

    2014-11-21

    Structural characterization of ions in the gas phase is facilitated by measurement of ion collision cross sections (CCS) using techniques such as ion mobility spectrometry. Further information is gained from CCS measurement when comparison is made between measurements and accurately predicted CCSs for model ion structures and the gas in which measurements are made. While diatomic gases, namely molecular nitrogen and air, are being used in CCS measurement with increasingly prevalency, the majority of studies in which measurements are compared to predictions use models in which gas molecules are spherical or non-rotating, which is not necessarily appropriate for diatomic gases. Here, we adapt a momentum transfer based CCS calculation approach to consider rotating, diatomic gas molecule collisions with polyatomic ions, and compare CCS predictions with a diatomic gas molecule to those made with a spherical gas molecular for model spherical ions, tetra-alkylammonium ions, and multiply charged polyethylene glycol ions. CCS calculations are performed using both specular-elastic and diffuse-inelastic collisions rules, which mimic negligible internal energy exchange and complete thermal accommodation, respectively, between gas molecule and ion. The influence of the long range ion-induced dipole potential on calculations is also examined with both gas molecule models. In large part we find that CCSs calculated with specular-elastic collision rules decrease, while they increase with diffuse-inelastic collision rules when using diatomic gas molecules. Results clearly show the structural model of both the ion and gas molecule, the potential energy field between ion and gas molecule, and finally the modeled degree of kinetic energy exchange between ion and gas molecule internal energy are coupled to one another in CCS calculations, and must be considered carefully to obtain results which agree with measurements.

  6. Strangeness and charm production in high energy heavy ion collisions

    SciTech Connect

    Xu, Nu

    2001-01-01

    We discuss the dynamical effects of strangeness and charm production in high energy nuclear collisions. In order to understand the early stage dynamical evolution, it is necessary to study the transverse momentum distributions of multi-strange hadrons like {Xi} and {Omega} and charm mesons like J/{Psi} as a function of collision centrality.

  7. Hyperthermal Energy Collisions of CF3 + Ions with Modified Surfaces: Surface-Induced Dissociation

    SciTech Connect

    Rezayat, T.; Shukla, A.

    2004-01-01

    Collisions of low-energy ions, especially polyatomic ions, with surfaces have become an active area of research due to their numerous applications in chemistry, physics and material sciences. An interesting aspect of such collisions is the dissociation of ions which has been successfully exploited for the characterization of colliding ions, especially high mass ions from biological molecules. However, detailed studies of the energy transfer and dissociation have been performed only for a few simple systems and hence the mechanism(s) of ions’ excitation and dissociation are not as well understood even for small ions. We have therefore undertaken a study of the dissociation of a small polyatomic ion, CF3+, at several collision energies between 28.8 eV and 159 eV in collision with fluorinated alkyl thiol on gold 111 crystal and a LiF surface. These experiments were performed using a custom built tandem mass spectrometer where the energy and intensity distributions of the scattered fragment ions were measured as a function of the fragment ion mass and scattering angle. In contrast with the previous studies of the dissociation of ethanol and acetone cations where the inelastically scattered primary ions dominated the collision process (up to ~50 eV maximum energy used in those experiments), we did not observe a measurable abundance of inelastically scattered undissociated CF3+ ions at all energies studied here. We observed all fragment ions, CF2+, CF+, F+ and C+ at all energies studied with the relative intensity of the highest energy pathway, C+, increasing with collision energy. Also, the dissociation efficiency decreased significantly as the collision energy was increased from to 159 eV. The energy distributions of nearly all the fragment ions showed two distinct components, one corresponding to the loss of nearly all of the kinetic energy and scattered over a broad angular range while the other corresponding to smaller kinetic energy losses and scattered closer to

  8. Hyperthermal Energy Collisions of CF3+ Ions With Modified Surfaces: Surface-Induced Dissociation

    SciTech Connect

    Rezayat, Talayeh; Shukla, Anil K.

    2004-12-01

    The dissociative scattering of low-energy ions, especially polyatomic ions, from surfaces has become an active area of research in chemistry, physics and material sciences. The interaction between an ion and a surface is more complicated than ion and gaseous neutral collisions and needs to be explored in detail to understand the ion excitation and dissociation phenomena associated with Surface-induced dissociation (SID) of ions, a technique used for the analysis of high mass ions from biological molecules. However, dynamics studies of SID have been performed only for a few simple systems, viz., ethanol, acetone, benzene and carbon disulfide ions. We have therefore undertaken a study of the SID of a small polyatomic ion, CF3+, at several collision energies between 28.8 eV and 159 eV in collision with fluorinated alkyl thiol on gold 111 crystal. These experiment were performed using a custom built tandem mass spectrometer where the energy and intensity distributions of the scattered fragment ions were measured as a function of the fragment mass and scattering angle. In contrast with the previous studies of the SID of ethanol and acetone cations where the inelastically scattered primary ions dominated the collision process (up to {approx}50 eV maximum energy used in those experiments), we did not observe a measurable abundance of inelastically scattered undissociated CF3+ ions up to the lowest energy studied here. We observed all fragment ions, CF2+, CF+, F+ and C+ at all energies studied with the relative intensity of the highest energy pathway, C+, increasing with collision energy. Also, the SID efficiency decreased significantly as the collision energy was increased from 106 eV to 159 eV. The energy distributions of all the fragment ions showed two distinct components, one corresponding to the loss of nearly all of the kinetic energy and scattered over a broad angular range while the other corresponding to smaller kinetic energy losses and scattered closer to the

  9. Rogue wave triplets in an ion-beam dusty plasma with superthermal electrons and negative ions

    NASA Astrophysics Data System (ADS)

    Guo, Shimin; Mei, Liquan; Shi, Weijuan

    2013-11-01

    A new dust ion-acoustic wave structure called ‘Rogue wave triplets’ is investigated in an unmagnetized plasma consisting of stationary negatively charged dust grains, charged positive and negative ions, and electrons obeying kappa distribution, which is penetrated by an ion beam. The reductive perturbation theory is used to derive the nonlinear Schrödinger equation governing the dynamics as well as the modulation of wave packets. The rogue wave triplets which are composed of three separate Peregrine breathers can be generated in the modulation instability region. It has been suggested that a laboratory experiment be performed to test the theory presented here.

  10. Energy and angular distributions of detached electrons in a solvable model of ion-atom collisions

    SciTech Connect

    Macek, J.H.; Ovchinnikov, S.Y. |; Solovev, E.A.

    1999-08-01

    Electron energy and angular distributions are computed for a model of atom{endash}negative-ion collisions. In this model, electron-atom interactions are represented by zero-range potentials in an approximation where two identical atoms move along straight-line classical trajectories in head-on collisions. Analytic expressions for the ionization amplitudes are interpreted in terms of Sturmian eigenvalues and eigenfunctions. At high velocity, the computed distributions exhibit direct excitation and continuum capture cusps in addition to the binary encounter ridge. At low velocities, a single feature corresponding to an electron distribution centered midway between the target and projectile emerges. For initial conditions corresponding to gerade symmetry a single broad peak appears, while for ungerade symmetry there is a node at the midpoint so that the peak splits into two parts. It is confirmed that the advanced adiabatic approximation gives an accurate description of the ungerade distribution at low and intermediate velocities. {copyright} {ital 1999} {ital The American Physical Society}

  11. Energy and angular distributions of detached electrons in a solvable model of ion-atom collisions

    SciTech Connect

    Macek, J.H.; Ovchinnikov, S.Y. Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831 ); Solovev, E.A. )

    1999-08-01

    Electron energy and angular distributions are computed for a model of atom[endash]negative-ion collisions. In this model, electron-atom interactions are represented by zero-range potentials in an approximation where two identical atoms move along straight-line classical trajectories in head-on collisions. Analytic expressions for the ionization amplitudes are interpreted in terms of Sturmian eigenvalues and eigenfunctions. At high velocity, the computed distributions exhibit direct excitation and continuum capture cusps in addition to the binary encounter ridge. At low velocities, a single feature corresponding to an electron distribution centered midway between the target and projectile emerges. For initial conditions corresponding to gerade symmetry a single broad peak appears, while for ungerade symmetry there is a node at the midpoint so that the peak splits into two parts. It is confirmed that the advanced adiabatic approximation gives an accurate description of the ungerade distribution at low and intermediate velocities. [copyright] [ital 1999] [ital The American Physical Society

  12. Time-fractional Gardner equation for ion-acoustic waves in negative-ion-beam plasma with negative ions and nonthermal nonextensive electrons

    NASA Astrophysics Data System (ADS)

    Guo, Shimin; Mei, Liquan; Zhang, Zhengqiang

    2015-05-01

    Nonlinear propagation of ion-acoustic waves is investigated in a one-dimensional, unmagnetized plasma consisting of positive ions, negative ions, and nonthermal electrons featuring Tsallis distribution that is penetrated by a negative-ion-beam. The classical Gardner equation is derived to describe nonlinear behavior of ion-acoustic waves in the considered plasma system via reductive perturbation technique. We convert the classical Gardner equation into the time-fractional Gardner equation by Agrawal's method, where the time-fractional term is under the sense of Riesz fractional derivative. Employing variational iteration method, we construct solitary wave solutions of the time-fractional Gardner equation with initial condition which depends on the nonlinear and dispersion coefficients. The effect of the plasma parameters on the compressive and rarefactive ion-acoustic solitary waves is also discussed in detail.

  13. Time-fractional Gardner equation for ion-acoustic waves in negative-ion-beam plasma with negative ions and nonthermal nonextensive electrons

    SciTech Connect

    Guo, Shimin Mei, Liquan; Zhang, Zhengqiang

    2015-05-15

    Nonlinear propagation of ion-acoustic waves is investigated in a one-dimensional, unmagnetized plasma consisting of positive ions, negative ions, and nonthermal electrons featuring Tsallis distribution that is penetrated by a negative-ion-beam. The classical Gardner equation is derived to describe nonlinear behavior of ion-acoustic waves in the considered plasma system via reductive perturbation technique. We convert the classical Gardner equation into the time-fractional Gardner equation by Agrawal's method, where the time-fractional term is under the sense of Riesz fractional derivative. Employing variational iteration method, we construct solitary wave solutions of the time-fractional Gardner equation with initial condition which depends on the nonlinear and dispersion coefficients. The effect of the plasma parameters on the compressive and rarefactive ion-acoustic solitary waves is also discussed in detail.

  14. Negative hydrogen ion beam extraction from an AC heated cathode driven Bernas-type ion source

    SciTech Connect

    Okano, Y.; Miyamoto, N.; Kasuya, T.; Wada, M.

    2015-04-08

    A plasma grid structure was installed to a Bernas-type ion source used for ion implantation equipment. A negative hydrogen (H{sup −}) ion beam was extracted by an AC driven ion source by adjusting the bias to the plasma grid. The extracted electron current was reduced by positively biasing the plasma grid, while an optimum plasma grid bias voltage for negative ion beam extraction was found to be positive 3 V with respect to the arc chamber. Source operations with AC cathode heating show extraction characteristics almost identical to that with DC cathode heating, except a minute increase in H{sup −} current at higher frequency of cathode heating current.

  15. Efficient cesiation in RF driven surface plasma negative ion source

    SciTech Connect

    Belchenko, Yu.; Ivanov, A.; Konstantinov, S.; Sanin, A. Sotnikov, O.

    2016-02-15

    Experiments on hydrogen negative ions production in the large radio-frequency negative ion source with cesium seed are described. The system of directed cesium deposition to the plasma grid periphery was used. The small cesium seed (∼0.5 G) provides an enhanced H{sup −} production during a 2 month long experimental cycle. The gradual increase of negative ion yield during the long-term source runs was observed after cesium addition to the source. The degraded H{sup −} production was recorded after air filling to the source or after the cesium washing away from the driver and plasma chamber walls. The following source conditioning by beam shots produces the gradual recovery of H{sup −} yield to the high value. The effect of H{sup −} yield recovery after cesium coverage passivation by air fill was studied. The concept of cesium coverage replenishment and of H{sup −} yield recovery due to sputtering of cesium from the deteriorated layers is discussed.

  16. Dust ion-acoustic solitary waves in a dusty plasma with positive and negative ions

    SciTech Connect

    Sayed, F.; Haider, M. M.; Mamun, A. A.; Shukla, P. K.; Eliasson, B.; Adhikary, N.

    2008-06-15

    Properties of small but finite amplitude dust ion-acoustic (DIA) solitary waves in a dusty plasma composed of inertialess electrons, positive and negative inertial ions, and immobile negative/positive charged dust grains are investigated. By using the multifluid dusty plasma model, the Kortweg-de Vries equation and energy integral for small and large amplitude solitary pulses, are derived. It is found that the presence of the negative ions modifies the properties of the solitary DIA waves, and provides the possibility of positive and negative solitary potential structures to coexist. The present results may be useful for understanding the salient features of localized DIA excitations that may appear in data from forthcoming laboratory experiments and space observations.

  17. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    SciTech Connect

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-08

    As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e} determines

  18. Heavy-quark dynamics in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Song, T.; Berrehrah, H.; Bratkovskaya, E. L.; Cabrera, D.; Cassing, W.; Tolos, T.; Torres-Rincon, J. M.

    2017-01-01

    The dynamics of partons and hadrons in ultra-relativistic nucleus-nucleus collisions are analyzed within the Parton-Hadron-String Dynamics (PHSD) transport approach, which is based on a dynamical quasiparticle model (DQPM) for the partonic phase including a dynamical hadronization scheme while reproducing lattice QCD results in thermodynamic equilibrium for the equation-of-state as well as transport coefficients like shear and bulk viscosities, the electric conductivity or the charm diffusion coefficient of the hot QCD medium. In this contribution, we report on recent results on the charm dynamics and elliptic flow in Au+Au collisions at RHIC and Pb+Pb collisions at the LHC.

  19. Theoretical study of charge transfer dynamics in collisions of C6+ carbon ions with pyrimidine nucleobases

    NASA Astrophysics Data System (ADS)

    Bacchus-Montabonel, M. C.

    2012-07-01

    A theoretical approach of the charge transfer dynamics induced by collision of C6+ ions with biological targets has been performed in a wide collision energy range by means of ab-initio quantum chemistry molecular methods. The process has been investigated for the target series thymine, uracil and 5-halouracil corresponding to similar molecules with different substituent on carbon C5. Such a study may be related to hadrontherapy treatments by C6+carbon ions and may provide, in particular, information on the radio-sensitivity of the different bases with regard to ion-induced radiation damage. The results have been compared to a previous analysis concerning the collision of C4+ carbon ions with the same biomolecular targets and significant charge effects have been pointed out.

  20. Negative collision energy dependence of Br formation in the OH + HBr reaction.

    PubMed

    Che, Dock-Chil; Matsuo, Takashi; Yano, Yuya; Bonnet, Laurent; Kasai, Toshio

    2008-03-14

    The reaction between HBr and OH leading to H(2)O and Br in its ground state is studied by means of a crossed molecular beam experiment for a collision energy varying from 0.05 to 0.26 eV, the initial OH being selected in the state |JOmega> = |3/2 3/2> by an electrostatic hexapole field. The reaction cross-section is found to decrease with increasing collision energy. This negative dependence suggests that there is no barrier on the potential energy surface for the formation pathway considered. The experimental results are compared with the previously reported quantum scattering calculations of Clary et al. (D. C. Clary, G. Nyman and R. Hernandez, J. Phys. Chem., 1994, 101, 3704), and briefly discussed in the light of skewed potential energy surfaces associated with heavy-light-heavy type reactions.

  1. Negative ion photoelectron spectroscopic studies of transition metal cluster

    NASA Astrophysics Data System (ADS)

    Marcy, Timothy Paul

    The studies reported in this thesis were performed using a negative ion photoelectron spectrometer consisting of a cold cathode DC discharge ion source, a flowing afterglow ion-molecule reactor, a magnetic sector mass analyzer, an argon ion laser for photodetachment and a hemispherical electron kinetic energy analyzer and microchannel plate detector for photoelectron spectrum generation. The 476.5 nm (2.601 eV), 488.0 nm (2.540 eV) and 514.5 nm (2.410 eV) negative ion photoelectron spectra of VMn are reported and compared to the previously studied spectra of isoelectronic Cr2.1 The photoelectron spectra are remarkably similar to those of Cr2 in electron affinity and vibrational frequencies. The 488.0 nm photoelectron spectra and electron affinities of Nb n- (n = 1 - 9) are reported with discussion of observed vibrational structure. There are transitions to several electronic states of Nb2 in the reported spectra with overlapping vibrational progressions. The spectra of Nb3, Nb4 and Nb6 show partially resolved vibrational structure in the transitions to the lowest observed electronic state of each cluster. There is a single distinct active vibrational mode in the transition to the ground state of Nb8. Spin-orbit energies of Nb- are also reported. The 488.0 nm negative ion photoelectron spectra of Nb3H(D) are reported and compared to those of Nb3. There is a single vibrational mode active in the spectra of Nb3H(D) which is very similar to the most distinct mode active in the spectrum of Nb3. The 488.0 nm photoelectron spectra of the NbxCyH(D) y- (x = 1, 2, 3, y = 2, 4, 6) dehydrogenated products of the reactions of ethylene with niobium cluster anions are reported. Temperature studies of some of these species give evidence for the presence of multiple isomers of each molecule in the ion beam. The spectra of NbC6H(D) 6 are identical to those obtained from the reactions of benzene with niobium clusters and indicate that benzene is being formed from ethylene in the flow

  2. High-Energy Electron-Ion and Photon-Ion Collisions: Status and Challenges

    NASA Technical Reports Server (NTRS)

    Kallman, Timothy R.

    2010-01-01

    Non-LTE plasmas are ubiquitous in objects studied in the UV and X-ray energy bands. Collisional and photoionization cross sections for atoms and ions are fundamental to our ability to model such plasmas. Modeling is key in the X-ray band, where detector properties and limited spectral resolution limit the ability to measure model-independent line strengths, or other spectral features. Much of the motivation for studying such collisions and many of the tools, are not new. However, the motivation for such studies and their applications, have been affected by the advent of X-ray spectroscopy with the gratings on Chandra and XMM-Newton. In this talk I will review this motivation and describe the tools currently in use for such studies. I will also describe some current unresolved problems and the likely future needs for such data.

  3. Negative hydrogen ion beam extracted from a Bernas-type ion source

    SciTech Connect

    Miyamoto, N.; Wada, M.

    2011-09-26

    Negative hydrogen (H{sup -}) ion beam was produced without cesium seeding by a Bernas-type ion source with a coaxial hot cathode. The amount of H{sup -} ion beam current extracted from an original Bernas-type ion source using a hairpin shape filament as a hot cathode was 1 {mu}A with the 0.4 A arc current, while that 300 eV beam energy. In the other hand, H{sup -} ion beam current using the Bernas-type ion source with a coaxial hot cathode reached 4 {mu}A under the same condition. Production efficiency was enhanced by the focused plasma produced by a coaxial hot cathode.

  4. Metal negative ion beam extraction from a radio frequency ion source

    SciTech Connect

    Kanda, S.; Yamada, N.; Kasuya, T.; Romero, C. F. P.; Wada, M.

    2015-04-08

    A metal ion source of magnetron magnetic field geometry has been designed and operated with a Cu hollow target. Radio frequency power at 13.56 MHz is directly supplied to the hollow target to maintain plasma discharge and induce self-bias to the target for sputtering. The extraction of positive and negative Cu ion beams have been tested. The ion beam current ratio of Cu{sup +} to Ar{sup +} has reached up to 140% when Ar was used as the discharge support gas. Cu{sup −} ion beam was observed at 50 W RF discharge power and at a higher Ar gas pressure in the ion source. Improvement of poor RF power matching and suppression of electron current is indispensable for a stable Cu{sup −} ion beam production from the source.

  5. Semiempirical Theories of the Affinities of Negative Atomic Ions

    NASA Technical Reports Server (NTRS)

    Edie, John W.

    1961-01-01

    The determination of the electron affinities of negative atomic ions by means of direct experimental investigation is limited. To supplement the meager experimental results, several semiempirical theories have been advanced. One commonly used technique involves extrapolating the electron affinities along the isoelectronic sequences, The most recent of these extrapolations Is studied by extending the method to Include one more member of the isoelectronic sequence, When the results show that this extension does not increase the accuracy of the calculations, several possible explanations for this situation are explored. A different approach to the problem is suggested by the regularities appearing in the electron affinities. Noting that the regular linear pattern that exists for the ionization potentials of the p electrons as a function of Z, repeats itself for different degrees of ionization q, the slopes and intercepts of these curves are extrapolated to the case of the negative Ion. The method is placed on a theoretical basis by calculating the Slater parameters as functions of q and n, the number of equivalent p-electrons. These functions are no more than quadratic in q and n. The electron affinities are calculated by extending the linear relations that exist for the neutral atoms and positive ions to the negative ions. The extrapolated. slopes are apparently correct, but the intercepts must be slightly altered to agree with experiment. For this purpose one or two experimental affinities (depending on the extrapolation method) are used in each of the two short periods. The two extrapolation methods used are: (A) an isoelectronic sequence extrapolation of the linear pattern as such; (B) the same extrapolation of a linearization of this pattern (configuration centers) combined with an extrapolation of the other terms of the ground configurations. The latter method Is preferable, since it requires only experimental point for each period. The results agree within

  6. Cross-B convection of artificially created, negative-ion clouds and plasma depressions - Low-speed flow

    NASA Technical Reports Server (NTRS)

    Bernhardt, Paul A.

    1988-01-01

    A negative-ion, positive-ion plasma produced by the release of an electron attachment chemical into the F region becomes electrically polarized by collisions with neutrals moving across magnetic field lines. The resulting electric field causes E x B drift of the two ion species and the residual electrons. The cross-field flow of the modified ionosphere is computed using a two-dimensional numerical simulation which includes electron attachment and mutual neutralization chemistry, self-consistent electric fields, and three-species plasma transport. The velocity of the plasma is initially in the direction of the neutral wind because the negative-ion cloud is a Pedersen conductivity enhancement. As the positive and negative ions react, the Pedersen conductivity becomes depressed below the ambient value and the velocity of the plasma reverses direction. A plasma hole remains after the positive and negative ions have mutually neutralized. The E x B gradient drift instability produces irregularities on the upwind edge of the hole.

  7. A collisional radiative model for caesium and its application to an RF source for negative hydrogen ions

    SciTech Connect

    Wünderlich, D. Wimmer, C.; Friedl, R.

    2015-04-08

    A collisional radiative (CR) model for caesium atoms in low-temperature, low-pressure hydrogen-caesium plasmas is introduced. This model includes the caesium ground state, 14 excited states, the singly charged caesium ion and the negative hydrogen ion. The reaction probabilities needed as input are based on data from the literature, using some scaling and extrapolations. Additionally, new cross sections for electron collision ionization and three-body recombination have been calculated. The relevance of mutual neutralization of positive caesium ions and negative hydrogen ions is highlighted: depending on the densities of the involved particle species, this excitation channel can have a significant influence on the population densities of excited states in the caesium atom. This strong influence is successfully verified by optical emission spectroscopy measurements performed at the IPP prototype negative hydrogen ion source for ITER NBI. As a consequence, population models for caesium in electronegative low-temperature, low-pressure hydrogen-caesium plasmas need to take into account the mutual neutralization process. The present CR model is an example for such models and represents an important prerequisite for deducing the total caesium density in surface production based negative hydrogen ion sources.

  8. A collisional radiative model for caesium and its application to an RF source for negative hydrogen ions

    NASA Astrophysics Data System (ADS)

    Wünderlich, D.; Wimmer, C.; Friedl, R.

    2015-04-01

    A collisional radiative (CR) model for caesium atoms in low-temperature, low-pressure hydrogen-caesium plasmas is introduced. This model includes the caesium ground state, 14 excited states, the singly charged caesium ion and the negative hydrogen ion. The reaction probabilities needed as input are based on data from the literature, using some scaling and extrapolations. Additionally, new cross sections for electron collision ionization and three-body recombination have been calculated. The relevance of mutual neutralization of positive caesium ions and negative hydrogen ions is highlighted: depending on the densities of the involved particle species, this excitation channel can have a significant influence on the population densities of excited states in the caesium atom. This strong influence is successfully verified by optical emission spectroscopy measurements performed at the IPP prototype negative hydrogen ion source for ITER NBI. As a consequence, population models for caesium in electronegative low-temperature, low-pressure hydrogen-caesium plasmas need to take into account the mutual neutralization process. The present CR model is an example for such models and represents an important prerequisite for deducing the total caesium density in surface production based negative hydrogen ion sources.

  9. Oxidative Ionization Under Certain Negative-Ion Mass Spectrometric Conditions

    NASA Astrophysics Data System (ADS)

    Hassan, Isra; Pavlov, Julius; Errabelli, Ramu; Attygalle, Athula B.

    2017-02-01

    1,4-Hydroquinone and several other phenolic compounds generate (M - 2) -• radical-anions, rather than deprotonated molecules, under certain negative-ion mass spectrometric conditions. In fact, spectra generated under helium-plasma ionization (HePI) conditions from 1,4-hydroquinone and 1,4-benzoquinone (by electron capture) were practically indistinguishable. Because this process involves a net loss of H• and H+, it can be termed oxidative ionization. The superoxide radical-anion (O2 -•), known to be present in many atmospheric-pressure plasma ion sources operated in the negative mode, plays a critical role in the oxidative ionization process. The presence of a small peak at m/z 142 in the spectrum of 1,4-hydroquinone, but not in that of 1,4-benzoquinone, indicated that the initial step in the oxidative ionization process is the formation of an O2 -• adduct. On the other hand, under bona fide electrospray ionization (ESI) conditions, 1,4-hydroquinone generates predominantly an (M - 1) - ion. It is known that at sufficiently high capillary voltages, corona discharges begin to occur even in an ESI source. At lower ESI capillary voltages, deprotonation predominates; as the capillary voltage is raised, the abundance of O2 -• present in the plasma increases, and the source in turn increasingly behaves as a composite ESI/APCI source. While maintaining post-ionization ion activation to a minimum (to prevent fragmentation), and monitoring the relative intensities of the m/z 109 (due to deprotonation) and 108 (oxidative ionization) peaks recorded from 1,4-hydroquinone, a semiquantitative estimation of the APCI contribution to the overall ion-generation process can be obtained.

  10. Oxidative Ionization Under Certain Negative-Ion Mass Spectrometric Conditions.

    PubMed

    Hassan, Isra; Pavlov, Julius; Errabelli, Ramu; Attygalle, Athula B

    2017-02-01

    1,4-Hydroquinone and several other phenolic compounds generate (M - 2) (-•) radical-anions, rather than deprotonated molecules, under certain negative-ion mass spectrometric conditions. In fact, spectra generated under helium-plasma ionization (HePI) conditions from 1,4-hydroquinone and 1,4-benzoquinone (by electron capture) were practically indistinguishable. Because this process involves a net loss of H(•) and H(+), it can be termed oxidative ionization. The superoxide radical-anion (O2(-•)), known to be present in many atmospheric-pressure plasma ion sources operated in the negative mode, plays a critical role in the oxidative ionization process. The presence of a small peak at m/z 142 in the spectrum of 1,4-hydroquinone, but not in that of 1,4-benzoquinone, indicated that the initial step in the oxidative ionization process is the formation of an O2(-•) adduct. On the other hand, under bona fide electrospray ionization (ESI) conditions, 1,4-hydroquinone generates predominantly an (M - 1) (-) ion. It is known that at sufficiently high capillary voltages, corona discharges begin to occur even in an ESI source. At lower ESI capillary voltages, deprotonation predominates; as the capillary voltage is raised, the abundance of O2(-•) present in the plasma increases, and the source in turn increasingly behaves as a composite ESI/APCI source. While maintaining post-ionization ion activation to a minimum (to prevent fragmentation), and monitoring the relative intensities of the m/z 109 (due to deprotonation) and 108 (oxidative ionization) peaks recorded from 1,4-hydroquinone, a semiquantitative estimation of the APCI contribution to the overall ion-generation process can be obtained. Graphical Abstract ᅟ.

  11. Particle simulation of collision dynamics for ion beam injection into a rarefied gas

    SciTech Connect

    Giuliano, Paul N.; Boyd, Iain D.

    2013-03-15

    This study details a comparison of ion beam simulations with experimental data from a simplified plasma test cell in order to study and validate numerical models and environments representative of electric propulsion devices and their plumes. The simulations employ a combination of the direct simulation Monte Carlo and particle-in-cell methods representing xenon ions and atoms as macroparticles. An anisotropic collision model is implemented for momentum exchange and charge exchange interactions between atoms and ions in order to validate the post-collision scattering behaviors of dominant collision mechanisms. Cases are simulated in which the environment is either collisionless or non-electrostatic in order to prove that the collision models are the dominant source of low- and high-angle particle scattering and current collection within this environment. Additionally, isotropic cases are run in order to show the importance of anisotropy in these collision models. An analysis of beam divergence leads to better characterization of the ion beam, a parameter that requires careful analysis. Finally, suggestions based on numerical results are made to help guide the experimental design in order to better characterize the ion environment.

  12. Detection of negative pickup ions at Saturn's moon Dione

    NASA Astrophysics Data System (ADS)

    Nordheim, T.; Jones, G. H.; Coates, A. J.; Wellbrock, A.; Hand, K. P.; Waite, J. H., Jr.

    2015-12-01

    Negative ions may be formed in both tenuous and dense planetary atmospheres and have been observed in-situ at Earth, Titan [Coates et al., 2007, 2009; Wellbrock et al., 2013] and Enceladus [Coates et al., 2010] as well as at comet Halley [Chaizy et al., 1991]. In the case of Titan, heavy hydrocarbon and nitrile based ions with masses reaching almost 14,000 amu/q have been observed using the CAPS Electron Spectrometer (ELS) onboard Cassini. These are believed to form even more massive organic aerosols termed tholins which fall to lower altitudes where they make up the distinct haze layers, and eventually rain down onto Titan's surface perhaps forming the organic-rich dunes. Very tenuous atmospheres were predicted at the smaller icy moons of Saturn [Sittler et al., 2004; Saur and Strobel, 2005], and subsequently detected [Teolis et al., 2010; Tokar et al., 2012]. These are produced when charged particles from Saturn's magnetosphere interact with moon surfaces, ejecting neutral species. Some portion of these atmospheric neutrals will in turn become ionized and 'picked up' by Saturn's corotating magnetosphere. These pickup ions will then move in cycloidal trajectories that we may intercept using the Cassini spacecraft, even at considerable distance from the moon itself. In this fashion, negative and positive pickup ions have been used to infer a tenuous CO2-O2 atmosphere at Saturn's moon Rhea [Teolis et al., 2010], and positive pickup ions at Dione [Tokar et al., 2012]. Here we report on the detection of negative pickup ions during a close flyby of Dione by the Cassini CAPS ELS instrument, and the implications that these observations may have for the Dionian atmosphere. Chaizy, P., et al. (1991), Nature, 349(6308), 393-396 Coates, A. J., et al. (2007), Geophys. Res. Lett., 34(22), 6-11 Coates, A. J., et al. (2009), Planet. Space Sci., 57(14-15), 1866-1871 Coates, A. J., et al. (2010), Icarus, 206(2), 618-622 Saur, J., and D. F. Strobel (2005), Astrophys. J. Lett., 620

  13. Initial state fluctuations and final state correlations in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Luzum, Matthew; Petersen, Hannah

    2014-06-01

    We review the phenomenology and theory of bulk observables in ultra-relativistic heavy-ion collisions, focusing on recent developments involving event-by-event fluctuations in the initial stages of a heavy-ion collision, and how they manifest in observed correlations. We first define the relevant observables and show how each measurement is related to underlying theoretical quantities. Then we review the prevailing picture of the various stages of a collision, including the state-of-the-art modeling of the initial stages of a collision and subsequent hydrodynamic evolution, as well as hadronic scattering and freeze-out in the later stages. We then discuss the recent results that have shaped our current understanding and identify the challenges that remain. Finally, we point out open issues and the potential for progress in the field.

  14. Positive and negative ion beam merging system for neutral beam production

    DOEpatents

    Leung, Ka-Ngo; Reijonen, Jani

    2005-12-13

    The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.

  15. Improvement of JT-60U negative ion source performance

    NASA Astrophysics Data System (ADS)

    Grisham, L. R.; Kuriyama, M.; Kawai, M.; Itoh, T.; Umeda, N.; JT-60U Team

    2001-05-01

    The several hundred keV neutral beamline which is now operating on JT-60U marks the first usage of negative ion sources to produce high power neutral beams. Because this was such a large advance in the state of the art with respect to all system parameters, many new physical processes appeared during the earlier phases of the beam injection experiments. The physical mechanisms responsible for these processes have been explored, and solutions have been implemented for some of them, in particular excessive beam stripping, the secular dependence of the arc and beam parameters, and the non-uniformity of the plasma illuminating the beam extraction grid. This has reduced the percentage of beam heat loading on the downstream grids by roughly a third and has permitted longer beam pulses at higher powers. Progress is being made in improving the negative ion current density and in coping with the sensitivity of the caesium in the ion sources to oxidation by tiny air or water leaks, and the cathode operation is being altered.

  16. Wigner time delay in photodetachment of negative ions

    NASA Astrophysics Data System (ADS)

    Saha, S.; Deshmukh, P. C.; Jose, J.; Kkeifets, A. S.; Manson, S. T.

    2016-05-01

    In recent years, there has been much interest in studies on Wigner time delay in atomic photoionization using various experimental techniques and theoretical methodologies. In the present work, we report time delay in the photodetachment of negative ions using the relativistic-random-phase approximation (RRPA), which includes relativistic and important correlation effects. Time delay is obtained as energy derivative of phase of the photodetachment complex transition amplitude. We investigate the time delay in the dipole n p --> ɛd channels in the photodetachment of F- and Cl-, and in n f --> ɛg channels in the photodetachment of Tm-. In photodetachment of the negative ions, the photoelectron escapes in the field of the neutral atom and thus does not experience the nuclear Coulomb field; hence the phase is devoid of the Coulomb component. The systems chosen are well suited to examine the sensitivity of the photodetachment time delay to the centrifugal potential. The ions chosen have closed shells, and thus amenable to the RPA. Work supported by DOE, Office of Chemical Sciences, DST (India), and the Australian Research Council.

  17. Negative-ion formation in the explosives RDX, PETN, and TNT by using the reversal electron attachment detection technique

    NASA Technical Reports Server (NTRS)

    Boumsellek, S.; Alajajian, S. H.; Chutjian, A.

    1992-01-01

    First results of a beam-beam, single-collision study of negative-ion mass spectra produced by attachment of zero-energy electrons to the molecules of the explosives RDX, PETN, and TNT are presented. The technique used is reversal electron attachment detection (READ) wherein the zero-energy electrons are produced by focusing an intense electron beam into a shaped electrostatic field which reverses the trajectory of electrons. The target beam is introduced at the reversal point, and attachment occurs because the electrons have essentially zero longitudinal and radial velocity. The READ technique is used to obtain the 'signature' of molecular ion formation and/or fragmentation for each explosive. Present data are compared with results from atmospheric-pressure ionization and negative-ion chemical ionization methods.

  18. Positive and negative gas-phase ion chemistry of chlorofluorocarbons in air at atmospheric pressure.

    PubMed

    Bosa, Elisabetta; Paradisi, Cristina; Scorrano, Gianfranco

    2003-01-01

    This paper presents a report on the ionization/dissociation of some representative chlorofluorocarbons (CFCs) induced by corona discharges in air at atmospheric pressure. Both positive and negative ions formed from Freons 1,1,1-trichlorotrifluoroethane (CFC 113a), 1,1,2-trichlorotrifluoroethane (CFC 113), and 1,1,1,2-tetrachlorodifluoroethane (CFC 112a) were analyzed using an atmospheric pressure chemical ionization mass spectrometry (APCI-MS) instrument. Energy-resolved mass spectra were obtained by modulating the kinetic energy of the ions via adjustment of the sampling cone potential (V(cone)). Positive ion spectra of the CFCs (M) at low V(cone) show no signals due to either M(+)* or MH(+) but only those due to species [M - Cl](+) and CX(3)(+) (X = Cl, F), likely formed via C-Cl and C-C bond cleavages following ionization via charge exchange. Charge localization in the products of C-C bond cleavage in M(+)* is driven by the stability of the neutral fragment. At low V(cone) the hydrates [M - Cl](+)(H(2)O) are also observed. In the case of 1,1,2,-trichlorotrifluoroethane, [M - F](+) species also form as a result of ion-molecule reactions. As V(cone) is increased collision-induced dissociation of [M - Cl](+) and [M - F](+), i.e., the perhalogenated cations C(2)X(5)(+) (X = Cl, F), takes place via carbene elimination. In some cases such elimination is preceded or accompanied by rearrangements involving transfer of halogen from one carbon to the other. Evidence is also presented for the occurrence of a condensation reaction of C(2)Cl(3)F(2)(+) with water to form a C(2)Cl(2)F(2)HO(+) species via elimination of HCl. Negative ion spectra are dominated by Cl(-) and its ion-neutral complexes with M and with water. Additional components of the plasma include ion-neutral complexes O(3)(-)(M), the molecular anion M(-) (observed only with 1,1,2-trichlorotrifluoroethane), and an interesting species corresponding to [M - Cl + O](-). The origin and structure of these [M - Cl + O

  19. QED and electron collisions in the super strong fields of K-shell actinide ions

    SciTech Connect

    Beiersdorfer, P

    2006-01-25

    Atomic physics of high-Z, heavy ions is very different from that encountered in low-Z or medium-Z ions. The reason is the ultra strong nuclear field found only in the heaviest ions. The highest-Z atomic systems available to physical investigation, the actinides, therefore, offer rich new physics that cannot be studied any other way. This ranges from new dominating forces in electron-ion collisions to tests of fundamental theories. A measurement of the two-loop Lamb shift in uranium is by many considered to be the ''holy grail'' of high-field QED tests of atomic systems. Such measurements have been attempted at heavy-ion accelerator facilities but have yet to succeed because of the difficulty to make measurements with the required accuracy. Also, electron collisions behave very differently in such tightly bound systems. The magnetic interaction between the ion and the incoming free electron (the so-called generalized Breit interaction) is essentially non-existent in collisions involving low and medium-Z ions. This interaction is therefore missing in essentially all electron collision codes. But in heavy, highly charged ions like uranium, the generalized Breit interaction readily is the dominant force, changing electron collision cross sections by a factor of two. This has never been experimentally observed. In fact, no K-shell emission spectrum of any heavy high-Z ion higher than krypton (Z=36) has ever been recorded from a collisional source. By studying the heaviest actinides such fundamental science can be extended to regimes where the highest precision tests can be made.

  20. High charge state, ion-atom collision experiments using accel-decel

    SciTech Connect

    Bernstein, E.M.; Clark, M.W.; Tanis, J.A.; Graham, W.G.

    1987-01-01

    Recent studies of /sub 16/S/sup 13 +/ + He collisions between 2.5 and 200 MeV, which were made using the accel-decel technique with the Brookhaven National Laboratory coupled MP tandem Van de Graaff accelerators, are discussed. Cross sections were measured for single electron-capture and -loss as well as K x rays correlated to electron-capture. Other planned ion-atom collision experiments requiring accel-decel are also presented. 18 refs., 3 figs.

  1. An optical model description of momentum transfer in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Khan, F.; Khandelwal, G. S.; Townsend, Lawrence W.; Wilson, J. W.; Norbury, John W.

    1989-01-01

    An optical model description of momentum transfer in relativistic heavy ion collisions, based upon composite particle multiple scattering theory, is presented. The imaginary component of the complex momentum transfer, which comes from the absorptive part of the optical potential, is identified as the longitudinal momentum downshift of the projectile. Predictions of fragment momentum distribution observables are made and compared with experimental data. Use of the model as a tool for estimating collision impact parameters is discussed.

  2. Production of exotic charmonium in ultra-peripheral heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Bertulani, C. A.; Gonçalves, V. P.; Moreira, B. D.; Navarra, F. S.

    2017-03-01

    We discuss exotic charmonium production in γγ interactions in heavy ion collisions and present predictions for the production cross section of several of these states in ultra-peripheral collisions of proton-proton and nucleus-nucleus beams at the CERN Large Hadron Collider energies. Our results demonstrate that the experimental study of these processes is feasible and can be used to put limits on the theoretical decay widths and yield valuable information about the structure of multiquark states.

  3. Heavy-flavour productions in the relativistic heavy ion collisions in LHC

    NASA Astrophysics Data System (ADS)

    Sakai, Shingo

    2017-03-01

    In the Large Hadron Collider (LHC), open heavy-flavour productions in the heavy-ion collisions (Pb-Pb) has studied by measuring D mesons, leptons from semi-leptonic decay of heavy-flavour hadrons and jets which are original from heavy quarks. In this proceedings, those results are shown together with the measurements with pp and p-Pb collisions and discussed with theoretical calculations to understand the properties of the QCD matter.

  4. Ultra-relativistic heavy ion collisions in a multi-string model

    SciTech Connect

    Werner, K.

    1987-01-01

    We present a model for ultra-relativistic heavy ion collisions based on color string formation and subsequent independent string fragmentation. Strings are formed due to color exchange between quarks at each individual nucleon nucleon collision. The fragmentation is treated as in e/sup +/e/sup -/ or lepton nucleon scattering. Calculation for pp, pA, and AA were carried out using the Monte Carlo code VENUS for Very Energetic Nuclear Scattering (version 1.0). 20 refs., 6 figs.

  5. Optical model description of momentum transfer in relativistic heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Khan, F.; Khandelwal, G. S.; Townsend, L. W.; Wilson, J. W.; Norbury, J. W.

    1991-01-01

    An optical model description of momentum transfer in relativistic heavy ion collisions, based upon composite particle multiple scattering theory, is presented. The imaginary component of the complex momentum transfer, which comes from the absorptive part of the optical potential, is identified as the longitudinal momentum downshift of the projectile. Predictions of fragment momentum distribution observables are made and compared with experimental data. Use of the model as a tool for estimating collision impact parameters is discussed.

  6. Free molecular collision cross section calculation methods for nanoparticles and complex ions with energy accommodation

    SciTech Connect

    Larriba, Carlos Hogan, Christopher J.

    2013-10-15

    The structures of nanoparticles, macromolecules, and molecular clusters in gas phase environments are often studied via measurement of collision cross sections. To directly compare structure models to measurements, it is hence necessary to have computational techniques available to calculate the collision cross sections of structural models under conditions matching measurements. However, presently available collision cross section methods contain the underlying assumption that collision between gas molecules and structures are completely elastic (gas molecule translational energy conserving) and specular, while experimental evidence suggests that in the most commonly used background gases for measurements, air and molecular nitrogen, gas molecule reemission is largely inelastic (with exchange of energy between vibrational, rotational, and translational modes) and should be treated as diffuse in computations with fixed structural models. In this work, we describe computational techniques to predict the free molecular collision cross sections for fixed structural models of gas phase entities where inelastic and non-specular gas molecule reemission rules can be invoked, and the long range ion-induced dipole (polarization) potential between gas molecules and a charged entity can be considered. Specifically, two calculation procedures are described detail: a diffuse hard sphere scattering (DHSS) method, in which structures are modeled as hard spheres and collision cross sections are calculated for rectilinear trajectories of gas molecules, and a diffuse trajectory method (DTM), in which the assumption of rectilinear trajectories is relaxed and the ion-induced dipole potential is considered. Collision cross section calculations using the DHSS and DTM methods are performed on spheres, models of quasifractal aggregates of varying fractal dimension, and fullerene like structures. Techniques to accelerate DTM calculations by assessing the contribution of grazing gas

  7. Collective effects in light-heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Schenke, Björn; Venugopalan, Raju

    2014-11-01

    We present results for the azimuthal anisotropy of charged hadron distributions in A+A, p+A, d+A, and 3He+A collisions within the IP-Glasma+MUSIC model. Obtained anisotropies are due to the fluid dynamic response of the system to the fluctuating initial geometry of the interaction region. While the elliptic and triangular anisotropies in peripheral Pb+Pb collisions at √{ s} = 2.76 TeV are well described by the model, the same quantities in √{ s} = 5.02 TeV p+Pb collisions underestimate the experimental data. This disagreement can be due to neglected initial state correlations or the lack of a detailed description of the fluctuating spatial structure of the proton, or both. We further present predictions for azimuthal anisotropies in p+Au, d+Au, and 3He+Au collisions at √{ s} = 200 GeV. For d+Au and 3He+Au collisions we expect the detailed substructure of the nucleon to become less important.

  8. Ion collector design for an energy recovery test proposal with the negative ion source NIO1

    NASA Astrophysics Data System (ADS)

    Variale, V.; Cavenago, M.; Agostinetti, P.; Sonato, P.; Zanotto, L.

    2016-02-01

    Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D- beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D- and D+), so that an ion beam energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H- each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.

  9. Ion collector design for an energy recovery test proposal with the negative ion source NIO1

    SciTech Connect

    Variale, V.; Cavenago, M.; Agostinetti, P.; Sonato, P.; Zanotto, L.

    2016-02-15

    Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D{sup −} beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D{sup −} and D{sup +}), so that an ion beam energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H{sup −} each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.

  10. Ion collector design for an energy recovery test proposal with the negative ion source NIO1.

    PubMed

    Variale, V; Cavenago, M; Agostinetti, P; Sonato, P; Zanotto, L

    2016-02-01

    Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D(-) beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D(-) and D(+)), so that an ion beam energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H(-) each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.

  11. Models of radiofrequency coupling for negative ion sources

    SciTech Connect

    Cavenago, M.; Petrenko, S.

    2012-02-15

    Radiofrequency heating for ICP (inductively coupled plasma) ion sources depends on the source operating pressure, the presence or absence of a Faraday shield, the driver coil geometry, the frequency used, and the magnetic field configuration: in negative ion source a magnetic filter seems necessary for H{sup -} survival. The result of single particle simulations showing the possibility of electron acceleration in the preglow regime and for reasonable driver chamber radius (15 cm) is reported, also as a function of the static external magnetic field. An effective plasma conductivity, depending not only from electron density, temperature, and rf field but also on static magnetic field is here presented and compared to previous models. Use of this conductivity and of multiphysics tools for a plasma transport and heating model is shown and discussed for a small source.

  12. Coincidence measurements between fragment ions and the number of emitted electrons in heavy ion collisions with polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Murai, T.; Majima, T.; Kishimoto, T.; Tsuchida, H.; Itoh, A.

    2012-11-01

    We have studied multiple ionization and multifragmentation of a chlorofluorocarbon molecule, CH2FCF3, induced by collisions of 580-keV C+ ions. Coincidence measurements of product ions and the number of emitted electrons from CH2FCF3 were performed under charge-changing conditions of C+ → Cq+ (q = 0, 2, 3). A fully inclusive measurement regardless of outgoing projectile charge state was also performed by making coincidence with a pulsed ion beam. Mass distributions of fragment ions and number distributions of emitted electrons were both found to change greatly according to charge-changing conditions. Highly multiple ionization emitting up to about 10 electrons was observed in electron loss collisions.

  13. Studies of transition states and radicals by negative ion photodetachment

    SciTech Connect

    Metz, R.B.

    1991-12-01

    Negative ion photodetachment is a versatile tool for the production and study of transient neutral species such as reaction intermediates and free radicals. Photodetachment of the stable XHY{sup {minus}} anion provides a direct spectroscopic probe of the transition state region of the potential energy surface for the neutral hydrogen transfer reaction X + HY {yields} XH + Y, where X and Y are halogen atoms. The technique is especially sensitive to resonances, which occur at a specific energy, but the spectra also show features due to direct scattering. We have used collinear adiabatic simulations of the photoelectron spectra to evaluate trail potential energy surfaces for the biomolecular reactions and have extended the adiabatic approach to three dimensions and used it to evaluate empirical potential energy surfaces for the I + Hl and Br + HI reactions. In addition, we have derived an empirical, collinear potential energy surface for the Br + HBr reaction that reproduces our experimental results and have extended this surface to three dimensions. Photodetachment of a negative ion can be also used to study neutral free radicals. We have studied the vibrational and electronic spectroscopy of CH{sub 2}NO{sub 2} by photoelectron spectroscopy of CH{sub 2}NO{sub 2}{sup {minus}}, determining the electron affinity of CH{sub 2}NO{sub 2}, gaining insight on the bonding of the {sup 2}B{sub 1} ground state and observing the {sup 2}A{sub 2} excited state for the first time. Negative ion photodetachment also provides a novel and versatile source of mass-selected, jet-cooled free radicals. We have studied the photodissociation of CH{sub 2}NO{sub 2} at 270, 235, and 208 nm, obtaining information on the dissociation products by measuring the kinetic energy release in the photodissociation.

  14. Molecular Growth Inside of Polycyclic Aromatic Hydrocarbon Clusters Induced by Ion Collisions.

    PubMed

    Delaunay, Rudy; Gatchell, Michael; Rousseau, Patrick; Domaracka, Alicja; Maclot, Sylvain; Wang, Yang; Stockett, Mark H; Chen, Tao; Adoui, Lamri; Alcamí, Manuel; Martín, Fernando; Zettergren, Henning; Cederquist, Henrik; Huber, Bernd A

    2015-05-07

    The present work combines experimental and theoretical studies of the collision between keV ion projectiles and clusters of pyrene, one of the simplest polycyclic aromatic hydrocarbons (PAHs). Intracluster growth processes induced by ion collisions lead to the formation of a wide range of new molecules with masses larger than that of the pyrene molecule. The efficiency of these processes is found to strongly depend on the mass and velocity of the incoming projectile. Classical molecular dynamics simulations of the entire collision process-from the ion impact (nuclear scattering) to the formation of new molecular species-reproduce the essential features of the measured molecular growth process and also yield estimates of the related absolute cross sections. More elaborate density functional tight binding calculations yield the same growth products as the classical simulations. The present results could be relevant to understand the physical chemistry of the PAH-rich upper atmosphere of Saturn's moon Titan.

  15. Treatment of ion-atom collisions using a partial-wave expansion of the projectile wavefunction

    SciTech Connect

    Foster, M; Colgan, J; Wong, T G; Madison, D H

    2008-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge scattering quantities. Here we show that such calculations are possible using modern high-performance computing. We demonstrate the utility of our method by examining elastic scattering of protons by hydrogen and helium atoms, problems familiar to undergraduate students of atomic scattering. Application to ionization of helium using partial-wave expansions of the projectile wavefunction, which has long been desirable in heavy-ion collision physics, is thus quite feasible.

  16. Charge exchange and ionization in hydrogen atom-fully stripped ion collisions in Debye plasmas

    SciTech Connect

    Zhang, H.; Wang, J. G.; He, B.; Qiu, Y. B.; Janev, R. K.

    2007-05-15

    The processes of charge exchange and ionization in collisions of ground state hydrogen atom with fully stripped ions in a weakly coupled plasma are studied by the classical trajectory Monte Carlo method in the collision energy range 10-900 keV/amu. The interparticle interactions are described by the Debye-Hueckel model with inclusion of dynamical effects associated with the projectile velocity. The microcanonical distribution of initial state electronic coordinates and momenta has been determined by inclusion of plasma screening effects. The cross section dependencies on plasma parameters and ion charge and velocity are investigated. It is shown that plasma effects on charge exchange and ionization cross sections are significant and particularly pronounced at low collision velocities. The results of systematic cross section calculations for different values of Debye screening length (in the range 1-50a{sub 0}) and ion charges (in the range 1-14) are presented.

  17. Metal vapor target for precise studies of ion-atom collisions

    SciTech Connect

    Chen, W. Vorobyev, G.; Herfurth, F.; Hillenbrand, P.-M.; Spillmann, U.; Guo, D.; Trotsenko, S.; Gumberidze, A.; Stöhlker, Th.

    2014-05-15

    Although different ion-atom collisions have been studied in various contexts, precise values of cross-sections for many atomic processes were seldom obtained. One of the main uncertainties originates from the value of target densities. In this paper, we describe a unique method to measure a target density precisely with a combination of physical vapor deposition and inductively coupled plasma optical emission spectrometry. This method is preliminarily applied to a charge transfer cross-section measurement in collisions between highly charged ions and magnesium vapor. The final relative uncertainty of the target density is less than 2.5%. This enables the precise studies of atomic processes in ion-atom collisions, even though in the trial test the deduction of precise capture cross-sections was limited by other systematic errors.

  18. Effect of in-medium properties on heavy-ion collisions

    SciTech Connect

    Schaffner-Bielich, J.

    2000-07-20

    The properties of strange hadrons, i.e. of kaons and hyperons, in the nuclear medium--are discussed in connection with neutron star properties and relativistic heavy-ion collisions. Firstly, the relevant medium modifications of a kaon in a medium as provided by heavy-ion collisions is critically examined within a coupled channel calculation. We demonstrate, that particle ratios for kaons are not a sensitive probe of in-medium effects while the K{sup {minus}} flow is more suited to pin down the K{sup {minus}} optical potential in dense matter. Secondly, the interaction between hyperons is studied and may form bound states which can be produced in relativistic heavy-ion collisions. Signals for the detection of strange dibaryons by their decay topology and/or in the invariant mass spectra are outlined.

  19. Interferences in photodetachment of a triatomic negative ion

    SciTech Connect

    Afaq, A.; Ahmad, M. A.; Rashid, A.; Ahmad, Iftikhar; Tahir, B. A.; Hussain, Muhammad Tahir

    2009-01-26

    The photodetachment of a triatomic negative ion is studied and the detached-electron wave function is obtained as a superposition of coherent waves originating from each atom of the system. The photodetached electron flux is evaluated on a screen placed at a large distance from the system, which displays strong interferences. A simple analytical formula is also obtained for the total photodetachment cross section. The formula approaches one time the cross sections for the one-center and two-center systems in the high photon energy limits. Also it approaches three times the cross section for one-center system in the low photon energy limits.

  20. Cesium control and diagnostics in surface plasma negative ion sources

    SciTech Connect

    Dudnikov, Vadim; Chapovsky, Pavel; Dudnikov, Andrei

    2010-02-15

    For efficient and reliable negative ion generation it is very important to improve a cesium control and diagnostics. Laser beam attenuation and resonance fluorescence can be used for measurement of cesium distribution and cesium control. Resonant laser excitation and two-photon excitation can be used for improved cesium ionization and cesium trapping in the discharge chamber. Simple and inexpensive diode lasers can be used for cesium diagnostics and control. Cesium migration along the surface is an important mechanism of cesium escaping. It is important to develop a suppression of cesium migration and cesium accumulation on the extraction system.

  1. Electrical shielding box measurement of the negative hydrogen beam from Penning ion gauge ion source.

    PubMed

    Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W

    2012-06-01

    The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.

  2. Experimental overview on flow observables in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Mohapatra, Soumya

    2016-12-01

    This paper summarizes the experimental results on flow phenomena that were presented at Quark matter 2015, with a focus on new flow observables and correlations in small systems. The results presented include event-shape selected pT spectra and vn measurements, correlations between flow harmonics of different orders, study of factorization breakdown in two-particle correlations, and principal component analysis of two-particle correlations. Recent developments in investigation of collective effects in small collisions systems, namely, p+A, d+A and 3He + A as well as in pp collisions are also presented.

  3. Simultaneous collision induced dissociation of the charge reduced parent ion during electron capture dissociation.

    PubMed

    Bushey, Jared M; Baba, Takashi; Glish, Gary L

    2009-08-01

    A method of performing collision induced dissociation (CID) on the charge-reduced parent ion as it is formed during electron capture dissociation (ECD), called ECD+CID, is described. In ECD+CID, the charge-reduced parent ion is selectively activated using resonant excitation and collisions with the helium bath gas inside a linear quadrupole ion trap ECD device (ECD(LIT)). It has been observed that ECD+CID can improve the sequence coverage for beta-endorphin over performing ECD alone (i.e., from 72 to 97%). Perhaps just as important, ECD+CID can be used to reduce the extent of multiple electron capture events observed when performing ECD in the ECD(LIT). Consequently, the abundance of mass-to-charge ratios corresponding to ECD product ions that contain neutralized protons is decreased, simplifying the interpretation of the product ion spectrum.

  4. Ion-Surface Collisions in Mass Spectrometry: Where Analytical Chemistry Meets Surface Science

    SciTech Connect

    Laskin, Julia

    2015-02-01

    This article presents a personal perspective regarding the development of key concepts in understanding hyperthermal collisions of polyatomic ions with surfaces as a unique tool for mass spectrometry applications. In particular, this article provides a historic overview of studies focused on understanding the phenomena underlying surface-induced dissociation (SID) and mass-selected deposition of complex ions on surfaces. Fast energy transfer in ion-surface collisions makes SID especially advantageous for structural characterization of large complex molecules, such as peptides, proteins, and protein complexes. Soft, dissociative, and reactive landing of mass-selected ions provide the basis for preparatory mass spectrometry. These techniques enable precisely controlled deposition of ions on surfaces for a variety of applications. This perspective article shows how basic concepts developed in the 1920s and 1970s have evolved to advance promising mass-spectrometry-based applications.

  5. The role of high Rydberg states in the generation of negative ions in negative-ion discharges

    SciTech Connect

    Hiskes, J.R.

    1995-11-28

    The generation of substantial yields of H{sup {minus}} ions in a laser excited H{sub 2} gas has been reported by Pinnaduwage and Christoforu. These H{sup {minus}} yields have been attributed to (2 + 1) REMP photoexcitation processes leading to dissociative attachment of doubly-excited or superexcited states (SES), or dissociative attachment of high Rydberg product states. The new feature of these experiments is the implied large dissociative attachment rates, of order 10{sup {minus}6} cm{sup 3} sec{sup {minus}1}, values that are orders-of-magnitude larger than the dissociative attachment of the vibrationally excited levels of the ground electronic state. While these laser excitations are not directly applicable to a hydrogen negative-ion discharge, the implication of large dissociative attachment rates to the high Rydberg states may affect both the total negative-ion density and the interpretation of discharge performance. Within the discharge energetic electrons will collisionally excite the higher Rydberg states, and the relative contribution of the dissociative attachment of these states when compared with the dissociative attachment to the ground state vibrational levels, is the topic of this paper.

  6. Science and art in heavy-ion collisions

    SciTech Connect

    Weiss, M.S.

    1982-08-09

    One of the more intriguing phenomena discovered in heavy-ion physics is the seeming appearance of high energy structure in the excitation spectra of inelastically scattered heavy ions. For reasons illustrated, these may well be a phenomena unique to heavy ions and their explanation perhaps unique to TDHF.

  7. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy,and Related Fields

    SciTech Connect

    Grisham, L. R.; Kwan, J. W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons - can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion - ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  8. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    Grisham, L.R.; Kwan, J.W.

    2008-08-01

    Some years ago it was suggested that halogen negative ions [1]could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  9. Perspective on the Role of Negative Ions and Ion-Ion Plasmas in Heavy Ion Fusion Science, Magnetic Fusion Energy, and Related Fields

    SciTech Connect

    L. Grisham and J.W. Kwan

    2008-08-12

    Some years ago it was suggested that halogen negative ions [1] could offer a feasible alternative path to positive ions as a heavy ion fusion driver beam which would not suffer degradation due to electron accumulation in the accelerator and beam transport system, and which could be converted to a neutral beam by photodetachment near the chamber entrance if desired. Since then, experiments have demonstrated that negative halogen beams can be extracted and accelerated away from the gas plume near the source with a surviving current density close to what could be achieved with a positive ion of similar mass, and with comparable optical quality. In demonstrating the feasibility of halogen negative ions as heavy ion driver beams, ion - ion plasmas, an interesting and somewhat novel state of matter, were produced. These plasmas, produced near the extractor plane of the sources, appear, based upon many lines of experimental evidence, to consist of almost equal densities of positive and negative chlorine ions, with only a small component of free electrons. Serendipitously, the need to extract beams from this plasma for driver development provides a unique diagnostic tool to investigate the plasma, since each component - positive ions, negative ions, and electrons -- can be extracted and measured separately. We discuss the relevance of these observations to understanding negative ion beam extraction from electronegative plasmas such as halogens, or the more familiar hydrogen of magnetic fusion ion sources. We suggest a concept which might improve negative hydrogen extraction by the addition of a halogen. The possibility and challenges of producing ion-ion plasmas with thin targets of halogens or, perhaps, salt, is briefly addressed.

  10. Alternative solutions to caesium in negative-ion sources: a study of negative-ion surface production on diamond in H2/D2 plasmas

    NASA Astrophysics Data System (ADS)

    Cartry, Gilles; Kogut, Dmitry; Achkasov, Kostiantyn; Layet, Jean-Marc; Farley, Thomas; Gicquel, Alix; Achard, Jocelyn; Brinza, Ovidiu; Bieber, Thomas; Khemliche, Hocine; Roncin, Philippe; Simonin, Alain

    2017-02-01

    This paper deals with a study of H‑/D‑ negative ion surface production on diamond in low pressure H2/D2 plasmas. A sample placed in the plasma is negatively biased with respect to plasma potential. Upon positive ion impacts on the sample, some negative ions are formed and detected according to their mass and energy by a mass spectrometer placed in front of the sample. The experimental methods developed to study negative ion surface production and obtain negative ion energy and angle distribution functions are first presented. Different diamond materials ranging from nanocrystalline to single crystal layers, either doped with boron or intrinsic, are then investigated and compared with graphite. The negative ion yields obtained are presented as a function of different experimental parameters such as the exposure time, the sample bias which determines the positive ion impact energy and the sample surface temperature. It is concluded from these experiments that the electronic properties of diamond materials, among them the negative electron affinity, seem to be favourable for negative-ion surface production. However, the negative ion yield decreases with the plasma induced defect density.

  11. Procedure for measuring photon and vector meson circular polarization variation with respect to the reaction plane in relativistic heavy-ion collisions

    DOE PAGES

    Tang, A. H.; Wang, G.

    2016-08-30

    The electromagnetic (EM) eld pattern created by spectators in relativistic heavy-ion collisions plants a seed of positive (negative) magnetic helicity in the hemisphere above (below) the reaction plane. Owing to the chiral anomaly, the magnetic helicity interacts with the fermionic helicity of the collision system, and causes photons emitted in upper- and lower-hemispheres to have different preferences in the circular polarization. Similar helicity separation for massive particles, due to the global vorticity, is also possible. In this paper, we lay down a procedure to measure the variation of the circular polarization w.r.t the reaction plane in relativistic heavy-ion collisions formore » massless photons, as well as similar polarization patterns for vector mesons decaying into two daughters. We propose to study the yield differentially and compare the yield between upper- and lower-hemispheres in order to identify and quantify such effects.« less

  12. Procedure for measuring photon and vector meson circular polarization variation with respect to the reaction plane in relativistic heavy-ion collisions

    SciTech Connect

    Tang, A. H.; Wang, G.

    2016-08-30

    The electromagnetic (EM) eld pattern created by spectators in relativistic heavy-ion collisions plants a seed of positive (negative) magnetic helicity in the hemisphere above (below) the reaction plane. Owing to the chiral anomaly, the magnetic helicity interacts with the fermionic helicity of the collision system, and causes photons emitted in upper- and lower-hemispheres to have different preferences in the circular polarization. Similar helicity separation for massive particles, due to the global vorticity, is also possible. In this paper, we lay down a procedure to measure the variation of the circular polarization w.r.t the reaction plane in relativistic heavy-ion collisions for massless photons, as well as similar polarization patterns for vector mesons decaying into two daughters. We propose to study the yield differentially and compare the yield between upper- and lower-hemispheres in order to identify and quantify such effects.

  13. Procedure for measuring photon and vector meson circular polarization variation with respect to the reaction plane in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Tang, A. H.; Wang, G.

    2016-08-01

    The electromagnetic (EM) field pattern created by spectators in relativistic heavy-ion collisions plants a seed of positive (negative) magnetic helicity in the hemisphere above (below) the reaction plane. Owing to the chiral anomaly, the magnetic helicity interacts with the fermionic helicity of the collision system and causes photons emitted in upper and lower hemispheres to have different preferences in the circular polarization. Similar helicity separation for massive particles, owing to the global vorticity, is also possible. In this paper, we lay out a procedure to measure the variation of the circular polarization with respect to the reaction plane in relativistic heavy-ion collisions for massless photons, as well as similar polarization patterns for vector mesons decaying into two daughters. We propose to study the yield differentially and compare the yield between upper and lower hemispheres to identify and quantify such effects.

  14. Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-Ion Collisions.

    PubMed

    Ryu, S; Paquet, J-F; Shen, C; Denicol, G S; Schenke, B; Jeon, S; Gale, C

    2015-09-25

    We investigate the consequences of a nonzero bulk viscosity coefficient on the transverse momentum spectra, azimuthal momentum anisotropy, and multiplicity of charged hadrons produced in heavy ion collisions at LHC energies. The agreement between a realistic 3D hybrid simulation and the experimentally measured data considerably improves with the addition of a bulk viscosity coefficient for strongly interacting matter. This paves the way for an eventual quantitative determination of several QCD transport coefficients from the experimental heavy ion and hadron-nucleus collision programs.

  15. Photo and Collision Induced Isomerization of a Cyclic Retinal Derivative: An Ion Mobility Study

    NASA Astrophysics Data System (ADS)

    Coughlan, Neville J. A.; Scholz, Michael S.; Hansen, Christopher S.; Trevitt, Adam J.; Adamson, Brian D.; Bieske, Evan J.

    2016-09-01

    A cationic degradation product, formed in solution from retinal Schiff base (RSB), is examined in the gas phase using ion mobility spectrometry, photoisomerization action spectroscopy, and collision induced dissociation (CID). The degradation product is found to be N- n-butyl-2-(β-ionylidene)-4-methylpyridinium (BIP) produced through 6π electrocyclization of RSB followed by protonation and loss of dihydrogen. Ion mobility measurements show that BIP exists as trans and cis isomers that can be interconverted through buffer gas collisions and by exposure to light, with a maximum response at λ = 420 nm.

  16. Multiple ionization and capture in relativistic heavy-ion atom collisions

    SciTech Connect

    Meyerhof, W.E.; Anholt, R.; Xu, Xiang-Yuan; Gould, H.; Feinberg, B.; McDonald, R.J.; Wegner, H.E.; Thieberger, P.

    1987-02-01

    We show that in relativistic heavy-ion collisions the independent electron model can be used to predict cross sections for multiple inner-shell ionization and capture in a single collision. Charge distributions of 82- to 200-MeV/amu Xe and 105- to 955-MeV/amu U ion beams emerging from thin solid targets were used to obtain single- and multiple-electron stripping and capture cross sections. The probabilities of stripping electrons from the K, L, or M shells were calculated using the semiclassical approximation and Dirac hydrogenic wavefunctions. For capture, a simplified model for electron capture was uded. The data generally agree with theory.

  17. Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-Ion Collisions

    SciTech Connect

    Ryu, S.; Paquet, J. -F.; Shen, C.; Denicol, G. S.; Schenke, B.; Jeon, S.; Gale, C.

    2015-09-22

    In this study, we investigate the consequences of a nonzero bulk viscosity coefficient on the transverse momentum spectra, azimuthal momentum anisotropy, and multiplicity of charged hadrons produced in heavy ion collisions at LHC energies. The agreement between a realistic 3D hybrid simulation and the experimentally measured data considerably improves with the addition of a bulk viscosity coefficient for strongly interacting matter. Lastly, this paves the way for an eventual quantitative determination of several QCD transport coefficients from the experimental heavy ion and hadron-nucleus collision programs.

  18. Effect of an equilibrium phase transition on multiphase transport in relativistic heavy ion collisions

    SciTech Connect

    Yu Meiling; Du Jiaxin; Liu Lianshou

    2006-10-15

    The hadronization scheme for parton transport in relativistic heavy ion collisions is considered in detail. It is pointed out that the traditional scheme for particles being freezed out one by one leads to serious problem on unreasonable long lifetime of partons. A collective phase transition following a supercooling is implemented in a simple way. It turns out that the modified model with a sudden phase transition is able to reproduce the experimental longitudinal distributions of final state particles better than the original one does. The encouraging results indicate that equilibrium phase transition should be taken into proper account in parton transport models for relativistic heavy ion collisions.

  19. Dielectron Production in Heavy Ions Collisions: the HADES Experiment

    SciTech Connect

    J. A. Garzon; H. Alvarez-Pol; I. Duran; C. Fernandez; B. Fuentes; R. Lorenzo; M. Sanchez; A. Vazquez-Cardesin

    1999-12-31

    HADES (High Acceptance Di-Electron Spectrometer) is being built at UNILAC-SIS in Darmstadt with the main purpose of studying the production of dilepton pairs in nucleus-nucleus collisions at energies of 1AGeV. The spectrometer is briefly described, and the responsibilities of the group from the University of Santiago de Compostela are discussed.

  20. Catalytic phi meson production in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Tomášik, B.

    2009-09-01

    The phi meson production on hyperons πY → phiY and anti-kaons \\bar{K}N\\to \\phi Y is argued to be a new efficient source of phi mesons in a nucleus-nucleus collision. These reactions are not suppressed according to the Okubo-Zweig-Izuka rule in contrast to the processes with non-strange particles in the entrance channels, πB and BB with B = N, Δ. A rough estimate of the cross sections within a simple hadronic model shows that the cross sections of πY → phiY and \\bar{K}N\\to \\phi Y reactions can exceed that of the πN → phiN reaction by factors 50 and 60, respectively. In the hadrochemical model for nucleus-nucleus collisions at SIS and lower AGS energies, we calculate the evolution of strange particle populations and the phi meson production rate due to the new processes. It is found that the catalytic reactions can be operative if the maximal temperature in nucleus-nucleus collisions is larger than 130 MeV and the collision time is larger than 10 fm. A possible influence of the catalytic reactions on the centrality dependence of the phi yield at AGS energies and the phi rapidity distributions at SPS energies is discussed.

  1. Particle model of full-size ITER-relevant negative ion source

    SciTech Connect

    Taccogna, F. Minelli, P.; Ippolito, N.

    2016-02-15

    This work represents the first attempt to model the full-size ITER-relevant negative ion source including the expansion, extraction, and part of the acceleration regions keeping the mesh size fine enough to resolve every single aperture. The model consists of a 2.5D particle-in-cell Monte Carlo collision representation of the plane perpendicular to the filter field lines. Magnetic filter and electron deflection field have been included and a negative ion current density of j{sub H{sup −}} = 660 A/m{sup 2} from the plasma grid (PG) is used as parameter for the neutral conversion. The driver is not yet included and a fixed ambipolar flux is emitted from the driver exit plane. Results show the strong asymmetry along the PG driven by the electron Hall (E × B and diamagnetic) drift perpendicular to the filter field. Such asymmetry creates an important dis-homogeneity in the electron current extracted from the different apertures. A steady state is not yet reached after 15 μs.

  2. Negative ion production and beam extraction processes in a large ion source (invited)

    SciTech Connect

    Tsumori, K. Nakano, H.; Goto, M.; Nagaoka, K.; Osakabe, M.; Takeiri, Y.; Kaneko, O.; Ikeda, K.; Kisaki, M.; Geng, S.; Wada, M.; Sasaki, K.; Nishiyama, S.; Serianni, G.; Agostinetti, P.; Sartori, E.; Brombin, M.; Veltri, P.; Wimmer, C.

    2016-02-15

    Recent research results on negative-ion-rich plasmas in a large negative ion source have been reviewed. Spatial density and flow distributions of negative hydrogen ions (H{sup −}) and positive hydrogen ions together with those of electrons are investigated with a 4-pin probe and a photodetachment (PD) signal of a Langmuir probe. The PD signal is converted to local H{sup −} density from signal calibration to a scanning cavity ring down PD measurement. Introduction of Cs changes the slope of plasma potential local distribution depending upon the plasma grid bias. A higher electron density H{sub 2} plasma locally shields the bias potential and behaves like a metallic free electron gas. On the other hand, the bias and extraction electric fields penetrate in a Cs-seeded electronegative plasma even when the electron density is similar. Electrons are transported by the penetrated electric fields from the driver region along and across the filter and electron deflection magnetic fields. Plasma ions exhibited a completely different response against the penetration of electric fields.

  3. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    SciTech Connect

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN{sup {minus}}, NCO{sup {minus}} and NCS{sup {minus}}. Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH{sub 3}0H,F + C{sub 2}H{sub 5}OH,F + OH and F + H{sub 2}. A time dependent framework for the simulation and interpretation of the bound {yields} free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH {yields} O({sup 3}P, {sup 1}D) + HF and F + H{sub 2}. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H{sub 2} system, comparisons with three-dimensional quantum calculations are made.

  4. Cumulants of multiplicity distributions in most-central heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Xu, Hao-jie

    2016-11-01

    I investigate the volume corrections on cumulants of total charge distributions and net proton distributions. The required volume information is generated by an optical Glauber model. I find that the corrected statistical expectations of multiplicity distributions mimic the negative binomial distributions at noncentral collisions, and they tend to approach the Poisson ones at most-central collisions due to the "boundary effects," which suppress the volume corrections. However, net proton distributions and reference multiplicity distributions are sensitive to the external volume fluctuations at most-central collisions, which imply that one has to consider the details of volume distributions in event-by-event multiplicity fluctuation studies.

  5. Observation of a shape resonance of the positronium negative ion

    PubMed Central

    Michishio, Koji; Kanai, Tsuneto; Kuma, Susumu; Azuma, Toshiyuki; Wada, Ken; Mochizuki, Izumi; Hyodo, Toshio; Yagishita, Akira; Nagashima, Yasuyuki

    2016-01-01

    When an electron binds to its anti-matter counterpart, the positron, it forms the exotic atom positronium (Ps). Ps can further bind to another electron to form the positronium negative ion, Ps− (e−e+e−). Since its constituents are solely point-like particles with the same mass, this system provides an excellent testing ground for the three-body problem in quantum mechanics. While theoretical works on its energy level and dynamics have been performed extensively, experimental investigations of its characteristics have been hampered by the weak ion yield and short annihilation lifetime. Here we report on the laser spectroscopy study of Ps−, using a source of efficiently produced ions, generated from the bombardment of slow positrons onto a Na-coated W surface. A strong shape resonance of 1Po symmetry has been observed near the Ps (n=2) formation threshold. The resonance energy and width measured are in good agreement with the result of three-body calculations. PMID:26983496

  6. RF-Plasma Source Commissioning in Indian Negative Ion Facility

    NASA Astrophysics Data System (ADS)

    Singh, M. J.; Bandyopadhyay, M.; Bansal, G.; Gahlaut, A.; Soni, J.; Kumar, Sunil; Pandya, K.; Parmar, K. G.; Sonara, J.; Yadava, Ratnakar; Chakraborty, A. K.; Kraus, W.; Heinemann, B.; Riedl, R.; Obermayer, S.; Martens, C.; Franzen, P.; Fantz, U.

    2011-09-01

    The Indian program of the RF based negative ion source has started off with the commissioning of ROBIN, the inductively coupled RF based negative ion source facility under establishment at Institute for Plasma research (IPR), India. The facility is being developed under a technology transfer agreement with IPP Garching. It consists of a single RF driver based beam source (BATMAN replica) coupled to a 100 kW, 1 MHz RF generator with a self excited oscillator, through a matching network, for plasma production and ion extraction and acceleration. The delivery of the RF generator and the RF plasma source without the accelerator, has enabled initiation of plasma production experiments. The recent experimental campaign has established the matching circuit parameters that result in plasma production with density in the range of 0.5-1×1018/m3, at operational gas pressures ranging between 0.4-1 Pa. Various configurations of the matching network have been experimented upon to obtain a stable operation of the set up for RF powers ranging between 25-85 kW and pulse lengths ranging between 4-20 s. It has been observed that the range of the parameters of the matching circuit, over which the frequency of the power supply is stable, is narrow and further experiments with increased number of turns in the coil are in the pipeline to see if the range can be widened. In this paper, the description of the experimental system and the commissioning data related to the optimisation of the various parameters of the matching network, to obtain stable plasma of required density, are presented and discussed.

  7. Negative ion gas-phase chemistry of arenes.

    PubMed

    Danikiewicz, Witold; Zimnicka, Magdalena

    2016-01-01

    Reactions of aromatic and heteroaromatic compounds involving anions are of great importance in organic synthesis. Some of these reactions have been studied in the gas phase and are occasionally mentioned in reviews devoted to gas-phase negative ion chemistry, but no reviews exist that collect all existing information about these reactions. This work is intended to fill this gap. In the first part of this review, methods for generating arene anions in the gas phase and studying their physicochemical properties and fragmentation reactions are presented. The main topics in this part are as follows: processes in which gas-phase arene anions are formed, measurements and calculations of the proton affinities of arene anions, proton exchange reactions, and fragmentation processes of substituted arene anions, especially phenide ions. The second part is devoted to gas-phase reactions of arene anions. The most important of these are reactions with electrophiles such as carbonyl compounds and α,β-unsaturated carbonyl and related compounds (Michael acceptors). Other reactions including oxidation of arene anions and halogenophilic reactions are also presented. In the last part of the review, reactions of electrophilic arenes with nucleophiles are discussed. The best known of these is the aromatic nucleophilic substitution (SN Ar) reaction; however, other processes that lead to the substitution of a hydrogen atom in the aromatic ring are also very important. Aromatic substrates in these reactions are usually but not always nitroarenes bearing other substituents in the ring. The first step in these reactions is the formation of an anionic σ-adduct, which, depending on the substituents in the aromatic ring and the structure of the attacking nucleophile, is either an intermediate or a transition state in the reaction path. In the present review, we attempted to collect the results of both experimental and computational studies of the aforementioned reactions conducted since the

  8. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS AT RHIC ENERGIES.

    SciTech Connect

    STEINBERG,P.A.; FOR THE PHOBOS COLLABORATION

    2002-07-18

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  9. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS AT RHIC ENERGIES.

    SciTech Connect

    STEINBERG,P.A.; FOR THE PHOBOS COLLABORATION

    2002-07-24

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two observations indicate universal behavior of charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. These features may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  10. UNIVERSAL BEHAVIOR OF CHARGED PARTICLE PRODUCTION IN HEAVY ION COLLISIONS AT RHIC ENERGIES.

    SciTech Connect

    STEINBERG,P.A.FOR THE PHOBOS COLLABORATION

    2002-07-18

    The PHOBOS experiment at RHIC has measured the multiplicity of primary charged particles as a function of centrality and pseudorapidity in Au+Au collisions at {radical}(s{sub NN}) = 19.6, 130 and 200 GeV. Two kinds of universal behavior are observed in charged particle production in heavy ion collisions. The first is that forward particle production, over a range of energies, follows a universal limiting curve with a non-trivial centrality dependence. The second arises from comparisons with pp/{bar p}p and e{sup +}e{sup -} data. / in nuclear collisions at high energy scales with {radical}s in a similar way as N{sub ch} in e{sup +}e{sup -} collisions and has a very weak centrality dependence. This feature may be related to a reduction in the leading particle effect due to the multiple collisions suffered per participant in heavy ion collisions.

  11. Electrostatic ion beam trap for electron collision studies

    SciTech Connect

    Heber, O.; Witte, P.D.; Diner, A.; Bhushan, K.G.; Strasser, D.; Toker, Y.; Rappaport, M.L.; Ben-Itzhak, I.; Altstein, N.; Schwalm, D.; Wolf, A.; Zajfman, D.

    2005-01-01

    We describe a system combining an ion beam trap and a low energy electron target in which the interaction between electrons and vibrationally cold molecular ions and clusters can be studied. The entire system uses only electrostatic fields for both trapping and focusing, thus being able to store particles without a mass limit. Preliminary results for the electron impact neutralization of C{sub 2}{sup -} ions and aluminum clusters are presented.

  12. Negative-ion formation in the explosives RDX, PETN, and TNT using the Reversal Electron Attachment Detection (READ) technique

    NASA Technical Reports Server (NTRS)

    Chutijian, Ara; Boumsellek, S.; Alajajian, S. H.

    1992-01-01

    In the search for high sensitivity and direct atmospheric sampling of trace species, techniques have been developed such as atmospheric-sampling, glow-discharge ionization (ASGDI), corona discharge, atmospheric pressure ionization (API), electron-capture detection (ECD), and negative-ion chemical ionization (NICI) that are capable of detecting parts-per-billion to parts-per-trillion concentrations of trace species. These techniques are based on positive- or negative-ion formation via charge-transfer to the target, or electron capture under multiple-collision conditions in a Maxwellian distribution of electron energies at the source temperature. One drawback of the high-pressure, corona- or glow-discharge devices is that they are susceptible to interferences either through indistinguishable product masses, or through undesired ion-molecule reactions. The ASGDI technique is relatively immune from such interferences, since at target concentrations of less than 1 ppm the majority of negative ions arises via electron capture rather than through ion-molecule chemistry. A drawback of the conventional ECD, and possibly of the ASGDI, is that they exhibit vanishingly small densities of electrons with energies in the range 0-10 millielectron volts (meV), as can be seen from a typical Maxwellian electron energy distribution function at T = 300 K. Slowing the electrons to these subthermal (less than 10 meV) energies is crucial, since the cross section for attachment of several large classes of molecules is known to increase to values larger than 10(exp -12) sq cm at near-zero electron energies. In the limit of zero energy these cross sections are predicted to diverge as epsilon(exp -1/2), where epsilon is the electron energy. In order to provide a better 'match' between the electron energy distribution function and attachment cross section, a new concept of attachment in an electrostatic mirror was developed. In this scheme, electrons are brought to a momentary halt by

  13. Method and apparatus for efficient photodetachment and purification of negative ion beams

    DOEpatents

    Beene, James R [Oak Ridge, TN; Liu, Yuan [Knoxville, TN; Havener, Charles C [Knoxville, TN

    2008-02-26

    Methods and apparatus are described for efficient photodetachment and purification of negative ion beams. A method of purifying an ion beam includes: inputting the ion beam into a gas-filled multipole ion guide, the ion beam including a plurality of ions; increasing a laser-ion interaction time by collisional cooling the plurality of ions using the gas-filled multipole ion guide, the plurality of ions including at least one contaminant; and suppressing the at least one contaminant by selectively removing the at least one contaminant from the ion beam by electron photodetaching at least a portion of the at least one contaminant using a laser beam.

  14. Nuclear suppression at low energy in relativistic heavy ion collisions

    SciTech Connect

    Das, Santosh K.; Alam, Jan-e; Mohanty, Payal; Sinha, Bikash

    2010-04-15

    The effects of nonzero baryonic chemical potential on the drag and diffusion coefficients of heavy quarks propagating through a baryon-rich quark-gluon plasma have been studied. The nuclear suppression factor R{sub AA} for nonphotonic single-electron spectra resulting from the semileptonic decays of hadrons containing heavy flavors has been evaluated for low-energy collisions. The effect of nonzero baryonic chemical potential on R{sub AA} is highlighted.

  15. Simulating Negative Pickup Ions and Ion Cyclotron Wave Generation at Europa (Invited)

    NASA Astrophysics Data System (ADS)

    Desai, R. T.; Cowee, M.; Gary, S. P.; Wei, H.; Coates, A. J.; Kataria, D. O.; Fu, X.

    2015-12-01

    The mass loading of space environments through the ionisation of planetary atmospheres is a fundamental process governing the plasma interactions and long term evolution of celestial bodies across the solar system. Regions containing significant pickup ion populations have been observed to exhibit a rich variety of electromagnetic plasma wave phenomena, the characteristics and properties of which can be used to infer the ion species present, their spatial and temporal distributions, and the global ionisation rates of the neutral material. In this study we present hybrid (kinetic ion, massless fluid electron) simulations of ion pickup and Ion Cyclotron (IC) waves observed in the Jovian magnetosphere and draw comparisons to sub-alfvénic pickup observed by Cassini in the Saturnian system, and also to supra-alfvénic pickup at planetary bodies immersed directly in the solar wind. At Jupiter, Europa has been identified as the secondary mass loader in the magnetosphere, orbiting within a neutral gas torus at ~9.38 Rj. Near Europa, Galileo magnetometer observations displayed bursty IC wave characteristics at the gyrofrequency of a number of species including SO2, K, Cl, O2, and Na, suggesting a complex mass loading environment. A particular deduction from the dataset was the presence of both positively and negatively charged pickup ions, inferred from the left and right hand polarisations of the transverse waves. Using hybrid simulations for both positively and negatively charged Cl pickup ions we are able to self-consistently reproduce the growth of both right and left hand near-circularly polarised waves in agreement with linear theory and, using the observed wave amplitudes, estimate Cl pickup ion densities at Europa.

  16. ELLIPTIC FLOW, INITIAL ECCENTRICITY AND ELLIPTIC FLOW FLUCTUATIONS IN HEAVY ION COLLISIONS AT RHIC.

    SciTech Connect

    NOUICER,R.; ALVER, B.; BACK, B.B.; BAKER, M.D.; BALLINTIJN, M.; BARTON, D.S.; ET AL.

    2007-02-19

    We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.

  17. Energy losses from fast structured heavy ions in multiple collisions with molecules and nanoparticles

    SciTech Connect

    Matveev, V. I. Gusarevich, E. S.; Makarov, D. N.

    2009-11-15

    A nonperturbative method is developed to calculate the energy losses from fast, highly charged, heavy ions in collisions with complex molecules and nanoparticles. All possible processes of excitation and ionization of both projectile and target are taken into account. The contributions to energy losses due to multiple collisions are calculated, and the effect of target orientation with respect to the direction of projectile motion is examined. As examples, the energy losses in collisions with the XeF{sub 4} molecule and a C{sub 300} nanotube are determined. It is shown that the effect of multiple collisions leads to significant change in energy loss with target orientation, being insignificant for randomly oriented targets.

  18. High-energy proton emission and Fermi motion in intermediate-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Lin, W.; Liu, X.; Wada, R.; Huang, M.; Ren, P.; Tian, G.; Luo, F.; Sun, Q.; Chen, Z.; Xiao, G. Q.; Han, R.; Shi, F.; Liu, J.; Gou, B.

    2016-12-01

    An antisymmetrized molecular dynamics model (AMD-FM), modified to take into account the Fermi motion explicitly in its nucleon-nucleon collision process, is presented. Calculated high-energy proton spectra are compared with those of 40Ar+51V at 44 MeV/nucleon from Coniglione et al. [Phys. Lett. B 471, 339 (2000), 10.1016/S0370-2693(99)01383-0] and those of 36Ar+181Ta at 94 MeV/nucleon from Germain et al. [Nucl. Phys. A 620, 81 (1997), 10.1016/S0375-9474(97)00146-2]. Both of the experimental data are reasonably well reproduced by the newly added Fermi boost in the nucleon-nucleon collision process without additional processes, such as a three-body collision or a short-range correlation. The production mechanism of high-energy protons in intermediate-energy heavy-ion collisions is discussed.

  19. Evidence for sequence scrambling in collision-induced dissociation of y-type fragment ions.

    PubMed

    Miladi, Mahsan; Harper, Brett; Solouki, Touradj

    2013-11-01

    Sequence scrambling from y-type fragment ions has not been previously reported. In a study designed to probe structural variations among b-type fragment ions, it was noted that y fragment ions might also yield sequence-scrambled ions. In this study, we examined the possibility and extent of sequence-scrambled fragment ion generation from collision-induced dissociation (CID) of y-type ions from four peptides (all containing basic residues near the C-terminus) including: AAAAHAA-NH2 (where "A" denotes carbon thirteen ((13)C1) isotope on the alanine carbonyl group), des-acetylated-α-melanocyte (SYSMEHFRWGKPV-NH2), angiotensin II antipeptide (EGVYVHPV), and glu-fibrinopeptide b (EGVNDNEEGFFSAR). We investigated fragmentation patterns of 32 y-type fragment ions, including y fragment ions with different charge states (+1 to +3) and sizes (3 to 12 amino acids). Sequence-scrambled fragment ions were observed from ~50 % (16 out of 32) of the studied y-type ions. However, observed sequence-scrambled ions had low relative intensities from ~0.1 % to a maximum of ~12 %. We present and discuss potential mechanisms for generation of sequence-scrambled fragment ions. To the best of our knowledge, results on y fragment dissociation presented here provide the first experimental evidence for generation of sequence-scrambled fragments from CID of y ions through intermediate cyclic "b-type" ions.

  20. Two components in charged particle production in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Bylinkin, A. A.; Chernyavskaya, N. S.; Rostovtsev, A. A.

    2016-02-01

    Transverse momentum spectra of charged particle production in heavy-ion collisions are considered in terms of a recently introduced Two Component parameterization combining exponential ("soft") and power-law ("hard") functional forms. The charged hadron densities calculated separately for them are plotted versus number of participating nucleons, Npart. The obtained dependences are discussed and the possible link between the two component parameterization introduced by the authors and the two component model historically used for the case of heavy-ion collisions is established. Next, the variations of the parameters of the introduced approach with the center of mass energy and centrality are studied using the available data from RHIC and LHC experiments. The spectra shapes are found to show universal dependences on Npart for all investigated collision energies.

  1. Effects of external field on elastic electron-ion collision in a plasma

    NASA Astrophysics Data System (ADS)

    Na, Sang-Chul; Jung, Young-Dae

    2008-12-01

    The field effects on elastic electron-ion collision are investigated in a plasma with the presence of the external field. The eikonal method and effective interaction potential including the far-field term caused by the external field is employed to obtain the eikonal phase shift and eikonal cross section as functions of the field strength, external frequency, impact parameter, collision energy, thermal energy and Debye length. The result shows that the effect of the external field on the eikonal cross section is given by the second-order eikonal phase. In addition, the external field effects suppress the eikonal cross section as well as eikonal phase for the elastic electron-ion collision. The eikonal phase and cross section are found to be increased with an increase of the frequency of the external field. It is also shown that the eikonal cross section increases with an increase of the thermal energy and Debye length.

  2. Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Weil, J.; Steinberg, V.; Staudenmaier, J.; Pang, L. G.; Oliinychenko, D.; Mohs, J.; Kretz, M.; Kehrenberg, T.; Goldschmidt, A.; Bäuchle, B.; Auvinen, J.; Attems, M.; Petersen, H.

    2016-11-01

    The microscopic description of heavy-ion reactions at low beam energies is achieved within hadronic transport approaches. In this article a new approach called "Simulating Many Accelerated Strongly interacting Hadrons" (SMASH) is introduced and applied to study the production of nonstrange particles in heavy-ion reactions at Ekin=0.4 A -2 A GeV. First, the model is described including details about the collision criterion, the initial conditions and the resonance formation and decays. To validate the approach, equilibrium properties such as detailed balance are presented and the results are compared to experimental data for elementary cross sections. Finally results for pion and proton production in C+C and Au+Au collisions is confronted with data from the high-acceptance dielectron spectrometer (HADES) and FOPI. Predictions for particle production in π +A collisions are made.

  3. Observation of Ion-neutral Collision Effect on Two-Ion-Stream Instability near Sheath-Presheath Boundary

    NASA Astrophysics Data System (ADS)

    Kim, Nam-Kyun; Song, J.; Roh, H.-J.; Jang, Y.; Ryu, S.; Kim, G.-H.

    2016-09-01

    The ion velocity normal to the sheath-presheath boundary in weakly-collisional Ar/Xe mixture plasmas was measured by using LIF measurement. This investigation would give an answer to the old debate topic in the sheath community, whether each ion enters the sheath with their own Bohm velocity, CB = (Te /Mi) 1 / 2 . In collisionless two-ion-species plasmas, Barrud and Hershkowitz concluded that the two-stream instability limits their velocities to become the common system sound speed, Cs = (n1Te /neM1 +n2Te /neM2) 1 / 2 . This instability is activated when the relative velocity becomes a critical velocity. In practices, the collisionless condition is not achievable. In this study, the ion-neutral collision effect on the instability was investigated with increasing the pressure of the Ar/Xe mixture gas in the range of 0.5 - 2 mTorr. Plasma is generated in a DC multi-dipole source in which n(Ar+) / n(Xe+) is controlled to be 1. Results show that the instability is grown at p <2 mTorr and the ion drift velocities at the sheath edge are close to Cs. At 2 mTorr, the ions reach their individual CB at the sheath edge because the instability is not grown, observing that the characteristic length of the instability is a function of the ion-neutral collisions. The details will be discussed in the conference.

  4. Suppression and Two-Particle Correlations of Heavy Mesons in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Cao, Shanshan; Qin, Guang-You; Bass, Steffen A.

    2016-12-01

    We study the medium modification of heavy quarks produced in heavy-ion collisions. The evolution of heavy quarks inside the QGP is described using a modified Langevin framework that simultaneously incorporates their collisional and radiative energy loss. Within this framework, we provide good descriptions of the heavy meson suppression and predictions for the two-particle correlation functions of heavy meson pairs.

  5. Heavy ion reaction measurements with the EOS TPC (looking for central collisions with missing energy)

    SciTech Connect

    Wieman, H.H.; EOS Collaboration

    1994-05-01

    The EOS TPC was constructed for complete event measurement of heavy ion collisions at the Bevalac. We report here on the TPC design and some preliminary measurements of conserved event quantities such as total invariant mass, total momentum, total A and Z.

  6. Electron removal from H0(n) in fast collisions with multiply charged ions

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Meyer, F. W.

    1982-09-01

    The cross sections for electron removal from highly excited (n=9-24) hydrogen atoms in fast collisions with multiply charged (q=1-5) N, O, and Ar ions were investigated in an ion-atom crossed-beams experiment. The ion-atom collisions occurred inside a deflector where a moderate electrostatic field of up to 1.8 kV/cm was applied. The range of collision velocity (vc) investigated is vc=1.0v1-2.0v1, where v1=2.2×108 cm/s is the Bohr velocity. The electron-removal cross section was found to be independent of ion species for a given q and vc, to increase as q2 for a given vc, and to decrease as v-2c for a given q. These q and vc dependences of the experimental cross section are in accord with classical Coulomb ionization theories. The experimental n dependence of the cross section differs significantly from the theoretically predicted dependence, but the difference can be accounted for if we assume the presence of the external electric field in the collision volume reduces the ionization energy.

  7. Multiple-scattering model for inclusive proton production in heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    1994-01-01

    A formalism is developed for evaluating the momentum distribution for proton production in nuclear abrasion during heavy ion collisions using the Glauber multiple-scattering series. Several models for the one-body density matrix of nuclei are considered for performing numerical calculations. Calculations for the momentum distribution of protons in abrasion are compared with experimental data for inclusive proton production.

  8. T.D. LEE: RELATIVISTIC HEAVY ION COLLISIONS AND THE RIKEN BROOKHAVEN CENTER.

    SciTech Connect

    MCLERRAN,L.; SAMIOS, N.

    2006-11-24

    This paper presents the history of Professor T. D. Lee's seminal work on the theory of relativistic heavy ion collisions, and the founding and development of the Riken Brookhaven Center. A number of anecdotes are given about Prof. Lee, and his strong positive effect on his colleagues, particularly young physicists.

  9. Can Bose condensation of alpha particles be observed in heavy ion collisions?

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Townsend, Lawrence W.

    1993-01-01

    Using a fully self-consistent quantum statistical model, we demonstrate the possibility of Bose condensation of alpha particles with a concomitant phase transition in heavy ion collisions. Suggestions for the experimental observation of the signature of the onset of this phenomenon are made.

  10. a Study of Low Energy Electron-Molecule and Ion - Collisions Using Rydberg Atoms

    NASA Astrophysics Data System (ADS)

    Zollars, Byron George

    Low energy collisions between Rydberg atoms and neutral molecules have been investigated over a wide range of principal quantum numbers n, and for several different neutral targets. The results have been used to validate the free-electron, independent particle model of Rydberg atom collisions. Comparison between theory and experiment show that at large values of n, ionization of Rb(nS,nD) Rydberg atoms in the reaction: (UNFORMATTED TABLE FOLLOWS). Rb(nS,nD) + SF(,6) (--->) Rb('+) = SF(,6)('-) (1). (TABLE ENDS). proceeds by electron transfer from the Rydberg atom to the SF(,6) molecule. The rate constants measured for this reaction are much the same as for the attachment of free, low-energy electrons to SF(,6). Thus, Rydberg collision studies can provide information about low-energy free electron interactions. Studies of the rate constants for free ion production in the reaction: (UNFORMATTED TABLE FOLLOWS). K(nD) + SF(,6) (--->) K('+) + SF(,6)('-) (2). (TABLE ENDS). showed these to decrease sharply at smaller n, falling far below the value expected on the basis of Rydberg electron attachment to SF(,6). This behavior is attributed not to breakdown of the free-electron model, but to post -attachment electrostatic interactions between the product ions, which are formed closer to each other at lower n. Model calculations that take this electrostatic interaction into account confirm this prediction. Other Rydberg atom collision processes, such as: (UNFORMATTED TABLE FOLLOWS). K(nD) + O(,2) (--->) K('+) + O(,2)('-) (3). K(nD) + H(,2)O (--->) KH(,2)O('+) + e('-) (4). (TABLE ENDS). have been studied, as they require both the Rydberg ion core and electron to participate in the collision. Since O(,2)('-) ions formed by free electron attachment have short lifetimes against autodetachment, the observation of long-lived O(,2)('-) reaction product suggests that the K('+) core ion plays a role in stabilizing the excited O(,2)('-) ions formed by Rydberg electron attachment. Stable

  11. Experimental studies of the Negative Ion of Hydrogen. Final Report

    SciTech Connect

    Bryant, Howard C.

    1999-06-30

    This document presents an overview of the results of the DOE'S support of experimental research into the structure and interactions of the negative ion of hydrogen conducted by the Department of Physics and Astronomy of the University of New Mexico at the Los Alamos National Laboratory. The work involves many collaborations with scientists from both institutions, as well as others. Although official DOE support for this work began in 1977, the experiment that led to it was done in 1971, near the time the 800 MeV linear accelerator at Los Alamos (LAMPF) first came on line. Until the mid nineties, the work was performed using the relativistic beam at LAMFF. The most recent results were obtained using the 35 keV injector beam for the Ground Test Accelerator at Los Alamos. A list of all published results from this work is presented.

  12. High-Resolution Laser Spectroscopy on the Negative Osmium Ion

    SciTech Connect

    Warring, U.; Amoretti, M.; Canali, C.; Fischer, A.; Heyne, R.; Meier, J. O.; Morhard, Ch.; Kellerbauer, A.

    2009-01-30

    We have applied a combination of laser excitation and electric-field detachment to negative atomic ions for the first time, resulting in an enhancement of the excited-state detection efficiency for spectroscopy by at least 2 orders of magnitude. Applying the new method, a measurement of the bound-bound electric-dipole transition frequency in {sup 192}Os{sup -} was performed using collinear spectroscopy with a narrow-bandwidth cw laser. The transition frequency was found to be 257.831 190(35) THz [wavelength 1162.747 06(16) nm, wave number 8600.3227(12) cm{sup -1}], in agreement with the only prior measurement, but with more than 100-fold higher precision.

  13. Fragmentation of negative ions in a strong laser field

    NASA Astrophysics Data System (ADS)

    Berry, Ben; Jochim, Bethany; Severt, T.; Feizollah, Peyman; Rajput, Jyoti; Hayes, D.; Carnes, K. D.; Esry, B. D.; Ben-Itzhak, I.

    2016-05-01

    The fragmentation of negative ions in a strong laser field can provide a testing ground for a variety of unique phenomena. For example, anions with a loosely bound electron allow for the study of rescattering phenomena at lower laser intensities than for neutral targets. We study the behavior of keV anion beams in an ultrafast, intense laser field. The use of a fast-beam target facilitates the measurement of neutral fragments. This capability allows us to explore laser-induced dynamics in both ionic and neutral charge states. Using a coincidence 3D momentum imaging technique, we obtain the full 3D momentum of all nuclear fragments. In this preliminary work, we study atomic (H-) and molecular (H2-,F2-)systems with the goal of identifying and controlling their fragmentation pathways. This work was supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  14. Improvement of uniformity of the negative ion beams by tent-shaped magnetic field in the JT-60 negative ion source

    NASA Astrophysics Data System (ADS)

    Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Grisham, Larry R.; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ohzeki, Masahiro; Seki, Norikazu; Sasaki, Shunichi; Shimizu, Tatsuo; Terunuma, Yuto

    2014-02-01

    Non-uniformity of the negative ion beams in the JT-60 negative ion source with the world-largest ion extraction area was improved by modifying the magnetic filter in the source from the plasma grid (PG) filter to a tent-shaped filter. The magnetic design via electron trajectory calculation showed that the tent-shaped filter was expected to suppress the localization of the primary electrons emitted from the filaments and created uniform plasma with positive ions and atoms of the parent particles for the negative ions. By modifying the magnetic filter to the tent-shaped filter, the uniformity defined as the deviation from the averaged beam intensity was reduced from 14% of the PG filter to ˜10% without a reduction of the negative ion production.

  15. Improvement of uniformity of the negative ion beams by tent-shaped magnetic field in the JT-60 negative ion source

    SciTech Connect

    Yoshida, Masafumi Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ohzeki, Masahiro; Seki, Norikazu; Sasaki, Shunichi; Shimizu, Tatsuo; Terunuma, Yuto; Grisham, Larry R.

    2014-02-15

    Non-uniformity of the negative ion beams in the JT-60 negative ion source with the world-largest ion extraction area was improved by modifying the magnetic filter in the source from the plasma grid (PG) filter to a tent-shaped filter. The magnetic design via electron trajectory calculation showed that the tent-shaped filter was expected to suppress the localization of the primary electrons emitted from the filaments and created uniform plasma with positive ions and atoms of the parent particles for the negative ions. By modifying the magnetic filter to the tent-shaped filter, the uniformity defined as the deviation from the averaged beam intensity was reduced from 14% of the PG filter to ∼10% without a reduction of the negative ion production.

  16. Improvement of uniformity of the negative ion beams by tent-shaped magnetic field in the JT-60 negative ion source.

    PubMed

    Yoshida, Masafumi; Hanada, Masaya; Kojima, Atsushi; Kashiwagi, Mieko; Grisham, Larry R; Akino, Noboru; Endo, Yasuei; Komata, Masao; Mogaki, Kazuhiko; Nemoto, Shuji; Ohzeki, Masahiro; Seki, Norikazu; Sasaki, Shunichi; Shimizu, Tatsuo; Terunuma, Yuto

    2014-02-01

    Non-uniformity of the negative ion beams in the JT-60 negative ion source with the world-largest ion extraction area was improved by modifying the magnetic filter in the source from the plasma grid (PG) filter to a tent-shaped filter. The magnetic design via electron trajectory calculation showed that the tent-shaped filter was expected to suppress the localization of the primary electrons emitted from the filaments and created uniform plasma with positive ions and atoms of the parent particles for the negative ions. By modifying the magnetic filter to the tent-shaped filter, the uniformity defined as the deviation from the averaged beam intensity was reduced from 14% of the PG filter to ∼10% without a reduction of the negative ion production.

  17. Negative ion photodetachment and the electron effective mass in liquids

    SciTech Connect

    Baird, J.K.

    1983-07-01

    The electron photodetachment cross section for a negative ion in the gas phase is compared with the photodetachment cross section for the same ion when it is dissolved in a liquid supporting ''free'' electron propagation. The ratio of the amplitudes of these two cross sections near threshold is found to depend upon the effective mass m* of an electron in the conduction band of the liquid. We apply this result to electron photodetachment from O/sub 2//sup -/. In terms of the electron's free mass m, we find for liquid argon at 87 K (m* = 0.26 m), 2,2-dimethylbutane at 296 K (m* = 0.27 m), 2,2,4-trimethylpentane at 296 K (m* = 0.27 m), and tetramethylsilane at 296 K (m* = 0.27 m). At 200 K, the effective mass in tetramethylsilane decreases to m* = 0.21 m. In the case of liquid argon, the effective mass calculated herein agrees qualitatively with values which can be estimated from measurements of the electron mobility and exciton spectrum.

  18. Independent-particle models for light negative atomic ions

    NASA Technical Reports Server (NTRS)

    Ganas, P. S.; Talman, J. D.; Green, A. E. S.

    1980-01-01

    For the purposes of astrophysical, aeronomical, and laboratory application, a precise independent-particle model for electrons in negative atomic ions of the second and third period is discussed. The optimum-potential model (OPM) of Talman et al. (1979) is first used to generate numerical potentials for eight of these ions. Results for total energies and electron affinities are found to be very close to Hartree-Fock solutions. However, the OPM and HF electron affinities both depart significantly from experimental affinities. For this reason, two analytic potentials are developed whose inner energy levels are very close to the OPM and HF levels but whose last electron eigenvalues are adjusted precisely with the magnitudes of experimental affinities. These models are: (1) a four-parameter analytic characterization of the OPM potential and (2) a two-parameter potential model of the Green, Sellin, Zachor type. The system O(-) or e-O, which is important in upper atmospheric physics is examined in some detail.

  19. Method for separating jets and the underlying event in heavy ion collisions at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Hanks, J. A.; Sickles, A. M.; Cole, B. A.; Franz, A.; McCumber, M. P.; Morrison, D. P.; Nagle, J. L.; Pinkenburg, C. H.; Sahlmueller, B.; Steinberg, P.; von Steinkirch, M.; Stone, M.

    2012-08-01

    Reconstructed jets in heavy ion collisions are a crucial tool for understanding the quark-gluon plasma. The separation of jets from the underlying event is necessary particularly in central heavy ion reactions in order to quantify medium modifications of the parton shower and the response of the surrounding medium itself. There have been many methods proposed and implemented for studying the underlying event substructure in proton-proton and heavy ion collisions. In this paper, we detail a method for understanding underlying event contributions in Au+Au collisions at sNN=200 GeV utilizing the HIJING event generator. This method, extended from previous work by the ATLAS collaboration, provides a well-defined association of “truth jets” from the fragmentation of hard partons with “reconstructed jets” using the anti-kT algorithm. Results presented here are based on an analysis of 750M minimum bias HIJING events. We find that there is a substantial range of jet energies and radius parameters where jets are well separated from the background fluctuations (often termed “fake jets”) that make jet measurements at the BNL Relativistic Heavy Ion Collider a compelling physics program.

  20. Core-level positive-ion and negative-ion fragmentation of gaseous and condensed HCCl3 using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Lu, K. T.; Chen, J. M.; Lee, J. M.; Haw, S. C.; Liang, Y. C.; Deng, M. J.

    2011-07-01

    We investigated the dissociation dynamics of positive-ion and negative-ion fragments of gaseous and condensed HCCl3 following photoexcitation of Cl 2p electrons to various resonances. Based on ab initio calculations at levels HF/cc-pVTZ and QCISD/6-311G*, the first doublet structures in Cl L-edge x-ray absorption spectrum of HCCl3 are assigned to transitions from the Cl (2P3/2,1/2) initial states to the 10a1* orbitals. The Cl 2p → 10a1* excitation of HCCl3 induces a significant enhancement of the Cl+ desorption yield in the condensed phase and a small increase in the HCCl+ yield in the gaseous phase. Based on the resonant photoemission of condensed HCCl3, excitations of Cl 2p electrons to valence orbitals decay predominantly via spectator Auger transitions. The kinetic energy distributions of Cl+ ion via the Cl 2p → 10a1* excitation are shifted to higher energy ˜0.2 eV and ˜0.1 eV relative to those via the Cl 2p → 10e* excitation and Cl 2p → shape resonance excitation, respectively. The enhancement of the yields of ionic fragments at specific core-excited resonance states is assisted by a strongly repulsive surface that is directly related to the spectator electrons localized in the antibonding orbitals. The Cl- anion is significantly reinforced in the vicinity of Cl 2p ionization threshold of gaseous HCCl3, mediated by photoelectron recapture through post-collision interaction.

  1. Simulation Based on Negative ion pair Techniques of Electric propulsion In Satellite Mission Using Chlorine Gas

    NASA Astrophysics Data System (ADS)

    Bakkiyaraj, R.

    R.Bakkiyaraj,Assistant professor,Government college of Engineering ,Bargur,Tamilnadu. *C.Sathiyavel, PG Student and Department of Aeronautical Engineering/Branch of Avionics, PSN college of Engineering and Technology,Tirunelveli,India. Abstract: Ion propulsion rocket system is expected to become popular with the development of ion-ion pair techniques because of their stimulated of low propellant, Design of repulsive between negative ions with low electric power and high efficiency. A Negative ion pair of ion propulsion rocket system is proposed in this work .Negative Ion Based Rocket system consists of three parts 1.ionization chamber 2. Repulsion force and ion accelerator 3. Exhaust of Nozzle. The Negative ions from electro negatively gas are produced by attachment of the gas ,such as chlorine with electron emitted from a Electron gun ionization chamber. The formulate of large stable negative ion is achievable in chlorine gas with respect to electron affinity (∆E). When a neutral chlorine atom in the gaseous form picks up an electron to form a cl- ion, it releases energy of 349 kJ/mol or 3.6 eV/atom. It is said to have an electron affinity of -349 kJ/mol ,the negative sign indicating that energy is released during this process .The distance between negative ions pair is important for the evaluation of the rocket thrust and is also determined by the exhaust velocity of the propellant. The mass flow rate of ions is related to the ion beam current. Accelerate the Negative ions to a high velocity in the thrust vector direction with a significantly intense grids and the exhaust of negative ions through Nozzle. The simulation of the ion propulsion system has been carried out by MATLAB. By comparing the simulation results with the theoretical and previous results, we have found that the proposed method is achieved of thrust value with low electric power for simulating the ion propulsion rocket system

  2. Freeze-out conditions in ultrarelativistic heavy-ion collisions

    SciTech Connect

    Xu, N.; NA44 Collaboration

    1996-07-01

    The authors present recent results on single particle transverse momentum distributions of pions, kaons, and protons, measured in CERN Experiment NA44, of 200A{center_dot}FeV/c S+S and 158A{center_dot}GeV/c Pb+Pb central collisions. By comparing these data with thermal and transport models, freeze-out parameters like the temperature T{sub fo} and the chemical potentials ({mu}{sub q}, {mu}{sub s}) are extracted and discussed.

  3. Coherence and correlations in fast ion-atom collisions

    SciTech Connect

    Burgdoerfer, J.

    1987-01-01

    This paper focusses on the description, classification and interpretation of coherent excitation of atomic or ionic systems with Coulombic two-body final state interactions. A group-theoretical approach is used to classify and interpret coherent excitation. The most significant result is that the state of excitation represented by a density operator can be mapped one to one onto expectation values of a set of operators. Examples are used to illustrate what can be learned about the collision process from investigations of coherent excitation. (JDH)

  4. Single ionization in highly charged ion-atom collisions at low to intermediate velocities

    NASA Astrophysics Data System (ADS)

    Abdallah, Mohammad Abdallah

    1998-11-01

    Single electron ejection from neutral targets (He and Ne) by the impact of low to highly charged ions (p, He+,/ Ne+,/ He2+,/ C6+,/ O8+, and Ne10+) at low to intermediate impact velocities is studied. A novel technique of electron momentum imaging is implemented. In this technique two-dimensional electron momentum distributions are produced in coincidence with recoil ions and projectile ions. In first generation experiments we studied the ejected electron momentum distributions without analyzing recoil ions momentum. This series of experiments revealed a charge-state dependence and velocity dependence that are contradictory to a dominant saddle point ionization mechanism at intermediate velocities. It showed a possibility of an agreement with a saddle centered distributions for low charge states at low collision velocities. To pursue the problem in more detail, we developed a second generation spectrometer which allowed us to fully determine the recoil ions momentum. This allowed us to determine the collision plane, energy loss (Q-value), and impact parameter for every collision that resulted in a single (target) electron ejection. This series of experiments revealed for the first time very marked structure in electron spectra that were impossible to observe in other experiments. These structures indicate the quasi-molecular nature of the collision process even at velocities comparable to the electron 'classical' orbital velocity. For the collisions of p, He+, and He2+ with He, a π-orbital shape of the electron momentum distribution is observed. This indicates the importance of the rotational coupling 2p/sigma/to2p/pi in the initial promotion of the ground state electron. This is followed by further promotions to the continuum. This agrees with the 'classical' description implied by the saddle-point ionization mechanism picture.

  5. Energy dependence of resonance production in relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Shao, Feng-Lan; Song, Jun; Wang, Rui-Qin; Zhang, Mao-Sheng

    2017-01-01

    The production of the hadronic resonances K*0(892), ϕ(1020), Σ*(1385), and Ξ*(1530) in central AA collisions at , 200, and 2760 GeV is systematically studied. The direct production of these resonances at system hadronization is described by the quark combination model and the effects of hadron multiple-scattering stage are dealt with by a ultra-relativistic quantum molecular dynamics model (UrQMD). We study the contribution of these two production sources to final observation and compare the final spectra with the available experimental data. The p T spectra of K*0(892) calculated directly by quark combination model are explicitly higher than the data at low p T ≲ 1.5 GeV, and taking into account the modification of rescattering effects, the resulting final spectra well agree with the data at all three collision energies. The rescattering effect on ϕ(1020) production is weak and including it can slightly improve our description at low p T on the basis of overall agreement with the data. We also predict the p T spectra of Σ*(1385) and Ξ*(1530), to be tested by the future experimental data. Supported by National Natural Science Foundation of China (11575100, 11305076, 11505104)

  6. Entropy production and effective viscosity in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu. B.; Soldatov, A. A.

    2016-12-01

    The entropy production and an effective viscosity in central Au+Au collisions are estimated in a wide range of incident energies 3.3 GeV ≤ √{s_{NN}}≤ 39 GeV. The simulations are performed within a three-fluid model employing three different equations of state with and without deconfinement transition, which are equally good in the reproduction of the momentum-integrated elliptic flow of charged particles in the considered energy range. It is found that more than 80% entropy is produced during a short early collision stage which lasts ˜ 1 fm/ c at the highest considered energies √{s_{NN}}≳ 20 GeV. The estimated values of the viscosity-to-entropy ratio (η/ s) are approximately the same in all considered scenarios. At the final stages of the system expansion they range from ˜ 0.05 at the highest considered energies to ˜ 0.5 at the lowest ones. It is found that the η/ s ratio decreases with the temperature ( T) rise, approximately as ˜ 1/T4, and exhibits a rather weak dependence on the net-baryon density.

  7. Lifetime measurement of a collision complex using ion cyclotron double resonance - H2C6N2(+)

    NASA Technical Reports Server (NTRS)

    Anicich, Vincent G.; Sen, Atish D.; Huntress, Wesley T., Jr.; Mcewan, Murray J.

    1991-01-01

    In the ion-molecule reaction between HC3N(+) and HC3N, the lifetime of the collision complex (H2C6N2+)-asterisk was long enough that ion cyclotron double-resonance techniques could be used to probe the distribution of the lifetimes of the collision complex. The mean lifetime of the collision complex at room temperature was measured as 180 microsec with a distribution ranging from 60 to 260 microsec as measured at the half-heights in the distribution. Lifetimes of this magnitude with respect to unimolecular dissociation allow for some stabilization of the collision complex by the slower process of infrared photon emission.

  8. Discrimination Between Peptide O-Sulfo- and O-Phosphotyrosine Residues by Negative Ion Mode Electrospray Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Edelson-Averbukh, Marina; Shevchenko, Andrej; Pipkorn, Rüdiger; Lehmann, Wolf D.

    2011-12-01

    Unambiguous differentiation between isobaric sulfated and phosphorylated tyrosine residues (sTyr and pTyr) of proteins by mass spectrometry is challenging, even using high resolution mass spectrometers. Here we show that upon negative ion mode collision-induced dissociation (CID), pTyr- and sTyr-containing peptides exhibit entirely different modification-specific fragmentation patterns leading to a rapid discrimination between the isobaric covalent modifications using the tandem mass spectral data. This study reveals that the ratio between the relative abundances of [M-H-80]- and [M-H-98]- fragment ions in ion-trap CID and higher energy collision dissociation (HCD) spectra of singly deprotonated +80 Da Tyr-peptides can be used as a reliable indication of the Tyr modification group nature. For multiply deprotonated +80 Da Tyr-peptides, CID spectra of sTyr- and pTyr-containing sequences can be readily distinguished based on the presence/absence of the [M-nH-79](n-1)- and [M-nH-79-NL]( n-1)- ( n = 2, 3) fragment ions (NL = neutral loss).

  9. Transverse momentum distribution of vector mesons produced in ultraperipheral relativistic heavy ion collisions.

    PubMed

    Hencken, Kai; Baur, Gerhard; Trautmann, Dirk

    2006-01-13

    We study the transverse momentum distribution of vector mesons produced in ultraperipheral relativistic heavy ion collisions (UPCs). In UPCs there is no strong interaction between the nuclei, and the vector mesons are produced in photon-nucleus collisions where the (quasireal) photon is emitted from the other nucleus. Exchanging the role of both ions leads to interference effects. A detailed study of the transverse momentum distribution, which is determined by the transverse momentum of the emitted photon, the production process on the target, and the interference effect, is done. We study the unrestricted cross section and the one with an additional electromagnetic excitation of one or both ions; in the latter case small impact parameters are emphasized.

  10. Bound-free electron-positron pair production in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Şengül, M. Y.; Güçlü, M. C.; Fritzsche, S.

    2009-10-01

    The bound-free electron-positron pair production is considered for relativistic heavy ion collisions. In particular, cross sections are calculated for the pair production with the simultaneous capture of the electron into the 1s ground state of one of the ions and for energies that are relevant for the relativistic heavy ion collider and the large hadron colliders. In the framework of perturbation theory, we applied Monte Carlo integration techniques to compute the lowest-order Feynman diagrams amplitudes by using Darwin wave functions for the bound states of the electrons and Sommerfeld-Maue wave functions for the continuum states of the positrons. Calculations were performed especially for the collision of Au+Au at 100 GeV/nucleon and Pb+Pb at 3400 GeV/nucleon.

  11. A Monte Carlo simulation of the effect of ion self-collisions on the ion velocity distribution function in the high-latitude F-region

    NASA Technical Reports Server (NTRS)

    Barghouthi, I. A.; Barakat, A. R.; Schunk, R. W.

    1994-01-01

    Non-Maxwellian ion velocity distribution functions have been theoretically predicted and confirmed by observations, to occur at high latitudes. These distributions deviate from Maxwellian due to the combined effect of the E x B drift and ion-neutral collisions. At high altitude and/or for solar maximum conditions, the ion-to-neutral density ratio increases and, hence, the role of ion self-collisions becomes appreciable. A Monte Carlo simulation was used to investigate the behavior of O(+) ions that are E x B-drifting through a background of neutral O, with the effect of O(+) (Coulomb) self-collisions included. Wide ranges of the ion-to-neutral density ratio n(sub i)/n(sub n) and the electrostatic field E were considered in order to investigate the change of ion behavior with solar cycle and with altitude. For low altitudes and/or solar minimum (n(sub i)/n(sub n) less than or equal to 10(exp -5)), the effect of self-collisions is negligible. For higher values of n(sub i)/n(sub n), the effect of self-collisions becomes significant and, hence, the non-Maxwellian features of the O(+) distribution are reduced. The Monte Carlo results were compared to those that used simplified collision models in order to assess their validity. In general, the simple collision models tend to be more accurate for low E and for high n(sub i)/n(sub n).

  12. Transport rates and momentum isotropization of gluon matter in ultrarelativistic heavy-ion collisions

    SciTech Connect

    Xu Zhe; Greiner, Carsten

    2007-08-15

    To describe momentum isotropization of gluon matter produced in ultrarelativistic heavy-ion collisions, the transport rate of gluon drift and the transport collision rates of elastic (gg{r_reversible}gg) as well as inelastic (gg{r_reversible}ggg) perturbative quantum chromodynamics- (pQCD) scattering processes are introduced and calculated within the kinetic parton cascade Boltzmann approach of multiparton scatterings (BAMPS), which simulates the space-time evolution of partons. We define isotropization as the development of an anisotropic system as it reaches isotropy. The inverse of the introduced total transport rate gives the correct time scale of the momentum isotropization. The contributions of the various scattering processes to the momentum isotropization can be separated into the transport collision rates. In contrast to the transport cross section, the transport collision rate has an indirect but correctly implemented relationship with the collision-angle distribution. Based on the calculated transport collision rates from BAMPS for central Au+Au collisions at Relativistic Heavy Ion Collider energies, we show that pQCD gg{r_reversible}ggg bremsstrahlung processes isotropize the momentum five times more efficiently than elastic scatterings. The large efficiency of the bremsstrahlung stems mainly from its large momentum deflection. Due to kinematics, 2{yields}N (N>2) production processes allow more particles to become isotropic in momentum space and thus kinetically equilibrate more quickly than their back reactions or elastic scatterings. We also show that the relaxation time in the relaxation time approximation, which is often used, is strongly momentum dependent and thus cannot serve as a global quantity that describes kinetic equilibration.

  13. Dust negative ion acoustic shock waves in a dusty multi-ion plasma with positive dust charging current

    SciTech Connect

    Duha, S. S.

    2009-11-15

    Recent analysis of Mamun et al.[ Phys. Lett. A 373, 2355 (2009)], who considered electrons, light positive ions, heavy negative ions, and extremely massive (few micron size) charge fluctuating dust, has been extended by positive dust charging current, i.e., considering the charging currents for positively charged dust grains. A dusty multi-ion plasma system consisting of electrons, light positive ions, negative ions, and extremely massive (few micron size) charge fluctuating stationary dust have been considered. The electrostatic shock waves associated with negative ion dynamics and dust charge fluctuation have been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and is responsible for the formation of dust negative ion acoustic (DNIA) shock structures. The basic features of such DNIA shock structures have been identified. The findings of this investigation may be useful in understanding the laboratory phenomena and space dusty plasmas.

  14. Charge transfer reactions in multiply charged ion-atom collisions. [in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Steigman, G.

    1975-01-01

    Charge-transfer reactions in collisions between highly charged ions and neutral atoms of hydrogen and/or helium may be rapid at thermal energies. If these reactions are rapid, they will suppress highly charged ions in H I regions and guarantee that the observed absorption features from such ions cannot originate in the interstellar gas. A discussion of such charge-transfer reactions is presented and compared with the available experimental data. The possible implications of these reactions for observations of the interstellar medium, H II regions, and planetary nebulae are outlined.

  15. An Experimental Review on Heavy-Flavor v 2 in Heavy-Ion Collision

    DOE PAGES

    Nasim, Md.; Esha, Roli; Huang, Huan Zhong

    2016-01-01

    For overmore » a decade now, the primary purpose of relativistic heavy-ion collisions at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) has been to study the properties of QCD matter under extreme conditions—high temperature and high density. The heavy-ion experiments at both RHIC and LHC have recorded a wealth of data in p+p, p+Pb, d+Au, Cu+Cu, Cu+Au, Au+Au, Pb+Pb, and U+U collisions at energies ranging from s N N = 7.7  GeV to 7 TeV. Heavy quarks are considered good probe to study the QCD matter created in relativistic collisions due to their very large mass and other unique properties. A precise measurement of various properties of heavy-flavor hadrons provides an insight into the fundamental properties of the hot and dense medium created in these nucleus-nucleus collisions, such as transport coefficient and thermalization and hadronization mechanisms. The main focus of this paper is to present a review on the measurements of azimuthal anisotropy of heavy-flavor hadrons and to outline the scientific opportunities in this sector due to future detector upgrade. We will mainly discuss the elliptic flow of open charmed meson ( D -meson), J / ψ , and leptons from heavy-flavor decay at RHIC and LHC energy.« less

  16. Studies of relativistic heavy ion collisions. Final report, July 16, 1987--December 31, 1997

    SciTech Connect

    Madansky, L.

    1997-12-31

    As a member of the DLS collaboration, the Hopkins group participated in all aspects of the experiment and the analysis of the results. The recent work involved measurements of dielectrons from p-p, p-d collisions as well as heavy ion Ca-Ca collisions at high densities. These results show the expected effects of bremsstrahlung vector meson decay and Dalitz decay but still show that some varieties of the low mass cross-sections disagree with various theoretical estimates, which could indicate other effects of high nuclear density. The Hopkins group has also been an initial member of the STAR collaboration and helped initiate the proposal for jet searches in the heavy ion experiments at RHIC. The group was instrumental in initiating the first stage of an electro-magnetic calorimeter for these experiments. The group also joined (E896) the Ho experiment. This work was primarily devoted to finding the existence of an elementary system containing strange quarks. An initial experiment was done recently at which Hopkins provided various beam counters. The final work is expected to commence in the fall of `98. Finally, the group has contributed to a number of experiments involving polarization effects in nuclear collisions, searching for production of antimatter, and other aspects of relativistic collisions of heavy ions using the facilities at Brookhaven National Laboratory (BNL).

  17. Nuclear fragmentation energy and momentum transfer distributions in relativistic heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Khandelwal, Govind S.; Khan, Ferdous

    1989-01-01

    An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.

  18. Determination of Energy-Transfer Distributions in Ionizing Ion-Molecule Collisions.

    PubMed

    Maclot, S; Delaunay, R; Piekarski, D G; Domaracka, A; Huber, B A; Adoui, L; Martín, F; Alcamí, M; Avaldi, L; Bolognesi, P; Díaz-Tendero, S; Rousseau, P

    2016-08-12

    The ionization and fragmentation of the nucleoside thymidine in the gas phase has been investigated by combining ion collision with state-selected photoionization experiments and quantum chemistry calculations. The comparison between the mass spectra measured in both types of experiments allows us to accurately determine the distribution of the energy deposited in the ionized molecule as a result of the collision. The relation of two experimental techniques and theory shows a strong correlation between the excited states of the ionized molecule with the computed dissociation pathways, as well as with charge localization or delocalization.

  19. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus; Kushner, Mark J.

    2016-06-01

    Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology-based society.

  20. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology.

    PubMed

    Bartschat, Klaus; Kushner, Mark J

    2016-06-28

    Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology-based society.

  1. Two active-electron classical trajectory Monte Carlo methods for ion-He collisions

    SciTech Connect

    Guzman, F.; Errea, L. F.; Pons, B.

    2009-10-15

    We introduce two active-electron classical trajectory Monte Carlo models for ion-He collisions, in which the electron-electron force is smoothed using a Gaussian kernel approximation for the pointwise classical particles. A first model uses independent pairs of Gaussian electrons, while a second one employs time-dependent mean-field theory to define an averaged electron-electron repulsion force. These models are implemented for prototypical p+He collisions and the results are compared to available experimental and theoretical data.

  2. Overview of quarkonium production in heavy-ion collisions at LHC

    NASA Astrophysics Data System (ADS)

    Hong, Byungsik

    2016-07-01

    Quarkonium has been regarded as one of the golden probes to identify the phase transition from confined hadronic matter to the deconfined quark-gluon plasma (QGP) in heavy-ion collisions. Recent data on the yields and momentum distributions of J/ψ and ϒ families in pp, pPb, and PbPb collisions at the Large Hadron Collider (LHC) are reviewed. The possible implications related to the propagation of quarkonia in the deconfined hot, dense matter and the modified parton distribution function (PDF) in cold nuclei are also discussed.

  3. Using heavy-ion collisions to elucidate the asymmetric equation-of-state

    NASA Astrophysics Data System (ADS)

    Yennello, Sherry; McIntosh, Alan

    2016-06-01

    The nuclear equation-of-state impacts a number of nuclear properties as well as astrophysical processes. The asymmetric term of the equation-of-state, which describes the behavior away from N=Z, has significant uncertainty. Giant resonances and nuclear masses can elucidate the asymmetry energy for cold normal-density nuclei. Heavy-ion collisions can be used to probe nuclear matter at higher temperatures and densities away from saturation density. The temperatures that are attained in these nuclear collisions are predicted to depend on the isospin asymmetry. In this work we present evidence of the asymmetry dependence of the nuclear caloric curve.

  4. Electron collisions with atoms, ions, molecules, and surfaces: Fundamental science empowering advances in technology

    PubMed Central

    Bartschat, Klaus; Kushner, Mark J.

    2016-01-01

    Electron collisions with atoms, ions, molecules, and surfaces are critically important to the understanding and modeling of low-temperature plasmas (LTPs), and so in the development of technologies based on LTPs. Recent progress in obtaining experimental benchmark data and the development of highly sophisticated computational methods is highlighted. With the cesium-based diode-pumped alkali laser and remote plasma etching of Si3N4 as examples, we demonstrate how accurate and comprehensive datasets for electron collisions enable complex modeling of plasma-using technologies that empower our high-technology–based society. PMID:27317740

  5. Identity method to study chemical fluctuations in relativistic heavy-ion collisions

    SciTech Connect

    Gazdzicki, Marek; Grebieszkow, Katarzyna; Mackowiak, Maja; Mrowczynski, Stanislaw

    2011-05-15

    Event-by-event fluctuations of the chemical composition of the hadronic final state of relativistic heavy-ion collisions carry valuable information on the properties of strongly interacting matter produced in the collisions. However, in experiments incomplete particle identification distorts the observed fluctuation signals. The effect is quantitatively studied and a new technique for measuring chemical fluctuations, the identity method, is proposed. The method fully eliminates the effect of incomplete particle identification. The application of the identity method to experimental data is explained.

  6. Jet energy loss and fragmentation in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Kharzeev, Dmitri E.; Loshaj, Frashër

    2013-04-01

    Recent LHC results indicate a suppression of jet fragmentation functions in Pb-Pb collisions at intermediate values of ξ=ln⁡(1/z). This seems to contradict the picture of energy loss based on the induced QCD radiation that is expected to lead to the enhancement of in-medium fragmentation functions. We use an effective 1+1 dimensional quasi-Abelian model to describe the dynamical modification of jet fragmentation in the medium. We find that this approach describes the data, and argue that there is no contradiction between the LHC results and the picture of QCD radiation induced by the in-medium scattering of the jet. The physics that underlies the suppression of the in-medium fragmentation function at intermediate values of ξ=ln⁡(1/z) is the partial screening of the color charge of the jet by the comoving medium-induced gluon.

  7. (Anti-)strangeness in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Moreau, P.; Cassing, W.; Palmese, A.; Bratkovskaya, E. L.

    2016-08-01

    We study the production of hadrons in nucleus-nucleus collisions within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD before. The essential impact of CSR is found in the Schwinger mechanism (for string decay) which fixes the ratio of strange to light quark production in the hadronic medium. Our studies suggest a microscopic explanation for the maximum in the K + /π + and (Ʌ + Σ0)/π - ratios at about 30 A GeV which only shows up if in addition to CSR a deconfinement transition to partonic degrees-of-freedom is incorporated in the reaction dynamics.

  8. Cold Nuclear Matter Effects on Heavy Quark Production in Relativistic Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Durham, John Matthew

    2011-12-01

    The experimental collaborations at the Relativistic Heavy Ion Collider (RHIC) have established that dense nuclear matter with partonic degrees of freedom is formed in collisions of heavy nuclei at 200 GeV. Information from heavy quarks has given significant insight into the dynamics of this matter. Charm and bottom quarks are dominantly produced by gluon fusion in the early stages of the collision, and thus experience the complete evolution of the medium. The production baseline measured in p + p collisions can be described by fixed order plus next to leading log perturbative QCD calculations within uncertainties. In central Au+Au collisions, suppression has been measured relative to the yield in p + p scaled by the number of nucleon-nucleon collisions, indicating a significant energy loss by heavy quarks in the medium. The large elliptic flow amplitude v2 provides evidence that the heavy quarks flow along with the lighter partons. The suppression and elliptic flow of these quarks are in qualitative agreement with calculations based on Langevin transport models that imply a viscosity to entropy density ratio close to the conjectured quantum lower bound of 1/4pi. However, a full understanding of these phenomena requires measurements of cold nuclear matter (CNM) effects, which should be present in Au+Au collisions but are difficult to distinguish experimentally from effects due to interactions with the medium. This thesis presents measurements of electrons at midrapidity from the decays of heavy quarks produced in d+Au collisions at RHIC. A significant enhancement of these electrons is seen at a transverse momentum below 5 GeV/c, indicating strong CNM effects on charm quarks that are not present for lighter quarks. A simple model of CNM effects in Au+Au collisions suggests that the level of suppression in the hot nuclear medium is comparable for all quark flavors.

  9. Gauge/String Duality, Hot QCD and Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Casalderrey-Solana, Jorge; Liu, Hong; Mateos, David; Rajagopal, Krishna; Wiedemann, Urs Achim

    2014-06-01

    1. Opening remarks; 2. A heavy ion phenomenology primer; 3. Results from lattice QCD at nonzero temperature; 4. Introducing the gauge/string duality; 5. A duality toolbox; 6. Bulk properties of strongly coupled plasma; 7. From hydrodynamics for far-from-equilibrium dynamics; 8. Probing strongly coupled plasma; 9. Quarkonium mesons in strongly coupled plasma; 10. Concluding remarks and outlook; Appendixes; References; Index.

  10. Heavy ion collisions and the pre-equilibrium exciton model

    SciTech Connect

    Betak, E.

    2012-10-20

    We present a feasible way to apply the pre-equilibrium exciton model in its masterequation formulation to heavy-ion induced reactions including spin variables. Emission of nucleons, {gamma}'s and also light clusters is included in our model.

  11. Collision phenomena involving highly-charged ions in astronomical objects

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    2001-01-01

    A description of the role of highly charged ions in various astronomical objects; includes the use of critical quantities such as cross sections for excitation, charge-exchange, X-ray emission, radiative recombination (RR) and dielectronic recombination (DR); and lifetimes, branching ratios, and A-values.

  12. Comparison of infrared multiphoton dissociation and collision-induced dissociation of supercharged peptides in ion traps.

    PubMed

    Madsen, James A; Brodbelt, Jennifer S

    2009-03-01

    The number and types of diagnostic ions obtained by infrared multiphoton dissociation (IRMPD) and collision-induced dissociation (CID) were evaluated for supercharged peptide ions created by electrospray ionization of solutions spiked with m-nitrobenzyl alcohol. IRMPD of supercharged peptide ions increased the sequence coverage compared with that obtained by CID for all charge states investigated. The number of diagnostic ions increased with the charge state for IRMPD; however, this trend was not consistent for CID because the supercharged ions did not always yield the greatest number of diagnostic ions. Significantly different fragmentation pathways were observed for the different charge states upon CID or IRMPD with the latter yielding far more immonium ions and often fewer uninformative ammonia, water, and phosphoric acid neutral losses. Pulsed-Q dissociation resulted in an increase in the number of internal product ions, a decrease in sequence-informative ions, and reduced overall ion abundances. The enhanced sequence coverage afforded by IRMPD of supercharged ions was demonstrated for a variety of model peptides, as well as for a tryptic digest of cytochrome c.

  13. Novel experimental setup for time-of-flight mass spectrometry ion detection in collisions of anionic species with neutral gas-phase molecular targets.

    PubMed

    Oller, J C; Ellis-Gibbings, L; da Silva, F Ferreira; Limão-Vieira, P; García, G

    We report a novel experimental setup for studying collision induced products resulting from the interaction of anionic beams with a neutral gas-phase molecular target. The precursor projectile was admitted into vacuum through a commercial pulsed valve, with the anionic beam produced in a hollow cathode discharge-induced plasma, and guided to the interaction region by a set of deflecting plates where it was made to interact with the target beam. Depending on the collision energy regime, negative and positive species can be formed in the collision region and ions were time-of-flight (TOF) mass-analysed. Here, we present data on O2 precursor projectile, where we show clear evidence of O(-) and O2(-) formation from the hollow cathode source as well as preliminary results on the interaction of these anions with nitromethane, CH3NO2. The negative ions formed in such collisions were analysed using time-of-flight mass spectrometry. The five most dominant product anions were assigned to H(-), O(-), NO(-), CNO(-) and CH3NO2(-).

  14. Charge States of y Ions in the Collision-Induced Dissociation of Doubly Charged Tryptic Peptide Ions

    NASA Astrophysics Data System (ADS)

    Neta, Pedatsur; Stein, Stephen E.

    2011-05-01

    Bonds that break in collision-induced dissociation (CID) are often weakened by a nearby proton, which can, in principle, be carried away by either of the product fragments. Since peptide backbone dissociation is commonly charge-directed, relative intensities of charge states of product y- and b-ions depend on the final location of that proton. This study examines y-ion charge distributions for dissociation of doubly charged peptide ions, using a large reference library of peptide ion fragmentation generated from ion-trap CID of peptide ions from tryptic digests. Trends in relative intensities of y2+ and y1+ ions are examined as a function of bond cleavage position, peptide length (n), residues on either side of the bond and effects of residues remote from the bond. It is found that yn-2/b2 dissociation is the most sensitive to adjacent amino acids, that y2+/y1+ steadily increase with increasing peptide length, that the N-terminal amino acid can have a major influence in all dissociations, and in some cases other residues remote from the bond cleavage exert significant effects. Good correlation is found between the values of y2+/y1+ for the peptide and the proton affinities of the amino acids present at the dissociating peptide bond. A few deviations from this correlation are rationalized by specific effects of the amino acid residues. These correlations can be used to estimate trends in y2+/y1+ ratios for peptide ions from amino acid proton affinities.

  15. Temperature diagnostics for carbon IV ion by using a collision model in the solar transition region

    NASA Astrophysics Data System (ADS)

    Liao, Lamei; He, Jian; Zhang, Qingguo

    2016-09-01

    For spectral diagnostics of temperature in the solar transition region, by using a semi-classical method, we calculate the collision strengths for the dipole transition of carbon IV 2S1/2-2P1/2 and 2S1/2-2P3/2, and we discuss the Maxwellian-averaged collision strengths for a wide temperature region. Then, based on the Maxwellian-averaged collision strengths, we discuss the spectral diagnostic of temperature in the solar transition region and obtain the temperature T = 1.7 × 105 K for the carbon IV ion in that region, which is in good agreement with the predicted temperature range of 1.0 × 105 K to 2.0 × 105 K. This calculation will be significant for spectral diagnostics in the solar transition region.

  16. High current DC negative ion source for cyclotron

    NASA Astrophysics Data System (ADS)

    Etoh, H.; Onai, M.; Aoki, Y.; Mitsubori, H.; Arakawa, Y.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Hiasa, T.; Yajima, S.; Shibata, T.; Hatayama, A.; Okumura, Y.

    2016-02-01

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H- beam of 10 mA and D- beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H- beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H- current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H- production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H- current dependence on the arc power.

  17. Computer System for Unattended Control of Negative Ion Source

    SciTech Connect

    Zubarev, P. V.; Khilchenko, A. D.; Kvashnin, A. N.; Moiseev, D. V.; Puriga, E. A.; Sanin, A. L.; Savkin, V. Ya.

    2011-09-26

    The computer system for control of cw surface-plasma source of negative ions is described. The system provides an automatic handling of source parameters by the specified scenario. It includes the automatic source start and long-term operation with switching and control of the power supplies blocks, setting and reading of source parameters like hydrogen feed, cesium seed, electrodes' temperature, checking of the protection and blockings elements like vacuum degradation, absence of cooling water, etc. The semi-automatic mode of control is also available, where the order of steps and magnitude of parameters, included to scenario, is corrected in situ by the operator. Control system includes the main controller and a set of peripheral local controllers. Commands execution is carried out by the main controller. Each peripheral controller is driven by the stand-alone program, stored in its ROM. Control system is handled from PC via Ethernet. The PC and controllers are connected by fiber optic lines, which provide the high voltage insulation and the stable system operation in spite the breakdowns and electromagnetic noise of cross-field discharge. The PC program for data setting and information display is developed under the LabView.

  18. Electron detachment from negative ions in a short laser pulse

    SciTech Connect

    Shearer, S. F. C.; Smyth, M. C.; Gribakin, G. F.

    2011-09-15

    We present an efficient and accurate method to study electron detachment from negative ions by a few-cycle linearly polarized laser pulse. The adiabatic saddle-point method of Gribakin and Kuchiev [Phys. Rev. A 55, 3760 (1997)] is adapted to calculate the transition amplitude for a short laser pulse. Its application to a pulse with N optical cycles produces 2(N+1) saddle points in complex time, which form a characteristic 'smile.' Numerical calculations are performed for H{sup -} in a 5-cycle pulse with frequency 0.0043 a.u. and intensities of 10{sup 10}, 5x10{sup 10}, and 10{sup 11} W/cm{sup 2}, and for various carrier-envelope phases. We determine the spectrum of the photoelectrons as a function of both energy and emission angle, as well as the angle-integrated energy spectra and total detachment probabilities. Our calculations show that the dominant contribution to the transition amplitude is given by 5-6 central saddle points, which correspond to the strongest part of the pulse. We examine the dependence of the photoelectron angular distributions on the carrier-envelope phase and show that measuring such distributions can provide a way of determining this phase.

  19. Freak waves in negative-ion plasmas: an experiment revisited

    NASA Astrophysics Data System (ADS)

    Kourakis, Ioannis; Elkamash, Ibrahem; Reville, Brian

    2016-10-01

    Extreme events in the form of rogue waves (freak waves) occur widely in the open sea. These are space- and time-localised excitations, which appear unexpectedly and are characterised by a significant amplitude. Beyond ocean dynamics, the mechanisms underlying rogue wave formation are now being investigated in various physical contexts, including materials science, nonlinear optics and plasma physics, to mention but a few. We have undertaken an investigation, from first principles, of the occurrence of rogue waves associated with the propagation of electrostatic wavepackets in plasmas. Motivated by recent experimental considerations involving freak waves in negative-ion plasmas (NIP), we have addresed the occurrence of freak waves in NIP from first principles. An extended range of plasma parameter values was identified, where freak wave formation is possible, in terms of relevant plasma parameters. Our results extend -and partly contradict- the underlying assumptions in the interpretation of the aforementioned experiment, where a critical plasma configuration was considered and a Gardner equation approach was adopted. This work was supported from CPP/QUB funding. One of us (I. Elkamash) acknowledges financial support by an Egyptian Government fellowship.

  20. High current DC negative ion source for cyclotron

    SciTech Connect

    Etoh, H. Aoki, Y.; Mitsubori, H.; Arakawa, Y.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Hiasa, T.; Yajima, S.; Onai, M.; Hatayama, A.; Shibata, T.; Okumura, Y.

    2016-02-15

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H{sup −} beam of 10 mA and D{sup −} beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H{sup −} beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H{sup −} current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H{sup −} production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H{sup −} current dependence on the arc power.

  1. Improving efficiency of negative ion production in ion source with saddle antenna

    SciTech Connect

    Dudnikov, V. Johnson, R. P.; Murrey, S.; Pinnisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.; Johnson, C.; Turvey, M.

    2014-02-15

    Extraction of negative ions from a saddle antenna radio-frequency surface plasma source is considered. Several versions of new plasma generators with different antennas and magnetic field configurations were tested in the smal Oak Ridge National Laboratory Spallation Neutron Source Test Stand. The efficiency of positive ion generation in plasma has been improved to 200 mA/cm{sup 2} kW from 2.5 mA/cm{sup 2} kW. A small oven was developed for cesiation by cesium compounds and alloy decomposition. After cesiation, a current of negative ions to the collector was increased from 1 mA to 10 mA with 1.5 kW RF power in the plasma and longitudinal magnetic field B{sub l} ∼ 250 G. The specific efficiency of H{sup −} production was increased to 20 mA/cm{sup 2} kW from 2.5 mA/cm{sup 2} kW.

  2. Improving efficiency of negative ion production in ion source with saddle antenna.

    PubMed

    Dudnikov, V; Johnson, R P; Murrey, S; Pinnisi, T; Piller, C; Santana, M; Stockli, M; Welton, R; Johnson, C; Turvey, M

    2014-02-01

    Extraction of negative ions from a saddle antenna radio-frequency surface plasma source is considered. Several versions of new plasma generators with different antennas and magnetic field configurations were tested in the smal Oak Ridge National Laboratory Spallation Neutron Source Test Stand. The efficiency of positive ion generation in plasma has been improved to 200 mA/cm(2) kW from 2.5 mA/cm(2) kW. A small oven was developed for cesiation by cesium compounds and alloy decomposition. After cesiation, a current of negative ions to the collector was increased from 1 mA to 10 mA with 1.5 kW RF power in the plasma and longitudinal magnetic field Bl ∼ 250 G. The specific efficiency of H(-) production was increased to 20 mA/cm(2) kW from 2.5 mA/cm(2) kW.

  3. Systematic Azimuth Quadrupole and Minijet Trends from Two-Particle Correlations in Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Kettler, David

    Heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) produce a tremendous amount of data but new techniques are necessary for a comprehensive understanding of the physics behind these collisions. We present measurements from the STAR detector of both pt-integral and pt-differential azimuth two-particle correlations on azimuth (phi) and pseudorapidity (eta) for unidentified hadrons in Au-Au collisions at a center of mass energy = 62 and 200 GeV. The azimuth correlations can be fit to extract a quadrupole component--related to conventional v2 measures--and a same-side peak. The azimuth quadrupole component is distinguished from eta-localized same-side correlations by taking advantage of the full 2D eta and phi dependence. Both pt-integral and pt-differential results are presented as functions of Au-Au centrality. We observe simple universal energy and centrality trends for the pt-integral quadrupole component. pt-differential results can be transformed to reveal quadrupole pt spectra that are nearly independent of centrality. A parametrization of the pt-differential quadrupole shows a simple pt dependence that can be factorized from the centrality and collision energy dependence above 0.75 GeV/c. Angular correlations contain jet-like structure with most-probable hadron momentum 1 GeV/c. For better comparison to RHIC data we analyze the energy scale dependence of fragmentation functions from e+-e - collisions on rapidity y. We find that replotting fragmentation functions on a normalized rapidity variable results in a compact form precisely represented by the beta distribution, its two parameters varying slowly and simply with parton energy scale Q. The resulting parameterization enables extrapolation of fragmentation functions to low Q in order to describe fragment distributions at low transverse momentum ptin heavy ion collisions at RHIC. We convert minimum-bias jet-like angular correlations to single-particle hadron yields and compare them with parton

  4. Collisions of slow polyatomic ions with surfaces: the scattering method and results.

    PubMed

    Herman, Zdenek

    2003-12-01

    Surface-induced dissociation (SID) and reactions following impact of well-defined ion beams of polyatomic cations C2H5OH+, CH4+, and CH5+ (and its deuterated variants) at several incident angles and energies with self-assembled monolayers (SAM), carbon surfaces, and hydrocarbon covered stainless steel were investigated by the scattering method. Energy transfer and partitioning of the incident projectile energy into internal excitation of the projectile, translational energy of products, and energy transferred into the surface were deduced from the mass spectra and the translational energy and angular distributions of the product ions. Conversion of ion impact energy into internal energy of the recoiling ions peaked at about 17% of the incident energy for the perfluoro-hydrocarbon SAM, and at about 6% for the other surfaces investigated. Ion survival probability is about 30-50 times higher for closed-shell ions than for open-shell radical cations (e.g., 12% for CD5+ versus 0.3% for CD4+, at the incident angle of 60 degrees with respect to the surface normal). Contour velocity plots for inelastic scattering of CD5+ from hydrocarbon-coated and hydrocarbon-free highly oriented pyrolytic graphite (HOPG) surfaces gave effective masses of the surface involved in the scattering event, approximately matching that of an ethyl group (or two methyl groups) and four to five carbon atoms, respectively. Internal energy effects in impacting ions on SID were investigated by comparing collision energy resolved mass spectra (CERMS) of methane ions generated in a low pressure Nier-type electron impact source versus those generated in a Colutron source in which ions undergo many collisions prior to extraction and are essentially vibrationally relaxed. This comparison supports the hypothesis that internal energy of incident projectile ions is fully available to drive their dissociation following surface impact.

  5. Ion Mobility Studies on the Negative Ion-Molecule Chemistry of Isoflurane and Enflurane

    NASA Astrophysics Data System (ADS)

    González-Méndez, Ramón; Watts, Peter; Howse, David C.; Procino, Immacolata; McIntyre, Henry; Mayhew, Chris A.

    2017-02-01

    In the present work we present an investigation of the negative ion-molecule chemistry of the anaesthetics isoflurane, ISOF, and enflurane, ENF, in an ion mobility spectrometry/mass spectrometry (IMS/MS), in both air and nitrogen. Hexachloroethane (HCE) was introduced in both air and nitrogen to produce Cl- as a reactant ion. This study was undertaken owing to uncertainties in the chemical processes, which lead to the cluster ions reported in other work (Eiceman et al. Anal. Chem. 61, 1093-1099, 1). In particular for ISOF the product ion observed was ISOF.Cl-, and it was suggested that the Cl- was formed by dissociative electron attachment (DEA) although there was mention of a chlorine containing contaminant. We show in this study that ISOF and ENF do not produce Cl- in an IMS system either by capture of free electrons or reaction with O2 -. This demonstrates that the Cl- containing ions, reported in the earlier study, must have been the result of a chlorine containing contaminant as suggested. The failure of ISOF and ENF to undergo DEA was initially surprising given the high calculated electron affinities, but further calculations showed that this was a result of the large positive vertical attachment energies (VAEs). This experimental work has been supported by electronic structure calculations at the B3LYP level, and is consistent with those obtained in a crossed electron-molecular beam two sector field mass spectrometer. An unusual observation is that the monomer complexes of ISOF and ENF with O2 - are relatively unstable compared with the dimer complexes.

  6. Directed flow in heavy-ion collisions at NICA: What is interesting to measure?

    NASA Astrophysics Data System (ADS)

    Bravina, L. V.; Zabrodin, E. E.

    2016-08-01

    We study the formation of the directed flow of hadrons in nuclear collisions at energies between AGS and SPS in Monte Carlo cascade model. The slope of the proton flow at midrapidity tends to zero (softening) with increasing impact parameter of the collision. For very peripheral topologies this slope becomes negative (antiflow). The effect is caused by rescattering of hadrons in remnants of the colliding nuclei. Since the softening of the proton flow can be misinterpreted as indication of the presence of quark-gluon plasma, we propose several measurements at NICA facility which can help one to distinguish between the cases with and without the plasma formation.

  7. Effect of nickel grid parameters on production of negative hydrogen ions

    SciTech Connect

    Oohara, W.; Yokoyama, H.; Takeda, Toshiaki; Maetani, Y.; Takeda, Takashi; Kawata, K.

    2014-06-15

    Negative hydrogen ions are produced by plasma-assisted catalytic ionization using a nickel grid. When positive ions passing through the grid are decelerated by an electric field, the extraction current density of passing positive ions is sharply reduced by neutralization and negative ionization of the ions. This phenomenon is found to depend on the specific surface area of the grid and the current density.

  8. Sixteenth International Conference on the physics of electronic and atomic collisions

    SciTech Connect

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  9. Influence of quantum diffraction and shielding on electron-ion collision in two-component semiclassical plasmas

    SciTech Connect

    Hong, Woo-Pyo; Jung, Young-Dae

    2015-01-15

    The influence of quantum diffraction and shielding on the electron-ion collision process is investigated in two-component semiclassical plasmas. The eikonal method and micropotential taking into account the quantum diffraction and shielding are used to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the collision energy, density parameter, Debye length, electron de Broglie wavelength, and the impact parameter. The result shows that the quantum diffraction and shielding effects suppress the eikonal scattering phase shift as well as the differential eikonal collision cross section, especially, in small-impact parameter regions. It is also shown that the quantum shielding effect on the eikonal collision cross section is more important in low-collision energies. In addition, it is found that the eikonal collision cross section increases with an increase in the density parameter. The variations of the eikonal cross section due to the quantum diffraction and shielding effects are also discussed.

  10. Charged particle flows in the beam extraction region of a negative ion source for NBI

    SciTech Connect

    Geng, S.; Tsumori, K.; Nakano, H.; Osakabe, M.; Nagaoka, K.; Takeiri, Y.; Kaneko, O.; Kisaki, M.; Ikeda, K.; Shibuya, M.

    2016-02-15

    Experiments by a four-pin probe and photodetachment technique were carried out to investigate the charged particle flows in the beam extraction region of a negative hydrogen ion source for neutral beam injector. Electron and positive ion flows were obtained from the polar distribution of the probe saturation current. Negative hydrogen ion flow velocity and temperature were obtained by comparing the recovery times of the photodetachment signals at opposite probe tips. Electron and positive ions flows are dominated by crossed field drift and ambipolar diffusion. Negative hydrogen ion temperature is evaluated to be 0.12 eV.

  11. Energy Gain in Collisions of Highly Charged Ions with C_60

    NASA Astrophysics Data System (ADS)

    Thumm, Uwe; Bárány, Anders; Cederquist, Henrik

    1997-04-01

    Within the dynamical classical over--barrier model for charge transfer in soft ion--cluster collisions [1], we have simulated [2] the kinetic energy gain Q of 3.3 q keV Ar^q+ ions in collisions with neutral C_60 targets. Our semi--classical theory allows for the calculation of Q in two different ways, either as difference of electronic binding energies before and after the collision or by integrating the dynamically changing force between the collision partners along the trajectory. A comparison between the two ways provides an intrinsic test of the model calculation. Comparison with recent experimental data [3] shows good agreement in the main features of the energy gain spectra and facilitates their interpretation in terms of the number and final states of transferred electrons. [1] U. Thumm, J. Phys. B27 3515 (1994); Phys. Rev. A55 (Jan.1997). [2] U. Thumm, A. Bárány and H. Cederquist, to be published. [3] N. Selberg et al., Phys. Rev. A 53, 874 (1996). description U.T. is supported by the Division of Chemical Sciences, Basis Energy Sciences, Office of Energy Research, U.S. Department of Energy.

  12. Centrality dependence of strangeness enhancement in ultrarelativistic heavy ion collisions: A core-corona effect

    SciTech Connect

    Aichelin, J.; Werner, K.

    2009-06-15

    In ultrarelativistic heavy ion collisions, the multiplicity of multistrange baryons per participating nucleon increases with centrality in a different fashion for different systems and energies. At RHIC, for copper+copper (CuCu) collisions the increase is much steeper than for gold-gold (AuAu) collisions. We show that this system size dependence is due to a core-corona effect: the relative importance of the corona as compared to the core (thermalized matter) contribution varies and the contribution of a corona nucleon to the multiplicity differs from that of a core nucleon. {phi} mesons follow--as all hadrons--the same trend, but the difference between core and corona multiplicity is relatively small, and therefore the CuCu and AuAu results are quite similar. This simple geometrical explanation makes also a strong case in favor of the validity of Glauber geometry in the peripheral regions of ultrarelativistic heavy ion collisions, which is crucial for understanding the early evolution of the system.

  13. Exit charge state dependence of convoy electron production in heavy-ion solid collisions

    SciTech Connect

    Huelskoetter, H.P.; Burgdoerfer, J.; Sellin, I.A.

    1986-01-01

    The dependence of the yield of convoy electrons emitted near the forward direction in collisions involving fast ions and thin solid targets on the emergent projectile charge state is presented and described in terms of primary electron loss events in the solid. The data include a large array of projectiles, projectile energies and charge states, as well as targets ranging in thickness from the non-equilibrium well into the equilibrium thickness region. The description presented is consistent with other experimental and theoretical results indicating that the convoy electron production is closely linked to the ELC process observed in binary ion-atom collisions, with the dominant contribution to the convoy yield stemming from excited states of the projectiles. 22 refs., 3 figs.

  14. Unexplained features of capture and ionization for ion-aligned-Rydberg-atom collisions

    NASA Astrophysics Data System (ADS)

    Perumal, A. N.; Tripathi, D. N.

    2001-10-01

    Observed but unexplained features, namely, oscillations in the capture cross sections and an unexpected increase in the ionization cross sections at lower velocities, are discussed using classical trajectory Monte Carlo simulated results for ion-aligned-Rydberg-atom collisions. The initial alignment (m=0, 1, and 2) dependence of the cross sections shows evidence of ``capture through quasimolecular ion formation,'' identified as the most likely cause for the oscillations. Spatial overlap, in addition to the velocity matching mechanism, is shown to play an important role in the collision process. The unexpected rise in the ionization cross section toward lower reduced velocities is explained qualitatively in terms of the multiple encounter model [Perumal and Tripathi, Nucl. Instrum. Methods B 143, 429 (1998)].

  15. Physics perspectives of heavy-ion collisions at very high energy

    DOE PAGES

    Chang, Ning-bo; Cao, ShanShan; Chen, Bao-yi; ...

    2016-01-15

    We expect heavy-ion collisions at very high colliding energies to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We also report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. Here, we illustrate the potential of future experimental studies of the initial particle production andmore » formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.« less

  16. Physics perspectives of heavy-ion collisions at very high energy

    SciTech Connect

    Chang, Ning-bo; Cao, ShanShan; Chen, Bao-yi; Chen, Shi-yong; Chen, Zhen-yu; Ding, Heng-Tong; He, Min; Liu, Zhi-quan; Pang, Long-gang; Qin, Guang-you; Rapp, Ralf; Schenke, Björn; Shen, Chun; Song, HuiChao; Xu, Hao-jie; Wang, Qun; Wang, Xin-Nian; Zhang, Ben-wei; Zhang, Han-zhong; Zhu, XiangRong; Zhuang, Peng-fei

    2016-01-15

    We expect heavy-ion collisions at very high colliding energies to produce a quark-gluon plasma (QGP) at the highest temperature obtainable in a laboratory setting. Experimental studies of these reactions can provide an unprecedented range of information on properties of the QGP at high temperatures. We also report theoretical investigations of the physics perspectives of heavy-ion collisions at a future high-energy collider. These include initial parton production, collective expansion of the dense medium, jet quenching, heavy-quark transport, dissociation and regeneration of quarkonia, photon and dilepton production. Here, we illustrate the potential of future experimental studies of the initial particle production and formation of QGP at the highest temperature to provide constraints on properties of strongly interaction matter.

  17. A particle-hole calculation for pion production in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Norbury, J. W.; Deutchman, P. A.; Townsend, L. W.

    1985-02-01

    A differential cross section for pi-meson production in peripheral heavy-ion collisions is formulated within the context of a particle-hole model in the Tamm-Dancoff approximation. This is the first attempt at a fully quantum-mechanical particle-hole calculation for pion production in relativistic heavy-ion collisions. The particular reaction studied is an O-16 projectile colliding with a C-12 target at rest. In the projectile a linear combination of isobar-hole states is formed, with the possibility of a coherent isobar giant resonance. The target can be excited to its giant M1 resonance (J-pi = 1(+), T = 1) at 15.11 MeV, or to its isobar analog neighbors, B-12 at 13.4 MeV and N-12 at 17.5 MeV. The theory is compared to recent experimental results.

  18. Evolution of collectivity as a signal of quark gluon plasma formation in heavy ion collisions

    SciTech Connect

    Mohanty, Payal; Alam, Jan-e; Mohanty, Bedangadas

    2011-08-15

    A measurement for studying the mass dependence of dilepton interferometry in relativistic heavy-ion collision experiments as a tool to characterize the quark gluon phase is proposed. In calculations involving dileptons, we show that the mass dependence of radii extracted from the virtual photon (dilepton) interferometry provide access to the development of collective flow with time. It is argued that the nonmonotonic variation of Hanbury Brown-Twiss radii with invariant mass of the lepton pairs signals the formation of quark gluon plasma in heavy ion collisions. Our proposal of experimentally measuring the ratio, R{sub out}/R{sub side} for dileptons can be used to estimate the average lifetimes of the partonic as well as the hadronic phases.

  19. An independent-atom-model description of ion-molecule collisions including geometric screening corrections

    NASA Astrophysics Data System (ADS)

    Lüdde, Hans Jürgen; Achenbach, Alexander; Kalkbrenner, Thilo; Jankowiak, Hans-Christian; Kirchner, Tom

    2016-04-01

    A new model to account for geometric screening corrections in an independent-atom-model description of ion-molecule collisions is introduced. The ion-molecule cross sections for net capture and net ionization are represented as weighted sums of atomic cross sections with weight factors that are determined from a geometric model of overlapping cross section areas. Results are presented for proton collisions with targets ranging from diatomic to complex polyatomic molecules. Significant improvement compared to simple additivity rule results and in general good agreement with experimental data are found. The flexibility of the approach opens up the possibility to study more detailed observables such as orientation-dependent and charge-state-correlated cross sections for a large class of complex targets ranging from biomolecules to atomic clusters.

  20. Bose-Einstein final state symmetrization for event generators of heavy ion collisions

    SciTech Connect

    Wiedemann, U.A.; Heinz, U.; Ellis, J.; Geiger, K.

    1998-12-01

    The current relativistic heavy ion program at CERN and BNL aims at investigating the equilibration properties of hadronic matter at extreme temperatures and densities where quarks and gluons are expected to be the physically relevant degrees of freedom for particle production processes. The theoretical discussion of these collision systems is complicated by their mesoscopic character. They are not sufficiently small to allow for an analytical description in terms of elementary processes. They are not sufficiently large to take a description in terms of macroscopic observables for granted. Even if simple thermodynamically of hydrodynamically inspired models account for the data, the task remains to understand the microscopic origin of their success, and to establish to what extent such an agreement is necessary or accidental. The authors discuss algorithms which allow to calculate identical two-particle correlations from numerical simulations of relativistic heavy ion collisions. A toy model is used to illustrate their properties.

  1. A particle-hole calculation for pion production in relativistic heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Deutchman, P. A.; Townsend, L. W.

    1985-01-01

    A differential cross section for pi-meson production in peripheral heavy-ion collisions is formulated within the context of a particle-hole model in the Tamm-Dancoff approximation. This is the first attempt at a fully quantum-mechanical particle-hole calculation for pion production in relativistic heavy-ion collisions. The particular reaction studied is an O-16 projectile colliding with a C-12 target at rest. In the projectile a linear combination of isobar-hole states is formed, with the possibility of a coherent isobar giant resonance. The target can be excited to its giant M1 resonance (J-pi = 1(+), T = 1) at 15.11 MeV, or to its isobar analog neighbors, B-12 at 13.4 MeV and N-12 at 17.5 MeV. The theory is compared to recent experimental results.

  2. Exploring the QCD Phase Structure with Beam Energy Scan in Heavy-ion Collisions

    NASA Astrophysics Data System (ADS)

    Luo, Xiaofeng

    2016-12-01

    Beam energy scan programs in heavy-ion collisions aim to explore the QCD phase structure at high baryon density. Sensitive observables are applied to probe the signatures of the QCD phase transition and critical point in heavy-ion collisions at RHIC and SPS. Intriguing structures, such as dip, peak and oscillation, have been observed in the energy dependence of various observables. In this paper, an overview is given and corresponding physics implications will be discussed for the experimental highlights from the beam energy scan programs at the STAR, PHENIX and NA61/SHINE experiments. Furthermore, the beam energy scan phase II at RHIC (2019-2020) and other future experimental facilities for studying the physics at low energies will be also discussed.

  3. Long-pulse production of high current negative ion beam by using actively temperature controlled plasma grid for JT-60SA negative ion source

    SciTech Connect

    Kojima, A.; Hanada, M.; Yoshida, M.; Umeda, N.; Hiratsuka, J.; Kashiwagi, M.; Tobari, H.; Watanabe, K.; Grisham, L. R.

    2015-04-08

    The temperature control system of the large-size plasma grid has been developed to realize the long pulse production of high-current negative ions for JT-60SA. By using this prototype system for the JT-60SA ion source, 15 A negative ions has been sustained for 100 s for the first time, which is three times longer than that obtained in JT-60U. In this system, a high-temperature fluorinated fluid with a high boiling point of 270 degree Celsius is circulated in the cooling channels of the plasma grids (PG) where a cesium (Cs) coverage is formed to enhance the negative ion production. Because the PG temperature control had been applied to only 10% of the extraction area previously, the prototype PG with the full extraction area (110 cm × 45 cm) was developed to increase the negative ion current in this time. In the preliminary results of long pulse productions of high-current negative ions at a Cs conditioning phase, the negative ion production was gradually degraded in the last half of 100 s pulse where the temperature of an arc chamber wall was not saturated. From the spectroscopic measurements, it was found that the Cs flux released from the wall might affect to the negative ion production, which implied the wall temperature should be kept low to control the Cs flux to the PG for the long-pulse high-current production. The obtained results of long-pulse production and the PG temperature control method contributes the design of the ITER ion source.

  4. Single ionization of water molecules in collisions with bare ions

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Mandal, C. R.; Purkait, M.

    2016-04-01

    We present the double differential cross sections (DDCSs) for the direct ionization of water molecules by impact of fully stripped helium, carbon and oxygen atoms, respectively. In the present formalism, we have represented the wavefunction in the entrance channel as the product of a plane wave for the projectile and an accurate one-center-molecular wavefunction of the water molecule by Moccia (1964 J. Chem. Phys. 40 2186). In the exit channel, we have expressed the total wavefunction as the product of pair-wise Coulomb wavefunctions among the ejected electron, projectile ion and the residual target ion, respectively. The contributions of DDCSs for five different molecular orbitals of water to the spectrum of angular distributions have been analyzed for several electron emission energies. The present results for DDCSs are compared with existing experimental and theoretical findings. We find an overall good agreement between our calculated results and the experimental findings for electron emission cross sections. In addition, DDCS results for ionization from different orbitals at a few electron emission energies are given in tabular form.

  5. Linear and nonlinear obliquely propagating ion-acoustic waves in magnetized negative ion plasma with non-thermal electrons

    NASA Astrophysics Data System (ADS)

    Mishra, M. K.; Jain, S. K.; Jain

    2013-10-01

    Ion-acoustic solitons in magnetized low-β plasma consisting of warm adiabatic positive and negative ions and non-thermal electrons have been studied. The reductive perturbation method is used to derive the Korteweg-de Vries (KdV) equation for the system, which admits an obliquely propagating soliton solution. It is found that due to the presence of finite ion temperature there exist two modes of propagation, namely fast and slow ion-acoustic modes. In the case of slow-mode if the ratio of temperature to mass of positive ion species is lower (higher) than the negative ion species, then there exist compressive (rarefactive) ion-acoustic solitons. It is also found that in the case of slow mode, on increasing the non-thermal parameter (γ) the amplitude of the compressive (rarefactive) soliton decreases (increases). In fast ion-acoustic mode the nature and characteristics of solitons depend on negative ion concentration. Numerical investigation in case of fast mode reveals that on increasing γ, the amplitude of compressive (rarefactive) soliton increases (decreases). The width of solitons increases with an increase in non-thermal parameters in both the modes for compressive as well as rarefactive solitons. There exists a value of critical negative ion concentration (α c ), at which both compressive and rarefactive ion-acoustic solitons appear as described by modified KdV soliton. The value of α c decreases with increase in γ.

  6. Extraction of negative hydrogen ions from a compact 14 GHz microwave ion source

    SciTech Connect

    Wada, M.; Kasuya, T.; Nishida, T.; Kenmotsu, T.; Maeno, S.; Nishiura, M.; Shinto, K.; Yamaoka, H.

    2012-02-15

    A pair of permanent magnets has formed enough intensity to realize electron cyclotron resonance condition for a 14 GHz microwave in a 2 cm diameter 9 cm long alumina discharge chamber. A three-electrode extraction system assembled in a magnetic shielding has formed a stable beam of negative hydrogen ions (H{sup -}) in a direction perpendicular to the magnetic field. The measured H{sup -} current density was about 1 mA/cm{sup 2} with only 50 W of discharge power, but the beam intensity had shown saturation against further increase in microwave power. The beam current decreased monotonically against increasing pressure.

  7. Coulomb explosion and binary encounter processes in collisions between slow ions and small molecules of biological interest

    SciTech Connect

    Juhasz, Z.; Sulik, B.

    2008-12-08

    In this work we study the ion impact induced fragmentation of small molecules, which are relevant for radiation damage studies in biological tissues. We present double differential ion emission yields for collisions of N{sup 6+} ions with water and methane molecules at 15 and 30 keV impact energies. The angular distribution of the fragment ions shows post-collision and nucleus-nucleus binary collision effects. In the multiple capture energy range, a strong interplay is indicated between the Coulomb explosion and the binary collision mechanisms. In the energy region, where triple capture is dominant, an unexpected angular distribution was found for water fragments, which may be attributed to orientation sensitivity of some of the capture channels. Such processes are relevant for astrophysics and radiation therapy.

  8. Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas

    SciTech Connect

    Faussurier, Gérald Blancard, Christophe

    2016-01-15

    Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.

  9. Central collisions of heavy ions. Progress report, October 1, 1991--September 31, 1992

    SciTech Connect

    Fung, Sun-yiu

    1992-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R&D project was performed.

  10. Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas

    NASA Astrophysics Data System (ADS)

    Faussurier, Gérald; Blancard, Christophe

    2016-01-01

    Two methods are presented to calculate the electron-ion collision-frequency in dense plasmas using an average-atom model. The first one is based on the Kubo-Greenwood approach. The second one uses the Born and Lenard-Balescu approximations. The two methods are used to calculate x-ray Thomson scattering spectra. Illustrations are shown for dense beryllium and aluminum plasmas. Comparisons with experiment are presented in the case of an x-ray Thomson scattering spectrum.

  11. Universal characteristics of transverse momentum transfer in intermediate energy heavy ion collisions

    NASA Technical Reports Server (NTRS)

    Khan, F.; Townsend, L. W.; Tripathi, R. K.; Cucinotta, F. A.

    1993-01-01

    A microscopic optical model formalism for estimating momentum transfer in intermediate energy heavy ion collisions predicts universal behavior of the transverse component. In particular, for symmetric systems heavier than niobium, it appears that values of P(perpendicular)/A are independent of the mass and charge of the colliding nuclei and vary only with impact parameter and incident beam energy. This suggests that momentum transfer per nucleon saturates to some limiting value with increasing mass.

  12. Ionization and fragmentation of polycyclic aromatic hydrocarbon clusters in collisions with keV ions

    SciTech Connect

    Johansson, H. A. B.; Zettergren, H.; Holm, A. I. S.; Seitz, F.; Schmidt, H. T.; Cederquist, H.; Rousseau, P.; Lawicki, A.; Capron, M.; Domaracka, A.; Lattouf, E.; Maclot, S.; Maisonny, R.; Chesnel, J.-Y.; Adoui, L.; Huber, B. A.

    2011-10-15

    We report on an experimental study of the ionization and fragmentation of clusters of k polycyclic aromatic hydrocarbon (PAH) molecules using anthracene, C{sub 14}H{sub 10}, or coronene, C{sub 24}H{sub 12}. These PAH clusters are moderately charged and strongly heated in small impact parameter collisions with 22.5-keV He{sup 2+} ions, after which they mostly decay in long monomer evaporation sequences with singly charged and comparatively cold monomers as dominating end products. We describe a simple cluster evaporation model and estimate the number of PAH molecules in the clusters that have to be hit by He{sup 2+} projectiles for such complete cluster evaporations to occur. Highly charged and initially cold clusters are efficiently formed in collisions with 360-keV Xe{sup 20+} ions, leading to cluster Coulomb explosions and several hot charged fragments, which again predominantly yield singly charged, but much hotter, monomer ions than the He{sup 2+} collisions. We present a simple formula, based on density-functional-theory calculations, for the ionization energy sequences as functions of coronene cluster size, rationalized in terms of the classic electrostatic expression for the ionization of a charged conducting object. Our analysis indicates that multiple electron removal by highly charged ions from a cluster of PAH molecules rapidly may become more important than single ionization as the cluster size k increases and that this is the main reason for the unexpectedly strong heating in these types of collisions.

  13. Stochastic approaches to dynamics of heavy ion collisions, the case of thermal fission

    SciTech Connect

    Boilley, D.; Abe, Y.; Suraud, E.; Ayik, S.

    1994-03-30

    In order to study the influence of fluctuations on various phenomena linked to heavy ion collisions, a Langevin equation has been derived from a microscopic model. Parameters entering this equation are completely determined from microscopic quantities characterizing nuclear matter. This equation has been applied to various phenomena at intermediate energies. This paper focuses on large amplitude motions and especially thermal fission. Fission rate is calculated and compared to experimental results.

  14. The fate of b-ions in the two worlds of collision-induced dissociation.

    PubMed

    Waldera-Lupa, Daniel M; Stefanski, Anja; Meyer, Helmut E; Stühler, Kai

    2013-12-01

    Fragment analysis of proteins and peptides by mass spectrometry using collision-induced dissociation (CID) revealed that the pairwise generated N-terminal b- and C-terminal y-ions have different stabilities resulting in underrepresentation of b-ions. Detailed analyses of large-scale spectra databases and synthetic peptides underlined these observations and additionally showed that the fragmentation pattern depends on utilized CID regime. To investigate this underrepresentation further we systematically compared resonant excitation energy and beam-type CID facilitated on different mass spectrometer platforms: (i) quadrupole time-of-flight, (ii) linear ion trap and (iii) three-dimensional ion trap. Detailed analysis of MS/MS data from a standard tryptic protein digest revealed that b-ions are significantly underrepresented on all investigated mass spectrometers. By N-terminal acetylation of tryptic peptides we show for the first time that b-ion cyclization reaction significantly contributes to b-ion underrepresentation even on ion trap instruments and accounts for at most 16% of b-ion loss.

  15. Plasma asymmetry due to the magnetic filter in fusion-type negative ion sources: Comparisons between two and three-dimensional particle-in-cell simulations

    SciTech Connect

    Fubiani, G. Boeuf, J. P.

    2014-07-15

    Previously reported 2D Particle-In-Cell Monte Carlo Collisions (PIC-MCC) simulations of negative ion sources under conditions similar to those of the ITER neutral beam injection system have shown that the presence of the magnetic filter tends to generate asymmetry in the plasma properties in the extraction region. In this paper, we show that these conclusions are confirmed by 3D PIC-MCC simulations and we provide quantitative comparisons between the 2D and 3D model predictions.

  16. Size scaling of negative hydrogen ion sources for fusion

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Franzen, P.; Kraus, W.; Schiesko, L.; Wimmer, C.; Wünderlich, D.

    2015-04-01

    The RF-driven negative hydrogen ion source (H-, D-) for the international fusion experiment ITER has a width of 0.9 m and a height of 1.9 m and is based on a ⅛ scale prototype source being in operation at the IPP test facilities BATMAN and MANITU for many years. Among the challenges to meet the required parameters in a caesiated source at a source pressure of 0.3 Pa or less is the challenge in size scaling of a factor of eight. As an intermediate step a ½ scale ITER source went into operation at the IPP test facility ELISE with the first plasma in February 2013. The experience and results gained so far at ELISE allowed a size scaling study from the prototype source towards the ITER relevant size at ELISE, in which operational issues, physical aspects and the source performance is addressed, highlighting differences as well as similarities. The most ITER relevant results are: low pressure operation down to 0.2 Pa is possible without problems; the magnetic filter field created by a current in the plasma grid is sufficient to reduce the electron temperature below the target value of 1 eV and to reduce together with the bias applied between the differently shaped bias plate and the plasma grid the amount of co-extracted electrons. An asymmetry of the co-extracted electron currents in the two grid segments is measured, varying strongly with filter field and bias. Contrary to the prototype source, a dedicated plasma drift in vertical direction is not observed. As in the prototype source, the performance in deuterium is limited by the amount of co-extracted electrons in short as well as in long pulse operation. Caesium conditioning is much harder in deuterium than in hydrogen for which fast and reproducible conditioning is achieved. First estimates reveal a caesium consumption comparable to the one in the prototype source despite the large size.

  17. Searching for squeezed particle-antiparticle correlations in high-energy heavy-ion collisions

    SciTech Connect

    Padula, Sandra S.; Socolowski, O. Jr.

    2010-09-15

    Squeezed correlations of particle-antiparticle pairs were predicted to exist if the hadron masses were modified in the hot and dense medium formed in high-energy heavy-ion collisions. Although well-established theoretically, they have not yet been observed experimentally. We suggest here a clear method to search for such a signal by analyzing the squeezed correlation functions in terms of measurable quantities. We illustrate this suggestion for simulated {phi}{phi} pairs at the Relativistic Heavy Ion Collider (RHIC) energies.

  18. Harmonic well matter densities and Pauli correlation effects in heavy-ion collisions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1982-01-01

    A generalized optical model heavy ion reaction theory is extended to include correlation effects between projectile and target constituents according to the Pauli exclusion principle. These correlation effects are significant for accurately predicting cross sections for projectile nucleus abrasions, but are relatively unimportant for determining total and absorption cross sections for heavy ion collisions. For lighter nuclei, predictive capabilities were also improved by developing an analytic method for extracting their nuclear single particle density distributions from experimentally measured harmonic well charge density distributions. This improved theory is compared with previous theoretical predictions and recent experimental results.

  19. Mode-by-mode fluid dynamics for relativistic heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2014-01-01

    We propose to study the fluid dynamic propagation of fluctuations in relativistic heavy ion collisions differentially with respect to their azimuthal, radial and longitudinal wavelength. To this end, we introduce a background-fluctuation splitting and a Bessel-Fourier decomposition of the fluctuating modes. We demonstrate how the fluid dynamic evolution of realistic events can be built up from the propagation of individual modes. We describe the main elements of this mode-by-mode fluid dynamics, and we discuss its use in the fluid dynamic analysis of heavy ion collisions. As a first illustration, we quantify to what extent only fluctuations of sufficiently large radial wave length contribute to harmonic flow coefficients. We find that fluctuations of short wave length are suppressed not only due to larger dissipative effects, but also due to a geometrical averaging over the freeze-out hyper-surface. In this way, our study further substantiates the picture that harmonic flow coefficients give access to a coarse-grained version of the initial conditions for heavy ion collisions, only.

  20. Ion-polycyclic aromatic hydrocarbon collisions: kinetic energy releases for specific fragmentation channels

    NASA Astrophysics Data System (ADS)

    Reitsma, G.; Zettergren, H.; Boschman, L.; Bodewits, E.; Hoekstra, R.; Schlathölter, T.

    2013-12-01

    We report on 30 keV He2 + collisions with naphthalene (C10H8) molecules, which leads to very extensive fragmentation. To unravel such complex fragmentation patterns, we designed and constructed an experimental setup, which allows for the determination of the full momentum vector by measuring charged collision products in coincidence in a recoil ion momentum spectrometer type of detection scheme. The determination of fragment kinetic energies is found to be considerably more accurate than for the case of mere coincidence time-of-flight spectrometers. In fission reactions involving two cationic fragments, typically kinetic energy releases of 2-3 eV are observed. The results are interpreted by means of density functional theory calculations of the reverse barriers. It is concluded that naphthalene fragmentation by collisions with keV ions clearly is much more violent than the corresponding photofragmentation with energetic photons. The ion-induced naphthalene fragmentation provides a feedstock of various small hydrocarbonic species of different charge states and kinetic energy, which could influence several molecule formation processes in the cold interstellar medium and facilitates growth of small hydrocarbon species on pre-existing polycyclic aromatic hydrocarbons.